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This study investigates how the invasive alien harlequin ladybird Harmonia axyridis affects the 
ladybird (Coleoptera: Coccinellidae) community in rural habitats in the UK.  A novel approach to 
species distribution models was used to determine where H. axyridis may next spread under various 
climate change scenarios.  Field surveys were carried out in England and Wales to investigate how 
H. axyridis affects native coccinellids in rural habitats, including the rare 5-spot ladybird Coccinella 
quinquepunctata.  Molecular techniques were employed to determine if intraguild predation 
occurred between H. axyridis and C. quinquepunctata. 
 
A combination of variables had an impact on the establishment and spread of H. axyridis with 
human influence being the most important factor.  The future spread of H. axyridis is predicted to 
be affected by climate change, with a shift in global distribution expected north and west.  In the 
UK, this species is predicted to spread further into areas such as Scotland and mid-Wales.  Unlike 
urban habitats, rural woodlands are not dominated by H. axyridis.  Furthermore, a distinct 
community of coccinellids is evident in both coniferous and deciduous woodland.  Coccinella 
quinquepunctata appears not be negatively affected by H. axyridis at this time.  It is thought this is 
due to the inhospitable habitat that C. quinquepunctata occupies.  However, using molecular 
techniques, it was not possible to confirm if intraguild predation had occurred at the sites where C. 
quinquepunctata and H. axyridis were both observed. 
 
A range of interacting factors are necessary for H. axyridis to establish in a region and once 
established this species will spread to rural habitats yet does not dominate the coccinellid 
community as it does in urban habitats.  Continued monitoring thorough Citizen Science is essential 
in further understanding this dynamic species and its impacts on native coccinellids. 
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1 General introduction  
 

1.1 Invasive alien species 
The natural environment is steadily being changed by increased human activity (IPBES, 2019).  This 

activity has led to an increase in animal and plant movement, locally and globally, often resulting in 

species being relocated to habitats where they would not naturally occur (Blackburn et al., 2014; 

Lucy et al., 2016), particularly through trade (Chapman et al., 2017).  The number of species being 

introduced to non-native habitats has increased steadily in the last two centuries (Seebens et al., 

2017).  Additionally, this global rise in the establishment of invasive species appears only to be 

increasing, likely due to ineffective prevention measures and a continued increase of facilitating 

factors such as land use change, climate change and pollution (Seebens et al., 2017; IPBES, 2019). 

 

A wide range of terminology has evolved with the growing interest in non-native species, which can 

lead to confusion as to the status of a species (Colautti & MacIsaac, 2004) especially as not every 

non-native species has a negative effect on other species.  Throughout this body of work, the term 

‘invasive alien species’ (IAS) is used to refer to a species that as a result of human activities, has 

moved beyond its native geographic range to an area where it does not naturally occur, resulting 

in a negative impact on biodiversity (Blackburn et al., 2014).  Invasive alien species are considered 

to be one of the leading drivers for biodiversity loss globally, potentially are a contributing factor to 

species extinctions and are considered the third largest hazard to European threatened species 

(Gurevitch & Padilla, 2004; Lucy et al., 2016; IUCN, 2018).  There are several critical stages of an 

invasion; movement of a taxa to a location not previously inhabited by said taxa, introduction of 

that taxa into a suitable habitat, subsequent establishment with a population increase in the 

invaded habitat followed by dispersal from the primary invasion point (Blackburn et al., 2011). 

 

There are more than 12,000 non-native species in Europe with between 10-15% becoming IAS over 

time (European Commission, 2016).  Concerning the United Kingdom (UK) alone, of 591 species 

considered, 30 were deemed to have a high risk of establishing with subsequent negative impacts 

on biodiversity while 63 species fell into the medium risk category (Roy et al., 2014).  In response 

to this threat to biodiversity, the EU introduced EU Regulation 1143/2014 on Invasive Alien Species 

which has led to the List of Invasive Alien Species of Union Concern (European Commission, 2019).  

This list consists of 66 species that are considered particularly damaging economically or 

ecologically and for which measures need to be taken by Member States to ensure the prevention, 

early detection and management of these species (European Commission, 2017).  The list is 

updated regularly (most recently in August 2019) to take into account new species that may need 

to be included.  There are many pathways by which a species may arrive in any given region or 
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country and so Member States are required to abide by restrictions pertaining to these species 

(keeping, importing, selling, breeding or growing) (Essl et al., 2015). 

 

 

1.1.1 Pathways of introduction 
Animal and plant species have been introduced deliberately by people into habitats outside of their 

native range for centuries.  The reasons behind deliberate introductions tended to be for either 

aesthetic or leisure purposes or more practically as a food source or method of biological control.  

In the mid-1800s several attempts were made to introduce rabbits into Australia and in 1859 one 

landowner successfully introduced wild Oryctolagus cuniculus (European rabbits) to provide ‘sport-

shooting’ for the wealthy (Fenner, 2010).  In Ireland (as well as the UK), in the 19th century, 

Rhododendron ponticum (rhododendron) was introduced as an ornamental plant and has since 

affected biodiversity in mature oak woodlands (Stephenson et al., 2006; Maguire et al., 2008).  In 

the 1900s, sugar cane crops in Australia were greatly affected by two beetles which resulted in the 

introduction of Bufo marinus (cane toad) in 1935 as a method of biological control (Australian 

Government, 2010). 

 

There are also several ways in which a species can be introduced accidentally.  Continually 

increasing global trade routes and commercial travel routes play a large role in accidental 

introductions (Hulme, 2009; Chapman et al., 2017).  Hulme et al. (2008) describe six pathways for 

accidental introductions: release, escape, contaminant, stowaway, corridor and unaided.  This was 

subsequently updated to exclude unaided by Saul et al. (2017) as the databases used were unable 

to fully capture the scope of this category.  Species can have more than one introduction pathway 

and those species that do, are more likely to have an ecological impact (Pergl et al., 2017; Saul et 

al., 2017).  One example of an accidental introduction reported by Bartlett et al. (2019) was the 

spread of the Eretmoptera murphyi (a flightless midge) in Antarctica which was following footpaths 

between research sites.  An increase in man-made canals has connected European waterways to 

the Ponto-Caspian basin.  A number of freshwater invertebrates and fish originating from the 

Ponto-Caspian basin are now considered to be IAS (Bij de Vaate et al., 2002).  Different taxonomic 

groups tend to utilise different pathways of introduction, for example, mammals are associated 

with either release or escape and less often unaided while terrestrial invertebrates tend to follow 

the contaminant pathway (Pergl et al., 2017).  Many of the introductions cited above (intentional 

and accidental) result in negative impacts on biodiversity and ecosystem function (Constable & 

Birkby, 2016) but also often have a high economic impact. 
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1.1.2 Economic costs 
The indirect effects of IAS on biodiversity and ecosystem services are difficult to quantify and it is 

particularly difficult to acquire accurate information on the costs incurred by IAS.  There are, 

however, examples for certain taxonomic groups although the figures are a conservative estimate 

at best (Pimentel et al., 2001).  Globally, £52 billion annually is spent dealing with just invasive alien 

insects and this estimate is on the conservative side due to large areas that have not been sampled 

(Bradshaw et al., 2016).  The estimated cost of IAS to Europe is €12-20 billion annually (Scalera, 

2010; Gallardo et al., 2016) while the direct cost of IAS in the UK is estimated to be at least £1.7 

billion per year (Kelly et al., 2013).  The majority of these costs are due to effects on agriculture and 

horticulture, due to IAS weed control, with construction and infrastructure being second on the list 

of industries directly affected by IAS (Williams et al., 2010).  Plant invasions exact the highest cost 

in the UK, directly and indirectly.  One example is Fallopia japonica (Japanese knotweed) which not 

only grows at an impressive speed of up to a metre a month but can take several years to eradicate 

at great cost.  Furthermore, as a result of its ability to grow through concrete and tarmac, F. japonica 

affects the building industry and there are mortgage providers who will not provide mortgages for 

a property if the neighbouring property has F. japonica growing there (Williams et al., 2010).  The 

costs cited for the UK are reported to be just 2% of the actual costs of IAS and these costs are 

predicted to rise as more IAS establish in the UK (Kelly et al., 2013). 

 

 

 

1.2 Ecological impacts of IAS 
Aside from the economic impact of IAS, there are costs to biodiversity and ecosystem function.  

Even though it seems difficult to assign a cost to the ecological impacts, it has been reported that 

the economic impacts of IAS correlate with ecological impacts (Vila et al., 2010).  Gurevitch & Padilla 

(2004) postulated that only a small percentage of taxa threatened with extinction are as a result of 

IAS.  However, Clavero & Garcia-Berthou (2005) investigated the cause of extinction for several 

hundred species and from the quarter of cases where a cause of extinction could be gleaned, at 

least half could be attributed to the effect of IAS.  When looking at the drivers of avian extinctions 

based on IUCN criteria, Clavero et al. (2009) found that IAS were a much greater risk factor for 

extinction than habitat destruction.  More recently, Bellard et al. (2016) found that IAS were the 

were the top driver for the loss of extinct amphibians, mammals and reptiles.  Furthermore, in 

comparison to native species, IAS were significantly more likely to be the extinction driver for plants 

and animals (Blackburn et al., 2019). Additionally, those species that were threatened by IAS tended 

to be endemic to islands, often with small ranges (Clavero et al., 2009), however, IAS as extinction 

drivers is also now becoming more of an issue for mainland populations (Bellard et al., 2016).  The 

success of freshwater amphipods as IAS, e.g. Dikerogammarus villosus (‘killer’ shrimp), is often 
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accompanied by sharp declines in native biodiversity (Bollache et al., 2008).  At some sites in 

Germany this invasive amphipod constituted 90% of the total abundance of all benthic 

macroinvertebrates (Arndt et al., 2009).  Establishment of invasive alien Gammarus spp. in the UK 

have also had negative effects on aquatic biodiversity and the subsequent discovery of D. villosus 

in 2010 resulted in increased concern for freshwater habitat biodiversity due to the high predatory 

nature of this species (MacNeil et al., 2012).  There were also concerns that routine biomonitoring 

would be affected: when assessing water quality under the purview of the Water Framework 

Directive, it became increasingly apparent that the presence of IAS was affecting the accuracy of 

biomonitoring in the UK and other European countries (Arndt et al., 2009; MacNeill et al., 2012).  

Invasive alien plants can alter geomorphic characteristics by reducing or increasing erosion, 

increasing sedimentation, altering dunes spatially and impacting the topography of an area (Fei et 

al., 2014).  Due to increased sedimentation as a result of invasive Spartina spp. in China, over 100, 

000 hectares of mudflats are now salt marshes (An et al., 2007; Liao et al., 2007).  Pacifastacus 

leniusculus (signal crayfish) was introduced in the UK as a food source in the 1960s and is now 

widespread in the UK (Crawford et al., 2006).  This IAS has negatively affected riparian biodiversity 

with the abundance of bivalves and gastropods being severely affected (Mathers et al., 2016).  

Additionally, the presence of Pacifastacus leniusculus has a negative effect on riverbank stability, 

which increases sedimentation in gravels beds, affecting invertebrate diversity which has an 

additional economic cost due to subsequent necessary dredging (Rice et al., 2014; Mathers et al., 

2016).  This rapid invasion has also had a negative effect on Austropotamobius pallipes (native or 

white-clawed crayfish) abundance (Mathers et al., 2016) as they are more susceptible to crayfish 

plague than P. leniusculus.  Additionally, A. pallipes are smaller than P. leniusculus and can be 

outcompeted physically through intraguild predation.   

 

 

 

1.2.1 Intraguild predation 
Another way that IAS can affect native biodiversity is through intraguild predation (IGP).  Intraguild 

predation occurs when the competition between two predators of the same prey results in one of 

those predators preying on the other (Polis et al., 1989).  The two main factors affecting the 

direction of IGP are body size and trophic specialisation, where the biggest and less specialised 

species are more likely to act as the predator and the smaller and more specialised species become 

the prey (Polis et al., 1989).  In California, investigation of the intraguild relationship among several 

desert scorpion species revealed that the dominant species preyed on at least two of the other 

intraguild species, and they reported an increase in the numbers of these two species when the 

dominant scorpion species was removed (Polis & McCormick, 1987).  Longhorn beetle larvae of the 

species Monochamus carolinensis are phytophagous and found on pine trees alongside bark 
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beetles, specifically Ips calligraphus.  However, during a laboratory trial, Dodds et al. (2001) 

revealed that M. carolinensis larvae preyed on I. calligraphus in over 70% of encounters.  This form 

of intraguild predation is thought to occur due to a need for additional nutrients (Dodds et al., 

2001).  Dikerogammarus villosus has colonised many central European rivers resulting in a 

reduction in the abundance of native gammarids (Dick et al., 2002).  When this predatory IAS 

reached the Netherlands, MacNeill & Platvoet (2005) carried out laboratory experiments to assess 

the impact this species may have on their native gammarid, Gammarus pulex.  The native gammarid 

was preyed on by D. villosus but never vice versa.  The invasive gammarid is larger than the native 

G. pulex, which is one explanation for this disparity in predation (MacNeill & Platvoet, 2005).  This 

brief introduction to intraguild predation illustrates that IAS are not necessarily passive or so called 

“passengers” of change. 

 

 

 

1.2.2 Ecosystem function 
When introduced to a new habitat, generalist species are more likely to become invasive than 

specialist species; this can result in native specialist species being outcompeted and thereby leading 

to functional homogenisation (the increase in similarity of a functional variable over time) (Clavel 

et al., 2011).  It can be difficult to ascertain the effect that the presence of an IAS may have on 

ecosystem function, however in recent years, research started to reveal the effects on the invaded 

ecosystem and community (Simberloff et al., 2013).  In China, Spartina alterniflora (Cord grass spp.) 

increased carbon and nitrogen levels in the soil when it invaded an area, which in turn negatively 

affected native plant growth, thereby altering ecosystem function (Liao et al., 2007).  In the UK, the 

microbial community of soil is changed when the habitat is invaded by Impatiens glandulifera 

(Himalayan balsam) which prevents the establishment of native flora thus homogenising the plant 

community (Pattison et al., 2016).  Additionally, I. glandulifera has been shown to negatively affect 

terrestrial invertebrate diversity (Seeney et al., 2019).  In aquatic systems, D. haemobaphes 

negatively affected ecosystem function in aquatic ecosystems by impacting native gammarids that 

are essential in the breakdown of leaf litter (Constable & Birkby, 2016).  The presence of P. 

leniusculus in an ecosystem brought about a significant change in the macroinvertebrate 

community with a decrease in abundance of Glossiphonia complanata (leech), Hydropsyche spp. 

(caddisfly), Caenis spp. (mayfly) (Mathers et al., 2016).  If these native species decrease then a 

subsequent decrease in fish abundance and an increase in Diptera will occur.  Together with the 

negative effect P. leniusculus can have on riverbank stability, a change in ecosystem function would 

be inevitable (Crawford et al., 2006; Mathers et al., 2016).  Globally, coccinellids have been used as 

biological control of aphids, however some species become established outside of this role and 

have subsequent negative effects on native coccinellid species.  When this occurs, the native 
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coccinellid community becomes homogenised, leading to a decrease in ecosystem services 

provided against crop pests (Roy et al., 2012; Grez et al., 2013; Grez et al., 2016). 

 

 

From the examples cited above, it is clear that IAS can exact serious effects both environmentally 

and economically.  MacDougall & Turkington (2005) concluded that IAS were only passengers and 

not directly the cause of biodiversity loss, whereas Clavero et al. (2009) argue that IAS are not simply 

passengers when it comes to changes in biodiversity but have a more defining role as drivers of 

biodiversity loss.  More recently, Roy et al. (2012) propose that instead of leading to extinction, the 

presence of IAS is more likely to change the relative abundance of species.  Furthermore, global 

invertebrate biodiversity loss is a major concern and the presence of IAS is often associated with 

such loss (Didham et al., 2005; Mikanowski, 2017) which is likely to impact ecosystem function 

negatively.   

 

 

 

1.3 Coccinellids 
Approximately 6000 species of coccinellid have been described globally (Nedvěd & Kovář, 2012), 

with 47 species resident in the UK and 27 species in Ireland (Roy et al., 2013).  In the UK there are 

26 species, within the subfamilies Chilocorinae, Coccinellinae and Epilachninae, which are 

conspicuous and readily identifiable as coccinellids.  The remaining 21 coccinellid species in the UK 

are small, generally without spots and do not obviously look like a ladybird and are often referred 

to as inconspicuous (Roy et al., 2011).  The majority of the conspicuous coccinellid species (21 of 26 

species) in the UK and Ireland are predators of a wide variety of prey including aphids, coccids, 

lacewing larvae, thrips, other coleopteran larvae, lepidopteran larvae and coccinellid larvae (Hodek 

& Evans, 2012).  Non-predaceous coccinellids feed on pollen, fungus and other plant material 

(Evans, 2009).  Coccinellids gravitate towards habitats that will provide them with an adequate 

source of food (Majerus et al., 2016).  Coccinellid populations as a result will leave an area with 

poor food resources and move from one habitat to another as aphids begin to populate a given 

area (Michaud et al., 2016).  If the primary food source is scarce, aphidophagous species can survive 

on alternative food sources, such as pollen, coccids, mites, mildew, honeydew etc.  Due to the 

ephemeral nature of aphid species, there are a number of generalist feeding coccinellid species, 

including Harmonia axyridis (harlequin ladybird), Adalia bipunctata (two-spot ladybird) and 

Coccinella septempunctata (seven-spot ladybird) (Roy et al., 2011).  However, not all native 

aphidophagous ladybird species are generalist feeders, for example, Myzia oblongoguttata (striped 

ladybird) can survive on other prey but can only successfully reproduce when feeding on aphids 
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from the genera Schizolachnus or Cinara (Majerus et al., 2016).  Additionally, C. septempunctata 

and A. bipunctata must have access to high numbers of aphids prior to egg-laying, whereas, 

Coccinella quinquepunctata (5-spot ladybird) and Propylea quattuordecimpunctata (14-spot 

ladybird) can begin egg-laying when aphid numbers are lower (Majerus et al., 2016). 

 

 

 

1.3.1 Coccinellids and biological control  
Coccinellids have been used in the biological control of aphids and coccids for almost 140 years 

(Iperti, 1999).  Classical biological control is the use of a natural enemy to reduce a pest that occurs 

in large numbers.  Generally, both the pest and natural enemy are not native to the geographical 

area affected (Majerus et al., 2016).  The first noted instance of classical biological control is that of 

the introduction of Rodolia cardinalis (vedalia ladybird) from Australia into California in the 1880s.  

This introduction of R. cardinalis was an attempt to control the cottony cushion scale (Icerya 

purchasi) on citrus crops (Iperti, 1999).  Coccinellid use in biological control became more 

widespread in the 1970s and 1980s and has had success in pest management, for example, on 

pecans and soybean (Koch & Galvan, 2008).  Both C. septempunctata and H. axyridis have been 

used extensively as biological control species in countries where they are not native, however, 

these species have spread to non-target habitats, resulting in adverse effects on native species 

(Evans, 2000; Brown et al., 2011a; Roy et al., 2016; Sloggett, 2017).  When an invasive coccinellid 

has become established in any ecosystem it has been reported that numbers of native coccinellids 

decline (Koch & Galvan, 2008).  Harmon et al. (2007) highlighted the decline of A. bipunctata over 

a broad geographic range after the invasion of C. septempunctata and H. axyridis in North America.  

The dramatic decline of Coccinella novemnotata in North America has also been attributed to a 

combination of pressures exerted by both C. septempunctata and H. axyridis (Losey et al., 2012b; 

Tumminello et al., 2015; Ducatti et al., 2017). 

 

 

 

1.3.2 Harmonia axyridis Harlequin ladybird 
Harmonia axyridis has a native range in central and eastern Asia (Roy et al., 2011; Orlova-

Bienkowskaja et al., 2015).  Harmonia axyridis is a large coccinellid and is well defended from 

predators; larvae have large spines, its chemical defences are stronger than its coccinellid 

counterparts and it is not as susceptible to parasitic or fungal infections as are other coccinellid 

species (Koch & Galvan, 2008; Roy et al., 2008; Sloggett et al., 2011).  Harmonia axyridis is a 

generalist species reportedly able to prey on up to 60 aphid species (Majerus et al., 2016).  If 

preferred prey numbers are low, other arthropods are also known to be prey for H. axyridis, e.g. 
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lepidopteran eggs, psyllids and lacewing larvae (Koch & Galvan, 2008).  If there is a lack of prey for 

H. axyridis it may turn to intraguild predation and prey upon the eggs and larvae of other coccinellid 

species (Brown et al., 2011a; Roy et al., 2011).  Intraguild predation has been observed in coccinellid 

species, especially when H. axyridis is present (Pell et al., 2008; Lucas, 2012).  In laboratory trials 

with 11 other coccinellid species, H. axyridis was the dominant predator in the majority of intraguild 

interactions with the exception of three coccinellid species (Ware & Majerus, 2008). 

 

Harmonia axyridis was used in biological control in 1916 in North America (Brown et al., 2011b), 

yet, it failed to establish until 1988 (Majerus et al., 2016), however once established it spread 

quickly.  This coccinellid is now globally established either as a result of its use in North and South 

America, Asia and Europe in biological control of pest aphids and coccids or accidental introduction 

and is now a threat to native coccinellids and other non-target species (Harmon, 2007; Brown et 

al., 2011a; Honěk et al., 2016).  Although it is described as semi-arboreal, H. axyridis has been 

recorded in a wide range of habitats in the UK: urban areas and gardens, grassland, arable land and 

deciduous and coniferous woodland (Brown et al., 2011b).  The majority of UK records of H. axyridis 

have been in urban areas and Labrie et al. (2008) reported H. axyridis surviving very cold winters 

only where people dwell, as this species prefers to over-winter in anthropogenic structures. 

Additionally, Brown et al. (2011b) reported that H. axyridis tended to oviposit and feed at sites that 

have human structures nearby.  Harmonia quadripunctata is closely related to H. axyridis and was 

initially recorded in the UK in 1937 (Roy et al., 2011).  Harmonia quadripunctata is not considered 

to be an IAS and took fifty years to spread from East Anglia to Devon whereas H. axyridis took two 

years to spread a similar distance (Brown et al., 2008; Brown et al., 2011a).  The majority of native 

coccinellids are univoltine, i.e., they have just one brood per year.  Harmonia axyridis can have up 

to five broods per year (multivoltine) in its home range.   In the Czech Republic, this species is 

reported to be capable of producing up to three broods per year if sufficient resources are present 

as well as suitable thermal conditions (Honěk et al., 2018a).  Furthermore, Brown et al. (2008) 

reported increases in larval numbers later in the calendar year indicating that in the UK, this species 

is bi-voltine, which would partly explain the rapid spread of H. axyridis in the UK.   

 

 

 

1.3.3 Effects of Harmonia axyridis on native coccinellids in the UK and Europe 
In Belgium, there has been a decline of almost a third of A. bipunctata since the establishment of 

H. axyridis (Roy et al., 2012).  Prior to the arrival of H. axyridis in the Czech Republic, some coccinellid 

species were already in decline, however, two species (Adalia decempunctata & Calvia 

quattuordecimguttata) declined only after H. axyridis had established (Honěk et al., 2016).  In the 

UK, there was an initial decline of A. bipunctata, C. septempunctata and P. quattuordecimpunctata 
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within three years of H. axyridis establishment (Brown et al., 2011a).  Recently, however, from a 

continuing 11-year study it was evident that A. bipunctata continued to decline while numbers of 

the other two species recovered (Brown & Roy, 2017).  The change seen here in less than a decade 

highlights how important continued data collection is, however, gathering large volumes of data 

can be costly both financially and in terms of people hours.  Increasingly, researchers are recruiting 

members of the public as Citizen Scientists in an effort to acquire quality data in large numbers and 

these efforts are proving to be successful. 

 

 

 

1.4 Citizen Science  
Citizen Science is when members of the public volunteer their personal time in order to collect data.  

This method of recording data is used to help inform research across a range of areas such as 

climate change, pollution effects, psychology, health and social care, genetics and ecology 

(Silvertown, 2009).  From this point forward, Citizen Science will be discussed within the remit of 

ecology.  One of the earliest Citizen Science projects is the Audubon Christmas Bird Count, which 

has been underway since 1900, and contributes to determining national trends and conservation 

of bird species in North America (National Audubon Society, 2020).  In the UK, Citizen Scientists 

collect data either for specific projects (e.g. Big Garden Birdwatch, UK) or for their own records that 

are made available to researchers or the general public on platforms such as iRecord 

(https://www.brc.ac.uk/irecord/).  Thus, engaging in Citizen Science results in mutual benefits for 

both those running the project and those who are volunteering their time.  Large quantities of 

valuable usable data are collected for those running the project while Citizen Scientists benefit in a 

range of ways from engaging with the environment and playing their part in protecting their local 

or national habitats, learning about new species or habitats to feeling like they are contributing to 

research (Silvertown, 2009; Pages et al., 2019). 

 

As with any large-scale endeavour, however, there are some disadvantages.  For example, the 

reliability of Citizen Science data has previously been questioned as not every citizen scientist will 

have the knowledge to know exactly what they are looking for and may mis-identify plants or 

animals that are the focus of a project.  To overcome this, some Citizen Science projects develop 

excellent field guides that enable volunteers to make accurate recordings (Silvertown, 2009).  

Additionally, the ever-increasing use of smartphones has facilitated Citizen Science in several ways.  

Smartphone apps have been developed to guide volunteers in the identification of organisms (Roy 

et al., 2018).  In addition to this, being able to take a photograph of an organism and upload it for 

identification/verification by an expert reduces the pressure on volunteers to be expert on a given 

https://www.brc.ac.uk/irecord/
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organism.  These technological developments, together with improved data modelling mean than 

much of the data gathered through Citizen Science are reliable, and quality assured, as well as being 

essential in discovering more about a range of species (Crall et al., 2015).   

 

Citizen science has been used successfully on a global level to prevent, detect and manage IAS or 

determine the effects of IAS on native species (Losey et al., 2012a; Roy et al., 2015; Brown & Roy, 

2017; Adriaens, 2019).  In the UK, Vespa velutina (Asian hornet) has been recorded 17 times over 

the last three years in the UK and all of these sightings were from members of the public (gov.uk, 

2019).  As a result of engagement from the general public and the subsequent eradication of 

reported individuals, this species has not yet established in the UK.  In recent years it has been 

increasingly recognised that there is a need for continuous monitoring of invertebrate species in 

order to accurately assess the decline of not just rare invertebrate species but also common species 

(Roy et al., 2012; Mikanowski, 2017).  The UK Ladybird Survey is an excellent example of how 

successful a Citizen Science project can be.  The efforts of thousands of recorders mean that 

researchers have been able to not only map the distribution of H. axyridis from the time it was 

established but also the distributions of the UK’s native coccinellids (Roy et al., 2011).  Additionally, 

long-term conservation trends have been published as a result of Citizen Science efforts in the form 

of the Field Guide to the Ladybirds of Great Britain and Ireland (Roy et al., 2018b).  These efforts in 

turn have increased knowledge in relation to native coccinellid species in addition to how an IAS 

effects native species. 

 

 

 

1.5 Summary 
Invasion processes involve complex mechanisms influenced by a range of environmental and 

geographical factors.  Given the negative effect of plant, invertebrate and vertebrate IAS in Europe 

and more specifically the UK, it is important to learn more about the mechanisms and interactions 

of IAS on native flora and fauna.  Roy et al. (2016) stated the necessity for research to evaluate the 

negative and positive impacts of IAS at the ecosystem level.  Using H. axyridis as a model species 

will provide knowledge on the effect of an IAS on native species at the community level.  A particular 

knowledge gap in relation to H. axyridis, relates to the prevalence and effects of this species in the 

wider countryside (i.e. as opposed to in urban / suburban habitats or agricultural systems).  When 

the potential spread of H. axyridis in the UK was mapped by Purse et al. (2014), it was predicted 

that rural areas would be less affected by this IAS and would be a potential refuge for native 

coccinellids.  Considering the rapid spread of H. axyridis and its detrimental effect on native 

coccinellids in north America (Koch & Galvan, 2008; Losey et al., 2012b), Europe (Adriaens et al., 
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2008; Roy et al., 2012) and UK urban areas (Brown & Roy, 2017), the overall aim of this research is 

to determine how H. axyridis is affecting the native coccinellid assemblage in specified rural 

habitats. 

 

This thesis initially looks at the global reach of H. axyridis and determines what global, continental 

(Europe) and national (UK) impact climate change may have on the continued spread and 

distribution of H. axyridis.  From this global, European and national view, the thesis moves to the 

investigation of H. axyridis within England in rural habitat to determine how prolific the species is 

in these areas and how the species sits within the coccinellid community.  The thesis continues to 

narrow in scope by looking at the presence of H. axyridis in a very specific and rare habitat and how 

the species may be affecting a nationally rare coccinellid, C. quinquepunctata five-spot ladybird.  

The final data chapter of this thesis attempted to determine through molecular analysis if H. axyridis 

may be affecting C. quinquepunctata in its habitat through intraguild predation.  In summary, the 

thesis attempts to reveal and explain the current place H. axyridis holds within the coccinellid 

community in the UK but also realises the necessity in viewing this IAS on a global scale allows 

greater interpretation of national and regional data.  
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2 Determining the spread of Harmonia axyridis in the UK and 

Europe using data from Citizen Science. 

2.1 Introduction 

2.1.1 Invasive alien species 
Invasive alien species (IAS) are a global concern and although the UK is an island nation, it is 

increasingly at risk, like the rest of Europe, to the establishment of IAS, due to busy trade routes, 

movement of people and climate change (Great Britain Non-Native Species Secretariat, 2015; Roy 

et al., 2019).  The influx of alien species into Europe has not slowed down and is not expected to in 

the immediate future (Seebens et al., 2017).  The threat from IAS is taken seriously by the EU, who 

have developed regulations (EU Regulation 1143/2014) in an attempt to minimise and manage the 

impact of current IAS and, importantly, to prevent any further establishment of new IAS. 

 

 

 

2.1.2 Harmonia axyridis – Harlequin ladybird 
One species that has established throughout Europe is the coccinellid, Harmonia axyridis, harlequin 

ladybird.  This species has been described as the most invasive ladybird on earth (Majerus, 2004) 

and has spread to all continents except Antarctica.  The presence of this coccinellid is reportedly 

responsible for the decline of several native coccinellids; Coccinella novemnotata in North America 

(Harmon et al., 2007; Losey et al., 2012b) and overall native coccinellid diversity in Chile (Grez et 

al., 2016).  In Europe, H. axyridis was initially introduced to 13 European countries and has since 

spread to other European countries (Brown et al., 2011b) with varying impacts to the coccinellid 

communities.  Adalia decempunctata and Calvia quattuordecimguttata have declined in the Czech 

Republic (Honěk et al., 2016), in Italy, Adalia bipunctata has also decreased in abundance (Masetti 

et al., 2018) while in Serbia, H. axyridis has increased in abundance to become the dominant 

coccinellid in urban areas (Markovic et al., 2018).  In the UK, a number of species initially declined 

(Brown et al., 2011a) but A. bipunctata has declined considerably since the establishment of H. 

axyridis (Brown & Roy, 2017).  Evidence in the above studies is from long-term studies, many of 

which are based on observations from members of the public and are large-scale citizen science 

projects such as the Lost Ladybug Project in the USA, Chinita arlequín in Chile and the UK Ladybird 

Survey in the United Kingdom. 
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2.1.3 Citizen Science 
Data from citizen science initiatives contributes to the detection and control of IAS as well as 

learning more about the dynamics of IAS (Thomas et al., 2017).  Such initiatives result in a large 

quantity of data being gathered in a short time frame and with an increase in the use of smartphone 

technology such as smartphone apps, a greater number records can be verified globally than if the 

data were being collected by a handful of ecologists (Roy et al., 2018).  Citizen science projects are 

particularly useful in helping to detect the first records of an IAS or tracking the spread and 

distribution of a species (Roy et al., 2018).  One example is Thaumetopoea processionea (oak 

processionary moth) which can be successfully detected by moth recorders (Pocock et al., 2017).  

Vespa velutina (Asian hornet) is another species that concerns Europe as a whole and there are 

initiatives in place where members of the public can submit a suspected sighting (CEH, 2017).  As a 

result, sightings are dealt with promptly and this species is currently not established in the UK (CEH, 

2017). 

 

Citizen Science data can be stored and accessed from a range of places both locally (databases for 

certain species), nationally (national data recording centres) and internationally and is often made 

available as open data.  There is a move by a large number of researchers to share data in order to 

progress the scientific process (Molloy, 2011).  The Global Biodiversity Information Facility (GBIF) is 

an example of a global database portal for all taxonomic groups.  Records from such databases can 

be used to determine where a species may next spread to, which allows regions and countries to 

prepare in the hope of prevention and or control of the species (Chapman et al., 2019).  Information 

submitted through citizen science projects is essential for learning more about coccinellid 

interactions (Roy et al., 2016).  This is evident globally from research carried out in Chile (Grez et 

al., 2016), USA (Losey et al., 2012a), Belgium (Adriaens et al., 2008) and the UK (Brown & Roy, 2017).  

In the UK there is excellent data on the spread of H. axyridis in urban and anthropogenically 

disturbed areas, with the most recent predictions of further spread of the species being made by 

Purse et al. (2014) using Bayesian spatial survival models.   

 

 

 

2.1.4 Species distribution models 
Species distribution models (SDMs) are a useful tool in horizon scanning for IAS and one set of such 

models being used more frequently are CLIMEX models.  These models aid in determining the effect 

climate change may have on the spread of a species, whether it is invasive or not.  Previously, these 

SDMs used one of two methods when defining the background region for pseudo-absences.  One 

method used the area accessible to the species in relation to its occurrence (Mainali et al., 2015), 

while the other method used the area outside the species range by considering it to be unsuitable 
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(Thuiller et al., 2004).  Recently a different approach was taken by Chapman et al. (2019) who 

combined both methods using real data to create an average, which resulted in more accurate 

projections based on five plant species that are IAS in Europe.  This was achieved using current 

biological knowledge of the limiting factors for the species (Chapman et al., 2019).  These models 

relied on large datasets, many of which are only available as a result of the efforts of citizen science 

data collection.  As CLIMEX models are useful in predicting where an IAS may next spread to and 

considering the continuous spread of H. axyridis in certain regions, it would be prudent to 

investigate what effect climate change may have on the distribution and presence of H. axyridis in 

the UK and wider continent of Europe in the future.   

 

 

 

2.1.5 Aim and hypotheses 
Using citizen science data, the aim of this study was to use the methods adapted by Chapman et al. 

(2019) to determine where H. axyridis has established and where it may spread in the future in 

relation to climate data.  It is expected that climate will affect the range accessible to H. axyridis 

and that an increase in temperature resulting from climate change will facilitate the range 

expansion of H. axyridis in the UK and continental Europe. 

 

 

 

2.2 Methods 
The species distribution models laid out below follow closely those described in Chapman et al. 

(2019).  The methods below have also been used for several risk assessments of IAS carried out by 

D. Chapman, O. Pescott and B. Beckman (e.g. Pescott et al., 2017). 

 

 

2.2.1 Data for modelling 
Harmonia axyridis records (n=199,902) were acquired from four databases: GBIF (Global 

Biodiversity Information Facility, n = 141,176), BISON (Biodiversity Information Serving Our Nation, 

n = 7,278), iDigBio (Integrated Digitized Biocollections, n = 402) and UKLS (UK Ladybird Survey, n = 

51,046).  The native range (latitude and longitude) for H. axyridis was taken from Orlova-

Bienkowskaja et al. (2015).  There are areas of Japan that appear as part of the invaded range of H. 

axyridis (Figure 2.1a), however the literature does not explicitly discuss a divide of native and 

invaded range across Japan (Brown et al., 2011b; Orlova-Bienkowskaja et al., 2015; Roy et al., 2016).  

