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ABSTRACT 

FACULTY OF SCIENCE AND ENGINEERING 

DOCTOR OF PHILOSOPHY 

DEEP NEURAL NETWORKS FOR REAL TIME MOTOR-IMAGERY 

EEG SIGNAL CLASSIFICATION 

AHMED BAHAAELDIN MOHAMED SELIM 

March 2021 

The aim of this research is to develop a high-performance Motor Imagery (MI) classifier capable of 
using short signal intervals (0.8s) in an effort to move towards real-time performance for Brain-
Computer Interfaces (BCIs). First, classification accuracy was investigated with different windows
sizes and intervals and compared with baseline levels of performance with common existing methods, 
Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA), using both spatial and 
spectral features. It was found that spectral features could produce higher performance using shorter 
windows compared to spatial features. Next, a state-of-the-art Convolutional Neural Networks (CNN) 
was developed using the Continuous Wavelet Transformation (CWT), producing a novel Point-wise 
Convolutional Neural Network (PWCNN) that achieves performance very close to the state-of-the-
art, namely 80% classification accuracy using the BCI IV 2b dataset operating on 2s intervals; 
however, random chance performance was found with the BCI IV 2a dataset. Next, to address the
limitations of the PWCNN, a hybrid deep model was developed based on best practice CNNs and 
Recurrent Neural Networks (RNN). It incorporated novel spatial and temporal attention mechanisms, 
and is called Convolutional Recurrent Neural Network with Double Attention (CRNN-DA). This 
model was found to yield 73% classification accuracy and 60% kappa using the BCI IV 2a dataset, 
which is 3% higher than the winner of the BCI IV 2a competition. A generalisation of the Guided 
Grad-CAM method suited for EEG signals is also proposed to provide model decision interpretability, 
which may enable further optimisations to be made. In addition, a novel EEG augmentation 
technique, to be called shuffled-crossover, is proposed to address the issue of having small datasets 
for network training. As a consequence of increasing the number of training samples, this approach 
was found to elicit a further 3% increase in classification accuracy using the CRNN-DA. The 
suggested model (CRNN-DA) and methods move us closer to realising the aim of practical BCIs 
capable of responding to multiple input classes in real-time. The proposed double attention 
mechanism can serve as a feedback loop for data collection, enabling data reflecting user inattention,
that may otherwise reduce training efficiency, to be rejected pre-emptively. The proposed 
augmentation technique can be used to reduce the quantity of training data required. The proposed 
modified Grad-CAM technique offers an insight into model decisions (viz., model interpretability)
that may enable future performance enhancements to be identified more easily. 
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New computer interfaces are continuously developed to make interacting with machines faster and 

easier. Most interface modalities have not been designed with disability in mind; for instance, mice, 

trackpads, keyboards, and the currently popular approach of interpreting finger strokes on touch 

screens (Preece, 2002). These interfaces require physical interaction, precluding their use by those 

with significant motor impairments, such as those who have impaired motor control as a consequence 

of neurological disease, brain trauma, limb injury or loss. 

A Brain-Computer Interface (BCI) is a system that enables communication between humans and 

electronic devices in which the input is acquired directly from the brain activity of the user. Since 

these systems don’t require any motor activity, they can provide a means for those who suffer from 

motor impairments (including, in the most extreme case, those who are entirely locked that have no 

other method to interact with the external world). BCIs provide a means for motor impaired or 

otherwise disabled users to communicate with the external world and control devices with their 

thoughts (Yi et al., 2013). 

Traditional robotic prosthetics are effective when the nerve connections of the muscles are mostly 

functional since they operate by recording the electrical signals in muscles. These technologies are 

complicated and expensive, and may only be used in patients with functional nerve connections 

(Bright, Nair, Salvekar and Bhisikar, 2016). Conversely, the technology that underpins BCIs in 

inexpensive, and where electroencephalogram (EEG) devices are used, signals are recorded directly 

from the scalp meaning that distal muscular electricity activity does not need to be preserved. Muller-

Putz and Pfurtscheller (2008) implemented a BCI-controlled robotic arm with four control signals to 

represent the four different motor functions of the arm: left movement, right movement, hand open, 

and hand close. More recently, a low cost BCI controlled prosthetic was proposed by Elstob and 

Lindo Secco (2016) that has five movements and uses a 3D-printed prosthetic arm. BCI systems have 

shown encouraging results in rehabilitating those who have suffered a stroke. In Gomez-Rodriguez 

et al. (2011) and Abiri et al. (2017), patients were instructed to imagine performing movements that 

were then executed by robotic arms to provide haptic feedback to the patients (with a small delay), 

which was found to stimulate recovery. Luu, Nakagome, He and Contreras-Vidal (2017) and 

McMahon and Schukat (2018) combined BCI and virtual reality for post-stroke rehabilitation, rather 

than using a robotic arm, thereby providing visual rather than haptic feedback, but found this to be 

similarly useful.  
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Even though several BCI systems have been developed, there are significant practical challenges that 

limit their reliability and responsiveness. There is usually a trade-off between speed and classification 

performance; viz., for accurate classification, computationally intensive analyses of high-resolution 

signals is required, but for high performance (i.e., real-time responsiveness), a smaller quantity of 

data and relatively computational inexpensive analysis methods are needed. The majority of current 

BCI systems use EEG signals, which are inherently non-linear, non-stationary and prone to a number 

of artefacts. Processing these signals is challenging and requires that a constellation of procedures are 

used for even modest classification accuracy to be achieved. This is in addition to other practical 

challenges, such as the need for dimensionality reduction, source separation, identifying suitable 

features, and overcoming the difficulties of effective training caused by small quantities of training 

data and signals that differ markedly from person to person. 

The overarching objective of this thesis is to improve the accuracy and speed of EEG-based BCI 

systems that use the motor imagery (MI) approach. Prior to presenting new methods, in the following 

sections previous literature is summarised in terms of methods employed (including discussing 

method limitations or shortcomings), focussing particularly (but not exclusively) on methods that 

have previously be used for EEG-based MI classification for BCI systems. Where available, the 

features concentrated upon by each existing method (e.g., spatial, spectral, spatiotemporal), the core 

classification method (e.g., SVM, LDA, ANN), and key performance metrics will be discussed. The 

performance of newly developed models/systems, to be presented in subsequent chapters, will be 

compared back to the systems described in this literature review. 

1.1 Brain-Computer Interface and Motor Imagery 

Depending upon the specific purpose of a BCI system (e.g., text input, wheelchair control, playing 

games), different electrophysiological signals will be used to classify user intentions. For instance, in 

the case of text input systems (sometimes called word spellers), the P300 component has been 

extracted from the EEG signals as it is feature that appears in the signal when a user focusses their 

attention on a letter and makes a decision. The P300 component is an example of what is known as 

an Event-Related Potential (ERP). Other transient signal features include Visual Evoked Potentials 

(VEPs), which are elicited when a light flash or pattern is seen (Pfurtscheller and Neuper, 2001). 

However, VEPs will not be discussed further in this thesis, since they do not typically correspond to 

decision making (intention) and are therefore not well suited for interface control. 

3 



In addition to the P300, another particularly useful ERP that can be readily captured in EEG signals 

is Event Related Desynchronisation (ERD) and Event Related Synchronisation (ERS). These events 

occur when a motor movement is performed but also when a motor movement is merely imagined. 

ERP/ERS BCI-based systems have been used for the rehabilitation of motor functions in a medical 

context (Graimann et al., 2002a; Lu et al., 2017; Pfurtscheller and Neuper, 1997), and provide a very 

promising avenue for further development to increase their real-time operability and classification 

accuracy for general-purpose human-computer interfaces. 

1.2 Event Related Potentials (ERPs), Event Related Synchronisation (ERS) and Event Related 

Desynchronisation (ERD) 

 

 

 

       

     

         

        

       

    

 

 

      

 

 

 
    

 

          

          

      

      

Figure 1.1: The 10-20 international system for electrode placement (from Sharbrough, 1991). 

ERPs are time-locked events that correspond to a significant change in the activity of a population of 

neurons. There is a fixed time delay between the stimulus (such as an instruction or stimulus) and the 

evoked signal, and concurrent brain activity is considered noise that usually needs to be removed 

prior to signal interpretation. Averaging multiple signals may improve Signal-to-Noise Ratio (SNR). 
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Some stimuli, such as those in the visual domain, can attenuate the amplitude of the evoked signal, 

so the ERP approach is usable only in certain circumstances. The ERP model assumes two signals 

are added to each other, one is the signal of interest and the other is the noise (Pfurtscheller and Lopes, 

1999). 

The events that produce α (8-13 Hz) and β (13-30 Hz) signals can be detected as increases in power 

at these specific narrow frequency bands. However, analysing ERS/ERD for monitoring or 

controlling applications entails the identification of the frequency components most closely linked to 

the mental task performed, which also requires the cortical areas where it is more distinctive for the 

specific task to acquire unambiguous results that can be used as features by a classifier. Executing or 

imagining a movement has been found to induce an ERD in the sensorimotor cortex; the ERD is 

usually produced when planning the movement. Furthermore, the ERD of a left/right hand movement 

can be localised over the contralateral part of the sensorimotor cortex (left hand movement ERD 

would be measured over the right cortical region and vice versa) and can be detected in the α and β 

bands (Pfurtscheller and Neuper, 2001; Soman and Jayadeva, 2015). 

The main sources of noise present in EEG signals originate from muscular activity, eye blinks, and 

nearby electrical devices. Capturing a signal of interest with good SNR is achieved by applying pre-

processing procedures such as filtering, averaging, principle component analysis (PCA), and 

independent component analysis (ICA). These methods aim to eliminate unwanted artefacts and 

reveal a less contaminated approximation of the signal of interest. Next, feature extraction methods 

will aim to identify the most diagnostic signal characteristics (i.e., here, those that reveal user 

intentions), referred to as features (Al-Fahoum and Al-Fraihat, 2014; Lu and Yin, 2015). 

1.3 Common Feature types 

Powered samples 

The most fundamental technique for extracting ERDs and ERSs from a signal to be used as the 

features for MI classification is averaging and obtaining power samples for selected frequency bands. 

After filtering the signal with the frequencies in interest, the filtered signal will only contain these 

frequencies; then the energy of the signal can be calculated as the square of the magnitude of the time 

domain samples (Graimann et al., 2002b) and (Pfurtscheller and Lopes, 1999). 
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One of the first studies classifying real movements online from a single trial was conducted by 

(Pfurtscheller et al., 1996). The following experimental task has been used since then as the base of 

MI experiments, and it can be used to visualise the experiments of the studies in the MI domain. The 

experimental task required that participants perform a fast right or left wrist movement. Each trial 

was 15s long, the cue was show at second 2 and was presented for 3s, followed by beeps that are 3s 

away from each other, the beep was for the participant to perform the required movement. The signals 

were recorded using 2 electrodes (C3 and C4) with Fz as a reference (international 10-20 system 

electrodes positions as shown in Fig. 1.1), 64 Hz as sampling rate and band-pass filtered between 0.5 

Hz and 30 Hz. The 15s epochs were then band-pass filtered for the selected frequencies, then the 

samples are squared, followed by averaging over trials and consecutive averaging of the samples (8 

samples per iteration) to reduce the variance, finally the ERD/ERS as shown in Fig. 1.2 was calculated 

as the normalised percentage of power change in relation to a reference period (Graimann et al., 

2002b) and (Pfurtscheller and Lopes, 1999). 

Figure 1.2: Example of the experimental task used in Pfurtscheller et al. (1996), showing the reference 

period (R) where the participant isn’t performing the movement instructed yet. Source (Pfurtscheller 

et al., 1996). 
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Figure 1.3: An example of an ERD analysis from Chapter 2. The first row shows the squared samples 

signal for a single trial in three channels (C4, Cz, C3). The second row shows the average ERD 

(right in blue and left in orange) over all trials for a single participant, over a single channel 

(indicated in the diagram which channel is chosen). The final row shows the average ERD over all 

trials over all participants for a selected channel. The dashed lines indicate the start and the end of 

the imagined movement (2s to 6s). 

Spectral features 

One of the earliest methods for extracting features for MI classification is the analysis of FFT 

components, after a pre-processing phase, since there are a limited number of frequency bands (α and 

β) that contain useful information. The process entails segmenting the full signal into temporal epochs 

corresponding to the external stimulus cue before estimating Band Power (BP) or Power Spectral 

Density (PSD) features. Since the classification of the estimated BP and PSD features occur at the 

end of the epoch, FFT signal decomposition is considered to be a convenient method of extracting 

specific frequency power features (Al-Fahoum and Al-Fraihat, 2014; Bashivan et al., 2015; Brodu et 

al., 2011; Carreiras and Sanches, 2011; Pfurtscheller et al., 1996; Tang et al., 2017). 
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In a study by Das et al. (2015), participants were instructed to perform a (real) right or left hand 

movement on the onset of a visual cue that instructed them which hand was to be used. Channels C3 

and C4 were selected for analysis, since they seemed to provide the most distinctive signals, 

presumably as a consequence of their proximity to the sensorimotor cortex. The features were 

estimated as PSD with Welch’s method (Padfield et al., 2019). The authors argued that FFT 

decomposition is the best way to divide the signal into segments and extract the power of the 

frequencies of interest. The PSD components of the frequencies of interest, α and β are extracted, a 

hamming window was applied, and the features were defined as the difference of PSD values 

calculated from the opposite electrodes (C3 and C4) and the average power (Eq. 1.1 and Eq. 1.2). 

'( '( 

!!"# Eq. 1.1 = $ %&'$%()) − $ %&'$&())
') ') 

!!*+ = %,$% − %,$& Eq. 1.2 

Where PSDc4/c3 are the PSD values of the two electrodes (C4 and C3) for the interval between )1 to 

)2 (the frequency intervals used in this study are mentioned above), and PWc3/c4 are the average 

instantaneous powers of the same frequency intervals for both electrodes (Kalcher and Pfurtscheller, 

1995). Finally, the features were fed to their proposed Adaboost based classifier and compared with 

traditional classifiers. 200 trials were randomly chosen for training the classifiers, and 100 remaining 

unseen trials were used for testing. A maximum classification accuracy of 89% for their novel method 

was reported compared to 83% using SVM and 81% using LDA. 

Brodu et al. (2011) describe an approach that used a number of techniques for extracting band-power 

features in MI tasks, including spectrogram-based methods, Wigner-Ville distribution, Morlet 

Wavelet Scalogram, full signal periodogram, an auto-regressive model and Butterworth band-pass 

infinite impulse response (IIR) filtering. A ten-fold cross-validation accuracy of training trials from 

the BCI II set III and 2b (Lemm et al., 2004), and BCI IV 2b (Wang et al., 2004) was performed for 

evaluation. These datasets, used by many researchers to facilitate comparability, are described in 

detail in the following chapter. The experimental task is similar in the three datasets, but with minor 
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changes. Following a cue that indicated which movement to be imagined, participants imagined 

moving either their right hand or left hand for a short period of time. A total of thirteen datasets were 

used for the evaluation. LDA classification was used for all the techniques for fair comparison. The 

Morlet Wavelet Scalogram achieved higher classification accuracy over the mentioned techniques in 

six datasets, with a maximum accuracy of 96%, followed by the auto-regressive model in four 

datasets, with a maximum accuracy of 95%, spectrogram in two of the datasets, with a maximum 

accuracy of 95%, and finally the Wigner-Ville method for one data set and a maximum accuracy 

achieved of 93%. Nevertheless, the superiority of one technique over the other is not significant, for 

instance the auto-regressive for BCI IV subject four scored 95% while the Morlet-wavelet and the 

Wigner-Ville scored 93%. On the other hand, for some other participants the difference between two 

techniques might be significant but isn’t for the rest of the techniques, such as BCI IV participant 7 

for whom the auto-regressive approach scored 74%, the Morlet wavelet scored 73%, and the Wigner-

Ville scored 70%. In addition, fine tuning the parameters for some techniques might have led to 

similar or better performance over others, for example choosing the mother wavelet and 

decomposition levels (Jahankhani et al., 2006). 

Challenges and limitations using spectral features 

Even though, frequency domain features are adequate for two-class MI BCI systems, the method 

requires a number of steps to extract salient features. A time-frequency transformation results in a 

loss of information, especially with non-stationary signals like EEG (Al-Fahoum and Al-Fraihat, 

2014). Furthermore, the best bands vary from person to person (Kalcher and Pfurtscheller, 1995; 

Pfurtscheller and Aranibar, 1979). Also, consecutive trials of the same class are needed for efficient 

classification, especially in online systems; in other words, a movement has to be performed for more 

than 1s for accurate classification of the movement, usually between 4-9s would be needed using 

these techniques to classify an imagined movement with a high confidence (Brodu et al., 2011; Lu et 

al., 2017; Pfurtscheller et al., 1996). 

Spatial features 

Common Spatial Patterns (CSP)-based algorithms are considered to be one of the most successful 

approaches for two class (left vs right) MI problems. Kevric and Subasi (2017) reported an average 

of 89%, Pfurtscheller and Neuper (2001) and Soman and Jayadeva (2015) reported as high as 100%, 
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Wang et al. (2004) reported a maximum of 98%. This approach was first described by Mueller-

Gerking et al. (1999). The basic CSP method aims to construct spatial filters for two different EEG 

populations; the spatial filters should be optimal for the classification between the two movements. 

The method is driven from two matrices simultaneous diagonalisation (Fukunaga, 1972). The Sub-

Band Common Spatial Pattern (SBCSP) and Filter Bank CSP (FBCSP) based methods address the 

non-stationarity drawback of the CSP algorithm (Kai Keng Ang et al., 2008; Novi et al., 2007; Zheng 

Yang Chin et al., 2009). Since the features extracted by CSP provide spatial information by 

constructing spatial filters, useful spectral information goes to waste as it is disregarded. Thus, a 

more robust CSP methods are obtained by filtering the EEG signals into sub-bands and identifying 

optimum bands autonomously. Identifying the best bands to extract and localise the ERD/ERS vary 

from one individual to another, the process is time consuming and the bands have to be carefully 

analysed to avoid poor selection, which would otherwise lead to poor performance. 

SBCSP was developed by Novi et al. (2007), in which CSP was applied to decompose sub-bands of 

the EEG signals. Gabor filters were used for signal decomposition, rather than FIR band-pass filters. 

LDA was used to compute a score for each band and these scores represented the feature space of the 

proposed method. SVM was used for the classification task. The BCI competition III dataset IVa was 

used for testing, in which the experimental task entailed imagining a right hand movement or a right 

leg movement. The ten-fold cross validation accuracy was used for the performance evaluation. The 

authors reported 86.3±1.1% classification accuracy. The method was not found to improve the 

classification performance significantly over earlier methods, did have the benefit of a simpler 

autonomous method for identifying the optimal frequencies for each participant. 

Extending the SBCSP approach, Kai Keng Ang et al. (2008) demonstrated the FBCSP method that 

aims to improve SBCSP by identifying and using the best subject-specific sub-band features 

automatically. It is worth mentioning that FBCSP won the BCI Competition IV 2a, 2b and has been 

the most widely used algorithm of CSP-based methods. FBCSP comprises four steps: the signal is 

band-passed filtered into frequency bands covering the range of frequencies containing the α and β 

bands. CSP is then applied to the resulting signals of each band separately and the salient pairs of 

these bands are combined and used as the features for the classification task. Ten-fold cross-

validations was performed on the same data set BCI competition III dataset IVa for the evaluation of 

their proposed algorithm. A SVM was used for classification. The authors claimed higher 
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performance of FBCSP over SBCSP and CSP, since the FBCSP achieved 90.3±0.7% as opposed to 

SBCSP with 86.3±1.1% and 86.6± 0.7% for regular CSP. 

Soman and Jayadeva (2015) extended FBCSP using an approach that entails an ensemble of SVMs 

for the classification, called the twin SVM approach. Their approach aimed to enhance the FBCSP 

by utilising the classification task. In FBCSP the classifier is trained for each of the CSP features of 

the various bands, the features of these bands that corresponds to the highest classification accuracies 

are selected and the classifier is trained again. Soman and Jayadeva argued that it is computationly 

expensive and suggested an alternative of identifying the most prominent features by computing a 

classifiability measure for the various bands before training the classifier. Finally, the twin SVM 

which aims to provide a better class separability by solving a smaller but double quadratic 

programming problem (QPP), as opposed to a single QPP for regular SVM, was used for the 

classification. A maximum accuracy of 100% (with ten-fold cross validation) was reported for the 

BCI IIIa dataset. 

FBCSP-based algorithms have shown promising results in single trial classification and they are 

arguably simple enough to be used for real-time systems. For example, Soman and Jayadeva (2015) 

were able to train the model in 37s, and the classification task would take approximately 1.8s. 

However, classification accuracy decreased as a result of shortening the trial duration, significantly 

if the most prominent features was found to be in the α band, as opposed to faster oscillatory rhythms 

which recover from the desynchronised state within 1s (Pfurtscheller and Neuper, 2001). 

