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Abstract

The ongoing COVID-19 pandemic has caused the death of millions of people, and PCR testing is widely
used as the gold standard method to detect the infections to restrict the outbreak. Through the interviews
conducted with people from the field in South Korea, the UK, and Turkey, we have found that there are
numerous testing strategies worldwide. Those testing strategies include drive-through and home delivery
testing capabilities, local test sites, and mobile test centers. Our primary motivation is to propose a generic
model based on the best practices in the UK and South Korea. Also, we aim to present a case study on
Turkey for the implementation of vital procedures and increase their availability.

This paper represents a study on how to construct a temporary testing logistics system during the initial
phases of pandemics to increase the availability of PCR testing with the primary objective of maximizing
total sample collection. The design also considers minimizing the maximum walking distance to increase the
convenience of sample collection for the people living in the neighborhoods. The proposed system consists
of temporary testing centers and a central laboratory. Temporary testing centers perform direct tours to
the potential areas to collect samples and bring the collected sample to the designated central laboratories
located at central hospitals. Moreover, to represent the non-linear inheritance of the pandemic progress
within a population, we consider diminishing sample potentials over time and coverage. This new problem
is defined as an extension of the Selective Vehicle Routing Problem and Covering Tour Problem.

We propose a mathematical model and four two-stage math-heuristic algorithms to determine the loca-
tion and routing of the temporary testing centers and their lengths of stay at each visited location. The
performances of the proposed solution methodologies are tested on two data sets. The first set is constructed
by the confirmed cases of the districts of Seoul, Korea, and by the interview of health personnel of H+ Yangji
Hospital COVID-19 semi-mobile booth application, and the second set is constructed by 99 hospital/health
centers from distinct neighborhoods of 22 districts of Istanbul, Turkey. The Pareto set of optimum solutions
is generated based on total sample collection and maximum walking distance. Finally, sensitivity analyses
on some design parameters are conducted.
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1. Introduction

The current COVID-19 pandemic is a pandemic of the disease provoked by SARS-CoV-2 (Severe Acute
Respiratory Syndrome Coronavirus 2). The first case of COVID-19 emerged in Wuhan, China, in December
2019. The spread of the virus was recognized as a pandemic on 11 March 2020 by the World Health
Organization. At present, there are 630.6 million confirmed cases and 6.5 million deaths in total associated
with COVID-19 worldwide (Johns Hopkins Coronavirus Resource Center, 2022).

There are various methods to detect infections in an attempt to restrict the COVID-19 outbreak. An-
tibody testing can be used for diagnosing past infections. Antigen and viral tests are utilized to identify
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ongoing infections; the former is convenient and fast but is not sensitive compared to the latter. The gold
standard test to confirm the infection is polymerase chain reaction (PCR) testing.

The high contagion of the virus has caused the outbreak to become a global issue. The time interval
during which an infected person may spread the virus is 1 to 14 days. As it takes time to obtain the results
from viral tests, a potentially sick person is at risk of infecting others in that time interval. To prevent the
virus from spreading, early detection of the infection is crucial for two main reasons. First, early detection
of positive cases prevents the virus from spreading, as the infected are isolated from public areas, isolation
dramatically affects the incidence of the disease. Second, early recognition of coronavirus-positive patients,
especially those in the high-risk group or already ill with a critical condition, decreases mortality rate by
monitoring and treating the patients in the early stages of the disease (Sun et al., 2020).

Due to the need for early recognition of the disease and to increase the reach of testing, numerous testing
strategies have been utilized in different countries. We have interviewed people from countries including the
UK, South Korea, and Turkey to understand the testing strategies used during the pandemic. The UK and
South Korea are chosen for the interviews in order to understand the testing strategies extensively since
they are the pioneer countries in implementing many testing strategies. We have learned that the drive-
through and home delivery testing capabilities, local test sites, and temporary test centers are currently
the most utilized testing strategies. The testing strategies can vary from country to country due to their
circumstances, but any country can adopt a well-designed generic model. Even though some testing strategies
exist in Turkey, the mobile testing application is not implemented. In this study, we propose a generic and
easy-to-implement temporary testing logistics system based on the best practices in the UK and South
Korea. The generic model is tested through a case study in Turkey.

The UK is one of the countries that enhance testing outreach through different strategies; including
temporary testing centers. The government provided operational plans involving large drive-through testing
capabilities and home delivery capabilities of testing kits. Drive-through testing is an application where
patients arrive and are given the testing kits and the relevant instructions. In this way, the patients are
virally tested without any direct human interaction. Home delivery testing is an application in which the
subjects can order test kits via ordering portals. However, there are two problems regarding viral testing
involving the patients themselves rather than health personnel. Firstly, strictly following the instructions is
crucial for an accurate diagnosis. The improper collection of the samples leads to false-negative viral test
results (Hu and Wang, 2020). Secondly, drive-through and home delivery capabilities provide access to viral
testing to only a part of the community: English speakers and car owners. Due to the limited accessibility
and availability of these testing strategies, a large proportion of the community living in high-density urban
centers and areas with higher transmission rates may be excluded. The inclusion of health personnel is
essential in the testing strategies in order to reach the community members who cannot be taught the viral
testing instructions. Therefore, improper sample collection is eliminated.

Besides drive-through and home delivery, there are local test sites (walk-through sites) in common areas
such as campuses, churches, and parking lots. The walk-through sites are intended to increase the availability
of testing by reaching disadvantaged regions. All testing applications serve to provide intuition testing and
search testing. The former is frequently used to test the disadvantaged part of the community to protect
them, such as the elderly; the latter is used for testing as many people as possible in case of a particular
outbreak. Furthermore, there is another testing strategy known as temporary test units to serve vulnerable
parts of the community. They are mobile testing strategies based on the regional test sites, which are
drive-through test sites. Temporary test units essentially operate on daily basis by dispatching from the
regional sites with the test kits and return to the regional sites with the collected samples. Although these
applications collect samples for viral testing, they cannot give the results of the tests. Therefore, laboratories
with the obligatory biosafety levels conduct the PCR testing of the samples collected in the mobile facilities.

Similar operational plans have also been considered in South Korea, where the drive-through facilities
had emerged earlier, with South Korea being the first country to implement this application. In addition,
temporary screening centers play a vital role in testing; these are sophisticated mobile facilities that prevent
direct human interaction due to the design of the facilities and the types of equipment that health personnel
wear. This study is inspired by the advanced mobile testing example H+ Yangji Hospital Walk-Thru testing
application in Gwanak-gu, South Korea. Currently, 95% of the samples are collected in temporary screening
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centers and drive-through applications under the Centers for Disease Control and Prevention supervision.
Therefore, mobile facilities have a significant role in fighting the pandemic.

Currently, there are no mobile testing applications in Turkey, but it is advised that the temporary testing
vehicles could help significantly if they are involved in the contact tracing process. The contact tracing teams
test and keep track of currently infected community members and members with epidemiological links.
When the teams are busy, the suspected patients are not examined at their addresses but are directed to the
hospitals to undergo a viral test. The problem is that the majority of the epidemiologically linked individuals
have to use public transportation to reach the hospital, despite the risk of spreading the virus. To overcome
this, the mobile testing facilities can visit the neighborhoods where testing is needed, but the contact tracing
teams are overly occupied. Mobile testing has a significant role and potential for increasing the number of
viral tests and the availability of such tests, especially for the disadvantaged groups or COVID-19 clustered
areas, by offering testing within walking distance. In addition, mobile testing provides a safer environment
by reducing the contamination that occurs before and during the testing process, as community members
do not have to travel to the hospitals and have a direct interaction with others.

The mobile system for sample collection and testing is observed to be efficient via its application in
South Korea and the UK, the pioneer countries for this application. Inspired by that application, this paper
proposes an efficient mobile sample collection system that utilizes temporary testing vehicles and the central
health centers for sample collection and for providing the results of the collected samples. The primary
purpose of the mobile sample collection is to increase the availability of the test to control and decrease
the rate of transmission of COVID-19. For this purpose, the temporary testing centers visit districts and
collect samples to be brought to the central hospital. This approach enables the temporary testing centers
to continue their tours until the end of their working hours. The problem determines the tours of temporary
testing centers and the length of stay for the temporary testing vehicles at each visited district within their
respective routes. Even though this system is designed based on the current practices of the H+ Yangji
Hospital Walk-Thru testing application in Gwanak-gu, it can be implemented in any country for sample
collection.

Currently, testing has become easily accessible to a wide range of communities. For example, rapid tests
are available in pharmacies in many countries; or there are currently 521 COVID-19 Authorized Diagnostic
Laboratories in Turkey that are eligible for PCR testing. However, the availability of tests to this extent was
not possible at the beginning of the pandemic. When the pandemic first hit, PCR testing could be conducted
in only two cities in Turkey, which are Istanbul and Ankara. The testing and sample collection became
widespread throughout the country in the later stages of the pandemic. Not only has Turkey struggled due
to limited testing setups, but it was a common issue all around the globe. However, the speed of availability
and accessibility of tests differ from country to country. As a result of our interviews, we realized that
the UK and Seoul were the countries that handled the situation successfully during this pandemic since
they aimed to increase the availability and accessibility of the testing as much as possible by using various
testing strategies. Even though some countries managed to handle the challenges of the pandemic, there
are countries that struggled with the process. More importantly, the pandemic is ongoing, with the risk of
other outbreaks in the future emerging from variants of the virus. Therefore, a re-implementation of testing
is vital to curb a possible outbreak. In our study, we aim to establish an exemplary mobile testing system
to increase the accessibility of testing at the beginning of pandemics by compiling the testing strategies. In
brief, the system and the results reported in this paper can easily be adopted by other countries for sample
collection during a pandemic.

