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Abstract 

In 1887, Dr Joseph Cotterill identified a stiffening of the big toe he termed “hallux 

rigidus”; a manifestation of first metatarsophalangeal joint osteoarthritis. To date, 133 

years after its discovery, we are no further in understanding how it occurs except for 

a higher-odds ratio among the planus foot type. The majority of clinical and basic-

science research of osteoarthritis has concentrated on the hand, hip, and knee. 

Although large epidemiological studies are best able to identify at-risk populations, 

new studies need to focus on the unresolved questions related to biomechanical 

pathways. While many possible etiological factors of hallux rigidus have been 

dismissed due to a lack of convincing evidence, the role of first ray hypermobility 

remains enigmatic. However, there is limited understanding of first ray hypermobility 

and its relationship to foot structure and function. The purpose of this thesis was to 

provide insight into the biomechanics of first ray hypermobility as a potential etiological 

factor in hallux rigidus. Four distinct but related investigations were conducted to 

address current gaps in knowledge: (1) an epidemiology study of population-based 

trends in hallux rigidus compared to more frequently studied joints; (2) the design and 

testing of a novel device to standardise measurements of/and quantify first ray 

hypermobility; (3) investigation of the differences and relationships between foot 

structure and function caused by first ray hypermobility, and; (4) development, 

verification, and validation of a finite element model for predictions of cartilage contact 

mechanics in the hypermobile first ray. Incidence of hallux rigidus was found to be 

increasing at a rate comparable to the hip and knee. In contrast to other joints, a 

bimodal age-distribution was found for hallux rigidus, highlighting a subset of younger 

patients in whom hallux rigidus may be initiated by biomechanical factors other than 

wear and tear in old age. The novel device for measurements of first ray mobility was 

found to be substantially more reliable than the standard, clinical exam. Measurements 

may be performed in partial- and full-weightbearing conditions to facilitate investigation 

of aberrant foot mechanics resulting from first ray hypermobility. A study of healthy, 

asymptomatic subjects with planus and rectus foot types established that individuals 

with first ray hypermobility were predominantly planus in foot type. Subjects who were 

characterised as hypermobile exhibited increased maximum force beneath the hallux 

and greater first metatarsophalangeal joint rotational laxity, demonstrating an 

interaction with translational first ray mobility. Finite element simulations predicted 



iii 

 

increased first MTP joint stress in the planus foot with first ray hypermobility which, at 

a magnitude of 6.5 MPa, was within the upper bound of a proposed 5-7 MPa failure 

limit of cartilage. Taken together, these interlinked studies may elucidate the role of 

first ray hypermobility in abnormal structure and function of the foot. In the presence 

of pes planus and hypermobility, an interaction between translational first ray mobility 

and rotational first metatarsophalangeal joint flexibility may reduce the mechanical 

advantage from the Windlass mechanism. Concomitant increased force beneath the 

hallux likely promotes a higher flexion moment arm between the hallucial load and first 

metatarsophalangeal joint, subjecting the cartilage to potentially harmful tensile and 

shear stress. Microtrauma to the first metatarsophalangeal joint’s articular soft tissues, 

after repetitive excessive loading on a daily basis from first ray hypermobility, may 

initiate degenerative changes. The significance of this research rests on its potential 

to reveal the interaction between pes planus and first ray hypermobility as an 

etiological factor in hallux rigidus onset and progression.  
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Chapter 1. Introduction 

 

Osteoarthritis (OA) is the most frequent manifestation of arthritis in the human body. 

The pathology of OA involves the entire structure of a synovial joint, in a process that 

includes focal and progressive cartilage loss with concomitant changes in the bone 

beneath the cartilage, osteophytes, and gradual bony sclerosis (Dieppe & Lohmander, 

2005). Osteoarthritis may be comprised of several factors including biomechanical 

stress, biochemical changes, nutrition, and genetics although the precise aetiology 

remains unknown. Onset and progression of OA is considered multifactorial, but it is 

evident that changes in the mechanical environment of a joint adversely influence load 

distribution and soft-tissue degeneration (Felson et al., 2000). Osteoarthritis 

represents a growing burden to the National Health Service (NHS) in England. The 

UK Chief Medical Officer has recommended better understanding of this disease, for 

which there is currently no cure (Davies SC, 2012). Previous estimates of hand, hip, 

and knee OA from a local database in North Staffordshire, England indicated rising 

diagnoses among 35-44-year-olds between 2003 and 2010 (Yu et al., 2015). However, 

there is limited up-to-date population-based data of temporal trends in patient 

demographics with respect to OA in England, particularly for the foot which represents 

a relatively understudied field (Roddy & Menz, 2018). 

Although few investigations use the same definition to provide population prevalence 

estimates, first Metatarsophalangeal (MTP) joint OA appears to be the most common 

degenerative disease in the foot and ankle (Bremner et al., 1968; Van Saase et al., 

1989; Roddy et al., 2015). Clinically referred to as hallux rigidus, this end-stage 

condition results in severely restricted joint motion and pain (McMaster MJ, 1978; 

Zammit et al., 2010). The frequency of hallux rigidus among middle-aged to older 

adults can vary greatly from 6 to 39%, largely due to differences in ages, populations, 

and case definitions (Trivedi et al., 2010; Roddy & Menz, 2018). It is unclear why the 

first MTP joint is more affected than others (Van Saase et al. 1989; Whittle, M.W., 

1999). Many anatomical and biomechanical abnormalities of the foot have been 

proposed as the primary cause. Suggestions include pes planus, forefoot pronation, 
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metatarsus primus elevatus, and an abnormally long first metatarsal. (Bingold and 

Collins, 1950; McMaster, M.J., 1978; Viegas, G.V., 1998; Coughlin & Shurnas, 2003; 

Menz et al., 2015; Telfer et al., 2017).  One of the only evidence-based findings from 

this body of research is that people with the planus foot type (Figure 1) have a higher-

odds ratio of developing first MTP joint OA (Rao and Bell, 2013; Menz et al., 2015). 

 

Individuals with pes planus have demonstrated greater odds of developing foot injuries 

(Kaufman et al., 1999), increased first MTP joint flexibility (Rao et al., 2011; Buldt et 

al., 2015), lower first than second metatarsal head pressure (Ledoux & Hillstrom, 2002; 

Hillstrom et al., 2013; Buldt et al., 2018). In contrast, individuals with a rectus foot type, 

who may be considered “normal”, will exhibit higher peak pressures beneath the first 

metatarsal head than the second during gait. First ray hypermobility has been 

Pes planus (low arch) 

Pes rectus 
(neutrally-aligned arch) 

Pes cavus (high arch) 

Figure 1. Three general classifications of foot type in the population. Feet are often categorised into 

three general structures: Planus (a low-arch with an everted calcaneus and/or varus forefoot); rectus 

(a moderate-arch with the posterior surface of the calcaneus close to perpendicular with the ground); 

and cavus (a high-arch with inverted calcaneus and/or valgus forefoot) (Ledoux et al., 2003). 
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suggested as the cause of aberrant function in the planus foot (Morton DJ, 1928; Root 

et al., 1977; Hillstrom et al., 2013) (Figure 2). Hypermobility of the first ray is a term 

that describes an inability of the medial forefoot to adequately support weightbearing 

load, causing excessive superior translation of the first metatarsal (Klaue et al., 1994; 

Lee & Young, 2001; Glasoe & Michaud, 2019; Munuera-Martinez et al., 2020). 

However, definitions of first ray hypermobility can vary from 7-10 mm based on 

differences in case definitions and methods of assessment (Klaue et al., 1994; Roukis 

et al., 1996; Lee & Young, 2001; Glasoe et al., 2005; Shirk et al., 2006; Tavara-Vidalon 

et al., 2018; Glasoe & Michaud, 2019; Munuera-Martinez et al., 2020) and 

understanding of this condition has been impeded by vague clinical definition. Roukis 

et al., (Roukis et al., 1996) observed a relationship between increased dorsal first ray 

translation and restricted first MTP joint dorsiflexion, suggesting a repetitive jamming 

mechanism leading to hallux rigidus. Many possible causative factors have been 

rejected due to a lack of convincing evidence, yet the role of first ray hypermobility in 

abnormal and potentially harmful mechanics of the foot remains enigmatic (Roukis et 

al., 1996; Bouaicha et al., 2010; Cacacae et al., 2013; Doty et al., 2014; Roddy & 

Menz, 2018).  

Figure 2. Illustration of first ray mobility where each white circle denotes the first through fifth metatarsal 

heads. A change form static forefoot alignment which illustrates the equilibrium position for the first ray 

to first ray mobility that occurs in response to first MTP joint plantar loading is shown. 

Static forefoot alignment First ray mobility

Change in dorsal 

first metatarsal 

head height

Plantar load
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1.1 Research Theory 

It is proposed in this thesis that the planus foot type and first ray hypermobility are 

interrelated mechanisms, which may initiate hallux rigidus in the early stage. The 

research theorises that during gait, the first metatarsal of a hypermobile planus foot 

will translate excessively in the superior direction, causing the foot to pronate, and 

redistributing the body’s weight. Once the first ray is at its maximum elevation and the 

medial band of the plantar fascia becomes maximally taught, the first MTP joint will 

undergo increased loading and dorsal articular impingement (Jack, E, 1940; Roukis et 

al., 1996). As a result of altered first MTP joint contact mechanics, excessive force 

between the dorsal articular surfaces of the joint will permit repetitive excessive 

loading to this region, which may initiate joint degeneration indicative of hallux rigidus. 

1.2 Scope and Boundaries 

Despite the frequency of hallux rigidus, there is limited population representative 

samples in contemporary research (Van Saase et al., 1989; Roddy & Menz, 2018). 

Although large epidemiological studies are best able to identify at-risk populations, 

new studies need to focus on unresolved questions related to biomechanical 

pathways. A significant barrier to the study of hallux rigidus has been insufficient 

understanding of abnormal medial forefoot loading, which could adversely affect the 

first MTP joint and influence early-stage degenerative changes. Initiation and 

progression of articular joint degeneration is still not fully understood, but excessive 

loading and cumulative stress in the cartilage play major roles. Modern data has 

revealed a higher-odds ratio of developing hallux rigidus among the planus foot type 

(Cacacae et al., 2013; Menz et al., 2015), yet the precise biomechanical explanation 

remains enigmatic. One theory which will be explored by this thesis is that first ray 

hypermobility, a condition which compromises the ability of the medial forefoot to 

adequately support weightbearing load, is interrelated with the planus foot type, 

causing abnormal and potentially harmful loading of the first ray and first MTP joint. 

However, little is known about first ray hypermobility and research in this area has 

been hindered by a lack of standardised measurement technique and conflicting 
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definitions for the condition. To bridge the present gaps in knowledge, the thesis was 

broken down into a number of smaller, incremental studies: 

• Investigate population-based trends in hallux rigidus compared with 

osteoarthritis of the hand, hip, and knee.  

• Design and test the reliability of a novel electromechanical device for reliable 

assessments of first ray hypermobility.  

• Analyse the relationships between first ray hypermobility and structure and 

function of individuals with planus and rectus foot types.  

• Predict the effects of first ray hypermobility on cartilage contact mechanics of 

the first metatarsophalangeal and first metatarsocuneiform joints. 

The overarching objective of this thesis was to elucidate aberrant biomechanics of the 

foot, related to first ray hypermobility, as a pathway to early-stage degeneration of the 

first metatarsophalangeal joint. The information and tools generated from this research 

are expected to help guide the design of future clinical and basic-science research. A 

longitudinal, population-based investigation which could explore associations of first 

ray hypermobility and degenerative symptoms of hallux rigidus was considered 

beyond the scope of this thesis. 

 

1.3 Specific Aims and Hypotheses 

The central hypothesis is that the planus foot type and first ray hypermobility are 

interrelated, imposing aberrant contact mechanics within the joints of the first ray as 

an etiological factor in hallux rigidus. To examine these postulated relationships, the 

following specific aims and hypotheses were formulated:  

Aim 1: Investigate the population prevalence and incidence of hallux rigidus 

compared with osteoarthritis of the hand, hip, and knee in England. 

Hypothesis 1: Hallux rigidus will demonstrate increased population prevalence over 

time and comparable incidence to OA of the hand, hip, and knee.  
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Aim 2: Design and prototype a novel device for measuring first ray mobility. 

Hypothesis not required for technical design and development. 

Aim 3: Test the reliability of the novel device for measuring first ray mobility, 

compared with a commercially available, handheld ruler.  

Hypothesis 3a: First ray mobility in non-weightbearing (prone) subjects with 

asymptomatic rectus and planus foot structures will exhibit test-retest and remove-

replace reliability (ICC (2,1) >0.7) within and between raters using a commercially 

available handheld ruler. 

Hypothesis 3b: First ray mobility in partial weightbearing (seated) subjects with 

asymptomatic rectus and planus foot structures will exhibit test-retest and remove-

replace reliability (ICC (2,1) >0.7) within and between raters, using MAP1st. 

Hypothesis 3c: First ray mobility in weightbearing (standing) subjects with 

asymptomatic rectus and planus foot structures will exhibit test-retest and remove-

replace reliability (ICC (2,1) >0.7) within and between raters, using MAP1st. 

Aim 4: Investigate the relationships between foot structure, first ray mobility, 

arch height flexibility (AHF), first MTP joint flexibility, and plantar loading. 

Hypothesis 4a: First ray mobility will be negatively related with arch height and first 

MTP joint flexibility and positively related with arch height flexibility. 

Hypothesis 4b: The ratio of peak plantar loading* beneath the first and second 

metatarsal heads will be higher across subjects with rectus versus planus foot types. 

Hypothesis 4c: The ratio of peak plantar loading* beneath the first and second 

metatarsal heads will be higher across subjects with normal versus high levels of first 

ray mobility. 
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Aim 5: Verify the first MTP and MTC joint contact mechanics of a medial forefoot 

FE model simulating planus and rectus foot types.  

Hypothesis 5: In vitro-measured and FE-predicted first MTP and MTC joint contact 

mechanics (force, contact pressure, and contact area) will be within 30% for the same 

boundary and loading conditions. 

Aim 6: Predict the effects of first ray hypermobility on medial forefoot cartilage 

contact mechanics during stance phase of gait. 

Hypothesis 6: First MTP and MTC joint stress will be higher in the presence of first ray 

hypermobility. 
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1.4 Thesis Structure and Objectives 

 

Figure 3. Thesis flow chart detailing the relationship between chapter structuring and research aims. 

Chapter 1. Introduction: Overarching 
Theory, Aims, and Hypotheses 

Chapter 2. Literature Review 

Chapter 3. Osteoarthritis in England: 
Incidence Trends from National Health 
Service Hospital Episode Statistics 

Aim 2. Design a new device to measure first 
ray mobility 

Aim 3. Test the reliability of the novel device 
for measuring first ray mobility, compared with 
a commercially available, hand-held ruler 

Aim 4. Investigate the relationships between 
foot structure, first ray mobility, AHF, first 
MTP joint flexibility, and plantar loading 

Aim 5. Verify the first MTP and MTC joint 
contact mechanics of a medical forefoot FE 
model simulating planus and rectus foot 
types. 

Aim 6. Predict the effects of first ray 
hypermobility on medial forefoot cartilage 
contact mechanics during the stance phase of 
gait 

Chapter 4. Design and Reliability 
Testing of a Novel Device to Measure 
First Ray Mobility 

Chapter 5. Foot Type Biomechanics: 
Role of the First Ray  

Chapter 6. In Vitro Verification of a 
Finite Element Model During Quasi-
Static Loading 

Chapter 7. Finite Element Prediction of 
Cartilage Contact Mechanics in the 
Hypermobile First Ray 

Chapter 8. Summary and Conclusions; 
Chapter 9. Recommendations for 
Future Work 

Aim 1. Investigate the population prevalence 
and incidence of hallux rigidus compared with 
OA of the hand, hip, and knee in England 
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Chapter 2. Literature Review 

 

The term biomechanics describes the study of mechanical laws governing the 

structure and function of a living organism. Many branches exist in the tree of 

biomechanics, but the topics of this thesis and following literature review relate closely 

to orthopaedic biomechanics: the study of human joints. Research in this field requires 

broad knowledge of interdisciplinary processes to understand function of the human 

musculoskeletal system and how it can fail. Hence, the following chapter will explore 

combinations of anatomical studies, cadaveric experiments, histology, pathology, gait 

assessments, engineering designs, and FE modelling, which encompass research in 

orthopaedic biomechanics of the foot and first ray. 
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2.1 Anatomy, Structure, and Function of 

the Foot and First Ray 

 

The foot is a complex structure comprised of 28 bones, 33 joints, and 112 ligaments 

which are controlled by 13 extrinsic and 21 intrinsic muscles (Grant JCB, 1972). 

Anatomy of the foot can be subdivided into three segments: hindfoot (tibia, and fibula 

of the lower leg, calcaneus and talus); midfoot (cuboid, navicular, medial, intermediate 

and lateral cuneiform bones) and; forefoot (five metatarsals, numbered first to fifth, 

medially to laterally; 14 phalanges, three per toe, proximal, middle, and distal, 

excluding the hallux (big toe) which is composed of only two bones, the proximal and 

distal) (Grant JCB, 1972) (Figure 4A-B). The medial forefoot is the main weightbearing 

structure in early- to mid-stance, resisting the Ground Reaction Force (GRF) in healthy 

feet for stable and propulsive gait (Ledoux & Hillstrom, 2002; Hillstrom et al., 2013; 

Buldt et al., 2018). 

 

2.1.1 Structure and Function of the Foot 

Feet are often categorised into three general structures: Planus (a low-arch with an 

everted calcaneus and/or varus forefoot); rectus (a moderate-arch with the posterior 

surface of the calcaneus close to perpendicular with the ground); and cavus (a high-

arch with inverted calcaneus and/or valgus forefoot) (Ledoux et al., 2003). These 

structural references describe common morphological and structural variations among 

the general population. It is generally accepted that foot function and structure are 

related to one another and that functional variations exist between these three distinct 

classifications (Ledoux and Hillstrom, 2002; Hagerdorn et al., 2013; Hillstrom et al., 

2013; Song et al., 2018). A key feature of the MLA, and in general the foot, is its 

adaptability to different conditions, acting as a compliant interface between the body 

and the ground during weightbearing and as a powerful rigid lever arm at the 

propulsive stage of gait. The foot’s two-fold purpose is enabled by the interlocking 
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composition of the bones, passive effect of the plantar fascia, and muscle-tendon 

stabilisers of the MLA (Fiolkowski, et al., 2003). Structure of the MLA and aberrant 

kinematics of the bones that comprise its construct have been suggested as major 

etiologic factors of foot injuries and pathologies (Kaufaman et al., 1999; Ogon, M., et 

al., 1999; Levy et al., 2006; Menz et al., 2010; Cacace et al., 2013; Song et al., 2018).  

 

Figure 4A-B. A three-dimensional (3D) Computed Tomography (CT)-scan reconstruction of the foot’s 

skeletal anatomy. The images are shown from the (A) medial and (B) dorsal aspects, including 

anatomical terminologies.  

In 1953, Hicks (Hicks HJ, 1953) first postulated and proved that a rising of the MLA 

occurred when the MTP joints are flexed. Extension of toes pull the plantar pads, as 

well as the plantar fascia, forward and around the metatarsal heads causing the arch 

to rise and shorten the distance between the forefoot and rearfoot (Hicks HJ, 1954; 

Erdemir et al. 2004). The interaction between the plantar fascia and MLA is generally 

likened to the tightening of a rope or cable (i.e. Windlass mechanism), where the 

Digits 

First metatarsocuneiform 
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passive mechanics of the plantar fascia arise from its connection to the calcaneus and 

phalanges, forming an arch-like truss.  

Rupture of the plantar fascia has been cited as a mechanism of MLA collapse and 

thus, holds an important role in stabilising the bones of the foot (Sellman JR, 1994; 

Borton & Saxby, 1997; Sammarco et al., 2001; Kohls-Gatzoulis et al., 2004; Hicks HJ, 

1953; Hicks HJ, 1954; Root et al., 1977; Deland et al., 1992; Huang et al., 1993; Fuller, 

EA, 2000). The diverse functions of the human foot are reflected by the complexity of 

its overall motion (Canesco et al., 2008; Buldt et al., 2015). The foot moves about three 

axes and on three planes. Plantarflexion-Dorsiflexion (PD) occurs in the sagittal plane, 

Abduction-Adduction (AA) in the transverse (horizontal) plane, and Inversion-Eversion 

(IE) in the coronal (frontal) plane (Buldt et al., 2015). The position of the foot is 

described either as supinated (i.e. laterally overloaded) or pronated (i.e. medially 

overloaded) (Root et al., 1977; Shirk et al., 2006; Hillstrom et al., 2013; Song et al., 

2018). A supinated position represents the tri-planar effects of inversion, flexion, and 

adduction whereas, pronation is the tri-planar effects of eversion, extension, and 

abduction (Lundgren et al., 2008). 

2.1.2 Structure and Function of the First Ray 

The first ray is the primary weightbearing structure of the forefoot (Van Beek & 

Greisberg, 2011). Located at the medial border of the forefoot, the first ray segment is 

a single column comprised of four bones: distal and proximal phalanges of the hallux; 

first metatarsal; and medial cuneiform (Figure 5) (Root et al., 1977; Glasoe et al., 

1999). As load is transferred from rearfoot to forefoot during locomotion, the flexibility 

of the MLA and orientation of the first ray play an important role in supporting 

bodyweight, absorbing shock, and maintaining a smooth and propulsive gait pattern. 

At midstance, the calcaneus and metatarsal heads are pressed to the ground, with the 

MLA of the foot functioning like a truss. Truss-and-beam mechanics of the healthy 

rectus foot rely on the first ray to support the MLA (Glasoe et al., 1999; Caravaggi et 

al., 2016). 
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Figure 5. A 3D CT-scan reconstruction of the bones of a left sided first ray, shown from four anatomical 

aspects. The medial sesamoid, lateral sesamoid, distal phalanx, proximal phalanx, and first metatarsal 

are shown. The medial cuneiform is not included in these images. 

Figure 6A-B. Sagittal slices of a Magnetic Resonance Imaging (MRI)-scan of a left sided cadaveric first 

ray. The metatarsal head articular cartilage is outlined in blue, the proximal phalanx base articular 

cartilage in orange, and the lateral and medial sesamoid cartilage outlined in yellow and pink, 

respectively. These articulating surfaces form the first metatarsophalangeal joint. Additionally, the 

medial and lateral slips of the medial band of the plantar fascia are outlined in green.  

Lateral Medial Plantar Dorsal 

A. Lateral B. Medial
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2.1.3 The First Metatarsophalangeal Joint 

The first MTP joint includes three articulations; the metatarsophalangeal joint which 

connects the first metatarsal head to the proximal phalanx while the 

metatarsosesamoid joints connect the first metatarsal head to the lateral and medial 

hallucial sesamoids (Figure 6A-B) (Grant JCB, 1972). The articular surfaces of the first 

MTP articulation are formed by the convex head of the first metatarsal and the shallow 

concave region of the proximal phalanx base (Athanasiou et al., 1998; Arbuthnot et 

al., 2008; Dietrich et al., 2015). At the plantar aspect of the first metatarsal head, the 

metatarsosesamoid articulations are formed by two longitudinal grooves running 

Anterior-Posterior (AP), separated by a middle crest (Athanasiou et al., 1998; Dietrich 

et al., 2015). Each individual groove articulates with a sesamoid bone embedded in 

the tendon of the flexor hallucis brevis muscle. Stability of the MTP joint is provided by 

collateral, suspensory, and plantar plate ligaments (Athanasiou et al., 1998).  

Figure 7. A 3D CT-scan reconstruction of a left sided first ray, showing the six Degrees of Freedom 

(DOF) of the metatarsophalangeal joint, looking from the anteriomedial aspect. There are three 

translational directions: medial-lateral (ML), AP, inferior-superior (IS). The primary rotation is PD. In 

addition, IE and AA (also referred to as (varus-valgus (VV)) rotationas occur to a lesser extent.  

Internal/External 
Rotation

Abduction/Adduction 
Rotation

Superior/Inferior 
Translation
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Articulation of the first MTP joint is constrained by two primary axes of motion. A 

vertical axis in the transverse plane enables AA while a horizontal axis in the sagittal 

plane enables PD (Figure 7) (Athanasiou et al., 1998). Approximately, 65° - 75° of 

dorsiflexion and 30°- 40° of plantarflexion are necessary for healthy locomotion 

(Shereff et al., 1986). Healthy first MTP joints exhibit a ‘C-shaped’ pattern of the instant 

centre of rotation, while pathologic joints exhibit altered and less regular patterns. 

Articular surface motion in healthy individuals can be described by tangential sliding, 

including marginal translations and compression of the joint at maximum dorsiflexion 

(Figure 8) (Nordin & Frankel, 2001).  

Figure 8. Adapted from Chapter 9 of Basic Biomechanics of the Musculoskeletal System by Nordin and 

Frankel (2001). Healthy metatarsophalangeal center of rotation in the sagittal plane. Each arrow 

denotes the direction of translation of the contact points which correspond to the instant centers of 

rotation. The Range of Motion (ROM) of the hallux is indicated by the arc (dashed line).  

2.1.4 The First Metatarsocuneiform Joint 

The head of the medial cuneiform articulates with the base of the first metatarsal to 

form the first MTC joint. This joint, in conjunction with the surrounding ligaments, forms 
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a stable segment with little mobility (Liu et al., 1997). It is one of the five articulations 

that make-up the transverse arch of the foot. Bodyweight is supported by this arch via 

the medial cuneiform which acts as a medial stabiliser of the midfoot (Min et al., 2019). 

Its structure is also an integral component of the medial forefoot, aiding in 

plantarflexion and dorsiflexion (Liu et al., 1997). Motion of the first MTC joint 

comprises 3.5° of PD and 1.5° of IE, with limited AA (Wanivenhaus & 

Pretterklieber, 1989). 
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2.2 Structure and Function of Osseous 

and Soft Tissues in the Foot 

 

The musculoskeletal system of the foot, described in section 2.1, act as rigid segments 

that articulate in the form of joints and actuate via muscle contractions. Biological soft 

tissues, such as those which make up the human anatomy, are designed to withstand 

large deformations, and have a highly nonlinear behaviour to account for their complex 

mechanical functions. The capability of the foot’s musculoskeletal system to withstand 

and transmit dynamic forces can serve as an indication of both health and disease. 

Indeed, the mechanical properties of different osseous and soft tissues, such as bone, 

cartilage, ligament, muscle, and tendon have evolved to support the various functional 

demands of the foot (Nordin & Frankel, 2001). 

 

2.2.1 Bone  

Bone is a complex material consisting of extracellular cortical, subchondral, and 

trabecular structures. It is a hard tissue and has a stress-strain relationship 

comparable to many engineering materials. The inhomogeneous, anisotropic 

composition of bone exhibits different moduli in tension and compression (Rho et al., 

1998). The various structures of bone also exhibit different material properties. The 

material strength of bone is subject to these structural differences in architecture. 

Cortical bone is stiffer than trabecular bone and can withstand higher stress but less 

strain before fracture (Fung YC, 1993).  

It is well known that mechanical stress of bone modulates change, growth, and 

resorption. An under-stressed bone can become weaker; an over-stressed bone can 

also become weakened (Ruff et al., 2006). There is an optimal range of stress for the 

bone. This phenomenon is known as Wolff’s Law, which describes a bone cell’s ability 

to adaptively realign itself in the direction of the maximum time averaged stress. 
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Evidence of these biological effects due to stress are prevalent in orthopaedic surgery 

and rehabilitation (Fung YC, 1993). For example, improper integration of a joint 

replacements stem can cause resorption, or even bone loss, over time.  

Many small (arterioles, venioles, and capillaries) and large (arteries and veins) blood 

vessels traverse bone. Circulation of blood supplies oxygen and nutrients, regulates 

tissue growth, and removes metabolic waste. Bone receives approximately 10% of 

cardiac output, permitting greater capabilities of remodeling and repair than other parts 

of the anatomy. Reduction of vascular supply to the bone is related to bone loss. 

Decline in circulatory power with age is implicated in pathological changes associated 

with osteoporosis (Marenzana & Arnett, 2013). 

 

2.2.2 Articular Cartilage 

Human joints are classified into three categories: fibrous (e.g. immobile joints 

connected by dense fibrous tissue), cartilaginous (e.g. joints united by fibrocartilage 

with very little mobility) and diarthrodial (e.g. highly mobile joints joined by a fibrous 

capsule that is continuous with subchondral bone) (Archer et al., 1994; Fox et al., 

2008). In healthy diarthrodial joints, cartilage serves as a deformable bearing with non-

linear viscoelastic properties that, in conjunction with synovial fluid, present a low 

coefficient of friction (Eyre D, 2001; Krishnan et al., 2003). Analogous to a sponge, 

when subjected to load cartilage exudes synovial fluid into the joint space and when 

unloaded imbibes synovial fluid back into the extracellular matrix such that a dynamic 

‘squeeze film’ lubrication occurs between the articular surfaces (Nordin & Frankel, 

2001). The solid and fluid phases of this structure provide a unique multiphasic 

interface between opposing bones providing lubrication and shock absorption (Fung 

YC, 1993). Hence, articular cartilage provides a smooth, gliding surface, while 

simultaneously allowing some compressibility and elasticity (Reynaud & Quinn, 2006).  

The high-water content of cartilage and the stiffness and permeability of its collagen-

proteoglycan matrix ensures the adaptability of diarthrodial joints to different loading 

conditions (Shepard & Seedhom, 1999; Reynaud & Quinn, 2006). The primary 

function of the collagen fibrils is to provide tensile support to the extracellular matrix 
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while the proteoglycans aid in cartilage resistance to compression (Eyre D, 2001; Li et 

al., 2016). The collagen-proteoglycan matrix is shielded from excessive stress by 

interstitial fluid pressurisation during loading which, contributes more than 90% of the 

load support (Fox et al., 2008). Mature articular cartilage can be subdivided into three 

depth-dependent zones based on its characteristic collagen network architecture: 

superficial, middle, and deep. The material strength of articular cartilage is subject to 

the cross-linking of the collagen and the depth-dependent zonal differences in fibrillar 

architecture. In the superficial zone of cartilage, the fibrils are oriented tangential to 

the articular surface comprising 10%-20% of the depth, the middle zone forms an 

arcade like organisation randomly interlinking and comprising 40%-60% of the depth, 

and the fibrils in the deep zone are aligned in columns perpendicular to the calcified 

zone of cartilage comprising 30%-40% of the depth. The tidemark forms the transition 

from cartilage to subchondral bone (Fung YC, 1993; Nordin & Frankel, 2001).  
 

Damage to the fibrillar network from mechanical stress is considered an important 

pathway to numerous disorders and particularly to degenerative disease such as OA 

(Brown et al., 1991; Archer et al., 1994; Bareither et al., 1998). Athanasiou et al., 

(Athanasiou et al., 1998) and Liu et al., (Liu et al., 1997) noted a more random 

chondrocyte arrangement in the deep zones of first MTP and second MTC joint 

cartilages. This contrasts with the organisation of chondrocytes in the hip, knee, and 

ankle, which exhibit a columnar arrangement in the deep zone of cartilage (Fox et al., 

2008). The structures of MTP and MTC cartilage have likely adapted to these joints 

90° orientation with respect to the remainder of the body, generating greater shear 

and bending as opposed to compressive forces during gait (Liu et al., 1997; 

Athanasiou et al., 1998). 

 

2.2.3 The Plantar Fascia 

The plantar fascia is a robust band of fibrous tissue that supports the MLA. It originates 

from the medial turbercle of the calcaneus and inserts into the phalanges (Figure 9) 

(Grant JCB, 1972; Erdemir et al., 2006). Arch-height deformation occurs when vertical 

forces from bodyweight are transmitted down the tibia or GRF’s are transmitted up 

through the calcaneus and the metatarsal heads (Gefen A, 2002; Gefen A, 2003). 
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Collapse of the MLA is therefore, prevented by the tensile strength and anatomical 

placement of the plantar fascia between the calcaneus and phalanges (Hicks JH, 

1954; Sharkey et al., 1998; Fuller EA, 2000). 

Plantar fasciectomy or rupture of the plantar fascia has been shown to reduce arch-

height (Sharkey et al., 1998; Erdemir et al., 2006), confirming the passive support 

function first proposed by Hicks (Hicks HJ, 1954). Patients who received plantar 

fasciectomy exhibited postoperative flattening of the MLA and decreased GRF, 

particularly at the push-off phase of gait (Daly et al., 1992). The distal structure of the 

plantar fascia divides into five fibrous bands which insert into the five phalanges of the 

forefoot. Each band then splits into two slips, at each phalanx, which straddle the toe 

flexor tendons (Grant JCB, 1972). These slips articulate beneath the metatarsal head 

in the anterior and posterior directions as the phalanges become flexed or extended, 

respectively (Wright et al., 1964; Daly et al., 1992; Kitaoka et al., 1994).  

 

Figure 9. Cadaveric photograph with the skin dissected to reveal the plantar fascia, comprised of three 

bands of fibrous connective tissue: medial, central, and lateral bands which radiate toward the bases 

of the toes from the posterior tubercle of the calcaneus. The plantar fascia appears to be turquoise/silver 

in colour.  
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2.2.4 The Ligament and Muscle-Tendon Systems  

In order for the joints of the foot to maintain a smooth articulation they are stabilised 

by 112 ligaments. The functional ligamentous unit is bone-ligament-bone (Fung YC, 

1993). The primary ligamentous structures of the first MTP joint are the fibrous capsule 

attached to its articular margins, collateral ligaments, deep transverse metatarsal 

ligaments, and the plantar plate (Altchek et al., 2013). Movement of these joints is 

actioned via forces transmitted to the bones through a complex system of 13 extrinsic 

and 21 intrinsic muscle-tendons (Nordin & Frankel, 2001). The functional unit of 

muscle is considered bone-tendon-muscle-tendon-bone (Fung YC, 1993). The 

extrinsic muscles are considered the primary active controllers of the foot during gait. 

Much like the cartilage, the material capacity and tensile strength of tendons and 

ligaments is derived from collagen (Fung YC, 1993).  

Unlike the complex network of collagen fibers in the cartilage, the tendons and 

ligaments have a more simplistic structure, typically comprising parallel fibers. 

Insertion of ligament into bone is gradual. The network of collagen fiber remains 

constant as it inserts into the calcified tissue, gradually transitioning to bone from 

ligament (Nordin & Frankel, 2001). Whereas, tendon is anchored to bone and muscle 

less distinctly. The tendon inserts broadly into the main fibrous layer of the bone’s 

periosteum and at the other end, transitions from tendon to muscle by a junction 

between the muscle fibers and many terminal indentations of the tendons collagenous 

fibers (Fung, Y.C., 1993). 

The medial and lateral collateral ligaments attach to the dorsal turbercles of metatarsal 

head and proximal phalanx base. Adjacent to collaterals are the plantar ligaments, 

thick, dense structures which insert between the proximal phalanx base and hallucial 

sesamoids (Mkandawire et al., 2005). Finally, the deep transverse metatarsal 

ligaments are flat bands of soft tissue that connect to the first through fifth metatarsal 

heads (Altcheck et al., 2013). The plantar plate is a robust ligamentous structure that 

has three main functions to: 1) cushion and offload the compressive loads of the first 

ray as bodyweight is transferred from rearfoot to forefoot, 2) assist in first MTP joint 

stability via its attachments to the plantar fascia, intermetatarsal ligaments, and 

collateral ligaments, and 3) provide support to the function of the windlass mechanism 

(Deland et al., 1995; Sharkey et al., 1998). 
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Figure 10A-B. Cadaveric photographs of a dissected foot showing (A) the Flexor Hallucis Longus (FHL) 

placed under tension, causing the hallux to plantarflex and (B) the insertion sites of the collateral, 

metatarsosesamoid, and plantar plate ligaments of the first MTP joint (marked by black dashes).  

The first MTC joint ligaments can be categorised into the fibrous capsule, dorsal, 

plantar, intercuneiform, and interosseous ligaments (Mkandawire et al., 2005). Mizel 

MS, demonstrated that the plantar ligament of the first MTC joint is the primary restraint 

of dorsal angulation and displacement of the first metatarsal head (Mizel MS, 1993). 

Control of the first ray is facilitated by both the intrinsic and extrinsic muscles including 

flexors, extensors, abductors, and adductors (Figure 10A-B) (Altcheck et al., 2013). 

The sesamoid bones are integrated into the Flexor Hallucis Brevis (FHB) muscle, 

increasing the lever arm of muscular pull, and increasing first MTP joint flexion torque 

(Nordin & Frankel, 2001). Extensors of the toe fire eccentrically to control the foot’s 

descent and prevent heavy ground impact (Figure 11) (Altcheck et al., 2013). The 

peroneal tendons originate in the lateral compartment of the leg, separating to form 

the Peroneus Brevis (PB) and PL (Johnson & Christensen, 1999). The PB tendon 

inserts into the base of the fifth metatarsal while the PL curves around the cuboid, 

obliquely crossing the sole of the foot to insert into the plantar-lateral aspect of the first 

metatarsal and medial cuneiform (Figure 11) (Duchenne GB, 1949; Clarke et al., 

1998). 

Lateral stabilisation of the forefoot is performed by the PB, where loss of its strength 

may cause varus of the hindfoot (Sammarco, GJ, 1995). The PL is the primary everter 

of the forefoot. The PL acts to combine eversion and plantarflexion motions to keep 

the first metatarsal head purchased to the ground, inserting into the base of the first 

metatarsal and medial cuneiform, depressing the metatarsal head, and acting to 

A. Plantarmedial view B. Medial view 
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control propulsion (Figure 11) (Bohne et al., 1997; Bierman et al., 2001). The Tibialis 

Posterior (TP) is a dynamic inverter of the foot which supports the MLA. Its inversion 

of the subtalar joint during mid- to late-stance locks the transverse tarsal joint, thus 

ensuring the foot acts as a rigid lever arm during toe-off (Duchenne GB, 1949). Loss 

of TP strength is known to result in acquired flatfoot (Altchek et al., 2013). The 

interosseous muscles stablise the forefoot during toe-off. Intrinsic and extrinsic 

muscular imbalances are thought to lead to several toe deformities (Garcia-Gonzalez 

et al., 2009; Isvilanonda et al., 2012) 
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Figure 11. Insertion sites of the plantar and dorsal muscle/tendon systems. Adapted from Grant’s Atlas of Anatomy (Grant JCB, 1972). 
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2.2.5 Plantar Fat Pads 

The plantar fat pads are structures for distributing and cushioning load that cover the 

sole of the rearfoot (calcaneus) and forefoot (submetatarsal heads one through five 

and the hallux) (Fung YC, 1993). Comprising fibrous compartments of adipose tissue, 

plantar fat is divided into superficial microchamber and deep macrochamber layers 

(Hsu et al., 2009). During locomotion, plantar fat pads are subjected to considerable 

forces as the foot contacts the ground, absorbs shock, protects against excessive load 

transmission, and reduces plantar pressures. Such characteristics of the fat pads have 

evolved to cushion the remaining structures of the foot (Isvilanonda et al., 2016). 