Zheng Yang Chin et al. (2009) used FBCSP to classify four imaginary movements: right hand, left 

hand, foot and tongue. Since FBCSP is designed for binary problems (e.g., right vs. left), a One-

Versus-Rest (OVR) approach entailed training each class against the rest. Four OVR classifiers were 

therefore used and binary Naïve Bayes Parzen Window (NBPW) classifier on the top of them to select 

or identify the movement class. The authors report a mean of 0.57 kappa for the testing set. In 

addition, Naeem et al. (2006) investigated four imaginary movements: right hand, left hand, foot, or 

tongue, comparing different methods for the feature extraction including the same OVR FBCSP 

approach for classification and a fast Independent Component Analysis (ICA) and infomax algorithm. 

An in-house experiment was conducted to collect the EEG data, limiting the ability to compare with 

other work, but the OVR FBCSP was reported to perform relatively poorly, but better than infomax 
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and ICA, with a mean accuracy of 64%, the Fast ICA and infomax achieved 58% and 59% 

respectively. 

A study conducted by Shiman et al. (2015) aiming to classify same-limb movements using a CSP-

based approach in which participants were instructed to move their hand in one of four directions: 

towards them, away from them, downwards-away, and downwards-towards. An SVM was used for 

classification, and the pre-processing of the signal included artifacts removal such as the eye-blinks 

and muscles artefacts. Average classification accuracy reported to be 36%. Another similar study by 

Woo et al. (2015) was more succesful classifying four directions of movements (from among right 

up, right down, left, left down, left up, and right) where the data was collected by the authors in lab. 

The features were extracted using CSP and LDA was used for the classification. The classification 

task was binary, such that only two of the movements were classified against each other at a time. 

The average reported accuracy was 74%. 

Challenges and limitations using spatial features 

CSP-based algorithms are not end-to-end solutions, requiring several stages to achieve high 

performance. The CSP approach is highly susceptible to noise (Devlaminck et al., 2011) and requires 

a priori feature selection (such as optimal bands), whether identified through autonomous and more 

manual methods. Furthermore, useful information could be lost due to the nature of the algorithm, in 

which signal decomposition into covariance matrices and eigenvectors is performed. This lost data 

could potentially be used to improve performance. 

The previous studies summarise the ability of CSP to incease the input space of BCI systems. 

Although high performance in two class BCI systems was observed, the performance when 

classifying four classes significantly reduces, suggesting that this approach may not be suitable for 

more sophisticated multi-class BCI systems. Shiman et al. (2015) and Woo et al. (2015) argue that 

CSP can be used for identification of same limb movements, although the results of their studies don’t 

support this claim. The CSP-based approaches used were seen to incur a significnant decline in 

accuracy when the number of movements increased, or the areas of sensorimotor cortex locations 

corresponding to the movements performed are closely (in the motor humunculus). 
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Spectro-temporal features 

The use of spectro-temporal features to estimate energy in sub-bands has shown promising results for 

multi-class MI. In Abdalsalam et al. (2018) the four class problem was investigated, wherein 

participants were instructed to imagine right hand, left hand, foot and tongue when instructed to do 

so by a visual cue. Energy was estimated after decomposing the signal using a Discrete Wavelet 

Transform (DWT) and Empirical Mode Decomposition (EMD), and a comparison of performance 

between the two methods was performed. An ANN was used for classification, and different sized 

networks were empirically tested to identify the best parameters and number of hidden layers. The 

average classification accuracy reported of the DWT was 84% and an average of 90% was reported 

for the EMD. Moreover, a study conducted by Vijayendra et al. (2018) used a multi-class BCI system 

that aimed to control a unmanned aerial vehicle. The imaginary movements used in this study were 

unconventional, such that the particpants were instructed to imagine left hand, right hand, left hand 

with finger and elbow and right hand with finger and elbow. The EEG signals were pre-processed for 

electrical noise, muscles-related artifacts, and eye-blinks. Features were extracted by applying DWT 

and differential entropy. Finally, a simple ANN with one hidden layer was used for the classification, 

with 98% classification accuracy reported for the network with 500 hidden neurons after empirical 

testing for the optimal neurons number. 

Behri et al. (2018), Kevric and Subasi (2017), and Qiu et al. (2016) attemted to classify two-class MI 

(left hand or a right hand vs foot) with the same dataset (BCI IVa) and found that specto-temporal 

features performed better than spatial features. Behri et al. (2018) reported average accuracy of 94.5% 

using DWT for features extraction and a k-nearest neighbour classifier. Kevric and Subasi (2017) 

reported an average of 94.5% using Wavelet packet decomposition (WPD) features, which is an 

extensiton of DWT and KNN classifier. Qiu et al. (2016) reported an average accuracy of 84% using 

a CSP-based method that improved channel selection by Sequential Floating Forward Selection 

(SFFS) and a SVM for classification. Additionaly, Abdalsalam M et al., (2018) and Vijayendra et al., 

(2018) imply that temporal and spectro-temporal feature extraction methods are better suited to multi-

class MI classification problems, and conjecture that discriminant patterns can be extracted from the 

temporal domain when the correct methods and classifiers are adjusted. 
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Challenges and limitations of using specto-temporal features 

The results of spectro-temporal based methods, and particularly the DWT, for multi-class MI BCI 

systems are promising, yielding hgh accuracy in real-time applications in Vijayendra et al. (2018) 

and (Jahankhani et al., 2006). However, DWT still requires meticulous selection of the mother 

wavelet. In addition, it is usually combined with a dimensionality reduction process, or features are 

calculated as metrices of the decomposition coefficients - this implies a loss of useful information 

and the inability to provide an end-to-end solution. Finally, the DWT features are most effective with 

longer trial windows, and shorter trial duration would lead to worsen classification accuracies, 

suggesting a limit to responsiveness in real-time systems. 

1.4 Artificial neural networks for EEG classification 

Artificial Neural Networks (ANNs) have excellent potential in pattern classification and recognition 

compared to traditional model-based methods. With a sufficient number of observations, ANNs are 

able to learn subtle relationships of functions that are hard to describe or model using traditional 

methods. Moreover, after training, a network is often sufficiently generalisable and robust that it can 

identify the discriminative patterns even if the provided new data, even where noise is present. After 

training the model, an ANN acts as a predictor and forecaster for real world problems. They are also 

non-linear function approximators. More importantly, ANNs have shown the ability to extract 

features without feature engineering (Tang et al., 2017), automatically remove artefacts (Qiu et al., 

2018; Yang et al., 2016), and applying convolutional filters, subsampling, and transformations in a 

non-linear automated fashion (Tang et al., 2017). 

ANNs have been combined with the traditional techniques and used as a classifier in many studies. 

In Hung et al. (2005), an ANN was used to discriminate between two imaginary movements (lifting 

right vs. left finger) using four participants, along ICA for features extraction. Two simple feed-

forward neural networks were used: a Back-Propagation (BP-NN) and a Radial-Basis Function (RBF-

NN) with one hidden layer, input and output were used for the classification of two mental imagery 

movements (left vs. right index). The BP-NN achieved a mean of 76% and a mean of 80% for the 

RBF-NN with the ICA for feature extraction, and achieved 60% and 62% without applying ICA for 

the BP-NN and RBF-NN respectively. Tavakolian et al. (2004) used a Genetic Algorithm (GA) with 

a feed-forward Multi-Perceptron Neural Network (MPNN) for the classification of three mental tasks: 
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multiplication, geometric figure rotation and neutral. The GA and MPNN were combined to select 

the optimum channels. In other words, the least number of combinations of channels that provide the 

highest classification accuracy. In this experiment, the MPNN was considered the fitness function of 

the GA. A mean classification accuracy of 100% was achieved for the mutated set of channels. Subasi 

(2007) used MPNN for detecting epileptic seizures, the features were extracted by applying wavelets 

and the system achieved an average of 93% classification accuracy. 

Semi-supervised neural networks 

In addition, in the past few years, Deep Belief neural Networks (DBNs) have gained popularity due 

to the increases in available computing power. DBNs provide the ability to combine two or more 

types of networks into one architecture. In particular, supervised and unsupervised neural networks 

are combined for feature extraction or dimensionality reduction and classification in a single network. 

EEG data has been analysed using DBNs; for instance, Tang et al. (2017) using a Stacked Boltzmann 

Machine (SBM; Hinton and Sejnowski, 1983) to extract features and a softmax layer (Bishop, 2006) 

on top for classification. The network was optimised with particle swarm algorithm, instead of more 

typical gradient descent, and accuracy of up to 90% was reported in a two-class MI classification (left 

vs. right hand). 

In Lu et al. (2017), a SBM was used for classifying two motor imagery movements. Band power 

features were extracted and the network was trained using the conjugate gradient method (Meiller, 

1991). An intermediate stage between the pre-tuning and the fine-tuning stage was also used to 

optimise the softmax layer (classification layer) before optimising the whole network or fine-tuning 

the weights. The best classification accuracy obtained was 96% and an average of 83% has been 

reported. Also, in Kobler and Scherer (2016), a Restricted Boltzmann Machine (RBM) was used for 

classifying a two-class motor imagery (right vs. left hand movements). The authors computed a 

Laplacian derivation of thirteen channels to obtain three signals (the channels around the motor 

sensory cortex) and the logarithm of the band-powers extracted as explained in (Kalcher and 

Pfurtscheller, 1995) were used as the features. The authors reported an average of 88.9% 

classification accuracy and a 98% maximum accuracy for an experienced participant (trained for MI). 

Moreover, Li et al. (2015) explored the effectiveness of unsupervised learning and auto-encoders for 

feature extraction. Random data points (samples) were removed from the signal and fed to the auto-
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encoder which tried to reconstruct the signal and feed it to a classifier, either an SVM or adding a 

softmax layer at the top of the network. They found that the classification accuracy was not 

significantly reduced compared to where the signal was complete; their findings suggests that auto-

encoders are able to reconstruct salient features of the signal with less information, and that bad trials 

or noisy trials don’t have to be eliminated from the training set to achieve good performance. 

Convolutional neural networks 

CNNs have been implemented that can automatically find convolutional filters similar to those 

extracted by CSP, requiring a number of steps and filter banks as described above. These filters were 

able to extract the prominent features of the EEG signal in one layer, subsample and transform the 

extracted features to time domain in the second layer and finally classify the features as in Tang et al. 

(2017) with enhanced classification accuracy over conventional methods with a maximum observed 

accuracy of 92%. Furthermore, unsupervised-supervised (semi-supervised) systems have been used 

for the classification task in P300 spelling applications, achieving relatively high accuracies 

compared to the state-of-art methods from single trials, where the task entails participants trying to 

focus on characters and letters presented on the screen (Gareis et al., 2017). 

Two significant studies using CNNs based architectures introduced end-to-end deep networks for 

classifying MI by Schirrmeister et al. (2017) where a Shallow Convolutional Network (SCN) and a 

Deep Convolutional Network (DCN) were introduced achieving mean accuracies of 67.6% and 

67.8% classifying 4-class MI data (right-hand, left-hand, feet and tongue). The shallow architecture 

had a layer which explicitly calculated the band-power as spontaneous power (squaring the samples), 

while the deep architecture consisted of classic convolution network blocks. The reported 

performance was the result of a 10-cross-fold using the BCI IV 2a dataset and the provided unseen 

test set. Even though the authors achieved state-of-art results, 4s signals were still required for their 

deep model and 2.5s for their shallow model. The second study was conducted by Lawhern et al. 

(2018) achieving near state-of-art performance with a mean accuracy of 65% in a four-fold on the 

same dataset (BCI IV 2a), with reported accuracy is for the unseen test set. The authors focused on 

having a general network that is used for all types of BCI based applications and aimed to provide a 

compact CNN architecture with fewer parameters to improve the training speed by using separable 

convolutional layers (further details in Chapter 3); however, at least 2s of the signals are required as 

input to achieve the performance reported. 
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Recurrent neural networks 

More recently, RNNs have been gaining popularity in EEG classification as they were specifically 

developed to deal with data in the time domain. RNNs have an interconnected parallel and non-linear 

structure, and are considered dynamic because they are able to employ nonlinear filters (Güler, 

Übeyli, & Güler, 2005) that are more flexible than the common linear methods found in other ANN 

architectures, and are better suited to the nature of the EEG signals elicited in MI. In addition, RNNs 

can ‘remember’ events from previous steps and learn dependencies between layers that are not 

directly connected. RNNs do have some drawbacks; they need to learn long-term dependencies, 

especially when trained using standard gradient-descent and back-propagation methods (Sutskever & 

Hinton, 2010), and can thus be difficult to construct and train. In one study, Forney & Anderson 

(2011) reported a maximum accuracy of 99% (mean = 98%, SD = 0.8) when differentiating between 

an imaginary right hand movement and the cognitive task of counting backwards using data from 

three participants that used nearly-raw (i.e., minimally pre-processed) EEG signals as input. 

In Hema et al. (2007) RNNs were used to discriminate between four mental tasks (complex problem 

solving, geometric figure rotation, visual counting, and resting). In Güler, Übeyli, & Güler (2005), 

seizures were classified with up to 96% accuracy. However, the system was not tested on the task of 

discriminating between MI movements, but on two quite distinct mental tasks that are unsuitable as 

control signals for BCIs. Another subsequent study by Ko et al. (2018) aimed to classify MI signals 

(right hand, left hand, foot and tongue) in the BCI Competition IV2a dataset. The authors used a 

network scheme which included convolutional layers that are connected recurrently, claiming the 

proposed network is able to extract spatial and temporal features and finally classify the movements. 

However, the their approach was not described in sufficient detail to be replicated, and their reported 

kappa value didn’t show an improvement in classification over other methods discussed. Zhang, Yao, 

Chen, & Monaghan, (2019), combined RNN and CNN architectures to classify a four class MI (left 

hand, right hand, feet and tongue), achieving state-of-art classification accuracy of 59%±0.1 on the 

BCI IV 2a dataset aiming to have a generalised model that is trained with all the participants (across 

participants) instead of training for each participant separately. The authors used Long-Short-Term-

Memory (LSTM) to address the issue of the vanishing gradients, one of the limitations of more basic 

RNN models (Sutskever and Hinton, 2010). The architecture extracts the features in the CNN layers 

and then these features are fed to the LSTM layer. An additional attention mechanism was employed 
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to highlight the temporal slice (samples in a point of time, discussed further in Chapter 4) with the 

highest contribution. The authors also argue that the the attention mechanism should provide a level 

of interpretability obtained from the attention vector. The authors claim that their model extracts 

spatiotemporal information from the signal, but didn’t validate this claim with further analysis on 

what the model is learning. 

A subsequent study by Ma et al. (2018) suggested an architecture based on two parallel LSTMs, with 

one trying to learn the from the temporal information and one from the spatial information. A mean 

accuracy of 68% on classifying five MI movements is reported (eyes closed, both feet, both fists, left 

fist and right fist) from eegmmidb dataset, which represented an approx. 8% improvement over the 

state-of-art methods at the time. The suggested architecture has an impressive classification 

performance, but lacked any interpretability or feedback to improve on the training; e.g., providing a 

feedback loop for participants to indicate if they lost focus, and provide an approximation of the 

duration required for participants to succesfuly imagine the MI movement. In Wang, Jiang, Liu, 

Shang, & Zhang (2018), a combination between LSTM and One Dimension-Aggregate 

Approximation (1d-AX) which aims to reduce feature dimensionality operating on time-series and 

channels weighting was employed for the classification of the four MI in the BCIIV 2a dataset. The 

authors claimed a significant improvement of contemporary approaches, obtaining 76% mean 

accuracy ±5.92 which is between 4-8% improvement over the state-of-art. However, the accuracies 

reported didn’t show confusion matrices or report a second measure like Kappa values to compare 

with the winning methods of the BCI IV2a competition. Furthermore, again, the suggested 

architecture doesn’t provide any interpretatbility either and required about 3s signals to achieve the 

reported performance limiting its usefulness in real-time classification. 

1.5 Suggested methods 

The studies summarised imply that it may be possible to design an end-to-end ANN capable of 

extracting salient features for classifying MI movements. This could be achieved by combining 

unsupervised and convolutional layers, similar to those in Li et al., (2015) and Ko et al. (2018). A 

RNN integrating unsupervised layers to obtain high classification accuracy from 1s trials would 

enhance the applications of BCI system in for real-time applications, such that discussed in Forney 

and Anderson (2011). Last but not least, RNNs have an interconnected parallel and non-linear 

structure and are considered dynamic, since they are able to employ non-linear filters (Güler et al., 
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2005) that are more flexible than the common linear methods found in other ANN architectures, and 

are therefore better suited to the nature of the EEG signals elicited in MI. In addition, RNNs can 

‘remember’ events from previous steps and learn dependencies between layers that are not directly 

connected. RNNs do have some drawbacks: since they need to learn long-term dependencies, when 

trained using standard gradient-descent and back-propagation methods (Sutskever and Hinton, 2010) 

they can be difficult to construct and train. Furthermore, to test and evaluate the suggested methods, 

a baseline is accquired employing different window sizes with tradional naïve methods for 

classification. 

Guided grad-cam 

The objective of model interpretability is gaining traction with researchers, especially for the deep 

models employed in domains that require visibility and an understanding of what the model is 

learning (e.g., medical imaging). It also provides the researcher with a more complete understanding 

of how the model is learning, and a chance to address the limitations that become apparent. Very few 

studies have employed interpretability with deep in EEG signal classification. Schirrmeister et al., 

(2017) tried to interpret their models by visualising activations, perturbing the input and the output 

of the convolutional layers (referred to their approach as input-perturbation). Lawhern et al. (2018) 

followed a similar approach where they were investigating the activation maps of the convolutional 

layers. Zubarev, Zetter, Halme, & Parkkonen (2019) suggested a linear layer to find a reduced 

representation of the spatial correlation where the parameters are learnable (optimised by gradient 

descent). The authors claim that investigating the weights of these layers will provide an 

interpretation of the spatial correlations (i.e., which channels are contributing more), which can help 

in method refinement. As previously discussed, Zhang, Yao, Chen, & Monaghan (2019) argue that 

the attention vectors can provide insights into which time-slices are contributing most. A number of 

techniques suitable for deep models have been proposed over the last decade. Early work proposed 

feedback loops for activation maps suggested (Cao et al., 2015) which was developed further by 

Andreotti, Phan, & De Vos (2018), Selvaraju et al. (2017) and Springenberg, Dosovitskiy, Brox, & 

Riedmiller (2015). These studies provide the framework and the basis for visibility of the deep models 

to be discussed in Chapter 4, which addresses the fact that interpretability hasn’t been explored 

thoroughly in the EEG domain because visualising these signals is inherently difficult. 
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Attention Mechanisms 

Another interesting direction of research is the use of attention mechanisms. These improve 

classification performance and are able to provide an attention vector, such that the features with 

higher scores are identified as having a greater contribution to classification accuracy, which adds 

interpretability. The attention mechanism in Bahdanau, Cho, & Bengio (2015) provided an insight on 

how words in Natural Language Processing (NLP) system correlate, and the authors were able to gain 

an understanding of what words the model is focusing on, and which words provide better translation 

from English to French. In Vaswani et al. (2017), the authors introduced the Transformer Model, in 

which they observed improved results by employing a simple model with an attention mechanism, 

arguing that this architecture can replace the recurrent layers and provide a level of visibility. Finally, 

the Squeeze and Excitation (S&E) method introduced by Hu (2018) provides an attention mechanism 

that can emphasise the feature maps with better feature explanation by acquiring a global average for 

each channel and adding a small fully connected network to assign the attention weights (higher 

weights means better features). 

Summary 

In summary, current classification accuracy using non-invasive EEG-based BCIs is insufficiently 

high to be used for practical applications (particularly those entailing neuroprosthetics), and a marked 

reduction in accuracy is observed when the number of limbs to be differentiated between is increased. 

The most common method for extracting features in the literature is CSP, which has high performance 

in classifying two movements but falls dramatically when this number is increased. Subsequently, 

Semi-Supervised DBNs and RNNs have shown promising results (including classifying EEG data 

relating to seizures, and in differentiating distinct cognitive tasks). The average intervals, to the best 

of my knowledge until the time of writing this study, is between 2 to 4s to obtain the state-of-art 

performance. Moreover, methods for deep model interpretation have not been thoroughly developed 

and tested in the context of motor imagery classification. Finally, the dataset sizes and the fact that 

each subject requires a separate model to be trained, limits the performance of deep models which 

performs better with larger datasets. 

Accordingly, it is hypothesised that the features extracted from the time domain and processed using 

a new supervised RNN architecture with data augmentation could lead to faster, higher accuracy 
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classification, and will enable multiple classes to be discriminated (such as within-limb imagery). 

Investigating the deep models with state-of-art interpretation techniques may provide insights that 

can be exploited to reducing signal time intervals for real-time applications. Furthermore, adding 

visibility to the models is useful for researchers trying to understand the correlations and causations 

learned by a deep architecture. 

