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Abstract

This paper addresses portfolio selection based on neurodynamic optimization. The portfolio selection problem is formu-
lated as a biconvex optimization problem with a variable weight in the Markowitz risk-return framework. In addition,
the cardinality-constrained portfolio selection problem is formulated as a mixed-integer optimization problem and refor-
mulated as a biconvex optimization problem. A two-timescale duplex neurodynamic approach is customized and applied
for solving the reformulated portfolio optimization problem. In the two-timescale duplex neurodynamic approach, two
recurrent neural networks operating at two timescales are employed for local searches, and their neuronal states are
reinitialized upon local convergence using a particle swarm optimization rule to escape from local optima toward global
ones. Experimental results on four datasets of world stock markets are elaborated to demonstrate the superior perfor-
mance of the neurodynamic optimization approach to three baselines in terms of two major risk-adjusted performance
criteria and portfolio returns.
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1. Introduction1

The modern portfolio theory began with the ground-2

breaking work of Nobel laureate Markowitz on the mean-3

variance analysis (Markowitz (1952)). It is based on i)4

the quantification of the risk of a portfolio using statisti-5

cal measures; ii) the diversification of assets to be invested6

for reducing the portfolio risk, and iii) the optimization of7

trade-offs between risk and return (Kolm et al. (2014)).8

As a major task in investment management, portfolio se-9

lection is to decide the proportions of invested stocks and10

bonds for asset allocation.11

In the classic work, portfolio selection is handled by12

treating one of the objectives as a constraint (Markowitz13

(1952)) or combining both objectives into one (e.g., Sharpe14

ratio (Sharpe (1964))). The former strategy is to achieve15

the highest expected return subject to a given level of risk16
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or to attain the lowest risk subject to a given level of ex-17

pected return. The latter strategy is to optimize a scalar-18

ized objective function for simultaneous return maximiza-19

tion and risk minimization. In view of the two objectives,20

portfolio selection is also made by optimizing the risk and21

return to obtain a set of Pareto-optimal solutions (Ponsich22

et al. (2013)). A natural way is to optimize both objectives23

explicitly via scalarization (Ponsich et al. (2013)) or max-24

imization of utility functions (Kroll et al. (1984), Sharpe25

(2007)) (e.g., the von Neumann-Morgenstern utility func-26

tion (Morgenstern & Von Neumann (1953)) to character-27

ize a set of Pareto-optimal solutions for decision makers28

to choose. Both methods have their limitations: A set of29

predefined weights is needed for scalarization, and the dis-30

tribution of the resulting Pareto-optimal solutions depends31

on the weights (Steuer (1986)). Investors’ prior preference32

information is required for maximizing utility functions33

(Kroll et al. (1984)). These issues are tackled in many34

studies (Ponsich et al. (2013), Kolm et al. (2014), Mansini35

et al. (2014), Zopounidis et al. (2015), Ertenlice & Kalayci36

(2018)).37

With the recent advances in artificial intelligence, it38

is highly desirable or advantageous to develop computa-39

tionally intelligent approaches to portfolio optimization.40

Specifically, neurodynamic optimization approaches based41

on recurrent neural networks (RNNs) are competent for42

portfolio selection due to the nature of parallel and distri-43

bution in information processing. As the counterparts of44
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biological neural systems, neurodynamic approaches can45