The remainder of the paper is organized as follows: Section 2 presents a formal problem definition,
followed by a review of the related literature. Section 3 proposes a mathematical model for the proposed
problem, and in section 4, the performance of the mathematical model is tested on small and large data
sets. The small data set is a real data set obtained by the confirmed cases of districts of Seoul, Korea, and
by interviews with health personnel of H+ Yangji Hospital. The large data set is constructed by 99 health
centers from distinct neighborhoods of 22 districts of Istanbul, Turkey. In section 5, four math-heuristics
proposed for the problem and tested on both data sets. Later, the results and the performance of the
heuristics are compared with the results and performance of the mathematical model. Finally, the paper is
concluded in Section 6 with a summary of the study.
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2. Problem Definition and Related Literature

2.1. Problem Definition

This work proposes a mobile sample collection model inspired by the existing mobile systems applied
worldwide. The proposed system has a predefined number of temporary testing vehicles, also called tempo-
rary screening centers, and a central health center/hospital responsible for testing all the collected samples.
The system allows the mobile sample collection centers to stay at certain points near health centers and
hospitals, such as parking spots, as a semi-mobile testing booth if the sample collection potential is suffi-
ciently high. The sample collection potential in a location is defined as estimated number of people who
are willing to provide samples per hour in that location. The temporary testing vehicles start their tours at
the beginning of the day, departing from the depot, which is a central hospital. They visit several potential
locations once they leave the depot. Since sample collection is vital to detect infections, a temporary testing
vehicle may visit multiple locations during the day as long as there are unvisited locations with sample
collection potential. The time the vehicle spends at the location also affects the total number of samples
collected and thus must be decided on. To be close to real-life practices, the duration of the stay of vehicles
is chosen as one-hour time blocks. In this case, temporary testing vehicles spend at least one hour at each
visited location. If the sample potential of a location is high, a temporary testing vehicle can opt to stay
at there for hours. We assume that the temporary testing vehicles work in ”shifts” to represent the total
duration a mobile vehicle can operate within the day. In order to evaluate the collected samples, the vehicles
should return the specimens to the central hospitals’ labs before the end of their shifts. According to the
changing sample collection potential, the system can assign multiple locations to the vehicles to comply with
the schedule. Figure 1 illustrates a possible tour for the temporary testing center of the proposed system,
where temporary testing centers travel along geographically scattered nodes. The nodes which are within
a predetermined distance to the visited nodes are assumed to be covered, i.e., people who reside close to
the node visited by temporary testing centers are expected to travel to the visited node. Temporary testing
vehicles are supplemental testing services; therefore, residents close to the hospitals can walk for sample
collection rather than being visited by the temporary testing centers.

The sample collection potential will be high when temporary testing centers arrive in the district, and it
is expected to diminish after a particular time. The diminishing potential over time encourages the vehicles
to visit other points. In order to evaluate diminishing sample collection potential with respect to time, the
shifts of vehicles are partitioned into two parts and a step function is formulated. It should be noted that
while traveling between districts, the vehicles cannot collect samples during that interval. Therefore, too
much mobility is not favored.

Another aspect of this system is that the people in the neighborhood of a visited district can walk for
sample collection; this will be called ‘coverage’ throughout the paper. Therefore, collecting samples from
non-visited points in districts within a specific distance by coverage is also possible. If a district is covered
rather than visited, the sample collection is expected to be less due to fewer attendees walking to the visited
district for testing purposes, as there is a correlation between the willingness of the patients of covered
districts to reach the temporary testing centers and the distance to the visited district. This assumption is
to comply with real-life practices. In addition to those assumptions, all vehicles return to the central health
center/hospital to test the samples at the end of each day. It is possible to keep samples without spoilage
for eight hours with adequate equipment in the mobile vehicles, thus, there will be an upper bound on the
total journey time. In the proposed problem, these assumptions are given by the real-life applications of the
mobile sample collection units.

As illustrated in Figure 1 the temporary testing centers travel through a geographically scattered set of
nodes. In Figure 1, a temporary testing center departs from the central hospital, routes districts 3, 6, 7,
and 10, and returns to the central hospital within the given available period. When the temporary testing
center visits district 3, it stays in district 3 for some time. Residents of districts 2 and 4 can walk to district
3 for sample collection, since those districts are within the coverage radius of district 3. After a while, the
temporary testing center moves from district 3 to district 6 and stays in district 6 there for a while. Since
only district 5 is within the coverage radius of district 6, residents of district 5 can walk to district 6 for
sample collection. Similarly, the temporary testing center moves to districts 7 and 10. Due to the coverage
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Figure 1: Schematic Illustration of the Tours of Temporary Testing Center of the Proposed System

radius of districts 7 and 10, it collects samples from district 8 during its stay in district 7 and from districts
9 and 11 during its stay in district 10. In addition, it should be noted that the central hospital is one of the
possible locations where the temporary testing centers can stay to collect samples besides its responsibility
of resulting the samples collected in vehicles throughout the day.

The proposed new system aims to enhance the availability of testing while also increasing the total
sample collection and alleviating the testing responsibility of the traditional testing centers. Thus, the main
decisions are taken via the system as follows:

• the locations to be visited among candidate visiting points

• the length of stay of the temporary testing vehicles

• the tours of temporary testing vehicles

In the proposed problem, the primary performance measure is considered as the maximization of the
total sample collection to reach as many the members of the community. Since the tours are constructed to
include visiting multiple stops without the obligation to visit all stops, our problem can be classified as a
variant of the Selective Vehicle Routing Problem with coverage considerations and time blocks. To the best
of the authors’ knowledge, this version of the Selective Vehicle Routing Problem has not been characterized
in the literature.

2.2. Related Literature

For the proposed system in our paper, the primary consideration for the logistic management of tempo-
rary testing centers is to increase the availability of COVID-19 viral testing. Increasing availability implies
reaching as many suspected sick people as possible. In this section, our proposed problem will be analyzed
under three categories within the literature. Firstly, it will be analyzed within the perspective of routing
literature through the problem dynamics so that the novelty of the study will be highlighted. Later, the
problem will be analyzed in the literature of epidemic/pandemic related studies since our study includes
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mobile units in the context of COVID-19 pandemic. Moreover, gradual decay functions will be investigated
within the literature involving the gradual decay functions due to demand variation in terms of time and
coverage.

2.2.1. Related Routing Literature

Routing problems were introduced to find optimal routes among the vertices on a graph. Rather than
serving every vertex, the problems that are restricted with a budget, profit, or route length to serve a subset
of vertices are generally referred to as Routing Problems with Profits or Selective Routing Problems. Two
significant performance measures for those problems are maximization of profit and minimization of tour
cost. This section will focus on the variants related to our problem dynamics. Tsiligiridis (1984) proposed
Orienteering Problems for selecting the nodes to be visited to maximize the collected profits within a time
constraint. The problem is also known as the Selective Traveling Salesman Problem. Butt and Cavalier
(1994) proposed its multi-vehicle version called Team Orienteering Problem. The problem is widely studied
in the literature with different variations. If the problem is formulated with a prize collection threshold while
minimizing the tour length and the cost of excluding nodes at the same time, then it is called the Prize
Collecting Traveling Salesman Problem (Fischetti and Toth, 1988). Moreover, the problem is defined as
Quota TSP (Awerbuch et al., 1998) if the cost of excluding nodes is given as zero. When the two significant
performance measures are combined in the objective function, the problem is called the Profitable Tour
Problem (Bienstock et al., 1993). The problem offers the flexibility to set some locations as more critical
than others. More recently, Erdogan et al. (2010) introduced the Attractive Traveling Salesman Problem
to maximize the tour profit derived from the customer vertices, measured by the attraction function. Also,
Erdogan and Laporte (2013) proposed an Orienteering problem with variable profits, in which profit collected
increases if the number of visits to a node increases or the duration of stay in a node increases. For the
interested readers, Vansteenwegen and Souffriau (2011) and Gunawan et al. (2016) are the recent studies
presenting a comprehensive survey about the selective routing problems and their variants, including problem
descriptions and solution approaches.

In the health-care context, Halper and Raghavan (2011) determine routes for mobile facilities to maximize
the amount of demand serviced. More interestingly, the demand for the service provided varies over time and
the mobile facility cannot provide service in transit, similar to our assumption. Our study can be seen as an
extension of this study regarding the maximum amount of time that mobile facilities can spend in the system.
Moreover, Şahinyazan et al. (2015) developed a mobile system consisting of bloodmobiles and shuttles to
deliver the collected blood to increase blood collection in Ankara and Istanbul. They proposed a new model
called Selective Vehicle Routing Problem with Integrated Tours to maximize blood collection levels and
minimize the logistics cost of collecting a pre-determined blood level. Salman et al. (2021) developed a
mathematical model for routing mobile clinics with various services for the Syrian migrant farm-workers
in Malatya and Rize, Turkey. They considered three hierarchical objectives: coverage, number of vehicles,
and travel cost. Even though Şahinyazan et al. (2015) and Salman et al. (2021) are the closest studies
to our study, they do not satisfy all the aspects of our problem. They do not simultaneously include the
non-linear demand rate concerning coverage and time aspects, therefore, our problem is a novel approach in
the selective routing context. The classification of routing problems with profits is summarized in Table 1.

Since providing the viral testing service to a broader area helps to limit the outbreak, serving only specific
areas to maximize profit is not acceptable. In this way, people in more locations can be kept under control
while confirming the positive cases within a larger area. In this section, we will further focus on the variants of
coverage problems related to our problem dynamics. In such context, Covering Salesman Problem proposed
by Current and Schilling (1989) is another relevant work for our study. The problem identifies a minimum
cost tour so that nodes not included in the tour are within some predetermined coverage distance of the
nodes in the tour. In this problem setting, every node is restricted to be covered. Therefore, it does not allow
selective routing, but forces coverage. In addition, a generalized version is proposed by Golden et al. (2012)
where each node needs to be covered at least a predetermined time. The path version of Covering Salesman
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is also proposed by Current et al. (1984). Another well-known related problem is the Covering Tour Problem
proposed by Gendreau et al. (1997) where all nodes are either visited or covered by being sufficiently close
to a single vehicle, while the objective is to minimize the tour length. In the Multivehicle Covering Tour
Problem (Hachicha et al., 2000), the coverage is obtained with multiple vehicles. As emphasized, it is
impossible to visit all possible locations due to time limitations. Also, Karaoğlan et al. (2018) introduced
the multivehicle covering tour problem with probabilistic coverage. In this problem, a visited vertex can
fully serve another vertex with a given probability. They provided a nonlinear integer programming model
and a linearization scheme for the objective function.

Moreover, Hodgson et al. (1998) decided to utilize mobile healthcare facilities to increase the accessibility
of primary healthcare resources in the Suhum District of Ghana. They propose a Covering Tour Problem
to minimize tour cost, the number of stops covered by the tour, and maximize the total population on tour.
Hachicha et al. (2000) also examines the mobile healthcare facilities by limiting the number of nodes visited
on a route and the length of each route. Doerner et al. (2007) extend the previous studies by Hachicha et al.
(2000) and Hodgson et al. (1998) to multi-objective formulation considering the effectiveness of workforce
employment, average accessibility, and coverage as criteria. Further, Allahyari et al. (2015) developed a
multi-depot covering tour problem to minimize the total routing and allocation costs of mobile health
centers. The classification of covering problems is summarized in the Table 2.

The Selective Routing Problem complies with the characteristics of our problem for determining the tours of
temporary testing centers, as it selects a subset of nodes to serve and maximizes the total sample collection.
Further, the collected sample is required to be transferred to a hospital by the end of the shift to avoid
spoilage. However, there are additional aspects introduced in the context of our problem. Our problem has
coverage characteristics and diminishing sample collection potentials, which are included in restraining from
selecting solely favorable locations, therefore, reaching more districts. Moreover, there are time blocks for
real-life applications in which the potential samples at each node will not be collected at once. Thus, using
a simple variant of the Selective Vehicle Routing Problem will not be sufficient to cover all features of our
problem.