During this analysis, the region of Japan indicated as invaded is outside the latitude/longitude 
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ranges that were used in the modelling.  Furthermore, records in areas where H. axyridis was not 

previously confirmed as established were removed, for example small numbers of records from 

Turkey, Iran, and north west Canada.  Records where georeferencing was imprecise (e.g. records 

referenced to a country or island centroid) or outside the coverage of the predictor layers (e.g. small 

island) were also removed (Chapman et al., 2019).  The remaining records were gridded at a 0.25 x 

0.25 degrees of longitude/latitude resolution for modelling (Chapman et al., 2019), resulting in 

4,693 grid cells with occurrences (Figure 2.1a).  The density of Insecta records held by GBIF was also 

compiled on the same grid (Figure 2.1b) as a proxy for recording effort. 

 

Climate data were selected from the ‘Bioclim’ variables contained within the WorldClim database 

(Hijmans et al., 2005).  Based on the biology of H. axyridis, the following climate variables and 

habitat layer were used in the modelling: 

• Bio6: Minimum temperature of the coldest month 

• Bio10: Mean temperature of the warmest quarter 

• Climatic Moisture Index (CMI): ratio of mean annual precipitation to potential 

evapotranspiration, log+1 transformed.   

• Human Influence Index (HII): the Global Human Influence Index Dataset of the Last of the 

Wild Project (WCS & CIESIN, 2005) was developed from nine global data layers.  These 

layers incorporate human population pressure (population density), human land use and 

infrastructure (built-up areas, night time lights, land use/land cover) and human access 

(coastlines, roads, railroads, navigable rivers).  The index ranges between 0 and 1 and was 

ln+1 transformed for the modelling to improve normality. 

 

To estimate the effect of climate change on the potential distribution of H. axyridis, equivalent 

modelled future climate conditions for the 2070s under the four Representative Concentration 

Pathways (RCP) 2.6, 4.5, 6.0 and 8.5 were also obtained.  The RCPs represent scenarios of low to 

high emissions, respectively.  The above variables were obtained as averages of outputs of eight 

Global Climate Models (BCC-CSM1-1, CCSM4, GISS-E2-R, HadGEM2-AO, IPSL-CM5A-LR, MIROC-

ESM, MRI-CGCM3, NorESM1-M), downscaled and calibrated against the WorldClim baseline (see 

http://www.worldclim.org/cmip5_5m).  Future scenarios are presented for Europe only and as 

RCP8.5 is considered quite extreme and RCP6.0 is quite similar to RCP4.5, only RCP2.6 and 4.5 are 

presented here. 

 

  

http://www.worldclim.org/cmip5_5m
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Figure 2.1: (a) Occurrence records obtained for Harmonia axyridis and used in the modelling, showing native 
and invaded distributions; (b) The recording density of Insecta on GBIF, which was used as a proxy for 
recording effort. 

 

 

 

2.2.2 Species distribution model 
A presence-only ensemble modelling strategy was employed using the BIOMOD2 R package v3.3-

7.1 (Thuiller et al., 2009, Thuiller et al., 2019).  These models contrast the environment at the 

species’ occurrence locations against a random sample of the global background environmental 

conditions (often termed ‘pseudo-absences’) in order to characterise and project suitability for 

occurrence.  This approach was developed for distributions that are in equilibrium with the 

environment, however, IAS distributions are not at equilibrium and subject to dispersal constraints 

at a global scale.  As a result, the inclusion of locations suitable for H. axyridis but where it had not 

been able to disperse to were minimised (Chapman et al., 2019).  Accordingly, the background 

sampling region included: 
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• the area accessible by native H. axyridis populations, where the species is likely to have had 

sufficient time to disperse to all locations.  Based on presumed maximum dispersal 

distances, the accessible region was defined as a 500km buffer around the native range 

occurrences. 

• a 50km buffer around the occurrences of H. axyridis in a non-native area, encompassing 

regions likely to have had high propagule pressure for introduction by humans and/or 

dispersal of the species 

• regions where there was an a priori expectation of high unsuitability for the species so that 

absence was assumed irrespective of dispersal constraints (Figure 2.2). The following rules 

were applied to define a region expected to be highly unsuitable for H. axyridis at the spatial 

scale of the model: 

− Minimum temperature of the coldest month (Bio6) < -23oC 

− Mean temperature of the warmest quarter (Bio10) < 11oC 

− Climatic moisture index (CMI) < log1p (0.23) 

Only 1.3% of occurrence grid cells were located in the unsuitable background region.  Within the 

background region, 10 samples of 5000 randomly sampled grid cells were obtained, weighting the 

sampling by recording effort (Figure 2.2). 

 

 

 
Figure 2.2: The background from which pseudo-absence samples were taken in the modelling of Harmonia 
axyridis.  Samples were taken from a 500km buffer around the native range and a 50km buffer around non-
native occurrences (together forming the accessible background) and from areas expected to be highly 
unsuitable for the species (the unsuitable background region).  Samples were weighted by a proxy for 
recording effort (Figure 2.1(b)). 
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Each dataset (i.e. combination of the presences and the individual background samples) was 

randomly split into 80% for model training and 20% for model evaluation (Chapman et al., 2019).  

With each training dataset, seven statistical algorithms were fitted with the default BIOMOD2 

settings: Generalised Linear Model (GLM), Generalised Boosting Model (GBM), Generalised 

Additive Model (GAM) with a maximum of four degrees of freedom per smoothing spline, Artificial 

Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), Random Forest (RF) and 

Maxent (Thuiller et al., 2016; Chapman et al., 2019).  The background sample was larger than the 

number of occurrences so prevalence fitting weights were applied to give equal overall importance 

to the occurrences and the background.  Normalised variable importance was assessed and variable 

response functions were produced using BIOMOD2’s default procedure.  Model predictive 

performance was assessed by three measures; AUC (Area Under the Curve), Cohen’s Kappa, and 

TSS (True Skill Statistic) (detailed descriptions in Appendix A2.2a-A2.2c).  AUC is the probability that 

a randomly selected presence has a higher model-predicted suitability than a randomly selected 

absence (Allouche et al. 2006).  Cohen’s Kappa corrects the overall accuracy of model predictions 

by the accuracy expected to occur by chance (Cohen, 1960).  TSS compares the number of correct 

forecasts, minus those attributable to random guessing, to that of a hypothetical set of perfect 

forecasts (Allouche et al. 2006). 

 

 

An ensemble model was created and ensemble projections were made for each dataset and then 

averaged to give an overall suitability, as well as its standard deviation.  The projections were then 

classified into suitable and unsuitable regions using the ‘minROCdist’ method, which minimizes the 

distance between the ROC plot and the upper left corner of the plot (point (0,1)).  A limiting factor 

map was subsequently produced following Elith et al. (2010) (Figure 2.6).  For this, projections were 

made separately with each individual variable fixed at a near-optimal value.  These were chosen as 

the median values at the occurrence grid cells.  Finally, the most strongly limiting factors were 

identified as those resulting in the highest increase in suitability in each grid cell. 

 

 

 

2.2.3 Caveats to the modelling 
To remove spatial recording biases, the selection of the background sample was weighted by the 

density of Insecta records on the GBIF database.  While this is preferable to not accounting for 

recording bias at all, it may not provide the perfect measure of recording bias.  There was 

substantial variation among modelling algorithms in the partial response plots (Figure 2.3).  In part 

this will reflect their different treatment of interactions among variables.  Since partial plots are 

made with other variables held at their median, there may be values of a particular variable at 
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which this does not provide a realistic combination of variables to predict from.  Other variables 

potentially affecting the distribution of the species, such as land cover, were not included in the 

model. 
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2.3 Results 
The ensemble model suggested that the Human Influence Index (HII) was the most important factor 

when determining suitability for H. axyridis, accounting for 31.7% of the variation.  Mean 

temperature of the warmest quarter (Bio10), climatic moisture index (CMI) and minimum 

temperature of the coldest month (Bio6) accounted for 28.3%, 24% and 16% respectively (Figure 

2.3; Table 2.1). 

 

 

 
Figure 2.3: Partial response plots from the fitted models. Thin coloured lines show responses from the 
algorithms in the ensemble, while the thick black line is their ensemble. In each plot, other model variables 
are held at their median value in the training data. Some of the divergence among algorithms is because of 
their different treatment of interactions among variables. 
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Table 2.1: Summary of the cross-validation predictive performance (AUC, Kappa, TSS) and variable importance of the fitted model algorithms and the 
ensemble (AUC-weighted average of the best performing algorithms). Results are the average from models fitted to 10 different background samples of 
the data.  

     variable importance (%) 

Algorithm AUC Kappa TSS 

Used in the 

ensemble 

Human 

Influence 

Index (HII) 

Mean temperature of 

the warmest quarter 

(Bio10) 

Climatic 

Moisture Index 

(CMI) 

Minimum temperature 

of the coldest month 

(Bio6) 

GLM 0.804 0.436 0.526 yes 37 27 19 16 

GAM 0.805 0.435 0.527 yes 36 26 21 17 

ANN 0.813 0.458 0.537 yes 17 34 27 22 

GBM 0.814 0.453 0.534 yes 47 26 24 3 

MARS 0.806 0.442 0.528 yes 25 32 28 15 

RF 0.673 0.401 0.500 no 29 30 24 17 

Maxent 0.811 0.448 0.536 yes 28 26 24 22 

Ensemble 0.812 0.449 0.534  32 28 24 16 
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2.3.1 Current climate  
Given the distribution that was used for the modelling process (Figure 2.1a), it was interesting that 

the model predicted that certain countries in Africa (Morocco, Algeria, Ethiopia, east Uganda, 

Kenya, north Tanzania, Angola, Zambia, Zimbabwe), Asia (Turkey, Georgia, Azerbaijan, Iran, Nepal, 

north Pakistan, India), Oceania (east Australia) and Europe (Portugal, Spain, Greece) would be 

suitable under current climatic conditions for H. axyridis to establish (Figure 2.4a & Figure 2.5).  

Similar to UK suitability, the east and south of Ireland appear suitable for H. axyridis, with the west 

and north of Ireland being unsuitable, similar to much of Scotland, parts of north-west England and 

mid-Wales (Figure 2.5). 

 

 
Figure 2.4: (a) Projected global suitability for Harmonia axyridis establishment in the current climate. For 
visualisation, the projection has been aggregated to a 0.5 x 0.5 degree resolution, by taking the maximum 
suitability of constituent higher resolution grid cells.  Values > 0.41 may be suitable for the species. White 
land areas have climatic conditions outside the range of the training data so were excluded from the 
projection. (b) Uncertainty in the ensemble projections, expressed as the among-algorithm standard 
deviation in predicted suitability, averaged across the four datasets. 
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In northern and western Europe, including the UK, Bio10 (mean temperature of the warmest 

quarter) was the strongest limiting factor.  In the Mediterranean, Bio6 (mean temperature of the 

coldest month) and CMI (Climate Moisture Index) were the strongest limiting factors (Figure 2.6).  

Outside of Europe, these two factors together with HII (Human Influence Index) were the 

predominant limiting factors with very few areas limited by Bio10 (Figure 2.6). 

 

 
Figure 2.5: Projected current suitability for Harmonia axyridis establishment in Europe and the Mediterranean 
region. The white areas have climatic conditions outside the range of the training data so were excluded from 
the projection. 

 
Figure 2.6: The most strongly limiting factors for Harmonia axyridis establishment estimated by the model in 
current climatic conditions; HII = Human Influence Index; CMI = Climatic Moisture Index; Bio10 = mean 
temperature of the warmest quarter; Bio6 = mean temperature of the coldest month. 
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2.3.2 Future climate scenarios in Europe 
Looking ahead to the 2070s in Europe, under both RCP2.6 and RCP4.5, the parts of Ireland and the 

UK that are currently unsuitable for the establishment of H. axyridis are predicted to become more 

suitable.  Similarly, the same was predicted for areas of Norway, Sweden and Finland that are 

currently unsuitable.  Conversely, those areas in the Mediterranean that are currently suitable are 

predicted to become less suitable (south-east Spain, central Turkey, west Morocco) (Figure 2.7a & 

Figure 2.7b). 
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Figure 2.7: Projected suitability for Harmonia axyridis establishment in Europe and the Mediterranean region 
in the 2070s under climate change scenario (a) RCP2.6 and (b) RCP4.5, equivalent to Figure 2.5. The white 
areas have climatic conditions outside the range of the training data so were excluded from the projection. 

 

(7a) RCP2.6 

(7b) RCP4.5 
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Taking a closer look at the UK and Ireland, it is predicted under both climate change scenarios that 

H. axyridis will increase its distribution by spreading further north into Scotland and westward into 

Wales and Northern Ireland.  Under future scenarios, areas of Ireland that are currently predicted 

as unsuitable become more suitable with an almost all island suitability predicted under RCP4.5 

(Figure 2.8). 

 

 

 

Figure 2.8: Projected suitability for Harmonia axyridis establishment in the UK and Ireland (a) current 
suitability and under climate change scenario (b) RCP2.6 and (c) RCP4.5.  The white areas have climatic 
conditions outside the range of the training data so were excluded from the projection. 

 

 

 

Figure 2.9 further emphasises this predicted change in suitability for H. axyridis by illustrating the 

suitability of the Biogeographical regions of Europe both currently and under future scenarios.  The 

Arctic region is currently highly unsuitable and remains relatively unsuitable under RCP2.6 and 

RCP4.5.  The Alpine and Boreal regions have low suitability currently but will increase under both 

RCP2.6 and RCP4.5 however, these regions are not predicted to be as suitable as the Continental, 

Pannonian, Black Sea, Anatolian or Mediterranean regions. 
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Figure 2.9: Variation in projected suitability for Harmonia axyridis establishment among Biogeographical 
regions of Europe (Bundesamt für Naturschutz (BfN), 2003).  The bar plots show the proportion of grid cells 
in each region classified as suitable in the current climate and projected climate for the 2070s under two RCP 
emissions scenarios, RCP2.6 and RCP 4.5.  The location of each region is also shown. 

 

 

 

 

 

0.00

0.25

0.50

0.75

1.00
Current RCP26 RCP45

P
ro

p
o

rt
io

n
 p

re
d

ic
te

d
 s

u
it

ab
ili

ty
 



28 
 

 

Europe appears to be the continent with countries that have a higher proportion of predicted 

suitability for the establishment of H. axyridis in the current climate as well in the future scenarios.  

Increases are predicted across the majority of the continent with just a small number of decreased 

suitability in the very far south of Europe (Figure A2.3a).  Predictions for South America and the 

majority of North American countries are almost the reverse of Europe with most countries 

predicted to become less suitable for the establishment of H. axyridis under future scenarios with 

the exception of Canada, Chile and Peru.  These countries have a low proportion of suitable grid 

cells currently and the predicted future increases are also low (Figure A2.3b).  Africa is similar to 

the Americas in that many countries have a low proportion of suitable grid cells in the current 

scenario and the majority are predicted to be less suitable under future scenarios (Figure A2.3c).  

Asia also has a high number of countries with a low proportion of grid cells that are predicted to be 

suitable for the establishment of H. axyridis.  However, under future scenarios, countries in Asia, 

mainly in the north and west, are predicted to have an increase in suitability while countries in the 

south and east are predicted to decrease in suitability (Figure A2.3d). 
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2.4 Discussion 

2.4.1 Global 
The approaches to modelling adopted here highlight that human influence had the greatest impact 

on the global spread of H. axyridis.  Additionally, this approach indicated that it is the interaction of 

a suite of variables that facilitate the spread of H. axyridis, with Bio10 (mean temperature of the 

warmest quarter), CMI (Climatic Moisture Index) and Bio6 (minimum temperature of the coldest 

month) all playing a role in various global regions.  There is a considerable body of evidence 

concluding that urbanisation and an increase in anthropogenic areas positively contribute to the 

spread and establishment of H. axyridis (Adriaens et al., 2008; Brown et al., 2008; Brown et al., 

2011a; Purse et al., 2014; ; Roy et al., 2016; Veran et al., 2016; Viglášová et al., 2017; Brown & Roy, 

2017).  Globally, it is apparent that the regions suitable in the current climate for H. axyridis tend 

to have high levels of anthropogenic influence.  Intensification of agricultural practices (Honěk et 

al., 2016) and increased industrialisation (Poutsma et al., 2008) have been attributed to an increase 

in the occurrence of H. axyridis in recent years, which is particularly evident in Europe and North 

America.  When investigating the spread of H. axyridis in France, Veran et al. (2016) reported that 

increased land area under agriculture and vines was a factor in the dispersal of the species. 

Furthermore, Pons et al. (2015) reported concerns for Spain’s vineyards which amounts to a large 

percentage of Europe’s grape and wine production (Ameixa et al., 2019).  Africa is a large continent 

with a range of limiting factors (Figure 2.6; CMI, Bio6 & HII) preventing the establishment and 

spread of H. axyridis.  The species has established in South Africa, Lesotho (Brown et al., 2011b) and 

Swaziland (Roy et al., 2016) with a potential establishment in Algeria (Lakhal et al., 2018).  There 

are individual records of H. axyridis from Kenya (Nedvěd et al., 2011) and Zanzibar, Tanzania 

(Nedvěd & Halva, 2016) but as of yet there is no confirmation of establishment of it in these 

countries.  The global model in this study predicted that the inland areas of these countries would 

be suitable for H. axyridis but it is likely that high winter temperatures indicative of the tropical 

climate would limit its establishment (Nedvěd & Halva, 2016).   

 

 

 

2.4.2 Europe 
This model indicated that southern Europe would be suitable for the establishment of H. axyridis, 

as did Poutsma et al. (2008).  Unlike much of the rest of the northern part of the globe (i.e. Canada 

and Russia) human influence was not considered the strongest limiting factor in Europe, but instead 

it was Bio10 (mean temperature of the warmest quarter).  However, in southern Europe Bio6 (mean 

temperature of the coldest month) and CMI (climatic moisture index) were the limiting factors for 

the establishment of H. axyridis.  The optimum temperature for H. axyridis is reported to be 20oC 

(Barahona-Segovia et al., 2016) so it is not surprising that western and northern Europe would have 
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different limiting factors.  If the mean temperature of the warmest quarter increased sharply, say 

by 10oC, then this may have a negative impact on H. axyridis abundance in these regions (Veran et 

al., 2016).   

 

When investigating the spread of H. axyridis in France, Veran et al. (2016) predicted that H. axyridis 

would have difficulty establishing and spreading in southern France as well as Spain, Portugal and 

Greece.  Occurrences of H. axyridis are particularly low in southern Europe to the extent that it does 

not affect coccinellid diversity (Soares et al., 2017), indicating that other factors or the species’ 

interaction with climatic and/or environmental variables are involved in H. axyridis not establishing 

in the Azores, much of the Iberian Peninsula and Greece.  When investigating why H. axyridis had 

not established in the Azores, Soares et al. (2017) concluded prey availability to be the main cause 

of this phenomena which is not surprising given that aphids favour a temperate climate.   Aphid 

colonies develop on young plants and numbers can increase rapidly to create very large populations 

in temperate areas.  However, in southern Europe the host plants differ and the climate is drier, 

leading to less substantial food sources for aphids (Poutsma et al., 2008).  Furthermore, the 

coccinellid community in Portugal is generally dominated by smaller coccinellids such as Scymnus 

spp., which are more often predators of coccids than aphids (Magro & Hemptinne, 1999), indicating 

that aphids may not always be the most abundant food source in these regions.   

 

Another explanation for the non-establishment of H. axyridis in southern Europe could be the warm 

winter conditions in these regions.  Harmonia axyridis needs to enter diapause in the winter and, 

with reduced prey, will exhaust fat reserves before the establishment of new aphid colonies in the 

spring (Poutsma et al., 2008).  Alaniz et al. (2020) recently reported that H. axyridis had not 

established in the Azores, Portugal, due to high winter temperatures which prevent the necessary 

diapause for this species.  Recently, however, a population of H. axyridis was recorded in north-

eastern Spain with concerns that this species will continue to spread and impact on the economy 

through damage to vineyards (Pons et al., 2015; Ameixa et al., 2019).  Subsequently, Ameixa et al. 

(2019) reported that high temperatures had a positive effect on H. axyridis.  However, Ameixa et 

al. (2019) did not state how high these temperatures are or what the upper limit may be for H. 

axyridis.  In contrast, this current study predicted that those areas in southern Europe currently 

suitable will, with climate change, become more unsuitable over time and Veran et al. (2016) 

reported that extreme high (and low) temperatures had a negative effect on H. axyridis.  

Additionally, H. axyridis was reported to function optimally at a temperature range of 15oC to 20oC 

with an upper limit of 27.2oC and has a significantly reduced survival rate at 30oC (Barahona-Segovia 

et al., 2016). 
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2.4.3 UK and Ireland 
Both the UK and Ireland have the same limiting factors to the establishment of H. axyridis (Bio10).  

The UK has been heavily industrialised for two centuries and an extensive road & rail network is 

evident.  Harmonia axyridis is not often recorded in Scotland and is thought to be limited due to 

there being fewer urban areas than England (Purse et al., 2014) as well as a less favourable climate 

(Majerus et al., 2016).  The future scenarios, however, predict that suitability will increase in 

Scotland, Northern Ireland and Wales as well as Ireland.  It was predicted that H. axyridis would 

arrive in Ireland (Brown et al., 2008) and the first records were observed in Cork and Carlow in 2010.  

However, H. axyridis has spread at a considerably slower rate in Ireland in comparison to rates in 

Europe and the UK (Weyman et al., 2019) which could be partly due to less human influence than 

in the UK.  Additionally, temperatures also tend to be lower in Ireland and Scotland in comparison 

to England while precipitation tends to be higher. These aspects of decreased anthropogenic 

disturbance and a less hospitable climate are likely to explain the currently slow spread of H. 

axyridis in Ireland and limited distribution in Scotland (Roy & Brown, 2015).  If the climate changes 

as predicted over the next 50 years, however, these Irish and Scottish habitats will be vulnerable to 

further spread of H. axyridis. 

 

 

 

2.4.4 Marginal areas 
Harmonia axyridis is recently considered established in Turkey (Bukejs & Telnov, 2014) and Iran, 

whilst occurrences have also been recorded in Israel and Saudi Arabia (Biranvand et al., 2019; 

Mardani-Talaee et al., 2019).  The Turkish records are either from areas with a considerable amount 

of anthropogenic disturbance or central areas of higher elevation, meaning cooler winters.  The 

Iranian records are from an area with anthropogenic disturbance in the form a particularly busy 

port.  It is likely that these recent establishments are due to a combination of increased human 

influence together with H. axyridis becoming more tolerant of higher temperatures to the norm.  

How likely is it that H. axyridis will continue to spread and establish in these countries, particularly 

under climate change scenarios RCP2.6 and RCP4.5?  As previously mentioned, H. axyridis can 

tolerate higher temperatures but is likely to struggle during warm winters (Poutsma et al., 2008; 

Barahon-Segovia et al., 2016; Alaniz et al., 2020).  It is predicted that this species will find these 

areas even less suitable under climate change scenarios RCP2.6 and RCP4.5 unless suitable areas at 

higher elevation are available during the winter months to facilitate diapause.  Barahon-Segovia et 

al. (2016) reported that H. axyridis (as an IAS) species performed better at lower temperatures than 

other coccinellid species (as native species) indicating, higher temperatures may not be of benefit 

to H. axyridis.  Additionally, Logan et al. (2019) reported that when faced with climate change, H. 

axyridis has low evolutionary potential, leading to the conclusion that this species may not spread 
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or remain in the Middle East, particularly should temperatures increase in this area.  Coleoptera 

(beetles) have previously been shown to adapt to different thermal scenarios (extreme cold or 

extreme heat) through phenotypic plasticity.  The reproductive organs of both male and female 

beetles have been shown to adapt to these scenarios, particularly extreme heat, and remain 

capable of reproducing (Vasudeva et al., 2014; Farrow, 2016).  Barahona-Segovia et al. (2016) also 

reported H. axyridis ability to survive at higher temperatures (30oC), although survival rate was 

greatly reduced from optimum temperatures (20oC).  Furthermore, these studies were carried out 

under laboratory conditions at constant temperatures which do not represent natural conditions 

or take into account that individuals can move to avoid adverse conditions. 

 

 

 

2.4.5 The importance of Citizen Science data 
With an increase in public interest in recording wildlife and the advent of smartphones and 

improved accuracy through GPS, citizen science data is reliable and generates sizeable datasets that 

would not previously have been possible to acquire (Roy et al., 2018).  This study would not have 

been possible without the efforts of thousands of people, yet there are still gaps in the data.  Citizen 

science relies on people to upload their records to platforms, such as GBIF, and gaps in the data 

become evident when reviewing the literature on a species.  For example, the records from 

countries the Middle East, particularly Turkey and Iran (Birnavand et al., 2019) were not recorded 

on the databases utilised in searches and so were unintentionally omitted from analysis.  From the 

models here, Turkey is a predicted suitable area where H. axyridis could establish so its presence is 

unsurprising and the area in Iran where a large number were observed is also predicted suitable 

under the current climate.  Under the different climate change scenarios, small areas of Turkey are 

predicted to become unsuitable for H. axyridis, however this species could establish and remain in 

other parts of this country that have suitable climate (e.g. suitable winter temperatures to facilitate 

diapause).   

 

Just recently, H. axyridis was discovered in Costa Rica, Guatemala, Honduras, Panama and Puerto 

Rico solely as a result of the efforts of citizen scientists (Hiller & Haelewaters, 2019).  As climate 

changes, H. axyridis is likely to be recorded in new countries and regions and an increased network 

of citizen scientists can help track these movements.  Encouragement of data recording by citizen 

scientists globally is recommended, not just to observe H. axyridis but also to gain a more detailed 

account of newly arrived and/or potential invaders.  As humans continue to increase global 

movement due to trade and travel, the risk of a new invasive alien species will only increase.   
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2.5 Conclusion 
This research has illustrated that human influence is the most important factor globally for 

facilitating the spread and establishment of H. axyridis.  However upon closer inspection, it is clear 

that a single factor alone cannot determine if H. axyridis (or any other potential IAS) may establish 

in a region or not and that it is a combination of factors, climatic, environmental and/or biological, 

that are necessary to work together to make a region suitable for this prolific coccinellid.  Once 

established, H. axyridis facilitated by anthropogenic disturbance and climate change will affect 

native coccinellid biodiversity, by changing the community dynamics as it behaves both as a 

passenger and driver of change.  The inclusion of records from recently established populations of 

H. axyridis would make the models more robust and give a more comprehensive overview of the 

future spread of H. axyridis.  
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3 Harmonia axyridis in rural woodlands in England 
 

3.1 Introduction 

3.1.1 Coccinellids in rural habitat 
Research concerning coccinellids often tends to focus on a small number of species (Sloggett, 2005) 

including Harmonia axyridis, Coccinella septempunctata, Adalia bipunctata, Hippodamia 

convergens or Coleomegilla maculata, many of which focus on the species as an IAS.  As a result, 

specialist or less frequently recorded native coccinellid species are often overlooked.  Even though 

the coccinellid species above provide ecosystem services in the form of pest control in agricultural 

landscapes, so too do other native coccinellid species (Roy et al., 2012; Honěk et al., 2017).  It is 

likely that these services are strengthened by the presence of less managed areas (wild herb, 

grassland or woodland) adjacent to crop landscapes (Woltz & Landis, 2014).  Additionally, trees and 

grassland tend to have a more diverse coccinellid community than crops (Honěk, 2012).  Many 

studies investigating coccinellid assemblages or diversity appear to concentrate on urban green 

spaces (Brown et al., 2011a; Viglášová et al., 2017), urban woodlands, or crop-only systems such as 

alfalfa (Grez et al., 2008; Grez et al., 2014), cereals or canola (Bianchi et al., 2007) with only a small 

number focussing on natural landscape adjacent to cropped fields (Amaral et al., 2015).  It has been 

suggested that an ongoing increase of H. axyridis numbers may lead to the extinction of coccinellid 

species locally (Adriaens et al., 2010; Comont et al., 2014).  In the UK, distribution of H. axyridis is 

well known within urban and other anthropogenic habitats, but much less is known on detailed 

habitat use in the wider countryside (Brown et al., 2011a; Brown & Roy, 2017).  Considering the 

aforementioned studies together with the decline of native coccinellids in urban areas as a result 

of H. axyridis in the UK, it is important to understand how native coccinellids are faring in rural areas 

(Viglášová et al., 2017).  In terms of the distinction between rural and urban areas, there is no 

specific definition of rural area as the boundary between urban and rural is often unclear (JNCC, 

2010).  There are governmental definitions (UK), however, these relate to human population size 

within an area and are not suitable for the purposes here.  In this chapter (and Chapter 4), the term 

rural is used to describe the habitats surveyed that were based in woodland areas that were not 

within a town or city.  In contrast, urban areas describe wooded areas or tree stands within towns. 

 

 

3.1.2 Coccinellid communities 
In any habitat, a small number of dominant species (between two and four) are expected to 

comprise around 90% of the coccinellid community.  Selyemová et al. (2007) reported a diverse 

coccinellid community in rural coniferous woodland in Slovakia that was dominated by four species, 

however, H. axyridis was not established in the region at the time.  When investigating 

overwintering coccinellids in coniferous woodland, Holecová et al. (2018) reported that H. axyridis 
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was not the top dominant coccinellid.  It has been suggested that some native coccinellids tend to 

be more abundant in rural habitats (with less anthropogenic disturbance) as opposed to H. axyridis, 

which prefers habitats altered by human activity (Roy et al., 2016).  In the UK, just as H. axyridis was 

establishing, Brown et al. (2011a) reported that H. axyridis was largely absent from coniferous 

woodland.  Furthermore, Purse et al. (2014) predicted that areas with less anthropogenic 

disturbance, particularly coniferous woodland, could be a refuge for native coccinellids.   

 

 

3.1.3 Vegetation structure 
Vegetation structure of a habitat can also influence coccinellid assemblages.  Grassland has been 

shown to be a refuge for native coccinellid species with very few invasive coccinellids recorded in 

this habitat (Diepenbrock & Finke, 2013).  Rural woodland generally consists of a range of tree 

species and areas of wild herbs/grassland.  The heterogeneity of a habitat is associated with 

increased animal species diversity (Tews et al., 2004) as well as population stability in butterflies 

(Oliver et al., 2010).  In Michigan (USA) coccinellid species richness was higher when the habitat 

was more complex and contained a range of vegetation structures from deciduous trees, to 

grassland and crops (Colunga-Garcia et al., 1997).  When non-crop vegetation was added to an 

agricultural habitat, coccinellid activity increased (Woltz & Landis, 2014) and intraguild predation 

between a native coccinellid and H. axyridis decreased (Amaral et al., 2015).  Additionally, Honěk 

(2012) reported that trees facilitate greater coccinellid diversity than herbaceous stands which in 

turn have greater coccinellid diversity than crops. 

 

 

3.1.4 Prey and competitors associated with coccinellids 
Beginning to understand how and why certain habitats are used by particular coccinellid species 

would be beneficial to understanding the relationship between H. axyridis and native specialist 

coccinellid species (Sloggett & Majerus, 2000).  Competition for food resources from H. axyridis is 

one of the reasons why native coccinellids may be negatively affected (Brown et al., 2011a).  

However, Vandereycken et al. (2013) found that H. axyridis was the dominant predator on corn but 

not on other crops and so monitoring aphid abundance adds another dimension to studies of 

coccinellid community dynamics.  Lacewings (Neuroptera) and ants (Formicidae) also interact 

strongly with aphids and so sit in the same guild as coccinellids.  Lacewings are aphid predators and 

have been found in greater abundance than H. axyridis on crops (Vandereycken et al., 2013).  Some 

ants tend aphids for their honeydew and if coccinellids attempt to prey on these aphids, the ants 

will protect the aphids by attacking the coccinellids (Lucas, 2012).  Investigating these guild 

relationships is important in determining whether or not H. axyridis is negatively affecting these 

additional taxonomic groups.  



36 
 

 

3.1.5 Aims & Hypotheses  
The aim of the research presented in this chapter was to explore the relationship between the 

invasive H. axyridis and native coccinellid species in rural, non-anthropogenic habitats.  With the 

wealth of literature on H. axyridis in urban areas, a comparison between urban and rural habitat 

was also carried out to illustrate habitat preferences.  

 

Considering the information presented above, the following hypotheses were postulated: 

• Given previous findings of low IAS abundance in rural habitat, the proportion of H. axyridis 

is expected to be lower in woodlands than in urban sites and the proportion of native 

specialist coccinellids is expected to be higher in woodlands than in urban sites.   

• Vegetation structure is expected to have an effect on the coccinellid communities, with the 

trees hosting a greater abundance and diversity of native coccinellids than grassland. 

• A relationship between the abundance of coccinellids and their competitors as well as 

between coccinellids and their prey is expected.  

 

  



37 
 

3.2 Method 
3.2.1 Field Sites 
Field sites were identified based on the presence of enough native tree species and individuals to 

facilitate robust data collection as well as on proximity to each other.  All sites were in 

Cambridgeshire, Suffolk or Lincolnshire.  During the 2016 field season, four deciduous sites 

(Brampton Wood, Monk’s Wood, Raveley Wood and Wistow Wood) and two coniferous sites (two 

sites at King’s Forest) were sampled.  Two of the deciduous sites were similar in structure (ancient 

woodland) and were yielding low numbers of coccinellids.  One of these woodlands had fewer 

individuals of the required tree species and so for the 2017 fieldwork, Wistow Wood was removed 

from the site list and an additional coniferous site at King’s Forest was included.  Furthermore, as 

urban areas have previously been shown to have high numbers of H. axyridis, two urban sites 

(Doddington and Spalding) were added in 2017 to enable meaningful comparison with the rural 

sites.  Thus, during the 2017 field season three deciduous woodlands (Brampton Wood, Monk’s 

Wood and Raveley Wood) and three coniferous woodland (three sites at King’s Forest) were 

surveyed (Table 3.1).  Surveys took place from May to October inclusive.  Brampton and Raveley 

Woods are managed by the Wildlife Trust for Bedfordshire, Cambridgeshire and Northamptonshire, 

while Monk’s Wood is managed by Natural England.  The three sites at King’s Forest are managed 

by the Forestry Commission.  The urban site at Doddington is managed by the Church of England 

Diocese of Ely while the site at Spalding is managed by the South Holland District Council.  Maps for 

the site locations can be found in Appendix 3, (Figures A3.1a, b & c).  Written permission from each 

relevant organisation was acquired prior to any surveys being undertaken.  Grid references were 

recorded using a Garmin GPSmap 60CSx. 
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Table 3.1: Locations and characteristics for each field site surveyed. 

Site Woodland Type Grid 

References 

County 2016 

Surveys 

2017 

Surveys 

Brampton Wood Deciduous TL1787 7018 Cambridgeshire √ √ 

Monk’s Wood Deciduous TL1976 8011 Cambridgeshire √ √ 

Raveley Wood Deciduous TL2444 8184 Cambridgeshire √ √ 

Wistow Wood Deciduous TL2963 8214 Cambridgeshire √ X 

King’s Forest 01 Coniferous TL8223 7374 Suffolk √ √ 

King’s Forest 02 Coniferous TL8201 7417 Suffolk √ √ 

King’s Forest 03 Coniferous TL8088 7153 Suffolk X √ 

Doddington Urban deciduous TL4005 9069 Cambridgeshire X √ 

Spalding Urban deciduous TF2474 2205 Lincolnshire X √ 

 

 

3.2.2 Vegetation layers/structure and survey method 
Three vegetation layers were selected for data collection; tree, shrub and herb layer.  These layers 

encompass the key different vegetation types found within a woodland and collectively contain the 

majority of UK ladybird species (Roy et al., 2013).  The tree and shrub species selected for surveying 

are all native to the UK.  Additionally, the number of individuals of each tree/shrub species was 

sufficient to allow regular visits during the sampling season at the respective woodland sites as well 

as to avoid over-sampling or damage to vegetation.  As urban sites were included for comparison 

purposes, only the tree layer was sampled, predominantly lime (Tilia x europaea) and a small 

number of sycamore (Acer pseudoplatanus). 

