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Abstract 8 

There is mounting evidence that plastic and microplastic contamination of soils can affect 9 

physico-chemical processes and soil fauna, as has been excellently summarised in many 10 

recently published meta-analyses and systematic reviews elsewhere. It has become clear that 11 

impacts are highly context dependent on e.g., polymer type, shape, dose and the soil itself. 12 

Most published studies are based on experimental approaches using (semi-)controlled 13 

laboratory conditions. They typically focus on one or several representative animal species 14 

and their behaviour and/or physiological response – for example earthworms, but rarely on 15 

whole communities of animals. Nevertheless, soil animals are rarely found in isolation and 16 

form part of intricate foodwebs. Soil faunal biodiversity is complex, and species diversity and 17 

interactions within the soil are very challenging to unravel, which may explain why there is 18 

still a dearth of information on this. Research needs to focus on soil animals from a holistic 19 

viewpoint, moving away from studies on animals in isolation and consider different trophic 20 

levels including their interactions. Furthermore, as evidence obtained from laboratory studies 21 

is complemented by relatively few studies done in field conditions, more research is needed 22 

to fully understand the mechanisms by which plastic pollution affects soil animals under 23 

realistic field conditions. However, field-based studies are typically more challenging 24 
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logistically, requiring relatively large research teams, ideally of an interdisciplinary nature to 25 

maintain long-term field experiments. Lastly, with more alternative, (bio)degradable and/or 26 

compostable plastics being developed and used, their effects on soil animals will need to be 27 

further researched. 28 

 29 

Introduction 30 

Research on how plastic (especially microplastic) pollution affects soil ecosystems has 31 

increased greatly over the last decade, with many comprehensive systematic reviews and 32 

meta-analyses recently published on the topic (e.g. [1-9]). Recently a comprehensive 33 

database has been compiled, amalgamating data research on the toxicity of microplastics in 34 

a wide range of habitats [10]. It is widely accepted that biologically healthy soils are crucial 35 

for ecosystem functioning [11, 12] and the myriad of services they provide [13] (Figure 1). 36 

With the increase in (micro)plastics pollution in soils, however, ecosystem services and 37 

associated faunal communities are considered to be under threat [14]. The aim of this paper 38 

is not to systematically review the current state of knowledge, as that has recently been 39 

extensively done elsewhere, but to identify specific gaps of understanding of how 40 

(micro)plastic pollution affects soil faunal communities, i.e. effects on higher levels of 41 

biological organisation, to direct future research. 42 

 43 

Interactions between plastics and soil fauna at higher levels of organisation. 44 

 45 

It is thought that the majority of plastic pollution in soil ecosystems can be attributed to 46 

agriculture and poor waste management, but there are many other pathways for plastics to 47 

enter soil, as recently reviewed by [15], for example car tyre particles from road wear [16], 48 
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clothing fibres from washing [17] and application of wastewater or sludge to soils [18]. In 49 

some cases, plastics are added onto soil deliberately; an obvious example being the 50 

application of plastic mulches in agriculture [19] to create favourable microclimates for crops 51 

to grow [20], but with the potential of plastic fragments remaining in the soil [21-23], even 52 

though there are plastics marketed as biodegradable or compostable e.g. made of 53 

biodegradable polymer. However, with many types of plastics designed to last, and thus 54 

degrade poorly under natural conditions in the soil [24], there is concern for the accumulation 55 

of plastics in soils [25], including as microplastics [26], currently still defined as particles < 56 

5mm or < 1mm in size [27]. Since raising concerns of microplastic contamination of soils a 57 

decade ago by [28], there has been an increased effort to understand their impacts on 58 

terrestrial ecosystems, with studies exploring effects on ecosystem functioning [29] and soil 59 

biota [7]. When deposited on the soil, microplastics are translocated in the soil profile through 60 

bioturbation by soil animals (e.g. earthworms), agricultural activities such as ploughing, but 61 

also natural physical soil processes such as slaking [30] and precipitation [31], and certain soil 62 

animals can contribute to the further fragmentation of plastic particles into microplastics [32]. 63 

There is mounting evidence for the effects of microplastics on soil physico-chemical processes 64 

[33], which appear to depend on the dose, shape, size and chemical composition of the plastic 65 

particle [29, 34]. For example, soil porosity and associated water movement and capacity can 66 

change with certain types of microplastics [33, 35,36], but also evaporation increases with the 67 

presence of plastic particles in the soil [37]. Furthermore, soil pH – a crucial factor for many 68 

