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ABSTRACT 

Horses (Equus spp.) are one of the few species that form close bonds between 
unrelated and non-reproductive conspecifics. These are characterised by a preference 
towards specific group members, spatial proximity, and high rates of affiliative interactions 
and can provide individuals with different benefits. The ultimate benefits are well 
evidenced, such as increased reproductive success, health, and longevity. However, it is 
less understood whether these bonds provide benefits on a proximate level, such as social 
buffering. Thereby, the proximity to, or interactions with, a closely bonded conspecific 
during or after a stressful situation can provide support and facilitate a decrease of the 
behavioural and physiological stress response.  

 

The aim of this research was to address this knowledge gap by investigating 
whether domestic horses (E. caballus) benefit from social buffering provided by closely 
bonded, but unrelated, conspecifics. Through a combination of behavioural observations 
and heart rate recordings, bond-related buffering effects were investigated in three 
contexts: (1) during social interactions among group members, (2) during separation from 
the group, and (3) during novel object exposures. In all contexts, it was assessed whether 
the interaction with, or the presence of, a closely bonded conspecific would affect the 
behaviour and cardiac activity of the horses under study.  

 

The analysis showed that group-housed horses primarily engaged in low-intensity 
agonistic interactions. These did not facilitate a pronounced stress response. Social rank 
but not social bonds between the horses had a small effect on their heart rate during 
agonistic interactions. The heart rate in receivers of threats was slightly higher the higher 
the initiator was in rank. Grooming was the only affiliative interaction that corresponded 
with a lower heart rate. This effect was independent of the bond strength between the 
horses. During the separation, the horses’ behaviour and heart rate were not affected by 
the bond relationship to the support provider. Their vigilance during separation was lower 
when with any conspecific than when alone. Moreover, the rate of affiliative interactions 
and spatial proximity did not differ between closely bonded and less closely bonded 
horses and both did not affect their heart rate or heart rate variability. The novel object 
tests represented a mild stressor. Upon the initial exposure to a novel object, the horses 
showed proximity seeking to closely bonded conspecifics. Throughout the remainder of 
the object tests, the horses’ behavioural and physiological stress response and their 
exploratory behaviour were independent of their social context.  

 

These findings make a novel contribution to knowledge as they reveal no strong 
evidence that close social bonds among unrelated horses provided social buffering in the 
specified contexts. Rather, the horses’ behavioural and physiological responses were 
generalised towards closely bonded and less closely bonded members of their group or 
were independent of their social context. Thus, this research has contributed to the 
understanding of the role of social bonds between domestic horses in different contexts. 
Moreover, this research has implications for equine science and can inform housing and 
husbandry routines from an equine welfare perspective. It identifies that in established 
groups of horses, agonistic interactions are mostly not associated with a pronounced 
stress response. Furthermore, grooming and potentially other affiliative behaviours can 
promote positive welfare. These are valuable findings that support the practice of housing 
horses in groups. Additionally, in contexts of mild stress, horses seem to benefit from the 
presence of any familiar conspecific, independently of their bond relationship. These 
findings suggest that horses can benefit from the presence of familiar conspecifics during 
potentially stressful husbandry routines. 

 

Keywords: Socio-physiology, separation, novel object test, equine welfare, heart rate, 
heart rate variability. 
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1.1 Social bonds and their benefits  

In this thesis, it was investigated whether close bonds among unrelated 

domestic horses (Equus caballus), specifically of the same sex, facilitate social 

buffering of their behavioural and physiological stress response. To introduce this 

work, social bonds, their benefits, and links to physiological mechanisms will be 

characterised. Thereafter, gaps in current research will be pointed out, followed 

by a description of the aim and structure of this thesis.  

1.1.1 Social bonds 

In species that live in stable social groups, natural selection favours social 

strategies for which benefits or advantages outweigh their costs or disadvantages 

(Silk, 2012). One social strategy of group-living animals is the formation of 

differentiated relationships among the members of a group, thereby determining 

the group’s social structure (Kappeler et al., 2013; Koenig et al., 2013). 

Relationships are shaped by the patterns of interactions over time, refer to what 

happens between two individuals (content), and how the interactions are 

characterised (quality) (Hinde, 1976). For social interactions to become a 

relationship between two individuals, it is necessary that they know each other 

and can remember previous interactions (Ostner and Schülke, 2014). Based on 

this bookkeeping of previous interactions, individuals can adapt their behaviour 

towards their conspecifics in the present and future (Aureli et al., 2012; Seyfarth 

and Cheney, 2012). 

The two observable relationship pillars of social groups in birds and 

mammals are rank relationships and social bonds (Sachser, Dürschlag and 

Hirzel, 1998; Ziegler and Crockford, 2017). Rank relationships refer to the 

individual’s position in the dominance hierarchy, which can be either socially 

inherited (e.g., in Spotted hyenas, Crocuta crocuta: Engh et al., 2000) or the result 

of winning or losing agonistic interactions (Barrette and Vandal, 1986; Briffa et al., 

2013; e.g., in Horses: Van Dierendonck and De Vries, 1995). The relative rank 

positions in a dominance hierarchy can dictate who has prioritised access to 

resources such as food (Appleby, 1980; Banks et al., 1979; Giles et al., 2015) or 

mating partners (Newton-Fisher et al., 2009; Witt, Schmidt and Schmitt, 1981). 

Social bonds are relationships characterised by selective affiliative interactions 

with one or more preferred members of the social group (Ziegler and Crockford, 
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2017). Bonded individuals show low aggression levels, frequent proximity, and a 

high rate of affiliative interactions, such as grooming. The interaction patterns 

between bonded individuals are usually bi-directional (Silk, Cheney and Seyfarth, 

2013). Social bonds are mostly stable over a longer period of time and therefore 

a predictable component of a group’s social structure ( Seyfarth, Silk and Cheney, 

2014; Silk, 2002; Silk, Cheney and Seyfarth, 2013). Figure 1.1 summarises the 

key attributes of social bonds. Interaction partners, whose relationship 

characteristics can be placed towards the right side of the chart, are assumed to 

have a high relationship quality or, in other words, a close bond (Silk, Cheney and 

Seyfarth, 2013).  

 

Figure 1.1 Schematic characterisation of interaction patterns between closely bonded 
animals, adapted from Silk et al. (2013): Closely bonded individuals can be placed towards 
the right side of the chart. They show frequent interactions across a diverse range of 
behaviours that are mostly bi-directional. Furthermore, they show high rates of affiliative 
interactions and low tension. Moreover, close bonds are often stable over longer periods 
of time and promote predictability of the relationship. 

 

Among group-living birds and mammals, different types of bonds have 

evolved: bonds between parents and their offspring (Kulik, Langos and Widdig, 

2016; Mendoza and Mason, 1986; Pittet et al., 2014; Ziegler and Crockford, 2017) 

or bonds between pair partners (Carter et al., 1997; Emery et al., 2007; Hennessy 

et al., 2006; Hennessy, Kaiser and Sachser, 2009; Johnson and Young, 2015). 

Depending on the dispersal patterns and the social organisation of a species, 

bonds can also be formed among kin, such as (half) sisters or brothers (Cheney, 

Silk and Seyfarth, 2016; Dal Pesco et al., 2021; Frigerio, Weiss and Kotrschal, 

2001; McFarland et al., 2017; Scheiber et al., 2017; Silk et al., 2009; Silk, Seyfarth 
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and Cheney, 2012, 2014). In matrilinear societies, close social bonds are often 

formed among female kin (Seyfarth and Cheney, 2012; Silk, Alberts and Altmann, 

2006), while in patrilinear societies, these are often formed between related males 

(Mitani, 2009; Seyfarth, Silk and Cheney, 2012). 

Besides bonds linked to reproduction, raising young, or increasing 

inclusive fitness, individuals of some species also form close bonds with unrelated 

individuals (Seyfarth, Silk and Cheney, 2012; Ziegler and Crockford, 2017). Such 

bonds can occur between males and females outside the breeding context 

(Nguyen et al., 2009; Palombit, Cheney and Seyfarth, 2001; Palombit, Seyfarth 

and Cheney, 1997), between females (Cameron, Setsaas and Linklater, 2009; 

Lehmann and Boesch, 2009; Riehl and Strong, 2018), or between males (Feh, 

1999; Mitani, 2009; Young et al., 2014a). Bonds between unrelated individuals 

are also interlinked with dispersal patterns and are more likely to occur in the 

dispersing sex (Cameron, Setsaas and Linklater, 2009; Feh, 1999; Lehmann and 

Boesch, 2009; Young et al., 2014a). 

Species that are known to form such bonds include humans (Homo 

sapiens) (Brent et al., 2014; Feldman, 2012; Hruschka, Hackman and Macfarlan, 

2015), baboons (Papio spp.) (Nguyen et al., 2009; Palombit, Cheney and 

Seyfarth, 2001; Palombit, Seyfarth and Cheney, 1997), chimpanzees (Pan 

troglodytes) (Lehmann and Boesch, 2009; Massen and Koski, 2014; Mitani, 

2009), macaques (Macaca spp.) (Schülke et al., 2010; Young et al., 2014a), lions 

(Panthera leo) (Packer et al., 1991), bottlenose dolphins (Tursiops truncatus) 

(Connor et al., 2000), horses (Equus caballus) (Cameron, Setsaas and Linklater, 

2009), giraffes (Giraffa camelopardalis) (Carter et al., 2013a; b), and birds such 

as the greater ani (Crotophaga major) (Riehl and Strong, 2018).  

As different species form social bonds, bond formations need to provide 

individuals with certain benefits. This is especially true for bonds that occur 

between unrelated conspecifics outside a breeding context and do not provide 

benefits that promote indirect or direct fitness (Seyfarth and Cheney, 2012).  

1.1.2 Benefits of social bonds 

Previous research has shown that bond formations can provide individuals 

with versatile benefits. On the one hand, they can provide ultimate, long-term 

benefits. It has been found that individuals’ who are socially well integrated, i.e., 

they either maintain a few strong social bonds or have many weak bonds, show 
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enhanced health, longevity, reproductive success, and infant survival (e.g., 

Horses: Cameron, Setsaas and Linklater, 2009; Giraffes: Bond et al., 2021; 

Baboons: McFarland et al., 2017; Nguyen et al., 2009; Silk et al., 2009, 2010; 

Assamese macaques, Macaca assamensis: Schülke et al., 2010). These long-

term consequences of bond-formation are beneficial as longevity and health can 

increase an individual's reproductive success (Ellis et al., 2019; Snyder-Mackler 

et al., 2020). 

On the other hand, social bonds can have immediate benefits that impact 

an individual's daily life. Such benefits include social support and coalition 

formation (e.g., Chimpanzees: Samuni, Crockford and Wittig, 2021; Assamese 

macaques: Schülke et al., 2010), which can help individuals to attain and maintain 

higher social ranks (e.g., Bottlenose dolphins: Connor, Smolker and Richards, 

1992; Assamese macaques: Heesen et al., 2015) and males to gain access to or 

defend females against competitors (e.g., Bottlenose dolphins: Connor et al., 

2000; Horses: Feh, 1999; Linklater et al., 1999; Lions: Packer et al., 1991). 

Moreover, social bonds can protect females from male harassment (e.g., Horses: 

Cameron, Setsaas and Linklater, 2009; Yellow baboons, Papio cynocephalus: 

Nguyen et al., 2009). Besides active support during agonistic encounters, bonded 

individuals can provide passive support, whereby the bonded conspecific's mere 

presence can increase the chances of winning conflicts (e.g., Greylag geese, 

Anser anser: Scheiber, Kotrschal and Weiß, 2009). Additionally, closely bonded 

conspecifics can provide reconciliation or consolation after agonistic interactions, 

which helps to re-establish the relationship or promotes faster recovery of a stress 

response (e.g., Ravens, Corvus corax: Fraser and Bugnyar, 2011; Chimpanzees: 

Wittig and Boesch, 2003; Barbary macaques, Macaca sylvanus: Young et al., 

2014b). Moreover, social bonds can enhance tolerance (e.g., Assamese 

macaques: Haunhorst et al., 2017; Japanese macaques, Macaca fuscata: 

Kawazoe, 2021; Chimpanzees: Lehmann and Boesch, 2009; Primates: Ostner 

and Schülke, 2014) and promote cooperation to obtain and share food (e.g., 

Ravens: Asakawa-Haas et al., 2016; Wolves, Canis lupus: Dale et al., 2017; 

Chimpanzees: Wittig and Boesch, 2003). Another direct benefit of sociability can 

be more effective thermoregulation. For example, in Barbary macaques, 

individuals with more bonded partners are able to form larger huddles to protect 

them from cold weather (Campbell et al., 2018). A benefit of social bonds that has 

immediate effects but also promotes long-term benefits, such as health, is ‘social 
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buffering’ (Cohen and Wills, 1985). Thereby, the presence of a social partner 

during or after a stressful event can facilitate an attenuation of the animals’ stress 

response (Cohen and Wills, 1985; Kikusui, Winslow and Mori, 2006; Kiyokawa et 

al., 2013). Consequently, social buffering can promote benefits on a physiological, 

mechanistic level (Tinbergen, 1963). 

1.1.3 Social buffering of the stress response 

Animals live in dynamic environments and, in order to maintain 

homeostasis, they need to adapt to different immediate stimuli, such as 

interactions with conspecifics, unpredictable environmental events, novel aspects 

in their surroundings, or predator attacks (Cannon, 1929; DeVries, Glasper and 

Detillion, 2003; McEwen, 2008; Romero, Dickens and Cyr, 2009). Some of these 

stimuli can be defined as ‘stressors’ if they lack predictability and controllability, 

or are perceived as threatening (Koolhaas et al., 2011, 2017; Romero, Dickens 

and Cyr, 2009).  

The behavioural and physiological adaptation to a stressor can be 

described as a ’stress response’. At the behavioural level, the stress response 

can be indicated by a slight change in behaviour or, in more threatening situations, 

by a fight, flight, or freeze response (Cannon, 1929; Romero, Dickens and Cyr, 

2009). At the physiological level, the stress response is primarily mediated by the 

activity of the sympathetic-adrenal-medullary (SAM) axis and of the hypothalamic-

pituitary-adrenal (HPA) axis (Cannon, 1929; Koolhaas et al., 2011, 2017; Romero, 

Dickens and Cyr, 2009). In response to a stressor, activity in the SAM-axis and 

the HPA-axis increases beyond the regular activity level – the ‘predictive 

homeostasis’ range – and enters a ‘reactive homeostasis’ range (based on the 

Reactive Scope Model, Romero, Dickens and Cyr, 2009; Figure 1.2). Specifically, 

the SAM-axis is responsible for the rapid stress response. The increased activity 

in the sympathetic branch of the autonomous nervous system facilitates a release 

of catecholamines into the bloodstream. These circulating catecholamines initiate 

an increase in heart rate, vasoconstriction, blood pressure, and respiratory 

frequency (Godoy et al., 2018; Penzlin, 2005; Uchino, Cacioppo and Kiecolt-

Glaser, 1996). The HPA-axis mediates the slow stress response, resulting in the 

release of glucocorticoids from the adrenal medulla into the bloodstream. 

Glucocorticoids facilitate, among other things, gluconeogenesis, initiating the 

metabolic processes to access stored energy which is necessary to maintain the 
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behavioural stress response (Adkins-Regan, 2005; Hostinar, Sullivan and 

Gunnar, 2014; Möstl and Palme, 2002; Penzlin, 2005; Figure 1.2). 

 

Figure 1.2 The physiological stress response. Following a stimulus that is perceived as a 
stressor, the SAM-axis and HPA-axis activity levels increase beyond the regular activity 
level, the ‘predictive homeostasis’ range, and enter the ‘reactive homeostasis’ range. This 
change in physiological activity allows the organism to adapt to potentially threatening 
situations and ensures that increased metabolic demands are met (based on the Reactive 
Scope Model, Romero, Dickens and Cyr, 2009). 

 

Fight, flight, or freeze behaviour and the increase in the SAM-axis and 

HPA-axis activity are adaptive and can ensure survival in case of life-threatening 

stressors. However, the physiological stress response is also costly. Maintaining 

the state of reactive homeostasis requires the mobilisation and consumption of 

energy that could otherwise be used for other purposes, such as tissue 

maintenance. The activity of both axes inhibits the parasympathetic branch of the 

autonomous nervous system and mechanisms of growth, repair, digestion, 

reproduction, and the storage of energy (McEwen, 2008; Moberg, 2000; 

Sapolsky, 2004). Thus, the physiological stress response causes wear and tear 

on the organism (Romero, Dickens and Cyr, 2009). If the stress response is 

chronic, and the SAM-axis and HPA-axis activity levels remain in the reactive 

homeostasis range, these costs can accumulate and negatively impact health 

(Sapolsky, 2005). For example, a prolonged increase in SAM-axis activity levels 

has been found to lead to heightened blood pressure which can, if persisting, 

result in cardiovascular damage (Sgoifo, Carnevali and Grippo, 2014). 

Furthermore, a persistent increase in HPA-axis activity levels has been found to 

suppress the immune system (McEwen, 2008; Moberg, 2000; Sapolsky, 2004), 
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making an organism more prone to infection and disease (McEwen, 2008; 

Moberg, 2000; Sapolsky, 2004). 

Previous research has shown that the behavioural and physiological 

stress response can depend on an animal's social context. The presence or 

support of social partners during or after exposure to a stressor (Kiyokawa, 

Takeuchi and Mori, 2007) can buffer the stress response, a mechanism that is 

termed ‘social buffering’ (Cohen and Wills, 1985). Social buffering is indicated by 

a reduced behavioural stress response (e.g., Kiyokawa, Kawai and Takeuchi, 

2018) and by an attenuation of the physiological stress response on both stress 

response axes: Social buffering effects on the SAM-axis activity level are 

characterised by a weaker increase in heart rate, greater heart rate variability, and 

lower blood pressure (Kanthak et al., 2016; Lepore, Mata Allen and Evans, 1993; 

Teoh and Hilmert, 2018; Thorsteinsson and James, 1999). On the HPA-axis 

activity level, social buffering corresponds to smaller amounts of glucocorticoids 

released into the bloodstream (Hennessy et al., 2006; Hostinar, Sullivan and 

Gunnar, 2014; Stanton, Patterson and Levine, 1985; Wittig et al., 2016). 

Furthermore, social buffering can enhance recovery following a stress response 

or even prevent a stress response from occurring (Beery et al., 2020; Kiyokawa 

and Takeuchi, 2017; Moberg, 2000; Figure 1.3). This is beneficial as it allows the 

individual to adapt its stress response to the given situation and thereby saving 

energetic costs in less threatening situations (Hostinar, Sullivan and Gunnar, 

2014; Romero, Dickens and Cyr, 2009).  
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Figure 1.3 Social buffering of the physiological stress response. In response to a stressor, 
animals increase their SAM-axis and HPA-axis activity. Thereby activity levels enter the 
reactive homeostasis range (left panel). This physiological arousal has a certain amplitude 
and duration (indicated by the height and width of the grey arrow). Social buffering can 
impact the physiological stress response in four different ways: (a) it can decrease the 
arousal, (b) it can shorten the duration of the arousal, (c) it can decrease and shorten the 
duration of the arousal, or (d) prevent the physiological stress response from occurring 
(based on the Reactive Scope Model by Romero, Dickens and Cyr, 2009; mouse shapes 
adapted from www.phylopic.org). 

 

Two main pathways are proposed to facilitate social buffering on a 

physiological level: 

Firstly, the proximity to or the presence of a conspecific (Kiyokawa et al., 

2009; Kiyokawa et al., 2013; Kiyokawa et al., 2014a), or their cues, such as calls 

(Rukstalis and French, 2005) or odour (Kiyokawa et al., 2014; Takahashi et.al., 

2013), can induce buffering effects. This is possibly mediated by an altered 

perception and appraisal of a potentially stressful stimulus (Cohen and Wills, 

1985; Hostinar, Sullivan and Gunnar, 2014 Moberg, 2000) which can lead to a 

suppression of the fear-related activation of the amygdala (Fuzzo et al., 2015) and 

consequently to a decrease of the physiological stress response (Hostinar, 

Sullivan and Gunnar, 2014; Sanders and Shekhar, 1991; Young and Leaton, 

1996). 

Secondly, it was found that physical contact, for example, touch or 

grooming, can facilitate a buffering effect of the physiological stress response 

(reviewed in Beery and Kaufer, 2015; Burkett et al., 2016). Thereby, the hormone 

oxytocin likely plays a role. Oxytocin is synthesised in two sites of the 
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hypothalamus, the paraventricular nucleus and the supraoptic nucleus ( Kleine 

and Rossmanith, 2014; Landgraf and Neumann, 2004; Ross and Young, 2009) 

and is released upon physical contact, sex, warmth, and mother-infant 

interactions such as labour and breastfeeding (Uvnäs-Moberg, 1997a;b). 

Oxytocin that is released into the bloodstream acts upon the baroreflex, leading 

to a decreased heart rate and an increase in heart rate variability (Higa et al., 

2002; Kanthak et al., 2016; Kemp et al., 2012) and inhibits the release of 

hormones that promote the HPA-axis activity (Hostinar, Sullivan and Gunnar, 

2014).  

1.1.4 Social buffering and its link to social bonds 

The presence of unfamiliar conspecifics can facilitate buffering effects, 

and even more so the presence of familiar conspecifics (Hodges et al., 2014; 

Kiyokawa et al., 2014b; Mommer and Bell, 2013; Terranova, Cirulli and Laviola, 

1999). Additionally, the effectiveness of social buffering can depend on different 

characteristics of the support provider and the relationship between the 

individuals. For example, older conspecifics (Horses: Rørvang and Christensen, 

2018), or calmer individuals have been found to provide a more effective buffer 

(Chicken, Gallus gallus domesticus: Edgar et al., 2015; Horses: Christensen et 

al., 2008; Rørvang, Ahrendt and Christensen, 2015). Moreover, previous research 

has shown that buffering effects were greater when buffering was provided by a 

closely bonded conspecific (Guinea pigs, Cavia porcellus: Hennessy, Kaiser and 

Sachser, 2009; Hennessy, Zate and Maken, 2008; Kaiser et al., 2003; Hennessy 

et al., 2006; Sachser, Dürschlag and Hirzel, 1998; Humans: Diamond, 2001; 

Julius et al., 2013). This bonding partner could be the mother for her offspring 

(Chicken: Edgar et al., 2015; Guinea pigs: Hennessy et al., 2006), a pair partner 

in a reproductive pair or harem (Guinea pigs: Kaiser et al., 2003; Sachser, 

Dürschlag and Hirzel, 1998; Wied's black tufted-ear marmosets, Callithrix kuhlii: 

Rukstalis and French, 2005), or a relative in species with strong bonds between 

related individuals (Baboons: Wittig et al., 2008).  

Therefore, one benefit individuals can gain from engaging in social bonds 

is bond-dependent social buffering (Cohen and Wills, 1985; Sachser, Dürschlag 

and Hirzel, 1998), which was suggested to increase the individual’s capacity to 

cope with a stressor (Koolhaas et al., 1999; Koolhaas, 2008). A better capacity to 

cope with stressors can reduce the wear and tear on the organism that is 
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otherwise linked to the physiological stress response and its maintenance (Ostner 

and Schülke, 2018; Romero, Dickens and Cyr, 2009). Consequently, social 

buffering can decrease the risk of health problems caused by chronically elevated 

stress levels ( Cohen and Wills, 1985; Beery and Kaufer, 2015; McEwen, 2008; 

Moberg, 2000; Sapolsky, 2004, 2005). This indicates that social buffering might 

be an important mechanism for some group-living animals, especially for species 

that form social bonds. Studying bond-dependent social buffering effects can 

provide a better understanding regarding the links between sociality and bond 

formation on the one hand, and stress physiology and health on the other (Snyder-

Mackler et al., 2020).  

1.2 Approaches in the study of social buffering 

and gaps in current research 

By reviewing existing literature on social buffering, four topics became 

evident that are not fully understood or researched. These topics relate to the type 

of bonds that have been studied, the model species that have been subjected to 

social buffering research, the physiological measures used to assess buffering 

effects, and the contexts in which social buffering has been studied. Those four 

areas will be described in the subsequent sections, followed by an outline of how 

the studies that are presented in this thesis provide a novel contribution to existing 

knowledge.  

1.2.1 The study of social buffering: bond types 

Previous studies that investigated bond-related social buffering effects 

have primarily focused on certain bond types: the bond between parents and their 

offspring (Sachser, Dürschlag and Hirzel, 1998), between kin (Wittig et al., 2008), 

between pair-bond partners (Kaiser et al., 2003; Rukstalis and French, 2005; 

Sachser, Dürschlag and Hirzel, 1998), or when transitioning from the mother as 

the main bonding partner to female pair partners in maturing males ( Hennessy et 

al., 2006; Hennessy, Kaiser and Sachser, 2009).  

However, little is known whether bonds between unrelated conspecifics 

can provide benefits such as social buffering. While research has shown that 

social buffering effects can be facilitated by individuals of the same sex (Coe et 

al., 1982; Hennessy, Zate and Maken, 2008; Hodges et al., 2014; Ishii et al., 2016; 
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Kiyokawa et al., 2014a; Mikami et al., 2016; Terranova, Cirulli and Laviola, 1999), 

so far only a few studies have considered the relationship quality between the test 

subjects and their social supporters:  

(1) In human studies that assessed social buffering among peers, social 

support was either provided by a colleague, a roommate or a randomly matched 

person (Gerin et al., 1995, 1992; Lepore, Mata Allen and Evans, 1993; Uchino 

and Garvey, 1997). Only a few studies addressed the relationship quality between 

the test subject and the support provider and asked participants to bring their 

friend (Gramer and Reitbauer, 2010; Gramer and Supp, 2014; Riem, Kunst and 

Kop, 2021), or their best or close friend (Heinrichs et al., 2003; Uno, Uchino and 

Smith, 2002). However, these studies have primarily assessed different support 

styles such as ‘being supportive’ or ‘ambivalent’ during mental stress tests rather 

than comparing buffering effects depending on the relationship quality as such.  

(2) In animal studies on social buffering among conspecifics of the same 

sex, social support was provided by either unfamiliar conspecifics (Kiyokawa, 

Takeuchi and Mori, 2007; Mikami et al., 2016, 2020) or familiar conspecifics, such 

as cage mates (Coe et al., 1982; Hennessy, Zate and Maken, 2008; Hodges et 

al., 2014; Kiyokawa et al., 2014a;b; Terranova, Cirulli and Laviola, 1999). Several 

of these studies showed that familiar conspecifics induced a greater buffering 

effect than unfamiliar conspecifics (Hodges et al., 2014; Kiyokawa et al., 2014b). 

However, the actual relationship quality between the two test partners has not 

been addressed in these studies. This is surprising for two reasons: (a) some 

group-living species have evolved to form bonds between unrelated individuals of 

the same sex (Seyfarth and Cheney, 2012), and (b) social bonds between support 

providers were found to potentially increase buffering effects (Hennessy et al., 

2006; Hennessy, Kaiser and Sachser, 2009; Sachser, Dürschlag and Hirzel, 

1998). Therefore, it is a meaningful next step to assess bond-related buffering 

effects between closely bonded but unrelated individuals, specifically of the same 

sex. Studying social buffering among such bond partners can provide more 

information about whether such bonds provide benefits on a mechanistic level 

(Tinbergen, 1963); and, whether such bond formations contribute to the benefits 

of social integration and long-term health (Snyder-Mackler et al., 2020). 
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1.2.2 The study of social buffering: species 

Previous studies on social buffering have focussed on a small number of 

species, including humans (Homo sapiens) (e.g., Gerin et al., 1992, 1995; 

Jakubiak and Feeney, 2016; Uchino, Cacioppo and Kiecolt-Glaser, 1996; 

reviewed in Teoh and Hilmert, 2018), primates, such as chimpanzees (Pan 

troglodytes) (Wittig et al., 2016), baboons (Papio spp.) (Morbach, 2020; Wittig et 

al., 2008), macaques (Macaca spp.) (Gilbert and Baker, 2012; Young et al., 

2014b), squirrel (Saimiri sciureus) and titi monkeys (Plecturocebus donacophilus) 

(Coe et al., 1982; Hoffman et al., 1995; Stanton, Patterson and Levine, 1985). 

Another body of social buffering research stems from studies in rodents, including 

guinea pigs (Cavia porcellus) (e.g., Hennessy et al., 2006; Kaiser et al., 2003; 

Sachser, Dürschlag and Hirzel, 1998), rats (Rattus spp.) (e.g., Hodges et al., 

2014; Insana and Wilson, 2008; Kiyokawa et al., 2013; Kiyokawa, Kawai and 

Takeuchi, 2018; Machatschke et al., 2004; Mikami et al., 2016; Nakamura et al., 

2016; Takahashi et al., 2013), prairie voles (Microtus ochrogaster) (Hostetler and 

Ryabinin, 2014), and mice (Mus musculus) (Colnaghi et al., 2016).  

This focus on certain species is possibly due to the types of bonds that 

were investigated in social buffering research. Mother-offspring bonds and bonds 

among kin were often studied in humans and other primate species (e.g., Coe et 

al., 1982; Hoffman et al., 1995; Stanton, Patterson and Levine, 1985), whereas 

buffering effects among pair partners have been investigated in guinea pigs and 

prairie voles, species that are known to form strong bonds between females and 

males (e.g., Hennessy et al., 2006; Hostetler and Ryabinin, 2014; Kaiser et al., 

2003; Sachser, Dürschlag and Hirzel, 1998). Rats and mice are species that are 

in general widely used in experimental research (e.g., Home Office UK, 2015; 

Koolhaas, 2010). Comparatively, fewer studies have addressed social buffering 

in other species such as pigs (Sus scrofa) (Kanitz et al., 2014), sheep (Ovis aries) 

(da Costa et al., 2004), horses (Christensen et al., 2008; Rørvang, Ahrendt and 

Christensen, 2015; Rørvang and Christensen, 2018), birds (Domestic hens, 

Gallus gallus domesticus: Edgar et al., 2015; Greylag geese, Anser anser: 

Scheiber, Kotrschal and Weiß, 2009; Zebra finch, Taeniopygia guttata: Apfelbeck 

and Raess, 2008), or fish (Teleost spp.) (Culbert, Gilmour and Balshine, 2019; 

Faustino, Tacão-Monteiro and Oliveira, 2017; Galhardo, Vitorino and Oliveira, 

2012).  
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When investigating buffering effects between bonded but unrelated conspecifics, 

it is necessary to study species that are known to form such bonds, for example, 

horses (Cameron, Setsaas and Linklater, 2009; Feh, 1999; Linklater et al., 1999), 

giraffes (Carter et al., 2013a; b), or lions (Packer et al., 1991). The study of social 

buffering effects across different species that engage in different types of social 

bonds can extend the knowledge about social buffering effects beyond current 

evidence that was primarily gained from primate and rodent species. This allows 

a broader comparative perspective on how sociality impacts physiological 

mechanisms and potential benefits that arise from it (Aureli et al., 2012; Snyder-

Mackler et al., 2020). 

 

1.2.3 The study of social buffering: physiological 

measures 

Besides behavioural indicators of stress, social buffering studies often 

include physiological stress measures. Thereby, studies have focused on the 

activity of the two physiological stress response systems: the SAM-axis and the 

HPA-axis. In studies of social buffering effects, the SAM-axis activity has mostly 

been measured via heart rate or systolic and diastolic blood pressure (e.g., 

reviewed in Teoh and Hilmert, 2018), while the HPA-axis activity has mostly been 

assessed by measuring glucocorticoid concentrations (cortisol in mammals, 

corticosterone in rodents or birds) or glucocorticoid metabolite concentrations 

(Machatschke et al., 2004; Möstl and Palme, 2002; Wittig et al., 2016). 

Furthermore, studies have assessed the expression of transcription factors, such 

as c-Fos, in the paraventricular nucleus, a brain area that is part of the HPA-axis 

(e.g., Kiyokawa, Li and Takeuchi, 2019; Mikami et al., 2016; Takahashi et al., 

2013). Although physiological mechanisms of social buffering have been 

extensively studied, the types of measures used vary greatly between taxa. 

Research in humans has largely assessed social buffering effects on SAM-axis 

activity (Gerin et al., 1992, 1995; Teoh and Hilmert, 2018; Uchino, 2006; Uchino, 

Cacioppo and Kiecolt-Glaser, 1996). Consequently, evidence of social buffering 

effects on SAM-axis activity level primarily stems from human studies. Within 

animal research, most studies have focused on social buffering effects on the 

HPA-axis activity, oftentimes due to practical constraints (e.g., DeVries, Glasper 

and Detillion, 2003; Hennessy, Kaiser and Sachser, 2009; Hostinar, Sullivan and 
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Gunnar, 2014; Kikusui, Winslow and Mori, 2006; Kiyokawa et al., 2014a; Mikami 

et al., 2020; Morbach, 2020; Sachser, Dürschlag and Hirzel, 1998; Takahashi et 

al., 2013).  

Comparatively, few social buffering studies in animals have assessed 

SAM-axis activity levels, for example, via heart rate measurements. Findings from 

these studies suggest that social support can reduce cardiovascular response to 

different stressors in animals. The presence of a calm conspecific was found to 

induce a decrease in heart rate in domestic hens (Edgar et al., 2015), sheep (da 

Costa et al., 2004), and horses (Christensen et al., 2008; Rørvang and 

Christensen, 2018). However, compared to the corpus of studies of the HPA-axis, 

SAM-axis activity levels and social buffering effects remain comparatively 

understudied in animals and thus less well understood (Hostinar, Sullivan and 

Gunnar, 2014; Romero et al., 2015). Gathering more evidence for social buffering 

effects on SAM-axis level is crucial for two reasons: (1) it enables us to assess 

whether effects that were found in humans are shared across different species, 

thus allowing us to assess evolutionary trajectories of social buffering 

mechanisms; and (2) as the release of glucocorticoids is time-delayed to the onset 

of a stressor (Hostinar, Sullivan and Gunnar, 2014), the measurement of the HPA-

axis activity is also time-delayed and therefore provides a more integrative 

measure to assess the effects of stress and social buffering (DeVries, Glasper 

and Detillion, 2003; Hostinar, Sullivan and Gunnar, 2014). In contrast, measuring 

the immediate response to stress and effects of social buffering on SAM-axis 

activity allows us to directly assess the link between a potentially stressful 

situation, an animal’s physiological response, and social buffering effects.  

 

1.2.4 The study of social buffering: study conditions 

and types of experiments 

Studies in humans and other animals assessed social buffering effects 

under different test conditions. In humans, social buffering effects have been 

primarily studied experimentally, and study participants were often subjected to 

psychological stressors (Teoh and Hilmert, 2018). Examples of such test 

paradigms are speech tasks (Uchino and Garvey, 1997), involvement in debates 

or verbal attacks (Gerin et al., 1992), playing computer games (Gerin et al., 1995), 

or imagining a stressful situation and being instructed to think of different social 
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support conditions (Jakubiak and Feeney, 2016; Uchino, Cacioppo and Kiecolt-

Glaser, 1996). Thus, much evidence for buffering effects on SAM-axis activity 

level stems from experiments applying mental stressors. 

In contrast, social buffering effects in animals have been studied 

experimentally in the laboratory or among free-ranging groups of animals, thereby 

utilising mostly physical stressors. In experimental studies, social buffering effects 

were assessed during the exposure to stressful stimuli, such as exposure to fear-

conditioned stimuli (e.g., Kikusui, Winslow and Mori, 2006; Kiyokawa et al., 

2014a; Kiyokawa, Kawai and Takeuchi, 2018; Mikami et al., 2020), during fear-

inducing situations such as simulated predation (Coe et al., 1982; Kikusui, 

Winslow and Mori, 2006), or the elevated plus maze (Colnaghi et al., 2016). 

Moreover, social buffering effects were studied during exposures to novel 

environments (Apfelbeck and Raess, 2008; Banerjee and Adkins-Regan, 2011; 

Coe et al., 1982; Giacomini et al., 2015; Kanitz et al., 2014; Kikusui, Winslow and 

Mori, 2006; Sachser, Dürschlag and Hirzel, 1998). The experimental conditions 

under which social buffering effects have been studied in animals were often 

extreme conditions, applying high-intensity stressors, which animals are probably 

unlikely to encounter in their daily lives. For example, the induction of repeated 

and unavoidable pain or shock (Kikusui, Winslow and Mori, 2006; Kiyokawa et al., 

2014a; Kiyokawa, Kawai and Takeuchi, 2018; Mikami et al., 2020), or a sudden 

transfer to an entirely new environment (Apfelbeck and Raess, 2008; Banerjee 

and Adkins-Regan, 2011; Coe et al., 1982; Giacomini et al., 2015; Kanitz et al., 

2014; Kikusui, Winslow and Mori, 2006; Sachser, Dürschlag and Hirzel, 1998). 

Consequently, little is known about how social buffering influences the 

behavioural and physiological response to a weaker stressor, such as novelty 

within a familiar environment; a scenario that free-roaming animals are likely to 

encounter more often than extreme disturbances in their environment. As animals 

need to adjust to stressors of different types or intensities in their social and 

physical environment (Emery Thompson et al., 2010), it seems to be meaningful 

to assess social buffering effects under different experimental test conditions. 

Moreover, animals that were used for laboratory experiments on social 

buffering effects were mostly housed in rather barren environments and rarely 

within a social structure that resembles or mimics their natural social environment. 

For example, Beery et al. (2020) pointed out that laboratory rodents such as mice 
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and rats are mostly housed alone or in pairs. However, both species naturally live 

in bigger colonies where they maintain differentiated relationships with their group 

members. Therefore, laboratory animals used in social buffering experiments are 

often not able to establish differentiated social relationships, even though, as 

described before, it has been shown that bond relationships can impact social 

buffering effects (Hennessy et al., 2006; Kaiser et al., 2003; Sachser, Dürschlag 

and Hirzel, 1998). Thus, an important factor that can influence social buffering has 

often remained excluded from experimental research. 

So far, only a few studies have investigated social buffering in free-ranging 

animals, which were embedded in their (natural) social environment, and thus 

were able to engage in differentiated relationships. In these studies, buffering 

effects on HPA-axis activity level were assessed using naturally occurring, 

potentially stressful situations, such as group instability (Wittig et al., 2008), 

encounters with other groups of conspecifics (Wittig et al., 2008), agonistic 

interactions (Scheiber, Kotrschal and Weiß, 2009; Young et al., 2014a), or during 

periods of environmental stress, such as cold temperatures (Campbell et al., 

2018), or predation events (Morbach, 2020). However, there remains a paucity of 

evidence about social buffering effects on SAM-axis level within study contexts 

that resemble or mimic types of stressors that animals are more likely to encounter 

in their daily lives and where social buffering is provided by conspecifics which 

the test subjects maintain differentiated relationships with.  

Based on these four gaps in social buffering research, it can be summarised:  

1) Although some species form social bonds between unrelated conspecifics 

(of the same sex), little is known whether these bonds affect social 

buffering effects in a similar way as found for pair-bonds or bonds among 

kin. Studying social buffering between closely bonded and unrelated 

individuals can therefore provide novel insight about the potential benefits 

of such bond formations. 

2) Investigating the benefits of social bonds among unrelated conspecifics 

requires studying species that engage in such bond formations. 

Addressing different species in the study of social buffering can extend 

knowledge that was so far primarily gathered from primate and rodent 

species. 
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3) Besides studying social buffering effects on HPA-axis activity level, social 

buffering should also be investigated on SAM-axis activity level. This 

allows the assessment of a more immediate effect of social buffering.  

4) Studies of social buffering should also be conducted under conditions that 

reflect or mimic scenarios that can be of daily relevance to the test 

subjects. Furthermore, as buffering effects have been found to depend on 

the relationship quality between conspecifics, animals under study should 

have been able to establish differentiated relationships with their test 

partners and buffering providers.  

1.3 Aims of this study and research questions 

The aim of this thesis was to address these knowledge gaps by 

investigating whether domestic horses (Equus caballus) benefit from social 

buffering provided by closely bonded but unrelated conspecifics, especially of the 

same sex. Thereby, social buffering effects on SAM-axis activity level were 

studied in three contexts: (1) during social interactions with members of the 

horses’ social group, (2) while being separated from their social group, and (3) 

while being exposed to novel stimuli in their familiar physical environment.  

1.3.1 Domestic horses as a model species for the 

study of social buffering 

Domestic horses are an ideal study species to investigate social buffering 

effects between unrelated conspecifics. Horses are among the few species that 

form long and durable social bonds between unrelated adult individuals and 

between individuals of the same sex (Cameron, Setsaas and Linklater, 2009; 

Seyfarth and Cheney, 2012). Social bonds between horses are characterised by 

spatial proximity and affiliative behaviours such as touches and mutual grooming 

(Cameron, Setsaas and Linklater, 2009; Feh, 2005). Although the domestication 

of horses began at least 5000 years ago (Levine, 2005), much of their natural 

biology, including social behaviour, has been retained (Feh, 2005; Mills and 

McDonnell, 2005; Zeitler-Feicht, 2008). Additionally, the study of domestic horses 

allows the use of mobile heart rate monitors to assess the immediate physiological 

response to different stimuli on the SAM-axis activity level. As most horses are 

used to being handled or wearing equipment such as saddles or vaulting girths, 
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they can be fitted with monitors such as the Polar® V800 Equine system, which 

are placed in the saddle or vaulting grith area, without causing a great handling-

related stress response. The Polar® V800 Equine system has been successfully 

used in previous studies to measure cardiac activity in domestic horses (e.g., 

Hendrix et al., 2017; Mendonça et al., 2019; Schmidt et al., 2017). 

Horses are highly social, group-living herbivores (Boyd and Keiper, 2005; 

Gersick and Rubenstein, 2017; Khalil and Kaseda, 1998; Linklater et al., 1999). 

In the wild, their group size depends on predation pressure and resource 

availability (Gersick and Rubenstein, 2017; Rubenstein, 1978) and ranges 

between 4 and 18 members on average (reviewed in Boyd and Keiper, 2005). 

Horses form female defence polygamous mating systems (Boyd and Keiper, 

2005; Khalil and Kaseda, 1998; Linklater et al., 1999). They live in bands that 

consist of one or more stallions, several mares, and their offspring of different 

ages. Offspring of both sexes disperse with fillies joining other bands and colts 

joining all-male units (‘bachelor groups’) (Khalil and Kaseda, 1997; Stanley and 

Shultz, 2012). These groups are formed by young stallions that have not yet 

required their own harem or older stallions that have lost theirs (Feh, 2005a; Khalil 

and Kaseda, 1998, 1997; Linklater et al., 1999). Recent research has confirmed 

that horses also form complex multi-level societies, with individual groups being 

embedded in a wider multi-group context, thereby forming big herds (Maeda et 

al., 2021). 

Besides social bonds, differentiated rank relationships characterise the 

social structure of horse groups that can be durable over long periods of time, for 

example, up to several years (Cameron, Setsaas and Linklater, 2009; Feh, 2005; 

Kaseda and Khalil, 1996). Rank relationships are established by winning and 

losing agonistic interactions, have been found to be mostly linear, and can 

determine access to resources (Van Dierendonck, Schilder and De Vries, 1995; 

Sigurjónsdóttir et al., 2003; Feh, 2005).  

Research on horses’ social cognition showed that they can distinguish 

between unfamiliar and familiar conspecifics (Briefer et al., 2017; Proops, 

McComb and Reby, 2009), a prerequisite for a species to engage in social 

relationships (Young et al., 2014b). This is further shown by horses’ ability to 

recognise the social status of a familiar horse in relation to its own (Krueger and 

Heinze, 2008). Horses are also known to show post-conflict consolation (Cozzi et 
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al., 2010) and third-party intervention in agonistic and affiliative interactions ( 

Krueger et al., 2015; Schneider and Krueger, 2012). These behavioural and 

cognitive predispositions make horses a suitable study species to investigate 

social buffering effects provided by unrelated bonded conspecifics, especially by 

bonded horses of the same sex.  