 

2.2.6 Plantar Skin 

Plantar skin is a multi-layer (epidermis, dermis) barrier that provides a mechanical, 

infectious, and thermo-regulatory cover to the sole of the foot. Some studies have 

shown plantar skin can withstand greater abrasion and pain than skin along other body 

parts (Wang et al., 2011).  
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2.3 First Ray Hypermobility 

 

While the different soft tissues of the foot have evolved to support complex function, 

they are also susceptible to aberrant mechanics and injury. Structure begets function 

and synergy of the osseous- and soft-tissues of the foot, characterised in section 2.2, 

rely upon normal biomechanics. Hypermobility, a condition in which the articular joints 

possess abnormally large ROM, results from ligamentous or muscular laxity (Grahame 

R, 1999). Clinically referred to as double-jointed or joint hyperlaxity, it can be inherited 

or acquired through years of training and stretching, as seen in athletes and gymnasts 

(Hakim & Grahame, 2003; Remvig et al., 2007). Hypermobility is a condition that 

encompasses a spectrum of disorders, where Generalised Joint Hypermobility (GJH) 

lies at the mild end of several Heritable Connective Tissue Disorders (HCTD) with 

Marfan’s syndrome and Ehlers-Danlos syndrome at the severe end (Beighton and 

Horan, 1969; Gray et al. 1994; Judge and Dietz, 2005). The present work does not 

focus on GJH or other HCTD’s, but rather explores traits related specifically to first ray 

hypermobility and its interactions with the surrounding musculoskeletal tissues of the 

foot.  

 

2.3.1 Classifications of Hypermobility 

Despite hypermobility being implicated in a number of orthopaedic and rheumatologic 

disorders (Bird and Tribe, 1978; Johnsson et a., 1996: Golightly et al., 2012; Golightly 

et al., 2018; Flowers et al., 2018), the role of joint laxity in pathologies of the foot and 

ankle remains understudied and poorly understood. Numerous methods exist to 

assess hypermobility of the human body: The Carter and Wilkinson Diagnostic criteria 

(Carter and Wilkinson, 1964), the Beighton criteria (which is a modification of the 

original Carter and Wilkinson method) (Beighton et al., 1973), the Contompasis 

method, the Bulbena criteria, and the Brighton criteria (Golightly et al., 2012). Though 

these assessments of diagnosing hypermobility differ by process, they present a 

universal deficiency: none assess hypermobility in structures below the knee. 
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Pes planus is a common occurrence, varying from mild-asymptomatic to severe 

malformation whereby, medial displacement of the hindfoot results in collapse of the 

MLA (Grahame R, 1999). Many patients with foot deformity develop Hallux Valgus 

(HV) but do not develop pain (Coughlin MJ, 1996; King & Toolan, 2004; Nguyen et al., 

2010). Conversely, pes cavus is also present in a subset of individuals. Many authors 

have independently suggested that first ray hypermobility may be present in most 

individuals with planus feet (King and Toolan, 2004; Cooper et al., 2009; Rao and Bell, 

2013; Doty et al., 2014). Although hypermobility is considered a risk factor for joint 

pain, the evidence of an association between hypermobility and symptomatic pain in 

the foot and ankle can differ in population-based studies (Bird and Tribe, 1978; 

Johnsson et a., 1996: Golightly et al., 2012; Golightly et al., 2018; Flowers et al., 2018). 

Tobias et al., (2013) reported an 82% higher odds-ratio of symptomatic foot/ankle pain 

among adolescents, as measured by the Beighton criteria, versus controls. In contrast, 

Golightly et al., (2018) did not find any significant relationships in the foot and ankle 

except for talonavicular joints and hypermobile knees. While the findings of these 

studies differed, both found an association with knee hypermobility and mild-to-

moderate foot and ankle pain. Golightly et al., postulated that hypermobility may 

overload synovial joints during repetitive, abnormal motion and expose the soft tissues 

to microtrauma, resulting in increased joint pain. 

 

2.3.2 Clinical Assessments of First Ray Hypermobility 

First ray mobility is the collective motion between the medial cuneiform and first 

metatarsal (Morton DJ, 1928; Klaue et al., 1994; Glasoe et al., 1999; Glasoe & 

Michaud, 2019). Superior translation of this structure under load is typically used to 

quantify first ray mobility, where ≤5 mm is considered “normal” (Voellmicke & Deland, 

2002; Coughlin and Shurnas, 2003; Jones et al., 2005; Coughlin & Jones, 2007; 

Glasoe & Michaud, 2019). Definitions of the “abnormal” first ray hypermobility can vary 

from 7-10 mm based on differences in case definitions and methods of assessment 

(Roukis et al., 1996; Root et al., 1997; Lee & Young, 2001; Tavara-Vidalon et al., 2018; 

Glasoe & Michaud, 2019; Munuera & Martinez, 2020). First ray hypermobility 

compromises the MLA’s ability to resist the GRF during ambulation (Glasoe et al., 

2000; Grebing & Coughlin, 2004; Glasoe et al., 2006; Doty et al., 2014). Morton (1928) 



28 

 

first proposed the term “hypermobility of the first metatarsal segment”, but it wasn’t 

until later that Root et al., (1977) defined the term first ray hypermobility as “a state of 

abnormal first ray instability that occurs while the forefoot is bearing weight”. Currently, 

there is no standardised measurement for hypermobility of the first ray and, hence, no 

robust method of studying possible relationships between hypermobility of the first ray 

and symptoms of OA. 

Clinical assessments of first ray hypermobility involve a qualitative judgment by the 

clinician (Voellmicke and Deland, 2002). They will grasp the first metatarsal head with 

their thumb and forefinger, translating the first ray superiorly and inferiorly (Figure 12). 

This measurement is typically performed with the patient prone, hence, non-

weightbearing. Glasoe et al., (2002) found that such manual examinations were 

unreliable, demonstrating wide variations among experienced clinical staff. 

Nonetheless, this method of examination continues to be used today as it is easy to 

perform and requires no additional equipment. However, there is no agreement for this 

threshold amongst investigators. 

 

Figure 12. Standard clinical method of assessing first ray mobility, the surgeon will grasp the lesser 

metatarsals with one hand and apply a force to the first ray with their other.  
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Handheld rulers have also been developed, to more accurately measure dorsal first 

ray mobility (Lee & Young, 2001 Kim et al., 2008; Munuera-Martinez et al., 2020). 

Wallace and Kilmartin (1990), published such a device, made up of two moveable 

rulers. The measurements were made by placing the ruler at the dorsum of the 

forefoot, quantifying the first ray translation in 1-mm gradients. This method provided 

a simple and practical measurement, yet its reliability was never established.  

Reliability may be a function of foot position including, resting calcaneal stance 

position (RCSP), subtalar joint neutral (STJN), and a 90° lateral border of the foot with 

respect to shank but this is still to be determined. A similar device to those described 

above is commercially available but has not been tested for reliability or validity 

(www.HumanLocomotion.org). 

 

2.3.3 Mechanical Assessments of First Ray Hypermobility 

Over the past 40 years several investigators have developed mechanically driven 

devices to objectively quantify first ray mobility (Rodgers & Cavanagh, 1986; Klaue et 

al., 1994; Glasoe et al., 2000). While these devices differ in design, they are similar in 

that a plantar force is applied to the first ray and linear translation measured to quantify 

first ray mobility. In 1986, Rodgers and Cavanagh (1986), built the first-of-its-kind 

prototype which was prone to include fat pad compression in the measurement, 

yielding overestimates of the actual first ray mobility (Figure 13A). Klaue et al., (1994) 

constructed a smaller mechanical system in 1994 which was found to be reliable 

(2005), however, the measurement required a manual force, potentially adding 

variability to the result (Figure 13B). Finally, in 1999, Glasoe et al., (1999) produced a 

device that was reliable but overly complicated and bulky, thus limiting its use in a 

clinical setting (Figure 13C). A summary of device attributes can be found in Table 1. 

http://www.humanlocomotion.org/
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Figure 13A-C. (A) Rodgers and Cavanagh device, 1986 (Adapted from Rogers and Cavanagh, Rogers and Cavanagh, Proceedings of the North American 

Congress on Biomechanics, 1986); (B) Klaue et al., device, 1994 (Adapted from Klaue et al., Foot Ankle Int, 1994); (C) Glasoe et al., device, 1998 (Adapted 

from, Glasoe et al., Foot Ankle Int, 1998). 

A C B 
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Table 1. First ray mobility and defined hypermobility using mechanical devices.  

Mechanical Assessment    

Study Method First Ray Mobility Defined Hypermobility Design Comments 

Rodgers 
and 
Cavanagh, 
1986 

Lateral foot immobilised by a clamp, and first 
metatarsal head displaced by a manually 
operated plunger containing a force transducer 
and Linear Variable Differential Transducer 
(LVDT). The applied force and displacement of 
the first ray, were simultaneously recorded at the 
plantar aspect of the metatarsal head. Subjects 
positioned in the jig such that the knee, hip and 
ankle joint angles were maintained at 90° of 
flexion. Maximum force of approximately 80 N 
applied. 

Maximum displacement of 
20 mm 

N/A 

Took measurements from 
plantar aspect of the foot, 
potentially leading to fat pad 
compression involved in the 
results. Large and bulky – not 
portable. Designed for partial 
weightbearing only. 

Klaue et 
al., 1994  

Ankle-foot orthosis cut to midfoot height, and a 
plantar aluminium rail fixed to the heel. The 
forefoot is placed plantigrade. A micrometer is 
fixed to an aluminium plate and can be 
positioned anywhere at the foot’s dorsum. A 
manual force is applied to the metatarsal head. 
The first ray is mechanically free and the 
distance between the origin and extended 
location is measured directly from the skin of the 
dorsum of the foot.   

HV group: 9.3 ± 1.9 mm; 
control group: 5.3 ± 1.4 mm 

≥8 mm 

No standardised force --- may 
result in variable 
measurements. Ankle-Foot 
Orthosis does not appear to 
change depending on foot size. 
Designed for supine (non-
weight bearing) and partial 
weightbearing only. 

Glasoe et 
al 1999 

A platform for the hindfoot and immobilising boot 
preventing leg and rearfoot motion. Maintained 
90° of flexion at the ankle joint. Adjustable clamp 
for the forefoot to immobilise the lesser 
metatarsals. Screw mechanism for loading forces 
(55 N applied to dorsal head of first metatarsal) 
to the first ray.   

Right foot: 6.27 mm (4.40-
9.45 mm), left foot: 6.62 
mm (4.90-8.41 mm); HV 
group: 5.9 ± 1 mm; control 
group (Morton’s neuroma): 
4.2 ± 1 mm; normal: 5.5 
mm (4.2-7.6mm) 

≥10 mm 

Large and bulky device, not 
portable, difficult to use in a 
clinical setting. Designed for 
partial weightbearing only. 
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2.3.4 First Ray Hypermobility and Foot Type Biomechanics 

In an ideal rectus foot, the first ray purchases the ground and bears load through the 

first metatarsal head (Ledoux & Hillstrom, 2002; Hillstrom et al., 2013; Song et al., 

2018). Peak plantar pressures are typically highest beneath the first metatarsal head 

followed by the second and lesser rays (Hillstrom et al., 2013).  In pes planus, the first 

metatarsal head may not be able to remain purchased to the ground and share in 

forefoot loading causing a transfer of load to the second metatarsal head (Ledoux & 

Hillstrom, 2003; Olson et al., 2003; Hillstrom et al., 2013) (Figure 14A-B). Several 

authors have postulated an association between pes planus and first ray hypermobility 

to explain aberrant plantar loading of this foot type (Song et al., 1996; Ledoux & 

Hillstrom, 2003; Hillstrom et al., 2013). As described in a study of 61 asymptomatic 

feet, the peak pressures beneath the first metatarsal head decreased while those 

beneath the second metatarsal head increased in planus compared to rectus feet 

(Hillstrom et al., 2013).  Paradoxically to this possible effect of hypermobility, the centre 

of pressure (origin of the ground reaction force vector) is reduced in concavity in the 

planus versus rectus foot as evidenced by the lower centre of pressure excursion 

index (Ledoux & Hillstrom, 2003; Hillstrom et al., 2013) (grey line extending from 

rearfoot to forefoot in Figure 14A-B). 

The cause of this aberrant mechanics in the planus foot is unclear; however, from a 

structural perspective, the peroneus longus provides passive and active contributions 

to stabilising and “locking” the first metatarsal against the medial cuneiform (Bohne et 

al., 1997; Johnson & Christensen, 1999; Bierman et al., 2001). Torsion of the first 

metatarsal was suggested by Johnson and Christensen, (1999) to tighten the midfoot 

ligaments, stabilise the medial column, and maintain integrity of the transverse arch. 

Bohne et al., (1997) demonstrated a significant increase in medial displacement of the 

transverse arch after transecting the peroneus longus. Conceptually, the peroneus 

longus may help the first ray to resist excessive motion by drawing it into plantarflexion 

due to the tendon’s line of action across the lateral ankle (Bohne et al., 1997; Johnson 

& Christensen, 1999; Bierman et al., 2001; Denyer et al., 2013; Hamid et al., 2017). 

Hypermobility resulting from decreased peroneus longus function likely causes the 

first ray of a planus foot to excessive translate upon weightbearing. Kokubo et al., 

(2012) examined the influence of the posterior tibialis and peroneus longus on stiffness 
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of the foot’s MLA. They hypothesised that foot shock absorption and arch stiffness 

would be affected by force transmitted through each tendon. The posterior tibialis was 

shown to have more effect on arch stiffness than the peroneus longus, indicating the 

peroneal tendon does not function to maintain the MLA. However, loading of this 

tendon was shown to improve first MTC joint sagittal plane subluxation (reduced 

translation) and intermetatarsal angle (reduced abduction) (Dullaert et al., 2016). This 

suggests the peroneus longus interacts with the orientation of the first ray under 

weightbearing load. 

 

Figure 14A-B. Image of plantar pressure distributions during gait where the rectus and planus foot 

types exhibit different biomechanical functions. The planus plantar pressure distribution demonstrates 

lateral transfer of forefoot load from the first to the second metatarsal, in the presence of a more medially 

oriented centre of pressure.  

Johnson and Christensen (1999) have shown the importance of the peroneus longus 

on forefoot stability in vitro. In a study of seven fresh frozen cadavers, they simulated 

static loads from bodyweight. Increased force in the peroneus longus caused the first 

metatarsal to evert and plantarflex, the first ray to lower, and the medial column to 

exhibit torsion while enhancing the transverse arch. Increasing tensile load in the 

peroneus longus caused a mean difference in first metatarsal motion of 8.1° ± 3.1° in 

the frontal plane and 3.8° ± 0.5° in the sagittal plane. Similarly, frontal plane motion of 

the medial cuneiform exhibited a mean increase of 7.4° ± 2.6°.  Medial cuneiform 

motion in the sagittal (3° ± 0.6°) and transverse (2.1° ± 1.8°) planes also increased 

Hallux: 
36.7 MPa 

MH1: 
35.8 MPa 

MH2: 
37.8 MPa 

Hallux: 
45.3 MPa 

MH1: 
29.4 MPa 
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due to peroneus longus loading. No significant differences in arch height were 

observed. Of the limited work performed in this area, Olson et al., (2003) also found 

the peroneus longus to be the primary muscle for increasing plantar pressures 

beneath the first metatarsal head. In patients with clawed hallux deformity, ulceration 

beneath the first metatarsal head may occur due to increased overpull of the peroneus 

longus. 
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2.4 Characteristics of Osteoarthritis and 

Hallux Rigidus 

 

First ray hypermobility may adversely influence plantar loading of the foot, as 

conveyed in section 2.3. Aberrant loading of this kind may influence joint contact 

mechanics and initiate degenerative changes in the first MTP joint over time. Such 

adverse loading has been linked to onset and development of OA in the knee, hip, and 

ankle (Birde & Tribe, 1978; Golightly et al., 2012; Flowers et al., 2018; Golightly et al., 

2018); however, the interaction between hypermobility and pathologic function in the 

foot remains unclear. The pathology of OA involves the entire joint in a process that 

includes focal and progressive cartilage defects with concomitant changes in 

subchondral bone, comprising marginal outgrowths, osteophytes, and gradual bony 

sclerosis (Dieppe & Lohmander, 2005). Structurally, bone marrow edema has been 

observed on MRI and is considered an important source of pain as these bone marrow 

lesions reside within innervated bone (Felson et al., 2000).  Aberrant mechanics play 

an important role in disease pathogenesis (Sarzini-Puttini et al., 2005; Wyles et al., 

2017). The study of mechanical factors is highly complicated due to the progressive 

nature (structurally, biomechanically, biologically and biochemically) of this disease 

(Felson et al., 2000). There is limited knowledge of the mechanistic pathway to hallux 

rigidus. Therefore, better understanding and prediction of the potential burden of this 

disease on healthcare institutions is required, particularly identification of causative 

factors which enable targeted intervention at an early stage. Several investigators 

have hypothesised that first ray hypermobility, plays a role in various pathologies of 

the foot including hallux rigidus (Bremner et al., 1968; Nguyen et al., 2010; Cacacae 

et al., 2013; Menz et al., 2015). 
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2.4.1 Aetiology, Epidemiology, and Clinical Features of Osteoarthritis  

Osteoarhtirits is often categorised into two groups: primary and secondary (Felson et 

al., 2000). Primary OA normally occurs in older people due to wear and tear from 

repetitive use over time, whereas secondary OA is frequently caused by trauma (Van 

Saase et al., 1989). Sources of mechanical stress leading to OA can include acute 

(e.g. injury) or gradual joint overloading (e.g. repetitive stress from malalignment, 

incongruence, overuse, obesity, or neuromuscular dysfunction) (Dieppe & 

Lohmander, 2005). Degeneration of the cartilage matrix is associated with loss of 

proteoglycans, decorin and biglycan, which are directly related to the compressive 

strength of the solid cartilage matrix (Figure 15A-B). Loss of these molecules is 

associated with increased cleavage of type II collagen by collagenase, aggrecan 

cleavage and the degradation of small proteoglycans (Sarzi-Puttini et al., 2005).  

 

Figure 15A-B. Photographs of cadaveric specimens with: (A) healthy cartilage and (B) degenerative 

cartilage indicative of OA including severe degenerative changes in the cartilage extending down to the 

subchondral bone. 

Excessive joint loading and cartilage deformation, in conjunction with altered 

biomechanical properties, leads to cartilage erosion overlaying the bone (Meachim G, 

1972; Golightly et al., 2012; Carrol & Coleman, 2019). The clinical presentation 

includes pain, crepitus, and reduced mobility. Osteoarthritis is considered the leading 

cause of regional joint pain in older people (Dieppe and Lohmander, 2005).  Due to 

the longevity of modern careers and the significant incidence of OA among middle-

aged people, a considerable societal burden is placed on the global economy through 

A. Healthy B. Degenerative 
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lost time at work and early retirement (Felson et al., 2000). Economic models forecast 

an exponential increase in the cost of OA in Europe, Australia, and the USA, 

accounting for between 1-2.5% of the Gross Domestic Product (GDP) (Chen et al., 

2012). 

 

2.4.2 Hallux Rigidus 

Osteoarthritis of the first MTP joint is considered the most common degenerative 

pathology in the foot and ankle (Van Saase et al., 1989), clinically defined as hallux 

rigidus (Cotterill MJ, 1887). The frequency of first MTP joint OA among adults can vary 

from 6% to 39%, largely due to differences in ages, populations, and case definitions 

(Roddy and Menz, 2018). End stage OA in the first MTP joint manifests as severely 

restricted motion, pain, and disability (Dananberg et al., 1993; Canesco et al., 2008). 

Loss of cartilage is typically situated dorsal to the apex of the dome of the metatarsal 

head, and adjacent to the dorsal lip of the base of the proximal phalanx (McMaster 

MJ, 1978) (Figure 15A-B). Figure 15B is even more advanced than typical with 

cartilage degeneration extending to the central and plantar aspects of the joint.  The 

disturbance in function when repeated on a daily basis, can alter foot and postural 

biomechanics, causing substantial disability at the end-stage (Dananberg et al., 1993). 

Jack, E., (1940) was the first investigator to describe a jamming mechanism of the first 

MTP joint occurring when the first ray was excessively dorsiflexed or pushed 

abnormally into extension. Nearly 60 years later, Roukis et al., (1996) reinforced Jack’s 

theory that rather than abnormal gait or anatomical variances, motion of the first MTP 

joint is influenced by first ray position. The authors found that 4 mm of first ray dorsal 

translation reduced first MTP joint dorsiflexion by 19.3%, and when dorsal translation 

reached 8-mm, dorsiflexion reduced by a further 34.7%. Some authors believe that a 

form of functional hallux limitus is present in most individuals with first ray 

hypermobility (Dananberg, H.J., 1993; Roukis et al., 1996; Durrant and Chockalingam, 

2009) since hallux limitus is defined by a decrease of first MTP joint dorsiflexion. A 

progression from hallux limitus to hallux rigidus may depend on the actual amount of 

first ray mobility that occurs during gait, rather than the inherent properties of the first 

MTP joint (Roukis et al., 1996; Roukis et al., 2005). 
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2.4.3 Treatment Options 

Following the exhaustion of conservative treatments such as, intra-articular injections 

and foot orthoses, options for treating hallux rigidus are limited to joint-destructive 

procedures (Brewster M, 2010; Gibson & Thomson, 2005; Titchener et al., 2015). For 

moderate OA that is recalcitrant to non-surgical therapy: cheilectomy, capsular 

interposition, osteochondral autogenous transplantation for focal defects, joint 

distraction, periarticular osteotomy, and excision arthroplasty have been utilised 

(Brewster M, 2010). Arthrodesis (i.e. fusing the joint) is the current gold-standard for 

end-stage intervention. The literature suggests that success rates are between 95%-

100% (De Frino et al., 2002). 

Among those treatments associated with hallux rigidus, joint replacement is 

considered the most controversial (NICE, 2005). Pain relief, functional restoration and 

maintenance of normal appearance are benefits of joint arthroplasty but the surgery 

has a marked effect on metatarsal length, reducing bone stock and thus, the ability for 

surgeons to perform effective revision surgeries (Shankar, N.S., 1995; Barwick and 

Talkhani, 2008; Kissel, C.G., 2008; Carpenter et al., 2010; Titchener et al., 2015). 

Aside from the functional benefits of first MTP joint arthroplasty, the UK National 

Institute for Health and Clinical Excellence (NICE) (2005) have emphasised the poor 

resilience of contemporary first MTP joint prostheses. Prior to the report published by 

NICE, the Medical Devices Agency (MDA) (2002) issued an alert for the first-

generation ceramic screw-fit implant after 10 months of clinical use.  

In contrast to the poor results of first MTP joint replacement, 6.2% and 2.5% of all 

primary knee and hip replacements were revised at approximately 20 years between 

2014 and 2015 in the UK (National Joint Registry, 2015). While proven long-term 

results for certain joint types have been made available through the National Joint 

Registry (NJR), the inability to evaluate brand-specific implant outcomes and survival 

at the population level is an obvious disadvantage in performing first MTP joint 

replacement. Hence, patients exhibiting this condition do not experience the same 

level of functional restoration compared with other joints. This emphasises the need 

to identify etiological factors of hallux rigidus and research standards of care for 

underappreciated and unrecognised foot burdens.  
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2.5 Finite Element Modelling of Osseous 

and Soft Tissue Mechanics in the 

Foot 

 

Aberrant mechanics play an important role in the pathomechanics of OA. Sections 2.3 

and 2.4 showed there is limited understanding of forefoot mechanics and etiological 

factors in onset and development of hallux rigidus. Although physical testing is 

essential in the evaluation process, reliable computational predictions, such as those 

from finite element (FE) modelling, can augment in vivo experiments (Reggiani et al., 

2006; Anderson et al., 2008; Wong et al., 2018).  Finite element modelling refers to a 

method of computational simulation which virtually represents a physical problem 

(Viceconti M, 2005; Henninger et al., 2010). This process is performed by subdividing 

a geometry into many discretized regions, called finite elements. These regular small 

3D elements are governed by constitutive relationships, which collectively represent 

the larger physical problem. Due to their capability of representing complex systems, 

FE models are used to simulate, study, and predict a diverse set of problems in 

biomechanics, ranging from classical structural analysis (e.g. crack propagation in 

fractures) to surgical outcomes (e.g. stress distribution in soft tissues) (ASME 

Committee, 2006; Henninger et al., 2010). Some scientists are sceptical of results from 

FE models. There are no perfect models and no perfect experiments but the real value 

of FE models in biomechanical applications is that they give the investigator the 

potential to estimate parameters, such as joint stress, that would not be possible to 

measure directly in vivo (Viceconti, M 2005). 

To reduce scepticism, all models prior to being placed into practice should be verified 

and validated against physical data (Viceconti M, 2005; Henninger et al., 2010). It is 

for this reason that models and experiments are inextricably linked.  When considering 

the applicability of FE models, it is important to remember that they are predictive tools 

that require assessment of validity which is comprised of accuracy and reliability 

(ASME Committee, 2006; Anderson et al., 2008; Biedokhti et al., 2016; Akrami et al., 
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2018). The main challenge in biomechanics is the uncertainty relating to material 

properties and macro-geometry of biological tissues. Verification and validation of 

these tools are normally used; ensuring the output is correctly interpreted before its 

predictions can be considered clinically valuable (ASME Committee, 2006; Henninger 

et al., 2010).  

 

2.5.1 Finite Element Modelling of the Foot and Ankle 

Finite element investigations of the foot have predominantly involved healthy humans 

and cadaveric specimens (Cheung et al., 2005; Isvilanonda et al., 2012; Wong et al., 

2014; Akrami et al., 2018; Wong et al., 2018; Peng et al., 2021). Validation of in vivo 

models can be obtained from comparisons of measured and predicted plantar 

pressure distributions (Wong et al., 2014; Akrami et al., 2018). Plantar pressure 

measurements of the subject are taken during gait, by a dynamic in-sole plantar 

pressure measuring system or plantar pressure plate (Behforootan et al., 2017). Such 

validations may be limited by the assumption that predictions of joint kinematics, and 

internal stress and strain are accurate, without validating for soft-tissue geometries or 

material properties. Such factors create inherent uncertainty regarding the clinical 

application of models validated against plantar pressures (Anderson et al., 2008).  

Therefore, in vitro techniques are typically employed for physical validation of internal 

joint contact mechanics (Anderson et al., 2008; Henak et al., 2014; Biedokhti et al., 

2016). While this method may provide better information regarding the internal joint 

contact mechanics, it may also be limited by assumptions associated with body loads, 

muscle forces, and the technology available to obtain such measurements (Viceconti 

M, 2005; Anderson et al., 2008; Henninger et al., 2010; Henak et al., 2014; Biedokhti 

et al., 2016). Thin-film pressure sensors are typically employed to measure joint 

contact mechanics but are inherently temperamental (Wu et al., 1998). Assumptions 

such as equilibration, calibration, insertion, and fixation can contribute to errors 

(Jansson et al., 2013). Moreover, these sensors are known to affect joint congruence 

and alter joint mechanics (Anderson et al., 2008; Beidokhti et al., 2017), leading to 

further errors between physical measurements and FE predictions. Table 2 presents 

an overview of several published foot and ankle FE models. 
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Figure 16. A finite element model of the first ray. The cross-sectional view illustrates the transmission 

of stress through the virtual first MTP joint articular cartilages, shown from the lateral aspect of a right 

foot. Predictions of stress are created through simulated physiological loading. 

 

The primary difficulty with studying soft-tissue mechanics in vivo are the potential risks 

and ethical considerations associated with such invasive measurements (Behforootan 

et al., 2017). Patient- or specimen-specific models enable the researcher to 

circumvent these issues (Jacob & Patil, 1999; Gu et al., 2010). Force distributions are 

calculated to detect biomechanical stress by applying physiological loads (Figure 16) 

(Imhauser et al., 2008; Flavin et al., 2008). Detailed internal mechanical information 

provided by FE models enables researchers to non-invasively predict the mechanical 

behaviour of soft tissues, implants, and surgical outcomes (Cheung et al., 2005; 

Reggiani et al., 2006; Flavin et al., 2008; Tao et al., 2009).  Furthermore, FE modelling 

has been used to predict excessive joint stress as a potential mechanism of 

osteoarthritis (Chegini et al., 2008; Mononen et al., 2012; Venäläinen et al., 2016).

Stress 

0 MPa 

2 MPa 
Cross-sectional 
view of the First 
MTP joint Cartilage 

https://www.nature.com/articles/srep37538#auth-1
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Table 2. Overview of relevant, published finite element models of the foot and its associated structures. 

Study Purpose 

Model Development Material Assignment Loading Conditions Validation 

Scan/Subject(s) 
Element 
type(s) 

Virtual tissue 
material model 

Simulation Reference Type Source 

Nakamura et 
al., 1981 

Predict stress 
within the plantar 
soft tissue for a 
variety of shoe 
conditions 

1 subject (in 
vitro); 3D  

Tetrahedral 
Bone, linear elastic; 
soft tissue, nonlinear 
elastic 

Standing Bodyweight None - 

Gefen et al., 
2002 

Analysis of the 
biomechanical 
effects of plantar 
fascia release on 
the foot 

0.5T MRI; 1 
woman (in vivo); 
age, 27; 3D 

Hexahedral 

Bone/cartilage, linear 
elastic; 
fascia/ligaments/soft 
tissue, nonlinear 
elastic 

Standing 
Bodyweight 
from 
literature 

Indirect 

Bone 
displacement 
measured 
during 
standing 

Cheung et 
al., 2004 

Investigate the 
effect of soft tissue 
stiffness on plantar 
pressure 
distributions 

MRI; 1 man (in 
vivo); age, 26; 
height, 174 cm; 
weight, 70 kg; 3D 

Tetrahedral 
Bone/cartilage/ 
ligaments/fascia; soft 
tissue, hyperelastic 

Standing Bodyweight Direct 
Plantar 
pressure 

Budhabhatti 
et al., 2007 

Develop a FE 
model of the first 
ray as a tool for the 
design of 
therapeutic 
interventions 

MRI; 1 man (in 
vivo); 3D 

Hexahedral 

Bone, rigid; soft tissue, 
Ogden; 
cartilage/ligaments/fas
cia, linear elastic 

Toe off Measured Direct 
Plantar 
pressure 

Isvilanonda 
et al., 2012 

Study the effect of 
muscle overpull on 
the formation of the 
clawed hallux 
deformity and its 
surgical treatments 

CT & MRI; 1 man 
(in vitro); weight, 
823 N; 3D 

Tetrahedral 
& nonlinear, 
tension-only 
discrete 
elements 

Bone, rigid body; 
cartilage, rigid body, 
ligaments/tendons/fasc
ia, nonlinear elastic; fat 
pad, linear elastic.  

Gait Literature Indirect 
Plantar 
pressure 

Indirect, derived from the literature or measured from a different specimen or subject from that used to build the model; Direct, measured from the same 
specimen or subject. 
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Table 2. (Cont’d) Overview of relevant, published finite element models of the foot and its associated structures. 

Study Purpose 

Model Development Material Assignment Loading Conditions Validation 

Scan/Subject(s) 
Element 
type(s) 

Virtual tissue 
material model 

Simulation Reference Type Source 

Sun et al., 
2012 

Analyse stress 
distributions in the 
foot resulting from 
different arch 
alignments. 

CT; 1 man (in 
vivo); age, 24; 
height, 179 cm; 
weight, 79 kg; 3D 

Tetrahedral 
& tension-
only truss 
elements 

Ligament/bone/soft 
tissue/cartilage/fascia, 
linear elastic; Skin/fat 
pad/muscle, 
hyperelastic 

Standing Bodyweight Direct 
Plantar 
pressure 

Wong et 
al., 2014 

Predict the effect of 
first ray hypermobility 
on foot forces 

MRI; 1 woman (in 
vivo); age, 28; 
height, 165 cm; 
weight, 54 kg; 3D 

Tetrahderal, 
quadrilateral 
& hexahedral 

Ligament/Bone, linear 
elastic; soft tissue, 
hyperelastic 

Gait 
Gait 
analysis 

Direct 
Plantar 
pressure  

Akrami et 
al., 2018 

Development of a 
foot model, 
incorporating the 
cartilage, ligaments, 
muscle-tendon 
systems etc. 

1.5T MRI; 1 man 
(in vivo); age, 27; 
weight, 75 kg; 3D 

Tetrahedral 

Bone/cartilage/plantar 
fascia/achillies 
tendon/encapsulated 
soft tissue, linear 
elastic; ligament, 
tension-only truss 

Gait and 
muscle 
forces 

Gait 
analysis 
and multi-
body 
modelling 

Direct 
Plantar 
pressure 

Guo et al., 
2018 

Evaluation of hallux 
valgus pre- and post-
distal osteotomy 

CT; 1 woman (in 
vivo); age, 26; 
weight, 54 kg; 3D 

Tetrahedral 

Bone/cartilage/plantar 
fascia/ligaments/skin, 
linear elastic; soft 
tissue, hyperelastic 

Standing Bodyweight Direct 
Plantar 
pressure 

Indirect, derived from the literature or measured from a different specimen/subject from that used to build the model; Direct, measured from the same 
specimen or subject. 
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2.6 Gaps in Knowledge 

 

Several gaps in knowledge were identified in the literature review relating to the study 

of hallux rigidus, first ray hypermobility, foot type biomechanics, and cartilage contact 

mechanics in the first ray. The subsequent studies conducted in this thesis were 

designed to address the following research gaps: 

Hallux Rigidus 

• Insufficient up-to-date population-based age- and sex-related trends in hallux 

rigidus including etiological factors and groups most at risk.   

First Ray Hypermobility 

• No standardised, reliable measurement of first ray hypermobility to facilitate 

robust clinical definition and investigation of associated biomechanical 

parameters. 

Foot Type Biomechanics 

• No objective evidence to prove or disprove a connection between foot type and 

first ray hypermobility.  

• Lack of evaluation for relationships between first ray hypermobility, foot 

structure, and foot function as causes of altered weightbearing beneath the 

medial forefoot.  

First Ray Contact Mechanics  

• No study has applied FE modelling to the prediction of first ray contact 

mechanics in the presence of hypermobility, as a potential mechanism of 

excessive loading and pathway to hallux rigidus.  
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Chapter 3. Osteoarthritis in England: Incidence 

Trends from National Health Service Hospital 

Episode Statistics 

Published in ACR Open Rheumatology: DOI 10.1002/acr2.11071 

3.1 Chapter Overview 

This first study explored hallux rigidus epidemiology in England compared to OA of the 

hand, hip, and knee. It examined the population prevalence and incidence trends in 

National Health Service (NHS) secondary-care records for hallux rigidus, compared 

with more OA of frequently studied sites in the body, including the first 

Carpometacarpal (CMC), knee, and hip joints. The objective of this section was to 

understand if hallux rigidus affects a subset of younger patients, thus emphasising the 

potential for conditions such as, first ray hypermobility to contribute to disease onset. 

Aim 1: Investigate the population prevalence and incidence of hallux rigidus 

compared with osteoarthritis of the hand, hip, and knee in England. 

Hypothesis 1: Hallux rigidus will demonstrate increased population prevalence over 

time and comparable incidence to osteoarthritis of the hand, hip, and knee.  

3.2 Introduction 

Osteoarthritis affecting the foot was included in early descriptions of the generalised 

disease, circa 1990, yet subsequent epidemiological research has focused on the 

hand, hip, and knee (Van Saase et al., 1989; Roddy and Menz, 2018). The public 

health needs related to hallux rigidus, which is considered the most common form of 

OA in the foot (Van Saase et al., 1989), are unclear due to a lack of population 

representative samples in contemporary research. Up-to-date population-based 

sources are needed to better approximate the sex-ratios and age-distributions of 
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patients with hallux rigidus in England and the potential burden posed to the NHS. To 

address these gaps in knowledge, the NHS Hospital Episode Statistics (HES) 

database was reviewed to ascertain population prevalence and incidence trends in 

hallux rigidus compared to first CMC, hip, and knee joint OA by sex and age between 

2000/01 and 2017/18. 

3.3 Materials and Methods 

Aggregate data for English NHS patients were derived from HES between 2000/01 

and 2017/18, made publicly available through the National Archives 

(http://www.webarchives.nationalarchives.gov.uk). The HES database (governed by 

the Department of Health and Social Care) stores records for all NHS England-related 

admissions within a given fiscal year. It covers care delivered in treatment centres 

(including the independent sectors) funded by NHS England, episodes of care in 

England for non-British residents, and privately funded patients treated within NHS 

England hospitals. Each record in the database is associated with a ‘finished 

consultant episode’.  This refers to the duration a patient has spent under the care of 

a hospital consultant (board certified specialist). The HES database was accredited as 

a national statistic in 2008 and has been validated for research purposes (Thorn et al., 

2016). The HES records included were those with the International Classification of 

Disease (ICD-10) codes M16 (arthrosis of the hip), M17 (arthrosis of the knee), M18 

(arthrosis of the first CMC joint), and M20.2 (hallux rigidus). The information 

associated with these ICD-10 codes included the total number of diagnoses, sex, and 

age. Age was calculated for all cases in the HES dataset, which did not discriminate 

between men and women. English population data for 2000/01-2017/18 were obtained 

from the Office for National Statistics UK (ONS UK) (www.ons.gov.uk).

3.3.1 Statistics 

Descriptive statistics were used to report the distribution of hallux rigidus, first CMC, 

hip, and knee joint OA, including totals and percentages (%). Population prevalence 

http://www.webarchives.nationalarchives.gov.uk/
http://www.ons.gov.uk/
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and incidence trends were computed in Joinpoint v4.7.0.0 

(www.surveillance.cancer.gov/joinpoint). Joinpoint is a publicly available statistical 

software that uses regression functions to test whether a change in trend over time is 

statistically significant. The software provides a summary measure of trend over time 

by calculating the Average Annual Percent Change (AAPC), using the weighted 

average of the slope coefficients of the regression line with the weights equal to the 

length of each segment over a predetermined time-period. A 95% Confidence Interval 

(CI) is then computed, based on the normal distribution of AAPC.

Population prevalence and incidence trends in OA were estimated in Joinpoint per 

100,000 population in England, stratified by sex and age. The numerator for estimates 

by sex included each finished consultant episode divided into groups for pooled, men, 

and women, while the denominator comprised the total English population in each 

calendar year. The numerator for estimates by age included each finished consultant 

episode within the defined age-groups while the denominator comprised the 

population of each age-group for the same calendar year.  A p-value of <0.05 was 

used to indicate statistical significance. Sex-stratified incidence of OA were compiled 

for the entire 17-years reviewed in this study; however, calculations stratified by age 

were made using data from the most recent six-years due to limitations of the HES 

age classification system prior to 2012/13. Before this period, patient age was reported 

within a large range for example, patients aged 15-59-years-old were calculated as a 

single group. Such grouping would have biased the age-stratified incidence 

calculations of OA, therefore data before 2012/13 were excluded from the regression 

analyses. The concurrent age boundaries used were those provided in the HES 

database. 

3.4 Results 

3.4.1 Distribution of Osteoarthritis (2000/01-2017/18) 

During 2000/01-2017/18, there were a total of 3,143,928 patients presenting with OA. 

Based on this data, knee OA represented the greatest proportion of patients. 

Distribution of OA was higher among women for all joints examined (Table 3).  

http://www.surveillance.cancer.gov/joinpoint
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Table 3. Total joint-specific OA diagnoses, 2000/01-2017/18. 

Joint 

First MTP First CMC Hip Knee 

All (N) 60,986 88,178 1,222,446 1,772,318 

Men 32% 24% 39% 43% 

Women 68% 76% 61% 57% 

3.4.2 Sex-Stratified Incidence of Osteoarthritis (2000/01-2017/18) 

Estimated OA incidence increased significantly from 2000/01-2017/18 for every joint. 

Similar trends for hallux rigidus, hip, and knee OA were observed. The first CMC joint 

demonstrated comparatively higher increases (Table 4). Over more recent years, 

hallux rigidus and knee OA experienced a stabilisation in diagnoses. The incidence of 

hallux rigidus was significant from 2000/01-2010/11 [6.6% (5.5, 7.7)]. After this time, 

no significant change occurred [-0.1% (-1.5, 1.4)]. Knee OA demonstrated significant 

increases until 2007/08 [6.7% (5.1, 8.4)], after which time no significant change was 

estimated [0.3% (-0.3, 1.1)]. Incidence of hip OA continued to rise significantly until 

2014/15 [4.5% (4.0, 5.1)]; this increase was not significant from 2015/16 [0.3% (-4.2, 

5.1)] onwards. Estimated incidence of first CMC joint OA was significant throughout 

the 17 years reviewed (Figure 17). 