function as computational models for solving various op-46

timization problems in parallel (Hopfield & Tank (1986),47

Tank & Hopfield (1986)). Since the pioneering work by48

Hopfield and Tanks (Hopfield & Tank (1986), Tank & Hop-49

field (1986)), numerous globally convergent neurodynamic50

approaches are developed for solving various optimization51

problems, such as convex and pseudoconvex optimization52

problems with real-valued and complex-valued variables53

(Wang (1994), Xia et al. (2008), Guo et al. (2011), Liu &54

Wang (2011), Liu et al. (2012), Liu & Wang (2013), Zhang55

et al. (2015), Hosseini (2016), Bian et al. (2018), Liu & Qin56

(2019), Liu et al. (2020b,a), Xu et al. (2020), Wen et al.57

(2021), Liu et al. (2022), Zhao et al. (2022)), distributed58

optimization problems (Liu et al. (2017), Xia et al. (2021),59

Jiang et al. (2022), Xia et al. (2022)), multiple-objective60

optimization problems (Leung & Wang, 2018, Yang et al.,61

2018), and global and combinatorial optimization prob-62

lems (Yan et al., 2014, 2017, Che & Wang, 2019a,b). In63

particular, a collaborative neurodynamic optimization (CNO)64

approach is developed for robust portfolio selection based65

on a minimax and bi-objective problem formulation (Le-66

ung & Wang (2021)), where multiple neural networks are67

employed to characterize the Pareto front. Recently, cardinality-68

constrained portfolio selection is reformulated as a mixed-69

integer optimization problem and a CNO-based approach70

is developed for solving it (Leung & Wang (2022)). By71

using a population of RNNs to search Pareto-optimal so-72

lutions by optimizing a weighted objective function and a73

meta-heuristic rule to optimize the weight, the CNO-based74

approach is able to generate very good Pareto-optimal so-75

lutions.76

Based on our previous works on neurodynamic opti-77

mization, this paper presents a timescale duplex neurody-78

namic approach to portfolio optimization. The Markowitz79

mean-variance portfolio selection problem is reformulated80

as a biconvex optimization problem with conditional value81

at risk. In the proposed method, two RNNs timescales are82

employed operating at two to search for optimal solutions83

and a meta-heuristic is used to reinitialize neuronal states84

to escape local minima. The novelties and contributions85

of this work are summarized as follows.86

i. The reformulated portfolio selection problem with87

cardinality constraints enables to optimize the condi-88

tional Sharpe ratio while selecting a subset of stocks89

with a given cardinality.90

ii. The customized duplex neurodynamic system con-91

sists of two RNNs only with significantly reduced92

spatial complexity compared to the existing CNO93

approach.94

iii. Experimental results on four datasets show that the95

neurodynamic approach outperforms three baselines96

in terms of Sharpe ratio, conditional Sharpe ratio,97

cumulative return, and annualized return.98

The remainder of this paper is organized as follows:99

Section 2 introduces the preliminaries on portfolio opti-100

mization, two existing neurodynamic models, and collab-101

orative neurodynamic optimization. Section 3 describes102

the problem reformulations of the portfolio optimization103

with and without cardinality constraints. Section 4 delin-104

eates the two-timescale duplex neurodynamic method for105

cardinality-constrained portfolio selection. Section 5 elab-106

orates the experimental results. Section 6 concludes the107

paper.108

2. Preliminaries109

2.1. Biconvex optimization110

The following definitions are some basic concepts of111

biconvex optimization.112

Definition 1 (Gorski et al. (2007)): The setZ ⊂ X×Y
is called a biconvex set on X×Y if Zx is convex for every
x ∈ X and Zy is convex for every y ∈Y, where X ⊆ ℜm

and Y ⊆ ℜn are two nonempty convex sets, Zx and Zy

are two sections of Z defined as follows:

Zx = {(x, y) ∈Z|y ∈Y}, Zy = {(x, y) ∈Z|x ∈ X}.

Definition 2 (Gorski et al. (2007)): A function f(x, y) :113

Z → ℜ is called a biconvex function on Z ⊆ X ×Y if114

f(x, ·) : Zx → ℜ is a convex function on Zx for every fixed115

x ∈ X and f(·, y) : Zy → ℜ is a convex function on Zy116

for every fixed y ∈Y.117

Definition 3 (Gorski et al. (2007)): A biconvex opti-
mization problem is defined as follows:

min
x∈X,y∈Y

f(x, y) (1)

where f(x, y) is biconvex with respect to x and y onX×Y.118

2.2. Mean-variance portfolio selection119

The mean-variance (MV) framework suggests that in-120

vestors should quantify the risk and return of an asset and121

then allocate funds to the assets based on the risk-return122

trade-off. The proportion of each asset invested among123

the set constitutes a portfolio. For simplicity, it is as-124

sumed that no short-selling is allowed in this paper. Let125

y ∈ Y = [0, 1]n be the proportions of wealth invested to n126

assets, µ ∈ ℜn be the mean returns, and V be the covari-127

ance matrix. µT y and yTV y are the expected return and128

variance of the portfolio, respectively. The mean-variance129

portfolio selection can be reformulated as follows:130

The MV framework aims to minimize risk or maximize
the return of a portfolio (Markowitz (1952)):

min
y

yTV y

s.t. µT y ≥ µmin,

eT y = 1,

y ≥ 0;

(2)

2



or
max

y
µT y

s.t. yTV y ≤ σmax,

eT y = 1,

y ≥ 0;

(3)

where µmin is the minimum allowable portfolio return in
problem (2), σmax is the maximum allowable variance in
problem (3), e is the vector of ones, and eT y = 1 is the
budget constraint. However, it is pointed out that prob-
lems (2) and (3) are sensitive to estimation errors. To
overcome such a limitation, a robust approach within the
mean-variance frameworksuch as minimax portfolio selec-
tion can be adopted (Young (1998), Polak et al. (2010)).
The approach aims to maximize the worst expected re-
turns of portfolios (Deng et al. (2005), Leung & Wang
(2021)):

min
x

max
y

(1− β)xT y − βyTV y

s.t. eT y = 1,

y ≥ 0,

(4)

where β ∈ (0, 1) is the risk-aversion parameter, x ∈ X =131

[x, x̄]n is the expected rate of returns of n assets, x and132

x̄ are respectively the lower and upper bound vectors of133

x obtained from historical data (Deng et al. (2005)). The134

smaller value of β is, the higher the resulting investment135

risk is. The larger the value of β is, the more conserva-136

tive the portfolio is. The minimax problem formulation137

in (4) results in robust portfolios most suitable for short-138

term investment in turbulent markets. Nevertheless, it139

usually tends to be conservative and results in underper-140

forming portfolio returns for long-term investments in ef-141

ficient markets.142

2.3. Cardinality-constrained portfolio selection143

In the MV framework, such as (2) or (3), a constructed
portfolio is supposed to be selected from all available assets
in a frictionless market. Due to various forms of market
friction, investors tend to invest a limited number of assets.
In particular, cardinality constraints are widely adopted in
portfolio selection due to various needs, such as the reduc-
tion of transaction costs and the increase in execution effi-
ciency (Ruiz-Torrubiano & Suárez (2010)). As a result, a
limited number of risky securities are selected to construct
a portfolio, which leads to the introduction of cardinality
constraints, and the complexity of the portfolio selection
problem increases significantly (Chang et al. (2000)). The
optimization problem (2) with cardinality constraints is
formulated as follows:

min
y

yTV y

s.t. µT y ≥ µmin,

eT y = 1,

||y||0 ≤ k,
y ≥ 0,

(5)

where ||y||0 ≤ k is the cardinality constraint. However,144

the inclusion of the cardinality constraint in the prob-145

lem formulation leads to global or mixed-integer optimiza-146

tion problems (Woodside-Oriakhi et al. (2011), Gao & Li147

(2013), Hardoroudi et al. (2017), Kalayci et al. (2020)).148

2.4. Conditional Value-at-Risk149

As one of the objective functions in the Markowitz
mean-variance framework, variance cannot fairly charac-
terize market volatility (Ang & Chen (2002)). A popular
alternative risk measure is value-at-risk (Morgan (1994)).
Let ξ ∈ ℜn be random returns, VaR is defined as:

VaRθ(y) = min{ρ ∈ ℜ : P(−ξT y ≤ ρ) ≥ θ},

where 0 < θ < 1 (Rockafellar & Uryasev (2000)). It
should be noted that VaRθ(y) is nonconvex with respect
to y (Artzner et al. (1999)). Based on VaR, conditional
value-at-risk (CVaR) is defined as the expectation of the
upper bound of VaR (Rockafellar & Uryasev (2000)):

CVaRθ(y) = E{−ξT y| − ξT y ≥ VaRθ(y)} (6)

where E(·) is the expectation operator.150

Parametric and sampling methods are two major ap-
proaches to calculating CVaR in (6) (Gaivoronski & Pflug
(2005)). If the distribution of asset returns is known, the
parametric approach can be used. On the other hand, the
sampling approach computes CVaR based on actual his-
torical data. Let N return observations be ξ1, ξ2, . . . , ξN .
The CVaR risk measure is approximated as follows (Rock-
afellar & Uryasev (2000)):

CVaRθ(y) ≈ ρ+
1

N(1− θ)

N∑
j=1

max(0,−ξTj y − ρ).

Based on the sampling approximation of CVaR, a mean-
CVaR bicriteria portfolio optimization problem is formu-
lated as follows:

min
y
− µT y

min
σ,ρ

ρ+
1

N(1− θ)

N∑
j=1

σj

s.t. σj ≥ −ξTj y − ρ, σj ≥ 0, j = 1, 2, . . . , N ;

eT y = 1;

y ≥ 0;

(7)

where σj = max(0,−ξTj y − ρ) for all j.151

2.5. Sharpe Ratio and conditional Sharpe Ratio152

Sharpe ratio (SR), proposed by Nobel laureate William
Sharpe, is a well-known risk-adjusted performance crite-
rion for evaluating portfolios (Sharpe (1994)). The ratio
standardizes the excess return of a portfolio over the risk-
free rate by the standard deviation (Christiansen et al.
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(2007)). It is also used as an objective function for port-
folio optimization (e.g., Liu et al. (2012, 2013)) as follows:

max
y

µT y − rf√
yTV y

s.t. eT y = 1,

y ≥ 0,

(8)

where rf is the risk-free rate of return.153

In analogy to (8), the conditional Sharpe ratio (CSR) is
defined by replacing variance with CVaR (Eling & Schuh-
macher (2007)) and used for portfolio optimization:

max
y

µT y − rf
CVaRθ(y)

,

s.t. eT y = 1,

y ≥ 0.

(9)

2.6. Selected neurodynamic models154

Consider the following constrained optimization prob-
lem:

min
y∈Y

ψ(y)

s.t. g(y) ≤ 0
(10)

where ψ : ℜn → ℜ, g : ℜn → ℜm denotes the i-th inequal-155

ity constraint with gi(y)(i = 1, . . . ,m), and both ψ(y) and156

g(y) are assumed to be twice differentiable.157

The Lagrangian function for optimization problem (10)
is

L(y) = ψ(y) + αT g(y) (11)

where α ∈ ℜm is the Lagrangian multiplier. Based on
(11), a neurodynamic model for solving (10) is described
as follows (Xia et al. (2008)):

ϵ
dy

dt
= −y + (y)+ −∇ψ((y)+)−∇g((y)+)(α)+,

ϵ
dα

dt
= −α+ (α)+ − g((y)+)

(12)

where ϵ is a positive time constant, ∇ψ(·) denotes the
gradient of ψ, and (·)+ is the piecewise linear activation
function which is defined as follows:

(yi)
+ =

{
0, yi < 0;

yi, yi ≥ 0.

If ψ(y) is nonsmooth, a globally convergent neurody-
namic model for solving (10) is described as follows (Li
et al. (2015)):

ϵ
dy

dt
∈ −∇ψ(y)− λ∂

∑
i

max{0, gi(y)} (13)

where λ is a penalty parameter, ∂(·) denotes Clarke’s gen-
eralized gradient (Liu & Wang (2011)) and

∂max{0, gi(y)} =


∇gi(y), gi(y) > 0

[0, 1]∇gi(y), gi(y) = 0.

0, gi(y) < 0

If the optimization problem (10) consists of an equality158

constraint such as h(y) = 0, the constraint can be equiv-159

alently replaced with two inequality constraints h(y) ≤ 0160

and −h(y) ≤ 0 (Yan et al. (2017)).161

A generic form of the neurodynamic system for solving
(10) is described as follows:

ϵ
dy

dt
∈ ϕ(∇ψ(y),Y) (14)

where ϕ(·) is a function of ∇ψ(y) and Y.162

2.7. Collaborative neurodynamic optimization163

It is challenging to solve global optimization problems
with nonconvex objective functions using an individual
neurodynamic model. To overcome the difficulty, various
CNO approaches with multiple neurodynamic models are
proposed recently (e.g., Yan et al. (2014, 2017), Che &
Wang (2019a,b), Che & Wang (2021)). In a CNO ap-
proach, multiple neurodynamic models are employed col-
laboratively to seek global optimal solutions. The initial
states of the models are updated by using meta-heuristics
such as particle swarm optimization (PSO) (Clerc & Kennedy
(2002)) with its update rule defined as follows:

vi(j + 1) =c0vi(j) + c1r1(ỹi(j)− yi(j))
+ c2r2(ŷ − yi(j)), (15)

yi(j + 1) =yi(j) + vi(j + 1) (16)

where yi(j) = (yi1(k), . . . , yin(j))
T and vi(j) = (vi1(j), . . . , vin(j))