 

• The herb layer (grassland/grass layer) comprised low vegetation including grasses, 

wildflowers, thistle, bramble, saplings etc.  Vegetation height in the grass margins did not 

exceed one metre in height. 

• The shrub layer (intermediate layer) comprised of species that as mature individuals are 

considered part of the shrub layer (Hall et al., 2004) or are immature individuals of a tree 

species.  Individuals used for surveying were no higher than three metres.  The species 

selected for data collection were hazel (Corylus avellana) and hawthorn (Crataegus 

monogyna) in deciduous woodland and immature Scots Pine (Pinus sylvestris) and birch 

(Betula pendula) in coniferous woodland. 
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• The tree layer (mature layer) consisted of trees that were over three metres high with the 

target species being oak (Quercus robur) and field maple (Acer campestre) in deciduous 

woodland and mature Scots pine (Pinus sylvestris) and silver birch (Betula pendula) in 

coniferous woodland.  The tree and shrub layer are on occasion referred to collectively as 

woodland and the grass layer referred to as grassland. 

 

Sweep-netting is a common method for surveying insects in grassland (Ausden & Drake, 2006) and 

was used to sample coccinellids.  This method involved the use of a sweep net which comprised of 

a white canvas bag (46cm in diameter) attached to a metal ring on a large pole.  One sweep was 

carried out for one metre of distance walked with 100 metres of grassland per visit being surveyed 

at deciduous and coniferous woodland sites only.  Sweeping this area took approximately 25 

minutes.  An estimate of the percentage plant coverage of the grass margin was determined by eye 

at each sampling point. 

 

Tree beating was used to collect ladybirds from the tree and shrub layers.  This method involved 

using a stick (approximately 1.5 metres in length) to sharply tap tree branches whereby the animals 

upon the branch fall onto a large white beating tray (110cm x 86cm) so that individuals could be 

identified (Roy et al., 2013).  Three individual branches on each tree were sampled by tapping each 

branch three times in quick succession.  Depending on accessibility, each survey was carried out 

around the full circumference of the tree.  Ten trees of each species in both the intermediate and 

mature layers were surveyed in deciduous and coniferous woodland.  At each urban site, 20 mature 

trees were surveyed.  Completion of surveying 10 trees within one gradient took approximately 25 

minutes. 

 

All captured coccinellids were identified to species level in the field with the aid of two Field Studies 

Council (FSC) guides: Guide to ladybirds of the British Isles (Majerus et al., 2010) and Guide to the 

ladybird larvae of the British Isles (Brown et al., 2012).  Where identification proved difficult or time 

consuming, detailed photographs of the specimen were taken for later identification and the 

individual subsequently released.  Larvae in the early stages of development, especially first and 

second instar, are very difficult to identify to species level in the field and so where there was 

uncertainty the term ‘Early Stage Larva’ (ESL) was used.  Additionally, third instar Harmonia spp. 

larvae are included in the ESL group due to the similarity between H. axyridis and H. quadripunctata 

at this life stage.  Just over six percent of records were of coccinellid larvae that were not identifiable 

due to their early life stage (ESL) (Appendix A3.1 & A3.2).  These records were removed prior to 

statistical analysis as the specific species is often unknown and so it would be impossible to draw 

meaningful conclusions from such analysis.   
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3.2.3 Prey and competitors associated with coccinellids 
The number of aphids (adult and immature) captured during sweeping/tree beating were also 

recorded.  Due to potentially very large numbers being present these numbers were estimated in 

increments of 5 (for example, 1, 5, 10, 15, 20, 25, etc.).  Aphids (Aphidoidea) were identified to 

superfamily.  Lacewing numbers were also noted with two families being identified in the field; 

Chrysopidae & Hemerobiidae but are grouped for analysis purposes.  Ants (Formicidae) that were 

captured during sweeping/tree beating were also recorded and identified to family level.  

Aphidoidea, Chrysopidae & Hemerobiidae and Formicidae are referred to as aphids, lacewings and 

ants respectively from this point forward.  Additionally, when referred to as a guild group, aphids, 

lacewings and ants are referred to as associated insects for clarification in Sections 1.3 and 1.4. 

 

 

 

3.2.4 Weather conditions 
In order to standardise data collection sampling took place between 10:00 and 16:00 when weather 

conditions were favourable, i.e. when the temperature was greater than 14°C, conditions were dry 

and wind speeds were below 5 on the Beaufort scale (Jones et al., 2006).  Some surveys were carried 

out when the temperature was below 14oC, however in such instances there was at least 60% sun.  

Humidity and ambient temperature were recorded using an EasyLog EL-21CFR-2-LCD.  Any gaps in 

the temperature/humidity data were provided by the Met Office. 

 

 

 

3.2.5 Data analysis  
The majority of the analyses was carried out using R Studio (R Core Team, 2019).  The following 

packages were used for basic analyses and visualisation of data: dplyr (Wickam et al., 2019), 

ggfortify (Horikoshi & Tang, 2016; Tang et al., 2016), ggplot2 (Wickham, 2016), ggpubr (Kassambara, 

2018).  For multivariate analyses three packages were used: lattice (Sarkar, 2008) and vegan 

(Oksanen et al., 2019).  The remaining packages used for regression analyses were: fmsb 

(Nakazawa, 2018), lmtest (Zeileis, 2002), pscl (Zeileis et al., 2008), sandwich, (Zeileis, 2004; Zeileis, 

2006), lattice and MASS (Venables & Ripley, 2002).  As the data were count data, non-parametric 

tests and generalised linear models (GLM) were applied to the data.  Wilcoxon paired tests were 

used to compare abundances of different coccinellid groups at the same locations, e.g. urban areas.  

Spearman’s correlation was utilised to investigate any association between both H. axyridis and 

native coccinellid abundance and that of aphids, lacewings and ants.   
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3.2.5.1 Regression models 

Generalised linear models (GLM) were utilised to investigate the effects of site location (urban, 

rural), site type (deciduous, coniferous), vegetation structure (tree, herb or grass layer) and season 

(summer, autumn) on coccinellid and associated insect abundance.  Environmental variables 

(temperature, humidity) were included in the models.  When applying a GLM to count data, the 

results can often be overdispersed.  Overdispersion happens for various reasons with the most 

common being excess zeros in the data (Beckerman et al., 2017).  In the case of these data, 

overdispersion was common and so alternative regression models were applied to the data and a 

subsequent model selection carried out to determine which was the best fit, if any. 

 

The regression models (poisson, negative binomial (NB), zero-inflated poisson (ZIP) model and zero-

inflated negative binomial regression (ZINB) model) were applied to the data.  The zero-inflated 

models treat the zeros differently, either as true or false zeros (Zuur et al., 2012).  True zeros occur 

because the habitat is not favoured by the organisms in question, for example, if winters are too 

harsh.  False zeros on the other hand are when an individual was present but not recorded due to 

survey design or observer error.  It is recommended that if a count dataset consists of true and false 

zeros then zero-inflated regression models should be applied (Zuur et al., 2012).  Additionally, these 

models help to explain and clarify the ecology behind the numbers.  Zero-inflated models can run 

using a poisson or negative binomial distribution.  A zero-inflated model is essentially two models 

run at the same time, the count model (models the count data) and the binary model (models the 

zeros).  Both parts of the model are fitted simultaneously and are modelled in terms of the 

explanatory variables (Zuur et al., 2007). 

 

In many cases a zero-inflated negative binomial (ZINB) model was the best fit for the data, however 

there were cases where the data were overdispersed, but not as a result of the zeros.  When a ZINB 

was not the best fit, a negative binomial regression model was applied to the data.  All models were 

compared to the null model, and reduced models compared with the full model.  There are several 

methods to determine which is the best model to choose (e.g. Akaike Information Criterion, 

Bayesian Information Criterion) where the model with the lowest value is considered the best (Zuur 

et al., 2009; Beaujean & Morgan, 2016).  Justification for the model choices was based on log 

likelihood, AIC and weighted AIC (see Appendix 3 for full details).  Table A3.3 presents which model 

was the best fit for explaining the effects of the variables on H. axyridis, native coccinellid, 

Aphidoidea, Formicidae and Neuroptera abundance in urban trees, rural woodlands and rural 

grasslands.  Urban data were analysed separately as well as in comparison to rural woodland (tree 

and shrub layer) data.  Data from woodlands were analysed separately to the grassland data due 

to differences in sampling method.  Starting with all variables in the model, a step-wise process was 

used to determine which variables had an impact on the dependent variable.  Any variables 
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resulting in a p-value of less than 0.2 were removed from the model.  The z-statistic is used in these 

regression models as the variance is known, unlike in Gaussian models where the variance is 

estimated resulting in a t-statistic (Zuur et al., 2009). 

 

Collinearity can be an issue in regression models (Zuur et al., 2007).  Collinearity is when 

independent variables can be highly correlated.  Temperature and humidity were checked for 

collinearity with a variance inflation factor (VIF).  Neither variables were of concern with a VIF of < 

1.2 each, and both were incorporated into the regression models.  

 

 

 

3.2.5.2 Diversity Indices 

Shannon Diversity was calculated for rural sites only and for native coccinellid species only.  

Simpson’s diversity was not carried out as rare species or those recorded in low numbers are not 

taken into account by this measure (Magurran, 2004; Morris et al., 2014).  Differences in diversity 

across sites types and season were calculated using t-tests while ANOVA was used to assess any 

differences in diversity within the vegetation structure followed by a post-hoc Tukey if any 

significances were apparent.  Regression models were run to determine if there was a relationship 

between native coccinellid diversity and the abundance of H. axyridis.  

 

 

3.2.5.3 Ordination 

Canonical Correspondence Analysis (CCA) detects patterns of variation in a given community that 

can be explained by environmental data.  The analysis focuses on beta-diversity (how dissimilar 

sites are) instead of alpha diversity (diversity of a site) (Zuur et al., 2007).  This method of 

multivariate analysis generates an ordination diagram where a given species point is at the 

weighted average or centroid of the sites where it was recorded (ter Braak & Verdonschot, 1995).  

The qualitative environmental variables (site type and vegetation layer) are illustrated by a point 

that is the centroid of site points belonging to that group, for example the weighted average of the 

tree layer where the weight is the total abundance of the tree layer (ter Braak & Verdonschot, 

1995).  This analysis was used to investigate the relationship that site type (deciduous or coniferous) 

and vegetation layer (tree, shrub or herb) had on the coccinellid assemblage.  The coccinellid data 

were fourth root transformed to remove any effect of highly abundant species (Chessman, 2003; 

Pickwell, 2012).  Interpretation of the resulting ordination is based on the eigenvalues, statistical 

significance determined by Monte Carlo permutation test and ecological interpretability (ter Braak 

& Verdonschot, 1995).  In this case, the biplot rule (described below) was applied as the eigenvalues 

were less than 0.4 and this rule is more informative than the centroid rule when eigenvalues are 
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low (ter Braak & Verdonschot, 1995).  To interpret the relationship between the species and sites, 

the biplot rule was used.  Firstly, the direction of maximum change in the relative abundance of a 

species (e.g. species X or Y) was determined by drawing a line from Species X to the origin.  

Subsequently the sites were then projected onto the arrow for Species X, illustrating the share each 

site (site A or B) has in the total abundance of each species (ter Braak & Verdonschot, 1995; Zuur 

et al., 2007).  To interpret how a species relates to an environmental variable, imagine the variable 

line (e.g. ‘Type’) is extended in the opposite direction for the same distance, forming an axis of its 

own.  Each species can be projected perpendicular to the axis, indicating the species relationship 

with that variable (Zuur et al., 2007).  This analysis was carried out in PAleontological Statistics 

(PAST) Version 3.23 (Hammer et al., 2001).  The combination of regression models, the Shannon 

diversity index and the ordination analysis yielded a detailed representation of coccinellid 

assemblages. 
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3.3 Results 

3.3.1 Overview 
Eighteen species of coccinellid totalling 2,278 individuals were recorded during the study period 

across three different vegetation gradients (mature, intermediate, grass) from three distinct site 

types (deciduous, coniferous, urban).  Figure 3.1a & Figure 3.1b illustrates the six most frequently 

recorded coccinellids on trees and on grassland respectively.  Just eight of these species were 

recorded in grassland in comparison to 16 species on trees in woodland or urban sites (Appendix 

A3.1 & A3.2).  Five species were recorded in coniferous woodland only (Myzia oblongoguttata, 

Myrrha octodecimguttata, Scymnus suturalis, Subcoccinella vigintiquattuorpunctata and Tytthaspis 

sedecimpunctata), while one species was recorded in deciduous woodland only (Psyllobora 

vigintiduopunctata) and at urban sites only (Aphidecta obliterata).  In grassland, four coccinellid 

species were recorded at coniferous sites only (Exochomus quadripustulatus, S. suturalis, S. 

vigintiquattuorpunctata and T. sedecimpunctata).  Considering all site types (urban, deciduous, 

coniferous), the majority of all coccinellids were recorded at rural sites with 20% at deciduous and 

38% at coniferous sites while species richness was lower at urban sites (10 spp.) than deciduous (12 

spp.) and coniferous (16 spp.) sites. 

 

 

 

3.3.2 Comparison of urban and rural habitat  
In both urban and rural sites, 1873 individual coccinellids were recorded in trees, with, 50.6% of 

these records recorded from two urban sites which consisted solely of mature trees.  Of the 

remaining 49.4% of records, C. septempunctata was the most recorded coccinellid in woodlands 

(29.5%) with H. axyridis comprising 24.3% of records and E. quadripustulatus making up 19.0% of 

records.  The fourth most abundant group was ‘Other’ which consists of individuals from 12 other 

coccinellid species, making up 8.6% of the coccinellids recorded in rural areas (Figure 3.1a). 

 

The abundance of H. axyridis (median = 35) was significantly higher than that of native coccinellids 

(median = 5.5) in urban areas (Wilcoxon test: Z = -3.9, p < 0.001, r = 0.87).  However, the reverse 

was shown in rural areas with significantly greater numbers of native coccinellids (median = 7) 

recorded (Z = -5.57, p < 0.001, r = .63) than H. axyridis (median = 1) (Figure 3.2).  As revealed by the 

count model of the ZINB, H. axyridis was recorded in significantly greater numbers in urban areas 

than rural areas (z = 12.52, p < 0.001) (Figure 3.2).  The abundance of H. axyridis did not differ 

between the seasons at urban sites.  Native coccinellid abundance was not affected by whether the 

site was situated in an urban or rural habitat (Figure 3.2). 
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Figure 3.1: Number of coccinellids recorded in woodland (a) and grassland (b) for the six most abundant 
species; A10 = Adalia decempunctata; C7 = Coccinella septempunctata; ExQ = Exochomus quadripustulatus; 
Hax = Harmonia axyridis; H4 = H. quadripunctata; Other = abundance of remaining coccinellid species 
combined; P14 = Propylea quattuordecimpunctata; P22 = Psyllobora vigintiduopunctata; S24 = Subcoccinella 
vigintiquattuorpunctata; T16 = Tytthaspis sedecimpunctata 
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Figure 3.2: Mean number (+SE) per site visit of coccinellids recorded from the woodland at rural sites and the 
tree layer at urban sites in Cambridgeshire, Suffolk and Lincolnshire.  Different letters above bars indicate 
significant differences as revealed by a regression model -> H. axyridis, log likelihood = -249, df = 11, AIC = 
519, z = 12.52, p < 0.001; Native = all native coccinellids recorded. 

 

 

 

3.3.3 Coccinellids in rural woodland 
Rural woodland site type (deciduous and coniferous) was analysed separately.  Native coccinellid 

abundance was significantly greater than that of H. axyridis in deciduous woodland (median = 2 and 

0 respectively, Z = -5.43, p < 0.001, r = 0.60) and coniferous woodland (median = 0 and 1 

respectively, Z = -4.15, p < 0.001, r = 0.50) (Figure 3.3).  The binary model of the ZINB revealed that 

the likelihood of recording H. axyridis was higher in the summer rather than autumn across rural 

woodlands combined (z = -3.011, p = 0.003). 

 

 

3.3.3.1 Harmonia axyridis 

The only variable that affected H. axyridis abundance was vegetation layer in both deciduous only 

and coniferous only woodland, with a greater number recorded in the mature layer (z = 2.65, p = 

0.008 and z = 2.82, p = 0.005 respectively) (Figure 3.4).  The abundance of H. axyridis was higher 

during the summer (z = 4.78, p < 0.001) in deciduous woodland with no effect of season apparent 

in coniferous woodland.  In addition to the results from the logistic model, the binary model 

explained in greater detail what the zeros represented in these data, with the likelihood of 
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recording H. axyridis being significantly higher in coniferous woodland in comparison to deciduous 

woodland (z = 3.67, p = 0.0002). 

 

 

3.3.3.2 Native coccinellids 

In rural woodland, deciduous sites had a significantly lower number of native coccinellids than did 

coniferous sites (z = -3.16, p = 0.002) (Figure 3.3).  In deciduous woodland, vegetation layer had no 

effect on native coccinellid abundance, however, abundance was significantly higher in the mature 

layer of coniferous woodland as opposed to the intermediate layer (z = 2.67, p = 0.008) (Figure 3.4).  

Season did not influence the abundance of native coccinellids in deciduous only or coniferous only 

woodland. 

 

 

 

 

Figure 3.3: Mean number (+SE) per site visit of coccinellids recorded in woodland at deciduous and coniferous 
sites in Cambridgeshire and Suffolk.  Native = all native coccinellids recorded.  Consecutive letters indicate 
where significant differences occur. 
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Figure 3.4: Mean number (+SE) per site visit of coccinellids recorded in woodland at deciduous only and 
coniferous only sites in Cambridgeshire and Suffolk.  Native = all native coccinellids recorded; Dec. = 
Deciduous; Con. = Coniferous; Tree = Tree layer; Shrub = Shrub layer.  Consecutive letters indicate where 
significant differences occur. 

 

 

3.3.3.3 Coccinellids in grassland 

Eight coccinellid species totalling 405 individuals were recorded in the grassland habitat.  Two of 

the species, S. vigintiquattuorpunctata and T. sedecimpunctata were confined to grassland only 

(Table A3.2).  Very few H. axyridis were recorded in the grass gradient (n = 12) and as a result it was 

not possible to apply any statistical analysis. 

 

Grassland type had an effect on native coccinellid abundance, with significantly fewer recorded in 

deciduous grassland (z = -3.09, p = 0.002) as indicated by the reduced negative binomial model 

(Figure 3.5).  In coniferous woodland, native coccinellids were significantly more abundant during 

summer rather than autumn (z = 2.47, p = 0.001).  The null model was the best fit to investigate 

coccinellid abundance in grassland at deciduous sites revealing no effect of season on native 

coccinellid abundance. 
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Figure 3.5: Mean number (+SE) per site visit of coccinellids recorded in the grass layer at deciduous and 
coniferous sites in Cambridgeshire and Suffolk.  Native = all native coccinellids recorded.  Consecutive letters 
indicate where significant differences occur. 

 

 

 

3.3.4 Native coccinellid community 

3.3.4.1 Coccinellid diversity 

When considered as an entire habitat, coniferous sites hosted a significantly higher native 

coccinellid diversity (t = 5.83, p < 0.001) than deciduous woodlands (Figure 3.6).  In deciduous 

woodland sites, native coccinellid diversity varied significantly (one-way ANOVA: F = 4.35, p = 0.015) 

with the tree layer having greater diversity than the grass layer (p = 0.01) as revealed by a post-hoc 

Tukey test.  Coniferous sites also exhibited differences between the different vegetation structures 

(F = 9.24, p <0.0002) with a significantly lower diversity in both the shrub layer and grass layer (p = 

0.0005 & p = 0.001 respectively; Figure 3.6) in comparison to tree layer.  There was no effect of 

seasonality on native coccinellid diversity in deciduous woodland, however native coccinellid 

diversity in coniferous woodlands was higher during the summer (t = -2.23, p = 0.02).  When 

investigating the relationship between native coccinellid diversity and H. axyridis abundance in the 

entire rural habitat, the count part of the ZINB model revealed that native coccinellid diversity did 

not affect H. axyridis abundance.  However, the binary model indicated that the probability of 

recording H. axyridis was significantly lower when native coccinellid diversity was higher (z = -2.37, 

p = 0.01).  As expected, native coccinellid abundance was higher when native coccinellid diversity 

was higher (z = 5.6, p < 0.001). 

 

a 

b 



50 
 

 

 
Figure 3.6: Mean Shannon diversity (+SE) of native coccinellid species at deciduous and coniferous sites and 
at different vegetation layers across all sites in Cambridgeshire and Suffolk.  Consecutive letters indicate 
where significant differences occur.  Letters on brackets represent differences between deciduous and 
coniferous sites collectively. 

 

 

 

3.3.4.2 Coccinellid assemblage 

The coccinellid assemblage is represented by an ordination diagram which is interpreted below by 

starting with the environmental variables, Type and Layer.  Focusing firstly on the ‘Type’ axis, there 

is a clear difference in the coccinellid communities that are associated with coniferous only and 

deciduous only sites.  Some species are positively associated with coniferous (M. oblongoguttata, 

M. octodecimguttata, Scymnus spp., H. quadripunctata) and deciduous (Halyzia sedecimguttata, A. 

decempunctata, P. quattuordecimpunctata) sites while other species are more generalist and are 

associated with both sites in varying abundances (H. axyridis, E. quadripustulatus, C. 

septempunctata) (Figure 3.7).   

 

 

The ‘Layer’ axis also reveals that certain species are associated with particular vegetation layers and 

others are quite generalist in their habitat preferences.  Habitat generalist species appear to 

aggregate along the centre of the ‘Layer’ axis (H. axyridis, E. quadripustulatus, Scymnus spp., P. 

quattuordecimpunctata) while the herb layer has a distinct coccinellid assemblage (P. 

vigintiduopunctata, S. vigintiquattuorpunctata, T. sedecimpunctata) (Figure 3.7).   
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Several species show a preference for the tree layer over the shrub layer in both coniferous (A. 

bipunctata, M. oblongoguttata, M. octodecimguttata, H. quadripunctata, Anatis ocellata) and 

deciduous sites (Chilocorus renipustulatus, Calvia quattuordecimguttata, H. sedecimguttata, A. 

decempunctata) (Figure 3.7).  The herb layer at coniferous sites sits well apart from the other 

coniferous vegetation layers and as expected is more similar to the deciduous herb layer.  At 

deciduous sites, there is a visible gradient through the vegetation layers being utilised by the 

coccinellid community, moving left to right from herb layer to shrub layer to tree layer.  There was 

no difference in species diversity between the shrub and tree layer at deciduous sites and from the 

CCA plot (Figure 3.7) it becomes apparent that coccinellids use both vegetation structures with little 

variation between them, particularly when comparing the herb layer.  For example, C. 

septempunctata (C7) is associated with both the herb and shrub layer, but with a greater 

abundance associated with the herb layer and a lower abundance associated with the tree layer.  

The tree and shrub layer at coniferous sites host similar coccinellid assemblages to each other.  For 

example, E. quadripustulatus (ExQ) was associated across all coniferous sites for both the tree and 

shrub layer yet has a greater association with the tree layer.  Two coccinellid species (Tytthaspis 

sedecimpunctata, T16 & Subcoccinella vigintiquattuorpunctata, S24) dominated the herb layer at 

coniferous sites that were not associated with any other site type or vegetation layer.   

 

 

Harmonia axyridis appears as a generalist in the ordination diagram, being situated close to the 

origin and almost halfway on both variable axes.  This species however, was more positively 

associated with coniferous sites and with the shrub layer (KF01, KF03, KF02 & BW), while H. axyridis 

was negatively associated with the herb layer at both site types.  Associations with certain native 

coccinellid species were evident, however these species were not as abundant as H. axyridis.  Both 

E. quadripustulatus (ExQ) and A. bipunctata (A2) have a similar association with coniferous sites as 

H. axyridis, however A. bipunctata is positively associated with the tree layer, unlike E. 

quadripustulatus which seemed to utilise both the tree and shrub layer (Figure 3.7). 
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Figure 3.7: Species-conditional CCA triplot based on a canonical correspondence analysis of the coccinellid 
and environmental data recorded at rural sites in Cambridgeshire and Suffolk.  Environmental vectors are 
amplified by a factor of two.  Axis 1 explained 99.3% of the variation in the taxon-environmental structure 
and axis 2 explained 0.7% of the variation (Eigenvalues were 0.3505 and 0.0024 respectively); Type = 
coniferous sites (KF01, KF02, KF03 = Kings Forest site 1, 2 and 3) and deciduous sites (BW = Brampton Wood, 
MW = Monk’s Wood, RW = Raveley Wood); Layer = tree, shrub and herb layer; coniferous sites are indicated 
by filled coloured squares, deciduous sites by filled coloured dots and species by blue circles; coccinellid 
species = (A2 = Adalia bipunctata; A10 = Adalia decempunctata; AnO = Anatis ocellata; C7 = Coccinella 
septempunctata; C14 = Calvia quattuordecimguttata; ChRe = Chilocorus renipustulatus; ExQ = Exochomus 
quadripustulatus; H4 = Harmonia quadripunctata; H16 = Halyzia sedecimguttata; Hax = Harmonia axyridis; 
M18 = Myrrha octodecimguttata; MyO = Myzia oblongoguttata; P14 = Propylea quattuordecimpunctata; P22 
= Psyllobora vigintiduopunctata; S24 = Subcoccinella vigintiquattuorpunctata; Scy = Scymnus spp.; T16 = 
Tytthaspis sedecimpunctata). 

 

 

 

Table 3.2: Guide to aid interpretation of Figure 3.7 indicating the symbols and colours used to 
represent site type (deciduous/coniferous) and vegetation structure (tree/shrub/herb layer) where 
coccinellids were observed. 

Site Characteristics Symbol & 

Colour 

Site Characteristics Symbol & 

Colour 

DECIDUOUS  Dots CONIFEROUS Squares 

Tree layer Black Tree layer Black 

Shrub layer Gold Shrub layer Gold 

Herb layer Red Herb layer Red 
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3.3.5 Coccinellids and associations with other insects 
Across all site types (urban, deciduous, coniferous) and vegetation structures (tree layer, shrub 

layer and grassland) a total of 17,747 aphids (prey) were recorded, along with 10,878 ants (natural 

enemies) and 925 lacewings (competitors). 

 

 

3.3.5.1 Prey and competitors associated with coccinellids in urban habitat 

A significantly greater number of aphids and lacewings were recorded at urban sites in comparison 

to rural sites (z = 3.83, p = 0.001 and z = 7.99, p < 0.001 respectively), however ant abundance was 

significantly lower at urban sites (z = -4.67, p < 0.001) (Figure 3.8).  Looking in more detail at urban 

sites only, season did not affect lacewing, ant or aphid abundance. 

 

 

 

 
Figure 3.8: Mean number (log10+1 transformed) (+SE) per site visit of H. axyridis and native coccinellids 
recorded in relation to records of prey (Aphids), natural enemies (Ants) and competitors (Lacewings) in East 
Anglia.  Hax = Harmonia axyridis, Native = native coccinellids recorded, LW = lacewings.  Consecutive letters 
indicate where significant differences occur. 
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3.3.5.2 Prey and competitors associated with coccinellids rural woodlands 

Woodland type had an effect on aphid abundance with significantly fewer observations at 

deciduous sites (z = -3.34, p = 0.0008; Figure 3.9).  Vegetation type (tree or herb layer) had no effect 

on aphid abundance at either deciduous or coniferous woodland sites.  Season affected aphid 

abundance, with greater numbers observed in the summer at deciduous (z = 3.96, p < 0.001) and 

coniferous woodlands (z = 4.54, p < 0.001) when investigated separately (Figure 3.10). 

 

Significantly fewer ants were recorded at deciduous woodlands than at coniferous woodlands (z = 

-12.59, p < 0.001; Figure 3.9).  Vegetation structure had no effect on ant abundance at deciduous 

only or coniferous only woodland.  Season also had no effect on ant abundance at deciduous sites, 

however it did affect ant numbers at coniferous woodlands, with higher abundance recorded 

during the summer (z = 3.19, p = 0.001). 

 

There were significantly more lacewings recorded in deciduous than coniferous woodlands (z = 

4.60, p < 0.001) (Figure 3.9).  The null model was the best fit when determining if any of the variables 

had an effect on lacewing abundance in deciduous or coniferous woodlands, signifying that 

vegetation structure and season had no effect on lacewing abundance in either woodland type. 

 

Harmonia axyridis abundance was positively associated with aphid abundance at urban sites and 

coniferous-only woodland while native coccinellid abundance was negatively associated with aphid 

abundance at deciduous-only woodland.  Native coccinellid abundance was positively associated 

with lacewing abundance at deciduous only woodland while H. axyridis was positively associated 

with lacewing abundance at urban sites (Table 3.3). 
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Figure 3.9: Mean number (log10+1 transformed) (+SE) per site visit of H. axyridis and native coccinellids 
recorded in relation to records of prey (Aphids), natural enemies (Ants) and competitors (Lacewings) in East 
Anglia.  Hax = Harmonia axyridis, Native = native coccinellids recorded, LW = lacewings.  Consecutive letters 
indicate where significant differences occur. 

 

 

 

Figure 3.10: Mean number (log10+1 transformed) (+SE) per site visit of aphids recorded in deciduous only and 
coniferous only woodlands. Consecutive letters indicate where significant difference occur. 
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Table 3.3: Significance of Spearman correlations for coccinellid abundance with associated insects 
recorded from trees at different site types.  Significant r2 values are shown in bold. 

Associated 

Insects 

Harmonia  

axyridis 

Native  

coccinellids 

APHIDS   

Urban sites 0.49 0.35 

Deciduous Woodland 0.086 -0.35 

Coniferous Woodland 0.26 -0.13 

Deciduous Grassland n/a -0.48 

Coniferous Grassland n/a 0.10 

FORMICIDAE   

Urban sites -0.35 -0.35 

Deciduous Woodland 0.05 0.022 

Coniferous Woodland -0.18 0.19 

Deciduous Grassland n/a -0.11 

Coniferous Grassland n/a 0.40 

NEUROPTERA   

Urban sites 0.56 0.44 

Deciduous Woodland 0.17 0.35 

Coniferous Woodland -0.068 0.13 

 

 

 

3.3.5.3 Prey and competitors associated with coccinellids in rural grassland 

There was a very low number of lacewings recorded in grassland (n = 5) and so analysis was not 

applied to these data.  Site type had no effect on the abundance of aphids recorded in rural 

woodlands and season had no effect on aphid abundance in deciduous only or coniferous only 

woodland.  In rural grassland, ant abundance was affected by site type with a significantly lower 

abundance of ants in deciduous grasslands (z = -5.1, p < 0.001) as opposed to coniferous grassland.  

Also when considering both site types together, ant abundance was affected by season in 

coniferous only grassland with a significantly greater abundance of ants observed during the 

summer (z = -3.77 p = 0.001).  There was no effect of season on ant abundance in deciduous 

grassland. 
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There was a negative association between aphid and native coccinellid abundance in deciduous 

grassland.  Conversely there was a significant positive association between native coccinellid 

abundance and ant abundance in coniferous only grassland (Table 3.3). 
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3.4 Discussion 

3.4.1 Urban habitat compared with rural habitat 
Harmonia axyridis dominated the coccinellid assemblage in urban areas, but not in rural woodland 

or grassland, in contrast to native coccinellid species.  In Italy, Masetti et al. (2018) observed that 

H. axyridis was the dominant coccinellid in trees and shrubs within hedgerows, however the 

habitats surveyed were directly adjacent to intensively farmed crop fields.  Less than a decade after 

its establishment in Belgium, H. axyridis also dominated urban areas in preference to non-

anthropogenic habitats (Adriaens et al., 2008).  Within four years of its establishment in the UK, H. 

axyridis had dominated in urban habitats (Brown et al., 2008b; Brown et al., 2011a).  This invasive 

coccinellid is known to also prefer anthropogenic structures for its overwintering sites (Roy et al., 

2016).  When investigating the ability of H. axyridis and native coccinellids to overwinter in cold 

climates such as Canada, Labrie et al. (2008) found that H. axyridis only survived when 

overwintering in buildings, whilst native species were able to survive overwintering outside.  This 

preference for a milder climate would explain the attraction of H. axyridis to anthropogenic areas 

during the cooler months in the UK, however, as this research shows, it is not completely restricted 

to urban habitats and can also be found in rural areas during active months. 

 

Native species had been more abundant in urban habitats prior to the establishment of H. axyridis 

in the UK (Brown et al., 2011a).  Native coccinellid abundance in this study did not differ between 

urban and rural sites.  In rural habitat, however, native coccinellids were observed in greater 

abundance than H. axyridis.  A similar outcome was observed in Belgium with a greater abundance 

of native coccinellids observed in semi-natural habitat such as grassland and pioneer vegetation 

(Adriaens et al., 2008) while in central Canada, four native coccinellid species declined from native 

vegetation when C. septempunctata established itself as an invasive coccinellid (Turnock et al., 

2003).  In the Czech Republic, a long-term study also revealed a decline in native coccinellid 

abundance, however, this decline was apparent prior to the establishment of H. axyridis (Honěk et 

al., 2016).  Once H. axyridis became established, some species abundances remained static, 

however for two species, A. bipunctata and P. quattuordecimpunctata, the abundances declined 

even further (Honěk et al., 2016).  This could be due to additional pressures such as changes in land 

use (Honěk et al., 2016) that happened to coincide with the establishment of H. axyridis.  

Additionally, Masetti et al. (2018) reported a decrease in A. bipunctata and two other coccinellid 

species native to Italy, following the establishment of H. axyridis.  The coccinellid community of 

urban habitats tend to be dominated by H. axyridis, however, it may be that this species does not 

have the same dominant effect in rural habitats.  
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3.4.2 Deciduous and coniferous habitat 
In this study, native coccinellids were more abundant than H. axyridis in both coniferous and 

deciduous woodland, indicating that unlike urban habitats, coccinellid assemblages in rural habitats 

are not dominated by H. axyridis.  Coniferous woodland hosted a greater number of native 

coccinellids than deciduous woodland.  Brown et al. (2011a) proposed that coniferous habitat may 

provide a refuge for native coccinellids considering the continuing spread of H. axyridis.  

Furthermore, using spatial modelling to determine what habitat type was most likely to be utilised 

by H. axyridis, Purse et al. (2014) also proposed that coniferous woodland would act as a barrier to 

the continuing establishment of H. axyridis, resulting in a refuge for native coccinellids.  Yet, the 

abundance of H. axyridis in coniferous woodland in this research was higher than at deciduous 

woodland.  The majority of habitat surveyed by Brown et al. (2011a) were urban sites with a greater 

number of lime and sycamore trees available while two of their sites were situated in less 

anthropogenic areas and yielded either very low abundance or no observations at all of H. axyridis.  

Both Brown et al. (2011a) and Purse et al. (2014) used data from the beginning of the invasion 

process to mid-2012 and it is possible, given the penchant that H. axyridis has for urban habitats, 

that it had not yet fully established itself in this rural habitat.  Harmonia axyridis is highly 

phenotypically plastic and can overcome habitat and dietary barriers efficiently and successfully 

(Majerus et al., 2006) adapting to climatic extremes and being able to survive on a range of diets 

where other coccinellids cannot (Sloggett & Majerus, 2000b).  Furthermore, when investigating 

overwintering coccinellid assemblages, Holecová et al. (2018) found that even though H. axyridis 

was one of the dominant species on Scots Pine, the majority of the time, either E. quadripustulatus 

or C. septempunctata made up a larger proportion of overwintering coccinellids.  This report 

regarding species proportions is similar to that observed here (Appendix Table A3.1). 