Table 4. Incidencea of joint-specific OA stratified by sex, 2000/01-2017/18. 

Joint 

First MTP First CMC Hip Knee 

All 3.8% (3.0, 4.6)* 10.9% (10.1, 11.7)* 3.8% (2.9, 4.7)* 2.9% (2.2, 3.6)* 

Men 3.6% (2.8, 4.5)* 11.9% (10.7, 13.2)* 4.3% (3.2, 5.5)* 2.7% (2.0, 3.4)* 

Women 3.9% (3.0, 4.7)* 10.7% (9.8, 11.7)* 3.8% (2.9, 4.7)* 3.1% (2.3, 3.8)* 

Statistically significant results (p-value ≤0.05) are indicated by *. 

aIn the joinpoint regression analysis, AAPC (%) and 95% CI in crude rates per 100,000 population 

were used. 
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Table 5. Incidencea of joint-specific OA stratified by age, 2012/13-2017/18. 

 
Joint 

First MTP First CMC Hip Knee 

Age Group     

 25-34 -0.6% (-11.4, 11.6) 6.7% (-9.1, 25.3) 2.3% (1.5, 3.2)* -6.1% (-11.0, -0.9)* 

 35-44 -4.6% (-10.1, 1.2) 1.7% (-0.9, 4.5) 2.9% (1.1, 4.8)* -7.4% (-12.1, -2.4)* 

 45-54 3.8% (-0.3, 8.0) 6.6% (2.2, 11.2)* 4.2% (1.8, 6.7)* -2.1% (-5.0, 1.0) 

 55-64 -2.8% (-4.0, -1.7)* 5.8% (3.8, 7.8)* 1.9% (-0.1, 4.9) -0.3% (-2.6, 2.2) 

 65-74 -0.2% (-2.8, 2.5) 5.2% (2.3, 8.0)* -0.5% (-2.5, 1.6) -0.8% (-2.8, 1.3) 

 75+ 4.9% (1.0, 8.9)* 7.8% (4.4, 11.3)* 0.9% (-1.7, 3.6) -0.7% (-1.7, 3.2) 

Statistically significant results (p-value ≤0.05) are indicated by *. 

aIn the joinpoint regression analysis, AAPC (%) and 95% CI in crude rates per 100,000 population 

were used. 

 

 

Figure 17. Population prevalence of joint-specific OA per 100,000 English population, 

2000/01-2017/18. 
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3.4.3 Age-Stratified Incidence of Osteoarthritis (2012/13-2017/18) 

The distribution of knee and hip OA across age exhibited a single peak at the 70-74-

year-old group. This distribution was bimodal for the first MTP and first CMC joints. 

Peaks at the 50-54- and 65-69-year-old groups were observed for the first MTP joint 

and 55-59- and 65-69-year-old groups for the first CMC joint (Figure 18). Between 

2012/13 and 2017/18, a statistically significant decline in hallux rigidus was estimated 

in the 55-64-year-old group. There was a significant rise in the incidence of patients 

who were 75+-years-old. The 45-54-year-old group also exhibited an increasing trend 

of OA though this was not significant. The incidence of first CMC joint OA was 

significant in the 45-54-year-old group and older. There were also significant increases 

in the incidence of younger patients presenting with hip OA. Conversely, there were 

significant declines in the number of younger patients presenting with knee OA (Figure 

18; Table 5).  

Figure 18. Distribution of joint-specific OA by age group, 2012/13-2017/18. 
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3.5 Discussion 

The present study estimated significant increases in the incidence of hallux rigidus, 

first CMC, hip, and knee joint OA over a 17-year period in England. Consistent with 

the study hypothesis, the incidence rate of hallux rigidus was similar to that of the hip 

and knee. Although women comprised the largest proportion of diagnoses, greater 

incidence in first CMC and hip joint OA were estimated among men. Hip OA 

represented the highest growth among younger patients while the first CMC joint had 

the highest overall incidence. Older patients (75+-year-old group) with hallux rigidus 

and first CMC joint OA represented the fastest growing population. A significant rise 

in the total number of patients with knee OA was estimated from 2000/01-2017/18, 

however, there was a higher incidence of hallux rigidus over the same time-period. 

Moreover, the hip and knee presented unimodal age distributions at 70-years-old while 

hallux rigidus presented with bimodal peaks at 50 and 60-years-of-age. This suggests 

a pathway to hallux rigidus in younger years other than wear and tear that is typical of 

OA.  

The current findings were within the range of UK-based estimates of OA (Yu et al., 

2015; Yu et al., 2017). A large study by Yu et al., (2015) found a higher proportion of 

women were diagnosed with OA. The trend toward declined hip and knee OA later in 

life was also comparable to the current results, as was a plateau in diagnoses for the 

knee since 2008/09. However, previous estimates of increased knee OA among 35-

44-year-olds were not in agreement with this study. This difference can be attributed 

to the prior analysis of local-level data from 1992-2013 compared with the present 

regression analyses of national-level data beginning 2012/13.  

Incidence of OA in England was also consistent with global trends (Kurtz et al., 2009; 

Prieto et al., 2014; Kiadaliri et al., 2019). Analysis of a secondary-care database from 

Sweden found that population growth and ageing accounted for just one-third of 

patients presenting with OA, suggesting these factors do not fully explain increased 

incidence of the disease (Kiadaliri et al., 2019). Kiadaliri et al., (2019) postulated that 

while hip OA constituted the highest proportion of patients in Sweden, knee OA could 

surpass the hip in coming years. In contrast, the present data suggests that incidence 

of knee OA has stabilised in England and may be overtaken by the hip, if current trends 

are maintained. 
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An increasing trend toward younger patients diagnosed with hip OA may align with the 

adoption of a healthier lifestyle in modern society and the role this may play in 

femoroacetabular impingement, as a precursor to hip degeneration in young adults 

(Chegini et al., 2008; Tannast et al., 2008; Wyles et al., 2017). Highly active patients 

with features of femoroacetabular impingement may place greater than normal stress 

on their hips, leading to mechanical damage at an early age (Wyles et al., 2017). The 

potential for early onset OA in young adulthood can have serious implications on 

quality of life and the efficacy of conventional treatment strategies; thus, this finding 

warrants further investigation.  

While population-level data for risk factors associated with hand, hip, and knee OA are 

well documented (Van Saase et al., 1989: Felson et al., 2000), there is sparse 

evidence with respect to the first MTP joint, which has largely been excluded from OA-

based epidemiology research (Roddy & Menz, 2018). The frequency of hallux rigidus, 

which had equal numbers to first CMC joint OA and higher incidence than the knee, 

emphasises the need for well-conducted epidemiological studies of the first MTP joint 

to guide the design of future research. Though long-term results of joint replacement 

for the hip and knee have been made available through the National Joint Registry, 

the inability to evaluate brand-specific first MTP joint implant outcomes and survival at 

the population level is an obvious shortcoming in this data.  Such information would 

be especially useful for the evaluation and design of next generation joint 

replacements. Current versions of the technology for this joint yield unpredictable 

results and unreliable longevity. 

Most relevant to the present thesis was an observed bimodal age-distribution of hallux 

rigidus, which likely resulted from differences in primary and secondary pathways of 

disease. The specific reasons are unclear, but may reflect multiple factors, such as 

better diagnostics, improvements in referral to secondary care, a change in healthcare 

seeking behaviour among certain age groups, differences in joint injury/trauma, (Allen 

et al., 2015) occupation, longevity of modern careers (Felson et al., 2000), and 

aberrant biomechanics of the foot in younger patients. Additional studies of patient 

demographics and populations are required to explore these potential risk factors in 

more depth. The following chapters of this thesis will, however, investigate abnormal 
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biomechanical parameters of the foot which have been hypothesised as etiological 

factors in hallux rigidus onset and development.  

3.5.1 Limitations 

Some limitations must be considered when interpreting the results of this study. We 

were unable to account for body mass index (BMI), height, or other patient 

characteristics from the available data. Furthermore, utilisation of secondary-care 

data should be cautiously interpreted. While it reflects a large dataset, across 

extended time-periods, it may reflect biases due to under- or over-recording 

practices for conditions incentivised by the General Medical Services, as well as 

variable coding quality between different NHS trusts. However, the application of 

these large and population representative samples, which have been validated for 

use and maintained across recent timeframes, enabled comprehensive evaluation of 

temporal trends in OA. 

3.6 Conclusion 

In conclusion, the current study provided up-to-date population data for OA in England 

across 17 years. Highlighting the burden that hallux ridigus represents in England, with 

comparative data from the hand, hip, and knee, emphasises the urgent need for future 

research into causal factors, modes of diagnosis, surgical outcomes, and standards 

of care for under-appreciated and under-recognised foot burdens at the population-

level. Identification of a younger subset of patients presenting with hallux rigidus 

underscores the importance of exploring biomechanical pathways which my initiate 

degenerative changes in the first MTP joint. As discussed in the literature review of 

this thesis, many possible etiological factors have been dismissed due to a lack of 

convincing evidence, yet the role of first ray hypermobility remains enigmatic. The 

following chapters will investigate the influence of first ray hypermobility on structural 

and functional parameters of the foot, which may be indicative of aberrant and 

potentially harmful biomechanics.  
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Chapter 4. Design and Reliability Testing of a 

Novel Device to Measure First Ray Mobility

Foot structure and function assessment device and methods of using the same: Patent 

No. PCT/US21/22791, March 2021 

Published in Foot and Ankle International: DOI 10.1177/10711007211020345 

4.1 Chapter Overview 

This chapter describes the design and intra- and inter-rater reliability testing of a new 

device to measure first ray mobility, named MAP1st. The device was designed to be 

simple and efficient for use in clinic. The objectives of this chapter were to: 1) describe 

the design of MAP1st; 2) establish the intra- and inter-rater reliability (Intra- and Inter-

Class Correlation (ICC) coefficients) of measuring first ray mobility with MAP1st, and; 

3) compare the reliability of first ray mobility measurements made with MAP1st to those

using a commercially-available, handheld device. 

Aim 2: Design and prototype a novel device for measuring first ray mobility. 

Hypothesis not required for technical design and development. 

Aim 3: Test the reliability of the novel device for measuring first ray mobility, 

compared with a commercially available, handheld ruler. 

Hypothesis 3a: First ray mobility in non-weightbearing (prone) subjects will exhibit 

test-retest and remove-replace reliability (ICC (2,1) > 0.7) within and between raters 

using a commercially available handheld ruler. 

Hypothesis 3b: First ray mobility in partial weightbearing (seated) subjects will 

exhibit test-retest and remove-replace reliability (ICC (2,1) > 0.7) within and between 

raters, using MAP1st. 
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Hypothesis 3c: First ray mobility in weightbearing (standing) subjects will exhibit 

test-retest and remove-replace reliability (ICC (2,1) > 0.7) within and between raters, 

using MAP1st. 

 

4.1.1 Design Contributions 

MAP1st was developed by an interdisciplinary team of engineers, scientists, and 

clinicians. The thesis author was the primary contributor to the development process, 

iteratively designing concepts in CAD with feedback from the wider scientific and 

clinical team. Once finalised, the concept design was passed to an independent 

contractor for manufacture (Jaktool Engineered Solutions, Cranbury, NJ). 

 

4.2 Introduction 

Quantifying first ray mobility is crucial to understand aberrant foot biomechanics and 

first ray hypermobility as a potential correlate of hallux rigidus. Several investigators 

have hypothesised that first ray hypermobility, which refers to abnormal first ray 

mobility while the forefoot is bearing weight, (Root et al., 1977) plays a role in various 

pathologies of the foot (King & Toolan, 2004; Coughlin & Jones, 2007; Cooper et al., 

2009; Rao & Bell, 2013; Golightly et al., 2018). While numerous clinical methods are 

used to assess mobility of different joints, none have been standardised for structures 

below the knee. The lack of a standardised and reliable technique for measuring first 

ray mobility has hindered research into aberrant foot biomechanics imposed by 

hypermobility.  

Therefore, MAP1st was developed to objectively measure mobility of the first ray. 

Measurements of first ray mobility can be performed in either partial- or full-

weightbearing conditions normalised to foot length. The study’s aim was to test the 

intra- and inter-rater reliability of MAP1st compared with a commercially available 

handheld ruler. The handheld device (humanlocomotion.org) was selected to recreate 

the clinical exam reported by Voellmicke and Deland, (2002) with the addition of a ruler 

to quantify first ray displacement. MAP1st design specifications were to: (1) measure 

sagittal mobility of the first ray; (2) allow the foot to be placed in user specified 
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orientations; (3) be portable, and; (4) require no more than two minutes for 

examination. Establishing the reliability of this device for future clinical use was 

paramount and was established by performing assessments with two raters: a 

qualified physiotherapist and an experienced research scientist.  

 

4.2.1 Description of the Device 

The design was drafted in SolidWorks (SolidWorks version 2018, Dassault Systèmes, 

Vélizy-Villacoublay, France) (Figure 19). The finalised Computer Aided Design (CAD) 

model was prototyped by Jaktool. MAP1st was implemented as a pair (left and right). 

The base was configured from two upper and lower aluminium base plates, and four 

polycarbonate side panels which housed the electronic components and circuitry. The 

upper base plate acts as a platform for the foot. The head of the first metatarsal is 

placed against an aluminium block with a delve for repeatable positioning. A heel cup 

is used to accommodate the rearfoot, which is adjustable for foot length in the AP 

directions. Located at the medial border of the foot is a ruler used to quantify truncated 

foot length (TFL). This measurement enables normalisation of first ray mobility relative 

to the size of the subjects foot. The heel is not constrained, giving the user a choice to 

place the foot either in subtalar joint neutral (STJN) or resting calcaneal stance position 

(RCSP).  At the anterior border of the device is an auto-adjustable toggle clamp 

(Bessey STC-HH, Bessey Tools, Bietigheim-Bissingen, Germany), to mechanically 

ground the second metatarsal head. The clamping force is set to 110 N. The toggle 

clamp includes a quick release handle, enabling the subject to remove their foot at any 

time during examination. The toggle clamp base is screwed to an aluminium block with 

a dove tail joint, allowing for ML translation to accommodate different foot widths. 

While using the device, the subject’s foot is unconstrained to enable assessments in 

user-defined alignments of the foot-ankle complex. In addition, measurements of first 

ray mobility can be performed in either partial- or full-weightbearing conditions and be 

normalised to foot length. 

https://www.bing.com/search?q=velizy+france&filters=ufn%3a%22velizy+france%22+sid%3a%22edc94759-fd0e-973d-f0f7-ef3d30d01294%22&FORM=SNAPST
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Figure 19. SolidWorks (Dassault Systèmes, Vélizy-Villacoublay, France) illustration of a right-sided MAP1st design. Illustrations showing a lateral view (Section 

A-A), superior view (Section B-B), and anterior view (Section C-C). Component labels include: (1) mobility graticule; (2) second metatarsal clamp locking screw; 

(3) charging port; (4) linear actuator; (5) load cell; (6) quick release handle of second metatarsal clamp; (7) handle; (8) first metatarsal plunger; (9) heel cup rail 

and foot length graticule (ruler markings not shown in this design); (10) heel cup; (11) DP-DT rocker switch; (12)  first metatarsal plunger stock; (13) first ray 

mobility pointer; (14) second metatarsal clamp head, and: (15) heel cup locking screw.
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Measurements of first ray mobility are driven by a linear actuator (Premium Linear 

Actuator, Firgelli Automations, Ferndale, Washington, USA) (Figure 20). The top of 

the linear actuator stroke is connected to a load cell beneath the first metatarsal head. 

This platform, which acts as a plunger, is attached to two cylindrical pillars fitted with 

linear bearings for frictionless SI translation. The force set point is controlled by a 

negative feedback servo using a compression load cell and amplifier (FC22 

Compression Load Cell, TE Connectivity, Schaffhausen, Switzerland). An Arduino 

Uno microcontroller (Arduino Uno, Arduino, Somerville, Massachusetts, USA), 

powered by 12 volts dc, implements the force servo required for measurement of first 

ray mobility. Recharging is enabled by an AC-DC converter. Powering the circuitry and 

recharging are mutually exclusive by use of a double pole-double throw switch.  

 

Figure 20. MAP1st (left and right) prepared for testing, with each of the subjects feet positioned and 

clamped in the device. The Arduino microcontrollers of each device are plugged into a laptop to 

interface the custom-written code for upload and testing. The programme was written to apply cyclic 

loads of 25 N to control for the recent strain history of the first ray soft tissues.  
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4.3 Materials and Methods 

The study included 25 planus feet (N = 50 feet). Each participant was consented by 

the project research coordinator. Potential subjects were recruited from any willing 

individual who met the study inclusion/exclusion criteria in Table 6. Participant 

characteristics are shown in Table 7. All procedures were approved by the Hospital 

for Special Surgery (HSS) Institutional Review Board. Testing was performed at the 

Leon Root, MD, Motion Analysis Laboratory at HSS, where each subject was 

consented before testing.  

Table 6. Inclusion/exclusion criteria for healthy and hallux rigidus subjects enrolled in the study. 

Recruitment Criteria    

Inclusion  Exclusion 

• Adults over the age of 21 years old  
• Individuals without the capacity to consent 

and/or understand procedures of the study 

• Male or female  • Hallux valgus 

• No substantial pain within the lower 
extremity that could affect ability to 
walk 
 

 
• Rheumatoid arthritis, osteoporosis, or any other 

degenerative disease of the lower limb 

 
• Significant cardiovascular disease or any 

pathology that would affect one’s ability to walk 
independently 

 • Limb length discrepancy greater than 1-cm 

 

 

Table 7. Participant characteristics. 

Characteristics 

Feet 50 

Sex  

Male 15 

Female 10 

Mean age ± SD (years) 36 ± 13 

Mean height ± SD (cm) 174 ± 12 

Mean weight ± SD (kg) 76 ± 13 

Mean BMI ± SD (kg/m2) 25 ± 3 
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4.3.1 Measures of First Ray Mobility 

Prior to first ray mobility measurements with MAP1st, ten successive 25-N loading 

cycles were used to control the soft tissue recent strain history (Woo et al., 1981). The 

procedure for recent strain history control spanned approximately, 60 seconds. First 

ray mobility measurements were taken from the dorsal aspect of the first metatarsal 

head. To quantify the first ray mobility, a vertical steel rod was positioned at the dorsal 

aspect of the first metatarsal head (Figure 21A). The measurement of first ray mobility 

was defined as the linear displacement of the first metatarsal head, on a graticule 

(Figure 21B), after 50-N of load. Glasoe et al., (2000) previously found that 50 N may 

fully translate the first metatarsal without causing discomfort to the test subject, 

showing that mobility measurements were only valid compared to x-ray-based 

measurements when first ray load did not exceed 55 N. Two methods of measurement 

were performed with MAP1st: 1) linear displacement of the first ray (FRM), given in 

mm, and; 2) linear displacement normalised by TFL to provide a first ray mobility Index 

(FRMI) for measurements relative to foot size, using the following equation: 

FRMI =  
Dorsal First Metatarsal Height50N −Dorsal First Metatarsal Height0N

TFL
                         (1) 

 

Figure 21A-B. Photographs of MAP1st: (A) Metatarsal head height with 0 N applied, and; (B) Metatarsal 

head height with 50 N applied to measure first ray mobility. The upper indicator (located at the dorsal 

aspect of the first metatarsal head) can be seen to displace by 2.5 mm from its initial position (A) to its 

loaded position (B).  

A B 
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First ray mobility, using MAP1st, was measured while the subjects were seated (i.e. 

lower extremity positioned in 90° of hip and knee flexion) and standing (i.e. hip-knee-

ankle in 0° alignment) (Figure 22A). The ankle was placed in a neutral alignment for 

both partial- and full-weightbearing measurements (Grebing & Coughlin, 2004). The 

influence of foot placement was also assessed by taking measurements in Subtalar 

Joint Neutral (STJN) and Resting Calcaneal Stance Position (RCSP). Subtalar joint 

neutral may be defined as an alignment of the foot such that it is neither pronated nor 

supinated. Resting calcaneal stance position may be defined as a relaxed position of 

the foot with the medial longitudinal arch in its natural weightbearing alignment. To 

perform the measurements of first ray mobility, an independent recorder viewed 

MAP1st’s graticule with their aiming eye, in a perpendicular orientation, to avoid 

parallax error and recorded dorsal displacement. 

 

Figure 22A-B. (A) MAP1st measuring first ray mobility while the subject is seated (partial weightbearing) 

and standing (weightbearing); (B) The handheld ruler used to measure first ray mobility from the plantar 

aspect of the first metatarsal head while the subject is prone. 

Measurements of first ray mobility using the handheld ruler were taken from the plantar 

aspect of the first metatarsal head, while the subjects were prone, on a flat treatment 

table. Their hip-knee-ankle was in a 0° alignment (Figure 22B). The ankle was 

neutrally positioned, which has been shown to produce more reliable measures of first 

ray mobility (Grebing & Coughlin, 2004). The subject’s feet were placed in STJN during 

assessment with the handheld device. One side of the device was placed beneath the 

B A 
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second metatarsal head and the other side beneath the head of the first metatarsal, 

adjacent to the opposing components surface. Superior translation (mm) was then 

measured by applying a manual force to the first metatarsal head, viewing the ruler 

with respect to the second metatarsal head.  

 

4.3.2 Statistics 

Two independent raters (rater one, physiotherapist: Robert Turner, PT; rater two, 

biomedical engineer: Howard J Hillstrom, PhD), performed the measurements 

(baseline (first measurement), test-retest (measurement repeated twice), and remove-

replace (initial measurement taken and repeated after the rater has removed and 

replaced the foot in the device), permitting estimation of intra- and inter-rater reliability 

for the test-retest and remove-replace assessments. Raters with both clinical and 

scientific backgrounds were selected to demonstrate the application of MAP1st in 

different research and clinical settings. Descriptive statistics were used to report 

means, Standard Deviations (SD), and Standard Error of Measurements (SEM). Intra- 

and inter-class correlation coefficients for test-retest and remove-replace reliability 

were computed for each rater in SPSS (SPSS version 26, IBM, Chicago IL, USA). This 

reliability study employed two raters, who were considered to be representative of the 

pool of all raters. Every subject was evaluated by each rater and hence, an ICC (2,1) 

model was employed as described by Shrout and Fleiss, (1979).  The ICC (2,1) may 

be computed as: 

ICC (2,1) =
BMS−EMS

BMS+(k−1)EMS+k(JMS−EMS)/n
                                                 (2) 

where, n is the number of subjects, k is the number of raters evaluating each subject, 

BMS is between subject mean square error, EMS is the residual error, and JMS is the 

within subject between rater mean square error.  All ICC parameter calculations were 

performed using the method of absolute agreement.  Furthermore, 95% CI’s for each 

ICC estimate were computed as well as the SEM. Data for reliability assessments 

were analysed for the intra- and inter-rater conditions. Bland-Altman (B&A) plots were 

constructed to determine if fixed biases or substantial outliers were present between 

the trials of each rater. This method compared the differences and 95% confidence 
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intervals (CI) (estimated as 1.96 times the standard deviation (SD)) for the inter-rater 

measurements of mobility (Bland and Altman, 1983). The 95% CI, which B&A termed 

the ‘limits of agreement’, assumes that the individual paired differences of the two 

raters are normally distributed.  

 

4.4 Results 

 

4.4.1 MAP1st  

Linear regression of partial weightbearing RCSP measurements for FRM vs. FRMI 

with MAP1st demonstrated an R2 of 0.95 for rater 1 and R2 of 0.93 for rater 2 (Figure 

23A-B). Full weightbearing measurements of FRM vs. FRMI exhibited an R2 of 0.98 

for both raters (Figure 23C-D). Excellent intra-rater ICC values (≥0.93) were obtained 

for test-retest conditions for FRM. Remove-replace conditions demonstrated lower 

intra-rater ICC values. The inter-rater reliability for the RCSP weightbearing condition 

yielded an ICC of 0.52 which was greater than the handheld device (Table 8). Sample 

B&A plots for inter-rater reliability exhibited biases of 2.88 mm for partial weightbearing 

STJN, 0.05 mm for weightbearing STJN, 0.28 mm for partial weightbearing RCSP, 

and -0.68 mm for weightbearing RCSP (Figure 24A-D). The limits of agreement were 

typically inclusive of 95% of the mean differences for all conditions. Good to excellent 

intra-rater ICC values (≥0.85) were obtained for test-retest conditions of FRMI. 

Remove-replace reliability demonstrated lower intra-rater ICC’s for all but one 

condition. The inter-rater reliability for the RCSP partial weightbearing and 

weightbearing conditions yielded ICC values of 0.58 and 0.57, respectively (Table 9). 

Sample B&A plots for inter-rater reliability exhibited biases of -1.16 for partial 

weightbearing STJN, 0.01 for weightbearing STJN, 0.00 for partial weightbearing 

RCSP, and 0.04 for weightbearing RCSP (Figure 24E-H). Similar to FRM 

measurements, the limits of agreement were typically inclusive of 95% CI of the mean 

differences for all conditions.  
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Figure 23A-B. Regression analyses of FRM versus FRMI measurements of first ray mobility for 

partial weightbearing (A) rater 1, (B) rater 2 and full weightbearing (C) rater 1, (D) rater 2. 

 

4.4.2 Handheld Ruler 

Despite good to excellent intra-rater ICC values for test-retest (≥0.88) and remove-

replace (≥0.86), the inter-rater reliability was poor at 0.06, when using the handheld 

ruler (Table 8). The B&A plots for inter-rater reliability showed that the handheld ruler 

presented a bias of -1.26 mm with the limits of agreement spanning -5.54 mm to 3.49 

mm (Figure 24I). 

R² = 0.9764

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
R

M
I

FRM (mm)

D. Regression Analysis of WB 
FRMI vs. FRM Measurements: 

Rater 2

R² = 0.98

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
R

M
I

FRM (mm)

C. Regression Analysis of WB 
FRMI vs. FRM Measurements: 

Rater 1 

R² = 0.9505

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
R

M
I

FRM (mm)

A. Regression Analysis of PWB 
FRMI vs. FRM Measurements: 

Rater 1 

R² = 0.9277

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

F
R

M
I

FRM (mm)

B. Regression Analysis of PWB 
FRMI vs. FRM Measurements: 

Rater 2



 

65 

 

 

 

Table 8 Mean, standard deviation, SD, SEM, intra- and inter-rater reliability calculated using linear measurements of first ray mobility (FRM (mm)). 

Measurement  Raw measurement Intra-rater (test-retest) Intra-rater (remove-replace) Inter-rater 

 Rater 1 Rater 2 Rater ICC (2,1) 95% CI Rater ICC (2,1) 95% CI Trial ICC (2,1) 95% CI 

F
ir
s
t 
R

a
y
 M

o
b
ili

ty
 

FRMD NWB 
Mean ± SD (mm) 5.9 ± 1.7 4.6 ± 1.5 1 0.91 0.84, 0.95 1 0.89 0.82, 0.94 

1 0.06 -0.15, 0.28 
SEM 0.23 0.21 2 0.88 0.79, 0.93 2 0.86 0.77, 0.92 

MAP1st PWB 
(STJN) 

Mean ± SD (mm) 10.4 ± 3.3 8.0 ± 3.0 1 0.97 0.94, 0.98 1 0.82 0.71, 0.89 
1 0.32 0.02, 0.56 

SEM 0.46 0.41 2 0.97 0.94, 0.98 2 0.88 0.79, 0.93 

MAP1st PWB 
(RCSP) 

Mean ± SD (mm) 7.8 ± 2.6 7.7 ± 2.3 1 0.93 0.88, 0.96 1 0.73 0.58, 0.84 
1 0.33 0.06, 0.55 

SEM 0.37 0.31 2 0.96 0.93, 0.98 2 0.69 0.51, 0.81 

MAP1st WB 
(STJN) 

Mean ± SD (mm) 5.9 ± 3.3 6.3 ± 2.9 1 0.95 0.91, 0.97 1 0.79 0.66, 0.87 
1 0.20 -0.07, 0.45 

SEM 0.46 0.40 2 0.95 0.92, 0.97 2 0.81 0.69, 0.89 

MAP1st WB 
(RCSP) 

Mean ± SD (mm) 4.2 ± 2.6 3.7 ± 2.2 1 0.94 0.90, 0.97 1 0.71 0.51, 0.83 
1 0.52 0.30, 0.69 

SEM 0.37 0.31 2 0.97 0.95, 0.99 2 0.61 0.40, 0.76 

FRMD, first ray mobility device (handheld); MAP1st, first ray mobility (electromechanical); NWB, non-weightbearing; PWB, partial weightbearing; WB, 

weightbearing; RCSP, resting calcaneal stance position; STJN, subtalar joint neutral; ICC, intra/interclass correlation coefficient; CI, confidence interval; SEM, 

standard error of measurement: 𝑆𝐸𝑀 = 𝑆𝐷 ∗  (1 − 𝐼𝐶𝐶). 
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Table 9. Means, SD, SEM, intra- and inter-rater reliability using measurements normalised by truncated foot length (FRMI). 

Measurement  Normalised measurements Intra-rater (test-retest) Intra-rater (remove-replace) Inter-rater 

 Rater 1 Rater 2 Rater ICC (2,1) 95% CI Rater ICC (2,1) 95% CI Trial ICC (2,1) 95% CI 

F
ir
s
t 
R

a
y
 M

o
b
ili

ty
 

FRMD NWB 
Mean ± SD  - - 1 - - 1 - - 

1 - - 
SEM - - 2 - - 2 - - 

MAP1st PWB 
(STJN) 

Mean ± SD 0.532 ± 0.22 0.437 ± 0.175 1 0.85 0.71, 9.2 1 0.68 0.50, 0.80 
1 0.41 0.15, 0.61 

SEM 0.030 0.024 2 0.97 0.95, 0.99 2 0.89 0.82, 0.94 

MAP1st PWB 
(RCSP) 

Mean ± SD 0.429 ± 0.159 0.434 ± 0.152 1 0.95 0.91, 0.97 1 0.79 0.67, 0.88 
1 0.58 0.36, 0.73 

SEM 0.022 0.021 2 0.98 0.97, 0.99 2 0.81 0.69, 0.88 

MAP1st WB 
(STJN) 

Mean ± SD 0.318 ± 0.186 0.295 ± 0.163 1 0.94 0.91, 0.97 1 0.82 0.70, 0.89 
1 0.30 0.03, 0.52 

SEM 0.026 0.023 2 0.96 0.92, 0.97 2 0.82 0.71, 0.89 

MAP1st WB 
(RCSP) 

Mean ± SD 0.228 ± 0.150 0.202 ± 0.125 1 0.95 0.92, 0.97 1 0.76 0.58, 0.86 
1 0.57 0.35, 0.73 

SEM 0.021 0.017 2 0.97 0.96, 0.98 2 0.63 0.43, 0.77 

FRMD, first ray mobility device (handheld); MAP1st, first ray mobility (electromechanical); NWB, non-weightbearing; PWB, partial weightbearing; WB, 

weightbearing; RCSP, resting calcaneal stance position; STJN, subtalar joint neutral; ICC, intra/interclass correlation coefficient; CI, confidence interval; SEM, 

standard error of measurement: 𝑆𝐸𝑀 = 𝑆𝐷 ∗  (1 − 𝐼𝐶𝐶).
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Figure 24A-I. Bland-Altman analysis plots of the inter-rater reliability of first ray mobility measurements 

made using: (A) FRMD; (B-E) MAP1st FRM, and; (F-I) MAP1st FRMI.  
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4.5 Discussion 

Several studies have presented novel mechanical (Klaue et al., 1994; Glasoe et al., 

2002; Glasoe et al., 2005) and handheld (Kim et al., 2008; Rao & Bell, 2013; Munuera-

Martinez et al., 2020) devices for measuring first ray mobility. They reported 

measurements in non- or partial-weightbearing which did not account for the effect of 

foot size. Grebing and Coughlin (2004) studied the influence of ankle position on 

reliability of first ray mobility measurements, but the effect of foot position has not been 

examined in the literature. The present research investigated partial- and full-

weightbearing, STJN and RCSP orientations of the foot, as well as measurement 

normalization to foot length. Future research or clinical use with the MAP1st may be 

conducted in partial- or full-weightbearing while the foot is in RCSP. Although 

measurements of FRMI presented superior reliability to FRM, linear regression of 

these parameters demonstrated a strong relationship which suggested foot length had 

no effect on first ray mobility. Despite good to excellent intra-rater reliability of the 

handheld device, poor inter-rater reliability was obtained. Consistent with previous 

research (Glasoe et al., 2002; Glasoe et al., 2005), this handheld device and the 

common clinical exam which it represented should not be applied in clinical care or 

research, where multiple individuals may compare or combine their measurements.  

Of the mechanical devices used to quantify first ray mobility, the most widely published 

were designed by Klaue et al., (1994) and Glasoe et al., (2000) in the 1990’s. Though 

different in design, neither device performed measurements in full weightbearing. The 

capability of MAP1st to reliably quantify partial- and full-weightbearing first ray mobility 

presents an advantage over these predicate devices. Roukis et al., (1996) 

demonstrated an interaction between increased translational mobility of the first ray 

and decreased rotational first MTP joint flexibility. Their findings indicated that, in 

weightbearing, first ray hypermobility may increase passive tension in the plantar 

fascia, placing the ‘Windlass mechanism’ at the end of its available motion and limit 

first MTP joint dorsiflexion. Several investigators have postulated that over time, 

repetitive overloading at the joints dorsal articular surfaces may occur, leading to onset 

and development of hallux rigidus (Jack E, 1940; Roukis et al., 1996; Golightly et al., 

2018). Future weightbearing measurements may better represent underlying aberrant 
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structural and functional characteristics of the first ray, which may not be fully 

appreciated when the foot is unloaded.  

Table 10. Design feature comparison of the Klaue device, Glasoe device, and MAP1st. 

Design Features Klaue Glasoe MAP1st 

Measurements in nonweightbearing ✓   

Measurements in partial weightbearing  ✓ ✓ 

Measurements in full weightbearing   ✓ 

Mechanical grounding of the forefoot ✓ ✓ ✓ 

Mechanical grounding of the rearfoot ✓ ✓  

Controlled load  ✓ ✓ 

Measure of truncated foot length   ✓ 

Measurement normalization   ✓ 

Supported by in vitro reliability analysis ✓ ✓  

Supported by in vivo reliability analysis ✓ ✓ ✓ 

✓, design feature supported by the device; , design feature not supported by the device.  

Prior assessments of first ray mobility were conducted with no reported foot position, 

(Rodgers & Cavanagh, 1986; Wallace & Kilmartin, 1990; Lee & Young, 2001; Kim et 

al., 2008) in STJN (Shirk et al., 2006; Munuera-Martinez et al., 2020) or mechanically 

constrained by an orthotic (Klaue et al., 1994; Glasoe et al., 2000). Root et al., (1977) 

advocated the use of STJN to characterise normal and abnormal foot function. Shirk 

et al., (2006) suggested that STJN combined with a neutral ankle alignment (Grebing 

& Coughlin, 2004) was necessary to reliably measure first ray mobility.  In contrast, 

the present study found a STJN position diminished inter-rater reliability. Good to 

excellent intra- and inter-rater ICC’s ≥0.85 and ~0.58, respectively, were achieved for 

RCSP measurements. The reliability of RCSP measurements demonstrated 

equivalent reliability to the Glasoe et al., (2000) and Klaue et al., (1994) devices. 

Furthermore, B&A plots demonstrated lower biases in RCSP compared to STJN for 

both FRMI (0.02 ± 0.03 vs. 0.59 ± 0.81) and FRM (0.5 ± 0.3 mm vs. 1.5 ± 2.0 mm). 

Feet are often categorized into three general structures: Planus (a low-arch with an 

everted calcaneus and/or varus forefoot); rectus (a moderate-arch with the posterior 

surface of the calcaneus close to perpendicular with the ground); and cavus (a high-

arch with inverted calcaneus and/or valgus forefoot) (Ledoux et al., 2003). A STJN 

position may artificially reduce or increase first ray mobility measurements in planus 

and cavus feet, respectively, by forcing an inversion or eversion of the foot. As such, 
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neutralising the foot’s arch alignment may affect the flexor and extensor muscle-

tendon systems and passive tension in the plantar fascia, which are fundamental in 

foot type-specific kinematics and muscular activity (Murley et al., 2009; Buldt et al., 

2015). Therefore, placement of the foot in RCSP may not only promote greater 

reliability but may also elucidate a potential interaction between foot type and first ray 

mobility not appreciated in STJN. Specifically, greater prevalence of first ray 

hypermobility has been theorised in planus individuals leading to greater odds of foot 

injuries, (Kaufman et al., 1999) increased first MTP joint flexibility, (Rao et al., 2011) 

and higher plantar loading of the medial forefoot (Hillstrom et al., 2013). 

Many investigations of first ray mobility have presented linear translational (mm) 

measurements which did not account for foot size (Klaue et al., 1994; Glasoe et al., 

2002; Glasoe et al., 2005; Glasoe et al., 2006; Tavara-Vidalon et al., 2018; Munuera-

Martinez et al., 2020). In the present study, normalisation of first ray mobility by foot 

size, to provide a FRMI, demonstrated strong agreement with the traditional linear 

displacement of FRM. This finding indicated foot size had no effect on first ray mobility. 

While measurements of FRMI exhibited greater ICC reliability, FRM measurements 

presented a SEM of 0.1 mm, demonstrating near identical outcomes between raters. 

Furthermore, B&A analyses found a between-rater fixed bias of 0.5 mm. Based on 

these findings, FRM may be given in conjunction with FRMI for comparison with 

previous research. Prior work from Tavara-Vidalon et al., (2018) and Jones et al., 

(2005) reported mean FRM of 6.5 mm and 7.4 mm with radiographic measurements. 

In comparison to these data, mean FRM obtained with MAP1st was approximately, ± 

1 mm in RCSP and ± 3 mm in STJN, further supporting RCSP assessments in future 

research as well as providing indirect validation of MAP1st.  Direct validation testing, 

with radiographic data, is still required to fully understand the device accuracy. 

Measurements using the handheld ruler can be considered analogous to the clinical 

exam (Voellmicke & Deland, 2002). Poor inter-rater ICC reliability of this method (0.06) 

suggests that, despite its simplicity, it is not an accurate method for measurements 

between raters. This finding was supported by Glasoe et al., (2002) who observed 

significant variability in the manual measurements made by three clinicians with 

different levels of clinical experience. Fat pad compression from plantar 

measurements has been shown to underestimate first ray mobility (Glasoe et al., 
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1998). Several handheld devices which performed dorsal measures have been 

studied in the literature (Wallace & Kilmartin, 1990; Glasoe et al., 2000; Lee & Young, 

2001; Kim et al., 2008; Munuera-Martinez et al., 2020). Glasoe et al., assessed the 

inter-rater reliability of dorsal mobility measurements using a handheld ruler advocated 

by Lee et al., (2001). Their findings demonstrated similar inter-rater ICC reliability 

(0.05) (Glasoe et al., 2005) to the handheld device used in the present work. In 

contrast, a later study of the same device found improved reliability comparable to the 

mechanical system developed by Klaue et al., (1994) More recently, a novel handheld 

device, which accounted for the arc of first ray dorsal motion, demonstrated excellent 

intra- and inter-rater ICC reliability of 0.89 and 0.93 (Munuera-Martinez et al., 2020). 

