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Abstract 
This chapter presents case studies that focus on canopy sensing using proximal 

and UAV-mounted optical sensors, rather than satellite-based optical sensing appli-
cations. The potential use of optical canopy sensing for crop quality and quantity is 
explored across four varied case studies. The case studies have been chosen to rep-
resent a diversity of crops, countries and stages of sensor development and transla-
tion (from emerging research to near commercial applications). In each case study, 
optical sensing is shown to be relevant to assessing productivity, either directly or 
through an indicator of crop health. It represents a powerful tool for crop manage-
ment; however, across all the case studies, the optical sensing solution could only 
be used directly to address local issues. A clear message is that the suitability and 
adaptability of this technology to a variety of end-uses in cropping systems depends 
on local calibration and interpretation. The need for these is a limitation to technol-
ogy adoption despite the widespread potential applications of optical sensors. 
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Introduction to the Chapter 

This chapter presents four contrasting applications of crop sensors to various 
cropping systems including table grapes in Greece, wine-grapes in France, potato 
production in the United Kingdom and cotton production in Brazil. In each case, 
one or more canopy or crop sensors are used to assess crop vigour and to relate it to 
crop production, in terms of quantity and or quality. Collectively, they illustrate how 
information on plant vigour can be connected directly to production attributes or 
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can be used as an ancillary variable to assess another primary crop production at-
tribute. They also illustrate a diversity of platforms (terrestrial, UAV and aerial) and 
a diversity of sensors (LiDAR, ultrasonic, optical infrared and optical visible) to 
obtain data on vigour. The case studies highlight the potential breadth of applica-
tions of crop vigour data, either directly or indirectly, in crop management, but this 
does not suggest that this is the full extent of potential uses. The case studies move 
from emerging research questions (such as the use of cumulative canopy reflectance 
responses over the season) to clear commercial applications (such as the incorpora-
tion of sensing into potato agronomy services).  

A key message across the case studies is that sensor data help to identify spatial 
patterns in crop health and vigour, but also require local, site-specific interpretation 
and the ability to relate them directly to a production attribute and to a management 
operation. Ultimately this is the key objective when starting to collect spatio-tem-
poral information on crop vigour. 

The first case study describes a simple application of a proximal (tractor-
mounted) visible–near-infrared (Vis–NIR) optical sensing system to table grapes. It 
explores the diversity of spectral data that can be derived from even simple multi-
spectral systems and investigates which of the vegetative indices are the most useful 
for predicting table grape yield and quality. The second case study continues in the 
area of viticulture with a Vis–NIR optical sensor. However it focuses on wine 
grapes and on data obtained from an aerial platform. It does not directly relate the 
information on vigour to production attributes (as in case study 1), but rather uses 
the vigour data to identify and rank fields according to the amount of observed spa-
tial variation in canopy vigour. This information is then used to sample intelligently 
for information related to vine water stress and to identify fields, and zones in fields, 
where crop vigour relates to vine water stress, and therefore to final grape quality.    

Case study 3 concerns cotton production systems in Brazil. It compares optical 
sensors focused on crop vigour with sensors of crop height for mapping crop yield 
and productivity, especially at early developmental stages. Commercial optical 
sensing systems were robust and effective for spatial crop management. However, 
the alternative sensors were shown to work well in the given conditions. The LiDAR 
system, while experimental, was a particularly effective method of estimating crop 
biomass from crop height. The opportunities for sensor data-fusion and issues with 
sensor resolution versus input application resolution are discussed. 

The final case study investigates potato production in the UK. This case study 
relies only on a simple RGB camera. It explores how cheap camera-based systems 
mounted on UAV platforms can give relevant and timely information on crop emer-
gence and canopy development, even if the vigour of the canopy is not measured 
directly. Information on crop emergence and on canopy development, expressed as 
percentage ground cover, is used to update a local crop model. Scenarios run with 
the model in its native state and with the addition of different levels of information 
derived from the UAV images are used to demonstrate the value of basic colour 
images when used intelligently.  
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Case Study 12.1a: Health and vigour for table grapes in Greece 

Introduction 

The world market for table grapes is large with production estimated at 27.3 mil-
lion tonnes in 2018 (OIV, 2019). Farming practices and field conditions have a 
strong effect on the quantity and quality characteristics of table grapes. This is im-
portant because specific characteristics of table grapes will influence their commer-
cial value. These quality characteristics are total soluble solids and berry diameter, 
as well as the berry sugar/acid ratio, which is strongly related with storability and 
consequently with shelf life (Sen et al. 2016; Tehrani et al. 2016). For this reason, 
high resolution vineyard information is desirable that relates to either or both the 
quantity or quality of berries in a field and can be used for management. 

Proximal canopy sensing in vineyards is used to assess crop growth and yield 
variables in a non-destructive way and may include the use of radar, optical or mul-
tispectral sensors (Henry et al. 2019). The latter type of sensor (multispectral sen-
sors) records information in different spectral bands that are being combined 
through mathematical equations for calculating the spectral vegetation indices (VIs) 
(Xue and Su, 2017). More specifically for vineyards, there are numerous VIs that 
have been used for assessing important crop variables such as vigour, yield and 
quality characteristics (e.g. total soluble solids and titratable acidity), as well as for 
pest and disease infestation and water stress (Hall et al. 2002; Tisseyre et al. 2007). 
The Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1973) is the 
most common VI in agriculture (Badr et al. 2015). Although many studies have 
already found a significant relationship between a VI recorded at a single crop stage 
with vine vigour, yield and quality attributes, the studies do produce different de-
grees of correlation at different crop stages (Anastasiou et al. 2018). This has 
prompted the use of cumulative VIs that aggregate the values of the single crop 
stage VIs for providing better crop yield and quality assessments. The advantage of 
cumulative VIs is that the variable nature of the growing season is taken into ac-
count, resulting in a better correlation with crop yield and quality (Sun et al. 2017; 
Mirasi et al. 2019). However, there are no studies to date on the use of cumulative 
VIs in vineyards. Therefore the main aim of this case study was to assess the rela-
tionship between five different cumulative vegetation indices (VIs) and yield and 
quality attributes in a vineyard that had a large number of viticulture operations. 

Materials and Methods 

The study site was a commercial table grape vineyard (Vitis vinifera cv. Thomp-
son seedless) near Athens, Greece with data collected over three consecutive years 
(2015-2017). Within the vineyard, there are two distinct soil texture types, a sandy 
clay loam and a clay loam. Each year the vineyard received approximately 2400 
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mm ha-1 of water (irrigation + precipitation), 16 spray applications of foliar fertiliz-
ers, pesticides and crop growth regulators and 4 pruning operations to control the 
vine growth.  

Canopy properties at six different developmental stages (fruit set [FS], pea-size 
berries [PS], majority of berries touching [BT], beginning of veraison [BV], middle 
of veraison [MV] and harvest [H]) were measured using a Crop Circle sensor (ACS-
470, Holland Scientific Inc., Lincoln, NE, USA). The sensor was mounted at 1.5-m 
height above the soil surface and pointed horizontally at the vines from a distance 
of 1.2 m to scan the side ‘curtain’ (canopy) area of the vine. This particular canopy 
sensor has the ability to change filters and the wavelengths sensed according to user 
requirements. For the purposes of this experiment, six different filters with the same 
characteristics in terms of focal length were used, specifically, 532 nm (Green), 550 
nm (Green), 670 nm (Red), 700 (Red-Edge), 730 nm (Red-Edge) and 760 nm (Near 
Infrared). The measurements were used for developing five VIs, the Normalized 
Difference Vegetation Index (NDVI), two versions of the Green Normalized Dif-
ference Vegetation Index (GNDVI) calculated with different wavelengths in the 
green region of the spectrum (550nm and 532 nm) and two versions of the Red-
Edge Normalized Difference Vegetation Index (NDRE), using two different wave-
lengths (730 nm and 700 nm) in the Red-Edge area of the spectrum. Details of the 
formulae for the five VIs are given in Table 12.1. These VIs have previously shown 
good correlations with crop properties such as nitrogen uptake, biomass and leaf 
area index (LAI) in cereal crops (Rodriguez et al. 2006; Wang et al. 2007). Many 
researchers have proposed cumulative VIs for mapping and monitoring important 
crop variables such as net primary productivity, LAI, biomass and yield (Ricotta et 
al. 1999, Kross et al. 2015, Zhou et al. 2017).  

Cumulative VIs were calculated by aggregating average VI values collected pre-
veraison (FS, PS, BT), post-veraison (BV, MV, H) and at all stages (FS, PS, BT 
BV, MV, H) for each plot. This was done to assess the effect of the variation in vine 
vigour before and after veraison on correlations with final yield and quality charac-
teristics.  