1.3.2 Further implications of this research 

As of 2015, the estimated number of Equidae (including horses, donkeys, 

and their crosses) living under human care in the European Union ranged 

between 4.16 and 7.74 million (Eurogroup4animals, 2015). As of 2019, 847.000 

horses were registered in the United Kingdom (BETA UK, 2019). Many horses 

are individually stabled, with limited or no physical contact with conspecifics 

(Christensen et al., 2002; Hartmann, Christensen and Keeling, 2011; Van 

Dierendonck and Spruijt, 2012), which prevents them from expressing their full 

repertoire of (social) behaviours and was found to increase the development of 

behavioural stereotypies (Cooper and Albentosa, 2005; Mills, 2005). However, 

group housing became more popular in recent years as it allows the horses to 

express more of their natural behaviours (Christensen et al., 2002; Hartmann, 

Christensen and Keeling, 2011; Van Dierendonck and Spruijt, 2012; Zeitler-

Feicht, 2008). 

Studying social bonds and social buffering in horses contributes to the 

greater context of behavioural ecology. However, by providing new insights into 

the link between social behaviour, physiology, and social buffering in horses, this 

study also contributes to equine science and equine welfare. Despite horses 

being a widely studied species, little is known about the physiological mechanisms 

underlying their social behaviour – subsequently referred to as socio-physiology. 

A great number of papers have focussed on describing the social behaviour of 

horses (e.g., McDonnell and Haviland, 1995; McDonnell and Poulin, 2002; 

McDonnell, 2003) or on studying specific aspects of horses’ social behaviour such 

as rank (Heitor, do Mar Oom and Vicente, 2006a), affiliation (Heitor, do Mar Oom 

and Vicente, 2006b), social support (Krueger et al., 2015), or third-party 

interventions (Schneider and Krueger, 2012). Furthermore, their social behaviour 

was studied in the context of stabling, thereby linking behavioural studies to 

animal welfare (e.g., Benhajali et al., 2008; Hartmann, Søndergaard and Keeling, 
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2012). These papers focused on the social behaviour of horses but did not include 

physiological measures. Studies that have linked horses' behaviour with 

underlying physiological mechanisms primarily aimed at assessing the impact of 

human handling and training on the horses’ physiology (e.g., Aerts et al., 2008; 

Christensen et al., 2021b; Keeling, Jonare and Lanneborn, 2009; von Lewinski et 

al., 2013; Lindner, Wäschle and Sasse, 2012; Piccione et al., 2013; Rietmann et 

al., 2004; Schmidt et al., 2010a; b; Sung et al., 2015; Visser et al., 2002). 

Moreover, some previous studies investigated the horses’ behavioural and 

physiological responses to stressors in their physical environment (Ali, Gutwein 

and Heleski, 2016; Christensen, Keeling and Nielsen, 2005; Safryghin, 

Hebesberger and Wascher, 2019). However, to my current knowledge, only two 

studies also addressed the horses socio-physiology and assessed whether the 

horses’ social context affected their stress response to stressors in their physical 

environment (Christensen et al., 2008; Rørvang and Christensen, 2018). Whether 

such effects can be dependent upon relationship quality between horses is still 

unknown. Moreover, some studies have assessed the link between horses' social 

cognition and physiology, showing that horses showed an increase in heart rate 

when presented with a picture showing a threatening conspecific (Wathan et al., 

2016) or when hearing whinnies of unfamiliar horses (Briefer et al., 2017). 

However, it is not yet understood how social interactions among horses influence 

their (stress) physiology, and whether these effects depend on the rank and bond 

relationships between the interacting horses. Besides studies that have assessed 

horses’ heart rate responses to grooming or massages provided by humans (Feh 

and de Mazières, 1993; Kowalik et al., 2017; Lynch et al., 1974; McBride, 

Hemmings and Robinson, 2004), horses’ socio-physiology has, to the author’s 

current knowledge, not been addressed. 

Gaining a better understanding of horses' socio-physiology can be 

relevant to equine welfare, as it highlights potential sources of (social) stress and 

possible mechanisms to provide horses with social support in potentially stressful 

situations. The research presented in this thesis aimed at interlinking horses’ 

social interactions with their underlying physiological mechanisms. This can 

provide valuable insight regarding social stress in group-housed horses. 

Furthermore, it was assessed whether horses benefit from the companionship of 

closely bonded conspecifics during different, potentially stressful situations. 

Studying the socio-physiology of domestic horses and the probable benefits they 
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gain from engaging in social bonds are relevant to horse welfare. Thereby, this 

thesis touches upon two pillars of animal welfare: (1), ‘natural living’ which should 

allow animals to live as naturally as possible and express their species-specific 

behaviour, which includes their social behaviour, and (2) ‘affective states’, which 

aims at facilitating positive states and reducing or preventing negative states, 

including stress (Boissy et al., 2007; Dalla Costa et al., 2014; Fraser, 2008).  

1.4 Study outline and thesis structure  

To study social buffering effects on SAM-axis activity level in domestic 

horses, a combination of behavioural observations and experiments with time-

matched heart rate measurements was applied. Data were collected from horses 

that were group-housed for the majority of the time and that were embedded in 

groups that were established for at least a year before the onset of data collection. 

This made it possible to assess the impact of social bonds on social buffering 

based on their individual social preferences within their groups (Beery et al., 2020; 

Gutmann, Spinka and Winckler, 2015). Social buffering was studied in three 

contexts that were found to facilitate a behavioural or physiological stress 

response, and that can be of daily relevance to domestic horses.  

In Chapter 2, the effect of spontaneously occurring social interactions on 

heart rate in domestic horses was investigated. Social life was found to be a 

potent stressor in group-living birds and mammals (Koolhaas et al., 2017; 

Marchant et al., 1995; Meerlo et al., 1999; Sgoifo et al., 1999; Sgoifo, Carnevali 

and Grippo, 2014; Viblanc et al., 2012; Wascher, Arnold and Kotrschal, 2008). 

Therefore, stress responses that arise from the animals’ social context are of 

primary relevance to group-living animals (Romero et al., 2015). For this study, 

horses' heart rate was monitored whilst interacting freely, either in their home field 

or in the test arena for the experiments. To compile a comprehensive 

understanding of how social interactions affect heart rate in horses during social 

interactions, the following questions were addressed: 

1. Do social interactions affect heart rate in domestic horses?  

2. Does heart rate differ between initiators and receivers of social 

interactions? 

3. Does heart rate during social interactions depend on the relationship 

quality (bond, rank) between the interacting horses? 
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In Chapter 2, the focus was on interactions among all members of the groups, 

considering their bond and rank relationships. This should make it possible to 

reflect the overall group dynamics. The experiments presented in Chapter 3 and 

4, specifically addressed social buffering between unrelated horses of the same 

sex.  

In Chapter 3, the effect of the horses’ social context on their cardiac 

activity during separation from their social group was assessed. The separation 

of an individual from its social group can be a stressor (Boissy and Le Neindre, 

1997; Lansade, Bouissou and Erhard, 2008a; Ludwig et al., 2017; McNeal et al., 

2014; Rault, Boissy and Boivin, 2011; Tuber et al., 1996). Previous research has 

shown that animals' behavioural and physiological stress responses to separation 

can be dampened by the presence of a familiar conspecific (Bolt et al., 2017; 

Erber et al., 2012; Pollard and Littlejohn, 1995). However, little is known with 

regards to the relationship quality between the separated animals and its potential 

influence on social buffering effects. Therefore, focal horses were separated from 

their social group and observed under three test conditions: alone, with a closely 

bonded field companion, and with a less closely bonded field companion. 

Moreover, it was investigated potential mechanisms that can facilitate social 

buffering such as affiliative interactions or spatial proximity (as reviewed in 

Kiyokawa et al., 2013; Burkett et al., 2016; Edgar et al., 2015; Fürtbauer et al., 

2014; Kiyokawa, Li and Takeuchi, 2019). Using this experimental approach, the 

aim was to answer the following questions: 

1. Does the presence of a closely bonded conspecific buffer the behavioural 

and physiological stress response during separation from the social 

group?  

2. Does the rate of affiliative interactions depend on the social bond between 

the horses? 

3. Does the rate of affiliative interactions between horses facilitate a bond-

related buffering effect on cardiac activity level? 

4. Does close spatial proximity between horses depend on the social bond 

between the horses?  

5. Does the spatial proximity between horses facilitate a bond-related 

buffering effect on cardiac activity level? 
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Chapter 4 investigated the effect of social context on heart rate, fear, and 

exploratory behaviour during a novel object test. Exposure to novelty is a 

paradigm that has been used in social buffering research. Thereby, novelty has 

been mostly operationalised as a sudden transfer into a new environment (e.g., 

Banerjee and Adkins-Regan, 2011; Coe et al., 1982; Kanitz et al., 2014; Sachser, 

Dürschlag and Hirzel, 1998). However, it is probably more likely that animals 

encounter a novel feature within their familiar environment. Therefore, this study 

aimed at assessing social buffering effects by exposing horses to novel objects 

within their familiar environment. To account for the potential buffering effects 

horses gain from closely bonded horses but also from their whole social group 

(Faustino, Tacão-Monteiro and Oliveira, 2017; Giacomini et al., 2015; Kiyokawa 

and Hennessy, 2018; Mommer and Bell, 2013; Stanton, Patterson and Levine, 

1985; Yusishen et al., 2020) horses were exposed to novel objects in four test 

conditions: when horses were alone, when they were together with a closely 

bonded other horse, or together with a less closely bonded horse, and when they 

were with their group. Using this approach, the aim was to answer the following 

research questions: 

1. Does the behavioural and physiological stress response of horses to a 

novel object exposure depend on their social context? 

2. Does the exploratory behaviour that horses show towards the novel object 

depend on their social context? 

A note to the reader 

The three data chapters in this thesis are conceptualised as stand-alone 

chapters. However, to avoid redundancies in the material and methods sections, 

certain information is not repeated in detail in all chapters, for example, 

information about the sample of horses or the calculation of the bond indices. In 

these cases, cross-referenced between the chapters are provided. Chapter 2 and 

Chapter 4 link to an appendix which provides additional information and analyses. 

Future directions and limitations of the studies presented in the data chapters are 

considered within the single discussion points rather than in separate sections.  
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Heart rate during social interactions in domestic 

horses (Equus caballus): effects of role, rank, and 

bond relationships. 
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Abstract 

This chapter aimed at assessing whether social interactions among 

domestic horses (Equus caballus) affected their cardiac activity and whether the 

effect was depending on the horses' roles as initiators or receivers of interactions 

as well as their rank and bond relationships. Furthermore, it was assessed 

whether social interactions impacted the horses' emotional state. Therefore, the 

heart rate of 15 group-housed horses was measured during spontaneously 

occurring agonistic and affiliative interactions and, for comparisons, during 

behaviours of similar physical activity, such as standing, grazing, and locomotion. 

The recorded agonistic interactions were predominantly of low intensity and did 

not have a strong effect on the horses’ heart rates. Receiving a threat facilitated 

an increase in heart rate, and there was a small effect that this increase was 

higher, the higher the initiator in rank relative to the receiver. The bond strength 

between the horses did not affect heart rate during agonistic interactions, 

providing no evidence for a social buffering effect in this context. Mutual grooming 

corresponded to a lower heart rate than standing, an activity of similar physical 

activity. This finding indicates a relaxation effect and possibly a positive emotional 

state. However, this effect was not dependent on the bond strength between the 

grooming partners. Short affiliative interactions such as sniffs, touches, or head 

rubs facilitated a slightly but significantly higher heart rate in receivers, the 

stronger the bond to the initiator. This result opposed the proposed effect that 

interactions with bonded conspecifics would facilitate relaxation and alleviate the 

horses’ heart rate. However, the slightly higher heart rate potentially reflects a 

positive emotional state that could be related to excitement when receiving 

affiliative interactions from a closely bonded group member. These findings 

contribute to a better understanding of socio-physiology in horses, and, in the 

wider research context, contribute to the understanding of possible costs and 

benefits of sociality. Furthermore, they are of relevance for equine welfare, as 

they demonstrate that group housing is not necessarily a source of social stress 

and that allowing horses to engage in affiliative interaction can contribute to 

positive welfare. 

Keywords: Social behaviour, socio-physiology, cardiac activity, agonistic 

interactions, affiliative interactions, mutual grooming. 
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2.1 Introduction 

Repeated agonistic and affiliative interactions are central components of 

animals’ social environments (Beery and Kaufer, 2015). Agonistic interactions are 

described as aggression, physical conflict, defence, and submission (Briffa et al., 

2013) and constitute the basis of rank relationships (Hinde, 1976). Affiliative 

interactions refer to friendly behaviour such as (mutual) grooming (Feh and de 

Mazières, 1993; Wittig et al., 2008), licking (Laister et al., 2011), short touches, 

and prolonged body contact (Burkett et al., 2016), and are the basis of bond 

relationships (Hinde, 1976). Both agonistic and affiliative interactions have been 

found to impact the individuals' physiological activity and can have long-term 

consequences for their health. 

Agonistic interactions can be potent stressors, as they can constitute a 

(physical) threat (Viblanc et al., 2012) and comprise a level of unpredictability or 

uncontrollability (Koolhaas et al., 2017; Wascher et al., 2009). Engaging in 

agonistic social interactions can induce a physiological stress response which is 

indicated by an increase in sympathetic-adrenal-medullary (SAM) axis and 

hypothalamic-pituitary-adrenal (HPA) axis activity (DeVries, Glasper and Detillion, 

2003; Wascher et al., 2009; Wascher, Arnold and Kotrschal, 2008; Yamanashi et 

al., 2018). The activation of the physiological stress response is adaptive and 

enables the organism to maintain homeostasis in challenging or dangerous 

situations and provides the energy needed to perform the behaviour (McEwen 

and Sapolsky, 1995; McEwen and Wingfield, 2003).  

Nevertheless, when individuals receive a high amount of aggression 

(Abbott et al., 2003; Aureli, Preston and de Waal, 1999; Yamanashi et al., 2018), 

when they have to actively defend their rank position (Creel et al., 2013), or when 

they are exposed to high density, competition (Beery and Kaufer, 2015), or group 

instability (Crockford et al., 2008; Emery Thompson et al., 2010; Noller et al., 

2013; Wittig et al., 2008), the stress response can become chronic. A chronic 

stress response can be costly, as the increased physiological activity needed to 

maintain the stress response requires the mobilisation of stored energy and 

causes wear and tear on the organism (Romero, Dickens and Cyr, 2009). Chronic 

upregulation of SAM-axis activity can be indicated by increased cardiac activity 

and enhanced blood pressure (hypertension), as well as a shift in cholesterol 

profile. These changes can become pathological and cause atherosclerotic 



 Chapter 2 – Social interactions  

30 

 

plaque formation and cardiovascular damage (Sgoifo et al., 2001; Sgoifo, 

Carnevali and Grippo, 2014; Viblanc et al., 2012). A chronically enhanced activity 

of the HPA-axis results in increased glucocorticoid levels. These increased 

glucocorticoid levels have been found to suppress the parasympathetic system, 

mechanisms of growth, and repair, and suppress the immune system, which 

makes an organism more prone to infection and disease (McEwen, 2008; 

Sapolsky, 2004, 2005; Sapolsky, Romero and Munck, 2000; Snyder-Mackler et 

al., 2020). The link between the social environment and reduced health has been 

found to further translate into an increased mortality risk and a reduction in 

lifespan (Snyder-Mackler et al., 2020).  

Affiliative interactions such as grooming, social licking, or body contact 

have been found to facilitate the opposite effect of agonistic interactions. They 

were found to correspond to a decrease in SAM-axis activity (Aureli, Preston and 

de Waal, 1999; Briefer, Oxley and McElligott, 2015; Laister et al., 2011) and in 

HPA-axis activity (Wittig et al., 2008). Closely bonded individuals can especially 

benefit from the described physiological effect of affiliative interactions as they 

engage in a higher frequency of such interactions (Silk, Cheney and Seyfarth, 

2013; Puehringer-Sturmayr et al., 2018). Moreover, bonded conspecifics can 

show reconciliation (Cozzi et al., 2010; Fraser and Bugnyar, 2011; de Waal and 

van Roosmalen, 2016), which is described as affiliative interactions between 

former opponents following an agonistic encounter (de Waal and van Roosmalen, 

2016), or conciliation behaviour, described as affiliative interactions directed 

towards a distressed party (Burkett et al., 2016; de Waal and van Roosmalen, 

2016). Both behaviours can also facilitate an alleviation of the physiological stress 

response and thereby buffer against the effects of (social) stress (Aureli, Preston 

and de Waal, 1999; Crockford et al., 2008; DeVries, Glasper and Detillion, 2003; 

Kaiser et al., 2003; Wittig et al., 2016). Furthermore, affiliative interactions 

between bonded pair partners have been found to buffer their HPA-axis activity, 

especially during stressful life-history stages such as reproduction (Fürtbauer et 

al., 2014; Puehringer-Sturmayr et al., 2018). Such buffering effects can be greater 

the stronger the bond between the interacting individuals (Wittig et al., 2016).  

Over time, socially well-integrated individuals that engage in social bonds, 

or are part of grooming networks, can show an alleviated or less pronounced 

HPA-axis activity (Fürtbauer et al., 2014; Puehringer-Sturmayr et al., 2018; Wittig 
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et al., 2016; Yamanashi et al., 2018; Young et al., 2014a). A less pronounced 

activation of the physiological stress-axis has been linked to enhanced resistance 

to infections and better mental wellbeing (Cohen and Janicki-Deverts, 2009; 

Lakey and Orehek, 2011; Snyder-Mackler et al., 2020; Thoits, 2011). This link 

between social bond formations, grooming networks, and increased health was 

also found to correspond to a longer life expectancy (Holt-Lunstad, Smith and 

Layton, 2010; House et al., 1988; Nuñez, Adelman and Rubenstein, 2015; 

Snyder-Mackler et al., 2020).  

The physiological activity in the course of social interactions reflects the 

physical activity involved and can also be influenced by characteristics of the 

interaction and of the interaction partners:  

In the context of agonistic interactions, previous research has shown that 

the intensity of the interaction can affect the corresponding physiological activity 

level. For example, in pigs (Sus scrofa domesticus), heart rate was higher when 

the agonistic interactions led to physical contact compared to threats (Marchant 

et al., 1995). In king penguins (Aptenodytes patagonicus) and greylag geese 

(Anser anser) heart rate was higher during attacks than during low-intensity 

aggression (Viblanc et al., 2011; Wascher et al., 2009). Furthermore, the duration 

of the agonistic interaction can affect the physiological response, with longer 

durations facilitating a higher SAM-axis activity (Viblanc et al., 2012; Wascher et 

al., 2009). Moreover, the physiological response can be role dependent. Some 

studies have shown greater physiological arousal in receivers (Abbott et al., 2003; 

Crockford et al., 2008; Emery Thompson et al., 2010; Yamanashi et al., 2016, 

2018); possibly due to reduced controllability or predictability (Koolhaas et al., 

2017). Other studies, however, found a greater physiological activity in initiators 

(Wascher et al., 2009; Wascher, Arnold and Kotrschal, 2008); possibly reflecting 

a higher motivation to defend resources or rank (Creel et al., 2013; Viblanc et al., 

2012; Wascher et al., 2009).  

Besides these characteristics of the interaction, the identity and social 

relationship between the interactors have been found to affect physiological 

modulation during agonistic interactions. On the one hand, the identity of the 

interaction partner can facilitate an increase in SAM-axis activity. The approach 

(Rhesus macaques, Macaca mulatta: Aureli, Preston and de Waal, 1999; Herring 

gulls, Larus argentatus: Kanwisher et al., 1978) or received attack (Greylag 
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geese: Wascher et al., 2009) from a higher-ranked group member can result in a 

higher physiological activity than from a lower-ranked conspecific. Even observing 

agonistic interactions among higher-ranking conspecifics elicited a higher heart 

rate than among lower-ranking individuals (Greylag geese: Wascher, Scheiber 

and Kotrschal, 2008). On the other hand, the interaction partner's identity can 

facilitate a less pronounced increase in physiological activity. In greylag geese, 

heart rates in initiators have been lower when the target of agonistic interactions 

was a female as compared to a male (Wascher et al., 2009). Furthermore, in 

rhesus macaques, the approach of a higher-ranking conspecific caused an 

increase in heart rate, whereas the approach of a lower-ranked or related group 

member did not (Aureli, Preston and de Waal, 1999).  

A possible explanation as to why patterns of cardiac activity levels differ 

between agonistic and affiliative interactions (Aureli, Preston and de Waal, 1999), 

between initiators and receivers (Aureli, Preston and de Waal, 1999; Wascher et 

al., 2009; Wascher, Arnold and Kotrschal, 2008), or why rank and bond 

relationships can facilitate different levels of physiological activity during 

interactions (Aureli, Preston and de Waal, 1999; Wittig et al., 2016) can be the 

emotional component of an interaction. The level of physiological activation during 

social interactions does not just reflect the physical activity involved in exhibiting 

the behaviour. Previous research has shown that heart rate is more strongly 

affected by social interactions than expected solely based on the physical activity 

involved (Reefmann, Wechsler and Gygax, 2009; Wascher, Scheiber and Weiß, 

2009). This indicates that heart rate also reflects the psychological and emotional 

component of the interaction (Aureli, Preston and de Waal, 1999; Jansen et al., 

2009; Mendl, Burman and Paul, 2010; Wascher, Arnold and Kotrschal, 2008; 

Wascher, Scheiber and Kotrschal, 2008). An emotion is a short-lived response of 

an animal to an event or stimulus of importance to the individual (Kremer et al., 

2020; Paul and Mendl, 2018). The framework for studying animal emotion 

proposed by Mendl, Burman, and Paul (2010) allows operationalising emotions 

by their physiological arousal and positive and negative content (valence). 

According to this framework, a high heart rate (high arousal) can indicate affective 

states such as fear or anxiety (negative valence), or excitement and happiness 

(positive valence). Low heart rate (low arousal) can indicate affective states such 

as sadness or depression (negative valence), or calmness and relaxation 
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(positive valence). Emotions are adaptive as they are the basis for decision 

making and can motivate behaviour depending on the cognitive, but not 

necessarily conscious (Lazarus, 1991), appraisal of a stimulus. They promote 

approach behaviour when stimuli instil positive emotions and avoidance or 

defence behaviour when stimuli instil negative emotions (Bradley et al., 2001; 

Mendl et al., 2009; Mendl, Burman and Paul, 2010).  

The difference between the physiological activity necessary to maintain a 

particular behaviour and the physiological activity level measured during this 

behaviour can reflect the situation's emotional content (Reefmann, Wechsler and 

Gygax, 2009). Therefore, a comparison between the physiological activity during 

the behaviour of interest and another behaviour of similar physical activity, for 

example, during grooming and standing, can inform about the emotional 

component of a situation (Hall et al., 2018; Jansen et al., 2009; Wascher, Arnold 

and Kotrschal, 2008).  

Although it has been shown that the extent of the physiological activation 

during agonistic interactions can depend on the sex, rank, or biological 

relatedness of the interaction partners, it is not well understood whether the bond 

relationship between the interactors affects their physiological activity. Per 

definition, social bonds are characterised by a high rate of affiliative interactions 

(Hinde, 1976; Silk, Cheney and Seyfarth, 2013). Nevertheless, agonistic 

interactions also occur between bonded conspecifics, such as mothers and their 

offspring (Negayama, 1981), bonded pair partners (Bookwala, 2002; Brown, 

1963), and friends (Stauffacher and DeHart, 2006). Moreover, animals live in 

multi-dimensional social structures and simultaneously maintain rank and bond 

relationships (Barrett, Henzi and Lusseau, 2012; Hinde, 1976). As both 

relationship dimensions are not independent of each other (Barrett, Henzi and 

Lusseau, 2012; Flack et al., 2006), both may affect the underlying physiological 

mechanisms of agonistic interactions. Therefore, it could be possible that the 

bond strength between the interacting individuals, besides sex and relatedness, 

also affects the underlying physiological mechanisms in the context of aggression. 

Assessing the relationship between bond strength among interacting individuals 

and their physiological response to agonistic interactions helps to investigate 

whether social bonds can directly buffer the physiological (stress) response of 

these interactions (DeVries, Glasper and Detillion, 2003; Wascher et al., 2009; 
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Wascher, Arnold and Kotrschal, 2008; Yamanashi et al., 2018). Such knowledge 

can aid in understanding how sociality and the formation of social bonds can 

provide benefits and promote long-term health in group-living animals (Snyder-

Mackler et al., 2020). 

In the context of affiliative interactions, it has been found that the identity 

of the grooming partner can also have a significant effect on the underlying 

physiological mechanisms. Wittig et al. (2016) have found that grooming 

facilitated a decrease in HPA-axis activity in chimpanzees (Pan troglodytes 

schweinfurthii) and that this effect was greater the stronger the bond between the 

grooming partners. Furthermore, a recent study has demonstrated that the 

function or purpose of grooming behaviour can affect HPA-axis activity levels in 

rhesus macaques (Macaca mulatta). Grooming with bonded conspecifics in an 

affiliative context facilitated a decreased HPA-axis activity and inflammation 

levels, whereas grooming in a ‘political context’, i.e., to obtain food from a 

conspecific, did not facilitate an alleviation of the HPA-axis activity (Wooddell et 

al., 2019).  

To date, most knowledge about the effect of affiliative interactions on 

physiological activity stems from studies that have focused on grooming 

behaviour (e.g., Aureli, Preston and de Waal, 1999; Wittig et al., 2008, 2016; 

Yamanashi et al., 2018). This focus is probably due to the fact that a large body 

of research on the effects of sociality, social interactions, and stress physiology 

stems from primate species (Aureli, Preston and de Waal, 1999; Crockford et al., 

2008; Wittig et al., 2008, 2016; Wooddell et al., 2019; Yamanashi et al., 2018; 

Young et al., 2014a) in which grooming is the primary affiliative interaction 

(Lehmann, Korstjens and Dunbar, 2007; Sussman, Garber and Cheverud, 2005). 

Some primate species spend five to 20 per cent of their time budget performing 

this behaviour (Silk 2002; Sussman, Garber and Cheverud, 2005). However, 

there are species in which grooming is less frequent, such as horses (Equus 

przewalskii, Equus caballus) (Benhajali et al., 2008; Boyd, 1998; Raspa et al., 

2020). In horses, mutual grooming is less frequent and occupies only around 0 – 

1.7% of the time budget (Benhajali et al., 2008; Boyd, 1998; Raspa et al., 2020); 

thereby showing seasonal peaks in spring and autumn (Keiper, 1985; Kimura, 

1998). Horses tend to engage more frequently in other affiliative behaviours such 

as touching, sniffing, and head rubbing (McDonnell and Haviland, 1995). Previous 



 Chapter 2 – Social interactions  

35 

 

studies showed that in addition to grooming, other types of affiliative interactions 

can affect physiological modulation. For example, cattle (Bos taurus) engage in 

social licking. This unidirectional affiliative behaviour was found to have a role 

dependant effect on heart rate. It facilitates a decrease of heart rate in the 

receivers, however not in the performing initiators (Laister et al., 2011). Goats 

(Capra aegagrus hircus) were described to rub their horns or rest side by side 

with their affiliated conspecifics. These behaviours were also found to correspond 

with a lower heart rate and a higher heart rate variability, indicating a decreased 

sympathetic and increased parasympathetic influence on heart rate (Briefer, 

Oxley and McElligott, 2015). Otherwise, little is known whether different types of 

affiliative interactions have a differentiated effect on SAM-axis and HPA-axis 

activity; and whether these effects depend on the relationship quality between the 

interacting animals as found in chimpanzees (Wittig et al., 2016), or on their role 

as found in cattle (Laister et al., 2011). Assessing the effect of different types of 

affiliative interactions on physiological modulation can provide further insight into 

the underlying physiological mechanisms of social interactions. This can 

furthermore indicate whether different types of affiliative interactions contribute to 

the positive health effect that was described for socially well-embedded 

individuals, especially in species where grooming is not very frequent (Lakey and 

Orehek, 2011; Wittig et al., 2008, 2016; Snyder-Mackler et al., 2020). Moreover, 

studying the underlying physiological mechanisms and emotional components of 

social interactions can enhance our understanding of the potential costs and 

benefits of group living and the formation of rank and bond relationships (Snyder-

Mackler et al., 2020; Viblanc et al., 2012).  

Domestic horses are an ideal species to study the effect of social 

interactions on physiological activity. Horses are group-living animals and engage 

in agonistic interactions such as threats, bites, attacks, and affiliative interactions 

such as mutual grooming, sniffs, touches, and body contact (McDonnell and 

Haviland, 1995). Horses show the ability to recognise familiar conspecifics and 

can distinguish between cues, such as whinnies, from familiar and unfamiliar 

horses (Basile et al., 2009; Briefer et al., 2017; Proops, McComb and Reby, 2009). 

Previous research has shown that horses’ heart rate is affected by social cues. 

Wathan et al. (2016) have found that horses’ heart rates increased more during 

the exposure to pictures of conspecifics with aggressive facial expressions 
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(flattened ears, narrowed eyes and nostrils) than when exposed to other facial 

expressions. Furthermore, horses’ heart rates were found to decrease when 

humans groomed them, indicating a relaxation effect (Feh and de Mazières, 1993; 

Kędzierski et al., 2017; Lynch et al., 1974; McBride, Hemmings and Robinson, 

2004; Normando et al., 2006; Scopa et al., 2020).  

The social organisation of horses is structured along linear rank (Van 

Dierendonck and De Vries, 1995; Granquist, Thorhallsdottir and Sigurjonsdottir, 

2012; Sigurjónsdóttir et al., 2003) and bond relationships (Cameron, Setsaas and 

Linklater, 2009; Nuñez et al., 2014). Thereby, horses are among the few species 

that form close social bonds between unrelated conspecifics of the same sex 

(Seyfarth and Cheney, 2012). These characteristics allow assessing the impact 

of rank and bond relationships on cardiac activity during social interactions. 

Moreover, horses are used to being handled and wearing tack such as saddles 

or vaulting girths. Consequently, it is possible to measure their heart rate non-

invasively, using mobile heart rate monitors without causing too much handling-

related stress (e.g., Christensen et al., 2021; Rørvang and Christensen, 2018; 

Schmidt et al., 2017). 

Generating knowledge about whether agonistic interactions among group-

housed horses facilitate social stress and whether domestic horses can benefit 

from affiliative interactions with bonded group members is also relevant for equine 

welfare. It can help detect potential social stressors and potential sources of 

positive emotional states (Boissy et al., 2007; Fraser, 2008).  

The aim of this study was to assess whether spontaneously occurring 

agonistic and affiliative interactions affect the SAM-axis activity in group-housed 

domestic horses (Equus caballus). Thereby, the specific interest was to 

investigate whether the heart rate of interacting horses depends on their role 

(initiator, receiver) and their rank and bond relationships. Furthermore, it was 

assessed whether social interactions affected the horses' emotional state. For this 

purpose, the heart rate of horses was recorded during social interactions when 

ranging freely in their field. The measurement of heart rate makes it possible to 

determine the immediate physiological response to single social interactions. 

Therefore, the link between the cardiac response, the identity and role of the 

interacting horses, and their rank and bond relationship can be drawn directly. 

This study addressed the following questions: 
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1. Do social interactions affect heart rate in domestic horses?  

Hypothesis A: Agonistic interactions constitute a potent stressor and facilitate a 

physiological stress response on the SAM-axis activity level. 

 

Prediction A1: The heart rate of horses will be significantly higher during 

and after agonistic interactions than before. 

 

Prediction A2: The heart rate during agonistic interactions will be 

significantly higher than during behaviours of similar physical activity, thus 

indicating emotional arousal.  

 

Hypothesis B: Short affiliative interactions and mutual grooming facilitate 

relaxation and correspond to lower cardiac activity. 

 

Prediction B1: The heart rate of horses will be significantly lower during 

and after affiliative interactions such as sniffs, touches, and head rubs than 

before. 

 

Prediction B2: The heart rate of horses will be significantly lower during 

and after mutual grooming than before. 

 

Prediction B3: The heart rate during affiliative interactions such as sniffs, 

touches, and head rubs will be significantly lower than in behaviours of 

similar physical activity, thus indicating low arousal and emotional 

relaxation.  

 

Prediction B4: The heart rate during mutual grooming will be significantly 

lower than in behaviours of similar physical activity, thus indicating low 

arousal and emotional relaxation.  
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2. Does heart rate differ between initiators and receivers of social 

interactions? 

 

Hypothesis C: The role of the interacting horses has an effect on their heart rate 

during social interactions. 

 

Prediction C1: Horses will show a higher heart rate when initiating than 

when receiving an agonistic interaction. 

 

Prediction C2: Horses will show a lower heart rate when receiving than 

when initiating an affiliative interaction. 

 

3. Does heart rate during social interactions depend on the relationship 

quality (bonds, rank) between the interacting horses? 

 

Hypothesis D: Social relationships between the interacting horses have an effect 

on their SAM-axis activity. 

 

Prediction D1: During agonistic interactions, the heart rate of horses will 

be higher, the greater the rank difference between the two horses. 

 

Prediction D2: During agonistic interactions, the heart rate of horses will 

be lower, the stronger the bond between the two horses. 

 

Prediction D3: During affiliative interactions such as sniffs, touches, and 

head rubs, the heart rate will be lower, the stronger the bond between the 

two horses. 

 

Prediction D4: During mutual grooming, the heart rate will be lower, the 

stronger the bond between the two horses. 

 

 

 



 Chapter 2 – Social interactions  

39 

 

2.2 Material and Methods 

Data collection took place between June and September 2018 in England 

and included two stables, subsequently referred to as Stable A and Stable B. Both 

stables were selected due to the horses being kept outside in their social groups 

for a majority of the time. Moreover, the group composition of each stable has 

remained consistent for a minimum of a year before the onset of data collection.  

2.2.1 Study subjects and housing 

At Stable A, the horse group comprised eleven horses, three mares and 

eight geldings (castrated stallions), aged 19.5 ± 4 (mean ± SD). At Stable B the 

group comprised eight horses, two mares and six geldings who were 15 ± 8 (mean 

± SD) years of age. The horse groups at each stable were composed of different 

breeds (refer to Table 2.1). Regarding workload, four horses were not used for 

riding activities. Eight horses experienced light work, including short rides and 

groundwork. Five horses were school horses and regularly used for riding 

lessons, hacks, coaching, and equine-assisted therapy activities. Two horses 

were not yet trained and spent their time primarily in the field. Further details about 

the horses are shown per stable in Table 2.1.  

Table 2.1 Overview of the horses in Stable A and B, providing information about their sex, 
age at the time of data collection, breed, and workload (0 = retired, 1 = ridden 1-2 times a 
week, 2 = ridden 5-7 times a week). 

Stable Name Sex Age Breed Work 

 BLL gelding 18 Quarab x Thoroughbred 2 

A BLY gelding 15 Welsh Cob 2 

 BRA gelding 19 Welsh X 0 

 BRO gelding 25 Irish Cob 0 

 HHH gelding 20 Irish Sports Horse 0 

 MDN mare 23 Welsh Cob 2 

 OLV gelding 14 Irish Cob 2 

 ROS mare 13 Irish Thoroughbred 1 

 TAR mare 21 Irish Sports Horse 0 

 TIJ gelding 22 Belgian WB 1 

 WOD gelding 24 Irish Sports Horse 2 

 BAL gelding 14 Icelandic 1 

B CHA gelding 4 Welsh Cob 0 

 FRE mare 26 Icelandic 1 

 GJO mare 15 Icelandic 1 

 GUI gelding 7 Shire Horse 1 

 KIL gelding 25 Icelandic 1 

 OSK gelding 8 Icelandic 0 

 THO gelding 21 Icelandic 1 
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At Stable A the horse group spent around 16-21 hours per day (66-88% of the 

time) in a nine-acre field. The field was equipped with two watering sites and a 

hut providing shelter. Around 9 AM the horses were brought into their single stable 

for supplemental feed (Hi-Fi Light®, Alfa A-oil®, sugar beet, micro feed or fast 

fibre®) and for riding lessons. The stables were bedded with wood shavings. 

Water and hay were available ad libitum. The midsections of the stables were 

around chest height and were without palisades or rails on top. This enabled the 

horses to maintain visual and physical contact with their stable neighbours. 

Around noon yard staff started to turn the horses out into the field. Depending on 

the daily riding schedule, the last horse was back in the field by approximately 5 

PM, where they stayed overnight.  

At Stable B the horse group spent the majority (92-100%) of the time in an 

eleven-acre field. This field was equipped with two watering stations, salt licks, a 

wooden barn, and a tree line that the horses could seek out for shelter. When 

receiving supplemental feed (Honeychop® and fast fiber®), the horses were 

brought to the stable yard into box stalls, so that they were able to feed 

undisturbed. The stables were bedded with wood shavings and straw. Water was 

provided ad libitum. After feeding, the horses were turned back out into the field. 

2.2.2 Assessing social relationships 

To assess and quantify the bond strength and rank relationships among 

the horses, behavioural observations were carried out twice a day for a week. The 

observation times were adapted to the husbandry routine of the respective stable. 

The first session was conducted between 5:30 AM and 9 AM (Stable A) and 

between 9 AM and 11 AM (Stable B). The second session was between 6 PM 

and 9:30 PM (Stable A) and between 3 PM and 9:30 PM (Stable B). Observations 

were only conducted when all horses were present in the field to prevent 

observation bias by the absence of a potential social partner. Each observation 

session comprised two scan sampling sessions and a focal observation block 

(Figure 2.1).  
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Figure 2.1 Structure of an observational session. One observational session consisted of 
three parts: (1) an initial scan sampling session (20 minutes) for the nearest neighbour 
assessment. (2) A block of focal observations comprising 10 minutes for each horse of 
the group. (3) Lastly, another scan sampling session of 20 minutes was conducted.  

 

Each scan sampling session lasted 20 minutes and was conducted before 

and after a focal observation block. Thereby, the whole group was observed to 

identify each horse’s nearest neighbour. Based on Cameron, Setsaas, and 

Linklater’s (2009) study, the nearest neighbour assessment was conducted every 

four minutes, as it was shown that horses are more likely to have changed position 

after this time interval. Following Kimura (1998), the horse closest to each horse 

was assigned as its nearest neighbour, independent of how far they were apart. 

For Stable A 125 and for Stable B 204 nearest neighbour scan samples were 

obtained. This difference in observation was a consequence of an injury of a horse 

in Stable A. Consequently, this horse and another gelding from the group were 

kept stabled at the end of the initial observation period. 

In between the scan sampling sessions, focal observations of all group 

members were conducted. Focal horses were selected in random order and 

observed for ten minutes. Thereby, all occurrences of initiated and received 

affiliative and agonistic interactions, as well as approaching and following, were 

recorded (Altmann, 1974; Cameron, Setsaas and Linklater, 2009). The ethogram 

with a description of all recorded behaviours is shown in Table 2.2. This resulted 

in 13 focal observations per horse at Stable A and 14 at Stable B. 

For further data processing, the frequencies of all behaviours and 

interactions were entered in a weighted frequency matrix that accounted for the 

direction of the interaction (Croft, James and Krause, 2008). Absolute data were 

transformed into rates per horse and observation bout. These rates were then 

used to assess the horses’ bonding and rank relationships within their group. 
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Table 2.2 Ethogram of behaviours recorded during focal observations. All behaviours were recorded as events and were used to assess bond and rank 
relationships among the horses. 

 

Category Behaviour Definition Source 

Proximity behaviour 
Approach 

A horse seeks proximity of another horse in a straightforward way, which leads to either body 
contact or spatial proximity within two horse-lengths. 

(Heitor, do Mar Oom and Vicente, 2006b; 
McDonnell, 2003)  

Follow Moving behind another horse that just initiated locomotion. (Heitor, do Mar Oom and Vicente, 2006a) 

Affiliative interactions 

Mutual grooming Horses mostly in antiparallel stand, scratch the other horse along its neck or back using their teeth. (Kimura, 1998) 

Body contact 
Horse rubs its head on any body part of the other horses, rests its chin or head on another horse, or 
briefly touches the other horse with its chin or a nostril. 

(Feh, 2005b; Jørgensen et al., 2009) 

Sniff Olfactory investigation nose to nose or nose to body. (Feh, 2005b; Jørgensen et al., 2009) 

Agonistic interactions 

Head threat 1 
Horse swings its head with pinned ears, sometimes narrowed nostrils towards the target, but does 
not move towards it.  

(Heitor, do Mar Oom and Vicente, 2006a) 

Head threat 2 
"Horse moves in the direction of the target with its head lowered and ears pinned, neck stretched or 
extended toward the target". 

(McDonnell and Haviland, 1995) 

Nip 
"Similar to bite, but with the mouth less widely opened and the teeth closing on only a small piece of 
flesh." 

(McDonnell and Haviland, 1995) 

Bite "Opening and rapidly closing the jaws with the teeth grasping the flesh of another" horse. (McDonnell and Haviland, 1995) 

Kick threat 
Horse presents hindquarters towards the other horse or lifts one hind leg towards the other horse 
"but without sufficient extension or force to make contact with the target". 

(McDonnell and Haviland, 1995) 

Kick  "One or both hind legs lift off the ground and rapidly extend backwards towards another" horse.  (McDonnell and Haviland, 1995) 

Strike "One or both forelegs are rapidly extended forward to contact another" horse.  (McDonnell and Haviland, 1995) 

Push 
"Pressing of the head, neck, shoulder, chest, body or rump against another horse in an apparent 
attempt to displace or pin the target against an object." 

(McDonnell and Haviland, 1995) 

Attack 
Horse moves with flattened ears in trot or canter towards another horse, with the intention to bite 
(opened mouth) or kick (hindquarters move towards the other horse). 

 (“chase” in Jørgensen et al., 2009) 

Fight  
Including behaviours such as circling, rearing up, boxing, dancing, kneeling, and all forms of bodily 
contact like grasps, head bumps. 

(McDonnell and Haviland, 1995) 

Displace 
An agonistic interaction was coded as a displacement when the target responded with an increase 
in distance (retreat). 

(McDonnell and Haviland, 1995) 

Submission 

Avoid 
Increasing spatial distance by moving away in response to an approach of another horse within a 
three horse-lengths radius. 

(adapted from McDonnell and Haviland, 
1995) 

Retreat 
"Movement that maintains or increases an individual's distance from an approaching and 
threatening the horse. The head is usually held low, and ears turned back". 

(McDonnell and Haviland, 1995) 
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2.2.2.1 Assessing social bond strength 

The bond strength between the horses was quantified by calculating the 

Dyadic Composite Sociality Index (DSI, or CSI) (Silk, Cheney and Seyfarth, 2013). 

This index is widely used in social bonds research as it allows for the assessment 

of bond strength on a dyadic level in relation to the overall bonding structure of 

the group (Silk, Alberts and Altmann, 2006; Silk, Cheney and Seyfarth, 2013; used 

in, e.g., Cameron, Setsaas and Linklater, 2009; Kalbitz, Ostner and Schülke, 

2016; McFarland et al., 2017; Seyfarth, Silk and Cheney, 2014; Silk et al., 2009). 