 

The differences seen here between coniferous and deciduous woodland, could also be attributed 

to fragmentation of the deciduous woodlands surveyed, as fragmentation of a habitat is known to 

reduce diversity of a habitat (Pullin, 2002).  Being ancient woodlands, the deciduous sites were 

heterogenous, with a range of other broadleaved tree species intermingled with the survey species, 

while coniferous sites were more homogenous with just two tree species which were arranged 

predominantly in blocks in a plantation style and were relatively young (6-10 years) (Appendix 

A3.1).  Sweaney et al. (2015) surmised that pine plantation led to the homogenisation of the habitat 

and found lower species richness in ground-beetle communities in plantation-only sites in 

comparison to a combination of plantation and farm sites.  However, coniferous sites in this current 

work, were continuously connected by additional woodland areas, whereas the deciduous sites 

were stand-alone woodlands, surrounded by crop fields.  Rösch et al. (2013) investigated the effects 

of fragmented habitat on leafhoppers and concluded that species richness depended not just on 

the size of the habitat, but also composition of the surrounding landscape and connectivity of the 
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habitat.  Even though Holecová et al. (2018) found no effect of adjacent habitat on overwintering 

coccinellid assemblages, this was at coniferous sites only.  In this current study some other process 

may be influencing site differences, perhaps connectivity or adjacent land use or a combination of 

the two. 

 

What constitutes suitable habitat for coccinellids?  Comont et al. (2012) determined that the ability 

of a species to feed on a range of prey species was more important in determining the distribution 

of a species than habitat type.  However, prey preference and habitat type are intrinsically linked 

due to the fidelity of aphid species to specific plants (Dixon et al., 1987).  Given the homogenous 

nature of the coniferous sites in comparison to the deciduous woodland with a range of tree and 

shrub species, resulting in a greater range of prey species, one would expect a greater abundance 

of H. axyridis in deciduous woodland, yet this was not the case.  Aside from an adequate food source 

and suitable sites to facilitate successful reproduction, coccinellids require suitable overwintering 

sites.  Coniferous woodlands experience less extreme temperature variation than deciduous 

woodlands (Ferrez et al., 2011) and greater overwintering success as a result could explain the 

increased abundance of native coccinellids at these sites.  Another explanation is that there are 

several conifer specialist coccinellids in the UK and fewer deciduous specialists as many recorded 

at deciduous habitats tend to be generalist in their habitat preferences (Roy et al., 2013).  

Additionally, considering the preference H. axyridis has for more sheltered overwintering sites, it is 

possible that the large area of coniferous plantation in this study provided sufficient shelter to 

enable this species to overwinter successfully.  With a shortage of knowledge on coccinellid 

assemblages at overwintering sites (Pendleton & Pendleton, 1997-2019; Hodek, 2012; Holecová et 

al., 2018) investigating the overwintering coccinellid assemblages in coniferous woodland would 

provide further knowledge of coccinellid behaviour and importantly how climate change may 

influence coccinellid assemblages in the future. 

 

 

 

3.4.3 Vegetation structure and the coccinellid community 
There was a distinct difference in the coccinellid community in relation to vegetation structure 

between coniferous and deciduous sites.  Within these individual site types, vegetation structure 

affected both the abundance and distribution of different species.  The tree layer in both deciduous 

and coniferous woodland supported the greatest coccinellid diversity and in both cases differed to 

the herb layer.  At urban sites, Viglášová et al. (2017) found that coccinellid diversity also differed 

across the different vegetation types that were surveyed, with higher species diversity in trees in 

comparison to nettle stands.  In this study, coccinellid diversity differed in the tree and shrub layer 

at coniferous woodland, but not at deciduous woodland.  In field margins, Burgio et al. (2006) 
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reported higher diversity of coccinellids in mature hedgerows in comparison to younger hedgerows.  

Additionally, older hedgerows have been shown to have greater invertebrate diversity to that of 

younger hedgerows (Deeming et al., 2010).  One reason for the lack of a difference at deciduous 

woodland sites between the tree and shrub layers could be the choice of species for the shrub layer.  

All three of the deciduous sites were ancient woodland (BCN, 2019), while the coniferous sites were 

all based at a large Forestry Commission plantation woodland, which is less than a century old 

(Forestry Commission, 1951).  The shrub layer at deciduous sites is likely to have been much older 

than the shrub layer at coniferous sites (based on a combination of canopy cover, height and 

guidance from Bennett, 2016).  This essentially meant that the shrub layer consisted of immature 

individuals of the same species surveyed for the tree layer at coniferous sites.  Considering this, it 

is not surprising that no difference was apparent for deciduous sites: all four species surveyed were 

considerably more established than the shrub layer at coniferous sites.  However, the difference 

between the tree and shrub layer at coniferous sites is understandable as mature trees host a 

greater diversity of invertebrates, insects and coccinellids (Schowalter, 1989; also see above).  

Holecová et al. (2018) reported a significantly higher number of overwintering coccinellids in 

mature pine trees as opposed to younger pines.  This could be due to larger more mature trees 

having a greater quantity of less exposed areas thus offering a greater level of protection during 

the winter months. 

 

As well as greater species diversity, a larger and different coccinellid assemblage was associated 

with the tree layer than the shrub layer across both site types.  Janssen et al. (2017) found maturity 

of tree stands to be the most important factor for the assemblage of saproxylic beetles.  The herb 

layer in this study also hosted a very different coccinellid community to that of the tree and shrub 

layer, likely due to the very different food sources available in the herb layer (mildew, plant 

material, different aphids).  Similar findings were reported by Viglášová et al. (2017) for the 

coccinellid species observed on nettle stands.  The differences reported here relate to both site 

types with a unique coccinellid assemblage at both coniferous and deciduous sites.  Grass specialists 

dominated the herb layer at coniferous sites (e.g. T. sedecimpunctata & S. vigintiquattuorpunctata), 

while generalist coccinellids, such C. septempunctata dominated at deciduous sites.  Interestingly, 

Viglášová et al. (2017) reported seasonal differences in how C. septempunctata used different 

vegetation structures, with greater numbers in nettles in the summer, and higher abundance on 

trees later in the year.  No such seasonal effect was evident here, however, this species did make 

use of the different vegetation layers as previously illustrated. 

 

Native coccinellid diversity did not have an effect on the abundance of H. axyridis, however when 

native coccinellid diversity was higher, the probability of recording H. axyridis was lower.  Viglášová 
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et al. (2017) reported their lowest native coccinellid species diversity when H. axyridis abundance 

was highest, however their field sites were in urban habitats.  It is well discussed that H. axyridis is 

the dominant coccinellid at urban sites, however a different account is being observed in rural 

woodland and grassland.  For example, one would expect A. bipunctata to be more positively 

associated with H. axyridis, however, this native species appeared to be almost specialist in terms 

of habitat, being associated with the tree layer, and not with the shrub or herb layer as expected 

(Sloggett, 2008).  The relationship between H. axyridis and A. bipunctata is likely to be complex and 

likely to vary between habitats (urban/rural, tree/grass) and examination of this relationship should 

take place only when the entire coccinellid community is the focus of a study to elucidate the 

standing both of these coccinellids within their community as well as their roles in ecosystem 

function. 

 

 

 

3.4.4 Seasonality and coccinellids 
In this study, season did not drive the abundance of H. axyridis or native species at urban sites.  The 

only instances where season affected coccinellid abundance was at deciduous sites (H. axyridis 

more abundant in the summer) and in coniferous grassland (native species more abundant in the 

summer).  However, seasonality was reported as having an effect on coccinellid abundance in urban 

areas with Viglášová et al. (2017) observing greater numbers in autumn, particularly with common 

generalist species.  Seasonality is not an easy variable to consider based on the range of seasonal 

differences across large countries and continents as well as climate change resulting in non-

seasonal weather patterns happening more frequently (IPCC, 2007).  This makes it difficult to 

compare findings with other studies, however, if studies turn their focus to extreme weather events 

instead of seasonality on its own, it may be possible to determine the effects on species (Oliver et 

al., 2013). 

 

Environmental variables such as temperature, humidity and sunshine hours all play a role in 

coccinellid abundance (and that of their prey).  Hassan et al. (2009) found that relative humidity 

had a negative impact on aphid abundance while Brown et al. (2011a) found that mean maximum 

temperature correlated with the abundance of native coccinellid larvae.  Given that in this study, 

relative temperature and humidity were only recorded at the time surveying began, it is difficult to 

arrive at meaningful conclusions.  There were instances within the models where higher humidity 

seemed to negatively affect H. axyridis abundance.  This, however, would need to be followed up 

with a more comprehensive dataset with continuous environmental data readings.  It is possible to 

acquire environmental data from meteorological institutions, although these data would be coarse 

and not reflective of microclimates at survey sites.  Microclimate is often underestimated and some 
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coccinellids are known to prefer areas that are warm and sheltered (C. septempunctata) while 

others will tolerate a cooler microclimate (P. quattuordecimpunctata) (Honěk, 2012).  Taking into 

consideration the previously mentioned differences in microclimate of coniferous and deciduous 

woodland sites (Ferrez et al., 2011) and the differences between urban and rural areas in terms of 

temperature (George et al., 2007), drawing conclusions from analyses with these data would not 

give a complete picture of how environmental variables influence assemblages at specific sites.  In 

future research, continuous temperature and humidity should be recorded at survey sites using 

automatic weather stations which can remain at sites throughout the study period.  Automatic 

weather stations are capable of recording temperature, humidity, sunshine, rainfall and wind 

speed.  Incorporating this technology in future studies should help reveal the complex and 

connected way that environmental variables affect the coccinellid community. 

 

 

 

3.4.5 Prey and competitors associated with coccinellids 

3.4.5.1 Aphids 

At urban sites, there was a positive relationship between H. axyridis abundance and that of aphids.  

Honěk et al. (2018b) also reported a positive relationship with aphid abundance and that of H. 

axyridis in urban areas.  Additionally, Vandereycken et al. (2013) reported a positive relationship 

between aphids and coccinellids in a range of crop habitats.  However, when investigating 

coccinellids in urban areas, Viglášová et al (2017) found the relationship between common 

coccinellid species and aphid abundance to be non-linear with coccinellid abundance increasing 

with that of aphids, however when aphid abundance became very high, coccinellid abundance 

decreased. 

 

At rural sites, a negative relationship was observed between native coccinellid and aphid 

abundance at deciduous sites with the reverse observed with H. axyridis and aphid abundance at 

urban and coniferous sites.  The majority of coccinellids recorded at deciduous sites were C. 

septempunctata, which is a species that is known to tolerate areas with lower aphid density (Honěk, 

1985).  The third and fourth most recorded coccinellids at deciduous sites were P. 

quattuordecimpunctata and A. decempunctata, both of which are also tolerant of low aphid 

abundance (Honěk, 1985).  The relationship between coccinellid abundance and that of aphids, 

however, is not an easy one to tease apart.  As mentioned above, positive and non-linear 

relationships have been observed while, Brown et al. (2011a) and Brown & Roy (2017) did not find 

any correlation between H. axyridis or aphidophagous coccinellids and aphid abundance.   
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Michaud et al. (2016) suggested that aphidophagous coccinellids are able to adapt to aphid colonies 

as they develop.  As an aphid colony increases, coccinellid numbers (as well as other aphidophagous 

predators) will increase in order to feed and oviposit, so their offspring will have sufficient food 

resources upon emergence.  However, if there are too many individual predators, the aphid colony 

will collapse, leaving many offspring without sufficient resources to fully develop (Michaud et al., 

2016).  As a result, coccinellid predators need to be able to read the signals of when an aphid colony 

micro-habitat is at carrying capacity which could result in some researchers observing a non-linear 

or negative relationship between coccinellid and aphid abundance. 

 

In contrast seasonality affected aphid numbers, with greater numbers recorded in the summer.  

This is supported by Sequeira & Dixon (1997) who found that not only was aphid density seasonal 

but that this variation did not differ from one year to the other, even in years with low aphid 

abundance.  Burgio et al. (2006) also reported higher aphid abundance in summer, along with a 

higher abundance of coccinellids.  This corresponds in part with the results here of a greater number 

of H. axyridis observed in the summer in deciduous woodland, however not at coniferous sites, nor 

was there any seasonal effect on native coccinellid abundance at either rural site type.  However, 

in a longer-term study of aphids in pecan trees, Dutcher et al. (2012) reported that aphid 

abundances varied widely from one season to another.  Additionally, aphid abundance is 

dependent on the quality of the host plant (Sequeira & Dixon, 1997) and with many studies 

focussing on lime, sycamore and other urban tree species, it is possible that the lack of some 

expected relationships could be as a result of host species choice on the part of the researcher. 

 

Each study records aphid abundance in a slightly different way, however consistently within their 

own study.  Furthermore, the aphid data is often considered as an addition to the main question, 

for example the diversity of coccinellids, or the effect of invasive coccinellids on native 

counterparts.  More work is needed to investigate the relationship between aphids and their 

predators, approaching it from the aphid perspective.  It is often considered that the aphids present 

at the same time as coccinellids are suitable prey, however this may not be the case.  There are 

examples of A. bipunctata feeding on certain aphid species that are in fact inadequately nutritious 

for them (Sloggett, 2008).  Further studies could reveal more details about the aphid preferences 

of coccinellids and if species such as A. bipunctata are declining because of competition for food, 

IGP or an insufficient supply of appropriate food.  Additionally, the coccinellid species most often 

the focus of research tended to be generalist and ubiquitous species, for example C. 

septempunctata, P. quattuordecimpunctata, A. bipunctata and H. axyridis, with specialist 

coccinellids ignored.  However, Sloggett et al. (2008) illustrated that specialist coccinellids were 

more likely to remain in situ feeding on aphids, while generalist species left the area relatively 
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quickly after arrival.  Investigating the relationship between specialist coccinellids and aphids would 

be useful from the perspective of conservation as well as biological control.  There is a large volume 

of literature on aphid dynamics and their relationship with coccinellids (see Dixon & Dixon, 2000).  

These relationships are complex and the details are largely beyond the remit of the present study. 

 

 

3.4.5.2 Ants (Formicidae) 

More ants were recorded at coniferous sites than deciduous sites.  At coniferous sites, vegetation 

structure had no effect on ant or aphid abundance while a greater number of coccinellids were 

noted in the tree layer.  Conversely, season affected the ant and aphid abundance at coniferous 

sites, with a greater number of both taxonomic groups recorded in the summer, while season had 

no effect on native coccinellid abundance at the same sites.  Sloggett & Majerus (2000b) 

investigated the spatial relationship between coccinellids and ants on pine trees and also observed 

that ants were more abundant in summer, decreasing to almost zero observations by the end of 

September.  Furthermore, coccinellids tend to co-occur with ants and aphids when aphid numbers 

are particularly low (Sloggett et al., 2000b) which may indicate that aphids were sufficiently 

abundant for both the ant and coccinellid communities at coniferous sites.  The relationship 

between aphids and ants is a mutual one: ants tend to aphids, feeding on the honeydew produced, 

while the aphid colony expands and is protected from aphid predators such as coccinellids (Way, 

1963).  The relationship between ants, aphids and coccinellids is a complex one and without 

additional investigation at these sites, it is difficult to infer any further conclusions.   

 

 

3.4.5.3 Lacewings (Neuroptera) 

In contrast to ants, lacewing abundance was higher at deciduous woodlands.  It is possible that H. 

axyridis abundance at deciduous sites was lower as a result of greater abundance of lacewings.  

Firstly, some coccinellid species choose their oviposition sites dependent on the presence of other 

coccinellid species and/or lacewings (Ruzicka, 2001; Evans, 2003).  Secondly in laboratory tests, 

Nedvěd et al. (2013) showed that lacewing species outcompeted H. axyridis during intraguild 

predation.  At urban areas, both lacewing and H. axyridis numbers were higher than at rural areas.  

Given that lacewings and H. axyridis are thought to share the same habitat with little conflict 

(Nedvěd et al., 2013), it is possible that the abundance of prey was more than sufficient for these 

two taxonomic groups to inhabit the same space. 
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3.5 Conclusion and future work 
It is perhaps not appropriate to attribute the decline of native coccinellids solely to H. axyridis, as 

there have been cases where some native species were in decline prior to its arrival (e.g. A. 

bipunctata & C. quinquepunctata in Czech Republic, Honěk et al., 2016).  Environmental pressures 

such as climate change, intensification of agricultural practices (Honěk et al., 2016) and increased 

anthropogenic disturbance (Brown & Roy, 2018) may all have contributed to the initial decline of 

these species, but these pressures were compounded by the arrival of H. axyridis.  There are 

suggestions that this initial decline of native species will reverse and that the invasive and native 

populations may stabilise and co-exist (Hentley et al., 2016).  The long-term research by Honěk et 

al. (2016) illustrates just how important long-term population studies are in having baseline data 

prior to the establishment of an IAS but also in determining how native coccinellid abundance can 

fluctuate over several years.  More long-term studies in a range of habitats are needed to reveal a 

more complete picture on native coccinellid communities and how they change in the presence of 

IAS and other drivers of change. 

 

Coccinellid communities are not often the sole focus of studies and information on their structure 

tends to come as an add-on to other works (Honěk, 2012).  More research needs to be initiated to 

investigate the coccinellid community as a whole and not just focus on individual species.  

Considering the complex relationship between aphids and generalist coccinellids it is important to 

further understand the significance of a diverse coccinellid community, how the communities exist 

in different habitats and their role in ecosystem functioning, especially given the aforementioned 

evidence that specialists are likely to be more effective as biological control agents than generalist 

species. 

 

In this study there was a distinct difference in H. axyridis abundance between urban and rural sites.  

However, this IAS was less abundant than native coccinellids as a group within both rural woodland 

and rural grassland.  A distinct native coccinellid assemblage was present at all three vegetation 

layers.  Ancient woodlands as opposed to younger woodlands are a likely refuge for native 

coccinellids, particularly specialist species.  With increasing pressures from multiple drivers, it is 

important to continue research into the dynamics of complex native coccinellid communities.  
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4 The ecology of Coccinella quinquepunctata in the presence of 

Harmonia axyridis 
 

4.1 Introduction 
A large volume of literature exists concerning invasive alien species (IAS) and the effect they have 

on native flora and fauna.  The majority of studies relate to terrestrial systems, however, within this 

group, the vast majority of research focusses on plants with a small percentage investigating 

herbivorous species and very few concerning predators or organisms at other trophic levels (Lowry 

et al., 2013).  Kenis et al. (2009) reviewed primary research on invasion ecology relating to insects 

and examined a set of 403 papers.  The research tended to focus on species that have a negative 

economic impact such as invasive ants or invasive pollinators, with just six percent of publications 

concentrating on Harmonia axyridis (Kenis et al., 2009).  In the USA, researchers have also focussed 

on the negative impacts of Coccinella septempunctata and Propylea quattuordecimpunctata 

(Harmon et al., 2007; Losey et al., 2012b) but not to the same extent as the research on H. axyridis.   

 

Harmonia axyridis is popular in biological control due to its effectiveness as a pest controller in 

agricultural systems, however at the same time, several native coccinellid species have been 

displaced (Adriaens et al., 2008; Brown et al., 2011a; Sloggett, 2017).  Additionally, it is not yet clear 

if H. axyridis can take over the role that native coccinellids play in biological control should local 

extinctions occur (Roy et al., 2012).  As a result, the research on these biological control agents 

often concerns the effect the IAS may be having on native species, but more so on native species 

that were once abundant and have noticeably declined since the establishment of an IAS, such as 

Coccinella novemnotata in North America (Losey et al., 2012b) and Adalia bipunctata in the UK 

(Brown et al., 2011a).  Research that investigates the effect of IAS on coccinellid species that are 

considered specialists or are rare and may be at risk of local/national extinction as a result of 

pressure from IAS is uncommon.  Additionally, few studies have been undertaken to determine how 

rare/local coccinellid species contribute to their assemblages/habitat or how they may be affected 

by the presence of IAS such as H. axyridis (Sloggett, 2017).  Coccinella quinquepunctata, is a 

generalist coccinellid, abundant in Europe yet considered a specialist in the UK that may be at risk 

from H. axyridis. 
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4.1.1 Coccinella quinquepunctata – Five-spot ladybird 

Coccinella quinquepunctata (five-spot ladybird) is a small conspicuous ladybird, typically 5mm in 

length and red with black spots.  This species is not found in Ireland, whilst in the UK C. 

quinquepunctata is always recorded in a restricted habitat of unstable river shingle (Roy et al., 

2011).  Due to only a handful of records since 1913, C. quinquepunctata was considered extinct in 

the UK until 1987 (Majerus & Fowles, 1988).  As a result of the restricted distribution of C. 

quinquepunctata in the UK, this species falls under the Red Data Book Category 3 (RDB3) Rare.  The 

RDB3 classification is for taxa that are not yet endangered or vulnerable but are at risk due to 

restrictions in their habitat or geographical area (Hyman, 1992). 

 

Upon the rediscovery of C. quinquepunctata in the UK, more information became available 

regarding vegetation that this species was associated with on the shingle banks.  It was also noted 

that the species was more likely to be observed on low vegetation, not more than 30-45 cm in 

height (Majerus & Fowles, 1988).    In the late 1980s, surveys reported the species to be well 

established in west Wales on both the River Ystwyth and Rheidol as well as in south east Wales on 

Afon Tywi, with reports of up to 50 individuals recorded at some sites (Majerus & Fowles, 1988).  

Coccinella quinquepunctata was easily found on thistle or dock growing on river shingle along the 

Afon Tywi and River Severn in 2002 and 2003 (Bates & Sadler, 2004).  In Scotland, there were 

previous records of C. quinquepunctata in the early 1900s (Majerus & Fowles, 1988) and upon the 

rediscovery in Wales, surveys were subsequently undertaken at previously recorded sites in 

Scotland.  Since then, other sites of suitable habitat have been identified along the River Dee and 

surveys carried out resulting in further observations of this species in Scotland (Littlewood, 2015). 

 

 

4.1.2 Specialised habitat 

Climatic conditions in the UK are considered suboptimal for some coccinellids, resulting in the UK 

being the edge of the acceptable range for several coccinellid species (Brown & Roy, 2015).  

Coccinella quinquepunctata only persists in the UK in specialised habitats, in contrast to their 

mainland European populations (Majerus & Fowles, 1988).  This habitat is Exposed Riverine 

Sediment (ERS) or shingle banks that form along river bends, and several rivers that traverse Wales 

contain this feature.  Exposed riverine sediment is in a constant state of alteration due to the nature 

of the river systems and water levels rise and fall regularly (O’Callaghan et al., 2013).  Water levels 

not only rise in terms of height but water also moves inwards across the shingle to the extent of 

the terrestrial habitat during high/maximal flow periods.  The water level can rise in this way quite 

quickly (several metres in 30 minutes) and can reduce just as quickly, depending on the underlying 

geology of the upstream river catchment (Baker et al., 2004).  As a result, the invertebrate 
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community in these habitats are well adapted to the unpredictability of these shingle banks (Sadler 

et al., 2004).   

 

Bates & Sadler (2004) have described C. quinquepunctata as having an ERS fidelity grade of 1, like 

many invertebrates inhabiting ERS.  Essentially this means that C. quinquepunctata is dependent 

on unstable river shingle for at least one stage of its life cycle and is not found in other habitat 

unless it happens to resemble ERS in some way, for example lakes that have wave action resulting 

in a sediment similar to ERS (Bates & Sadler, 2004; Sadler et al., 2004).  However, due to 

anthropogenic disturbances such as gravel extraction, livestock access, channel modification and 

the establishment of invasive alien species, the quality of habitat is being degraded to the point 

that specialised invertebrate species are at risk (Hyman, 1992; Hewitt et al., 2010).  Impatiens 

glandulifera (Himalayan balsam) is an invasive herbaceous plant that is one of the tallest in the UK 

reaching 2.5 metres in height (Beerling & Perrin, 1993).  This IAS outcompetes native plants through 

its height by blocking light for smaller plant species (Pyšek & Prach, 1995; Tanner et al., 2014).  

Additionally, I. glandulifera alters the microbial soil community making it difficult for native plants 

to take root (Pattison et al., 2016).  Furthermore, the annual nature of I. glandulifera and its root 

structure, work together to de-stabilise the river bank leaving it more susceptible to erosional 

transportation away from situ during flooding (Pyšek & Prach, 1995; WISE Network, 2014). 

 

In central Europe, C. quinquepunctata is found in more generalist habitat such as trees, wild 

herbaceous vegetation and cereal fields (Honěk et al., 2014; Majerus et al., 2016).  This species, 

however, has been declining in central Europe over the last 40 years (Honěk et al., 2016).  Aside 

from the short studies above, few details are known about the one of UK’s rarest and most specialist 

ladybird species.  Discovering why C. quinquepunctata is so specialist in the UK would be a step 

towards being able to develop and implement an effective conservation plan for this species in the 

UK.  Given the RDB3 classification of C. quinquepunctata, discovering how this species lives 

alongside the invasive species H. axyridis, would prove insightful in an effort to fully understand 

how H. axyridis affects vulnerable native coccinellids in rural habitats (Roy et al., 2016). 

 

 

4.1.3 Effects of invasive coccinellids 

Invasive alien species are one of the biggest drivers of biodiversity loss (Sala et al., 2000; Roy et al., 

2014; IPBES, 2019).  A number of coccinellid species have established themselves in many countries 

outside of their native range.  In the USA, H. axyridis and C. septempunctata are well established 

(Harmon et al., 2007) and are considered to have played a role in the decline of C. novemnotata in 

North America (Tumminello et al., 2015; Ducatti et al., 2017; Ugine et al., 2018).  Coccinella 
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septempunctata was first established in 1983 and since then, C. novemnotata has gone from being 

the most prevalent coccinellid in the assemblage to not being found at all in 11 states (Harmon et 

al., 2007; Losey et al., 2012b).  When comparing C. novemnotata and C. septempunctata, 

Tumminello et al. (2015) found that the native C. novemnotata experienced a higher death rate 

when grouped with C. septempunctata rather than a conspecific.  Even though C. novemnotata was 

declining prior to the establishment of H. axyridis in the late 1980s, C. novemnotata was further 

impacted by resource competition and intraguild predation (Ducatti et al., 2017).  

 

In the UK, there was a 41% decline in the proportion of native aphidophagous coccinellids within 

three years of the first record of H. axyridis (Brown et al., 2011a).  Additionally, three native 

coccinellid species experienced a decline in numerical abundance in this timeframe and this decline 

continued for A. bipunctata over an 11-year period (Brown & Roy, 2017).  The decline of C. 

quinquepunctata in central Europe has some parallels to that of C. novemnotata in North America, 

in that this decline was underway prior to the establishment of H. axyridis (Honěk et al., 2016).  In 

contrast, C. quinquepunctata, although classified as rare and low in abundance, is stable in the UK 

(Brown & Roy, 2015; Roy et al., 2018).  With probable negative impacts to its habitat, C. 

quinquepunctata is particularly susceptible to negative impacts from H. axyridis through 

competition for prey and intraguild predation (Roy et al., 2016).   

 

Regardless of other pressures affecting native coccinellids, H. axyridis is a factor in how coccinellid 

communities have changed over recent years (Brown & Roy, 2017; Honěk et al., 2019a).  This is 

concerning, given that a diverse native coccinellid assemblage delivers invaluable services to their 

habitat by controlling aphids, coccids and other plant-predators (Sloggett et al. 2008; Grez et al., 

2014).  It is possible that C. quinquepunctata carries out such a role for the plant community that 

survives on ERS.  If H. axyridis were to become numerous or even dominant in this habitat, it is 

possible that, together with other invasive pressures, this habitat would become irreparably 

damaged thereby negatively effecting C. quinquepunctata and the wider community of specialised 

invertebrates (Sadler et al., 2004).  Together with the specialist characteristics of C. 

quinquepunctata and the negative effects IAS can have on native coccinellids, it is important to 

discover if H. axyridis is having a negative impact on the rare C. quinquepunctata in the UK.  
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4.1.4 Aims & Hypotheses 

The aim of the research presented in this chapter was to discover more about the ecology of C. 

quinquepunctata and if this nationally rare species may be at risk from H. axyridis.  

 

Taking into consideration the research presented above the following hypotheses are postulated 

• It was expected that C. quinquepunctata would be recorded but in low numbers 

• It was expected that H. axyridis would co-occur with C. quinquepunctata and in higher 

numbers than other native species.   

• Native coccinellids were expected to occur in the same habitat as C. quinquepunctata but 

in lower numbers to that of H. axyridis. 

 

 

4.2 Methods 
4.2.1 Field Sites  

Field sites were identified based on where C. quinquepunctata had previously been recorded as 

well as their proximity to each other to maximise number of survey locations within the timeframe 

available.  Within these sites, survey locations were randomly selected.  Twelve sites were identified 

from the NBN Atlas (https://nbnatlas.org/) on the Rivers Severn, Towy, Usk and Wye in Wales 

where surveys were carried out (Table 4.1).  In 2017, surveys were carried out in mid-June, mid-

August and late-September under the same conditions as those outlined in Chapter 3 (section 

3.2.2).  All sites were surveyed at least twice but poor weather conditions resulted in just eight of 

the sites being surveyed for a third time.  OS location and elevation from sea level were recorded 

using Garmin GPSmap 60CSx (Figure 4.2a).  Written permission from each respective landowner 

was acquired prior to any surveying taking part. 

 

Table 4.1: Location of all 12 sites surveyed in 2017. 

Location Codes Grid Refs. River 

Hay-on-Wye 
Glasbury 

HW 
GL 

SO22964 42815 
SO17930 39176 

Wye 

Llandinam LL01 
LL02 
LL03 

SO02206 89053 
SO02727 89387 
SO02562 89828 

Severn 

Llandovery LLGC 
LLCW 

SN75424 33439 
SN74434 32124 

Towy / 
Afon Tywi 

The Bryn BR01 
BR02 
BR03 

SO33073 09419 
SO33329 09571 
SO34237 08932 

Usk 

Abergavenny AB01 
AB02 

SO29276 13866 
SO29761 13667 

Usk 
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4.2.2 Survey methods 

Coccinella quinquepunctata has adapted to hide quickly if disturbed and instead of sweep netting, 

a survey method known as ‘direct search’ was carried out (Ausden & Drake, 2006) to survey the 

ERS/shingle banks.  Direct search is when the researcher(s) moves slowly through the habitat, to 

observe individuals of the target species.  Direct searching of ERS was carried out for one hour (30 

minutes on one occasion when two researchers were present).  The search was carried out by 

moving from the water’s edge to where the shingle bordered with grassland (became terrestrial in 

nature) and continued laterally over and back across the shingle (Figure 4.1).  Where each survey 

started was dependent on time of day to ensure that the researcher’s shadow did not disturb any 

individuals prior to observation or impair detection of individuals.  The area of shingle bank 

searched varied due to both changeable water levels and varying vegetation density throughout 

the season.   

 

The density of the vegetation on the shingle banks was assessed in broad categories based on 

percentage cover of the area surveyed: low (0-30%), medium (31-60%) or high (> 60%).  Plant 

species that the target species were observed on were recorded to genera or species level.  When 

C. quinquepunctata was recorded, the distance the individual was from the water’s edge was 

recorded as was its elevation from the substrate.   

 

Sweep-netting is a common method for surveying insects in grassland (Ausden & Drake, 2006) and 

was used to survey for coccinellids in such vegetation adjacent to the shingle banks (Figure 4.1).  

This method involves the use of a sweep net which is a white canvas bag (46 cm diameter) attached 

to a metal ring on a large pole.  One sweep was carried out for one metre of distance walked.  The 

net contents were checked every five metres for coccinellids, which were recorded and the net 

subsequently emptied.  This was carried out 20 times resulting in 100 metres of grassland being 

surveyed at each site.  Sweeping this size area took approximately 20 minutes.   

 

All coccinellids encountered during both methods were recorded and initially identified with the 

aid of two Field Studies Council (FSC) guides: Guide to ladybirds of the British Isles (Majerus et al., 

2010) and Guide to the ladybird larvae of the British Isles (Brown et al., 2012).  Some coccinellid 

species were group together to form the category ‘Other’ as there were too few of each species to 

apply meaningful analysis to.  These species were P. quattuordecimpunctata, T. sedecimpunctata, 

P. vigintiduopunctata and S. vigintiquattuorpunctata. 
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Figure 4.1: Illustration of a typical site with ERS/shingle bank bordered by grassland/pasture with the start 
point for direct search highlighted. 

 

 

4.2.3 Environmental conditions 

In order to standardise data collection, surveys took place between 10:00 and 16:00 when weather 

conditions were favourable.  Data collection was carried out when the temperature was greater 

than 14°C, weather conditions were dry and wind speeds were below 5 on the Beaufort scale (Met 

Office, 2016).  Some surveys were carried out when the temperature was below 14oC, however in 

these instances there was at least 60% sun.  Humidity and ambient temperature were recorded 

using an EasyLog EL-21CFR-2-LCD.  Any gaps in the temperature/humidity data were generously 

provided by the Met Office. 

 

 

4.2.4 Data analysis 

The analysis was carried out using R Studio (R Core Team, 2019).  As the data were count data, non-

parametric tests and generalised linear models (GLM) were applied.  Wilcoxon paired tests were 

used to compare abundances of difference coccinellid groups at the same locations, e.g. C. 

quinquepunctata and H. axyridis abundance on shingle.  The following R packages were used for 

basic analyses and visualisation of data: dplyr (Wickam et al., 2019), ggfortify (Horikoshi & Tang, 

2016; Tang et al., 2016), ggplot2 (Wickham, 2016), ggpubr (Kassambara, 2018).  For multivariate 

analyses three packages were used: Hotelling (Curran, 2018), lattice (Sarkar, 2008) and vegan 

(Oksanen et al., 2019).  The remaining packages used for regression analyses were: fmsb 

(Nakazawa, 2018), lmtest (Zeileis, 2002), pscl (Zeileis et al., 2008), sandwich, (Zeileis, 2004; Zeileis, 

2006), lattice and MASS (Venables & Ripley, 2002). 

 

 

4.2.4.1 Regression analysis 

Generalised linear models (GLM) were utilised to investigate the effects of habitat (shingle or grass), 

season (Visit – June, August, September), coccinellid diversity (Shannon diversity) and vegetation 

cover (Cover) on C. quinquepunctata abundance.  Environmental variables (temperature, humidity) 
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were included in the models.  The regression models (poisson, negative binomial (NB), zero-inflated 

poisson (ZIP) model and zero-inflated negative binomial regression (ZINB) model) were applied to 

the data.  Model selection was carried out using the same methods as those described in Chapter 

3 and resulting outputs can be found in Appendix 4 (Table A4.2a – A4.7b inclusive)  

 

 

4.2.4.2 Diversity Indices 

Shannon diversity was calculated for shingle and grass habitat separately and only for native 

coccinellid species.  Simpson’s diversity was not carried out as this measure is not sensitive to rare 

species or those recorded in low numbers (Magurran, 2004; Morris et al., 2014) and there are 

instances in this dataset where there are a number of species recorded in low numbers.  Differences 

in diversity across sites types and season were calculated using t-tests while ANOVA was used to 

assess any differences in diversity within the vegetation structure followed by a post-hoc Tukey, if 

any significances were apparent.  Regression models were applied to determine if native coccinellid 

diversity had any effect on the abundance of C. quinquepunctata and H. axyridis.  