For this study a regular grid of 36 cells (~10 × 25 m) was established across the 
vineyard to facilitate field sampling. This methodology follows the approach used 
by Tagarakis et al. (2013 and 2018). Samples of 50 berries were taken from each 
vineyard cell before harvest. Berry diameter was computed using image analysis in 
Image J (National Institutes of Health, USA). The berries were then crushed to pro-
duce juice using a juicing machine and the juice total soluble solids (TSS) (°Brix) 
measured by refractometry in an SR400 digital refractometer, the titratable acidity 
(TA) measured in a Fruit Acidity Meter GMK-708 (G-won Hitech Co., Seoul, South 
Korea) and the pH measured with an AD8000 multi-parameter meter (Adwa Hun-
gary Kft., Szeged, Hungary). Harvest was performed manually on the 2–3 Septem-
ber 2015, the 21–22 August 2016 and the 16–17 August 2017. Table grape yield 
was estimated at harvest by measuring the number of bins per cell and multiplying 
it by the average bin weight.  
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Table 12.1. Formulae and references for the spectral vegetation indices (VIs) 
used in the current work. 

Spectral Vegeta-
tion Index Equation References 

NDVI NDVI = (𝜌𝜌760 − 𝜌𝜌670)/(𝜌𝜌760 + 𝜌𝜌670) 
Rouse et al. 

1974 

GNDV1 GNDVI1 = (𝜌𝜌760 − 𝜌𝜌550)/(𝜌𝜌760 + 𝜌𝜌550) Lymburner et 
al. 2000 

GNDVI2 GNDVI2 = (𝜌𝜌760 − 𝜌𝜌532)/(𝜌𝜌760 + 𝜌𝜌532) Lymburner et 
al. 2000 

NDRE1 NDRE1 = (𝜌𝜌760 − 𝜌𝜌730)/(𝜌𝜌760 + 𝜌𝜌730) Hunt et al. 
2013 

NDRE2 NDRE2 = (𝜌𝜌760 − 𝜌𝜌700)/(𝜌𝜌760 + 𝜌𝜌700) Hunt et al. 
2013 

 
Maps of yield and berry quality for the three years of study were produced using 

ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA). To assess the relationship 
between the cumulative VIs and table grape yield and quality, descriptive statistics, 
Pearson’s correlation and regression analysis were performed. Step-wise linear re-
gression was only performed for the cumulative VIs (cVI) that had the strongest 
correlation for each variable. The statistical analysis was performed with the statis-
tical software Statgraphics 16 (StatPoint Technologies Inc., Warrenton, VA, USA). 

Results and Discussion 

There were variable weather conditions during the study. In this region the 
weather conditions from March to June are usually characterized by a considerable 
amount of precipitation and moderate temperatures, while July and August have 
higher temperatures and dry weather (Fig. 12.1). In 2016, however, precipitation 
was very limited and temperatures were higher during most crop stages. In contrast, 
in 2017 there was more precipitation that continued late into the growing season 
(July). 
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Figure 12.1 Monthly average temperature and precipitation from March to 
August of 2015, 2016 and 2017 table grape seasons.  

The development of example VIs by crop stage and by year are shown in Fig. 
12.2. The VIs showed more variation during pre-veraison crop stages than for post-
veraison stages. This variation can be explained by the fact that weather conditions 
can greatly affect vine development and therefore yield (Cheng et al. 2014; Ocz-
kowski, 2016; Ollat et al. 2016). 

 

   
(a) (b) (c) 

Figure 12.2 Temporal profiles of NDVI (a), GNDVI1 (b) and NDRE1 (c) 
averaged over the field at each sampling time (fruit set [FS], pea-size berries 
[PS], majority of berries touching [BT], beginning of veraison [BV], middle of 
veraison [MV] and harvest [H]) in three years (2015 – solid black; 2016 – solid 
grey; 2017 – dashed black line) These are shown as examples of the difference 
in response over time between the vegetation indices (VIs). 

There was spatial variation of yield attributes between the different years (Fig. 
12.3). Specifically, the south and east part of the field had the smallest values in 
terms of yield, berry diameter and titratable acidity for the three years of the study



Figure 12.3: Thematic maps of Yield (top row), Berry Diameter (second row), 
pH (third row), Total Soluble Solids (fourth row) and Titratable Acidity 
(bottom row) for 2015 (first column), 2016 (second column) and 2017 (third 
column) to illustrate similarities and differences in variable response between 
years and between variables within years 
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indicating that in this part of the field different management practices can be ap-
plied. In addition, the spatial pattern for other quality attributes such as TSS and pH 
was not stable. This variation can be explained by the different weather conditions 
that occurred among the different years of the study. 

Table 12.2 Pearson’s correlation matrix between cumulative VIs and table 
grape yield and quality attributes. 

VI pH TSS 
(oBrix) 

TA 
(%) 

Berry  
diameter 

(mm) 

Yield  
(kg ha-

1) 
Whole-season     

cNDVI -0.29 0.16 -0.23 0.01 0.37 
cGNDVI1 0.06 0.06 -0.25 0.13 0.08 
cGNDVI2 0.30 0.06 -0.23 0.63 0.52 
cNDRE1 -0.28 0.11 -0.19 0.07 0.34 
cNDRE2 -0.18 0.31 -0.18 0.11 0.33 

Pre-Veraison      
cNDVI -0.55 0.19 -0.12 -0.25 0.26 

cGNDVI1 0.31 -0.20 -0.27 0.43 0.27 
cGNDVI2 0.41 -0.08 -0.23 0.74 0.59 
cNDRE1 -0.18 0.02 -0.15 0.17 0.37 
cNDRE2 -0.26 0.21 -0.21 0.11 0.44 

Post-Veraison     
cNDVI 0.34 -0.01 -0.21 0.39 0.24 

cGNDVI1 -0.32 0.36 -0.02 -0.38 -0.24 
cGNDVI2 -0.23 0.42 -0.08 -0.12 -0.03 
cNDRE1 -0.34 0.27 -0.16 -0.27 -0.03 
cNDRE2 0.04 0.27 -0.03 0.04 -0.03 

Bold values indicate significance at p=0.05 level. Italics indicate VIs used subsequently (Table 12.3) 
 
For pH the strongest correlation was with pre-veraison cNDVI (r = –0.55), for 

TSS with post-veraison cGNDVI2 (r = 0.42), TA with whole-season cGNDVI1 (r 
= –0.25), berry diameter with whole-season cGNDVI2 PrV (r = 0.736) and yield 
with pre-veraison cGNDVI2 PrV (r = 0.58).  The strongest correlations were with 
cGNDVI and not cNDVI or cNDRE. These findings accord with other studies that 
indicate that the performance of other VIs might be better when compared with 
classical spectral VIs, such as NDVI (Hall and Wilson 2013; Anastasiou et al. 
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2018). Moreover, the strongest correlations with yield characteristics were for dif-
ferent cumulative VIs (Table 12.2). The latter agrees with the result of Anastasiou 
et al. (2018) who found that different crop stages have different accuracy for esti-
mating yield characteristics of table grapes. 

The linear regression models of table grape yield and quality attributes with prox-
imally sensed cVIs showed that the model fit explained between 20 and 60% of the 
variance in grape quality and quantity attributes (Table 12.3). The berry diameter 
regression model had the best fit (adjusted R2 = 0.60) and TSS the poorest (adjusted 
R2 = 0.20). The yield estimation model explained 45% of the variance (Table 12.3). 
These results contradict those of Anastasiou et al. (2018) who found larger coeffi-
cients of determination when modelling table grape quality attributes, such as BD 
and TSS, with VIs from only one crop growth stage. This can be explained by the 
fact that specific crop stages, and the vigour conditions at these stages, will have 
different effects on final production (Sipiora and Granda, 1998; Intrigliolo and Cas-
tel, 2010). Quality in particular may be more aligned with conditions at specific 
stages, rather than an integration over the entire season. In contrast, absolute yield 
might be better explained through a cumulative approach. 

Table 12.3. Linear regression models of table grape yield and berry quality 
with cVIs. The cVIs were selected based on correlation analysis. 