The DSI is based on the relative frequency of affiliative interactions and spatial 

proximity between dyads of a social group and accounts for intercorrelation of 

these behaviours. The DSI was calculated based on the rates of behaviours that 

can be indicative of a social bond in horses (Cameron, Setsaas and Linklater, 

2009): nearest neighbour frequency (total number: 329), approaching/following 

(total number: 633), and body contact, including affiliative behaviours such as 

touches, sniffs, and head rubs (total number: 633), (Table 2.2). Only behaviours 

that were intercorrelated, with a correlation coefficient r ≥ 0.5 (Field, Miles and 

Field, 2012), were considered as required for the DSI (Silk, Cheney and Seyfarth, 

2013). The tests for intercorrelations between the candidate behaviours for the 

DSI are shown in Appendix A, page 225. To calculate the DSI for each possible 

dyad of the group the Equation 2.1 was used. High values indicate a stronger 

bond, whilst lower values indicate a weaker bond between two horses. 

𝐷𝑆𝐼𝑥𝑦 =  
∑

𝑓𝑖𝑥𝑦

𝐹𝑖

𝑑
𝑖=1

𝑑
 

Equation 2.1 The Dyadic Composite Sociality Index (DSI). Calculating the DSI for the dyad 
x, y: the rate of each behaviour i for dyad x-y (fixy) is divided by the mean rate of the 
behaviour i across all dyads (Fi), these fractions are summed for all included behaviours 
and then the total sum is divided by the number of behaviours that are included in the 
index (d) (Silk, Cheney and Seyfarth, 2013). 

 

2.2.2.2 Rank relationships: won and lost conflicts 

The David Score (DS) was calculated to quantify the relationship between 

won and lost agonistic interactions between all horses in the two groups (David, 

1987). The DS is an appropriate score for small sample sizes (Gammell et al., 

2003) and has the advantage that it considers the rate of conflicts won by the 

https://en.wikipedia.org/w/index.php?title=F%CC%84&action=edit&redlink=1
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interaction partner (De Vries, Stevens and Vervaecke, 2006). To calculate this 

index, the rates of the following behaviours were included: head threats 1 and 2, 

bites, attacks, displacements, and retreats. Kick threats, hindquarter threats, and 

kicks were included when they were used offensively rather than as a defensive 

reaction to a received agonistic interaction (Van Dierendonck and De Vries, 

1995). A description of the behaviours is given in the ethogram in Table 2.2, page 

42. In total, 308 agonistic interactions and 158 displacements were included in 

the DS. The following equation (2.2) was used:  

𝐷𝑆 = 𝑤 + 𝑤2 − 𝑙 − 𝑙2 

Equation 2.2 The David Score (DS). Calculating the DS for the dyad x, y: w) sum of Pxy; 
Pxy) the number of times that x defeats y divided by the total number of interactions 
between x and y; w2) weighted sum of x’s Pxy values, weighted by the w values of y; l) 
sum of Pyx; l2) weighted sum of x’s Pyx values, weighted by the l values of its interactants 
(David, 1987; De Vries, Stevens and Vervaecke, 2006).  

 

To obtain a dyadic measure of the relative success rate between the 

interaction partners, the Difference in David Score (DSDiff) between the two 

interaction partners was calculated, following Dales et al.’s (2017) approach. As 

the David Score can include negative numbers, a constant (100) was added to all 

scores. Then the DS of the interaction partner was subtracted from the DS of the 

focal individual (Equation 2.3). Positive DSDiff-values indicate that the focal horse 

is higher in rank; negative values indicate that the focal horse is lower in rank than 

its interaction partner. 

𝐷𝑆𝐷𝑖𝑓𝑓 = (𝐷𝑆𝑓𝑜𝑐𝑎𝑙 + 100) − (𝐷𝑆𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑎𝑛𝑡 + 100) 

Equation 2.3 The Difference in David Score (DSDiff). A constant of 100 was added to the 
individual David Scores. Thereafter, the DSDiff for the dyad x, y was calculated by 
subtracting the value of the interactant from the value of the focal horse. 

 

2.2.3 Heart rate monitoring during social interactions 

Based on daily availability (e.g., owing to riding lessons, owner visits), one 

to six horses of the groups were chosen in pseudorandom order for the heart rate 

recording and behavioural observations. The chosen horses were mounted with 

Polar® Equine V800 mobile heart rate monitors (Polar Electro Oy, Kempele, FI). 

This heart rate monitor detected the time intervals between consecutive 

heartbeats (interbeat intervals). The elastic chest belt was mounted so that the 
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sensor strip was placed on the horse's left side, reaching from above the sternum 

to just below the withers. To enhance the signal transmission, the fur in the sensor 

area was dampened with water, and the surface of the sensor was covered with 

electrode gel (Compex® professional by chattanoogaTM). If the signal 

transmission was low, the horses’ fur was additionally clipped in the sensor area. 

The receiver (wristwatch) was platted into the horse’s tail (Figure 2.2, top). Horses 

were habituated to wear the heart rate monitor in the two weeks prior to the onset 

of this study. Therefore, each horse was mounted with the monitor when in their 

stable for three 15-minute sessions on three different days. Habituation was 

considered as achieved when horses did not show any behavioural stress 

responses whilst wearing the heart rate monitor and when their heart rate during 

habituation fell into the range of horses’ expected resting heart rate (Art and 

Lekeux, 1993).  

 

Figure 2.2 Top: mounted heart rate monitor. The chest belt was positioned so that the 
sensor reached from below the left withers to above the sternum. The fur of this horse 
was clipped under the sensor area. The monitor was platted into the horse’s tail. Bottom: 
heart rate monitoring in the field. The focal individual (right) is wearing the Polar® heart 
rate monitor. Here the horse was captured initiating a sniff with one of its field companions. 
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For the purpose of this study, the horses were brought to their field after they were 

mounted with the heart rate monitors, where they were able to move and interact 

freely. This made it possible to record cardiac activity during spontaneously 

occurring social interactions (Figure 2.2, bottom). The horses’ behaviour was 

video recorded (Canon® LEGRIA HF R56). Thereby, the horses with a heart rate 

monitor were focal individuals during the observation. When in the field, the 

observer (D.V.H) maintained approximately ten to 20 meters distance to the focal 

horses. If horses spread out, the observer aimed at keeping as many focal 

individuals in view as possible. In the case that a focal horse moved out of view, 

extra observation time was added at the end, where the observer specifically 

followed these horses for the respective duration of their absence. Depending on 

the day's husbandry routines, recordings were conducted between 15:00 and 

20:00 hours and lasted between one and three hours. Recordings were only 

conducted when all horses of the group were in the field. In addition to these 

recordings, all social interactions that were recorded during the experiments in 

Chapter 3 and Chapter 4 were added to the data set.  

2.2.4 Study sample and exclusion criteria 

Heart rate and behavioural recordings were obtained from nine horses at 

Stable A and six horses at Stable B (total N = 15). Based on ethical 

considerations, two mares in Stable A were not used as focal individuals as they 

showed a great stress response and aggressive behaviour when handled by 

humans. Furthermore, two mares in Stable B could not be used as focal 

individuals. Due to their thick adipose layer, no reliable heart rate signal could be 

obtained. However, these horses were represented as interaction partners in the 

analysis. 

2.2.5 Data processing 

2.2.5.1 Behaviour 

Behaviour from the video recordings was coded using the Solomon® 

Coder version beta 16.06.26 (© András Péter, https://solomon.andraspeter.com). 

Thereby, the coder (D.V.H) was not blind to the test conditions as the three studies 

presented in this thesis involved working with identified focal horses. To mitigate 

this circumstance, the following actions were taken: (1) videos were randomly 
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chosen across the three data sets presented in Chapters 2, 3, and 4 of this thesis, 

and across the different experimental test conditions. (2) All videos were coded 

twice to double-check the behavioural codes. (3) Intracoder reliability was 

calculated to assess whether the coder reliably detected behavioural categories. 

Therefore, six videos from the novel object test (Chapter 4) were coded twice, 

and the output was compared. These videos were chosen as they comprised all 

behaviours analysed in this thesis, including locomotion (standing, walking, trot, 

canter), maintenance behaviour (drinking, grazing, urinating, defecating, sniff 

floor, body shake), stress-related behaviours (flight, back, startle, alert, snort, 

yawn), exploratory behaviour towards the novel object (calm approach, alert 

approach, different distances to the object, investigation, exploration), agonistic, 

and affiliative interactions between the horses (head threat 1, head threat 2, bite, 

nip, kick threat, kick, push, displace, retreat, mutual grooming, sniff, touching, rub 

head), and spatial proximity in horse-lengths. The comparison revealed high 

intracoder reliability (Pearson’s product-moment correlation: t = 186.52, df = 462, 

p < 0.001, r = 0.99; Figure 2.3).  

 

Figure 2.3 Intracoder reliability. The frequency and duration of the first coding session's different 
behaviours plotted against the frequency and duration of the same behaviours of the repeated 
second coding session. The coded frequencies and durations were highly correlated (r = 0.99) 
between the two coding sessions. 

Lastly, (4) only behaviours that were clearly identifiable were included in 

further analyses to ensure the accuracy of the behavioural data. The analysis 

presented in Chapter 2 focused on affiliative and agonistic interactions and 

behaviours such as grazing, standing, walking, trotting, and cantering. The 

recorded behaviours are described in the subsequent ethogram (Table 2.3). As 

the behaviours were time-matched with heart rate data on a second-to-second 

basis, they were coded as duration.
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Table 2.3 Ethogram of social interactions and comparative behaviours. The table shows social interactions (affiliative, agonistic, and submissive), locomotion, 
and other behaviours used to code the behavioural records of horses during turnout. All behaviours were coded as duration. 

Behavioural 
Category 

Behaviour Definition Source 

Affiliative 
interactions  

Mutual 
grooming 

Horses, mostly in antiparallel stand, scratch the other horse along its neck or back using their teeth. (Kimura, 1998) 

Touch Horse rests its nose or chin on any body part of the other horse or briefly touching the other horse with its chin or a nostril. (Feh, 2005; Jørgensen et al., 2009) 

Rub head Horse rubs his head on any body part of the other horses. (Feh, 2005; Jørgensen et al., 2009) 

Sniff Olfactory investigation nose to nose or nose to body. (Feh, 2005; Jørgensen et al., 2009) 

Agonistic 
interactions 

Head 
threat 1 

Horse swings its head with pinned ears, sometimes narrowed nostrils towards the target, but does not move towards it.  
(Heitor, do Mar Oom and Vicente, 
2006a) 

Head 
threat 2 

"Horse moves in the direction of the target with its head lowered and ears pinned, neck stretched or extended toward the 
target". 

(McDonnell and Haviland, 1995) 

Nip "Similar to bite, but with the mouth less widely opened and the teeth closing on only a small piece of flesh." (McDonnell and Haviland, 1995) 

Bite "Opening and rapidly closing the jaws with the teeth grasping the flesh of another" horse. (McDonnell and Haviland, 1995) 

Kick threat 
Horse presents hindquarters towards the other horse or lifts one hind leg towards the other horse "but without sufficient 
extension or force to make contact with the target". 

(McDonnell and Haviland, 1995) 

Kick  "One or both hind legs lift off the ground and rapidly extend backwards towards another" horse.  (McDonnell and Haviland, 1995) 

Attack 
Horse moves with flattened ears in trot or canter towards another horse, with the intention to bite (opened mouth) or kick 
(hindquarters move towards the other horse). 

 (“chase” in Jørgensen et al., 2009) 

Fight  
Including behaviours such as circling, rearing up, boxing, dancing, kneeling, and all forms of bodily contact like grasps, 
head bumps. 

(McDonnell and Haviland, 1995) 

Submission Retreat 
"Movement that maintains or increases an individual's distance from an approaching and threatening horse. The head is 
usually held low and ears turned back". 

(McDonnell and Haviland, 1995) 

Locomotion 

Standing Horse stands or stand rests with a bent hind leg.  (Malmkvist et al., 2012) 

Walking 
The horse moves in a slow four-beat pace, moving a front leg of a side forward, then the hindquarters of the same side and then 
moving the front leg of the other side, followed by the forward motion of the hind leg of the other side. 

(Zeitler-Feicht, 2008) 

Trotting 
The horse moves in a faster two-beat pace, moving the diagonal front and hind leg forward at the same time, followed by a short 
suspension phase before the other diagonal limbs are moved forward. 

(Zeitler-Feicht, 2008) 

Cantering 
The horse moves in a fast three-beat pace. In the first beat, the horse bares all its weight on a hind leg. The other hind leg and its 
respective diagonal foreleg take over the weight in the second beat, which is shifted then to the remaining foreleg in a third beat. 
After that, the horse pushes off the ground into a suspension phase before the circle starts again. 

(Zeitler-Feicht, 2008) 

Other 
behaviour 

Grazing 
Horse feeds from hay or grass, keeps the head to the ground and moves slowly forward. If the horse briefly lifted its head  
(≤ 5 seconds) and continued chewing, it was also coded as grazing.  

(Bulens et al., 2015) 

Drinking Horse drinks from the water bucket or trough. (Bulens et al., 2015) 

Urinating Elimination of urine. (McDonnell and Haviland, 1995) 

Defecating Elimination of faeces. (Malmkvist et al., 2012) 
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2.2.5.2 Heart rate 

The horses' heart rate was calculated from the raw interbeat interval data 

output provided by the Polar® monitor and obtained via the Polar® Flow software. 

To eliminate erroneous values that can occur due to a loss of contact between 

the sensor and the horses’ body surface (Giles, Draper and Neil, 2016), all data 

were visually inspected. Heart rate values outside of the physiological range of 

horses (Arnold, Ruf and Kuntz, 2006) were deleted. Moreover, data points where 

the data line's overall pattern was punctually disrupted were also deleted 

(Schöberl et al., 2015). As horses’ heart rates can be higher than 60 beats per 

minute (bpm), the heart rate records can contain more than one heart rate value 

per second. Consequently, the heart rate was averaged per second after the error 

correction was completed. Thereafter, the heart rate and behavioural recordings 

were matched by merging the timestamps of the heart rate recording with the 

timestamp of the video recordings on a second-to-second basis. 

To assess the impact of social interactions on cardiac activity, heart rates 

were averaged for the duration of the interaction (subsequently referred to as 

‘during’) as well as ten seconds prior to the interaction (subsequently referred to 

as ‘pre’) and ten seconds after the interaction (subsequently referred to as ‘post’). 

The timeframe of ten seconds pre and post-interaction was chosen as a trade-off 

between capturing the immediate sympathetic response to the interaction and 

preventing movement of subsequent behaviour to impact the heart rate record 

(Briefer, Oxley and McElligott, 2015; Reefmann, Wechsler and Gygax, 2009; 

Safryghin, Hebesberger and Wascher, 2019; Figure 2.4).  

 
 

Figure 2.4 Timeframes for calculating mean heart rate for each interaction: pre (ten 
seconds), during (whole duration), and post (ten seconds) interaction. 

 

If horses engaged in repeated interactions of the same type during an 

observation session, the respective values for pre, during, and post were 

averaged to prevent pseudoreplication (Martin and Bateson, 2009). This resulted 

in a mean heart rate value for each horse and observation day for pre, during, and 
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post each interaction type. As heart rate maxima were very variable, the analysis 

conservatively focused on mean heart rate only.  

In total, 1172 (703 initiated, 469 received) time-matched behavioural and 

physiological records of social interactions were obtained. However, not all horses 

initiated or received all types of interactions (Table 2.4). The most prevalent 

interactions were head threats 1 and 2, accounting for ~32 per cent of initiated 

and 45 per cent of received interactions. This was followed by rubbing their heads 

(~14 per cent of initiated and 21 per cent of received interactions). Mutual 

grooming was the least frequent affiliative interaction, followed by touches. 

Attacks were the least occurring interaction, accounting only for 0.7 per cent of 

initiated and ~1 per cent of received interactions. 

Table 2.4 Total number of social interactions summed across Stable A and B for initiators 
and receivers, in absolute numbers and in per cent (%). The number of horses contributing 
to each behaviour is given in column n.  

 
Type Interaction 

Initiated  
n 

Received  
n 

Absolute % Absolute % 

 
 
Affiliative 

Sniff 85 12 14 27 5.8 7 

Touch 53 7.5 10 50 10.6 8 

Rub head 102 14.5 7 99 21 9 

Grooming  37 5.3 8    

 
 
 
Agonistic 

Head threat 1 87 12.4 13 85 18 13 

Head threat 2 140 20 14 128 27 13 

Attack 5 0.7 3 7 1.5 5 

Kick threat 14 2 9 27 5.8 8 

Bite threat 10 1.4 6 10 2 6 

Bites 13 1.8 6 9 2 5 

Nip  34 4.8 9 27 5.8 10 

Submissive Retreat 123 17.5 12    

 Total 703  469  

 

Heart rate was averaged for behaviours such as grazing and locomotion 

to allow a comparison between heart rate during interactions and behaviour of 

similar physical activity (e.g., standing without interacting and standing when 

mutually grooming). For locomotion, it was recorded whether it occurred in the 

context of agonistic or affiliative interactions and retreat, or in a context that was 

not tied to a social interaction (e.g., when moving from one feeding site to another, 

standing when resting).  
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2.2.6 Statistical analysis 

Analyses were carried out using RStudio (Version 1.1.463) in R (Version 

3.5.1) (R Core Team, 2019). Normality tests were conducted on all variables using 

Shapiro-Wilk tests. For variables that were not normally distributed, 

nonparametric tests were applied. The alpha level was set at 0.05, and test results 

are given two-tailed. Effect sizes were calculated for significant results based on 

the z-statistic (Friedman tests and Wilcoxon signed-rank tests) using the following 

equation: 𝑟 =  𝑧 √𝑛⁄  (Rosenthal, 1991). 

Wilcoxon signed-rank tests were conducted to determine whether the 

heart rate of interactions with a comparable biological function such as different 

types of threats (i.e., head threats, kick threats), or interactions that resulted in 

physical contact (i.e., nips and bites) was similar and could be pooled for the main 

analysis.  

The effects of social interaction on heart rate were assessed by comparing 

mean heart rate between pre, during, and post interactions for initiators and 

receivers, respectively, using Friedman tests (pgirmess, Giraudoux, 2018). Post 

hoc analyses were carried out with Nemenyi multiple comparison tests 

(PMCMRPlus, Pohlert, 2020). To assess differences in the horses’ heart rate 

between initiating and receiving interactions Wilcoxon signed-rank tests were 

conducted. Therefore, mean heart rate pre, during, and post interactions were 

compared when horses initiated or received interactions.  

The emotional component of social interactions was assessed by 

comparing the heart rate during the interactions with the heart rate of behaviours 

where the horse showed the same level of physical activity but when they were 

not involved in a social interaction. For this analysis Friedman tests and Nemenyi 

multiple comparison tests were conducted. 

Linear mixed-effects models (LMMs; Table 2.5) were conducted to explore 

whether bond strength and rank relationships affected the mean heart rate. Mean 

heart rate during and post threats (pooling all threat types) as well as during and 

post short affiliative behaviours (sniffs, touches, rubbing head) were set as 

response variables. These behaviours were selected as they were the most 

frequent and performed by most horses. Mean heart rate during grooming was 

set as response variable in an additional model and analysed separately from the 

other affiliative behaviours as it is a mutual behaviour and longer in duration. The 
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Dyadic Composite Sociality Index (DSI) and the difference in David Score (DSDiff) 

were set as fixed effects. To account for repeated measures from the same 

horses, the individual identity was set as a random effect (Zuur et al., 2009; Table 

2.5).  

Table 2.5 Response variables, fixed, and random effects of the linear mixed-effects 
models. The response variables were set to the mean heart rate during and after initiating 
and receiving threats (Models 1-4), the mean heart rate during and after initiating and 
receiving short affiliative interactions (Models 5-8), and the horses mean heart rate during 
mutual grooming (Model 9). The Dyadic Composite Sociality index (DSI) and the 
Difference in David Score (DSDiff) were set as fixed effects. To account for repeated 
measures, the individual ID was set as random effect.  

  Response variables Fixed effects Random effect 

Model 1 

Threats 

Initiating mean heart rate, during  

Dyadic 
Composite 

Sociality Index 
(DSI),  

Difference in 
David Score 

(DSDiff) 

Individual ID 

Model 2 Initiator mean heart rate, post  

Model 3 Receiver mean heart rate, during  

Model 4 Receiver mean heart rate, post  

Model 5 

Short 
affiliative 

Initiator mean heart rate, during  

Model 6 Initiator mean heart rate, post  

Model 7 Receiver mean heart rate, during  

Model 8 Receiver mean heart rate, post  

Model 9 Groom Both horses' mean heart rate, during 

 

LMMs were carried out using the ‘lmer’ function in the ‘lme4’ package 

(Bates et al., 2015). Outliers in the response variable were assessed via 

Cleveland dot plots (Zuur et al., 2009). Collinearity between explanatory variables 

was visually assessed using pairwise scatterplots (Zuur et al., 2009) and tested 

using the ‘vif’ function in the ‘car’ package (Fox and Wisberg, 2011). Vif’s of the 

fixed effects ranged between 1.007 and 1.047 and were below the suggested 

threshold of 2 (Zuur, Ieno and Elphick, 2010). Consequently, no variable had to 

be dropped due to collinearity. Normal distribution of residuals was visually 

assessed using the ‘autoplot’ function in the ‘ggplot’ package (Wickham, 2016). 

Moreover, Cook’s distances were computed to determine influential data points. 

Therefore, the ‘stats’ package was used (R Core Team, 2019). As all data points 

had a Cook’s distance below 1 (range: 0.0 – 0.97) (Field, Miles and Field, 2012), 

no data point had to be dropped from the models. To assess the overall model fit, 

R2-values were obtained via the ‘r2beta’ function in the ‘r2glmm’ package (Jaeger, 

2017). Thereby, the method was set to ‘nsj’ to calculate marginal R2 (variation 

explained by fixed effects) and conditional R2 (variation explained by the full 
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model) as proposed by Nakagawa and Schielzeth (2013). Full models are 

presented in the results section. 

 

2.2.7 Ethical statement 

The experimental procedure was approved by the Departmental Research 

Ethics Panel under the terms of Anglia Ruskin University’s Research Ethics Policy 

(reference number: A & EB DREP 17-029 and 17-053) and followed the ethics 

guidelines for the study of animal behaviour provided by the Association for the 

Study of Animal Behaviour (ASAB, 2020). All applied methods were non-invasive. 

Two horses were excluded from the study due to ethical considerations, see 

section 2.2.4, page 46. Consent for all procedures was sought from horse and 

stable owners. 
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2.3 Results 

2.3.1 Initial analysis and data pooling 

The initial analyses showed that the mean heart rates differed between 

Head threat 1 and Head threat 2 (Wilcoxon signed-rank tests: p < 0.05; Table 2.6). 

Therefore, Head threat 1 was kept as a separate behavioural category. The mean 

heart rates corresponding to Head threat 2, Bite threat, and Kick threat did not 

differ (Wilcoxon signed-rank tests: p > 0.05; Table 2.6). Consequently, these heart 

rate data were pooled under the category ‘Threat 2’. Similarly, the mean heart 

rate between Bite and Nip did not differ and was pooled under the category ‘Bite’ 

(Wilcoxon signed-rank tests: p > 0.05, Table 2.6).  

Table 2.6 Comparison of mean heart rate corresponding to agonistic interactions. Results 
of Wilcoxon signed-rank tests are provided for initiators and receivers, showing the 
pairwise comparisons of mean heart rate before (pre), during, and after (post) the different 
types of agonistic interactions. The mean heart rate for receiving Nips and Bites was not 
compared as no horse performed both behaviours. The respective sample size is given 
in column n. Significant results are marked in bold. 

Role  Compared behaviours n Phase Results 

Initiator 

Head threat 1 - Head threat 2 13 pre V = 0, p < 0.001 

  during V = 2, p = 0.094 

  post V = 1, p = 0.002 

Head threat 1 - Bite threat 
  
  

5 
 
  

pre V = 3, p = 0.156 

during V = 2, p = 0.75 

post V = 6, p = 0.813 

Head threat 2 - Kick threat 
  
  

8 
 
  

pre V = 30, p = 0.109 

during V = 7, p = 0.625  

post V = 30, p = 0.109 

Head threat 2 - Bite threat 
  
  

4 
 
  

pre V = 9, p = 0.813 

during V = 12, p = 0.561 

post V = 14, p = 0.125 

Kick threat - Bite threat 
  
  

5 
 
  

pre V = 13, p = 0.188 

during V = 8, p = 0.375 

post V = 0, p = 0.125 

Nip - Bite  
  
  

6 
 
  

pre V = 9, p = 0.844 

during V = 2, p = 0.75 

post V = 17, p = 0.688 

Receiver 

Head threat 1 - Head threat 2 13 pre V = 20, p = 0.080 

  during V = 14, p = 0.641 

  post V = 12, p = 0.017 

Head threat 2 - Kick threat 5 pre V = 22, p = 0.641 
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during V = 14, p = 0.275 

post V = 19, p = 0.945  

Head threat 2 - Bite threat 
  
  

8 
 
  

pre V = 29, p = 0.148 

during V = 9, p = 0.25 

post V = 28, p = 0.195 

Kick threat - Bite threat 
  
  

5 
 
  

pre V = 10, p = 0.625 

during V = 5, p = 0.5 

post V = 6, p = 0.556 

 

The pooled heart rate data for the respective behavioural categories were 

used for the main analysis (Table 2.7). As the data were not normally distributed, 

medians, maxima, minima, and interquartile ranges are given. 

 

Table 2.7 Pooled heart rate data for agonistic interactions. The median (x)̃, maximum 
(Max), minimum (Min), and interquartile range (IQR) of mean heart rate are shown for 
horses initiating or receiving agonistic social interactions. The number (No.) of horses that 
exhibited the behaviour and the number of interactions (IAs) per behavioural category are 
also provided. 
 

Behaviour 
 

Role 
 

Phase x̃ Max Min IQR 
No. 

horses 
No. 
IAs 

Threat 1 

 
Initiator 

pre 46.26 65.51 31.97 7.75  
13 

 
87 during 46.99 70.18 36.56 6.93 

post 46.31 64.89 34.46 6.43 

 
Receiver 

pre 46.33 62.14 34.48 6.32  
13 

 
85 during 47.59 63.69 35.82 6.81 

post 46.69 63.87 33.42 6.71 

Threat 2  

 
Initiator 

pre 48.45 59.45 40.43 4.06  
14 

 
164 during 49.21 56.49 42.71 4.41 

post 48.05 60.30 45.11 4.83 

Receiver 
pre 49.35 58.94 41.35 4.89  

13 
 
175 during 49.63 59041 41.72 6.71 

post 52.39 60.59 44.32 6.29 

Bite 

 
Initiator 

pre 48.09 58.59 36.42 9.62  
10 

 
47 during 46.94 65.50 35.74 7.59 

post 48.20 55.43 41.37 4.02 

 
Receiver 

pre 45.63 60.33 37.62 4.57  
10 

 
36 during 47.30 68.81 40.16 6.90 

post 49.04 76.21 39.27 7.88 

Attack 

 
Initiator 

pre 56.84 57.80 40.37 8.72  
3 

 
5 during 82.62 112.53 52.70 29.91 

post 99.53 127.77 60.44 33.66 

 
Receiver 

pre 51.73 66.24 47.29 5.61  
5 

 
7 during 51.64 89.55 46.66 9.08 

post 65.32 80.80 48.79 17.30 

 

Furthermore, the initial analyses showed that the mean heart rates did not 

differ between the three categories of affiliative interactions, i.e., Sniffs, Touch, 

and Rub head (Wilcoxon signed-rank tests: p > 0.05; Table 2.8).  

Table 2.6 continued. 
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Table 2.8 Comparison of mean heart rate corresponding to affiliative interactions. Results 
of Wilcoxon signed-rank tests are provided for initiators and receivers, showing the 
pairwise comparisons of mean heart rate before (pre), during, and after (post) the different 
types of short affiliative interactions. The respective sample size is given in column n. 

Role  Compared behaviours n Phase Results 

Initiator 

Sniff - Touch 
  
  

10 
  

pre V = 38, p = 0.322 

during V = 20, p = 0.375 

post V = 43, p = 0.131 

Touch - Rub head 
  
  

6 
  

pre V = 10, p = 0.578 

during V = 4, p = 0.219 

post V = 5, p = 0.156 

Sniff - Rub head 
  
  

7 
  

pre V = 17, p = 0.688 

during V = 10, p = 0.625 

post V = 19, p = 0.469 

Receiver 

Sniff - Touch 
  
  

7 
 

pre V = 16, p = 0.813 

during V = 11, p = 0.688 

post V = 13, p = 0.701  

Touch - Rub head 
  
  

6 
 

pre V = 12, p = 0.813  

during V = 11, p = 0.438 

post V = 10, p = 0.238  

Sniff - Rub head 
  
  

7 
  

pre V = 17, p = 0.688 

during V = 9, p = 0.823 

post V = 11, p = 0.686  
 

Consequently, heart rate data were pooled under ‘Short affiliative 

interactions’. Descriptive statistics for mean heart rate during prior, during, and 

post Affiliative interactions are shown in Table 2.9. Mutual grooming was kept 

separate due to its longer duration and as it is a mutual behaviour. 
 

Table 2.9 Heart rate for Short affiliative interactions and Mutual grooming. The median (x)̃, 

maximum (Max), minimum (Min), and interquartile range (IQR) of mean heart rate are 
shown for when horses initiated or received short affiliative interactions and grooming. 
The number (No.) of horses that exhibited the behaviour and the number of interactions 
(IAs) per behavioural category are also provided. 

Behaviour 

 

Role 
 

Phase x̃ Max Min IQR 
No. 

horses 
No. 
IAs 

 
Short 
affiliative 
 

 pre 48.53 55.89 36.58 5.19  
14 

 
240 Initiator during 47.18 59.80 36.51 5.16 

 post 47.31 57.43 37.82 5.34 

 
Receiver 

pre 45.88 50.09 35.83 6.92  
13 

 
176 during 46.82 51.37 29.70 8.94 

post 47.16 51.10 34.36 6.84 

  
Mutual 

pre 43.58 47.99 37.53 6.13  
8 

 
37 Grooming during 41.18 46.95 36.89 4.17 

 post 41.68 49.45 36.26 5.71 
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Subsequently, the main results are shown and presented for each behavioural 

category in the same order: (1) The comparisons of the horses’ heart rate pre, 

during, and post initiating or receiving an interaction. (2) The results of the heart 

rate comparisons between horses initiating or receiving an interaction, and (3) the 

results of the comparisons between heart rates of interactions and that of 

behaviours with similar physical activity.  

2.3.2 Agonistic interactions 

2.3.2.1 Head threat 1 
 

Initiating and receiving a Head threat 1 did not result in a different mean 

heart rate pre, during, and post interaction (Friedman tests: n = 13: initiating:  

X2 = 1.85, df = 2, p = 0.397; receiving: X2 = 1.08, df = 2, p = 0.584). Furthermore, 

comparing mean heart rate between when horses initiated or received a Head 

threat 1, there was also no significant difference pre, during, and post (Wilcoxon 

signed-rank tests: n = 11, pre: V = 32, p = 0.966, during: V = 25, p = 0.519; post: 

V = 26, p = 0.577). Moreover, when comparing mean heart rate pre, during, and 

post initiating and receiving a Head threat 1 to the horses’ mean heart rate during 

Standing, a behaviour of similar physical activity, no difference was found 

(Friedman tests: initiating: n = 13, X2 = 2.1, df = 3, p = 0.552; receiving: n = 13, X2 

= 2.24, df = 3, p = 0.525; Figure 2.5).  

 

Figure 2.5 Mean heart rate for Head threat 1 and Standing. Tukey whiskers plot showing 
mean heart rate in beats per minute (bpm) during initiating (I) and receiving (R) a Head 
threat 1, and Standing. The bold horizontal line indicates the median, the upper and lower 
hinge of the boxplot correspond to the 25 and 75 percentiles, comprising the interquartile 
range (IQR). The outwards pointing whiskers extend to the smallest and largest value at 
most 1.5 * IQR from the hinge. There was no difference between mean heart rate when 
initiating and receiving a Head threat 1 and Standing. 
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2.3.2.2 Threat 2 

The initiation of a Threat 2 was not related to a difference in mean heart 

rate pre, during, and post threat (Friedman test: n = 14, X2 = 1.08, df = 2,  

p = 0.584). However, when horses received a Threat 2 the mean heart rate was 

significantly higher afterwards than before (Friedman test: n = 13, X2 = 7, df = 2, 

p = 0.032; Nemenyi multiple comparison test: pre-dur: p = 0.382, pre-post:  

p = 0.022, r = -0.45, dur-post: p = 0.382; Figure 2.6). Thereby, the horses’ heart 

rate was ~6% higher post than pre. The mean heart rate did not differ between 

initiators and receivers (Wilcoxon signed-rank tests: n = 13, pre: V = 45, p = 1, 

during: V = 33, p = 0.677; post: V = 29, p = 0.273).  

 

Figure 2.6 Mean heart rate corresponding to Threat 2. Tukey whiskers plot showing 
medians of mean heart rate in beats per minute (bpm) for pre, during, and post initiating 
(white) and receiving (grey) threats. The bold horizontal line indicates the median, the 
upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, comprising 
the interquartile range (IQR). The outwards pointing whiskers extend to the smallest and 
largest value at most 1.5 * IQR from the hinge. Data points smaller or greater are indicated 
as single dots. The receivers’ heart rate was ~6% higher post Threat 2 than pre. 
Otherwise, there were no differences. Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 

The comparison between the mean heart rate pre, during, and post 

initiating a Threat 2 with the mean heart rate during Walking, an activity of similar 

physical activity, did not reveal a significant difference (Friedman test: n = 14, 

 X2 = 7.11, df = 3, p = 0.068). There was no difference in mean heart rate pre, 

during, and post receiving a Threat 2 and Walking (Friedman test: n = 13,  

X2 = 4.89, df = 3, p = 0.18). Moreover, there was no difference in heart rate 

between Walking when not interacting, when initiating a Threat 2, or when 

Retreating (Friedman test: n = 9, X2 = 0.889, df = 2, p = 0.641; Table 2.10).  
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Table 2.10 Mean heart rate in beats per minute for Walking when not interacting, when 

initiating a Threat 2, or when Retreating. Given are median (x)̃, maximum (Max), and 

minimum (Min) of mean heart rate, and the interquartile range (IQR). The mean heart rate 
did not differ between the three walking contexts. 

Walking x̃ Max Min IQR 

Not interacting 50.76 58.06 45.74 3.07 

Initiating Threat 2 50.25 54.36 40.66 2.82 

Retreat 52.50 72.03 43.56 8.69 

2.3.2.3 Bites 

Initiating Bites did not correspond to a significant difference in heart rate 

pre, during, and post interaction (Friedman test: n = 10, X2 = 0.2, df = 2, p = 0.905). 

However, when receiving a Bite, the mean heart rate was significantly higher after 

Bites than before (Friedman test: n = 10, X2 = 6.2, df = 2, p = 0.045; Nemenyi 

multiple comparison test: pre-dur: p = 0.644, pre-post: p = 0.037, r = -0.67;  

dur-post: p = 0.261; Figure 2.7). Thereby, the mean heart rate was ~7.5% higher 

post than pre. Comparing horses’ mean heart rate when initiating and receiving 

Bites revealed no significant difference (Wilcoxon signed-rank test: n = 9, pre: V 

= 38, p = 0.074, during: V = 27, p = 0.25, post: V = 26, p = 0.734). 

 

Figure 2.7 Mean heart rate for Bites. Tukey whiskers plot showing medians of mean heart 
rate in beats per minute (bpm) for pre, during, and post initiating (white) and receiving 
(grey) Bites. The bold horizontal line indicates the median, the upper and lower hinge of 
the boxplot correspond to the 25 and 75 percentiles, comprising the interquartile range 
(IQR). The outwards pointing whiskers extend to the smallest and largest value at most 
1.5 * IQR from the hinge. Data points smaller or greater are indicated as single dots. The 
mean heart rate of receivers was ~7.5% higher after a Bite than before. Otherwise, there 
were no significant differences. Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 
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Comparing the mean heart rate pre, during, and post initiating a Bite with the 

mean heart rate during Walking, an activity of similar physical activity, no 

difference was found (Friedman test: n = 10, X2 = 8.67, df = 3, p = 0.315). 

However, for receivers of Bites, the heart rate prior to the Bite was slightly (~5%), 

but significantly lower than during Walking (when not interacting) (Friedman test: 

n = 10, X2 = 8.76, df = 3, p = 0.033; Nemenyi multiple comparison test: pre-walk: 

p = 0.029, r = -0.39, during-walk: p = 0.23, post-walk: p = 0.82) and resembled 

that of Standing (Wilcoxon signed-rank test: n = 10, V = 37, p = 0.764).  
 

2.3.2.4 Attacks 
 

Overall, the highest heart rate was measured during (median: 82.62 bpm, 

IQR: 29.91 bpm) and post (median: 99.53 bpm, IQR: 33.66 bpm) initiating Attacks. 

However, the occurrence of Attacks (0.7% of all initiated interactions) was low. 

Due to the low number of initiated Attacks (n = 3), it was not possible to analyse 

the mean heart rate across attacks for initiators or to compare the mean heart rate 

between initiating and receiving Attacks. Descriptive statistics for heart rate 

modulation corresponding to attacks are shown in Table 2.7 and in Figure 2.8. 

The mean heart rate of receivers was significantly higher (~26%) post attack than 

pre (Friedman test: n = 5, X2 = 6.2, df = 2, p = 0.046; Nemenyi multiple comparison 

test: pre-dur: p = 0.42, pre-post: p = 0.031, r = -0.68, dur-post: p = 0.95).  
 

 

Figure 2.8 Mean heart rate for Attacks. Tukey whiskers plot showing medians of mean 
heart rate in beats per minute (bpm) for pre, during, and post initiating (white) and 
receiving (grey) Attacks. The bold horizontal line indicates the median, the upper and 
lower hinge of the boxplot correspond to the 25 and 75 percentiles, comprising the 
interquartile range (IQR). The outwards pointing whiskers extend to the smallest and 
largest value at most 1.5 * IQR from the hinge. Data points smaller or greater are indicated 
as single dots. The mean heart rate was significantly higher (by ~26%) after receiving an 
Attack than before. Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 
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2.3.3 Short affiliative interactions and Mutual grooming 

2.3.3.1 Pooled Short affiliative interactions 

The mean heart rate did not differ between pre, during, or post Short 

affiliative interactions; for both, the initiators and the receivers (Friedman tests: 

initiators: n = 12, X2 = 4.77, df = 2, p = 0.092; receivers: n = 13, X2 = 0.727, df = 

2, p = 0.695). The role had no effect on the heart rate (Wilcoxon signed-rank tests: 

n = 12, pre: V = 63, p = 0.064, during: V = 33, p = 0.625, post: p = 0.519; Figure 

2.9). 

 

Figure 2.9 Mean heart rate for Short affiliative interactions. Tukey whiskers plot showing 
medians of mean heart rate in beats per minute (bpm) for pre, during, and post initiating 
(white) and receiving (grey) Short affiliative interactions. The bold horizontal line indicates 
the median, the upper and lower hinge of the boxplot correspond to the 25 and 75 
percentiles, comprising the interquartile range (IQR). The outwards pointing whiskers 
extend to the smallest and largest value at most 1.5 * IQR from the hinge. Data points 
smaller or greater are indicated as single dots. There was no significant difference in mean 
heart rate in the course of the interactions or between initiators and receivers. 

 

Horses’ mean heart rate pre, during, and post initiating and receiving Short 

affiliative interactions did not differ from the mean heart rate during Standing, a 

behaviour of similar physical activity (Friedman tests: initiators: n = 12, X2 = 3.7, 

df = 3, p = 0.296; receivers: n = 13, X2 = 1.44, df = 3, p = 0.696).  
 

2.3.3.2 Mutual grooming 

Overall, Mutual grooming corresponded to the lowest heart rate measured 

for all social interactions (median: 41.18 bpm, IQR: 4.17 bpm). The mean heart 

rate pre, during, and post grooming did not differ (Friedman test: n = 8, X2 = 1, df 
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= 2, p = 0.607). The effect of the role was not assessed as grooming is a mutual 

interaction in horses. The results provide evidence that the mean heart rate during 

Grooming was significantly lower (~8%) than during Standing (median: 44.78, 

IQR: 5.06) (Wilcoxon signed-rank test: n = 8, V = 26, p = 0.046, r = -0.53; Figure 

2.10). 

 

Figure 2.10 Mean heart rate during Mutual grooming and Standing. Tukey whiskers plot 
showing medians of mean heart rate in beats per minute (bpm) for Mutual grooming and 
Standing, an activity of similar physical activity. The bold horizontal line indicates the 
median, the upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, 
comprising the interquartile range (IQR). The outwards pointing whiskers extend to the 
smallest and largest value at most 1.5 * IQR from the hinge. The heart rate during Mutual 
grooming was significantly lower than during Standing, an activity of similar physical 
activity. Thereby, the difference in heart rate was ~8%. Asterisks: *** p ≤ 0.001, ** p ≤ 
0.01, * p ≤ 0.05. 

 

2.3.4 Impact of relationship quality between interaction 

partners on heart rate 

2.3.4.1 Agonistic interactions 

The mean heart rate in receivers post Threat (comprising mean heart rates 

for Head threat 1 and pooled Threat 2) was slightly higher, the higher the initiator 

was in rank compared to the receiver (Model 4, LMM: DSDiff Estimate ± SE =  

-0.109 ± 0.05, t = -2.16, p = 0.035), see Table 2.11 and Figure 2.11. The Dyadic 

Composite Sociality Index (DSI) did not affect mean heart rate after receiving a 

threat. Although this result was significant, the effect was small; model 4 

accounted for ~7% of the variation in mean heart rate. Thereby, the Difference in 

David Score (DSDiff) explained 1.7% as indicated by the conditional and marginal 
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R2. Otherwise, the DSDiff and the DSI had no effect on the horses’ mean heart rate 

during and post Threats (Table 2.11).  

 

Figure 2.11 Mean heart rate of receivers post Threat and Difference in David Score (DSDiff). 
The regression line, in dark grey, is based on a simple linear model of mean heart rate in 
beats per minute (bpm) by DSDiff. The standard error of the fit is depicted in light grey. 
Negative values of the DSDiff indicate that the receiving horse was lower in rank than the 
initiator; positive values indicate that the receiver was higher ranked than the initiator. 
There was a small, but significant effect that the heart after receiving a Threat was higher, 
the higher the initiator in rank relative to the receiver.  
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2.3.4.2 Pooled Short affiliative interactions and Mutual grooming 

The mean heart rate of receivers during and post Short affiliative 

interactions was slightly higher the stronger the social bond with the initiator 

(Model 7, LMM: DSI: Estimate ± SE = 1.223 ± 0.35, t = 3.55, p < 0.001; Model 8, 

LMM: DSI: 0.758 ± 2.30, t = -0.59, p = 0.013; Table 2.11 and Figure 2.12). During 

short affiliative interactions, the bond strength accounted for 16% of the variation 

in the heart rate data, post interaction for 8%. The heart rate of initiators during 

and after affiliative interactions was not affected by the DSI or DSDiff (Models 5 – 

6). The heart rate during Mutual grooming was not influenced by the bond strength 

between the grooming partners (Model 9; Table 2.11).  