T
164

is the position and velocity of the i-th particle at the j-th165

iteration, c0 is inertia weight; c1 and c2 are weighting pa-166

rameters; r1 and r2 are random values generated in [0, 1],167

ỹi(j) = (ỹi1(j), . . . , ỹin(j))
T is the previous best solution168

for the i-th particle at the j-th iteration; ŷ = (ŷ1, . . . , ŷn)
T

169

is the best solution of the swarm.170

To enhance the exploratory capability, wavelet muta-
tion is sometimes adopted (Ling et al. (2008), Fan & Wang
(2017)). Let η be defined by a wavelet function; i.e.,

η =
1√
a
exp(− ϱ

2a
) cos(

5ϱ

a
),

a = exp(10(j/jmax)), eee be the Euler number, jmax be the
maximum number of iterations, and ϱ be a uniformly dis-
tributed number generated within (−2.5a, 2.5a) randomly
(Ling et al. (2008)), the wavelet mutation is defined as
follows:

yi(k + 1) =

{
yi(j) + η(1− yi(j)), η > 0;

yi(j) + η(yi(j)), η < 0.
(17)

Let τ > 0 be a threshold, the wavelet mutation is per-
formed if (τ > δ). δ is defined by a diversity measure
(Juang (2004))

δ =
1

M

M∑
i=1

||yi(j + 1)− ŷ||2
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where M is the number of particles in a group.171

With the use of multiple RNNs repeatedly reinitialized172

using a meta-heuristic rule, it is proven that the CNO173

approaches are almost surely convergent to global optimal174

solutions of the optimization problems (??Che & Wang175

(2019b)).176

As a special CNO approach with a pair of RNNs, a two-
timescale duplex neurodynamic system based on generic
model (14) (Che &Wang (2019b)) for solving (1) is defined
in the following coupled differential equations:

ϵx
dx

dt
∈ F (∇f(x, y), x),

ϵy
dy

dt
∈ F (∇f(x, y), y)

(18)

where F (·) is a function of ∇f(x, y) and x or y, ∇f(x, y)177

denotes the gradient of f(x, y), ϵx and ϵy are two different178

time constants.179

If Z = {(x, y)|gi(x, y) ≤ 0, i = 1, . . . ,m}, system (18)
based on model (13) is described as follows:

ϵx
dx

dt
∈ −∇f(x, y)− λ∂

∑
i

max{0, gi(x, y)},

ϵy
dy

dt
∈ −∇f(x, y)− λ∂

∑
i

max{0, gi(x, y)}.
(19)

In particular, two two-timescale duplex neurodynamic180

systems are proposed for biconvex optimization (Che &181

Wang (2019b)) and mixed-integer optimization (Che &182

Wang (2021)). Each system consists of two RNNs op-183

erating at two different timescales. It is proven that the184

duplex neurodynamic systems are almost surely conver-185

gent to global optimal solutions (Che & Wang (2019b),186

Che & Wang (2021)).187

As a computationally intelligent optimization technique,188

CNO has been applied to portfolio optimization with promis-189

ing results. In (Leung &Wang (2019)), a bi-objective port-190

folio optimization problem is formulated based on (2) and191

(3). The problem is then solved by a CNO approach and192

a set of solutions is generated. In addition to bi-objective193

portfolio selection, a CNO approach is developed for mini-194

max portfolio optimization such as (4) in (Leung & Wang195

(2021)). In (Leung et al. (2022)), decentralized robust196

portfolio optimization problems are formulated based on197

the MV framework and they are solved by neurodynamic-198

based systems.199

3. Problem Formulations200

Using the conditional Sharpe ratio as the objective
function, a cardinality-constrained portfolio optimization

problem is formulated as follows:

max
y

µT y − rf
CVaRθ(y)

s.t. eT y = 1,

||y||0 ≤ k,
y ≥ 0.

(20)

Problem (20) is equivalently reformulated as follows:

min
y

CVaRθ(y)

µT y − rf
s.t. eT y = 1,

||y||0 ≤ k,
y ≥ 0.

(21)

Problems (20) and (21) are mixed-integer optimization201

problems due to the discontinuity of the l0-norm in the car-202

dinality constraint. In addition, their fractional objective203

functions incur some difficulties in optimization (Wang204

et al. (2021)).205

To obviate the use of a fractional function, we intro-
duce a variable weight γ and reformulate problem (21) by
minimizing the weighted numerator and maximizing the
weighted denominator of its factional objective function
as follows:

min
y,γ

γ2

2
CVaRθ(y)

2 − γ(µT y − rf )

s.t. eT y = 1,

||y||0 ≤ k,
y ≥ 0,

γ ≥ 0.

