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 Abstract 

The common challenge currently faced by critical infrastructure (CI) asset owners and operators is the lack 
of an integrated and robust resilience-informed business planning and management approach in response 
to interdependent assets’ failures in particular due to low-probability/high-impact environmental hazards.  

Interdependencies among CI can cause cascading failures and hence, amplify impacts due to these failures. 
This can also affect CI’s service restoration rate and consequently, reducing their resilience in coping with 
these hazardous events. As infrastructures are becoming more interdependent in some sectors, there is an 
increasing need for better management of the interactions and interdependencies. 

To reduce these impacts, an integrated resilience and vulnerability- informed Decision Support System (DSS) 
is required to identify interdependent network vulnerable components and introduce adaptive capacities 
accordingly. This is of particular importance as CI operators due to their growing investments in asset 
management to improve the resilience of the networks in response to extreme environmental hazards.  

This study presents a novel framework for building a resilience and vulnerability-informed decision support 
system (RV-DSS). This framework provides potential means of communicating challenges induced due to 
interdependencies and quantifies benefits of considering interdependencies in streamlining strategies for 
interdependent systems. It also proposes a measure of network resilience in response to hazardous events, 
in addition to the commonly used measures of vulnerability for assessment of the network performance. The 
framework can be used in initiating the interdependency-based communications among different CI network 
owners and managers, leading to shared knowledge and common understanding of their connected assets, 
hidden failure propagation mechanisms and collective recovery process. The application of the framework is 
then demonstrated using a case study in North Argyll, Scotland. It is quantitatively demonstrated that 
although infrastructures with a higher level of interdependency, can impose the network to higher 
vulnerability, it provides a greater opportunity for an integrated recovery process. 
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 Introduction 

The failure of the water drain and sewer system 
due to 2002 Glasgow flooding affected many 
homes and closed many main roads and stations 
such as the A82 and A8 roads, Buchanan Street 
subway station and Dalmarnock through to 
Exhibition Centre stations on the Argyle Line. 
Storms in March 2013 brought down power lines 
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and left thousands of homes on Arran and the 
mainland without power. Reinforcing the 
electricity network has cost £197m and taken just 
under three years to complete. In another 
example, flooding during the winter of late 2015 
and early 2016 washed away three bridges in 
Cumbria and left thousands of people in Lancaster 
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without power. These events highlight that 
infrastructure networks do not exist in isolation; 
rather they are interconnected to other 
infrastructures. Interdependencies among Critical 
Infrastructures (CI)s can cause cascading failures 
and hence, amplify consequences due to these 
failures. This can also affect CI’s service restoration 
rate and consequently reducing their resilience in 
coping with these hazardous environmental 
events. As infrastructures are becoming more 
interdependent, there is an increasing need for 
better management of these interactions and 
interdependencies. With growing investments on 
infrastructure resilience by CI owners and 
operators, understanding and coordinating these 
connections become considerably important 
across all these sectors. 

Currently, the available decision support systems 
(DSS) rely on risk/vulnerability measures while 
interdependencies and their resilience in response 
to extreme environmental hazards are overlooked. 
Conventional CI management techniques aim to 
provide a high degree of reliability in the design 
process and risk analysis is the commonly used 
technique in assessing the response to disastrous 
threats. However, there are limitations to risk 
assessment in which not all risks can be quantified 
due to the existence of emerging and unobserved 
threats and highly improbable events with a high 
degree of uncertainty are dealt with poorly 
(Sweetapple et al., 2018). Furthermore, risk 
analysis techniques are not capable of assessing 
infrastructure failure consequences due to low-
probability/high-impact crises. 

These shortcomings highlight that CI 
interdependencies management, requires the 
integration of resilience-informed approach in 
addition to the conventional holistic 
risk/vulnerability mitigation approaches. This will 
enable stakeholders to identify the key 
components of existing CI networks and will assess 
the sensitivity of these components to disastrous 
events and their capacity in coping with such 
events. 

In this study, the authors have developed a novel 
decision-making framework, titled RV-DSS 
(resilience and vulnerability-based decision 
support system). This framework provides a 
measure of network resilience in response to 
hazardous events, in addition to the measure of 
vulnerability and can be used as a means of 
coordinating the complex connections between 

different infrastructure systems. The proposed 
resilience and vulnerability-informed decision 
making, in general, can provide greater scope than 
risk analysis and can account for a wider range of 
threats (e.g., low probability/high impact hazards). 

This study presents an overview of the technical 
details of the RV-DSS framework and its application 
on the North Argyll case study. The following 
section provides a brief overview of the state-of-
the-art studies in the field of infrastructure 
interdependencies, resilience and vulnerability 
quantification. Section 4 presents the RV-DSS 
framework and section 5 demonstrates the 
application of the framework on the case study, 
followed by reflection on results in section 6 and 
conclusion in section 7. 

 Critical infrastructure 

interdependencies: state-of-the-art 

review 

3.1. Infrastructure interdependencies 

A fundamental characteristic of interdependent 
networks is that the failure of a node/component 
in one network may lead to failure of the nodes in 
another network. The literature on interdependent 
infrastructure networks covers a diverse set of 
networks including transport networks, 
communication networks, financial transition 
networks, energy networks, water supply 
networks, food supply networks and fuel networks.  

Given the importance of infrastructure 
interdependencies, considerable attempts have 
been made in capturing these connections. For 
example, (Zimmerman, 2004) collected the 
empirical data available on web sites of 
construction accidents, reports of the National 
Transportation Safety Board, and news media 
searches and verified the application of theories 
developed on civil infrastructure 
interdependencies. Similarly Luiijf et al. (2009) 
have studied the frequency of cascading events by 
analysing the major events leading to cascading 
failures affecting more than 10,000 critical 
infrastructure users (referred as cascading 
outages). Collectively, these studies have 
concluded that the energy network is one of the 
main networks that initiates cascading failure 
although it is less recipient of such cascaded 
failures.  



 

In another study, Macaulay (2009) has shown that 
water systems need steady supply of electric 
energy to maintain their normal operations; while 
electric power systems require the provision of 
water and various telecommunication services for 
power generation and delivery. This is also 
confirmed by Cimellaro et al. (2014)’s study where 
it is shown that restoration of the water network 
can be highly dependent on power network. 
Literature is in agreement that generally energy 
network represents high level of independency 
while water and transport network (rail network in 
particular) represent steady dependency on 
energy. This level of dependency is a function of 
time, implying that the impacts of 
interdependency-induced failures increase by 
time.  

To categorize CIs interdependencies, different 
scholars have provided different classifications. 
Ouyang  (2014) has conducted an extensive review 
of infrastructure interdependency classification 
and modelling approaches. Ouyang’s study 
concludes that that among all different 
interdependency classification, the Rinaldi et al. 
(2001)’s definition provides a self-contained and 
more inclusive classification which can cover a wide 
range of interdependency scenarios.   

There are many references classifying the 
modelling approaches as well as the evaluation 
criteria (Bloomfield et al., 2009; Bloomfield et al., 
2008; Casalicchio et al., 2004; Ghorbani & Bagheri, 
2008; Glass et al., 2003; Peerenboom & Fisher, 
2008; Pye & Warren, 2006; Rigole & Deconinck, 
2006; Schmitz et al., 2007; Solano, 2010; Xiao et al., 
2008) . Specifically, Griot (2010) has conducted a 
meta-review of 12 studies on infrastructure 
interdependency assessment and suggested a list 
of 11 criteria and 25 sub-criteria for characterizing 
each type of models. Similarly, Pederson et al. 
(2006) have conducted a comprehensive overview 
of methods and models using six criteria: 
infrastructures, modelling and simulation 
techniques, integrated vs. coupled models, 
hardware/software requirements, intended user 
and maturity level. 