While the handheld method used in the present research was not performed at the 

dorsal aspect of the foot, the study aim was to recreate the clinical exam reported by 

Voellmicke and Deland (2002). The addition of the handheld ruler enabled first ray 

mobility to be quantified. Neither the Glasoe, Klaue, or handheld devices discussed 

are widely used in a clinical setting. While these devices represent the current state-

of-the-art, they could not provide comparison as a method which represented the most 

common technique. The clinical examination, which is the most widely used technique 

to date, may not provide an objective, quantifiable method of studying first ray mobility 

in large, population-based research where multiple examiners are involved. The same 

concern would be reasonable in a group practice of multiple clinicians.  

There are several potential clinical applications of MAP1st.The device may be used to 

evaluate the efficacy of conservative treatments including the prescription of orthotics 

and first ray stabilising surgeries such as bunion correction, Lapidus arthrodesis or 

distal crescentic osteotomy of the first metatarsal. To assess orthotics, arthrodesis, 

and osteotomy, measurements of first ray mobility may be taken before and after 

intervention to quantify the efficacy of these treatment modalities in stabilizing the 

medial forefoot. The potential to improve assessment procedures for the 

weightbearing mobility and elevation of the first ray in pathologic individuals may help 

to optimize contemporary treatment methods. Furthermore, MAP1st may be used to 

discriminate between the first ray mobility of planus, rectus, and cavus foot types, to 

identify structural and functional differences related to common conditions including, 

flatfoot deformity, hallux valgus, and hallux rigidus. 
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4.5.1 Limitations 

There are several limitations in this chapter. Given the viscoelastic nature of soft-

tissue, it was possible that a time-dependent stretch of the plantar fascia and ligaments 

could have occurred between trials. This phenomenon is difficult to measure and may 

have differed between subjects. Each subject began testing with 10 dorsiflexion 

excitations to control for the recent strain history. Furthermore, to make measurements 

of first ray mobility, it is necessary to record the height of the first metatarsal head, at 

baseline, before load-deformation testing. In the current protocol, first metatarsal head 

height was recorded just once for each subject at baseline. However, first metatarsal 

head height was not recorded during remove-replace. It is possible that the initial 

metatarsal head height changed upon replacing the foot into the device for the final 

trial. Therefore, remove-replace reliability of MAP1st may have been improved had a 

new baseline for metatarsal head height been recorded. 

 

4.6 Conclusion 

A novel device, for assessments of first ray mobility, was developed to address the 

limitations of current methods. Equivalent reliability was found compared to predicate 

mechanical devices, in addition to greater reliability than the standard clinical exam. 

Measurements may be performed in partial- and full-weightbearing RCSP which may 

facilitate investigation of aberrant foot mechanics not fully appreciated in 

nonweightbearing or STJN. Future research or clinical use of MAP1st should abide by 

recording measurements in RCSP that are normalised for FRMI. However, 

measurements of FRM may be given in conjunction with normalisation to provide 

comparison with previous research. In summary, the present method may provide 

reliable assessments of first ray mobility and will be used in the next chapter to 

elucidate the theoretical interaction between first ray hypermobility and foot type, as a 

cause of aberrant pedal mechanics. 
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Chapter 5. Foot Type Biomechanics: Role of 

First Ray Mobility 

 

5.1 Chapter Overview 

In chapter 5, the relationships between first ray mobility and foot type biomechanics 

(arch height, AHF, first MTP joint flexibility, and plantar loading) were examined. This 

work was performed using asymptomatic subjects with planus and rectus foot types, 

only. It was theorised that greater first ray mobility would be present in the planus 

compared to rectus subjects.  

Aim 4: Investigate the relationships between foot structure, first ray mobility, 

AHF, first MTP joint flexibility, and plantar loading*. 

Hypothesis 4a: First ray mobility will be negatively related with arch height and first 

MTP joint flexibility and positively related with arch height flexibility. 

Hypothesis 4b: The ratio of peak plantar loading* beneath the first and second 

metatarsal heads will be higher across subjects with rectus versus planus foot types. 

Hypothesis 4c: The ratio of peak plantar loading* beneath the first and second 

metatarsal heads will be higher across subjects with normal versus high levels of first 

ray mobility. 

*Plantar loading refers to plantar pressure, maximum force, pressure-time-
integral, and force-time integral. 

 

5.2 Introduction 

Hypermobility of the first ray is a term that describes excessive superior translation 

when subjected to plantar load. The etiology of first ray hypermobility is unclear, as is 

the threshold for excessive first ray mobility in the absence of an objective standard 
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for quantifying motion in the sagittal plane. Definitions of first ray hypermobility (Morton 

DJ, 1935) can vary from 7-10 mm based on differences in case definitions and 

methods of assessment (Roukis et al., 1996; Lee & Young, 2001; King & Toolan, 2004; 

Tavara-Vidalon et al., 2018; Glasoe et al., 2019; Munuera-Martinez et al. 2020). 

Hillstrom et al., (2013) postulated that first ray hypermobility may be present in most 

individuals with pes planus. Their research demonstrated lower peak pressures 

beneath the first MTP joint and higher peak pressures beneath the second MTP joint 

in planus compared to rectus feet. This finding indirectly suggested a transfer of load 

from the first to second metatarsal head in planus subjects may be caused by a varus 

forefoot in the presence of first ray hypermobility. These research findings were limited 

by indirect observations of hypermobility through plantar pressures rather than 

empirical measurements of first ray mobility. MAP1st, which was found to be reliable 

in Chapter 4, was used in the present study to explore differences and relationships 

between first ray mobility and foot type biomechanics. The objective of this study was 

to determine if an interaction exists between the planus foot type and first ray 

hypermobility, influencing aberrant structural and functional parameters of the foot.  

 

5.3 Materials and Methods 

The study included 23 asymptomatic planus feet and 17 asymptomatic rectus feet for 

a total of 20 participants (N = 40 feet). Potential subjects were recruited from any 

willing individual that met the study inclusion/exclusion criteria (Table 11). Participant 

characteristics are shown in Table 12. The method of subject recruitment and 

procedure for measuring first ray mobility were detailed in Chapter 4. Any subjects 

with a cavus foot type and patients with hallux rigidus were excluded from the analyses 

in this chapter. One asymptomatic rectus subject was also excluded due to 

presentation of GJH. All subjects were categorised according to their foot type (planus 

or rectus), and further assessed for AHF, first MTP joint flexibility, and plantar loading.  
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Table 11. Inclusion/exclusion criteria for subjects enrolled in the study. 

Recruitment Criteria    

Inclusion  Exclusion 

• Healthy adults over the age of 21 years old 
 

• Individuals without the capacity to consent 

and/or understand procedures of the study 

• No substantial pain within the lower 

extremity that could affect ability to walk  

• Hallux valgus, hallux rigidus, rheumatoid 

arthritis, osteoporosis, or any other 

degenerative disease involving the lower limb 

• Male or female 
 

• Significant cardiovascular disease or any 

pathology that would affect one’s ability to 

walk independently 

• Planus: AHIstanding < 0.345 
 

• Limb length discrepancy greater than 1 cm 

• Rectus: AHIstanding ≥ 0.345 ≤ 0.37 
 

• Cavus: AHIstanding > 0.37 

 

Table 12. Participant characteristics. 

Characteristics Planus (n = 23)  Rectus (n = 17)  p-value 

Male:Female 16:7  12:5  0.946 
- Mean age ± SD (years) 29 ± 6  39 ± 15  0.010* 

Mean height ± SD (cm) 176 ± 9  177 ± 9  0.780 

Mean weight ± SD (kg) 80 ± 12  78 ± 15  0.983 

Mean BMI ± SD (kg/m2) 25 ± 3  25 ± 4  0.782 

Bold text* indicates statistically significant differences (p ≤0.05). 

 

5.3.1   Measures of Foot Structure 

After consenting, the left and right feet of each participant were categorised according 

to their foot structure, using the AHI system (Figure 25A-C). Arch height index can 

reliably distinguish planus, rectus, and cavus foot structures in asymptomatic healthy 

individuals, according to thresholds previously established by Hillstrom et al (2013). 

Each of the subject’s feet were positioned in the AHI device with the most anterior bar 

set to maximum Foot Length (FL). A small adjustable cup was positioned at the first 

MTP joint to denote TFL and a vertical bar, which was positioned at one half of FL, 

was lowered upon the dorsal aspect of the foot to measure arch-height. Linear rulers, 

scaled in centimetres (cm), were used to visually measure each parameter. The 
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graticule was viewed by the rater with their aiming eye, in a perpendicular orientation, 

to avoid parallax error. Arch height index was defined as the dorsal arch height at one-

half of FL, normalised by TFL, while standing (AHIstanding) calculated according to the 

following formula: 

𝐴𝐻𝐼𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 = 
Arch Height𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔

TFL
                                                                                         (3) 

 

Figure 25A-C. Assessment of arch height using the AHI system: (A) vertical graticule to measure arch 

height in standing; (B) left and right feet placed in corresponding device, and; (C) position of the TFL 

measurement, placed at the medial aspect of the first metatarsal head. 

 

5.3.2 Arch Height Flexibility 

The arch height of an individual can be calculated either in sitting or standing positions 

for partial- and full-weightbearing assessments, respectively. Arch height flexibility 

(mm/kN) is a measure of the change in arch height between the sitting (i.e. partial 

weightbearing) and standing (i.e. weightbearing) conditions using the AHI system 

described in section 5.3.1 (Figure 26). The measurement is normalised to the change 

in load (estimated to be 40% of bodyweight (Hillstrom et al., 2013)). Calculation of 

AHF can be made with the following formula: 

A 

C 

B 
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AHF (
mm

kN
) =  

|AH𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔(𝑚𝑚)− AH𝑠𝑖𝑡𝑡𝑖𝑛𝑔 (𝑚𝑚)|

0.4 × bodyweight (kN)
 x 100    (4) 

Figure 26. Illustration of AHF measured as the change in AHI from the seated to standing conditions. 

5.3.3 First Metatarsophalangeal Joint Flexibility 

The first MTP joint flexibility test-rig (Figure 27A-B) has previously been tested and 

found to be reliable (Rao et al., 2011; Cody et al., 2017). The left and right feet of every 

subject were tested to provide bilateral assessments of first MTP joint flexibility. During 

testing, each patient was seated in a chair with their knees flexed to 90° and thighs 

perpendicular to the floor. The flexibility test-rig was connected to a laptop running 

DAQami software (Measurement Computing Corporation, Norton, MA), which 

recorded the voltage signals for first MTP joint torque (N.cm) and dorsiflexion (°). 

Before recording, the first MTP joints of each patient were cyclically loaded ten times 

to control for the soft tissues recent strain history. Five trials were then performed while 

seated. The average of the five trials defined the final flexibility curve. 

Arch height
standing

 

Arch height
sitting

 

Deformed 

arch height

Arch under load

Arch in slack

Undeformed 

arch height
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Figure 27A-C. (A) the subject’s foot is placed in the test-rig, where their hallux is strapped to a pivot 

mechanism and the mid- and rear-foot are immobilised by Velcro straps; (B) the tester applies a torque 

to dorsiflex the hallux and measure the residual torque using a transducer integrated into the pivot 

mechanism. (C) Illustrated diagram of the first MTP joint flexibility curve. The intersection of the early 

and late flexibility slope lines is denoted by the reference point. The coordinates for this point, at the x- 

and y-axes, define the bilinear torque and bilinear angle, respectively. The bilinear angle is the y-axis 

at which the value for normal bilinear torque intersects the flexibility curve. Laxity is the amount of 

angular rotation observed for a standardised amount of applied torque.  

The recordings were post-processed in Microsoft Excel (Redmond, WA, USA) using a 

10-point moving average formula to smooth the voltage signals for torque and 

dorsiflexion (Siegler et al., 1985). Several characteristic parameters were obtained 

from testing. First, applied torque (X-axis) and first MTP joint dorsiflexion (Y-axis) were 
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plotted graphically to create a flexibility curve for each subject. Early flexibility was 

defined as the slope of the curve over the first 25% of the graph; late flexibility was the 

slope in the last 25% of the graph. The intersection point of the early and late flexibility 

lines was used to generate the bilinear torque and angle parameters. Maximum 

dorsiflexion of the first MTP joint was collected. Finally, the joint laxity was calculated, 

which represents the angle at which the average bilinear torque of controls (rectus) 

intersects each subject’s flexibility curve. Five trials were collected for each foot (right 

and left) where the mean was used for final analysis.  

 

5.3.4 Plantar Loading 

Each subject walked across an emed-x (Novel, Munich, Germany) plantar pressure 

measurement device (Figure 28A). Dynamic loading data were collected using a mid-

gait protocol. Centre of Pressure Excursion Index (CPEI (%)) (Figure 28B) and Initial 

Pronation Index (IPI (%)) were calculated as per standard methods (Hillstrom et al., 

2013; Diaz et al., 2018). In addition, Peak Pressure (PP (MPa)), Maximum Force (MF 

(N)), Force-Time Integral (FTI (Ns)), Pressure-Time Integral (PTI (Ns/cm2)), and Area 

(cm2) were calculated for each masked region of the foot. A 12-segment mask was 

used that established regions of plantar loading as shown in Figure 28C.  Each plantar 

loading parameter was computed from the data collected as the mean of five good 

walking trials per foot (right and left) to provide an unbiased estimate (Hafer et al., 

2013). 

 

5.3.5 Statistics 

Descriptive statistics (frequency, median, mean, and SD) were computed for each 

group. Linear regressions were performed to test Hypotheses 4a-c. An R2 value >0.7 

implied a sufficient goodness of fit. Generalized Estimation Equation (GEE) analyses 

were performed across foot type and first ray mobility. A p<0.05 suggested a 

significant difference. Stepwise regression models were also employed to determine 

if first ray mobility was related to functional measures of the Windlass mechanism. 
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Significance levels for inclusion and exclusion within each stepwise model were set at 

p<0.05 and p>0.10, respectively. All analyses were performed using SPSS version 26. 

 

Figure 28A-C. (A) A subject walking across the emed-x plantar pressure measuring system during 

normal gait at a self-selected speed. This protocol was repeated five times, for the left and right feet; 

(B) visualisation of foot width (FW) and centre of pressure excursion (CPE) measurements for 

calculating the Centre of Pressure Excursion Index (CPEI); and (C) typical plantar pressure distribution 

showing the 12-segment foot mask employed. 
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5.4 Results 

 

5.4.1 Foot Type 

Measurements of AHF and first ray mobility (partial weightbearing) were significantly 

different across foot types. Normalised first ray mobility (FRMI) of the planus group 

was 0.418 (8 mm) compared to 0.335 (6 mm) in the rectus group. No significant 

difference in weightbearing first ray mobility was observed. Furthermore, no between-

group differences were found for first MTP joint flexibility parameters. Results from the 

GEE analyses are summarised in Table 13.  

Table 13. Means, SD, and results from Generalised Estimating Equations (GEE) for biomechanical 

parameters across the planus and rectus foot types. 

Parameters Planus  

(n=23 feet) 

 Rectus  

(n=17 feet) 

 GEE Results 

Mean SD  Mean SD  X2 p-value 

AHF (mm/kN) 145.4 13.1  92.3 18.7  7.578 0.006* 

FRMI (PWB) 0.418 0.033  0.335 0.032  6.357 0.012* 

FRMI (WB) 0.205 0.033  0.166 0.025  1.876 0.171 

Early flexibility (°/Ncm) 0.47 0.08  0.51 0.06  0.460 0.497 

Late flexibility (°/Ncm) 0.07 0.01  0.08 0.01  0.924 0.336 

Bilinear angle (°) 56.0 2.4  63.4 4.7  1.840 0.175 

Bilinear torque (N.cm) 184.1 30.4  148.4 15.7  1.222 0.269 

Maximum Dorsiflexion (°) 74.4 2.9  82.9 6.0  1.577 0.209 

Laxity (°) 47.5 2.0  53.3 4.8  1.166 0.280 

AHF, arch height flexibility; FRM, first ray mobility; FRMI, first ray mobility index. Bold text with a * 

indicates statistically significant differences (p ≤0.05). 

 

 

5.4.2 First Ray Mobility 

The mean normalised first ray mobility of all subjects was 0.383 (7.2 mm) which was 

used to stratify non-hypermobile (<0.383) and hypermobile (≥0.383) groups. AHIstanding 

demonstrated significant between-group differences. Of the hypermobile subjects, 

71% exhibited a planus foot type. However, this group was not exclusively planus, with 

29% exhibiting a rectus foot type. The hypermobile group exhibited significantly higher 

normalised first ray mobility at 0.462 (9.5 mm) compared to 0.323 (5.5 mm) for those 
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who were not hypermobile, as expected. In contrast to the GEE analyses by foot type, 

AHF was not significantly different between the hypermobile and non-hypermobile 

groups. Of the parameters related to first MTP joint flexibility, laxity was significantly 

higher in the hypermobile individuals. The resulting differences in related parameters 

including AHF and first MTP joint flexibility can be found in Table 14.  

Table 14. Means, SD, and results from Generalised Estimating Equations (GEE) for biomechanical 

parameters across first ray mobility. 

Parameters  Non-Hypermobile  

(n=23 feet) 

  

(n= 

 Hypermobile  

(n=17 feet) 

 GEE Results 

 Mean SD  Mean SD  X2 p-value 

Planus (%) 43.5 (n=10) -  70.6 (n=12) -  - - 

AHF (mm/kN) 131.1 18.6  111.6 13.5  0.989 0.320 

FRMI (PWB) 0.323 0.027  0.462 0.024  29.617 0.000* 

FRMI (WB) 0.203 0.033  0.170 0.025  1.704 0.192 

Early flexibility (°/Ncm) 0.49 0.09  0.48 0.07  0.037 0.848 

Late flexibility (°/Ncm) 0.08 0.01  0.07 0.01  0.736 0.391 

Bilinear angle (°) 56.2 3.0  60.8 2.5  2.195 0.138 

Bilinear torque (N.cm) 155.1 15.2  189.4 38.4  0.815 0.367 

Maximum Dorsiflexion 

(°) )( (°) 

75.2 3.2  79.4 3.2  2.412 0.120 

Laxity (°) 46.1 3.2  53.1 2.0  4.271 0.039* 

AHF, arch height flexibility; FRM, first ray mobility; FRMI, first ray mobility index; bold text with a * 

indicates statistically significant differences (p ≤0.05). 

Linear regression analyses were performed to test Hypothesis 4a which are shown in 

Figure 29A-C. No significant relationships were found between first ray mobility and 

AHIstanding (R2 = 0.0005, p = 0.665), AHF (R2 = 0.0015, p = 0.810), and first MTP joint 

laxity (R2 = 0.1193, p = 0.066). These findings did not support hypothesis 4a.  
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Figure 29A-C. Linear regression analyses of first ray mobility index vs. AHIstanding, first MTP joint laxity, 

and arch height flexibility. 
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5.4.3 Plantar Loading 

Differences in the plantar pressure distributions between planus and rectus subjects 

are summarised in Tables 15A-B. Significant between-group differences were 

observed for the ratio of first to second metatarsal PP, MF, PTI, and FTI, hallucial MF, 

FTI and area, first metatarsal PTI, and CPEI. Based on these results, hypothesis 4b 

was accepted. 

Table 15A. Means, SD, and results from Generalised Estimating Equations (GEE) for plantar peak 

pressure (PP) and maximum force (MF) across the planus and rectus foot types.  

Parameters Planus  

(n=23 feet) 

 Rectus  

(n=17 feet) 

 GEE Results 

Mean SD  Mean SD  X2 p-value 

PP (kPa)         

 Hallux 468.3 48.6  365.0 70.4  1.976 0.160 

 Toe two 176.9 23.6  127.4 17.5  3.083 0.079 

 Toes three-five 109.1 15.0  77.2 12.3  3.668 0.055 

 First metatarsal 269.7 27.4  339.6 33.3  3.036 0.081 

 Second metatarsal 501.9 51.2  439.9 35.3  1.430 0.232 

 First-second ratio 0.55 0.03  0.87 0.09  10.720 0.001* 

 Third metatarsal 430.5 26.5  422.6 28.3  0.058 0.810 

 Fourth metatarsal 293.9 22.1  331.3 42.7  0.627 0.428 

 Fifth metatarsal 268.7 36.4  257.5 37.3  0.122 0.727 

 Lateral arch 106.3 8.5  105.8 7.7  0.009 0.926 

 Medial arch 4.1 0.6  3.8 0.6  0.259 0.611 

 Lateral heel 326.7 19.0  322.4 23.1  0.024 0.878 

 Medial heel 353.1 26.5  330.9 26.5  0.373 0.541 

 Total PP 641.9 43.9  661.5 58.5  0.116 0.733 

 CPEI (%) 19.1 1.2  21.4 1.2  5.366 0.021* 

 IPI (%) 7.1 1.0  7.4 0.9  0.045 0.832 
          

MF (N)         

 Hallux 139.8 11.9  96.1 11.1  13.795 0.000* 

 Toe two 23.5 2.9  19.4 2.5  1.303 0.254 

 Toes three-five 30.0 4.0  17.4 3.5  1.077 0.299 

 First metatarsal 134.8 10.1  165.0 15.3  3.070 0.080 

 Second metatarsal 187.2 12.5  182.8 11.9  0.103 0.748 

 First-second ratio 0.72 0.05  0.96 0.06  12.718 0.000* 

 Third metatarsal 201.7 8.4  199.0 10.9  0.070 0.791 

 Fourth metatarsal 118.1 9.8  135.9 13.2  1.063 0.303 

 Fifth metatarsal 60.4 5.9  66.4 7.6  0.628 0.428 

 Lateral arch 107.8 16.1  110.5 14.8  0.026 0.871 

 Medial arch 18.6 2.8  15.3 3.0  1.150 0.283 

 Lateral heel 242.5 10.8  247.7 9.6  0.359 0.549 

 Medial heel 283.5 15.6  278.3 15.6  0.070 0.792 

 Total MF 813.7 31.1  821.9 30.8  2.891 0.089 

CPEI, Centre of Pressure Excursion Index; bold text with a * indicates statistically significant differences 

(p ≤0.05). 
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Table 15B. Means, SD, and results from Generalised Estimating Equations (GEE) for Pressure-Time 

Integral (PTI), Force-Time Integral (FTI), and Area across the planus and rectus foot types.  

Parameters Planus  

(n=23 feet) 

 Rectus  

(n=17 feet) 

 GEE Results 

Mean SD  Mean SD  X2 p-value 

PTI (kPa/s)         

 Hallux 102.4 11.2  74.0 14.3  2.779 0.095 

 Toe two 36.0 4.8  26.5 3.8  3.144 0.076 

 Toes three-five 23.9 3.0  17.8 3.2  2.355 0.125 

 First metatarsal 76.0 6.5  96.1 9.2  4.071 0.044* 

 First-second ratio 0.58 0.03  0.89 0.08  12.888 0.000* 

 Second metatarsal 129.1 10.7  117.1 6.5  1.395 0.237 

 Third metatarsal 123.8 8.0  126.8 7.3  0.091 0.762 

 Fourth metatarsal 89.4 6.1  100.4 11.5  0.876 0.349 

 Fifth metatarsal 72.9 8.0  73.8 9.5  0.016 0.899 

 Lateral arch 35.4 3.2  36.5 2.9  0.306 0.580 

 Medial arch 22.6 2.0  24.3 2.2  0.527 0.468 

 Lateral heel 82.6 4.7  87.5 5.9  0.542 0.462 

 Medial heel 87.4 5.9  89.6 6.1  0.073 0.787 

 Total PTI 235.0 11.9  235.2 14.2  0.000 0.991 
          

FTI (Ns)         

 Hallux 28.3 2.8  19.2 2.7  6.224 0.013* 

 Toe two 4.7 0.7  3.7 0.5  1.790 0.181 

 Toes three-five 4.3 0.8  3.4 0.8  0.562 0.454 

 First metatarsal 38.3 3.2  48.0 5.3  3.558 0.059 

 First-second ratio 0.65 0.05  0.93 0.06  17.120 0.000* 

 Second metatarsal 58.5 4.6  54.3 4.3  0.622 0.430 

 Third metatarsal 64.5 3.0  63.5 3.5  0.141 0.707 

 Fourth metatarsal 40.0 3.3  45.1 4.1  1.017 0.313 

 Fifth metatarsal 18.7 1.9  20.6 2.4  0.669 0.413 

 Lateral arch 29.2 5.1  33.9 4.8  1.132 0.287 

 Medial arch 4.3 0.7  3.7 0.8  0.324 0.569 

 Lateral heel 62.2 3.4  65.3 3.7  1.037 0.309 

 Medial heel 71.7 4.2  73.3 3.9  0.126 0.722 

 Total FTI 429.4 18.4  427.0 18.4  1.094 0.296 
          

Area (cm2)         

 Hallux 11.5 0.6  9.2 0.4  27.298 0.000* 

 Toe two 3.6 2.0  3.5 0.2  0.111 0.739 

 Toes three-five 5.7 0.6  5.2 0.6  0.439 0.508 

 First metatarsal 13.0 0.5  13.4 0.5  0.645 0.422 

 Second metatarsal 10.2 0.4  10.9 0.4  15.805 0.000* 

 Third metatarsal 11.8 0.4  12.4 0.4  151.922 0.000* 

 Fourth metatarsal 9.9 0.3  10.4 0.3  11.944 0.001* 

 Fifth metatarsal 6.2 0.2  6.7 0.2  6.009 0.014* 

 Lateral arch 21.5 1.7  22.2 2.1  0.142 0.707 

 Medial arch 4.1 0.6  3.8 0.6  0.259 0.611 

 Lateral heel 18.3 0.5  17.6 0.5  46.941 0.000* 

 Medial heel 18.2 0.5  17.7 0.5  23.284 0.000* 

 Total Area 133.9 4.2  132.9 4.6  0.097 0.756 

Bold text with a * indicates statistically significant differences (p ≤0.05). 
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Plantar loading parameters of the hypermobile and non-hypermobile groups are 

shown in tables 16A-B. Significant between-group differences were observed for 

lateral heel PP, MF, PTI, and FTI, media heel PP, PTI, and FTI, hallucial MF, and first 

metatarsal FTI, and CPEI. No significant differences were found for the first to second 

metatarsal load ratio. Based on these results, hypothesis 4c was rejected. 

Table 16A. Means, SD, and results from Generalised Estimating Equations (GEE) for plantar peak 

pressure (PP) and maximum force (MF) across non-hypermobile and hypermobile subjects. 

Parameters 

(Normalised) 

Non-Hypermobile  

(n=23 feet) 

 Hypermobile  

(n=17 feet) 

 GEE Results 

Mean SD  Mean SD  X2 p-value 

PP (kPa)         

 Hallux 426.2 56.3  421.9 40.4  0.012 0.913 

 Toe two 172.5 22.3  133.3 18.6  3.017 0.082 

 Toes three-five 106.7 15.8  80.4 11.7  2.715 0.099 

 First metatarsal 281.0 21.1  324.3 37.2  1.669 0.196 

 First-second ratio 0.65 0.06  0.75 0.09  2.132 0.144 

 Second metatarsal 500.0 47.2  442.4 33.3  3.738 0.053 

 Third metatarsal 415.7 21.1  442.7 41.0  0.386 0.534 

 Fourth metatarsal 311.9 27.4  306.9 23.7  0.046 0.831 

 Fifth metatarsal 262.2 32.9  266.2 38.9  0.024 0.876 

 Lateral arch 104.6 6.8  108.0 9.5  0.589 0.443 

 Medial arch 86.7 6.9  88.1 5.9  0.088 0.767 

 Lateral heel 341.5 18.5  302.4 13.5  7.379 0.007* 

 Medial heel 352.8 19.7  331.3 17.4  5.911 0.015* 

 Total PP 677.9 50.5  612.7 36.7  2.634 0.105 

 CPEI (%) 21.1 1.2  18.7 1.3  4.289 0.038* 

 IPI (%) 7.5 0.8  6.9 0.8  0.922 0.337 
          

MF (N)         

 Hallux 114.8 10.8  129.9 9.9  7.805 0.005* 

 Toe two 23.8 2.5  18.9 2.1  5.420 0.020* 

 Toes three-five 22.5 3.3  18.1 2.6  3.533 0.060 

 First metatarsal 145.8 8.9  150.1 12.7  0.299 0.585 

 First-second ratio 0.84 0.05  0.82 0.06  0.270 0.603 

 Second metatarsal 185.1 10.2  185.7 11.3  0.015 0.904 

 Third metatarsal 200.3 9.4  200.8 11.8  0.001 0.971 

 Fourth metatarsal 126.6 8.8  124.3 7.2  0.170 0.680 

 Fifth metatarsal 62.7 6.0  63.4 6.0  0.030 0.863 

 Lateral arch 111.6 13.3  105.4 13.9  0.650 0.420 

 Medial arch 17.8 3.1  16.4 2.1  0.442 0.506 

 Lateral heel 251.2 10.0  236.0 9.5  4.045 0.044* 

 Medial heel 281.3 11.8  281.3 14.4  0.000 0.997 

 Total MF 817.0 30.9  817.3 31.4  0.002 0.965 

CPEI, Centre of Pressure Excursion Index; bold text with a * indicates statistically significant differences 

(p ≤0.05). 
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Table 16B. Means, SD, and results from Generalised Estimating Equations (GEE) for Pressure-Time 

Integral (PTI), Force-Time Integral (FTI), and Area across non-hypermobile and hypermobile subjects. 

Parameters 

(Normalised) 

Non-Hypermobile  

(n=23 feet) 

 Hypermobile  

(n=17 feet) 

 GEE Results 

Mean SD  Mean SD  X2 p-value 

PTI (kPa/s)         

 Hallux 89.6 10.8  91.4 8.7  0.072 0.789 

 Toe two 36.1 4.5  26.4 3.7  6.766 0.009* 

 Toes three-five 23.2 2.8  18.7 2.9  2.090 0.148 

 First metatarsal 77.4 6.1  94.2 9.2  5.710 0.017* 

 First-second ratio 0.69 0.05  0.75 0.07  1.271 0.260 

 Second metatarsal 124.1 8.5  123.8 7.9  0.002 0.961 

 Third metatarsal 120.3 6.5  131.4 10.7  0.838 0.360 

 Fourth metatarsal 91.6 8.2  97.4 7.5  0.713 0.398 

 Fifth metatarsal 71.6 7.9  75.6 9.2  0.531 0.466 

 Lateral arch 37.0 3.1  34.2 2.9  2.542 0.111 

 Medial arch 24.0 2.2  22.5 1.5  0.748 0.387 

 Lateral heel 88.5 4.3  79.5 4.7  6.388 0.011* 

 Medial heel 91.1 4.4  84.5 4.9  6.570 0.010* 

 Total PTI 231.9 11.6  239.4 14.7  0.396 0.529 
          

FTI (Ns)         

 Hallux 23.5 2.3  25.7 1.9  3.774 0.052 

 Toe two 4.8 0.6  3.5 0.6  5.516 0.019* 

 Toes three-five 4.2 0.6  3.4 0.6  2.021 0.155 

 First metatarsal 40.9 3.6  44.5 4.5  1.271 0.260 

 First-second ratio 0.77 0.05  0.76 0.06  0.044 0.834 

 Second metatarsal 55.7 3.4  58.0 4.1  1.164 

4 

0.281 

 Third metatarsal 63.0 3.4  65.5 3.8  0.331 0.565 

 Fourth metatarsal 41.9 3.2  42.5 2.5  0.128 0.720 

 Fifth metatarsal 19.4 2.0  19.7 1.9  0.033 0.857 

 Lateral arch 32.8 4.7  29.0 4.4  2.139 0.144 

 Medial arch 4.3 0.8  3.6 0.5  1.723 0.189 

 Lateral heel 65.8 3.3  60.3 3.6  3.833 0.050* 

 Medial heel 74.2 3.6  69.9 3.5  3.921 0.048* 

 Total FTI 429.3 19.5  427.2 17.1  0.127 0.721 
          

Area (cm2)         

 Hallux 10.3 0.4  10.9 0.4  4.594 0.032* 

 Toe two 3.6 0.2  3.4 0.2  1.001 0.317 

 Toes three-five 5.7 0.4  5.2 0.5  2.189 0.139 

 First metatarsal 13.2 0.5  13.1 0.5  0.026 0.871 

 Second metatarsal 10.6 0.4  10.4 0.4  0.460 0.497 

 Third metatarsal 12.2 0.4  11.9 0.4  2.017 0.155 

 Fourth metatarsal 10.1 0.3  10.1 0.3  0.264 0.607 

 Fifth metatarsal 6.4 0.2  6.5 0.2  0.862 0.353 

 Lateral arch 22.2 1.6  21.2 1.7  0.988 0.320 

 Medial arch 4.2 0.7  3.7 0.5  2.810 0.94 

 Lateral heel 18.1 0.5  17.9 0.5  2.417 0.120 

 Medial heel 18.1 0.5  17.9 0.5  0.835 0.361 

 Total Area 134.7 4.3  131.9 4.1  4.440 0.035* 

Bold text with a * indicates statistically significant differences (p ≤0.05). Pressure-Time Integral (PTI); 

Force-Time Integral (FTI). 
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Stepwise linear regression models were created to estimate functional parameters of 

first MTP joint laxity and MF beneath the hallux and first metatarsal (Table 17). Of the 

parameters predictive of first MTP joint laxity, first ray mobility explained some of the 

model variance. Exclusion of first ray mobility from this parameter reduced the R value 

from 0.853 to 0.821 and the adjusted R2 value from 68% to 63% of the model variance. 

Early flexibility of the first MTP joint was related to MF beneath the hallux, with an R 

value of 0.649 and an R2 value accounting for 40% of the model variance. This was 

increased to 57% with the inclusion of arch height indexstanding.  Weightbearing first ray 

mobility was predictive of MF beneath the first metatarsal head, with an R value of 

0.538 and adjusted R2 value which explained 26% of the model variance. Inclusion of 

maximum dorsiflexion and partial weightbearing first ray mobility increased the R value 

to 0.807 and adjusted R2 value to 61% of the model variance.    

Table 17. Model summary from the stepwise linear regression analyses. 

Dependent 
Variable 

Stepwise Linear Regression 
Model 

R R2 Adj. R2 
Sig. F 
Change 

Laxity (°) 
Maximum dorsiflexion, early 
flexibility, late flexibility, first ray 
mobility (partial weightbearing) 

0.853 0.727 0.682 0.041* 

MF (N) 
hallux 

Early flexibility, arch height 
indexstanding 

0.776 0.603 0.572 0.002* 

MF (N) 
first metatarsal 

First ray mobility (weightbearing), 
maximum dorsiflexion 

0.807 0.652 0.610 0.031* 

MF, Maximum Force. Bold text with a * indicates statistically significant differences (p ≤0.05). 

 

5.5 Discussion 

The present research hypothesised that upon weightbearing gait, flattening of the MLA 

in the planus foot would be accompanied by greater first ray mobility and a reduction 

in plantar load beneath the first metatarsal (Ledoux & Hillstrom, 2002; Hillstrom et al., 

2013; Zifchock et al., 2017; Song et al., 2018). This theory was confirmed by greater 

prevalence of first ray hypermobility among planus individuals. Approximately, 71% of 

subjects with first ray hypermobility were classified as pes planus compared to 43% in 

the non-hypermobile group. Furthermore, this interaction between foot type and first 

ray mobility was found to alter the weightbearing mechanics of the foot. Upon 
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weightbearing gait, a lowering of the arch in the hypermobile planus foot was 

accompanied by a reduction in plantar load beneath the first metatarsal and increased 

plantar load beneath the hallux. Stepwise linear regression analyses indicated that 

first ray mobility explained 24% of the variance in MF sustained under the first 

metatarsal. Additionally, significantly greater first MTP joint laxity was present in 

individuals with first ray hypermobility where stepwise linear regression found first ray 

mobility to be predictive of first MTP joint laxity. Thus, an interaction was also 

demonstrated between translational first ray mobility and rotational first MTP joint 

flexibility. No relationships were observed between first ray mobility vs. arch height 

index, arch height flexibility, and first MTP joint dorsiflexion. 

It has been well-established that pes planus exhibits a more flexible arch than pes 

rectus (Hillstrom et al., 2013; Zifchock et al., 2017; Song et al., 2018). Consistent with 

previous research, the current study observed significantly more arch height flexibility 

in planus subjects. As such, flexibility of the arch was expected in hypermobile 

participants due to dominance of the planus foot type yet arch height flexibility and first 

ray mobility were not related, rejecting the hypothesised negative relationship between 

these variables. Conversely, the non-hypermobile group exhibited greater arch height 

flexibility. While this difference was not statistically significant, it contrasted with 

conventional belief that flexibility of the MLA may be associated with hypermobility of 

the first ray.  

Mean first ray mobility of pooled subjects was consistent with previously published 

data (Table 18). While prior research has postulated an association between planus 

feet and first ray hypermobility, (Ledoux & Hillstrom et al., 2002; Hillstrom et al., 2013) 

few investigations have provided objective measures of foot type alongside first ray 

mobility (Glasoe et al., 2005; Glasoe et al., 2005; Jones et al., 2005; Song et al., 2018; 

Tavara-Vidalon et al., 2018). Glasoe et al., (2000) and Coughlin and Jones, (2007) 

found no significant differences or correlation between increased first ray mobility and 

foot type or arch height, respectively. While the current research also found no linear 

relationship between arch height index and first ray mobility, there was a predominant 

distribution of hypermobile individuals classified as pes planus, confirming the 

overarching study hypothesis. Additional research comparing different classification 

systems of foot type/foot posture, (Ledoux & Hillstrom, 2002; Ledoux et al., 2003; 
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Redomond et al., 2006) in addition to larger sample sizes, would be useful in 

understanding these contrasting outcomes.  

Table 18. Means and SD for first ray mobility of previous research compared to the present study. 

Study Year Mean Mobility Load (N) Method 

Jones et al. 2005 
 

7.4 ± 2.0 N/A Mechanical 

Glasoe et al. 2005 
 

6.1 ± 1.1 45 Electromechanical 

Glasoe et al. 2005 
 

5.5 ± 1.0 55 Electromechanical 

Tavara-Vidalon et al. 2018 6.5 ± 2.6 N/A Radiographic 

Munuera-Martinez et al. 2020 6.5 ± 1.1 N/A Handheld Ruler 

Present Study 2021 7.2 ± 2.6 50 Electromechanical 

In the rectus foot, the first ray will remain purchased to the ground, bearing a similar 

amount of load compared with the second ray (Ledoux & Hillstrom, 2002; Ledoux et 

al., 2003; Hillstrom et al., 2013; Buldt et al., 2018; Song et al., 2018). During midstance, 

the rectus foot will establish equilibrium between the plantar fascia and toe flexor 

muscles (Erdemir et al., 2006; Murley et al., 2009). In the planus foot, where the first 

ray is more likely to be hypermobile, the first metatarsal head may be unable to resist 

the ground reaction force and share the burden of forefoot loading with the second 

metatarsal. As a result, lowering of the MLA is likely to leave the plantar soft tissues in 

a maximally elongated position. Increased load observed under the hallux, in the 

present study, may be explained by first ray hypermobility due to reduced mechanical 

advantage of the Windlass mechanism (Jack E, 1940; Roukis et al., 1996; Rao et al., 

2011). Consistent with this theory, rotational laxity of the first MTP joint, in partial-

weightbearing, was related by stepwise linear regression to first ray hypermobility. 

Restricted first MTP joint rotational flexibility and concomitant increased load beneath 

the hallux may promote a higher flexion moment arm between the hallucial load and 

first MTP joint. This enlarged moment arm about the first MTP joint, and increased 

hallucial load, may subject the cartilage to higher contact forces and stress, ultimately 

resulting in cartilage failure: A theory which will be explored in the following chapters 

of this thesis. 