A RNN is theoretically capable of learning the relationships or dependencies between the ERD and 

ERS signal events, since these events occur at different times. This research aims to improve 

classification accuracy for motor imagery in BCI systems by developing and testing a dynamic RNN 

architecture that exploits both temporal and time-frequency (spectro-temporal) features, which will 

be compared with major extant approaches. In addition, classification accuracy for compound, goal-

oriented, speed and weight-contingent, using a new RNN classifier will be examined to assess the 

hitherto unexplored role of participant instructions. 

1.6 Summary of Contributions to Knowledge 

• Investigation the classification performance of MI over different windows and intervals to find 

optimum settings; 

• Development of a novel deep architecture based on GRU and convolution units; 

• Development of a novel temporal and a novel spatial attention mechanism; 

• Development of a generalised guided Grad-Cam for EEG for higher interpretability; 

• Development of a novel EEG data augmentation technique. 

1.7 Objectives 

• Obtain a baseline performance of MI classification employing different window sizes; 

• Identify which of the feature’s types (spectral, spatial or temporal) provide higher performance 

using shorter windows; 

• Investigate CNN based neural network architectures (EEGNet and Shallow net) performance 

using spectral (CWT) features versus raw EEG signals; 

• Investigate the performance of the models applying the suggested data augmentation to the 

training data; 

• Investigate the impact of the number of CWT scales on the performance of the network; 
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• To establish whether the outcome of the model can be fully interpretable in terms of spatial, 

temporal and spectral analysis; 

• Identify if adding a spatial attention mechanism will provide insights on the spatial correlation. 

• Identify if a temporal attention mechanism with improve analysis for the signal intervals with 

higher contribution to the performance; 

• Establish whether a grad-CAM can be used for extracting and interpreting the prominent EEG 

features; 

• Identify what is the shortest signal period that be used while maintaining the state-of-art 

classification accuracy; 

• Establish whether data augmentation will improve the performance of the models. 

1.8 Structure of the Thesis 

In Chapter 1, the most common methods and techniques used in the literature for EEG analysis and 

classification were described, and an introduction to Brain-Computer Interfaces was provided that 

also outlined the types of features that are extracted from the EEG signals used for classification 

between classes. In addition, related work was summarised, including both historical and new 

methods that provide state-of-art performance until the time of writing. 

In Chapter 2, an experiment is conducted the determined the optimum time intervals and window 

sizes for EEG signals with spectral and spatial features using basic classifiers obtaining a baseline for 

the following experiments. In Chapter 3, Convolutional Neural Networks (CNNs) based classifiers 

are investigated with Continuous Wavelet Transform (CWT) based features. The section contains a 

comparison between using CNNs with raw EEG signals vs. CNNs with CWT features. The suggested 

Point-Wise Convolutional Neural Network (PWCNN) is discussed and interpretation of what the 

models are learning using scalograms and guided Grad-CAMs. In Chapter 4, a novel end-to-end 

architecture is suggested that is proposed to increase classification performance over short intervals, 

which is compared with the best performing methods in the literature. In addition, the suggested 

modification of guided-Grad-CAM and the novel attention mechanisms are discussed. Chapter 5 

presents a general discussion of the findings from this thesis and outline the next steps that could be 

taken to further this work. 
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Chapter 2: 

Datasets and evaluation method 

24 



 

 

  

 

 

 

 

         

          

   

        

      

 

 

 

         

        

           

     

             

        

        

      

 

2.1 Datasets 

Motivation 

The BCI competition IV dataset 2b (Leeb et al., 2007) and BCI competition IV dataset 2a were used 

for the experiments in this thesis. These are the most common datasets used in the literature for motor 

imagery classification tasks, enabling the performance of work presented herein to be compared 

directly with already published methods. Most of the results in the literature use accuracy and kappa 

to measure and report their methods performance, so these metrics are used in the present research. 

BCI IV 2b: 

This dataset contains MI data collected from for nine participants. For each participant there were 

five sessions. There were two types of session: with feedback or without. The first two sessions for 

all participants were without feedback, the next three sessions had feedback. The data were initially 

recorded with 22 channels, but was then reduced to three bipolar recordings that correspond to (Cz, 

C3 and C4). The data was recorded at a sample rate of 250 Hz with a 0.5 Hz to 100 Hz analogue 

filter, followed by a 50 Hz notch filter to remove power-line noise. There are two different classes 

(imagined movements): left hand and right hand. The first two sessions had 120 trials and the 

remaining sessions had more repetitions leading to a total of 160 trials (including bad trials, which 

were manually identified and labelled in the dataset files). 
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Figure 2.1: (a) The experimental task for sessions 1 and 2 (without feedback), (b) experimental task 

for sessions 3 to 5 (with feedback). 

The experimental task was as follows. For data collection sessions 1 and 2 sessions (Fig. 2.1a), at the 

start of each trial, a fixation cross was presented for 3s. A beep was sounded at 2s to alert participants 

to a forthcoming instruction. Next, a 1.5s visual cue was presented (an arrow pointing either left or 

right). Next, participants were instructed to imagine the movement corresponding to the direction of 

the arrow (left hand for or right hand) for 4.5s. A blank screen was then shown for 1.5s as a break 

between trials. Sessions 3-5 (Fig. 2.1b) incorporated feedback. A grey smiley face of neutral expression 

was presented at the beginning of each trial instead of the fixation cross. The beep was still sounded 

also played at 2s, the cue was presented at 3s indicating which side the participant should move the 

smiley to. During the feedback period (3.5s to 7.5s), the smiley would turn green if moved to the right 

direction and red if otherwise. At 7.5s, the participant was instructed to keep imagining the movement 

as much as possible and the screen went blank for an interval between 1 and 2s that were added to the 

trial. 
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BCI IV 2a: 

The BCI Competition IV 2A. The data was collected from nine participants performing four Motor-

Imagery movements. The four movements are defined as: left hand, right hand, feet and tongue. Each 

trial was about 9s long where at the begging a fixation cross is shown at (3 = 0) then at 2s (3 = 2) , 

an arrow was presented on the screen (cue onset) instructing the participant to perform one of the four 

movements (arrow pointing left, right, down and up for left hand, right hand, feet and tongue 

respectively). Participants were instructed to keep imagining the movement until the fixation cross 

disappeared, which it did at 6s. Finally, a short break with a blank screen until the next trials was 

shown. The data was collected from 22 Ag/AgCl electrodes and samples with 250Hz. The data was 

then band-pass filtered between 0.5 Hz and 100Hz, followed by a 50Hz notch filter to reduce noise 

generated from line. Electrode placement followed the international 10-20 system. 

Validation 

Both datasets BCI Competition IV 2A and 2B provide additional sets for testing. The testing sets 

were recorded at different sessions (not a subset of the original dataset). The testing set is also referred 

to as the unseen testing sets throughout the thesis since they were not used in the training or validation 

of the models. The final reported performance metrics (as described in the next section) are evaluated 

on the unseen test sets to address overfitting problems (where the model is not generalisable and 

performs well on the specific dataset that it was trained on). 

Limitations 

Both datasets have only nine participants, where the number of epochs per participant ranged between 

600 to 720 epochs. Noting that the models are trained on each participant separately. A larger dataset 

with thousands of epochs would be more ideal for training deep networks and would in turn lead to 

more confident models. The limitation is addressed by data augmentation as described in Chapter 4 

and 5. 
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The environment of where the data was collected is not described. Hence, the surrounding 

environment of the participants might have been less than optimum. There could have been some 

unidentified interference with the recordings which could affect the analysis unfavourably. 

2.2 Evaluation metrics 

2.2.1 Accuracy 

The first metric is accuracy, is defined as in Eq. 2.1 and Eq. 2.2: 

;% + ;= Eq. 2.1 5667896: = 
;% + ;= + >% + >= 

=?. ?) 6?88@63 A8@BC63C?DE 
5667896: = 

;?39F D7GH@8 ?) A8@BC63C?DE Eq. 2.2 

Where ;% is true positive, ;= is true negative, >% is false positive and >= is false negative. For 

binary classification, the accuracy is considered as a good metric. However, when the problem we 

are facing contains multi class labels (more than 2 classes), the accuracy doesn’t represent how good 

the model is classifying each class, it might be very good classifying two of the classes while 

neglecting the other classes. 

2.2.2 Cohen Kappa 

The second metric is the Cohen kappa Landis & Koch (1977), and implemented using the library 

Sklearn (Varoquaux et al., 2015), which is defined as in 2.3: 

A- − A.I = 
1 − A. Eq. 2.3 

Where A- is the observed probability of agreement between raters and A. is the hypothetical 

probability of random agreement (e.g. the probability of the labels being assigned randomly). A value 

of I = 1 implies a perfect agreement, anything below that value implies less than perfect agreement. 
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The Cohen kappa coefficient is useful since it provides both a degree of accuracy and reliability in a 

statistical classification. 

2.2.3 Confusion matrix and F-β 

Confusion matrices are used to record the number of TP, FP, TN and FN results. Precision and recall 

of the model are to be expressed as F-β values and calculated using the library sklearn (Varoquaux et 

al., 2015). Such that precision is the percentage of the correct positives predictions that belongs to the 

positive class as in Eq.2.4 and recall is the percentage of the correct positive predictions out of all the 

positive classes in the data set as shown in Eq.2.5.  

;87@ A?EC3CJ@E
%8@6CEC?D = 

(;87@ A?EC3CJ@E + >9FE@ A?EC3CJ@E) Eq. 2.4 

;87@ A?EC3CJ@E 
K@69FF = 

Eq. 2.5 (;87@ A?EC3CJ@E + >9FE@ =@L93CJ@E) 

Finally, the F-β is a quantified metric combining both precision and recall as in Eq.2.6: 

(1 + β() ∗ A8@6CEC?D ∗ 8@69FF 
F − β = 

(β( ∗ A8@6CEC?D + 8@69FF ) Eq. 2.6 

Where the β is an adjustment factor (to weight precision and recall) and it was set to 1 which gives 

equal balance to both metrics. 
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Chapter 3: 

The impact of window size on 

classification accuracy 
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3.1. Introduction 

No prior study has exhaustively evaluated the effect of window size on the BCI classification 

accuracy. Accordingly, it is hypothesized that optimising window sizes will improve performance. 

To address the hypothesis, in this chapter, two motor imagery classes will be discriminated between 

using two methods that have not previously been compared when window size and window start time 

are manipulated. 

Most MI-based BCI research aim to achieve high classification accuracy whilst having the potential 

to operate in real-time; shorter window sizes are therefore favourable provided that high classification 

accuracy can be maintained. In this experiment, we measure the performance of the aforementioned 

methods over different window sizes and window start times. Furthermore, the classification 

accuracies will be assessed employing the most common classifiers in more recent BCI systems 

which are LDA (McMullen et al., 2014; Pfurtscheller et al., 1998; Yu et al., 2016), SVM (Al-Fahoum 

and Al-Fraihat, 2014; Hung et al., 2005; Soman and Jayadeva, 2015; Subasi and Gursoy, 2010), and 

ANN (Forney and Anderson, 2011; Senior et al., 2007; Subasi, 2007; Übeyli, 2009). ANN-based 

classifiers will be developed and compared with LDA and SVM in subsequent experiments. 

The Python 3 software framework implemented to support this experiment will be used as the basis 

for subsequent experiments, since no suitable extant package for MI classification that contains all 

necessary features and classifier cores is available. 

3.2 Method 

3.2.1 Apparatus 

Software written in Python 3 (van Rossum, 1995) was run on a MacBook Pro (Apple Corp., Cupertino 

CA) with a 2.9 GHz Intel Core i7, and 8 GB 1600 MHz DDR3 of memory. The following additional 

Python 3 software libraries were used: numpy for array operations and arithmetic functions 

(docs.scipy.org, 2017); scipy for signal operations and filtering (docs.scipy.org, 2017); sklearn for 

the SVM and LDA classifiers (scikit-learn.org, 2017); Theano for neural networks (Al-rfou et al., 

n.d.); and matplotlib library (matplotlib.org, 2017) for graphing. 
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3.2.2 Dataset 

Dataset is described in section 2.1. 

3.2.3 Algorithm and Procedures 

Pre-processing and Windowing 

These following pre-processing steps were applied to the signal before applying the feature extraction 

methods (BP, CSP). As mentioned above, there were a total of five sessions for each participant, for 

each of the participants, the first three sessions were used for training and validation and the remaining 

two sessions were kept for unseen data testing as they were provided for that purpose in the BCI 

competition. The total signal was further divided into 9s epochs and then band-pass filtered from 8Hz 

to 30Hz to extract the frequencies of interest as discussed in the literature and for more details refer 

to (Pfurtscheller and Lopes, 1999). 

The windows used for the signals were: 0.5s, 1s, 2s, 4s. A step of 10% of the total trial length to 

measure the performance from different time points (window start time). In addition, for each 

window, classification accuracy was assessed in two ways where the features used for the training 

are calculated according to the following: 

1. The features are calculated for each of the windows and for all window starting times. Validation 

and testing were assessed at the corresponding window and window starting seconds. 

2. The features are calculated for the best performing window and window starting time. Validation 

and testing were assessed for all the trial where the window is fixed as the best performing window 

while all the window start points were assessed. 

FFT: Band-Power (BP) 

Signals corresponding to each of the nine participants were (separately) subject to a sequence of 

procedures, including pre-processing and filtering, ERD/ERS quantification, and transformation to a 
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feature space for classification. Band-power features are calculated using different methods and the 

underlying procedure was described by (Pfurtscheller and Lopes, 1999). 

First, to extract the ERD/ERS, the frequencies in which they occur must be identified. Signals 

corresponding to each trial were Butterworth band-passed filtered between 9-30Hz, using a 3rd order 

filter (Pfurtscheller and Lopes, 1999). The spectrogram method convolves the signal with a localised 

windowing function in time 3. A time-frequency representation P(), 3) is obtained by applying Fast 

Fourier Transform (FFT) (Marchant, 2003) on the convolved signal P(3). The power spectrum is 

then calculated as in Eq. 3.1. 

'% = 
1 
$

/
|P(), 3)|( Eq. 3.1 

= 

Where %' represents the power marginal in the frequency domain, and finally the power in each band 

is calculated as in Eq. 3.2. 

%0 ' Eq. 3.2 = $
'∈0 

% 

Where %0 is the power in each band and calculated as the sum of marginal in the each of the bands 

of interest. The powers in each band are then normalised and the logarithm of the outcome forms the 

features vector. 

Common Spatial Patterns (CSP) 

The basic CSP method aims to construct spatial filters for two different EEG populations; the spatial 

filters should be optimal for the classification between the two movements. The method is driven 

from two matrices simultaneous diagonalisation (Pfurtscheller and Neuper, 2001; Shiman et al., 2015; 

Soman and Jayadeva, 2015; Wang et al., 2004; Woo et al., 2015). The EEG signal is first band-passed 

filtered, usually from 8Hz to 30Hz (discussed in the previous section). The filtered EEG signal of a 

trial is represented as matrix S with =; dimensions, where = is the number of channels (electrodes) 
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and T as the number of samples in each trial. The covariance matrix is calculated and normalised as 

shown in Eq. 3.3. 

T = 
SS2 

Eq. 3.3 
38(SS2) 

Where trace (38) is the sum of the diagonal elements of the matrix. The spatial filters obtained of the 

two populations are averaged (i.e., right and left MI) producing the two matrices T3 and T4 and the 

composite covariance matrix represented as shown in Eq. 3.4. 

Eq. 3.4 T5 = UTUU3 + UTU4U 

Then  T5 is further decomposed into eigenvectors V6 and eigenvalues λ5 , as shown in Eq. 3.5: 

T5 = V5λ5V52 Eq. 3.5 

The variances are equalised by the whitening matrix as shown in Eq. 3.6: 

X65 
7.9V52 Eq. 3.6 % = 

The transformation &3and &4 are calculated as shown in Eq. 3.7. 

&3 = %T3%2 and &4 = %T4%2 Eq. 3.7 

Then  &3 and &4 share common eigenvectors as shown in Eq. 3.8. 

If &3 B λ3Y2 then &4 B λ4Y2 and λ3 + λ4 Eq. 3.8 = = = Z 

34 



 

 

 

        

     

          

           

 

 

     

 

	 	   

 

       

          

   

 

 

 

       

      

         

       

 

 

     

           

         

       

       

            

           

 

From Eq. 3.6, the transformation of the combined distribution by % is isotropic which means the 

union of the individually transformed distributions are also isotropic. Hence, the eigenvector in &[3 
holding the largest eigenvalue would have the least eigenvalue in &[4 and vice versa. Furthermore, the 

first and last eigenvectors in Y of the projected whitened EEG are the discriminative features of the 

two EEG populations. 

Finally, the projection matrix and the mapping \ of trial S are defined as shown in Eq. 3.9 , 

Eq. 3.9 , = (Y2%)2 9DB \ = ,S 

6)The common spatial patterns are found in the columns of . Finally, for the classification task, ,

the first and last rows of \ are log-transformed for a normalised distribution in most of the cases and 

a linear classifier would be sufficient to for the classification task. 

3.2.4. Statistical Methods and Cross Validation (CV) 

A one-way ANOVA was used to specify if there were significant differences in classification 

accuracy (dependent variable) for each window size (factor with 4 levels: 0.5 s, 1 s, 2 s, and 4 s). The 

null hypothesis is that the classification accuracy obtained by changing the window sizes and window 

starting seconds are similar and there should be no significant difference between the population 

means. 

Cross-fold-validation (CV) (Stone, 1974) was used to measure the performance of the classification. 

The aim of using this approach is to ensure the performance of the model without over-fitting in the 

training and achieve a less biased more generalised performance estimate of the model. The dataset 

is randomly shuffled and split into ten groups, for each of the groups, the samples are divided into a 

training set and an unseen test set which was set to 80% to 20% respectively in this experiment, the 

model is then trained and evaluated on the test set. The same process is applied for all the ten groups 

and the final classification accuracies are then calculated as the average scores across the ten groups. 
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3.3. Results 

The results of the performance are obtained after employing a 10-fold cross-validation (CV) 

approach. The process is carried out ten times (10 repetitions) such that nine folds are used for the 

training and the remaining fold is used for the testing. The overall classification accuracy (CV 

accuracy) is the average accuracy for each iteration. Table 3.1 shows the best performing window 

sizes and their corresponding window start for CSP and Band-Power (BP) features employing an 

LDA for classification. Table 3.2 shows the best performing window sizes and their corresponding 

window start for CSP and BP features employing an SVM for classification. The resulting 

classification accuracies for each of the windows and the highest achieved classification accuracy for 

all participants are shown in Figs. 3.1, 3.2, 3.3, 3.4. The average classification accuracy for all the 

window sizes and window starting points are shown in Fig. 3.5. 
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Figure 3.1: The classification accuracy of all nine participants using CSP features and an LDA classifier. The Window Start second is on the x-axis and 

the corresponding classification accuracy on the y-axis. The grey shaded area represents the period between the cue on set and end of cue. The highest 

accuracy achieved over all windows sizes and start times is marked by a circle. The horizontal line represents the window size that achieved the highest 

classification accuracy. The error bars show ±1 standard error of the mean. 
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Figure 3.2: The classification accuracy of all nine participants using BP features with a LDA classifier. The Window Start second is on the x-axis and the 

corresponding classification accuracy on the y-axis. The grey shaded area represents the period between the cue on set and end of cue. The highest accuracy 

achieved across over all window sizes and start times is marked by a circle. The horizontal line represents the window size that achieved the highest 

classification accuracy. The error bars show ±1 standard error of the mean. 
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Figure 3.3: The classification accuracy of all nine participants using CSP features with a SVM classifier. The Window Start second is on the x-axis and 

the corresponding classification accuracy on the y-axis. The grey shaded area represents the period between the cue on set and end of cue. The highest 

accuracy achieved across over all window sizes and start times is marked by a circle. The horizontal line represents the window size that achieved the 

highest classification accuracy. The error bars show ±1 standard error of the mean. 
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Figure 3.4: The classification accuracy of all nine participants using BP features with a SVM classifier. The Window Start second is on the x-axis and the 

corresponding classification accuracy on the y-axis. The grey shaded area represents the period between the cue on set and end of cue. The highest accuracy 

achieved over all window sizes and start times is marked by a circle. The horizontal line represents the window size that achieved the highest classification 

accuracy. The error bars show ±1 standard error of the mean. 