Ouyang (2014) categorises the infrastructure 
interaction modelling approaches into six broad 
types: empirical approaches, agent-based 
approaches, system dynamics-based approaches, 
economic theory-based approaches, network-
based approaches, and other approaches and 
definitions. A similar categorisation was adopted in 

the most recent review conducted by Saidi et al. 
(2018) where the infrastructure system modelling 
approaches and techniques are classified into five 
broad categories: 1. System dynamic based 
approaches, 2. Agent-based simulation and 
modelling, 3. Input-output models (economic 
flows), 4. network-based approaches, and 5. 
Empirical approaches. Ouyang (2014) shows that 
most of the modelling and simulation approaches 
are only capable of supporting part of resilience 
improvement strategies. The High-Level 
Architecture-based (HLA) method can support all 
strategies, given its hybrid approach which is 
capable of integrating all other approaches. Apart 
from HLA method, the agent-based and network 
flow-based methods can support most 
improvement strategies, but they require the 
largest quantity of input data. 

While each method has its own strengths and 
weaknesses (full description provided by Ouyang, 
2014), the focus of most literature on the 
infrastructure interdependency modelling is on 
extreme events examining a short-run operational 
behaviour of the system as opposed to the long-
term planning purposes (Saidi et al., 2018). Jeziah 
et al. (2016)  have conducted a study, 
contextualising the role of the CI interdependency 
simulations as part of a complete disaster and 
emergency management program. Pederson et al. 
(2006) and Eusgeld et al. (2008) have conducted an 
overview of the 33 different modelling and 
simulation tools aiming to model infrastructure 
interdependencies. While there are many well-
defined models and simulations exist for different 
infrastructure sectors, the actual implementation 
of these interdependencies in high-level command 
and control is yet to be well-explored 
(Dudenhoeffer et al., 2006). According to the 
review conducted by Saidi et al. (2018), many 
existing works and tools are not well suited for 
examining long-term impacts and facilitating the 
infrastructure investment decisions which has 
derived few studies in this area (Almoghathawi et 
al., 2019; Ouyang & Wang, 2015). 

One of the main barriers in infrastructure 
interdependency assessment in practice is the lack 
of structured and systematic data required to 
conduct these assessments. In the cases where this 
information exists, there is a significant concern 
with security and commercial sensitivity of the 
information. With the benefits of such assessments 
hidden in qualitative descriptions, there is no 
sufficient incentive among stakeholders for sharing 



 

such information. This study focuses on 
communicating and quantifying the importance of 
infrastructure interdependencies and highlighting 
the potential challenges and benefits of 
considering infrastructure interdependencies in 
practice. By providing means of highlighting the 
importance of infrastructure interdependencies, 
the proposed framework aims to provide 
opportunities for avoiding ineffective responses 
and poor coordination for rescue, recovery, 
restoration and, mitigation. This can also provide 
support in coordinating such responses during 
normal operation rather than solely exceptional 
circumstances. The consideration of integrated 
modelling, with the aim of incentivising shared 
intervention measures, is the main ethos of RV-DSS 
project. 

3.2. Quantification of resilience and 

vulnerability 

The review of resilience definitions in the literature 
indicates that there is not a consensus in the 
definition, however, there are several common and 
shared concepts in all the resilience definitions, 
notably the capability of a system to “absorb” and 
“adapt” to disruptive events, and “recovery” from 
it, ability to stave off disruption, returning to 
steady-state performance level. Collectively, 
literature is in agreement that resilience is a 
collection of related ideas, which explains many 
faces of resilience and the difficulty in defining it in 
one single term (Westrum, 2017; Zolli & Healy, 
2012). This becomes an even greater challenge 
when the definition is further elaborated in a 
conceptual framework with limited means of 
quantification. 

In addition to resilience definition, its assessment 
and means of quantification have received 
considerable attention in engineering community 
in the recent years, as shown in a review study by 
(Hosseini et al., 2016). In their study, the authors 
have reviewed several metrics and techniques 
under the overarching term of resilience. For 
example, Haimes et al. (2008) introduced resilience 
as the trajectory of recovery time, following a 
disruptive event. Inspired by Reed et al. (2009)’s 
scoring system, based on input-output model, 
Vugrin et al. (2011) use deviation from a business-
as-usual operation, in two dimensions of 
magnitude and duration, as a measure of 
resilience. Omer et al. (2014) use graph theory to 
relate resilience to closeness centrality of the 
network, before and after a disruption event. Youn 

et al. (2011) assess resilience as a degree of passive 
survival rate plus proactive survival rate. Inspired 
by Henry and Emmanuel Ramirez-Marquez (2012) 
metric as a ratio of recovery to loss, Hosseini and 
Barker (2016) assess resilience using Bayesian 
network, as a function of absorptive, adaptive and 
restorative capacities. Hosseini et al. (2016)  used 
this Bayesian network in assessing a supply chain 
system resilience of sulfuric acid manufacturer. 

With the complexity of the resilience concept, it 
has often been confused with the vulnerability of a 
system. Within the context of disasters, 
vulnerability is interpreted as the consequences of 
exposure to a disastrous event (Dalziell & 
Mcmanus, 2004). McEntire (2001) describes 
vulnerability as the relative degree of ‘risk, 
susceptibility, resistance and resilience in an 
occurrence of a disruptive event. Pant et al. (2014) 
define vulnerability as lack of ability to maintain 
performance and Pant et al. (2014) assess 
vulnerability by quantifying the disruptive impacts 
on passenger travel due to the removal of affected 
assets. The concept also has often associated with 
risk analysis concept (Aven, 2011; Haimes, 2006). In 
several studies vulnerability assessment leads to a 
measure of risk, interpreting vulnerability as a form 
of negative consequences (Douglas, 2007; Hall et 
al., 2005).  

Proag  (2014) suggest that vulnerability implies a 
measure of risk, associated with the physical, social 
and economic aspects. Park et al. (2013) argue that 
risk analysis needs to be complemented by 
resilience analysis for appropriate protection of 
critical infrastructure. As resilience may imply 
preparation for unexpected, the risk analysis relies 
on the premise that hazards have been occurred 
before and are identifiable (Holling, 1973). The risk 
analysis technique particularly falls short in events 
with low-probability/high-consequence or high-
frequency/low recovery period. This becomes 
more problematic in considering the probability of 
joint events.  

The debate about the existence and typology of a 
possible correlation that links resilience and 
vulnerability has been reviewed by several studies 
(Folke et al., 2002; Klein et al., 2003; Manyena, 
2006). Manyena (2006) has summarised these 
views in two main standpoints: the first one 
considers resilience and vulnerability as separate 
entities, whereas the other one sees them as 
related. Cutter et al. (2008) investigate the 
relationship between vulnerability and resilience. 



 

According to Cutter’s study, this relationship 
essentially depends on whether resilience is 
considered as an outcome or a process in the 
system and this is an important step toward 
application to disaster reduction. According to 
Miller et al. (2010) study, vulnerability research 
generally seeks to understand the underlying 
causes of vulnerability, the scale at which it occurs, 
and the main actors involved, to identify 
opportunities for risk reduction, coping, and 
adaptation.  

Generally, the literature suggests that vulnerability 
studies often neglect the long-term behaviours of 
the systems. On the other hand, resilience-based 
approaches cannot be fully realised without a deep 
understanding of the processes and linkages that 
underpin the foundations of vulnerability. Miller et 
al. (2010) conclude that integrated assessments 
that consider both aspects (i.e. resilience and 
vulnerability) are required, underpinning more 
sustainable livelihood strategies and more 
adaptive governance. It is also evident from the 
literature that both resilience and vulnerability are 
multi-disciplinary, cross-sectoral and complex 
contexts, therefore their definition or 
quantification in one dimension may limit their 
application. However, for decision-making 
purposes, it is crucial to establish a common 
understanding of the definition amongst all 
stakeholders (Cerѐ et al., 2017). In the authors’ 
opinion, this definition also needs to be relatable, 
meaningful and transferable from one system to 
another in the context of interdependent 
networks. 