 

Figure 2.12 Mean heart rate of receivers during and post Affiliative interactions and the 
Dyadic Composite Sociality Index (DSI). The regression line, in dark grey, is based on a 
simple linear model of mean heart rate in beats per minute (bpm) by DSI for during (top) 
and post (bottom) affiliative interactions. The standard error of the fit is depicted in light 
grey. The higher the DSI, the stronger the bond between the interacting horses. There 
was a small, but significant effect, that the horses’ heart rate during and after receiving a 
Short affiliative interaction was higher, the stronger the bond to the initiator.  
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Table 2.11 Results from linear mixed-effects models (LMM). Response variables: mean heart rate during and post initiating and receiving agonistic interactions 
(Models 1-4), short affiliative interactions (Models 5-8), and mutual grooming (Model 9). Explanatory variables: Dyadic Composite Sociality Index (DSI) and the 
Difference in David Score (DSDiff). The individual was set as random effect. Given are model estimates, standard errors (SE), t-statistic (t), and p–values. 
Significant results are marked in bold. The conditional R2-value (R2c.) shows the overall model fit, the marginal R2-value (R2m.) shows the variation explained 
by the fixed effects.  

 
 

 

 

 

 

 
DSI 

 
DSDiff   

IA types  Model Role Response variables R2c. Estimates SE t p R2 m. Estimate SE t p R2m. 

 
 
Threats 

Model 1 
 
Initiator 

Mean heart rate during 0.021 
0.361 0.323 1.115 0.267 

0.01 
0.049 0.047 1.057 0.295 0.011 

Model 2 Mean heart rate post 0.004 
0.158 0.307 0.516 0.607 

0.002 
0.023 0.044 0.532 0.596 0.003 

Model 3 
 
Receiver 

Mean heart rate during 0.031 
-0.43 0.428 -1.005 0.318 

0.069 
-0.068 0.052 -1.289 0.203 0.017 

Model 4 Mean heart rate post 0.069 -0.605 0.409 -1.477 0.142 0.04 -0.109 0.05 -2.16 0.035 0.017 

 
 
Short 
Affiliative 

Model 5 
 
Initiator 

Mean heart rate during 0.021 
0.042 0.387 0.108 0.914 

0.000 
-0.071 0.065 -1.081 0.283 0.021 

Model 6 Mean heart rate post 0.021 
-0.105 0.335 -0.315 0.754 

0.001 
-0.057 0.051 -1.112 0.269 0.019 

Model 7  
Receiver 

Mean heart rate during 0.164 1.223 0.345 3.547 < 0.001 0.163 -0.029 0.044 -0.673 0.504 0.009 

Model 8 Mean heart rate post 0.086 0.758 0.296 -0.588 0.013 0.084 -0.022 0.037 -0.588 0.559 0.006 

Grooming 
Model 9 

Mutual Mean heart rate during 0.006 
-0.129 0.364 -0.357 0.727 

0.005 
-0.009 0.052 -1.164 0.872 0.002 
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2.4 Discussion  

This chapter aimed at assessing whether agonistic and affiliative 

interactions affected SAM-axis activity in domestic horses (Equus caballus). A 

primary assessment was whether cardiac activity during agonistic and affiliative 

interactions depended on the role (initiator, receiver) and the social rank and bond 

relationships between the interacting horses. Furthermore, it was investigated 

whether interactions facilitated emotional arousal or relaxation. For this purpose, 

the heart rate of 15 horses that were predominantly group-housed. was measured 

during social interactions and locomotor activity when ranging freely in their home 

fields.  

2.4.1 Agonistic interactions 

Previous studies have shown that agonistic interactions can be a potent 

stressor for group-living animals (DeVries, Glasper and Detillion, 2003; Wascher 

et al., 2009; Wascher, Arnold and Kotrschal, 2008; Yamanashi et al., 2018). 

Therefore, the prediction was that agonistic interactions among horses would 

correspond to a significantly higher heart rate reflecting a stress response.  

From all recorded interactions, the mean heart rate was the highest during 

attacks. Thereby, the heart rate of receivers increased significantly in response to 

an attack. The cardiac response of initiators was not analysed due to the low 

number of recorded initiated attacks. The graphical representation of the data 

suggested that the mean heart rate could be higher in the initiator than in the 

receiver. Further research is needed to confirm whether this pattern is significant. 

Overall, attacks were the least frequent interaction type recorded. Most 

interactions were of low intensity, comprising threats and less frequently bites. In 

initiators, such interactions had no significant effect on heart rate. In receivers, the 

mean heart rate was higher after a threat or a bite than before. Thereby, the heart 

rate resembled that of walking and reflected their retreat. Overall, the heart rate 

pre, during, and post agonistic interactions resembled the heart rate of the 

physical activity necessary to perform the behaviour, for example, standing or 

walking. This indicates that agonistic interactions did not facilitate an additional 

physiological activity that could indicate emotional arousal (Hall et al., 2018; 

Jansen et al., 2009). These results suggest that agonistic interactions of high 

intensity can significantly increase heart rate in horses. However, as the horses 
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predominantly engaged in low-intensity agonistic interactions, their social 

interactions did not seem to constitute a prevalent stressor.  

The analyses did not reveal a role-dependent difference in heart rate 

during low-intensity agonistic interactions, this applies for both, when horses 

initiated or received such type of interactions. Therefore, the prediction that 

initiators of agonistic interactions would show a higher heart rate than receivers 

was also not confirmed in the context of low-intensity aggression. Whether there 

is a role-dependent difference in the context of attacks needs to be assessed in 

future research. Previous studies have shown that the heart rate of king penguins 

and graylag geese was higher when initiating an attack than when receiving 

attacks (Wascher, Arnold and Kotrschal, 2008; Wascher et al., 2009). During 

high-intensity aggression, the initiator might have a specific motivation that could 

facilitate higher emotional arousal. This could be defending or gaining access to 

a reproductive partner (Viblanc et al., 2012; Wascher et al., 2009). In a domestic 

or captive setting, this could be the defence of resources such as high calory feed 

(Burla et al., 2016; DeVries, Von Keyserlingk and Weary, 2004; Kotrschal, 

Hemetsberger and Dittami, 1993).  

An aspect that could have promoted the prevalence of low-intensity 

aggression was the temporal stability of the horses’ groups. The composition of 

both horse groups had been established at least a year before the data collection. 

Group stability can reduce the rate of agonistic interactions (Christensen et al., 

2011; Fureix et al., 2012; Granquist, Thorhallsdottir and Sigurjonsdottir, 2012; 

Noller et al., 2013). Moreover, it can facilitate social network and rank stability 

which can enhance the certainty and the predictability of potential outcomes of 

social interactions (Abbott et al., 2003; Barrett, Henzi and Lusseau, 2012; Heitor, 

do Mar Oom and Vicente, 2006a). Consequently, group stability can reduce social 

stress as, for example, indicated by lower basal levels of measured 

glucocorticoids (Crockford et al., 2008; Koolhaas et al., 2017; Nuñez et al., 2014; 

Vandeleest et al., 2016). This can reflect an evolutionary adaptive strategy, as 

lower levels of high-intensity aggression cannot just reduce the risk of injuries, but 

also lower the physiological costs of maintaining high-intensity aggression 

(Koolhaas et al., 2017; Romero, Dickens and Cyr, 2009; Viblanc et al., 2012). 

Thus, an environment that facilitates the prevalence of low-intensity aggression 

could reduce the short-term and long-term consequences of social stress.  
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When assessing the effect of rank and bond relationships between the interacting 

horses, the presented analysis showed that the mean heart rate of receivers was 

slightly higher when the initiator’s rank was higher than their own. This finding 

confirms the prediction that the rank difference between the horses affects their 

heart rate. The presented findings resemble findings from previous studies in 

other species. For example, in greylag geese, receiving an attack from a higher-

ranked group member was shown to result in a higher heart rate than an attack 

from a conspecific of a similar rank. This is possibly due to the risk of being 

defeated or reduced controllability for the receivers during the interaction 

(Wascher et al., 2009). Similarly, in rhesus macaques (Macaca mulatta) and 

herring gulls (Larus argentatus), the approach by a higher-ranked conspecific 

facilitated a higher heart rate than an approach by a lower-ranked member of the 

group (Aureli, Preston and de Waal, 1999; Kanwisher et al., 1978). Even 

observing agonistic interactions among higher-ranking geese has been found to 

elicit a higher heart rate in a bystander than when observing lower-ranking 

conspecifics (Wascher, Scheiber and Kotrschal, 2008). This seems to be an 

adaptive response that enables the organism to engage in fight or flight behaviour 

(Cannon, 1929) under conditions of higher social threat; or retreat, in the case of 

low-intensity agonistic interaction (Moberg, 2000).  

However, the bond strength between interacting horses had no effect on 

their heart rate while initiating and receiving threats. Consequently, the prediction 

that a strong bond would provide a buffering effect in the context of agonistic 

interactions was not confirmed. This was surprising, as the opponent's identity, 

such as sex, or kin, has been found to affect heart rate modulation in the context 

of agonistic interactions or approaches (Aureli, Preston and de Waal, 1999; 

Wascher et al., 2009). Taken together, the findings of this study showed that in 

the context of agonistic interaction, it was primarily the horses’ rank relationship, 

but not their bond relationship, that affected their heart rate. However, again, 

these findings apply to low-intensity aggression. Whether they translate to 

contexts of high-intensity aggression needs to be assessed in future studies. 

Close bonds were found to facilitate tolerance in competitive contexts and reduce 

aggression (Asakawa-Haas et al., 2016; Dale et al., 2017; Lehmann and Boesch, 

2009; Ostner and Schülke, 2014). Consequently, social bonds could buffer the 

increased physiological activity necessary to engage in high-intensity aggression.  
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2.4.2 Affiliative interactions 

Based on previous studies that have demonstrated that affiliative 

interactions correspond to a decrease in physiological activity (Aureli, Preston and 

de Waal, 1999; Briefer, Oxley and McElligott, 2015; Laister et al., 2011) the 

prediction was that mutual grooming and short affiliative interactions would 

facilitate a decrease in heart rate. Furthermore, it was predicted that heart rate 

would be lower during affiliative interactions than during standing, a behaviour of 

similar physical activity.  

The presented findings confirmed the first part of the prediction. The heart 

rate was lower during mutual grooming than when standing. This reflects 

experimental findings that have shown that grooming, provided by humans, 

corresponded with a low heart rate (Feh and de Mazières, 1993; Kędzierski et al., 

2017; Lynch et al., 1974; McBride, Hemmings and Robinson, 2004; Normando et 

al., 2006). To my current knowledge, this is the first study that assessed heart rate 

during grooming between two horses. The findings demonstrate that a lower heart 

rate was detectable despite horses performing the behaviour, which included 

more physical activity than when standing and being groomed by a human (Feh 

and de Mazières, 1993; Kędzierski et al., 2017; Lynch et al., 1974; McBride, 

Hemmings and Robinson, 2004; Normando et al., 2006). Previous research has 

shown that slight movements can lead to an increase in heart rate (Major, 1998). 

That the movement during the affiliative behaviour can affect the corresponding 

heart rate was shown in a study on social licking in cattle. Social licking is a 

unidirectional behaviour and facilitated a decrease in heart rate in the receiver but 

not in the initiator, who performed the licking behaviour (Laister et al., 2011). That 

the heart rate in horses was lower than when standing, despite performing the 

grooming behaviour, suggests that mutual grooming facilitates a strong relaxation 

effect. As indicated by the lower heart rate, mutual grooming possibly instils a 

positive emotional state (Baciadonna, Nawroth and McElligott, 2016; Hall et al., 

2018; Lansade et al., 2018; Mendl, Burman and Paul, 2010).  

Another prediction was that heart rate during mutual grooming would be 

lower the stronger the bond between the interacting horses. However, the heart 

rate during grooming was not affected by the bond strength between the horses. 

This contrasts with findings from chimpanzees, where HPA-axis activity during 

grooming was lower, the stronger the bond between the grooming partners (Wittig 
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et al., 2016). A possible explanation for the difference between these findings 

could be that within the sample of horses in this study, the grooming behaviour 

was not strongly correlated with other behaviours that can be indicative for a close 

social bond, such as approaches, following, body contact, and spatial proximity 

(see details about intercorrelations between affiliative behaviours in Appendix A, 

page 225) (Silk, Cheney and Seyfarth, 2013). Based on the biological market 

theory (Noë and Hammerstein, 1994), this could suggest that horses might not 

primarily choose their grooming partners according to the strength of their bond 

but by the value of the provided grooming commodity.  

In contrast to mutual grooming, short affiliative interactions, including 

sniffs, touches, and head rubs, did not significantly affect the heart rate of initiators 

or receivers. Against the prediction, heart rate during affiliative interactions was 

not lower than when standing but not interacting, thus not indicating the predicted 

relaxation effect. The different duration of these interactions may explain this 

discrepancy between the findings on mutual grooming and short affiliative 

interactions. Grooming lasts longer (up to minutes), whilst sniffs, touches or head 

rubs are short interactions (only several seconds). Grooming has been found to 

facilitate the release of oxytocin (Uvnäs-Moberg, 1997a;b). Oxytocin that is 

released during physical contact into the bloodstream can act upon the baroreflex 

and facilitate a decrease in heart rate (Higa et al., 2002; Kanthak et al., 2016; 

Kemp et al., 2012). This can promote relaxation and positively valenced emotion 

(Lansade et al., 2018). In contrast, the other types of affiliative interactions may 

not be long enough to trigger this oxytocin-mediated mechanism.  

Furthermore, it was predicted that the heart rate during affiliative 

interactions would be lower, the stronger the bond between the horses. However, 

surprisingly, the analysis revealed that the heart rate in receivers of affiliative 

interactions followed an, to this prediction, opposite pattern. The analysis revealed 

a small but significant effect that the heart rate after receiving an affiliative 

interaction was slightly higher, the stronger the bond with the initiator. 

Consequently, this finding cannot be explained in the context of the hypothesis 

that affiliative interactions facilitate a decrease in physiological activity. However, 

this finding can potentially be discussed based on the framework for the study of 

animal emotions by Mendl, Burman, and Paul (2010). Within this framework, an 

increased SAM-axis activity can, on the one hand, be indicative of stress, fear, 
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and anxiety, and on the other hand, for positively valenced emotions, such as 

excitement or happiness. Previous studies in sheep (Ovis aries) have shown that 

negative and positive test conditions facilitated an increase in heart rate. In 

comparison with negative test conditions, the heart rate increase during positive 

test conditions was low but significant (Reefmann et al., 2009; Reefmann, 

Wechsler and Gygax, 2009). Interpreting the presented findings from this 

perspective, they could suggest that receiving short affiliative interactions from a 

closely bonded conspecific potentially facilitates positively valenced emotions that 

correspond to a slight increase in heart rate. However, as this effect was small, 

more research is necessary to confirm this argument. 

Taken together, the findings of this study show that mutual grooming and 

short affiliative interactions can affect heart rate in domestic horses. Whilst mutual 

grooming promoted relaxation and a lower SAM-axis activity level, receiving a 

short affiliative interaction with a strongly bonded conspecific induced a slight 

physiological arousal that could indicate positive emotion. This is an interesting 

finding as it could suggest that different types of affiliative interactions might 

trigger different physiological pathways that can link social integration with long-

term health (Cohen and Janicki-Deverts, 2009; Lakey and Orehek, 2011; Snyder-

Mackler et al. 2020; Thoits, 2011). On the one hand, it is proposed that the 

accumulative effect of affiliative interactions and social support in stressful 

situations can benefit the individual as it buffers the elevation of the SAM-axis 

activity or the HPA-axis activity. Consequently, the costs of maintaining a 

physiological stress response are reduced (Cohen and Wills, 1985; Romero, 

Dickens and Cyr, 2009; Snyder-Mackler et al., 2020). Such a mechanism could 

be triggered by grooming behaviour. On the other hand, social integration can 

provide the individual with regular positive experiences and overall wellbeing. This 

can be beneficial and promote long-term health; a mechanism described as the 

‘main effect of social support’ (Cohen and Wills, 1985). A mediator of those main 

effects could be the instalment of positively valenced emotion (Mendl, Burman 

and Paul, 2010) that is generated and updated during repeated affiliative 

interactions with bonded conspecifics (Cohen and Wills, 1985).  
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2.4.3 Implications for equine welfare 

As indicated by the presented findings, agonistic interactions in 

established groups of horses were predominantly of low intensity and had little 

effect on their SAM-axis activity levels. This goes in line with previous studies that 

found that group stability promoted low levels of aggression in horse groups 

(Christensen et al., 2002, 2011; Crockford et al., 2008; Granquist, Thorhallsdottir 

and Sigurjonsdottir, 2012; Jørgensen et al., 2009; Noller et al., 2013; Nuñez et al., 

2014; Vandeleest et al., 2016). This is an important finding, as concerns about 

stress and injuries resulting from agonistic social interactions are used to argue 

against group housing of horses (Fureix et al., 2012; Hartmann, Søndergaard and 

Keeling, 2012).  

Moreover, this study showed that mutual grooming was accompanied by 

a lower heart rate than activities with comparable physical activity, such as 

standing, indicating relaxation and potentially a positively valenced affective state 

(Baciadonna, Nawroth and McElligott, 2016; Lansade et al., 2018). Therefore, the 

findings of this study provide further evidence about the positive effect of mutual 

grooming. Additionally, they revealed that there was a small effect that short 

affiliative interactions such as sniffs, touches, and head rubs facilitated a slightly 

higher heart rate in receivers the stronger their bond to the initiator. This could be 

indicative of a positive emotional state (Reefmann et al., 2009; Reefmann, 

Wechsler and Gygax, 2009). Allowing horses to perform these behaviours is, 

therefore, another step towards positive welfare, by facilitating positive 

experiences rather than just preventing negative ones (Boissy et al., 2007; Dalla 

Costa et al., 2014; Fraser et al., 1997; Hall et al., 2018; Laurijs et al., 2021; Yeates 

and Main, 2008). 

Although these findings represent valuable first insights into domestic 

horses' socio-physiology, they need to be generalised with care. The data 

presented in this study stemmed from established groups of horses and were 

recorded under conditions where they had ad libitum access to grass, water, and 

shelter. However, different situations, such as competition over high caloric food, 

could facilitate higher aggression and SAM-axis activity levels (Beery and Kaufer, 

2015; Kotrschal, Hemetsberger and Dittami, 1993). Moreover, the horses in the 

here presented study sample had enough space to avoid agonistic encounters or 

to retreat. Other studies showed that horses with greater space allowance showed 

the lowest number of aggressive interactions (Jørgensen et al., 2009). Moreover, 
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it was shown that when animals had the opportunity to increase the distance to 

stressors, their physiological arousal was less pronounced (Levine, 2000; 

Moberg, 2000) as it increases the controllability over the situation (Koolhaas et 

al., 2017). Therefore, group-housed domestic horses with less space allowance 

might react differently to agonistic interactions. 

Furthermore, the study sample comprised predominantly ponies and cobs, 

which were found to be overall calmer (Roberts et al., 2016; Sackman and Houpt, 

2019). In experimental studies on social stress in rats, it was found that Wistar 

rats were less responsive to agonistic interactions and social defeat than wild type 

rats (Sgoifo et al., 1999). Therefore, the impact of agonistic interactions on heart 

rate modulation could differ in horses of different breeds and, for example, be 

higher in more temperamental breeds, such as Arabic horses or thoroughbreds 

(Lloyd et al., 2008; Sackman and Houpt, 2019).  

Consequently, the assessment of whether different types of group housing 

systems, the presence of limited resources, differences in space allowance, and 

the horses’ breeds affect heart rate modulation during social interactions can be 

a meaningful next step within equine welfare research.  

 

2.5 Conclusion  

This study aimed at investigating the effect of social interactions on horses’ 

heart rate modulation. Overall, the findings showed that agonistic interactions 

among horses of established groups in a spacious field environment were 

predominantly of low intensity, including threats and bites, which did not facilitate 

a pronounced stress response. The rank between the horses, but not their bond 

relationship, had a slight effect on heart rate during agonistic interactions. 

Furthermore, the data suggest that horses gain a positive effect from engaging in 

mutual grooming and potentially when receiving other affiliative interactions such 

as sniffs, touches, or head rubs. This study provided novel insights into the socio-

physiology of domestic horses. Furthermore, these findings are of relevance for 

equine welfare. Allowing horses to interact with conspecifics in an established 

group context does not necessarily facilitate stress and can contribute to positive 

welfare. However, the presented findings need to be generalised with care, as the 

sample of this study included a small number of different breeds, and the horses 

were kept in spacious fields. Horses of different breeds or under different housing 

conditions might react differently to social interactions. 
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Abstract 

For individuals of gregarious species, separation from their social group 

poses a potential threat and can induce a behavioural and physiological stress 

response. This chapter aimed at assessing whether horse’s behavioural and 

physiological responses to separation were affected by the presence of a closely 

bonded group member of the same sex. Therefore, ten horses were subjected to 

separation trials in three different test conditions: alone, with a highly-preferred 

horse, and with a less-preferred horse of their group. Moreover, it was assessed 

whether the frequency of affiliative interactions or spatial proximity differed 

between highly-preferred and less-preferred horses, and whether interaction rates 

and proximity affected the horses’ heart rate and heart rate variability. Overall, the 

horses’ behavioural and physiological stress response to the separation trials was 

low. The horses’ vigilance was reduced when in the company of another horse, 

independent of their social bond. Furthermore, the rate of short affiliative 

interactions (sniff, touches, rub head), mutual grooming, and spatial proximity did 

not differ between highly-preferred or less-preferred horses during the separation 

trials. The frequency of short affiliative interactions, such as sniffs, touches, and 

head rubs, and spatial proximity did not affect heart rate or heart rate variability. 

However, heart rate variability (RMSSD) was higher, the higher the grooming 

duration. This effect was independent of the horses' social preference. Lastly, the 

findings revealed that although the horses’ cardiac activity did not differ between 

the three test conditions, they were more vigilant when isolated alone. These 

findings did not support the idea that horses benefitted from a bond-dependent 

buffering effect when separated from their group. On the contrary, under low-

stress conditions, they showed a generalised response towards highly-preferred 

and less-preferred separation partners. This generalised behaviour could be an 

adaptive strategy for prey species. Moreover, the findings suggest that the 

grooming duration can correspond to a shift to parasympathetic control of the 

horses’ heart rate, indicating a relaxation effect. These results are also of 

relevance to equine welfare. Providing horses with the company of any familiar 

horse during a short-term separation can be of benefit, indicated by reduced 

vigilance and non-bond dependent interaction and proximity patterns. 

Keywords: Social buffering, social support, heart rate, heart rate variability, 

proximity, affiliative interactions.  



Chapter 3 – Isolation and separation 

77 

 

3.1 Introduction 

Isolation and separation from conspecifics, or their social units, are known 

to be a potent source of stress among animals (Boissy and Le Neindre, 1997; 

Ferland and Schrader, 2011; Grippo et al., 2007; Hennessy, 1997; Jones and 

Williams, 1992; Lansade, Bouissou and Erhard, 2008a; Ludwig et al., 2017; 

McNeal et al., 2014; Rault, Boissy and Boivin, 2011; Tuber et al., 1996). This is 

especially the case for prey species, as isolation or separation from their group 

can increase predation risk (Boyd and Keiper, 2005; Feh, Boldsukh and Tourenq, 

1994). The terms isolation and separation are used flexibly in the literature to refer 

to different experimental procedures. Both terms are used to describe scenarios 

in which animals are taken from their group alone or with conspecifics, or 

scenarios where animals remain behind whilst their social group is removed 

(Hennessy, 1997; compare operational definitions: (Hartmann, Christensen and 

Keeling, 2011; Lansade, Bouissou and Erhard, 2008a; Pollard and Littlejohn, 

1995). Consequently, it seems necessary to first determine the use of both terms 

in the context of this study. Following previous definitions, situations or 

experiments where single individuals were taken from their group will be referred 

to as ‘isolation’ and to situations and experiments where more than one animal 

was taken together from their social group as ‘separation’ (McNeal et al., 2014; 

Rault, Boissy and Boivin, 2011).  

Isolation was found to facilitate a behavioural and physiological stress 

response. Behaviourally, isolated animals can respond with increased vigilance 

(Ludwig et al., 2017), with increased locomotion (Boissy and Le Neindre, 1997; 

Pollard and Littlejohn, 1995; Reid et al., 2017; Tuber et al., 1996), agitation (Ali, 

Gutwein and Heleski, 2016; Boissy and Le Neindre, 1997), immobility (McNeal et 

al., 2014), decreased food intake (Izadi et al., 2018), and vocalisations (Bolt et al., 

2017; Hopster, O’Connell and Blokhuis, 1995; Lansade, Bouissou and Erhard, 

2008a; Pérez-Torres et al., 2016). On a physiological level, animals can respond 

with an increase in sympathetic-adrenal-medullary axis (SAM-axis) activity, 

indicated by a higher heart rate and lower heart rate variability (Boissy and Le 

Neindre, 1997; Erber et al., 2012; McNeal et al., 2014; Pollard and Littlejohn, 

1995) and an increase in hypothalamic-adrenal-pituitary axis (HPA-axis) activity, 

indicated by an increased release of glucocorticoids (Hennessy, 1997; Ludwig et 
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al., 2017; McNeal et al., 2014; Remage-Healey, Adkins-Regan and Romero, 

2003).  

The behavioural and physiological response to isolation from conspecifics 

can depend on an individuals’ personality, whereby more sociable and more 

fearful individuals have been found to react with a stronger stress response 

(Lansade, Bouissou and Erhard, 2008a; Pérez Manrique et al., 2019; Reefmann, 

Wechsler and Gygax, 2009). However, an animal’s stress response to isolation 

can also depend on social factors. Firstly, the stress response has been stronger 

when animals were isolated from an attached or strongly bonded conspecific, for 

example, from a mother or an offspring, or a bonded pair partner (Hennessy, 

1997). Secondly, it has been found that the presence of one or more conspecifics 

during the separation from the social group can buffer the individual’s stress 

response. Alpacas’ (Lama pacos) and Marmoset monkeys’ (Callithrix jacchus) 

behavioural and physiological stress responses were less pronounced during 

separation from their groups when they were in the company of a familiar 

conspecific (Pereira and Barros, 2021; Pollard and Littlejohn, 1995). Similarly, 

lambs (Ovis aries) reacted less strongly to separation from their social group if 

one or more familiar peers were present (Rault, Boissy and Boivin, 2011). 

Furthermore, the separation from a bonded pair partner did not elicit a significant 

stress response on SAM-axis and HPA-axis activity levels when the individuals 

remained within their social unit or when they were group-housed during the 

separation period (Greylag geese, Anser anser: Ludwig et al., 2017; Prairie voles, 

Microtus ochrogaster: McNeal et al., 2014). Similarly, in the context of weaning, it 

was found that foals of domestic horses (Equus caballus) and calves (Bos taurus) 

showed a less pronounced behavioural and physiological stress response when 

housed with other young conspecifics than when housed alone (Bolt et al., 2017; 

Erber et al., 2012). Taken together, these findings show that individuals can gain 

social support and a buffering effect of their stress response during periods of 

separation when familiar conspecifics are present. 

Despite the evidence for social buffering effects during separation, there 

is little information about whether the relationship quality between the test subject 

and its separation partner influences such buffering effects. Group-living animals 

engage in differentiated relationships with their group members, such as social 

bonds, which are characterised by a preference towards specific members of the 
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individual’s social unit indicated by a high rate of affiliative interactions and 

frequent spatial proximity (Silk, Cheney and Seyfarth, 2013). Bonding partners 

can be parents (Kulik, Langos and Widdig, 2016; Mendoza and Mason, 1986; 

Ziegler and Crockford, 2017), related conspecifics such as (half) sisters or 

brothers (Cheney, Silk and Seyfarth, 2016; McFarland et al., 2017; Silk et al., 

2009; Silk, Seyfarth and Cheney, 2012, 2018), or unrelated individuals of the 

same or opposite sex (Seyfarth, Silk and Cheney, 2012; Ziegler and Crockford, 

2017).  

Previous studies have found evidence that individuals can benefit from a 

bond-specific buffering effect during separation. One study had shown that the 

presence of titi monkey fathers (Callicebus donacophilus) buffered their 

offspring’s stress response when they were separated from their mothers. In this 

species, fathers are strongly involved in the caretaking of the young and form a 

close bond with their offspring (Mendoza and Mason, 1986). Studies that 

combined social separation with the placement of the separated animals in a 

novel environment have shown that the presence of familiar conspecifics reduced 

the animals’ stress response. This effect was stronger when the separated 

animals were closely bonded (Hennessy et al., 2006; Hennessy, Zate and Maken, 

2008; Kaiser et al., 2003). Therefore, the behavioural and physiological response 

to separation from the social group might not only depend on the bonds that are 

disrupted, but also on the bonds between the study-subject and its support 

provider.  

Based on experiments that combined separation and novelty exposure 

with the assessment of bond-dependent buffering effects, it was not possible to 

differentiate between the stress response induced by the separation or by the 

novel environment (Hennessy, 1997). Consequently, it is not fully understood to 

what extent the presence of a closely bonded conspecific buffers the behavioural 

and physiological response to separation from the social group. Furthermore, the 

named studies focused on buffering effects provided by mothers or bonded pair 

partners (e.g., Hennessy et al., 2006; Kaiser et al., 2003). However, some species 

have evolved to form close bonds among unrelated conspecifics of the same sex, 

such as chimpanzees (Lehmann and Boesch, 2009), Barbary macaques (Young 

et al., 2014a), and horses (Cameron, Setsaas and Linklater, 2009; Feh, 1999). 

Whether bonds among unrelated individuals, specifically of the same sex, also 

provide individuals with social buffering is not well understood. Investigating social 
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buffering among such bond-partners can provide insight into whether such bonds 

provide individuals with benefits regarding the alleviation of their physiological 

stress response (Young et al., 2014a). Such research can enhance the 

understanding of the probable benefits of such bond formations on a mechanistic 

level (Tinbergen, 1963) and can, in the wider research context, provide more 

insight into why such bonds have evolved (Seyfarth and Cheney, 2012). 

Additionally, an experimental separation from the group can serve the 

purpose to investigate the mechanisms that can facilitate bond-specific buffering 

effects. Under stressful situations, some species have been found to show 

consolation behaviour, i.e., by prolonged body contact or affiliative interactions 

during or following a stressor, such as pawing and grooming (as reviewed in 

Kiyokawa et al., 2013; Prairie voles, Microtus ochrogaster: Burkett et al., 2016; 

Horses, Equus caballus: Cozzi et al., 2010; Chicken, Gallus gallus domesticus 

Edgar et al., 2015; Assamese macaques, Macaca assamensis: Fürtbauer et al., 

2014; Rats, Rattus norvegicus: Kiyokawa, Li and Takeuchi, 2019; Bald ibis, 

Geronticus eremita: Puehringer-Sturmayr et al., 2018). The familiarity or 

relationship quality between the animals can affect these behaviours. Beery et al. 

(2020) and Burkett et al. (2016) described that prairie voles provided consolation 

behaviour to familiar conspecifics such as cage mates, siblings, and pair partners, 

but not to strangers.  

The suggested underlying physiological mechanism that links affiliative 

consolation behaviour and the buffering of the stress response is a release of 

oxytocin into the brain and bloodstream upon physical contact with conspecifics, 

especially when they are closely bonded (Uvnäs-Moberg, 1997a;b). Oxytocin 

inhibits hormones of the HPA-axis that mediate the stress response (Hostinar, 

Sullivan and Gunnar, 2014). Furthermore, oxytocin can act upon the baroreflex, 

facilitating a decreased heart rate and increased heart rate variability (Higa et al., 

2002; Kanthak et al., 2016; Kemp et al., 2012). Additionally, it was found that 

grooming elicits the release of opioids and dopamine in the brain (reviewed in 

VanDierendonck and Spruijt, 2012), which both mediate gratification and thus can 

facilitate a positive affective state (Kremer et al., 2020; Lansade et al., 2018; 

Mendl, Burman and Paul, 2010; Panksepp, 2005).  

However, Kiyokawa et al. (2009, 2013) have found that physical contact 

is not always necessary to facilitate social buffering effects. Already the presence 
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or spatial proximity to a conspecific either during or after exposure to a stressor 

effectively buffered the stress response in rats (Rattus norvegicus). This was 

possibly mediated by an altered perception and appraisal of a potentially stressful 

situation (Cohen and Wills, 1985; Hostinar, Sullivan and Gunnar, 2014; Moberg, 

2000). This altered perception can lead to a suppression of the fear-related 

activation of the amygdala (Fuzzo et al., 2015) and as a consequence, the 

physiological stress response can be buffered (Hostinar, Sullivan and Gunnar, 

2014; Sanders and Shekhar, 1991; Young and Leaton, 1996;). Similar to affiliative 

interactions, spatial proximity between conspecifics during a stressful situation 

can depend on their relationship quality. Seeking proximity during or after a 

stressor is a functional trait of the attachment system and promotes a reduction 

of fear and the stress response (Bowlby, 1969). Proximity seeking has been 

initially described for mothers or caregivers and their infants (Bowlby, 1969) and 

also later between pair partners (Dewitte et al., 2008). Initially, it was argued that 

a strong attachment bond, such as between a mother and her offspring, is a 

necessary prerequisite for proximity seeking (Bowlby, 1969; Cassidy and Shaver, 

1999; Hay, 1980; Mikulincer and Shaver, 2003). However, later studies found that 

proximity seeking can occur across species, for example, between dogs (Canis 

lupus familiaris) and their owners (Gácsi et al., 2001; Solomon et al., 2019; Tuber 

et al., 1996). Furthermore, ravens (Corvus corax) spent more time sitting in close 

proximity to related flock members than to non-related conspecifics (Stöwe and 

Kotrschal, 2007), suggesting that bonds among kin also facilitate proximity 

seeking. These findings indicate that strong bonds can also facilitate proximity 

seeking; or that besides mother-offspring bonds, other bonds also have 

attachment qualities. Assessing whether closely bonded individuals of the same 

sex engage in affiliative behaviours or seek proximity to facilitate social buffering 

can provide further evidence whether such behaviours promote social buffering 

outside the attachment bond between mother and offspring or pair partners 

(Bowlby, 1969; Dewitte et al., 2008).  

Horses are an ideal species to investigate bond-dependant social 

buffering. They are highly gregarious group-living herbivores (Boyd and Keiper, 

2005; Gersick and Rubenstein, 2017; Khalil and Kaseda, 1998; Linklater et al., 

1999). They are among the few species that form close social bonds between 

unrelated conspecifics and between individuals of the same sex (Cameron, 
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Setsaas and Linklater, 2009; Feh, 2005; Linklater et al., 1999; Seyfarth and 

Cheney, 2012).  

Maintaining close proximity with the herd is of immediate importance to 

the horse as a prey species, and other behaviours such as grazing or resting, are 

intermitted to maintain proximity to the group (Hall et al., 2018). Horses show a 

high motivation to re-establish contact with conspecifics (Lansade, Bouissou and 

Erhard, 2008a) and, when restricted, even work to regain access to conspecifics 

(Søndergaard, Jensen and Nicol, 2011). Furthermore, they show consolation 

behaviour towards individuals who receive aggression by increasing affiliative 

interactions (Cozzi et al., 2010). This indicates that horses do utilise affiliative 

interactions to provide social support, a mechanism they might also deploy during 

separation from the herd, and that might affect their physiological activity. 

Isolation has been found to induce stress-related behaviours such as 

increased call rates, vigilance, locomotion, defecation, and an increase in the 

SAM-axis and the HPA-axis activity (Ali, Gutwein and Heleski, 2016; Lansade, 

Bouissou and Erhard, 2008a; Momozawa et al., 2007; Pérez-Torres et al., 2016; 

Reid et al., 2017). Although the response of horses to social isolation was found 

to be stable over time (Lansade, Bouissou and Erhard, 2008a; Pérez Manrique et 

al., 2019), other studies have found that the response can depend on the 

presence of conspecifics. For example, during handling and training following 

separation from their stable-companions, horses were calmer when in the 

company of another horse than when alone (Hartmann, Christensen and Keeling, 

2011). Nonetheless, it is not yet understood whether a closely bonded horse can 

be a more effective support provider during a separation from the horses' stable 

or field companions than a less closely bonded horse. Furthermore, it is unknown 

whether affiliative interactions and spatial proximity between closely bonded 

horses can be mechanisms that facilitate bond-dependent buffering effects. As 

domestic horses are subjected to husbandry or training routines that can require 

separation from their group or stable companions (Burla, Siegwart and Nawroth, 

2018; Esch et al., 2019; Hartmann, Christensen and Keeling, 2011; Lundblad et 

al., 2020), it is relevant to assess whether the presence of a specific member of 

their group can provide them with social support and facilitates a decrease in their 

stress response. Therefore, addressing these open questions can also be 

relevant from an equine welfare perspective (Dalla Costa et al., 2014; Fraser, 

2010).  
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This study investigated social buffering effects on SAM-axis activity level in 

domestic horses (Equus caballus) during a separation from their social group. 

Firstly, it was assessed whether the presence of a closely bonded conspecific 

during separation could buffer the horses' behavioural and physiological stress 

response. Therefore, horses were subjected to one individual isolation as well as 

dyadic separation trials either with a closely bonded or with a less closely bonded 

conspecific within a familiar environment. Moreover, it was assessed whether 

horses showed more affiliative interactions and spent more time in close proximity 

when separated with a closely bonded than with a less closely bonded 

conspecific. Lastly, this study investigated whether affiliative interactions and 

spatial proximity facilitated bond-dependent buffering effects.  

To address these questions, two measures of SAM-axis activity can be 

utilised. Firstly, the horses’ heart rate (HR) which provides information about the 

overall net output of the interaction between the sympathetic and parasympathetic 

branch of the autonomous system. Secondly, heart rate variability (HRV) which 

can be used to assess the balance between the influence of the sympathetic and 

the parasympathetic branch of the autonomous nervous system on heart rate (von 

Borell et al., 2007; Stucke, Große Ruse and Lebelt, 2015). This provides the 

possibility to measure physiological and emotional components of stress (von 

Borell et al., 2007; Hall et al., 2018; Katayama et al., 2016; Reefmann et al., 2009; 

Reefmann, Wechsler and Gygax, 2009; Stucke, Große Ruse and Lebelt, 2015). 

In horses, HRV was found to be highly repeatable (McDuffee et al., 2019). 

Therefore, it constitutes a suitable measure to assess the impact of different 

experimental conditions on the sympathetic and parasympathetic influence on 

cardiac activity in horses. Two measures of HRV are (1) the RMSSD (ms), the 

square root of the mean of the summed squares of differences between 

successive inter-beat intervals. The RMSSD is the primary time domain measure 

and reflects the high-frequency beat-to-beat variation representing vagal 

regulatory activity – thus, RMSSD is lower the higher the stress response of an 

individual (von Borell et al., 2007; Stucke, Große Ruse and Lebelt, 2015). (2) the 

LF/HF-ratio, the ratio between the low (LF) and the high (HF) frequency power, is 

a measure for the sympathovagal balance. The LF represents sympathetic, 

whereas the HF represents vagal activity. Consequently, a higher LF/HF-ratio 



Chapter 3 – Isolation and separation 

84 

 

indicates a shift towards sympathetic control of the heart rate (von Borell et al., 

2007).  

This study addressed the following questions: 

 

1. Does the presence of a closely bonded conspecific of the same sex 

buffer the behavioural and physiological stress response during 

separation from the social group?  

 

Hypothesis A: The presence of a closely bonded horse of the same sex 

facilitates social buffering effects on behavioural and SAM-axis activity levels. 

 

Prediction A1: Horses will show a weaker behavioural stress response 

when separated from the group together with a closely bonded horse than 

with a less closely bonded horse, or when isolated alone. 

 

Prediction A2: Horses will show a lower mean and maximum heart rate 

when separated with a closely bonded horse than with a less closely 

bonded horse, or when isolated alone. 

 

Prediction A3: Horses will show a higher RMSSD and a lower LF/HF-

ratio when separated with a closely bonded horse than with a less closely 

bonded horse, or when isolated alone. 

 

2. Does the occurrence of short affiliative interactions depend on the social 

bond between the horses? 

 

Hypothesis B: The rate of short affiliative interactions and the duration of mutual 

grooming depend on the social bond between the horses.  

 

Prediction B: During separation, the rate of short affiliative interactions 

between closely bonded horses will be higher, and the grooming duration 

longer than between less closely bonded horses. 
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3. Does the occurrence of short affiliative interactions between horses 

facilitate a bond-related buffering effect on cardiac activity level? 

 

Hypothesis C: Higher rates of short affiliative interactions and longer mutual 

grooming durations between bonded conspecifics will facilitate social buffering. 

 

Prediction C: During separation, the horses’ heart rate and LF/HF-ratio 

will be lower, whereas their RMSSD will be higher, the higher the rate of 

short affiliative interactions, or the longer the grooming duration, with their 

closely bonded conspecific. 

 

4. Does spatial proximity between horses depend on their social bond? 

  

Hypothesis D: The spatial proximity between the horses depends on their social 

bond. 

 

Prediction D: During the dyadic separation, the horses will spend more 

time in close proximity to their closely bonded than to their less closely 

bonded conspecific.  

 

5. Does close spatial proximity between horses facilitate a bond-related 

buffering effect on cardiac activity level?  

 

Hypothesis E: Close spatial proximity between bonded horses facilitates social 

buffering. 

 

Prediction E: During the dyadic separation, the horses’ heart rate and 

their LF/HF-ratio will be lower, whereas their RMSSD will be higher when 

in close proximity to their closely bonded conspecific. 
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3.2 Material and Methods 

Data collection took place between June and September 2018 in England 

and included the same two stable yards described in Chapter 2, section 2.2, page 

39. Subsequently, they are referred to as Stable A and Stable B.  

3.2.1 Study subjects and housing 

At Stable A, the horse group comprised eleven horses, three mares and 

eight geldings (castrated stallions), aged 19.5 ± 4 (mean ± SD). At Stable B the 

group comprised eight horses, two mares and six geldings who were 15 ± 8 (mean 

± SD) years of age. The horses were of different breeds and were predominantly 

group-housed for 66-100% of their time. Their groups were established for at least 

a year before the commencement of data collection. More details about their 

breeds, workload, and housing conditions are provided in Chapter 2, section 

2.2.1, page 39f. 

3.2.2 Assessing social preference 

Based on the scan samples and focal observations derived from the initial 

observations of the horse groups (for a detailed description, see Chapter 2, 

section 2.2.2, page 40f), social bonds were operationalised by calculating a 

preference index (PI) to determine social preferences among the horses of each 

group. The PI was calculated for each focal horse in the group and included 

affiliative interactions that it directed towards each of its field companions and their 

spatial proximity. The PI is partially based on the Dyadic Composite Sociality 

Index (DSI) (Silk, Cheney and Seyfarth, 2013). Like the DSI, the PI takes 

intercorrelations between different types of affiliative behaviours into account (for 

details on intercorrelations among the behaviours, see Appendix A, page 225). 

To calculate the PI, all intercorrelated behaviours that the focal horse directed 

towards a specific group member were summarised and then divided by the 

number of behaviours contributing to the index (Equation 3.1). To calculate the 

PI, the nearest neighbour rates (pm→n), rates of approaches/following (am→n), and 

rates of body contact (including sniffs, touches, and rubbing head) (bm→n) for each 

horse and each of its field companions were summarised. The sum was then 

divided by the number of contributing behaviours (three). 
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𝑃𝐼𝑚→𝑛 =  
∑ 𝑝𝑚→𝑛 +  𝑎𝑚→𝑛 +  𝑏𝑚→𝑛

3
 

Equation 3.1 Preference Index (PI). The PI was calculated for each focal individual (m) 
and every possible social partner (n) in the group. Thereby, the nearest neighbour rate 
(p), the approach/following rate (a), and the rate of body contact (b) directed towards a 
social partner (→n) were summarised and then divided by the number of included 
behaviours (3). The PI was calculated for every possible dyad in the group.  