Roukis et al., (1996) found that motion of the first MTP joint was influenced by first ray 

“position”. They reported that 4 mm of first ray dorsal translation reduced first MTP 

joint dorsiflexion by 19.3%, and when dorsal translation reached 8 mm, dorsiflexion 

reduced by an additional 34.7%. The rotational component of first MTP joint kinematics 

has typically been defined by dorsiflexion (Allen et al., 2004; Rao et al., 2013; Buldt et 
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al., 2015). Research in this area has provided conflicting evidence. Buldt et al., (2015) 

reported lower first MTP joint dorsiflexion in planus compared to rectus individuals 

during gait whereas, Rao et al., (2013) found no difference with the foot in static 

weightbearing. Furthermore, Allen et al., (2004) compared the first MTP joint 

dorsiflexion of subjects with “stiff” and “lax” first rays during gait, finding a weak 

relationship between first ray mobility and first MTP joint dorsiflexion. In the current 

work, rotational laxity of the first MTP joint, which is the amount of angular rotation for 

a standardised amount of torque, was assessed. It was found that hypermobile 

subjects exhibited significantly greater first MTP joint rotational laxity than non-

hypermobile subjects. As shown by Roukis et al., (1996) position of the first ray is likely 

to influence “stiffness” of the first MTP joint during gait. Lowering of the MLA in pes 

planus may limit the first MTP joints mechanical advantage afforded by the Windlass 

mechanism through increased passive tension of the plantar fascia.  

The mechanism of first ray hypermobility is not fully understood, and several pathways 

have been suggested including, posterior tibial tendinopathy (Wong et al., 2018), 

insufficiency of the deep transverse metatarsal ligament (Coughlin MJ, 1996), and a 

weak PL (Roukis et al., 1996; Johnson & Christensen, 1999; Murley et al., 2009; 

Kokubo et al., 2012). Several investigators have pointed to the sagittal plane effects 

of the PL as a likely mechanism of first ray mobility and its role in assisting the 

Windlass mechanism (Hick HJ, 1954) and enhancing dorsiflexion of the first MTP joint 

(Roukis et al., 1996; Johnson & Christensen, 1999). The PL tendon’s primary role is 

to evert the hindfoot and secondarily keep the first MTP joint purchased to the ground 

(Johnson & Christensen, 1999). From a structural perspective, the PL may provide 

passive and active contributions to stabilisation of the first metatarsal against the 

medial cuneiform. Conceptually, the PL in a rectus foot may help the first ray to resist 

excessive motion by drawing it into plantarflexion due to the tendons line of action 

across the lateral ankle (Johnson and Christensen, 1999). However, there is 

conflicting evidence for a relationship between foot type and PL function. Murley et al., 

(2009) observed a reduction of PL activation in planus feet during gait. Compared with 

a rectus group, planus subjects exhibited a mean decrease in peak PL 

Electromyographic (EMG) amplitude of 12.8% during the contact phase of gait and 

13.7% during midstance (Murley et al., 2009). Conversely, Gray and Basmajian. 

(1968) found the PL to be more active in planus versus rectus individuals during level 
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walking. It is possible that these differences may be explained by the level of first ray 

mobility which was not measured in either study. Root et al., (1977) were some of the 

earliest researchers to theorise that the PL played a stabilising role in forefoot 

kinematics and first ray mobility during gait. The investigators suggested that pronation 

of the planus foot may reduce the mechanical advantage of the PL and transfer load 

from the first ray to lesser metatarsals. Of the limited work performed in this area, 

Olson et al., (2003) found the PL to be the primary muscle for increasing plantar 

pressures beneath the first metatarsal head, demonstrating the stability it provides to 

the first ray.  

 

5.5.1 Limitations 

There were several limitations of this research that should be considered. Firstly, a 

small sample size was presented. However, the current data could be used for power 

analysis to design future investigations. Secondly, first MTP joint flexibility was not 

assessed in weightbearing. Though the present information provides a novel 

understanding of the interaction between flexibility and foot structure, analyses in 

weightbearing would provide a more complete description of first ray mechanics in the 

presence of hypermobility. It is likely that weightbearing first MTP joint laxity is 

negatively related to first ray mobility due to maximal elongation of the plantar fascia, 

limiting the Windlass mechanism. Thirdly, the cavus foot type was not included in this 

study. It has previously been reported that pes cavus is protective against foot injuries 

and that individuals who exhibited this foot type were less likely to develop OA of the 

midfoot and forefoot (Kaufman et al., 1999; Rao & Bell, 2013). Finally, plantar pressure 

measurement platforms are valuable in assessing the interactions between 

weightbearing foot structure and functional mechanics. However, while the ability to 

measure vertical components of the GRF inform loading patterns of the foot, the 

reliability of such devices and effect of the supporting surface characteristics must be 

considered. Plantar loading measurements from the emed-x platform have found 

moderate to high reliability (Hughes et al., 1991; Hafer et al., 2013). Consistent with 

the present study’s methodology, Hafer et al., (2013) found that an average of three 

to five walking trials were required to achieve reliable data. Surface flexibility of plantar 

pressure platforms have been suggested as a limitation of the technology; however, 
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Giacomozzi C, (2010) found Novel platforms to have high linearity, low creep, low 

hysteresis, and low variability in performance. 

 

5.6 Conclusion 

Many structural and functional abnormalities of the first ray have been linked to pes 

planus, in pursuit of explaining why this foot type is disproportionately affected by 

certain orthopaedic conditions such as, hallux rigidus. This study of healthy, 

asymptomatic subjects with planus and rectus feet established that individuals with 

first ray hypermobility were predominantly planus in foot type. The first metatarsal of 

planus individuals, presenting with first ray hypermobility, will translate excessively in 

the superior direction, causing foot pronation and a transfer of load to the second 

metatarsal and hallux. Furthermore, an interaction between rotational first MTP joint 

flexibility and translational first ray mobility was demonstrated. Stepwise linear 

regression analyses found that first ray mobility was predictive of MF beneath the first 

metatarsal and laxity of the first MTP joint. These findings provide objective evidence 

of first ray hypermobility’s role in abnormal structure and function of the medial 

forefoot. It is the postulate of this research, that interactions between translational first 

ray hypermobility, rotational first MTP joint flexibility, and concomitant increased load 

beneath the hallux may be causative of aberrant first MTP joint loading. To explore 

this theory, the following chapters utilised FE modelling to predict the effect of first ray 

hypermobility, in the planus foot type, on cartilage contact mechanics of the first ray. 
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Chapter 6. In Vitro Verification of a Finite 

Element Model During Quasi-Static Loading 

 

6.1 Chapter Overview 

Chapter 6 describes the design of a cadaveric mechanical test-rig, cadaveric 

experimentation, and the development of a quasi-static force-controlled FE model of 

the medial forefoot. The study objective was to calibrate and verify the FE model first 

MTP and MTC joint contact mechanics against intracapsular TekScan pressure 

sensor measurements.  

Aim 5: Verify the first MTP and MTC joint contact mechanics of a medial forefoot FE 

model simulating planus and rectus foot types.  

Hypothesis 5: In vitro-measured and FE-predicted first MTP and MTC joint contact mechanics 

(force, contact pressure, contact area, and contact pattern) will be within 30% for the same 

boundary and loading conditions. 

 

6.2 Introduction 

In chapter 5 of this thesis, individuals with first ray hypermobility were linked with the 

planus foot type, increased hallucial loading, and greater first MTP joint flexibility. 

Although multi-factorial in nature, these three structural and functional parameters 

were indicative of aberrant pedal mechanics. Commensurate excessive loads across 

the first ray’s articulating soft tissues may lead to cartilage matrix breakdown and 

degeneration (Jack E, 1940; Roukis et al., 1996; Golightly et al., 2018). Despite the 

frequency of degenerative disease at the first MTP and first MTC joints (Rao & Bell, 

2013 Menz et al., 2015; Morgan et al., 2019), little is known about their loading 

environments (McBride et al., 1991; Liu et al., 1997; Athanasiou et al., 1998; Wong et 

al., 2018; Peng et al., 2021). Although physical testing is essential in the evaluation 

process, methods like intracapsular pressure sensors are limited to measurements of 
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contact force, pressure, and area (Wu et al., 1998). Computational modelling can 

augment these experiments by non-invasive predictions of cartilage failure modes 

including stress and strain (Sasazaki et al., 2006; Mononen et al., 2012; Venäläinen 

et al., 2016). 

Finite element modelling of the foot has been used to predict plantar pressures 

(Budhabhatti et al., 2009; Cheung et al., 2004; Isvilanonda et al., 2012; Sun et al., 

2012; Wong et al., 2014; Guo et al., 2018), visualise internal soft tissue stress 

distributions (Gefen et al., 2003; Wong et al., 2014; Wong et al., 2018), and perform 

parametric studies (Budhabhatti et al., 2009; Isvilanonda et al., 2012). The perceived 

reliability of such models is governed by verification and validation against 

experimental data (Viceconti M, 2005; Henninger et al., 2010). Verification acts as a 

precursor to validation and determines if “a computational model accurately represents 

its solution” (i.e. geometric reconstruction and mesh convergence) (ASME Committee 

(PT60) on Verification and Validation in Computational Solid Mechanics, 2006; 

Henninger et al., 2010). Validation is conducted to determine “the degree to which a 

computational model is an accurate representation of the real world” (i.e. kinetics and 

kinematics) (ASME Committee (PT60) on Verification and Validation in Computational 

Solid Mechanics, 2006; Henninger et al., 2010). Prior models of the foot have either 

excluded the geometries of forefoot cartilage (Budhabhatti et al., 2007; Flavin et al., 

2008; Garcia-Gonzalez et al., 2009; Akrami et al., 2018; Wong et al., 2018) or been 

verified or validated using plantar pressures (Isvilanonda et al., 2012; Wong et al., 

2014; Akrami et al., 2018) and kinematics (Gefen et al., 2002; Morales-Orcajo et al., 

2017), not accounting for the accuracy of joint contact mechanics. This presents 

inherent ambiguity of the first ray’s articular soft tissue properties and resulting contact 

mechanics.  

Therefore, the purpose of this study was to build and verify a FE model of the medial 

forefoot by: (1) designing a custom force-controlled cadaveric test-rig for physiological 

loading of the medial forefoot and intracapsular TekScan (TekScan Inc, Boston, MA, 

USA) pressure sensor measurements of first MTP and first MTC joint contact 

mechanics; (2) conducting specimen-specific FE model calibrations of first MTP and 

first MTC joint articular cartilage moduli against the experimental data, and; (3) 

performing verification of the FE-predicted first MTP and first MTC joint contact forces, 

contact areas, and contact pressures from the corresponding TekScan pressure 

https://www.nature.com/articles/srep37538#auth-1
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sensor measurements. The limit of verification between the experimental 

measurements and FE-predictions was considered less than 30%. 

 

6.3 Materials and Methods 

The methodology in this chapter comprises two sections: (1) the design and testing of 

a custom-built cadaveric test-rig for measuring medial forefoot joint contact mechanics 

and (2) the 3D reconstruction, calibration, and verification of a medial forefoot FE 

model.  

 

6.3.1 Design of a Cadaveric Test-Rig 

The following design specifications were applied to the test-rig: (1) accommodate the 

first and second rays of any specimen; (2) emulate different arch-alignments of the 

foot; (3) allow the first metatarsal and phalanges of the first and second rays to move 

in all six DOF; (4) enable the application of forces beneath the first and second 

metatarsals, first and second distal phalanges, and medial band of the plantar fascia 

to achieve static equilibrium; (5) allow sagittal rotation of the medial cuneiform to 

emulate declination of the foot’s arch during weightbearing. Since the test-rig would 

be transported from Anglia Ruskin University (ARU) in the UK, to HSS in the USA, its 

material selection required high yielding but to be lightweight. The test-rig components 

were therefore manufactured from aluminium alloy.  
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Fmetatarsal(s) Fphalange(s) 
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Calcaneus clamp 

Cuneiform clamp 

Base plate 

Turnbuckle 

Load cell 

Weighted lever(s) Moving assembly Moving assembly 

Figure 30. A SolidWorks 

illustration of the initial design 

concept for the cadaveric medial 

forefoot test-rig, shown from the 

superior view (top) and lateral 

cross-sectional view (bottom). The 

forces acting on the system are 

denoted using red arrows while 

rotating components are denoted 

using blue arrows. The medial 

forefoot placement is shown in the 

illustration; however, the location 

of the calcaneus and the plantar 

fascia path of insertion is not 

shown.  

Plunger(s) 

A 
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First ray 
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The custom-made test-rig was designed in SolidWorks (SolidWorks 2018, Dassault 

Systèmes, Vélizy-Villacoublay, France) by the author of this thesis (Figure 30). It was 

manufactured by an experienced technician (Dan Jackson) at ARU’s mechanical 

engineering workshop. The test-rig included a clamp for the cuneiform and second 

metatarsal which allowed rotation in the sagittal plane. This clamp also translated in 

the SI directions, enabling the declination angle of the metatarsals to change, 

representing different arch heights. The metatarsals and phalanges of the first and 

second rays were free to move naturally, in all six DOF. The calcaneus was fixed to a 

mechanism that translated in the AP directions. This took advantage of the windlass 

mechanism to emulate tension in the plantar fascia upon weightbearing. Tensile load 

was applied to the plantar fascia using a turnbuckle. An S-shaped load cell was fixed 

between the calcaneus and turnbuckle to record the tensile force. Plantar loading was 

applied through a series of four levers, which distributed loads beneath distal 

phalanges and metatarsal heads in a physiological manner. Upon initial testing, the 

distance between the calcaneus clamp and end range of the cuneiform clamp was too 

large for the cadaveric specimen. A polymer extender for the calcaneus was designed 

and 3D printed (MakerBot Replicator 2, Brooklyn, NY, USA) to reduce this distance. 

 

6.3.2 Cadaveric Testing 

One fresh-frozen cadaveric specimen was tested which included the anatomical 

structures of the first ray (distal phalanx; proximal phalanx; hallucial sesamoids; first 

metatarsal; medial cuneiform) and the second ray (distal phalanx; middle phalanx; 

proximal phalanx, second metatarsal, and; medial band of the plantar fascia). The 

cadaveric specimen was a right foot from a male, 26 years of age, weighing 270 lbs 

at a height of 71 inches. There was no history of surgery, trauma, cartilage damage, 

or osteophytes. Preparation of the specimen was performed by a HSS clinical fellow 

assigned to the study (Rogerio Bitar, MD). A whole foot was dissected with the first, 

second, and third rays disarticulated from the surrounding soft tissues. The medial 

band of the plantar fascia was separated from the central band while retaining its 

insertion into the base of the first and second metatarsals and calcaneus (Figure 31A). 

To maintain the integrity of the transverse arch and cuneiform mortise the lateral 

cuneiform and base of the third metatarsal were preserved (Figure 31B).  

https://www.bing.com/search?q=velizy+france&filters=ufn%3a%22velizy+france%22+sid%3a%22edc94759-fd0e-973d-f0f7-ef3d30d01294%22&FORM=SNAPST


 

99 

 

 

Figure 31A-B. Photographs of the cadaveric medial forefoot specimen being prepared for testing: (A) 

the medial band of the plantar fascia separated from the central band while retaining its insertion into 

the base of the first and second metatarsals and calcaneus, and; (B) Siemens C-Arm x-ray machine 

(Siemens, Munich, Germany) used to visualise the axis of sagittal rotation for the cuneiforms.  

Two conditions were evaluated: (1) a planus arch-alignment, and (2) a rectus arch-

alignment. The activity of midstance was simulated at ¼ of the maximum plantar force 

parameters of individuals with planus and rectus foot types (Hillstrom et al., 2013). Pes 

planus loading was set to 34 N at the first metatarsal head, 34 N at the hallux, 43 N at 

the second metatarsal head, and 6 N at the second distal phalanx. Pes rectus loading 

was set to 40 N at the first metatarsal head, 28 N at the hallux, 38 N at the second 

metatarsal head, and 5 N at the second distal phalanx. Pretension in the plantar fascia 

was calculated in order to achieve static equilibrium. This was based upon the arch-

specific metatarsal declination angles; a pes planus pretension of 428 N and a pes 

rectus pretension of 343 N were applied. 

During testing, thin pressure sensors (TekScan K-Scan 6900, TekScan Inc, Boston, 

MA, USA) were preconditioned, equilibrated, and calibrated to acquire measurements 

of first MTP and first MTC joint contact mechanics (force, area, pressure, and pattern) 

(Figure 32B). The pressure sensors were sutured to the plantar cortices of each joint 

to prevent ejection during testing (Figure 32C). The specimen was then mounted in 

the test-rig, which positioned the first metatarsal in 10° and 20° of declination in the 

sagittal plane, emulating planus and rectus arch-alignments, respectively (Buldt et al., 

2015). A goniometer was used to measure the first metatarsal angle with respect to 

the base of the test-rig (Figure 32D). These conditions were selected based on the 

final aim of this thesis: to investigate arch specific variances in joint contact mechanics. 

A B 
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Insertion of the TekScan pressure sensors into the first MTP and MTC joints were 

performed by excising the capsules and inserting the sensor films into the joint 

cavities, from the superior aspect. 

 

Figure 32A-D. A series of photographs showing a right cadaveric medial forefoot: (A) isometric view of 

the test-rig with the cadaveric foot ready for testing. The medial, middle, and lateral cuneiforms are fixed 

to a pivot mechanism at the anterior portion of the device which allows sagittal rotation, while the 

calcaneus has been fixed to a posterior component, with all DOF constrained. (B) the TekScan K-Scan 

6900 intracapsular pressure sensor; (C) insertion of the pressure sensor into the first MTP and MTC 

joints, sutured to the plantar cortices of each joint to prevent ejection of each sensor during testing; and 

(D) measurements of the metatarsal angle using a goniometer to define the arch-alignments of the 

rectus and planus foot types.  

 

A 

C B D 
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6.3.3 Three-Dimensional Reconstruction 

A 3T magnetic resonance imaging (MRI) scan (GE Healthcare, Waukesha, WI, USA) 

protocol was used to derive the three-dimensional (3D) geometries of the specimen 

(Figure 33). A CUBE sequence (echo time (TE) = 26.4 ms; repetition time (TR) = 2500 

ms; echo train length: 20; voxel size: 0.31 mm x 0.31 mm x 0.8 mm, slice thickness) 

was used to create 3D representations of the plantar fascia. A frequency selective fat-

suppressed spoiled gradient recalled echo (SPGR) sequence (TE = 3 ms; TR = 10 

ms; echo train length: 1; voxel size: 0.2 mm x 0.25 mm x 1 mm, slice thickness) was 

used to define the geometries of the bones and articular cartilages. The anatomic 

geometries were manually segmented in Mimics (Mimics v21, Materialise, Leuven, 

Belgium). Intersecting segmented geometries were then eliminated using the non-

manifold tool in 3-matic (3-matic v14.0, Materialise, Leuven Belgium).  

 

Figure 33. Image of the segmented geometries of the medial forefoot in Mimics. A 3T MRI-scan was 

used to image the soft tissues, enabling 3D reconstruction in preparation for FE model development.  
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Figure 34A-C. Process for calculating the initial joint angles of the medial forefoot in Mimics. (A) 

Creation of an array of digitised points on the articular surface of the first metatarsal head; (B) virtual 

ball generated from the digitised points representing the first MTP joint’s inertial axis; and, (C) the centre 

of the first MTP joint, calculated as the midpoint of the virtual ball.  

A B 
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The size and shape of the MRI-coil meant that the cadaver was unnaturally aligned 

during image acquisition. This necessitated a step prior to the FE-loading simulations, 

which realigned the sagittal joint angles of the model to match the cadaver during 

experimental testing. The initial joint angles were calculated in Mimics for the 

specimen (Figure 34C; Table 19). Digitised points were made at the joint rotation 

centres with which to calculate the angles (Figure 34A). The rotational axes of the first 

and second MTP joints were determined using a custom-written MATLAB code 

(MATLAB R2014a, Natwick, USA), which created a sphere to find the inertial axis of 

a joint (Figure 34B). To find the inertial axis, an array of points was created on the 

surfaces of the metatarsal and phalange heads in Mimics. Once the points were made, 

the MATLAB script was executed to create a virtual ball representing the inertial axis 

of the joint. The midpoint of the ball was used to define the anatomical axis for 

referencing the joint centre coordinates. 

Table 19. Initial joint angles and realigned joint angles for the planus and rectus models. 

Angle (°) Initial Planus Rectus 

First MTP joint -15.06 -5.06 5.06 

First IP joint 20.3 0 0 

Second MTP joint -15.49 -5.49 5.49 

Second PIP joint -19.25 0 0 

Second DIP joint 32.59 0 0 

IMA 10.10 10.10 10.10 

First metatarsal declination -3.49 10 20 

Second metatarsal declination -3.02 9.53 19.53 

IP, interphalangeal; PIP, proximal interphalangeal; DIP, distal interphalangeal; IMA, intermetatarsal 

angle 

 

6.3.4 Finite Element Modelling 

The FE model was constructed in Abaqus (Abaqus 6.14-1, Dassault Systèmes, Vélizy-

Villacoublay, France) (Figure 35), where the soft-tissues were meshed, and the 

metatarsals, and phalanges assigned prescribed sagittal rotations for realignment. 

Bone and plantar fascia were meshed as 4-noded linear tetrahedrons (C3D4) and 

cartilage as 8-noded linear hexahedrons (C3D8R). Athanasiou et al., (Athanasiou et 

al., 1998) measured MTP cartilage thickness through the superficial zone of 5%, 

https://www.bing.com/search?q=velizy+france&filters=ufn%3a%22velizy+france%22+sid%3a%22edc94759-fd0e-973d-f0f7-ef3d30d01294%22&FORM=SNAPST
https://www.bing.com/search?q=velizy+france&filters=ufn%3a%22velizy+france%22+sid%3a%22edc94759-fd0e-973d-f0f7-ef3d30d01294%22&FORM=SNAPST
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middle zone of 25%, deep zone of 60%, and calcified layer of 10%. Liu et al., (Liu et 

al., 1997) measured MTC cartilage thickness through the superficial zone of 6%, 

middle zone of 28%, deep zone of 60%, and calcified layer of 6%. Therefore, cartilage 

was meshed using 10 layers in a non-linear distribution of hexagonal elements with a 

double bias ratio (> = 1) of 5 towards the articular and osteochondral surfaces (Figure 

35). Superficial zone: two elements equal to 8%; middle zone: two elements equal to 

26%; deep zone: four elements equal to 58%; calcified layer; two elements equal to 

8%. This was done in order to differentiate between the zonal distributions of the 

articular and osteochondral surfaces, which is in line with recent computational 

modelling techniques (Henak et al., 2014; Todd et al., 2018). This will enable the 

analysis of depth-dependent stress-strain distributions in future research.  

 

Figure 35. The medial forefoot FE model, showing the meshed geometries of bone, plantar fascia, and 

cartilage. Alignment angles were set to be the same as those of the cadaver during testing, for the 

corresponding planus and rectus conditions. A magnified image of the first metatarsal head and 

proximal phalanx base cartilage is shown. The method of double bias ratio meshing can be seen, with 

the layers of mesh becoming finer toward the articular and osteochondral surfaces.  

 

The ground and bone were modelled as homogeneous isotropic, linear elastic 

materials (E = 7300 MPa; v = 0.3) (Nakamura et al., 1981). The simplest form of 

isotropic, linear elasticity and its stress (𝜎)-strain (𝜀) relationship can be defined as: 
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                                   (5) 

where, the elastic properties are the same in all directions and are defined by providing 

the Young’s modulus (E), and the Poisson’s ration (v). The shear modulus (G) can be 

expressed in terms of E  and v  as:.  

𝐺 =
𝐸

2
 (1 + 𝑣)                                                                                                              (6) 

The initial material properties for hyaline cartilage were derived from literature-based 

experimental compressive tests on talus cartilage (Shepard & Seedhom, 1999). A 

Poisson’s ratio of 0.46 was set as constant (Klets et al., 2016) while the Young’s 

modulus was calibrated to find a best-fit between the FE and experimental results. The 

material parameters were represented by a homogeneous isotropic, neo-Hookean 

material. The strain energy density function (Ψ) for the hyperelastic constitutive 

relations may be given as: 

Ψ = 𝐶10(𝐼1 − 3) +
1

2𝐷
(𝐽 − 1)2                                                                                                     (7) 

where, I1 is the invariant of the Cauchy-Green deformation tensor and J is the elastic 

volume ratio. C10 and D are the neo-Hookean constant and inverse of the bulk modulus, 

respectively. The bulk (K0) and shear (μ0) moduli were acquired from the modulus of 

elasticity and Poisson’s ratio. The neo-Hookean coefficients D and C10, were then 

calculated from the bulk and shear moduli and entered into the energy density function 

within Abaqus to define the cartilage properties. In addition, a homogeneous isotropic, 

neo-Hookean material was used to model the plantar fascia (E = 200 MPa; v = 0.4) 

(Kitaoka et al., 1994) and calcified zone of cartilage (E = 320 MPa; v = 0.3) (Mente & 

Lewis, 1994).   
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Figure 36A-C. Ligament insertion sites and positions within the Abaqus medial forefoot FE model 

shown from the: (A) medial; (B) lateral, and; (C) plantar aspects. The 2D connectors used to idealise 

the ligaments are highlighted in red. 

The ligaments of the first and second rays were modelled as linear elastic 1D tension-

only connector elements (T3D2), which characterised their functional contributions 

(Figure 36A-C). Due to difficulty in identifying the ligament insertion sites from the MRI 

datasets, positions were based upon guidance from the foot and ankle surgeons 
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involved in this study, (Scott J Ellis, MD and Jonathan T Deland III, MD) in addition to 

anatomic diagrams and literature descriptions. Ligament cross-sectional areas and 

material properties were derived from the literature (Table 20). 

Table 20. Ligament properties. 

Joint 
Cross-sectional 
area (mm2) 

Young’s modulus (E 
(MPa)), Poisson’s ratio (v) 

Reference 

First MTC 
Ligaments 

28.8 264, 0.4 
Mkandawire et al., 2005; 
Seigler et al., 1988 

Interosseous 
(Lisfranc) Ligament 

68.6 264, 0.4 
Kura et al., 2001; Seigler 
et al., 1988 

First MTP 
Ligaments 

12.6 264, 0.4 
Dietrich et al., 2015; 
Seigler et al., 1988 

Deep Transverse 
Ligament 

64.5 264, 0.4 
Mkandawire et al., 2005; 
Seigler et al., 1988  

Second MTP 
Ligaments 

8 264, 0.4 
Deland et al., 1995; 
Seigler et al., 1988 

MTC, metatarsocuneiform; MTP, metatarsophalangeal; 

Model boundary and loading conditions replicated the quasi-static activity performed 

during the experimental testing, detailed in section 6.3.2. Nodes proximal to the 

cuneiform and second metatarsal were free to rotate in the sagittal plane and 

constrained in all other DOF, according to the mechanical boundaries prescribed 

experimentally. The nodes of the first metatarsal, hallux, sesamoids, and second toe 

were free to move in all 6 DOF. The proximal surfaces of the medial band of the plantar 

fascia were constrained to a sagittal translation such that their displacement emulated 

the path of insertion into the calcaneus. These loading parameters matched the 

cadaveric testing protocol and ensured that both the experimental and FE results were 

obtained during a state of static-equilibrium, over the same time-period, and under the 

same boundary and loading conditions.  

Frictionless surface-to-surface contact was defined for the articulations which formed 

the first MTP, lateral and medial metatarsosesamoid (MTS), second MTP, and first 

MTC joints. Contact between these surfaces was enforced using a “Hard” Penalty 

method. The interphalangeal articulations of the hallux and second toe were not 

included in the model, where the opposing nodes were tied together to form rigid 

bodies. The bone-cartilage and bone-fascia interfaces were also tied to represent the 
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osteochondral transition from soft tissue to bone. All analyses were computed using 

Abaqus 6.14-1. 

Table 21. Mesh sensitivity analyses showing the resultant percentage change in the proximal phalanx 

base cartilage of the first MTP joint and metatarsal base cartilage of the first MTC joint (planus condition) 

for peak contact pressure, peak von Mises, and peak maximum principal stress from increasing mesh 

densities. 

  
Mesh Size 

First MTP Joint  First MTC Joint 

Value 
Percentage 
Change (%) 

 
Value 

Percentage 
Change (%) 

Contact Pressure (MPa) 
0.1 mm 7.5 -  4.4 - 
0.3 mm 7.6 1  4.6 4 
0.5 mm 7.7 2  4.6 4 
0.7 mm 7.9 6  4.7 7 
1.0 mm 8.0 6  4.7 7 
    
von Mises Stress (MPa) 
0.1 mm 8.6 -  4.0 - 
0.3 mm 9.0 4  4.1 2 
0.5 mm 9.0 4  4.4 11 
0.7 mm 9.3 7  4.7 17 
1.0 mm 9.4 8  4.7 17 
    
Max. Principal Stress (MPa) 
0.1 mm 6.2 -  3.9 - 
0.3 mm 6.8 8  4.2 8 
0.5 mm 6.8 9  4.4 11 
0.7 mm 7.0 12  4.4 11 
1.0 mm 6.9 11  4.3 10 
      
Mean Percentage Change (%)   
0.3 mm 4 ± 4  5 ± 3 
0.5 mm 5 ± 4  9 ± 3 
0.7 mm 8 ± 3  11 ± 5 
1.0 mm 8 ± 2  11 ± 5 

MTP, metatarsophalangeal; MTC, metatarsocuneiform  

 

6.3.5 Mesh Convergence 

Mesh convergence analyses were performed to determine the effects on FE model 

joint contact mechanics (Table 21). The mesh convergence identified the appropriate 

number of elements to achieve converged predictions within a 10% change of contact 

pressure, von Mises, and maximum principal stress. For these variables, the optimum 

mesh density for first MTP and first MTC joint cartilages was 0.5 mm. This density 
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obtained a mean 5% ± 4% change from 0.1 mm for the first MTP joint while the first 

MTC joint exhibited a mean 9% ± 3% change. 

 

6.3.6 Calibration and Verification 

The physical measurements of first MTP and MTC joint contact were compared to the 

computational measurements to provide a verification framework. Model outcomes 

included peak contact pressure, contact force, and contact area. These variables were 

extracted from Abaqus and compared to measurements from the K-Scan 6900 sensor.  

 

6.4 Results 

 

6.4.1 Calibration  

The calibration procedure explored trends in contact pressure, contact force, and 

contact area for the first MTP and first MTC joint articular cartilages for both the planus 

and rectus simulations (Figure 37A-F). The articular cartilage was calibrated 

representing the lower (10 MPa), middle (15 MPa), and upper (20 MPa) bounds of 

human ankle cartilage compressive modulus (Shepard & Seedhom, 1999). Calibration 

of the cartilage Young’s modulus resulted in a 7% ± 6% change in peak contact force, 

28% ± 5% change in peak contact pressure, and 15% ± 11% change in contact area. 

A modulus of 10 MPa was found to be most appropriate for the first MTP joint while 

20 MPa was most appropriate for the first MTC joint. 
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Figure 37A-F. Calibration outcomes of the FE model cartilage Young’s modulus. The graph shows the 

change in contact variables by increasing cartilage elastic moduli from 10-20 MPa, compared to the 

TekScan measurements.  

0

20

40

60

80

100

120

140

Planus Rectus

A
x
is

 T
it
le

First MTC Contact Area

TekScan 10 MPa 15 MPa 20 MPa

0

2

4

6

8

10

Planus Rectus

C
o
n
ta

c
t 
P

re
s
s
u
re

 (
M

P
a
)

A. First MTP Contact Pressure

0

50

100

150

200

250

Planus Rectus

C
o
n
ta

c
t 
F

o
rc

e
 (

N
)

C. First MTP Contact Force

0

20

40

60

80

100

120

140

Planus Rectus

C
o
n
ta

c
t 
A

re
a
 (

m
m

2
)

E. First MTP Contact Area

0

2

4

6

8

10

Planus Rectus

C
o
n
ta

c
t 
P

re
s
s
u
re

 (
M

P
a
)

B. First MTC Contact Pressure

0

50

100

150

200

250

Planus Rectus

C
o
n
ta

c
t 
F

o
rc

e
 (

N
)

D. First MTC Contact Force

0

20

40

60

80

100

120

140

Planus Rectus

C
o
n
ta

c
t 
A

re
a
 (

m
m

2
)

F. First MTC Contact Area



 

111 

 

Table 22. Full-scale differences between the experimentally measured and FE predicted contact 

pressure, contact force, and contact area, for the planus and rectus models, during quasi-static loading.  

Parameters Planus   Rectus   Mean 

EXP FE % Diff  EXP FE % Diff  % Diff 

First MTP Joint (10 MPa)          

 Contact Pressure (MPa) 5.9 7.7 26  4.2 5.2 21  24 

 Contact Force (N) 198.8 211 6  196.8 200 2  4 

 Contact Area (mm2) 103 63 48  129 94 31  40 

           

First MTC Joint (20 MPa)          

 Contact Pressure (MPa) 4.7 4.6 2  3.3 2.1 44  24 

 Contact Force (N) 165.4 200 19  77.5 81 4  12 

 Contact Area (mm2) 79 88 11  55 72 27  19 

EXP, experimental; FE, finite element; % Diff, percent difference; MTP, metatarsophalangeal; MTC, 

metatarsocuneiform. 

 

6.4.2 Contact Pressure 

Experimental peak contact pressures were decreased in the first MTP and first MTC 

joints from the planus to rectus conditions. While the absolute error remained <30% 

for most predictions, the rectus first MTC joint presented a 44% error (Table 22). 

Despite this finding, model predicted first MTC joint contact pressure showed 

agreement with experimental data in trend (Figure 37A-F). The experimental and 

model pressure distributions are shown in Figures 38. 

 

6.4.3 Contact Force 

When comparing model contact forces to the experimental measurements, the planus 

and rectus conditions had average errors of 12% ± 9% and 3% ± 2%, respectively 

(Table 22). The predicted reduction in first MTP and first MTC joint contact forces, from 

the planus to rectus conditions, were consistent with the trends demonstrated during 

experimental testing. 
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Figure 38. TekScan-measured and finite element-predicted contact pressure distributions shown at the 

proximal phalanx base (first metatarsophalangeal joint) and first metatarsal base (first 

metatarsocuneiform joint) for simulations of pes planus ad pes rectus arch-alignments. 
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6.4.4 Contact Area 

First MTP joint contact area increased, from the planus to rectus condition, for both 

the experiment and model. However, the first MTP joint demonstrated a mean 

difference of 40% ± 12%. The first MTC joint exhibited a trend toward decreased 

contact area between planus and rectus conditions for the experiment and model, with 

a mean difference of 19% ± 11% (Table 22). 

 

6.5 Discussion 

Computational models can serve as effective tools in parametric analyses of 

musculoskeletal loading as well as indicate mechanisms of soft tissue failure. 

However, due to the complexity and time required to develop such models, their 

assumptions and anatomical detail are dependent on the research motivation and 

application. Many prior models of the foot have not included sufficient anatomical detail 

of the forefoot (Gefen A, 2002; Cheung et al., 2005; Budhabhatti et al., 2007; Flavin et 

al., 2008; Wong et al., 2014; Akrami et al., 2018; Peng et al., 2021) to explore cartilage 

mechanics of the first MTP and first MTC joints, which are common sites of 

orthopaedic disorders (Van Saase et al., 1989; Cacace et al., 103; Menz et al., 2015). 

The motivation for this study was to develop a reliable computational tool that could 

be used to predict physiological loading of the medial forefoot in planus and rectus 

foot types. To this aim, the model was successful in predicting trends and magnitudes 

of foot-type specific first MTP and first MTC joint contact forces and pressures, defined 

as less than 30% error of the experimental measurements.  

Substantial uncertainty may be present when predicting joint contact mechanics, 

especially with consideration to the manual reconstruction of 3D geometries and the 

assignment of soft-tissue material properties. In the present study, calibration and 

verification of the FE model against cadaveric data acted to reinforce its accuracy 

where peak experimental contact forces were matched by the FE model across foot 

type, in both trend and magnitude, with an average difference of 8% ± 8%. However, 

TekScan pressure sensors have been found to affect joint congruence and alter joint 

mechanics (Anderson et al., 2008; Beidokhti et al., 2017). According to Wu et al., 
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measured joint contact pressures may contain errors between 14-28% (Wu et al., 

1998) and for this reason, the present limit of verification was considered less than 

30%. Mean errors for first MTP and first MTC joint contact pressures and contact 

forces were within 24% of the experimental data but exceeded 30% for first MTP joint 

contact area. TekScan pressure sensors are approximately, 0.2 mm thick and 

intracapsular insertion of the pressure film likely disturbed the natural pattern of 

articular contact (Wu et al., 1998; Jansson et al., 2013). Drewniak et al., reported that 

TekScan measurements were increased by smaller surface contact areas (Drewniak 

et al., 2007) and hence, the higher relative error for predicted first MTP joint contact 

area may have resulted from its small concave surface, compared to larger, more 

frequently studies joints.  

It is generally accepted that foot structure and function are related (Ledoux & Hillstrom, 

2002; Hillstrom et al., 2013; Buldt et al., 2015; Buldt et al., 2018), where the planus 

foot exhibits higher plantar loads beneath the second metatarsal and hallux (Ledoux 

& Hillstrom, 2002; Hillstrom et al., 2013; Buldt et al., 2018; Chapter 5). These structural 

and functional characteristics of the planus foot have been theorised to initiate 

degenerative changes in the first MTP joint (Zammit et al., 2008; Cacace et al., 2013; 

Menz et al., 2015). To date, the literature has not explored medial forefoot contact 

mechanics in the presence of foot type. In the current study, simulations of pes planus 

and rectus revealed that medial forefoot joint contact mechanics may be dependent 

upon foot type. The cadaver model utilised a simplified set of quasi-static loads during 

a single phase of midstance. The flexor hallucis longus and brevis tendons were not 

included because static equilibrium was achieved from tension in the plantar fascia. 

This suggested the passive effect from the Windlass mechanism was sufficient to 

counteract plantar loads at the hallux and metatarsals. The medial band of the plantar 

fascia has been shown to be critical for transmission of forces to the forefoot (Sharkey 

et al., 1998; Erdermir et al., 2004). While the simulated GRF’s of the first metatarsal 

and hallux were vertical, a large horizontal load was present from the line-of-action of 

the medial band of the plantar fascia. To achieve static equilibrium in the planus model, 

greater tension in the plantar fascia was required to resist the combined effects of a 

lower first metatarsal declination angle and increased hallucial loading. These 

structural and functional characteristics of the planus foot promoted increased first 

MTP and MTC joint contact forces and pressures. From a biomechanical perspective, 
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aberrant contact mechanics resulting from pes planus may provide insight into why 

this foot type is more affected by degenerative changes at the first MTP joint. However, 

further investigation of full-scale loading across different timepoints of gait, which will 

be explored in the next chapter, is required to fully understand these implications.  