Regression Model adjusted 
R2 

RMSE 

Yield = −5764.59
+ 11679.57
× cGNDVI2 PrV 

0.45 3.64 Mg ha-1 

BD = �(253.84 + 51.86 × cGNDVI2PrV2) 0.60 1.2 mm 
TSS = 11.39 + 3.65 × cGNDVI2PoV 0.20 0.7 oBrix 
TA = 0.56 − 0.09 × cGNDVI1 0.20 0.02 % 
pH = 1/(0.951 − 0.551 × ln cNDVI PrV) 0.42 0.01 

PrV=pre-veraison, ; PoV = post-veraison 
 
The various cumulative VIs used in this study resulted in different performances 

with the cumulative VIs based on GNDVI having the strongest correlations with the 
most variables (yield, BD, TSS and TA). This accords with Anastasiou et al. (2018) 
who found that both proximally- and satellite-derived single crop stage GNDVI 
produced better results than NDVI. According to their study, this can be explained 
by the saturation of NDVI values, which resulted in smaller estimates of crop yield 
characteristics. Furthermore, the cumulative VIs had poorer accuracies than single 
stage VIs from the same study (Anastasiou et al. 2018). This is because the various 
agricultural operations (e.g. irrigation, canopy trimming) that take place during the 
crop growth periods decrease the within-field spatial variation and smooth the val-
ues of the cumulative VIs. Finally, this study accords with that of Sun et al. (2017) 
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and Mirasi et al. (2019) who found that cumulative VIs can assess crop properties 
better, such as yield, when compared to single crop stage measurements.  

Conclusions 

In this study, an assessment of proximal sensed cumulative VIs for the estimation 
of crop yield and quality characteristics was conducted during three crop growing 
seasons (2015, 2016 and 2017) on a commercial table grape vineyard in Greece 
cultivated with Thompson Seedless variety grapes. 

The cumulative VIs based on GNDVI presented higher correlations with yield, 
BD, TSS and TA when compared with other cumulative VIs. Moreover, the results 
indicated that cumulative VIs have the potential to become a tool for assessing table 
grape characteristics and thus being used on management zone delineation for se-
lective harvesting. However, cumulative VIs must be carefully used as they might 
not be suitable for estimating specific attributes under intensive management con-
ditions when frequent agricultural operations occur in the field. In this situation, 
single stage VIs may exhibit stronger relations and be more useful for management. 

Case Study 12.2. Airborne multispectral images as a tool to 
characterize the spatial variation of vine water status: 
application to a non-irrigated Mediterranean vineyard 

Introduction 

The evolution of vine water status (VWS) throughout the vineyard growth cycle 
has a direct effect on grape composition and harvest quality through its influence 
on fruit growth, yield, and fruit metabolism (Dry and Loveys 1998; Ojeda et al. 
2002). Therefore, it is important to monitor VWS, to predict either expected harvest 
quality or as a source of critical information for vineyard management, under both 
irrigated and non-irrigated conditions (Naor et al. 1997; Choné et al. 2001). 

Several reference methods have been proposed to measure VWS; Leaf Water 
Potential (LWP), Stem Water Potential (SWP) and Predawn Leaf Water Potential 
(PLWP) (Sibille et al. 2007). These methods are widely used, but they are laborious 
manual techniques, requiring specific instrumentation and a certain level of skill 
when making measurements (Ojeda et al. 2002; Sibille et al. 2007). These con-
straints make systematic Spatio-Temporal (S-T) VWS measurements with these 
methods time-consuming and difficult to perform. For this reason, these reference 
measurements have been used mainly to monitor the temporal change in VWS at 
only a few locations within vineyards. The VWS observations therefore tend to be 
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reported at a low spatial resolution and often under an assumption that VWS is ho-
mogeneous over the measurement area (i.e. the block or set of blocks are assumed 
to behave similarly).  

However, VWS can be highly variable within blocks, within vineyard estates 
(Taylor et al. 2010) and across viticulture regions (Baralon et al. 2012). So, charac-
terizing the spatial variation of VWS is key to improving the positioning of refer-
ence measurements to enable managerial decisions based on the observed spatial 
patterns (Acevedo-Opazo et al. 2008a). Availability of soil water, because of dif-
ferences in soil depth and soil physical properties is a key influence on VWS. Under 
non-irrigated Mediterranean conditions, water restriction decreases the vegetative 
growth of the vine (Celette and Gary, 2013), so vine vigour should constitute an 
indicator of the spatial variation in VWS. 

This case study illustrates the use of a vegetation index, obtained from multi-
spectral aerial images, to assess the spatial variation of VWS under non-irrigated 
Mediterranean conditions. The aim was to verify that remotely sensed vegetative 
indices are a useful auxiliary data layer for understanding and managing viticulture 
practices according to the spatial variation of VWS. 

Materials and methods 

Description of the vineyard 

The study vineyard is at Pech Rouge (Gruissan, Aude, France; 43°08’30”N, 
3°07’30”E). It has 28 blocks with a total area of ~32 ha. The vineyard is representa-
tive of vineyard diversity in southern France in terms of training systems (vertical 
shoot positioning and gobelet), the age of vines (from 2 to > 50 years old) and vari-
eties (Vitis vinifera cv Syrah, Grenache, Chardonnay, Petit Verdot, Muscat, 
Mourvedre and Carignan).  

Management practices (pruning, fertilization, trimming, mechanical weeding, 
etc.) were very similar for all blocks. The vineyard is non-irrigated and has a Med-
iterranean climate with a hot dry summer. Precipitation occurs mainly in autumn 
and spring. A large evaporative demand usually leads to considerable vine water 
restrictions in summer. Examples of average water constraint over the vineyard, 
estimated by PLWP, were –0.75 MPa in August 2003 (a very dry year) and –0.60 
MPa in August 2006 (a wet year) (Taylor et al. 2010). 

Multispectral Image 

Aerial images (1 m2 pixels) were collected by l’Avion Jaune (Montpellier, Hé-
rault, France) at veraison (August, 2006). The spectra included were: (i) blue (445–
520 nm), (ii) green (510–600 nm), (iii) red (632–695 nm) and (iv) near-infrared 
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(757–853 nm). The NDVI was derived for each image after the 1 m2 pixels were 
aggregated into 3 m2 pixels using the methodology outlined in Acevedo-Opazo et 
al. (2008b). This approximates the ‘mixed pixel’ row spacing approach of Lamb et 
al. (2004). Data mapping was performed using QGIS 2.18. Three classes of NDVI 
were created; high, medium and low relative to the tertiles in each individual block.  

Spatial variation and vineyard block selection 

Not all blocks had the same magnitude of spatial variation of NDVI. Vineyard 
managers will focus on blocks that show considerable variation and with spatial 
patterns large enough to justify the use of site or zone-specific practices. To deter-
mine blocks that would be most appropriate for site-specific management, the Tech-
nical Opportunity Index (TOi) (Tisseyre and McBratney, 2008) was used to rank 
them. It was computed for each block with the GeoFIS freeware (Leroux et al. 
2018). The TOi ranks were used to meet two objectives: 1) to identify blocks that 
could justify zone-specific management and 2) to target blocks to collect additional 
data from.  

Sampling scheme 

Sampling sites were selected based on the NDVI information. Only blocks with 
a large potential for zone-specific management (large TOi values) were considered. 
For the selected blocks, two zones were selected corresponding to a relatively high 
and a relatively low NDVI response, with a constraint that the selected zones pre-
sented a significant area in the block (> 100 m2). This last criterion was considered 
mainly for practical reasons, to ensure that the number of vines in each zone was 
relevant for further analysis. A measurement site of 40 m2 was randomly located 
within the selected high and low NDVI zones (2 sites per block). Zones of medium 
NDVI values were considered transition zones and not sampled.  

Vine measurements 

Two types of measurement were performed to verify the origin of the difference 
in NDVI values: vine vegetative expression, using the external canopy area (ECA) 
per vine (m2 pl-1), and PLWP (MPa) measured at veraison, when the water stress 
was assumed to be at its strongest for the season. The ECA was estimated manually 
over five vines along the row using measurements of canopy height (m) and width 
(m). The PLWP was measured over the same five vines between 3:00 and 5:00 a.m. 
using a pressure chamber (Scholander et al. 1965). 

To identify the possible uses of the NDVI in relation to VWS, a more intensive 
temporal survey of PLWP coupled with harvest measurements was performed on 



13 

the two NDVI zones in Block 5. This block was chosen as it had a large TOi value 
and was considered a block with potentially high fruit quality by the manager. Zone-
specific management may therefore be important to improve yield and quality. The 
PLWP was measured on seven dates during the season. At harvest, variables were 
measured to characterize production (yield vine-1) and berry quality. Quality meas-
urement from both the high and low NDVI zones were based on 10-bunch samples 
(from different vines). Soluble solid concentrations (using a thermo-compensated 
refractometer) (°Brix), total acidity (g L-1 of sulphuric acid) and pH were measured 
at berry maturity. Total extractable anthocyanins and total polyphenols index were 
assessed at harvest using the methodology proposed by Iland et al. (2000). 