The PI differs from the DSI in two regards: (1) the interaction rates were 

not averaged for the dyad to allow for asymmetries in social preference (Barrett, 

Peter Henzi and Lusseau, 2012). (2) the interaction rates were not set in relation 

to the group mean of the behaviours as the PI should reflect each focal individual’s 

social preferences, independent of the strength of the preference in relation to the 

strength of other bonds within the group. Based on the PI-indices, a directed and 

weighted interaction matrix was established for all horses of the group. Based on 

this matrix, all group members of a focal horse were ranked from most-preferred 

to least-preferred. Based on this matrix, it was possible to assign a highly-

preferred and a less-preferred group member of the same sex for each focal 

individual (Table 3.1, page 89).  

Once the dyads were selected, it was assessed whether the two dyad 

categories (high and low preference) significantly differed in terms of their PI. The 

analysis showed that the PIs between the focal horses and their highly-preferred 

field companions were significantly higher than the PIs between the focal horses 

and their less-preferred field companions (Paired t-test: n = 10, t = 4.01, df = 9, p 

= 0.003, r = 0.801; Figure 3.1, left pane). Furthermore, it was tested whether the 

PIs differed between the two stables. A two-sample t-test revealed no significant 

differences between Stable A and B (Two sample t-test: nA = 10, nB = 10, t = 

0.026, df = 18, p = 0.979; Figure 3.1, right pane). This demonstrated that the 

assignment of bond category yielded two significantly different dyad types. 

Moreover, the comparison between the stables showed that the bonding structure 

in both groups was similar. 
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Figure 3.1 Comparisons of the Preference Index (PI). Tukey whiskers plot showing the 
comparison of the PI between high and low preference dyads (left pane) and between 
Stable A and Stable B (right pane). The median is indicated by the bold horizontal line, 
the upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, 
comprising the interquartile range (IQR). The outwards pointing whiskers extend to the 
smallest and largest value at most 1.5 * IQR from the hinge. Data points smaller or greater 
are indicated as single dots. Comparing the PI between high and low preference dyads 
revealed a significant difference between the two dyad types (left pane). There was no 
difference in the PI between the two stables.  
Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 

3.2.3 Study sample and exclusion criteria 

This study's focus was to assess buffering effects provided by unrelated 

and closely bonded conspecifics of the same sex. Consequently, female-male 

bonds or bonds between related individuals were not considered. One gelding at 

Stable B was excluded as he primarily affiliated with two mares and the 

interactions with the other group members were predominantly agonistic. Two 

mares at Stable B were excluded as they were related. Furthermore, horses were 

excluded based on ethical considerations. At Stable A, two mares reacted 

aggressively to human contact. One gelding showed a very high-stress response 

during the first experimental trial and attempted multiple times to jump the 

enclosure of the test arena. Due to the risk of injury and his owner's concern, he 

was excluded from the study. Furthermore, one horse was excluded due to 

technical limitations of the heart rate monitor. Due to his thick adipose layer, no 

reliable heart rate signal could be obtained. Consequently, ten geldings were 

selected as focal horses. For each of the focal horses, the social partner with the 

highest and lowest PI was chosen from the pool of included horses. The focal 

individuals, with their test partners and respective PI’s, are listed in Table 3.1.  
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Table 3.1 Focal individuals and their paired test partners with high (highly-preferred) and 
low (less-preferred) Preference Index (PI). 

Stable 
Focal 

individual 

Highly-preferred dyads Less-preferred dyads 

PI Horse PI Horse 

A BLL 0.58 BLY 0.02 BRA 

BLY 1.00 BLL 0.38 WOD 

BRA 4.19 BRO 0.05 BLL 

BRO 3.57 BRA 0.14 TIJ 

WOD 1.07 BRA 0.79 BLY 

B BAL 1.80 OSK 0.13 THO 

CHA 2.12 OSK 0.63 THO 

GUI 1.58 KIL 0.39 BAL 

KIL 1.56 GUI 0.49 OSK 

OSK 2.18 CHA 0.77 KIL 

 

3.2.4 Isolation and separation tests 

3.2.4.1 Study design  

In a within-subject design (Martin and Bateson, 2009) data of the 

behavioural and the physiological response on SAM-axis activity were collected 

for all focal horses (n = 10) in the following test conditions: 

1) When isolated alone (ISO) 

2) When separated with a highly-preferred field companion – high PI (HP)  

3) When separated with a less preferred field companion – low PI (LP) 

The test conditions' order was pseudo-randomised for each focal horse in 

alignment with husbandry routines in the stables. To better identify whether the 

rate of affiliative interactions and spatial proximity affected heart rate and heart 

rate variability, the dyadic trials were repeated three times. Thereby, the order of 

the HP-trials and LP-trials was again pseudo-randomised for each focal horse. A 

schematic overview of the isolation and separation trials is given in Figure 3.2. 
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Figure 3.2 Study design for the isolation and dyadic separation trials. Horses were 
subjected to three different test conditions: (a) alone, (b) with a highly-preferred other 
horse, and (c) with a less-preferred other horse. The order of the test conditions was 
pseudo-randomised according to the daily husbandry routines on site. The dyadic trials 
were repeated three times, again pseudo-randomly varying between the high and low 
preference condition (horse silhouettes original and adapted from http://phylopic.org/). 

 

3.2.4.2 Test procedure 

Before any of the experiments, each horse was mounted with a Polar® 

Equine V800 mobile heart rate monitor (Polar Electro Oy, Kempele, FI). This heart 

rate monitor detected the time intervals between consecutive heartbeats 

(interbeat intervals). To enhance signal transmission, the coat in the sensor area 

was moisturised with water, and the surface of the sensor was covered with 

electrode gel (Compex® professional by chattanoogaTM). Individuals with thicker 

coats were clipped to ensure effective contact with the device. The horses were 

habituated to the monitors prior to this study (Chapter 2, section 2.2.3, page 44f). 

After the horses were mounted with the monitors, they were brought into 

the test arena. The test arenas at Stable A and B were approximately 50m2 in size 

and contained feed such as grass and hay, and a water bucket (Figure 3.3). This 

should reflect the natural living conditions of a grazing species (Bulens et al., 

2015). In Stable A the distance between the test arena and the horses’ field was 

approximately 30 meters, in Stable B, it was approximately 50 meters. The test 

subjects had auditory but no visual contact with their groups. The horses were 

familiar with the test arenas, as they were part of their usual stabling environment. 

For the isolation experiments, the horses were individually brought into the test 

arena for a duration of 15 minutes. For the dyadic separation (HP and LP), both 

horses were brought together into the test arena and released there for a duration 

of 30 minutes. During the experimental trials, the horses were able to move and 
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interact freely. Their behaviour was monitored using a Canon® LEGRIA HF R56 

camera.  

 

Figure 3.3 Test arenas. Top left and right pane test arena at Stable A; bottom test arena 
at Stable B. 

 

3.2.5 Data processing 

3.2.5.1 Behaviour  

Behaviour was coded using the Solomon® Coder version beta 16.06.26 

(© András Péter, https://solomon.andraspeter.com). Thereby, the coder (D.V.H) 

was not blind to the test conditions (mitigations were explained in Chapter 2, 

section 2.2.5.1, page 46f). To assess the horses' behavioural stress response, 

their locomotor activity (standing, grazing, walking, trotting, and catering) and 

behaviours that can indicate a stress response were recorded, such as alert, 

startle, snorts, contact calls (whinnies), and defecation. During the dyadic 

separation trials, all occurrences of social interactions were recorded. A list and 

description of the recorded behaviours are given in the following ethogram (Table 
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3.2). For the analysis of behavioural data, the frequencies of behaviours were 

transformed into rates per minute and the duration of behaviour was transformed 

into duration per minute in seconds to account for the different lengths of the 

experiments (Martin and Bateson, 2009).  

Throughout the separation trials, the spatial proximity between the two 

horses was recorded in one-minute intervals. Thereby, the distance between their 

heads was assessed in horse-lengths. This resulted in 30 records per trial. To 

assess whether the horses' distance was depending on the test condition, the 

proximity records were averaged for each trial. To assess whether the proximity 

between the horses changed over the course of the experiment, the mean 

distance for the first, second, and third ten-minute phase of the separation trial 

(below denoted as beginning, middle, and end of the trial) was calculated for each 

dyad.  

Additionally, it was recorded when the horses were either standing or 

grazing in close proximity (within one horse-length) or apart (a distance of four or 

more horse-lengths). These records were then time matched with the interbeat 

interval records provided from the Polar® heart rate monitor. This made it possible 

to investigate whether heart rate and heart rate variability (HRV) were depending 

on the horses' spatial proximity.  
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Table 3.2 Ethogram for the behavioural coding during the isolation and separation trials. The record column indicates whether a behaviour was recorded as 

event (e) or as duration (d). Social interactions were only coded during the dyadic separations.  

Behavioural 
Category 

Behaviour Record Definition Source 

Affiliative 
interactions 

Mutual 
grooming 

e Horses, mostly in antiparallel stand, scratch the other horses along its neck or back using their teeth. (Kimura, 1998) 

Touch e Horse leans its head (nostril, forehead, or cheeks) against any body part of another horse. (McDonnell and Haviland, 1995) 

Sniff e Olfactory investigation nose to nose or nose to body. (Feh, 2005; Jørgensen et al., 2009) 

Rub head e 
A horse moves its head (nose, eye region, ears, or chin) in an up and down or sideways movement on any body part 
of another horse.  

(Feh, 2005; Jørgensen et al., 2009) 

Behavioural stress 
response 

Snort e Powerful exhalation from nostrils. (Malmkvist et al., 2012) 

Whinny e High pitched call that horse produces with an opened mouth. (Feh, 2005) 

Alert s 
The horse stands vigilant with elevated neck, head and ears oriented towards the object, chewing is interrupted, and 
the horse may move up to two steps away from its former position. 

(Rørvang and Christensen, 2018) 

Startle e Horse shudders suddenly and quickly after the object presentation.  (Lansade, Bouissou and Erhard, 2008b) 

Defecating e Elimination of faeces. (Malmkvist et al., 2012) 

Locomotion 

Standing d Horse stands or stand rests with a bent hind leg.  (Malmkvist et al., 2012) 

Walking d 
The horse moves in a slow four-beat pace, moving a front leg of a side forward, then the hindquarters of the same 
side and then moving the front leg of the other side, followed by the forward motion of the hind leg of the other 
side. 

(Zeitler-Feicht, 2008) 

Trotting d 
The horse moves in a faster two-beat pace, moving the diagonal front and hind leg forward at the same time, 
followed by a short suspension phase before the other diagonal limbs are moved forward. 

(Zeitler-Feicht, 2008) 

Cantering d 

The horse moves in a fast three-beat pace. In the first beat, the horse bares all its weight on a hind leg. The other 
hind leg and its respective diagonal foreleg take over the weight in the second beat, which is shifted then to the 
remaining foreleg in a third beat. Thereafter, the horse pushes off the ground into a suspension phase before the 
circle starts again. 

(Zeitler-Feicht, 2008) 

Other behaviour 

Grazing  d Horse feeds from hay or grass. (Bulens et al., 2015) 

Drinking d Horse drinks from the water bucket. (Bulens et al., 2015) 

Urinating d Elimination of urine. (McDonnell and Haviland, 1995) 
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3.2.5.2 Heart rate 

The heart rate data were processed and error-corrected, as described in 

Chapter 2, section 2.2.5.2, page 49. After the error correction, the mean and 

maximum heart rate were obtained and averaged for each horse and trial. Eight 

per cent of the heart rate data collected during all experimental trials had to be 

discarded due to a high number of erroneous values (one trial KIL: 55% erroneous 

values, and one trial GUI 78% of erroneous values). Furthermore, the heart rate 

monitor stopped working during the isolation of BRA. Consequently, no data were 

available for this trial.  

Following recommendations for HRV-analysis, interbeat interval records 

of similar length were selected (von Borell et al., 2007; Ille et al., 2014; Stucke, 

Große Ruse and Lebelt, 2015) and where horses showed the same behaviour or 

behaviours of similar activity levels (von Borell et al., 2007; Physick-Sheard et al., 

2010; Stucke, Große Ruse and Lebelt, 2015). Consequently, records were 

obtained whilst the horses were either standing or grazing uninterruptedly for a 

duration of 30 seconds.  

For the dyadic separation trials, these records were selected when horses 

were standing or grazing close (within one horse-length) or apart (a distance of 

four or more horse-lengths). To select records that were representative of the 

whole trial, three 30-second recordings per behaviour and per horse were 

selected from the beginning, middle and end of each trial. For the isolation trials, 

records were selected from the first, second, and third five-minute time intervals. 

For the dyadic separation experiments, records were chosen from the first, 

second, and third ten-minute intervals of the trial (Figure 3.4).  
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Figure 3.4 Interbeat interval samples for HRV-analysis. 30-second records were selected 
when horses were grazing and standing during the beginning, middle, and end of the 
experimental trials. For the individual isolation (ISO) records were selected from the first, 
second, and third 5-minute interval. For the dyadic separations, records were taken when 
horses were close and apart from the first, second, and third 10-minute intervals. This 
ensured that records were representable for the whole trial. 

 

HRV-analyses were conducted using the Kubios® HRV software (Version 

3.3; Tarvainen et al. 2019, www.kubios.com). Following previous equine studies 

(Ille et al., 2014; Lenoir et al., 2017; Schmidt et al., 2010a; d; Squibb et al., 2018), 

lambda, the prior for detrending, was set at 500 milliseconds (ms). For the artefact 

correction, the threshold-based custom filter was set at 0.3 seconds. 

Consequently, interbeat intervals (IBIs) that differed by more than 0.3 seconds 

from the local average were identified as an error (Ijichi et al., 2018; Squibb et al., 

2018). Only data with less than a five per cent error-rate were used for further 

analysis (von Borell et al., 2007; Stucke, Große Ruse and Lebelt, 2015; Tarvainen 

et al., 2014). For spectral analysis, the frequency band limits were set according 

to species-specific recommendations. The low-frequency band (LF) was set at > 

0.01 – 0.07 Hertz (Hz), and the high-frequency band (HF) was set at > 0.07 – 0.6 

Hz (Kuwahara et al., 1996). For each of the 30-second records, the following 

HRV-indices were calculated: (1) RMSSD in milliseconds (ms). The RMSSD was 

selected, as it was found to represent changes in heartbeats over time more 

reliably in short IBI-samples than SDNN (Ille 2014). (2) LF/HF-ratio, and (3) the 

mean heart rate in beats per minute (bpm) provided by Kubios® corresponding to 

each 30-second HRV-sample. For further analyses, each HRV-variable was 

averaged per horse and trial.  
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For the isolation trial, 20 HRV-samples were obtained during grazing (9 horses) 

and 5 during standing (2 horses). For the high preference dyads, 79 HRV-samples 

were obtained during grazing (10 horses) and 31 during standing (7 horses), 

which included 69 within close proximity (10 horses) and 41 when apart (10 

horses). For the low preference dyads, 94 HRV-samples were obtained during 

grazing (10 horses) and 43 HRV-samples during standing (8 horses), which 

included 79 within close proximity (10 horses) and 58 when apart (10 horses). 

3.2.6 Statistical analysis  

Analyses were carried out using R (Version 3.5.1) (R Core Team, 2019) 

in RStudio (Version 1.1.463). Normality tests were carried out using the Shapiro-

Wilk tests. Parametric and non-parametric tests were applied, depending on data 

distribution.  

To assess whether the test condition affected the horses’ behaviour and 

cardiac activity, the average duration and frequency for locomotion, stress 

behaviours, and mean and maximum HR, and the HRV-indices were compared 

among the isolation and the first trial of the HP-trials and LP-trials, respectively. 

For normally distributed data, one-way repeated measures ANOVAs in the ‘ez’ 

package (Lawrence, 2016) were used with pairwise t-tests with adjusted p-values 

after Bonferroni as post hoc tests. For not normally distributed data, Friedman 

tests in the ‘pgirmess’ package (Giraudoux, 2018) were applied. Post hoc tests 

were carried out using Nemenyi multiple comparisons in the ‘PMCMR’ package 

(Pohlert, 2018). To assess whether HRV-indices differed between the two 

behaviours grazing and standing paired t-tests were conducted. The interaction 

rates between horses in the HP and LP test conditions were compared using 

Wilcoxon signed-rank tests. To assess the influence of trial number on the rate of 

affiliative interactions, Friedman tests were applied.  

To determine whether the rate of affiliative interactions between closely 

bonded horses facilitated buffering effects on SAM-axis activity level, linear 

mixed-effects models (LMM) were fitted. The RMSSD, LF/HF-ratio, and mean 

heart rate of the HRV-samples were averaged across the three trials and set as 

response variables. The rate of initiated and received affiliative interactions, 

grooming duration, and their statistical interaction with social preference (HP, LP) 

were set as explanatory variables. To account for repeated measures from the 
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same horses, the individual identity was set as a random factor (Zuur et al., 2009; 

Table 3.3).  

Table 3.3 Response variables, fixed, and random effects of the linear mixed-effects 
models: Mean RMSSD (square root of the mean of the summed squares of differences 
between successive interbeat intervals), the mean LF/HF-ratio (ratio between the power 
of the low and high-frequency bands), and the mean heart rate (HR) of the 30-second 
records were averaged across trials and set as response variables. Interaction rates (per 
minute) and grooming duration (seconds per minute) were averaged across trials. Models 
1-3 include initiated affiliative interactions rates (Affiliative) and the grooming duration and 
their statistical interaction (*) with social preference (HP, LP) as fixed effects. Models 4-6 
include rates of received affiliative interaction rates (Rec. affiliative) and their statistical 
interaction (*) with social preference (HP, LP) as fixed effects. The individual identification 
(ID) was set as a random effect to account for the repeated measures across the three 
trials.  

  Response variables Fixed effects Random effect 

Model 1 RMSSD Affiliative*Social 
preference,            

 Groom (duration)*Social 
preference 

Individual ID 

Model 2 LF/HF-ratio 

Model 3 Mean HR 

Model 4 RMSSD 
Rec. affiliative*Social 

preference         Model 5 LF/HF-ratio 

Model 6 Mean HR 

 

LMMs were carried out using the ‘lmer’ function in the ‘lme4’ package 

(Bates et al., 2015). Outliers in the response variable were assessed via 

Cleveland dot plots (Zuur et al., 2009). Collinearity between the explanatory 

variables was tested using the ‘vif’ function in the ‘car’ package (Fox and Wisberg, 

2011). Vif’s of the fixed effects ranged between 1.004 and 1.169. Therefore, no 

variable had to be dropped (Zuur, Ieno & Elphick, 2010). Normal distribution of 

residuals was visually assessed using the ‘autoplot’ function in the ‘ggplot’ 

package (Wickham, 2016). To assess the overall model fit R2-values were 

obtained via the ‘r2beta’ function in the ‘r2glmm’ package (Jaeger, 2017). 

Thereby, the method was set to ‘nsj’ to calculate marginal R2 (variation explained 

by fixed effects) and conditional R2 (variation explained by the full model) as 

proposed by Nakagawa and Schielzeth (2013). Full model outputs are presented 

in the results section. 

To assess whether spatial proximity was dependent on the test condition, 

the average proximity for HP-trials and LP-trials were compared using Wilcoxon 

rank-sum tests. To assess whether the proximity between the HP-dyads and LP-



Chapter 3 – Isolation and separation 

98 

 

dyads changed over the course of the separation trial, the average proximity for 

the beginning, middle, and end phases of the trial were compared. The effect of 

trial number on spatial proximity was assessed using Friedman tests. 

To assess the effect of spatial proximity between the horses on the cardiac 

activity of the focal horses, the following analysis were run: (1) HRV-indices and 

the corresponding heart rate of the 30-second records were compared when the 

horses were either close or apart from their highly-preferred field companions and 

when they were either close or apart from their less-preferred field companion. (2) 

HRV-indices and the corresponding heart rate of the 30-second records were 

compared between the test conditions to assess whether there was a difference 

when horses were close to either a highly-preferred or less-preferred horse, or 

when being apart from either a highly-preferred or less-preferred horse.  

The alpha level was set at 0.05, and p-values are reported two-tailed. 

Effect sizes were calculated for significant results based on the z-statistic 

(Friedman tests and Wilcoxon signed rank-tests) using the following equation:  

𝑟 =  𝑧 √𝑛⁄  (Rosenthal, 1991). 

 

3.2.7 Ethical statement 

The experimental procedure was approved by the Departmental Research 

Ethics Panel under the terms of Anglia Ruskin University’s Research Ethics Policy 

(reference number: A & EB DREP 17-029 and 17-053) and followed the ethics 

guidelines for the study of animal behaviour provided by the Association for the 

Study of Animal Behaviour (ASAB, 2020). All applied methods were non-invasive. 

Based on ethical considerations, three horses were excluded from this study. The 

details are described under section 3.2.3, page 88. Consent for all procedures 

was sought from horse and stable owners. 
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3.3 Results 

3.3.1 The behavioural and physiological stress 

response 

There was no significant difference in the duration of locomotor activity 

between the three social test conditions (alone, and the first trial of the HP and LP 

condition) (Friedman tests: n = 10, standing: X2 = 0.6, df = 2, p = 0.741; grazing: 

X2 = 1.4, df = 2, p = 0.49; walking: X2 = 2.6, df = 2, p = 0.273). Overall, the horses 

spent most of the time grazing. High locomotor activity was rare. Trot occurred 

only once in each test condition and canter occurred once in the HP condition 

(Table 3.4). 

Table 3.4 Grazing and locomotion for each test condition. Given are median (x)̃, maximum 
(Max), minimum (Min), and interquartile range (IQR) for the duration of locomotor activity 
during isolation (ISO) and the first trial of the dyadic separation with the highly-preferred 
(HP) and less-preferred group member (LP). The duration is given as seconds per minute. 
There was no difference in grazing and locomotion between the three test conditions. 

Condition ISO HP LP 

Behaviour x ̃ Max Min IQR x ̃ Max Min IQR x ̃ Max Min IQR 

Grazing 40.73 53.92 10.77 19.56 46.57 56.65 7.54 40.21 38.75 52.83 6.67 29.22 

Standing 9.38 38.28 3.00 16.26 8.18 43.76 1.16 33.93 16.26 45.14 1.54 30.48 

Walking 6.44 12.77 0.74 6.70 4.22 11.71 0.88 4.49 4.20 7.96 2.49 1.25 

Trot 0.00 0.48 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.00 

Canter 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

 

Alert behaviour differed significantly between the test conditions 

(Friedman test: n = 10, X2 = 10.4, df = 2, p = 0.006). Post hoc analysis indicated 

that the horses showed more alert postures (~24%) when isolated alone (Median: 

5.01 sec/min, IQR: 4.24) than when with their highly-preferred field companion 

(Median: 1.2 sec/min, IQR: 0.65). There was a tendency, that alert behaviour was 

higher during the isolation than in the low preference condition (Nemenyi multiple 

comparison test: ISO-HP: p = 0.005, r = -0.55; ISO-LP: 0.065; HP-LP: p = 0.644; 

Figure 3.3). Overall, the occurrence of startles differed between the test conditions 

(Friedman test: n = 10, X2 = 7, df = 2, p = 0.030). However, post hoc analyses 

were not significant (Nemenyi multiple comparison test: ISO-HP: p = 0.21;  

ISO-HP: p = 0.94; HP-LP: p = 0.37; Figure 3.5).  
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Figure 3.5 Alert and startle per test condition. Tukey whiskers plot showing the duration of 
alert behaviour in seconds per minute (spm) (left) and the rate of startles per minute (fpm) 
(right) compared between the three test conditions: alone (ISO), with a highly-preferred 
(HP) or less-preferred (LP) field companion. The bold horizontal line indicates the median, 
the upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, 
comprising the interquartile range (IQR). The outwards pointing whiskers extend to the 
smallest and largest value at most 1.5 * IQR from the hinge. Data points smaller or greater 
are indicated as single dots. Horses showed ~24% more alert behaviour when isolated 
alone than when with their highly-preferred conspecific. Asterisks: *** p ≤ 0.001, ** p ≤ 
0.01, * p ≤ 0.05. 

 

Only two horses whinnied during the experiments, with a maximum of 11 

whinnies occurring during isolation. However, there was no evidence that the test 

condition influenced the occurrence of whinnies (Friedman test: n = 10, X2 = 3.71, 

df = 2, p = 0.156) or defecation rate (Friedman test: n = 10, X2 = 4.45, df = 2,  

p = 0.108). No snorts occurred during the experiments. 

The average mean and maximum heart rate for the total trial length did 

not differ between the three test conditions (Friedman test: n = 10, mean:  

X2 = 0.29, df = 2, p = 0.867; maximum: X2 = 3.71, df = 2, p = 0.156; Figure 3.6).  
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Figure 3.6 Mean and maximum heart rate during isolation and separation. Tukey whiskers 
plot showing mean (left) and maximum (right) heart rate in beats per minute (bpm) for the 
alone (ISO) and the first trials of the dyadic separations with the highly-preferred horse 
(HP) and the less-preferred horse (LP). The bold horizontal line indicates the median, the 
upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, comprising 
the interquartile range (IQR). The outwards pointing whiskers extend to the smallest and 
largest value at most 1.5 * IQR from the hinge. Data points smaller or greater are indicated 
as single dots. There was no difference in mean and maximum heart rate between the 
three test conditions. 

 

The HRV-indices did not differ between the two selected behaviours, 

grazing and standing (Paired t-test: n = 7, RMSSD: t = 2.158, df = 6, p = 0.074; 

LF/HF: t = 0.006; df = 6, p = 0.995; HR: t = -0.394, df = 6, p = 0.707). Therefore, 

they were pooled for both behaviours for further analysis. The test condition had 

no effect on the HRV-indices and the corresponding heart rate (Friedman test:  

n = 7, LF/HF: X2 = 2, df = 2, p = 0.368; One-way repeated measures ANOVAs:  

n = 7, RMSSD: F2,12 = 0.6, p = 0.089, HR: F2,12 = 0.159, p = 0.854; Table 3.5).  

Table 3.5 Median (x)̃, maximum (Max), minimum (Min), and interquartile range (IQR) for 
heart rate variability (HRV) measures during isolation (ISO) and the first trial of the dyadic 
separation with the highly-preferred (HP) and less-preferred (LP) field companion. Given 
are RMSSD (in milliseconds), the ratio between low frequency and high-frequency power 
(LF/HF-ratio), and the corresponding mean heart rate (in beats per minute) for the 30-
second records. The three measures did not differ between the test conditions.  

Condition ISO HP LP 

HRV x ̃ Max Min IQR x ̃ Max Min IQR x ̃ Max Min IQR 

RMSSD 65.53 99.63 50.78 33.15 54.49 108.32 14.29 33.33 50.29 71.21 44.19 9.95 

LF/HF-ratio 0.49 1.61 0.12 0.89 0.23 1.05 0.11 0.25 0.81 1.10 0.20 0.34 

Mean HR 47.58 54.48 40.61 10.82 47.95 51.06 43.76 2.25 45.93 54.11 39.88 5.14 
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3.3.2 Social interactions and cardiac activity  

As the rates of initiated and received short affiliative interactions and the 

duration of mutual grooming did not depend on the trial number, the interaction 

rates were pooled per interaction type, horse, and test condition (Friedman tests: 

n = 26, initiated short affiliative: X2 = 5.158, df = 2, p = 0.076; received short 

affiliative: X2 = 0.929, df = 2, p = 0.629; grooming duration: X2 = 2.154, df = 2, p = 

0.341; Table 3.6).  

Table 3.6 Affiliative interactions per trial. Initiated (Init.) and received (Rec.) short affiliative 

interactions in rates per minute as well as grooming duration (dur.) shown as medians (x)̃, 

maximum (Max), minimum (Min), and interquartile range (IQR) for the three dyadic trials.  

  Init. affiliative  Rec. affiliative Groom (dur.) 

Trial x̃ Max Min IQR x ̃ Max Min IQR x̃ Max Min IQR 

1 0.01 0.55 0.00 0.02 0.00 1.06 0.00 0.03 0.00 2.48 0.00 0.00 

2 0.00 0.32 0.00 0.00 0.00 2.92 0.00 0.00 0.00 0.26 0.00 0.00 

3 0.00 0.41 0.00 0.02 0.00 0.43 0.00 0.02 0.00 4.46 0.00 0.00 

 

Comparing interactions between the HP-condition and the LP-condition, 

did not reveal a difference in the occurrence of initiated and received short 

affiliative behaviours (including sniffs, touches, and rub head) or mutual grooming 

(Wilcoxon signed-rank tests: n = 10: initiated short affiliative: V = 20, p = 0.475; 

received short affiliative: V = 12, p = 0.834; grooming: V = 9, p = 0.787; Table 3.7).  

Table 3.7 Short affiliative interactions and mutual grooming per test condition. Median (x)̃, 
maximum (Max), minimum (Min), and interquartile range (IQR) for the rate of short initiated 
and received affiliative interactions (Affiliative and Rec. affiliative) and the duration of 
mutual grooming averaged across all three trials of the dyadic separation with the highly-
preferred (HP) and less-preferred (LP) field companion. There was no significant 
difference in these behaviours between the two test conditions. 

Condition HP LP 

Behaviour x ̃ Max Min IQR x ̃ Max Min IQR 

Affiliative 0.01 0.29 0.00 0.02 0.01 0.24 0.00 0.01 

Grooming 
duration 

0.00 1.57 0.00 0.00 0.00 0.83 0.00 0.61 

Rec. affiliative 0.01 0.64 0.00 0.08 0.00 1.34 0.00 0.02 

 

The trial number did not affect any of the HRV-indices (Friedman test: n = 

10, LF/HF: X2 = 3.2, df = 2, p = 0.202; One-way repeated measures ANOVAs:  

n = 10, RMSSD: F2,18 = 0.601; p = 0.564; HR: F2,18 = 0.981, p = 0.394). Therefore, 

each HRV-index was averaged across the three trials (Table 3.8). 
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Table 3.8 HRV-indices per trial number. Depending on the data distribution, the mean (x̅) 
is shown with the maximum (Max), minimum (Min), and the standard deviation (SD); or 
the median (x)̃ with the interquartile range (IQR) are presented for the RMSSD (ms), 
LF/HF-ratio, and corresponding mean heart rate from the 30-second records. 

  RMSSD LF/HF ratio Mean HR 

Trial x̅ Max Min SD x ̃ Max Min IQR x ̅ Max Min SD 

1 59.69 71.94 46.81 8.24 0.60 1.29 0.28 0.35 47.44 60.22 40.41 5.70 

2 68.31 105.37 41.90 18.92 0.71 1.02 0.29 0.39 44.98 48.51 39.37 2.84 

3 60.01 78.22 40.55 10.94 0.61 1.78 0.28 0.32 46.68 56.67 37.46 5.70 
 

The analysis revealed that a higher RMSSD (ms) corresponded with 

longer grooming durations (Model 1, LMM: Groom: Estimate ± SE = 13.74 ± 6.02, 

t = 2.28, p = 0.010; Figure 3.7). Thereby, the grooming duration explained around 

20% of the variation of the horses’ RMSSD, as indicated by the conditional R2-

value (Table 3.9). There was no effect of the interaction between grooming 

duration and social preference. The fixed effect affiliative interactions and their 

statistical interaction with social preference had no effect on mean RMSSD. There 

was no statistical interaction between any of the fixed effects (rate of affiliative 

interactions, mutual grooming) with the relationship quality between the horses 

(high or low preference), see model 1 (Table 3.9).  

 

Figure 3.7 Mutual grooming and heart rate variability. The regression line, in dark grey, is 
based on a simple linear model of RMSSD in milliseconds (ms) by the averaged grooming 
duration in seconds per minute. The standard error of the fit is depicted in light grey. Data 
points from the high-preference (HP) condition are depicted in grey, data points from the 
low-preference (LP) condition are depicted in black. The RMSSD was higher, the longer 
the horses spent grooming. Thereby, the grooming duration explained ~20% of the 
variation in the horses’ RMSSD. The interaction between grooming and social preference 
was not significant. 
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The LF/HF-ratio and the mean heart rate from the 30-second records did not 

depend on the rate of initiated and received affiliative interactions or grooming 

duration and their statistical interaction with social preference, see model 2 to 6 

(Table 3.9).
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Table 3.9 Output from linear mixed-effects models testing the relationship between HRV-measures and social interactions. Response variables were set to 
RMSSD (ms) (Model 1 and 4), LF/HF-ratio (Model 2 and 5), and the corresponding mean HR from the 30-second samples (Model 3 and 6) averaged across 
trials. Explanatory variables were set as the rate of initiating affiliative interactions and grooming duration (Models 1-3) and receiving affiliative interactions 
(Rec.aff) (Models 4-6) and their statistical interactions (*) with high or low social preference (SP). Random effect: Individual ID (Name). The conditional R2-value 
(R2c.) shows the overall model fit, the marginal R2-value (R2m.) shows the variation explained by the fixed effects. Given are estimates, standard error (SE), 
degrees of freedom (df), t-statistic (t). Significant results ( p ≤ 0.05) are marked in bold. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Models Response variables R2c. Fixed effects Estimates SE df t p  R2m. 

Initiating 
Affiliative 
behaviour 

Model 1 RMSSD 0.349 

Affiliative -55.205 43.664 11.899 -1.264 0.230 0.071 
Groom 13.736 6.020 12.266 2.282 0.041 0.201 
SP 7.601 5.995 6.964 1.268 0.246 0.060 
Affiliative*SP -65.021 89.778 13.025 -0.724 0.482 0.026 
Groom*SP -1.635 22.087 11.680 -0.074 0.942 0.000 

Model 2 LF/HF-ratio 0.071 

Affiliative 0.390 0.638 8.001 0.612 0.558 0.012 
Groom 0.012 0.088 8.527 0.130 0.899 0.001 
SP -0.040 0.081 5.651 -0.492 0.641 0.006 
Affiliative*SP -0.785 1.34 8.855 -0.585 0.573 0.012 
Groom*SP 0.311 0.322 7.876 0.968 0.362 0.030 

Model 3 Mean HR 0.313 

Affiliative -8.660 11.219 11.239 -0.772 0.456 0.028 
Groom 0.584 1.546 11.706 0.378 0.713 0.007 
SP 2.051 1.552 5.335 1.322 0.240 0.066 
Affiliative*SP 21.859 23.027 12.817 0.949 0.360 0.044 
Groom*SP -12.417 5.677 10.935 -2.187 0.051 0.188 

Receiving 
affiliative 
behaviour 

Model 4 RMSSD 0.135 

Rec. aff 126.109 76.899 16.000 1.640 0.121 0.124 

SP 8.078 6.942 16.000 1.164 0.262 0.067 

Rec. aff*SP -128.868 77.648 16.000 -1.660 0.116 0.127 

   Rec. aff -1.061 0.749 9.013 -1.415 0.191 0.039 

Model 5 LF/HF-ratio 0.104 SP -0.068 0.056 7.886 -1.221 0.257 0.020 

   Rec. aff*SP 1.263 0.761 9.063 1.658 0.131 0.054 

Model 6 Mean HR 0.060 

Rec. aff 15.708 18.807 12.887 0.835 0.419 0.029 

SP 0.846 1.489 9.247 0.568 0.583 0.010 

Rec. aff*SP -18.092 19.051 13.001 -0.950 0.360 0.037 
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3.3.3 Spatial proximity and cardiac activity  

The average proximity between the separated horses did not change over 

the course of the experiment, that is between the beginning, middle, and end 

phase (Friedman tests: HP: n = 6, X2 = 1.14, df = 2, p = 0.566; LP: n = 7, X2 = 

1.70, df = 2, p = 0.428). Moreover, proximity did not differ between the test 

conditions (Wilcoxon rank-sum test: nHP = 6, nLP = 7, W = 14, p = 0.352; Table 

3.10). 

Table 3.10 Spatial distance per test condition. The median (x)̃, maximum (Max), minimum 

(Min), and interquartile range (IQR) of the spatial distance in horse-lengths are shown for 
highly-preferred (HP) and less-preferred (LP) dyads. The phases refer to the beginning, 
middle, and end phase of the trial. The average distance for the full trials is shown in the 
last line. There was no difference in the spatial distance over the course of the trials or 
between the two test conditions. 

Condition HP LP 

Phases x ̃ Max Min IQR x ̃ Max Min IQR 

Min 1-10 2.8 3.9 1 1.4 2.7 4.3 1.6 0.8 

Min 11-20 2.4 4.2 1.3 0.9 2.6 4.4 0.82 0.7 

Min 20-30  2.3 3.9 1 1.13 2.4 4 1 1.11 

Full trials 2.5 3.1 1.43 0.73 2.87 3.67 1.56 0.83 

 

No difference was found in average HRV and corresponding mean heart 

rate when focal horses were close or apart from their highly-preferred field 

companion (Wilcoxon signed-rank test: n = 10, LF/HF: V = 14, p = 0.193; Paired 

t-tests: n = 10, RMSSD: t = -1.35, df = 9, p = 0.21; HR: t = -0.311, df = 9,  

p = 0.763) or when they were close or apart from their less-preferred field 

companion (Paired t-tests: n = 9, RMSSD: t = -1.122, df = 8, p = 0.295; LF/HF:  

t = -1.240, df = 8, p = 0.816; HR: t = -0.134, df = 8, p = 0.896; Table 3.11).  

Comparing average HRV and corresponding mean heart rate between the 

two test conditions (HP vs. LP), revealed no difference in HRV and corresponding 

mean heart rate when focal horses were either close to their highly-preferred or 

their less-preferred field companion (Wilcoxon signed-rank test: n = 10, RMSSD: 

V = 23, p = 0.695; LF/HF: V = 23, p = 0.695; Paired t-test: HR: n = 10; t = 0.201, 

df = 9, p = 0.845). Similarly, there was no difference in HRV or corresponding 

mean heart rate when focal horses were either apart from their highly-preferred 

or from their less-preferred field companion (Wilcoxon signed-rank test: n = 9, 

LF/HF: V = 25, p = 0.820; Paired t-tests: n = 9, RMSSD: t = -0.152, df = 8,  

p = 0.882; HR: t = 0.069, df = 8, p = 0.946; Table 3.11).  
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Table 3.11 Heart rate variability (HRV), heart rate (HR), and spatial proximity. Medians (x)̃, 

maximum (Max), minimum (Min), and interquartile range (IQR) for RMSSD (ms), LF/HF-
ratio, and the corresponding mean heart rate (HR) from the 30-second records when 
horses were close (within one horse-length) or apart (more than four horse-lengths 
distance) shown for the test conditions high-preference (HP) and low-preference (LP). 
There was no difference in HRV and HR between different spatial distances and test 
conditions. 

    HP LP 

Proximity HRV x̃ Max Min IQR x̃ Max Min IQR 

Close 

RMSSD 57.18 76.69 44.44 24.85 58.92 78.20 45.97 21.40 

LF/HF 0.52 1.00 0.30 0.24 0.59 1.10 0.16 0.48 

HR 47.20 50.16 43.33 2.79 45.91 52.36 41.40 5.16 

Apart 

RMSSD 64.28 89.15 44.12 17.50 65.26 80.87 44.77 22.09 

LF/HF 0.54 1.92 0.30 0.20 0.52 1.16 0.22 0.57 

HR 45.86 55.74 41.64 6.00 42.92 56.63 38.25 7.84 
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3.4 Discussion 

In this chapter, it was assessed whether the social context affected the 

behavioural and physiological stress response in domestic horses (Equus 

caballus) during isolation and separation from their social group. Moreover, it was 

investigated whether affiliative interactions and spatial proximity are mechanisms 

that can facilitate social buffering effects. First, the findings will be discussed 

regarding the effect of the test condition on the horses’ behavioural and 

physiological stress responses. Thereafter, the effect of social preference on their 

affiliative interaction rates, spatial proximity, and cardiac activity will be reviewed.  

 

3.4.1 The behavioural and physiological stress 

response 

Based on previous research, the prediction was that the presence of a 

closely bonded conspecific would buffer the horses' behavioural and physiological 

stress response. Overall, the experimental trials carried out for this study elicited 

a moderate stress response. The locomotor activity was low, and the horses spent 

most of the time during the trials grazing. Whinnies occurred rarely, and snorts 

never occurred. These behavioural patterns did not differ between the three test 

conditions (alone, with a highly-preferred horse, or with a less-preferred horse). 

However, horses showed significantly more alert postures, defined as standing or 

walking with their head lifted high (lips above withers height), when isolated alone. 

Additionally, the analysis revealed an overall difference in startle frequency. 

Thereby, the highest startle rate occurred when horses were isolated alone, 

compared to both dyadic separation conditions. However, this effect did not reach 

significance in the post hoc pairwise comparisons between the test conditions. 

Taken together, these findings indicate that horses were more vigilant when alone 

than when separated with another horse. This effect was independent of the social 

bond between the separated horses. An enhanced vigilance during experimental 

isolation was reported for different species in previous studies (e.g., European 

starlings, Sturnus vulgaris: Apfelbeck and Raess, 2008; Greylag geese, Anser 

anser: Ludwig et al., 2017). Vigilance can strongly depend on the animals’ social 

context. In prey species, vigilance can decrease with group size (e.g., Bighorn 

sheep, Ovis canadensis: Rieucau and Martin, 2008; Elks, Cervus elaphus: 

Childress and Lung, 2003; Kiangs, Equus kiang: Xu et al., 2013), a phenomenon 
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described as ‘many eyes effect’ (Pulliam, 1973; Roberts, 1996; Van Der Post, 

Verbrugge and Hemelrijk, 2015; Xu et al., 2013). Additionally, individuals can 

benefit from a ‘dilution effect’, which describes a reduced chance of being 

attacked with an increased number of conspecifics (Foster and Treherne, 1981). 

Thus, group life can be a protective factor, especially for prey species, such as 

horses (Feh, Boldsukh and Tourenq, 1994; Krause and Ruxton, 2002; 

Rubenstein, 1978; Van Der Post, Verbrugge and Hemelrijk, 2015). Therefore, 

when separated from their group, horses might benefit from a safety-effect 

provided by any familiar member of their group, independently of the closeness 

of their bond.  

In regard to the proposed effect of the horses’ social context on SAM-axis 

activity level, no difference in heart rate and heart rate variability between the 

three test conditions was found: alone, with a highly-preferred or with a less-

preferred horse. These findings stand in contrast to previous studies, which had 

demonstrated that the presence of conspecifics buffers the stress response more 

than when individuals were isolated alone (Boissy and Le Neindre, 1997; Erber et 

al., 2012; Pollard and Littlejohn, 1995; Reid et al., 2017; Tuber et al., 1996). 

However, the isolation and separation trials had overall only a moderate effect on 

SAM-axis activity levels. As previous research has shown, the effect of social 

buffering can increase with increased stress intensity. Wild Barbary macaques 

(Macaca sylvanus) showed stronger buffering effects under conditions of higher 

social and environmental stress than under conditions of low stress (Young et al., 

2014a). One aspect that may have contributed to this moderate stress response 

could be the location of the isolation and separation trials. The isolation and 

separation trials were conducted in a test arena that was highly familiar to the 

horses. This is in contrast to previous studies, where animals were separated from 

their social unit and transferred into a novel environment (Banerjee and Adkins-

Regan, 2011; Coe et al., 1982; Hennessy, Zate and Maken, 2008; Kanitz et al., 

2014; Sachser, Dürschlag and Hirzel, 1998). However, horses from both stables 

were housed on site between one to ten years prior to the data collection. This 

could have promoted habituation to the location itself, which could have facilitated 

perceived safety and made a strong stress response obsolete. In support of this 

suggestion, Tuber et al. (1996) found that shelter dogs (Canis lupus familiaris) did 

not show a significant stress response when they were separated from their 



 Chapter 3 – Isolation and separation  

110 

 

kennel mate but were remaining within their home kennel. Moreover, Hennessy 

(1997) had collated findings of other studies in his review that had demonstrated 

that social isolation only provoked a significant stress response when the test 

subjects were exposed to an additional stressor, such as novelty. In line with this 

review, Baron (1963) found that the fear response of mice (Mus musculus) 

following electric shocks was more pronounced when they were thereafter 

transferred into an unfamiliar environment than when transferred into a familiar 

environment. Taken together, this could suggest that animals might not just gain 

buffering effects from conspecifics as shown in other studies (Bolt et al., 2017; 

Erber et al., 2012; Pollard and Littlejohn, 1995; Rault, Boissy and Boivin, 2011). 