Reflecting on Woods (2015)’s four concepts, the 
RV-DSS framework has adopted the first definition. 
In this definition, resilience is the post-event 
rebound capability of a system to an (original) 
equilibrium condition. Also, the duration of system 
rebound is considered, as well as capabilities and 
resources present before and after the rebound 
period. In this study, the system behaviour is 
defined as a function of the key performance 
indicators (KPI) that are of the utmost importance 
for asset owners and operators. This is a common 
practice by literature as shown by Alderson et al. 
(2015). This seeks to provide a tangible and 
meaningful metric for resilience using parameters, 
KPI, that can be monitored and compared with the 
assumed objective or the desired level. 

The implemented resilience quantification 
technique aims to highlight the importance of 

interdependency connections and offer means of 
communicating the impact of these connections on 
the resilience of the system itself and the 
integrated infrastructure networks. These 
communications can lead to introducing buffering 
capacity and flexibility in restructuring connected 
systems and altering typically individualistic 
responsive system management. This would also 
allow for consideration of cross-scale interactions 
and cross-sectoral dynamics. 

To highlight the importance of multi-
dimensionality, the vulnerability definition used in 
this study is close to the opposite definition of 
robustness provided by Woods (2015).  This 
definition reflects on worst-case performance of a 
system to a variety of disturbances and 
perturbations and reports performance envelope 
in negative consequences due to a set of 
perturbations. This could also be considered as a 
close metric to brittleness which reflects on how 
system stretches to handle surprise (Woods, 2015). 

For vulnerability measure, the magnitude of the 
loss in functionality is used as a metric representing 
the vulnerability of the system in response to a 
failure event. With the conventional definitions of 
risk as a function of probability and consequences, 
as a function of vulnerability, this metric can be 
used as an indication of consequence dimension of 
the risk. Consideration of the probability and 
likelihood of the hazardous event occurring is 
beyond the scope of the current study. 

With these definitions, this framework aims to 

support decision-making for CI resilience planning 

by addressing the following questions (so called 

decision-making objective - DO): 

DO. 1. What are the potential means of 

communicating complex concepts of resilience and 

vulnerability for operation purposes? 

DO. 2. How interdependency assessment can be 

used in resilience engineering of a system? 

DO. 3. What is the relevance of the 

interdependencies in asset management of a single 

system? 

DO. 4. How and why interdependency assessment 

can be beneficial for each system? 

DO. 5. Means of anticipating interdependency-

induced failures, perceiving and addressing them 

when and where they occur? 



 

 RV-DSS framework  

4.1. General network description 

RV-DSS framework uses resilience measures, as 
well as vulnerability, in developing operation and 
management scenarios.  To provide means of 
communicating complex concepts of resilience, 
vulnerability and infrastructure interdependency, 
RV-DSS simplifies the interconnected 
infrastructure systems into a series of nodes (e.g., 
power plans, transformers), links (e.g., distribution 
lines, information exchange, roads) and flows (e.g. 
energy, information or people). In RV-DSS 
framework, simulation of the actions and 
interactions of each infrastructure element (nodes 
and links) is modelled to assess their effects on the 
network performance as a whole.  

The following section illustrates the details of the 
mathematical and numerical modelling of a single 
system network along with failure propagation 
mechanism in a system due to a failure scenario 
and corresponding recovery process. Then details 
of numerical representation of the interdependent 
multi-system network are provided to 
demonstrate the process of building an 
interdependent multi-layered system of systems 
utilised in this study. 

4.2. Single system network 

4.2.1. System configuration 

In general, for a single infrastructure network, 
network properties can be represented by Γ =
{N, E,M}. In this representation, 𝑁, denotes the 
node sets, E, denotes the link sets, and M is 
a 𝑁 × 𝑁 matrix representing links to pair-wise 
nodes. Table 1 and Figure 1 outline the utilised 
asset inventory attributes in the numerical 
modelling in this study. For a network consisting of 
𝜈 number of nodes and 𝜔 number of links, Γ is 
given as Eq. 1. 

Γ: {
𝑁 = {𝑛1, … , 𝑛𝜐}, 𝐸Γ𝑘 = {𝑒1, … , { 𝑒𝜔}

𝑀 = {𝑒j → (𝑛𝑖, 𝑛𝑧), ∀ 𝑗𝜖[1, 𝜔], 𝑖, 𝑧𝜖[1, 𝜈]}
} 

Eq.1 

Table 1 - Asset inventory attributes in the RV-DSS 
framework 

𝑋𝑌 Node coordinates (illustrating the 
geographical location of each asset) 

𝑃𝐼0 Status-quo performance indicator of the asset  

𝑅𝑐0 Recovery initiation time 

𝐹𝑆𝑡 
Asset functionality state over time, varying 
from 0 (i.e. no functionality) to 1 (i.e. full 
functionality) 

𝑓𝐹𝑎 Failure absorption function given 𝐹𝑆𝑡 

𝑓𝑅𝑐 Recovery process function as a function of 𝐹𝑆𝑡 

𝑃𝐼𝑡  Asset performance indicator in time as a 
function of 𝑃𝐼0, 𝐹𝑆𝑡, 𝑓𝐹𝑝, 𝑅𝑐0and 𝑓𝑅𝑐 

𝑓𝐶 Cost function associated with the fluctuations 
in level of service and recovery process, 𝑓𝑅𝑐 

The members of the node vector, 𝑁, represent 
three types of assets, namely source node(s) 
(providing service), sink node(s) (receiving service) 
or both (transition asset). The members of the link 
matrix, 𝑀, represent the connection between 
source nodes and sink nodes. In other words, the 
link matrix defines the dependency functions, 
where the functionality of a sink node is defined as 
a function of the functionality state (𝐹𝑆𝑡) of the 
node itself and the functionality state of source 
nodes, providing service directly or indirectly to 
that node.  The state of each asset, represented by 
𝐹𝑆𝑡, is used as an agent that is communicated (via 
matrix M) to the connected nodes. 

As can be seen from Figure 1, both failure 
absorption and recovery process functions can be 
represented by five possible options, varying from 
most conservative behaviour in option 1 to worst 
case scenario in option 5. 

4.2.2. System performance  

As the continuity of (business-as-usual) service is of 
utmost importance for asset owners and 
managers, the overall service delivered by the 
system, at any given time, is used to define the 
‘performance indicator’ (PI) of the system, in this 
study. Noteworthy that the performance indicator 
for any system is defined by the decision-making 
criteria but ultimately for utility services, this is tied 
to ‘continuity of service’ provision to end-users. 

An ideal system is responsible for service provision 
to 100% of its users, at any given point in time. In 
this system, each asset is directly responsible for a 
proportion of the ‘total number of users’. In this 
study, this metric is used to define the PI  of each 
asset. In a business-as-usual scenario, the PI of an 
asset, shown by 𝑃𝐼0, can be idealised and 
represented as a uniform value with time. At any 
given time, the performance indicator of the asset 
is evaluated as a function of asset functionality 
state (𝐹𝑆𝑡) (e.g. 𝐹𝑆𝑡 of 1 at time 𝑡 implies 𝑃𝐼𝑡 =
𝑃𝐼0).   



 

In an event of a failure, the PI will be reduced 
depending on the impact of failure on asset 
functionality state 𝐹𝑆𝑡 and the failure absorption 
pattern (𝑓𝐹𝑎) given the event. Once the failure is 
absorbed by the asset, the recovery process will be 
initiated at time 𝑡 + 𝑅𝑐0 and depending on the 
recovery pattern, 𝑓𝑅𝑐, the PI bounces back to a 
recovered state.  

Figure 1, schematically, demonstrates the variation 
of PI of an asset with time, in response to a failure 
scenario and as a function of parameters outlined 
in Table 1. The 𝑃𝐼 variation with time is 
represented by the Eq. 2. 