Results 

The 3-class NDVI map shows that all blocks have spatial patterns corresponding 
to low, medium or high NDVI values (Fig. 12.4). However, some blocks have 
larger, more contiguous NDVI zones. It is possible to identify geometric patterns 
(rectangles, squares) that correspond to experiments within blocks related to differ-
ent rootstocks and or different training systems. Other blocks (with no experiments) 
had zones with more complex, irregular shapes. These zones are likely to be related 
to environmental characteristics (soil, topography, and so on). The vineyard man-
ager wanted to focus on these blocks to consider different practices for better control 
of yield and berry quality at harvest. Recall that in this non-irrigated vineyard, the 
assumption is that the variation in the NDVI values makes it possible to estimate 
the variation of vegetative expression induced by differences in VWS.  

The TOi opportunity index was calculated to rank the blocks according to the 
within-block variation in NDVI and to identify three classes of blocks (Fig. 12.5). 
There were 13 blocks that had strong and structured spatial variation in NDVI (in 
white on Fig. 12.5). The vineyard manager's expertise reduced this to 11 blocks as 
two blocks (Blocks 12 and 13; Fig 12.5) showed significant variation caused by 
experiments related to the training system or the rootstock. The rest of this case 
study focused on these 11 blocks, whose variation was assumed to originate from 
environmental factors.  

With aerial NDVI collected over 3 years, the 11 blocks showed a relationship 
between the ECa ground measurements and the NDVI up-scaled to 3 m2 pixel (R² = 
0.64, n = 33, data not shown). Similar findings have been found in California, USA 
(Johnson et al, 2003). It confirmed that NDVI was a reliable indicator of the varia-
tion in vegetative expression within blocks in these specific production conditions. 
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Figure 12.4: Vineyard blocks at Pech Rouge with the NDVI layer classified into 
three equal classes (tiertiles) within-blocks.   

 

Figure 12.5: Classification of the blocks according to their variability in NDVI 
response as assessed using the TOi metric. Block IDs are shown that relate to 
Block IDs referred to in the text and in Fig. 12.6 

The variation highlighted by the NDVI was mainly explained by water access 
and the resulting PLWP (Fig.12.6). Of the 11 selected blocks, the observed PLWP 
at veraison was systematically smaller in the zones of low NDVI. The differences 
were particularly significant (p < 0.05) for Blocks 3, 4, 5, 6, 7, 8 and 9 on calcareous 
soils. The differences are less, but still significant (p < 0.05), for Blocks 10 and 11 
on colluvial soils. For Blocks 1 and 2 on sandier soils, the differences in PLWP 
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were small (p > 0.05) between NDVI zones. However, for these last two blocks, the 
general trend was followed, with smaller PLWP (more water stress) associated with 
smaller NDVI values. 

Although NDVI proved to be interesting auxiliary information for mapping the 
spatial variation of VWS, Fig. 12.6 emphasises that any analysis must be supported 
by expert knowledge of the soil type and block conditions. For example, it would 
have been irrelevant to propose a linear model of water stress as a function of the 
NDVI at the whole vineyard level given the different responses observed on differ-
ent soil types. 

 

 

Figure 12.6: Predawn Leaf water potential observed at within block sites 
corresponding to high and low NDVI values over 11 blocks (veraison). Field 
numbers refer to blocks indicated in Fig 12.5. 

Figure 12.7 shows the VWS results from Block 5 where the PLWP was moni-
tored simultaneously in both NDVI zones (low and high) on 7 dates throughout the 
season. During the summer, evaporation demand was large, but water consumption 
by the vines was not compensated for by either irrigation or rainfall. However, water 
restriction remained moderate in the high NDVI zone where the soil water capacity 
must be greater. In contrast, in the low NDVI zone, considerable water restriction 
was observed from early in the season, which can be explained by a relatively 
smaller soil water capacity. The NDVI zones therefore made it possible to highlight 
likely differences in soil water capacity. However, the depth of vine roots in these 
non-irrigated plots (> 5 m) and the difficult soil conditions in which to dig makes it 
difficult to support this hypothesis with more objective observations. These tech-
nical difficulties argue in favour of the use of a simple observation, like NDVI, to 
integrate and explain varying vine growth conditions.  

In Figure 12.7 the differences in VWS between the high and low NDVI zones 
were apparent from the beginning of the season and increased as the season pro-
gressed. Since it has an impact throughout the season, from flowering to grape mat-
uration, this difference affected the growth of the vines (which explains differences 
in NDVI values) at the beginning of the season and the quality of the harvest during 
ripening (Table 12.4). The low NDVI zone had less sugar, less phenolics and more 
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acid at harvest than the high NDVI zone.  All three conditions are known to reduce 
the potential quality of any wine produced from the grapes. These values indicated 
that the low NDVI zone had a problem achieving crop maturity, resulting in poorer 
berry quality. 

The knowledge of within-block variation explained by water stress and high-
lighted by NDVI zoning justified the implementation of several applications in the 
vineyard: i) targeted sampling to estimate yield, maturity and harvest date better, ii) 
some experiments to assess site-specific mechanical weeding in the inter-row to 
decrease competition for water and iii) irrigation combined with appropriate nitro-
gen fertilization on blocks with very variable NDVI. Differential harvest has not 
been implemented because of logistical constraints. 

 

   

Figure 12.7: Evolution of vine water stress (measured as predawn leaf water 
potential (MPa)) over a season for two sites stratified between a low (▲) and a 
high (∎) NDVI zone in Block 5. Arrows and labels indicate key crop stages. 

Table 12.4: Mean berry quality attributes at harvest for two NDVI zones (High 
and Low) in Block 5.    

Zone Sample 
size (n) 

Sugar 
(g l-1) 

pH Acidity 
(g l-1) 

Total polyphe-
nol index (TPI) 

High NDVI 29 22.55 3.81 3.54 36.9 
Low NDVI 20 20.89 3.78 3.99 33.66 
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Conclusion 

In a non-irrigated Mediterranean context, this case study showed the value of 
NDVI in mapping vegetative expression and explaining the variation in VWS be-
cause access to water is the main factor affecting vine growth. The aerial NDVI was 
an ‘easy-to-acquire’ data set that made it possible to highlight zones of different 
water stress easily and with high spatial resolution. The case study also highlighted 
the limits of the approach. The NDVI/water stress relation shown here is only rele-
vant in this pedo-climatic system and the results cannot be extrapolated directly to 
all vineyards. This case study is a reminder that NDVI remains an integrative data 
source for summarizing how environmental factors and operations affect the can-
opy. Its interpretation for decisions must be systematically based on knowledge of 
the ecophysiology of the vine and with local soil expertise. For significant water 
constraints, the study shows that the variety effect is negligible compared to the 
effect of environmental factors. However, the interpretation of NDVI values to 
quantify differences in water stress remains difficult without prior expertise on soil 
conditions and especially without taking into account the characteristics of the field 
(training system, planting density, grass cover, etc.) likely to affect NDVI values. 

This research has contributed to the launch of commercial services specifically 
dedicated to remote sensing in viticulture: in particular the Oenoview service (Ter-
ranis, ICV, France). Although constantly increasing, the use of remote sensing in 
viticulture remains marginal in France, it represents about 1% of the area planted 
with vines (Lachia et al. 2019). The most important use (in terms of area) concerns 
cooperatives faced with a great diversity in vineyard blocks spread over a large area. 
For these structures, the benefit from maps of vegetative expression at veraison is 
an interesting source of information for the qualitative selection of blocks for im-
proving yield and quality estimates before harvest. In this respect, in the vineyards 
of southern France, knowledge of the within–field spatial variation controlled by 
water restriction is relevant to rationalize and optimize the positioning of observa-
tions in the blocks before harvest. 
 
Case Study 12.3. Proximal Sensing for Cotton Management 

Introduction 

Cotton (Gossypium sp.) is one of the most important fibre crops, with approxi-
mately 35 million ha grown worldwide, making it one of the 20 most important 
global commodities in terms of its value in 2016 (http://www.fao.org/faostat). 
Among the top producers, production in China, India and Pakistan is mainly by 
small farmers in labour intensive crop systems, whereas production is highly mech-
anized in the USA, Brazil and Australia. In these latter countries, the cropping sys-
tems are capital intensive and require many interventions throughout the season.  