 

 

 

4.3 Results 
In 2017, nine coccinellid species were recorded at 12 river sites in Wales with 687 individuals being 

recorded across both the shingle and grass habitat types (Appendix A4.1).  Coccinella 

quinquepunctata was present at all sites, while H. axyridis was only recorded at seven of the 12 

sites surveyed and was only more abundant than C. quinquepunctata at one site (Figure 4.2).  A 

significantly greater number of C. quinquepunctata were recorded on the shingle habitat in 

comparison to the grass habitat (z = 6.72, p < 0.0001), however there was no such difference when 

comparing H. axyridis abundance at both habitat types (Figure 4.3).  Coccinellid diversity was higher 

in the grass habitat than the shingle, however not significantly so. 
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Figure 4.2a & b: Map of survey sites along with mean number (+SE) per site visit of Coccinella quinquepunctata 
and Harmonia axyridis recorded at each site from both survey methods combined in 2017.  Sites: AB01 & 
AB02 = Abergavenny site 1 & 2; BR01, BR02 & BR03 = Bryn sites 1,2 & 3; GL = Glasbury; HW = Hay-on-Wye; 
LL01, LL02 & LL03 = Llandinam sites 1,2 & 3; LLCW = Cwmgwyn Farm; LLGC = Llandovery 

 

 

 

 

4.2a 

4.2b 
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4.3.1 Shingle habitat 

Six species of coccinellid were observed by direct searching (DS) of the shingle bank habitat.  In 

total, 592 coccinellids were observed by DS with the vast majority (77%) being C. quinquepunctata 

(Figure 4.3).  The second most abundant coccinellid on shingle was A. bipunctata (10.5%) with H. 

axyridis (7%) being the third most abundant species.  The abundance of C. quinquepunctata was 

significantly greater than that of H. axyridis on shingle habitat as revealed by the Wilcoxon signed-

rank test (Z = -4.32, p < 0.0001) (Figure 4.3).  Significantly more C. quinquepunctata were recorded 

in June (z = 2.57, p = 0.01) as opposed to in August and September (Figure 4.4).  Coccinellid diversity 

had no effect on C. quinquepunctata numbers on shingle, nor did vegetation cover.  There was no 

effect of season or vegetation cover on H. axyridis abundance on shingle banks.  However, the 

reduced model revealed that H. axyridis abundance was higher when coccinellid diversity was 

higher (z = 4.71, p < 0.0001) on shingle. 

 

 

 
Figure 4.3: Mean number (+SE) per site visit of coccinellids recorded on ERS and grassland in Wales in 2017.  
C5 = Coccinella quinquepunctata; Hax = Harmonia axyridis; A2 = Adalia bipunctata; C7 = Coccinella 
septempunctata; C11 = Coccinella undecimpunctata; Other = Propylea quattuordecimpunctata, Psyllobora 
vigintiduopunctata, Subcoccinella vigintiquattuorpunctata & Tytthaspis sedecimpunctata.  Consecutive 
letters indicate where significant differences occur for each test, i.e. a/b, p/q or x/y are three different tests. 
 

 

 

a (x) 

b 
p (y) 

p 
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Figure 4.4: Mean number (+SE) per site visit of Coccinella quinquepunctata recorded on shingle only at 12 
sites in Wales over three visits in June, August and September 2017.  Consecutive letters indicate where 
significant differences occur. 

 

 

4.3.2 Grassland habitat 

Of the 95 coccinellids recorded in grass adjacent to the shingle banks, the majority again were C. 

quinquepunctata (58%).  This habitat had a higher species richness than the shingle with nine 

species of coccinellid recorded. This difference was due to the presence of specialist coccinellids 

that are only found in grassland habitat (Psyllobora vigintiduopunctata, Subcoccinella 

vigintiquattuorpunctata and Tytthaspis sedecimpunctata).  There were significantly more C. 

quinquepunctata recorded in grassland than H. axyridis (Z = -2.728, p = 0.02) (Figure 4.3).  In 

contrast to the ERS habitat, abundance of C. quinquepunctata was higher when coccinellid diversity 

was higher (z = 2.99, p = 0.002) in the grassland. 

 

 

 

4.3.3 Distance and Elevation 

Coccinella quinquepunctata was found at a range of distances from the water’s edge.  Significantly 

fewer individuals were recorded further from the water’s edge at 16-20 metres and 26-30 metres 

(z = -2.76, p = 0.006 & z = -3.51, p = 0.0004 respectively).  The numbers recorded at the other three 

distances were also lower but not significantly so. (Figure 4.5). 

 

a 

b 

b 
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Coccinella quinquepunctata was observed at various heights from the shingle substrate, but was 

found more frequently at lower elevations with significantly fewer individuals recorded above 

three-quarters of a metre from the ground (z = -2.85, p = 0.004) (Figure 4.6). 

 

 
Figure 4.5: Mean number (+SE) per site of Coccinella quinquepunctata and the distance (in metres) from the 
water’s edge they were recorded at in 2017.  Consecutive letters indicate where significant differences 
occur. 

 
 

 
Figure 4.6: Mean number (+SE) per site of Coccinella quinquepunctata and the distance (in metres) from the 
substrate they were recorded at in 2017.  Consecutive letters indicate where significant differences occur.  

a 

ab 

b 

b 

ab ab 
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4.4 Discussion 
 

4.4.1 Coccinella quinquepunctata, Harmonia axyridis and other coccinellids 

Coccinella quinquepunctata was recorded in higher numbers than expected during the course of 

this research and more C. quinquepunctata were observed than H. axyridis on both the shingle bank 

and grassland habitat.  The habitat and generally rural nature of the habitat is likely to be less 

suitable for H. axyridis and consequently a refuge for C. quinquepunctata.  The low number of H. 

axyridis was surprising, however this species has a well-documented preference for urban habitats 

(Adriaens et al., 2008, Purse et al., 2014, Roy & Brown 2015; Viglášová et al., 2017) and in this case, 

all sites surveyed were in rural areas or on the edge of small rural villages.  Urban and anthropogenic 

habitats are more suitable for H. axyridis by providing secure overwintering sites in buildings (Roy 

et al., 2011; Roy et al., 2016).  Furthermore, the exposed riverine sediment (ERS) is a unique habitat 

with sparse vegetation stands where aphid numbers are perhaps too low to sustain a predator such 

as H. axyridis.  Honěk et al. (2018b) reported an increase in H. axyridis numbers when aphid 

numbers increased but also with an increase in the level of urbanisation.  Considering the lack of 

overwintering sites and reduced prey availability, it is interesting that H. axyridis was recorded at 

all.  Native coccinellid species were present in both habitats and A. bipunctata was present on ERS 

in greater numbers than H. axyridis, albeit not significantly so.  The overall low number of other 

coccinellid species recorded further reiterates that ERS is not a particularly suitable habitat for most 

coccinellids. 

 

In the grass habitat the low number of H. axyridis mirrored that of the overall number of 

coccinellids.  Despite the low number of coccinellids in grassland, there was a greater diversity of 

native coccinellids in this habitat than on the ERS.  Even though this was most likely due to the 

presence of three grass-specialist coccinellid species, the difference was not significant.  The time 

spent searching grass habitat was just less than half the time spent searching on ERS, which partially 

accounts for the lower numbers recorded.  Additionally, it is not possible to directly compare the 

two sampling techniques.  The number of C. quinquepunctata, however, was higher when 

coccinellid diversity was higher in the grass habitat only.  This could be due to a very low number 

of H. axyridis recorded in the grass habitat.  However, it is more likely that coccinellid diversity and 

abundance was higher where the habitat was less managed or disturbed thereby creating a more 

suitable habitat for coccinellids (Diepenbrock & Finke, 2013; Grez et al., 2014; Honěk et al., 2014).  

Further investigation into coccinellid diversity and the heterogeneity/disturbance of the habitat 

adjacent to ERS would reveal more about the interaction between C. quinquepunctata and other 

coccinellids as well as the native coccinellid community. 
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Given that C. quinquepunctata was considered extinct in the UK just over 30 years ago, it was 

interesting to find that this species was the dominant coccinellid at both habitat types.  Prior 

research indicated that H. axyridis would represent a negative pressure for this species.  When 

carrying out laboratory trials to determine rates of intraguild predation (IGP), H. axyridis was the 

dominant predator when placed with C. quinquepunctata (Ware & Majerus, 2008).  Thus, it is likely 

that should IGP occur, it would have a negative effect on C. quinquepunctata.  However, the results 

in this study indicate that habitat separation on ERS limit the interactions of these two species 

thereby limiting the opportunities for IGP.  In North America, pressure in the form of IGP and 

competition for resources from H. axyridis exacerbated the situation with C. novemnotata, which 

is found in only a small number of states and those numbers are greatly reduced (Ducatti et al., 

2017).  In Europe, C. quinquepunctata had been considered an abundant habitat generalist, 

however, this decline in abundance was evident prior to presence of H. axyridis (Honěk et al., 2016).  

It is thought that changes in land use together with the intensification of agricultural practices has 

impacted C. quinquepunctata in the Czech Republic (Honěk et al., 2016).  The results here indicate 

that H. axyridis is not currently impacting C. quinquepunctata negatively, due to very low 

abundance of the former, however, a combination of other pressures may negatively impact this 

nationally rare species. 

 

 

 

4.4.2 Distance & Elevation 

Less C. quinquepunctata were found further from the river’s edge.  This is surprising given that 

water levels can rise surprisingly quickly at such locations, which would not necessarily be a 

problem for adults but would be for eggs and pupae and possibly for larvae as well.  However, the 

vegetation that C. quinquepunctata was recorded on the majority of the time was thistle (Cirsium 

spp.) which tends to reach a maximum height of approximately one metre.  Moreover, a greater 

number of individuals were recorded above ground level, between a quarter and a half a metre 

from the substrate.  This plant species is architecturally quite stable and even if the water levels 

rise quickly (section 4.1.2), individuals that cannot fly or reach drier parts of the shingle are likely to 

find refuge higher up on the vegetation for the duration of the high flow period.  It is possible that 

C. quinquepunctata is closer to water to evade potential IGP or competition for resources from 

other native coccinellids such as A. bipunctata and C. septempunctata.  

 

Considering the unstable nature of the habitat in terms of structure but also climatically, C. 

quinquepunctata appears to have adapted well to ERS.  Adaptations in ground beetles (Carabidae) 
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that enable them to move more easily in ERS have been observed (Fowles, 1988).  Both adult and 

larval C. quinquepunctata move differently to other coccinellid species and tend to scuttle/run 

quickly across the shingle while if disturbed on vegetation, individuals will drop to the shingle and 

disappear very quickly (pers. obs.).  This behaviour is most likely an adaptation to life in an unstable 

and exposed habitat such as ERS (Sadler et al., 2004). 

 

 

 

4.4.3 Vegetation cover 

The density of vegetation cover on the shingle had no effect on the abundance of C. 

quinquepunctata, however there were instances when one site had yielded high numbers but 

subsequent visits resulted in considerably lower numbers with the only difference being that the 

vegetation density was considerably higher than at the time of the first visit.  During surveys in 

Scotland, Littlewood (2015) reported finding greater numbers on shingle with less vegetative cover.  

Given that the majority of plants that C. quinquepunctata was recorded on and the ability of this 

species to disperse at speed, it is possible that this could be a result of an issue with the survey 

method.  When sampling in Wales, it was difficult to move across the shingle during a search 

without brushing against the vegetation when it was present at high density.  Considering the 

reaction of C. quinquepunctata when disturbed, it is not surprising that less individuals could be 

recorded in densely vegetated areas of the shingle.  Alternatively, it may be that ERS that is sparsely 

vegetated is warmer.  Exposed riverine sediment is an exposed habitat and heats up quickly (Bates 

et al., 2009).  Given the high temperatures in central Europe where C. quinquepunctata has been 

more frequently observed, it may be that ERS is the only thermally suitable habitat for this species 

in the UK.  Furthermore, Cirsium spp. were the dominant taxonomic group on ERS and was the 

vegetation that C. quinquepunctata were most likely to be recorded on.  Even though it is a dietary 

generalist (Hodek & Evans, 2012), little is known about the specific dietary requirements of C. 

quinquepunctata.  In Europe it is found in cereal stands with low aphid numbers (Honěk et al., 2016) 

as well as on wild flower or grass stands that are well populated by aphids (Honěk et al., 2014). 

Meanwhile, in the UK, C. quinquepunctata is found on Cirsium spp. (thistle), Urtica dioica (stinging 

nettle) and Cytisus spp. (broom) (Majerus & Fowles, 1988).  Some Cirsium spp. have several 

phenologically different aphid species as predators (Völkl, 1989) which, combined with the 

persistence of Cirsium spp. on ERS and the higher temperature of this habitat, could explain why C. 

quinquepunctata has a preference for this unstable habitat in the UK.  Research into specific prey 

preferences and/or requirements of C. quinquepunctata would reveal more about why this species 

is so specialist in terms of its habitat preferences in the UK as well as increase our understanding of 

this species’ ecology. 
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4.4.4 Additional pressures 

The main finding here, that H. axyridis does not appear to be impacting C. quinquepunctata in 

Wales, was unexpected.  However, there are pressures that negatively impact the ERS which in turn 

are likely to have a subsequent effect on C. quinquepunctata.  The reason for the RDB3 (Rare) 

categorisation of this species is due to the habitat where it is found being at risk.  There are several 

threats to this habitat; invasive plant species, livestock access to shingle banks, gravel extraction 

and river modification (Fowles, 1988; Bates et al., 2007a; Hewitt et al., 2010).  Although IAS 

represent a considerable pressure, they are not solely responsible for the decline of native species. 

There are instances where IAS take advantage of a system that is already vulnerable and when 

removed from the habitat in question, native species that were in decline do not recover as 

expected, thereby indicating that IAS are not always the drivers of change (Vitousek et al., 1997; 

Didham et al., 2005).  Multiple IAS and various anthropogenic activities together culminate into 

drivers of change (Vitousek et al., 1997), and being clear on which factor happens to be the greatest 

threat will facilitate effective conservation plans for native species (Majerus et al., 2016). 

 

More than one invasive plant species was identified on or near the shingle habitat (e.g. Japanese 

knotweed, Fallopia japonica; monkey flower, Erythranthe guttatus), however, the species most 

likely to have the greatest negative and immediate impact is I. glandulifera (Himalayan balsam).  

Seven of the 12 sites surveyed here had established stands of I. glandulifera present.  This species 

potentially impacts C. quinquepunctata in two ways.  Firstly, I. glandulifera changes the microbial 

community of the soil which prevents native plant species from taking root (Pattison et al., 2016), 

thereby homogenising the ERS plant community.  During surveys, neither aphids nor any coccinellid 

species were seen on I. glandulifera plants (pers. obs.).  This is not surprising, given that Tanner et 

al. (2013) reported a reduction in coccinellid numbers on areas invaded by I. glandulifera in 

comparison to non-invaded areas, which is likely due to this species not having any natural enemies 

in its invaded range (Tanner et al., 2014).  Considering the significantly reduced abundance of C. 

quinquepunctata in the grassland adjacent to the shingle, the potential and inevitable lack of native 

plant species, as a result of I. glandulifera, providing a source of prey for C. quinquepunctata, could 

see the species become locally extinct in areas where I. glandulifera is not adequately controlled.  

If this habitat becomes too stable, vegetation succession becomes an issue and the specialised 

invertebrate community is negatively affected (Sadler et al., 2004).  On the other hand, I. 

glandulifera de-stabilises the shingle bank as it has shallow roots and the soil around it becomes 

more fragmented, so when the rivers are in flood, considerably more substrate than usual will be 

removed.  The ERS is in a constant state of flux (Fowles, 1994), however, this increased pressure is 
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likely to have an adverse effect not just on C. quinquepunctata but also the many other 

invertebrates (many of which are also nationally rare) that inhabit the shingle (Sadler et al., 2004). 

Livestock regularly have access to the shingle bank for water and will also graze on the bank.  This 

is likely to have a negative impact on C. quinquepunctata due to the additional disturbance of the 

ERS, given this species reliance on this habitat type.  Bates et al. (2007a) determined that trampling 

by livestock reduced the conservation value of the beetle assemblages on river shingle.  However, 

a small number of sites in this research, that were grazed by sheep during the entire field season, 

yielded the highest number of observations of C. quinquepunctata.  These sites also were clear of 

I. glandulifera and Day (2015) reported that grazing can be used to help control I. glandulifera 

successfully.  Nevertheless, this IAS can be readily removed by hand and uncontrolled livestock 

access is more likely to be negative rather than a positive influence for ERS.  Additionally, if the 

beetle and wider invertebrate assemblage of the shingle is compromised, this could have a knock-

on negative effect on C. quinquepunctata. 

 

One of the sites in this study had gravel extracted from it just prior to the final survey.  This process 

resulted in complete removal of the vegetation and a large layer of the shingle bank.  This site was 

the closest site to an urban area and in addition to the gravel extraction, the vegetation was highly 

managed throughout the entire survey period.  Coccinella quinquepunctata was present at the site 

but in lower numbers than elsewhere.  If the vegetation had not been cut back so severely and so 

frequently, it is possible that a greater number of C. quinquepunctata would have been recorded.  

This degree of disturbance to the shingle habitat and adjacent grassland mainly as a result of gravel 

extraction is a serious concern for C. quinquepunctata and other shingle-dwelling invertebrates 

(Sadler et al., 2004; Bates et al., 2007b).  This level of disturbance is especially concerning, 

considering that after river system modification took place, it was reported that all trace of ERS had 

disappeared from the midlands and south east of England (O’Callaghan et al., 2013). 

 

In Europe, C. quinquepunctata is in decline, however, in the UK, the species is stable (Roy et al., 

2018) and the numbers recorded during this research indicate this to be the case.  However, several 

coccinellid species have declined in recent years (Roy et al., 2018) and not necessarily solely as a 

result of the increased presence of H. axyridis.  Like all insects, coccinellids rely on an external 

source of heat and so are more sensitive to changes in temperature (Facey et al., 2014).  It is 

possible the decline in many UK species as well as the increase in C. quinquepunctata numbers (and 

other native coccinellids e.g. Hippodamia variegata, Adonis ladybird) is due to an increase in 

temperature in the UK over recent decades (Carrington, 2020).  Herbivorous insects such as aphids 

are particularly sensitive to temperature and could decline with a combination of continued 

increases in temperature as well as due to climatic induced changes to their food source (Clissold 
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& Simpson, 2015).  This would impact C. quinquepunctata and other aphidophagous coccinellids 

negatively and the expectation is that at the very least, the coccinellid community will change and, 

in certain cases, some coccinellid species numbers may decline (Honěk et al., 2017).  However, 

there are numerous pressures on ecological communities and what is clear is that no one particular 

pressure is solely responsible for biodiversity decline (Harvey, 2015) and different components of 

each individual community will react in their own way to these pressures (Stewart et al., 2015).   

Furthermore, should temperatures continue to rise, particularly in winter months, overwintering 

for coccinellids may be interrupted thereby resulting in fewer individuals surviving to the breeding 

season, resulting in an overall decline of coccinellids (Alaniz et al., 2020). 

 

 

4.4.5 Further work  

In European countries where C. quinquepunctata is relatively abundant (at least until recent years), 

there seem to be drier summers with higher temperatures.  Wales and Scotland are quite dissimilar 

in these terms, but on open ERS, the temperature can get quite high in comparison to nearby 

grassland (Bates et al., 2009).  This species may be highly phenotypically plastic and capable of 

adapting where optimal conditions are not present.  This plasticity would further enable the species 

to adapt its movement for survival in this inhospitable habitat, like other invertebrates inhabiting 

ERS have done (Sadler et al., 2004).  In the US, Coccinella novemnotata has exhibited morphological 

changes since the establishment of C. septempunctata indicating a degree plasticity (Losey et al., 

2012b).  Evolutionary ecology studies would help in learning more about how C. quinquepunctata 

has adapted to survive in such a marginalised habitat in the UK as well as indicating how well the 

species may fare in the face of climate change.  Additionally, molecular analysis into any genetic 

variation between the UK populations of C. quinquepunctata and those in other European countries 

(e.g. Czech Republic, Slovakia, Netherlands) would possibly reveal more information concerning this 

unusual habitat choice for C. quinquepunctata.   

 

Continued monitoring of C. quinquepunctata (both in Wales and Scotland) is necessary to detect 

any future changes in the population.  In the event of a decline in numbers, the continued 

monitoring of H. axyridis would further inform researchers if the IAS started to have an effect on C. 

quinquepunctata or if a different pressure may be having a negative impact.  Monitoring will also 

help determine a more complete distribution in the UK.  Investigation of any differences between 

urban and rural areas would further increase the small volume of knowledge on this species, as it 

is likely that C. quinquepunctata would be less inclined to inhabit urban areas given the disparity in 

abundance between it and H. axyridis.  Given that ERS is an important riparian habitat that is also 
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terrestrial in nature, additional studies into how the specialised invertebrate community contribute 

to ecosystem function would help bridge the gap between aquatic and terrestrial ecology in the UK. 

Finally, considering the specialist habitat preference of C. quinquepunctata, and numerous other 

rare invertebrate species, it would be prudent to designate habitat protection status on ERS in order 

to control livestock access, prevent gravel abstraction, river channel modification and initiate 

restoration or enhancement of the habitat where it has been damaged or removed. 

 

 

 

4.5 Conclusion 
This work adds to the small volume of knowledge on C. quinquepunctata.  It is evident that C. 

quinquepunctata is doing well in terms of abundance in Wales and is relatively unaffected by H. 

axyridis through IGP or resource competition.  The RDB3 Rare categorisation is justified for C. 

quinquepunctata considering the multiple pressures effecting ERS.  However, if this unique habitat 

continues not to be properly protected, then C. quinquepunctata is likely to decline to the point of 

extinction in the UK.   
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5 Differentiating between coccinellid species using a molecular 

method 
 

5.1 Introduction 

5.1.1 Molecular ecology 
The field of molecular biology has advanced significantly assisting in answering evolutionary and 

ecological questions generally unanswerable by observation alone.  Polymerase chain reaction 

(PCR) is the method used to amplify the DNA regions or loci of interest, resulting in so many copies 

that the product can then be observed/visualised using electrophoresis.  Another form of PCR is 

quantitative or real-time PCR (qPCR) for which there are two different methods.  One method uses 

a non-specific dye, such as SYBR Green, together with a pair of primers.  When SYBR Green binds 

to the double stranded DNA (dsDNA), it fluoresces. Therefore, the more DNA there is, the more dye 

can bind to it and the greater the fluorescence (Rowe et al., 2017).  A melting curve analysis can be 

done after to differentiate between sequences by length or composition (Rowe et al., 2017).  The 

second qPCR method is more specific and uses a fluorescent probe together with a primer pair.  The 

probe attaches to a specific area of the sequence and will only fluoresce if it has successfully 

attached to the complementary sequence it was designed to match. 

 

Primers are essential when synthesising DNA and PCR cannot operate without them.  They tend to 

be between 15-25 bp long and are specific to a target section of sequence of DNA (Rowe et al., 

2017).  Primers can be relatively general in the sequence they target, for example, a primer can be 

designed to detect insects only in an owl pellet to determine if insects make up part of their diet.  

Primers can also be quite specific, being able to detect just a known sequence of a species, for 

example, to detect coyote DNA in wolf scat to answer the question do wolves predate and eat 

coyotes.  The use of primers is wide-ranging in molecular analysis and the ecological method termed 

“DNA barcoding” also requires primers (Rowe et al., 2017). 

 

 

 

5.1.2 DNA Barcoding 
DNA barcoding is the identification of a specific species or group of organisms by using short 

sequences from a specific section of the genome, such as COI or 18S (Deagle et al., 2014).  The 

proposed locus choice for animals was COI, however, while this region seemed suitable for many 

taxa, there were several taxonomic groups where it was not possible to use COI (Deagle et al., 

2014).  For example, when targeting COI in nematodes, the amplification was regularly inconsistent 

mainly due to very high mutation rates of the nematode mitochondria which in turn led to struggles 
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in primer design (Creer et al., 2010).  As a result, there is currently no consensus as to which locus 

is best to use (Lawson Handley, 2015), however many animal focussed studies continue to use COI. 

 

 

 

5.1.3 Environmental DNA 
Environmental DNA (eDNA) is any DNA that has been released by an organism into its environment, 

for example in faeces, shed hair or skin, exuviae, pollen, etc. (Valentini et al., 2016).  With the 

refinement of molecular techniques, the use of eDNA was expected to make possible the detection 

of cryptic or rare species, especially in areas where it has perhaps been perceived they did not 

inhabit (Lawson Handley, 2015).  The process of identifying all the taxa present (or taxa from a 

specific group of interest) from an environmental sample, such as river water, is known as 

metabarcoding and utilises regions of approximately 600 bp (Deagle et al., 2014).  In the last 15 

years or so, researchers have investigated increasingly degraded DNA such as that found in faecal 

samples or gut contents of invertebrates (Symondson, 2002; Hoogendoorn & Heimpl, 2003; Dodd, 

2004; Sloggett et al., 2009) (see Section 5.14 for details).  This was made possible when, instead of 

targeting longer fragments of 500-800 bp, shorter fragments of between 90-250 bp were targeted, 

called mini-barcoding, which allowed the amplification of DNA in degraded samples (Chen, 2000).  

Following from this discovery Hänfling et al. (2016) suggested smaller fragments be used when 

detecting prey during gut content analysis and found that more species could be detected using 

12S (~100 bp) as opposed to CytB (~460 bp) due to larger fragments being broken down more 

quickly during the digestion process (Symondson, 2002).  When using species-specific primers, 

standard PCR can be used to analyse eDNA, however quantitative (qPCR) is becoming increasingly 

popular as it is more sensitive when DNA concentrations are very low (Freeland, 2016). 

 

 

 

5.1.4 Prey detection 
Detecting what a predator consumes can be achieved by observing the predation act itself or by 

microscopically going through gut content (Chen, 2000).  However, less invasive and less time-

consuming methods have been investigated in the last two decades.  Protein electrophoresis 

identifies different enzymes by producing different bands depending on the enzyme, however it is 

unable to determine if more than one species has been consumed (Symondson, 2002).  Enzyme 

linked immunosorbent assays (ELISA) have frequently been used in studies investigating prey 

detection in predator gut.  This method utilises monoclonal antibodies and a resulting colour 

change to determine/identify the prey (Symondson, 2002; Dodd, 2004; Aebi et al, 2011).  This 

method, however, is costly and there are some issues with cross-reactivity (Symonds, 2002; Aebi et 
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al., 2011).  Gas chromatograph-mass spectrometer (GC-MS) can also be used in prey detection 

(Gladyshev et al., 2000) however it is expensive and can rarely identify prey to species level (Aebi 

et al., 2011).  In the last decade or so, molecular methods have been employed to determine prey 

species in gut or faecal samples.  A series of early studies successfully used DNA-based methods to 

successfully detect Collembola (springtail) species in Linyphidae (spiders) (Augusti et al., 2003), 

aphids in Chrysopidae (lacewings) (Chen et al., 2000), Lepidoptera (butterfly) prey in Coccinellids 

(ladybird) (Hoogendoorn & Heimpel, 2001) and Arionidae (slug) species in Carabidae (ground 

beetle) species (Dodd, 2004).  These molecular methods are also proving effective in the detection 

of intraguild predation (IGP) from gut content analysis as species-specific markers can be designed 

to detect prey. 

 

 

 

5.1.5 Intraguild predation 
Intraguild predation (IGP) occurs when the competition between two predators of the same prey 

results in either one of these predators preying on the other (Polis et al., 1989).  IGP generally occurs 

if there is a scarcity of usual prey items and can result in a considerable decrease of the intraguild 

prey species (Holt & Polis, 1997).  More often the scenario results in the smaller of the predators 

becoming prey as documented by Fedriani et al. (2000) when they found coyote to prey on both 

gray foxes and bobcats but not vice versa.  IGP has been documented in several species, specifically 

invertebrates; larval Cerambycidae (longhorn beetle) as predators of Scolytidae larvae (bark beetle) 

(Dodds et al., 2001); Dikerogammarus villosus predation on Gammarus species (MacNeill & 

Platvoet, 2005); Carabidae predating Linyphidae species (Davey et al., 2013); Harmonia axyridis 

predating on both Adalia spp. (Brown et al., 2015).  Many occurrences of IGP often transpire when 

an invasive alien species (IAS) is predating on a native species, perhaps in the same family or genus.  

In addition to this pressure, IAS also affect native species by competing for resources.  One such 

instance of an IAS impacting native species in this manner is H. axyridis (Brown et al., 2015).  The 

impact this species can have on native generalist coccinellids is severe and there is concern that 

specialist coccinellids could be at greater risk (Majerus et al., 2016). 

 

 

 

5.1.6 Coccinella quinquepunctata – Five-spot ladybird 
Coccinella quinquepunctata (five-spot ladybird) is a medium-sized ladybird that was considered 

extinct in the UK until 1987 (Majerus & Fowles, 1988).  Whilst more generalist in some other parts 

of its range, in the UK this species is usually recorded in a restricted habitat of unstable river shingle 

(Roy et al., 2011).  The river banks that C. quinquepunctata is recorded on are in constant flux and 
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as a result, the invertebrate community are adapted to the unpredictability of such habitats (Sadler 

et al., 2004).  When C. quinquepunctata was rediscovered, a small number of studies were 

undertaken to reveal the characteristics resulting in good habitat for this species (Majerus & 

Fowles, 1988) (See Chapter 4.1 for a more in-depth description of C. quinquepunctata in the UK).   

 

The three short studies cited above constitute most of the research done on C. quinquepunctata, 

which shows that relatively little is known about one of the UKs rarest and most specialist ladybird 

species.  Given the RDB3 classification of C. quinquepunctata, and how H. axyridis can so negatively 

affect other native coccinellids (see Section 5.1.8), it is essential to discover what effect the 

presence of H. axyridis may be having on this specialist coccinellid (Roy et al., 2016). 

 

 

 

5.1.7 Harmonia axyridis – Harlequin ladybird 
Harmonia axyridis (Harlequin ladybird) is a large ladybird native to Asia and often used as a 

biocontrol method for the control of aphids (Iperti, 1999).  Because of its success as biocontrol, it 

has been used extensively on most continents resulting in population explosions to the point that 

it is now considered a global IAS (Majerus et al., 2006 a/b; Brown et al., 2008/2011; Roy et al., 

2016/2012/2014; Rondoni et al., 2014).  Harmonia axyridis outcompetes native coccinellids and 

other insects, such as lacewings, for prey.  As previously mentioned, this species is an intraguild 

predator of other coccinellids and lacewings and is implicated in the decline of some species (Adalia 

bipunctata, Coccinella septempunctata, Propylea quattuordecimpunctata) in the last two decades 

(Brown et al., 2011a).  It has been suggested that this decline is in part due to IGP by H. axyridis 

(Brown & Roy, 2018).  Thomas et al. (2013) successfully developed specific markers for Adalia 

species and revealed that H. axyridis was indeed a predator of these species in the UK.  Following 

from this success, Brown et al. (2015) investigated IGP by H. axyridis in five European countries and 

also determined that whilst IGP occurred in France, Slovakia and the Czech Republic, A. bipunctata 

was not detected as prey in these countries whereas A. decempunctata was.  Additionally, Rondoni 

et al. (2015) revealed IGP of A. bipunctata by H. axyridis in Italy, but at a lower occurrence to that 

in the UK with Oenopia conglobata (a coccinellid species not found in the UK) being detected more 

frequently that A. bipunctata.  In China, Yang et al. (2017) successfully detected IGP between H. 

axyridis and C. septempunctata.  From the evidence, it is apparent that H. axyridis is a top intraguild 

predator and it is possible that this species is a serious threat to rare coccinellids such as C. 

quinquepunctata. 
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5.1.8 Aims & hypotheses 
This study aimed to design a molecular marker specific for C. quinquepunctata, which could enable 

the detection of the species as well as being able to differentiate it from other coccinellid species, 

including H. axyridis.  With such a molecular marker it would be possible to investigate if H. axyridis 

preys upon C. quinquepunctata by analysing the gut content of H. axyridis collected in or near C. 

quinquepunctata habitat.  It was hypothesised that: 

• enough mutations unique to C. quinquepunctata would be found to allow the development 

of species-specific primers.  

• With these species-specific primers, it would be possible to determine if intraguild 

predation occurred between C. quinquepunctata and H. axyridis. 

 

 

 

5.2 Methods 

5.2.1 Field Collection 
Native coccinellids were collected for molecular analysis during field data collection at Welsh field 

sites in 2017 (Chapter 4.2).  A direct search was carried out on shingle banks to assess C. 

quinquepunctata numbers in their specialised habitat.  This survey method of the shingle bank was 

carried out for one hour (30 minutes if two researchers present).  A more in-depth account of the 

field methods can be found in Chapter 4.2.2.  A maximum of three individuals (either adult or 4th 

instar larvae) were collected at sites where C. quinquepunctata was encountered more than three 

times.  When other native coccinellid species were encountered more than twice, up to a maximum 

of three individuals of that species were also collected and stored in 70% ethanol and placed in a -

20oC freezer.  In this case, four additional coccinellids species were collected; Coccinella 

undecimpunctata, C. septempunctata, Adalia bipunctata, and Propylea quattuordecimpunctata.  All 

individuals of H. axyridis that were recorded were also collected. 

 

 

 

5.2.2 DNA Extraction and determination of DNA concentration 
DNA extraction was carried out using a Qiagen DNeasy Blood and Tissue kit and according to the 

manufacturer’s instructions.  Each individual coccinellid was placed in an Eppendorf tube (1.5ml) 

with 180μl of ATL buffer (Qiagen® DNeasy® Blood and Tissue kit) and 20μl of proteinase K 

(600mAU/ml).  The contents were then crushed using a sterile micro pestle and subsequently 

placed in a vortex for 10 seconds. The samples were incubated overnight at 56 oC.  After incubation, 

extraction continued as per the manufacturer’s instructions.  Stock DNA was stored at -20oC.  A 
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working aliquot of each DNA extract was kept at 4oC.  To determine the concentration of DNA and 

confirm that the extraction process was successful, a NanoDrop (ThermoFisher) was used.  Any 

samples with concentrations greater than 250 ng/μl were diluted to ensure that the PCR reactions 

were not inhibited by a high concentration of DNA. 

 

 

 

5.2.3 DNA sequence assessment for species-specific primer design 
Sequences for several coccinellid species, including for C. quinquepunctata, H. axyridis and C. 

septempunctata were acquired from GenBank®.  At the time, just one author had provided 

sequences for C. quinquepunctata and so all sequences of this species came from the same study 

by Magro et al. (2010) (Table 5.1).  For consistency the sequences for C. septempunctata and H. 

axyridis utilised in the alignment process were also taken from this study.  Using T-Coffee Multiple 

Sequence Alignment (EMBI-EBL, 2018), sequences were aligned and any differences between them 

identified by eye to determine if a specific primer could be developed for C. quinquepunctata.  

Sequences from five regions were aligned: COI, 12s, 16s, 18s and 28s.  There were no available 

sequences for COII for C. quinquepunctata and so this region was excluded from alignment.  

Differences between the sequences for the three coccinellid species C. quinquepunctata, C. 

septempunctata and H. axyridis were assessed.  The rationale behind this choice of species is as 

follows.  Given that H. axyridis is an IAS that is a highly successful generalist predator, guaranteeing 

that specific primers for C. quinquepunctata would not amplify H. axyridis is essential for successful 

detection of intraguild predation.  As well as being highly abundant, C. septempunctata is in the 

same genus as C. quinquepunctata.  Therefore, any primers that could differentiate between these 

two species, would have a high probability of being species specific.  Percentage identity was 

calculated to compare the similarity of the C. quinquepunctata and C. septempunctata sequences 

as well as for C. quinquepunctata and H. axyridis.  The percentage identity was calculated using T-

Coffee Multiple Sequence Alignment (EMBL-EBI, 2018). 

 

 

Table 5.1: Three target coccinellid species and their GenBank Accession numbers available for 
mitochondrial regions (mtDNA – COI, 12S & 16S) and nuclear regions (18S &28S). 

GenBank Accession Number 

Species COI 12S 16S 18S 28S 

C. quinquepunctata GU073928 FJ621320 GU073841 GU073684 FJ621326 

H. axyridis GU073932 FJ621323 GU073846 GU073689 FJ621330 

C. septempunctata GU073929 FJ621321 GU073842 GU073685 FJ621328 
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5.2.4 Testing of cross-species markers 
Literature searches were carried out to check for species-specific markers that were developed for 

coccinellid species.  Just two papers reported such markers; Thomas et al. (2013) and Yang et al. 