Furthermore, the Covering Tour Problem also complies with our aim of serving as many residents,
therefore, increasing the availability of testing by coverage, since it considers reaching every node either by
visiting or being sufficiently close. However, unlike the Covering Tour Problem, the focus is on maximizing
the collection of samples, and a decision must also be made regarding the time duration. Our problem also
does not entail an obligation to reach all nodes. Thus, using a simple variant of the Covering Tour Problem
will not be adequate to cover all characteristics of the problem. In this study, we decide the tours and the
length of stay of the temporary testing vehicles by the model. Therefore, we adopt an extension of Covering
Tour and Selective Vehicle Routing approaches and combine it with coverage and time-dependent sample
collection potential.

2.2.2. Epidemic/Pandemic Related Literature

In the OR literature, there are pandemic-related studies curbing the outbreaks while using the scarce
capacity and resources. Sun et al. (2014) proposed linear programming models for patient and resource
allocation with the objectives of minimizing the total travel distance to hospitals and the maximum travel
distance of a patient to a hospital during a pandemic influenza outbreak. Yarmand et al. (2014) proposed
a two-stage stochastic linear programming model for a two-phase optimal vaccine allocation procedure in
a case of an outbreak. Büyüktahtakın et al. (2018) proposed an epidemics-logistics mixed-integer linear
optimization model deciding on the timing, amount, and location of source allocation to minimize the total
number of infections and fatalities under a budget and a multi-planning horizon for the Ebola epidemic.

Recent studies about COVID-19 provide a methodology to allocate scarce resources such as testing
materials. Due to the nonlinear inheritance of the pandemic progress within a population, nonlinear models
are proposed to imitate the critical characteristic of disease transmission and nonlinear transition dynamics.
Buhat et al. (2021) introduces a nonlinear programming model for allocating limited COVID-19 test kits to
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the fixed and large testing centers within the equity perspective, capacity, and populations. They estimate
the number of infected people, compute testing accessibility and distribute the test kits accordingly. In
order to increase the availability of testing, they emphasize test kit allocation to fixed test centers and the
strategic location of additional fixed testing centers. Furthermore, Abdin et al. (2023) provide a nonlinear
programming model for allocating COVID-19 testing materials to minimize the spread of the pandemic.
They specifically consider the mobility of infected and non-infected asymptomatic individuals between the
regions and consider the positivity rate of testing via model predictions fitting closely to the real data. Those
studies evaluate the healthcare system’s capacity allocation problems during the pandemic and emphasize
data fitting for pandemic progress. Unlike our study, they do not propose a mobile vehicle system and
include demand variation concerning time and coverage within the model. Our study deviates from the
other related studies in epidemic and pandemic-related literature due to the mobile dynamics of the testing
strategy used, and the nonlinear demand variation included within the mathematical model.

2.2.3. Gradual Decay Functions

In our problem, the sample collection potential of the vertices diminishes if a vertex is covered rather
than visited. Moreover, the sample collection potential is expected to decrease after a while and is defined as
a function of time, i.e. decay gradually for both visited and covered vertices. In this section, we investigate
the studies including gradual decay functions in the literature.

In covering problems, basically, binary coverage is assumed. It implies that a node is either fully covered
or not covered. The full coverage implies that the distance of a node from the visited node is less than a
predefined value. Also, a node is not covered if the distance is bigger than a predefined value. This basic
assumption is later generalized throughout the literature via the concept of gradual decay functions. Church
and Roberts (1983) proposed partial coverage concerning the distance. Berman and Krass (2002) proposed
a generalized maximal cover location problem with partial coverage as a decreasing step function of the
distance. Further, Berman et al. (2003) introduced a gradual coverage decay model with two coverage radii.
None of the demand in a node is covered if the visited node is beyond the upper coverage radius. Within the
lower coverage radius, the demand in a node is fully covered. For a coverage radius between lower and upper
coverage radius, the demand covered gradually decreases from full coverage to no coverage with increasing
coverage radius. Also, Karasakal and Karasakal (2004) proposed a Lagrangean relaxation-based solution
approach to solve the p-median problem with gradual decay function defined as a monotone decreasing
function of the distance between facility site and demand point.

Drezner et al. (2004) considered gradual coverage assumption while maximizing total population covered
within facility location context. Later, the stochastic version of the problem is proposed by Drezner et al.
(2010). In this setting, the random variables are the minimum and maximum distances of the gradual
coverage. Within the literature of maximal cover location problem, the gradual coverage has been studied
extensively. For instance, Berman et al. (2018) aims to maximize the joint partial coverage by several
facilities while Karatas (2017) studied multi-objective facility location problem with cooperative and gradual
coverage. Recently, Karatas and Eriskin (2021) and Khatami and Salehipour (2022) studied gradual decay
functions. Karatas and Eriskin (2021) studied gradual and cooperative minimal covering location problem.
They allowed capacitated facilities with variable coverage radii. A gradual minimum covering location
problem with distance constraints has been proposed by Khatami and Salehipour (2022). They aim to
minimize the total coverage of vertices while locating a fixed number of undesirable facilities.

In the healthcare setting, the gradual decay functions are also utilized to represent the survival rates.
For instance, Erkut et al. (2008) included a survival function in covering models for emergency medical
services. The survival function is defined as a monotonically decreasing response time function. Their main
aim is to maximize the expected number of survivors. In their work, there is only one survival function
since they consider only one class of patients. Later, Knight et al. (2012) extended their work by including
multiple classes of survival functions regarding multiple classes of patients. Moreover, Şahinyazan et al.
(2015) considered a mobile blood collection system, and the blood potentials of the nodes are defined as a
decreasing function.

In the literature, it is recognized that the gradual coverage is mostly represented via uniform decay
functions and step functions. Our problem considers diminishing sample collection potential if a node is
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covered. Moreover, we include diminishing sample collection potential of both visited and covered nodes
as a function of time. For simplicity, a step function is chosen to model the diminishing sample collection
potential over time.

2.3. Our Problem in the Literature

To the best of our knowledge, there is no study in literature that captures all aspects of the problem
considered.

In summary, our contributions:

• This study proposes a novel mobile testing system that is time and coverage dependent demand
variation complying with the COVID-19 aspects based on the interviews with the authorities.

• The sample (prize) collection is handled in time blocks rather than at once, and depends on the coverage
and duration of vehicles staying at a location, which is decided via the model. The sample collection
potential diminishes if a node is covered rather than visited, and the sample collection potentials of
visited and covered nodes are defined as a step function of time.

• Our new problem shares similar characteristics with Selective Vehicle Routing Problems and Covering
Tour Problems in the literature. However, when we incorporate duration decisions, this problem
corresponds to a novel formulation that enables its introduction to the literature as a new variant of
those problems. The diminishing sample collection with respect to time and distance distinguishes
this new problem while modeling the mobile sample collection system

• We propose a mathematical formulation where the route and the time spent at each visited location
are determined via the model. Moreover, we designed four two-stage heuristic approaches yielding
satisfactory solutions for large instances. The heuristic approaches are distinguished by the differences
in the location decisions that are fed to the mathematical model.

• Extensive computational analysis is conducted to test the performance of the solution methods devel-
oped with small and large data sets constructed.

3. Model Development

Let G = (N,A) be the network, where N is the set of possible locations for temporary testing centers and
A represents the road segments. Let K be the set of m identical temporary testing vehicles in the system.
The node 1 is the designated as central laboratory location; it is named the depot node. The depot node
is chosen to comply with the characteristics of other hospital locations and according to the geographical
position. cij represents the distance between node i and node j as calculated by the spherical law of cosines
using the coordinates of the possible locations.

The initial sample collection potential of node i is bi. We assume that the number of confirmed cases
of the districts is directly proportional to the testing potentials of the districts. bi is obtained considering
the district’s confirmed cases, which possible location it is in, and the number of collected samples in the
mobile booth application. The sample collection potentials of the nodes are expected to diminish depending
on whether the nodes are directly visited or being covered and depending on the time that the temporary
testing vehicle stays there.

In terms of definition, the sample collection potential refers to the number of people willing to provide
a sample per hour and this potential is expected to diminish gradually. According to the interviews, health
workers in hospitals report that in the morning shift (8.30 am-1.30 pm), the sample collection is higher than
in the afternoon shift (1.30 pm- 5.30 pm). In order to get the results of the test during the day, labs in
the hospitals accept the samples during the morning shift. However, the results are announced the next
day if the lab receives the sample in the afternoon. Therefore, more people tend to provide samples on the
morning shift. We adopt this behavior to the practice of mobile testing vehicles with slight modification
since temporary testing centers are mobile. We assume that as soon as people discover the arrival of a mobile
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vehicle, they will want to receive the service immediately. In addition, we assume that when the mobile
vehicle arrival is announced, people will show interest in the mobile vehicles and also provide samples during
the day. Rather than the time of the clock that a vehicle arrives at a location, the duration of the vehicle
staying at a location affects the sample collection time. In order to illustrate this behavior, we develop a
step function that represents the sample collection potentials for nodes.

A vehicle can stay at a location at most by the time it can operate within a day, denoted by the parameter
S. Then, the shift is divided into two parts to highlight the decrease in the number of people providing
samples. This behavior implies that the sample collection potential of a node on the second part of the
shift is less than that on the first part of the shift. With the assumptions stated previously, to model this
behavior we develop a step function that represents the sample collection potentials for visited nodes. If
a temporary testing vehicle stays in a location for more than T hours, fewer people will provide samples
per hour, decreasing the sample collection potential. A parameter, β, in the [0,1] interval reflects the
reduction in the sample collection potential after a predefined time interval, T . For instance, a temporary
testing center visits location i and stays in the same location for t hours before visiting another location.
We have two cases to consider: t ≤ T and t > T . If t ≤ T , then the total sample collected from that visited
location i will be t × bi. However, if t > T , then the total sample collected from that visited location i will
be T × bi + (t − T ) × β × bi. Then, the hourly sample collection potential of a visited node i ∈ N is defined as
follows:

Hourly sample collection poten-
tial of a visited node i

=
⎧⎪⎪⎨⎪⎪⎩

bi for [0, T ]
β × bi for (T,S]

Recall that it is assumed that the people in the neighborhood of a visited node can walk for sample
collection. Another parameter, α, in the [0,1] interval is defined to reflect the change in sample collection
potential if a location is covered. In other words, this parameter reflects the decrease in the sample collection
if the nodes are covered by being sufficiently close. Being sufficiently close means that the distance between
node i and node j is smaller or equal to a predefined distance (5 km). The relation is denoted by availability
matrix aij and it should be noted that the matrix is symmetric. For instance, a temporary testing center
visits location i, and the distance between location i and another location j is smaller or equal to a predefined
value. In addition, the temporary testing center stays in the location i for t hours before visiting another
location. Since location i is available to location j, people from location j walk to the temporary testing
center at location i to provide a sample. We have again two cases to consider: t ≤ T and t > T . If t ≤ T ,
then the total sample collected from that covered location j will be t × bj × aij × α. However, if t > T , then
the total sample collected from that covered location j will be T × α × aij × bj + (t − T ) × β × α × aij × bj .