Cotton is a perennial plant that is cultivated as an annual crop. It has a growing 
season of approximately 180 days. If the crop goes through severe biotic or abiotic 
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stresses in this period, the plant will drop most of its reproductive structures as a 
self-preservation mechanism (Stewart, 2009). If, however, conditions are very fa-
vourable, the (perennial) plant will prioritize vegetative over reproductive develop-
ment, a scenario known as rank growth. Although domestication, selection and 
breeding have produced cultivars with characteristics more aligned with growers’ 
needs, crop management still plays an important role in fibre quality and yield. The 
main factors controllable by growers that affect productivity are irrigation, fertilizer 
(mainly nitrogen) and plant growth regulators (PGR). The PGRs are used to control 
growth, promote higher yields, better fibre quality and permit mechanical harvest. 

The optimal rate of PGR application depends on crop height, biomass, and 
growth rate and these are influenced by variable environmental conditions. Given 
known variability, there is a great interest in using remote and proximal sensors to 
monitor crop development and to guide variable-rate application of inputs. Active 
and passive optical reflectance sensors mounted on various platforms can detect 
infield crop variation (Sui et al, 2012; Trevisan et al, 2018). Sensors have been used 
to predict biomass, plant height, height-to-node ratio, nitrogen nutrition status, crop 
maturity and lint yield (Portz et al, 2014; Arnall et al, 2016). The performance of 
sensors can vary throughout the crop season because of crop canopy changes and 
management practices. Some limitations of optical sensors have been observed 
when used later in the season, related to the known effect of signal saturation with 
dense canopies and changes in the spectral signature of the plants (Mutanga & Skid-
more, 2004). Unlike optical readings, crop height and volume observations have 
shown good relations with crop biomass through the entire season, without satura-
tion effects. The aim of this case study is to evaluate the potential uses of several 
proximal sensors as tools to monitor cotton development and yield. 

Material and Methods 

Observations were taken from 10 fields over 4 years in two states in Brazil (Goiás 
in 2013 and 2014 and Mato Grosso in 2015 and 2016). The soil in the fields ranges 
from clay Oxisols to sandy loam Quartzipsamments (Leão, 2016), with different 
levels of spatial variation in clay content. 

Information on soil spatial variation was provided by an apparent soil electrical 
conductivity (ECa) survey of the 0–0.3-m layer using a Veris 3100 system (Veris 
Technologies, Salina, Ka, USA) on 12-m swaths and georeferenced using real-time 
kinematic (RTK) Global Navigation Satellite System (GNSS) receivers. The ECa 
data were acquired in January (in the rainy season), between the soya bean harvest 
and cotton planting. Data processing consisted of interpolating the ECa and eleva-
tion data by ordinary kriging. A digital elevation map was used to extract the topo-
graphic derivatives slope, aspect, curvature and topographical wetness index. Ten 
points representing the full range of ECa variation in each field were chosen for soil 
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sampling. The ECa values at these points were compared with laboratory soil parti-
cle size analysis to generate clay and sand maps for each field. 

In-season monitoring of crop vigour was done by two types of proximal optical 
sensor systems. The first optical sensor system, OPS1 (N-Sensor™ ALS, Yara In-
ternational ASA, Dülmen, Germany), was installed above the vehicle cabin and 
readings were taken from an oblique position. The N-sensor measures canopy re-
flectance in the red edge (730 nm) and near-infrared (NIR) (760 nm), and a scaled 
logarithmic difference of reflectance at the two wavelengths was used as the vege-
tation index in all comparisons (Jasper et al, 2009). The second optical sensor sys-
tem, OPS2 (Crop Circle ACS-430, Holland Scientific, Lincoln, NE, USA), was 
mounted to take readings directly above the crop canopy. The OPS2 was integrated 
with the GEOSCOUT GLS-420 (Holland Scientific, Lincoln, NE, USA) for data 
acquisition. The CropCircle sensor measures canopy reflectance at three wave-
lengths, but only the red edge (730 nm) and NIR (780 nm) were used to calculate 
the Normalized Difference Red Edge Index (NDRE) (Horler et al. 1983), which was 
used in all comparisons. 

In-season proximal monitoring of plant height was done using a georeferenced 
ultrasonic system, US1 (HC-SR04, generic sensor), mounted in the same position 
as OPS1. The system was developed for this research, using low-cost hardware 
commonly used in automation projects and data acquisition based on an Arduino® 
Mega 2560 (Arduino, Ivrea, Italy). The time of flight principle was used to measure 
the distance between the top of the canopy and the sensor (at a fixed height above 
the ground). Finally, a terrestrial 2-D light detection and ranging scanner system 
(LiDAR–LMS200, Sick, Waldkirch, Germany) was mounted at the front of the ve-
hicle 3.0 m above ground level. Customized data acquisition software was devel-
oped to collect georeferenced LiDAR data. The LiDAR sensor was programmed to 
collect data with an angular resolution of 1°, an angular range of 180° and a distance 
range of 80 m. The distance resolution was set to 0.01 m. The acquisition rate was 
75 Hz, achieved by configuring a 500 kbps baud rate communication through a 
RS422 serial interface. Returns further than 24 m were excluded, and distances and 
angles were used to calculate the UTM coordinates of each return point. The data 
were subsampled to obtain a constant spatial density because the raw data were 
denser closer to the machine path. The point cloud was used to extract the ground 
and canopy levels, defined as the 5th and 95th percentile of the values within 1 m. 
Plant height was then obtained by subtraction. 

All sensors were installed on a high-clearance vehicle operating with a swath 
width of 24 m, at a maximum travel speed of 6.4 m s-1 (23 km h-1).  All sensor data 
acquisition was made simultaneously in a single machine pass in each field. Cotton 
was harvested using a JD 7760 cotton picker (John Deere, Moline, IL, USA), with 
the Harvest Doc™ yield monitoring system. All data were georeferenced using 
RTK GNSS. All sensor datasets were filtered to remove local extreme values 
(Spekken et al. 2013). The point data were interpolated to a common grid with 1-m 
spatial resolution using inverse distance weighted. This method was preferred as the 
data were already dense and it required less computational effort. All maps were 
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prepared using QGIS software (QGIS Development Team 2018). All statistical pro-
cedures were performed using the R programming language (R Core Team 2018). 

Results and Discussion 

General observations 

Data acquisition was successful, and there were no major problems with the sen-
sors. A few problems were reported with the custom-built systems, mainly wiring 
and some software problems. The commercially available optical systems operated 
consistently over the four years of data acquisition. The robustness of the sensors is 
one of the main concerns of growers when considering the adoption of new tech-
nologies, therefore this was a very positive result. 

The performance of the sensors was better when the variability in crop develop-
ment had longer spatial ranges and less short-scale variation. Usually the large re-
gions with larger or smaller values have similar patterns, but the pass to pass differ-
ences in one map did not match the same short-scale variation in the others (Fig. 
12.7). The practical implications of this result is that choice of the best sensor and 
prescription protocol will depend on the resolution at which any variable-rate pre-
scription can be applied for each particular input. There was also a temporal trend 
in the proportion of short-scale variation, which was greater in the early stages of 
the crop because of uneven crop emergence. This made the footprint of the sensor 
and the ability to average short-scale variation more important at this stage. The 
OPS1 had an advantage in these early stages (Trevisan et al. 2018) due to its oblique 
angle of operation enhancing crop reflectance and minimizing soil reflectance com-
pared to sensing the crop from a top-view angle (OPS2). The temporal stability of 
the spatial variability is also related with its scale. In general, the long-range varia-
bility was more stable over long periods of time and different crops in the same 
field, while short-scale variation was largely affected by operational quality and the 
interaction with pests and diseases. 

Example field 

We chose one field from the 2015 crop season to describe the sensor results. The 
field was 70 ha with a sandy loam soil and clay content ranging from 50 to 150 g 
kg-1. This was not the most representative field for cotton production in the region, 
as usually soils with higher clay contents (> 350 g kg-1) are preferred. Nevertheless, 
considerable crop variability at both short and long ranges made it a good choice to 
compare sensor performances. The sandy soils are more fragile and small differ-
ences in organic matter and nutrient availability can have a large influence on crop 
development. The ECa map gives an idea of soil variability over the field (Fig. 
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12.7a). The density of points collected was approximately 200 points ha-1. The ECa 
was very small, reflecting the low cation exchange capacity of this soil. The eastern 
half of the field had predominantly smaller ECa and sandier soils, while the western 
half had larger ECa and clay content. 