Cartilage Young’s modulus, E and Poisson’s ratio, v were derived from the literature 

(Shepard & Seedhom, 1999). However, calibration of the Young’s modulus was 

performed to optimise the quality of predicted contact mechanics. Thus, a range of 

values were chosen to span the instantaneous compressive modulus of articular 

cartilage (Shepared & Seedhom, 1999) and found to influence joint-specific contact 

forces, pressures, and areas. While predictions of peak contact force were not overly 

sensitive to cartilage modulus, changes in peak contact pressures and contact areas 

of 28% ± 5% and 15% ± 11% occurred, respectively, from calibration. There have 

been few prior studies which evaluated the properties of articular cartilage in the 

forefoot (Liu et al., 1997; Athanasiou et al., 1998). Articular cartilage of the first MTP 

joint may be thicker and larger than the first MTC joint but exhibit a lower compressive 

modulus (Liu et al., 1997). These observations from the literature supported the 

present calibrations of first MTC and first MTP joint cartilage moduli. Previous studies 

have suggested that regional variations in cartilage properties result from adaptation 

to loading, where modulus may be proportional to loadbearing. In contrast to this 

theory, greater magnitudes of contact force and pressure were found for the first MTP 

joint; a finding which may provide insight into the frequency of degenerative changes 

at this site in the foot and ankle (Van Saase et al., 1989; Morgan et al., 2019) 

A neo-Hookean constitutive model was used to represent the mechanical properties 

of articular cartilage in the present work. Henak et al. (Henak et al., 2014) investigated 

the effects of neo-Hookean versus Veronda Westmann hyperelastic constitutive 

models on predictions of contact stress, strain, and area in articular cartilage of the 

hip. They found that the results were “indistinguishable” between cartilage 

representation and advocated that a neo-Hookean constitutive model was sufficient to 

provide predictions of articular cartilage contact mechanics. While cartilage material 

behaviour is time- and rate-dependent, nearly incompressible elastic constitutive 

parameters, such as those used in the present study, are appropriate under fast 

loading rates which replicate physiological loading. Ateshian et al., found an equivalent 
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response between biphasic and incompressible elastic constitutive models of cartilage 

over short-term loading (≤0.5 seconds) (Ateshian et al., 2007). Furthermore, a recent 

study of the hip found minor differences in the predictive outputs between isotropic 

elastic and anisotropic biphasic constitutive models of cartilage. Therefore, it may be 

concluded that the isotropic, hyperelastic representation of articular cartilage used in 

the current work can provide meaningful results without loss of accuracy and greater 

computational efficiency (Todd et al., 2018).  

 

6.5.1 Limitations 

Only one FE model was developed. The bundles of 1D tension-only connectors which 

represented the ligaments were a necessary assumption to idealise their functional 

contributions. The resolution of our imaging protocol coupled with the small size of the 

forefoot ligaments meant that accurate segmentation of these structures was not 

feasible. The assumptions associated with the position and insertion sites of each 

ligament may have contributed to predictive errors (Beidokhti et al., 2017). Although 

individual muscles were not represented in the model, the study aim was to determine 

the accuracy of geometric reconstruction and cartilage properties. Hence, the 

muscular forces were not necessary to obtain verification metrics for the model. 

Cartilage is known to exhibit biphasic behaviour (Ateshian et al., 2007; Todd et al., 

2018) where the present model may not account for variables such as fluid pressure. 

Finally, the FE model represented a reduced anatomical model of the foot (first and 

second rays). It is possible that further discrepancies occurred due to the simplified 

geometry, yet the predicted results were consistent with corresponding in vitro data. 

Thus, the modelling protocol provided accurate and robust predictions of magnitudes 

and trends of the experimental data. While the simplified anatomical geometry must 

be considered a limitation, the complexity of the overall development process and 

computational time required to perform the analyses were subsequently reduced as a 

result.  
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6.6 Conclusion 

In summary, the present method for specimen-specific FE modelling of the medial 

forefoot, simulating planus and rectus foot types, produced accurate predictions of 

magnitudes and trends in first MTP and first MTC joint contact mechanics. Calibration 

of first MTP and MTC joint cartilage material properties were vital in obtaining best-fit 

data to intracapsular pressure sensor measurements. The results from calibration 

were consistent with prior experimental observations of regional differences in 

cartilage moduli. This verified FE model offers a platform to investigate understudied 

disorders and surgical techniques of the medial forefoot and provides a basis for the 

creation of a larger dataset. In the next chapter, the verified FE model will be further 

validated and used to simulate physiologically realistic loading of the medial forefoot 

to understand the role of hypermobility in contact mechanics of the first ray. 
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Chapter 7. Finite Element Prediction of Cartilage 

Contact Mechanics in the Hypermobile First Ray 

 

7.1 Chapter Overview 

This chapter describes the prediction of cartilage contact mechanics in the planus foot 

with first ray hypermobility. The study integrated the plantar force parameters of 

hypermobile planus and non-hypermobile rectus subjects, measured in Chapter 5, 

with the verified FE model from Chapter 6. Simulations of late stance phase during 

gait were conducted, utilising foot type-specific plantar fascia (Erdemir et al., 2004) 

and muscle (Murley et al, 2009; Aubin et al., 2012) forces obtained from the literature. 

The overarching goal of this final study was to elucidate the potential for elevated 

cartilage stress in the first MTP joint of planus individuals with first ray hypermobility, 

as a potential pathway to hallux rigidus. 

Aim 6: Predict the effects of first ray hypermobility on medial forefoot cartilage 

contact mechanics during stance phase of gait. 

Hypothesis 6: First MTP and MTC joint stress will be higher in the presence of first ray 

hypermobility. 

 

7.2 Introduction 

A higher odds-ratio of developing hallux rigidus has been reported among individuals 

with the planus foot type (Menz et al., 2015). In Chapter 3 of this thesis, a younger 

subset of patients presenting with hallux rigidus were identified, which may be 

indicative of aberrant medial forefoot biomechanics. Furthermore, an interaction 

between the planus foot type and first ray hypermobility was identified, in Chapter 5, 

as a potential cause of increased first MTP joint flexibility and hallucial plantar loading. 

In hypermobile feet, abnormal biomechanics affecting the first ray’s kinetic chain may 
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be an etiological factor in hallux rigidus; a theory supported by several other 

investigators (Jack E, 1940; Roukis et al., 1996; Murley et al., 2009; Menz et al., 2015; 

Golightly et al., 2018). However, analysis of pathologic joint contact mechanics can be 

difficult to investigate in vivo. Finite element modelling may generate functional 

information of cartilage failure modes including excessive shear and tensile stress 

(Sasazaki et al., 2006). Golightly et al., (Golightly et al., 2018) postulated that repetitive 

trauma to first MTP joint articular cartilage, from first ray hypermobility due to altered 

kinematics and increased joint stress, may predispose an individual to degenerative 

changes. To date, the biomechanical implications of first ray hypermobility are 

unknown. Therefore, the purpose of this study was to: (1) validate the FE model 

described in Chapter 6 for simulations of hypermobile planus and non-hypermobile 

rectus foot types during late stance, and; (2) examine first MTP, first MTC, and second 

MTP joint stress in the presence of first ray hypermobility. The quasi-static simulations 

were driven with foot-type specific physiological plantar loading and muscular forces 

obtained from Chapter 5 and the literature, respectively. Validation was assessed 

through comparisons of FE model first MTP joint kinematics with foot type-specific in 

vivo data (Buldt et al., 2015). Kinematic errors within 10% of the in vivo data were 

considered valid.  

  

7.3 Materials and Methods 

The geometry reconstruction, mesh generation, choice of constitutive parameters, 

boundary conditions, calibration, and verification for the FE model were detailed in 

Chapter 6. The PL, FHL, FDL, EHL, and EDL tendons were added to the model for 

physiological simulation of muscle forces during gait. The properties of each tendon 

are shown in Table 23. Each tendon was modelled as a linear elastic 1D tension-only 

connector element (T3D2) (Figure 39). Insertion sites and positions were based upon 

guidance from the foot and ankle surgeons involved in this study, (Scott J Ellis, MD 

and Jonathan T Deland III, MD) in addition to anatomic diagrams and literature 

descriptions.  
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Table 23. Properties of the medial forefoot tendons.  

Tendon 
Cross-sectional 
area (mm2) 

Young’s modulus (E 
(MPa)), Poisson’s ratio (v) 

Reference 

Peroneus Longus 16.6 227, 0.3 

Morales-Orcajo et al., 
2016 

Flexor Hallucis 
Longus 

15.7 440, 0.3 

Flexor Digitorum 
Longus 

4.9 337, 0.3 

Extensor Hallucis 
Longus 

8.5 448, 0.3 

Extensor Digitorum 
Longus 

4.8 395, 0.3 

 

 

Figure 39. Tendon positions within the Abaqus medial forefoot FE model. The 2D connectors used to 

idealise the tendons are highlighted in red. Ext, extensor; Fl, flexor. 

Ext. Digitorum Longus 

Ext. Hallucis Longus 
Peroneus Longus 

(Metatarsal Insertion) 

Peroneus Longus 

(Cuneiform Insertion) 

Fl. Hallucis Longus 
Fl. Digitorum Longus 
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Figure 40A-G. (A) Sagittal kinematics of planus and rectus feet (adapted from Buldt et al., 2015) used 

to define the angles of the first and second MTP joints during stance; (B) muscle (adapted from Aubin 

et al., 2012) and; (C) plantar fascia forces (adapted from Erdemir et al., 2004) used to drive the model. 

Plantar forces (N) derived from the planus and rectus subjects in vivo (Chapter 5), for the (D) hallux; 

(E) second toe; (F) first metatarsal head, and; (G) second metatarsal head. 
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Table 24. The percentage of force applied to the plantar fascia were determined by the subject-specific 

percentage of loads beneath each toe, relative to the total forefoot load at 70%, 80%, and 90% of 

stance. 

  Phase of Stance       

  70%   80%   90%  

  Ray 1 Ray 2  Ray 1 Ray 2  Ray 1 Ray 2 

Planus 
(%) 22.9 18.9  25.9 25.6  26.5 37.9 

(N) 122.1 100.0  184.1 182.0  90.4 129.3 

Rectus 
(%) 23.4 13.9  26.3 20.0  25.7 30.0 

(N) 132.5 78.7  198.5 151.0  93.1 108.7 

 

 

7.3.1 Simulation of First Ray Hypermobility 

The model simulations explored three loading scenarios: 70%, 80%, and 90% of the 

stance phase of gait. These components corresponded to the peak plantar forces in 

the medial forefoot and peak loading of the PL (Figure 40A-G). Two subjects of similar 

heights and weights were selected for the hypermobile planus and non-hypermobile 

rectus conditions. The hypermobile planus subject (AHIstanding, 0.312) was male, 27 

years old, 72.6 kg, 185.4 cm tall, and exhibited a first ray mobility of 10 mm. The non-

hypermobile rectus subject (AHIstanding, 0.353) was also male, 26 years old, 77.1 kg, 

182.9 cm tall, and exhibited a first ray mobility of 2 mm. The sagittal angles of the first 

and second rays at each phase of stance, for the planus and rectus simulations, were 

based on in vivo kinematics data from the literature (Buldt et al., 2015) (Figure 40A). 

Muscle forces for the PL, FHL, EHL, FDL, and EDL were selected from cadaveric 

simulator data (Aubin et al., 2012) (Figure 40B). Subject-specific plantar loading 

parameters of the planus and rectus feet, measured in Chapter 5, were utilised. Forces 

averaged across five walking trials were used. Simulation of first ray hypermobility in 

the planus foot was defined by a reduction in PL force by 13.7%, as reported by Murley 

et al (2009). Force parameters for the plantar fascia were derived from cadaveric 

assessments in the literature and scaled to the weight of each subject (Erdemir et al., 

2004) (Figure 40C). The percentage of force applied to the plantar fascia were 

determined by the subject-specific percentage of loads beneath each toe, relative to 

the total forefoot load at 70%, 80%, and 90% of stance (Table 24). The increased 
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passive tension that occurs in the plantar fascia of the planus hypermobile individual 

was represented by adding an initial strain of 5%.  

 

7.3.2 Kinematic Validation 

Kinematic accuracy of the FE model was assessed in comparison to an in vivo study 

which incorporated np = 30 planus and nr = 37 rectus subjects (Buldt et al., 2015). In 

vivo measurements of first MTP joint frontal and transverse rotations for the planus 

and rectus foot types were compared to the FE predictions to provide a kinematic 

validation.  

 

7.3.3 Contact Mechanics  

Contact areas and forces were calculated at the articulating surfaces of each joint as 

absolute values. Peak values for von Mises and maximum principal stress were 

calculated at the articular and osteochondral Interfaces of the first and second MTP 

joints, and first MTC joint. The von Mises magnitudes were selected to account for the 

von Mises failure criterion, which may be applied to predict the failure limit of a material 

undergoing high shear stress. Maximum principal stress was also selected to assess 

tensile stress in the cartilage tissue.  

 

7.4 Results    

 

7.4.1 Kinematic Validation 

The in vivo first MTP joint angle had a mean difference in the transverse plane of 10% 

for the planus simulation and 7% for the rectus simulation. The mean difference of the 

frontal plane first MTP joint angle was 4% and 6% for the planus and rectus models, 

respectively (Figure 41A-B). 
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Figure 41A-B. (A) frontal and (B) transverse angles of the first MTP joint. Mean in vivo data (Buldt et 

al., 2015) compared with predicted FE results. In vivo results are denoted by solid blocks while FE 

outcomes are shown with striped blocks of the same colour. These results represent a kinematic 

validation of the computational model for simulated late stance. 

 

7.4.2 Contact Forces 

The mean and SD of contact force can be seen graphically in Figure 42. These results 

indicated minimal differences in the magnitudes of contact forces between foot type. 

The first MTP joint was predicted to have the highest compressive forces, peaking at 

80% of stance. Compressive force in the first MTP joint was ~16% higher than the first 

MTC joint and ~41% higher than the second MTP joint. Shear forces in the SI 

directions were greatest in the first MTC joint by ~122% compared to the first MTP 

joint and ~117% compared to the second MTP joint. Peak SI shear force occurred at 

80% of stance. There were no substantial differences in ML forces for any of the joints 

across foot type. The first MTC joint underwent medially directed shear forces while 

the first and second MTP joints demonstrated laterally oriented shear forces.  
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Figure 42. Means and SD of predicted contact forces for each of the three joints across the planus and 

rectus foot types. 

 

7.4.3 Contact Areas 

The mean and SD of contact areas can be seen in Figure 43. The trend in contact 

area was relative to joint size where the first MTC joint exhibited the greatest area of 

contact and the second MTP joint had the smallest. The data did not indicate 

substantial differences in the contact areas between foot type. 

 

Figure 43. Means and SD of predicted contact area across the planus and rectus foot types. 
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7.4.4 von Mises and Maximum Principal Stress 

Images of von Mises stress distributions at the articular interface of the first metatarsal 

head cartilage are shown in Figure 44. The mean and SD of von Mises and maximum 

principal stress can be seen graphically in Figure 45A-F. In the first MTC joint, peak 

stress at the articular and osteochondral interfaces occurred at 90% of stance. Peak 

von Mises stress in the first MTC joint cartilage was found to be higher in the rectus 

than planus foot, by ~8%, at the articular and osteochondral interfaces. The opposite 

trend was observed for maximum principal stress, where the first MTC joint of the 

planus foot exhibited higher stress at the articular and osteochondral interfaces. 

 

Figure 44. Predicted von Mises stress distributions at the articular surface of the first metatarsal 

head. The FE images are separated by planus and rectus simulations across late stance. 
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Figure 45A-F. Graphs showing predicted mean von Mises and mean maximum principal stress 

distributions in the first MTC joint (A-B); first MTP joint (C-D), and; second MTP joint (E-F). The 

stress distributions were computed at the articular and osteochondral interfaces of cartilage.  
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The highest von Mises stress in the first MTP joint was predicted to occur during 80% 

of stance, at the osteochondral interface of the planus foot. This magnitude was ~39% 

higher for the planus compared to rectus simulation and reached 6.5 MPa. At the 

articular interface, peak von Mises stress was ~66% greater in the rectus foot yet this 

magnitude did not exceed 5 MPa. Peak maximum principal stress at the osteochondral 

interface was ~13% higher in the rectus compared to planus foot. Different stress 

patterns were observed at the articular surface of the first metatarsal head, between 

foot type, but were distributed at the dorsal aspect of the joint for both simulations 

(Figure 44). 

Peak von Mises stress in the second MTP joint occurred at 70% of stance for the 

planus foot and 90% of stance for the rectus foot. The greatest magnitudes were 

observed at the osteochondral interface of the second metatarsal head for each foot 

type. In the planus compared to rectus foot, peak von Mises stress at the 

osteochondral interface was ~5% higher while peak maximum principal stress was 

~14% higher. For the articular interface, these differences were smaller; peak von 

Mises stress was ~6% and peak maximum principal stress was ~13% higher in the 

planus than rectus foot.  

 

7.5 Discussion   

The majority of clinical and basic-science research of OA has concentrated on the 

hand, hip, and knee (Roddy & Menz 2018). Despite a lack of focus, the first MTP joint 

has been identified as the most common site of OA in the foot and ankle (manifesting 

as hallux rigidus) (Van Saase et al., 1989; Roddy & Menz, 2018; Morgan et al., 2019). 

Many possible causative factors have been rejected due to a lack of convincing 

evidence (Bremner et al., 1968; Roukis et al., 1996; Bouachia et al., 2010; Nguyen et 

al., 2010; Roddy et al., 2015) and yet the role of first ray hypermobility in abnormal 

and potentially harmful pedal mechanics remains enigmatic (Morton DJ, 1935; King & 

Toolan, 2004). In the present study, the verified FE model, described in Chapter 6 of 

this thesis, was further validated to provide a computational tool for the evaluation of 

first MTP and first MTC joint contact mechanics in the presence of first ray 

hypermobility. Prior computational studies which have simulated pes planus (Wong et 
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al., 2018) or first ray hypermobility (Wong et al., 2014) did not account for differences 

in foot-type specific plantar loading or the relationship between foot type and first ray 

mobility. Furthermore, to the authors knowledge, this was the first study to investigate 

the role of first ray hypermobility in contact mechanics of the articular cartilage. The 

FE simulations of planus and rectus foot types successfully matched in vivo first MTP 

joint kinematics, demonstrating errors within 10% of the population-based data 

reported by Buldt et al. (2015). The hypermobile planus foot was predicted to increase 

first MTP joint stress by ~39% which, at a magnitude of 6.5 MPa, was within the upper 

bound of a proposed 5-7 MPa failure limit of cartilage (Sasazaki et al., 2006; 

Venäläinen et al., 2016). Microtrauma to the first MTP joint’s articular soft tissues, after 

repetitive excessive loading from first ray hypermobility on a daily basis, may initiate 

degenerative changes and cartilage matrix breakdown. The significance of this finding 

rests with its potential to reveal first ray hypermobility as an etiological factor in hallux 

rigidus onset and progression.  

The present study focused on late stance phase since peak plantar loading has been 

shown to occur in the medial forefoot, at this timepoint of gait, when the PL is 

maximally loaded (Murley et al., 2009). It is clear from the literature that the PL plays 

an important role in stabilising the first ray (Duchenne GB, 1949; Johnson and 

Christensen, 1999; Kokubo et al., 2012) and exhibits reduced activity in the planus 

foot type (Murley et al., 2009). Duchenne suggested that without the PL to counteract 

the TA, the first ray would elevate upon weightbearing gait (Duchenne GB, 1949). 

Cadaveric studies have shown the PL may contribute to stabilising and “locking” the 

first metatarsal against the medial cuneiform, causing the first ray to evert and 

plantarflex (Johnson and Christensen, 1999).  The sagittal plane effects of the PL may 

assist the windlass mechanism during gait, enhancing dorsiflexion of the first MTP 

joint. Balanced forces in the PL, TA, FHL, and EHL likely provides equilibrium in the 

structure of the first ray during single limb support. As predicted in the present study, 

loss of PL strength in the planus foot, and commensurate first ray hypermobility, may 

affect the kinetic chain of the first ray and alter the pattern and magnitude of first MTP 

joint articular contact. 

Quantifying foot type-specific joint contact mechanics of the medial forefoot serves not 

only to describe normal biomechanics but also further understanding of the 

https://www.nature.com/articles/srep37538#auth-1
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relationship between foot structure and function. While it has been demonstrated that 

the planus foot type exhibits greater incidence of hallux rigidus (Menz et al., 2015), the 

relationship between foot type and cartilage contact mechanics has not been explored 

in the literature. Comparing data for hypermobile planus and non-hypermobile rectus 

foot types could help to elucidate the roles foot structure and function play in 

determining aberrant first MTP and first MTC joint mechanics. Pathologic examination 

of hallux rigidus has shown chondral defects to frequently occur at the dorsal apex of 

the dome of the first metatarsal head and adjacent to the dorsal lip of the base of the 

proximal phalanx (McMaster, M.J., 1978). The present simulations demonstrated focal 

areas of stress at the dorsal aspect of first metatarsal head cartilage in the hypermobile 

planus simulation. Furthermore, peak first MTP joint stress occurred at the 

osteochondral interface of the first metatarsal head, which would suggest that 

degenerative changes may be initiated at the chondral surface. Several investigators 

have found chondral surface damage to be present in the early stages of cartilage 

injury mechanisms (Hughston et al. 1984; Schenck et al., 1994; Flachsman et al., 

1995; Messner and Maletius, 1996; McCarty and Lee, 2002; Brown et al., 1991; 

Guettler et al., 2004; Tannast et al., 2008). Increased stress at the first MTP joint in 

the hypermobile planus simulation may be the effect of decreased plantar load 

beneath the first metatarsal head and increased load beneath the hallux. A higher 

flexion moment arm between the hallucial load and first MTP joint likely produced focal 

areas of articular contact, exposing the first MTP joint to higher magnitudes of tensile 

and shear stress. While the current data may provide a biomechanical explanation for 

first ray hypermobility as a potential pathway to onset and development of hallux 

rigidus, future research with a longitudinal dataset is required.  

In the previous chapter, the moduli of first MTP and first MTC joint cartilage were best 

fit to the lowest range (10 MPa) and highest range (20 MPa) of experimentally tested 

human cadavera, respectively (Shepared & Seedhom, 1999). These differences 

should indicate the mechanical environment and functional requirements of each joint, 

where a low weightbearing region would exhibit a compressive modulus less than that 

of a high weightbearing region. In contrast to this theory, the first MTP and first MTC 

joints were predicted to undergo similar magnitudes of contact force. It is unclear why 

the first MTC joint exhibits a lower prevalence of OA compared to the first MTP joint. 

Therefore, it may be the combination of a low compressive modulus and increased 
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stress from first ray hypermobility that renders the first MTP joint to more susceptible 

to OA. 

In a Dutch population, Van Saase et al., (1989) found 34.3% of men and 48.4% of 

women exhibited symptoms of hallux rigidus at 60 years of age, which was the highest 

prevalence of any joint in the foot and ankle. Additionally, within the same age-group, 

they observed 5.6% of men and 5.9% of woman presented with first MTC joint OA 

while 6.2% of men and 22.6% of women were affected by OA of the lesser MTP joints 

(second-fifth). In the present study, second MTP joint stress exceeded both the first 

MTC and first MTP joints, in both the planus and rectus foot types. Although high stress 

was present in the second MTP joint, this region is uncommon for developing OA. The 

explanation remains enigmatic. Future research exploring the mechanical properties 

of second MTP joint cartilage may be useful in understanding this phenomena. 

 

7.5.1 Limitations 

Some assumptions and limitations in the modelling process must be considered when 

interpreting the present results. First, cartilage was assumed to be isotropic, nearly 

incompressible and hyperelastic. While cartilage exhibits biphasic properties, 

computational predictions of stress are equivalent for nearly incompressible and 

hyperelastic and biphasic constitutive models during instantaneous loading (Ateshian 

et al., 2007; Todd et al., 2018). Second, sagittal joint angles and muscle forces used 

to drive the model were derived from the literature. Decreased loading of the PL in pes 

planus was assumed from in vivo EMG research. Furthermore, increased initial strain 

in the plantar fascia of pes planus was based on theoretical maximal elongation and 

reduced elasticity of its structure. Thirdly, the same specimen was used to simulate 

pes planus and pes rectus. Morphological differences in bone exist between foot types 

in addition to declination of the medial longitudinal arch (Moore et al, 2019). Fourthly, 

the current work utilised a quasi-static model which did not account for mass or 

acceleration during gait. However, since the cartilage was not modelled with a biphasic 

constitutive relationship, across cyclical loading, this may be considered reasonable. 

Finally, perhaps the fundamental limitation of this work was the utilisation of a single 

specimen which did not reflect the diverse geometries, material properties, and loading 
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conditions of different people. Commensurate changes to the joint kinetics and 

kinematics of an individual would lead to different contact mechanics. 

 

7.6 Conclusion 

This investigation may be considered significant by providing a biomechanical basis 

for first ray hypermobility as a potential etiologic factor in first MTP joint degeneration. 

Research in this area is particularly valuable since the first MTP joint exhibits high OA 

prevalence but is relatively understudied compared to the hand, hip, and knee 

(Chapter 3). The present work demonstrated that the interaction between first ray 

hypermobility and pes planus increased first MTP joint stress to a magnitude of 6.5 

MPa, which was within the upper bound of a proposed 5-7 MPa failure limit of cartilage 

(Sasazaki et al., 2006; Venäläinen et al., 2016). This finding highlights the potential 

for first ray hypermobility to initiate microtrauma at the first MTP joint’s articular soft 

tissues. More research is needed to fully understand the risk factors for OA 

development in the first MTP joint including a longitudinal dataset. However, the 

present study may act as a theoretical framework for the design of future research 

which addresses the biomechanics of first ray hypermobility and its relationship to 

hallux rigidus.  

 

 

 

 

 

 

 

 

https://www.nature.com/articles/srep37538#auth-1
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Chapter 8. Summary and Conclusions  

 

Four distinct but related concepts were explored to address current gaps in 

knowledge:  

1. Up-to-date population-based age- and sex-related trends in hallux rigidus.  

2. The design of a standardised and reliable device for assessment of first ray 

hypermobility, to facilitate robust clinical definition and investigation of related 

biomechanical parameters.  

3. Investigation of the relationships and differences between first ray hypermobility, 

foot type, foot structure, and foot function.  

4. Calibration, verification, and validation of a FE model to predict cartilage contact 

mechanics of the hypermobile first ray, as a mechanism of excessive first MTP joint 

loading and cartilage damage.  

 

This work provides evidence in several key areas for which there is limited or no data, 

including:  

1. Incidence of hallux rigidus in England is increasing at a rate similar to the hip and 

knee. Age-related data for hallux rigidus was bimodal with a peak in younger 

patients, compared to unimodal distributions for the knee and hip at 70 years-of-

age. This finding suggests an additional risk profile for hallux rigidus, other than 

wear and tear of the articular soft tissues in old age, which may be biomechanical 

in origin.  

2. A novel electromechanical device (MAP1st) designed for assessments of first ray 

mobility was found to be more reliable than the standard clinical exam and 

equivalent in reliability to predicate devices. This new device provides an 

advantage over predicate methods by performing measurements in different 

weightbearing conditions, foot alignments, and normalisation to foot length.  

3. Individuals with first ray hypermobility were predominantly planus in foot type. The 

first ray’s translational mobility plays an important role in foot structure and function, 
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influencing first MTP joint rotational laxity and directing a forward transfer of plantar 

load to the hallux. 

4. First ray hypermobility in the planus foot increased stress in first MTP joint cartilage 

which, at a magnitude of 6.5 MPa, was within the upper bound of a proposed 5-7 

MPa failure limit.  

The significance of these interlinked studies provides a foundation that first ray 

hypermobility as a possible etiological factor in hallux rigidus onset and progression. 

While this research does not identify a definitive relationship between first ray 

hypermobility and hallux rigidus, it offers a biomechanical basis for disease aetiology 

and provides the tools for future research on this subject.  

 

8.1 Contributions to Knowledge 

Each study resulted in novel information to support future research into the interaction 

between foot type biomechanics and first ray hypermobility as a potential pathway to 

hallux rigidus. The following section summarises the main contributions to knowledge 

from this thesis: 

1. The results from Chapter 3 supported acceptance hypothesis 1: hallux 

rigidus would demonstrate increased population prevalence over time and 

comparable incidence to OA of the hand, hip, and knee. Osteoarthritis of the 

foot has been neglected for many years in epidemiological research. Evidence of 

the sex ratios and age distributions are sparse compared to other frequently 

affected joints but hallux rigidus appears to be a common problem. Secondary care 

records for 3.1 million patients with OA in England, across 17 years, revealed 

statistically significant increases in the incidence rate of hallux rigidus which was 

similar to the hip and knee. Most interestingly, a peak in younger patients 

presenting with hallux rigidus may distinguish itself by biomechanical factors. 

Based on the findings from this thesis, these population-representative data 

provide a compelling basis for first ray hypermobility as a pathway to hallux rigidus 

in younger age. Nonetheless, further longitudinal research which utilises the tools 

developed in this thesis is required. 
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2. No standardised measurement for first ray mobility exists. Most methods have 

performed measurements in either nonweightbearing or partial weightbearing, with 

a fixed position of the foot. The design and reliability testing of a novel 

electromechanical device (MAP1st) was conducted, in Chapter 4, to address the 

limitations of prior methods. Several design features were built into MAP1st 

including, controlled application of load, measurement normalisation, assessments 

in partial- and full-weightbearing, and different foot alignments. The reliability of 

MAP1st was tested in comparison to a handheld ruler considered analogous of the 

standard clinical exam. The intra-rater reliability of MAP1st was >0.7, 

supporting acceptance of hypotheses 3a-b. Although inter-rater reliability of 

MAP1st was ~0.6 (<0.7) rejecting hypothesis 3c, it was superior to the standard 

clinical exam (~0.06). Based on these novel design features, a patent application 

was submitted.  

 

3. Many structural and functional abnormalities of the first ray have been linked to pes 

planus, in pursuit of explaining why this foot type is disproportionately affected by 

hallux rigidus. This was the first investigation to provide objective evidence of a link 

between the planus foot and first ray hypermobility. In Chapter 5, significantly 

higher first ray mobility was observed in the planus compared to rectus group, 

accounting for 71% of individuals with first ray hypermobility. No relationships were 

observed between first ray mobility vs. arch height index, arch height flexibility, and 

first MTP joint dorsiflexion, rejecting hypotheses 4a. Supporting acceptance of 

hypothesis 4b, planus individuals presented with significantly lower ratios 

of first-second metatarsal head PP and MF. Hypothesis 4c was rejected due to 

no significant differences in the ratios of first-second metatarsal plantar loading 

across subjects with normal vs. high levels of first ray mobility. However, 

significantly higher load beneath the hallux was observed for subjects with first ray 

hypermobility. Stepwise linear regression analyses found that first ray mobility was 

predictive of both MF beneath the first metatarsal and first MTP joint rotational 

laxity, providing evidence of first ray hypermobility’s role in abnormal structure and 

function of the medial forefoot.  

 

4. Cartilage stress plays a key role in the degradation of diarthrodial joint soft tissues. 

To predict these biomechanical effects from first ray hypermobility, a FE model of 
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the medial forefoot was calibrated, verified, and validated. The model predictions 

of contact forces and pressures were within 30% of intracapsular pressure 

sensor measurements, accepting hypothesis 5 and providing verification. In 

Supporting hypothesis 6, abnormal plantar and muscular loading resulted 

from the first ray hypermobility and was predicted to increase first MTP joint 

stress by ~39%. The magnitude of stress reached 6.5 MPa which was within 

previous reports of a 5-7 MPa failure limit of cartilage. Microtrauma to the first MTP 

joint’s articular soft tissues, in the hypermobile planus foot, may initiate 

degenerative changes resulting hallux rigidus. This segment of research may act 

as a theoretical framework for the design of future investigations which address the 

biomechanics of first ray hypermobility and its potential relationship to hallux 

rigidus.  

 

8.2 Clinical Relevance  

In light of the findings presented by this thesis, early detection of pathologic first ray 

function with MAP1st or similar devices could reduce the prescription of unnecessary 

surgical interventions and associated complications. Thus, considering the population 

prevalence and incidence rate of hallux rigidus, early prescription of conservative 

treatments for patients with first ray hypermobility may act to decrease the number of 

people seeking secondary-care services, contributing to a reduction in treatment costs 

for the NHS and time lost at work for the individual. Specifically, MAP1st may be used 

to evaluate the efficacy of conservative treatments including the prescription of 

orthotics and first ray stabilising surgeries such as Lapidus arthrodesis or distal 

crescentic osteotomy of the first metatarsal. To assess orthotics, arthrodesis, and 

osteotomy, measurements of first ray mobility may be taken before and after 

intervention, to quantify whether surgical realignment of the first ray results in 

stabilisation of the medial forefoot. The clinical relevance relates to improved treatment 

options for people who have common, painful disorders of the first ray.  
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8.3 Overall Conclusions 

The overarching theory of this thesis stated that the planus foot type and first ray 

hypermobility are interrelated mechanisms, which may alter weightbearing of the foot 

and initiate excessive loading of first MTP joint cartilage. In prior research, individuals 

with planus feet have demonstrated greater prevalence of foot injuries (Kaufman et al, 

1999), increased first MTP joint flexibility (Rao et al., 2011; Buldt et al., 2015), load 

transfer from the first to second metatarsal and hallux (Ledoux & Hillstrom, 2002; 

Hillstrom et al., 2013; Buldt et al., 2018), and a higher-odds ratio of hallux rigidus (Menz 

et al., 2015). The present work found a subset of younger patients who presented with 

hallux rigidus. In-keeping with the theory of this thesis, the peak in younger patients 

may suggest an unidentified biomechanical pathway to early degeneration of the first 

MTP joint. To explore aberrant biomechanics of the foot resulting from first ray 

hypermobility, MAP1st was designed and tested to quantify first ray mobility in partial- 

and full-weightbearing. Using this device, a study of healthy, asymptomatic subjects 

with planus and rectus feet established that individuals with first ray hypermobility were 

predominantly planus in foot type. The first metatarsal of planus individuals will 

translate excessively in the superior direction, causing foot pronation and a transfer of 

load to the second metatarsal and hallux. From a biomechanical perspective, an 

interaction between translational first ray mobility and rotational first MTP joint flexibility 

may be causative of increased load beneath the hallux and promote a higher flexion 

moment arm between the hallucial load and first MTP joint. Finite element modelling 

of these unique structural and functional characteristics predicted excessive stress 

magnitudes at the first MTP joint of the planus foot presenting with first ray 

hypermobility. Taken together, these interlinked studies provide evidence of first ray 

hypermobility’s role in aberrant weightbearing of the foot and its potential to initiate 

microtrauma at the first MTP joint’s articular soft tissues leading to degenerative 

changes. Further longitudinal investigations, which adopt the tools developed in this 

thesis, are required to fully understand these biomechanical implications in onset and 

development of hallux rigidus. 
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Chapter 9. Recommendations for Future Work 

 

The following section provides recommendations for future work which may utilise the 

tools and data presented in this thesis. These recommendations include 

improvements to MAP1st’s design, as well as several potential basic science and 

clinical applications of the research: 

• Develop MAP1st into a more clinically friendly tool for researchers and clinicians 

by integrating measurement recordings via electronic sensor, smartphone-

Bluetooth functionality, and data storage. 

• Evaluate the efficacy of conservative treatments and first ray stabilising 

surgeries including the prescription of orthotics, Lapidus arthrodesis, and distal 

crescentic osteotomy of the first metatarsal. 

• Conduct longitudinal research of cohorts with normal and hypermobile first rays 

to examine changes in structural and functional parameters of the foot over 

time, and potential relationships to onset and progression of hallux 

limitus/hallux rigidus. 

• Create a larger dataset of FE models, using the framework established by this 

thesis, to predict the effects of first ray hypermobility on first MTP and first MTC 

joint contact mechanics across a sample more representative of the general 

population. 
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Appendix A. Additional Data for Epidemiology 

of Osteoarthritis  

 

This appendix contains raw datasets from the HES and ONS databases, used to 

analyse trends in OA in Chapter 3. 
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Table A-1. Raw HES data for joint-specific OA diagnoses, 2000/01-2001/02. 

 

 Table A-2. Raw HES data for joint-specific OA diagnoses, 2001/02-2002/03. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,073 2,069 673 56 4 1,316 646 104 

M17 Gonarthrosis [arthrosis of knee] 65,660 64,120 29,237 65 6 18,649 28,809 18,147 

M16 Coxarthrosis [arthrosis of hip]  43,577 42,120 16,857 68 2 8,592 20,747 14,184 

M18 Arthrosis of first carpometacarpal joint 1,584 1,583 343 60 - 801 644 139 

 

Table A-3. Raw HES data for joint-specific OA diagnoses, 2002/03-2003/04. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,207 2,201 738 56 2 1,406 723 75 

M17 Gonarthrosis [arthrosis of knee] 75,545 73,688 33,415 66 10 20,758 32,935 21,820 

M16 Coxarthrosis [arthrosis of hip]  48,925 47,172 19,117 68 3 9,624 23,283 15,994 

M18 Arthrosis of first carpometacarpal joint 1,908 1,903 368 61 - 930 806 171 

 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,228 2,220 747 56 3 1,431 706 88 

M17 Gonarthrosis [arthrosis of knee] 62,669 61,381 27,820 66 10 17,613 27,715 17,318 

M16 Coxarthrosis [arthrosis of hip]  40,665 39,607 15,541 69 4 7,807 19,376 13,471 

M18 Arthrosis of first carpometacarpal joint 1,493 1,485 288 60 0 754 614 125 
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Table A-4. Raw HES data for joint-specific OA diagnoses, 2003/04-2004/05. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,486 2,477 845 56 3 1,486 879 117 

M17 Gonarthrosis [arthrosis of knee] 82,299 80,479 36,138 67 6 21,356 36,874 24,058 

M16 Coxarthrosis [arthrosis of hip]  53,080 51,495 20,716 69 3 10,564 25,504 17,004 

M18 Arthrosis of first carpometacarpal joint 2,140 2,134 491 61 0 1,017 932 191 

 

Table A-5. Raw HES data for joint-specific OA diagnoses, 2004/05-2005/06. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,526 2,517 806 56 1 1,542 878 105 

M17 Gonarthrosis [arthrosis of knee] 85,034 82,912 37,049 67 18 21,994 38,150 24,865 

M16 Coxarthrosis [arthrosis of hip]  54,184 52,481 21,376 69 3 11,047 25,529 17,597 

M18 Arthrosis of first carpometacarpal joint 2,456 2,453 503 61 0 1,112 1,120 224 

 

Table A-6. Raw HES data for joint-specific OA diagnoses, 2005/06-2006/07. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,736 2,728 873 57 2 1,630 978 126 

M17 Gonarthrosis [arthrosis of knee] 89,187 86,749 38,249 67 11 23,099 39,851 26,222 

M16 Coxarthrosis [arthrosis of hip]  55,406 53,494 21,622 68 7 11,722 25,602 18,075 

M18 Arthrosis of first carpometacarpal joint 2,972 2,966 590 61 0 1,293 1,460 219 
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Table A-7. Raw HES data for joint-specific OA diagnoses, 2006/07-2007/08. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 2,964 2,960 935 57 1 1,731 1,071 161 

M17 Gonarthrosis [arthrosis of knee] 95,226 92,553 40,796 67 9 24,923 43,082 27,191 

M16 Coxarthrosis [arthrosis of hip]  59,221 57,013 23,216 68 2 12,370 27,737 19,091 

M18 Arthrosis of first carpometacarpal joint 3,219 3,205 648 61 0 1,382 1,554 283 

 

Table A-8. Raw HES data for joint-specific OA diagnoses, 2007/08-2008/09. 

Primary Diagnosis 
Finished 
consultant 
episodes 

Admissions Male Mean age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 3,321 3,311 1,082 57 0 1,864 1,285 171 

M17 Gonarthrosis [arthrosis of knee] 107,329 104,432 46,566 66 12 28,311 49,114 29,816 

M16 Coxarthrosis [arthrosis of hip]  65,291 62,947 25,931 68 5 13,811 30,787 20,665 

M18 Arthrosis of first carpometacarpal joint 3,827 3,807 785 62 1 1,534 1,938 353 

 

Table A-9. Raw HES data for joint-specific OA diagnoses, 2008/09-2009/10. 