(2017).  Subsequently, five primer pairs were selected and tested (Table 5.2) for cross-species 

amplification in C. quinquepunctata and other coccinellid species including, H. axyridis, C. 

septempunctata, Adalia bipunctata, A. decempunctata, C. undecimpunctata, Propylea 

quattuordecimpunctata and Exochomus quadripustulatus. 

 

 

Table 5.2: Primer characteristics 

Primer Gene Target species Sequence TA(oC) Amplicon 

(bp) 

COI-Abip COI A. bipunctata F: GACCCAATGGATGAAACC 

R:GGATTAAGAGGAATACCACGAC 

63 → 58* 80 

COI-Adecem COI A. decempunctata F:GGATTACTCCAGTTAAGCC 

R:GACTTGCAACATTACACGG 

63 →52* 105 

ITS-AD2 ITS1 Adalia spp. F:CGTAGAGAACGGGATTCGTC 

R:TTATGTTTGTGTTGTCTCACGTC 

53 99 

SEP COI C. septempunctata F:AATATGAGCCGGAATAATT 

R:TCCAATTATTAAAGGAACAAG 

52-56** 196 

HAX COI H. axyridis F:AATTGTTACAGCTCATGCT 

R:CCCCTATTTCTACGATTG 

54-58** 197 

* These protocols were both touchdown PCR, see Section 5.2.4 for details; ** These primers were tested at 
three different temperatures within the ranges above, see Section 5.2.4 for details; COI-Abip, COI-Adecem 
& ITS-AD2 from Thomas et al., 2013; SEP & HAX from Yang et al., 2017. 

 

 

All amplifications were performed in 20μl reactions containing: 10μl MyTaq Mix (Bioline), 4μl 

ddH2O, 2μl DNA and 2μl of Primer-F and Primer-R (0.5μM).  The PCR protocol for COI-Abip was 

modified from the protocol reported by Thomas et al. (2013) with: 94oC for 3 minutes, followed by 

10 cycles of [94oC for 1 minute, 63oC for 1 minute and 72oC for 1 minute] with each cycle’s annealing 

temperature decreasing from 63oC by 0.5oC to 58oC in the last cycle.  This was followed by 35 cycles 

of [94oC for 1 minute, 58oC for 1 minute and 72oC for 1 minute], and a final extension at 72oC for 10 

minutes and held at 4oC.  COI-Adecem was also run on touch down protocol that was taken from 

Thomas et al. (2013) with: 94oC for 3 minutes, followed by 10 cycles of [94oC for 1 minute, 62oC for 

1 minute and 72oC for 1 minute] with each cycle’s annealing temperature decreasing from 63oC by 
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1oC to 52oC in the last cycle. This was followed by 30 cycles of [94oC for 1 minute, 52oC for 1 minute 

and 72oC for 1 minute], and a final extension at 72oC for 10 minutes and held at 4oC.  The PCR 

programme for ITS1-AD2, also modified from Thomas et al. (2013) was: 94oC for 3 minutes, followed 

by 40 cycles of [94oC for 1 minute, 53oC for 1 minute and 72oC for 1 minute], a final extension at 

72oC for 10 minutes and held at 4oC. 

 

The initial trials of the SEP & HAX primers were carried out using the reported conditions by Yang 

et al. (2017) with one exception; the number of cycles to test the HAX primer were increased from 

40 to 45 in line with the SEP primers.  The first protocol using SEP was: 94oC for 4 minutes, followed 

by 45 cycles of [94oC for 30 seconds, 56oC for 30 seconds and 72oC for 30 seconds], a final extension 

at 72oC for 10 minutes and held at 4oC.  The first protocol using HAX was the same as for SEP except 

the annealing temperature was 54oC for the duration.  Based on the results found using these 

protocols, the PCRs of these two primers were repeated with changes made to the annealing 

temperatures.  In order to decrease the specificity, the annealing temperature for two additional 

PCR trials involving SEP was decreased to 54oC and 52oC respectively.  Conversely, to increase the 

specificity of the HAX primer, the annealing temperature was increased for additional PCR trials to, 

56oC and 58oC respectively. 

 

Electrophoresis was used to separate the resulting PCR amplicons.  A 2% agarose gel in 0.5% TAE 

buffer stained with 9μl of GelRed®(Biotium) was used.  Depending on the well size, between 1.5μl 

and 3μl of Coral Red loading dye was added to 5μl and 7μl PCR product respectively.  This mix was 

then loaded into the gel alongside a Hyperline ™ 25bp ladder (Bioline) (Figure 5.2 a, b & c).  The gel 

was run at 70-90V for between 60 and 90 minutes.  The agarose gels were visualised under a UV 

Transilluminator and photographs taken for analysis. 

 

 

 

5.3 Results 

5.3.1 DNA sequence assessment for species-specific primer design 
When sequences were aligned for each of the five regions, using three coccinellid species as a 

starting point, the sequences exhibited very few differences from each other.  The percentage 

identity calculations (Table 5.3) illustrate how similar both the C. septempunctata and H. axyridis 

sequences are to those of C. quinquepunctata, with a mean percentage identity of almost 95% for 

the two closely related species and over 90% for H. axyridis and C. quinquepunctata.  
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Table 5.3: Percentage Identity generated using T-Coffee Multiple Sequence Alignment to compare 
similarity of C. quinquepunctata sequences to C. septempunctata and H. axyridis. 

 COI 12S 16S 18S 28S Mean Percentage 
Identity 

C. quinquepunctata 
& C. septempunctata 

87.79 93.62 95.38 99.45 97.90 94.83 

C. quinquepunctata 
& H. axyridis 

84.69 87.16 88.31 98.78 93.75 90.54 

 

 

When comparing the three species’ sequences at the five different loci, there were a few instances 

per locus where the sequences all differed and this was only by one base pair (Figure 5.1).  It was 

discussed and decided that at least three bases changes/mutations would be necessary that were 

unique to C. quinquepunctata in a short region (<10bp) to develop a species-specific primer.  The 

lack of differences found between sequences meant that it was not possible to develop a species-

specific primer for C. quinquepunctata. 

 

 

 
Figure 5.1: Example of aligned sequences illustrating the similarity between the three coccinellid species using 
a section of the mitochondrial 12S ribosomal RNA gene; blue = differences between C. quinquepunctata and 
other two species; yellow = differences between C. quinquepunctata and H. axyridis but not C. 
septempunctata; grey = differences between C. quinquepunctata and C. septempunctata only. 

 

 

 

5.3.2 Testing of cross-species markers 
All five primer pairs amplified their target species.  There was non-specific amplification of large 

sections of DNA from some primers for C. quinquepunctata (COI-Abip, ITS1-AD2, Hax), C. 

septempunctata (ITS1-AD2, Hax) and H. axyridis (COI-Abip, ITS1-AD2, Sep).  Both COI-Abip and COI-
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Adecem were proven to be species-specific primers, amplifying just the target species, Adalia 

bipunctata and A. decempunctata respectively, with only a few instances of non-specific 

amplification, which was of fragments of over 300bp (Figure 5.2a).  The ITS-AD2 primer was 

designed to amplify Adalia spp. (Thomas et al., 2013), however, in this case C. septempunctata was 

also amplified by this primer (Figure 5.2a). 

 

The primer SEP was expected to be species-specific to C. septempunctata (Yang et al., 2017), which 

was the case when the annealing temperature was 56oC, however, when the annealing 

temperature was reduced to 52oC, H. axyridis was also amplified (Figure 5.2b).  The HAX primer, 

reported to be species-specific to H. axyridis (Yang et al., 2017), amplified several other coccinellid 

species consistently and amplifying segments of a very similar length to those expected for H. 

axyridis. This non-species-specific amplification included C. septempunctata and C. 

undecimpunctata, both of which are the same genus as C. quinquepunctata.  This was apparent at 

different annealing temperatures (Figure 5.2c).   
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Figure 5.2a: Gel images illustrating the PCR results of the COI-Abip, COI-Adecem and ITS1-AD2 primers.  A2 = 
A. bipunctata; A10 = A. decempunctata; C5 = C. quinquepunctata; C7 = C. septempunctata; C11 = C. 
undecimpunctata; ExQ = E. quadripustulatus; HX = H. axyridis; Lddr = Ladder; P14 = P. quattuordecimpunctata; 
-ve = negative control. 
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Figure 5.2b: Gel images illustrating the PCR results of the SEP primers at annealing temperatures of 56oC, 54oC 
and 52oC.  A2 = A. bipunctata; A10 = A. decempunctata; C5 = C. quinquepunctata; C7 = C. septempunctata; 
C11 = C. undecimpunctata; ExQ = E. quadripustulatus; HX = H. axyridis; Lddr = Ladder; P14 = P. 
quattuordecimpunctata; -ve = negative control. 
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Figure 5.2c: Gel images illustrating the PCR results of the HAX primers at annealing temperatures of 54oC, 
56oC and 58oC.  A2 = A. bipunctata; A10 = A. decempunctata; C5 = C. quinquepunctata; C7 = C. 
septempunctata; C11 = C. undecimpunctata; ExQ = E. quadripustulatus; HX = H. axyridis; L / Lddr = Ladder; 
P14 = P. quattuordecimpunctata; -ve = negative control.  
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5.4 Discussion 

5.4.1 Primer design 
Previous studies investigating intraguild predation (IGP) in coccinellids have focussed on predator 

interactions between H. axyridis and other generalist and typically abundant species such as C. 

septempunctata, A. bipunctata, A. decempunctata, Propylea japonica and P. 

quattuordecimpunctata (Hautier et al., 2008; Sloggett et al., 2009; Brown, 2010; Thomas et al., 

2013; Brown et al., 2015; Rondoni et al., 2015; Yang et al., 2017).  This current research aimed to 

develop a molecular marker to determine if H. axyridis preyed upon a rare and specialist coccinellid, 

C. quinquepunctata.  The marker needed to be species-specific to differentiate clearly C. 

quinquepunctata from the potential predator (H. axyridis) and other possible related prey.  Despite 

previous studies having successfully developed and used markers to detected IGP in coccinellids 

(Thomas et al., 2013; Brown et al., 2015; Rondoni et al., 2015, Yang et al., 2017), it became apparent 

early on that in this case, developing a species-specific marker was not straightforward and may 

not be possible with the time and resources available for this study. 

 

The aforementioned studies succeeded in developing species-specific primers based on unique 

sequence sections identified when comparing sequences available from GenBank (Thomas et al., 

2013).  This method is not only cost effective but also saves a considerable amount of researcher 

time.  However, King et al. (2008) recommended that researchers rely less on sources of sequences 

such as GenBank and instead carry out their own sequencing.  There are several reasons for this, 

including not enough individuals being sequenced and the possibility of false-negatives when trying 

to detect prey (King et al., 2008).  Due to the timescale of this piece of work, this option was not 

available and so GenBank was used as a source of sequences.  There is a plethora of sequences 

available on GenBank for the more common coccinellids such as H. axyridis, C. septempunctata, A. 

bipunctata etc.  However, there are very few sequences available for the less common or more 

specialist coccinellids. There was only one study (Magro et al., 2010) that had provided sequences 

for C. quinquepunctata.  The sequences available were only for the regions, COI, 12S, 16S, 18S and 

28S and were obtained from two individuals from a population in Wales.  For consistency, the 

sequences used for H. axyridis and C. septempunctata were also from Magro et al. (2010).   

 

When comparing the sequences available a very high proportion of similarity was found between 

C. quinquepunctata and both C. septempunctata and H. axyridis.  This high level of similarity 

between the different species was unexpected. Therefore, it was decided that the sequences 

analysed did not provide a unique enough anchor to develop species-specific primers. If the 

development of molecular markers that allow the investigation into less common or more specialist 

coccinellid IGP is to be pursued, it is recommended that the laboratory carry out their own 
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sequencing to avoid any concerns over reliability of sequences from other sources.  In this case, 

there were concerns in particular about the origin of the sample and if the sequence reflected the 

mutations of a single individual or were representative of the population. Having sequences 

available from more individuals (e.g. five individuals per population) would allow detection of which 

mutations are unique to the species and which differ between individuals or populations.  Finally, 

increasing the loci that are sequenced would increase the likelihood of finding a region with enough 

unique mutations to develop a reliable species-specific marker. Unfortunately, it was not possible 

to investigate this within the timeframe of this research.   

 

When attempting to design primers that are to be species-specific, it is widely accepted that 

mitochondrial loci such as COI or 12S are more appropriate than loci in nuclear DNA, including the 

ITS1 region (Dodd, 2004; King et al., 2008).  However, it has also been noticed that COI is not a 

universal answer.  For example, when attempting to design species-specific primers for lumbricid 

earthworms, the COI region showed too much diversity within this species group and it was only 

possible to design group-specific primers using 12S for the same species group (Harper et al., 2005). 

Another factor is that, some primers that are designed for the COI region can on occasion coamplify 

COII which can lead to double banding which could cause confusion when interpreting the results 

(Symondson, 2002). It could be worth considering a variety of regions from the mitochondrial and 

the nuclear DNA such as 12S or a combination of 12S and 16S (Freeland, 2016).  Due to the 

deteriorated nature of the DNA, sequences are short and in low concentration.  Therefore, a good 

marker for IGP needs to be able to amplify mitochondrial DNA or repeated sections of nuclear DNA, 

as well as being species specific (Lawson-Handley, 2015). 

 

 

 

5.4.2 Previously designed primers  
Primers available from previous studies (Thomas et al., 2013; Yang et al., 2017) were tested under 

a variety of PCR conditions to determine if they amplified C. quinquepunctata, even if it was known 

that they also amplified other species, including H. axyridis. If the amplicon obtained had been clear 

and single banded, it may have been possible to design a way to reliably differentiate between the 

amplicons of different species (e.g. using a melting curve or restriction enzymes).  However, this 

was not the case, since these primers were either too specific or not specific enough. 

The COI-Adecem and COI-Abip primers (Thomas et al., 2013) were too specific while ITS1-AD2 

(Thomas et al., 2013) was not so specific, amplifying also C. septempunctata, but unfortunately not 

C. quinquepunctata (except for some large non-specific bands).  The HAX primers (Yang et al., 2017), 

did not show specificity for H. axyridis, producing amplicons for all the tested species with many 
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bands produced for most of them, which made it impossible to design a way to distinguish the 

amplicons of C. quinquepunctata from those of other species. Due to this finding, it is recommended 

that this marker is not used to assess IGP, since it would result in an overestimation of H. axyridis 

predation.  

The SEP primers were specific at their recommended annealing temperature (Yang et al., 2017), 

but by decreasing the temperature (and therefore the specificity; King et al., 2008) replicons were 

also obtained for H. axyridis, but not for C. quinquepunctata.  This was surprising since C. 

septempunctata is in the same genus as C. quinquepunctata and therefore their DNA sequences are 

likely to be more similar (as confirmed in section 5.4.1).  It appears, however, that in the case of the 

target sequences of these primers, H. axyridis shows a more similar sequence to C. septempunctata 

than C. quinquepunctata.  Another possibility could be that the samples of H. axyridis used 

contained C. septempunctata DNA, maybe due to IGP.  This is unlikely from an ecological 

perspective because H. axyridis was in low abundance at the collection sites (personal observation).  

Additionally, this seems improbable, since all three samples amplified, but only when decreasing 

the annealing temperature and produced multiple bands.  As well as being highly abundant, C. 

septempunctata is in the same genus as C. quinquepunctata and both species share habitat (see 

Chapter 4).  Therefore, any primer that could amplify and differentiate between these two species, 

would have a high probability of being species specific.  Unfortunately, in this case, neither ITSI-AD2 

(Thomas et al., 2013), SEP nor HAX (Yang et al., 2017) were suitable for this. 

 

A potential reason for the non-specific amplicons is the formation of chimeric sequences which is a 

common occurrence in degraded DNA such as that found in gut content (Dodd, 2004; Rowe et al., 

2017).  Chimeric sequences are the formation of a new sequence from two sequences joining 

together (Edgar, 2016).  These sequences have been observed in relatively high numbers of PCRs, 

up to a third in some cases (Cronn et al., 2002; Dodd, 2004).  Using low annealing temperatures, 

may have resulted in the formation of chimeric sequences.  Moreover, the nonspecific amplicons 

could correspond to non-target species, including gut bacteria.  For example, Dodd (2004) revealed 

that some non-target amplicons apparent in ground beetles after PCR were likely to be bacteria, 

namely Lactobacillus spp. 

 

A further difficulty is that there are many cases in the literature with incomplete reported 

methodologies.  For example, Brown et al. (2015) did not discuss the molecular process and report 

the findings from the work carried out.  Yang et al. (2017) created primers that they used to 

determine IGP by H. axyridis on C. septempunctata and P. japonica.  However, the authors did not 

indicate which mitochondrial region was targeted by these primers and so it is difficult to elucidate 
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why these primers were so specific in their study, but not in this current research.  Perhaps as in 

previous IGP studies, the COI region was the target.   

 

 

 

5.4.3 PCR as a method 
The choice of the PCR method over other prey detection methods in this research is justified.  The 

ELISA method is currently the least expensive method for detecting IGP once the protocol has been 

developed.  However, there are some disadvantages of ELISA, in that it can take significantly longer 

to perfect the method: as it requires the development of specific monoclonal antibodies for the 

target species and more importantly, it is only possible to detect one prey species resulting in an 

incomplete picture of predation (Symondson, 2002; Dodd, 2004; Aebi et al., 2011).  Using GC/MS 

has proved successful in some cases (Hautier et al., 2008; Sloggett et al., 2009) and it has the 

advantage of being able to detect prey up to 36 hours after it has been consumed (Thomas et al., 

2013).  This is particularly useful for IGP tests on wild predators, however it is quite costly and it is 

not always possible to detect prey to species level (Sloggett et al., 2009; Aebi et al., 2011).   Using 

a PCR-approach, molecular markers that are species-specific can often be developed at relatively 

low cost.  Sequences for many species are readily available in databanks such as GenBank and the 

considerable cost reduction of sequencing opens the possibility of sequencing de novo when 

needed. The invention and subsequent cost reduction of qPCR, has made the method more reliable, 

without adding much more to the costs. Therefore, the use of species-specific markers amplified 

via PCR or qPCR is the most feasible option in terms of time and financial costs (Dodd, 2004; Aebi 

et al., 2011; Lawson Handley, 2015).  

 

This method was unsuccessful in this case due to the time and resources restrictions; however, it 

was and remains the most viable option.  The scope of this research did not allow for potentially 

years in developing clonal antibodies to detect one species using ELISA as it has been shown that 

H. axyridis can consume a large biomass in a short period of time (Majerus et al., 2016).  GC/MS 

may or may not be capable of detecting coccinellids to species level and again, the development of 

the technique is expected to be long.  Sloggett et al. (2009) has had some success but to genus level 

only.  The current research had a short amount of time in which to be completed and also hoped 

to determine quite specifically if C. quinquepunctata was the species being consumed and so 

attempting to achieve this using GC/MS would have been futile.  Thomas et al., (2013) and Brown 

et al. (2015) had success with species specific primers with Adalia spp.  Furthermore, the more 

recent research from Yang et al. (2017) claiming to have specific primers for both H. axyridis and C. 

septempunctata indicated that this project could be successful in detecting if H. axyridis had 

consumed C. quinquepunctata. 
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5.4.4 Does H. axyridis prey on C. quinquepunctata? 
From Chapter 4 it is evident that H. axyridis rarely came into contact with C. quinquepunctata.  

Moreover, given the paucity of prey options on river shingle, the adapted movement of C. 

quinquepunctata adults and larvae on the river shingle along with the potentially aphid rich habitat 

away from the river shingle, it is very likely that H. axyridis does not prey on C. quinquepunctata, or 

that predation is infrequent and limited mainly to eggs.  Little is known about C. quinquepunctata 

and there is a lack of detailed information about the time of year that this coccinellid produces eggs.  

When collecting samples for this research, fourth instar larva were observed in mid-June, indicating 

that eggs may have been produced approximately 4-5 weeks prior, depending on ambient 

temperature (Roy et al., 2013).  It is also possible that this species lays eggs prior to H. axyridis and 

so its larvae are further along in their development before any H. axyridis larvae may appear on the 

shingle habitat.  During sample collection, C. quinquepunctata were not see near H. axyridis larva 

(personal observation), however, if these species developed in parallel, then H. axyridis would likely 

prey on C. quinquepunctata (Ware & Majerus, 2008).   

 

Previous studies on H. axyridis intra-guild predation show a range of results.  A low rate of IGP on 

A. bipunctata and Oenopia conglobata was reported by Rondoni et al. (2015).  However, they 

targeted a longer than recommended fragment (237 and 167 respectively) for prey detection in the 

gut which probably resulted in an underestimation of the predation rate.  They did report a greater 

rate of IGP on a coccinellid native to Italy, Oenopia conglobata, than A. bipunctata (native to both 

Italy and the UK).  Brown et al. (2015) stated that the UK was the only country from five where H. 

axyridis was found to prey on A. bipunctata, with A. decempunctata being preyed on in France, 

Slovakia and the Czech Republic.  In laboratory feeding trials, however, H. axyridis tends to be 

offered A. bipunctata only after a period of starvation and with no other prey option (Brown, 2010; 

Thomas et al., 2013).  In addition, Rondoni et al. (2015) found that H. axyridis had a higher survival 

rate when preying on aphids or H. axyridis eggs as opposed to when preying on A. bipunctata.  It is 

possible then that if prey biomass is sufficient then H. axyridis will opt not to preyed on A. 

bipunctata, which could also apply to other coccinellid species including C. quinquepunctata  

Furthermore, even when IGP of other species has been confirmed due to the habitat mismatch this 

may not be the case for C. quinquepunctata. Further field investigations would be necessary to 

confirm that the results in Chapter 4 are not a one-off occurrence.  Together with successfully 

developing a species-specific marker for this rare coccinellid, this would add vital information 

towards the conservation of a nationally (and potentially internationally) rare beetle. 
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5.4.5 Conclusion 
Using the available sequences found in GenBank, it was not possible to develop species specific 

primers due to the high similarity of the C. quinquepunctata and H. axyridis and C. septempunctata 

sequences. Additionally, sequences of only one or two C. quinquepunctata were available, which 

made it impossible to infer if the mutations were due to individual variation or were present in the 

whole species. Primers were tested that had been developed for other related species in order to 

see if they amplified also C. quinquepunctata and, if so, if we could use the melting curve or a 

restrictive enzyme protocol to identify the fragments.  Unfortunately, in this case, the cross-species 

amplification was not successful.   

 

Research that has attempted primer design but been unsuccessful, needs to be disseminated to 

help inform others who may try the same research unknowingly.  Moreover, the testing of the HAX 

primers (developed by Yang et al., 2017) showed they were not sufficiently specific.  Details about 

primer specificity also should be disseminated to the wider community to prevent replication that 

can be costly instead of only publishing when a positive outcome has been achieved in this area.  

This would help researchers to develop realistic expectations and make informed choices when 

considering using molecular methods.  

 

Previous studies have shown that it is possible to reliably detect IGP using PCR or qPCR after 

extensive primer design (Dodd, 2003; Thomas et al., 2013; Rondoni et al., 2015).  Many of these 

studies tend to focus on abundant species, such as H. axyridis, A. bipunctata, etc. (Thomas et al., 

2013, Brown et al., 2015; Rondoni et al., 2015).  More efforts into including less abundant species 

would benefit future studies of IGP and potentially yield a more in-depth picture of coccinellid 

interactions.  Developing molecular markers for more species, based or tested on individuals of 

different populations would ensure reliability of markers and therefore build on the strength of 

molecular methods which in turn would lead to greater success in IGP studies. 
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6 General Discussion: Invasive alien species and science 

communication 
 

Invasive alien species (IAS) are one of the biggest direct threats to biodiversity globally (IUCN, 2018; 

IPBES, 2019), however, there has been some debate around whether or not IAS are passengers of 

change (MacDougall & Turkington, 2005) or do they drive biodiversity loss (Clavero et al., 2009)?  It 

is more likely that IAS facilitate loss of biodiversity as well as negatively affecting ecosystem function 

(Clavel et al., 2011) by altering the abundance of native species with cascading effects across 

communities and/or assemblages (Roy et al., 2012).  A large volume of literature has been amassed 

for over a decade building on the knowledge of H. axyridis in its preferred habitat of urban areas 

(Adriaens et al., 2008; Brown et al., 2011a; Purse et al., 2014; Viglášová et al., 2017; Honěk et al., 

2018b).  Taking a snapshot of coccinellid abundance is just a starting point for researchers to begin 

building a clearer picture of what is really happening with the establishment of a specific IAS.  This 

thesis builds on existing knowledge of IAS, specifically H. axyridis, and starts to unravel the complex 

relationship H. axyridis has with native coccinellids in rural habitats in the UK. 

 

6.1 Thesis summary 
The overall outcome of this thesis was multifaceted and highlights how complex a process it is to 

determine the effect of the presence of one species on a community.  This thesis revealed how 

several factors in combination have led to the current establishment and spread of Harmonia 

axyridis.   Climate change is predicted to affect the distribution and spread of H. axyridis, globally 

and nationally, with the species establishing in areas previously free of the species.  Harmonia 

axyridis appears to have habitat preferences and within these habitat types there are distinct 

coccinellid communities, not all of which are dominated by H. axyridis.  This IAS does not appear to 

affect rare coccinellid species, however, this is more due to habitat preferences of the respective 

species.  Many questions and/or recommendations have been generated and the most important 

are highlighted below in relation to the relevant data chapters of this thesis.   

 

Chapter 2 illustrates how human activities were the most important factor in determining if H. 

axyridis would establish in a region.  Additionally, the future range shift of H. axyridis under various 

climate scenarios was revealed thereby concluding that a combination of factors is necessary for 

successful establishment of H. axyridis.  To improve future predictions, increased sharing of records 

of recently established H. axyridis populations as well as use of Citizen Science are necessary.  

Citizen science has been successful in some regions (Europe and North America) but is less widely 

used in many other places (Asia, South America and Africa) (Figure 1b). 
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Chapter 3 of this work reveals that H. axyridis does not dominate the coccinellid communities in 

rural habitat in contrast to its domination of urban coccinellid communities.  Previous research 

illustrates how this community fluctuates over time, regardless of whether an IAS has established 

in these habitats or not (Honěk et al., 2016).  In order to know more about how ecosystem function 

may be affected by the arrival of IAS, it is necessary to know what species are in that community 

and what role they play within it.  Chapter 3 also illustrated how different the coccinellid community 

is at different habitat types with a unique suite of generalist and specialist species.  The next step 

is to determine how these specific communities support the ecosystem, which can only be achieved 

through additional studies on a range of species, including specialists (Sloggett, 2005). 

 

Chapter 4 demonstrates how a rare coccinellid was faring following the arrival of H. axyridis.  The 

probability of C. quinquepunctata being negatively impacted by H. axyridis was low in this instance.  

Coccinella quinquepunctata could face pressures, however, from other quarters such as invasive 

alien plant species, agricultural practices and disruption of its habitat by human activity.  This 

species and in particular it’s habitat require continued monitoring to ensure C. quinquepunctata is 

protected against these pressures as well as the potential of H. axyridis range expansion due to 

climate change.  Not only is Citizen Science a useful method for monitoring IAS (Hiller & 

Haelewaters, 2019) but it is also essential for the conservation of specialist species. 

 

Chapter 5 used molecular techniques in an attempt to assess feeding interactions between an IAS 

and a rare specialist species.  In this case, due to the similarity of coccinellid sequences it was not 

possible to develop the primers required.  Even though the expected outcome was not achieved, 

with greater resources (time and financial) it would be possible to detect if IGP occurred between 

H. axyridis and C. quinquepunctata in a natural habitat.  Moreover, considering the results of 

Chapter 4, it was unlikely that C. quinquepunctata was prey for H. axyridis. 

 

Ultimately, this thesis emphasizes that attempting to determine how an IAS integrates into a new 

range/habitat is not a straightforward process.  The effect of one IAS on biodiversity cannot be 

viewed without also looking at the interactions between other drivers of change (land use change, 

climate change and pollution) all of which have increased over the last five decades (IPBES, 2019).  

As a global community, scientists and the general public need to cooperate to ensure that 

biodiversity is protected from these drivers of change. 
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6.2 Published research 

6.2.1 Insufficient species 
The majority of research around IAS has tended to focus on terrestrial systems and plants (Lowry 

et al., 2013).  Plants are of course important, however, other taxonomic groups in terms of IAS can 

be as economically and ecologically damaging as plants (e.g. Varroa mite Varroa destructor and 

Muntjac deer Muntiacus reevesi; Figure 6.1) (Eschen & Williams, 2011).  In much ecological 

research, model species are used to answer a range of questions and to test hypotheses, however, 

it can be easy to forget that there may be other species worthy of study.  Moving to the literature 

on coccinellids, the species of focus in publications has generally been H. axyridis.  There are regions 

where other coccinellids have established as IAS (e.g. Coccinella septempunctata, Exochomus 

quadripustulatus, Hippodamia variegata and Propylea quattuordecimpunctata in USA), prior to H. 

axyridis. However, apart from C. septempunctata in North America (e.g. Evans, 2004), the other 

species have received considerably less research attention (Sloggett, 2005; Harmon, 2007).  

Furthermore, a Web of Science search (09.02.2020) for ‘invasive ladybird’ and ‘invasive coccinellid’ 

revealed the first 20 results to be dominated by work focussed on H. axyridis with 12 and 16 results 

respectively with the other entries concerning a range of other species.  There is no denying the 

effect that H. axyridis has on biodiversity, however these studies tend to focus on specific native 

species also, e.g. A. bipunctata.  Sloggett (2005) observed that the majority of coccinellid studies 

focussed on just a handful of generalist species and argued that having a narrow group of model 

species would likely lead to bias in the scientific process.  Coccinellids are renowned for their use in 

biological control (Harmon, 2007) but just a small number have become IAS and generally, these 

IAS have been generalist species such as C. septempunctata or H. axyridis.  However, when 

comparing a generalist and specialist coccinellid species, Sloggett et al. (2008) illustrated that the 

specialist coccinellid remained in situ for considerably longer than the generalist species, suggesting 

that specialist species would be more suitable in this role.  By excluding specialist species from 

investigation, we have an incomplete picture without the scientific evidence available to advise on 

best methods to conserve habitats and species. 
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Figure 6.1: From Eschen & Williams (2011) Aliens: The Invasive Species Bulletin 31: 47-51 

 

 

 

 

 

6.2.2 Habitats 
Another aspect of the coccinellid literature is the habitat in which this research takes place tended 

to be anthropogenic in nature, such as urban areas and agricultural fields (e.g. alfalfa).  This is 

valuable research but there are a range of habitat types with distinct coccinellid communities that 

have been ignored completely or studied insufficiently.  This could be due to the fact that the 

coccinellid species that have established as IAS have tended to do so because they have been used 

in biological control and so it is of benefit to landowners and environmental groups to understand 

the effects of these IAS on native species in these habitats.  However, these anthropogenic habitats 

are not in isolation and neighbouring forest, grassland or riverine habitats should also be included.  

One particular reason for this paucity of data is likely to be the difficulty in collecting data in such 

habitats.  Being more rural, these habitats cover large areas.  There are also fewer people living in 

these areas, thus limiting participation levels in any Citizen Science projects that may be underway, 

resulting in fewer records.  Monitoring cannot be completed by ecologists alone as there simply are 

not enough people to survey all of these places.  However, engaging people in Citizen Science leads 

to a huge quantity of data and information that can be verified by experts to ensure high quality of 

datasets.  These data can be analysed and meaningful results determined, not only locally but 

globally (Gardiner et al., 2012; Chapman et al., 2019; Alaniz et al., 2020).  In order to engage more 
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people in Citizen Science, the current research needs to be framed in a way that is easily understood 

by the maximum number of people.  Both the general public and the editors/reviewers need to be 

confident that Citizen Science data are reliable and just as usable as data collected by professional 

scientists (Gardiner et al., 2012).  Moving beyond peer reviewed journals is essential for this to 

work, with researchers promoting their findings not just at conferences but at public events such 

as the British Science Festival or Science Week. 

 

 

 

6.3 Bias in published results 
One problem with publications is the pressure on researchers to have ‘positive’ or significant 

results.  This pressure to publish only ‘positive’ results leads to bias in the publication process with 

very few ‘negative’ results being reported (Fanelli, 2010) which skews the reality of working in 

science.  Furthermore, not publishing non-significant results creates a cycle of unnecessary 

repetition of research, resulting in wasted finances, time and a potential publication.  It was not 

possible to answer the molecular question being asked in Chapter 5 of this research.  Although 

eDNA and barcoding can be utilised to determine what a certain predator may consume, the 

current reality is that very few species currently have specific primers and of these, very few that 

are available on GenBank have not been published (Ardura, 2019).  Is the lack of species-specific 

primers a result of researchers not working in this field or is it that researchers have tried and it has 

not been possible?  In molecular ecology it is just as important to publish what does not work, as it 

is to know what does work.  Studies or methods that have not worked are less likely to be published 

than those that have worked (Fanelli, 2010).  Undergraduate students around the UK are taught 

not to get disheartened about a non-significant result, because it is in itself a result.  However, by 

the time these keen, energised and motivated undergraduates become postgraduates and start on 

the path to publishing their own work, this approach to science seems to be moot.  Publications 

outlining something that has not worked are invaluable, in particular to PhD researchers and early 

career investigators. 

 

 

 

6.4 Communicating science 
As mentioned above, science needs to be communicated more effectively, not just to academics 

and researchers but also to members of the public.  It is no longer enough to simply have your 

research published in an academic journal as increasingly, funders wish to know how academics 

will communicate their results to wider audiences.  In the UK, the Research Excellence Framework 
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(REF) evaluates research quality from higher education.  All submissions are judged on several 

criteria including their impact, which is how significant and far-reaching the research has been on 

society, the economy, the environment or quality of life (REF, 2019).  This impact aspect accounts 

for 25% of the overall assessment.  One method of achieving far-reaching impact is for researchers 

to publish their raw data or their statistical code so others can use this information for future work.  

Nature Scientific Data is a journal that was developed to facilitate the sharing and re-use of datasets 

under the guidelines of FAIR Data Principles.  These principles aim to ensure that data are Fair, 

Accessible, Interoperable and Reusable (Wilkinson et al., 2016).  One example of data published in 

this way is the UK Ladybird Survey data which was recently made available (Brown et al., 2018).  An 

example of the importance of sharing data was when carrying out data checks for Chapter 2 of this 

work.  I excluded the records (n = 2) from Turkey, which I assumed to be incorrect as I had not found 

any evidence to state that H. axyridis had established in this country.  Having completed my 

analysis, I subsequently discovered that H. axyridis was now considered established in Turkey 

(Bukejs & Telnov, 2014) as well as in Iran (Biranvand et al., 2019).  The records reported in these 

papers for both countries were not present on GBIF and so could not be included in the analysis.  It 

is important for new species establishments to be published, but these records also need to be 

shared on biodiversity portals to allow for more complete analysis, particularly on a global scale. 

 

 

Many researchers do not have any specific training in science communication (Davis et al., 2018) 

and so there is no clear method on how to communicate science apart from publishing papers.  In 

the case of IAS, timely and effective communication is especially important.  It is imperative that 

globally, people know and understand what is occurring in their environment and that IAS can be 

prevented from establishing or how they can be controlled by the most appropriate methods 

possible.  Effectively communicating IAS research to people who do not all speak one language can 

be quite an undertaking, however, there are initiatives underway to bring together global 

communities in tackling the issue of IAS (Lucy et al., 2016; Roy et al., 2018).  The methods being 

undertaken are communication of science as well as engagement of people as Citizen Scientists. 