 

 

Figure 12.8. Spatial distribution of the soil electrical conductivity from the 
Veris 3100 sensor (a), final crop height measured by an ultrasonic sensor 
system (US1) (b), final crop height measured by a LiDAR sensor system (c) and 
cottonseed yield (d). 

The final crop height measured by US1 (Fig. 12.8b) showed an overall similarity 
with the ECa map. The density of points was approximately 1800 points ha-1. How-
ever, they were all concentrated around the machine path, representing an effective 
sample of only four crop rows in every 30 rows. The correlation between crop height 
measured by sensors and by traditional hand-based methods was strong when eval-
uating small plots (Sui et al. 2012; Trevisan et al. 2018). There was a clear trend of 
taller plants in the western half of the field and smaller plants in the centre and 
eastern parts. The stripe with small plants on the western side was associated with 
the topography of the field. This region has a depression and was the preferred path 
for run-off water. Heavy rain events (> 100 mm hour-1) caused soil erosion and crop 
lodging in this area. The narrow strip of small plants in the centre was created arti-
ficially one month before harvest because of the need to install a pipeline across the 
field, which required plants to be removed. 

The errors observed in the US1 were higher at the early crop stages because of 
the machine path error, making positioning of the sensors directly over the canopy 
more difficult (Trevisan et al. 2018). There were also systematic errors observed 

(a) (b) 

(c) (d) 
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related to changes in the machine dynamics. The air suspension and tyre compres-
sion in the soil gradually changed as the input tank was emptied, altering the relative 
height of the fixed mounted sensor to the canopy. Irregularities in the terrain topog-
raphy and machine inclination could also contribute to the error. These challenges 
would be greater if the sensors were installed on a boom with additional difficulties 
in calculating the distance to the ground from a moving (swaying) boom. 

The same general patterns of crop height observed for the US1 sensors can be 
seen in the LiDAR map (Fig. 12.7c). The density of points is larger, approximately 
600,000 points ha-1 in the raw data and 5,000 points ha-1 in the final height map. 
The greater resolution allows better identification of short-scale variation and visu-
alization of some patterns that were not clear in the US1 map. The presence of 
shorter plants following the contour levels of the terrain were probably related to 
earthworks used to control soil erosion. The stripes along the direction of seeding 
are related to unequal emergence associated with planter effects at sowing. 

The LiDAR system outperformed the ultrasonic system in mapping crop height. 
There were always sufficient points at survey times to determine the ground level, 
therefore the absolute position of the sensor was not needed to calculate crop height. 
It may become a limitation if the canopy achieves full cover and the laser is unable 
to determine the ground level. The cost of the LiDAR system (hardware and pro-
cessing requirements) is an order of magnitude higher than the US1, therefore the 
economic advantage of this system will depend on the use of the data. Currently, 
the management of spatial variation is usually limited by the resolution of the vari-
able-rate applicators rather than the sensing capabilities, which makes it more dif-
ficult to take advantage of the higher resolution data generated by the LiDAR. 

Similar results and resolution could be obtained with a UAV and photogrammet-
ric tools. The main challenges at the moment for the use of UAV imagery are in the 
general logistics of collecting UAV data, the time needed to process images and to 
make the data available for prescription applications, the accuracy of the GNSS 
used and the need for ground control points (Feng et al. 2020) 

The yields were generally small (Fig. 12.8d), compared to the national average 
of 3,800 kg ha-1 (CONAB 2015), mainly because of the sandier soils and poor crop 
establishment. There was a reasonable positive correlation (> 0.5) between yield 
and crop height measured by both sensors (Table 12.5). This correlation will not 
always hold true and will depend on local growth characteristics. 

The correlation of ECa with yield is a good indicator of the proportion of varia-
bility that is likely to be stable over the years, since ECa patterns tend to be stable 
(Guo 2018). The ECa map could be used to adjust seeding rates according to varia-
ble soil conditions. The general recommendation is to apply larger seed rates in 
sandier soils and reduced rates in heavier (clay) soils. This promotes some compen-
sation as the plants in sandier soils tend to have a reduced development, and there-
fore a smaller number of reproductive structures per plant.  

The stronger correlation of yield with the LiDAR height compared with the US1 
height is mostly explained by the sources of errors previously discussed in the US1 
data collection. Although the sensor resolution may be important to obtain better 
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estimates of infield variability, the best economic results will be observed when the 
sensing resolution and the application resolution are matched (Amaral et al. 2018). 
The LiDAR data showed significant short-scale and row-to-row variation. Variable-
rate application at this resolution is still not practical because of the lack of resolu-
tion in the appropriate equipment, being either too expensive or too complicated to 
be adopted by farmers. 

Table 12.5: Correlation matrix for soil and crop attributes in a cotton field. 

 Yield ECa* US1 Height 
ECa 0.38   
US1 Height 0.51 0.52  
LiDAR Height 0.61 0.46 0.57 

ECa: Apparent soil electrical conductivity; US1: Ultrasonic sensor system. 
 
Other research has demonstrated that when fields can be divided into manage-

ment zones and long-range variation dominates, low-cost systems of variable-rate 
application have produced good results. In this scenario, PGRs can be applied ef-
fectively, resulting in more uniform cotton plant height and yields within fields 
(Baio et al. 2018). To show the economic viability of investing in a more expensive 
system is difficult. The economic return of investment of each technology will de-
pend on the degree of variation in each field and the ability to take advantage of it 
with site-specific applications. It is usually easier to show the benefits with product 
savings than with significant differences in crop yields. It is even more challenging 
to show consistent differences in fibre quality (Trevisan et al. 2018).   

The main challenge that remains for the use of proximal sensors in cotton man-
agement is related to the lack of agronomic knowledge and algorithms to convert 
sensor readings into decisions and prescriptions. The sensors provide information 
that is well correlated to the spatial variation of crop development or nutritional 
status. But to make the right decisions information on the crop response to the input 
that will be applied is required. For example, cotton biomass in the early stages may 
be more affected by population counts than by nitrogen deficiency. These confound-
ing factors make it difficult to make the right decision based on a single evaluation 
from a crop canopy sensor. Combining multiple sensors and readings from different 
crop stages can certainly improve the prescriptions (Sharma et al. 2016). The use of 
calibration strips and on-farm precision experiments can further improve the results, 
accounting for the temporal and regional variability of crop response to any input 
(Arnall et al. 2016; Kindred et al. 2017). 

Further evidence of this challenge is the wider adoption of solutions as services 
instead of products (sensors). Even though having the sensors installed on the agri-
culture machinery has a lower operational cost than using a dedicated platform to 
collect the data, the services approach has been more successful because it allows 
more flexibility and less disruption of the field operation. It is also easier to combine 
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more sources of information and agronomic knowledge when the prescription is 
done as a separate step rather than in real-time (Trevisan et al. 2018). 

Furthermore, the variable-rate application of PGR alone is not enough to manage 
spatial variation when there are large soil differences (Trevisan et al. 2018). The use 
of variable-rate seeding, nitrogen and PGR applications needs to be planned in an 
integrated manner to maximize the economic result in every part of the field. How-
ever, combining multiple sources of information to guide decisions about multiple 
inputs under many uncertainties is not a trivial task. This requires better software 
and more complex models. Sensor fusion and autonomous decision-making tech-
niques are likely to benefit from machine learning methods that have been applied 
to many domains (Chlingaryan et al. 2018). 

Conclusions 

Crop sensors showed good performance for monitoring within-field variability 
in cotton height and vigour (biomass) in fields. There are sensors available with 
different resolutions and working principles, which might perform better in differ-
ent cases. Integrating temporal information and multiple sensors is important for 
improving results. Local farmers have access to sensors available in the market and 
some already use them for nitrogen management. Challenges remain with agro-
nomic knowledge and algorithms to convert the sensor readings into decisions and 
prescriptions. The high value and large-scale production of cotton associated with 
innovation-oriented producers in Brazil make this crop ideal for developing and ex-
perimenting with new technologies. 

The availability of variable-rate applicators that match the scale of variation is 
also important. Managing all the inputs in an integrated framework allows for better 
crop management. Spraying solutions remain a challenge, not because of a lack of 
technology, but because of the cost associated with this technology for the variable-
rate application of multiple products required in certain situations. Further research 
is needed to evaluate the return on investment of different technologies.  