(bio)chemical processes can also be altered when microplastics are in soil [38], for with 69 

cascading effects on other processes such as nitrogen cycling [39]. Most of these processes 70 

are associated with soil microbes and their activity, in particular bacteria and fungi [3], which 71 

have been the focus of many studies concerning the effects of microplastics on soil 72 
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biodiversity. There is evidence that microplastics can alter the composition and functioning 73 

of microbial communities [3], and there is evidence, based on genetic sequencing, that 74 

microplastics themselves may have different microbial communities from the surrounding 75 

bulk soil (e.g. [40]). The relatively greater research focus on microbial communities (compared 76 

with larger soil biota such as worms and microarthropods) is possibly due to the relative ease 77 

to gather phylogenetic information from microbes by exploring eDNA with well-defined 78 

universal primers (such as those amplifying 16S rRNA) combined with metagenomic analyses 79 

and associated putative functional profiles [41]. Such an approach using eDNA is challenging 80 

for soil animals, which may explain why soil faunal communities are currently under-studied 81 

compared to microbial communities. Furthermore, it can be challenging to experimentally 82 

reconstruct representative soil faunal communities in the laboratory or field. As such, most 83 

studies considered how single, or an assemblage of a few animal species are affected by 84 

microplastics (as reviewed by e.g. [2, 42-44]. Earthworms, in particular, have been studied in 85 

the context of microplastic research. They can be considered important in the soil as 86 

ecosystem engineers [45] and are relatively easy to maintain under controlled laboratory 87 

conditions. For example, Jiang et al. (2020) [46] found that tiger worms (Eisenia fetida) 88 

responded negatively to the presence of polystyrene microplastics, with several biochemical 89 

changes at the cellular level. Similar results were found by Sobhani et al. (2022) [47] who 90 

exposed E. fetida to microplastic made of polyethylene. Other species of earthworms have 91 

been reported to be negatively affected by exposure to microplastics, for example, the 92 

endogeic rosy-tipped worm (Aporrectodea rosea) had reduced growth when exposed to 93 

different types of microplastics in a mesocosm study by Boots et al. (2019) [48]. A seminal 94 

study on the anecic earthworm Lumbricus terrestris by Huerta Lwanga et al. (2016) [49] found 95 

that their growth also was negatively impacted, including their survival, by the presence of 96 
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LDPE microplastics in a simulated litter layer. A subsequent publication by Huerta Lwanga et 97 

al. (2017) [50] reports that microplastics can be translocated into the soil matrix through 98 

burrowing activities by L. terrestris, thereby potentially exposing other soil fauna to 99 

microplastics. Another study with L. terrestris, by Zhang et al. (2018) [51], explored their 100 

potential involvement in incorporating plastics into soil when exposed to larger pieces from 101 

biodegradable and conventional plastic mulches, and found that the earthworms 102 

incorporated both types of plastics into the soil as well. When in the soil, these plastics may 103 

further degrade and or be redistributed through the soil profile. Other soil animals may also 104 

contribute to the redistribution of plastics within the soil. For example, the collembola 105 

Folsomia candida and Proisotoma minuta were studied by Maaß et al. (2017) [52] to 106 

understand their role in the translocation of particles and fibres. They found that the two 107 

species interacted differently with the microplastics suggesting that they could affect the 108 

distribution of microplastics differently within the soil matrix. However, Kim et al. (2019) [53] 109 

reported that the collembolan Lobella sokamensis was negatively affected when microplastics 110 

were present due to their propensity to block micro-cavities within the soil matrix where the 111 

animals are typically found thereby restricting their movement. The potworm Enchytraeus 112 

crypticus has been shown to avoid microplastics obtained from HDPE bottle caps when in the 113 

soil, moving to areas with no or lower concentrations [54]. Lahive et al. (2019) [55] explored 114 

how E. crypticus responded to the presence of different size and shapes of microplastics in 115 

soil, and they found that E. cryptus ingested nylon fibres and that their reproduction was 116 

reduced. In another controlled mesocosm-based study, Selonen et al. (2020) [56] explored 117 

the response of E. crypticus, F. candida, the oribatid mite Oppia nitens and the isopod Porcellio 118 

scaber to polyester fibres either mixed in soil or leaf litter. They also reported that E. crypticus 119 

ingested the fibres and displayed reduced reproduction, but the other test organisms showed 120 
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marginal responses. The animals, however, were studied in separate mesocosms which did 121 