40 



 

 

 

  

  
              

                  

           

Figure 3.5: The average classification accuracy over participants. The top two figures are the results of using a LDA classifier and the bottom two figures 

employ SVM for classification, where the left column holds the CSP features and the right columns holds the BP features. The Window Start second is 

on the x-axis and the corresponding classification accuracy on the y-axis. The grey shaded area represents the period between the cue on set and end of 
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cue. The highest accuracy achieved over all windows is marked by a circle. The horizontal line represents the window size that achieved the highest 

classification accuracy.  Error bars show ±1 standard error of the mean. 
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CSP BP 

Participant Best Window 
Size (s) 

Best Window 
Start (s) 

Best Window 
Size (s) 

Best Window 
Start (s) 

01 4.00 3.40 2.00 5.00 
02 4.00 3.40 1.00 3.40 
03 0.50 3.80 1.00 0.90 
04 2.00 3.70 2.00 3.40 
05 1.00 3.60 2.00 4.10 
06 4.00 3.10 1.00 3.40 
07 2.00 3.30 1.00 6.60 
08 4.00 3.70 2.00 4.90 
09 4.00 3.90 0.50 4.40 

Mean 4.00 3.40 1.00 4.00 

Table 3.1: Best windows size and window start for each participant using CSP and BP with LDA 

classification. 

CSP BP 

Participant Best Window 
Size (s) 

Best Window 
Start (s) 

Best Window 
Size (s) 

Best Window Start 
(s) 

01 4.00 3.40 4.00 3.50 
02 4.00 3.40 1.00 3.40 
03 0.50 3.80 1.00 1.00 
04 2.00 3.70 2.00 3.50 
05 1.00 3.60 2.00 3.40 
06 2.00 3.70 4.00 3.40 
07 4.00 3.00 4.00 3.40 
08 2.00 4.10 2.00 4.20 
09 4.00 3.90 4.00 3.80 

Mean 4.00 3.40 4.00 3.50 

Table 3.2: Best windows size and window start for each participant for CSP and BP using SVM 

classification. 
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Figure 3.6: The error bars with confidence intervals for each group separately employing LDA and 

CSP features. The y-axis is the window-size and the x-axis is the average across trials. 
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Figure 3.7: The error bars with confidence intervals for each group separately employing LDA and 

FFT features. The y-axis is the window-size and the x-axis is the average across trials. 
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Figure 3.8: The error bars with confidence intervals for each group separately employing SVM and 

CSP features. The y-axis is the window-size and the x-axis is the average across trials. 
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Figure 3.9: The error bars with confidence intervals for each group separately employing SVM and 

FFT features. The y-axis is the window-size and the x-axis is the average across trials. 

The CSP features with a LDA yielded an average accuracy of 76.80 % (SD 10.03 %), and a 

maximum accuracy of 95.00 % for participant 4. On the other hand, the BP features with a LDA 

yielded an average accuracy of 70.50 % (SD 8.50 %) and a maximum accuracy of 90.00 % for 

participant 4. Furthermore, The CSP features with a SVM yielded an average accuracy of 74.70% 

(SD 8.91 %) and a maximum accuracy 93.87 % for participant 4. While the BP features with a 

SVM yielded an average accuracy of 72.52 % (SD 9.31 %) and a maximum accuracy of 91.75 % 

for participant 4. 
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First, the main effect of window size in the CSP and LDA Tukey HSD method for Post-hoc 

pairwise tests between individual window sizes as shown in Table 3.3 and Fig. 3.6 

Participant ANOVA All 0.5 vs 1.0 0.5 vs 2.0 0.5 vs 4.0 1.0 vs 2.0 1.0 vs 4.0 2.0 vs 4.0 

F(3,241) 

01 4.68 < 0.01 ns < 0.05 < 0.01 ns ns ns 

02 22.13 < 0.01 ns < .01 < .05 < .01 < .01 ns 

03 6.00 < 0.01 ns < .05 < 0.01 ns < 0.01 ns 

04 10.84 < 0.01 ns ns <.01 < .05 <.01 ns 

05 16.35 < 0.01 ns < .01 < .01 < .01 < .01 ns 

06 14.19 < 0.01 ns < .01 < .01 < .01 < .01 ns 

07 10.65 < 0.01 ns < .05 < .01 ns < .01 ns 

08 9.30 < 0.01 ns < .05 .01 ns .01 ns 

09 7.26 < 0.01 ns < .05 < .01 ns < .01 ns 

Table 3.3: The main effect of window size in the CSP and LDA. The p-value is only reported where 

the is a significance between the groups. Where there is no significance, (ns) is reported. 
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Second, the main effect of window size in the BP and LDA Tukey HSD method for Post-hoc 

pairwise tests between individual window sizes as shown in Table 3.4 and Fig. 3.7 

Participant ANOVA All 0.5 vs 1.0 0.5 vs 2.0 0.5 vs 4.0 1.0 vs 2.0 1.0 vs 4.0 2.0 vs 4.0 

F(3,241) 

01 7.71 < 0.01 ns ns < 0.05 ns < 0.01 < 0.01 

02 ns ns ns ns ns ns ns ns 

03 ns ns ns ns ns ns ns ns 

04 ns ns ns ns ns ns ns ns 

05 ns ns ns ns ns ns ns ns 

06 ns ns ns ns ns ns ns ns 

07 5.80 < 0.01 ns ns < 0.01 ns < 0.01 < 0.01 

08 12.31 < 0.01 ns ns < 0.01 ns < 0.01 < 0.01 

09 4.48 < 0.01 ns ns < 0.05 ns < 0.01 < 0.05 

Table 3.4: The main effect of window size in the the BP and LDA. The p-value is only reported 

where the is a significance between the groups. Where there is no significance, (ns) is reported. 

Third, the main effect of window size in the CSP and SVM using Tukey HSD method for Post-hoc 

pairwise tests between individual window sizes as shown in Table 3.5 and Fig. 3.8: 
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Participant Anova All 0.5 vs 1.0 0.5 vs 2.0 0.5 vs 4.0 1.0 vs 2.0 1.0 vs 4.0 2.0 vs 4.0 

F(3,241) 

01 4.80 < 0.01 ns < 0.05 p < 0.01 ns nss ns 

02 25.77 < 0.01 ns < 0.01 < 0.01 < 0.05 < 0.01 < 0.01 

03 6.63 < 0.01 ns < 0.05 < 0.01 ns < 0.05 ns 

04 10.92 < 0.01 ns < 0.01 ns < 0.01 < 0.01 

05 18.31 < 0.01 ns < 0.01 < 0.01 ns < 0.01 < 0.05 

06 13.93 < 0.01 ns < 0.01 < 0.01 ns < 0.01 < 0.05 

07 9.82 < 0.01 ns < 0.01 < 0.01 ns < 0.01 ns 

08 7.90 < 0.01 ns < 0.01 < 0.01 ns < 0.01 ns 

09 7.88 < 0.01 nss < 0.05 < 0.01 ns < 0.01 ns 

Table 3.5: The main effect of window size in the CSP and SVM. The p-value is only reported where 

the is a significance between the groups. Where there is no significance, (ns) is reported. 

Fourth, the main effect of window size in the BP and SVM Tukey HSD method for Post-hoc 

pairwise tests between individual window sizes as shown in Table 3.6 and Figure 3.9: 
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Participant Anova All 0.5 vs 1.0 0.5 vs 2.0 0.5 vs 4.0 1.0 vs 2.0 1.0 vs 4.0 2.0 vs 4.0 

F(3,241) 

01 ns ns ns ns ns ns ns ns 

02 ns ns ns ns ns ns ns ns 

03 ns ns ns ns ns ns ns ns 

04 8.86 ns ns ns < 0.01 ns < 0.01 < 0.05 

05 6.06 ns ns < 0.05 < 0.01 ns ns ns 

06 9.72 ns ns ns < 0.01 ns < 0.01 < 0.05 

07 ns ns ns ns ns ns ns ns 

08 ns ns ns ns ns ns ns ns 

09 ns ns ns ns ns ns ns ns 

Table 3.6: The main effect of window size in the BP and SVM. The p-value is only reported where 

the is a significance between the groups. Where there is no significance, (ns) is reported. 

Finally, the results of the best classification accuracies using a fixed window for the training and 

the testing for each participant’s accuracy for each of the methods is shown in Table 3.7. A 

comparison between the best the classification accuracies of the best performing classifiers (LDA 

and SVM) with both features (CSP and BP) of this experiment in Table 3.8 with the classification 

accuracies of a selected state-of-art relevant methods: CSP (Wang et al., 2012), bispectrum (Shahid 

and Prasad, 2011) and FBCSP (Ang et al., 2012) and the top three performing methods for the BCI 

competition IV 2b (on the BCI-competition IV web page). 
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Participant CSP/LDA BP /LDA CSP/ SVM BP / SVM 

01 
02 
03 
04 
05 
06 
07 
08 

72.00 
63.00 
62.00 
97.00 
75.00 
81.00 
72.00 
70.00 

68.00 
52.00 
60.00 
95.00 
73.00 
54.00 
66.00 
68.00 

71.00 
63.00 
62.00 
93.00 
76.00 
80.00 
71.00 
71.00 

66.00 
55.00 
59.00 
91.00 
77.00 
56.00 
66.00 
68.00 

09 78.00 64.00 78.00 63.00 
Mean 74.44 66.67 73.89 66.78 

Table 3.7: Classification accuracies of all participants training employing a fixed window size, 

determined previously. Performance was measured on the unseen sessions (4 and 5) 

Part-
icipant 

CSP /
LDA BP/LDA CSP Chin Gan Coyle Bi-

spectrum FBCSP 

01 72.00 68.00 66.56 70.00 71.00 60.00 77.00 68 
02 63.00 54.00 57.86 61.00 61.00 56.00 65.00 59 
03 62.00 60.00 61.25 61.00 57.00 56.00 61.00 59 
04 97.00 95.00 94.06 98.00 97.00 89.00 97.00 98 
05 75.00 73.00 80.63 93.00 86.00 79.00 82.00 93 
06 81.00 54.00 75.00 81.00 81.00 75.00 85.00 80 
07 72.00 66.00 72.50 78.00 81.00 69.00 75.00 78 
08 70.00 68.00 89.38 93.00 92.00 93.00 91.00 93 
09 78.00 64.00 81.25 87.00 89.00 81.00 87.00 87 

Mean 74.44 66.89 75.39 80.22 79.44 73.11 80.00 79.44 

Table 3.8: Classification accuracies of the best performing methods using CSP and BP features in 

this experiment (CSP/LDA and BP/LDA), other state-of-the-art methods and the top three methods 

of the BCI competition IV 2b. 
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3.4. Discussion 

The aim of this research is to optimise real-time BCI systems performance. To achieve a high 

performance real-time BCI system, the duration of the signals from where the features are 

extracted and classified needs to be as short as possible. Therefore, finding the methods that 

achieve higher performance with shorter windows might lead to an improvement in the current 

BCI systems. In addition, investigating if there are any useful information in other parts of the 

signal that can be used to improve the classification accuracy (e.g., if the last second increases the 

performance or it is just noise). Hence, this experiment was conducted to investigate and compare 

the classification accuracies of discriminating between two moto-imagery movements using 

different sized intervals. Moreover, combining methods to identify the performance of each of the 

two types of features CSP and BP with the most used classifiers SVM and LDA. 

This analysis suggests that, using CSP features employing LDA and SVM for the majority of the 

participants (Figure 3.11) collapsing across window start position, the window size factor had a 

significant effect on classification accuracy (Figs. 3.7 and 3.9). However, post-hoc tests suggest 

that this effect is quite specific, with the significant pairwise comparisons being that 2s and 4s 

windows both outperform the shortest (0.5s and 1.0s) windows (Figs. 3.2 and 3.4), suggesting that 

longer windows do confer a performance advantage.  

On the other hand, using BP features employing LDA and SVM collapsing across window start 

position, the window size factor had a significant effect on classification accuracy (Figures 3.8 and 

3.10) for a subset of the participants (Figs. 3.11). The post-hoc tests suggest that where the effect 

is witnessed, the significant pairwise comparisons being that 0.5s, 1.0s and 2.0s windows both 

outperform the longest (4.0s) window (Figs. 3.3 and 3.5), suggesting that shorter windows do 

confer a performance advantage.  

Even though, The CSP outperformed the BP in both applying LDA and SVM with a mean 

classification accuracy of 75% and 74% respectively as opposed to 70% and 72% for BP (Table 

3.4). Where CSP showed a significant effect employing the 4.0s window, and using the BP features 
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showed no significance or favoured shorter windows (0.5s, 1.0s and 2.0) suggesting that using BP 

features based systems have the potential for achieving similar or better performance with shorter 

windows. In addition, there was no significance between the best accuracies achieved between the 

CSP and BP for both the LDA and SVM. 

Furthermore, the second task was to identify if the intervals that scored the highest for each of the 

participants would result in more generalised features for the rest of the signal and the performance 

was measured on the two unseen sessions (4 and 5). The intervals that scored the highest in the 

previous task were used for the training of the model, the classification accuracy was measured on 

the full trial with overlapping windows. Comparing with the validation sessions (1,2 and 3), there 

was a decrease of 3% in the average classification accuracy of the BP features for both SVM and 

LDA, and a 1% decrease in the CSP features employing an LDA, while no change in the CSP 

features employing SVM, the final results are shown in Table 3.7 . 

Accordingly, the findings imply that all the intervals after the cue (the highest accuracies obtained 

that are higher than chance level lies in the interval of the cue on set (Figs. 3.2 to 3.6) can be used 

to enforce the decision of the classifier assuming the signals are continuous and the system is 

operating in real-time. Moreover, in this experiment the pre-processing was minimal where it 

entailed a band-pass filter and calculating the features as opposed to some of the methods used in 

Ang et al. (2012), Wang et al. (2012) and Shahid & Prasad (2011) wherein extra steps in the pre-

processing was done to enhance the features quality and choose the optimum features. The analysis 

also suggests that the BP features might be a better candidate for a real-time system and can be 

used to achieve higher accuracies by identifying the best bands for each of the participants. 

However, ideally the system should be able to identify and use the features autonomously and 

without losing information by adding extra pre-processing steps. Hence, further investigation was 

needed to address some of the findings and limitations of the experiment, such as more optimised 

feature extraction and classification methods to extract the salient features from all the intervals. 

The next experiments were conducted to identify the best feature extraction and classification 

methods for short period signals and suggesting a novel neural network to capture the relationship 

of the intervals and enforce the decision of the classifier. 
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3.4.2 Summary of Contributions 

• Evaluated the traditional naïve over different window sizes and periods; 

• Established the best window sizes and intervals for each of the discussed methods; 

• Established that spectral features provide the highest performance for short windows; 

3.4.3 Limitations 

• Only naïve methods for extraction and classification were evaluated; 

• The performance difference between participant subsets was not investigated; 

• Performance was not evaluated d using raw EEG signals. 
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Chapter 4: 

A pointwise convolutional 

neural network for two-class MI 

classification  
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4.1 Introduction 

As noted in Chapter 1, the most commonly used methods in the BCI literature, such as Filter Bank 

Common Spatial Pattern (FBCSP) (Ang et al., 2012), bispectrum (Shahid and Prasad, 2011), and 

Deep Belief Networks (DBN) (Tang et al., 2017), rely upon the extraction and exploitation of 

features from several frequencies. In other words, filter banks are used and the most discriminatory 

features from each frequency are identified and weighted to support signal classification. Since, 

EEG signals are sampled in the time domain, they are noisy and non-stationary. Even though 

methods such as CSP and FFT yield relatively high accuracies in classification, the transformations 

and single processing functions used reduce signal resolution. Moreover, EEG signals are 

continuous and vary over time, features should ideally be extracted in the time or time-frequency 

domain with minimal transformations to limit resolution loss. 

Two-dimensional (2D) and three-dimensional (3D) Convolutional Neural Networks (CNN) have 

been used very successfully in the image domain for recognition, detection, segmentation and other 

tasks. The images supplied as input are minimally 2D (e.g., greyscale) and 3D if RGB colour or 

some other trichromatic scheme. The models that excel in these tasks, such as ResNet (He, Zhang, 

Ren and Sun, 2015) and VGG (Simonyan and Zisserman, 2014), have a complex and deep 

structure with a correspondingly high number of parameters to learn. These networks were trained 

on millions of sample images spanning a broad context. 

Newly proposed wavelet-based CNNs methods perform time-frequency classification. These 

methods have yielded higher rates of accuracy, but still typically entail a number of 

transformations in the pre-processing stages; for instanace, Tang et al., (2017) and Lee & Choi, 

(2018) render the EEG data into a 2D image-like form (analogous to scalograms, periodograms, 

or spectrograms). The wavelet transformation results in a 3D matrix, where the first dimension 

corresponds to frequency, the second dimension corresponds to the time samples and the third 

dimension corresponds to the number of electrodes. Thus, the acquired matrix structured like an 

image matrix (e.g. channels × width × height) and could be processed by CNN based models 

without fundamental changes of the models architectures. 
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However, these networks have deep architectures, leading to a relatively larger number of 

parameters. Deep neural networks favour large datasets, while EEG datasets are usually limited 

and are typically no bigger than one or two thousand samples. Furthermore, individual participants 

have unique signal properties that restricts the size of the dataset to a single person per set. In 

addition, the number of pre-processing steps was increased to include such operations as filter 

banks and correlation coefficients by trading off resolution and having using end-to-end networks. 

(Al Rahhal, Bazi, Al Zuair, Othman, & BenJdira, 2018) 

Another practice that has shown to improve generalisation and harness the power of Deep Neural 

Networks for EEG signal classification is cropped training introduced by Schirrmeister et al., 

(2017), wherein a windowing function is applied to each trial to obtain more training samples, and 

as such can be considered a data augmentation approach. Furthermore, in Schirrmeister et al., 

(2017), the authors introduced three different CNN architectures: a Shallow, a Deep and a Hybrid 

architecture and the authors demonstrated that the suggested networks are able to learn and merge 

similar features to FBCSP and FFT in an end-to-end approach with minimal pre-processing (4Hz 

high pass filter to remove artefacts such as eye blinks) and use cropped training to increase the 

number of training samples achieving state-of-the-art performance. They demonstrate similarities 

between FBCSP and FFT features by visualising the filters generated and comparing them with 

FBCSP and FFT using spatial maps and spectrograms. Finally, a state-of-the-art network called 

EEGNet has been proposed by Lawhern et al.,(2018) in which the authors attempt to construct a 

generalised CNN architecture that is able to classify different BCI tasks, such as P300, VSCP and 

motor imagery using an end-to-end network that handles any EEG signal. 

CNNs were initially designed for, and excel at, computer vision tasks. Using CNNs with time 

domain data, and more specifically EEG signals that are difficult to visually inspect and classify 

(as opposed to visually inspecting an image to determine if it is a cat or a car, for example), is 

difficult. Rigorous evaluation and testing are required. Subsequently, a well-defined and state-of-

art baseline is typically used for this type of study. Here, Shallow Net and EEGNet have been 

used as the baseline, since: 

58 



 

 

    

       

 

         

 

 

    

       

      

     

       

 

 

    

 

           

 

  

 

         

       

             

      

      

         

      

 

 

         

      

(i) They have been shown to achieve high performance for MI classification; 

(ii) They are rigorously tested against different datasets with high quality statistical and visual 

analyses; 

(iii) The first two layers are relatively similar with small differences, which is useful for the 

analysis of this study. 

Finally, the following methods exploiting time-domain features have been empirically tested using 

the models and window sizes discussed previously: Continuous Wavelet Transformation (CWT), 

Discrete Wavelet Transformation and Spectrograms. Using CWT resulted in the best performance 

without optimisation or feature engineering. Hence, CWT was chosen for extracting the time-

frequency features. Noting that the results of the aforementioned methods were compared using a 

pilot analysis. 

Accordingly, the following key questions are addressed to establish a baseline: 

• What is the impact of training the Shallow net and EEGNet with CWT signals on classification 

accuracy? 

• What is the impact of the number of scales and channels on the performance of the network? 

These questions were tackled by first replicating the Shallow net and EEGNet, as described in the 

methods section, and evaluating it with BCI IV 2b to acquire a fair baseline for comparison. In the 

first task, the CWT signals were used as an input for the network as it is acquiring also a baseline 

for CWT features. In the second task, the network was rigorously tested by adapting the middle 

activation layers to reflect the imposed requirements by the CWT. In addition, increasing the 

number of wavelet scales for the transformation provides a wider spectrum at the cost of increasing 

the number of parameters, which in turn increases the model’s complexity and increases the 

difficulty of minimising the error using a small dataset. 

The problem of the small dataset has been tackled by the cropping training strategy that is 

described in detail in the methods section and described in detail in Schirrmeister et al., (2017). 
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However, a well-known problem in motor imagery tasks is the difficulty for participants in 

maintaining the visualisation of the movement for a long period of time, leading to a transient 

ERD/ERS in each trial. Even though cropped training (data augmentation) provides more samples 

from a sliding window, it assumes that the EEG signals are periodic over the 4s after the cue onset 

and as the authors used the full 4s after the cue onset for their reported accuracies and obtained 

lower classification accuracy using 2s. Nevertheless, the technique proves that it is very useful for 

event detection in MI classification. In Lawhern et al.,(2018), the authors used 2s for training and 

testing [0.5%, 2.5%] after the cue onset for testing the model in a MI task, implying that the cropping 

strategy doesn’t seem to support the claim that the model is able to learn generalised features from 

the full trial (4s after or at the cue onset). 