Case Study 12.4. Integration of UAV imagery into potato crop 
modelling services  

Introduction 

The increased availability of unmanned aerial vehicles (UAVs) has significantly 
increased the ability of growers to acquire imagery of their crops. Previously, grow-
ers had to rely on satellite imagery (with resolution, over-pass time and cloud cover 
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issues) or aerial surveys, which are often expensive, to obtain imagery. The availa-
bility of UAVs has allowed growers greater flexibility with high-resolution image 
acquisition. They can be operated by growers to collect information when needed. 
A UAV system still has limitations. However, there are some limitations that ini-
tially revolved around converting multiple images of a field automatically into a 
'mosaiced' image of the field. Algorithms have advanced recently and growers can 
now acquire timely, mosaiced, geo-rectified images of whole fields without needing 
any specific image processing skills. This means that UAV imagery is now a viable 
information source for modern commercial agriculture (Tsouros et al. 2019, Cucho-
Padin et al. 2019). The next major limitation is the cost of the system, particularly 
the camera. A UAV itself is just a platform, like a tractor, airplane or satellite, onto 
which a sensor can be mounted. The more advanced the sensing system, the more 
expensive it is. It is possible to mount multi-spectral (MS), hyperspectral (HS) and 
thermal sensors onto UAVs, however, for most growers, especially small-holder 
farmers, the cost of these sensors is prohibitive (Cucho-Padin et al. 2019). The 'sen-
sor' that is accessible, is a simple colour (RGB) camera. Ideally, a MS sensor with 
a NIR band would be preferable for mapping vigour in a similar way to MS sensors 
mounted on satellites or tractors (as illustrated in previous case studies in this chap-
ter). It is likely that such MS camera systems will become available at a competitive 
price point for the majority of growers; however, in the interim the use of colour 
imagery and of very high-resolution images is challenging for a UAV-mounted 
RGB camera to deliver. 

Another advance in precision agriculture is the use of crop models for short-term 
spatial prediction (Chen et al 2017). This shifts traditional (semi-)deterministic 
models from long-term strategic applications (e.g. climate change predictions) to 
short-term tactical application for variable-rate management. This transformation 
requires a change of input information, and in some cases a change in parameters, 
within the crop model to allow newly accessible digital information, like UAV im-
agery, to be used. This case study illustrates how basic colour UAV imagery, has 
been incorporated into an existing potato model to  

 a) improve functioning of the model, and  
 b) allow the model to be spatialized within a field 
The research and extension was performed and developed within commercial 

systems and led primarily by industry.  

The Crop Model 

The growth model in this study simulates daily crop growth of a single potato 
plant and its interaction with the local environment. It predicts both potential crop 
yield and the yield under restricted water conditions with the assumption of ade-
quate, non-limiting nutrients and correct crop protection practices. It originates from 
experimental work done at the James Hutton Institute (MacKerron and Waister, 
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1985 and MacKerron, 1985). The model is mechanistic, modelling the sequential 
stages of crop sprouting, leaf expansion, dry matter accumulation and partitioning, 
and crop senescence of a potato plant as well as their effects on crop yield. Plant 
development is primarily influenced by weather factors (temperature and solar ra-
diation interception) and soil moisture conditions (MacKerron et al 2004). Plant 
density information is then used to scale the plant model to a field response. The 
flow of the crop modelling process, and the input and intermediate parameters and 
variables, is shown in Fig. 12.9. 

As the model is deterministic, errors at early stages of the model related to crop 
development will have an effect, and in some cases a large effect on final yield 
prediction. For example, dry matter accumulation may be up to 1 t ha-1 day-1 mid-
late season. Errors in modelling the emergence date can therefore affect the pre-
dicted yield at crop burn-down by effectively shortening or lengthening the growing 
season within the model. For strategic, long-term uses, these errors are not critical. 
The model is only being used for scenario-testing and the emergence date error 
would be a constant. However, for short-term tactical uses, yield predictions need 
to be as accurate and precise as possible, and a 4–7 day difference in emergence 
date (model vs observed) will introduce a large error in yield prediction.   

 

 

Figure 12.9 Schematic diagram of a potato crop model. The white blocks show 
initial conditions and other model inputs for model simulation. The grey blocks 
represent the progression of crop growth and development from sprouting, 
emergence, vegetative development to actual yield. LAI = Leaf Area Index, 
SMD = Soil Moisture Deficit, DM = Dry Matter. 
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Adapting the model using UAV imagery 

The model is essentially a dry matter accumulation model, therefore, having the 
correct canopy size (Leaf Area Index - LAI) at any given period is critical to good 
model predictions. The ability to operate UAVs and process imagery at high tem-
poral resolutions provides an opportunity to gather relevant ground cover (%) in-
formation to validate and correct the model.  The model has been adjusted in three 
fundamental ways with observed ground cover to align the model outputs more 
closely with local conditions; 

1) Early-season imagery allows identification and counting of individual 
plants to provide spatial plant density, 

2) Multi-temporal early-mid season imagery can be used to either identify 
emergence data or to model emergence date, and 

3)  Multi-temporal early-mid-season imagery can be used to identify the date 
of canopy closure or the observed level of canopy closure (if not full) 

These three factors adjust spatial solar radiation interception, dry matter accu-
mulation and ultimately the spatial estimation of potato yield within a field. This 
depends on two factors. First, availability of the relevant information derived from 
the UAV imagery (see below), and second, the method by which this information 
is incorporated into the model. New, observed information can be incorporated into 
the model in several different ways. The two most common approaches are by a 
‘forcing’ strategy or a ‘re-initialization or re-parameterization’ strategy (Moulin et 
al. 1998). There are advantages and disadvantages to both of these approaches. To 
develop this commercial service, an approach based on both re-initialisation and re-
parameterisation of the potato crop model was developed to enable the integration 
of spatial crop canopy cover information from UAV-mounted RGB cameras.  

1) Spatial plant density information 

Within the model, plant density affects the rate of canopy development and LAI. 
Higher densities have faster rates of canopy development. The grower at planting 
sets plant density, and stems per plant is a constant in the model. The assumption is 
therefore that the planter produces a uniform plant and stem density in the field. 

Early season imagery provides an opportunity to count plants automatically as 
they emerge and to observe local plant densities. At very early stages of growth, 
new, green plants are contrasted against the soil background. Figure 12.10(a–c) 
shows part of a UAV image taken around emergence. This colour image is con-
verted to greyscale and a threshold used to generate a binary image (plant or non-
plant) and a count of the number of discrete elements in the threshold image. These 
processes are standard and common image processing techniques. The result is that 
for any given area the number of observed, emerged plants can be calculated and 
mapped (Fig. 12.10 d–e). In the first instance, this provides the grower with clear 
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information about emergence and establishment within the field, and possible areas 
for improvement. It also provides spatial information on plant density that can be 
entered directly into the model to improve LAI simulation.  

Plant counting does have some limitations; mainly that it depends on each plant 
being an individual, discrete object, i.e. the plants cannot overlap. If plants do over-
lap, then multiple plants are considered as only one individual. Growth rates early 
in the season are often very fast, so there is only a short window of opportunity 
between emergence and the start of overlapping, a window in which imagery needs 
to be collected for the counting to be effective.   

2) Improved estimation of emergence date  

The original model calculated emergence date based on seed quality, soil tem-
perature and planting depth. However, within a field, different areas can have dif-
ferent rates of crop sprouting (because of variation in soil conditions, planting depth 
or seed quality). Regular early season flights can provide information on emergence 
and the actual, or likely, date where 50% of plants have emerged. This direct ap-
proach depends on regular (1–2 day) flights around emergence. The plant counting 
algorithm used for plant density can be run at each time step, the maximum density 
found and an estimate made of the date when 50% emergence occurred. However, 
such high-frequency flying might be problematic, especially where regulations on 
UAV operation are strict, when flights cannot be fully automated, and when labour 
is scarce. An alternative is to take weekly early season flights to observe changes in 
ground cover over time and to back-predict the emergence date.  

Percentage ground cover from UAV imagery can be obtained in a way similar to 
that of plant counts, i.e. the ratio of green to non-green pixels is the percentage 
ground cover in the image (Fig. 12.11). If ground cover (%) is recorded at several 
(usually 3+) time periods, then simple mathematical models of plant growth can be 
used to predict emergence. For most annual crops, canopy development follows a 
sigmoidal response and fitting a relevant equation allows prediction of the date 
when ground cover began to develop. This modelling approach has the advantage 
that fewer UAV flights are needed, and the timing of these flights is less critical, 
i.e. flights immediately pre and post-emergence are not required. Whether directly 
observed or modelled from early season imagery, a more accurate and spatially var-
ying emergence date can be generated for a field. 