𝑃𝐼𝑡

=

{
 
 

 
 

𝑃𝐼0

𝑃𝐼0 −  𝑓𝐹𝑎(𝑡)

𝐹𝑆𝑡 × 𝑃𝐼0

𝑃𝐼0 −  𝑓𝐹𝑎(𝑡) + 𝑓𝑅𝑐(𝑡)

𝑃𝐼0

   

𝑡 < 𝑡𝑧1
𝑡𝑧1 ≤ 𝑡 < 𝑡𝑧2
𝑡𝑧2 ≤ 𝑡 ≤ 𝑡𝑧3
𝑡𝑧3 < 𝑡 ≤ 𝑡𝑧4
𝑡𝑧4 < 𝑡

 

Eq.2 

Where, 𝑡𝑧1 = 𝑡ℎ, 𝑡𝑧2 = 𝑡ℎ + 𝑡𝐹𝑎, 𝑡𝑧3 = 𝑡ℎ + 𝑡𝐹𝑎 + 𝑅𝑐
0 

and 𝑡𝑧4 = 𝑡ℎ + 𝑡𝐹𝑎 + 𝑅𝑐
0 + 𝑡𝑅𝑐. In these definitions, 𝑡ℎ 

is time of failure occurrence, 𝑡𝐹𝑎 is duration of failure 
absorption, and 𝑡𝑅𝑐  is duration of recovery. 

 

Figure 1 – Nodal asset profile  

As can be seen from this figure, the entire journey 
from pre-failure to post-recovery can be divided 
into 5 zones: 

• Zone 1: The status-quo equilibrium zone 

• Zone 2: Failure absorption zone 

• Zone3: Initiation of recovery 

• Zone 4: Recovery zone 

• Zone5: post-recovery equilibrium zone 

Having defined PI in asset level in Eq. 2, the 
functionality of the entire interdependent network 
can be defined as the sum of the total number of 
users receiving service from the system in this 
study, given as: 

𝑃𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑡 =∑𝑃𝐼𝑟

𝑡

𝑣

𝑟=1

 
Eq. 3 

 where 𝑃𝐼𝑟
𝑡 represents PI for asset 𝑟 at time 𝑡.  

In line with the above definition, the ‘impact’ of any 
failure scenario is reported in the ‘total number of 
users remaining in service’, in any given time. 
To generalise the analysis, the failure scenarios can 
be defined regardless of the origin, type and 
severity of the initiating hazardous event (e.g. 
extreme rainfall, earthquake, etc.), so-called 
‘failure state’. Failure state represents the 
condition (operational condition and/or physical 
condition) of a network (or any asset), causing 
negative impacts on network performance 
(partially or fully), regardless of the initiating 
source.  
In an event of a single failure scenario, the failure 
of an asset will be propagated to its connected 
assets, as a function of failure absorption pattern 
for each asset. Once the recovery of the failed asset 
is initiated, the service will be restored in the failed 
asset and this will be communicated to all affected 
assets. The example in Figure 2 demonstrates a 
single failure scenario propagation in a conceptual 
network. The conceptual network comprises of 6 
nodes and 5 dependency links.  

 

Figure 2 - Conceptual network with assumed failure and 
recovery patterns for nodes and links 

For illustration purposes, Figure 3 demonstrates 
the change in PI of all 6 nodal assets in response to 
a failure scenario where node 3 has experienced 
80% loss on its functionality state at time=1hr (i.e., 
𝐹𝑆3

1 = 20%). As can be expected, the PI of nodes 
1, 2 and 5 remain intact as there is no failure 
propagation path from node 3 to these nodes.  
The profile of the PI for the entire conceptual 
network is calculated as the sum of the PI for all 6 



 

node (see Eq. 3). Given the contribution of asset 4 
in the number of users, it is not surprising that the 
profile of the PI for the entire system is dominated 
by asset 4’s performance. 

 
 

Figure 3 - Impact of 80% failure on the functionality of 
asset 3 in the conceptual network for each individual 

node  

4.3. Multi-system configuration 

To expand the single system modelling 
configuration to multi-layered interdependent 
systems, in addition to dependency mapping of 
each system, the interdependency mapping is 
required to establish the connections between 
individual assets from a different network. Similar 
to dependency connection, any link in 
interdependency mapping represents any form of 
service flow from one asset to another.  

Eq.4 shows a representation of interdependency 
mapping for a multi-layer interdependent system 
with u individual networks. In this equation, 𝑀𝑖 
represents dependency matrix for network 𝑖 and 
𝑂𝑖𝑗 , 𝑖 ≠ 𝑗 represents interdependency links from 

source node in network 𝑖 to sink nodes in network 
𝑗.   

𝑴 =

[
 
 
 
 
𝑀1 … 𝑂1,j … 𝑂1,u
⋮ ⋱
𝑂j,1 …

⋮ ⋱

⋮ ⋱
𝑀j …

⋮ ⋱

⋮
𝑂j,u
⋮

𝑂u,1 … 𝑂u,j … 𝑀u ]
 
 
 
 

 

Eq.4 

4.4. Resilience and vulnerability metrics 

As discussed in the review section, the resilience 
and vulnerability of any engineering system need 
to be linked to decision-makers’ defined KPIs. 
Often the performance of an engineering system 
can be expressed in terms of its demand (load) and 
capacity (resistance). In the transport system 

context, the load can be the traffic demand and the 
capacity is dictated by the available infrastructure, 
in this case, roads.  
In light of the conventional network performance 
measures, this study uses the status-quo ‘total 
number of users in service’, as the commonly used 
network performance metric for all the 
infrastructure networks considered. The main 
advantage of this PI is the possibility of its direct 
translation to corresponding economic 
implications. In addition to heavy compensations, 
frequent failure in service provision can also have 
reputational damage which is of particular 
importance for private utility service providers.  

With the definitions provided in section 3.2, in this 
study, the vulnerability is measured as the worst 
performance of the system subjected to a failure 
scenario represented in Eq. 5. For the resilience, 
the area under PI vs time is used to capture the 
rebounding journey of a system following a 
disruptive event, shown in Eq. 6. 

Eq.5. 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦Γ𝑗

= 𝑚𝑎𝑥 (∑𝑃𝐼𝑟
0

𝑣

𝑟=1

−∑𝑃𝐼𝑟
𝑡

𝑣

𝑟=1

) 

Eq.6. 

𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒Γ𝑗 = ∫ (∑𝑃𝐼𝑟
𝑡

𝑣

𝑟=1

)
𝑡

. 𝑑𝑡 

One of the limitations of the considered resilience 
metric may seem to be its lack of capability in 
acknowledging the importance of the number of 
users over time. In other words, the resilience of a 
system losing 100 users for an hour prior to 
recovery could be similar to the resilience of a 
system losing 10 users for 10 hours. This highlights 
the importance of consideration of resilience and 
vulnerability as complementary metrics. 

The following section provides details on how this 
framework is applied to a multi-layered integrated 
system developed for the North Argyll case study. 

 North Argyll case study 

To demonstrate the application of the developed 
framework in initiating interdependency-based 
decision making, a case study in Scotland is 
selected and presented here. The case study was 
selected given the recent widespread 
interdependency-induced failures due to increased 



 

frequency and magnitude of environmental 
hazards in Scotland. The selected critical 
infrastructure networks in this area include 
drinking water distribution system, electricity 
distribution network (utility networks) and three 
modes of transport: road, rail and ferry networks. 

As mentioned previously, the major problem in 
modelling and validating infrastructure 
interdependencies is posed by the fact that 
detailed information about CI dependencies can be 
highly sensitive and is usually not publicly available 
in the UK. As it is evident from the previous section, 
network modelling approaches have a wide range 
of data requirements. Collecting this information is 
generally difficult due to several concerns, 
including the high cost of monitoring the real-time 
performance of infrastructures, assembling and 
maintaining databases, privacy, commercial 
sensitivity, security, and proprietary issues (Rinaldi 
et al. 2001). Furthermore, infrastructure owned 
and operated privately often have a restricted 
policy to collect and share data. Moreover, the 
commercial sensitivity of this information 
aggravates the security concerns in sharing 
infrastructure asset inventory information. In cases 
where sensitivity is not of concern, the information 
required is not readily available due to the 
complexity of many failure scenarios and recovery 
measures in many different types of assets which 
in practice, are seldom recorded in detail. The case 
study presented here is used to demonstrate the 
application of the framework to an interdependent 
infrastructure system and offers a systematic 
mechanism for collecting interdependency data for 
connected systems.  