Here, it is hypothesised that a suitable CNN-based architecture using CWT features with the 

appropriate data augmentation will improve the classification performance. The proposed 

architectures are designed and optimised in chronological order to investigate and address the 

limitations of the aforementioned methods. The proposed architectures are simple and with minor 

adaptations in the Shallow and EEGNet architectures aiming to combine the strengths of the CNNs 

and CWT. Tackling those problems leads to the main contributions of this chapter, which are as 

follows: 

• Adapting the Shallow net and EEGNet to introduce a novel CNN structure that is able to learn 

the most discriminatory features from any number of provided scales. The structure is similar 

to the Shallow Net with one difference: the depth of the network are the scales of the CWT 

and the network uses separable deep-wise convolution layers (as in EEGNet) to learn scale-

specific temporal and spatial filters, such that the final conv layer is applied to the merged 

output of the learned filters. Ideally, the network is able to achieve relatively close accuracies 

to the state-of-the-art methods. 

• In Deep CNNs and EEGNet focused on the interpretation of narrow-frequency band-power 

and spatial features decoded by the networks. Visualising the learned spatial filters at each 

band in terms of hidden unit activations and highest contributing features (relevance of 

individual features). Following the previous experiments, in this study, the interpretation 
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focuses on the time-locality of the features learned by the network. This provides an insight 

into the second adaptation of the networks, where the temporal filters in Shallow net and 

EEGNet are replaced by the pre-calculated CWT filters. Finally, the validity of a proposed 

data-augmentation technique (described below) will be evaluated. 

• A novel data-augmentation technique for EEG signals is introduced and evaluated which will 

be referred to as shuffled-crossover crops. As the name implies, the strategy reflects the 

intrinsic nature of EEG signals by shuffling crops within trials (e.g., switching a fixed number 

of samples between 1% and 3%) and across trials with the same label (e.g. switching a fixed 

number of samples between trial - and trial - + 10). Clarifying that in a continuous recorded 

EEG signal, the event may take place in any second or period. 

To summarise, the methods proposed in this chapter represent a self-sufficient end-to-end CNN 

that is able to learn CWT features providing an arbitrary number of scales or a mother wavelet as 

it was proved to be quite difficult to find the optimal configurations for CWTs. The suggested 

architecture PWCN (see methods) learns an average of the scaled provided regardless how many 

scales are used in the decomposition, providing sufficient computational power, a larger number 

of scales would provide higher resolution of the signals. Furthermore, it eliminates the pre-

processing and interpolation techniques to reduce the number of parameters and acquire frequency 

bands as features by using separable deep-wise conv nets. 

Shallow net and EEGNet have been used as the baseline, since these performed better than Deep 

and Hybrid architectures for MI tasks, as well as being rigorously tested against different datasets 

with high quality statistical and visual analysis. The study also includes the winner of the BCI IV 

2b competition method FBCSP, which was discussed in a previous chapter. 

In the first stage, the BCI IV 2b dataset has been used for comparison in order to maintain 

consistency with previous chapters. In addition, the available computing power makes it very time 

consuming to test the methods on larger datasets such as BCI IV 2a. However, later on, the most 

common datasets and methods are compared to directly in order to evaluate the proposed models. 
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The methods are described briefly and concisely for the ease of reading and following the methods 

introduced. 

Filter Bank Common Spatial Patterns (FBCSP) 

The winner of the competition was the FBCSP method proposed in Ang et al. (2008) and Chin et 

al. (2009), and it is commonly used for methods for decoding MI EEG signals. The FBCSP method 

is based on Common Spatial Patterns (CSP) that has also been discussed in Chapter 3 (section 3.2) 

in detail in which it was compared with FFT features. Moreover, it was used in the discussed 

methods as a Benchmark in their studies. Finally, the suggested conv nets adapted for EEG 

classification as in Shallow net, Deep-Net, and EEGNet, contain a conv block that mimics the 

basis of the FBCSP pipeline. Thus, the following is a brief description of the steps of FBCSP: 

• Band-pass Filtering: The signals are band-passed into the frequencies of interest usually 

between 4-40 Hz, a number of band-pass filters are used (in Ang et al. (2008) and Chin et al. 

(2009), 9 band-pass filters were used to obtain 9 banks each is 4 Hz wide). 

• CSP: For each of the filter banks, CSP is applied and spatial filters are extracted in a supervised 

manner for training and for decoding the learned filters are applied to the test signals (refer to 

Chapter 2 for the detailed computation). Emphasizing that the feature vectors are the logged 

minimum and maximum variance between two classes for each filter bank. 

• Classification: A classifier is trained using the log-variance spatial features, while for 

prediction and testing the CSP filters are applied in an unsupervised manner, which can be 

referred to as decoding. 

In this study, the ShallowFBCSP and EEGNet will be discussed in detail to provide an 

understanding of the introduced architecture and the motivation behind it in this section. For details 

on the Deep and Hybrid Nets, refer to the study by Schirrmeister et al., (2017), since they will be 

mentioned briefly throughout the chapter. More importantly, the adaptation and adjustments of the 

networks to provide CWT as features are will be outlined in the relevant parts of the method. 
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I. Shallow net 

The Shallow net was inspired by the FBCSP pipeline. The structure of the network aims to extract 

the band-power features at the first layer which corresponds to the band-pass filtering in the 

FBCSP by having a temporal kernel of size (Time Conv Filter x 1) (Fig. 3.1) operating as 

convolution over time for each channel (electrode). Looking at the kernel size, the width is set to 

one to restrict the filter learning to the temporal features. The second layer is analogous to a spatial 

filter and the kernel size is (1, number of channels) restricting the filter to learn the spatial 

relationship in the form of weights between the electrodes pairs. Inspecting the kernel size, the 

height is set to one. Emphasising that splitting the two layers and having two different kernels 

(temporal and spatial) as opposed to having one conv layers with a kernel of size (25, number of 

channels) was argued to provide better performance with larger number of channels. (Schirrmeister 

et al., 2017). 
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Figure 4.1: The original Shallow net architecture for four classes. The first temporal layer has a 

kernel of size (25,1), the spatial filter (second conv layer) has 44 channels and the kernel size is 

(1,44) and a depth of 40 (40 channels output of the temp filter). A mean pooling layer of the filters, 

and finally a fully connected layer for classification of 4 classes {Hand (L), Hand (R), Feet and 

Rest}. 

A squaring non-linearity layer (squaring the output of the spatial filter) acquiring the instantaneous 

power is applied to the output of the temporal and spatial filters. Finally, the last steps of the 

FBCSP pipeline are to calculate the log-variance and to mirror this computation to a mean pooling 

layer, followed by a logarithmic activation function that is applied to the instantaneous power 

acquired from the previous layer. 
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Finally, for activation layers, an exponential linear unit (ELU) was used as the activation function, 

succeeding the output of the filters acquired from the spatial layer, noting that there are no 

activation layers between the temporal conv layer and the spatial layer and principally, those two 

layers can be combined into one conv layer. The ELU activation is defined as shown in Eq. 3.1, 

given by Clevert et al. (2016). The original network architecture is shown in Fig. 3.1. 

/(1) = 45
! − 1 7/ 1 ≥ 0
1 :;ℎ5=>7%5 Eq.  3.1 

II. EEGNet 

Figure 4.2: The original EEGNet architecture for four classes. 

The EEGNet architecture was designed as a general-purpose model for different BCI paradigms. 

The architecture aims to reduce the number of trainable parameters and maintaining a compact 

(small) number of layers. The first two convolutional layers are serving the same purpose of the 

Shallow net that is fundamentally extracting the band-power features at different band-pass 

frequencies. The second layer namely Spatial-Conv in Shallow net aims to learn spatial maps 
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for each temporal filter using a depth-wise convolution filters allowing the filters to extract 

frequency-specific filters. The depth-wise convolution operates on each channel separately to 

decouple the relationship across the filters, in other words, for each channel a set of filters are 

learned independently where each channel corresponds to a specific like frequency. Finally, a 

point-wise convolution follows with the purpose of learning the optimal combined feature maps 

across all the channels (frequency like). Another difference between Shallow net and EEGNet, 

where Shallow net employed a squaring function as the non-linear activation, EEGNet employed 

Exponential Linear unit (ELU) activation functions after the temporal convolution layer and 

after the depth-wise and point-wise convolutional operation as shown in Figure 4.2. Finally, the 

output is flattened and fully connected layer is added for the classification. For full detail of the 

network refer to the study. 

4.2 Method 

4.2.1 Datasets and experiment procedure 

To evaluate the performance of manipulating the proposed windows, the BCI competition IV 

dataset 2b and BCI Competition IV 2a descripted in section 2.1. 

4.2.2 Apparatus 

A NVIDIA 650 G-force GPU card was used for the calculations of the model parameters 

(Gradient descent and model updating), with CUDA 8 and Pytorch (Paszke et al., 2017) for the 

implementation of the proposed models and the Neural Networks based models evaluated 

(EEGNet, Shallow net) on a Linux based machine with 4 Quad-cores. 

Formal representation of the input (for ease of reading throughout the chapter) 

The datasets used in this experiment are defined as Di = { (X1, y1),…,(XNi, yNi)) } such that D is 

the dataset of subject 7, and -" denotes the number of trials for subject 7. ? denotes the number 
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of trials which belongs to class @ and ?# ∈ ℛ$% where C is the trial number and 1 < C < -" , E 

as the number of electrodes recorded and F as the total number of time samples per trial. The 

representation of the input to the Convnets are crucial, and as discussed in the literature review 

(Chapter 1), one common approach is to provide the input as an EEG ‘image’, whilst the Shallow 

Net was designed to operate on raw EEG signals aiming to learn spatially global filters and local 

temporal filters. Concretely, the models are evaluated on the BCI IV 2b competition dataset with 

the two classes: left hand, right hand, such that a trial j has a corresponding class @# ∈ {l1= Hand 

left, l2 = Hand right}. 

To feed the 2D matrix as an input to the ConvNet a third dimension is added to form a tensor, 

where the third dimension represents depth (also referred to as channels in conv nets literature). 

In this case, there are no depth-wise convolutions at the first layer. 

4.2.3 Continuous Wavelet Transformation (CWT) for feature extraction 

Wavelet transformation was introduced by Daubechies (1990) as an improvement over Fourier 

transformation to analyse signals with non-stationary instantaneous power found over several 

frequencies which has proved (as discussed in Chapter 1) to be an outstanding candidate for 

EEG feature extraction and analysis. Given the raw signal ?(;), a single trial ?#(;), the wavelet 

transformation is applied to each trial at each electrode (will refer to the electrode number as 5) 
#?& (;), as: 

1 # 
# − I

GHF(I, %) = L/(?& )M ∗ O
?& PQ; Eq.  4.2 

J|%| % 

Where M is the mother wavelet and a Morlet wavelet (Eq. 4.3) is used in this study, M ∗ as the 

complex conjugate, I RSQ % are the scaling and shifting parameters respectively. The general 

definition of the Morlet wavelet is: 
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1 
5
)*
(!
"!5#+,-#('M(;, / ) = Eq.  4.3 

TU(√W 

Where /' is the central frequency of the wavelet function which was set to 10 Hz and U( is a term 

that is used for the trade-off between temporal resolution and spectral resolution. The resulting 

matrix after applying the CWT to the EEG signals, is the matrix ?# ∈ ℛ.$% where - is the number 

of scales (frequencies of interest, 8 Hz < X < 50 Hz), F the transformed time steps (samples) and 

E is the number of electrodes. To this end, the first layer of the following models namely the 

temporal convolution layer becomes a depth-wise convolution layer operating on 2 dimensions 

(scales and samples). 

4.2.4 Model Architectures and Adaptations 

Adaptation of Shallow net for CWT 

To acquire a baseline using CWT features, the first adaptation was to remove the squaring non-

linearity layer and pass the features straight to the log-variance and mean pooling layers. The 

motivation behind that is CWT without squaring or calculating the power of each frequency 

showed to obtain remarkably high accuracies as shown in (Al Rahhal, Bazi, Al Zuair, Othman, & 

BenJdira, 2018). The first convolutional layer of the Shallow net and EEGNet aim to learn a 

temporal representation or more precisely the band features for different frequencies per feature 

map (artificial channels generated by the kernels). One way of testing the performance of the 

network is replacing the learned feature maps by pre-calculated CWT features. Hence, the 

temporal convolutional layer was removed and the the second convolutional layer aiming to learn 

the spatial correlations is now operating on the CWT features such that input ? ∈ ℝ.%$. Where 

the X are the number of scales, F are the time-steps and E are the input channels (electrodes). 

III. Point-wise Convolutional Network (PwCN) 
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Using CWT features as an input to the previous networks (Shallow net and EEGNet) increases the 

dimensionality of the input significantly by the factor X (the number of scales), which in turn 

increases the number of parameters. Building on top of their architectures, one key factor is 

considered for the purpose of BCI, by keeping the spatial convolution layer to learn spatial maps 

across channels. 

The following architecture is proposed to achieve similar or relatively close performance using 

CWT features. Noting that only a CWT is applied to the raw signals at the pre-processing stage 

using a Morlet wavelet as the mother wavelet covering the frequencies from 9 Hz to 31 Hz 

resulting in 32 scales. No interpolation or dimensionality reduction is applied. 

• The first layer is a point-wise convolutional layer, the kernel size = (1,1). The input to the 

network is equal to the number of scales provided (32 for BCI 2b and 59 for BCI 2a). This 

layer aims to learn a summary of the band-power like features across the scales since the 

temporal representation has been already calculated by the CWT, assuming that the event takes 

place at different time steps in the different frequencies. The output of the layer behaves like a 

feature reduction at this level. If the output is given as one channel, the kernel will find the 

optimal combination of those scale features providing one channel for the next layer. In this 

experiment, the output channels were tested for - = 40,20 and 4, meaning that the point-wise 

layer is learning X number of optimally mixed scales (frequencies) and the - number of kernels 

represents different variations of - maximising the performance. 

• A batch normalisation procedure is employed to speed training and reduce overfitting (Ioffe & 

Szegedy, 2015). 

• The second layer is an average pool layer with a kernel size of (16,1) and a stride of (16,1) 

for further dimensionality reduction. 

• Followed by the spatial convolution layer with a kernel size of (1, input channels) to learn the 

spatial maps. 

• Batch normalisation. 

• The linear activation function ELU (Eq.4.1) is applied. 
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• Another convolutional layer is added to deepen the model and providing another level of 

transformation. The kernel size was set to (10,1). Noting that in the Spatial-Conv layer, the 

number of channels (the width of the input) is reduced to a value of 1. 

• Another average pooling layer for dimensionality reduction of kernel size and stride size of 

(32,1). 

• A drop-out with 50% probability that enables the model regularize the mode by zeroing out 

50% of the neurons while training which in turn prevent over-fitting especially with small 

sample sizes. 

• Finally, a fully connected layer with a Softmax activation function (Gibbs, 1902) for the 

classification of the movements. 

The model was fitted using an Adam optimiser (Kingman and Ba, 2014), where the parameters 

are kept as the default. The error was minimised by the categorical cross-entropy loss function. 

The early stopping is similar to the one used in Shallow Net for consistency, such that the model 

stops early according to the lowest validation loss. Another important detail on early stopping, the 

weights of the model are saved after finding a new best validation loss and the model is reset to 

those weights, the training continues from the checkpoint of the last best model. 

4.2.5 Augmentation using Shuffled-Crossover crops 

Data augmentation is a common technique used in training neural networks, where it aims to 

reduce model overfitting using existing information in the training generating new data samples. 

The widely generic practices entail cropping, flipping an image, rotating the image and colour 

changes or in other words geometric augmentation (Cireşan, Meier, Gambardella, & Schmidhuber, 

2010; Yang, Zhao, Chan, & Yi, 2016). As discussed in the experiment procedure (see section 

4.2.1), participants were instructed to maintain the MI movements for at least four seconds when 

the data is being collected. Ideally, it is assumed that the temporal structure is similar and periodic 

over the four seconds (hence as discussed thoroughly throughout techniques like Fast Fourier 

Transform (FFT) and CWT for EEG are the traditional techniques used for the analysis and feature 

extraction). A sample shuffling is suggested in this study, for simplicity, the E# will be omitted 
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from the Eqs. since the following operation is applied over all electrodes at E# in the same way. 
#Given the time samples F# of trial ?# ∈ ℛ$% and a crop ;#[%, 5] = [;#: F/

# < ;# < F& ] ⊆ F# where 

% RSQ 5 denote the location of the starting and ending sample respectively. Samples ;# are 

swapped with non-overlapping samples ;̅ # generating a new training example ?̀ ∈ ℛ$% . Finally, 

a crop may or may not be also swapped across trials i.e. swapping ;̅ #01' with ;#0+''. In this study, 

just one configuration of augmentation was tested, where the number of samples to be swapped 

was the equivalent of two seconds: ;# = [% = 0, 5 = 500] ∧ ;̅ # = [s = 500, e = 1000] and 

further shuffling between trials was random and set to a maximum of 20 trials crossover shuffles. 

4.2.6 Visualisation and analysis 

Motor imagery BCI has been analysed thoroughly using the standard methods such as 

spectrograms, FFT, CWT and DWT. Researchers are presently working to understand and 

interpret what the artificial neural networks are learning and ‘look into’ the black box. Mainly 

looking into CNNs in computer vision problems. In Schirrmeister et al. (2017), the authors applied 

a technique wherein they extracted filters weights and applied a frequency correlation between the 

classes, showing an improvement of the increase and decrease (ERD and ERS) at deeper levels. A 

similar procedure was performed in the Lawhern et al. (2018), but the authors showed examples 

of the P300 component. 

In this study, the visualisation and interpretation were focused on the receptive fields immediately 

following the spatial-filter. The technique used is known as Guided Gradient-weighted Class 

Activation Mapping (Guided Grad CAM) as described in Selvaraju et al., (2017) and discussed in 

detail in Chapter 5, where a trained model is forward and back-propagated to emphasise features 

or nodes that contribute the most to maximising a class. Put simply, the model is back-propagated 

to compute the gradient with respect to the provided class. Furthermore, a constraint was set where 

any weights < 0 would be set to be 0. Secondly, since signals are more difficult to visualise, the 

weights at the selected layer for visualisation are added to the original signal. Finally, a scalogram 

of the obtained signal maximising a class is calculated, as shown in Figs. 4.8 to 4.10. 
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4.3 Results 

4.3.1 Performance of baseline networks 

Baseline evaluation for Shallow net and EEGNet achieved similar results, with a decrease in kappa 

values for BCI IV 2b. This is believed to be a consequence of how it was tested (the difference 

will be discussed in the next section). The implementation of the original models was replicated 

locally and accuracies are compared with those reported for BCI IV 2b. Moreover, the tested period 

of the trial for the baseline was from 0.5 − 2.5% after cue onset for consistency with the reported 

accuracies. 

Table 4.1: Classification accuracies and Kappa for 10×10 fold. Sessions 1, 2 and 3 only. The error 

is measured as SD across folds and all subjects. The error rate for accuracy is measured as SD across 

folds and all subjects and as the mean SE for kappa. 

Network Accuracy Kappa No. of Parameters 

ShallowFBCSP 0.78 ± 0.13 0.51 ± 0.05 6482 

EEGNet 0.81 ± 0.10 0.62 ± 0.04 1618 

ShallowFBCSP-CWT 0.72 ± 0.13 0.45 ± 0.05 37482 

EEGNet-CWT 0.73 ± 0.15 0.46 ± 0.05 17490 

Table 4.2: Classification accuracies, Kappa and F-Beta using the unseen sessions 4 and 5 for 

testing. 

Network Accuracy Kappa F-Beta 

ShallowFBCSP 0.78 0.57 {0: 0.78, 1: 0.79} 

EEGNet 0.83 0.65 {0: 0.82, 1: 0.83} 

ShallowFBCSP -CWT 0.76 0.51 {0: 0.76, 1: 0.75} 

EEGNet-CWT 0.76 0.53 {0: 0.76, 1: 0.77} 
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Figure 4.3: The normalised confusion matrix of the mean accuracies of the within-participants with 

the unseen sessions 4 and 5. Top Left is the Shallow net confusion matrix and the Top right is the 

EEGNet confusion matrix. Bottom Left is the Shallow net-CWT confusion matrix and the Bottom 

right is the EEGNet-CWT confusion matrix. 

4.3.2 Replacing the first Temporal-Conv layer with the CWT features (32 scales). 
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Table 4.3: Classification accuracies and Kappa for 10 × 10 Fold. Sessions 1, 2 and 3 only. The 

error is measured as SD across folds and all subjects. The error rate for accuracy is measured as 

SD across folds and all subjects and as the mean Standard Error for Kappa. 

Network Accuracy Kappa No. of Parameters 

Shallow net_CWT 0.74 ± 0.13 0.49± 0.05 7122 

EEGNet_CWT 0.76 ± 0.13 0.54± 0.05 4762 

Table 4.4: Classification accuracies, Kappa and F-Beta using the unseen sessions 4 and 5 for 

testing. 