(22)

For long-term investments, it is reasonable to assume206

that the expected return is not less than the risk-free re-207

turn (i.e., µT y ≥ rf ). Based on the above assumption and208

in view of minimization, the nonnegativity constraint on209

γ becomes redundant and can be dropped.210

Once the nonnegativity constraint of γ is dropped, the
optimal solution of γ for any given y may be analytically
derived by zeroing the partial derivative of the surrogate
function in (22) with respect to γ as follows:

γ =
µT y − rf
CVaRθ(y)2

. (23)

Substituting (23) into the surrogate objective function
in (22), we have

min
y
− 1

2

(
µT y − rf

)2
CVaRθ(y)2

. (24)

Clearly, it is equivalent to the surrogate objective function211

in (20) and (21) in terms of optimal solutions.212

Although the objective function in problem (22) is no
longer fractional, directly solving it is still nontrivial due
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to the discontinuity of the l0-norm in the cardinality con-
straint. By introducing a binary vector z ∈ {0, 1}n and
using the sample approximation of CVaR in (7), the car-
dinality constrained portfolio optimization problem in (22)
is further reformulated as follows:

min
γ,ρ,σ,y,z

γ2

2

(
ρ+

1

N(1− θ)

N∑
J=1

σJ

)2

− γ(µT y − rf )

s.t. σi ≥ −ξTi y − ρ, σi ≥ 0, i = 1, 2, . . . , N ;

eT y = 1;

eT z ≤ k;
0 ≤ y ≤ z;
z ∈ {0, 1}n;

(25)

where z ∈ {0, 1}n, eT z ≤ k is the cardinality constraint.213

When zi = 0, yi is zero because of the constraint 0 ≤214

y ≤ z, indicating that the i-th stock is not selected in the215

portfolio.216

In view that mixed-integer optimization problem (25)
is difficult to solve, as in (Che et al., 2022), the binary
constraint z ∈ {0, 1}n is replaced by a set of bilinear and
linear equality constraints as follows:

z ◦ ζ = 0, z + ζ − e = 0 (26)

where z = (z1, . . . , zn)
T ∈ ℜn and ζ = (ζ1, . . . , ζn)

T ∈ ℜn,
◦ denotes the Hadamard product operator of two vectors.
The equality constraints are satisfied if only if zi = 1 or 0
and ζi = 0 or 1 for all i. Based on (26), problem (25) is
finally reformulated as follows:

min
γ,ρ,σ,y,z,ζ

γ2

2

(
ρ+

1

N(1− θ)

N∑
J=1

σJ

)2

− γ(µT y − rf )

s.t. σJ ≥ −ξTJ y − ρ, σJ ≥ 0, J = 1, 2, . . . , N ;

eT y = 1;

eT z ≤ k;
0 ≤ y ≤ z;
z ◦ ζ = 0;

z + ζ − e = 0.
(27)

For fixed γ and ζ, problem (27) is convex and for fixed217

ρ, σ, y and z, problem (27) is also convex. According to218

Definitions 1 and 2, problem (27) is biconvex.219

4. Two-Timescale Duplex Neurodynamic System220

To solve the biconvex portfolio optimization problem in
(27), a neurodynamic model is customized based on RNN

(19) as follows:

ϵ1
dγ

dt
∈ −∇fc(γ, ρ, σ, y)− λ∂

∑
i

max{0, ccci(ρ, σ, y, z, ζ)}

ϵ2
dρ

dt
∈ −∇fc(γ, ρ, σ, y)− λ∂

∑
i

max{0, ccci(ρ, σ, y, z, ζ)}

ϵ2
dσ

dt
∈ −∇fc(γ, ρ, σ, y)− λ∂

∑
i

max{0, ccci(ρ, σ, y, z, ζ)}

ϵ2
dy

dt
∈ −∇fc(γ, ρ, σ, y)− λ∂

∑
i

max{0, ccci(ρ, σ, y, z, ζ)}

ϵ2
dz

dt
∈ −λ∂

∑
i

max{0, ccci(ρ, σ, y, z, ζ)}

ϵ1
dζ

dt
∈ −λ∂

∑
i

max{0, ccci(ρ, σ, y, z, ζ)}

(28)
where fc(γ, ρ, σ, y) is the objective function in (27) and221

c(ρ, σ, y, z, ζ) is the vector-valued inequality constraints.222

As shown in (28), the neural network model consists of six223

layers. The dynamics of the first four layers minimize the224

objective function in (27) with various constraints and the225

states move toward the feasible region, while the dynam-226

ics of the fifth and sixth layers are to realize the binary227

constraint z by satisfying a set of the bilinear and linear228

equality constraints (26). In RNN (28), there are 2n+N+2229

neurons.230

As the portfolio optimization problem (27) is biconvex,231

the use of a single RNN may not be able to converge to232

the global optimum. As in (Che & Wang (2021), Che233

et al. (2022)), by making use of two RNNs operating at234

different timescales (i.e., ϵ1 > ϵ2 for RNN1, and ϵ2 < ϵ1 for235

RNN2), a two-timescale duplex neurodynamic approach is236

developed for solving the biconvex portfolio optimization237

(27). Besides, the PSO rule (Clerc & Kennedy (2002)) is238

adopted to reinitialize the states of RNN (28).239

Algorithm 1 details the two-timescale duplex neurody-240

namic approach to cardinality-constrained portfolio selec-241

tion. In Step 1, the states of RNN1 and RNN2 are initial-242

ized. In Steps 2-5, the termination threshold ε is set. The243

individual minima pI(0) and the minimum of the system244

p∗(0) are set. In Steps 8-13, pI(j) is obtained as the best245

solution among the steady states of the two RNNs up to246

the j-th iteration. In Steps 14-18, the group minimum p∗247

is updated. In Steps 19-22, PSO is adopted to reinitialize248

the searching process of the two RNNs. The optimization249

process continues until meeting the termination criterion250

||p∗(j+1)−p∗(j)|| ≤ ε. The spatial complexity of the algo-251

rithm depends dominantly on the number of neurons. As252

the algorithm employs two RNNs and there are 2n+N+2253

neurons in each RNN, the spatial complexity of the algo-254

rithm is 4n+ 2N + 4.255

As optimization problem (27) is biconvex, the two-256

timescale duplex neurodynamic optimization approach in257

Algorithm 1, with different initial states and sufficiently258

different time constants in RNN1 and RNN2, is almost259
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surely convergent to the global optimum of problem (27)260