5.1. Data collection 

Given the challenges with availability and 
sensitivity of data and associated security 
concerns, in this study, open access data are used 
to build the case study. The aim of the case study is 

to illustrate the capabilities and application of the 
RV-DSS framework in providing means of 
understanding how integrated infrastructure 
design can deliver local and regional economic 
resilience. Furthermore, it highlights the extra 
value for money where shared interdependencies 
can be co-managed between sectors. To overcome 
the challenge with data, in a recent study by 
Oughton et al. (2019), the authors have employed 
a stochastic counterfactual risk analysis using 
expert elicitations. 

5.1.1. Three modes of transport 

In this study, the sources of data are: Ordinance 
Survey data , Department for Transport, Office of 
Rail and Road Data, Argyll and Bute Council and 
Transport Connectivity and Economy Research 
studies. By crosslinking the database from these 
sources, a comprehensive map of the transport 
network in the case study area was prepared. In 
addition to the transport network assets, Argyll and 
Bute Council database was used in obtaining the 
coordinates for water reservoirs and power 
stations. Figure 4 presents the geographical 
locations of all transport assets (road, rail and ferry 
ports), reservoirs and power stations based on 
open access data. 

This physical network is then used to generate the 

simplified node and links representation network. 

In this study, every junction in the road network 

considered to be a node and every connection 

between the junctions are simplified by 

bidirectional links. A similar method is used for rail 

and ferry networks. 

To generate the expected performance indicator 
(status-quo) for each asset in the road network, the 
annual average daily traffic (AADF) dataset 
published by the Department for Transport is used. 
The dataset provides AADF for a-road and b-road 
links for each direction.  



 

 

Figure 4- Collected data for the North Argyll Case Study 

The collection points for the b-roads in North Argyll 
area is limited, therefore, an interpolation 
technique was used to estimate the number of 
users for the b-road links. Given the limitation of 
the available data, the minor roads are not 
considered in the case study. 

For the rail network, the total number of 
exits/entries from the Office of Rail and Road Data 
were used to estimate the number of users for 
each station (i.e. node) and each rail (i.e. link).  

It should be noted that the case study area only 
covers 8 rail stations. Three dummy stations are 
considered at the boundary of the case study 
(Rannoch Station, Tyndrum Lower Station and 
Upper Tyndrum) to represent the impact of these 
connected stations on the case study area.  

The data from Argyll and Bute Council on ferry 
routes provide the number of passengers per each 
route, which is then used as the number of users 
per link (i.e. ferry route) and consequently used in 
calculating the number of users per each node (i.e. 
ferry port) in a similar approach to the road 
network. To compare the performance of different 
networks, the total number of users in each 
network is normalised to 100%.  

5.1.2. Utilities and independency connections 

Using population distribution and the collected 
open access data on transport, reservoirs and 
power stations in the case study area, a 

hypothetical drinking water network and electricity 
distribution network are designed. The 
approximate location of storage tanks and energy 
distribution substations and population 
concentration points are used to divide the case 
study area into serving zones, using Voronoi 
partitioning. The approximate population in each 
zone is calculated to estimate the number of users 
per storage tank and substation.  

To explore the impact of interdependency on the 
network’s vulnerability and resilience, in this study, 
different level of interdependency is introduced. As 
shown in the literature review, the energy is 
generally assumed to be an independent network, 
except for its dependency on the road network for 
maintenance purposes. For demonstration 
purposes, in this study, the energy network is 
considered to be an entirely independent network. 
This is to investigate the impacts of zero 
interdependency level. A higher level of 
interdependency is considered for the road and 
ferry networks, where, interdependencies are 
introduced in bi-directional connections between 
ferry terminals and road assets due to geometrical 
and physical dependencies.  

For the rail network, in addition to assets 
connection to nearby road assets, it is assumed 
that all assets in the rail network are recipients of 
water and energy services. For the drinking water 
network, it is assumed all assets in the water 
network requires energy for the service continuity. 



 

Furthermore, it is assumed that assets in water 
network are dependent on road network for 
maintenance purposes. To accommodate this, a 
nominal network, so-called maintenance network, 
is introduced, where, the maintenance routes on 
the road network are represented by a node in the 
network.  

5.1.3. Case study summary 

Table 2 provides a summary of the number of 
nodes and links in each network. It can be seen that 
the road network, expectedly has the largest 
cohort of nodes and links. The connectivity quality 
of the entire network is summarised as the ratio of 
the number of links to the number of nodes. The 
summary of links excludes the number of 
interdependency links. 

Table 2 - Summary of network representation with 
nodes and links –North Argyll case study 

Network 
No. 
Nodes 

No. 
Links 

Link/Node 
Ratio 

Road 242 490 2.02 

Maintenan
ce 

12 0 0.00 

Water 43 32 3.20 

Energy 29 20 4.00 

Rail 10 18 1.8 

Ferry 5 10 2 

Table 3, provides a summary of non-zero elements 
of master dependency and interdependency 
matrice, 𝑴.  

Given the connections between road assets and 
notional maintenance routes, the latter represents 
a high level of interdependency. Water network 
ranks second as it receives service from both 
maintenance and energy networks. The latter 
connections are those directly provided by the 
electricity main distribution network and excludes 
the electricity provided independently. 

Table 3 - Distribution of all links in the integrated North 
Argyll case study network 
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 Road 490 153 10 5 0 0 

Maintenance 0 0 0 0 13 0 

Water 0 0 0 8 32 0 

Energy 0 0 8 0 43 20 

Rail 0 0 18 0 0 0 

Ferry 0 0 0 10 0 0 

Despite the notional nature of the case study data 

for water and energy networks, the exercise of 

identifying potential connections between these 

two networks and other three transport modes 

proved to be of great value. This information is not 

readily available for infrastructure system 

owners/operators and this exercise initiated the 

interdependency discussions among case study 

stakeholders. The purpose of the co-created 

dataset was not only to close the gap in the 

information required for the framework but also to 

provide means of demonstrating how integrated 

infrastructure design can have potential in 

delivering extra value for money where shared 

interdependencies can be co-managed between 

sectors. 

 RV-DSS analysis and results 

To analyse the impacts of failure propagations due 
to inherent interdependencies, this study considers 
all “what-if” scenarios where the failure scenarios 
are defined regardless of the origin, type and 
severity of the initiating hazardous event (e.g. 
extreme rainfall, earthquake, etc.), the so-called 
‘failure state’ concept. The impacts of these failure 
scenarios are reflected on the number of remaining 
users in service for each asset and the entire 
interdependent network.  

6.1. Single failure scenarios and 

interdependency-induced propagation 

For the first experiment, the impact of all possible 
single failure scenarios is considered. For each 
scenario, an asset is failed with 100% failure in 
functionality state. For consistency, the failure 
propagation profile is considered uniform and 
abrupt for all assets. Figure 5 demonstrates the 
result of this experiment in the form of alluvial flow 
diagram with five shades of grey allocated to five 
infrastructure networks. This diagram visualises 
the criticality of different failure scenarios in each 
network In addition, it directly supports the 
developed framework’s response to the DO.3 and 
DO.4 to support the decision-making process. 

In this diagram, the impact of single asset failure on 
the number of remaining users in service is 
demonstrated in weighted flows. Each strand on 



 

this diagram demonstrates the impact of an asset 
failure, on PI of the entire  interdependent  
network.  

For example, for the road network with 242 nodes, 
Figure 5 shows 242 strands (also 242 single failure 
scenarios) on left-hand-side with the impact 
represented by the thickness of each strand and 
the endpoint demonstrating the affected network, 
in this example, road, rail, ferry and water. It is 
shown that not surprisingly, as the 
interdependency increases, the network 
vulnerability increases. For example, the rail 
network with interdependency on energy, water 
and road demonstrates four shades of strands 
(including assets in the system itself). These strands 
illustrate the number of scenarios that can have a 
negative impact on rail network PI, in this case, the 
number of users. On the other hand, energy 
network, notional independent network with 29 

assets and shown in the lightest grey, has no 
strands  feeding from other networks (i.e., the 
system is not vulnerable to failure scenarios in 
other networks). Noteworthy that individual assets 
can have an impact on more than one network, 
which is shown by strand split on left-hand-side of 
the figure. 