Primary Diagnosis 
Finished 
consultant 
episodes 

Admissions Male Mean age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 3,530 3,520 1,099 57 0 1,975 1,372 183 

M17 Gonarthrosis [arthrosis of knee] 107,716 104,746 46,326 66 5 28,882 49,547 29,174 

M16 Coxarthrosis [arthrosis of hip]  67,002 64,455 26,462 68 6 13,987 31,106 21,838 

M18 Arthrosis of first carpometacarpal joint 4,472 4,454 982 62 0 1,810 2,226 433 
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Table A-10. Raw HES data for joint-specific OA diagnoses, 2009/10-2010/11. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 3,785 3,775 1,198 57 2 2,061 1,533 188 

M17 Gonarthrosis [arthrosis of knee] 107,315 104,208 46,925 66 12 28,324 49,312 29,644 

M16 Coxarthrosis [arthrosis of hip]  67,707 65,141 26,907 68 5 13,859 31,632 22,179 

M18 Arthrosis of first carpometacarpal joint 4,898 4,890 1,116 62 0 1,935 2,467 496 

 

Table A-11. Raw HES data for joint-specific OA diagnoses, 2010/11-2011/12. 

Primary Diagnosis 
Finished 
consultant 
episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 4,195 4,182 1,327 57 8 2,238 1,702 245 

M17 Gonarthrosis [arthrosis of knee] 109,102 106,138 47,225 66 9 28,688 50,212 30,161 

M16 Coxarthrosis [arthrosis of hip]  72,248 69,814 28,380 68 9 14,882 33,634 23,689 

M18 Arthrosis of first carpometacarpal joint 5,171 5,155 1,276 62 - 2,032 2,617 519 

 

Table A-12. Raw HES data for joint-specific OA diagnoses, 2011/12-2012/13. 

Primary Diagnosis 
Finished 
Consultant 
Episodes 

Admissions Male Mean Age Age 0-14 Age 15-59 Age 60-74 Age 75+ 

M20.2 Hallux rigidus 4,111 4,096 1,265 57 2 2,204 1,669 233 

M17 Gonarthrosis [arthrosis of knee] 108,714 105,515 46,976 67 12 27,090 50,908 30,669 

M16 Coxarthrosis [arthrosis of hip]  75,059 72,658 29,331 68 9 15,524 34,985 24,497 

M18 Arthrosis of first carpometacarpal joint 5,756 5,729 1,382 62 - 2,153 2,992 610 
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Table A-13. Raw HES data for joint-specific OA diagnoses, 2012/13-2013/14. 
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Table A-14. Raw HES data for joint-specific OA diagnoses, 2013/14-2014/15. 
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Table A-15. Raw HES data for joint-specific OA diagnoses, 2014/15-2015/16. 
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Table A-16. Raw HES data for joint-specific OA diagnoses, 2015/16-2016/17. 
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Table A-17. Raw HES data for joint-specific OA diagnoses, 2016/17-2017/18. 
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Table A-18. Raw HES data for joint-specific OA diagnoses, 2017/18-2018/19. 

Primary 
Diagnosis 

F
in

is
h

e
d

 

c
o

n
s

u
lta

n
t 

e
p

is
o

d
e

s
 

A
d

m
is

s
io

n
s
 

M
a

le
 

M
e

a
n

 a
g

e
 

A
g

e
 0

 

A
g

e
 1

-4
 

A
g

e
 5

-9
 

A
g

e
 1

0
-1

4
 

A
g

e
 1

5
 

A
g

e
 1

6
 

A
g

e
 1

7
 

A
g

e
 1

8
 

A
g

e
 1

9
 

A
g

e
 2

0
-2

4
 

A
g

e
 2

5
-2

9
 

A
g

e
 3

0
-3

4
 

A
g

e
 3

5
-3

9
 

A
g

e
 4

0
-4

4
 

A
g

e
 4

5
-4

9
 

A
g

e
 5

0
-5

4
 

A
g

e
 5

5
-5

9
 

A
g

e
 6

0
-6

4
 

A
g

e
 6

5
-6

9
 

A
g

e
 7

0
-7

4
 

A
g

e
 7

5
-7

9
 

A
g

e
 8

0
-8

4
 

A
g

e
 8

5
-8

9
 

A
g

e
 9

0
+

 

M20.2 Hallux 
rigidus 

4
,0

8
3
  

4
,0

6
8
  

1
,3

9
5
  

5
8
  

0
  

0
  

0
  

0
  

4
  

1
  

1
  

0
  

0
  

1
8
  

2
9
  

8
3
  

9
1
  

2
4
3
  

4
6
3
  

6
1
3
  

5
7
5
  

6
1
8
  

5
7
7
  

4
4
9
  

2
1
1
  

6
9
  

2
2
  

0
  

M17 
Gonarthrosis 
[arthrosis of 
knee] 

1
1
2
,4

2
9
 

1
0
8
,3

9
8
 

4
8
,5

5
3
 

6
8
 

0
 

4
 

8
 

2
 

2
 

6
 

3
 

1
6
 

1
2
 

1
2
2
 

2
5
5
 

4
3
4
 

8
2
3
 

1
,5

1
9
 

3
,7

3
6
 

7
,2

4
8
 

1
0
,7

5
8
 

1
4
,7

9
2
 

1
8
,4

1
6
 

2
1
,0

2
8
 

1
6
,1

8
5
 

1
0
,4

6
9
 

4
,7

0
5
 

1
,5

4
5
 

M16 
Coxarthrosis 
[arthrosis of hip]  

9
0
,2

9
3

 

8
7
,2

4
4

 

3
5
,7

0
3

 

6
8
 

0
 

2
 

0
 

1
1
 

6
 

7
 

5
 

1
7
 

1
7
 

1
5
4
 

2
4
9
 

4
9
0
 

8
3
3
 

1
,6

3
8

 

3
,3

4
9

 

5
,7

1
3

 

7
,8

6
3

 

1
0
,6

4
0

 

1
3
,8

1
9

 

1
6
,4

4
8

 

1
3
,4

2
3

 

9
,4

1
3

 

4
,3

7
6

 

1
,5

2
8

 

M18 Arthrosis of 
first 
carpometacarpa
l joint 

9
,2

5
4
 

9
,1

9
1
 

2
,3

2
9
 

6
3
 

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
 

0
 

8
 

1
0
 

3
0
 

5
8
 

1
6
5
 

5
1
7
 

1
,1

2
5
 

1
,6

4
4
 

1
,6

2
3
 

1
,6

0
6
 

1
,3

1
3
 

7
1
3
 

3
1
3
 

9
5
 

1
3
 

 

 

 



169 

 

 

Table A-19. Raw ONS population data for people 18-years-old and over in England, 2012-2017.  

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Population 
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Table A.1-20. Raw ONS population data for England stratified by age-group, 2012-2017. 

Year 25-34 35-44 45-54 55-64 65-74 75+ 

2012 7,266,794 7,266069 7,445,129 6,066,563 4,141,171 4,212,018 

2013 7,367,357 7,159067 7,543,287 6,053,995 4,382,363 4,281,606 

2014 7,425,591 7,103408 7,635,651 6,100,512 4,560,930 4,374,835 

2015 7,485,996 7,107372 7,700,360 6,183,043 4,703,160 4,425,817 

2016 7,561,210 7,092,277 7,756,174 6,308,633 4,846,866 4,469,497 

2017 7,589,024 7,085,401 7,757,304 6,461,954 4,936,563 4,535,330 
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Appendix B. Additional Data for Testing and 

Reliability of MAP1st  

 

As part of the background to Chapter 4 and 5, documentation was prepared and 

submitted to the IRB at HSS. This appendix details the supplementary information 

required to organise the human subjects testing as well as additional data not reported 

in the main text of Chapter 4. 

 

B.1     CITI Program Certification 

In order to conduct clinical research at HSS, it was necessary to complete the following 

CITI Program modules for Human Research as part of the IRB Reference Resource.
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B.2     Hospital for Special Surgery Institutional Review Board Submission 

 

 



172 

 

 

 

 

 



173 

 

 

 

 

 



174 

 

 

 

 

 



175 

 

 

 

 

 



176 

 

 

 

 

 



177 

 

 

 

 

 

 



178 

 

 

 

 

 

 



179 

 

 

 

 

 

 



180 

 

 

 

 

 

 



181 

 

 

 

 

 

 

 



182 

 

 

 

 

 

 

 



183 

 

 

 

 

 

 



184 

 

 

 

 

 

 



185 

 

 

 

 

 

 

 



186 

 

 

 

 

 

 

 



187 

 

 

 

 

 

 



188 

 

B.3     Arduino Code: Recent Strain History 

int EnablePin1 = 8; // pins for megamoto 
int PWMPinA1 = 11; // selects jumper signal for PWMPinA (retract stroke) 
int PWMPinB1 = 3;  // selects jumper signal for PWMPinB (extend stroke) 
int LoadReading; 
int MaxLoad1 = 250; 
int A=1; 
int strain = 10; 
const int LoadPin = A1; 
 
void setup() { 
 
  Serial.begin(115200); 
  pinMode(EnablePin1,OUTPUT); // enables to megamoto board 
  pinMode(PWMPinA1,OUTPUT);  
  pinMode(PWMPinB1,OUTPUT); 
  pinMode(LoadPin,INPUT);  
 
} 
 
void loop() { 
 
 Serial.println("Recent Strain History"); 
  while (A<=strain) { 
   Serial.print("Recent Strain Excitation #: "); 
   Serial.println(A); 
   
   digitalWrite(EnablePin1,HIGH); // enable the board 
   analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
   analogWrite(PWMPinA1,102); 
 
   LoadReading = analogRead(LoadPin); 
 
   if (LoadReading >= MaxLoad1) { 
    digitalWrite(EnablePin1,LOW); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    delay(100);   
    digitalWrite(EnablePin1,HIGH); // enable the board 
    analogWrite(PWMPinB1,102); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    delay(2000); 
    digitalWrite(EnablePin1,LOW); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    A=A+1; 
  } 
 } 
} 
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B.4     Arduino Code: First Ray Elevation and Mobility 

int EnablePin1 = 8; // pins for megamoto 
int PWMPinA1 = 11; // selects jumper signal for PWMPinA (retract stroke) 
int PWMPinB1 = 3;  // selects jumper signal for PWMPinB (extend stroke) 
int LoadReading; 
int MaxLoad2 = 125; 
int MaxLoad3 = 314; 
int B=1; 
int pos = 1; 
int C=1; 
int mob =1; 
const int LoadPin = A1; 
 
void setup() { 
 
  Serial.begin(115200);  
  pinMode(EnablePin1,OUTPUT); // enables to megamoto board 
  pinMode(PWMPinA1,OUTPUT);  
  pinMode(PWMPinB1,OUTPUT);  
  pinMode(LoadPin,INPUT); 
 
} 
 
void loop() {   
 
  Serial.println("Position"); 
   while (B<=pos) { 
     Serial.print("Position Excitation #: "); 
     Serial.println(B); 
 
    digitalWrite(EnablePin1,HIGH); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,102); 
 
  LoadReading = analogRead(LoadPin); 
 if (LoadReading >= MaxLoad2) { 
    digitalWrite(EnablePin1,LOW); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    delay(4000);   
    digitalWrite(EnablePin1,HIGH); // enable the board 
    analogWrite(PWMPinB1,102); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    delay(1500); 
    digitalWrite(EnablePin1,LOW); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
     B=B+1; 
  }  
 } 
{ 
 Serial.println("Mobility"); 
  while (C<=mob) { 
   Serial.print("Mobility Excitation #: "); 
   Serial.println(C);   
   digitalWrite(EnablePin1,HIGH); // enable the board 
   analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
   analogWrite(PWMPinA1,102); 
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   LoadReading = analogRead(LoadPin); 
 if (LoadReading >= MaxLoad3) { 
    digitalWrite(EnablePin1,LOW); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    delay(4000);   
    digitalWrite(EnablePin1,HIGH); // enable the board 
    analogWrite(PWMPinB1,102); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
    delay(1500); 
    digitalWrite(EnablePin1,LOW); // enable the board 
    analogWrite(PWMPinB1,0); //Set pinB to 0, when speed is written to pinA the motor will retract 
    analogWrite(PWMPinA1,0); 
     C=C+1; 
   } 
  } 
 } 
} 
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Table B-1. Subject information. 

ID Sex Group Race Ethnicity Age (Years) Height (cm) Weight (kg) BMI Side 

1 Male Healthy White Non-hispanic 32 187.9 99 28.01 Bilateral 

2 Female Healthy Asian Non-hispanic 50 154.9 62 25.81 Bilateral 

4 Male Healthy Asian Non-hispanic 27 180.3 84.8 26.23 Bilateral 

5 Male Healthy White Non-hispanic 25 180.3 86.2 26.5 Bilateral 

6 Female Healthy Asian Non-hispanic 23 152.4 55.3 23.8 Bilateral 

7 Male Healthy White Non-hispanic 26 177.8 65.8 20.8 Bilateral 

8 Male Healthy White Non-hispanic 36 180.3 82.6 25.6 Bilateral 

9 Male Healthy Asian Non-hispanic 30 177.8 79.4 24.9 Bilateral 

10 Male Healthy Asian Non-hispanic 27 185.4 72.6 21.3 Bilateral 

11 Male Healthy White Non-hispanic 44 179.5 78.5 24.4 Bilateral 

12 Male Healthy White Non-hispanic 25 190 77 21.3 Bilateral 

13 Female Healthy White Non-hispanic 23 177 68 21.7 Bilateral 

14 Male Healthy White Non-hispanic 55 176 95 30.7 Bilateral 

15 Female Healthy White Non-hispanic 23 185 71.6 21 Bilateral 

16 Male Healthy White Non-hispanic 59 182.8 92.9 27.8 Bilateral 

17 Female Healthy White Hispanic 44 160 68 26.6 Bilateral 

18 Male Healthy White Non-hispanic 26 182.9 77.1 23 Bilateral 

19 Male Healthy Asian Non-hispanic 27 175.3 77 25 Bilateral 

21 Female  Healthy White Non-hispanic 23 165 58.8 21.5 Bilateral 

22 Male Patient  White Non-hispanic 55 177 70 22.3 R affected 

23 Female  Patient  White Non-hispanic 59 151.1 74.8 32.8 L affected 

24 Female  Patient  White Non-hispanic 49 153.7 66.7 28.1 R affected 

26 Female  Healthy White Non-hispanic 22 172.7 90.7 30.3 Bilateral 

27 Male  Healthy White Non-hispanic 57 185.4 97.5 28.5 Bilateral 

31 Female Healthy White Non-hispanic 32 167.6 53.1 18.8 Bilateral 
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Table B-2. First ray mobility measurements with the FRMD and AHI system calculations (Rater 1). 

 FRMD  AHI System  

ID  

Hand held (right) [mm] Hand held (left) [mm] 

Sitting Standing 

STJN (Trial) 

1 2 3 1 2 3 
TFL (right) 
[cm] 

TFL (left) 
[cm] 

Metatarsal 
height (right) 
[mm] 

Metatarsal 
height (left) 
[mm] 

TFL (right) 
[cm] 

TFL (left) 
[cm] 

Metatarsal 
height (right) 
[mm] 

Metatarsal 
height (left) 
[mm] 

1 3 4 4 4 5 5 20.9 21 41 37 21.7 21.1 36 37 

2 5 4 5 5 5 5 16.3 16.1 36 36 16.7 16.6 35 36 

4 6 5 7 10 11 10 19.3 19.5 43 40 20.2 19.8 36 36 

5 7 8 7 8 9 8 20.3 20.4 44 41 20.5 20.3 41 40 

6 9 10 10 10 10 10 16.4 16.5 34 31 16.6 16.6 33 33 

7 3 3 4 5 4.5 4 18.1 18 36 37 18.8 19.5 36 35 

8 4 4.5 4 3 3 3 20.5 20.4 43 41 21.2 21 40 40 

9 5 6 5 5 5 5 19.4 19.3 39 37 19.4 19.3 39 43 

10 4 5 4 6 7 7 19.2 19.1 35 33 19.1 19 36 35 

12 6 7 6 5 5.5 6 20.2 20.4 40 38 20.4 20.6 40 38 

13 5 5 4 5 5 5.5 18 18.4 36 35 17.9 17.7 36 37 

14 5 4 5 4 4 5 18.3 18.4 40 39 18.6 19.6 37 34.5 

15 6 7 7 6.5 7 7.5 19.3 18.9 37 36 18.7 18.7 40 34 

16 6 6 6.5 5 5 4.5 18.6 18.6 39 37 19.1 19 39 37 

18 5 5.5 5 5 5 5 18.8 18.6 37 39 19.5 20 38 36 

21 5 5 5.5 7 5 5.5 17.5 17.9 39 37 17.6 18 37.5 37 

22 9.5 10 11 9 10 10 20.8 19.8 39 39.8 20.5 20.8 4.23 38.7 

23 7 7 6 7 8 8.5 16.2 17 38 39 16.2 17 36.6 39 

24 5 5 5.5 5 4 5 16.1 16.6 38.5 34 16.4 16.6 37.5 32.8 

26 8 10 11 9 8 8 18 18 33.5 38.7 18.1 18.4 36 36 

27 5 4 5 5 5 5 19.6 19.75 43.3 44.3 19.6 19.9 42.6 43.6 

31 6 5.5 6 5 5 5.5 16.7 16.6 34 36.7 17.3 17.1 36.7 35.7 
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Table B-3. First ray mobility measurements with the FRMD and AHI system calculations (Rater 2). 

 FRMD  AHI System  

ID  

Hand held (right) [mm] Hand held (left) [mm] 

Sitting Standing 

STJN (Trial) 

1 2 3 1 2 3 
TFL (right) 
[cm] 

TFL (left) 
[cm] 

Metatarsal 
height (right) 
[mm] 

Metatarsal 
height (left) 
[mm] 

TFL (right) 
[cm] 

TFL (left) 
[cm] 

Metatarsal 
height (right) 
[mm] 

Metatarsal 
height (left) 
[mm] 

1 2.5 4 4 4 4 3 20.4 21 37 38 21.5 21 36 37 

2 2 2 2 1 1 1.5 16.2 16.2 36 36 16.4 16.5 35 36 

4 4 5 5 1.5 1.5 2 20 19.6 39 38 20.4 20.5 35 39 

5 5 5 5 4.5 5 5 20 20.5 45 40 20.5 20.5 42 39 

6 6 6 6 6.5 6 5 16 16.3 33 32 16.4 16.5 33 31 

7 4 5 4 4 4 5 19 18.8 37 36 19.1 19.4 37 35 

8 6.5 6.5 6.5 7 7 7.5 20.8 20.2 41 41 21.8 22.6 39 38 

9 5 5 5.5 6 7 5.5 19.4 19.4 40 39 19.8 19.4 39 40 

10 6 5 6 5 5.5 5 19.6 19.5 34 33 19.4 19.2 34 33 

12 7.5 7 7.5 4 2.5 2.5 20.5 20.7 40 38 20.6 21 40 37 

13 2 4 4 4 4 5 18 18 36 36 18.1 18.4 35 35 

14 6 6 6 5 4.5 5 19.6 18.8 34 37 20.3 19.3 33 36 

15 6 5.5 5.5 4 4 3.5 18.8 19.1 39 35.5 20.2 19.9 36 35.5 

16 5 5 5 4 4 5 19.3 18.9 38 37 19.7 19.4 36 36 

18 6 5.5 6 5.5 5 5 19.3 19.1 35 36 19.7 19.1 36 37 

21 6 6 6 6 5 5 17.5 17.9 37.5 35.6 17.6 18 37.6 40 

22 5 5 5 6 6 6 20.8 19.8 41.6 39.6 20.8 20.5 41 37.6 

23 6.5 7 7 3 5 4 16.2 17 38.6 40 16.2 17 38.6 39 

24 4 5 5 3 4 4 16.1 16.6 38.2 34.3 16.4 16.6 36.7 34 

26 5.5 6.5 6.5 4.5 5 5 18 18 37.3 37 18.1 18.4 39 37 

27 5 5 5 5 5.5 5 19.6 19.75 44 44.8 19.6 19.9 42 43.7 

31 3.5 4 4.5 3 3 3.5 16.7 16.6 34 36.7 17.3 17.1 33.7 34 
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Table B-4. First ray mobility measurements (raw) with MAP1st in STJN and RCSP (Rater 1). 

 First Ray Mobility (Raw) 

 ID 
 
 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

STJN RCSP STJN RCSP 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 9 9 10 16 16 14 7 7 7 9 9 11 4 5 2 10 9 10 2 2 2 1 0 1 

2 10 10 10 8 9 8 7 8 7 6 7 5 8 9 6 5 4 4 9 8 9 5 5 5 

4 5 5 5 10 10 10 4 4 1 6 6 5 4 3 6 8 10 10 2 2 2 2 2 2 

5 8 8 6 9 10 9 5 5 3 7 7 7 7 7 7 7 7 7 5 5 4 3 4 3 

6 15 15 10 15 15 15 11 11 12 12 13 12 15 15 14 10 11 6 9 9 12 7 6 6 

7 14 14 13 9 10 11 6 7 6 8 8 7 7 7 7 10 10 9 9 9 7 9 9 8 

8 12 12 8 9 9 10 6 6 6 10 10 12 9 9 6 9 9 7 5 4 4 5 4 4 

9 11 11 16 13 13 13 10 11 10 11 11 11 6 6 11 4 3 3 11 11 4 4 4 3 

10 20 20 16 15 16 15 5 6 10 12 12 9 9 8 8 9 8 7 5 5 1 3 3 3 

12 6 6 6 8 8 7 6 7 4 6 6 6 0 0 1 3 3 2 3 0 1 2 5 2 

13 9 9 9 11 11 11 8 8 8 9 9 10 4 3 2 2 2 2 3 2 1 2 3 1 

14 7 7 6 10 10 6 8 8 5 7 7 6 7 6 1 4.5 3.5 3.5 3 3 1 1.5 1.5 1.5 

15 13 13 13 11 11 10 11 12 12 11 10 11 9 8 8 2 4 4 5 5 3 5 6 6 

16 7 7 7 8 8 8 6 6 6 8 8 6 2 2 2 2 2 4 2 2 2 1 1 1 

18 7 7 8 7 7 6 7 8 5 7 7 6 3 3 3 5 5 5 2 2 5 5 4 3 

21 11.5 11.5 13.5 10.5 11 11 11.5 12 10 10 10 9.5 11.5 11.5 9.5 3 3 2 7.5 8.5 5.5 5 4.5 2 

22 4.1 4.1 4.3 4.05 4.05 3.7 3.8 3.8 4.1 3.45 3.45 4 4 4 4.1 3.4 3.4 3.25 4.25 4.25 4.15 3.95 3.95 3.5 

23 4 4 4 3.9 3.9 3.9 3.9 3.9 3.9 3.8 3.8 3.8 3.7 3.7 3.7 4 4 4 3.7 3.6 3.6 3.9 3.9 3.9 

24 4.3 4.3 3.9 3.35 3.35 3.35 3.9 3.9 3.8 3.45 3.45 3.35 3.8 3.8 3.75 3.4 3.43 3.4 3.8 3.8 3.9 3.25 3.25 3.3 

26 13 13.5 14.5 9.3 9.3 8.3 5.5 5.5 8 4.3 5.3 5.3 1 1.5 1 6.5 6.5 7.5 0 0 0 2 1 4 

27 4.2 9.2 5.7 7.7 7.7 5.7 2.7 2.7 6.7 4.7 5.7 4.2 4.4 3.9 3.4 1.4 1.4 3.4 1.4 1.4 3.4 1.4 1.4 1.9 

31 9 9 10 8.3 8.3 7.3 9 9 7 9.3 9.3 8.3 3.3 5.3 4.3 5.3 5.3 4.3 5.3 5.3 3.3 5.3 6.3 5.3 
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Table B-5. First ray mobility measurements (raw) with MAP1st in STJN and RCSP (Rater 2). 

 First Ray Mobility (Raw) 

ID 
 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

STJN RCSP STJN RCSP 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 8 8 8 8 8 8 10 10 7 10 8 8 5 5 6 7 7 7 3 2 2 1 1 1 

2 8 8 9 9 7 9 9 9 9 8 8 10 8 8 8 4 2 3 5 5 8 3 3 2 

4 11 12 12 9 11 8 6 6 6 8 8 7 11 12 9 1 2 0 5 5 3 0 0 0 

5 5 5 6 9 9 10 8 8 4 7 8 7 4 4 8 7 8 7 3 4 4 4 4 5 

6 12 13 15 11 11 10 12 13 13 10 11 10 7 6 9 9 9 9 6 7 9 8 8 8 

7 9 10 10 10 10 9 9 9 9 8 8 10 5 6 7 10 10 8 6 6 2 6 6 5 

8 10 10 10 4 5 8 10 10 10 8 9 8 9 7 12 5 7 9 3 3 3 3 3 2 

9 11 12 11 10 11 9 10 10 10 9 10 10 7 7 7 6 6 3 5 5 4 4 5 5 

10 12 12 11 13 13 11 6 6 8 10 9 10 2 2 2 2 2 2 8 8 7 11 11 7 

12 3 3 0 0 0 0 9 10 9 8 8 8 6 6 6 6 6 6 2 2 3 2 2 2 

13 7 7 6 6 7 6 8 8 8 8 8 8 5 5 4 5 5 3 3 2 2 2 2 2 

14 9 9 9 6 6 7 11 11 8 8 8 7 4 5 5 4 4 2 2 2 1 1 1 1 

15 5 5 5 5.5 5.5 7.5 5 5 5 7.5 7.5 6 5 6 6 3.5 4.5 2.5 2 2 3 3.5 3.5 3.5 

16 6 7 6 5 6 5 5 5 7 9 8 7 3 3 5 3 3 1 1 1 2 1 1 3 

18 10 10 9 5 6 6 8 8 10 2 2 8 7 7 8 4 4 4 6 6 4 5 5 3 

21 10.5 10.5 4.5 3.4 3.4 3.4 5.5 5.5 9.5 3.4 3.4 0.4 8.4 8.4 11.4 5 5 6 5.4 5.4 5.4 7 7 4 

22 4.1 4.1 4.1 3.9 3.9 3.9 4.2 4.2 4.1 4 4 3.9 3.9 3.9 4.2 3.8 3.8 3.6 4.1 4.1 4.1 3.7 3.7 3.8 

23 4 4.3 4 4.2 4.1 4.1 3.8 3.8 3.9 3.95 4 4.1 3.7 3.7 3.5 4 4 4 3.85 3.9 3.5 3.9 3.9 3.9 

24 4 3.95 3.95 3.4 3.4 3.4 3.85 3.85 3.8 3.9 3.5 3.9 3.85 3.9 3.75 3.5 3.8 3.6 3.6 3.65 3.75 3.3 3.3 3.5 

26 10.7 10.7 11.2 7 8 9 5.7 5.7 7.2 5 5 5 6 3 3 11 10.5 8 4 4 0 1 1 2 

27 5 5 5 10.2 10.2 9.2 3.5 3.5 3 7.2 7.2 9.7 5.5 5.5 4.5 3.3 3.3 1.3 0.5 0.5 5 2.8 2.8 2.3 

31 8.5 8.5 8.5 7.3 7.3 5.3 8 8.5 8.5 9.3 9.3 8.3 7.3 8.3 5.3 5 5 4 4.8 5.3 6.3 6 6 5 
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Table B-6. First ray mobility measurements (normalised) with MAP1st in STJN and RCSP (Rater 1). 

ID 
  

First Ray Mobility (Normalised) 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

STJN RCSP STJN RCSP 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 0.431 0.431 0.478 0.762 0.762 0.667 0.335 0.335 0.335 0.429 0.429 0.524 0.184 0.230 0.092 0.474 0.427 0.474 0.092 0.092 0.092 0.047 0.000 0.047 

2 0.613 0.613 0.613 0.497 0.559 0.497 0.429 0.491 0.429 0.373 0.435 0.311 0.479 0.539 0.359 0.301 0.241 0.241 0.539 0.479 0.539 0.301 0.301 0.301 

4 0.259 0.259 0.259 0.513 0.513 0.513 0.207 0.207 0.052 0.308 0.308 0.256 0.198 0.149 0.297 0.404 0.505 0.505 0.099 0.099 0.099 0.101 0.101 0.101 

5 0.394 0.394 0.296 0.441 0.490 0.441 0.246 0.246 0.148 0.343 0.343 0.343 0.341 0.341 0.341 0.345 0.345 0.345 0.244 0.244 0.195 0.148 0.197 0.148 

6 0.915 0.915 0.610 0.909 0.909 0.909 0.671 0.671 0.732 0.727 0.788 0.727 0.904 0.904 0.843 0.602 0.663 0.361 0.542 0.542 0.723 0.422 0.361 0.361 

7 0.773 0.773 0.718 0.500 0.556 0.611 0.331 0.387 0.331 0.444 0.444 0.389 0.372 0.372 0.372 0.513 0.513 0.462 0.479 0.479 0.372 0.462 0.462 0.410 

8 0.585 0.585 0.390 0.441 0.441 0.490 0.293 0.293 0.293 0.490 0.490 0.588 0.425 0.425 0.283 0.429 0.429 0.333 0.236 0.189 0.189 0.238 0.190 0.190 

9 0.567 0.567 0.825 0.674 0.674 0.674 0.515 0.567 0.515 0.570 0.570 0.570 0.309 0.309 0.567 0.207 0.155 0.155 0.567 0.567 0.206 0.207 0.207 0.155 

10 1.042 1.042 0.833 0.785 0.838 0.785 0.260 0.313 0.521 0.628 0.628 0.471 0.471 0.419 0.419 0.474 0.421 0.368 0.262 0.262 0.052 0.158 0.158 0.158 

12 0.297 0.297 0.297 0.392 0.392 0.343 0.297 0.347 0.198 0.294 0.294 0.294 0.000 0.000 0.049 0.146 0.146 0.097 0.147 0.000 0.049 0.097 0.243 0.097 

13 0.500 0.500 0.500 0.598 0.598 0.598 0.444 0.444 0.444 0.489 0.489 0.543 0.223 0.168 0.112 0.113 0.113 0.113 0.168 0.112 0.056 0.113 0.169 0.056 

14 0.383 0.383 0.328 0.543 0.543 0.326 0.437 0.437 0.273 0.380 0.380 0.326 0.376 0.323 0.054 0.230 0.179 0.179 0.161 0.161 0.054 0.077 0.077 0.077 

15 0.674 0.674 0.674 0.582 0.582 0.529 0.570 0.622 0.622 0.582 0.529 0.582 0.481 0.428 0.428 0.107 0.214 0.214 0.267 0.267 0.160 0.267 0.321 0.321 

16 0.376 0.376 0.376 0.430 0.430 0.430 0.323 0.323 0.323 0.430 0.430 0.323 0.105 0.105 0.105 0.105 0.105 0.211 0.105 0.105 0.105 0.053 0.053 0.053 

18 0.372 0.372 0.426 0.376 0.376 0.323 0.372 0.426 0.266 0.376 0.376 0.323 0.154 0.154 0.154 0.250 0.250 0.250 0.103 0.103 0.256 0.250 0.200 0.150 

21 0.657 0.642 0.346 0.284 0.625 0.615 0.657 0.686 0.571 0.559 0.559 0.531 0.653 0.653 0.540 0.167 0.167 0.111 0.426 0.483 0.313 0.278 0.250 0.111 

22 0.197 0.207 0.110 0.102 0.198 0.187 0.183 0.183 0.197 0.174 0.174 0.202 0.195 0.195 0.200 0.163 0.163 0.156 0.207 0.207 0.202 0.190 0.190 0.168 

23 0.247 0.235 0.105 0.100 0.241 0.229 0.241 0.241 0.241 0.224 0.224 0.224 0.228 0.228 0.228 0.235 0.235 0.235 0.228 0.222 0.222 0.229 0.229 0.229 

24 0.267 0.259 0.101 0.099 0.204 0.202 0.242 0.242 0.236 0.208 0.208 0.202 0.232 0.232 0.229 0.205 0.207 0.205 0.232 0.232 0.238 0.196 0.196 0.199 

26 0.722 0.750 0.433 0.240 0.514 0.461 0.306 0.306 0.444 0.239 0.294 0.294 0.055 0.083 0.055 0.353 0.353 0.408 0.000 0.000 0.000 0.109 0.054 0.217 

27 0.214 0.466 0.132 0.174 0.393 0.289 0.138 0.138 0.342 0.238 0.289 0.213 0.224 0.199 0.173 0.070 0.070 0.171 0.071 0.071 0.173 0.070 0.070 0.095 

31 0.539 0.542 0.294 0.226 0.480 0.440 0.539 0.539 0.419 0.560 0.560 0.500 0.191 0.306 0.249 0.310 0.310 0.251 0.306 0.306 0.191 0.310 0.368 0.310 
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Table B-7. First ray mobility measurements (normalised) with MAP1st in STJN and RCSP (Rater 2). 

ID 
  

First Ray Mobility (Normalised) 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st seated 
(right) [mm] 

MAP1st seated 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

MAP1st standing 
(right) [mm] 

MAP1st standing 
(left) [mm] 

STJN RCSP STJN RCSP 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 0.392 0.392 0.392 0.381 0.381 0.381 0.490 0.490 0.343 0.476 0.381 0.381 0.233 0.233 0.279 0.333 0.333 0.333 0.140 0.093 0.093 0.048 0.048 0.048 

2 0.494 0.494 0.556 0.556 0.432 0.556 0.556 0.556 0.556 0.494 0.494 0.617 0.488 0.488 0.488 0.242 0.121 0.182 0.305 0.305 0.488 0.182 0.182 0.121 

4 0.550 0.600 0.600 0.459 0.561 0.408 0.300 0.300 0.300 0.408 0.408 0.357 0.539 0.588 0.441 0.049 0.098 0.000 0.245 0.245 0.147 0.000 0.000 0.000 

5 0.250 0.250 0.300 0.439 0.439 0.488 0.400 0.400 0.200 0.341 0.390 0.341 0.195 0.195 0.390 0.341 0.390 0.341 0.146 0.195 0.195 0.195 0.195 0.244 

6 0.750 0.813 0.938 0.675 0.675 0.613 0.750 0.813 0.813 0.613 0.675 0.613 0.427 0.366 0.549 0.545 0.545 0.545 0.366 0.427 0.549 0.485 0.485 0.485 

7 0.474 0.526 0.526 0.532 0.532 0.479 0.474 0.474 0.474 0.426 0.426 0.532 0.262 0.314 0.366 0.515 0.515 0.412 0.314 0.314 0.105 0.309 0.309 0.258 

8 0.481 0.481 0.481 0.198 0.248 0.396 0.481 0.481 0.481 0.396 0.446 0.396 0.413 0.321 0.550 0.221 0.310 0.398 0.138 0.138 0.138 0.133 0.133 0.088 

9 0.567 0.619 0.567 0.515 0.567 0.464 0.515 0.515 0.515 0.464 0.515 0.515 0.354 0.354 0.354 0.309 0.309 0.155 0.253 0.253 0.202 0.206 0.258 0.258 

10 0.612 0.612 0.561 0.667 0.667 0.564 0.306 0.306 0.408 0.513 0.462 0.513 0.103 0.103 0.103 0.104 0.104 0.104 0.412 0.412 0.361 0.573 0.573 0.365 

12 0.146 0.146 0.000 0.000 0.000 0.000 0.439 0.488 0.439 0.386 0.386 0.386 0.291 0.291 0.291 0.286 0.286 0.286 0.097 0.097 0.146 0.095 0.095 0.095 

13 0.389 0.389 0.333 0.333 0.389 0.333 0.444 0.444 0.444 0.444 0.444 0.444 0.276 0.276 0.221 0.272 0.272 0.163 0.166 0.110 0.110 0.109 0.109 0.109 

14 0.459 0.459 0.459 0.319 0.319 0.372 0.561 0.561 0.408 0.426 0.426 0.372 0.197 0.246 0.246 0.207 0.207 0.104 0.099 0.099 0.049 0.052 0.052 0.052 

15 0.266 0.266 0.266 0.288 0.288 0.393 0.266 0.266 0.266 0.393 0.393 0.314 0.248 0.297 0.297 0.176 0.226 0.126 0.099 0.099 0.149 0.176 0.176 0.176 

16 0.311 0.363 0.311 0.265 0.317 0.265 0.259 0.259 0.363 0.476 0.423 0.370 0.152 0.152 0.254 0.155 0.155 0.052 0.051 0.051 0.102 0.052 0.052 0.155 

18 0.518 0.518 0.466 0.262 0.314 0.314 0.415 0.415 0.518 0.105 0.105 0.419 0.355 0.355 0.406 0.209 0.209 0.209 0.305 0.305 0.203 0.262 0.262 0.157 

21 0.600 0.600 0.257 0.190 0.190 0.190 0.314 0.314 0.543 0.190 0.190 0.022 0.477 0.477 0.648 0.278 0.278 0.333 0.307 0.307 0.307 0.389 0.389 0.222 

22 0.197 0.197 0.197 0.197 0.197 0.197 0.202 0.202 0.197 0.202 0.202 0.197 0.188 0.188 0.202 0.185 0.185 0.176 0.197 0.197 0.197 0.180 0.180 0.185 

23 0.247 0.265 0.247 0.247 0.241 0.241 0.235 0.235 0.241 0.232 0.235 0.241 0.228 0.228 0.216 0.235 0.235 0.235 0.238 0.241 0.216 0.229 0.229 0.229 

24 0.248 0.245 0.245 0.205 0.205 0.205 0.239 0.239 0.236 0.235 0.211 0.235 0.235 0.238 0.229 0.211 0.229 0.217 0.220 0.223 0.229 0.199 0.199 0.211 

26 0.594 0.594 0.622 0.389 0.444 0.500 0.317 0.317 0.400 0.278 0.278 0.278 0.331 0.166 0.166 0.598 0.571 0.435 0.221 0.221 0.000 0.054 0.054 0.109 

27 0.255 0.255 0.255 0.516 0.516 0.466 0.179 0.179 0.153 0.365 0.365 0.491 0.281 0.281 0.230 0.166 0.166 0.065 0.026 0.026 0.255 0.141 0.141 0.116 

31 0.509 0.509 0.509 0.440 0.440 0.319 0.479 0.509 0.509 0.560 0.560 0.500 0.422 0.480 0.306 0.292 0.292 0.234 0.277 0.306 0.364 0.351 0.351 0.292 
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Appendix C. Additional Data for Foot Type 

Biomechanics 

 

This appendix details the supplementary information including raw data for the subject 

information, rotational flexibility, and plantar loading not reported in the main text of 

Chapter 5. 
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Table C-1. Subject information. 

ID Sex Group Race Ethnicity Age (Years) Height (cm Weight (Kg) BMI Tested Side 

1 Male Healthy White Non-hispanic 32 187.9 99 28.01 Bilateral 

4 Male Healthy Asian Non-hispanic 27 180.3 84.8 26.23 Bilateral 

5 Male Healthy White Non-hispanic 25 180.3 86.2 26.5 Bilateral 

6 Female Healthy Asian Non-hispanic 23 152.4 55.3 23.8 Bilateral 

7 Male Healthy White Non-hispanic 26 177.8 65.8 20.8 Bilateral 

8 Male Healthy White Non-hispanic 36 180.3 82.6 25.6 Bilateral 

9 Male Healthy Asian Non-hispanic 30 177.8 79.4 24.9 Bilateral 

10 Male Healthy Asian Non-hispanic 27 185.4 72.6 21.3 Bilateral 

11 Male Healthy White Non-hispanic 44 179.5 78.5 24.4 Bilateral 

12 Male Healthy White Non-hispanic 25 190 77 21.3 Bilateral 

13 Female Healthy White Non-hispanic 23 177 68 21.7 Bilateral 

14 Male Healthy White Non-hispanic 55 176 95 30.7 Bilateral 

16 Male Healthy White Non-hispanic 59 182.8 92.9 27.8 Bilateral 

17 Female Healthy White Hispanic 44 160 68 26.6 Bilateral 

18 Male Healthy White Non-hispanic 26 182.9 77.1 23 Bilateral 

19 Male Healthy Asian Non-hispanic 27 175.3 77 25 Bilateral 

21 Female Healthy White Non-hispanic 23 165 58.8 21.5 Bilateral 

26 Female Healthy White Non-hispanic 22 172.7 90.7 30.3 Bilateral 

27 Male Healthy White Non-hispanic 57 185.4 97.5 28.5 Bilateral 

31 Female Healthy White Non-hispanic 32 167.6 53.1 18.8 Bilateral 
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Table C-2. First MTP joint flexibility measurements. 