(Che & Wang (2019b), Che & Wang (2021)).261

Algorithm 1: Two-Timescale Duplex Neurody-
namic Optimization for Biconvex Portfolio Opti-
mization

1 Initialize the states of RNN1, RNN2 randomly:
(γ1(0), ρ1(0), σ1(0), y1(0), z1(0), ζ1(0)),
(γ2(0), ρ2(0), σ2(0), y2(0), z2(0), ζ2(0)), and set
the error tolerance ε;

2 for I = 1 : 2 do
3 pI(0) = (γI(0), ρI(0), σI(0), yI(0), zI(0), ζI(0));
4 p∗(0) = argmin(fc(γI(0), ρI(0), σI(0), yI(0)));

5 end
6 j ← 1;
7 while ||p∗(j + 1)− p∗(j)|| ≥ ε do
8 Compute steady states

(γ̄1(j), ρ̄1(j), σ̄1(j), ȳ1(j), z̄1(j), ζ̄1(j)) and
(γ̄2(j), ρ̄2(j), σ̄2(j), ȳ2(j), z̄2(j), ζ̄2(j)) by (28);

9 if fc(γ̄I(j), ρ̄I(j), σ̄I(j), ȳI(j)) < fc(pI(j))
then

10 pI(j + 1) =
(γ̄I(j), ρ̄I(j), σ̄I(j), ȳI(j), z̄I(j), ζ̄I(j));

11 else
12 pI(j + 1) = pI(j);
13 end
14 if fc(pI(j + 1)) < fc(p

∗(j)) then
15 p∗(j + 1) = pI(j + 1);
16 else
17 p∗(j + 1) = p∗(j);
18 end
19 Compute (γI(j + 1), ρI(j + 1), σI(j + 1), yI(j +

1), zI(j + 1), ζI(j + 1)) by (15) and (16);
20 if (τ > δ) then
21 Perform the wavelet mutation using (17);
22 end
23 j ← j + 1;