Figure 5 shows that in the networks with the 
highest level of interdependency (i.e., rail and 
water in this case study), interdependency-induced 
failure scenarios are governing. The cluster of 
different shades of grey on right-hand-side for each 
system is an illustration of potential hidden 
vulnerabilities and hidden failure scenarios that 
may have been overlooked by a system operator. 
This highlights the criticality of considering 
interdependency links in asset management 
decisions and also short-term and long-term 
investment strategies (DO.3 and Do.4). 

 

Figure 5 - Alluvial Flow Diagram for all single failure scenarios – the left-hand side demonstrates all assets in all 
networks, shown with different shades of grey for each network and the right-hand-side demonstrated the collective 

scenarios for each individual network. 

6.2. Resilience versus vulnerability in RV-

DSS framework 

In order to study the impact of interdependency on 
resilience, a similar experiment with single failure 
scenarios are conducted. To assess the resilience of 
the network, in addition to the failure propagation 
process, the recovery process is also considered. In 
a similar attempt to the previous scenario and for 

consistency purposes, the recovery initiation, 𝑅𝑐0, 
and recovery duration, 𝑓𝑅𝑐, are assumed constant 
for all assets (nodes and links). This assumption 
helps to focus the study on the impact of 
interdependency level on vulnerability. Variation in 
failure absorption, recovery profile and initiation 
time, add another level of variability which is 
beyond the scope of the current study.  



 

For the purpose of the analyses, the recovery 
initiation and recovery duration are considered to 
be 1hr and 4hrs, respectively. Figure 6.a. 
demonstrates the resilience and vulnerability of all 
single failure scenarios for the water distribution 
network. The area in this graph is divided into four 
zones: i. high resilience-low vulnerability, shown in 
white; ii. Low resilience-low vulnerability, shown in 
light grey; iii. High resilience-high vulnerability 
shown in dark grey; iv. Low resilience- high 
vulnerability shown in black. The intensity of the 
shade of grey demonstrates the importance of the 
scenarios for decision-makers from resilience and 
vulnerability point of view (DO.1 and DO.2).  

In Figure 6.a., every single grey point demonstrates 
a single failure scenario in a network, which means 
all figures contain 341 points (total number of 
nodes). Scenarios with no impact on resilience and 
vulnerability are shown on the far-left side of the 
figure, demonstrating a resilience of 2000 and 
failure of 0. The magnitude of resilience is 
calculated for PI of 100% for 20 hours.  

Repeating the experiment for all networks, it is 
found that in networks with a low level of 
interdependency, such as road and energy 
networks, the correlation between resilience and 
vulnerability, as defined in this study, is linear. As 
the interdependency level increases, for example 
in water and rail networks, single failure scenarios 
show a more scattered pattern in resilience versus 
vulnerability graphs. This highlights the importance 
of considering these two metrics as 
complementary measures and not in isolation. 

In practice, critical failure scenarios are those with 
concurrent failures. Figure 6 compares the impact 
of all single failure scenarios in Figure 6.a, to double 
failure scenarios in Figure 6.b. For double failure 
scenario, all possible combination of two-asset 
failures, in total 115,940 scenarios, are considered. 
For consistency, it is assumed that both assets fail 
at the same time with functionality state of 0% 
upon failure. It can be seen that as the number of 
concurrent failed assets increases the scattered 
pattern in resilience-vulnerability diagrams 
becomes more pronounced. This complements the 
behaviour observed for networks with a higher 
level of interdependency. As expected in double 
failure scenarios, the number of points in black and 
dark grey zones grow. 

 

Figure 6 - Resilience vs vulnerability for water network 
a. Single Failure Scenarios b. Double failure scenarios 

As part of this experiment, the correlations 

between resilience and vulnerability with graph 

theory metrics such as betweenness, degree and 

cluster coefficient are also assessed. The results 

show that ferry network with the highest ratio of 

nodes to links, results in the highest correlation 

between these variables. This is not a consistent 

trend among all other four infrastructure networks 

and there is no obvious correlation between graph 

topology and resilience/vulnerability of an 

interdependent network.  

6.3. Concept of shared intervention 

This framework can also be used in a higher 
resolution analysis by introducing “shared 
intervention” concept to address the DO.2, DO.4 
and DO.5. Figure 7 demonstrates the impact of 
individual asset failures in the water distribution 
network on vulnerability of the water network 
itself and the interdependent rail network. For this 
purpose, all single failure scenarios for nodal assets 
in the water network is assessed and the impact on 
the network itself and the independent network is 
calculated and shown by bar size in Figure 7.  

The figure shows that several assets in the water 
network can result in considerable failure in the 
interdependent network. Generally, these assets 
are of high importance in the water network itself, 
shown by the size of the bars, therefore, in an event 
of failure, recovery initiation would be expected to 
be rapid. In the scenarios where the asset may not 
be immediately considered important for the 
network itself, but it could result in significant loss 
of service in the interdependent network (e.g. 28W 
in this case), asset owners can discuss the 
possibility of sharing intervention measures. This 
can help speeding up the recovery initiation and 



 

hence, leading to speedy service restoration in the 
interdependent network. This decision can be 
considered in conjunction with recovery cost 

associated with each asset and savings for both 
networks in the form of rapidity in recovery and 
hence, improved resilience.  

 

Figure 7 - Water network asset ranking for dependent and interdependent network based on their impact on key 
performance indicator of each network. 

The results of this analysis can also be used in 

identifying the ideal location for maintenance 

depot or instigating redundancy options for 

networks with a high level of interdependency. For 

example, Figure 8 demonstrates the overlap of 

“interdependency clusters” for all 

interdependency-induced single failure scenarios. 

Interdependency cluster demonstrates the area 

affected by the source asset. The dark grey areas in 

this figure demonstrate the overlap in areas 

affected by different scenarios. This area also 

shows the spatial extent of the failure in the case 

study area. The shaded area covers the initiating 

failed asset and propagated failure. As the shaded 

area becomes darker, it means that the area is 

affected by a larger number of failure scenarios.  

This can be used as means of identifying the most 

vulnerable areas and hence, can provide guidance 

in improving resources or redundancy level 

required. It can also support optimising decisions 

concerning emergency systems. This is particularly 

useful in addressing and responding to DO.5. This 

element of the framework was well received by 

stakeholders for the selected case study as a means 

of spatial visualisation of low resilient areas. 

To demonstrate the potential of RV-DSS framework 
in operational decision-making and considering 
interdependencies, Figure 9 illustrates an example 
of the contribution of all networks in improving the 

resilience of the rail network. For this purpose, all 
single failure scenarios that can have an impact on 
the overall KPI of the rail network is assessed. In 
this exercise, the recovery initiation and profile are 
considered constant for all scenarios. These 
scenarios are shown in a cluster of strands for the 
rail network in Figure 5. In the next stage, the same 
experiment is repeated with 1 hr change in 
recovery duration for all scenarios. This change in 
recovery can be in the form of improving the 
rapidity or increasing the resources available for 
the recovery process.  

 

 

Figure 8 - Interdependency Cluster for all 
interdependency induced failure scenarios – failure 
propagation zones for all interdependency-induced 

scenarios 

The difference between the resilience values from 
these two experiments is recorded as a percentage 
of change in resilience and is categorised by each 



 

network. Figure 9 demonstrates the cumulative 
impact of 1hour reduction in recovery duration of 
all single failure scenarios on the rail network.  

 

Figure 9 – The Impact of 1hr change in recovery 
duration in all single failure scenarios on the resilience 

of the rail network 

It can be seen that although a change in recovery 

duration in the network itself has a considerable 

contribution to resilience improvement, change of 

recovery duration on source interdependent 

networks can have a significant impact too. This 

further reinforces the previous results on the 

importance of the shared intervention strategies in 

improving the resilience of interdependent 

networks. This assessment can be used in the cost-

benefit assessment of CI networks, where, the cost 

associated with recovery measures is compared to 

the savings in resilience. 