Network Accuracy Kappa F-Beta 

Shallow net_CWT 0.75 0.50 {0: 0.75, 1: 0.76} 

EEGNet_CWT 0.77 0.55 {0: 0.77, 1: 0.77} 

Figure 4.4: The normalised confusion matrix of the mean accuracies using CWT as input of the 

within-participants with the unseen sessions 4 and 5. Left is the Shallow net-CWT confusion 

matrix and the right is the EEGNet-CWT confusion matrix. 
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4.3.3 The performance of the PWSCN. 

Table 4.5: Classification accuracies, Kappa and F-Beta using the unseen sessions 4 and 5 for 

testing. 

Network Accuracy Kappa F-Β Parameters 

PWSCN 0.80 0.59 {0:0.79, 1: 0.80} 7760 

Confusion matrix: 

Figure 4.5: Normalised confusion matrix for the PWCN. 
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Result 4: The visualisation for some participants. 
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Figure 4.6: Scalogram after applying guided CAM. Applied on the spatiotemporal layer for participant 4. First row is the Shallow net, 

second row is the EEGNet, third row Shallow net_CWT and fourth row is EEGNet-CWT. 
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Figure 4.7: Scalogram after applying guided CAM. Applied on the spatiotemporal layer for participant 8. First row is the Shallownet, 

second row is the EEGNet, third row Shallownet_CWT and fourth row is EEGNet-CWT. 
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Figure 4.8: Scalogram after applying guided CAM. Applied on the spatiotemporal layer for participant 7. First row is the Shallownet, 

second row is the EEGNet, third row Shallownet_CWT and fourth row is EEGNet-CWT. 
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Figure 4.9: Scalogram after applying guided CAM. Applied on the spatiotemporal layer for participant 1. First row is the Shallownet, 

second row is the EEGNet, third row Shallownet_CWT and fourth row is EEGNet-CWT. 
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4.3.4 The effect of training using shuffled augmentation for BCI IV 2a. 

In Shallow net and EEGNet for BCI IV 2b, the mean accuracy and kappa differences were almost 

the exact same. On the other hand, for BCI IV 2a, there was a slight improvement of 2% for 

EEGNet. However, the learned filters of the networks showed higher saturation, less scattered and 

better time localisation in the prominent features corresponding to each network as shown below. 

Table 4.5: A summary of classification accuracies for BCI IV 2a dataset. 

BCI IV 2a Original Augmented 

SHALLOWFBCSP 0.70 0.70 

EEGNet 0.63 0.65 

Figure 4.10: Normalised confusion matrix of Shallow net and EEGNet using augmented training. 
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shallowNet EEGNet 

Figure 4.11: Participant 4. Layer (spatiotemporal). First row the scalogram obtained with no augmentation, the second row is the 

combined with shuffling between trials and shuffling within trials and the third row is shuffling between trials only. 
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Shallow net EEGNet 

Figure 4.12: Participant 1. Layer (spatiotemporal). First row the scalogram obtained with no augmentation, the second row is the 

combined with shuffling between trials and shuffling within trials and the third row is shuffling between trials only. 
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4.4 Discussion 

For the baseline performance, the replicated methods achieved similar accuracies with the 

reported accuracies of the original papers for both the Shallow net and EEGNet. The decline 

in performance (replicated method decline) could be a result of the testing method, i.e. it wasn’t 

clear if the reported testing accuracy was on the unseen evaluation sets provided by the 

competition or if it was a held out set after combining both the training sets and the unseen 

evaluation set. In addition, it is not clear if it’s the reported testing accuracy during the training 

epochs or was evaluated after the training phase in a cross-fold. 

Directly providing the CWT to the existing architecture lead to a decrease of 6% and 8% for 

Shallow net and EEGNet, respectively. The decrease in the classification accuracy could be 

attributed to the fact that the first convolutional layer of the two networks performs a 

transformation on the signal that is equivalent to finding the band-power at different 

frequencies and by providing the CWT transformed signals to the network another 

transformation is performed decreasing the resolution of the signal and reducing the accuracy. 

To test this, the first convolutional layer in the two architectures has been removed, providing 

the CWT channels as the band-power filters instead of the learned filters. An increase of 2% 

and 4% in the classification accuracy for Shallow net-CWT and EEGNet-CWT is observed, 

noting that it is still lower than the original (Shallow net and EEGNet using raw EEG signals) 

architectures by 4% and 5%. The improvement in performance can be attributed to the same 

reason, where in this case the CWT transformed signals didn’t lose as much resolution by not 

applying a transformation at the first layer, and finding the relationship between the channels 

with higher resolution at the second level. However, the performance compared with the 

original architecture suggests that there is a loss in resolution by fundamentally applying a 

CWT transformation to the original signals. 

Furthermore, looking at the confusion matrix for the baselines (Fig. 3.3), the majority of the 

votes contributing to the accuracy are at class 1 (right hand) for three of the 4 architectures 

(Shallow net, EEGNet, EEGNet_CWT), same behaviour is witnessed for the preceding 

architectures Fig. 3.4 and Fig. 3.5. The difference between classes contribution isn’t 

statistically significant, and no further analysis was performed. 
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Furthermore, looking at the confusion matrix for the baselines (Fig. 3.3), the majority of the 

votes contributing to the accuracy are at class 1 (right hand) for three of the 4 architectures 

(Shallow net, EEGNet, EEGNet_CWT), same behaviour is witnessed for the preceding 

architectures Fig. 3.4 and Fig. 3.5. The difference between classes contribution isn’t 

statistically significant, and no further analysis was performed. 

The suggested architecture PWCN scored a mean of 80% for dataset BCI IV 2b, where the 

architecture is based on CWT features, the performance is 5% and 4% higher than Shallow net-

CWT and EEGNet-CWT, 2% higher than the original Shallow net and 2% lower than the 

EEGNet. However, evaluating with BCI IV 2a dataset, a significant decrease in performance 

was observed, reaching almost chance levels. The decline in performance can be partly 

attributed to the fact that the number of channels in the second dataset is 22, as opposed to two 

channels. This possibility can be tested by dropping the channels that are further from the 

sensorimotor cortex. For this experiment, the time and the computing capabilities didn’t allow 

further investigation. Furthermore, given the poor performance on the BCIIV2a dataset, the 

analysis of the architecture was not pursued any further. 

Investigating the prominent features using the guided Grad-CAM, in the context of this 

experiment, the most prominent features are the representation of the most contributing 

samples of the signal. A couple of observed behaviours are noteworthy. Firstly, the Shallow 

net and EEGNet seems to attribute higher weights to different samples across almost all 

participants, translating to different periods of the signal, for example for participant 4, the 

Shallow net seems to find the prominent features between the samples 200 to 400 for the left 

hand MI, while EEGNet seems to find the prominent features between 0 to 200 for the left 

hand MI (Figs. 4.6 to 4.9). Also worth mentioning is that, for the same participant, the 

prominent features between the two classes are also found in different periods. Secondly, the 

CWT based architectures seem to find the prominent features at different frequencies, looking 

at the most contributing filters shows faster frequencies. The findings might suggest that the 

two networks are learning different transformation functions, which could be due to the kernel 

size and the depth of the network. Combining that with the evaluation of both networks on BCI 

IV 2a where Shallow net performs better than EEGNet (Table 4.4) by 7%, which is also the 

same findings in Lawhern et al. (2018), and looking at the results of the individual participants, 

each of the networks seems to perform better or similarly for a group of participants and not 
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the rest. Implying that the transformation functions learned are different and more suited for 

some participants over others.  

The authors of Shallow net, EEGNet, and most of the recent state-of-art methods relying on 

deep learning for EEG classification have adopted the cropped training as means of data 

augmentation. In this study, the new augmentation technique suggested shuffled-crossover 

crops, had no significant effect on performance, with only a small increase (of around 2%) 

witnessed using an EEGNet. The visualisation of the prominent features showed more 

saturated weights over the prominent features found with less scattered weights as opposed to 

training with the original data with no augmentation for both Shallow net and EEGNet. Noting 

that in Shallow net the authors found no significance improvement in using cropped training 

over the original dataset in the shallow model, it was found to increase performance in their 

suggested deep model. In this study, only the Shallow model has been investigated and EEGNet 

is two levels deeper than Shallow net that might suggest that the augmentation technique would 

lead to improvements for deeper models, which will be investigated in the next chapter (Figs. 

4.11 and 4.12). 

4.5 Summary of Contributions: 

• A novel architecture was introduced using CWT that improved the performance over using 

the naïve methods discussed in Chapter 3; 

• A novel data augmentation technique is introduced to address the small number of samples 

of the EEG datasets discussed in Chapter 1; 

• Modified existing state-of-art models to operate of time-frequency features. 

• Compared the performance of existing state-of-art models using raw EEG signals with the 

modified models using time-frequency features. 

4.6. Limitations 

• Limited to the number of scales evaluated due to limited computational power; 

• Only tested with CWT (could have tested with other methods like spectrograms); 

• Limited testing on BCI IV 2a dataset due to limited computational power. 
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5.1 Introduction 

The use of Deep Neural Networks in the domain of electroencephalography (EEG) has shown 

great promise for EEG classification tasks. Some of the best performing models such as the 

EEG net, Shallow net and Deep net (as discussed in Chapter 4) are employed as an end-to-end 

solution with minimum or no pre-processing in comparison with the traditional methods such 

Common Spatial Pattern (CSP), Filter Bank Common Spatial Patterns (FBCSP) and 

Continuous Wavelet transformation (CWT) which entail a number of steps such as spatial and 

temporal filtering and removing artefacts (discussed in more detail the literature review, 

Chapter 1 and 3) aiming to increase the Signal-to-noise ratio (SNR). On the other hand, the 

traditional methods are based on linear methods that provides a higher level of interpretation 

of the decisions of the employed models. For example, CSP results in a neurophysiological 

interpretation of the brain spatial correlations and CWT and FFT are able to provide the spectral 

interpretation of such events, a combination of these methods are able to provide a 

sophisticated analysis of the EEG signals and provide researchers with an insight of brain 

activity associated with an event. Finally, in Chapter 4, the suggested model using CWT with 

data augmentation achieved a slight improvement in the classification performance on dataset 

BCI IV 2b (two classes) and slightly higher than random classification accuracy on the BVI IV 

2a (four classes). Furthermore, using CWT features didn’t show a significant improvement 

over raw EEG signals using CNN based models. 

Deep Neural Networks interpretability is an emerging field and researchers are now able to 

acquire interpretations of the network decisions through different techniques. Two techniques 

in particular: Gradient-weighted Class Activation Mapping (grad-CAM) (Selvaraju et al., 

2017) and Attention mechanisms which have proved to be very useful and showed great results 

in Machine Vision and Natural language processing (Bahdanau, Cho, & Bengio, 2015; 

Vaswani et al., 2017). At the time of writing, the grad-CAM has not been used in the 

interpretation or analysis of deep learning in the domain of motor-imagery and has only been 

used in few papers in the EGG domain using wavelet transformation features (Andreotti, Phan, 

& De Vos, 2018). On the other hand, only a handful of studies employed attention mechanisms 

in the motor imagery classification domain. In particular, the study conducted by Zhang, Yao, 

Chen, & Monaghan, (2019) in models addressing temporal data and employing attention 
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mechanisms achieved relatively high accuracies compared with state-of-art methods where the 

attention mechanism was added on the so like temporal features. 

The authors in Lawhern et al., (2018) used three methods to explain the features with the 

highest contribution to the model decision and add a level of interpretability to their suggested 

model. Firstly, they visualized the activation maps as the averaged activations at the second 

level of their model arguing that since they are using separable convolution layers, visualizing 

the activation maps for different channels (depths) would provide the spatial correlation for the 

different narrow bands assuming that each filter is learning a narrow band frequency. Even 

though the authors showed consistent outcomes with the literature, and claimed a newly found 

theta-beta relationship using their suggested model. It is hard to argue that the resulting 

transformation at a layer is still a time-domain representation of the signal and applying CWT 

to the resulting activations could be misleading. The finding discussed in Chapter 4 where 

CWT is applied to the activations obtained with grad-CAM for the different architectures were 

inconsistent such that the different network architectures were not found to be focusing on the 

same samples (features) of the signal while the authors of the discussed architectures argued 

that they can infer a spectral analysis from their network activations at the top layers. However, 

scalograms generated in Chapter 4 don’t support these claims. In other words, the networks 

don’t completely agree on a set of samples that are maximising the performance. Secondly, the 

investigated the weights of the learned filters utilising the fact that separable convolution has 

direct mapping to the output channels. Visualising the weights would provide a low-resolution 

approximation of which features are more important than others due to the nature of the EEG 

signals where the events are not time-locked but phase-locked. 

In the previous chapters, the main focus has been on temporal aspect of the EEG signal where 

in Chapter 3, the performance of the basic traditional classifiers with different windows and 

starting points has been studied to identify the best combination and obtain a baseline. In 

Chapter 3, some of the state-of-art neural network models have been further investigated and 

explored with few adjustments and manipulation such as using CWT features as the input to 

the networks instead of raw EEG signals. A basic form of grad-CAM has also been used with 

CWT to identify the most prominent features and analyse the decision of the networks. 
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Therefore, in this chapter, it is hypothesized that RNN exploiting temporal signal 

characteristics will improve the performance. 

In this chapter, the aims are to: 

1. Utilise the methods to extract and reduce the intervals used without comprising the 

performance in the classification task. 

2. Obtain a higher resolution interpretation of the features. 

To achieve the aims of this study, the following objectives are investigated: 

1. To establish whether the outcome of the model can be fully interpretable in terms of spatial, 

temporal and spectral analysis. 

2. Identify if adding a spatial attention mechanism will provide insights on the spatial 

correlation. 

3. Identify if a temporal attention mechanism with provide better analysis for the signal 

intervals with higher contribution to the performance. 

4. Establish whether a grad-CAM can be utilised for extracting and interpreting the prominent 

EEG features. 

5. Identify what is the shortest signal period that be used while maintaining the state-of-art 

classification accuracy. 

6. Establish whether data augmentation will improve the performance of the models. 

And the following methods have been used to achieve the objectives: 

1. An attention layer is fit at the top of the model to learn linear correlations between the 

channels aiming to obtain an easily interpreted spatial maps of the electrodes and highlight 

the most prominent samples; 

2. A RNN layer using Gate Recurrent Units (GRU) to address the temporal nature of the 

signals; 

3. An attention mechanism that learns a weighted attention of the prominent samples in time; 

4. Different windows and slices are used to extract the shortest period while maintaining the 

state-of-art classification; 

5. Utilising the grad-CAM for EEG interpretation. 
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The augmentation technique discussed in Chapter 4 is used in the training. 

5.2 Methods 

5.2.1 Dataset 

The BCI Competition IV 2a was used for this experiment. The datasets are discussed in detail 

in section 2.1. 

5.2.2 Apparatus 

A NVIDIA 650 G-force GPU card was used for the calculations of the model parameters 

(Gradient descent and model updating), with CUDA 8 and Pytorch (Paszke et al., 2017) for the 

implementation of the proposed models and the Neural Networks based models evaluated 

(EEGNet, Shallow net, ConvLSTM) on a Linux based machine with 4 Quad-cores. 

94 



 

 

 

 

 
 

         

         

 

 

5.2.3 GRU Double Attention Conv-RNN 

Figure 5.1: The proposed architecture. The dark brown boxes represent the raw EEG signals. 

The orange boxes show the local attention mechanisms (spatial attention and temporal 

attention). The green boxes represent neural network layers. 
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5.2.3.1 Spatial-Attention 

The spatial attention in this experiment is used to refer to attention on the electrodes. The 

purpose of the attention mechanisms in the proposed model is to improve the interpretability 

of the model by obtaining attention vectors signifying the electrodes contribution to the 

classification. Two attention mechanisms have been implemented operating as self-attention 

(references) on local features. 

The first attention mechanism was inspired from the Squeeze and Excitation used in Hu (2018) 

where the Squeeze and Excitation operate on the filters learned by the model emphasizing the 

filters that maximize the performance. In the proposed attention mechanism, the operation is 

applied on the each of the electrodes !! representing the rows of the matrix (the height). The 

time samples "! representing the columns (width) of the matrix are averaged to obtain a global 

representation for each electrode !! (as shown in Eq. 5.1). 

#!
1 

"
! Eq. 5.1 = '" 

" 
" 

The number of electrodes is further reduced by a rate (, and non-linear ReLU activation 

function is applied to select the channels with higher contribution such that: 

Red,#!- = ReLU, #!0# + 2-

Eq. 5.2 
# > 0

3456(#) = 9
0

#,

, # ≤ 0 

$ & 
!

where 0# are the weights and 2 is the bias term, 0# is a matrix of order ℝ " . Last but not 

least, the weights of the attention is then calculated as: 
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attn = BCDEFCG , Red,#!- w' + b'-
Eq. 5.3 1

BCDEFCG(#) = 
1 + 4() 

where w' is a matrix of order ℝ
!
" & $ to remap the ! to its original size and the sigmoid 

activation function to learn the non-linear correlations. Finally, the learned Attention vector is 

point-wise multiplied by the input J 

KL = Attn . x Eq. 5.4 

As shown in Fig. 5.1. 

1. The second attention mechanism was inspired from Zubarev, Zetter, Halme, & Parkkonen, 

(2019) where a linear spatial distribution is assumed between the electrodes. In Zubarev, 

Zetter, Halme, & Parkkonen, (2019), the matrix is reduced across the electrodes dimension 

which is similar to convolving across the electrodes ! for each time sample ". The authors 

were then able to interpret the spatial distribution by applying CSP to the learned weights 

after the training and manually choose the best filters explaining the distribution. However, 

following this procedure is not highly reliable since the features minimizing the error could 

be a combination of the learned filters, even though one filter might have the best spatial 

distribution, it is still one approximation that doesn’t provide the information of those 

combinations that improved the performance. Accordingly, the same method was used for 

learning only one set of weights (one filter) and those set of weights are then used as an 

attention vector which is multiplied by the input channels as opposed to dot product 

reduction then fed to the convolutional layer. 
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Figure 5.2: Illustration of the global attention mechanism. An average pool is applied on each 

row vector representing an electrode. A non-linear activation function (ReLU) is applied for a 

squeezed representation. Followed by an excitation (expanding to the original size) and a 

Sigmoid to transform the values to a probability between 0 and 1 and obtaining the attention 

matrix. Finally, pointwise multiplication of the attention matrix with identity matrix generating 

the attentive matrix. 

5.2.3.2 Conv Blocks 

Block 1_Layer 1: This layer was not used in the baseline measurement. The first 

Convolutional layer is a normal convolutional layer operating on the time courses ". The 

purpose is to add complexity to the signal to enhance the performance of the spatial attention 

layer described above. 
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Block_1_Layer 2: The layer uses normal convolution operating on the Electrodes. The 

purpose of this layer is to find the spatial correlation between the electrodes and add more 

complexity to the signal. The kernel size is equal to ! × 1 where ! is the number of electrodes. 

Block_1: A batch normalisation is used in both layers after the convolutional layers where the 

momentum was set to 0.993. A Leaky-ReLU is used as the non-linear activation function for 

both Blocks, the Leaky-ReLU is a modified function of the ReLU that handles the negative 

values such that Leaky-3456(#) = 9 
#, # > 0, where Q is a constant gradient and was left 
Q#, # ≤ 0 

with default value (0.001). 

Finally, an average pool with kernel size (1 × 3) and stride size (1 × 3) after the second layer 

to reduce the feature dimensionality. The Spatial Attention mechanism lies between the 

block_1_layer 1 and block_1_layer 2 as shown in Fig. 4.1. 

Block_2: Blocks of the second type were added to deepen the model. However, in these mid 

blocks, separable convolutional layers have been used since they reduce the number of 

trainable parameters and showed great performance in the state-of-art models such as EEGNet 

as discussed in Chapter 4. Two blocks are added with Batch Normalisation and Leaky-ReLU. 

In addition, to an average pool with the same size of kernels (1 × 3) and stride (1 × 3) and 

finally, a dropout layer in the two blocks with S = 0.5 where S is the dropout probability.  

5.2.3.3 RNN GRU Block 

The vanilla RNN as widely known and accept face a vanishing gradient problem. Where Long 

Short-Term Memory (LSTMs) and Gated Recurrent Units (GRU) have been developed to 

address these problems. In this research the latter was used, since it showed promising results 

and was easier to implement since it has one less gate. The literature showed similar results 

using GRU and LSTM (Cai, Wei, Tang, Xue, & Chang, 2018; Ma et al., 2018; Wang et al., 

2018). 
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Two stacked GRU layers are used after the Conv Blocks, operating on time slices such that the 

recurrent operation is applied between the seconds on the encoded features obtained from the 

Conv blocks. The output of the GRU layers contains the output of each time slice and the final 

hidden state. To have a better interpretability of the model and increase the accuracy, another 

attention mechanism was implemented. 