not allow the exploration of community-level effects of the microplastics. Most studies 122 

appear to have been done on specific taxa, such as worms, perhaps because the are relatively 123 

easy to maintain, can be considered model organisms representing different functional 124 

groups [57]. Other soil organisms are also often used in soil ecotoxicological studies, such as 125 

isopods [58], yet there is limited information on these taxa when exposed to 126 

microplastics.Even so, soil animals rarely occur alone as single species in soil, which can 127 

contain great diversity and abundance of animals from different taxonomic groups, 128 

comprising an extremely complex foodweb of multiple trophic levels of detritivores, grazers 129 

and predators at the micro-, meso- and macroscale (e.g. [59]). Even though there is ample of 130 

evidence for single-species effects when exposed to the myriad of microplastics (e.g. shapes, 131 

polymers, sizes, doses) as reviewed elsewhere, similar studies considering multi-species at 132 

higher levels of organisation are not very common in the literature [60]. There are very few 133 

studies reporting the effects of microplastics on soil faunal communities, including those done 134 

under field conditions. For example, a seminal observational field study by Huerta Lwanga et 135 

al. (2017) [61] explored trophic translocation from soil containing microplastics which were 136 

also found at increased levels in earthworm casts and subsequently increased in chicken 137 

faeces, but they were also detected in chicken and crop plants. It is not clear however, how 138 

the presence of microplastics affected the highest trophic level, nonetheless this raised 139 

concern that microplastics can move up the food chain. A more recent, 287-day long study by 140 

Lin et al. (2020) [62] showed that when LDPE microplastics are experimentally applied to the 141 

topsoil layer in a field, microarthropod and nematode communities were affected. In that 142 

study [62], animals were classified by functional groups (e.g. feeding types of nematodes) or 143 

order (e.g. ants as Hymenoptera) and they found that there was an overall decrease in 144 
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abundance of organisms with microplastics present, but also the community composition 145 

shifted with increasing density of microplastics. At 287 days, the study reported in [62] is 146 

relatively long-term, but to fully understand how soil fauna responds to microplastic 147 

pollution, more long-term research is needed. This is especially important for agricultural 148 

settings so that different crop growth seasons will be encompassed. Long-term experiments, 149 

however, are challenging and require continuous funding to maintain and sampled typically 150 

by interdisciplinary research teams. A study by Hernández-Gutiérrez et al. (2021) [63] 151 

explored how soil invertebrates responded to microplastics under agricultural mulching 152 

(plastic LDPE sheets), but also the use of glyphosate. Mulching was applied to the field from 153 

2009 and the study was conducted in 2019. They found that there were more microplastics 154 

in the soil with mulching and they reported that there were more individuals and taxonomic 155 

orders of above-ground invertebrates captured with pitfall trap associated with the mulched 156 

soils. It remains unclear, however, if the microplastics in the soil caused these differences. 157 

Maintaining long-term and field-based studies, especially of a manipulative nature is 158 

challenging and requires relatively large research teams. Ideally the team should consist of 159 

several scientific disciplines so that a holistic picture can be sketched of how soil biodiversity 160 

and associated ecosystem functioning can be affected.  161 

 162 

Moving forward: focus for research 163 

Soils are extremely heterogenous systems which make studying mechanistic pathways 164 

challenging [64] and, therefore, generalisation is very difficult. To make generalisation 165 

feasible, more empirical data is needed which encompass the many different biological, 166 

chemical and physical processes within soils. As these processes rarely occur in isolation, 167 

researching them in tandem (i.e. reciprocal effects on physico-chemical parameters and soil 168 
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biodiversity) will provide a more holistic picture of how microplastics can affect soil 169 

ecosystems. Moving on from general observational studies, there is a need to shift to studies 170 

designed to unravel hypothesised mechanistic pathways, for example related to the shape, 171 

size and chemical composition of the plastics. Mechanistic pathways can be direct (e.g. 172 

physical contact) or indirect (e.g. via affecting a trophic level), but unravelling these pathways 173 

at the community level requires very careful experimental designs to ensure confounding 174 

variables are minimised. Furthermore, effects on animals at the molecular level (genes, 175 

enzymes), such as oxidative-stress related responses [65, 66] could help further explain how 176 

soil animals are being affected, including sub-lethal but chronic effects. To bring this further, 177 

as also suggested by So et al. (2022) [67], it is important to explore how microplastic pollution 178 