  

Planus 

Subject 
Early 
Flexibility 

Late 
Flexibility  

Maximum 
Dorsiflexion 

Laxity 
Bilinear 
Angle 

Bilinear 
Torque 

1 L 0.22 0.087 72.8 53.7 59 285 

1 R 0.16 0.071 65.4 50.3 58 260 

4 L 0.29 0.076 70 44.3 49 205.7 

4 R 0.37 0.058 65.6 33 44 115 

5 L 0.26 0.058 65.8 34 42 181 

5 R 0.2 0.029 63.3 39.3 47.7 205.3 

6 L 1.22 0.11 95.9 58 73.7 76.3 

6 R 1.33 0.117 89.7 48.3 67.3 51 

7 L 0.66 0.088 86.8 56.3 66.7 106 

7 R 0.52 0.063 71.9 38.7 51 96.3 

8 L 0.1 0.054 66.4 63 63 596 

8 R 0.26 0.059 66.7 39.3 48.3 183.7 

9 L 0.26 0.082 62.1 47.3 48.7 213 

9 R 0.51 0.054 80.9 49.3 61.3 96 

10 L 0.62 0.096 78.8 43.7 53.7 97 

10 R 0.97 0.1 86 44.7 59.7 72.7 

11 L 0.18 0.05 85.02 62 66 316 

11 R 0.29 0.05 71.6 45 49 188.7 

13 L 0.34 0.086 84.24 54 63.7 120.7 

13 R 0.61 0.081 62.1 42 45.7 114 

19 L 0.33 0.03 77.5 52.3 56.3 185.3 

Average 0.46 0.071 74.6 47.5 55.8 179.2 

SD 0.34 0.024 10.2 8.4 8.8 120.1 
       

Rectus 

Subject 
Early 
Flexibility 

Late 
Flexibility  

Maximum 
Dorsiflexion 

Laxity 
Bilinear 
Angle 

Bilinear 
Torque 

2 L 0.23 0.05 56.8 27 35 195.7 

2 R 1.9 0.13 82.1 34.7 56 35.3 

12 L 0.28 0.063 74 50.7 60 215.3 

12 R 0.28 0.061 49.8 26 36.3 173.3 

14 L 0.34 0.145 87.7 74.7 74.7 228 

14 R 0.51 0.065 82.9 56 63 143 

15 L 0.151 0.066 66.6 56.3 58.3 389.3 

15 R 0.26 0.131 57.2 52.7 52.7 273 

16 L 0.84 0.11 104.8 69.3 82.7 113.7 

16 R 0.7 0.14 98.5 65 73.7 119 

18 L 0.3 0.049 73.8 52.3 58 207.7 

18 R 0.98 0.053 92.4 48 72 79.7 

19 R 0.35 0.06 100.7 50.3 70.3 76.7 

Average 0.54 0.086 79.0 51.0 60.9 173.0 

SD 0.47 0.038 17.8 14.7 14.2 94.6 
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Table C-3. Means for CPEIH, IPI, total PP, CA, MF, FTI, PTI, and ratios of PP, MF, PTI, and FTI.   

SubjectID CPEIH IPI PPTO CTO MFTO FTITO PTITO RatioPP RatioMF RatioPTI RatioFTI 

1 L 20.83 4.3426 820 162.25 1030.326 517.5602 327.12 0.82 0.75 0.81 0.63 

4 L 17.40 9.969 549.1667 158.50 885.4817 447.4545 183.33 0.47 0.85 0.48 0.68 

5 L 21.70 9.619 814.1667 142.75 848.9817 489.8115 249.77 0.57 0.55 0.53 0.50 

6 L 21.30 6.8615 325 113.33 561.6483 254.6845 117.52 0.54 0.91 0.62 0.87 

7 L 15.80 3.220167 454.1667 121.83 670.4617 351.9607 187.73 0.56 0.66 0.53 0.56 

8 L 21.00 14.771 820 127.83 879.5017 402.4335 266.95 0.31 0.35 0.40 0.37 

9 L 22.10 10.9484 454 137.45 781.776 447.9692 187.44 0.55 0.70 0.57 0.68 

10 L 18.90 7.159667 754.1667 132.13 771.98 415.312 279.08 0.57 0.87 0.65 0.80 

11 L 13.00 5.525833 636.6667 144.83 832.2717 449.3847 220.73 0.49 0.62 0.48 0.52 

12 L 13.92 4.79 505 138.11 786.9671 430.1423 234.80 1.38 1.61 1.49 1.62 

13 L 13.15 0.929 643 118.85 722.852 386.5642 240.38 0.96 1.14 1.04 1.07 

14 L 21.48 6.145 405.7143 151.06 950.6957 578.8453 203.81 0.74 1.06 0.83 0.99 

16 L 14.67 6.745286 760 114.71 892.6271 468.6957 324.63 1.69 1.13 1.56 1.09 

17 L 14.41 7.659 635 129.79 728.795 384.7032 199.25 0.30 0.58 0.42 0.58 

18 L 29.89 4.7074 888.3333 114.88 824.1283 436.9205 313.50 1.03 0.84 1.09 0.88 

19 L 29.46 7.3744 456.6667 154.96 803.6067 401.0078 198.82 0.71 0.75 0.65 0.69 

21 L 18.58 4.947667 1221 111.85 739.278 376.4402 306.03 1.05 1.20 1.08 1.24 

26 L 17.28 11.783 893 138.10 1024.802 497.9722 294.63 0.31 0.61 0.39 0.59 

27 L 30.04 11.37217 615 156.21 1072.44 571.7438 210.13 0.47 1.01 0.64 1.00 

31 L 17.30 3.286 483.3333 85.25 548.19 264.0417 197.43 0.78 0.83 0.72 0.74 

1 R 25.70 6.1244 787 168.50 1006.828 521.8168 257.38 0.43 0.74 0.47 0.60 

4 R 8.90 5.363667 440.8333 156.54 889.4 441.5702 171.08 0.40 0.80 0.50 0.69 

5 R 25.70 6.198833 463.3333 146.50 831.98 486.7308 199.77 0.70 0.49 0.69 0.46 

6 R 18.90 6.1236 390 117.08 572.94 247.9462 121.00 0.42 0.77 0.45 0.62 

7 R 19.70 1.9082 575.8333 126.21 651.7517 351.2367 214.83 0.53 0.66 0.52 0.55 

8 R 28.10 13.5282 1091 126.25 867.752 398.0028 298.64 0.18 0.34 0.27 0.33 

9 R 21.80 9.089667 712 135.50 780.402 455.2808 261.11 0.55 0.54 0.51 0.49 
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10 R 19.30 9.08125 795.8333 128.67 775.565 391.9643 254.58 0.58 0.89 0.57 0.77 

11 R 14.98 7.055143 497.1429 151.07 843.4857 445.4553 189.01 0.62 0.61 0.59 0.56 

12 R 18.00 5.601286 748.5714 139.25 767.6986 409.0429 276.47 0.59 0.75 0.55 0.69 

13 R 13.15 0.9824 502 117.60 714.978 393.6698 214.74 0.74 0.99 0.83 0.97 

14 R 22.02 7.5855 502.1429 145.58 948.1414 560.5296 234.81 0.91 1.17 0.96 1.11 

16 R 17.35 9.155 670 119.17 926.9617 495.9657 295.42 1.23 1.16 1.30 1.14 

17 R 10.84 3.469167 508.3333 136.71 712.21 390.9433 186.52 0.36 0.49 0.45 0.47 

18 R 27.15 7.096833 921.6667 122.58 812.2333 438.5457 324.10 0.54 0.73 0.71 0.73 

19 R 30.20 4.338167 475.8333 152.71 800.4 404.0285 180.23 1.40 1.09 1.00 0.94 

21 R 25.67 5.468 1025 112.58 735.1283 378.6965 313.38 0.82 0.90 0.83 0.89 

26 R 14.01 15.6784 730 134.95 1004.652 512.1814 258.54 0.88 1.00 0.97 0.91 

27 R 26.54 15.5395 555.8333 156.04 1130.047 571.9128 217.97 0.52 1.00 0.69 1.03 

31 R 23.87 7.3714 483 92.55 557.502 266.735 191.08 0.95 0.97 0.75 0.77 
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Table C-4. Means for PP across the twelve-segment foot mask. 

SubjectID PPhallux PPtoe2 PPtoe345 PPmh1 PPmh2 PPmh3 PPmh4 PPmh5 PPlathindfoot PPmedhindfoot PPlatmidfoot PPmedmidfoot 

1 L 559.00 342.00 197.00 606.00 742.00 800.00 518.00 387.00 362.00 497.00 140.00 92.00 

4 L 536.67 212.50 130.83 160.00 341.67 357.50 311.67 126.67 299.17 306.67 93.33 89.17 

5 L 801.67 115.00 120.83 221.67 390.83 357.50 286.67 181.67 277.50 293.33 102.50 102.50 

6 L 213.33 193.33 40.00 174.17 323.33 300.00 260.00 105.00 226.67 232.50 114.17 116.67 

7 L 368.33 255.00 120.00 176.67 315.00 303.33 209.17 226.67 311.67 320.00 69.17 62.50 

8 L 450.83 220.83 182.50 256.67 820.00 501.67 246.67 156.67 345.83 357.50 50.83 37.50 

9 L 422.00 73.00 47.00 194.00 354.00 346.00 305.00 221.00 261.00 259.00 106.00 114.00 

10 L 321.67 89.17 56.67 377.50 665.00 705.83 218.33 614.17 291.67 312.50 207.50 69.17 

11 L 635.83 90.00 91.67 214.17 437.50 437.50 247.50 86.67 243.33 257.50 80.83 84.17 

12 L 315.00 103.57 57.14 320.71 232.14 442.86 383.57 406.43 339.29 385.00 54.29 50.71 

13 L 423.00 91.00 31.00 422.00 440.00 406.00 278.00 458.00 310.00 351.00 101.00 57.00 

14 L 195.00 138.57 95.71 302.14 405.71 364.29 230.71 133.57 320.71 316.43 132.14 107.86 

16 L 381.43 157.86 52.14 589.29 349.29 375.71 309.29 340.00 511.43 544.29 108.57 68.57 

17 L 163.33 77.50 57.50 188.33 627.50 366.67 244.17 135.83 230.00 236.67 144.17 144.17 

18 L 264.17 53.33 29.17 375.00 363.33 521.67 796.67 603.33 316.67 320.00 59.17 57.50 

19 L 275.00 75.83 47.50 224.17 315.83 348.33 350.83 176.67 391.67 437.50 104.17 99.17 

21 L 1221.00 152.00 66.00 353.00 335.00 334.00 248.00 97.00 338.00 398.00 74.00 77.00 

26 L 592.00 194.00 143.00 259.00 832.00 532.00 364.00 619.00 344.00 357.00 116.00 109.00 

27 L 332.50 60.00 56.67 181.67 383.33 615.00 415.00 335.00 375.83 350.83 163.33 102.50 

31 L 411.67 200.83 132.50 309.17 395.00 350.00 231.67 115.83 356.67 416.67 65.83 70.83 

1 R 531.00 335.00 129.00 340.00 787.00 441.00 372.00 406.00 489.00 509.00 130.00 122.00 

4 R 409.17 184.17 126.67 145.83 363.33 368.33 297.50 164.17 278.33 285.00 113.33 103.33 

5 R 361.67 101.67 115.83 320.00 455.00 409.17 279.17 187.50 290.00 287.50 120.00 120.00 

6 R 172.50 148.33 37.50 154.17 370.00 373.33 235.83 94.17 240.00 248.33 117.50 116.67 

7 R 512.50 419.17 210.00 235.00 440.00 330.00 220.00 239.17 304.17 295.00 87.50 58.33 

8 R 465.00 288.00 297.00 192.00 1091.00 436.00 218.00 153.00 367.00 384.00 57.00 27.00 

9 R 654.00 112.00 89.00 194.00 350.00 372.00 343.00 167.00 290.00 295.00 90.00 78.00 

10 R 332.50 225.00 86.67 415.00 714.17 495.00 204.17 431.67 339.17 354.17 190.00 63.33 
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11 R 269.29 151.43 111.43 230.71 370.00 436.43 444.29 153.57 247.86 252.14 83.57 79.29 

12 R 328.33 40.83 49.17 246.43 417.86 702.86 220.00 292.86 305.00 318.33 70.83 67.50 

13 R 484.00 107.00 68.00 306.00 411.00 432.00 224.00 296.00 281.00 280.00 72.00 61.00 

14 R 359.29 115.00 70.71 412.86 455.00 356.43 192.86 122.14 316.43 312.86 147.86 118.57 

16 R 216.67 145.83 70.83 463.33 376.67 404.17 353.33 368.33 575.00 602.50 102.50 60.83 

17 R 147.50 205.83 125.83 183.33 508.33 351.67 277.50 185.00 210.83 208.33 154.17 115.83 

18 R 212.50 165.83 92.50 471.67 871.67 381.67 510.83 401.67 305.00 327.50 86.67 51.67 

19 R 210.83 65.00 27.50 466.67 333.33 316.67 244.17 119.17 279.17 298.33 115.00 102.50 

21 R 1025.00 150.00 68.33 266.67 325.83 316.67 231.67 122.50 363.33 400.83 76.67 74.17 

26 R 706.00 119.00 59.00 501.00 569.00 504.00 388.00 462.00 319.00 325.00 122.00 122.00 

27 R 365.83 35.00 21.67 218.33 420.83 553.33 453.33 510.00 357.00 349.00 138.00 154.00 

31 R 329.00 225.00 210.00 309.00 324.00 340.00 227.00 156.00 386.00 465.00 81.00 83.00 
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Table C-5. Means for CA across the twelve-segment foot mask. 

SubjectID CAhallux CAtoe2 CAtoe345 CAmh1 CAmh2 CAmh3 CAmh4 CAmh5 CAlathindfoot CAmedhindfoot CAlatmidfoot CAmedmidfoot 

1 L 12.50 3.35 5.10 14.85 11.65 14.25 10.95 6.75 21.25 21.80 31.40 8.40 

4 L 13.54 4.38 8.21 17.08 12.67 12.71 10.00 5.79 19.54 19.33 24.33 10.88 

5 L 10.46 2.96 6.63 12.79 10.54 12.50 9.92 6.88 20.75 20.33 24.46 4.54 

6 L 8.04 2.75 2.58 11.29 8.79 10.46 8.46 5.29 14.58 14.54 20.88 5.67 

7 L 8.46 4.04 7.54 11.13 10.00 11.46 9.38 5.75 18.46 18.08 15.17 2.38 

8 L 12.33 5.38 10.00 12.46 9.46 9.63 9.25 6.46 20.33 19.96 12.00 0.58 

9 L 11.20 2.95 4.05 12.85 10.60 12.75 10.40 6.60 18.60 18.65 22.90 5.90 

10 L 9.38 2.92 3.08 13.25 10.04 12.54 10.54 6.75 16.50 16.33 27.29 3.50 

11 L 16.29 3.46 6.54 14.00 11.42 12.29 10.63 6.21 19.79 20.58 20.83 2.79 

12 L 11.64 4.61 7.25 13.29 9.39 13.04 11.82 8.39 20.39 20.29 16.11 1.89 

13 L 8.10 2.75 2.05 12.15 9.30 11.40 9.30 6.35 15.50 15.50 23.70 2.75 

14 L 10.77 4.24 7.42 15.78 12.71 14.44 11.66 6.98 18.63 18.80 26.16 3.35 

16 L 10.18 4.46 4.25 12.46 9.82 11.21 9.68 6.32 16.96 16.64 11.68 1.04 

17 L 7.92 3.04 5.42 12.50 10.83 12.13 10.17 6.08 15.63 15.63 24.42 6.04 

18 L 10.67 2.58 2.42 12.21 8.67 10.54 10.42 7.67 17.83 17.38 13.13 1.38 

19 L 12.25 2.79 2.88 15.83 11.88 14.42 11.71 7.17 19.33 19.29 30.58 6.75 

21 L 11.20 4.10 5.30 11.45 8.90 9.30 7.70 4.40 15.40 15.05 16.30 2.75 

26 L 11.05 3.50 4.10 14.30 12.45 12.50 9.75 6.05 16.95 17.05 25.60 4.80 

27 L 10.63 2.50 3.83 16.63 13.08 15.08 11.71 7.29 20.92 20.83 31.46 4.13 

31 L 7.75 3.63 6.67 8.46 6.46 7.92 7.33 4.38 13.54 13.88 3.67 1.54 

1 R 11.85 4.75 5.05 16.10 13.50 14.35 11.20 6.80 21.30 21.70 30.95 10.85 

4 R 12.21 3.88 5.46 16.63 12.46 13.67 10.63 6.71 19.54 19.54 25.46 10.33 

5 R 10.63 3.38 7.67 13.58 11.46 12.21 9.54 6.50 19.71 19.71 28.33 3.79 

6 R 7.42 3.13 3.08 11.50 9.71 10.88 8.13 4.46 14.75 15.00 23.00 5.96 

7 R 7.21 3.25 7.13 10.92 8.92 11.67 9.38 6.21 18.33 18.42 22.29 2.50 

8 R 12.30 5.30 10.15 11.20 9.40 9.70 9.10 6.15 20.35 19.50 12.75 0.30 

9 R 12.45 3.50 5.00 11.50 9.95 12.15 10.10 6.70 19.40 19.05 23.20 2.50 

10 R 7.54 3.42 4.21 12.96 9.67 11.92 10.42 6.38 16.67 16.04 25.29 4.17 
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11 R 12.61 4.32 8.00 13.32 12.11 12.93 11.50 7.11 19.07 20.04 27.68 2.39 

12 R 12.50 2.46 5.83 12.32 9.71 12.89 12.11 8.25 20.42 20.67 23.88 2.83 

13 R 9.85 3.20 5.50 11.80 9.00 10.80 9.35 6.15 15.30 15.65 19.10 1.90 

14 R 10.94 3.45 5.92 15.71 12.55 13.58 11.66 6.73 18.62 18.59 24.68 3.10 

16 R 10.25 4.54 5.75 13.00 10.04 11.83 9.79 6.08 17.58 17.54 11.54 1.21 

17 R 9.79 4.50 9.38 11.67 10.46 11.42 9.88 5.92 16.04 16.29 26.54 4.79 

18 R 9.75 3.88 7.00 11.42 8.92 10.92 10.92 8.00 18.25 18.08 13.83 1.54 

19 R 10.00 2.71 1.88 16.71 13.00 14.92 12.08 7.46 18.54 19.04 31.00 5.96 

21 R 10.50 3.79 6.46 10.54 8.83 10.13 8.17 5.21 15.13 15.46 16.50 1.88 

26 R 10.65 3.15 3.05 15.10 12.05 12.60 10.30 6.40 16.95 16.65 23.60 4.40 

27 R 10.96 1.85 0.58 17.25 13.29 14.96 11.79 7.21 20.55 20.40 32.80 5.50 

31 R 8.75 3.85 8.05 9.00 6.75 8.00 7.50 4.95 13.35 13.45 7.10 1.70 

 

 

 

 

 

 

 

 



207 

 

Table C-6. Means for MF across the twelve-segment foot mask. 

SubjectID MFhallux MFtoe2 MFtoe345 MFmh1 MFmh2 MFmh3 MFmh4 MFmh5 MFlathindfoot MFmedhindfoot MFlatmidfoot MFmedmidfoot 

1 L 173.08 30.88 20.40 151.95 202.70 304.10 163.93 69.80 273.60 384.28 202.35 32.05 

4 L 217.56 27.65 30.21 139.17 163.96 225.10 134.44 39.13 279.92 328.29 123.58 39.46 

5 L 148.81 15.60 23.44 118.19 214.19 209.10 132.08 57.50 276.33 326.31 97.40 21.19 

6 L 72.98 17.58 5.83 104.25 114.23 148.02 94.77 26.60 157.69 193.35 107.83 29.00 

7 L 111.63 31.38 32.46 103.38 155.79 168.81 95.60 48.04 257.58 248.94 51.75 9.56 

8 L 183.10 43.96 43.96 102.77 292.04 190.44 89.56 48.40 269.13 353.35 36.96 2.19 

9 L 134.13 10.90 10.20 112.95 161.23 204.20 139.48 65.68 212.83 259.20 99.18 27.70 

10 L 75.19 14.77 8.79 165.42 189.56 195.56 96.96 100.83 199.92 238.33 187.19 10.90 

11 L 177.10 16.38 24.08 153.35 247.02 208.23 80.46 30.85 241.54 298.69 49.15 12.92 

12 L 110.23 20.59 21.23 132.84 82.30 207.16 161.38 105.82 257.04 333.27 42.45 5.63 

13 L 91.20 12.35 3.83 179.60 157.00 171.05 92.30 66.28 222.05 252.00 120.35 8.23 

14 L 92.77 26.89 30.82 247.35 233.49 218.94 129.11 60.93 291.35 303.99 172.52 15.41 

16 L 104.34 24.91 9.73 196.45 173.45 201.66 137.25 84.93 291.88 290.71 43.86 4.32 

17 L 52.58 12.25 17.48 121.67 209.46 168.17 112.85 50.40 185.25 221.88 160.23 33.23 

18 L 82.79 7.50 3.27 124.35 148.92 217.92 195.06 116.40 274.19 252.83 36.77 5.25 

19 L 137.33 11.17 7.75 132.92 178.06 215.10 143.17 52.56 232.27 277.06 135.25 28.81 

21 L 227.65 24.75 14.13 184.98 154.05 148.43 82.13 22.25 196.33 234.20 52.88 11.40 

26 L 155.68 20.70 17.33 168.85 276.75 259.70 143.05 78.50 278.68 306.88 137.23 22.68 

27 L 89.56 10.40 10.29 185.38 183.81 262.71 200.02 104.33 286.71 400.38 226.54 21.19 

31 L 100.73 27.71 27.71 101.63 122.44 128.79 71.94 25.50 184.08 200.42 10.38 6.44 

1 R 148.93 46.63 19.25 169.23 227.50 223.33 137.60 77.50 316.50 341.15 208.88 48.05 

4 R 172.48 26.79 24.06 130.69 163.60 240.00 141.79 51.29 260.90 299.15 143.10 39.13 

5 R 119.38 14.71 20.96 126.50 257.08 213.81 122.90 59.54 284.85 279.50 140.52 19.63 

6 R 56.88 17.92 5.88 96.69 126.21 170.98 89.27 24.23 167.54 206.06 117.54 27.08 

7 R 91.48 33.50 37.13 103.06 156.44 185.02 91.25 51.21 264.46 226.73 95.46 8.44 

8 R 178.40 48.08 63.83 95.93 284.10 151.93 86.00 42.50 315.65 341.13 35.78 0.75 

9 R 142.85 18.18 21.25 88.25 162.48 213.45 146.50 54.98 254.68 287.08 100.05 10.38 

10 R 74.54 28.38 14.52 166.77 187.23 186.88 97.13 73.06 210.02 273.96 161.48 10.83 
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11 R 106.79 24.29 33.34 128.59 211.54 232.32 154.30 55.98 242.13 276.79 91.18 9.73 

12 R 101.67 6.35 11.52 110.30 146.93 222.43 114.57 75.23 259.23 308.98 80.81 10.27 

13 R 117.83 14.60 18.20 144.33 145.23 170.70 87.60 64.18 212.90 233.23 79.15 7.18 

14 R 133.47 17.68 21.00 302.58 258.64 187.39 117.37 54.71 293.49 304.41 148.41 16.27 

16 R 71.52 21.54 14.75 202.67 174.67 238.15 162.19 90.29 276.67 297.33 36.40 4.65 

17 R 70.54 29.40 49.79 86.83 178.48 170.04 127.71 58.92 157.04 174.40 196.73 26.10 

18 R 82.71 25.02 25.92 137.38 187.90 181.90 183.29 110.98 263.21 284.81 46.58 5.17 

19 R 77.13 10.38 2.63 207.08 189.29 193.04 132.13 47.44 220.63 228.19 149.17 20.94 

21 R 229.69 26.06 20.67 135.48 150.02 154.73 85.04 33.25 224.21 261.88 68.17 7.94 

26 R 134.90 13.75 7.40 233.15 232.08 246.08 152.33 79.85 252.15 301.05 117.63 22.55 

27 R 104.67 4.78 1.04 201.29 200.90 269.63 224.77 123.63 284.88 426.08 222.95 37.53 

31 R 94.73 33.53 48.23 111.13 114.00 116.25 76.50 36.08 160.03 195.58 24.05 8.58 
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Table C-7. Means for FTI across the twelve-segment foot mask. 

SubjectID FTIhallux FTItoe2 FTItoe345 FTImh1 FTImh2 FTImh3 FTImh4 FTImh5 FTIlathindfoot FTImedhindfoot FTIlatmidfoot FTImedmidfoot 

1 L 35.04 5.14 4.80 38.00 60.40 90.75 47.66 20.08 63.86 89.30 56.07 6.46 

4 L 35.40 5.11 6.23 29.10 42.51 61.94 41.62 13.64 75.31 84.16 43.57 8.85 

5 L 27.65 2.91 3.66 28.40 56.42 62.99 42.36 18.09 96.11 113.99 30.13 7.10 

6 L 12.39 2.77 0.84 28.10 32.20 41.01 25.84 7.38 32.76 39.48 26.66 5.27 

7 L 19.78 6.13 6.10 23.17 41.41 48.18 28.92 13.90 74.84 76.08 11.13 2.32 

8 L 35.56 10.92 6.45 34.19 92.77 65.34 32.27 14.70 47.78 57.76 4.45 0.24 

9 L 32.22 2.63 2.53 41.10 60.36 76.72 52.55 22.75 54.19 66.01 29.96 6.95 

10 L 16.67 1.86 1.44 47.63 59.88 58.33 34.18 30.45 50.47 56.22 55.71 2.49 

11 L 37.90 3.19 3.43 43.59 84.02 74.68 30.69 9.95 66.33 81.02 10.92 3.68 

12 L 25.62 3.87 3.18 47.30 29.15 69.69 59.22 32.55 68.58 81.24 8.41 1.33 

13 L 23.34 2.10 0.34 48.65 45.49 48.38 27.39 14.30 59.28 78.02 37.62 1.65 

14 L 15.34 5.55 8.18 80.91 82.01 79.68 52.73 23.65 81.64 82.52 61.98 4.57 

16 L 23.33 4.57 0.84 61.15 56.23 65.99 46.25 25.31 85.31 86.13 12.43 1.15 

17 L 11.96 2.99 3.33 38.65 66.59 57.33 39.23 15.97 43.79 50.96 46.21 7.68 

18 L 15.69 1.09 0.52 28.53 32.29 62.99 61.67 35.93 94.34 94.93 7.77 1.16 

19 L 22.40 1.07 1.00 31.67 46.14 62.24 42.58 14.16 61.84 75.96 34.61 7.33 

21 L 46.81 5.46 3.22 64.60 52.00 50.53 27.52 6.55 45.97 59.60 11.99 2.18 

26 L 31.65 4.51 3.34 47.62 81.34 80.78 47.55 24.30 64.12 70.75 37.17 4.85 

27 L 16.39 1.64 2.16 55.97 56.17 82.61 66.99 33.99 76.46 97.11 78.11 5.19 

31 L 20.94 6.34 5.95 26.42 35.77 40.93 22.90 6.66 43.80 50.59 2.49 1.23 

1 R 30.63 9.71 4.51 38.32 63.83 62.51 40.28 22.32 82.69 96.24 59.81 10.93 

4 R 33.87 5.50 5.37 32.23 46.40 64.50 40.05 14.52 65.62 74.22 48.62 10.67 

5 R 21.37 2.90 3.46 34.38 74.09 73.13 47.51 23.45 76.43 78.27 46.11 5.64 

6 R 7.61 2.25 0.64 18.80 30.18 41.15 22.24 5.92 37.21 44.94 31.20 5.79 

7 R 17.83 6.96 5.73 23.13 42.34 53.76 26.51 13.12 71.38 66.71 21.72 2.04 

8 R 37.79 10.88 9.25 28.47 86.43 52.52 28.95 13.67 60.84 63.20 5.91 0.09 

9 R 34.39 4.03 5.14 28.05 56.73 81.85 56.53 19.59 68.22 73.72 24.68 2.34 

10 R 15.66 4.29 3.06 42.72 55.76 51.82 29.74 22.16 53.18 60.47 50.28 2.81 
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11 R 17.84 3.91 5.24 35.82 63.84 74.56 49.49 17.25 70.27 80.50 23.84 2.89 

12 R 23.81 1.10 1.93 35.93 51.89 79.24 44.02 24.83 61.43 69.27 17.39 2.16 

13 R 31.43 2.84 3.24 45.62 46.98 56.03 31.83 17.95 60.01 70.59 25.37 1.78 

14 R 22.70 3.21 4.43 102.74 92.30 71.94 46.44 18.99 75.19 73.13 45.77 3.68 

16 R 19.77 5.09 2.18 72.10 63.49 79.07 51.89 25.26 79.11 87.89 9.08 1.03 

17 R 14.31 6.67 11.37 30.67 64.91 64.49 47.06 19.45 36.18 39.46 51.81 4.54 

18 R 17.45 3.91 4.28 32.01 43.78 56.42 67.96 41.71 75.51 84.44 10.19 0.87 

19 R 13.65 0.88 0.12 48.85 51.98 60.14 42.05 13.69 57.91 64.73 43.98 6.07 

21 R 49.30 5.47 4.80 43.65 49.01 52.70 30.55 10.88 51.42 63.79 15.62 1.51 

26 R 25.00 3.40 1.33 67.32 74.00 83.02 56.35 27.55 63.62 71.00 34.07 5.50 

27 R 17.97 0.47 0.13 65.85 64.04 85.82 71.05 33.74 66.35 92.37 70.91 8.17 

31 R 19.23 6.93 11.80 25.46 32.93 38.65 25.50 10.74 40.24 48.74 4.87 1.63 
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Table C-8. Means for PTI across the twelve-segment foot mask. 

SubjectID PTIhallux PTItoe2 PTItoe345 PTImh1 PTImh2 PTImh3 PTImh4 PTImh5 PTIlathindfoot PTImedhindfoot PTIlatmidfoot PTImedmidfoot 

1 L 112.40 55.54 47.64 132.88 164.50 229.00 134.50 85.60 85.18 107.32 39.84 23.82 

4 L 94.00 38.65 30.93 40.12 82.78 90.68 81.38 42.18 83.47 84.03 38.35 31.58 

5 L 148.80 23.18 17.78 56.63 107.02 105.23 85.58 58.98 100.43 105.43 42.13 36.53 

6 L 42.92 29.12 9.25 46.83 75.45 78.22 66.62 28.72 48.30 49.57 30.75 24.73 

7 L 70.62 49.53 28.35 44.68 83.77 90.17 65.93 59.07 92.15 94.22 23.38 19.48 

8 L 114.10 64.28 32.35 87.93 217.85 151.68 85.13 51.31 62.95 64.74 9.59 4.62 

9 L 106.54 21.78 16.60 68.39 119.91 122.00 104.87 74.48 69.47 70.39 38.93 29.65 

10 L 75.60 13.60 12.25 109.78 169.02 197.85 71.10 141.95 73.53 76.13 55.77 18.13 

11 L 143.65 21.73 18.30 69.80 146.90 150.93 84.10 31.47 71.58 74.77 26.10 25.85 

12 L 84.30 22.09 13.03 109.46 73.56 119.54 116.74 120.77 86.24 95.01 19.69 14.54 

13 L 111.70 18.02 4.39 113.89 109.92 103.60 73.15 74.95 91.96 104.22 33.19 16.45 

14 L 41.79 32.04 33.41 105.47 127.08 116.49 82.60 63.01 94.15 91.94 58.65 32.23 

16 L 84.06 31.74 6.97 177.27 113.97 120.71 99.89 93.24 141.77 144.61 36.70 20.69 

17 L 36.55 21.70 13.85 65.32 154.18 105.82 74.42 46.55 58.92 59.75 49.23 34.18 

18 L 49.08 9.77 5.60 85.35 77.97 182.25 233.28 172.35 115.82 119.67 24.68 18.02 

19 L 59.27 8.70 7.30 55.97 86.13 98.85 92.78 43.57 98.87 112.97 36.50 28.62 

21 L 219.55 37.22 20.21 118.48 109.90 109.58 81.24 31.83 81.05 89.31 20.33 16.96 

26 L 126.71 40.73 31.71 74.91 191.59 136.88 104.89 134.71 83.10 85.57 40.05 31.34 

27 L 57.78 10.56 14.48 59.82 93.22 139.84 109.08 87.09 94.16 94.22 61.37 28.75 

31 L 88.88 45.69 29.63 79.47 110.15 105.28 73.53 34.16 85.30 90.58 17.28 16.77 

1 R 106.32 68.58 31.38 72.26 153.44 106.28 81.90 79.76 117.10 123.50 49.32 36.78 

4 R 95.48 40.25 29.68 43.22 86.72 89.52 70.87 45.97 73.85 76.17 46.03 32.12 

5 R 65.52 22.32 23.73 87.98 128.32 124.97 95.08 74.28 82.38 82.42 47.18 34.13 

6 R 26.13 20.52 6.40 34.17 75.77 76.87 56.13 25.85 55.55 57.12 33.18 27.12 

7 R 94.95 78.38 36.75 53.65 103.72 100.92 67.02 55.97 86.68 85.20 27.43 18.22 

8 R 119.80 69.78 48.47 65.27 238.56 128.53 72.73 50.39 73.75 75.35 12.43 3.36 

9 R 165.12 26.91 27.52 62.32 123.16 132.27 122.85 66.18 80.03 81.30 33.84 21.28 

10 R 70.98 33.95 20.63 100.15 175.90 139.70 60.80 101.97 79.87 81.08 56.35 18.20 
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11 R 50.99 26.56 23.83 65.44 111.06 126.06 122.07 48.34 77.36 77.67 30.91 24.81 

12 R 90.07 9.02 12.53 74.61 136.63 213.63 77.84 84.34 73.58 75.70 24.32 16.28 

13 R 134.58 25.07 14.77 93.93 113.76 122.18 71.15 77.26 86.01 87.98 27.20 17.66 

14 R 66.84 23.81 21.02 140.79 147.01 119.94 74.85 52.91 86.89 84.40 51.50 28.56 

16 R 63.43 38.95 12.95 154.52 119.08 125.90 107.97 92.95 146.28 149.62 30.28 16.27 

17 R 36.17 47.62 33.80 64.82 144.30 114.65 92.97 63.10 46.67 46.32 53.17 24.47 

18 R 49.78 28.25 19.53 101.38 142.93 138.55 184.92 159.70 92.50 99.13 29.73 12.47 

19 R 40.62 6.72 1.63 98.13 97.97 100.08 80.63 38.35 77.30 83.25 39.82 29.55 

21 R 221.11 34.86 21.21 86.85 104.55 105.56 78.18 44.38 87.15 94.83 22.42 16.34 

26 R 123.13 31.69 16.82 136.57 140.26 139.26 120.19 115.34 81.92 82.59 41.30 31.16 

27 R 52.96 4.54 2.90 74.71 108.86 143.38 129.16 127.15 84.16 84.82 54.14 33.50 

31 R 71.61 45.91 52.20 69.93 93.10 99.80 75.15 51.52 78.53 89.93 21.36 19.76 
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Appendix D. Additional Data for Finite Element 

Modelling 

 

This appendix details the supplementary information including von Mises and 

maximum principal stress distributions at the first metatarsal head cartilage not shown 

in the main text of Chapter 7. 

 

 

Figure D-1. von Mises stress distributions at the articular surface of the second metatarsal head. The 

FE images are separated by planus and rectus simulations across the late stance phase of gait. 
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Figure D-2. von Mises stress distributions at the articular surface of the medial cuneiform. The FE 

images are separated by planus and rectus simulations across the late stance phase of gait. 
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Figure D-3. Maximum principal stress distributions at the articular surface of the first metatarsal head. 

The FE images are separated by planus and rectus simulations across the late stance phase of gait. 
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Figure D-4. Maximum principal stress distributions at the articular surface of the second metatarsal 

head. The FE images are separated by planus and rectus simulations across the late stance phase of 

gait. 
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Figure D-5. Maximum principal stress distributions at the articular surface of the medial cuneiform. 

The FE images are separated by planus and rectus simulations across the late stance phase of gait. 
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Table D-1. Means and SD for contact force (N) of the first MTC, first MTP, and second MTP joints 

between the non-hypermobile rectus and hypermobile planus simulations. Contact forces are 

expressed in the three primary anatomical planes of motion. 

  Contact Force (N)       

Stance (%) 

Planus    Rectus   

L(+)/M(-) I(+)/S(-) C(+)/D(-)  L(+)/M(-) I(+)/S(-) C(+)/D(-) 

First MTC Joint 

 70 -4 151 218  -6 174 254 

 80 -22 250 318  -21 235 257 

 90 -6 120 152  -32 189 157 

 
First MTP Joint  

 70 9 35 215  5 43 258 

 80 16 59 357  21 44 360 

 90 5 38 183  2 54 216 

 
Second MTP Joint 

 70 9 47 173  15 30 113 

 80 38 78 253  18 41 189 

 90 18 37 152  33 60 170 

L, lateral; M, medial; I, inferior; S, superior; C, compression; D, distraction. 

 

Table D-2. Contact area of each joint during late stance. 

 Contact Area (mm2) 

Stance (%) Planus  Rectus 

First MTC Joint 

70 190  188 

80 223  222 

90 158  115 

 
First MTP Joint 

70 93  108 

80 119  116 

90 104  99 

 
Second MTP Joint 

70 34  38 

80 47  40 

90 34  36 
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Table D-3. Peak von Mises (MPa) stress throughout late stance at the articular and osteochondral 

interfaces. The first MTP, MTC, and second MTP joints are shown. 

 von Mises Stress (MPa)  

Stance (%) 
Planus   

Rectus  

Articular Osteochondral  Articular Osteochondral 

First MTC Joint 

 70 1.3 1.6  2.4 4.2 

 80 1.9 2.9  1.9 2.9 

 90 2.4 4.2  2.6 4.6 

 
   

 
  

First MTP Joint 

 70 2.4 3.2  1.7 2.6 

 80 2.1 6.5  2.6 4.0 

 90 1.5 2.0  2.8 3.1 

 
   

 
  

Second MTP Joint 

 70 4.8 6.8  2.6 3.1 

 80 4.6 6.3  4.4 6.5 

 90 3.8 4.9  4.5 5.6 

 

Table D-4. Peak maximum principal stress (MPa) stress throughout late stance at the articular and 

osteochondral interfaces. The first MTP, MTC, and second MTP joints are shown. 

 Maximum Principal Stress (MPa)  

Stance (%) 
Planus   

Rectus  

Articular Osteochondral  Articular Osteochondral 

First MTC Joint 

 70 -2.9 -2.2  -4.5 -5.2 

 80 -3.8 -3.6  -4.2 -3.5 

 90 -4.9 -5.3  -4.3 -4.6 

 
   

 
  

First MTP Joint 

 70 -3.9 -4.7  -4.0 -4.4 

 80 -4.6 -4.9  -4.7 -5.6 

 90 -2.7 -3.1  -3.3 -4.3 

 
   

 
  

Second MTP Joint 

 70 -7.5 -9.2  -3.8 -4.6 

 80 -7.1 -8.1  -5.8 -7.3 

 90 -5.5 -6.8  -6.6 -7.9 

` 
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