They might also benefit from familiarity with their physical environment. Future 

research could assess which aspects determine whether the social context or 

environmental features affect the behavioural and physiological (stress) response 

of group-living animals. This could help to gain a better understanding regarding 

aspects that can increase the individual's capacity to cope with stressors 

(Koolhaas et al., 2017) and how social buffering relates to other stress coping 

mechanisms (Hennessy, 1997). 

Although the horses showed a higher vigilance when they were isolated 

alone, they did not show a difference in mean heart rate or HRV when isolated 

than when separated with another horse. This finding seems unexpected, 

however, a similar disjunction between the behavioural and physiological stress 

response has been found in other studies. Squibb et al. (2018) found that horses 

showing greater behavioural resistance in a novel handling task did not show a 

higher heart rate than compliant horses. Similarly, horses with higher behavioural 

reactivity during fur clipping did not show a higher heart rate than less reactive 

horses (Yarnell, Hall and Billett, 2013). In contrast to these findings, other studies 

have shown the opposite effect. Munsters et al. (2013) found that horses that 

stood still and did not show behavioural responses when exposed to a strong 

external stressor, had a significantly increased heart rate. Similarly, Safryghin, 

Hebesberger, and Wascher (2019) showed that horses that showed less 

behavioural arousal prior to feeding showed a significantly higher heart rate. 

Therefore, there seems to be an occasional discrepancy between the behavioural 

and the physiological stress response. Squibb et al. (2018) have discussed their 

results, arguing that equine training methods based on negative reinforcement 
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could facilitate horses' strategy to obscure stress-related behaviour. 

Consequently, horses' stress response could be primarily indicated by an 

increase in their physiological activity. Safryghin, Hebesberger and Wascher 

(2019) have discussed that the type of stressor might contribute to different 

responses. When exposed to a novel object, the horses’ behavioural stress 

response was in line with their physiological stress response, whereas in a feeding 

experiment, where horses were waiting for their hard feed, the behavioural and 

physiological were not aligned. A similar pattern is found in the studies presented 

in this thesis. During the isolation/separation, which horses in this study did not 

perceive as a great stressor, as indicated by low behavioural and physiological 

arousal, the behavioural and physiological responses were discrepant. However, 

in the context of the novel object exposure, a higher behavioural arousal 

corresponded to a higher physiological arousal (Chapter 4). Similarly, previous 

research in starlings (Sturnus vulgaris) showed that during exposure to different 

stressors such as light, music, and different types of human intrusion, their 

behavioural stress response, and their physiological stress response on the SAM-

axis activity level and the HPA-axis activity level did not necessarily correspond. 

Whilst the physiological stress response on their HPA-axis activity level was 

similar for the different stressors, their response on SAM-axis activity level was 

differentiated and lowest during the light stressor. Significant behavioural changes 

occurred when the birds were exposed to music or a threatening human intrusion. 

The authors of this study have concluded that the degree of the stressor's novelty 

could be the most significant factor in determining the stress response on SAM-

axis activity level (Nephew, Kahn and Romero, 2003). This suggests that three 

main components of the stress response, namely behaviour, SAM-axis activity, 

and HPA-axis activity, may be regulated independently and that their regulation 

could be sensitive to different contexts.  

Responding to different stressors with differentiated behavioural and 

physiological activity levels could be adaptive. On the one hand, it enables the 

individual to react to stimuli in its environment. On the other hand, it could also 

save energy, which otherwise would be needed to elicit and maintain the stress 

response on the levels of behaviour, SAM-axis activity, and HPA-axis activity 

(Nephew, Kahn and Romero, 2003; Romero, Dickens and Cyr, 2009). Therefore, 

future research could investigate the context-specific modulation of animals’ 

stress responses on those three levels. A more differentiated insight into how 
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animals regulate their stress response could provide more information about 

underlying mechanisms of behaviour (Tinbergen, 1963) and how those responses 

potentially influence long-term health (McEwen, 2008). 

3.4.2 Social interactions, spatial proximity and SAM-

axis activity 

The prediction was that horses would show higher affiliation rates and 

closer spatial proximity when separated with their highly-preferred field 

companions. However, there was no difference in the frequency of affiliative 

interactions or spatial proximity between the focal horse and the highly-preferred 

and less-preferred test partner during the separation trials. This is surprising, as 

horses showed a significant preference in their social interactions when within 

their whole group. This finding could indicate that horses generalise their 

interactions with, or proximity to the available social partner during a separation 

from their group, independently of their social preference. This observed 

difference in the rate of affiliative interactions and spatial proximity patterns during 

group and dyadic test conditions could also be understood based on the biological 

market theory (Noë and Hammerstein, 1994). This theory describes that 

individuals chose, for example, a social or sexual partner depending on their 

relative quality, or the quality of an offered commodity compared to other available 

conspecifics (Barclay, 2016; Noë and Hammerstein, 1994). This could explain 

observed preferences among horses within their whole social unit, where different 

social partners are available to choose from. However, selectiveness is only 

beneficial if there are several partner options (Barclay, 2016). Being selective in 

a situation where fewer social partners are available can be costly (Noë and 

Hammerstein, 1994). For horses, as prey animals, grouping was found to be one 

anti-predator strategy (Feh, Boldsukh and Tourenq, 1994; Rubenstein, 1978; Van 

Der Post, Verbrugge and Hemelrijk, 2015). Therefore, selectiveness could be 

costly when being separated from their social group as it could increase the 

potential risk of predation. Thus, affiliating and spending time in proximity during 

separation could be a generalised (i.e., not bond-dependent) strategy and 

potentially more beneficial when there is a limited number of conspecifics 

available.  
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Moreover, it was predicted that higher rates of affiliative interactions with and 

close proximity to highly-preferred field companions would facilitate an increase 

in RMSSD, a decrease in LF/HF-ratio and the corresponding mean heart rate. 

When investigating the effect of affiliative interactions and spatial proximity on 

cardiac activity, the finding revealed, in line with the prediction, that the average 

RMSSD was higher, the longer horses were mutually grooming. This suggests 

that longer a grooming duration corresponds with higher vagal activity and a shift 

towards parasympathetic control of the horses' heart rate (von Borell et al., 2007; 

Stucke, Große Ruse and Lebelt, 2015). Similarly to findings presented in Chapter 

2, this effect did not depend on the relationship quality between the grooming 

partners. However, as the model fit for this analysis was relatively low, and as 

mutual grooming did not occur between all dyads, these findings need to be 

interpreted cautiously. Furthermore, the findings showed that the RMSSD, LF/HF-

ratio and the corresponding heart rate did not depend on the frequency of other 

affiliative interactions, such as touch and head rubs, or the spatial proximity 

between the horses. Summarising these findings, this study did not provide strong 

evidence that affiliative interactions between highly-preferred or less-preferred 

horses affected heart rate and HRV during repeated social separation, as 

suggested by previous research (reviewed in Kiyokawa et al., 2013; Beery et al., 

2020; Burkett et al., 2016; Fürtbauer et al., 2014). However, the findings 

presented in this chapter apply to a situation that can be described as a mild 

stressor, as besides vigilance, horses did not show other behaviours that would 

indicate a significant stress response. Whether affiliative interactions and spatial 

proximity have a more pronounced effect on cardiac activity during situations of 

higher stress intensity (Burkett et al., 2016; Kiyokawa et al., 2013; Kiyokawa, Li 

and Takeuchi, 2019) needs to be assessed in future studies. 

3.4.3 Implications for equine welfare 

Separation from the group has been reported to provoke a stress response 

in horses (Ali, Gutwein and Heleski, 2016; Lansade, Bouissou and Erhard, 2008a; 

Momozawa et al., 2007; Pérez-Torres et al., 2016; Reid et al., 2017). 

Nevertheless, group-housed horses sometimes need to be separated from their 

group due to different feeding needs or medicinal purposes and in the course of 

husbandry routines or training (Burla, Siegwart and Nawroth, 2018; Esch et al., 

2019; Lundblad et al., 2020). The findings presented in this chapter suggest that 
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the presence of any familiar field companion, independent of the bond 

relationship, can be beneficial during the separation from the social group. Horses 

showed less vigilance when together with a familiar horse. This can allow them to 

spend more time performing other behaviours such as feeding or maintenance 

behaviours (Pulliam, 1973; Roberts, 1996; Van Der Post, Verbrugge and 

Hemelrijk, 2015; Xu et al., 2013). Highly-preferred and less-preferred horses 

showed the same rates of affiliative behaviours and spatial proximity. Moreover, 

there was no difference in the horses' heart rate or heart rate variability when 

together with either a highly-preferred or a less-preferred field companion. Lastly, 

mutual grooming between highly-preferred and less-preferred horses had a 

positive effect on their HRV. This suggests that, when separated from the group 

for a short amount of time, the company of any field companion can enable horses 

to fulfil their social needs. 

These findings present novel insights into the effect of horses’ social 

context on their behaviour and cardiac activity during separation. Whether they 

also apply to more temperamental breeds needs to be assessed in future studies. 

Previous research on cattle has found that their behavioural and physiological 

response to social isolation can depend on their breed, with the calmer breed 

showing a less pronounced stress response (Boissy and Le Neindre, 1997). Wolff, 

Hausberger and Le Scolan (1997) found that horses’ response to social 

separation had a strong genetic basis, with half-siblings showing a significant 

correlation in their responses. The analysis of a large-scale study where human 

handlers rated horses’ sociability, which is defined here as a trait for 

gregariousness and is reflected in the horses' propensity to socialise, has shown 

that the sociability ratings were breed-dependent (Lloyd et al., 2008). In 

conjunction with the findings presented in this chapter, the results of these studies 

could suggest that calmer, less fearful horses can be more independent of their 

social context in their behavioural and physiological response to social separation. 

Gaining more insight into the interplay between breeds, stress physiology, and 

social support could further the understanding of which individuals are more 

susceptible to perceive situations or stimuli as stressors and which individuals 

benefit more from social support. Such an understanding can be beneficial from 

the perspective of equine welfare, as it can guide and promote husbandry and 
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training strategies that can decrease stress for domestic horses (Dalla Costa et 

al., 2014; Fraser, 2010).  

Another finding relevant for equine welfare is the discrepancy between the 

behavioural and physiological responses detected in this study. Although the 

horses showed a significantly higher vigilance when isolated alone, their mean 

and maximum heart rate were not significantly higher than in the dyadic test 

conditions. As such discrepancies were reported in other studies, as discussed in 

section 3.4.1, page 108fff, it seems relevant to increase the awareness of 

equestrians that a horse that shows a behavioural stress response is not 

necessarily showing a physiological stress response, and that a horse that seems 

calm, might experience stress as indicated by a response on a physiological level. 

Future research could address this phenomenon and assess whether specific 

contexts promote these discrepancies between the behavioural and physiological 

stress response. Furthermore, more reliable indicators seem necessary to enable 

equestrians to distinguish between stress-related behaviours and learnt 

behaviour (Cooper and McGreevy, 2002) on the one hand, and that can help to 

detect a stressed horse that does not display obvious behaviour that can be 

indicative for a stress response, on the other hand. Reliable detection of the 

horses' stress response is an important aspect to determine factors during 

housing, handling, and training that constitute stressors for the horses under our 

care. This is an essential prerequisite to promote practices that can decrease 

stress for domestic horses (Dalla Costa et al., 2014; Fraser, 2010).  

3.5 Conclusion 

This study aimed at assessing whether domestic horses benefitted from 

the presence of closely bonded conspecifics during separation from their group. 

The horses in the study sample showed a moderate stress response to isolation 

and separation from their social group. Horses showed the highest vigilance when 

isolated alone. The presence of both a highly-preferred and a less-preferred field 

companion of the same sex facilitated a decrease in vigilance. The rates of 

affiliative interactions and spatial proximity patterns did not differ between highly-

preferred and less-preferred horses during the separation trials. These findings 

suggest that horses generalised their behaviour towards a familiar conspecific, 

independently of their bond relationships. This is an interesting finding as 
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affiliative interactions and spatial proximity differed significantly between focal 

horses and their highly-preferred or less-preferred field companion when they 

were observed in the context of their whole group. Moreover, higher vigilance was 

not accompanied by a higher heart rate or lower heart rate variability. This reflects 

other studies' findings, indicating that horses' behavioural response and 

physiological adaptation can be regulated independently. 

Regarding possible mechanisms of social buffering, this study showed 

that the duration of mutual grooming corresponded with a higher average 

RMSSD, indicating a shift to parasympathetic control of cardiac activity. However, 

this effect was small and again, not depending on the social bond between the 

grooming partners. Otherwise, the rate of initiated and received affiliative 

interactions such as sniffs, touches, and head rubs, or spatial proximity did not 

affect cardiac activity. Overall, the presented findings suggest that the presence 

of a highly-preferred conspecific did not facilitate bond-dependent behavioural 

and physiological responses in the context of separation from their social group. 

Rather, horses showed a predominantly generalised behavioural and 

physiological response when separated with either a highly-preferred or less-

preferred field companion. This generalisation could be an adaptive strategy for 

prey animals. 
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Abstract 

Animals, especially those under human care, need to adapt to novel 

stimuli in their environment. The study presented in this chapter assessed 

whether domestic horses (Equus caballus) benefited from social buffering when 

exposed to a novel object. For this purpose, ten horses were exposed to a novel 

object in four different test conditions: alone, with a highly-preferred horse of their 

group, a less-preferred horse of their group, or their whole group. Furthermore, it 

was investigated whether the presence of conspecifics facilitated exploratory 

behaviour. The novel object tests provoked a significant but mild stress response. 

After the initial object exposure, horses showed closer proximity to their highly-

preferred than to a less-preferred group member. The closer proximity did not 

correspond to a lower heart rate. Otherwise, the horses’ stress-related behaviour, 

cardiac activity, and exploratory behaviour during the novel object tests were not 

significantly affected by their social context. The presented findings suggest that 

domestic horses show a bond-dependent proximity-seeking behaviour. Besides 

this finding, the study did not provide further evidence that the presence of a 

highly-preferred conspecific of the same sex or the whole group facilitated a social 

buffering effect in horses during a novel object exposure. However, they provided 

novel insight into horses' socio-physiology, suggesting that horses deploy 

individual behavioural and physiological strategies when confronted with a mild 

stressor rather than adjusting their response to their social environment. 

Compared with previous research, this could indicate that social buffering is only 

one possible coping strategy and that its occurrence might depend on the intensity 

of the stressor.  

Keywords: Novel object test, social support, heart rate, fear response, 

exploration. 
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4.1 Introduction 

Besides potential stress from the social environment (DeVries, Glasper 

and Detillion, 2003; Sgoifo, Carnevali and Grippo, 2014; Viblanc et al., 2012; 

Wascher, Arnold and Kotrschal, 2008; Yamanashi et al., 2018; Chapter 2), 

animals are sometimes exposed to novel stimuli in their physical environment that 

can be perceived as stressors (Emery Thompson et al., 2010). Exposure to 

novelty can be a consequence of changes within the animals' familiar habitat or 

when animals expand their habitat to new territory (Russell, McMorland and 

MacKay, 2010). Due to anthropogenic influences, animals are increasingly 

exposed to novelty through habitat shifts and fragmentation or through the 

provision of new resources such as food or shelters (Sih et al., 2012). Domestic 

species, such as horses, are commonly exposed to novelty in the contexts of 

housing, handling, and training (Burla, Siegwart and Nawroth, 2018; Esch et al., 

2019; Lundblad et al., 2020).  

Depending on the perceived threat of a novel stimulus (Moberg, 2000), 

animals need to adapt their behaviour and physiological response. If the stimulus 

is perceived as dangerous or threatening, the stimulus represents a stressor, and 

the subsequent behavioural and physiological changes can be described as a 

stress response (Cannon, 1929; Koolhaas et al., 2011, 2017; Romero, Dickens 

and Cyr, 2009). These behavioural and physiological changes are necessary to 

enable the individual to cope with the stressor and maintain its homeostasis 

(Cannon, 1929; Romero, Dickens and Cyr, 2009). The behavioural changes can 

include a fight, flight, or freeze response (Cannon, 1929). Furthermore, animals 

can seek proximity to a specific conspecific, such as a mother or pair partner 

(Bowlby, 1969; Cassidy, 1994; Dujardin et al., 2019), or show flocking behaviour 

to increase group cohesiveness and reduce the potential risk for the individual 

(Foster and Treherne, 1981; Hamilton, 1971; Iranzo et al., 2018; King et al., 2012). 

On a physiological level, the stress response is characterised by an increased 

activity of the sympathetic-adrenal-medullary axis (SAM-axis), as indicated by an 

increase in heart rate or blood pressure. Moreover, the physiological stress 

response is characterised by an increase in the hypothalamic-adrenal-pituitary 

axis (HPA-axis) activity, as indicated by an increased release of glucocorticoids 

(Cannon, 1929; Koolhaas et al., 2011, 2017; Romero, Dickens and Cyr, 2009). 
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These adaptations can increase survival in the case of life-threatening stressors 

(Cannon, 1929). However, they are also costly as they require the mobilisation of 

energy to maintain the stress response and are thought to cause wear and tear 

on the organism (Romero, Dickens and Cyr, 2009).  

If a novel stimulus is perceived as less threatening, animals can show 

exploratory behaviour (Lester, 1968) and approach to investigate or manipulate it 

(Mettke-Hofmann, Winkler and Leisler, 2002). Exploratory behaviour can be 

beneficial as it enables the individual to learn about the properties and quality of 

novel features in the environment such as new sources of food (Beecham, 2001; 

Stöwe et al., 2006b), escape routes, shelters, or the location of predators, and 

potential mates (Birke and Archer, 1993; Dingemanse et al., 2002; Mettke-

Hofmann, Winkler and Leisler, 2002; Tebbich, Fessl and Blomqvist, 2009). 

Exploratory behaviour and sampling are an integral part of forming a mental map 

of the animals' environment (Beecham, 2001) and has been found to benefit 

survival and reproduction (summarised in Moretti et al., 2015). However, 

exploratory behaviour can also be costly. Due to a decreased vigilance during 

exploration or when exploratory behaviour occurs in an exposed location, it can 

increase the risk of predation (Mettke-Hofmann, Winkler and Leisler, 2002).  

Therefore, animals need to adapt their behavioural and physiological 

response to a novel stimulus depending on the perceived threat. Balancing the 

response to novelty between flight and exploratory behaviour ensures survival in 

dangerous situations and the conservation of energy while also enabling the 

animal to learn and exploit the habitat and new resources in situations that are 

less dangerous (Birke and Archer, 1993; Christensen et al., 2021a; Dingemanse 

et al., 2002; Mettke-Hofmann, Winkler and Leisler, 2002; Miller et al., 2015; Stöwe 

et al., 2006b). Both, the behavioural and physiological stress response and the 

occurrence of exploratory behaviour, when exposed to novelty, can depend on an 

individual's social context. During a potentially stressful situation, the presence of 

conspecifics can alter the perception and appraisal of that stimulus (Cannon, 

1929) and reduce the stress response - a phenomenon referred to as social 

buffering (Cohen and Wills, 1985). On the behavioural level, social buffering has 

been found to reduce fear reactions, flight or alert behaviour (Christensen et al., 

2008), freezing or inactivity (Ishii et al., 2016; Kikusui, Winslow and Mori, 2006b; 
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Kiyokawa et al., 2013b; Kiyokawa and Hennessy, 2018b), escape attempts 

(Kanitz et al., 2014), and contact calls (Kanitz et al., 2014; Kiyokawa and 

Hennessy, 2018). On the physiological level, social buffering has been found to 

alleviate the stress response, which is indicated by lower SAM-axis activity levels 

and lower HPA-axis activity levels (Cohen and Wills, 1985; DeVries, Glasper and 

Detillion, 2003b). 

Although social buffering can be induced by unfamiliar conspecifics (Rats, 

Rattus norvegicus: Kiyokawa et al., 2014a), the buffering effects were greater 

when the social support was provided by a familiar conspecific (Rats: Hodges et 

al., 2014; Kiyokawa et al., 2014b; Terranova, Cirulli and Laviola, 1999), and even 

more so when it was provided by a strongly bonded conspecific (Guinea pigs, 

Cavia porcellus: Hennessy et al., 2006; Hennessy, Kaiser and Sachser, 2009; 

Kaiser et al., 2003; Sachser, Dürschlag and Hirzel, 1998). This bond partner could 

be the mother for her offspring (e.g., Chicken, Gallus gallus domesticus: Edgar et 

al., 2015; Guinea pigs: Hennessy et al., 2006; Humans, Homo sapiens: Yirmiya 

et al., 2020), a bonded pair partner (e.g., Guinea pigs: Kaiser et al., 2003; 

Sachser, Dürschlag and Hirzel, 1998; Wied's black tufted-ear marmosets, 

Callithrix kuhlii: Rukstalis and French, 2005), or a relative in species with strong 

bonds between kin (e.g., Chacma baboons, Papio ursinus: Wittig et al., 2008).  

In situations that are not life-threatening, social buffering can be regarded 

as beneficial. By increasing the perceived safety and reducing the physiological 

stress response, or preventing it from occurring, it lowers the energetic costs 

required to elicit or maintain the stress response (Moberg, 2000; Romero, Dickens 

and Cyr, 2009). Another benefit is that the reduction of the stress response can 

help individuals to cope with new or challenging situations and shift the 

motivational conflict between fear and exploration (Bradley et al., 2001) towards 

exploratory behaviour (Cassidy, 1994; Dujardin et al., 2019; Hayes, 1960; 

Galhardo, Vitorino and Oliveira, 2012; Jakubiak and Feeney, 2016; Lester, 1969). 

Like the modulation of the stress response, exploratory behaviour can 

depend on an individual's social context. That the presence of conspecifics can 

facilitate exploratory behaviour has been shown in different species. For example, 

Capuchin monkeys (Cebus apella) (Dindo, Whiten and de Waal, 2009), horses 

(Equus caballus) (Mendonça et al., 2019), wolves (Canis lupus), dogs (Canis 
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lupus familiaris) (Moretti et al., 2015), birds of the crow family (Corvidae spp.) 

(Miller et al., 2014, 2015; Stöwe et al., 2006b; Stöwe and Kotrschal, 2007), and 

fish (e.g., Guppies, Poecilia reticulata: Croft et al., 2006; Mosquitofish, Gambusia 

holbrooki: Ward, 2012) were exploring faster or longer when with either one or 

more conspecifics. Similarly to social buffering, the social facilitation of exploratory 

behaviour can depend on the social bond between the involved individuals. In 

humans, children explored more when a strongly bonded attachment figure, for 

example, their mother or primary caregiver, was present than in the presence of 

a stranger (Jakubiak and Feeney, 2016). Also, goat kids (Capra aegarus hircus) 

explored more when their mother was present (Lyons, Price and Moberg, 1988), 

and dogs explored longer and faster when with their owners than with strangers 

(Horn, Huber and Range, 2013; Palmer and Custance, 2008; Payne et al., 2016; 

Schöberl et al., 2016; Solomon et al., 2019). Furthermore, ravens were found to 

join siblings faster than non-siblings to approach a novel object (Stöwe et al., 

2006b).  

Taken together, these findings indicate that the behavioural and 

physiological response to novelty can depend on the presence of conspecifics 

that provide social support. Thereby, the relationship quality to the support 

providers can play an important role in the regulation of the behavioural and 

physiological stress response and the facilitation of exploratory behaviour. 

Although the interplay between an individual's social context, social buffering and 

socially facilitated exploration has been evidenced, this chapter tackles explicitly 

three knowledge gaps: 

(1) Evidence of social buffering among closely bonded conspecifics of the 

same sex is scarce. It stands out that most of the evidence for the effect 

of relationship quality on social buffering or socially facilitated exploration 

stems from studies investigating bonds between mothers and offspring 

(e.g., Ainsworth et al., 1978; Edgar et al., 2015; Hennessy et al., 2006), 

between pair partners (e.g., Kaiser et al., 2003; Rukstalis and French, 

2005; Sachser, Dürschlag and Hirzel, 1998), or between kin (e.g., Stöwe 

et al., 2006b; Wittig et al., 2008). However, some species form close bonds 

between individuals of the same sex, including humans (Homo sapiens) 

(Brent et al., 2014; Feldman, 2012; Hruschka, Hackman and Macfarlan, 
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2015), baboons (Papio cynosephalus) (Nguyen et al., 2009; Palombit, 

Cheney and Seyfarth, 2001; Palombit, Seyfarth and Cheney, 1997), 

chimpanzees (Pan troglodytes) (Lehmann and Boesch, 2009; Massen and 

Koski, 2014; Mitani, 2009), lions (Panthera leo) (Packer et al., 1991), 

bottlenose dolphins (Tursiops truncatus) (Connor et al., 2000), and horses 

(Equus caballus) (Cameron, Setsaas and Linklater, 2009; Feh, 1999). 

However, little is known about whether closely bonded conspecifics of the 

same sex also provide social buffering and facilitate exploratory 

behaviour. Studying social buffering among closely bonded but unrelated 

animals of the same sex can help to gain a better understanding of 

whether such bonds provide benefits on a mechanistic level, thereby 

contributing to the proposed positive effects of social integration regarding 

long-term health (Snyder-Mackler et al., 2020). 

 

(2) Evidence for social buffering on group level is scarce. Evidence for social 

buffering effects has been primarily gathered from studies in dyadic 

experimental settings (e.g., Hodges et al., 2014; Kiyokawa et al., 2014a;b). 

However, group-living animals are mostly embedded in a bigger social 

unit. Therefore, their appraisal of a potentially stressful stimulus and their 

behavioural and physiological adaptations might depend not only on the 

presence of one strongly bonded conspecific but also on the presence of 

the animal’s whole social group (Hennessy, Kaiser and Sachser, 2009). 

Some studies have found that buffering effects were greater in groups than 

in dyadic situations (Colnaghi et al., 2016; González et al., 2013; 

Hennessy, Kaiser and Sachser, 2009; Kiyokawa, Kawai and Takeuchi, 

2018; Stanton, Patterson and Levine, 1985). Consequently, accounting for 

a species' social organisation in social buffering research is a biologically 

meaningful next step when studying social buffering in group-living 

species (Coe et al., 1982; Hennessy, Kaiser and Sachser, 2009). Studying 

social buffering effects in group-living animals on dyadic and group level 

makes it possible to assess how social buffering effects on a dyadic level 

relate to those received from an individual’s whole social unit. Therefore, 

it can be determined which benefits, within the social buffering framework, 
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individuals gain from forming bonds with specific members of their group 

(Hennessy, Kaiser and Sachser, 2009). 

 

(3) Social buffering and socially facilitated exploration are rarely studied 

together. Despite the proposed link between social buffering and socially 

facilitated exploration, and the relationship quality among the involved 

conspecifics (Ainsworth et al., 1978; Bowlby, 1969; Horn, Huber and 

Range, 2013; Ijichi et al., 2018; Moretti et al., 2015; Payne et al., 2016; 

Solomon et al., 2019), comparatively few studies assessed the effect of 

social bonds on the behavioural and physiological stress response and 

exploratory behaviour together. The studies that have assessed social 

buffering and socially facilitated exploration together have presented 

different findings. Terranova, Cirulli, and Laviola (1999) assessed the 

effects of conspecific familiarity on HPA-axis activity level and exploratory 

behaviour in rats (Rattus norvegicus domesticus). Despite finding a 

significant buffering effect provided by familiar rats, no significant 

difference in exploratory behaviour was found. Another study that has 

linked social buffering and exploration found the opposite effect when 

testing cichlid fish (Oreochromis mossambicus). The presence of familiar 

females resulted in an increase in exploration; however, not in an 

attenuation in hypothalamic-pituitary-interrenal axis activity, the structure 

in teleost fish corresponding to the HPA-axis (Galhardo, 2010; Galhardo, 

Vitorino and Oliveira, 2012). Studying bond-dependent buffering effects 

and bond-dependent facilitation of exploratory behaviour together can 

provide more insight into whether social bonds promote social buffering 

and enable the individual to engage in exploratory behaviour when 

exposed to novelty. This can help to determine which benefits individuals 

gain from social bond formations when adapting to novelty.  

 

Domestic horses are an ideal study species to investigate social buffering 

effects and socially facilitated exploration. They are highly gregarious group-living 

animals known to form strong bonds between adult horses of the same sex 

(Seyfarth and Cheney, 2012). These bonds are long-lasting and can be 

maintained for several years (Feh and de Mazières, 1993; Linklater et al., 1999; 
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Zeitler-Feicht, 2008). Studying horses makes it possible to investigate potential 

social buffering effects of closely bonded adults of the same sex and to integrate 

social buffering at group level.  

As prey animals, horses have developed an adaptive fear and flight 

response and thus may respond to novel situations, objects, sounds, or smells 

with neophobia, a fear-related stress response (McGreevy, et al., 2009). Previous 

studies have shown that a horse’s fear response can either depend on its 

personality (Lansade, Bouissou and Erhard, 2008b; Visser et al., 2002; Wolff, 

Hausberger and Le Scolan, 1997) or on its social context: The presence of 

habituated and calm or older conspecifics was found to decrease the horses’ fear 

response when exposed to novelty (Christensen et al., 2008; Rørvang, Ahrendt 

and Christensen, 2015; Rørvang and Christensen, 2018). Besides their fear 

response, horses have been found to adjust their exploratory behaviour to their 

social context. Burke and Whishow (2020) showed that horses utilised familiar 

conspecifics as a ‘secure base’ from which to start their exploration of a novel 

arena. Furthermore, Mendonça et al. (2019) showed that horses explored more 

when a conspecific was present. However, based on the presented body of 

research, it remains to be shown whether the relationship quality or bond between 

horses affects social buffering or their exploratory behaviour when exposed to a 

novel stimulus. Investigating whether domestic horses benefit from close social 

bonds when presented with novelty can not only contribute to a better 

understanding of behavioural mechanisms but also be of relevance from an 

equine welfare perspective. Domestic horses are frequently exposed to novelty 

or stressful situations (Burla, Siegwart and Nawroth, 2018; Esch et al., 2019; 

Lundblad et al., 2020) during handling (Schmidt et al., 2010b;c), training (Fowler, 

Kennedy and Marlin, 2012; Munsters et al., 2013; Schmidt et al., 2010a), and 

husbandry routines (Yarnell, Hall and Billett, 2013). Insight into whether horses 

can benefit from their social context during stressful situations can inform 

husbandry, handling, and training routines. By facilitating an environment that 

reduces negative states, such as stress and fear, this work can contribute to 

equine welfare (Fraser, 2008), and enhance safety for humans and horses during 

different handling procedures (Drewek and Scofield, 2016; Hartmann, 

Christensen and Keeling, 2011). 
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This study aimed at investigating social buffering effects on SAM-axis activity level 

and socially facilitated exploration in the context of novelty in domestic horses 

(Equus caballus). Thereby, it was assessed whether the presence of a closely 

bonded conspecific of the same sex alleviated the horses’ behavioural and 

physiological stress response and whether this effect was stronger when the 

horses were with their whole social group. Furthermore, it was investigated 

whether the presence of a closely bonded conspecific and of the whole group 

facilitated exploratory behaviour. For this purpose, ten horses were exposed to a 

novel object in four different test conditions: alone, with a closely bonded 

conspecific of the same sex, with a less closely bonded conspecific, and within 

their whole group. As a measure for SAM-axis activity, the horses’ heart rate was 

recorded throughout the novel object tests. This made it possible to measure the 

horses’ immediate physiological response to the novel object presentation. 

Thereby, the following research questions were addressed: 

1. Does the horses’ behavioural and physiological stress response to a 

novel object exposure depend on their social context? 

Hypothesis A: The presence of a closely bonded conspecific of the same sex 

buffers the focal horse’s behavioural and physiological stress response.  

Prediction A1: The horses’ behavioural stress response following the 

object presentation will be less pronounced when in the presence of a 

closely bonded group member than when in the presence of a less closely 

bonded horse or when alone. 

Prediction A2: Following the object presentation, horses will seek 

proximity to a closely bonded horse of the same sex.  

Prediction A3: The horses’ physiological stress response following the 

object presentation will be less pronounced (lower heart rate) when 

exposed to a novel object together with a closely bonded group member 

than with a less closely bonded horse or when alone. 

Prediction A4: Proximity seeking will facilitate a calming effect and 

correspond to a lower heart rate.  
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Hypothesis B: The presence of the whole group facilitates a stronger buffering 

effect than the presence of a closely bonded conspecific. 

Prediction B1: The horses’ behavioural stress response following the 

object presentation will be less pronounced when with their group than 

when alone or in a dyadic test condition. 

Prediction B2: The horses’ physiological stress response following the 

object presentation will be lower when with their group than when alone or 

in a dyadic test condition. 

2. Does the exploratory behaviour that horses exhibit towards a novel 

object depend on their social context? 

Hypothesis C: The presence of a closely bonded conspecific of the same sex 

facilitates exploratory behaviour. 

Prediction C: Horses will show more exploratory behaviour when with a 

closely bonded conspecific than compared to when alone or when with a 

less closely bonded conspecific. This will be indicated by a shorter latency 

to approach the object, a higher frequency and a longer duration of 

investigation and exploration. 

Hypothesis D: The group's presence has a stronger faciliatory effect on 

exploratory behaviour than the presence of a single conspecific. 

Prediction D: Horses will show more exploratory behaviour when within 

their group than when alone or with only one other conspecific. This will be 

indicated by a shorter latency to approach the object, a higher frequency 

and a longer duration of investigation and exploration. 
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4.2 Material and Methods 

Data collection took place between June and September 2018 in England 

and included the same two stable yards (Stable A and Stable B) as described in 

Chapter 2, section 2.2, page 39.  

 

4.2.1 Study subjects and housing 

At Stable A, the horse group comprised eleven horses, three mares and 

eight geldings (castrated stallions), aged 19.5 ± 4 (mean ± SD). At Stable B the 

group comprised eight horses, two mares and six geldings who were 15 ± 8 (mean 

± SD) years of age. All horses were group-housed for the majority (66 – 100%) of 

the time, and the group composition has been established for at least a year 

before data collection commenced. Details about housing, feeding routines, and 

the horses’ workload are provided in Chapter 2, section 2.2.1, page 39f. 

4.2.2 Study sample and exclusion criteria 

The novel object test was carried out with the same ten focal individuals 

and their assigned test partners as in the isolation and separation experiment 

presented in Chapter 3. The test partners were assigned as highly-preferred and 

less-preferred field companions based on the Preference Index (PI) (Chapter 3, 

section 3.2.2, page 86ff) and (ethical) exclusion criteria (Chapter 3, section 3.2.3, 

page 88).  

4.2.3 Novel object tests 

4.2.3.1 Study design 

In a within-subject design (Martin and Bateson, 2009), all focal individuals  

(n = 10) were exposed to novel objects once in each of the four different conditions 

(Figure 4.1): 

a) alone (A) 

b) with a highly-preferred field companion (HP) – high PI 

c) with a less-preferred field companion (LP) – low PI 

d) together with all horses of its group (G). 
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Figure 4.1 Experimental setup novel object tests. The novel object exposure was carried 
out in four different test conditions: a) alone, b) with a highly-preferred horse, c) with a 
less-preferred horse, and d) within the group. The order of social test conditions and the 
novel objects were pseudo-randomly assigned for each focal horse. Different objects were 
chosen across trials so that horses were exposed to each object only once (horse 
silhouettes original and adapted from http://phylopic.org/).  

 

The order of the test conditions was pseudo-randomised for each focal 

horse, as aligned with husbandry routines on site. In the group condition, all focal 

horses of a stable were tested together and within their whole group in one trial. 

For each trial, a novel object was pseudo-randomly preselected from various 

inflatable toys, strings with attached bags, balloons, and bands that were similar 

in size for the alone or dyadic conditions. In the group condition, the horses were 

exposed to a white tarpaulin (Table 4.1).  

Table 4.1 Novel objects descriptions. Description of the objects that were used for the 
novel object tests, including their form, dimensions, and colours.  

Object Form and dimensions  Colour 

Paddling pool round 
diameter: 1.2 m  
height: 35 cm  

white ground and 
yellow sides 

Swimming ring ring 
diameter: 1.1 m 
height: 20 cm 

yellow 

Surfboard flat 
length: 1.2 m 
height 20 cm 

blue and white 

Inflatable goal conical and three dimensional  
diameter: 0.7 m 
height: 0.8 m 

orange and green 

Bags with bands flat and movable 
length: 1.2 m 
height 15 cm 

black bags and red 
and white bands 

Tarpaulin dimension: 4 x 4 meters white 
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To prevent habituation (Martin and Bateson, 2009), all focal horses and their test 

partners were exposed to each object only once. Each focal horse underwent four 

trials. If they were assigned as a test partner for another member of the herd, they 

were only subjected to one additional trial but not more, again with the purpose to 

prevent habituation. 

 

4.2.3.2 Test procedure 

The horses that were subject to the novel object test were mounted with 

Polar® Equine V800 mobile heart rate monitors (Polar Electro Oy, Kempele, FI). 

This heart rate monitor detected the time intervals between consecutive 

heartbeats. Details about the mounting procedure and positioning of the monitor, 

as well as the habituation procedure, are given in Chapter 2, section 2.2.3, page 

44f. In the alone and dyadic (highly-preferred, less-preferred) test conditions, the 

focal horses and their test partners were mounted with the heart rate monitor. In 

the group condition, only the focal horses were equipped with monitors.  

After the heart rate monitor was mounted, the horses were brought to the 

test area. For the alone and dyadic tests, this was a fenced arena of approximately 

50m2 in size (pictures and details are provided in Chapter 3, section 3.2.4.2, page 

90f). The horses were familiar with the test arenas, as they were part of their usual 

stabling environment. Furthermore, they were habituated to spending time in the 

arena alone or with their highly-preferred or less-preferred conspecifics after the 

experimental series presented in Chapter 3. 

For the group test, the horses were brought back to their home field (field 

sizes: Stable A: 9 acres, Stable B: 11 acres). Horses were released and allowed 

to move freely. In all cases, horses were provided with ad libitum access to fresh 

water, hay, and grass to reflect the natural living conditions of a grazing species 

(Bulens et al., 2015).  

The experiment started one minute after the experimenter (D.V.H) had left 

the test area and taken position outside the fence. Ten minutes after the onset of 

the experiment, the novel object was presented. In the alone and dyadic 

conditions, the object was dropped across the fence into the arena. In the group 

condition, the object was dropped on the floor around eight meters from the horse 

group's periphery. After dropping the object, the experimenter moved back for 
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around eight meters, while holding on to a string tied to the object and crouched 

down. To not influence the horses’ behaviour, she lowered my gaze, and neither 

looked at the object nor the horses.  

The experiment itself comprised of different events and phases. As 

horses’ vision is particularly sensitive for detecting movement (Saslow, 2002) and 

can respond more strongly when they are exposed to a moving object (Malmkvist 

et al., 2012), the object was moved in two sequences during the experiment 

following the procedure from Christensen et al. (2008): three minutes after the 

initial object presentation (Drop 1), the object was pulled up the fencing via the 

attached string (Move 1). The object was held on the fencing's top edge 

(approximately chest height of the horses) for another three minutes and was then 

dropped to the floor (Drop 2). The moves were implemented in a slightly different 

way for the group trial. Instead of moving the object up a fence and dropping it, it 

was moved twice (Move 1 and Move 2) on the ground for approximately four 

meters. Ten minutes after Drop 2/Move 2 the object was removed. The 

experiment ended ten minutes thereafter (Figure 4.2). To ensure the same timing 

across trials, a stopwatch was used. 

 

 

Figure 4.2 Timeline and events of the novel object exposure. Ten minutes after the start of 
the experiment, the object was presented (Drop 1). After three minutes the object was 
moved for the first time (Move 1) and after another three minutes for the second time: in 
the alone (A) and dyadic conditions (HP, LP), this was a second drop from the fence line 
(Drop 2). In the group (G) condition, this was a second move on the ground (Move 2). Ten 
minutes later, the object was removed. The experiment stopped after another ten minutes.  

 

To monitor the horses’ behaviour during individual and dyadic experiments 

a Canon® LEGRIA HF R56 camera was used. During the group experiment an 

additional Apeman® wide-angle camera was used to capture the experiment from 

a larger angle. 
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4.2.4 Data processing 

4.2.4.1 Behaviour 

Behaviour was coded using the Solomon® Coder version beta 16.06.26 

(© András Péter, https://solomon.andraspeter.com). Thereby, the coder (D.V.H) 

was not blind to the test conditions. Mitigations that were put in place are 

described in Chapter 2, section 2.2.5.1, page 46f. The behavioural responses 

upon the presentation and movement of the object, horses’ locomotion, the spatial 

distance between the focal horse and its test partner, and investigation and 

exploration of the object were coded. The behavioural categories are listed in the 

ethogram in Table 4.2. Thereafter, the behavioural data were transformed into 

rates and durations per minute to account for the different lengths of phases in 

the experiment (Martin and Bateson, 2009).  

To assess whether the test condition affected the horses’ behavioural 

reaction to the novel object, their immediate behavioural responses to the object 

following each of the events in the experiment (Drop 1, Move 1, Drop 2/Move 2) 

were assigned to the following categories: stress response (including alert, startle, 

back, and flight), explore, head up, and no response. The behaviours are 

described in the ethogram in Table 4.2.  

To assess whether the horses’ spatial proximity during the object test was 

related to their social preference (HP, LP), the distance between the two horses 

in the dyadic test conditions was measured throughout the dyadic experiments 

(i.e., the distance between two horses’ heads was measured in horse-lengths). 

The spatial proximity was not assessed in the group trials, as due to the size of 

the field (depth of view) and the combination of a normal and wide-angle camera, 

the proximity assessment can become unreliable.  

To investigate whether the horses’ exploratory behaviour was affected by 

their social context, the following variables were recorded (Table 4.2):  

1) The latency to approach was obtained by measuring the time in seconds 

from the initial object presentation (Drop 1) until the horse first approached 

the object resulting in a stop to investigate or explore.  

2) The frequency and duration of investigatory behaviour (no physical 

contact with the object).  
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3) The frequency and duration of exploration (physical contact with the 

object).  

If investigation or exploration was paused for at least five seconds, or 

interrupted by another behaviour such as grazing, scratching, looking away, or a 

social interaction, it was recorded as another bout. To account for the different 

lengths of the experimental phases, behavioural events were transformed into 

rates per minute and the duration of behaviour were transformed into seconds per 

minute. 
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Table 4.2 Ethogram for the behavioural coding during the novel object tests. Descriptions of the recorded behaviours during the novel object exposure. The 

record column indicates whether a behaviour was coded as an event (e) or duration (d).  

 

Behavioural 
Category 

Behaviour Record Definition Source 

Immediate 
behavioural 
response to the 
object 

No response e The horse does not react to the test stimulus and continues its current activity. (Rørvang and Christensen, 2018) 

Head up e 
The horse raises its head from the grass or hay; chewing may be interrupted. Horse remains in an overall relaxed 
posture and does not move away from its position. 

(Rørvang and Christensen, 2018) 

Explore e Immediate approach to investigate or explore.  