3) Observed LAI and canopy closure date 

The same information, multi-temporal ground cover (%) images during canopy 
development (Fig. 12.11) and the same sigmoidal canopy development model can  
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Figure 12.10: An example of a very early season high resolution image of part 
of a potato field (~100 m2) that shows individual potato plants emerging (a). 
The image is converted into greyscale (b), and then a binary image using a 
threshold algorithm (c). The discrete elements in the binary image relate to the 
number of plants and can be summed for a whole field (d) or sub-field/‘pixel’ 
scales (e) to generate observed plant density maps. 

 

Figure 12.11: A mid-season (after expected canopy closure) UAV colour image 
of a potato field (a) again converted into a binary image (b) to determine % 
ground cover in the field. An enlarged section, illustrating missed plants and 
incomplete canopy fill (lower production potential) is shown (black areas) (c). 
Operational ‘pixels’ can be superimposed and the local canopy cover (%) 
calculated to form a map for spatial modelling and or management (d).  
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also be used to provide a forward prediction of the likely date of canopy closure as 
well. The estimated date of canopy closure (or full canopy development) can be 
verified by another UAV image around or after the expected canopy closure date.  
This is particularly useful in fields (or parts of fields) where local conditions restrict 
canopy development and canopy closure may not be achieved. Information on full 
canopy development (date where closure is definite or the maximum ground cover 
% is realised) permits the canopy development model to be updated and to reflect 
actual, local conditions. This provides more accurate information for potential solar 
radiation interception and on dry matter accumulation and yield. 

Examples of improvement in model performance 

To illustrate the value of incorporating the UAV imagery into the potato crop 
model, the model was run in several different modes in a commercial seed potato 
field in Scotland in 2016. 

The four approaches were: 
a) the original model at the whole-field scale (using data sourced only from the 

grower, i.e. no UAV or in-season observations and emergence date simulated by the 
crop model.) 

b) the model with the emergence date adjusted (back-prediction from early-sea-
son canopy observations) 

c) the model with LAI adjusted to fit the mid-season canopy development (but 
retaining the original simulated emergence date from (a)) 

d) the model with both emergence date and mid-season LAI adjusted according 
to in-season field observations 

To calibrate and to validate the four approaches, 100 sites were selected in the 
field where manual canopy (ground cover %) and yield observations were made 
(see Taylor et al. 2018 for details on the sampling and data collected) and comple-
mented with mid-season UAV flights. In this example, the emergence date and can-
opy information were averaged and for all cases (a–d) the model was run at the 
whole-field scale. Weather and soil information were constant for all four ap-
proaches. Table 12.6 shows the simulated yields for the different approaches while 
Fig. 12.12 shows the change in LAI within the model as the emergence date and the 
mid-season canopy data were included.  
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Table 12.6:  Results from simulating potato yield using the original crop model 
(a) and with adjustments derived from in-season UAV imagery (b-d) to correct 
emergence date and LAI  

Approach Change(s) made Observed 
yield (t ha-1) 

Predicted 
yield (t ha-1) 

Error 
(%) 

a Original model 

37.13 

52.23 40.67 

b Emergence date adjusted 45.26 21.90 

c LAI adjusted to mid-
season observation 

41.99 13.09 

d Emergence date and LAI 
adjusted 

40.42 9.86 

 

 

Figure 12.12: Plots of the evolution of LAI as an intermediate value within the 
crop model over time for the four approaches. Labels (a–d) relate to the 
approaches in Table 12.6. The simulated emergence date (crop model-based) 
is indicated by▲, the emergence date based on early season ground cover 
observation (dates indicated by vertical dashed lines) is indicated by ♦ and the 
LAI from a UAV-derived groundcover image (July 19th) is indicated by ■.   

For all four approaches, the crop model over-estimated the final yield. This might 
be due to the soil conditions, especially soil moisture, being incorrectly specified in 
the model, even though the best available data were used. The soil data were kept 
constant, therefore any error should be constant. The native, deterministic model 
approach (a) over-estimated yield by 40%. Adjusting the emergence date (b) or the 
mid-season LAI (c) information reduced this error to 22 and 13%, respectively. Ad-
justing both the emergence date and the mid-season LAI within the model reduced 
the error in yield prediction to <10% (3.29 t ha-1). Simulating canopy development 
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and size correctly appears to be more important than observing emergence correctly. 
Plotting the daily LAI model values (Fig. 12.12) clearly illustrated the effect of in-
corporating in-season observations on the simulation.  

The simulated emergence date (based on soil conditions and planting depth) was 
much earlier than expected, which led to earlier canopy development, greater dry 
matter accumulation and effectively a longer production season. The early season 
canopy observations produced an estimated emergence date 11 days later than the 
simulated model emergence date, resulting in a 7 t ha-1 reduction in yield prediction. 
However, canopy development was still simulated to be very strong in the field 
(LAI > 5), whereas a UAV image in mid-July revealed that full canopy closure had 
not occurred. When this information was included in the model, the effective LAI, 
dry matter accumulation and yield potential decreased, and the model output moved 
closer to the observed yield values.       

Concluding comments 

Optical sensing for crop vigour has traditionally used the response within red and 
near-infrared wavelengths to interpret crop vigour and biomass. This case study has 
shown that it is not always necessary to have these wavelengths to generate good 
agronomic information. The increasing availability of platforms (UAV or terres-
trial) that provide high-resolution imagery, from even relatively cheap camera sys-
tems, is changing the way that optical systems are being deployed and the infor-
mation used. The likelihood is that best agronomic practices will be obtained with 
imagery from both visible and near-infrared systems within models and decision 
support systems that are formulated and designed with these data sets in mind.   

Concluding remarks for the Chapter 

These examples illustrate that reflectance in the red and near-infrared wave-
lengths from the canopy of all crops provides both spatial and temporal information 
on the canopy condition. As agriculturists, we can link this reflectance to produc-
tivity and to crop health. However, the canopy response is generic and it is not pos-
sible to extract directly which specific biotic and or abiotic effects control the can-
opy response. Consequently, a wide variety of different agronomic services have 
been proposed using optical imagery in crop systems. However, under an assump-
tion of good crop management (good pest and disease control) the majority have 
been aimed at identifying fertilizer rates. A case study on nitrogen fertilizer was not 
included here because this application is already widely accepted (and described 
elsewhere in this book). Instead, the case studies presented above to show how the 
use of multi-spectral optical sensing in agriculture is much broader than variable-
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rate fertilizer application and is expanding, for example, to account for temporal 
changes over the season or to assist in high-resolution crop modelling. Multi-spec-
tral optical sensing has been, and will continue to be, an important information 
source for all aspects of site-specific crop management.  

However, as illustrated in these examples, it is not necessarily the type of multi-
spectral sensor that is important, but the agronomic service that it is incorporated 
into. The sensors work; but must deliver agronomic solutions to be adopted. The 
same sensor, a CropCircle™, was used for both the table grape (Greece) and cotton 
(Brazil) case studies, but delivered different information for different services. Both 
cases are valid applications of the same sensor. It is also critical that any agronomic 
services are developed to account for any advantages (or disadvantages) associated 
with a particular sensing system. Even though similar sensors can be tractor-
mounted or UAV-mounted, it does not follow that data from a UAV-mounted sys-
tem can be incorporated directly into a decision support system built on tractor-
mounted data acquisition. In a similar vein, services and decisions must be tailored 
to suit the local agronomy, even if the same sensing system is used. Fertilizer deci-
sions are always linked to current crop vigour (making canopy sensing useful), how-
ever for wheat in northern Europe these decisions will be different from those for 
wheat in southern Europe even if the same satellite or tractor-mounted system is 
used because the production system needs are different.  

The multispectral systems featured here are current mainstays of commercial op-
tical sensing systems. They are affordable, robust and easy to use, but generate a 
generic response. Increasing the number of bands and the sensitivity (width) of the 
bands generates more specific information (and more expensive sensors). These 
sensors are termed hyperspectral (typically > 20 bands and often > 100). For optical 
crop sensing systems, hyperspectral sensors will eventually overtake multi-spectral 
systems because of the additional information that can be collected and used to sep-
arate biotic and abiotic stresses in the crop. However, these sensors are prohibitively 
costly at the moment for wide commercial use. Adoption is also limited by the avail-
ability of commercial services that can make use of the additional information in 
the hyperspectral data. Without unlocking this potential, end-users will probably 
continue with the cost-effective and proven multispectral systems.  

Finally, optical sensing, even hyperspectral sensing, is unlikely to be the ‘holy 
grail’ and provide the perfect solution for all agronomic decisions. These optical 
sensors need to be incorporated into decision systems with other types of sensors 
(as illustrated in the cotton example) or with other tools (e.g. the crop models in the 
potato case study) to optimize production systems 
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