Then, the hourly sample potential of a covered node j ∈ N is defined as follows:

Hourly sample collection poten-
tial of a covered node j

=
⎧⎪⎪⎨⎪⎪⎩

α × aij × bj for [0, T ]
β × α × aij × bj for (T,S]

A comprehensive sensitivity analysis of the β, α, and T values is conducted in Section 4. In our model, the
duration of stays on different parts of the shits are decided via decision variables z1ik and z2ik. In accordance
with the previous examples, t denotes the time spent at a location. In the case of t < T , t denotes the time
spent at a location in the first part of the shift. Also, it is decided via z1ik through the expression min{T, zik}.
On the other hand, in the case of t > T , t − T denotes the time spent at a location in the second part of
the shift. In this case, t − T is decided via z2ik through the expression max{0, zik − T}. Furthermore, since
t denotes the total time spent at a location, it is denoted as the summation of z1ik and z2ik and decided by
zik in the model. Finally, the maximization of the total sample collection is introduced as the performance
measure for the proposed problem. It should be noted that the sample collection will be referred to as the
output of the activity or the objective function of the mathematical model. On the other hand, the sample
collection potential will be referred as an input data for the activity or parameter for the proposed problem.
Problem parameters and decision variables are defined in Table 3 and Table 4, respectively.
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Table 3: Parameters

Parameters

m The total number of temporary testing centers to be planned
p The maximum number of locations that can be visited by any booth. If p is not specified, then p = ∣N ∣

α Sample collection potential change due to coverage ∈ [0,1]
β Sample collection potential change over time ∈ [0,1]
cij The distance between i ∈ N and j ∈ N (km)

aij
⎧
⎪⎪
⎨
⎪⎪
⎩

1 if i ∈ N can cover j ∈ N

0 otherwise

bi Hourly sample collection potential of location i ∈ N
T Time indicated to switch to the next part of the shift (h)
S Length of the shift (h)
sp Speed of the temporary testing centers (km/h)

Table 4: Decision Variables

Decision Variables

Xijk

⎧
⎪⎪
⎨
⎪⎪
⎩

1 if location j ∈ N is visited right after location i ∈ N by the temporary testing center k ∈K

0 otherwise

yik
⎧
⎪⎪
⎨
⎪⎪
⎩

1 if location i ∈ N is provided testing service by temporary testing center k ∈K

0 otherwise

uik auxiliary variables to eliminate sub-tours where i ∈ N , k ∈K
zik number of one-hour intervals that are spent in location i ∈ N by temporary testing center k ∈K

z1ik
min{T, zik}, the number of hours that temporary testing center k ∈ K stays in location i ∈ N in the first part of
the shift.

z2ik
max{0, zik − T}, the number of hours that temporary testing center k ∈ K stays in location i ∈ N in the second
part of the shift.

The proposed model is formulated in a naive way as follows:

max ∑
i∈N

∑
k∈K

(bi × z1ik + β × bi × z2ik)

+ ∑
i∈N

∑
j∈N,i≠j

∑
k∈K

(α × aij × bj × z1ik + β × α × aij × bj × z2ik) (1)

subject to

∑
i∈N

∑
j∈N,i≠j

(1/sp) × cij ×Xijk + ∑
i∈N

zik ≤ S ∀k ∈K (2)

zik = z1ik + z2ik ∀k ∈K, i ∈ N (3)

z1ik ≤ T ∀k ∈K, i ∈ N (4)

z1ik ≤ zik ∀k ∈K, i ∈ N (5)

z2ik ≥ 0 ∀k ∈K, i ∈ N (6)

z2ik ≥ zik − T ∀k ∈K, i ∈ N (7)

zik ≤ S × yik ∀k ∈K, i ∈ N (8)

zik ≥ yik ∀k ∈K, i ∈ N (9)

∑
k∈K

yik + ∑
k∈K

∑
j∈N ∶j≠i

aij × yjk ≤ 1 ∀i ∈ N (10)

∑
k∈K

yik ≤ 1 ∀i ∈ N (11)

13



∑
i∈N ∶i≠1

Xi1k = 1 ∀k ∈K (12)

∑
i∈N ∶i≠1

X1ik = 1 ∀k ∈K (13)

∑
i∈N ∶i≠j

Xijk = yjk ∀k ∈K, j ∈ N/{1} (14)

∑
i∈N ∶i≠j

Xjik = yjk ∀k ∈K, j ∈ N/{1} (15)

uik − ujk + pXijk ≤ p − 1 ∀2 ≤ i ≠ j ≤ p,∀k ∈K (16)

uik ≥ yik ∀i ∈ N,k ∈K (17)

Xijk, yik ∈ {0,1} ∀i ∈ N, j ∈ N,k ∈K (18)

uik, zik, z
1
ik, z

2
ik ≥ 0 integer ∀i ∈ N,k ∈K (19)

As mentioned earlier, the primary performance measure is to maximize the total sample collection which
is given by equation (1). The first part of the objective function represents the sample collection potential
of a visited node i. The second term considers the samples collected only from locations j covered when
the temporary testing center is visiting location i. The objective reflects the diminishing sample collection
over coverage and time through α and β parameters, respectively. Constraint set (2) is to ensure that the
temporary testing centers tour is completed by the end of the shift. The tour time includes the travel time
and the service time in the locations. The time spent in the nodes is based on one-hour intervals to comply
with the real-life practices. Constraint set (3) preserves the balance so that the first part of the shift and
the second part of the shift add up to the length of the shift. Constraint sets (4)-(5), (6)-(7) are to linearize
the expression min{T, zik} and max{0, zik − T}, respectively. The expression min{T, zik} represents the
duration of stays at a location in the first part of the shift while max{0, zik − T} represents the duration of
stays at a location in the second part of the shift. Constraint set (8) is to ensure the stay of the temporary
testing centers is shorter than the length of the shift. Constraint set (9) is to ensure the length of the stay
of the temporary testing centers is at least one hour if the node is visited. Constraint set (10) is to ensure
several aspects. Firstly, the constraint set does not force all locations to be served. Secondly, if a node is
visited, then another node within its coverage radius cannot be visited. The latter is to prevent the testing
centers from piling on an area with the highest sample collection potential to boost the sample collection
potential. Instead, the aim is to increase availability by providing the testing service by reaching different
areas while still having high sample collection. Constraint set (11) is to prevent multiple temporary testing
centers from visiting the same location. Constraint sets (12)-(15) are to construct the tours of temporary
testing centers. The vehicles leave the depot node, but the other nodes are only included in the tour if they
are visited. Constraint set (16) is to represent Miller-Tucker-Zemlin (MTZ) sub-tour elimination constraints
(Miller et al., 1960) for the testing center tours. Constraint set (17) is also related to the MTZ constraints.
It implies that the auxiliary variables uik should be positive only if node i is visited. Constraints (18)-(19)
are domain constraints.

4. Computational Analysis

Computational experiments are tested on two datasets, Seoul data as a small network and Istanbul data
as a challenging network. The parameter bi is obtained for both data sets through governmental websites
such as Seoul Metropolitan Government (2022) and Turkish Statistical Institute (2021). The first set is
constructed by the briefing reports containing the confirmed cases of the districts of Seoul, Korea, and
by the interview of health personnel of H+ Yangji Hospital COVID-19 semi-mobile booth application (H
+ Yangji Hospital, 2021). The parameter bi for the Seoul data is obtained through briefing reports of the
confirmed cases of the districts (Seoul Metropolitan Government, 2022) and the number of collected samples
in the mobile booth application (H + Yangji Hospital, 2021). The data include the temporary testing centers’
sample collection potentials of 25 districts of Seoul, Korea. In total, 25 hospital/health center locations are
chosen from the COVID-19 screening clinics stated on the Seoul Metropolitan Government website (Seoul
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Metropolitan Government, 2022). The depot node is chosen due to its geographical position and the fact
that it is a large medical research institution. The possible temporary center locations are shown on the
map in Figure 2.

Figure 2: Potential Locations in Seoul, South Korea (red point represents the depot)

The second data set is constructed by 99 hospital/health centers from distinct neighborhoods of 22 dis-
tricts of Istanbul, Turkey. These districts are prioritized due to their quality of life indexes (Şeker, 2015).
For the Istanbul case, the daily sample collection potential is assumed to be equal to the neighborhood pop-
ulation of the hospital/health center. The parameter bi for the Istanbul data is obtained by the population
data of districts in Istanbul taken from Turkish Statistical Institute (2021). The depot node is chosen as
a long-established hospital in the Fatih district, which is considered the central district of Istanbul. The
possible temporary center locations are shown on the map in Figure 3. The distances between the nodes
are calculated by using the locations’ coordinates. The predefined distance for availability is 5 kilometers.
We consider the shift to be 8 hours and the first and second halves of the shifts to be 4 hours due to the
common practices. All computations are performed on an Intel Xeon Silver 4210 with 14 gigabytes RAM.
The MIP model is solved using CPLEX version 12.10.0.

4.1. Base case analysis for Seoul and Istanbul instances

The proposed mathematical model is utilized to solve the instances of Seoul, South Korea and Istanbul,
Turkey. For both cases, we take three temporary testing centers for the base case with α = 0.5 and β = 0.5.
The optimal values and CPU times obtained from preliminary analysis for the Seoul and Istanbul are given
in Table 5. Moreover, more detailed solutions for Seoul and Istanbul cases regarding location, routing
decisions and and length of stays are given Figures 4 and 5. In both figures, node 1 denotes the hospital
where vehicles depart at the beginning of the day and return at the end. As can be seen from the figures, the
largest sample collections occurred with larger walking distances. The largest sample collections occurred at
nodes 6 and 29 for Seoul and Istanbul, respectively. For the Seoul case, 41.97% of the samples are collected
while covering nodes within the walking distance of 4.99 km. Similarly, 50.63% of the samples are collected
while covering nodes within the walking distance of 4.29 km for the Istanbul case. Furthermore, the lowest
sample collections occurred with smaller walking distances. The lowest sample collections occurred at nodes
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10 and 87 for Seoul and Istanbul, respectively. For the Seoul case, 5.6% of the samples are collected while
covering nodes within the walking distance of 2.55 km. Similarly, 9.82% of the samples are collected while
covering nodes within the walking distance of 3.65 km for the Istanbul case. It should be noted that 3.65
km and 2.55 km are the lowest values obtained for maximum walking distances for Seoul and Istanbul cases.
Moreover, 4.99 km is the highest value obtained for the maximum walking distance for the Istanbul case.
Further, 4.29 km is the second-largest value obtained for the maximum walking distance for the Seoul case.
It can be observed that the range of maximum walking distance values is remarkable, therefore, it may have
an influence on the patients’ decision of utilizing the testing facilities. Since attendees from covered nodes
are expected to arrive at the testing sites on their own, the maximum walking distance is worth analyzing
its effect on sample collection as a second performance measure.