affects soil ecosystems under more realistic conditions, ideally in the field, with realistic doses 179 

of microplastics applied [68]. Laboratory-based studies are valuable, and they suggest that 180 

soil biological and physico-chemical characteristics respond differently to the characteristics 181 

of plastic contamination, however, more information is required under different field settings 182 

to understand how microplastics affect soil fauna at the community level. Combined with 183 

trait-analysis techniques (e.g. [69]), potential community level (e.g. foodweb) effects can be 184 

explored. To achieve this, simplified model communities of soil fauna could be constructed 185 

representing several trophic levels (including primary producers). Field-based experiments, 186 

however, typically require more maintenance, effort and costs, and they introduce more 187 

noise than controlled or semi-controlled approaches. There could be an ethical issue 188 

regarding the deliberate addition of an emerging pollutant to field plots which will need to be 189 

considered. Nevertheless, by moving from lab-based studies to long-term field settings, we 190 

can fully understand the impact of microplastics in soil ecosystems, including soil fauna.   191 
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Furthermore, there are still many groups of soil fauna which remain relatively understudied. 192 

In 2018, research on soil protists was already identified as lacking [70], such as amoeba which 193 

are important members of the soil foodweb, and there is still a dearth of information on this 194 

group of soil fauna. Soils can contain a great diversity of soil micro- and mesofauna, including 195 

pathogens and parasites,  which all contribute to the health of soil ecosystems. The impacts 196 

of microplastic pollution on soil dwelling vertebrates are not studied in much depth either, 197 

although the definition of “soil dwelling vertebrates” is context dependent, i.e. animals living 198 

on the surface, within the litter layer, or within the soil. One could consider snakes as part of 199 

the terrestrial foodweb as well, and [71] found microplastic fibres in the gastro-intestinal tract 200 

of two different snake specimens (Natrix natrix and N. tessellate) kept in a museum from 1989 201 

– 2019. Snakes are relatively at high trophic levels in terrestrial foodwebs which may explain 202 

the presence of the plastics inside their bodies. There are other studies on vertebrates, but 203 

mainly on mice and under laboratory conditions (e.g. [72]), as conducting ecotoxicological 204 

research on soil vertebrates typically requires strict ethical consideration. Such research may 205 

be valuable for wildlife, however, ethically that may be questionable.  206 

Lastly, there is an increase in biodegradable and/or compostable plastics manufactured of 207 

materials  designed to degrade more rapidly than conventional types (e.g. polyethylene, 208 

polyethylene terephthalate or polystyrene) and several products also claim to generate no 209 

microplastics. However, (bio)degradation in the natural soil environment and the effects of 210 

those plastics when littered or incorporated in the soil especially those on soil functioning and 211 

related faunal communities will have to be better understood to assess their potential risks 212 

[73], before they are adopted as an alternative to conventional plastics, including in 213 

agriculture. 214 

 215 
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Summary points 216 

 There is mounting evidence that (micro)plastics can affect soil animals directly and 217 

indirectly via changes in soil physico-chemical properties.   This manifests as lethal and 218 

sub-lethal (e.g. at the molecular level) health responses.  219 

 Recently many systematic reviews and meta-analysis have been published 220 

amalgamating the scientific literature, but there is still a need for more empirical 221 

research to understand the underpinning mechanisms of how (micro)plastics can 222 

affect soil animals. 223 

 Many taxa of soil fauna remain understudied. To generate a bigger picture, more 224 

information on effect of microplastics on taxa which are more cryptic, e.g. micro- and 225 

mesofauna. 226 

 There is still a dearth of information on how soil animal communities, at a higher level 227 

of organisation, are affected as most research has been done on one or just a few 228 

animals in isolation. 229 

 Research will have to move to studies done under field conditions, ideally long-term, 230 

including focus on (bio)degradable types of plastics and understudied groups such as 231 

vertebrates, although there are many (ethical) challenges to consider. 232 
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 551 

Figure 1. Most research on the effects of microplastics have been done in isolation in 552 

laboratory studies (a), with one or several trophic groups considered such as microbes, plants, 553 

worms and invertebrates. Soil ecosystems are very complex and instead of viewing them as 554 

separate compartments, a more holistic approach needs to be adopted linking primary 555 

producers to microbes and soil fauna and associated (bio)geochemical processes (b). Symbols 556 

are obtained from MS Office 365 (Microsoft 2022), except the collembolan (credit: Shyamal 557 

L.) 558 