 

 

 

6.5 Citizen Science 
Regularly we hear academics bemoan the fact that people are disconnected from the environment 

and the current the state of the environment, and this disconnect is partly due to increased 

urbanisation.  Additionally, it has been reported that people are in general spending less time on 

outdoor activities that would place them in contact with the natural environment (Pergams & 
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Zaradic, 2008).  The results of research need to be made accessible to as many people as possible 

in order to initiate behavioural change and re-connect people with their environment.  People who 

consider themselves connected with the natural environment are more likely to take action to help 

protect it (Mackay & Schmitt, 2019).  However, much of the information regarding the environment 

and climate change does not enter mainstream media until the situation is at crisis level.  Much of 

what has been in the media in the last year concerning climate change, has been known by scientists 

for several decades, indicating another disconnected relationship, this time between research, 

politicians taking the science seriously and the global populace.  The point at where this particular 

relationship seems to break down is with the media.  A recent study highlighted that climate change 

scientists featured in 49% less media articles than climate change deniers (Petersen et al., 2019).  

As scientists we need to do more to engage with and inform the general public about published 

research, thereby building a relationship with them.  This is increasingly useful as members of the 

public are all potential Citizen Scientists and without them, large scale studies would not be 

possible. 

 

The UK Ladybird Survey is an incredible success story in engaging the general public as Citizen 

Scientists, of which tens of thousands helped record 135,504 coccinellids over 20 years (Roy et al., 

2011).  The beauty of this project is that anyone can partake regardless of level of expertise.  Not 

only were native coccinellids recorded but the Citizen Scientists also helped to map the 

establishment and subsequent spread of H. axyridis (Brown et al., 2008).  Additionally, these data 

have been made open access for anyone to make use of (Brown et al., 2018).  This is something the 

science community needs to embrace; include as many people in data collection by communicating 

effectively what you want to achieve and then share the data once you have answered your 

questions.  

 

 

 

6.6 Future work 
As with any thesis, many more questions were generated with several avenues for further research 

being revealed.  These are discussed in greater detail in their respective chapters, however, below 

is a summary of future work that would be beneficial. 

 

Investigating the climate characteristics of Scotland and Ireland may reveal more information about 

the distribution and establishment of H. axyridis in these areas.  Even though the Climate Moisture 

Index was included in the model, rainfall specifically was not included.  Including such factors (e.g. 

precipitation of wettest quarter, precipitation of driest quarter) in the species distribution model 
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may lead to a better understanding as to why these geographical regions have not yet seen large 

populations of H. axyridis become established.   

 

There is a wealth of coccinellid research available yet there are still areas where the surface has 

only just been scratched.  One such area is the dynamics of overwintering coccinellid assemblages.  

Further research into this aspect of coccinellid ecology in a range of habitats would provide further 

knowledge of coccinellid behaviour and importantly how climate change may influence coccinellid 

assemblages in the future.  Investigating the coccinellid community as a whole instead of focussing 

on one or two species would likely reveal the complex relationship not just between individual 

coccinellid species but also between coccinellid species, their prey and natural enemies resulting in 

a better understanding of the role of coccinellids in ecosystem function. 

 

There is just a small volume of information available regarding C. quinquepunctata in the UK and 

this thesis has highlighted many other potential avenues for further research on this species.  Given 

the differences between this species’ range in mainland Europe and the UK, it would be prudent to 

investigate not just prey preferences or requirements in different locations but also investigate if 

there may be genetic variation between the UK populations of C. quinquepunctata and those in 

other European countries.  Given the differences observed between urban and rural sites for 

generalist coccinellids, investigating if there is a similar effect with C. quinquepunctata would add 

to the knowledge for this species.  Considering the unusual habitat C. quinquepunctata is observed 

at in the UK, exposed riverine sediment (ERS), investigating the invertebrate community in this 

habitat would reveal more about ecosystem function as such sites as well as provide more 

justification to designate habitat protection status for ERS. 

 

The outcome of chapter 5 was not expected, however, some important conclusions were drawn.  

Firstly, developing a species-specific marker for C. quinquepunctata would help considerably 

towards the conservation of a nationally (and potentially internationally) rare beetle leading to 

confirmation regarding H. axyridis not currently having a negative impact on C. quinquepunctata.  

Secondly, molecular research that has been unsuccessful should be disseminated to prevent 

replication in an area that is time-consuming and potentially expensive.  Publishing only ‘successful’ 

research is damaging and costly to the entire research community.    

 

Finally, further encouragement and continued support for Citizen Science projects, globally, 

nationally and regionally would result in richer datasets leading more accurate species distribution 

models, allow the detection of fluctuations in populations of rare coccinellids or the increased 

present of IAS and in either of these cases, allow swift action to be taken where necessary. 
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6.7 Conclusion  
Invasive alien species are dynamic and complex and generate seemingly endless questions and 

hypotheses.  The way forward in tackling the issue of IAS is to continue with high quality research 

but to include more variation in the taxonomic groups and habitats being studied, as has been 

carried out in this thesis by including rural (Chapter 3) and marginalised (Chapter 4) habitats as well 

as focussing on C. quinquepunctata (Chapters 4 & 5).  Applying a combination of approaches such 

as field surveys (Chapters 3 & 4), molecular ecology (Chapter 5) and use of data models (Chapter 2) 

adds depth and gives multi-dimensional outputs.  Science communication as a whole can improve 

and the responsibility for this lies with editors and researchers alike, while finding a way to include 

Citizen Science will only enrich the research process (Pocock et al., 2018). 
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Appendix for Chapter 2 

A2.1 Calculation of Climatic Moisture Index 
Monthly potential evapotranspirations were estimated from the WorldClim monthly temperature 

data and solar radiation using the simple method of Zomer et al. (2008), which is based on the 

Hargreaves evapotranspiration equation (Hargreaves, 1994). 

 

 

 

A2.2a AUC (area under the curve; Fielding & Bell 1997) 
Predictions of presence-absence models can be compared with a subset of records set aside for 

model evaluation (here 20%) by constructing a confusion matrix with the number of true positive, 

false positive, false negative and true negative cases.  For models generating non-dichotomous 

scores (as here) a threshold can be applied to transform the scores into a dichotomous set of 

presence-absence predictions.  Two measures that can be derived from the confusion matrix are 

sensitivity (the proportion of observed presences that are predicted as such, quantifying omission 

errors) and specificity (the proportion of observed absences that are predicted as such, quantifying 

commission errors).  A receiver operating characteristic (ROC) curve can be constructed by using all 

possible thresholds to classify the scores into confusion matrices, obtaining sensitivity and 

specificity for each matrix, and plotting sensitivity against the corresponding proportion of false 

positives (equal to 1 - specificity). The use of all possible thresholds avoids the need for a selection 

of a single threshold, which is often arbitrary, and allows appreciation of the trade-off between 

sensitivity and specificity. The area under the ROC curve (AUC) is often used as a single threshold-

independent measure for model performance (Manel, Williams & Ormerod 2001). 

 

 

 

A2.2b Cohen’s Kappa (Cohen, 1960) 
This measure corrects the overall accuracy of model predictions (ratio of the sum of true presences 

plus true absences to the total number of records) by the accuracy expected to occur by chance.  

The kappa statistic ranges from -1 to +1, where +1 indicates perfect agreement and values of zero 

or less indicate a performance no better than random.  Advantages of kappa are its simplicity, the 

fact that both commission and omission errors are accounted for in one parameter and its relative 

tolerance to zero values in the confusion matrix (Manel, Williams & Ormerod 2001).  However, 

Kappa has been criticised for being sensitive to prevalence (the proportion of sites in which the 

species was recorded as present) and may therefore be inappropriate for comparisons of model 

accuracy between species or regions (McPherson et al., 2004; Allouche et al. 2006). 
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A2.2c TSS (the true skill statistic; Allouche et al. 2006) 
TSS is defined as sensitivity + specificity - 1, and corrects for Kappa’s dependency on prevalence.  

TSS compares the number of correct forecasts, minus those attributable to random guessing, to 

that of a hypothetical set of perfect forecasts.  Like kappa, TSS takes into account both omission 

and commission errors and success as a result of random guessing, and ranges from -1 to +1, where 

+1 indicates perfect agreement and values of zero or less indicate a performance no better than 

random (Allouche et al. 2006). 
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A2.3 Variation in projected suitability for Harmonia axyridis establishment 

across the continents 
(a) Europe 

 

 

 

(b) North and South America 
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(c) Africa 

 

 

(d) Asia and Oceania 

 
Figure A2.3: Variation in projected suitability for Harmonia axyridis establishment across the continents.  The 
bar plots show the proportion of grid cells in each country classified as suitable in the current climate and 
projected climate for the 2070s under two RCP emissions scenarios (RCP26 & RCP45).  For each continent 
(Europe, North America, South America, Africa, Asia, Oceania) countries with increasing suitability are to the 
left and countries with decreasing suitability are to the right.  Where two continents are represented in the 
same figure (North & South America; Asia & Oceania), there is a clear division between each continent and 
increasing/decreasing suitability are depicted as described above.  Each figure represents selected countries 
where changes in suitability are predicted in (a) Europe, (b) North and South America, (c) Africa and (d) Asia 
and Oceania.  Countries with a predicted proportion of 1 (e.g. Netherlands, Belgium) or 0 (e.g. Iceland, Chad) 
under both current and future scenarios were excluded from the figures. 
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Appendix for Chapter 3 

Figure 
A3.1a: Location of rural and urban field sites surveyed in 2016 and 2017.  Dark Blue = Urban sites (Spalding and Doddington).  Green = Deciduous sites 
(BW = Brampton Wood; MW = Monks Wood; RW = Raveley Wood).  Orange = Coniferous sites (KF01, KF02, KF03 = Kings Forest 01, 02 and 03). 
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Figure A3.1b: Location of coniferous sites surveyed in 2016 and 2017; KF01, KF02, KF03 = Kings Forest 01, 02 and 03. 
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Figure A3.1c: Location of deciduous sites surveyed in 2016 and 2017; BW = Brampton Wood; MW = Monks Wood; RW = Raveley Wood. 
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Table A3.1: Total number of coccinellids recorded on trees at different site types in Cambridgeshire, 
Suffolk and Lincolnshire. 

Species/Site Type Deciduous  Coniferous  Urban  TOTAL 

Harmonia  
axyridis 

55 170 764 989 

Coccinella 
septempunctata 

175 98 21 294 

Exochomus 
quadripustulatus 

6 169 41 216 

Adalia  
decempunctata 

12 0 38 50 

Harmonia 
quadripunctata 

2 43 1 46 

Propylea 
quattuordecimpunctata 

18 1 18 37 

Calvia 
quattuordecimguttata 

11 4 5 20 

Anatis  
ocellata 

1 17 0 18 

Adalia  
bipunctata 

1 4 8 13 

Halyzia  
sedecimguttata 

7 1 4 12 

Myzia  
oblongoguttata 

0 11 0 11 

Myrrha 
octodecimguttata 

0 9 0 9 

Scymnus  
suturalis 

0 6 0 6 

Chilocorus 
renipustulatus 

4 1 0 5 

Subcoccinella 
vigintiquattuorpunctata 

0 2 0 2 

Aphidecta  
obliterata 

0 0 1 1 

Psyllobora 
vigintiduopunctata 

1 0 0 1 

Tytthaspis 
sedecimpunctata 

0 0 0 0 

Early stage larva  
(ESL) 

20 76 47 143 

 
TOTAL 

 
313 

 
612 

 
948 

 
1873 
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Table A3.2: Total number of coccinellids species recorded from the grassland in Cambridgeshire and 
Suffolk. 

Species 
 

Deciduous Coniferous Total 

Subcoccinella 
vigintiquattuorpunctata 

0 143 143 

Coccinella 
septempunctata 

105 12 117 

Tytthaspis 
sedecimpunctata 

0 91 91 

Propylea 
quattuordecimpunctata 

24 2 26 

Harmonia  
axyridis 

10 2 12 

Psyllobora 
vigintiduopunctata 

1 9 10 

Exochomus 
quadripustulatus 

0 1 1 

Scymnus  
suturalis 

0 1 1 

Early Stage Larvae  
(ESL) 

2 2 4 

 
TOTAL 

 
142 

 
263 

 
405 
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Table A3.3 Final model that was best fit when variables applied under the following conditions.  See Appendix 3 for details regarding model selection.  
ZINB = Zero-inflated negative binomial; NB = Negative binomial; N/A = not applicable due to data not collected or not enough data available for analysis. 

Location  Urban & rural trees Rural woodland Deciduous woodland Coniferous woodland 

Dependent variable     

H. axyridis Full ZINB Full ZINB Full ZINB Reduced NB 

Native coccinellids Null model Reduced NB Full ZINB Reduced NB 

Aphidoidea Reduced ZINB Full ZINB Full ZINB Reduced NB 

Formicidae Full ZINB Full ZINB Full ZINB Reduced NB 

Neuroptera Full ZINB Reduced NB Null model Null model 

Location   Rural grassland Deciduous grassland Coniferous grassland 

Dependent variable  
   

H. axyridis N/A N/A N/A N/A 

Native coccinellids N/A Reduced NB Null model Full ZINB 

Aphidoidea N/A Full ZINB Full ZINB Full NB 

Formicidae N/A Reduced NB Full ZINB Full NB 

Neuroptera N/A N/A N/A N/A 
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Table A3.4a Comparison of regression models H. axyridis from both urban and woodland sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 

 
Intercept 1.30 2.70 1.17 -6.67 1.16 -7.38 
URa 2.62 2.67 2.20 -18.04 2.27 -18.04 
Seasonc -0.05 0.11 -0.15 -0.96 -0.15 -1.12 
Temp 0.04 0.02 0.06 0.11 0.06 0.13 
Humidity -0.02 -0.04 -0.01 0.07 -0.02 0.07 

Standard Errors 
Intercept 0.36 1.21 0.36 3.02 1.00 3.50 
URa 0.08 0.26 0.08 2329.45 0.18 2584.88 
Seasonc 0.70 0.23 0.07 0.56 0.18 0.69 
Temp    0.01 0.04 0.01 0.08 0.03 0.10 
Humidity 0.004 0.01 0.004 0.03 0.01 0.04 

Likelihood 
Log Likelihood -348 -260 -294 -249 
Model df 5 6 10 11 

Fit measures 
AIC 707 531 609 519 
AIC Weight 0.00 0.00 0.00 0.99 

a Reference category is urban; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.4b Results for final ZINB regression model (full ZINB) for H. axyridis from both urban and 
woodland sites 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.16 1.00 1.16 -7.38 3.50 -2.11 
URa 2.27 0.18 12.52*** -18.04 2584.88 -0.007 
Seasonc -0.15 0.18 -0.83 -1.12 0.69 -1.62 
Temp 0.06 0.03 2.07 0.13 0.10 1.32 
Humidity -0.02 0.01 -1.31 0.07 0.04 1.91 

Log likelihood = -249, Model df = 11, AIC = 519; ZINB = Zero Inflated negative binomial; SE = Standard error; 
a Reference category is Urban; c Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 
0.01; AIC: Akaike information criterion. 
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Table A3.5 Comparison of regression models native coccinellids from both urban and woodland 

sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.67 1.58 1.54 -4.35 1.44 -14.59 
URa -0.13 -0.13 -0.07 0.62 -0.09 25.30 
Seasonc -.06 -0.06 -0.002 0.40 0.01 54.05 
Temp .003 0.006 0.004 0.02 0.00 -8.32 
Humidity 0.006 0.006 0.009 0.02 0.01 1.34 

Standard Errors 
Intercept 0.39 1.02 0.39 3.72 1.01 824.40 
URa 0.10 0.24 0.10 0.75 0.23 96.53 
Seasonc 0.08 0.20 0.08 0.70 0.19 237.64 
Temp    0.01 0.03 0.01 0.11 0.03 60.68 
Humidity 0.004 0.01 0.004 0.04 0.01 4.13 

Likelihood 
Log Likelihood -435 -298 -386 -293 
Model df 5 6 10 11 

Fit measures 
AIC 880 609 793 608 
AIC Weight 0.00 0.39 0.00 0.60 

a Reference category is urban; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 
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Table A3.6a Comparison of regression models for H. axyridis in rural woodland. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.38 1.65 -0.35 -9.03 -0.77 -13.03 
Typea -1.2 -1.48 -0.25 3.15 -0.40 4.04 
Gradientb 0.86 0.97 0.75 -0.42 0.80 -0.52 
Seasonc 0.16 0.68 -0.26 -2.10 -0.04 -2.62 
Temp 0.02 0.00 0.05 0.14 0.06 0.23 
Humidity -0.03 -0.03 0.00 0.09 0.002 0.11 

Standard Errors 
Intercept 0.79 1.41 0.88 3.32 1.56 4.85 
Typea 0.16 0.26 0.19 0.73 0.32 1.10 
Gradientb 0.15 0.25 0.17 0.53 0.25 0.76 
Seasonc 0.14 0.25 0.16 0.69 0.26 0.87 
Temp 0.02 0.04 0.02 0.09 0.04 0.13 
Humidity 0.01 0.02 0.01 0.03 0.02 0.05 

Likelihood 
Log Likelihood -273 -221 -231 -211 
Model df 6 7 12 13 

Fit measures 
AIC 558 456 487 448 
AIC Weight 0.00 0.01 0.00 0.99 

a Reference category is deciduous; b Reference category is mature; c Reference category is summer; NB: 
Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike 
information criterion. 

 

 

 

Table A3.6b Results for final ZINB regression model (full ZINB) for H. axyridis in rural woodland 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept -0.77 1.56 -0.49 -13.03 4.85 -2.69* 
Typea -0.40 0.32 -1.26 4.04 1.10 3.67** 
Gradientb 0.80 0.25 3.24* -0.52 0.76 -0.68 
Seasonc -0.04 0.26 -0.16 -2.62 0.87 -3.01* 
Temp 0.06 0.04 1.46 0.23 0.13 1.76 
Humidity 0.002 0.02 0.10 0.11 0.05 2.30 

Log likelihood = -211, Model df = 13, AIC = 448; a Reference category is Deciduous; b Reference category is 
Mature; c Reference category is Summer; *** = p ≤ 0.0001; ** = p ≤ 0.001; * = p ≤ 0.01; AIC: Akaike 
information criterion. 
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Table A3.7a Comparison of regression models for H. axyridis species in deciduous woodland. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.61 2.32 1.44 11.69 1.55 46.95 
Gradientb 1.22 1.29 1.19 -0.03 1.26 -10.01 
Seasonc 2.59 2.48 2.81 3.50 2.89 20.94 
Temp -0.21 -0.19 -0.32 -2.29 -0.35 -17.25 
Humidity -0.04 -0.03 0.04 0.42 0.04 3.77 

Standard Errors 
Intercept 1.83 2.95 1.86 9.78 2.47 74.54 
Gradientb 0.33 0.52 0.33 1.66 0.48 38.77 
Seasonc 0.47 0.62 0.49 2.58 0.60 43.52 
Temp 0.06 0.10 0.06 1.02 0.10 32.63 
Humidity 0.02 0.03 0.02 0.18 0.03 7.67 

Likelihood 
Log Likelihood -68 -65 -65 -57 
Model df 5 6 10 11 

Fit measures 
AIC 184 149 151 137 
AIC Weight 0.00 0.002 0.00 0.99 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

Table A3.7b Results for final ZINB regression model (full ZINB) for H. axyridis in deciduous 
woodland 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.55 2.47 0.63 46.95 74.54 0.63 
Gradientb 1.26 0.48 2.65* -10.01 38.77 -0.26 
Seasonc 2.89 0.60 4.78*** 20.94 43.52 0.48 
Temp -0.35 0.10 -3.56** -17.25 32.63 -0.53 
Humidity 0.04 0.03 1.38 3.77 7.67 0.49 

ZINB = Zero Inflated negative binomial; Log likelihood = -57, Model df = 11, AIC = 137; b Reference category 
is Mature; c Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01;  AIC: Akaike 
information criterion. 
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Table A3.8a Comparison of regression models for H. axyridis in coniferous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.46 1.00 -.74 -12.70 N/A N/A 
Gradientb 0.74 0.71 0.75 0.25 N/A N/A 
Seasonc -0.35 -0.18 -0.48 -1.93 N/A N/A 
Temp 0.05 0.05 0.07 0.12 N/A N/A 
Humidity -0.03 -0.03 0.001 0.14 N/A N/A 

Standard Errors 
Intercept 0.98 1.53 1.20 6.80 N/A N/A 
Gradientb 0.17 0.25 0.19 1.08 N/A N/A 
Seasonc 0.16 0.26 0.18 2.03 N/A N/A 
Temp 0.02 0.04 0.03 0.15 N/A N/A 
Humidity 0.01 0.02 0.01 0.07 N/A N/A 

Likelihood 
Log Likelihood -155 -138 -142 N/A 
Model df 5 6 10 N/A 

Fit measures 
AIC 321 289 303 N/A 
AIC Weight 0.00 0.99 0.00 N/A 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.8b Results for final NB regression model (reduced NB model) for H. axyridis in coniferous 
woodland 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 2.33 0.96 2.42* 
Gradientb 0.73 0.26 2.82* 
Hum -0.03 0.02 -1.99 

NB = Negative binomial; Log likelihood = 139, Model df = 4, AIC = 287; b Reference category is mature; *** = 
p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.9a Comparison of regression models for native coccinellid species in rural woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.12 1.45 1.21 -3.10 N/A N/A 
Typea -0.62 -0.64 -0.61 0.21 N/A N/A 
Gradientb 0.39 0.32 0.18 -1.23 N/A N/A 
Seasonc -0.06 -0.08 -0.06 0.14 N/A N/A 
Temp -0.02 -0.03 -0.01 0.08 N/A N/A 
Humidity 0.01 0.01 0.01 0.001 N/A N/A 

Standard Errors 
Intercept 0.45 0.91 0.44 2.59 N/A N/A 
Typea 0.08 0.17 0.09 0.49 N/A N/A 
Gradientb 0.08 0.17 0.09 0.52 N/A N/A 
Seasonc 0.09 0.18 0.09 0.50 N/A N/A 
Temp 0.01 0.03 0.01 0.07 N/A N/A 
Humidity 0.004 0.01 0.01 0.03 N/A N/A 

Likelihood 
Log Likelihood -475 -368 -433 N/A 
Model df 6 7 12 N/A 

Fit measures 
AIC 963 750 890 N/A 
AIC Weight 0.00 1.00 0.00 N/A 

a Reference category is deciduous; b Reference category is mature; c Reference category is summer; NB: 
Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike 
information criterion. 

 

 

 

Table A3.9b Results for final NB regression model (reduced NB model) for native coccinellid 
species in rural woodland 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 1.45 0.15 9.55*** 
Typea -0.54 0.17 -3.16** 
Gradientb 0.34 0.17 1.96 

Log likelihood = 370, Model df = 4, AIC = 748; NB = Negative binomial; a Reference category is deciduous; b 
Reference category is mature; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.10a Comparison of regression models native coccinellids in deciduous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.69 1.88 0.85 -34.93 1.25 -766.52 
Gradientb 0.02 0.07 -0.006 -0.88 0.10 0.02 
Seasonc -0.23 -0.15 0.17 13.43 0.09 147.15 
Temp -0.08 -0.09 -0.07 0.44 -0.10 8.52 
Humidity 0.02 0.02 0.03 0.19 0.03 6.80 

Standard Errors 
Intercept 0.62 1.08 0.65 69.38 0.94 639.30 
Gradientb 0.13 0.22 0.13 1.01 0.20 6.64 
Seasonc 0.14 0.23 0.15 68.10 0.22 137.14 
Temp 0.02 0.03 0.02 0.26 0.03 7.12 
Humidity 0.006 0.01 0.007 0.11 0.01 5.75 

Likelihood 
Log Likelihood -200 -174 -182 -164 
Model df 5 6 10 11 

Fit measures 
AIC 409 360 384 349 
AIC Weight 0.00 0.004 0.00 0.99 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.10b Results for final ZINB regression model (full ZINB) for native coccinellids in deciduous 
woodland 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.25 0.94 1.33 -766.52 639.30 -1.20 
Gradientb 0.10 0.20 0.50 0.02 6.64 0.002 
Seasonc 0.09 0.22 0.39 147.15 137.14 1.07 
Temp -0.10 0.03 -3.01* 8.52 7.12 1.20 
Humidity 0.03 0.01 2.56* 6.80 5.75 1.18 

Log likelihood = -164, Model df = 11, AIC = 349; ZINB = Zero Inflated negative binomial; SE = Standard error; b 
Reference category is Mature; c Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01;      

AIC: Akaike information criterion. 
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Table A3.11a Comparison of regression models for native coccinellids in coniferous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 0.03 -0.37 0.77 1.78 -0.29 65.48 
Gradientb 0.64 0.66 0.39 -1.90 0.61 -2.80 
Seasonc 0.10 0.10 -0.09 -1.76 -0.02 -24.24 
Temp 0.02 0.04 0.02 -0.03 0.06 0.51 
Humidity 0.01 0.01 0.008 -0.03 0.007 -1.53 

Standard Errors 
Intercept .65 1.49 0.63 4.56 1.50 365.25 
Gradientb 0.11 0.24 0.11 0.86 0.23 2.39 
Seasonc 0.11 0.25 0.11 0.96 0.24 573.37 
Temp 0.02 0.04 0.02 0.12 0.04 0.52 
Humidity 0.007 0.02 0.007 0.05 0.02 7.29 

Likelihood 
Log Likelihood -258 -188 -232 -183 
Model df 5 6 10 11 

Fit measures 
AIC 526 388 484 389 
AIC Weight 0.00 0.53 0.00 0.46 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.11b Results for final NB regression model (reduced NB model) for native coccinellids in 
coniferous woodland 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 1.27 0.18 7.06*** 
Gradientb .65 0.24 2.67* 

Log likelihood = -189, Model df = 3, AIC = 383; NB = Negative binomial; b Reference category is mature; *** 
= p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.12a Comparison of regression models for native coccinellids from rural grasslands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.78 3.68 2.99 -10.07 N/A N/A 
Typeb -0.85 -0.76 -0.66 0.69 N/A N/A 
Seasonc 0.61 0.49 0.52 -0.15 N/A N/A 
Temp -0.63 -0.08 -0.03 0.26 N/A N/A 
Humidity -0.01 -0.01 -0.008 0.05 N/A N/A 

Standard Errors 
Intercept 0.44 1.11 0.46 3.98 N/A N/A 
Typeb 0.11 0.25 0.11 0.67 N/A N/A 
Seasonc 0.10 0.25 0.11 0.69 N/A N/A 
Temp 0.02 0.04 0.02 0.11 N/A N/A 
Humidity 0.004 0.01 0.004 0.04 N/A N/A 

Likelihood 
Log Likelihood -287 -201 -259 N/A 
Model df 5 6 10 N/A 

Fit measures 
AIC 584 414 537 N/A 
AIC Weight 0.00 1.00 0.00 N/A 

b Reference category is deciduous; c Reference category is summer; NB: Negative binomial; ZIP: Zero-
inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.12b Results for final NB regression model (reduced NB model) for native coccinellids from 
rural grasslands. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 3.18 0.78 4.09*** 
Typea -0.77 0.25 -3.09* 
Seasonb 0.54 0.25 2.16 
Temp -0.07 0.04 -1.98 

Log likelihood = -201, Model df = 5, AIC = 412; NB = Negative binomial; a Reference category is deciduous; b 
Reference category is summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.13 Comparison of regression models for native coccinellids in deciduous grasslands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 2.87 3.09 2.34 -8.10 3.12 -86.11 
Seasonc -0.15 -0.08 0.02 0.93 0.28 30.78 
Temp -0.06 -0.07 -0.04 0.17 -0.09 0.62 
Humidity -0.006 -0.01 -0.002 0.05 -0.001 0.66 

Standard Errors 
Intercept 0.58 1.31 0.61 5.00 1.19 5536.61 
Seasonc 0.19 0.36 0.21 0.92 0.38 5536.19 
Temp 0.03 0.05 0.03 0.14 0.05 0.82 
Humidity 0.006 0.01 0.005 0.05 0.01 0.63 

Likelihood 
Log Likelihood -117 -94 -104 -90 
Model df 4 5 8 9 

Fit measures 
AIC 242 197 224 198 
AIC Weight 0.00 0.58 0.00 0.42 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 
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Table A3.14a Comparison of regression models for native coccinellids in coniferous grasslands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.49 2.74 2.92 -252.85 1.70 -246.62 
Seasonc 0.99 1.02 0.80 -19.85 0.80 -19.78 
Temp -0.05 -0.04 -0.02 8.09 0.01 1.89 
Humidity -0.02 -0.01 -0.02 0.98 -0.006 0.95 

Standard Errors 
Intercept 0.72 1.97 0.76 436.40 1.77 415.24 
Seasonc 0.14 0.34 0.14 642.44 0.33 657.48 
Temp 0.02 0.05 0.02 14.10 0.05 13.45 
Humidity 0.008 0.02 0.01 1.93 0.02 1.84 

Likelihood 
Log Likelihood -155 -105 -140 -97 
Model df 4 5 8 9 

Fit measures 
AIC 318 219 295 211 
AIC Weight 0.00 0.016 0.00 0.98 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.14b Results for final ZINB regression model (full ZINB) for native coccinellids from grass in 
coniferous woodland 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.70 1.77 0.96 -246.62 415.24 -0.59 
Seasonc 0.80 0.33 2.47* -19.78 657.48 -0.03 
Temp 0.01 0.05 0.30 1.89 13.45 0.59 
Humidity -0.006 0.02 -0.31 0.95 1.84 0.52 

Log likelihood = -97, Model df = 9, AIC = 211; ZINB = Zero Inflated negative binomial; SE = Standard error; c 
Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.15a Comparison of regression models for H. axyridis and Shannon diversity of native 

coccinellids in rural habitats. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -0.49 -0.44 0.84 1.03 0.25 0.09 
Shannon 1.16 1.05 0.37 -1.39 0.57 -1.76 

Standard Errors 
Intercept 0.10 0.18 0.11 0.20 0.31 0.53 
Shannon 0.13 0.31 0.13 0.35 0.29 0.74 

Likelihood 
Log Likelihood -403 -288 -316 -285 
Model df 2 3 4 5 

Fit measures 
AIC 809 581 640 579 
AIC Weight 0.00 0.02 0.00 0.98 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.15b Results for final ZINB regression model (full ZINB) for H. axyridis and Shannon diversity 
of native coccinellids in rural habitats. 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 0.25 0.31 0.82 0.09 0.53 0.17 
Shannon 0.57 0.29 1.96 -1.76 0.74 -2.37* 

Log likelihood = -97, Model df = 9, AIC = 211; ZINB = Zero Inflated negative binomial; SE = Standard error; c 
Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.16a Comparison of regression models for native coccinellids and Shannon diversity of 

native coccinellids in rural habitats. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.04 0.97 1.36 -0.80 1.18 -1.43 
Shannon 0.99 1.15 0.67 -37.99 0.89 -37.99 

Standard Errors 
Intercept 0.05 0.09 0.05 0.19 0.10 0.36 
Shannon 0.06 0.15 0.07 4378.9 0.16 5987.12 

Likelihood 
Log Likelihood -761 -564 -698 -559 
Model df 2 3 4 5 

Fit measures 
AIC 1525 1133 1403 1127 
AIC Weight 0.00 0.00 0.00 1.00 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.16b Results for final ZINB regression model (full ZINB) for native coccinellids and Shannon 
diversity of native coccinellids in rural habitats. 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.18 0.10 11.60** -1.43 0.36 -4.01** 
Shannon 0.89 0.16 5.63** -37.99 5987.12 0.99 

Log likelihood = -97, Model df = 9, AIC = 211; ZINB = Zero Inflated negative binomial; SE = Standard error; c 
Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.17a Comparison of regression models for aphids from trees at both urban sites and rural 

woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 4.89 7.22 5.99 0.17 8.94 1.97 
UR a 1.69 2.00 1.30 -1.45 1.66 -2.5 
Temp -0.02 -0.11 -0.02 0.002 -0.13 -0.04 
Humidity -0.01 -0.03 -0.02 -0.005 -0.05 -0.03 
Seasonc 0.86 1.56 0.57 -0.66 1.46 -0.50 

Standard Errors 
Intercept 0.07 1.65 0.09 1.43 2.20 3.13 
UR a 0.02 0.57 0.02 0.65 0.46 3.98 
Temp 0.002 0.06 0.002 0.05 0.06 0.09 
Humidity 0.001 0.02 0.001 0.01 0.02 0.04 
Seasonc 0.02 0.37 0.02 0.33 0.37 0.57 

Likelihood 
Log Likelihood -18561 -698 -12806 -692 
Model df 5 6 10 11 

Fit measures 
AIC 37131 1407 25632 1407 
AIC Weight 0.00 0.39 0.00 0.61 

a Reference category is urban; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 
 
 
 
 
Table A3.17b Results for final ZINB regression model (reduced ZINB) aphids from trees at both urban 
sites and rural woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 3.83 0.26 14.50 -0.59 0.38 -1.56 
URa 1.76 0.46 3.83** -1.83 1.50 -1.22 
Seasonc 1.12 0.33 3.35** -0.61 0.48 -1.27 

Log likelihood = -695, Model df = 7, AIC = 1404; ZINB: Zero-inflated negative binomial; aReference category 
is Urban; cReference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike 
information criterion. 
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Table A3.18a Comparison of regression models for ants from trees at both urban sites and rural 

woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.95 2.56 3.52 -2.91 1.50 -4.62 
UR a -1.42 -1.54 -1.71 -1.20 -1.87 -10.11 
Seasonc 0.43 0.62 0.34 -0.17 0.72 -0.11 
Temperature -0.01 0.02 0.002 0.01 0.03 0.02 
Humidity 0.003 0.01 0.01 0.04 0.04 0.05 

Standard Errors 
Intercept 0.09 1.55 0.10 1.72 1.69 2.84 
UR a 0.06 0.53 0.06 0.66 0.40 127.61 
Seasonc 0.02 0.35 0.02 0.34 0.32 0.48 
Temperature 0.003 0.05 0.003 0.05 0.05 0.07 
Humidity 0.001 0.02 0.001 0.02 0.02 0.03 

Likelihood 
Log Likelihood -10609 -697 -6078 -687 
Model df 5 6 10 11 

Fit measures 
AIC 21228 1406 12177 1397 
AIC Weight 0.00 0.01 0.00 0.99 

a Reference category is urban; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

Table A3.18b Results for final ZINB regression model (full ZINB) ants from trees at both urban sites 
and rural woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.50 1.69 0.89 -4.62 2.84 -1.63 
URa -1.87 0.40 -4.67*** -10.11 127.61 -0.08 
Seasonc 0.72 0.32 2.27’ -0.11 0.48 -0.23 
Temperature 0.03 0.05 0.55 0.02 0.07 0.27 
Humidity 0.04 0.02 1.86 0.05 0.03 1.90 

Log likelihood = -687, Model df = 11, AIC = 1397; ZINB: Zero-inflated negative binomial; aReference category 
is Urban; cReference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; ‘ = p < 0.05; AIC: 
Akaike information criterion. 
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Table A3.19a Comparison of regression models for lacewings from trees at both urban sites and 

rural woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 0.84 1.87 1.14 -1.97 1.92 -245.11 
UR a 2.27 2.28 1.97 -2.02 2.32 52.73 
Seasonc -0.31 0.05 -0.21 0.24 0.13 118.85 
Temperature 0.01 -0.05 .01 0.05 -0.06 -16.57 
Humidity 0.001 0.001 0.001 -0.001 0.003 5.84 

Standard Errors 
Intercept 0.32 0.92 0.32 1.68 0.77 284.74 
UR a 0.07 0.29 0.07 1.04 0.29 75.30 
Seasonc 0.07 0.21 0.08 0.38 0.21 184.02 
Temperature 0.01 0.03 0.01 0.06 0.03 30.47 
Humidity 0.003 0.01 0.003 0.02 0.01 7.26 

Likelihood 
Log Likelihood -807 -405 -730 -399 
Model df 5 6 10 11 

Fit measures 
AIC 1623 822 1479 819 
AIC Weight 0.00 0.17 0.00 0.83 

a Reference category is urban; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

Table A3.19b Results for final ZINB regression model (full ZINB) lacewings from trees at both urban 
sites and rural woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.92 0.77 2.49 -245.11 284.74 -0.86 
URa 2032 0.29 7.99*** 52.73 75.30 0.70 
Seasonc 0.13 0.21 0.63 118.85 184.02 0.65 
Temperature -0.06 0.03 -1.85 -16.57 30.47 -0.54 
Humidity 0.003 0.01 0.44 5.84 7.26 0.80 

Log likelihood = -399, Model df = 11, AIC = 820; ZINB: Zero-inflated negative binomial; aReference category 
is Urban; cReference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike 
information criterion. 
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Table A3.20a Comparison of regression models for aphids from trees in rural woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 2.31 -1.22 2.28 -1.65 6.49 -8.61 
Typea -1.99 -3.57 -0.99 3.92 -1.66 14.36 
Gradientb 0.06 0.99 0.13 0.46 0.23 -0.02 
Seasonc 1.63 3.03 1.40 -1.31 2.05 -0.83 
Temperature -0.01 -0.01 0.001 0.04 -0.11 -0.05 
Humidity 0.03 0.08 0.03 -0.03 -0.009 -0.06 

Standard Errors 
Intercept 0.13 1.93 0.13 2.51 2.38 139.79 
Typea 0.03 0.36 0.03 0.59 0.49 139.75 
Gradientb 0.02 0.35 0.02 0.46 0.35 0.58 
Seasonc 0.02 0.37 0.02 0.49 0.37 0.61 
Temperature 0.003 0.06 0.003 0.07 0.06 0.09 
Humidity 0.001 0.02 0.001 0.03 0.03 0.04 

Likelihood 
Log Likelihood -9352 -543 -7545 -520 
Model df 6 7 12 13 

Fit measures 
AIC 18715 1100 15115 1067 
AIC Weight 0.00 0.00 0.00 0.99 

a Reference category is deciduous; b Reference category is mature; c Reference category is summer; NB: 
Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike 
information criterion. 