The total number of
temporary testing
centers to be planned
(m)

Sample collection po-
tential change due to
coverage (α)

Sample collection po-
tential change over
time (β)

Objective CPU Time (seconds)

Seoul,South Ko-
rea

3 0.5 0.5 224 (sample) 0.54

Istanbul,
Turkey

3 0.5 0.5 552,507 (sample) 41.18

Table 5: The Results of Seoul and Istanbul Case for the Base Cases

Figure 4: The Solution for Seoul Case for the Maximization of Total Sample Collection
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4.2. Minimization of Maximum Walking Distance

In this version of the proposed problem, the primary performance measure is given as the maximization
of the total sample collection. Additionally, after analyzing the total sample collection, another important
performance measure is defined for analysis purposes. The maximum distance between a covered node and
a visited node is added to the model as an objective. The second performance measure is known as ‘walking
distance’, which can also be minimized. This performance measure is considered since the attendees from
covered nodes are expected to visit the mobile facilities on their own, therefore, their willingness may affect
the sample collection. The walking distance is considered and represented as follows:

min max cij × aij × yik (20)

subject to (2) − (19)

The objective (20) is to minimize the maximum distance between a covered node and a visited node; in
other words, to minimize the maximum walking distance.

Similar to the Base Case analysis in the previous part, we use three temporary testing centers with
α = 0.5 and β = 0.5 to analyze both objectives.

The ε-constraint method is used to evaluate the objectives simultaneously without any prioritizing. The
non-dominated points are found by iterating the model with the step size of 0.01 km. From the set of
nondominated points, the two solutions with the optimal outcomes for each objective and CPU time of the
iterations are given in Table 6 and Table 7.

Objective CPU Time
(seconds)

Distance
Traveled
by The
Centers
(km)

Number
of Visited
Nodes

Number
of Covered
Nodes

Optimal Max
Sample

Max Sample 224 (sam-
ple)

0.62 sec 84.38 5 16

Min Max Walk-
ing Distance

4.87 (km)

Optimal Min
Walking
Distance

Max Sample 70 (sample)
0.05 sec 72.44 3 2

Min Max Walk-
ing Distance

2.87 (km)

Table 6: The Nondominated Solutions of Seoul Case

Objective CPU Time
(seconds)

Distance
Traveled
by The
Centers
(km)

Number
of Visited
Nodes

Number
of Covered
Nodes

Optimal Max
Sample

Max Sample 552,507
(sample)

41.22 sec 112.01 5 50

Min Max Walk-
ing Distance

4.99 (km)

Optimal Min
Max Walking
Distance

Max Sample 58,391
(sample)

0.96 sec 278.79 3 0

Min Max Walk-
ing Distance

0 (km)

Table 7: The Nondominated Solutions of Istanbul Case

The solutions of Seoul and Istanbul cases with the optimal outcome for maximizing the total sample
collection indicates five locations are visited by three vehicles. Two vehicles visit two nodes, whereas one
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vehicle chooses to stay in the decided location during the shift time for both of the cases. Mobility is
encouraged because of two aspects. First, fulfilling the walking distance requirement is easier, being at
a distance of 4.87 kilometers for the Seoul case and 4.99 kilometers for Istanbul at most. Second, the
diminishing sample collection potentials make the first stops less profitable after a certain time. In total,
16 locations for Seoul and 50 locations for Istanbul are covered by the 5 visited points. Therefore, 21 out
of 25 districts of Seoul and 55 out of 99 neighborhoods of Istanbul reach the mobile testing applications,
representing 84% and 55.56% of the potential points respectively. The total distance traveled by the vehicles
is 84.38 kilometers for the Seoul case and 112.01 km for the Istanbul case. The solutions of Seoul and Istanbul
cases with the optimal outcome for minimizing the maximum distance between a covered and a visited node
indicate three locations are visited by three vehicles. This implies that the vehicles spend the shift at
the same location. Mobility is discouraged, as fulfilling the walking distance requirement is quite complex,
sometimes impossible, compared to the solution with a maximum total sample collection. Only two locations
fulfill the defined distance for the Seoul case, whereas there are no covered points for the Istanbul case. Due
to the walking distance requirement, the sample collection and the number of reached points decrease. Two
districts of Seoul and no neighborhoods of Istanbul are covered by three visited spots. Thus, the mobile
testing applications reach 5 districts out of 25 of Seoul and 3 neighborhoods out of 99 of Istanbul, which is
20% and 3.03% of the potential points respectively.

The total distance traveled by the vehicles is 72.44 kilometers for the Seoul case. The distance traveled
does not differ significantly, whereas the sample collection difference is drastic. However, the total distance
traveled by the vehicles is 278.79 kilometers for the Istanbul case, which is much longer than the optimal
solution for the maximizing total sample collection. This implies the coverage requirement made the sample
collection impossible by coverage that the traveled distance rose significantly to reach the populated nodes.
One may observe the trade-off as increasing convenience, as being only a short distance away decreases
the total sample collection of temporary testing centers. On the other hand, reducing the distance for the
patients to be within walking distance may be an important concern for the decision-makers. Note that
the travel distance may still be convenient, as the depot node is designated considering the centrality of
the depot. Ensuring short travel distances of vehicles is beneficial, considering the traffic load and the
transportation costs.

4.3. Pareto Analysis Between Two Objectives

We consider two objectives, precisely, maximizing the total sample collection and minimizing the maxi-
mum distance between a visited node and a covered node, in other words, minimizing the maximum walking
distance. An analysis of the behaviors of the two objectives is necessary for the decision-makers to make
conclusions analytically. For this purpose, the Pareto frontiers for the Seoul case and Istanbul case are
shown in Figures 6a and 6b, respectively. The maximum distance values are multiplied with -1 in the graph
to comply with the maximization setting of the first objective.

In Figure 6a, the increase in the maximum walking distance is close to the decrease in the total sample
collection, in the range of 30-40%. Then, it is observed that the total sample collection increases sharply in
the range of 65-90% with a small increment of the maximum walking distance. In contrast, the total sample
collection increases slightly in the range of 95-100% with a significant increase in the maximum walking
distance.

Further, we analyze 95-100% range of total sample collection in detail, represent the solution in Figure 7
and compared it with the base case. We have already analyzed the base case for Seoul in detail in Figure 4.
When we enforce slightly more 10% less of maximum walking distance, we obtain a solution with 11.7%
decrements in the walking distance. In addition, a considerably small loss of total sample collection occurs
with about 3% while having common routing decisions with the base case. In this case, the schedule of
two out of the three vehicles remain the same. The first vehicle again only visits node 6 and returns to
the depot, and the second vehicle visits nodes 10 and 14 before returning to the depot. However, the third
vehicle visits nodes 1 and 17, while in the base case, it visits nodes 2 and 18. The total sample collection
decreases from 224 to 217 samples, since the sample collected by the third vehicle decreases from 67 to 60
samples.
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(a) Seoul Case (b) Istanbul Case

Figure 6: The Pareto Frontiers

Figure 7: The Solution for Seoul Case with 10 percent less of maximum walking distance

In addition, one may note that node 1, which denotes the central hospital, is covered by node 18 in the
solution for the base case. On the other hand, when 10 percent less of the maximum walking distance is
enforced, node 1 is visited directly by a vehicle. In that case, the vehicle stays at the central hospital for 3
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hours. In addition, node 17 is covered by node 2 in the optimal solution, whereas with 10 percent less of
maximum walking distance, node 17 is visited directly by a vehicle, staying 4 hours. Furthermore, in the
optimal solution, nodes 1, 7, 12, 16, 17, and 22 are covered during stay-overs at nodes 2 and 18. Similarly,
with a 10 percent decrement in walking distance, nodes 2, 12, 16, 18, and 22 are covered during stay-overs
at nodes 1 and 17. Nodes 2 and 18 have higher sample potential than nodes 1 and 17; however, the model
chooses nodes 1 and 17 when the walking distance is decreased. When walking distance is decreased, to
increase total sample collection. The reason is that the nodes with high sample potentials within the enforced
radius such as 12, 16 and 22 are covered by visiting nodes 1 and 17. However, node 7 cannot covered in the
solution with a 10 percent decrement in walking distance. The total number of nodes covered by the third
vehicle decreases by one.

In Figure 6b, the total sample collection increases slightly in the range of 0-30% with a significant increase
in the maximum walking distance, which implies giving up on the convenience by being in the short distance
may not be worthwhile. In contrast, steadily significant increases in total sample collection are observed in
the range of 30-80% with small increments of the maximum walking distance. The total sample collection
increases in the range of 80-100% are relatively minor, while observing small increments of the maximum
walking distance.

Moreover, we analyzed some points in the Pareto frontiers in detail and compared them with the base
case with Istanbul data. We have already analyzed the base case for Istanbul in detail in Figure 5. In the
optimal solution for Istanbul instance, a vehicle chooses to visit node 29 and stay for 7 hours. If we enforce
a 1.8% reduction in walking distance, a vehicle visits node 28 rather than node 29, having all other visited
nodes as the same. A slight decrease occurs in total sample collection with 0.46%. It can be recognized
that if a vehicle visits node 28, there is a 0.9 km decrease in maximum walking distance with a tolerable
loss in the percentage of sample collection. Furthermore, if we enforce a 4% reduction in maximum walking
distance, the vehicle visits node 30 rather than node 28 or 29. In addition to the prior case, all other nodes
visited are the same as the optimal solution except for node 30, and the percentage of sample collection
decreases by 3.13%. When we further enforce changes in walking distance such as 5.21%, 7.01%, and 8.42%,
we observe 4.50%, 5.86%, and 6.14% decrements in the sample collection, respectively.