 Conclusion 

This study presents the outcomes of a feasibility 
study on producing a framework for a resilience 
and vulnerability-based decision support system 
(RV-DSS) and its application on a case study in 
North Argyll, Scotland, UK.  

Infrastructure systems are heavily connected and 
lack of/ineffective consideration of these primary 
and ‘n-ary’ connections and the implication of the 
interdependency-induced failures, presents a great 
challenge in understanding system behaviour. For 
this purpose, a network-based framework is 
developed to simulate failure propagation and 
recovery process for a multi-layered 
interdependent network consisting of five 
infrastructure systems. The impacts of the 
interdependency-induced failure scenarios are 

then quantified and assessed to establish and map 
the resilience and vulnerability of the integrated 
system accordingly.  

Different levels of interdependency and their 
impacts on system resilience and vulnerability are 
investigated to demonstrate why interdependency 
assessment is important in infrastructure asset 
management and how this can be used in resilience 
engineering of a system. It is also shown how a 
higher level of interdependency highlights the 
importance of consideration of resilience as a 
complementary metric to vulnerability, as it 
provides a broader picture of system behaviour in 
response to failure scenarios. The vulnerability and 
resilience measures in this study can provide 
common means of communication and frame of 
reference for different critical infrastructure 
systems’ performance assessment. Nonetheless, 
further research is required in investigating the 
applicability and effectiveness of other measures, 
introduced in the literature, for each infrastructure 
system. This also includes consideration of multi-
dimensional performance indicators. 

In this study, the complex structure of a multi-
layered interconnected systems is simplified into a 
system of nodes and links and the failure is 
interpreted as form of discontinuity in service. 
While there are many well-defined models and 
simulations exist for individual systems, integration 
of these systems for interdependency assessment 
is rather limited to qualitative and conceptual 
frameworks. This study is an attempt in quantifying 
the benefits and the importance of considering 
infrastructure interdependencies in decision-
making. The developed methodology is then 
applied to a case study. The notional nature of the 
co-created data limits the validation capabilities; 
however, despite its limitation, the case study 
serves the purpose in demonstrating means of 
communicating interdependency-induced 
vulnerabilities and resilience capacities. The 
validation process also requires an in-depth 
investigation of failure absorption and recovery 
patterns for individual assets 

To realise the potential benefits of inherent 
interdependencies in infrastructure systems, a 
concept of ‘shared intervention’ is introduced. This 
concept can be used in anticipating 
interdependency-induced failure scenarios, 
perceiving and addressing them in a collaborative 
manner with other infrastructure networks. This is 
the very first time that such concept is exercised in 



 

collaboration with stakeholders concerned, in a 
practical form in Scotland.  

It is highlighted that infrastructure 
interdependency assessment requires a large and 
reliable set of structured data concerning the 
failure mechanisms and recovery strategies in 
place and in response to different failure scenarios. 
This emphasises the importance of incorporating 
an appropriate ‘shared data management system’ 
to record and reflect on failure scenarios that are 
induced by interdependent assets. Failure and 
recovery mechanism of individual assets and 
connections and their impact on the overall multi-
layered interdependent system requires further 
investigation. 

It is shown that although infrastructures with a 
higher level of interdependency, can impose the 
network to higher vulnerability, however, this 
provides an opportunity in shared recovery 
strategies. Since majority of the decisions in each 
infrastructure sector relies on the network itself 
(so-called ‘dependency’) rather than its 
interconnectedness to other infrastructure 
(interdependency), it can bias the decision-making 
process and result in neglecting the cascading 
failures.  

This study shows how understanding the dynamics 
underlying the infrastructures’ design and 
operation is of particular importance not only for 
asset owners and operators, but also for 
emergency responses. This understanding can also 
create opportunities for infrastructure decision-
makers to optimise their intervention strategies. 
Ultimately, this can lead to effective response and 
coordination among decision makers responsible 
for rescue, recovery, and restoration services. 

 

Acknowledgement 

This work is conducted as part of the project 
funded by Natural Environment Research Council 
under NE/R008973/1 grant number. The authors 
also would like to acknowledge project industry 
collabo-rates, Transport Scotland, Scottish Water, 
Scottish and Southern Energy and Atkins for their 
kind and constant support, constructive advice and 
full engagement throughout the project. The 
authors also would like to thank project research 
assistant Mr Vasos Christodoulides in assisting in 
development of the web-based tool and Dr 
Lakshmi Rajendran and Dr Carlos Jimenez Bescos 

for their advices during the initial stages of the 
project. 

 References 

Alderson, D. L., Brown, G. G., & Carlyle, W. M. 
(2015). Operational Models of Infrastructure 
Resilience. Risk Analysis, 35(4).  

Almoghathawi, Y., Barker, K., & Albert, L. A. (2019). 
Resilience-driven restoration model for 
interdependent infrastructure networks. Reliability 
Engineering & System Safety, 185, 12–23.  

Aven, T. (2011). On Some Recent Definitions and 
Analysis Frameworks for Risk, Vulnerability, and 
Resilience. Risk Analysis, 31(4), 515–522.  

Bloomfield, R., Chozos, N., & Nobles, P. (2009). 
Infrastructure interdependency analysis : 
Introductory research review. Control, 1–36.  

Bloomfield, R., Popov, P., Salako, K., Wrght, D., 
Buzna, L., Ciancamerla, E., Blasi, S. & Rosato, V. 
(2008). Analysis of critical infrastructure 
dependence - An IRRIIS perspective. IRRIIS 
Workshop at CRITIS 2008, Frascati, Italy. 

Casalicchio, E., Setola, R., & Tucci, S. (2004). An 
Overview on Modelling And Simulation Techniques 
for Critical Infrastructures. IEEE Computer Societty, 
630–633. 

Cerѐ, G., Rezgui, Y., & Zhao, W. (2017). Critical 
review of existing built environment resilience 
frameworks: directions for future research. 
International Journal of Disaster Risk Reduction, 25, 
173–189. 

Cimellaro, G. P., Solari, D., & Bruneau, M. (2014). 
Physical infrastructure interdependency and 
regional resilience index after the 2011 Tohoku 
Earthquake in Japan. Earthwuake Engineering and 
Strctural Dynamics, 43, 1763–1784. 

Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, 
E., Tate, E., & Webb, J. (2008). A place-based model 
for understanding community resilience to natural 
disasters. Global Environmental Change, 18(4), 
598–606.  

Dalziell, E. P., & Mcmanus, S. T. (2004). Resilience, 
Vulnerability, and Adaptive Capacity: Implications 
for System Performance. International Forum for 
Engineering Decision Making (IFED).  

Douglas, J. (2007). Physical vulnerability modelling 
in natural hazard risk assessment. Natural Hazards 
and Earth System Sciences, 7(2), 283–288.  



 

Dudenhoeffer, D. D., Permann, M. R., & Manic, M. 
(2006). CIMS: A framework for infrastructure 
interdependency modeling and analysis. 
Proceedings - Winter Simulation Conference, 478–
485.  

Eusgeld, I., Henzi, D., & Kröger, W. (2008). 
Comparative evaluation of modeling and 
simulation techniques for interdependent critical 
infrastructures. 15–35.  

Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., 
Holling, C. S., & Walker, B. (2002). Resilience and 
sustainable development: building adaptive 
capacity in a world of transformations. AMBIO: A 
Journal of the Human Environment, 31(5), 437–
441. 

Ghorbani, A. A., & Bagheri, E. (2008). The state of 
the art in critical infrastructure protection: a 
framework for convergence. International Journal 
of Critical Infrastructures, 4(3), 215.  

Glass, R., Beyeler, W., & Conrad, S. (2003). Defining 
research and development directions for modeling 
and simulation of complex, interdependent 
adaptive infrastructures. In National Infrastructure 
Simulation and Analysis Center.  