Alert e 
The horse stands vigilant with elevated neck, head and ears oriented towards the object, chewing is interrupted, and 
the horse might move up to two steps away from its former position. 

(Rørvang and Christensen, 2018) 

Startle e Horse shudders suddenly and quickly after the object presentation.  
(Lansade, Bouissou and Erhard, 
2008b) 

Back e The horse shows alertness and moves more than two steps backwards or sideways from its previous position. (Rørvang and Christensen, 2018) 

Flight e The horse turns/jumps away from its position, followed by trotting or cantering. (Rørvang and Christensen, 2018) 

Vocalisation Snort e Powerful exhalation from nostrils. (Malmkvist et al., 2012) 

Exploratory 
behaviour 

Investigation d + e 
Horse stops (longer than 3 seconds) close to the object, eventually lowers its head towards the object but does not 
sniff or touch it. 

(Malmkvist et al., 2012) 

Exploration d + e Sniffing and/or touching and/or mouthing the object. (Malmkvist et al., 2012) 

Locomotion 

Standing d Horse stands or stand rests with a bent hind leg.  (Malmkvist et al., 2012) 

Walking d 
The horse moves at a slow four-beat pace, moving a front leg of a side forward, then the hindquarters of the same 
side and then moving the front leg of the other side, followed by the forward motion of the hind leg of the other side. 

(Zeitler-Feicht, 2008) 

Trotting d 
The horse moves at a faster two-beat pace, moving the diagonal front and hind leg forward at the same time, 
followed by a short suspension phase before the other diagonal limbs are moved forward. 

(Zeitler-Feicht, 2008) 

Cantering d 

The horse moves at a fast three-beat pace. In the first beat, the horse bares all its weight on a hind leg. In the second 
beat, the other hind leg and its respective diagonal foreleg take over the weight, which is then, in a third beat, shifted 
to the remaining foreleg. After that, the horse pushes off the ground into a suspension phase before the circle starts 
again. 

(Malmkvist et al., 2012) 

Other behaviour 

Grazing d Horse feeds from hay or grass. (Bulens et al., 2015) 

Drinking d Horse drinks from the water bucket. (Bulens et al., 2015) 

Urinating d Elimination of urine. (McDonnell and Haviland, 1995) 

Defecating d Elimination of faeces. (Malmkvist et al., 2012) 
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4.2.4.2 Heart rate 

The processing and error correction of heart rate data followed the same 

procedure described in Chapter 2, page 2.2.5.2, page 49. In four cases heart rate 

data had to be discarded as the monitor stopped recording (BLL and BLY group 

condition) or accumulated too many erroneous values (BLY (HP): 20% erroneous 

values, CHA (A): 100% erroneous values). Thus, a total of 10.5% of heart rate 

data could not be used for the analysis. 

To assess the overall effect of the novel object exposure on cardiac activity, the 

mean heart rate was calculated for the different phases of the experiment (Figure 

4.3):  

Pre:   ten minutes proceeding the initial object exposure.  

Phase 1:  from the initial exposure (Drop 1) to the first move (Move 1) of the  

object. 

Phase 2:  from Move 1 to the drop/second move (Drop  

2/Move 2). 

Phase 3:  from the Drop 2/Move 2 until the removal of the object. 

Post:   from the removal to ten minutes after. 

To assess whether the novel object exposure resulted in a change of the SAM-

axis activity, mean and maximum heart rates were calculated for ten-second 

timeframes before and after the events of the experiment (Figure 4.3): 

Baseline:  five minutes before the object exposure. 

Drop 1:   initial object presentation. 

Move:  moving the object. 

Drop 2/Move2:  dropping the object (alone and dyadic) or second move (group). 

Remove: the object was taken out. 

End:  five minutes after the object was removed. 
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Figure 4.3 Timeframes for the calculation of mean and maximum heart rate. The dark bars 
alongside the experimental timeline indicate the phases and events for which heart rate 
variables were calculated.  

The ten-second timeframes were chosen following several other studies 

(Briefer et al., 2015; Reefmann, Wechsler and Gygax, 2009; Safryghin, 

Hebesberger and Wascher, 2019; Wascher, Scheiber and Kotrschal, 2008) and 

present a trade-off between capturing the immediate sympathetic response to the 

events in the experiment and preventing subsequent behaviour from influencing 

the heart rate measures.  

 

4.2.5 Statistical analysis 

Analyses were carried out using R (Version 3.5.1) (R Core Team, 2019) 

in RStudio (Version 1.1.463). Normality tests were carried out using the Shapiro-

Wilk tests. Parametric and non-parametric tests were applied, depending on data 

distribution.  

Pearson’s Chi-squared tests were carried out to assess whether the 

immediate behavioural responses (stress response, explore, head up, no 

response) differed between the events of the object test (Drop 1, Move 1, Drop 

2/Move 2). Post hoc analyses were carried out applying the Bonferroni adjustment 

using the package ‘chisq.posthoc.test’ (Ebbert, 2019).  

To assess whether the initial behavioural response (following Drop 1) was 

depending on the test condition, generalised linear mixed-effects models with a 

logit link function (Hawkins, 2014) were run, using ‘glmer’ in the ‘lme4’ package 

(Bates, Maechler, and Walker, 2015). Each of the behavioural categories (stress 

response, explore, head up, no response) was transformed into a binary variable, 

indicating whether the behaviour was shown (1) or not (0), and set as a response 

variable: Model 1: stress response, Model 2: exploration, Model 3: head up, and 

Model 4: no response. The test condition (alone, high preference, low preference, 
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group) were set as fixed effect. Individual IDs and object type were set as random 

effects, to account for repeated measures and thus interdependencies within the 

data set (Harrison et al., 2018; Zuur and Ieno, 2016; Table 4.3). As indicators for 

the goodness of fit p-values and X2-values (Type III Wald chi square) were 

obtained using the ‘Anova’ function in the package ‘car’ (Fox and Weisberg, 

2019). To assess the variation explained by the model the R2-values for the 

models were obtained with the ‘r2’ function in the package ‘performance’ 

(Lüdecke et al. 2020) following Nakagawa, Johnson and Schielzeth (2017). 

Table 4.3 Components of the generalised linear mixed-effects models with logit link 
function. 

 Response variables Fixed effect Random effects 

Model 1 Stress response 
Test condition 

(alone, high preference,  

low preference, group)  

Individual ID, 
Object  
 
  

Model 2 Exploration 

Model 3 Head up 

Model 4 No response 

 

To compare spatial distances between highly-preferred and less-preferred 

dyads, two sample t-tests were carried out for the whole duration of the 

experiment. Additionally, Wilcoxon rank-sum tests were carried out to assess 

differences in spatial proximity for the single experimental phases (Pre, Phase 1, 

Phase 2, Phase 3, Post). To assess whether proximity seeking corresponded to 

a lower heart rate, the horses' mean heart rate during the experimental phases 

was compared between the two dyadic test conditions using Wilcoxon signed-

rank tests.  

To assess the effect of the novel object tests on cardiac activity, the mean 

and the maximum heart rate for the ten-second intervals prior and after the initial 

object presentation (Drop 1) were averaged for all horses across all test conditions 

and compared using paired t-tests or Wilcoxon signed-rank tests. To assess 

differences in mean heart rate across experimental phases, one-way repeated 

measures ANOVAs were conducted using the ‘ez’ package (Lawrence, 2016).  

To assess the effect of the test condition, the averaged mean and 

maximum heart rate of the 10-second timeframes following the experimental 

events (Drop 1, Move 1, Drop 2/Move 2) and the averaged mean heart rate for 

the experimental phases (Phase 1, 2, 3) across the four test conditions were 

compared using Friedman tests in the ‘pgirmess’ package (Giraudoux, 2018). 
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Post hoc tests were carried out using Nemenyi multiple comparisons in the 

‘PMCMR’ package (Pohlert, 2018).  

To assess the effect of the social context on exploratory behaviour, 

including the latency to approach and the rates and durations of investigation and 

exploration, Friedman tests and Nemenyi multiple comparisons were conducted. 

To assess the influence of trial number on heart rate and exploratory behaviour, 

Friedman tests were applied.  

The alpha-level was set at p = 0.05, and p-values are reported two-tailed. 

Effect sizes were calculated for significant results based on the z-statistic 

(Friedman tests and Wilcoxon signed-rank tests) using the following equation: 𝑟 =

 𝑧 √𝑛⁄  (Rosenthal, 1991). For t-tests effect sizes were calculated based on the t-

statistic using the following equation: 𝑟 =  √𝑡2/(𝑡2 + 𝑑𝑓) (Rosenthal, 1991). 

 

4.2.6 Ethical statement 

The experimental procedure was approved by the Departmental Research 

Ethics Panel under the terms of Anglia Ruskin University’s Research Ethics Policy 

(reference number: A & EB DREP 17-029 and 17-053) and followed the ethics 

guidelines for the study of animal behaviour provided by the Association for the 

Study of Animal Behaviour (ASAB, 2020). All applied methods were non-invasive. 

Based on ethical considerations (exclusion criteria are described in Chapter 3, 

section 3.2.3, page 88), three horses were excluded from the study. Consent for 

all procedures was sought from horse and stable owners. 
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4.3 Results 

4.3.1 Behavioural stress response 

4.3.1.1 Immediate behavioural response to the object exposure 

The immediate behavioural response, that is the first behaviour the horse 

showed upon each of the experimental events (Drop 1, Move 1, Drop 2/Move 2), 

was the strongest following the initial object presentation (Drop 1). Immediate 

exploration occurred most often after Drop 1 and was significantly less frequent 

following the other experimental events (Table 4.4). ‘No response’ occurred 

significantly more often after Drop 2 (Pearson’s Chi-squared tests: n = 48, Drop 

1-Move 1: X2
3 = 8.851, p = 0.031, Stress response: p = 1, Head up: p = 1, Explore: 

p = 0.058, No response: p = 0.53; Move 1-Drop 2: X2
3 = 16.627, p < 0.001, Stress 

response: p = 1, Head up: p = 1, Explore: p = 0.016, No response: p = 0.005; 

Move 2-Drop 2: Stress response p = 1, Head up: p = 1, Explore: p = 1, No 

response: p = 0.798). Consequently, the analysis regarding the effect of the 

horses’ social context on their immediate behavioural responses was focused on 

the behaviour following Drop 1. The horses’ immediate behavioural responses 

after Drop 1 were not dependent on their social context. Model outputs are 

summarised in the Tables 4.5 – 4.8. 

 

Table 4.4 Immediate behavioural responses. Behavioural responses following the 
experimental events (Drop 1, Move 1, Drop 2) of all focal horses and test partners (n = 
12) for all test conditions. 

Behavioural Response Drop 1 Move 1 Drop 2 

Fear response 11 10 8 

Explore 11 2 1 

Head up 17 19 14 

No response 9 17 25 
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Table 4.5 Model 1 – Stress response: Output from the generalised linear mixed-effects model 
with logit link function testing the relationship between the horses’ immediate behavioural 
response and the test condition (alone, less-preferred (LP), highly-preferred (HP), group). 
Binary response variable: behavioural stress response (yes, no) upon initial object presentation 
(Drop 1). Fixed effect: social test condition. Random effects: Individual ID (Name) and object. 
Par (parameter), Est (estimate), SE (standard error), z (z-statistic), df (degrees of freedom), F 
(F-statistic), p (p-value), X2 (Wald III), Var (variance), SD (standard deviation). 

Effects Model 1 Par Est SE z df F p  X2 

Fixed 
Condition 

  

Intercept 

(Alone) 
-0.98 1.20 -1.65 3 1.46 0.10 

0.33 

  
Group -1.03 1.49 -0.68   0.49 

LP -1.03 1.49 -0.68   0.49 

HP 1.37 1.26 1.09     0.27 

Random 

        Var SD 

Name               2.29 1.52 

Object               0.00 0.00 

 

 

Table 4.6 Model 2 – Exploration: Output from the generalised linear mixed-effects model with 
logit link function testing the relationship between the horses’ immediate behavioural response 
and the test condition (alone, less-preferred (LP), highly-preferred (HP), group). Binary 
response variable: exploration (yes, no) upon initial object presentation (Drop 1). Fixed effect: 
social test condition. Random effects: Individual ID (Name) and object. Par (parameter), Est 
(estimate), SE (standard error), z (z-statistic), df (degrees of freedom), F (F-statistic), p (p-
value), X2 (Wald III), Var (variance), SD (standard deviation). 

Effects Model 2 Par Est SE z df F p  X2 

Fixed 
Condition 

  

Intercept 

(Alone) 
-0.89 0.74 -1.21 3 0.84 0.23 

0.47 

  
Group 0.48 0.97 0.48   0.63 

LP -1.39 1.29 -1.09   0.28 

HP -0.56 1.07 -0.53     0.60 

Random 

        Var SD 

Name               0.25 0.50 

Object               0.00 0.00 
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Table 4.7 Model 3 – Head up: Output from the generalised linear mixed-effects model with logit 
link function testing the relationship between the horses’ immediate behavioural response and 
the test condition (alone, less-preferred (LP), highly-preferred (HP), group). Binary response 
variable: head up (yes, no) upon initial object presentation (Drop 1). Fixed effect: social test 
condition. Random effects: Individual ID (Name) and object. Par (parameter), Est (estimate), 
SE (standard error), z (z-statistic), df (degrees of freedom), F (F-statistic), p (p-value), X2 (Wald 
III), Var (variance), SD (standard deviation). 

Effects Model 3 Par Est SE z df F p  X2 

Fixed 
Condition 

  

Intercept 

(Alone) 
-0.41 0.65 -0.63 3 1.16 0.53 

0.34 

  
Group -0.98 1.03 -0.95   0.34 

LP 0.81 0.92 0.89   0.38 

HP -0.44 0.96 -0.47     0.64 

Random 

        Var SD 

Name               0.00 0.00 

Object               0.01 0.09 

 

 

 

Table 4.8 Model 4 – No response: Output from the generalised linear mixed-effects model with 
logit link function testing the relationship between the horses’ immediate behavioural response 
and the test condition (alone, less-preferred (LP), highly-preferred (HP), group). Binary 
response variable: no response (yes, no) upon initial object presentation (Drop 1). Fixed effect: 
social test condition. Random effects: Individual ID (Name) and object. Par (parameter), Est 
(estimate), SE (standard error), z (z-statistic), df (degrees of freedom), F (F-statistic), p (p-
value), X2 (Wald III), Var (variance), SD (standard deviation). 

Effects Model 4 Par Est SE z df F p  X2 

Fixed 
Condition 

  

Intercept 

(Alone) 
-2.31 1.17 -1.98 3 0.61 0.04  

0.62 

  

  

Group 1.41 1.30 1.08   0.28 

LP 0.84 1.34 0.62   0.53 

HP 0.00 1.51 0.00     1.00 

Random 

        Var SD 

Name               0.29 0.53 

Object               0.00 0.00 
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4.3.1.2 Proximity 

Taken for the whole duration of the dyadic experiments, the mean distance 

between highly-preferred dyads was 2.06 ± 0.71 horse-lengths (mean ± SD) and 

between less-preferred dyads 2.34 ± 0.62 horse-lengths; this difference was not 

significant (Two sample t-test: nHP = 6, nLP = 7, t = 0.70, df = 8.09, p = 0.501). 

However, analysed for the single phases of the experiment (Phase 1, Phase 2, 

Phase 3), highly-preferred dyads were closer (1.36 ± 0.18) during Phase 1, i.e., 

following Drop 1, than less-preferred dyads (2.09 ± 1.15) (Wilcoxon rank-sum test: 

nHP = 6, nLP = 7, W = 1, p = 0.002, r = -0.266; Figure 4.4).  

 

Figure 4.4 Spatial proximity across experimental phases. Tukey whiskers plot for spatial 
proximity (in horse-lengths) for the different phases of the experiment. The bold horizontal 
line indicates the group median, the upper and lower hinge of the boxplot correspond to 
the 25 and 75 percentiles, comprising the interquartile range (IQR). The outwards pointing 
whiskers extend to the smallest and largest value at most 1.5 * IQR from the hinge. Data 
points smaller or greater are indicated as single dots. In Phase 1, following the initial object 
presentation, highly-preferred (HP) dyads (grey) were significantly (nearly a full horse-
length) closer than less-preferred (LP) dyads (white). Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, 
* p ≤ 0.05. 
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4.3.2 Physiological stress response 

4.3.2.1 Impact of the novel object test on cardiac activity  

Comparing the mean and maximum heart rate averaged for each focal 

horse and its test partner across all trials, the analysis showed that heart rate was 

significantly higher after Drop 1 (mean heart rate: paired t-test: n = 12, t = -3.48, 

df = 11, p = 0.005, r = 0.724; maximum heart rate: Wilcoxon signed-rank test:  

n = 12, V = 5, p = 0.004, r = -0.629; Figure 4.5). Thereby, the mean heart rate 

increased about 11%; from 47.97 ± 5.96 (mean ± SD) beats per minute (bpm) to 

53.26 ± 7.71 bpm. The maximum heart rate increased about 8.7%; from 51.90 ± 

5.59 bpm to 56.40 ± 9.78 bpm.  

 

Figure 4.5 Cardiac response to the novel object presentation. Tukey whiskers plot showing 
averaged mean (left) and maximum (right) heart rates in beats per minutes (bpm) for all 
horses ten-second timeframe prior (pre) and after (post) the initial object presentation. The 
bold horizontal line indicates the group median, the upper and lower hinge of the boxplot 
correspond to the 25 and 75 percentiles, comprising the interquartile range (IQR). The 
outwards pointing whiskers extend to the smallest and largest value at most 1.5 * IQR 
from the hinge. Data points smaller or greater are indicated as single dots. Mean and 
maximum heart rate were significantly higher after the object presentation. Asterisks: *** 
p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 

The trial number had no effect on the horses’ mean and maximum heart 

rate following Drop 1 (Friedman tests: n = 11; mean heart rate: X2 = 2.67, df = 2, 

p = 0.27; maximum heart rate: X2 = 2.89, df = 2, p = 0.242; Table 4.9).  
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Table 4.9 Mean and maximum heart rate across trials. As data were not normally 
distributed the median (x)̃, maximum (Max), minimum (Min), and interquartile range (IQR) 

are presented. Data for trial 4 are shown, however, they were not included in the analysis 
due to the small number of horses undergoing an additional trial in the role of a test partner 
for another focal horse. 

  Mean heart rate Maximum heart rate 

  x ̃ Max Min IQR x ̃ Max Min IQR 

Trial 1 48.63 91.00 40.81 11.88 52.22 103.81 42.40 11.46 

Trial 2 50.69 121.69 39.68 19.76 54.40 129.31 41.07 20.10 

Trial 3 48.44 68.37 38.97 10.08 52.59 72.73 40.49 11.78 

Trial 4 46.07 63.11 44.34 18.68 52.91 69.93 52.77 17.16 
 

 

The physiological response to the events (Baseline, Drop 1, Move 1, 

Drop/Move 2, Remove, Post) of the novel object test differed significantly 

(Friedman tests: n = 12, mean heart rate: X2 = 32.56, df = 5, p < 0.001; maximum 

heart rate: X2 = 30.09, df = 5, p < 0.001). Thereby, the strongest physiological 

response occurred following Drop 1 (Nemenyi multiple comparison tests: mean 

heart rate: Baseline-Drop 1: p < 0.001, r = -0.623; Drop 1-Post: p < 0.001,  

r = -0.676; Move 1-Post: p = 0.03, r = -0.658; Drop 2-Post: p = 0.004, r = -0.676; 

maximum heart rate: Baseline-Drop 1: p = 0.006, r = -0.711; Drop 1-Post:  

p < 0.001, r = -0.780; Drop 2- Post: p = 0.003, r = -0.737; Table 4.10; Figure 4.6).  

 

Table 4.10 Full test results mean and maximum heart rate per event. Based on the 
Nemenyi multiple comparisons tests, the p-values are shown for the comparison between 
the different events of the novel object tests. Significant results are marked in bold. 

   Baseline Drop 1 Move Drop 2 Remove 

Mean 
heart rate 

Drop 1 < 0.001 ─ ─ ─ ─ 

Move 0.301 0.363 ─ ─ ─ 

Drop 2 0.093 0.716 0.994 ─ ─ 

Remove 0.716 0.093 0.987 0.837 ─ 

Post 0.924 < 0.001 0.027 0.004 0.156 

Maximum 
heart rate 

Drop 1 0.006 ─ ─ ─ ─ 

Move 0.924 0.121 ─ ─ ─ 

Drop 2 0.246 0.780 0.837 ─ ─ 

Remove 0.974 0.070 1.000 0.716 ─ 

Post 0.646 < 0.001 0.121 0.003 0.198 
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Figure 4.6 Heart rate and experimental events. Tukey whiskers plots for averaged mean 
and maximum heart rate in beats per minute (bpm) for all horses across all trials shown 
for the ten seconds after each event. The bold horizontal line indicates the median, the 
upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, comprising 
the interquartile range (IQR). The outwards pointing whiskers extend to the smallest and 
largest value at most 1.5 * IQR from the hinge. Data points smaller or greater are indicated 
as single dots. The mean heart rate after Drop 1 was significantly higher than during the 
Baseline, and Post. Moreover, the mean heart rate Post was significantly lower than after 
the Move and Drop 2. The maximum heart rate was significantly higher following Drop 1 
than during Baseline and Post. Moreover, the maximum heart rate Post was significantly 
lower than after Drop 2. Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 

 

Additionally, the averaged mean heart rate for all horses and trials was 

compared between the experiment's phases (Pre, Phase 1, Phase 2, Phase 3, 

and Post). The mean heart rate differed significantly (One-way repeated 

measures ANOVA: n = 12, F4,44 = 13.00, p(HFe) < 0.001). Post hoc analysis 

revealed a significantly higher heart rate in Phase 1 (following Drop 1) than Post 

(Post hoc pairwise t-test, Bonferroni adjustment: p = 0.048, r = 0.833; full test 

results Table 4.11; Figure 4.7).  

Table 4.11 Full test results mean heart rate per phase. Based on the ANOVA post hoc 
analysis (pairwise t-test with Bonferroni adjustment), the p-values are shown for the 
comparisons between the different phases of the novel object tests. Significant results are 
marked in bold. 

  Pre Phase 1 Phase 2 Phase 3 

Phase 1 0.294 ─ ─ ─ 

Phase 2 1 0.158 ─ ─ 

Phase 3 1 0.205 1 ─ 

Post 1 0.048 1 1 
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Figure 4.7 Heart rate and phases of the experiment. Tukey whiskers plot for mean heart 
rates in beats per minute (bpm) averaged for all horses across all trials compared between 
the phases of the experiment. The bold horizontal line indicates the median, the upper 
and lower hinge of the boxplot correspond to the 25 and 75 percentiles, comprising the 
interquartile range (IQR). The outwards pointing whiskers extend to the smallest and 
largest value at most 1.5 * IQR from the hinge. Data points smaller or greater are indicated 
as single dots. The mean heart rate was significantly higher following Drop 1 than Post 
experiment. Asterisks: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 

 

Based on these findings, the effect of the horses’ social context on their 

heart rate in response to the events of the object tests was only assessed 

regarding the initial object presentation (Drop 1). Additionally, the effect of social 

context was assessed regarding the horses’ heart rate during the phases of the 

experiment. 

 

4.3.2.2 Cardiac activity and social context 

The mean and maximum heart rate calculated for the 10-second period 

following Drop 1 did not differ between the test conditions (Friedman tests: n = 8, 

mean heart rate: X2 = 4, df = 2, p = 0.145; maximum heart rate: X2 = 1.75, df = 2, 

p = 0.427; Figure 4.8).  
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Figure 4.8 Cardiac response following Drop 1 per test condition. Tukey whiskers plots for 
the mean (left) and maximum (right) heart rate in beats per minute (bpm) calculated for 
the ten-second period after Drop 1. The bold horizontal line indicates the median, the 
upper and lower hinge of the boxplot correspond to the 25 and 75 percentiles, comprising 
the interquartile range (IQR). The outwards pointing whiskers extend to the smallest and 
largest value at most 1.5 * IQR from the hinge. Data points smaller or greater are indicated 
as single dots. There was no significant difference in heart rate between the four test 
conditions.  

Moreover, mean heart rate during the experimental phases, that is, during 

the phases between the experimental events (Phase 1: Drop 1 – Move 1; Phase 

2: Move 1 – Drop/Move2; Phase 3: Drop/Move 2 – Remove), did not differ 

between the social test conditions (Friedman tests, n = 7: Phase 1: X2 = 4.543,  

df = 3, p = 0.209; Phase 2: X2 2.486, df = 3, p = 0.478; Phase 3: X2 = 2.314,  

df = 3, p = 0.510; Figure 4.9). 
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Figure 4.9 Mean heart rate for the experimental phases and test conditions. Tukey 
whiskers plots for mean rate in beats per minute (bpm) shown for the three phases of the 
object exposure and grouped per test condition alone (A, black), highly-preferred (HP, 
dark grey), less-preferred (LP, light grey), and group (G, white). The bold horizontal line 
indicates the median, the upper and lower hinge of the boxplot correspond to the 25 and 
75 percentiles, comprising the interquartile range (IQR). The outwards pointing whiskers 
extend to the smallest and largest value at most 1.5 * IQR from the hinge. Data points 
smaller or greater are indicated as single dots. There was no difference in mean heart 
rate between the four test conditions during the experiment's phases. 

 

4.3.3 Exploratory behaviour 

In seven cases, horses approached the object immediately after Drop 1. 

The longest latency to approach was 856 seconds. In ten cases, horses did not 

approach. The focal horses’ latency to approach did not depend on the social test 

condition (Friedman test: n = 10, X2 = 4.21, df = 3, p = 0.242; Figure 4.10). There 

was no significant effect of trial number on the latency to approach, only a 

tendency (Friedman test: n = 10, X2 = 5.88, df = 2, p = 0.052).  
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Figure 4.10 Latency to first approach. Tukey whiskers plot for the latency (in seconds) to 
the first approach of the object for each test condition. The bold horizontal line indicates 
the group median, the upper and lower hinge of the boxplot correspond to the 25 and 75 
percentiles, comprising the interquartile range (IQR). The outwards pointing whiskers 
extend to the smallest and largest value at most 1.5 * IQR from the hinge. Data points 
smaller or greater are indicated as single dots. The maximum of 960 seconds represents 
the length of the trial, indicating that horses did not approach. A minimum of one second 
indicates that a horse immediately explored. The test condition did not affect the horses’ 
latency to approach the novel object. 

 
Taken for all trials, the average rate at which horses investigated the 

object, i.e., looked towards the object but did not manipulate it, was 0.32 ± 0.64 

(mean ± SD) times per minute and the average duration of investigation was 0.60 

± 1.67 seconds per minute. The average rate of exploration, i.e., manipulation of 

the object, was 0.41 ± 0.66 seconds per minute, and the average duration of 

exploration was 0.77 ± 1.53 seconds per minute. In 18 trials, horses showed 

investigatory behaviour (eight horses), and in 19 trials, horses showed exploratory 

behaviour (seven horses). Only one horse never investigated or explored the 

novel objects.  

Neither the frequency nor the duration of exploration and investigation 

differed between the test conditions. There was only a tendency that the 

frequency and duration of investigation was the highest in the group condition 

(Friedman tests: n = 10, frequency investigation: X2 = 6.72, df = 3, p = 0.08, 

duration investigation: X2 = 6.88, df = 3, p = 0.076; frequency exploration:  

X2 = 1.64, df = 3, p = 0.650, duration exploration: X2 = 4.34, df = 3, p = 0.22; 

investigation and exploration: X2 = 5.55, df = 3, p = 0.136; Figure 4.11).  
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Figure 4.11 Investigation and exploration of the novel object. Tukey whisker plots for the 
occurrence of investigatory (top) and exploratory behaviour (bottom) in rates per minute 
(left) and their duration in seconds per minute (right) for the different test conditions. The 
bold horizontal line indicates the group median, the upper and lower hinge of the boxplot 
correspond to the 25 and 75 percentiles, comprising the interquartile range (IQR). The 
outwards pointing whiskers extend to the smallest and largest value at most 1.5 * IQR 
from the hinge. Data points smaller or greater are indicated as single dots. All variables 
did not significantly differ between test conditions. 

 

The trial number did not affect the rate or the duration of investigation or 

exploration (Friedman tests: n = 10, frequency investigation: X2 = 1.68, df = 2,  

p = 0.431; duration investigation: X2 = 1.08, df = 2, p = 0.582; frequency 

exploration: X2 = 3.58, df = 2, p = 0.167; duration exploration: X2 = 1.92, df = 2,  

p = 0.382).  
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4.4 Discussion  

In this chapter, it was assessed whether the social context affected the 

behavioural and physiological stress response, and exploratory behaviour of 

domestic horses (Equus caballus). The specific aim was to investigate whether 

the presence of closely bonded conspecifics of the same sex or of the whole group 

would induce buffering effects of the behavioural and physiological stress 

response and facilitate exploratory behaviour. Therefore, the heart rate and 

behaviour of ten horses were recorded when exposed to a novel object either 

alone, with a highly-preferred or less-preferred conspecific, or when with their 

whole group. The findings will be discussed first regarding social buffering and 

then regarding socially facilitated exploratory behaviour. 

 

4.4.1 The effect of social context on the horses’ 

behavioural and physiological stress response 

Based on previous research, the prediction was that the horses’ 

behavioural and physiological stress response to a novel object exposure would 

be buffered by the presence of a highly-preferred conspecific, and even more so 

by the horses' whole group. The findings presented in this chapter showed that 

the horses’ responded with a significant but comparatively mild stress response 

to the novel object tests. Thereby, their behavioural and physiological stress 

response was independent of their social context. Neither the presence of a 

highly-preferred conspecific nor the presence of their group facilitated a buffering 

effect during the novel object experiment. Although this was a surprising finding, 

it goes in line with the findings of some previous studies. In non-human primate 

species, it was found that the individuals’ physiological responses to a novel 

object exposure within their natural home range did not differ when they were 

alone or within their social unit (Vervet monkeys, Chlorocebus pygerythrus: 

Blaszczyk, 2017; Squirrel monkeys, Saimiri sciureus: Levine, 2000). Taken 

together, this suggests that animals do not always adapt their physiological and 

behavioural responses according to their social environment.  

A possible explanation for the difference between the findings presented 

in this chapter and studies that found significant buffering effects (e.g., Hennessy 

et al., 2006; Hennessy, Kaiser and Sachser, 2009; Hodges et al., 2014; Kiyokawa 
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et al., 2014b; Sachser, Dürschlag and Hirzel, 1998) could be the applied test 

paradigm. In many social buffering studies that have found significant buffering 

effects, the test subjects were exposed to stressors of high intensity that were 

inevitable and uncontrollable for the test subjects. Such test paradigms included, 

for example, pain-inducing fear conditioning (e.g., Kikusui, Winslow and Mori, 

2006; Kiyokawa, et al., 2014a; Kiyokawa, Kawai and Takeuchi, 2018; Mikami et 

al., 2016), or a transfer into a completely novel environment (e.g., Apfelbeck and 

Raess, 2008; Hennessy, Zate and Maken, 2008; Kaiser et al., 2003; Sachser, 

Dürschlag and Hirzel, 1998).  

In comparison to such test paradigms, a novel object is a punctual stressor 

in space and time. Moreover, the test arena was spacious. Therefore, horses in 

this study were able to ignore, avoid or to retreat from the stimulus. This potentially 

caused the horses to perceive the test situation as controllable, as indicated by 

their significant but overall mild stress response. Previous research has shown 

that the stress response decreased when the tested individuals could enhance 

the distance to the threatening stimulus or avoid it (Moberg, 2000). Moreover, 

perceived control over the stimulus can facilitate a reduction in the animals' stress 

response. For example, when test subjects have been provided with cues that 

predicted the onset of a stressor (Bassett, Cairncross and King, 1973), or when 

they perceived to be able to control or to stop a stressor (Hennessy, Kaiser and 

Sachser, 2009; McEwen and Wingfield, 2003; Swenson and Vogel, 1983; Uchino 

and Garvey, 1997), their stress response was alleviated. Levine (2000) 

concluded, based on his review, that social buffering effects can depend on the 

controllability of the presented stressor. When test subjects had the possibility to 

retreat from a stressor, the social context had no significant effect on their stress 

response.  

Moreover, social buffering could also be depending on the intensity of the 

stressor. Previous studies have shown that fish followed individual behaviour in a 

low-risk environment, however with increased risk, they suppressed individual 

behaviour and followed collective behaviour (Guppies, Poecilia reticulata: 

Ioannou, Ramnarine and Torney, 2017; Three-spined stickle backs, Gasterosteus 

aculeatus: McDonald et al. 2016). Furthermore, a study on social buffering in 

Barbary macaques (Macaca sylvanus) has shown that social buffering effects 

increased with the intensity of the social or environmental stressors. However, 

under mild stress conditions, no social buffering effects were detected (Young et 
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al., 2014a). In low-risk environments, it is possibly a greater adaptive benefit if 

individuals exploit their environment independently of their social context and fulfil 

their individual needs (Jensen and Toates, 1993). Whereas adapting the 

behaviour to the social context can promote safety in high-risk environments 

(Webster and Ward, 2011).  

Consequently, social buffering could be only one possible mechanism, 

among others, that can help individuals to cope with a stressor. Therefore, future 

research could assess which characteristics of a potentially stressful situation 

enable the individual to cope independently of their social environment and which 

characteristics promote a shift towards socially dependent coping strategies. This 

seems relevant as wild and domestic animals are exposed to different types and 

intensities of potential stressors in their daily lives (Burla, Siegwart and Nawroth, 

2018; Emery Thompson et al., 2010; Esch et al., 2019; Lundblad et al., 2020). 

Studying social buffering effects in different test conditions and under different 

levels of stress intensities could further the understanding of the role of social 

buffering and under which conditions individuals gain benefits from their social 

integration when coping with stressors (Koolhaas et al., 2017; Snyder-Mackler et 

al., 2020).  

Another prediction of this study was that horses would seek proximity to a 

highly-preferred conspecific during the novel object test. Based on the findings 

presented in this chapter, this prediction can be confirmed. After the initial object 

exposure, focal horses were in closer proximity to their highly-preferred than to 

their less-preferred test partner. This effect was small, but significant and 

indicates a differentiated and bond-dependent proximity seeking pattern in horses 

upon the exposure to a novel and sudden stimulus. Seeking proximity during or 

after threatening or stressful situations was first described as a functional trait of 

the attachment system and can promote the reduction of fear and distress 

(Bowlby, 1969). It has been argued that an attachment bond is necessary for 

proximity seeking to occur (Bowlby, 1969; Cassidy and Shaver, 1999; Hay, 1980; 

Mikulincer and Shaver, 2003). Thus, proximity seeking has been primarily 

described between offspring and their parents (Bowlby, 1969) or between pair 

partners (Dewitte et al., 2008) as these relationships are meant to be of 

attachment quality (Ainsworth et al., 1978; Dewitte et al., 2008; Rajecki, Lamb and 

Obmascher, 1978). However, proximity seeking has also been found between 



 Chapter 4 – Novel object test  

154 

 

siblings after a novel object exposure (Stöwe et al., 2006b) or across species, for 

example, between dogs and their owners (Gácsi et al., 2001; Tuber et al., 1996). 

Taking these latter findings together with the findings presented in this chapter, 

they suggest that proximity seeking can also occur outside the classic attachment 

bond – or that other than the mother-offspring bonds also constitute attachment 

bonds. Interestingly, in contrast to the prediction, although the horses sought 

proximity to a highly-preferred conspecific in the dyadic test conditions, their heart 

rate did not differ between the test conditions; also see the additional analysis in 

Appendix B, page 227. This was surprising, as proximity seeking should serve 

the function of promoting safety and decrease the stress response (Bowlby, 1969; 

Dewitte et al., 2008). The presented finding could suggest that bond-dependent 

proximity seeking also serves other functions besides the reduction of the stress 

response, as proposed by Hay (1980). Consequently, future research is needed 

to study under which conditions horses show bond-dependent proximity seeking 

and what function it serves.  

 

4.4.2 The effect of social context on the horses’ 

exploratory behaviour 

Based on previous research, it was predicted that the horses’ exploratory 

behaviour would be facilitated by the presence of a closely bonded conspecific 

and even more so by the presence of the horses’ whole group. The findings 

presented in this chapter did not support these predictions. Overall, the horses’ 

latency to approach the novel object and their rates and durations of investigation 

and exploration were not significantly affected by their social context, or the social 

bonds with their test partners. Moreover, the findings of this study indicate that 

the horses exhibited individual behavioural strategies when exploring a novel 

object. As these findings contrast to results presented in previous studies (e.g., 

Mendonça et al., 2019; Miller et al., 2015; Moretti et al., 2015; Stöwe et al., 

2006a;b; Stöwe and Kotrschal, 2007), aspects that might facilitate such socially 

independent behaviour and its potential adaptive benefits will be discussed. 

Similar to the line of argumentation regarding the horses’ stress response, 

the low stress intensity of the novel object tests could have promoted individual 

rather than socially dependent exploratory strategies (Ioannou, Ramnarine and 

Torney, 2017; McDonald et al., 2016). That the horses’ exploratory behaviour was 
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not significantly affected by their social context was, nevertheless, an interesting 

finding. The theory behind social buffering and socially facilitated exploration 

suggests that a reduction of the stress response allows the facilitation of 

exploratory behaviour (Ainsworth et al., 1978; Bowlby, 1969; Horn, Huber and 

Range, 2013; Palmer and Custance, 2008; Solomon et al., 2019). Consequently, 

the low-risk environment could have promoted socially facilitated exploratory 

behaviour. Nevertheless, the horses’ social context did not significantly affect their 

exploratory behaviour. The high familiarity of the horses with the test environment 

could have contributed to this finding. Habituation to the test arenas did not only 

take place in preparation for this study, but they were often used as a housing 

area for the horses. This could have induced a ‘home base’ effect, first described 

by Eilam and Golani (1989) for rodents. The home base describes a location from 

which an animal starts exploration and returns to for comfort-seeking. Also, 

domestic horses were found to show a home base effect. A study demonstrated 

that horses, when exploring a novel environment, sought out a location from which 

they started exploring and returned to for comfort behaviour (Burke and Whishaw, 

2020). Thus, the horses in this study might have been able to investigate or 

explore the novel object independently of their social environment due to the 

perceived safety of their environment. This seems in line with Blaszczyk's (2017) 

findings, who tested territorial vervet monkeys and presented them with novel 

objects within their territory. In her study, the monkeys also adopted an individual 

rather than socially-dependent exploratory behaviour.  

Similarly, a recent study on how exploratory behaviour is connected with 

learning in young horses by Christensen et al. (2021) found that their exploratory 

behaviour was rather independent of their social environment. Young horses were 

exposed to a novel object at two time points. Their fear and exploratory behaviour 

were highly consistent, despite their dam being present at one test time point. 

These findings also indicate that the horses rather followed an individual 

behavioural strategy that was independent of their social environment. Adopting 

individual behavioural strategies in a low-risk environment can be adaptive as it 

allows the individual to fulfil their current needs (Jensen and Toates, 1993). 

Whether horses adopt the same exploration strategy in conditions that promote a 

more pronounced stress response needs to be assessed in future research. 

Exploring novel but potentially threatening features in the environment 
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independently of the social context could increase the potential danger for the 

individual, especially in prey species. Consequently, under conditions of higher 

threat anti-predator strategies such as flocking and the selfish-herd principle 

(Foster and Treherne, 1981; Hamilton, 1971; Iranzo et al., 2018; King et al., 2012) 

could also influence exploration, and promote a synchronised co-exploration of 

potentially threatening novel features (Kim and Park, 2010; Ward, 2012). 

Investigating horses’ exploratory behaviour under different stress-intensities 

could make it possible to assess whether horses deploy different stress coping 

and exploration strategies.  

4.4.2.1 Linking social buffering and socially facilitated exploration 

Another aim of this study was to assess bond-dependent buffering and 

socially facilitated exploration within the same experiment. Although many authors 

argue that social bonds promote social buffering and that social buffering 

promotes exploratory behaviour (Ainsworth et al., 1978; Bowlby, 1969; Horn, 

Huber and Range, 2013; Ijichi et al., 2018; Moretti et al., 2015; Payne et al., 2016; 

Solomon et al., 2019), comparatively few studies have investigated social 

relationships, social buffering, and socially facilitated exploration together. Studies 

that addressed the link between those aspects yielded differing results. One study 

found social buffering, but no socially facilitated exploration (Terranova, Cirulli and 

Laviola, 1999). Another study found no evidence for social buffering, but for 

socially facilitated exploration (Galhardo, Vitorino and Oliveira, 2012). The 

findings presented in this chapter showed again a different pattern: domestic 

horses showed neither (bond-dependent) social buffering nor socially facilitated 

exploration. This shows that the effect of an individual's social context and the 

regulation of its stress response and exploratory behaviour is not necessarily 

linked but possibly depends on multiple factors such as (perceived) controllability, 

the intensity of the stress response, or type of stressor. 

Future studies could further investigate factors that determine whether an 

animals’ social context affects its stress response or exploratory behaviour. Such 

knowledge could further the understanding about the potential benefits of group-

living (Krause and Ruxton, 2002; Snyder-Mackler et al., 2020), and about 

adaptive mechanisms that facilitate a balance between individual and socially 

dependent behaviour (Ioannou, Ramnarine and Torney, 2017; McDonald et al., 

2016; Young et al., 2014a). 



 Chapter 4 – Novel object test  

157 

 

4.4.3 Implications for equine welfare 

Although the horses in this study displayed bond-dependent proximity 

seeking behaviour, their stress-related behaviours and heart rate were 

independent of their social context. These findings showed that horses 

predominantly adopted individual coping strategies in a condition of mild stress. 

For equestrian practice, these findings suggest that horses do not necessarily 

benefit from the presence of a closely bonded horse or conspecifics in general 

when exposed to novel objects in their familiar environment which induce a mild 

stress response. 

Whether these findings apply to more excitable horses or conditions that 

are less controllable and/or provoke a higher stress response needs to be 

investigated in future research. Previous studies have shown that horses' stress 

reactivity can be breed-dependent, with ponies being less reactive than sports 

horses such as thoroughbreds or warmbloods (Lloyd et al., 2008; Roberts et al., 

2016; Sackman and Houpt, 2019). Therefore, future research could assess 

whether more temperamental horses benefit more from their social context when 

exposed to novelty, as suggested by previous studies in warmbloods 

(Christensen et al., 2008; Rørvang and Christensen, 2018). Domestic horses are 

often exposed to novel stimuli during handling or training routines which they can 

perceive as stressors (Burla, Siegwart and Nawroth, 2018; Esch et al., 2019; 

Lundblad et al., 2020; Schmidt et al., 2010a;b;c; Yarnell, Hall and Billett, 2013). 

Consequently, further research that helps determine sources of stress and 

sources of (social) support for domestic horses is important from an equine 

welfare perspective as it can help to facilitate an environment that reduces stress 

for horses under human care (Dalla Costa et al., 2014; Fraser, 2008).  

4.5 Conclusion 

This study aimed at investigating whether domestic horses benefitted from 

the presence of a closely bonded conspecific or their whole group when exposed 

to a novel object. The horses under study showed a significant but mild stress 

response to the object exposure. The horses spent the period after the initial 

object presentation in closer proximity to their highly-preferred than to a less-

preferred field companion. However, closer proximity was not accompanied by a 

lower heart rate. Furthermore, the social context did not significantly affect the 
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horses’ behavioural and physiological stress response, or exploratory behaviour 

during the novel object test. Taken together, these findings suggest that in the 

context of a novel object test, which facilitated a mild stress response, horses 

adopted individual behavioural and physiological strategies that did not depend 

on their social context. This behavioural and physiological response pattern could 

constitute an adaptive strategy under mild stress conditions. 