We represent the solution for 8.42% decrements of walking distance in Figure 8. When compared with
the optimal solution, the total sample collected decreases from 522,507 to 518,581 samples, while the walking
distance changed from 4.99 km to 4.57 km. In the optimal solution for the Istanbul case, the vehicles visit
nodes 29, 42, 47, 76, and 87, while with 8.42% decrements of walking distance, vehicles visit nodes 17, 35,
45, and 98. The number of nodes visited is decreased, as well as the number of nodes covered. In the optimal
solution, 50 nodes are covered, while with 8.42% decrements of walking distance, there are only 34 nodes
covered. In the optimal solution, one of the routes collects 50.63% of the total samples, and this extensive
amount is collected by visiting node 29 and covering the nodes within the 4.99 km radius of that node.
When we enforce 8.42% decrements in walking distance, the highest sample collected by one vehicle is found
as 38.42%. When we compare those solutions, it is recognized that nodes 87 and 76 are visited in optimal
solution; but neither visited nor covered in the solution for 8.42% decrements of walking distance. Similarly,
node 35 is neither visited nor covered in the optimal solution, while it is one of the visited locations in
solution for 8.42% change of walking distance.

It can be observed in both Seoul and Istanbul cases, with approximately 10% change in the walking
distance, the total sample collected is affected slightly. The decision-makers can evaluate these minor
changes in order to settle for a judgment.

These two figures, Figures 6a and 6b, show that if decision-makers decide to settle for approximately
15-25 percent less of the maximum walking distance, they can lose a significant amount of people in the
associated total sample collection metric. There is a steeper decrease in the Seoul case since the depot in
the Seoul case is close to many nodes with a high sample potential. However, nodes with a high sample
potential may be scattered away from the depot in the Istanbul case.

4.4. Sensitivity Analysis on Problem Parameters

In the case of widely implementing the mobile application, the decision-makers may want to observe the
results when the number of vehicles changes. Therefore, the analyses for the Seoul case are conducted for
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two, three, four, and five temporary sample collection centers as shown in Tables 8, 9 and 10.
The diminishing sample collection potential over time, in different levels, β is changed between 0 and 1

in increments of 0.1 for fixed α and T values. By changing the number of vehicles and the diminishing level
of sample collection potential over time, the trend in the maximization of sample collection and the change
in the mobility of the temporary testing centers can be seen. The total sample collection values, marginal
increments of the sample collection, number of covered locations, and number of visited locations are shown
in Table 8. Moreover, the diminishing sample collection potential due to coverage, in different levels, α is
changed between 0 and 1 in increments of 0.1 for fixed β and T values. The trend in the maximization
of sample collection and the change in the mobility of the temporary testing centers can be observed by
changing the number of vehicles and the diminishing level of sample collection potential due to coverage.
The results are demonstrated in Table 9. Finally, a sensitivity analysis is performed on time indicated to
switch to the next part of the shift, T for fixed β and α values. The results are shown in Table 10. In the
calculations, the maximum distance between a visited node and a covered node is observed as 5 kilometers,
while not being restricted. When β increases, the sample collection potential remain closer to the initial
level of the potential over time. Therefore, the sample collection increases. Note that when β increases,
the difference between marginal increments appears stable. In this case, adding more testing centers is
acceptable if the authorities seek to increase the availability of testing. When β is small, paying for more
temporary testing centers is less reasonable due to the diminishing increments of sample collection.

Another aspect is that the mobility becomes disadvantageous when β increases, as the nodes with high
sample potentials are likely to be still favorable even after some time. Therefore, the number of visited
locations decreases. Note that the travel time is a period when testing cannot occur. Thus, traveling of the
testing centers is not favored while the sample collection potential remains sufficiently large. Then, the tours
and duration of each stay of the testing center are analyzed. Even if β is small, no testing centers visit more
than two locations in the given period. It may explain the short runtimes, as there is a pattern regarding
the diminishing potentials. There is an observed behavior of the testing centers when β is sufficiently small:
Spending the first half on one spot, then traveling for the second half and staying there as long as the
remaining time permits. If not, the testing centers remain as long as there is sufficient time to turn to the
central hospital. Contrarily, it is not the case that the testing centers always stay at a node when β is large
enough. When the β value is set to 1, the sample collection potential does not change over time. In this
case, if more than three vehicles are used, then some testing centers visit more than one location.

The number of covered nodes appears not to be affected by β. The locations that cover the nearby
points are highly likely to be chosen regardless of the level of potentials. The minimum number of covered
nodes is 11, which is 44% of the nodes. This case is observed when β is larger than and equal to 0.8 with
two temporary testing centers. Moreover, the maximum number of covered nodes is 17, which is 68% of
the nodes, and it occurs when β is 0.3 and 0.4 with four and five temporary testing centers. Similarly, the
maximum number of covered nodes is observed when β is 0.2 with four vehicles. Due to the limited number
of testing centers, the number of visited locations is less than the covered locations. When β is 0.3 and the
number of vehicles is 5, the testing centers reach every node by visiting and by being sufficiently close, even
though full coverage is not guaranteed. When β is 0.8 and the number of vehicles is two, the worst case in
terms of availability occurs; even then, 52% of the locations are provided with the testing service.

We will further analyze the effect of diminishing sample collection potential due to coverage, α, on the
sample collection for fixed β and T values. As α increases, the sample collection potential of covered nodes
gets closer to the level of the sample collection potential of the visited node. As a result, the sample collection
increases. The decrement in α causes the difference between marginal increments to increase. The reason
is that with a decrement in α, fewer samples will be collected from covered nodes. When α is small, paying
for more testing centers is much more reasonable. It is because sample collection by visiting as many nodes
as possible is much more beneficial than sample collection due to coverage.

Furthermore, the mobility becomes slightly disadvantageous as α increases. The reason is that the sample
collection potentials of visited and covered nodes are getting equally favorable. Thus, the number of visited
locations slightly decreases. When α is small, the testing centers do not visit more than two locations. As
previously stated, it can be the reason for the short runtimes. Also, for α, it is observed that the vehicles
spend the first half in one location, then travel for the second half and stay there for the remaining time.

24



β Number
of tempo-
rary testing
centers (m)

Total Sam-
ple Collec-
tion

Marginal Incre-
ments of Sample
Collection (Per-
cent)

Number
of Covered
Nodes

Number
of Visited
Nodes

CPU of Total Sam-
ple Collection (Sec-
onds)

0.1 2 166 13 4 0.45
3 212 27.71 16 5 0.87
4 242 45.78 16 8 7.28
5 258 55.42 16 8 9.81

0.2 2 166 13 4 0.44
3 212 27.71 16 6 0.85
4 244 46.99 17 7 6.84
5 266 60.24 16 8 12.85

0.3 2 166 13 4 0.46
3 214 28.92 16 5 0.79
4 250 50.60 17 7 1.92
5 275 65.66 17 8 56.36

0.4 2 166 13 4 0.47
3 219 31.93 16 5 0.59
4 256 54.22 17 7 1.39
5 285 71.69 17 7 12.65

0.5 2 171 12 3 0.35
3 224 30.99 16 5 0.53
4 264 54.39 16 5 1.30
5 296 73.10 16 7 2.94

0.6 2 176 12 3 0.31
3 229 30.11 16 5 0.46
4 275 56.25 16 5 0.77
5 310 76.14 16 5 1.45

0.7 2 182 12 3 0.27
3 235 29.26 15 4 0.44
4 286 58.51 16 5 0.80
5 327 79.67 16 5 1.02

0.8 2 189 11 2 0.22
3 244 29.26 15 4 0.40
4 298 58.51 16 5 0.40
5 343 82.45 16 5 0.79

0.9 2 197 11 2 0.24
3 254 28.93 12 3 0.36
4 309 56.85 13 4 0.38
5 359 82.23 16 5 0.60

1 2 206 11 2 0.24
3 266 29.13 12 3 0.31
4 323 56.80 13 4 0.62
5 375 82.04 16 5 0.74

Table 8: Sensitivity Analysis Results of Problem Parameter β

More interestingly, this pattern does not change when α is large enough. When the α value is set to 1, the
sample collection potential does not change due to coverage. Therefore, a more favorable strategy is visiting
districts that can cover other districts with high sample collection potential.

As expected, the value of α seems to affect the number of nodes covered. The number of visited nodes
decreases slightly, but the number of covered increases significantly as α increases. Since α affects the sample
collection from the covered nodes, the visited locations are highly selected due to their coverage of nearby
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α Number
of tempo-
rary testing
centers (m)

Total Sam-
ple Collec-
tion

Marginal Incre-
ments of Sample
Collection (Per-
cent)

Number
of Covered
Nodes

Number
of Visited
Nodes

CPU of Total Sam-
ple Collection (Sec-
onds)

0.1 2 101 6 3 0.52
3 136 34.65 11 5 0.42
4 168 66.33 14 7 0.97
5 191 89.10 14 7 10.27

0.2 2 114 13 4 0.27
3 154 35.09 15 5 0.45
4 189 65.79 14 7 1.07
5 214 87.72 14 7 7.64

0.3 2 131 13 4 0.37
3 176 34.35 15 5 0.53
4 210 60.31 15 7 1.47
5 238 81.68 16 7 6.21

0.4 2 149 11 3 0.37
3 200 34.23 16 5 0.53
4 235 57.72 16 6 1.51
5 267 79.19 16 7 2.36

0.5 2 171 12 3 0.35
3 224 30.99 16 5 0.53
4 264 54.39 16 5 1.33
5 296 73.10 16 7 2.84

0.6 2 194 12 3 0.32
3 249 28.35 16 5 0.65
4 295 52.06 17 6 1.04
5 328 69.07 16 7 2.64

0.7 2 217 12 3 0.37
3 275 26.73 16 5 0.49
4 327 50.69 16 5 1.00
5 361 66.36 17 4 1.63

0.8 2 242 14 3 0.30
3 305 26.03 15 4 0.51
4 358 47.93 17 6 0.91
5 395 63.22 17 6 1.86

0.9 2 266 14 3 0.30
3 334 25.56 15 4 0.49
4 390 46.61 17 6 0.90
5 429 61.28 17 6 2.02

1 2 291 14 3 0.31
3 367 26.12 15 4 0.53
4 421 44.67 17 6 0.88
5 462 58.76 17 6 1.43

Table 9: Sensitivity Analysis Results of Problem Parameter α

points. When α is 0.1 with two temporary testing centers, the minimum number of covered nodes occurs,
and it is 6, which is 24% of nodes. Moreover, the maximum number of covered nodes is observed when α is
0.6 with four temporary testing centers, and α is greater than and equal to 0.8 with four and five temporary
testing centers. The maximum number of covered nodes is 17, which is 68% of the nodes. When α is 0.1,
and the number of vehicles is 2, the worst case in terms of availability occurs. In this case, only 36% of the
locations are provided with the testing services. Moreover, when α is 0.8, and the number of vehicles is 4
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and 5, the best case in terms of availability occurs. In this case, 92% of the locations are provided with the
testing services. Also, this availability level is reached when α is 0.9 and 1 with 4 and 5 vehicles.