 

 

 

Table A3.20b Results for final ZINB regression model (full ZINB) aphids from trees in rural woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 6.49 2.38 2.73* -8.61 139.79 -0.06 
Typea -1.66 0.49 -3.34** 14.36 139.75 0.10 
Gradientb 0.23 0.35 0.65 -0.02 0.58 -0.03 
Seasonc 2.05 0.37 5.46*** -0.83 0.61 -1.37 
Temp -0.11 0.06 -1.94 -0.05 0.09 -0.53 
Humidity -0.009 0.03 -0.35 -0.06 0.04 -1.51 

Log likelihood = -520, Model df = 13, AIC = 1067; ZINB: Zero-inflated negative binomial; aReference category 
is Deciduous; b Reference category is Mature; c Reference category is Summer; *** = p < 0.0001; ** = p < 
0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.21a Comparison of regression models for aphids from trees in deciduous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -7.72 -17.5 -16.78 -4.04 -23.13 -394.10 
Gradientb 2.34 1.40 2.67 0.42 1.52 -2.97 
Seasonc 4.25 3.17 4.72 0.37 3.22 33.28 
Temperature 0.07 0.22 0.27 0.15 0.32 9.16 
Humidity 0.06 0.19 0.15 0.01 0.25 2.46 

Standard Errors 
Intercept 0.49 4.42 0.70 4.62 6.04 298.20 
Gradientb 0.10 0.75 0.10 0.58 0.81 4.27 
Seasonc 0.18 0.80 0.21 0.75 0.81 24.86 
Temperature 0.01 0.12 0.02 0.12 0.14 7.11 
Humidity 0.003 0.04 0.01 0.04 0.06 1.83 

Likelihood 
Log Likelihood -2436 -130 -741 -123 
Model df 5 6 10 11 

Fit measures 
AIC 4882 273 1502 269 
AIC Weight 0.00 0.12 0.00 0.88 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.21b Results for final ZINB regression model (full ZINB) aphids from trees in deciduous 
woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept -23.13 6.04 -3.83** -394.10 298.20 -1.32 
Gradientb 1.52 0.81 1.88 -2.97 4.27 -0.70 
Seasonc 3.22 0.81 3.96*** 33.28 24.86 1.34 
Temp 0.32 0.14 2.38’ 9.16 7.11 1.29 
Humidity 0.25 0.06 3.96*** 2.46 1.83 1.34 

Log likelihood = -123, Model df = 11, AIC = 269; ZINB: Zero-inflated negative binomial; b Reference category 
is Mature; c Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; ‘ = p < 0.05; AIC: 
Akaike information criterion. 
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Table A3.22a Comparison of regression models for aphids from trees in coniferous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.56 8.67 3.36 -30.17 7.56 -30.67 
Gradientb -0.23 -0.35 -0.15 19.61 -0.20 19.12 
Seasonc 1.38 1.57 1.26 -19.37 1.42 -19.37 
Temperature -0.02 -0.14 -0.01 0.27 -0.11 0.29 
Humidity 0.01 -0.03 0.02 0.06 -0.02 0.07 

Standard Errors 
Intercept 0.13 1.99 0.14 7226.66 2.16 6506.68 
Gradientb 0.02 0.32 0.02 7226.65 0.31 6506.67 
Seasonc 0.03 0.34 0.03 7589.92 0.33 8826.57 
Temperature 0.003 0.05 0.004 0.19 0.06 0.22 
Humidity 0.001 0.02 0.001 0.07 0.02 0.08 

Likelihood 
Log Likelihood -5880 -378 -5615 -375 
Model df 5 6 10 11 

Fit measures 
AIC 11770 768 11250 772 
AIC Weight 0.00 0.89 0.00 0.11 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.22b Results for final NB regression model (reduced NB model) for aphids from trees in 
coniferous woodlands. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 8.13 2.00 4.07*** 
Seasona 1.55 0.34 4.54*** 
Temperature -0.13 0.05 -2.47* 
Humidity -0.03 0.02 -1.23 

Log likelihood = -378, Model df = 5, AIC = 767; NB = Negative binomial; a Reference category is summer; *** 
= p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.23a Comparison of regression models for ants from trees in rural woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.32 0.55 3.30 -21.2 1.88 -21.97 
Typea -4.26 -4.36 -3.21 20.52 -3.54 19.73 
Gradientb 0.24 1.17 0.23 -1.18 0.36 -1.29 
Seasonc 0.57 -0.04 0.56 -0.74 0.33 -0.65 
Temperature -0.01 0.19 -0.01 0.05 0.09 0.10 
Humidity 0.02 -0.00 0.02 0.02 0.01 0.03 

Standard Errors 
Intercept 0.12 1.37 0.12 2012.6 1.22 1573.56 
Typea 0.07 0.25 0.08 2012.58 0.28 1573.56 
Gradientb 0.02 0.25 0.02 0.52 0.22 0.60 
Seasonc 0.02 0.25 0.02 0.52 0.23 0.59 
Temperature 0.003 0.04 0.003 0.08 0.04 0.09 
Humidity 0.001 0.01 0.001 0.03 0.01 0.03 

Likelihood 
Log Likelihood -3068 -562 -2924 -532 
Model df 6 7 12 13 

Fit measures 
AIC 6147 1139 5873 1090 
AIC Weight 0.00 0.00 0.00 1.00 

a Reference category is deciduous; b Reference category is mature; c Reference category is summer; NB: 
Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike 
information criterion. 

 

 

 

Table A3.23b Results for final ZINB regression model (full ZINB) ants from trees in rural woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 1.88 1.22 1.54 -21.97 1573.56 -0.01 
Typea -3.54 0.28 -12.59*** 19.73 1573.56 0.01 
Gradientb 0.36 0.22 1.59 -1.29 0.60 -2.14 
Seasonc 0.33 0.23 1.45 -0.65 0.59 -1.09 
Temp 0.09 0.04 2.44* 0.10 0.09 1.00 
Humidity 0.01 0.01 1.08 0.03 0.03 0.89 

Log likelihood = -532, Model df = 13, AIC = 1090; ZINB: Zero-inflated negative binomial; aReference category 
is Deciduous; b Reference category is Mature; c Reference category is Summer; *** = p < 0.0001; ** = p < 
0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.24a Comparison of regression models for ants from trees in deciduous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -7.89 N/A -6.49 -5.28 -6.19 -11.29 
Gradientb 2.47 N/A -0.39 -1.95 -0.36 -3.44 
Seasonc -0.50 N/A -0.001 -0.26 0.91 1.05 
Temperature 0.35 N/A 0.39 0.26 0.41 0.57 
Humidity -0.01 N/A 0.003 0.02 -0.02 0.004 

Standard Errors 
Intercept 1.06 N/A 1.17 4.36 2.19 7.40 
Gradientb 0.28 N/A 0.39 0.83 0.64 1.60 
Seasonc 0.17 N/A 0.20 0.71 0.52 1.48 
Temperature 0.03 N/A 0.04 0.16 0.07 0.29 
Humidity 0.008 N/A 0.008 0.03 0.02 0.07 

Likelihood 
Log Likelihood -201  -127 -100 
Model df 5 N/A 10 11 

Fit measures 
AIC 412 N/A 273 223 
AIC Weight 0.00 N/A 0.00 0.99 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.24b Results for final ZINB regression model (full ZINB) ants from trees in deciduous 
woodlands 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept -6.19 2.19 -2.82* -11.29 7.40 -1.53 
Gradientb -0.36 0.64 -0.56 -3.44 1.60 -2.15 
Seasonc 0.91 0.52 1.77 1.05 1.48 0.71 
Temp 0.41 0.07 5.78*** 0.57 0.29 1.97 
Humidity -0.02 0.02 -0.90 0.004 0.07 0.06 

Log likelihood = -100, Model df = 11, AIC = 223; ZINB: Zero-inflated negative binomial; b Reference category 
is Mature; c Reference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike 
information criterion. 
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Table A3.25a Comparison of regression models for ants from trees in coniferous woodlands. 

Variable Poisson NB 

Coefficients 
Intercept 3.36 2.60 
Gradientb 0.21 0.21 
Seasonc 0.60 0.67 
Temperature -0.02 -0.01 
Humidity 0.03 0.03 

Standard Errors 
Intercept 0.12 1.22 
Gradientb 0.02 0.20 
Seasonc 0.02 0.21 
Temperature 0.003 0.03 
Humidity 0.001 0.01 

Likelihood 
Log Likelihood -2646 -410 
Model df 5 6 

Fit measures 
AIC 5302 832 
AIC Weight 0.00 1.00 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

 

Table A3.25b Results for final NB regression model (reduced NB model) for ants from trees in 
coniferous woodlands. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 2.52 0.80 3.14** 
Seasona 0.67 0.21 3.19** 
Humidity 0.04 0.01 2.73* 

Log likelihood = -410, Model df = 4, AIC = 829; NB = Negative binomial; a Reference category is summer; *** 
= p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.26a Comparison of regression models for lacewings from trees in rural woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 0.82 0.35 0.98 -1.37 N/A N/A 
Typea 0.93 0.90 0.85 -0.25 N/A N/A 
Gradientb 0.32 0.28 0.24 0.30 N/A N/A 
Seasonc 0.12 0.20 0.23 0.42 N/A N/A 
Temperature -0.04 -0.03 -0.04 0.03 N/A N/A 
Humidity 0.003 0.007 0.004 -0.003 N/A N/A 

Standard Errors 
Intercept 0.52 1.07 0.56 2.35 N/A N/A 
Typea 0.12 0.21 0.14 0.45 N/A N/A 
Gradientb 0.10 0.20 0.11 0.43 N/A N/A 
Seasonc 0.10 0.21 0.11 0.45 N/A N/A 
Temperature 0.02 0.03 0.02 0.07 N/A N/A 
Humidity 0.005 0.01 0.006 0.02 N/A N/A 

Likelihood 
Log Likelihood -401 -311 -355 N/A 
Model df 6 7 12 N/A 

Fit measures 
AIC 813 635 734 N/A 
AIC Weight 0.00 1.00 0.00 N/A 

a Reference category is deciduous; b Reference category is mature; c Reference category is summer; NB: 
Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike 
information criterion. 

 

 

 

Table A3.26b Results for final NB regression model (reduced NB model) for lacewings from trees 
in rural woodlands. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 0.20 0.19 1.05 
Typea 0.95 0.21 4.60*** 
Gradientb 0.29 0.20 1.42 

Log likelihood = -312, Model df = 4, AIC = 632; NB = Negative binomial; a Reference category is deciduous; b 
Reference category is mature; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.27 Comparison of regression models for lacewings from trees in deciduous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 2.32 2.04 2.43 -1.58 2.37 70.31 
Gradientb 0.37 0.36 0.31 -0.24 0.36 -0.01 
Seasonc 0.04 0.10 0.10 0.16 -0.005 -16.41 
Temperature -0.07 -0.07 -0.05 0.06 -0.06 0.59 
Humidity 0.001 0.01 0.01 -0.01 -0.001 -1.72 

Standard Errors 
Intercept 0.57 1.32 0.59 2.82 1.30 137.24 
Gradientb 0.12 0.26 0.12 0.54 0.26 3.33 
Seasonc 0.12 0.27 0.12 0.56 0.27 76.29 
Temperature 0.02 0.04 0.02 0.09 0.04 1.69 
Humidity 0.01 0.01 0.007 0.03 0.01 2.99 

Likelihood 
Log Likelihood -268 -195 -231 -192 
Model df 5 6 10 11 

Fit measures 
AIC 564 401 482 406 
AIC Weight 0.00 0.88 0.00 0.12 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 

 

Table A3.28 Comparison of regression models for lacewings from trees in coniferous woodlands. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -1.95 -2.08 -3.26 -9.45 -2.42 -16.19 
Gradientb 0.14 0.13 0.07 -0.28 0.08 -0.24 
Seasonc 0.46 0.43 1.00 2.60 0.90 11.04 
Temperature 0.03 0.04 0.04 0.06 0.03 -0.03 
Humidity 0.02 0.02 0.04 0.09 0.03 0.09 

Standard Errors 
Intercept 1.27 1.87 1.61 7.55 1.75 90.35 
Gradientb 0.20 0.30 0.22 0.82 0.28 1.05 
Seasonc 0.21 0.31 0.24 1.60 0.31 90.11 
Temperature 0.03 0.05 0.04 0.17 0.04 0.17 
Humidity 0.01 0.02 0.01 0.07 0.02 0.07 

Likelihood 
Log Likelihood -127 -114 -114 -111 
Model df 5 6 10 11 

Fit measures 
AIC 263 239 247 243 
AIC Weight 0.00 0.87 0.02 0.11 

b Reference category is mature; c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated 
Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 
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Table A3.29a Comparison of regression models for aphids from grassland at rural sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -1.83 -4.35 5.92 2.75 0.72 -4.39 
Type a 1.20 -0.002 1.54 1.27 1.89 11.68 
Seasonc 2.66 2.41 1.56 -0.47 0.96 -2.02 
Temperature -0.07 0.09 -0.21 -0.08 .01 -0.16 
Humidity 0.04 0.05 -0.01 -0.02 -0.003 -0.04 

Standard Errors 
Intercept 0.60 3.44 0.95 30.5 5.16 67.09 
Type a 0.10 0.61 0.12 0.53 0.82 66.81 
Temperature 0.13 0.63 0.14 0.54 0.70 1.04 
Humidity 0.02 0.10 0.03 0.09 0.11 0.19 
Seasonc 0.01 0.04 0.01 0.03 0.06 0.06 

Likelihood 
Log Likelihood -853 -155 -381 -149 
Model df 5 6 10 11 

Fit measures 
AIC 1715 321 782 319 
AIC Weight 0.00 0.27 0.00 0.73 

a Reference category is deciduous; c Reference category is summer; NB: Negative binomial; ZIP: Zero-
inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 
 
 
 
Table A3.29b Results for final ZINB regression model (full ZINB) aphids from grassland at rural sites.   

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 0.72 5.16 0.14 5.16 67.09 -0.07 
Type a 1.89 0.82 2.29 0.82 66.81 .18 
Seasonc 0.96 0.70 1.37 0.70 1.04 -1.95 
Temperature .01 0.11 .08 0.11 0.19 -0.86 
Humidity -0.003 0.06 -0.06 0.06 0.06 -0.66 

Log likelihood = -149, Model df = 11, AIC = 319; ZINB: Zero-inflated negative binomial; aReference category 
is Deciduous; cReference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike 
information criterion. 
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Table A3.30a Comparison of regression models for ants from grassland at rural sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.65 0.36 1.61 -2.87 -0.61 -16.07 
Type a -1.58 -1.60 -1.42 0.56 -1.74 -2.23 
Seasonc 1.16 1.17 0.84 -1.13 0.99 -10.11 
Temperature -0.03 -0.01 -0.002 0.13 0.04 0.54 
Humidity 0.01 0.02 0.01 -0.01 0.03 0.06 

Standard Errors 
Intercept .56 1.70 0.60 3.33 1.92 15.77 
Type a 0.11 0.30 0.12 0.60 0.28 1.99 
Seasonc 0.10 0.31 0.11 0.64 0.31 66.13 
Temperature 0.01 0.05 0.02 0.10 0.05 0.37 
Humidity 0.006 0.02 0.01 0.04 0.02 0.13 

Likelihood 
Log Likelihood -349 -196 -292 -191 
Model df 5 6 10 11 

Fit measures 
AIC 708 404 605 405 
AIC Weight 0.00 0.62 0.00 0.38 

a Reference category is deciduous; c Reference category is summer; NB: Negative binomial; ZIP: Zero-
inflated Poisson; ZINB: Zero-inflated negative binomial; AIC: Akaike information criterion. 

 
 
 
 
Table A3.30b Results for final NB regression model (full NB) ants from grassland at rural sites. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 0.36 1.70 0.21 
Type a -1.60 0.30 -5.37*** 
Seasonc 1.17 0.31 3.77** 
Temperature -0.01 0.05 -0.12 
Humidity 0.02 0.02 1.33 

Log likelihood = -196, Model df = 6, AIC = 404; NB: Negative binomial; aReference category is Deciduous; 
cReference category is Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information 
criterion. 
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Table A3.31a Comparison of regression models for aphids from grassland at deciduous sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -0.89 -13.52 10.09 6.52 19.37 303.96 
Seasonc 3.99 4.02 1.70 -1.80 1.28 -18.66 
Temperature -0.16 0.31 -0.32 -0.12 -0.51 -7.92 
Humidity 0.06 0.11 -0.02 -0.03 -0.11 -2.35 

Standard Errors 
Intercept 0.81 6.24 1.28 4.87 12.10 424.18 
Seasonc 0.23 1.11 0.24 0.86 1.26 41.19 
Temperature 0.02 0.17 0.03 0.14 0.30 12.06 
Humidity 0.007 0.06 0.01 0.05 0.10 3.33 

Likelihood 
Log Likelihood -584 -75 -221 -69 
Model df 4 5 8 9 

Fit measures 
AIC 1177 460 458 155 
AIC Weight 0.00 0.08 0.00 0.92 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 
 
 
 
 
Table A3.31b Results for final ZINB regression model (full ZINB) aphids from grassland at deciduous 
sites. 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept 19.37 12.10 1.60 303.96 424.18 0.72 
Seasonc 1.28 1.26 1.02 -18.66 41.19 -0.45 
Temperature -0.51 0.30 -1.68 -7.92 12.06 -0.66 
Humidity -0.11 0.10 -1.10 -2.35 3.33 -0.71 

Log likelihood = -69, Model df = 9, AIC = 155; ZINB: Zero-inflated negative binomial; cReference category is 
Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 

  



184 
 

Table A3.32a Comparison of regression models for aphids from grassland at coniferous sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 1.39 1.79 2.93 -0.80 N/A N/A 
Seasonc 0.41 0.25 0.59 0.48 N/A N/A 
Temperature 0.07 0.07 0.02 0.02 N/A N/A 
Humidity -0.03 -0.04 -0.03 0.002 N/A N/A 

Standard Errors 
Intercept 1.23 3.78 1.90 4.26 N/A N/A 
Seasonc .20 0.66 0.21 0.73 N/A N/A 
Temperature 0.03 0.10 0.04 0.11 N/A N/A 
Humidity 0.01 0.04 0.02 0.05 N/A N/A 

Likelihood 
Log Likelihood -154 -73 -107  
Model df 4 5 8 N/A 

Fit measures 
AIC 317 156 230  
AIC Weight 0.00 1.00 0.00 N/A 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 
 
 
 
 
Table A3.32b Results for final NB regression model (full NB) aphids from grassland at coniferous 
sites. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 1.79 3.78 0.47 
Seasonc 0.25 0.66 0.38 
Temp 0.07 0.10 0.68 
Humidity -0.04 0.04 -0.88 

Log likelihood = -73, Model df = 5, AIC = 156; NB: Negative binomial; cReference category is Summer; *** = p 
< 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.33a Comparison of regression models for ants from grassland at deciduous sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept -6.03 -4.26 -5.91 -3.41 -6.29 -6.26 
Seasonc -0.50 0.34 -0.08 -0.50 0.58 0.01 
Temperature 0.35 0.27 0.34 0.15 0.37 0.24 
Humidity -0.01 -0.02 0.005 0.02 -0.01 0.02 

Standard Errors 
Intercept 1.02 2.93 1.11 3.07 2.24 5.09 
Seasonc 0.17 0.58 0.20 0.55 0.56 0.89 
Temperature 0.03 0.09 0.04 0.10 0.07 0.16 
Humidity 0.008 0.03 0.008 0.03 0.02 0.03 

Likelihood 
Log Likelihood -276 -113 -131 -107 
Model df 4 5 8 9 

Fit measures 
AIC 561 236 278 232 
AIC Weight 0.00 0.10 0.00 0.90 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 
 
 
 
 
Table A3.33b Results for final ZINB regression model (full ZINB) ants from grassland at deciduous 
sites 

Variable ZINB Count ZINB Logistic 
 Coefficients SE z-value Coefficients SE z-value 

Intercept -6.29 2.24 -2.80 -6.26 5.09 -1.23 
Seasonc 0.58 0.56 1.04 0.01 0.89 .01 
Temperature 0.37 0.07 5.18*** 0.24 0.16 1.54 
Humidity -0.01 0.02 -0.31 0.02 0.03 0.65 

Log likelihood = -107, Model df = 9, AIC = 232; ZINB: Zero-inflated negative binomial; cReference category is 
Summer; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Table A3.34a Comparison of regression models for ants from grassland at coniferous sites. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 
Intercept 3.43 2.59 N/A N/A N/A N/A 
Seasonc 0.59 0.67 N/A N/A N/A N/A 
Temperature -0.01 -0.002 N/A N/A N/A N/A 
Humidity 0.03 0.04 N/A N/A N/A N/A 

Standard Errors 
Intercept 0.12 1.23 N/A N/A N/A N/A 
Seasonc 0.02 0.21 N/A N/A N/A N/A 
Temperature 0.003 0.03 N/A N/A N/A N/A 
Humidity 0.001 0.01 N/A N/A N/A N/A 

Likelihood 
Log Likelihood -2703 -410   
Model df 4 5 N/A N/A 

Fit measures 
AIC 5422 842   
AIC Weight 0.00 1.00 N/A N/A 

c Reference category is summer; NB: Negative binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated 
negative binomial; AIC: Akaike information criterion. 

 
 
 
 
 
Table A3.34b Results for final NB regression model (full NB) ants from grassland at coniferous sites. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 2.59 1.23 2.11 
Seasonc 0.67 0.21 3.20** 
Temperature -0.002 0.03 -0.08 
Humidity 0.04 0.01 2.55* 

Log likelihood = -410, Model df = 5, AIC = 842; NB: Negative binomial; cReference category is Summer; *** = 
p < 0.0001; ** = p < 0.001; * = p < 0.01; AIC: Akaike information criterion. 
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Appendix for Chapter 4 
Table A4.1: Total numbers of coccinellid species that were recorded across all sites on river 

shingle (by direct search) and grass (by sweep netting) 

Species/Site Type Shingle Grass TOTAL 

Coccinella 
quinquepunctata 

457 55 512 

Harmonia  
axyridis 

40 11 51 

Adalia  
bipunctata 

62 9 71 

Coccinella 
septempunctata 

21 7 28 

Coccinella 
undecimpunctata 

9 3 12 

Propylea 
quattuordecimpunctata 

3 5 8 

Tytthaspis 
sedecimpunctata 

0 3 3 

Psyllobora 
vigintiduopunctata 

0 1 1 

Subcoccinella 
vigintiquattuorpunctata 

0 1 1 

 
TOTAL 

 
592 

 
95 

 
687 
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Table A4.2a Comparison of regression models for C. quinquepunctata from both habitats in Wales. 

Variable Poisson Negative Binomial 

Coefficients 

 
Intercept -4.18 -3.76 
Habitata 2.03 2.14 
Visitb 0.57 0.69 
Visitc -0.78 -0.66 
Temperature 0.07 0.07 
Humidity 0.05 0.04 

Standard Errors 
Intercept 0.93 2.49 
Habitata 0.14 0.31 
Visitb 0.13 0.49 
Visitc 0.17 0.43 
Temperature 0.02 0.07 
Humidity 0.008 0.02 

Likelihood 
Log Likelihood -285 -162 
Model df 6 7 

Fit measures 
AIC 583 339 
AIC Weight 0.00 1.00 

a Reference category is shingle; b Reference category is June; c Reference category is September; df = degrees 

of freedom; AIC: Akaike information criterion. 

 

 

 

Table A4.2b Results for final NB regression model (reduced NB model) for C. quinquepunctata from 
both habitats in Wales. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept -1.76 1.26 -1.39 
Habitata 2.12 0.32 6.72*** 
Visitb 1.07 0.36 2.98* 
Visitc -0.57 0.42 -1.36 
Humidity 0.03 0.02 1.61 

Log likelihood = -163, Model df = 6, AIC = 338; a Reference category is shingle; b Reference category is June; c 

Reference category is September; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB = Negative binomial; AIC: 
Akaike information criterion. 
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Table A4.3a Comparison of regression models H. axyridis from both habitats in Wales. 

   ZIP ZINB 
Variable Poisson NB Count Logistic Count Logistic 

Coefficients 

 
Intercept -9.33 -10.0 -14.7 -8.70 -16.07 -538.5 
Habitata 1.25 1.13 .72 -0.65 0.20 -25.7 
Visitb 1.91 1.82 0.96 -1.43 1.02 -39.9 
Visitc 0.53 0.83 -0.52 -1.70 -0.33 -63.3 
Temperature 0.11 0.14 0.29 0.26 0.31 11.38 
Humidity 0.07 0.07 0.13 0.08 0.13 4.88 

Standard Errors 
Intercept 3.21 5.94 5.02 10.48 7.36 519.1 
Habitata 0.34 0.70 0.39 0.81 0.76 25.95 
Visitb 0.54 1.12 0.76 1.42 1.08 45.11 
Visitc 0.62 1.00 0.92 1.72 1.16 65.35 
Temperature 0.07 0.16 0.11 0.25 0.19 11.32 
Humidity 0.03 0.05 0.05 0.09 0.06 4.67 

Likelihood 
Log Likelihood -92 -56 -62 -51 
Model df 6 7 12 13 

Fit measures 
AIC 195 127 148 127 
AIC Weight 0.00 0.55 0.00 0.45 

a Reference category is shingle; b Reference category is June; c Reference category is September; NB: Negative 

binomial; ZIP: Zero-inflated Poisson; ZINB: Zero-inflated negative binomial; df = degrees of freedom; AIC: 
Akaike information criterion. 

 

 

 

Table A4.3b Results for final NB regression model (reduced NB model) for H. axyridis from both 
habitats in Wales. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept -2.46 0.84 -2.92* 
Habitata 1.20 0.71 1.70 
Visitb 2.16 0.85 2.53* 
Visitc 1.06 0.96 1.10 

Log likelihood = -57, Model df = 5, AIC = 125; a Reference category is shingle; b Reference category is June; c 

Reference category is September; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB = Negative binomial; AIC: 
Akaike information criterion. 
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Table A4.4a Comparison of regression models for C. quinquepunctata from shingle habitat in Wales. 

Variable Poisson Negative Binomial 

Coefficients 

 
Intercept -2.14 -1.60 
Coverd 0.25 -0.04 
Covere -0.22 -0.52 
Visitb 0.56 0.99 
Visitc -0.88 -0.65 
Shannon -0.38 -0.35 
Temperature 0.06 0.03 
Humidity 0.05 0.05 

Standard Errors 
Intercept 0.99 2.82 
Coverd 0.14 0.52 
Covere 0.11 0.39 
Visitb 0.13 0.51 
Visitc 0.18 0.47 
Shannon 0.15 0.49 
Temperature 0.02 0.08 
Humidity 0.01 0.03 

Likelihood 
Log Likelihood -206 -112 
Model df 8 9 

Fit measures 
AIC 428 242 
AIC Weight 0.00 1.00 

b Reference category is June; c Reference category is September; d Reference category is low; e Reference 

category is medium; df = degrees of freedom; AIC: Akaike information criterion. 

 

 

 

Table A4.4b Results for final NB regression model (reduced NB model) for C. quinquepunctata from 
shingle habitat in Wales. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept -0.69 1.47 0.64 
Visitb 1.03 0.39 0.01* 
Visitc -0.44 0.45 0.33 
Humidity 0.04 0.02 0.03 

Log likelihood = -112, Model df = 5, AIC = 235; a Reference category is shingle; b Reference category is June; c 

Reference category is September; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB = Negative binomial; AIC: 
Akaike information criterion. 
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Table A4.5a Comparison of regression models for H. axyridis from shingle habitat in Wales. 

Variable Poisson Negative Binomial 

Coefficients 

 
Intercept -4.59 -18.37 
Coverd -1.45 -1.37 
Covere 0.49 -0.20 
Visitb 1.59 1.02 
Visitc 0.39 1.1 
Shannon 3.25 4.71 
Temperature -0.04 0.27 
Humidity 0.04 0.14 

Standard Errors 
Intercept 5.52 8.90 
Coverd 0.81 1.25 
Covere 0.74 1.15 
Visitb 0.66 1.00 
Visitc 0.95 1.23 
Shannon 0.53 1.03 
Temperature 0.13 0.19 
Humidity 0.05 0.08 

Likelihood 
Log Likelihood -39 -28 
Model df 8 9 

Fit measures 
AIC 94 73 
AIC Weight 0.00 0.99 

b Reference category is June; c Reference category is September; d Reference category is low; e Reference 

category is medium; df = degrees of freedom; AIC: Akaike information criterion. 

 

 

 

Table A4.5b Results for final NB regression model (reduced NB model) for H. axyridis from shingle 
habitat in Wales. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept -25.54 9.69 -2.64* 
Shannon 4.54 0.96 4.71*** 
Temperature 0.44 0.17 2.51 
Humidity 0.20 0.08 2.28 

Log likelihood = -29, Model df = 5, AIC = 67; a Reference category is shingle; b Reference category is June; c 

Reference category is September; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB = Negative binomial; AIC: 
Akaike information criterion. 
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Table A4.6a Comparison of regression models for C. quinquepunctata from grass habitat in Wales. 

Variable Poisson Negative Binomial 

Coefficients 

 
Intercept -10.87 -3.28 
Visitb 0.04 0.48 
Visitc -1.59 -1.44 
Shannon 0.82 1.88 
Temperature 0.24 0.12 
Humidity 0.09 0.01 

Standard Errors 
Intercept 4.33 4.84 
Visitb 0.56 1.14 
Visitc 0.70 1.09 
Shannon 0.27 0.62 
Temperature 0.09 0.16 
Humidity 0.04 0.04 

Likelihood 
Log Likelihood -63 -44 
Model df 6 7 

Fit measures 
AIC 138 102 
AIC Weight 0.00 1.00 

b Reference category is June; c Reference category is September; df = degrees of freedom; AIC: Akaike 

information criterion. 

 

 

 

Table A4.6b Results for final NB regression model (reduced NB model) for C. quinquepunctata from 
grass habitat in Wales. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept -0.78 0.57 -1.37 
Visitb 1.28 0.71 1.81 
Visitc -1.17 1.03 -1.14 
Shannon 1.83 0.61 2.99* 

Log likelihood = -44, Model df = 5, AIC = 99; a Reference category is shingle; b Reference category is June; c 

Reference category is September; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB = Negative binomial; AIC: 
Akaike information criterion. 
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Table A4.6a Comparison of regression models for C. quinquepunctata from shingle habitat in Wales. 

Variable Poisson Negative Binomial 

Coefficients 

 
Intercept 2.46 2.46 
Elevationf 0.41 0.41 
Elevationg -0.22 -0.22 
Elevationh -1.21 -1.21 

Standard Errors 
Intercept 0.08 0.22 
Elevationf 0.11 0.32 
Elevationg 0.13 0.33 
Elevationh 0.23 0.42 

Likelihood 
Log Likelihood -208 -129 
Model df 4 5 

Fit measures 
AIC 423 268 
AIC Weight 0.00 1.00 

f Reference category is 0.25-0.49 metres; g Reference category is 0.50-0.74 metres; h Reference category is > 

0.75 metres; df = degrees of freedom; AIC: Akaike information criterion. 

 

 

 

Table A4.6b Results for final NB regression model (full NB model) for C. quinquepunctata from 
shingle habitat in Wales. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 2.46 0.22 11.15*** 
Elevationf 0.41 0.32 1.29 
Elevationg -0.22 0.33 -0.67 
Elevationh -1.21 0.42 -2.85* 

Log likelihood = -129, Model df = 5, AIC = 268; f Reference category is 0.25-0.49 metres; g Reference category 

is 0.50-0.74 metres; h Reference category is > 0.75 metres; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB 
= Negative binomial; AIC: Akaike information criterion. 
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Table A4.7a Comparison of regression models for C. quinquepunctata and distance from water’s 
edge. 

Variable Poisson Negative Binomial 

Coefficients 

 
Intercept 2.91 2.91 
Distancei -0.73 -0.73 
Distancej -0.74 -0.74 
Distancek -1.30 -1.30 
Distancel -0.96 -0.96 
Distancem -2.62 -2.62 

Standard Errors 
Intercept 0.07 0.26 
Distancei 0.12 0.37 
Distancej 0.13 0.39 
Distancek 0.19 0.47 
Distancel 0.20 0.53 
Distancem 0.50 0.75 

Likelihood 
Log Likelihood -272 -146 
Model df 6 7 

Fit measures 
AIC 555 307 
AIC Weight 0.00 1.00 

i Reference category is 6-10 metres; j Reference category is 11-15 metres; k Reference category is 16-20 

metres; l Reference category is 21-25 metres; m Reference category is 26-30 metres; df = degrees of freedom; 
AIC: Akaike information criterion. 

 

 

 

Table A4.7b Results for final NB regression model (full NB model) for C. quinquepunctata and 
distance from water’s edge. 

Variable Negative binomial 
 Coefficients SE z-value 

Intercept 2.91 0.26 11.00*** 
Distancei -0.73 0.37 -1.96 
Distancej -0.74 0.39 -1.88 
Distancek -1.30 0.47 -2.76** 
Distancel -0.96 0.53 -1.81 
Distancem -2.62 0.75 -3.51** 

Log likelihood = -129, Model df = 5, AIC = 268; i Reference category is 6-10 metres; j Reference category is 11-

15 metres; k Reference category is 16-20 metres; l Reference category is 21-25 metres; m Reference category 
is 26-30 metres; *** = p < 0.0001; ** = p < 0.001; * = p < 0.01; NB = Negative binomial; AIC: Akaike information 
criterion. 
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