5.2.3.4 Temporal Attention 

Since the participant is supposed to maintain the motor imagery movement for about 4 seconds 

over many trials, the concentration of the participant varies across each trial. Hence, for each 

trial in the imagining period a relaxing period or a period where the participant loses focus is 

going to exist. Potentially having a feedback loop notifying the participant that they are losing 

focus or discarding bad trials according to the learned attention vector, could lead to the 

acquisition of better training data sets. To identify the relevant periods and reduce the 

contribution of the relaxed periods, two temporal attention mechanisms were implemented to 

address this problem. 

The first temporal attention mechanism was the mechanism presented by Zhang et al. (2019). 

The encoded output of the recurrent layer, in this case the GRU layer is processed by the 

attention network where each slice transformed into a latent space in a non-linear manner, and 

an attention vector is obtained reflecting the importance of each slice. The softmax activation 

function (Eq. 5.1) is applied to the attention vector to constrain the weight values sum to be 

equal to 1. Furthermore, a weighted sum is applied to provide one slice representing all the 

time slices. Noting that the attention network has about 17,000 learnable parameters in the 

configuration of 64 hidden units and 256 neurons of the attention network. 

The second attention mechanism is also based on the Squeeze and Excitation introduced in Hu, 

(2018) and described above (Eq. 5.1 to Eq. 5.4). However, the operation is opposite, it can be 

better described as Excitation and Squeeze with about 800 learnable parameters as opposed to 

the 17,000 learnable parameters in the first mechanism. Given that the latent features U ∈ 

ℝ *+ where P are the number of slices and H are the hidden latent representation (encoded 

features). An average pooling is applied to obtain a global representation for each P! such that: 
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+ 

#!
1 

"
! Eq. 5.5 = 'U

Y
" 

where #! describes the aggregated information of every time slice P!. To learn the non-linear 

importance of the time slices, #! is further mapped to a latent space and a non-linear ReLU 

activation function is applied as shown in Eq. 5.6. 

#́! = 3456(#!0# + 2#) Eq. 5.6 

Where 0#[\G 2# are the weights and bias term respectively. Moreover, To acquire an attention 

vector for each of the time-slices and learn the non-linear dependencies between the time slices, 

the latent features #! is mapped back with a sigmoid activation function: ́ 

́ Eq. 5.7 [! = ]CDEFCG,#!0' + 2'-, ∈ ℝ, 

Where 0' [\G 2' are the weights and bias term respectively. The vector [! is considered to be 

the attention vector and is then time slice-wise multiplied by the vector H! to emphasise the 

importance of each time slice obtaining the rescaled hidden features FL !as shown in Eq. 5.8. 

FL ! [! . F! Eq. 5.8 = 

5.2.3.5 Fully connected layer 

Finally, a fully connected layer with the input neurons 5 connected to output Neurons where _

is the number of classes. A softmax activation function (Eq. 5.9) is applied at the output neurons 

for the classification. 
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BF`aE[J(b!) = 
∑

!
!
!
!
C 

Eq. 5.9 
C 

5.2.3.6 Training/testing and validation configuration (loss, optimisation and number of 

epochs): 

The cross-entropy function was used to calculate the loss of the model. In the training process, 

the model tries to minimise that loss and the model is penalised when the probability of the 

predicted class is diverged from the actual class. The binary Cross-entropy is defined in Eq. 

5.10. 

−beFD(S) + (1 − b)log (1 − S) Eq. 5.10 

Where b is the correct label (in the binary either 0 or 1) and S is the predicted probability. For 

multi-class, the loss is calculated for each class i separately and the losses are summed to 

obtain a single loss value (Eq. 5.11). 

0 

−'b-,/log (S-,/) Eq. 5.11 
/1# 

Adam (Kingman and Ba, 2014), for the optimisation and updating of the weights and a weight 

decay to employ L2 regularisation. A total of 800 epochs exist for each run. The reported 

accuracies are the mean of five runs similar to a five-cross-fold validation where the training 

samples are non-overlapped randomly selected for each run while the testing set is completely 

unseen in the training and the same test set is used for all the runs. 

5.2.3.6 Guided Grad-CAM 

One of the earliest methods for visualising what convolutional networks are learning in the 

work, presented by Zeiler & Fergus (2014), focused on de-convolving the CNN by reversing 

the flow from the activations back to the input image. The approach consisted of a number of 
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additions to the network itself and another set of instructions for the visualisation task such as 

setting activations to zero while others to non-zero, and the most discriminative pixels are in 

turn those who were highly activated by the non-zero neurons. Extending that work to improve 

the interpretability of CNNS, Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016 suggested the 

Class Activation Mapping (CAM) to incorporate the fully connected layers (where the network 

usually employ the class classification) to describe the relative importance between the most 

discriminative pixels and a specific class. The CAM method replaced the flattening of the 

feature maps at the higher-level of the network with a global averaging pool and used them as 

features for a fully connected layer enabling localised information to be mapped back to the 

input pixels (hence a better localised visualisation of the most prominent pixels). However, the 

suggested model was still changing the architecture of the network and trading off complexity 

for interpretability. The suggested model in this study has a RNN layer before the softmax as 

discussed above which in turn leads to the infeasibility of using CAM approach for the 

interpretation of the model. 

Fortunately, the work presented by Selvaraju et al. (2017) combined the two aforementioned 

approaches to generated guided Gradient Class Activation Maps (guided Grad-CAM) 

providing a generalisation of CAM that is feasible for any CNN-based architecture. Although, 

these methods were mainly designed for visualising images and were optimised to obtain fine-

grained detail (high resolution) visual explanation, while with raw EEG signals, a high-

resolution image won’t be interpretable by visual inspection and not all the rules apply. In 

addition, in this study, the focus is two-fold, one is approximately localising the signal intervals 

that are highly contributing to the classification of a specific class where it can be used as a 

feedback loop when the model is being trained and two identifying the spatial correlation (the 

relationship between the electrodes) for research purposes in aim to minimize the number of 

electrodes used in real life applications. Hence, a few adjustments are introduced. 

In the CAM approach, let j2 ∈ ℝ34 be the feature maps where k is the width and l, as 

described earlier, a Global Average Pooling (GAP) is applied to j2, followed by a linear 

transformation by 02/ to obtain the score b/ where i is the class as in Eq. 5.12. 
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b/ = '02
/ 1 

'' j2!" Eq. 5.12 
2 

m
! " 

b/ '02
/ 1 

'j2! Eq. 5.13 = 
2 

m
! 

To keep the electrodes information which corresponds to the height will refer to it as l to 

maintain the notation consistency, instead of using a GAP, an average pool is applied on the 

width k and j2 ∈ ℝ 4such that the CAM is now expressed as the following: 

To then make the CAM weighted by the gradients instead of the final layer learned weights as 

described in the main study, the gradient of b/ is calculated with respected to the feature maps 

j2! , as shown in Eq. 5.14. 

1
Q2
/ ' 

nb/ 

Eq. 5.14 = 
m 

! nj
2
! 

Where the partial linearisation Q2/ is obtained by average pooling the gradients acquired 

through back-propagating from the feature maps of the target class i. Finally, in the case of the 

electrodes relevant heatmaps, the heatmaps are defined as the combination of the feature maps 

and are also followed by a ReLU to acquire only the features that are contributing positively 

(the more important Electrodes, such that: 

/ Eq. 5.15 55678(9:0 = 3456 o' Q2
/j2p

2 

/Where 55678(9:0 is the final generated heatmap that will have the same size as the feature 

map i.e. (22 × 400 at the second layer in the suggested model). Noting that, after applying the 

convolution operation at the spatial layer (where the kernel is 22 × 1), the following feature 

maps are going to be one-dimensional (1 × 400) and thus the adjusted same procedure (Eq. 

5.2 to 5.4) is applied to the rest of the features maps. In addition, in one of the variations of the 

suggested models, there is only one feature map where s = 1. 
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5.2.3.7 Dataset Formal representation and pre-processing 

The datasets used in this experiment are defined as Di = {(X1, y1),…,(XNi, yNi))} such that D is 

the dataset of subject C, and Ni denotes the number of trials for subject i. X denotes the number 

of trials which belongs to class y and K" ∈ ℛ;< where j is the trial number or example in the 

context of neural networks and 1< j< Ni , E as the number of electrodes recorded and T as the 

total number of time samples per trial. Concretely, the models are evaluated on the BCI IV 2a 

competition dataset with the four classes: left hand, right hand, foot, or tongue, such that a trial 

j has a corresponding class yj ∈ {l1= Hand left, l2 = Hand right, l3 = Foot, l4= Tongue}. 

5.2.3.8 Augmentation by Shuffling crops and Sliding windows 

Furthermore, to simulate real-time signals, the trials were cropped and overlapped with a 

window size u = {200,400} with a step ] = 50 over an interval x = y "" , ""=>z forming a 

new set of trials KL and the resulting crops are added to a new dimension { representing the 

number of slices/patches to acquire the new input matrix KL" ∈ ℛ;<, . 

Data augmentation is a common technique used in training neural networks, which it aims to 

reduce model overfitting using existing information in the training generating new data 

samples. The widely generic practices entail cropping, flipping an image, rotating the image 

and colour changes or in other words geometric augmentation (Cireşan, Meier, Gambardella, 

& Schmidhuber, 2010; Yang, Zhao, Chan, & Yi, 2016). As discussed in the experiment 

procedure (Section 3.2.1), the participants are instructed to maintain the MI movements for at 

least four seconds when the data is being collected. Ideally, it is assumed that the temporal 

structure is similar and periodic over the four seconds (hence as discussed thoroughly 

throughout techniques like Fast Fourier Transform and Wavelet decomposition for EEG are 

the traditional techniques used for the analysis and feature extraction). A sample shuffling is 

suggested in this study, for simplicity, the !" will be omitted from equations since the 

following operation is applied over all electrodes at !" in the same way. Given the time samples 
" "" 

"" of trial K" ∈ ℛ;< and a crop a"[B, 4] = ~a : "? < a < "@
"
Å ⊆ "" where B [\G 4 denote the 

"location of the starting and ending sample respectively. Samples a are swapped with non-
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"overlapping samples a̅ generating a new training example KÑ ∈ ℛ;<. Finally, a crop may or 

may not be also swapped across trials i.e. swapping a̅ "1#A with a"1'AA. In this study, just one 

configuration of augmentation was tested, where the number of samples to be swapped was the 
" "equivalent of two seconds: a = [B = 0, 4 = 500] [\G a̅ = [s = 500, e = 1000] and further 

shuffling between trials was random and set to maximum of 20 trials crossover shuffles. 

5.3 Results 

5.3.1 Classification accuracy for the suggested model without the top Block1_1 and 

without the top Spatial Attention mechanism over the four group variations. 

Table 5.1: Independent Subjects classification accuracy over various windows and periods. 

BCI IV 2a 

W/S/I 

400/50/4 

200/50/4 

400/50/2 

200/50/2 

Mean Accuracy 

0.68 +- 0.007 

0.65 +- 0.013 

0.65 +- 0.012 

0.65 +- 0.012 

There was no significance found between the three groups shown in F(3,241) = 0.92, p > 0.01. 

Post-hoc pairwise tests between individual window sizes using Tukey HSD method, suggest 

no significant differences between 100 and 200, 100 and 400, 200 and 400 where p = 

{0.9,0.40,0.61} respectively. The four seconds interval with 400 (1.6s) window yielded an 

average accuracy of 68%, which is 3% higher than the rest of the groups. 

5.3.2 The classification accuracies between: with the additional top Block1_1, the two 

suggested Spatial attention mechanisms and the De-mixing layer as implemented in 

Zubarev, Zetter, Halme, & Parkkonen, (2019). 

There was no statistically significant difference was found between the 12 groups (Block1_1 

No attention, De-mixing Layer, Squeeze and Excitation Attention and Attention De-mix for the 

four configurations 400/50/4, 400/50/2, 200/50/4, 200/50/2) where F(12,) = 0.15, S > 0.05. 
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The performance has not improved significantly over the baseline employing the de-mixing 

attention mechanism using any of the configurations and was almost identical to the baseline 

model. A 3% increase in the mean accuracy over the baseline is witnessed in the 400/50/2 

having the Block1_1 with De-mix attention. A 3% increase over the baseline is witnessed with 

no attention and 4% increase employing the de-mix in the mean accuracy for 200/50/2. 

Employing the De-mixing layer (not with attention) performed the worst with a decrease of 

2% for 400/50/4 over the baseline, 1% increase in 200/40/4 and identical for 400/50/2. In 

addition, the performance was almost identical between the Attention De-mix and No attention 

where a 1% increase was witnessed in 400/50/5 and 200/50/2 and the identical for 400/50/2. 

In addition, the Squeeze & Excitation attention was identical to the de-mix attention with 1% 

decrease in all the groups but the 200/50/4 which was identical. As show in Table 4.2. 

Table 5.2: The classification accuracies of the suggested model with the suggested model 

comparing the accuracies between the different model configuration. 

Block1_1 Demixing Spatial Attention Spatial Attention 

No attention Layer two Squeeze& 

Demix excitation 

W/S/I Mean Acc. Mean Acc. Mean Acc. Mean Acc. 
400/50/4 0.68 +- 0.007 0.66 +- 0.008 0.69 +- 0.006 0.68 +- 0.009 
200/50/4 0.67 +- 0.013 0.66 +- 0.011 0.66 +- 0.009 0.66 +- 0.030 
400/50/2 0.68 +- 0.012 0.65 +- 0.006 0.68 +- 0.004 0.67 +- 0.004 
200/50/2 0.68 +- 0.009 0.66 +-0.020 0.69 +- 0.008 0.68 +- 0.015 

5.3.3 Using all the four seconds of training as Two seconds intervals and the proposed 

Augmentation. The performance after using data Augmentation. 

An increase in the classification accuracy of 4% is witnessed over the best performing in the 

above groups (400/50/4 with 0.69 ≈ 69%) using the four second interval divided into two-two 

seconds and applying augmentation. Applying a one-way ANOVA between the two groups 

showed no statistical significance F(2) = 0.78, S > 0.05. An increase of 1% and 3% with the 

augmented training set over the not augmented in the two groups 400/50/2 and 200/50/2 

respectively. 
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Table 5.3: The classification accuracy for the best performing configurations: Four seconds 

Intervals (I) divided into two-two seconds. 

Not augmented Augmented 

W/S/I Block_1_1 Block_1_1+ 

Demix 

Attention 

Block_1_1 Block_1_1 

+ Demix 

Attention 

Excitation and 

Squeeze 

Temporal 

Attention. No 

Spatial 

Attention 

400/50/2 
200/50/2 

0.70 +- 0.03 0.68 +- 0.02 
0.70 +- 0.02 0.67 +- 0.01 

0.71 ± 0.02 
0.73 ± 0.10 

0.70 ± 0.06 
0.71 ± 0.14 

0.70± 0.12 
0.73 ± 0.08 

5.3.3 Final top performing model in comparison with top performing methods in the 

literature for dataset BCI IV 2a. 

Table 5.4: The comparison between the best performing methods in the literature measured in 

Cohen Kappa and the suggested model with the double attention (CRNN-DA). 

Participant 1st 2nd 3rd RSTNN CRNN-DA 

01 0.68 0.69 0.38 0.69 0.71 
02 0.42 0.34 0.18 0.29 0.42 
03 0.75 0.71 0.48 0.68 0.79 
04 0.48 0.44 0.33 0.34 0.51 
05 0.40 0.16 0.07 0.09 0.54 
06 0.27 0.21 0.14 0.30 0.37 
07 0.77 0.66 0.29 0.57 0.75 
08 0.75 0.73 0.49 0.49 0.72 
09 0.61 0.69 0.44 0.56 0.63 

Mean 0.57 0.52 0.31 0.45 0.60 

The suggested model achieved the highest performance with a mean accuracy of 0.60 (60%) 

where the performance is measured as the Cohen Kappa. The suggested model achieved 

superior performance for 6 subjects. 
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5.3.4 Attention and Grad-CAM 

The output of the first temporal attention mechanism (Weighted sum attention) shows that the 

most contributing features lie in the second half of the signal at about 2.5 seconds when the 

model is trained without the augmentation (i.e. Fig 5.4 row A and row B). 

6 time slices (200/50/2). Weighted Sum attention. 
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2 time slices (400/50/2). Excitation and Squeeze. 

Figure 5.3: Top panel showing histograms of 6 time slices using attention mechanism one (the 

weighted sum attention). The bottom figure showing histograms of 6 time slices using attention 

mechanism two (Excitation and Squeeze). The x-axis represents attention weight and y-axis are 

the number of samples. The example is from participant 3. 
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Figure 5.4: An example of the heatmaps of the guided Grad-CAM of participant 3. A. is for the left hand, B. right hand, C. feet and D. tongue. 
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  Figure 5.5: An example of the heatmaps of forward activation of participant 3 for the Right Hand class. 
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5.4 Discussion 

The suggested model has achieved better performance with !"#$ &#''# = 0.60 than the 

state-of-art RSTNN (& = 0.45), and the winner of BCI IV 2a competition with (&#''# = 

0.57) at the time that this chapter was written as shown in Table 5.4. The additional layers and 

the spatial attention mechanism didn’t improve the performance significantly. However, the 

additional Block1_1 layer did have a slight improvement in the accuracy and enabled a 

comparison between the feed-forward activation maps and the activation maps obtained 

through guided Grad-CAM. It also increased the accuracies for a number of participants 

Appendix A Table A.1. 

In this study, the different variations (1.6s and 0.8s) windows over either four seconds interval 

or two seconds interval has been fed to the model for training and testing as shown in Tables 

5.1 to 5.2. Noting that the results reported are for the unseen test set. The four seconds intervals 

with the 400 samples window in the baseline had a superior performance. Whilst, the additional 

configurations to the network (Block1_1) and the spatial attention lead to an increase in the 

classification accuracy of the shorter windows and intervals, such that the model was able to 

have identical performance between 400/50/4 and the 200/50/2, implying that the speed of the 

classification task is twice as faster (i.e., the 400 window over 4 seconds interval would require 

a delay of 4 seconds and an input of 1.6 seconds per one step of classification a two second 

delay with 0.8 seconds input per one step of classification) which is slightly better than the 

current real-time EEG based classification applications. Another advantage of shorter windows 

and intervals is that less memory is required to store the signals, thereby increasing the potential 

for real-time EEG applications. 

The data augmentation where intervals are swapped for training the model (not applied to the 

testing set) and the four seconds divided into two second intervals with augmentation have lead 

to the highest performance (higher accuracies) where the mean accuracy is 71% for the 

400/50/2 and 72% for the 200/50/2 groups implying that the suggested augmentation technique 

can increase the model performance further. 
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The output of the first temporal attention mechanism (Fig. 5.3, top row), shows that the most 

contributing features lie in the second half of the signal at about 2.5 seconds when the model 

is trained without the augmentation. Moreover, when training the network with the two-two 

seconds augmented intervals, it showed a similar distribution where the most contributing 

features seems to also lie in the second half of the signal. However, as explained in Chapter 4, 

the augmentation method used in this study, swaps between the first half and the second half 

of the signal, the augmentation should have showed a wider distribution or an even distribution 

between the two halves of the signal. On the other hand, the second attention mechanism 

(Excitation and Squeeze) had similar performance in the classification task and was able to 

show a better interpretation for the temporal slices as shown in Fig. 5.4. The attention weights 

seem to be better distributed over all the slices providing more informative interpretation or 

higher resolution interpretation (Fig. 5.4). Hence, the suggested Excitation & Squeeze temporal 

attention mechanism is suggested for architectures employing a recurrent layer since it is not 

computationally costly where only 800 parameters are learned, and the attention vectors are 

informative to be used as a feedback loop. 

The Squeeze and Excitation Spatial attention failed to provide useful attention scores, where 

all the channels ended up with the same attention scores (0.004). Another interpretation would 

be each of the used channels contributed equally to the model decision, whilst this 

interpretation is valid, it disagrees with the linear spatial methods such as CSP and FBCSP 

where these methods base their classification on the spatial correlation (eigen vector filters) 

learned by CSP (refer to Chapter 3). On the other hand, the generated heatmaps obtained guided 

grad-cam shows higher contribution of selected channels between the different classes (Left-

Hand, Right-Hand, Feet and Tongue) as shown in the example in Fig. 5.4. The resulted Grad-

CAMs were multiplied by the original input tend to have a superior visual resolution as 

opposed to the heatmaps generated by feed forward as shown in Fig. 5.5 where it is difficult to 

identify the contribution of the features and tend to have a lower resolution for visualisation 

and hence lower interpretability. 

Another finding worth mentioning is that when empirically testing the location of the spatial 

attention at different layers before employing the channels convolution (since the spatial 

attention operate on the electrodes, it can’t be added after convolving the channels) a significant 

decline in performance was observed (the maximum mean accuracy achieved was below 60%). 
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This suggests that convolving the channels at the shallow levels of the model leads to better 

performance. These findings are consistent with the top performing models in the literature. 