T Number
of tempo-
rary testing
centers (m)

Total Sam-
ple Collec-
tion

Marginal Incre-
ments of Sample
Collection (Per-
cent)

Number
of Covered
Nodes

Number
of Visited
Nodes

CPU of Total Sam-
ple Collection (Sec-
onds)

1 2 124 16 5 0.51
3 158 27.42 17 6 0.79
4 188 51.61 16 5 0.83
5 215 73.39 16 6 1.14

2 2 144 16 5 0.32
3 183 27.08 17 6 0.73
4 215 49.31 17 7 1.04
5 242 68.05 16 6 1.74

3 2 158 15 4 0.32
3 205 29.75 16 5 0.64
4 241 52.53 17 6 1.40
5 270 70.89 16 7 1.84

4 2 171 12 3 0.35
3 224 30.99 16 5 0.53
4 264 54.39 16 5 1.30
5 296 73.10 16 7 2.95

5 2 183 12 3 0.31
3 238 30.05 16 5 0.57
4 283 54.64 16 5 1.02
5 322 75.96 16 6 2.45

6 2 194 12 3 0.28
3 252 29.99 16 5 0.38
4 303 56.19 16 5 0.91
5 348 79.38 14 6 1.53

7 2 206 11 2 0.35
3 266 29.13 12 3 0.33
4 323 56.80 13 4 0.46
5 375 82.03 16 5 0.86

Table 10: Sensitivity Analysis Results of Problem Parameter T

Finally, we analyze the effect of T on the sample collection. As T increases, the first part of the shift
increases, and the second part decreases. It results in an increment in sample collection. Also, the difference
between marginal increments appears to increase. In order to increase the availability of testing, paying for
more test centers is again acceptable.

When T increases, mobility becomes disadvantageous. The reason is that the locations with high sample
collection potential are likely to be still favorable in the first part of the shift. Rather than moving to another
location, staying in the currently visited location is more favorable. Therefore, there exists a decrease in
the number of visited locations. Furthermore, the same pattern from previous analyses is observed when we
analyze the tours and durations of the vehicles. A vehicle does not stay in more than two locations on tour.
As T increases, the same pattern is observed. When T is set to 7, the sample collection potential of points
does not change over time. The rest of the time is used for traveling from the depot and returning to the
depot.

In addition, the number of covered nodes is affected by T . As T increases, the number of covered
nodes appears to decrease. The underlying reason is that even though the vehicles do not cover many
locations, it is enough to visit and cover locations with high sample collection potential. When a node is
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covered, the sample collection potential of that node decreases due to coverage. However, as T increases,
the sample collection potential over time becomes less critical. The minimum number of covered nodes is
11, and the maximum number is 17, which represents 48% and 68% of the locations, respectively. The
minimum number of covered nodes is observed when T is 7 with two temporary testing centers. Moreover,
the maximum number of covered nodes is observed when T is 1 with three temporary testing centers, and
T is 2 and 3 with four temporary testing centers. When T is 2, and the number of vehicles is 4, the testing
centers provide testing service to every node by visiting or covering. Similar to the analysis in β, this case
occurs even though full coverage is not guaranteed. When T is 7, and the number of vehicles is 2, the
worst case in terms of availability occurs. 52% of the locations are provided with the testing service. It can
be noticed that similar observations done for β are observed for also T since they both affect the sample
collection potential of nodes due to time. However, it can be noticed that T also affects the importance of
β. As T increases, the second part of the shift becomes less critical, and nodes’ sample collection potential
remains high for a long time. Therefore, rather than moving to another location, staying in a location longer
is more beneficial in terms of sample collection.

To conclude, the sample collection level, time of shift change, and the number of testing centers affect
the total sample collection. As β increases, the sample collection potential decreases less, and the marginal
increments of the sample collection are higher, which justifies having more vehicles for testing. The propor-
tion of locations reached is more than half in the calculations. This indicates that even with fewer vehicles,
the availability of testing may be at an acceptable level. Moreover, when α decreases, the sample collection
potential of covered nodes decreases significantly. Then the marginal increments of the sample collection
get higher, and it also justifies having more vehicles for testing. The parameters α and β similarly affect the
marginal sample collection when α is getting smaller and β is getting larger. Furthermore, T has a similar
effect on the total sample collection as β. As T increases, the sample collection potential in the first half
of the shift does not decrease, and the marginal increments of the sample collection get higher values. Due
to this fact, T seems to affect the importance of the parameter β since β represents the diminishing sample
collection potential of nodes in the second part of the shift. According to the analysis, the decision-makers
need to determine the number of testing centers, considering the cost of constructing testing centers and
the importance of the testing service.

5. Two-stage Math-heuristic Approaches

According to COVID-19 cases, our problem may be applied in a more extensive network to reach a larger
part of the community. Due to typical vehicle routing constraints, the increase in potential points leads to an
extensive underlying network. Hence, the computational times can significantly be long for large instances
with many potential locations. Long computational times may not be preferable with the aim of respond-
ing quickly to the emerging need for testing. Therefore, we designed four two-stage heuristic approaches
yielding satisfactory solutions with small optimality gaps in shorter computational times and compared op-
timality gaps. The proposed two-stage heuristics can be stated generally in two steps as depicted in Table 11.

The general description of the two-stage heuristic approaches is given, and accordingly, we introduce four
heuristic approaches based on the differences in Step 1, which is named as NodeSelection. Those four
heuristics are Random, NodePotential, SetCovering, and CoECNodePotential Heuristics. The NodeSelection
Step of each heuristic is explained in detail.

• NodeSelection for Random Heuristic
NodeSelection for Random Heuristic aims to find a subset of nodes to visit randomly. Random node
selection was utilized to observe the effortless selection of a subset of nodes to visit. In this heuristic,
25 random nodes, including the depot node 1, are selected in this step. Then, utilize selected nodes
in step 2.
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Table 11: General Two-Sage Heuristic Approach

General Two-Stage Heuristic Approach

Step 1:
(NodeSelec-
tion)

Develop a strategy to find a subset of nodes to visit with a pre-determined number of nodes. This
step can be called as NodeSelection step in further description.

Step 2:

Feed the nodes that are obtained in NodeSelection Step (Step 1) into the main model in Section 3
with minor adjustments. First, the set of possible visit locations and the set of nodes that those
possible locations can cover are adjusted. The set of nodes where the vehicles can be located is
determined by the subset obtained from NodeSelection Step (Step 1). The original set of nodes
can be still available for coverage by visiting the nodes in the subset. The description implies that
the visiting decisions are made from a smaller set while preserving the coverage characteristics of
the main model.

• NodeSelection for NodePotential Heuristic
NodeSelection for NodePotential Heuristic aims to find a subset of nodes to visit according to the sam-
ple collection potentials of each node. Rather than cumulative sample collection potential, including
sample collection potentials of coverages, only the sample collection potentials at each node are sorted
from highest to lowest. After sorting the nodes, the depot node 1 is included, then, the nodes with the
highest potentials are selected until reaching 25 nodes. Then, proceed to step 2 with the selected nodes.

• NodeSelection for SetCovering Heuristic
As the first step in SetCovering Heuristic, the aim is to find a subset of nodes to reach all the locations
in the network, either by being sufficiently close or visiting. For this purpose a set covering model
is proposed. Solve the following mathematical model (SetCovering). Note that parameter aij is as
defined in the Section 3. Decision variable:

yi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if location i ∈ N is in the subset
of possible visit locations

0 otherwise

SetCovering :

min ∑
i∈N

yi (21)

subject to

∑
i∈N

aij × yi ≥ 1 ∀j ∈ N (22)

yi ∈ {0,1} ∀i ∈ N (23)

This mathematical model finds the minimal subset of nodes to reach all the locations in the network,
either by being sufficiently close or visiting. Constraints (22) ensure every node is receiving the
temporary testing service at least one way, either by being covered by another location within a
predefined distance or by being visited. Constraints (23) give the binary restrictions on the decision
variables. The objective function leads to finding the minimum number of nodes to access every node
in the network. After selecting nodes via SetCovering model and including depot node 1, proceed to
step 2.

• NodeSelection for CoECNodePotential Heuristic
NodeSelection for CoECNodePotential Heuristic aims to find a subset of nodes to visit according to
the cumulative sample collection potentials of each node. The cumulative sample collection potential
includes the sample collection potentials at each node and the sample collection potentials of coverages.
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Each node’s cumulative sample collection potentials are sorted from highest to lowest. After sorting
nodes, the highest node is selected, and the aij matrix is analyzed. The nodes within the coverage
radii of these nodes are eliminated from the sorted list. Then the next highest node is selected, and
the nodes within the coverage of this node are also eliminated. Accordingly, after including depot
node 1, the highest potential nodes are selected while their coverage radii are eliminated until reaching
25 nodes. The algorithm that is used for the procedure is given in Algorithm 1. The abbreviation
CoECNodePotential stands for ”Coverage Eliminated Cumulative Node Potentials,” which represents
the process of the heuristic. Then, proceed to step 2 with the selected nodes.

Algorithm 1: Algorithm for NodeSelection for CoECNodePotential Heuristic

1 Calculate the cumulative sample collection potential of each node in the set of possible locations for
testing temporary centers (N).

b
′

i = bi + ∑
j≠i∈N

α × bj × aij

where b
′

i denotes the cumulative sample collection potential of each node in set N.

2 Sort the nodes from highest to lowest according to their b
′

i values.

N
′

denotes the list of nodes sorted from highest to lowest.
Define a set V denoting the subset of nodes selected to visit and V = {1} where node 1 denotes the
depot.

3 while ∣V ∣ ≤ 25 do

4 Pick the node with the highest b
′

i in the list N
′

.
Denote this node as i∗

V = V ∪ {i∗};
5 Check the coverage radius of the selected node (i∗).

for j ∈ N ′

do
6 if ai∗j = 1 then

7 N
′ = N ′/{j}

Regarding the heuristics proposed, each heuristic’s objective values are compared with the optimal objective
values in Table 12. All heuristics solve the problem in a matter of seconds. However, when the number of
vehicles is given as five for SetCovering Heuristic, the CPU time of the heuristic is observed to be 169.27
seconds. Therefore, compared to other heuristics, the CPU for SetCovering Heuristic is slightly longer.