24 end

5. Experimental Results262

5.1. Setups263

As in (Leung & Wang (2021, 2022)), the experiments264

are based on four datasets: HDAX (Deutsche Borse), FTSE265

(London Stock Exchange), HSCI (Hong Kong Stock Ex-266

change), and SP500 (New York Stock Exchange and Nas-267

daq Stock Market), constructed based on the 938 weekly268

adjusted closing prices of stocks from January 3, 2000269

to December 29, 2017. According to the common prac-270

tice, suspended and newly enlisted stocks within the pe-271

riod are excluded (Chang et al. (2000), Woodside-Oriakhi272

et al. (2011), Guastaroba & Speranza (2012)). Therefore,273

datasets HDAX, FTSE, HSCI, and SP500 consist of 49,274

56, 77, and 356 stocks, respectively. In the experiments,275

the datasets are divided for in-sample learning and out-of-276

sample testing in two ways: first one-third for in-sample277

pre-training and rest two-thirds for out-of-sample testing,278

half and half. During the out-of-sample testing, the prob-279

lem parameter learning continues based on all available280

historical return data from the beginning week to the week281

before next portfolio rebalancing. That is, the portfolios282

are optimized with the problem parameters updated peri-283

odically based on the pricing data in a sequentially pro-284

longed time window.285

In addition, k in (27) is set to different values (i.e.,286

k = 44, 34, 24, 14, and 4 on HDAX; k = 50, 39, 28, 16, and287

5 on FTSE; k = 69, 53, 38, 23, and 7 on HSCI and k =288

320, 249, 178, 106, and 35 on SP500), as in (Leung & Wang289

(2022)).290

The risk-free rate rf is determined based on the an-291

nualized return rates of the US Treasury three-month T-292

bill ryearly and converted to weekly rates according to293

(1 + rweekly)
938/18 − 1 = ryearly, rf = rweekly = (1 +294

ryearly)
18/938 − 1 (Hodoshima (2018)). As rf is a simple295

return rate, simple return rates are used in all experiments.296

To evaluate the performance of the proposed neuro-297

dynamic approach to portfolio optimization, three strong298

competitors are used for comparison: 1) a collaborative299

neurodynamic approach (denoted as CNO) with 20 neu-300

rodynamic models Leung & Wang (2022), 2) an equally-301

weighted approach for portfolio selection (denoted as EW)302

(DeMiguel et al. (2009)), and 3) market index (denoted as303

MI).304

In the CVaR estimation, θ is set to 0.95, and N is305

set as the number of all available historical data at the306

decision time. In the two-timescale duplex neurodynamic307

model, ϵ1/ϵ2 = 10 in RNN1, ϵ2/ϵ1 = 0.1 in RNN2. In308

the PSO rule, c1 and c2 are set to 1.49. In the algorithm,309

termination threshold ε = 10−3, the diversity threshold310

τ = 0.1 as in (Fan & Wang (2017)), jmax = 50, r1, r2,311

and the initial states of γ, ρ, σ, y, z, and ζ are randomly312

generated within 0 and 1.313

5.2. Results314

Figures 1 to 4 depict the transient behaviors of y, z,315

and ζ of the two-timescale duplex neurodynamic system in316

(28) on the four datasets. The subplots in the first row of317

these figures show that the state vector y converges within318

seven iterations and the subsets of stocks are selected for319

cardinality-constraints portfolios. Besides, the subplots in320

the second and third rows of the figures show that the state321

vectors z and ζ converge to zero or one, indicating whether322

a stock is selected or not in cardinality-constrained port-323

folios.324

Table 1 records annualized SR, CSR, and returns of325

the resulting portfolios on the four datasets, where DNO326

denotes the proposed duplex neurodynamic optimization,327

CNO denotes the CNO-based method for cardinality-constrained328

portfolio selection (Leung & Wang (2022)), EW denotes329

the equally-weighted portfolio, MI denotes the market in-330
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Fig. 1. Transient states y, ζ, and z of the two-timescale duplex neurodynamic model (28) for solving portfolio optimization problem (27)
with k = 4, 14, 24, 34, and 44 (the subplots of the columns from left to right) on HDAX.
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Fig. 2. Transient states y, ζ, and z of the two-timescale duplex neurodynamic model (28) for solving portfolio optimization problem (27)
with k = 5, 16, 28, 39, and 50 (the subplots of the columns from left to right) on FTSE.
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Fig. 3. Transient states y, ζ, and z of the two-timescale duplex neurodynamic model (28) for solving portfolio optimization problem (27)
with k = 7, 23, 38, 53, and 69 (the subplots of the columns from left to right) on HSCI.
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Fig. 4. Transient states y, ζ, and z of the two-timescale duplex neurodynamic model (28) for solving portfolio optimization problem (27)
with k = 35, 106, 178, 249, and 320 (the subplots of the columns from left to right) on SP500.
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Fig. 5. Cumulative returns of different portfolios based on datasets from HDAX (the first subplot), FTSE (the second subplot), HSCI (the
third subplot), and SP500 (the last subplot) based on 1/3-2/3 partitioned datasets.
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Fig. 6. Cumulative returns of different portfolios based on datasets from HDAX (the first subplot), FTSE (the second subplot), HSCI (the
third subplot) and SP500 (the last subplot) based on half-and-half partitioned datasets.
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Table 1. Resulting annualized Sharpe ratios, conditional Sharpe ratios, and returns based on 1/3-2/3 partitioned datasets.

Dataset n k
Sharpe ratio Conditional Sharpe ratio Annualized return (%)

DNO CNO EW MI DNO CNO EW MI DNO CNO EW MI

HDAX 49

4 0.3463 0.3071

0.4715 0.4087

0.1701 0.1639

0.2044 0.1859

7.5389 8.3862

9.4248 7.7961

14 0.4535 0.4244 0.1990 0.1828 9.1808 9.4128

24 0.4857 0.4627 0.2001 0.1909 9.9109 9.8893

34 0.4947 0.4600 0.2059 0.1938 10.2469 10.0069

44 0.5497 0.5396 0.2097 0.2043 11.2796 11.0843

49 0.5588 0.5415 0.2123 0.2082 11.8719 11.2828

FTSE 56

5 0.3713 0.3040

0.4470 0.1705

0.1474 0.1156

0.1764 0.0808

6.5139 6.0002

7.8591 2.4769

16 0.3774 0.3240 0.1496 0.1244 6.7312 6.6281

28 0.4002 0.3338 0.1674 0.1288 7.0314 7.1953

39 0.4075 0.3817 0.1709 0.1413 7.1560 7.4920

50 0.4319 0.4221 0.1807 0.1451 8.0872 7.6369

56 0.5617 0.5399 0.2332 0.2218 10.8381 8.3538

HSCI 77

7 0.7044 0.6347

0.7518 0.3174

0.2839 0.2915

0.2357 0.1057

15.3946 15.8822

16.3132 5.7223

23 0.7186 0.6599 0.3006 0.2981 15.8024 15.9351

38 0.7712 0.6704 0.3094 0.3042 17.2347 16.2815

53 0.7730 0.6923 0.3125 0.3103 17.2441 16.6426

69 0.7882 0.7074 0.3193 0.3140 17.4298 17.0163

77 0.7903 0.7386 0.3241 0.3203 17.5837 17.6290

SP500 356

35 0.7112 0.6748

0.7229 0.3810

0.3108 0.3009

0.2429 0.1253

15.9359 18.9221

14.0971 6.2927

106 0.7231 0.7169 0.3195 0.3121 17.0170 17.5123

178 0.7294 0.7207 0.3309 0.3224 17.8873 18.9221

249 0.7313 0.7230 0.3416 0.3377 19.3203 19.5123

320 0.7392 0.7309 0.3508 0.3457 20.1652 20.2054

356 0.7403 0.7337 0.3520 0.3506 20.4722 20.9749
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Table 2. Resulting annualized Sharpe ratio, conditional Sharpe ratio and returns based on half-and-half partitioned datasets.