The presented study provided novel insights into the effects of horses’ 

social context on their behavioural and physiological response to novelty. 

Moreover, it prompted further questions about what factors determine whether 

animals individually adapt to potentially stressful stimuli in their environment, or 

whether their adaptation depends on their social context. 
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5.1 General discussion 

5.1.1 Summary of the research 

The aim of this project was to assess the benefits of close social bonds 

among unrelated domestic horses (Equus caballus) from a mechanistic 

perspective. Horses are one of the few species that form long and durable social 

bonds between unrelated individuals and between individuals of the same sex 

(Cameron, Setsaas and Linklater, 2009; Seyfarth and Cheney, 2012). Therefore, 

they are an ideal species to study the advantages of such bond formations. One 

benefit of social bonds is social buffering. Social buffering describes the alleviation 

of the behavioural and physiological stress response in or after stressful situations 

facilitated by the presence of or interactions with a closely bonded conspecific 

(Cohen and Wills, 1985; Hennessy et al., 2006; Hennessy, Zate and Maken, 2008; 

Kaiser et al., 2003; Sachser, Dürschlag and Hirzel, 1998). The central question of 

this thesis was whether horses benefit from social buffering effects facilitated by 

the presence of or interaction with their closely bonded conspecifics.  

To study social buffering-effects, three contexts were selected that have 

been found to provoke a stress response and are of daily relevance to domestic 

horses: (1) social interactions (Sgoifo et al., 1998; Viblanc et al., 2012; Wascher, 

Arnold and Kotrschal, 2008), (2) the separation of individuals from their social unit 

(Boissy and Le Neindre, 1997; Bolt et al., 2017; Erber et al., 2012; Hartmann, 

Christensen and Keeling, 2011; Pérez Manrique et al., 2019; Pollard and 

Littlejohn, 1995), and (3) the exposure to a novel object in the animals' familiar 

environment (Blaszczyk, 2017; Bonnot et al., 2018; Coe et al., 1982; Emery 

Thompson et al., 2010; Levine, 2000). The aim was to assess social buffering 

effects on behavioural and sympathetic-adrenal-medullary (SAM) axis activity 

levels. Consequently, a combination of behavioural observations and heart rate 

measurements was applied to answer the research questions.  

In the subsequent sections, the main findings (Table 5.1) will be discussed 

in the context of behavioural ecology and social buffering research. This is 

followed by a discussion of the main findings and their implications for equine 

science and equine welfare. Limitations and suggestions for future research will 

be discussed within the respective sections of both subchapters.  
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Table 5.1 Summary of key findings. Research questions, hypotheses and key findings are listed by thesis chapter. 

Chapter Research questions, hypotheses, and key findings 

 
Chapter 

2 

1. Do social interactions affect heart rate in domestic horses? 

Hypothesis A: Agonistic interactions constitute a potent stressor and facilitate a physiological stress response on the SAM-axis activity level. 

• The majority of agonistic interactions were of low intensity, which did not facilitate a measurable stress response on the SAM-axis 
activity level. 

Hypothesis B: Short affiliative interactions and mutual grooming facilitate relaxation and correspond to lower cardiac activity. 

• Overall, short affiliative interactions did not significantly affect the horses’ heart rate. 

• Mutual grooming corresponded to a significantly lower heart rate than when horses were standing, indicating a relaxation effect. 

2. Does heart rate differ between initiators and receivers of social interactions? 

Hypothesis C: The role of the interacting horses has an effect on their heart rate during social interactions. 

• Receiving an agonistic interaction corresponded to an increase in heart rate. Thereby, the horses’ heart rate was similar to walking, 
reflecting their retreat.  

• The horses’ heart rate did not differ when either initiating or receiving short affiliative interactions. 

3. Does heart rate during social interactions depend on the relationship quality (bonds, rank) between the interacting horses? 

Hypothesis D: Social relationships between the interacting horses have an effect on their SAM-axis activity. 

• Rank but not bond relationships affected horses’ heart rate during agonistic interactions.  

• The heart rate of receivers was higher, the higher the initiator in rank compared to the receiver.  

• Bond relationships had an effect on horses’ heart rate during short affiliative interactions but not during grooming.  

• Receiving short affiliative interactions from closely bonded group members facilitated a slight increase in heart rate, potentially 
reflecting a positive emotional state, e.g., excitement. 
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Chapter 

3 

1. Does the presence of a closely bonded conspecific of the same sex buffer the behavioural and physiological stress response during 
separation from the social group?  

Hypothesis A: The presence of a closely bonded horse of the same sex facilitates social buffering effects on behavioural and SAM-axis activity 
levels. 

• The horses behavioural and physiological responses to separation did not differ between separation with a closely bonded or a less 
closely bonded horse.  

• Alert and startle behaviour was lower when with another horse compared to when isolated alone. 

2. Does the occurrence of short affiliative interactions depend on the social bond between the horses? 

Hypothesis B: The rate of short affiliative interactions and the duration of mutual grooming depend on the social bond between the horses.  

• Horses exhibited the same number of affiliative interactions towards highly-preferred and less-preferred horses when separated from 
their group. 

3. Does the occurrence of short affiliative interactions between horses facilitate a bond-related buffering effect on cardiac activity level? 

Hypothesis C: Higher rates of short affiliative interactions and longer mutual grooming durations between bonded conspecifics will facilitate 
social buffering. 

• A longer grooming duration corresponded to slightly higher RMSSD values.  

• The frequency of short affiliative interactions did not affect SAM-axis activity during separation. 

4. Does spatial proximity between horses depend on their social bond? 
 

Hypothesis D: The spatial proximity between the horses depends on their social bond. 

• When separated, horses showed similar proximity patterns when with a closely bonded horse or a less closely bonded horse. 

5. Does close spatial proximity between horses facilitate a bond-related buffering effect on cardiac activity level?  
 

Hypothesis E: Close spatial proximity between bonded horses facilitates social buffering. 

• Close spatial proximity to a highly-preferred or less-preferred horse did not affect the horses’ heart rate during separation.  
 
 
  

Table 5.1 continued. 
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Chapter 

4 

1. Does the horses’ behavioural and physiological stress response to a novel object exposure depend on their social context? 

Hypothesis A: The presence of a closely bonded conspecific of the same sex buffers the focal horse’s behavioural and physiological stress 
response.  
Hypothesis B: The presence of the whole group facilitates a stronger buffering effect than the presence of a closely bonded conspecific. 

• In the context of the novel object experiments, which constituted a mild stressor, horses behavioural and physiological stress response 
did not depend on the test condition (alone, with a highly-preferred or less-preferred horse, group).  

• Horses showed proximity seeking to a highly-preferred horse directly after the initial exposure to the novel object. This proximity pattern 
did not affect their SAM-axis activity.  

2. Does the exploratory behaviour that horses exhibit towards a novel object depend on their social context? 

Hypothesis C: The presence of a closely bonded conspecific of the same sex facilitates exploratory behaviour. 
Hypothesis D: The group's presence has a stronger faciliatory effect on exploratory behaviour than the presence of a single conspecific. 

• The horses’ exploratory behaviour (latency to approach, investigation, exploration) did not differ between the four test conditions 
(alone, with a highly-preferred or less-preferred horse, group). 

 

Table 5.1 continued. 
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5.1.2 Benefits of social bonds in domestic horses: a 

discussion of main findings and future directions 

 

5.1.2.1 Rank but not bond relationships affected heart rate during 

agonistic interactions 

The findings presented in Chapter 2 indicated that horses' heart rate 

during low-intensity agonistic interactions was not affected by the bond 

relationship between the interactors but by their rank relationship. The receivers' 

heart rate was slightly higher, the higher the initiator was in rank relative to 

themselves. As rank relationships are based on the proportion of won and lost 

conflicts with a conspecific (Van Dierendonck, Schilder and De Vries, 1995), the 

chances are higher, that an agonistic interaction with a higher-ranked conspecific 

results in defeat or harm. Consequently, the receiver is more likely to prepare for 

or carry out a necessary behavioural action, such as retreating and avoiding 

conflict (Sigurjónsdóttir et al., 2003). A close social bond between horses had no 

significant effect on heart rate during agonistic interactions. Therefore, no bond-

dependent buffering was found in the context of low-intensity agonistic 

interactions among horses in established groups. 

Agonistic interactions are central components of group-living animals’ 

daily lives (Hinde, 1976) which can, if causing chronic stress, have a detrimental 

impact on the animals‘ long-term health (McEwen, 2008; Sapolsky, Romero and 

Munck, 2000; Sgoifo et al., 2001; Sgoifo, Carnevali and Grippo, 2014). Therefore, 

it seems necessary to further investigate under which circumstances agonistic 

social interactions provoke a stress response, and under which circumstances 

they do not. Several factors that contribute to social stress have already been 

determined. For example, receiving a high amount of aggression (Abbott et al., 

2003; Aureli, Preston and de Waal, 1999; Yamanashi et al., 2018), group 

instability (Crockford et al., 2008; Emery Thompson et al., 2010; Noller et al., 

2013; Wittig et al., 2008), or actively defending a rank position (Creel et al., 2013) 

can facilitate social stress. Rank stability, however, was found to contribute to the 

predictability of agonistic interactions and their outcomes (Barrett, Henzi and 

Lusseau, 2012; Kaufmann, 1983) which can reduce social stress (Koolhaas et al., 
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2017). Compared to existing knowledge about the effect of rank relationships and 

agonistic interactions on social stress, little is still known to what extent bond 

relationships affect agonistic interactions and their underlying physiological 

mechanisms. However, animals live in multi-dimensional social structures that 

comprise agonistic and affiliative interactions as well as rank and bond 

relationships (Barrett, Henzi and Lusseau, 2012). As these dimensions are not 

independent of each other (Barrett, Henzi and Lusseau, 2012; Flack et al., 2006), 

future research could further investigate whether and how bond relationships 

affect agonistic interactions and their underlying physiological mechanisms. A 

meaningful next step could be to assess whether the findings presented in this 

study also apply to high-intensity agonistic interactions, for example, during 

competitive feeding situations (Beery and Kaufer, 2015; Kotrschal, Hemetsberger 

and Dittami, 1993). Close bonds have been found to facilitate tolerance in 

competitive contexts and reduce aggression (Asakawa-Haas et al., 2016; Dale et 

al., 2017; Lehmann and Boesch, 2009; Ostner and Schülke, 2014). Consequently, 

agonistic interactions among closely bonded horses could be of lower intensity 

even under competitive situations. This could provide bonded individuals with an 

indirect physiological benefit, as low-intensity aggression corresponds to a 

reduced physiological cost (Romero, Dickens and Cyr, 2009; Viblanc et al., 2012; 

Wascher et al., 2009; Wascher, Arnold and Kotrschal, 2008). Such research could 

extend the existing knowledge about the potential cost and benefits of group-living 

and bond formations (Snyder-Mackler et al., 2020; Viblanc et al., 2012; Wascher 

et al., 2009; Wascher, Arnold and Kotrschal, 2008).  

 

5.1.2.2 Social bonds had different effects on heart rate during 

grooming and other affiliative interactions 

The analysis in Chapter 2 showed that mutual grooming did correspond 

to a lower heart rate than when standing, a behaviour of similar physiological 

activity. This goes in line with findings from mutual grooming in other species such 

as primates (Aureli and Yates, 2010; Wittig et al., 2016), which indicates a low 

arousal level and possibly a positive affective state (Boissy et al., 2007; 

Reefmann, Wechsler and Gygax, 2009). Moreover, the study presented in 

Chapter 3 revealed that a longer grooming duration between horses during 

separation from their group corresponded to a higher heart rate variability 
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(RMSSD). However, these effects were independent of the bond between the 

horses. In contrast to these findings, a previous study by Wittig et al. (2016) 

demonstrated that the decrease of HPA-axis activity levels was bond-dependent. 

Thereby, glucocorticoid metabolite levels after grooming were lower, the stronger 

the bond between the grooming partners. The difference between the findings 

presented by Wittig et al. (2016) and those in this thesis could be explained by 

intercorrelation patterns among different types of affiliative interactions. In the 

domestic horses under study the grooming behaviour was not strongly correlated 

with other behaviours that can indicate a close social bond, such as approaches, 

following, body contact, and spatial proximity (Cameron, Setsaas and Linklater, 

2009; Silk, Cheney and Seyfarth, 2013); see details about intercorrelations 

between affiliative behaviours in Appendix A, page 225. In reference to the 

biological market theory, this can suggest that horses might not primarily choose 

their grooming partners according to the strength of their bond but by the value of 

the provided grooming commodity (Noë and Hammerstein, 1994). This would 

reflect some observations in domestic and feral horses, where horses seek out 

specific group members for grooming, thereby leaving their nearest neighbours 

behind (D.V.H., personal observation).  

Other affiliative interactions, such as sniffs, touches, and rubbing heads, 

did not correspond to a decrease in heart rate. On the contrary, the findings in 

Chapter 2 showed a small but significant effect that the receivers' heart rate was 

slightly higher, the higher the bond strength to the initiator. This finding contrasts 

with the hypothesis that affiliative interactions, especially among closely bonded 

conspecifics, facilitate relaxation as indicated by a decrease in the activity of the 

physiological stress axes (Aureli, Preston and de Waal, 1999; Briefer et al., 2015; 

Wittig et al., 2008). However, interpreting this finding from the perspective of 

animal emotion research, the slight increase in heart rate could suggest a 

physiological arousal due to positive emotional valence (Mendl, Burman and Paul, 

2010; Reefmann et al., 2009). However, the findings presented in Chapter 3 

showed that the rate of initiated or received short affiliative interactions during the 

separation trials had no effect on the horses’ heart rate or heart rate variability.  

To further investigate the effect of social bonds on heart rate during 

affiliative interactions and their possible link to a positive emotional state ( Hall et 

al., 2018; Kremer et al., 2020; Mendl, Burman and Paul, 2010), more research is 
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needed. Future studies could employ different data collection techniques to gather 

more information about the animals' physiological and emotional responses to 

different social experiences. Hall et al. (2018) suggested that such techniques 

could include measures of surface and core temperature, electrodermal 

response, or the assessment of hormone levels such as oxytocin or prolactin. 

Moreover, they could include behavioural measures, such as spontaneous blink 

rate shown to be related to dopamine secretion (Jongkees and Colzato, 2016), or 

EquiFACS (Wathan et al., 2015), a systematic catalogue of equine facial 

movements that can be linked to the emotional state of horses (Lundblad et al., 

2020). 

The findings regarding heart rate during mutual grooming and other 

affiliative interactions presented in this thesis suggest that different types of 

affiliative interactions correspond to different underlying physiological 

mechanisms that can link social integrations with long-term health (Cohen and 

Janicki-Deverts, 2009; Lakey and Orehek, 2011; Snyder-Mackler et al. 2020; 

Thoits, 2011). Previous research has shown that socially well-integrated 

individuals, who engage in social bonds and affiliative interactions, benefitted from 

increased health and a higher life expectancy (Holt-Lunstad, Smith and Layton, 

2010; House et al., 1988; Nuñez, Adelman and Rubenstein, 2015; Snyder-

Mackler et al., 2020). On the one hand, it has been proposed that this benefit of 

social integration arises from an accumulative effect of affiliative interactions and 

social support in stressful situations which buffers and alleviates the physiological 

stress response, i.e., social buffering (Cohen and Wills, 1985; Romero, Dickens 

and Cyr, 2009; Snyder-Mackler et al., 2020). This mechanism could be primarily 

triggered by grooming behaviour, as grooming corresponded to lower heart rate 

(Aureli, Preston and de Waal, 1999; Chapter 2), and a higher heart rate variability 

(Chapter 3). Similarly, previous studies have shown that individuals who were 

embedded in grooming networks showed an alleviated or less pronounced HPA-

axis activity (Fürtbauer et al., 2014; Puehringer-Sturmayr et al., 2018; Wittig et al., 

2016; Yamanashi et al., 2018; Young et al., 2014a;b).  

On the other hand, social integration can be beneficial and promote long-

term health through regular positive experiences and overall well-being. This is 

described as the 'main effect of social support; a complementary model to the 

model of social buffering (Cohen and Wills, 1985). A mediator of such main effects 
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can be the instalment of positively valanced emotion (Van Dierendonck and 

Spruijt, 2012; Mendl, Burman and Paul, 2010) that is generated and updated 

during repeated affiliative interactions with bonded conspecifics (Cohen and Wills, 

1985). The findings that short affiliative interactions between closely bonded 

horses corresponded to a slightly increased heart rate (Chapter 2) could support 

this idea.  

Based on the assumption that different types of affiliative interactions 

trigger different underlying physiological mechanisms, future studies could 

continue this line of research and specifically address single types of affiliative 

interactions instead of pooling them together for the analysis. This could further 

our understanding regarding the link between the underlying mechanisms of 

different types of social interactions, bond-formations, and potentially long-term 

health (Cohen and Wills, 1985; Dunbar and Shultz, 2010; Snyder-Mackler et al., 

2020).  

 

5.1.2.3 Social bonds and proximity seeking 

After the initial exposure to the novel object (Chapter 4) focal horses spent 

significantly more time in close proximity to their preferred group member than to 

their less-preferred group member. Proximity seeking has been primarily 

described in the context of attachment bonds, such as between offspring and their 

parents (Bowlby, 1969) or pair partners (Dewitte et al., 2008), and should promote 

safety during potentially threatening situations (Bowlby, 1969). However, 

proximity seeking was also found outside of these attachment bond formations, 

for example, among siblings after novelty exposure (Stöwe et al., 2006b). 

Furthermore, proximity seeking was found across species, for example, between 

dogs and their owners after the exposure to a threatening stimulus, or during 

social separation (Gácsi et al., 2001; Solomon et al., 2019; Tuber et al., 1996). 

The finding from the novel object experiment (Chapter 4) indicated that proximity 

seeking can also occur between closely bonded horses of the same sex. This 

provides further evidence that proximity seeking can occur outside the classic 

attachment bond, or that other types of social bonds could be of attachment 

quality (Solomon et al., 2019). 

There was no bond-related difference in spatial proximity between the 

horses in the other phases of the novel object exposure (Chapter 4) or during the 
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dyadic separation trials (Chapter 3). Comparing the different test situations of the 

separation and novel object tests, the horses showed the greatest behavioural 

and physiological stress response upon the initial object presentation; and this 

was the test-event where bond-dependent proximity seeking occurred. Taken 

together, this suggests that proximity seeking between closely bonded horses of 

the same sex depends on the intensity or the type of the stimulus.  

On a physiological level, the heart rate of focal horses in the phase 

following the initial object exposure did not differ between the four test conditions 

(alone, with a highly-preferred horse, with a less-preferred horse, or with their 

group) (Chapter 4), or more specifically, between the two dyadic test conditions 

(Appendix B, page 227). These findings showed that the horses’ proximity 

seeking in this phase of the experiment, and thus spatial proximity, did not 

facilitate a calming effect indicated by lower physiological activity levels, as 

suggested by previous studies (Dujardin et al., 2019; Kiyokawa et al., 2009, 2013; 

Palestrini et al., 2005). This is an interesting finding because it is thought that the 

primary function of proximity seeking during potentially stressful situations is to 

promote safety and to alleviate stress (Ainsworth et al., 1978; Bowlby, 1969; 

Dewitte et al., 2008). There may be a chance that the horses' stress response 

was not high enough for social buffering to occur, as previous research 

demonstrated that mild stress conditions did not necessarily facilitate social 

buffering (Young et al., 2014a). However, Hay (1980) proposed that proximity 

seeking could also have other functions than the alleviation of the stress 

response, such as promoting social learning. However, the analyses in Chapter 

4 revealed that the presence of a closely bonded conspecific did not facilitate the 

horses’ exploratory behaviour. Consequently, more research is needed to 

determine whether bond-dependent proximity seeking depends on the intensity 

of a stressor and what specific function it serves if it does not promote an 

alleviation of the animal's stress response.  

5.1.2.4 Generalised and independent behavioural and physiological 

responses 

Apart from the findings discussed in the previous subsections, the findings 

revealed no other bond-dependent effects on the horses' behaviour or cardiac 

activity in the three investigated contexts. Rather, horses showed behavioural and 

physiological responses that were generalised towards all test partners, 
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regardless of their social preference, or they responded independently of their 

social context. 

The rate of affiliative interactions and the spatial proximity did not differ 

between highly-preferred and less-preferred dyads during the dyadic experiments 

presented in Chapters 3 and 4. This provided an interesting result, as nearest 

neighbour assessments and directed affiliative interactions (Chapter 3) indicated 

a significant preference of specific other horses when within their whole group. 

Moreover, the findings from Chapter 3 showed that spatial proximity to group-

members of different preference did not affect the horses’ heart rate or heart rate 

variability. Firstly, horses' SAM-axis activity levels were not different when they 

were in close proximity or apart from their highly-preferred or less-preferred group 

member. Secondly, when comparing the dyads, there was no difference in SAM-

axis activity levels when being close to a highly-preferred or less-preferred field 

companion.  

Overall, these findings suggest that horses, as prey animals, maybe 

generalise their behaviour towards conspecifics when separated from the social 

group independently of their actual social preference. The findings on vigilance 

behaviour, presented in Chapter 3, point in a similar direction. The vigilance of 

horses significantly decreased when they were with a group member, 

independently of their bond. These generalised behavioural patterns could also 

be contextualised based on the biological market theory (Noë and Hammerstein, 

1994). Being selective in a situation where fewer social partners are available can 

be costly (Noë and Hammerstein, 1994). For horses, as prey animals, grouping 

was found to be an anti-predator strategy (Feh, Boldsukh and Tourenq, 1994; 

Rubenstein, 1978; Van Der Post, Verbrugge and Hemelrijk, 2015). Therefore, 

selectiveness could be costly when being separated from their social group as it 

could increase the potential risk of predation. Thus, affiliating and spending time 

in proximity could be a generalised (i.e., not bond-dependent) and possibly a more 

beneficial strategy when there is a limited number of conspecifics available.  

The other findings presented in Chapters 3 and 4 showed that the horses' 

behavioural and physiological responses were independent of their social context 

during the two experiments. Their cardiac activity during the separation or the 

novel object test and their exploratory behaviour did not depend on the presence 

of a specific group member or the whole group. This suggests that domestic 
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horses coped independently of their social environment when exposed to a 

stressor of mild intensity. The relationship between threat-level and behavioural 

strategies has been demonstrated in previous studies. In guppies (Poecilia 

reticulata) and three-spined sticklebacks (Gasterosteus aculeatus), individuals 

resumed personal behavioural strategies in a low-risk environment. However, with 

increasing risk, the fish suppressed individual strategies and followed collective 

behaviour (Ioannou, Ramnarine and Torney, 2017; McDonald et al., 2016). In 

male Barbary macaques (Macaca sylvanus), social buffering effects were 

identified under high stress intensity. However, no buffering effects were detected 

under conditions of mild stress (Young et al., 2014a). These studies have shown 

that the individuals' behavioural and physiological response, and social buffering, 

can depend on the intensity of the stressor. Both strategies are evolutionary 

beneficial. In contexts of low risk, individuals possibly gain the most benefits by 

exploiting their environment through socially independent behaviour and fulfilling 

their individual needs (Jensen and Toates, 1993). Whereas, adapting the 

behaviour to the social context can promote safety in high-risk environments 

(Webster and Ward, 2011). 

Future research could further investigate this interplay between individual 

behaviour, social buffering, and stress intensity. Conducting such research with 

domestic horses seems to be a great opportunity. Previous studies have shown, 

that the stress reactivity in horses can be breed-dependent (Lloyd et al., 2008; 

Roberts et al., 2016; Sackman and Houpt, 2019; Wolff, Hausberger and Le 

Scolan, 1997). Exposing horses of specific different breeds, and thus possibly 

reactivity types, in different social conditions to stressors of varying intensity could 

provide novel insights in two areas: (1) whether specific individuals benefit more 

from social buffering than others, and (2) which factors determine whether 

individuals exhibit an independent or a socially-dependent coping strategy 

(Koolhaas et al., 2010, 1999). Such research could highlight under which 

conditions social buffering plays a role in enhancing an individual’s stress coping 

capacity and under which conditions socially independent coping strategies are 

more beneficial to the individual. This can help to gain a better understanding of 

the benefits and the role of social bond formations and social integration that can, 

on the long-run, promote health and longevity (Cohen and Wills, 1985; Snyder-

Mackler et al., 2020). 
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5.1.2.5 Social buffering among closely bonded but unrelated 

domestic horses – current evidence and outlook 

Overall, the three studies did not yield strong evidence that domestic 

horses benefitted from social buffering provided by closely bonded but unrelated 

conspecifics under mild stress conditions. Upon a sudden exposure to a novel 

object, closely bonded horses were in closer proximity than less closely bonded 

horses. However, this proximity seeking was not accompanied by a lower heart 

rate. The bond between horses had no alleviating effect on their heart rate during 

agonistic interactions or their behavioural and physiological response to 

experimental separation from their group, or exposure to the novel objects. During 

the separation trials, horses showed generalised responses towards any 

conspecific, regardless of their bond. During the novel object exposure, the 

horses' behavioural and physiological responses were independent of their social 

context. It was discussed that such strategies may be adaptive for horses, as a 

prey species, or might are beneficial in conditions of low stress intensity. 

These findings highlight the importance of studying social buffering in 

different species and under different test conditions; especially as they deviate 

from previous studies that have found significant (bond-dependent) buffering 

effects (Kiyokawa et al., 2014b; Rørvang, Ahrendt and Christensen, 2015; 

Rørvang and Christensen, 2018; Sachser, Dürschlag and Hirzel, 1998). 

Generating more data on social buffering outside the traditional (experimental) 

contexts can help to understand what role social buffering can play besides 

individual or generalised behavioural and physiological responses.  

Nevertheless, the findings, that were presented in this thesis apply to the 

described test conditions which were of low stress intensity; and they need to be 

generalised with caution due to the restricted sample size. Furthermore, this 

thesis primarily investigated social buffering effects in male-male dyads. To gain 

a comprehensive understanding of social buffering in horses and whether social 

bonds affect social buffering, further research is needed. Besides testing horses 

under different stress intensities, as discussed in the previous subchapter 

(5.1.2.4), the presented research can be extended to studying other bond types 

that are typical for horse sociality, such as female-female and female-male bonds. 

Horses also form strong bonds between mares (Cameron, Setsaas and Linklater, 

2009; Stanley et al., 2018). However, mares were not included in the experimental 
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studies as they were either related or had to be excluded based on ethical 

considerations. Besides bonds among group members of the same sex, horses 

form long-lasting bonds between stallions and mares (Kaseda and Khalil, 1996; 

Linklater et al., 1999), and as indicated by the initial observations of this study, 

between mares and geldings. Studying social buffering regarding different bond 

types that are typical for horse sociality makes it possible to determine whether 

different types of social bonds play a role in social buffering or whether they 

primarily serve other functions.  

It could be the case that close bonds among unrelated horses (of the same 

sex) primarily serve functions other than social buffering, such as facilitating group 

cohesion (Khalil and Kaseda, 1998; Stanley et al., 2018) which can provide horses 

with a defence against predation (Feh, Boldsukh and Tourenq, 1994; Rubenstein, 

1978). Moreover, mature stallions were found to form coalitions to jointly defend 

a group of mares (Linklater et al., 1999), which can increase their reproductive 

success (Feh, 1999). Furthermore, feral mares can benefit from close social 

bonds as they reduce male harassment, forced copulation and abortion, thus 

increasing their reproductive success (Cameron, Setsaas and Linklater, 2009; 

Stanley et al., 2018). Consequently, more research is needed to gain a 

comprehensive understanding of whether and under what conditions social bonds 

provide horses with benefits such as social buffering and thereby contribute to the 

benefits of social integration regarding long-term health (Snyder-Mackler et al., 

2020). 

 

5.1.3 Implications for equine welfare and a discussion 

of future directions in equine welfare research 

The presented research touches upon two pillars of animal welfare: (1) 

‘natural living’; this concept aims at promoting housing systems that allow animals 

to live as naturally as possible and express their species-specific, including social, 

behaviour. And (2) ‘affective states’, which aims at facilitating positive states of 

the animal and reducing or preventing negative states, including stress responses 

(Boissy et al., 2007; Fraser, 2008). There are two areas where the findings 

regarding socio-physiology and social buffering have implications for equine 

welfare: firstly, housing and secondly, handling and training. In the subsequent 

sections, the implications of the presented findings for horse housing and handling 



Chapter 5 – General discussion 

175 

 

will be discussed, and possible future directions for equine welfare research will 

be outlined. 

5.1.3.1 Implications for horse housing 

In Chapter 2, data were presented on how social interactions in free-

ranging domestic horses impact their heart rate. The findings showed that the 

majority of agonistic interactions were of low intensity and that these agonistic 

interactions did not provoke a significant stress response on the SAM-axis activity 

level. The findings showing that agonistic interactions did not facilitate a significant 

stress response are of importance, as concerns about social interactions, stress 

and the risk of injuries are used in arguments against group housing of horses 

(Hartmann, Søndergaard and Keeling, 2012).  

Furthermore, mutual grooming was accompanied by a lower heart rate 

than when standing, an activity with comparable physical activity. This indicates 

relaxation and possibly a positive emotional state (Lansade et al., 2018). 

Grooming has been found to elicit the release of opioids and dopamine in the 

brain (reviewed in: Boissy et al., 2007; VanDierendonck and Spruijt, 2012), which 

both mediate motivation and gratification ( Alcaro, Huber and Panksepp, 2007; 

Burgdorf and Panksepp, 2006; Ikemoto and Panksepp, 1999). These findings 

provide further evidence about the positive effect of mutual grooming. Allowing 

horses to perform this behaviour is therefore another step towards positive 

welfare, promoting positive experiences rather than just preventing the 

occurrence of negative ones (Fraser et al., 1997; Hall et al., 2018; Yeates and 

Main, 2008). 

These first findings about socio-physiology in horses are promising 

evidence for promoting group housing in domestic horses. Nevertheless, these 

findings should be generalised with caution due to the context in which the data 

were collected. The presented studies included horses from established groups 

that experienced regular turnouts in spacious environments. However, different 

behavioural and physiological responses in social interactions might be observed 

in horses from other housing conditions. For example, aggression levels were 

found to be higher in unestablished groups (Christensen et al., 2002, 2011; 

Crockford et al., 2008; Granquist, Thorhallsdottir and Sigurjonsdottir, 2012; 

Jørgensen et al., 2009; Noller et al., 2013; Nuñez et al., 2014; Vandeleest et al., 
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2016), in horses with limited turnout experience (Jørgensen et al., 2009a), or 

under limited space allowance (Flauger and Krueger, 2013; Jørgensen et al., 

2009; Pierard, McGreevy and Geers, 2019). Furthermore, heart rate 

measurements were taken under regular field situations, i.e., not during feeding 

times or when horses had to access limited resources, situations which have been 

found to act as a stressor (Aschwanden et al., 2008; Kotrschal, Hemetsberger 

and Dittami, 1993).  

Therefore, future research could systematically assess whether different 

group housing environments impact horses’ physiological response during social 

interactions, and how different breeds and personality-types cope with different 

conditions. Further understanding of how group housing impacts domestic horses' 

behaviour and physiology can inform the design and conceptualisation of group 

housing systems that promote equine welfare by reducing stress and promoting 

positive affect.  

5.1.3.2 Implications for horse handling and husbandry routines 

In Chapters 3 and 4, it was asked whether domestic horses' behaviour 

and cardiac activity did depend on the presence of a closely bonded conspecific 

during stressful situations, an aspect that has not previously been explored. 

During the novel object exposures, horses reacted mostly independently of their 

social context. Only following the object exposure, they spent more time in closer 

proximity, i.e., within two horse-lengths of their highly-preferred group member as 

compared to their least preferred one. During the separation from their social 

group, the horses showed reduced vigilance when they were in the company of a 

member of their group, independent of the bond strength with their separation 

partner. This could indicate a general response to being in the company of any 

familiar conspecific as opposed to a bond-specific effect. Thus, in the context of 

mild stress, there was little evidence that horses gained a social buffering effect 

from the presence of a highly-preferred other horse. Several possible reasons for 

these findings were discussed previously, see section 5.1.2.4, page 170ff. 

Overall, the presented findings suggest that horses predominantly self-regulate 

their behavioural and physiological stress response in the context of mild stress 

in a familiar environment. Furthermore, the presence of any familiar conspecific 

can promote safety, as shown by decreased vigilance in the presence of a highly 

and a less-preferred conspecific. Therefore, during handling procedures that 
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require a separation of horses from their group, the presence of any group 

member possibly enhances their perceived safety. 

Domestic horses are exposed to many different stimuli in their 

environment, during handling, or equestrian activities that can potentially be 

stressful, such as clipping (Yarnell, Hall and Billett, 2013), road transport (Schmidt 

et al., 2010b;c), training (Fowler, Kennedy and Marlin, 2012; Munsters et al., 2013; 

Schmidt et al., 2010a), weaning (Rogers et al., 2012), or separation (Collyer and 

Wilson, 2016; Hartmann, Christensen and Keeling, 2011). Therefore, future 

studies on social buffering could expand to other types of stressors that horses 

encounter during human handling and assess whether horses benefit from the 

presence of closely bonded conspecifics. Such findings could be translated into 

evidence-based suggestions for handling strategies that reduce horses’ 

experiences of stress.  

5.1.3.3 Discrepancy between behavioural and physiological 

indicators of stress 

Another finding that is relevant for equine welfare is that the behavioural 

and physiological stress response during separation did not correspond (Chapter 

4). Despite a higher rate of vigilance during isolation, the horse’s heart rate and 

heart rate variability did not differ across the three test conditions (alone, with a 

highly-preferred, and a with less-preferred other horse). This finding seems 

unexpected; however, similar patterns have been described in other studies. 

Squibb et al. (2018) have found that horses that showed greater behavioural 

resistance in a novel handling task did not show a higher heart rate than compliant 

horses. Similarly, it has been found that horses that showed a higher behavioural 

reactivity during clipping, did not show a significantly higher heart rate than less 

reactive horses (Yarnell, Hall and Billett, 2013). In contrast, other studies have 

shown the opposite effect. Munsters et al. (2013) have found that horses that 

stood still and did not exhibit a behavioural stress response to an external stressor 

showed a significant increase in heart rate. Furthermore, horses that showed less 

behavioural arousal when awaiting high caloric food showed a significantly higher 

heart rate (Safryghin, Hebesberger and Wascher, 2019).  

Taking these findings together, it seems relevant to make equestrians 

aware that, on the one hand, the occurrence of behaviours that can indicate stress 
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does not necessarily correspond with a physiological stress response. Rather, it 

could indicate learned behaviour in specific contexts (Cooper and McGreevy, 

2002); and that, on the other hand, the absence of stress behaviours does not 

always indicate that the horse does not experience stress. Future research could 

address this phenomenon and assess whether there are specific contexts where 

these discrepancies between the behavioural and physiological stress response 

occur. In addition, more indicators seem necessary to (1) reliably distinguish 

between stress-related and learned behaviour. And (2) that can help detect a 

stressed horse that does not display a behavioural stress response. Detecting 

horses’ stress responses and adjusting handling, training, or husbandry 

accordingly can help to reduce stress and to promote positive welfare (Fraser, 

2008) and, furthermore, reduce handling related risks (Christensen, Zharkikh and 

Chovaux, 2011).  

5.1.3.4 Future perspectives: social buffering between humans and 

horses 

As horses are domestic animals, their human handlers may be an 

important source of social buffering during handling, training, or husbandry 

routines. Previous research has demonstrated that horses reference their 

behaviour to a human's positive and negative facial expressions during a novel 

object test (Schrimpf, Single and Nawroth, 2020). Whether this behavioural 

adaptation depends on the relationship quality between the human and the horses 

is not yet known. Some studies have addressed the effect of the relationship 

quality on human-facilitated buffering effects during novel handling tasks. These 

studies have provided different findings: one study operationalised the 

relationship quality as ‘owner’ vs ‘unfamiliar’ handler and found that the horses’ 

behavioural and physiological response did not differ between the two handler 

categories (Ijichi et al., 2018). Another study found that horses' heart rate was 

lower when handled by a familiar person than a stranger (Hockenhull et al., 2015). 

These findings suggest a variation in the strength of bond or relationship quality 

between horses and their owners, possibly depending on their tenure and training 

practices (Fureix et al., 2009; Trösch et al., 2020). Thus, horses may differ in their 

response to stressful situations when they are with owners or handlers of different 

relationship qualities. Studies in dogs, another domestic species, have shown that 

they were calmer and more explorative when exposed to a novel environment 
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with their owner than when with a stranger or alone (Horn, Huber and Range, 

2013; Palmer and Custance, 2008; Payne et al., 2016; Schöberl et al., 2016). 

Furthermore, it has been found that the buffering efficacy of the dog owner can 

depend on the relationship quality of the dog-human pair (Schöberl et al., 2009, 

2016). Despite horses not being domesticated as long as dogs (horses: min. 5000 

years (Levine, 2005); dogs: min. 60.000 years (Kotrschal, 2013)), there could be 

a similar underlying mechanism between horses and their human handlers.  

Another aspect that could be addressed in future research is a 

comparative assessment of buffering provided by conspecifics versus human 

handlers. Previous studies have either addressed the impact of conspecifics on 

horses’ fear responses (Christensen et al., 2008; Rørvang, Ahrendt and 

Christensen, 2015; Rørvang and Christensen, 2018) or have compared calming 

effects of familiar and unfamiliar human handlers (Hockenhull et al., 2015; Ijichi et 

al., 2018). However, it is unknown whether and how these effects relate to each 

other, and whether there is a difference in how horses benefit from the presence 

of a conspecific compared to the presence of a human. Experiments in dogs 

showed that humans were a more effective buffer of their physiological stress 

response when exposed to a novel environment than with familiar conspecifics 

(Tuber et al., 1996). Studies comparing effects of social support provided by 

conspecifics or humans could provide more insight into how domestication 

processes altered horses’ behaviour and physiological responses, and what role 

human handlers take in our domestic animals’ lives.  

References that the reference system did not pick up from the text. 

(Pittet et al., 2014; Dal Pesco et al., 2021; Frigerio, Weiss and Kotrschal, 2001; 

Scheiber et al., 2017; Bond et al., 2021; Samuni, Crockford and Wittig, 2021) 

(Nakamura et al., 2016; Aerts et al., 2008; Lindner, Wäschle and Sasse, 2012; 

Piccione et al., 2013; Sung et al., 2015) 

(Altmann, 1974; Burke and Whishaw, 2020; Palestrini et al., 2005) 

(Tarvainen et al., 2019) 
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5.2 Conclusion 

This study investigated whether domestic horses (Equus caballus) benefit 

from social buffering provided by closely bonded, but unrelated, members of their 

group. In a combination of behavioural observations and experiments bond-

related buffering effects on behavioural and cardiac activity levels were assessed 

in three contexts: during social interactions, during separation from their social 

group, and when exposed to a novel object.  
 

In conclusion, there was no strong evidence that closely bonded but 

unrelated domestic horses provided each other with social buffering in the 

specified study contexts. During social interactions, the bond relationship did not 

affect the horses’ heart rate. Besides bond-dependent proximity seeking 

behaviour in response to the novel object exposure, the horses either exhibited 

generalised behavioural and physiological responses towards closely bonded and 

less closely conspecifics throughout the experiments, or individual responses that 

were independent of their social context. It was discussed that these generalised 

strategies could have an adaptive benefit for horses, as a prey species, and that 

individual behavioural strategies could be adaptive in contexts of low stress 

intensity.  
 

The results of this thesis are also relevant to equine science and equine 

welfare. They demonstrated that horses, which are kept in established groups, 

predominantly engaged in low-intensity agonistic interactions. These did not elicit 

a stress response. Furthermore, allowing horses to interact socially can facilitate 

positive welfare. Mutual grooming was accompanied by a low heart rate, 

indicating relaxation and potentially a positive emotional state. Nevertheless, the 

presented findings need to be generalised with caution as they apply to mild stress 

conditions. The restricted sample size must also be taken into account. 
 

Additionally, possible future directions in social buffering research were 

identified. For example, studying social buffering specifically under different stress 

intensities could yield further insight into which factors determine whether horses 

display individual or socially-dependent responses and whether the social context 

affects horses’ behavioural and physiological (stress) responses. Moreover, 

extending the research to other types of social bonds that are typical for horses' 

social organisation can provide a more comprehensive understanding of whether 

and how different bonds play a role in the context of social buffering. End of word count. 
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APPENDIX A – Social interactions 

 

A.I Intercorrelations of affiliative behaviours 

Bond strengths between all horses of the groups were quantified by 

calculating the Dyadic Composite Sociality Index (DSI), following Silk et al. (2013). 

The DSI-calculations were based on recorded behaviours during the initial scan 

and focal sampling procedures (Chapter 2, sections 2.2.2 and 2.2.2.1, page 40f). 

The candidate behaviours for the DSI were grooming, body contact (sniffs, 

touches and rubbing head), approach and following, and the rate of horses being 

nearest neighbours (Cameron, Setsaas and Linklater, 2009). To assess which of 

those behaviours were intercorrelated a Mantel test was carried out using the R 

package ‘vegan’ (Oksanen et al., 2019). Correlated behaviours with a correlation 

coefficient r ≥ 0.5 (Field, Miles and Field, 2012) were included in the DSI. These 

were nearest neighbour rates, approach and following rates, and rates of body 

contact (Table A.1). 

Table A.1 Results of the Mantel test to assess the candidate behaviours' intercorrelation 
for calculating the Dyadic Composite Sociality Index. Given are behaviours and their 
correlation coefficient (r) and the significance level (p). Significant results and results with 
a correlation coefficient of r ≥ 0.5 are marked in bold. 

  Stable A Stable B 

Variable 1 Variable 2 r p r p 

Groom Body contact 0.23 0.057 -0.04 0.051 

Groom Proximity 0.23 0.058 0.44 0.042 

Groom Approach/Follow 0.24 0.044 0.47 0.037 
Body 
contact 

Nearest 
neighbour 0.79 0.001 0.68 0.003 

Body 
contact Approach/Follow 0.85 0.001 0.29 0.075 
Nearest 
neighbour Approach/Follow 0.89 0.001 0.57 0.006 
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APPENDIX B – Novel object test 

 

B.I Heart rate during test phases in the highly-

preferred and less-preferred conditions 

As shown in Chapter 4, section 4.3.1.2, page 142, highly-preferred dyads 

were in closer proximity after the initial object exposure than less-preferred dyads. 

An additional comparison was conducted to assess whether this difference in 

proximity corresponded to a difference in the horses' heart rate. It was assessed 

whether focal horses' mean heart rate during the single test phases (Pre, Phase 

1, Phase 2, Phase 3, Post) differed between the two dyadic test conditions (highly-

preferred, less-preferred). Wilcoxon signed-rank tests did not reveal any 

differences (n = 9: Pre: V = 12, p = 0.441; Phase 1: V = 9, p = 0.234; Phase 2:  

V = 20, p = 0.834; Phase 3: V = p = 0.944; Post: V = 13, p = 0.529; Figure B.1). 

 

Figure B.1 Mean heart rate per phase for the dyadic test conditions. Tukey whiskers plot 
for mean heart rate in beats per minute (bpm) for the different phases of the experiment 
and test conditions: HP, highly-preferred (grey), LP less-preferred (white). The outwards 
pointing whiskers extend to the smallest and largest value at most 1.5 * IQR from the 
hinge. There was no difference in mean heart rate between the test conditions taken for 
the five phases of the novel object test. 
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