Number
of Vehi-
cles

Optimal
Objective
Value

Objective
Value for
Random
Heuristic

Gap (%) Objective
Value for
NodePo-
tential
Heuristic

Gap (%) Objective
Value for
SetCovering
Heuristic

Gap (%) Objective
Value for
CoECNode-
Potential
Heuristic

Gap (%)

2 445,457 395,352 11.25 438,068 1.66 404,367 9.22 429,803 3,51
3 552,507 486,314 11,98 540,464 2.18 499,127 9.66 549,693 0.51
4 652,545 561,5788 13,94 617,797 5,32 585,156 10,33 646,977 0,85
5 726,938 619,3494 14,80 694,736 4,43 653,561 10,09 717,019 1,36

Table 12: Objective Value Comparison for Heuristic algorithms for Istanbul, Turkey

For Random Heuristic, the given objective values are observed by taking the average of five runs. Ana-
lyzing Random Heuristic aims to observe an effortless and intuitive way of selecting a subset to visit. Even
though the results are not as good as NodePotential and CECNodePotential Heuristics, the results are close
to SetCovering Heuristic.
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SetCovering Heuristic aims to observe a subset of nodes covering all other nodes. If the locations selected
from the subset determined by SetCovering Heuristics have high potentials either by visiting or covering,
then the total sample collection is expected to be high. However, the results are only slightly better than
Random Heuristic. For SetCovering Heuristic, the optimality gaps are better than Random Heuristic. The
gaps for Random Heuristic are 11.25%, 11.98%, 13.94%, and 14.80% with the increasing vehicle number.
With those gaps, Random Heuristic cannot surpass SetCovering Heuristic in any case. The gaps for both
heuristics are close and comparable. However, the results imply that SetCovering Heuristic outperforms
the Random Heuristic with slightly fewer gaps in any number of vehicles. SetCovering Heuristic finds a
subset of nodes that can cover all nodes; however, the gaps are slightly better than the Random Heuristic.
The underlying reason would be based on the fact that the SetCovering Heuristic does not consider the
sample collection potentials of the locations, but solely an assurance to serve all the locations in the set.
The nodes that are not included in the visiting subset and expected to be covered may have high sample
potentials. Even if those nodes are reached by a visited location in the subset, the sample collection potential
loss is significant due to diminishing sample collection potentials by coverage, represented by α. Likewise,
the visiting subset may contain lower sample collection potentials, affecting the objective value. Therefore,
SetCovering Heuristic is not performing outstanding as expected.

The approach in NodePotential Heuristic includes the sample potentials for each node, implying that it
is a closer approach to the approach in the main model. On the other hand, in the SetCovering Heuristic,
the approach is based on an obligation to serve every node. It aims to cover every node with a minimum
number of visited nodes, rather than considering the sample collection potentials. In that perspective, the
approaches used in heuristics separate them in terms of the results. In addition, since NodePotential and
CoECNodePotential Heuristics highlight focuses on nodes with high sample potentials or cumulative sample
potentials, we observe better results with those heuristics. For SetCovering Heuristic, the optimality gaps
are worse than both NodePotential and CoECNodePotential Heuristics, and gaps are very distinct. The
gaps for SetCovering Heuristic are 9.22%, 9.66%, 10.33%, and 10.09% with the increasing vehicle number.
SetCovering Heuristic falls behind both NodePotential and CoECNodePotential Heuristic in any case with
a significant difference in gaps.

The approaches in NodePotential and SetCovering Heuristics are combined to design the approach in
CoECNodePotential Heuristic. This approach considers the high sample collection and coverage radius of the
visited node by selecting the nodes with high sample potentials and eliminating the nodes within the coverage
radius of the selected nodes. This approach is better than SetCoverage and NodePotential Heuristics since
it selects a subset of nodes considering both coverage and cumulative sample potentials of the locations.
In NodePotential and SetCoverage Heuristics, the constructed subsets do not focus on coverage or sample
potentials at the same time. Therefore, the subset selection might include nodes within multiple coverage
radii or nodes with low sample collection potentials. Since the primary purpose is to increase the total
sample collection, NodePotential and CoECNodePotential Heuristic find proper subsets of nodes, yielding
closer results to the optimal. Significantly, the subset of CoECNodePotential includes the nodes that fit both
the constraints and objective function of the main model. In that perspective, CoECNodePotential Heuristic
has the closest approach to the main model. The gaps for NodePotential Heuristic are 1.66%, 2.18%, 5.32%,
and 4.43% with the increasing vehicle number. NodePotential Heuristic falls behind CoECNodePotential
Heuristic in almost all cases. Only in the case with two vehicles, the NodePotential Heuristic surpasses the
CoECNodePotential Heuristic.

The optimal solutions can be obtained within seconds for small network problems, and a heuristic ap-
proach may not be critical. However, optimum solutions may not be as smoothly attainable for the more
extensive networks. For the instances solved, the solution quality of NodePotential and CoECNodePoten-
tial Heuristics are outstanding. The gap of CoECNodePotential Heuristic is getting smaller than gap of
NodePotential as the number of vehicles increases. Therefore, NodePotential heuristic can be preferred with
fewer vehicle cases, while CoECNodePotential Heuristic can be preferred for cases with more vehicles.
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6. Conclusion

In this study, we addressed the current global issue of responding to the COVID-19 outbreak due to the
high contagion and severity of the disease. We believe we are the first to study the logistics of temporary
testing centers to increase sample collection for PCR testing during the pandemic. We also aim to establish
an exemplary mobile testing system to increase the accessibility and availability of testing at the beginning
of pandemics by compiling the testing strategies. We conducted interviews with individuals in the field from
Turkey, South Korea, and the UK to understand the current testing system dynamics. As a result, the
temporary testing centers appear to be a successful means of increasing the availability and convenience of
viral testing. In this study, we proposed a generic and easy-to-implement mobile sample collection system
based on the best practices in the UK and South Korea. Then, we used the model to implement mobile
testing strategies in Turkey through a case study.

Currently, authorities have developed various strategies against the current state of the pandemic; how-
ever, the pandemic is ongoing. Furthermore, there are dangerous variants of the virus that can lead to other
outbreaks in the future. Our study will be helpful for such a pandemic process via proposing imitable and
paradigmatic work on a mobile testing system that can be used in real-life. In addition, for Turkey, we offer
the testing centers as a part of contact tracing to access the disadvantaged communities in addition to the
other implementations of mobile testing. The proposed system has equipped testing vehicles with health
personnel to conduct the sample collections of the patients. Therefore, the false-negative results caused by
improper collection are less likely. Moreover, all testing vehicles are affiliated with the central laboratory,
which provides more control over the testing process.

First, a mathematical model was developed to maximize the total sample collection. This model decides
on the locations and duration of the stay of vehicles, as well as the tours of temporary testing centers.
Later, we introduced another performance measure to analyze the willingness of attendees from the covered
nodes to provide a sample for a given network and a given set of parameters. The optimal solutions for
the Seoul and the Istanbul instances are found based on both performance measures. The Pareto efficient
frontiers of both cities suggest that if the decision-maker opts to settle for approximately 15-25 percent less
of the maximum walking distance, they can lose a significant amount of people regarding the total sample
collection.

Furthermore, the sensitivity analyses for the problem parameter, α, β and T are conducted. Firstly,
an analysis on the diminishing level of the sample potential parameter β and the number of vehicles is
conducted. Based on the results, one can observe that the number of temporary testing centers does
not affect the number of locations covered. However, an increasing number of testing centers provides
the opportunity to visit fewer locations per vehicle, and increasing β levels discourage the vehicles from
moving to other locations. Therefore, decision-makers may decide on the number of vehicles considering the
construction cost of the temporary testing centers and the sample collection potentials of a location over
time. A significant number of locations are covered with even just a few vehicles. Later, a sensitivity analysis
on the diminishing level of the sample potential parameter α and the number of vehicles is conducted. Based
on the results, the number of temporary testing centers affects the locations covered since α represents the
change in sample collection potential of covered nodes. Moreover, as α increases, vehicles are discouraged
from moving to other locations. It is since the sample collection potential of covered nodes will be higher,
and total sample collection will increase. Finally, the effect of parameter T on total sample collection is
analyzed. As T increases, the total number of covered and visited nodes appears to decrease. Also, increasing
T discourages mobility since diminishing sample collection potential over time will have a less critical impact
on the total sample collection. The authorities may increase α, β, and T by announcing the testing center
visits via the Internet or local news.

The computational performance of the exact method proposed was not as satisfactory in larger problems;
then, we also designed more efficient math heuristic algorithms. The primary purpose behind these two-
stage algorithms was to develop strategies to find location decisions and feed them to the main mathematical
model. Two of those heuristic approaches significantly decreased computational times while providing close
to optimal solutions in our experiments.

To the best of our knowledge, there is no OR study that focuses on a mobile sample collection system,
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considering demand depending on both time and coverage aspects. Even though this study proposes a
novel approach, there are some limitations, and thus various extensions can be considered. The current
model is constructed as deterministic, and in real-life, a decision maker can encounter uncertainties such as
uncertainties in travel time. Many factors, such as weather and traffic conditions, may impact travel time.
The uncertainty in travel times may impact the number of temporary testing centers required to provide a
testing service, the routes, and the duration of stays of temporary testing centers and thus can be a fruitful
future research area.

In our problem, the sample collection potential of the district diminishes depending on the length of
stay. However, the sample collection potential can vary depending on the time the vehicle arrives at the
district. For instance, the sample collection potential during the morning shift can be less than during the
afternoon shift. We have utilized a 2-step function to represent diminishing sample collection. In order to
illustrate the gradual coverage depending on the time of arrival, other forms of gradual decay functions can
be constructed. Further, analyzing the available data for hourly sample collections could lead to other types
of functions. A different form of gradual decay functions may impact the visits’ duration, directly affecting
the total sample collection. Moreover, the sample collection potentials are considered parameters in our
problem. However, they can deviate since the number of people who would like to provide samples can vary
due to many conditions, such as availability and willingness. Such uncertainty in sample collection potential
can lead to different problems and models which deem to study.

Furthermore, the planning horizon for our problem customarily is chosen as one day. In practice, the
sample collection is not a one-day occasion but a procedure repeated in successive periods and thus a more
extended horizon problem can be analyzed as a future extension.

Finally, the sole boundary in our problem is the time restriction for a vehicle to complete their shifts.
The vehicles are assumed to have no physical capacity boundary. However, the number of samples that can
be evaluated during a day without spoilage can be an essential restriction. Since PCR testing is expensive
and unavailable in some hospitals, evaluating each sample collected within the day may not be possible.
Therefore, the hospitals and labs may consider limiting the number of samples to evaluate due to technical
and personnel constraints. This limitation would directly affect the sample collection by temporary testing
centers since the collected samples are evaluated in the labs at the end of the collection activity. Thus,
boundaries on vehicle capacity can be considered a future research area.

Other possible alternative application areas for the proposed model can also be investigated as a future
direction. For instance, carrying and serving vaccination for COVID-19 to mobile healthcare facilities can be
one of those extensions. There might be new restrictions due to the supply-chain properties of vaccination;
however, accessibility and availability for vaccination should be considered due to the current pandemic.
Furthermore, improving the existing math heuristics or developing a meta-heuristic for the problem can be
considered an extension. Due to coverage and time considerations, generating a feasible solution or covering
neighborhoods is more complex than the classical Selective Vehicle Routing Problems. Finally, our approach
to the problem is novel, so it can be a worthwhile avenue to perform polyhedral analysis and generate valid
cuts for it as a further extension.
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