Dataset n k
Sharpe ratio Conditional Sharpe ratio Annualized return (%)

DNO CNO EW MI DNO CNO EW MI DNO CNO EW MI

HDAX 49

4 0.5486 0.5231

0.6873 0.6726

0.2475 0.2349

0.2734 0.3447

10.4758 7.9459

12.9857 12.2463

14 0.5975 0.5689 0.2863 0.2487 11.2641 11.1892

24 0.6687 0.6357 0.2963 0.2532 12.7997 12.1576

34 0.7271 0.6848 0.3401 0.2688 13.8972 13.4195

44 0.7574 0.7119 0.3658 0.2899 14.5806 13.6594

49 0.7582 0.7565 0.3836 0.3129 15.1259 13.8340

FTSE 56

5 0.4844 0.4349

0.8303 0.4364

0.2053 0.1936

0.3659 0.2374

7.7156 7.9548

12.9811 5.9705

16 0.6338 0.6187 0.2963 0.2311 9.8699 8.2565

28 0.6600 0.6302 0.3051 0.2412 10.2688 8.4036

39 0.6755 0.6554 0.3159 0.2631 10.7203 9.1148

50 0.7214 0.7201 0.3562 0.2824 11.1810 12.4485

56 0.8756 0.8542 0.3965 0.3554 15.8881 15.6841

HSCI 77

7 0.9315 0.8645

0.9791 0.4782

0.4353 0.4086

0.3459 0.1710

16.9461 16.9073

17.8610 7.9394

23 0.9411 0.8790 0.4420 0.4185 17.6416 17.1799

38 0.9551 0.8941 0.4487 0.4214 17.8137 17.4809

53 0.9640 0.9074 0.4521 0.4267 18.0446 17.7833

69 1.9881 0.9186 0.4566 0.4332 18.0600 18.0823

77 1.0147 0.9369 0.4635 0.4471 18.7928 18.6832

SP500 356

35 1.1314 1.1145

1.1599 0.8255

0.5019 0.4147

0.4120 0.2801

20.9448 19.7990

20.3834 12.4253

106 1.1834 1.1440 0.5633 0.4417 24.1746 20.3223

178 1.2083 1.1748 0.5852 0.5189 24.6381 20.9244

249 1.2141 1.1904 0.6197 0.5435 25.1157 21.5870

320 1.2187 1.2126 0.6362 0.5679 25.9424 22.3755

356 1.2231 1.2175 0.6539 0.6488 26.9975 23.2873
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dex. The resulting DNO portfolios achieve the highest an-331

nualized SR, CSR values, and returns as k = 24, 34, and332

44; though DNO underperforms the EW portfolio that is333

not constrained by cardinality on HDAX when k = 4 and334

14. For the FTSE dataset, the DNO portfolios result in335

higher annualized SR values than the baselines as k = 56;336

though DNO underperforms the EW portfolio that is not337

constrained by cardinality when k = 5, 16, 28, 39 and 50.338

Similarly, the DNO portfolios result in higher annualized339

CSR values than the baselines as k = 50 and 56; though340

DNO underperforms EW in terms of annualized CSR and341

returns when k = 5, 16, 28 and 39. The DNO portfolios re-342

sult in higher annualized SR values than the baselines as343

k = 38, 53, 69, and 77; though DNO underperforms EW344

in terms of annualized SR and returns when k = 7 and345

23 on HSCI. Besides, the resulting DNO portfolios outper-346

form the three baselines in terms of annualized CSR in the347

HSCI dataset. The DNO portfolios result in higher annu-348

alized SR values than the baselines in the SP500 dataset.349

Similarly, the DNO portfolios result in higher annualized350

CSR values and returns than the baselines. Besides, it can351

be seen that the SR and CSR values of the DNO portfo-352

lios increase when the value of k increases. Table 2 shows353

similar results, where the data of the first one-half periods354

are used for in-sample learning. By comparing the results355

in Tables 1 and 2, it can be seen that all results in Table 2356

are better than those in Table 1, because more samples are357

used in the former than the latter for in-sample learning.358

Figures 5 and 6 depict the cumulative returns of vari-359

ous portfolios rebalanced weekly based on the 1/3-2/3 and360

1/2-1/2 partitioned datasets, respectively. It can be seen361

that the cumulative returns increase as the value of k in-362

creases in general. Specifically, Figure 5 shows that the363

cumulative returns of the DNO portfolios are the high-364

est as k = 44, k = 50, k = 69 and k = 320 on the four365

datasets. However, DNO-4 and DNO-14 on HDAX, DNO-366

5 to DNO-39 on FTSE, and DNO-7 and DNO-23 on HSCI367

underperform the EW portfolios, as the EW portfolios are368

not constrained by any cardinality. Figure 6 shows simi-369

lar results, where the data of the first one-half periods are370

used for in-sample pre-training. The figure shows that the371

cumulative returns of the DNO portfolios are the highest372

as k = 44, k = 69 and k = 320 on the HDAX, HSCI and373

SP500 datasets, respectively. Nevertheless, DNO-4, DNO-374

14, DNO-24 on HDAX, DNO-5 to DNO-50 on FTSE, and375

DNO-7, DNO-23 on HSCI underperform the EW portfo-376

lios, as the EW portfolios are unconstrained by any cardi-377

nality.378

6. Concluding Remarks379

In this paper, a neurodynamic approach is developed380

for cardinality-constrained portfolio selection in Markowitz’s381

risk-return framework. A mixed-integer optimization prob-382

lem is formulated to implement the cardinality constraint383

and a biconvex optimization problem is reformulated to384

optimize the subsets of stocks with given cardinalities for385

portfolio selection. The two-timescale duplex neurody-386

namic approach consists of a pair of neurodynamic op-387

timization models operating in parallel. Experimental re-388

sults on the benchmark datasets in four world markets389

show that the proposed method is globally convergent and390

outperforms three baselines in terms of two commonly391

used risk-adjusted criteria and investment returns. The392

superior performances result from the combined use of393

the optimally weighted biconvex problem formulation for394

maximizing conditional Sharpe ratio and the effective opti-395

mizer driven by two-timescale duplex neurodynamics. Fur-396

ther investigations include developing more efficient neuro-397

dynamic approaches for high-frequency trading and multi-398

period portfolio selection.399
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