Such that, in all the high performing models, the first few layers will usually contain the 

convolution operating on the channels at the first two or three layers. Moving the attention 

mechanism to the second layer, performed similarly to the one at the beginning. 

5.5 Summary of Contributions 

• Investigation of the classification performance of MI over different windows and intervals; 

• A novel deep architecture based on GRU and Convolution units is introduced; 

• A novel temporal and a novel spatial attention mechanism are introduced; 

• A generalised guided Grad-Cam for EEG is introduced for higher interpretability; 

• A novel EEG data augmentation technique is suggested. 

5.6 Limitations 

• The performance of the proposed methods was not measured using fewer channels (as 

discussed). 

• The performance of the proposed methods was not measured using only the periods (time 

slices) that the attention mechanisms extracted as the prominent features. 

• The models were not trained and evaluated combining all the participants data (where the 

model is trained for all participants to acquire a participant agnostic model. 
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Chapter 6: 

General Discussion 
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The primary aim of this research was to obtain a deep neural network architecture with reliable 

performance for classifying MI movements recoded as EEG signals. This research was focused 

on retaining the state-of-art classification accuracy while reducing the intervals (number of 

samples) needed for high performing classifiers. To test the performance of the novel suggested 

methods, it was essential to acquire a baseline of the naïve traditional methods. Accordingly, 

In the first experiment (Section 3.2.3), the traditional and basic methods Common Spatial 

Patterns (CSP) and Fast Fourier Transform (FFT) were explored in correlation with the 

intervals and window sizes of the input. The results showed that using longer windows (two 

and four second windows) would results in significantly better performance (Section 3.3, 

Tables 3.1 and 3.2). Even though, in Chapter 3 these methods were not fully optimised and 

only the basic techniques were applied, the state-of-art classification accuracies are usually 

obtained with intervals > 2 seconds which are not ideal for real-time systems. The experiment 

was designed to act as the baseline for the following studies. In Chapter 4, the state-of-art 

Convolutional neural networks (CNNs) based architectures have been investigated and 

compared with CNNs trained with Continuous Wavelet Transform (CWT) features instead of 

raw EEG signals. 

The novel architecture Point-Wise Convolutional Network (PWCN) was suggested which aims 

to reduce dimensionality of the input at the first layer of the network by convolving depth-wise 

the samples of the acquired scales (frequency bands) after applying CWT aiming to learn one 

feature map as a representation of all the scales, in other words, it can be thought of as 

reconstructing the signal back from the transformation with the difference that the parameters 

of the transformation are learned via gradient descent in relation to the output class (Section 

4.2). The suggested model achieved 80% mean accuracy (Table 4.4) that is relatively close to 

the state-of-art for the BCI IV 2b dataset (2 classes and 3 Electrodes) but the performance on 

the BCI IV 2a dataset was almost at chance level classifying four classes with 22 Electrodes. 

Furthermore, applying guided-Grad-CAM to the suggested models using CWT features and to 

the state-of-art models (EEGNet and FBCSP) showed interesting results (Figs. 4.6 to 4.9) 

where each model was extracting the features from different samples in time and different 

intervals which suggested that if one model (architecture) is able to learn the correlations across 

different intervals, a significant improvement in the performance should be witnessed. 
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In Chapter 5, the novel architecture Convolutional Recurrent Neural Network with Double 

attention CRNN-DA (Section 5.2.3) was introduced addressing the shortcomings and building 

upon the findings of (Chapter 3 Section 3.4 and Chapter 4 Section 4.4). The suggested 

architecture also achieved state-of-art accuracies (&#''# = 0.60 and 73% !"#$ #1123#14) 

using two second trials and 0.8 second windows (200 samples) as shown in Section 5.3 (Table 

5.4). Suggesting that for real time systems, 0.8 seconds intervals are used for the classification. 

The CNN based architectures were proven to extract and encode features from raw EEG signals 

but didn’t account for the time aspect of the signals and limiting the interpretability of what the 

model learned. The CRNN-DA included a recurrent layer in the built of Gated Recurrent Units 

(GRUs) to learn the temporal correlations between time slices which are natural in the EEG 

signals. Furthermore, two spatial attention mechanisms (Demix and Squeeze & Excitation 

Section 5.2.3.1) and two temporal attention mechanisms (Weighted Sum Attention and 

Excitation & Squeeze Section 5.2.3.4) were added to the model to highlight the most 

contributing features in the form of attention vectors. 

The spatial attention mechanisms didn’t show any improvement and it wasn’t clear from the 

analysis afterwards what they learned is useful or interpretable. The Demix attention 

mechanism calculated the attention vector as learned weights which is static and not ideal for 

the interpretation, it can provide global representation independent of the class. While the 

Squeeze and Excitation learned the same attention scale for all channels (was always around 

0.004) which wasn’t useful or as discussed and unlikely, the network learns from all the 

electrodes equally. 

The temporal attentions were not compared with no temporal attention in terms of performance, 

but the attention vectors of the two suggested mechanisms were compared (Fig. 5.3) where the 

weighted sum attention always showed that the last time slice has much higher contribution to 

the classification, the Excitation and Squeeze attention showed a better distribution (while the 

last slices still showed higher contribution). Furthermore, the Excitation and Squeeze temporal 

attention has about only 800 learnable parameters as opposed to about 17,000 parameters for 

the weighted sum attention. Suggesting that the excitation and squeeze is a better attention 

mechanism and potentially can be applied to any recurrent layers. It can be also slightly 

modified to include the information from stacked layers. For further investigation, the Guided 
121 



 

 

        

       

         

       

      

       

        

         

 

 

 

 

          

     

      

          

   

 

      

         

    

         

      

 

 

       

       

        

     

        

         

       

Grad-CAM which is one of the best algorithms for visualising DNN models in relation with 

the specific classes. The Grad-CAM has been modified to extract useful interpretation provided 

EEG signals for input, since the method has been developed for inputs such as images and EEG 

signals is not highly interpretable in that form. Hence, the modified Guided Grad-CAM 

(Section 5.2.3.6) for EEG can be used for approximating the most contributing features in terms 

of which electrodes and time samples (as shown in Chapter 4 and Chapter 5). Additionally, the 

resulting signals or heatmaps from the Grad-CAM can be used for further analysis such as 

applying spectrograms or scalograms that are specific to the class being analysed (i.e., Right 

Hand, Left Hand). 

Future work 

As shown in the results throughout the thesis, the accuracies for each participant are different 

and some methods work better for a group of participants over other. Trying to obtain more 

datasets, preferably larger datasets to evaluate the proposed methods would provide a better 

insight of this behaviour that might lead to acquiring a more generalisable model based on the 

proposed methods with minimal tweaking. 

The discussed methods have shown an improvement in the performance being applied to 

offline datasets. However, the main aim of this research is to improve the performance using 

short windows for real-time applications. Hence, testing the suggested method on real-time 

data and measuring its performance would be one of the first studies moving further from this 

presented work, Ideally, the performance shouldn’t decrease significantly but in a real-time 

application, there are more variables that might not be accounted for. 

Additionally, it would be interesting to have several experiments with the temporal attention 

as a feedback loop to the participants and comparing the quality of the datasets. An additional 

experiment needed to validate the temporal attention results would be filtering the trials 

removing the intervals with low attention weights and training different models, if an 

improvement in the performance is witnessed, the suggested model and procedure could be 

added to the pipeline for data cleaning and extracting the best trials. If the there was no change 

in the performance, that would validate the efficacy of the suggested methods implying that 
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the model is able to extract only the relevant information. If a decrease of performance is 

witnessed, further investigation would be required. 

Last but not least, since the spatial attention didn’t seem to provide useful insight. Measuring 

the performance with retrained models with different subsets where channels are randomly 

removed or set to 0 should provide an answer to whether the model actually learns from all the 

channels and they are all necessary or not. 

Finally, the BCI headsets are becoming more mainstream now and they are bought for 

affordable prices outside of the academic environment. Potentially, this will lead to having 

more EEG data which will be very useful for future research. Essentially, deep neural networks 

achieve better performance with big datasets. A very interesting area of research would be 

having a unified participant agnostic model trained using all the participants (ideally millions 

of EEG data records) that generalises for any new unseen EEG Motor Imagery task. Such a 

system might be ambitious, but there are a number of advancements in that field including easy 

electrode implants and existing technologies such as the Electrocorticography (ECoG) and 

intracranial electroencephalography (iEEG) where the same methods discussed in this thesis 

could be applied to. 
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CRNN-DA and Grad-CAM 
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In Chapter 4, the CRNN-DA was trained with a subset as training (80%) and 20% validation, 

where the training set was divided into training set and a validation set. The procedure of 

dividing the dataset ensures that the model performance is consistent to a degree (where the 

standard deviation is reported). However, the testing set is completely unseen and using the 

full training set would provide the model with more examples (since EEG datasets are usually 

small in size as discussed in Chapter 3 and 4). In real life applications, the full training set can 

be used for training, and the suggested model and training procedure doesn’t use an early 

stopping. Hence, the following is the classification performance using the full training dataset. 

The best performing architecture was trained with the full training set without a validation set. 

Table A.1: The mean classification accuracies training with the full training set. 

BCI IV 2a 

W/S/I Mean Acc. 

400/50/4 0.74+- 0.007 

200/50/4 0.72+- 0.013 

400/50/2 0.71+- 0.012 

200/50/2 0.72+- 0.012 

A B 
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C D 

Figure A.1: Confusion matrices. A: 400/50/4 with No-Attention. B: 200/50/4 No-Attention. 

C: 200/50/4 No Attention- two-two. D: 200/50/4: Attention- two-two. 

Table A.2: The best performing model with the two-two augmented trials results for each 

participant against the baseline. 

Participant 1 2 3 4 5 6 7 8 9 

Two-Two 0.78 0.51 0.85 0.68 0.64 0.57 0.86 0.84 0.75 

Baseline 2s 0.73 0.50 0.75 0.60 0.68 0.60 0.69 0.77 0.73 

Baseline 4s 0.74 0.53 0.82 0.58 0.71 0.55 0.71 0.77 0.79 
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              Figure A.2 An example of the heatmaps of forward activations of participant 3 for the Right Hand class. A. is for the left hand, B. right hand, C. 

feet and D. tongue. 
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Appendix B: 

Code Snippets 
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Spatial Attention: 

from torch import nn 

class SELayer(nn.Module): # Squeeze and excitation spatial attention 

def __init__(self, channel, reduction=2, depth=1): 

super(SELayer, self).__init__() 

# Average pooling over the time samples 

self.avg_pool = nn.AvgPool2d((1,200), stride=(1,200))                 

self.fc = nn.Sequential( 

# Squeezing the channels to channels / 2 

nn.Linear(22, 22//2, bias=False), 

nn.Sigmoid(), 

# Exciting the channels back to obtain 22 weights for each channel 

nn.Linear(22 // 2, 22, bias = False), 

) 

# The forward method to pass the input to the layers defined above 

def forward(self, x): 

b, c, h, w = x.size() 

y = self.avg_pool(x) 
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y = y.view(b, h) 

y = self.fc(y) 

y = y.view(b, 1, h, 1) 

return x * y, y 

Temporal attention 

import torch.autograd.function 

from torch.nn.parameter import Parameter 

import math 

import torch.nn as nn 

import torch 

from torch.nn import functional as F 

from torch.nn import init 

class Attention(nn.Module): 

def __init__(self,hidden_size, attn_size, slices=6): 

super(Attention, self).__init__() 

# getting the spatial average over all the hidden states (time slices) 

self.avg_pool = nn.AdaptiveAvgPool1d((1)) 

self.fc = nn.Sequential( 

# Exciting the time slices to an attn size (64 in the study) 
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nn.Linear(slices, attn_size, bias=False), 

# Non linear activation relue 

nn.ReLU(True), 

# squeezing back to the number of time slices 

nn.Linear(attn_size, slices, bias = False), 

# Sigmoid function to adjust weights between 0 and 1 

nn.Sigmoid() 

) 

def forward(self, x): 

inp = x 

x = self.avg_pool(x) 

αs = self.fc(x.squeeze(-1)) 
output = inp * αs.unsqueeze(-1) 

return output, αs 

Separable convolution blocks: 

import numpy as np 

import torch 

import torch.nn as nn 
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import torch.nn.functional as F 

from ext_functions import _squeeze_final_output, safe_log, square, conc_augmented 

class midBlock(nn.Module): 

def __init__(self, in_channels, output=20, kernel_size=(1,16) , 

stride = 1, groups = 1, dilation = 1, padding_type='SAME',pool_size=8, cuda=True): 

super(midBlock, self).__init__() 

self._cuda = cuda 

self.__dict__.update(locals()) 

# A convolution block with groups equal to thee number of channels (Depth) 

self.Conv2D = nn.Conv2d(in_channels,in_channels, 

kernel_size = self.kernel_size,groups=in_channels) 

# Combining the channels with a pointwise convolution 

self.pointwise=nn.Conv2d(self.in_channels,self.output,kernel_size=(1,1), groups=1) 

# Batch normalisation layer 

self.BN = nn.BatchNorm2d(self.output, momentum=0.01, affine=True ) 

# Non-linaer activation function leaky-relu 

self.activation =nn.LeakyReLU() 

# The pooling layer (Average) 

self.pool = nn.AvgPool2d(kernel_size = (1,pool_size), stride=(1,pool_size)) 

# Drop out with propability 0.5 

self.drop = nn.Dropout(p=0.5) 
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def forward(self, x): 

identity = x 

x = self.Conv2D(x) 

x = self.pointwise(x) 

x = self.BN(x) 

x = self.activation(x) 

x = self.pool(x) 

x = self.drop(x) 

return x 

@staticmethod 

def _get_padding(padding_type, kernel_size): 

#assert isinstance(kernel_size, int) 

assert padding_type in ['SAME', 'VALID'] 

if padding_type == 'SAME': 

return (kernel_size - 1) // 2 

return 0 

@staticmethod 

def _calculate_output(H,padding,dilation, kernel_size, stride): 

numerator = (H + 2*padding-dilation * (kernel_size -1) - 1 ) 
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denominator = stride 

H_out = (numerator/denominator) + 1 

return H_out 

@staticmethod 

def _calculate_strided_padding(W, F, S): 

# W= Input Size , F = filter size (kernel), S = stride, 

P = ((S-1)*W-S+F)//2 

return P 

@staticmethod 

def get_dilated_kernel(k,d): 

#kernel size, dilation 

new_k = k+(k-1)*(d-1) 

return new_k 

Main Model: 

import torch.autograd.function 

from torch.nn.parameter import Parameter 

import math 

import torch.nn as nn 

import torch 

from torch.nn import functional as F 
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from torch.nn import init 

from SelfAttn import Encoder, Attention, Classifier 

from Temporal_Attn import Attention 

from SqueezeAndExcitation import SELayer 

from midBlock import midBlock 

from CW_attn import CW_Attention 

class convLayer(nn.Module): # A normal convolutional block 

def __init__(self, cin, cout, kernel_size, dense = False): 

super(convLayer,self).__init__() 

# A 2d convolutional layer 

self.conv = nn.Conv2d(cin,cout,kernel_size, bias = True, padding = (0, kernel_size[1]//2)) 

# Batch normalisation layer 

self.bn = nn.BatchNorm2d(cout,momentum=0.993, eps=1e-5) 

# Non-linear activation function leaeky relue 

self.act = nn.LeakyReLU(True) 

def forward(self,x): 

identity = x 

x = self.conv(x) 

x = self.bn(x) 

x = self.act(x) 
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return x 

class convrnn(nn.Module): # The full model definition 

# This definition doesnt include the spatial attentionself. 

# The softmax function is applied in the loss function. 

def __init__(self, classes = 2, inchans = 3, input_size = None, attention=True): 

super(convrnn, self).__init__() 

kernel_1st = (1,3) 

self.slices = input_size[1] # The number of time slices 

self.latent = 520 if input_size[-2] == 400 else 240 

self.attention = attention # If we want to use spatial attention 

self.conv_3 = convLayer(1,1,kernel_1st) # The block1_1 

self.conv1_1 = convLayer(1,40,(inchans,1)) # Normal conv block 

self.pool0 = nn.AvgPool2d((1,3),stride=(1,3)) # Averagy pooling 

# Seperable convolution blocks 

self.conv2 = midBlock(in_channels=40, output=60, kernel_size =(1,3),pool_size=3) 

self.conv3 = midBlock(in_channels=60, output=40, kernel_size =(1,3),pool_size=3) 

# The GRU layer with a dropout of 0.5 

self.rnn = nn.GRU(self.latent, 64, 2,bidirectional= False, batch_first = True, dropout= 0.5) 

# The temporal attention layer 
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self.attn = Attention(64 ,64, slices = self.slices) 

self.drop1 = nn.Dropout(p=0.5) 

# Fully connectted layer 

self.Linear = nn.Linear(64 * self.slices ,classes) 

def forward(self,x): 

x = x.permute(0, 1,4, 2, 3) 

x = x.reshape(x.size(0)*self.slices,x.size(2),x.size(3),x.size(4)) 

x = self.conv_3(x) 

x = self.conv1_1(x) 

x = self.pool0(x) 

x = self.conv2(x) 

x = self.conv3(x) 

x = x.reshape(-1,self.slices, x.size(1)*x.size(2)*x.size(3)) 

output, states = self.rnn(x) 

attention, αs = self.attn(output) 
attention = self.drop1(attention) 

attention = attention.view(attention.size(0),-1) 

output = self.Linear(attention) 

return output, αs, 0 

Guided-Grad CAM 

""" 
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Created on Thu Oct 26 11:06:51 2017 

@author: Ahmed Selim - github.com/w1ndsurf3r 

""" 

## INspire from https://github.com/jacobgil/pytorch-grad-cam/blob/master/grad-cam.py 

import numpy as np 

import torch 

from torch.autograd import Variable 

import torch.nn as nn 

import torch.nn.functional as F 

def class_subset(class_, X, y): 

return X[np.where(y== int(class_))[0]] 

class Gradients(): # The function is to add hooks on feed forward to save the gradients 

def __init__(self, model,target_layers): 

self.model = model 

self.gradients = [] 

self.target_layers= target_layers 

self.tuples = ['demix','gru','attn'] ## The name of the layer which return tuples of outputs 

self.outputs = [] # saving the outputs of each layer 
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def save_gradient(self,grad): 

self.gradients.append(grad) 

return grad 

def __call__(self, x): # Just for the ease of calling the function later. Full forward on the model 

for name, module in self.model._modules.items(): 

if name in self.tuples: 

if name == 'demix': 

x_attn = x.squeeze(1) 

_,spat_attn= module(x_attn) 

x = x * spat_attn.view(-1, 1, 22, 1) 

if name == 'gru': 

x = x.reshape(-1,2, x.size(1)*x.size(2)*x.size(3)) 

x,_ = module(x) 

if name == 'attn': 

x,_ = module(x) 

elif name not in self.tuples: 

x = module(x) 

if name in self.target_layers: # If the layer specified save the gradients 

print('registered') 

x.register_hook(self.save_gradient) 
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self.outputs += [x] 

return self.outputs, x 

class Activations():## To be implemented. Only useful if your model has no classifier 

def __init__(self): 

print('To be implemented') 

class GradCam(): 

def __init__(self, model, target_layer_names, use_cuda=False): 

self.model = model 

self.model.eval() # Don't update the parameters and run in eval mode 

self.cuda = use_cuda 

if self.cuda: 

self.model = model.cuda() # Using the GPUs 

self.extractor = Gradients(self.model, target_layer_names) 

def forward(self, input): 

return self.model(input) 

def __call__(self, input, index = 0): 

features, output = self.extractor(input) 
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self.model.zero_grad() 

one_hot_output = torch.FloatTensor(input.shape[0]//2, 4).zero_() 

# Activates the class we are interested in (left hand,right hand, tongue, feet) at the last layer 

one_hot_output[0][index] = 1 

output.backward(gradient=one_hot_output, retain_graph=True) 

gradients = self.extractor.gradients 

outputs = self.extractor.outputs 

grads_val = gradients[-1] # For ease, returning the last gradients from the list 

outs = outputs[-1]                

weights = torch.sum(grads_val, dim = (3))[0, 0,:] #Averaging the gradieents over the temporal dimension 

target = outs # The output of the convolutional layers 

target = target.sum(dim=0)[0, :]        

cam = torch.zeros(target.shape, dtype = torch.float32) 

for i, w in enumerate(weights): 

cam[i]= w * target[i, :] # Multiply the weights with the output of the layers for visualisation 

# Applying relu to improve the resolution and emphasize the prominent features 

cam = F.relu(cam).cpu().data.numpy() 

outs = F.relu(outs) 

# Normalizing 

cam = cam - np.min(cam) 

cam = cam / np.max(cam) 

#print(cam.shape) 

return cam , outs.sum(dim=0)[0, :].cpu().data.numpy()#.sum(axis=1) 
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