Griot, C. (2010). Modelling and simulation for 
critical infrastructure interdependency 
assessment: a meta-review for model 
characterisation. Int. J. Critical Infrastructures J. 
Critical Infrastructures, 6(4), 363–379.  

Haimes, Y. Y. (2006). On the definition of 
vulnerabilities in measuring risks to infrastructures. 
Risk Analysis, 26(2), 293–296.  

Haimes, Y. Y. (2009). On the definition of resilience 
in systems. Risk Analysis, 29(4), 498–501.  

Haimes, Y. Y., Crowther, K., & Horowitz, B. M. 
(2008). Homeland Security Preparedness: 
Balancing Protection with Resilience in Emergent 
Systems HOMELAND SECURITY PREPAREDNESS: 
BALANCING PROTECTION WITH RESILIENCE. 
Systems Engineering, 11(4), 287–308.  

Hall, J., Sayers, P., & Dawson, R. (2005). National-
scale assessment of current and future flood risk in 
England and Wales. Natural Hazards, 36(1–2), 147–
164.  

Henry, D., & Emmanuel Ramirez-Marquez, J. 
(2012). Generic metrics and quantitative 
approaches for system resilience as a function of 
time. Reliability Engineering and System Safety, 99, 
114–122.  

Holling, C. S. (1973). Resilience and stability of 
ecological systems. Annual Review of Ecology and 
Systematics, 4.  

Hosseini, S., Al Khaled, A., & Sarder, M. (2016). A 
general framework for assessing system resilience 
using Bayesian networks: A case study of sulfuric 
acid manufacturer. Journal of Manufacturing 
Systems, 41, 211–227.  

Hosseini, S., & Barker, K. (2016). Modeling 
infrastructure resilience using Bayesian networks: 
A case study of inland waterway ports. Computers 
& Industrial Engineering, 93, 252–266.  

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. 
(2016). A review of definitions and measures of 
system resilience. Reliability Engineering and 
System Safety, 145, 47–61.  

Jeziah, I., Singh, A., Pooransingh, A., & Rocke, S. 
(2016). A Review of Critical Infrastructure 
Interdependency Simulation and Modelling for the 
Caribbean. 38(2), 44–51. 

Klein, R. J. T., Nicholls, R. J., & Thomalla, F. (2003). 
Resilience to natural hazards: How useful is this 
concept? Global Environmental Change Part B: 
Environmental Hazards, 5(1), 35–45. 

Luiijf, E., Nieuwenhuijs, A., Klaver, M., Van Eeten, 
M., & Cruz, E. (2009). Empirical findings on critical 
infrastructure dependencies in Europe. Lecture 
Notes in Computer Science (Including Subseries 
Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics), 5508 LNCS, 302–310. 

Macaulay, T. (2009). Critical Infrastructure: 
Understanding its Component Parts, 
Vulnerabilities, Operating Risks, and 
Interdependencies. CRC Press, Taylor & Francis 
Group. 

Manyena, S. B. (2006). The concept of resilience 
revisited. Disasters, 30(4), 434–450. 

Mcentire, D. A. (2001). Triggering agents, 
vulnerabilities and disaster reduction: towards a 
holistic paradigm. Disaster Prevention and 
Management, 10(3), 189–196.  

Miller, F., Osbahr, H., Boyd, E., Thomalla, F., 
Bharawani, S., Ziervogel, G., … others. (2010). 
Resilience and vulnerability: complementary or 
conflicting concepts? Ecology and Society, 15(3), 1–
25. 

Omer, M., Mostashari, A., & Lindeman, U. (2014). 
Resilience analysis of soft infrastructure systems. 
Procedia Computer Science, 28(Cser), 873–882.  



 

Oughton, E. J., Ralph, D., Pant, R., Leverett, E., 
Copic, J., Thacker, S., … Hall, J. W. (2019). Stochastic 
Counterfactual Risk Analysis for the Vulnerability 
Assessment of Cyber-Physical Attacks on Electricity 
Distribution Infrastructure Networks. Risk Analysis.  

Ouyang, M. (2014). Review on modeling and 
simulation of interdependent critical infrastructure 
systems. Reliability Engineering and System Safety, 
121, 43–60.  

Ouyang, M., & Wang, Z. (2015). Resilience 
assessment of interdependent infrastructure 
systems: With a focus on joint restoration modeling 
and analysis. Reliability Engineering & System 
Safety, 141, 74–82.  

Pant, R., Barker, K., Ramirez-Marquez, J. E., & 
Rocco, C. M. (2014). Stochastic measures of 
resilience and their application to container 
terminals. Computers and Industrial Engineering, 
70(1), 183–194.  

Pant, R., Hall, J., Thacker, S., Barr, S., & Alderson, D. 
(2014). National scale risk analysis of 
interdependent infrastructure network failures 
due to extreme hazards (ITRC). Itrc. 

Park, J., Seager, T. P., Rao, P. S. C., Convertino, M., 
& Linkov, I. (2013). Integrating risk and resilience 
approaches to catastrophe management in 
engineering systems. Risk Analysis, 33(3), 356–367.  

Pederson, P., Dudenhoeffer, D., Hartley, S., & 
Permann, M. (2006). Critical infrastructure 
interdependency modeling: a survey of US and 
international research. Idaho National Laboratory, 
(August), 1–20.  

Peerenboom, J. P., & Fisher, R. E. (2008). System 
and Sector Interdependencies: An Overview. Wiley 
Handbook of Science and Technology for Homeland 
Security. 

Proag, V. (2014). The concept of vulnerability and 
resilience. Procedia Economics and Finance - -4th 
International Conference on Building Resilience, 
Building Resilience, 18, 369–376. Elsevier. 

Pye, G., & Warren, M. J. (2006). Conceptual 
Modelling : Choosing a Critical Infrastructure 
Modelling Methodology. Proceedings of the 7th 
Australian Information Warfare and Security 
Conference.  

Reed, D. A., Kapur, K. C., & Christie, R. D. (2009). 
Methodology for assessing the resilience of 
networked infrastructure. IEEE Systems Journal, 
3(2), 174–180. 

Rigole, T., & Deconinck, G. (2006). A survey on 
modeling and simulation of interdependent critical 
infrastructures. Proceedings of 3rd IEEE Benelux 
Young Researchers Symposium in Electrical Power 
Engineering, 9. 

Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. 
(2001). Identifying, understanding, and analyzing 
critical infrastructure interdependencies. IEEE 
Control Systems Magazine, 21(6), 11–25.  

Saidi, S., Kattan, L., Jayasinghe, P., Hettiaratchi, P., 
& Taron, J. (2018). Integrated infrastructure 
systems—A review. Sustainable Cities and Society, 
36, 1–11.  

Schmitz, W., Flentge, F., Dellwing, H., & 
Schwaegerl, C. (2007). The integrated risk 
reduction of information-based infrastructure 
systems, interdependency taxonomy and 
interdependency approaches. IRRIS Project, 
(027568), 82. 

Solano, E. (2010). Methods for Assessing 
Vulnerability of Critical Infrastructure. Research 
Triangle Park, NC, (March), 1–8.  

Sweetapple, C., Astaraie-imani, M., & Butler, D. 
(2018). Design and operation of urban wastewater 
systems considering reliability , risk and resilience. 
Water Research, 147, 1–12. 

Vugrin, E. D., Warre, D. E., & Ehlen, M. A. (2011). A 
resilience Assessment Framework for 
Infrastructure and Economic Systems: Quantitative 
and Qualitative Resilience analysis of 
Petrochemical Supply Chains to a Hurricane. 
American Insitute of Chemical Engineers, 30(3), 
280–290.  

Westrum, R. (2017). A typology of resilience 
situations. In Resilience engineering (pp. 67–78). 
CRC Press. 

Woods, D. D. (2015). Four concepts for resilience 
and the implications for the future of resilience 
engineering. Reliability Engineering & System 
Safety, 141, 5–9.  

Xiao, N., Sharman, R., Rao, H. R., & Upadhyaya, S. 
(2008). Infastructure Interdependencies Modeling 
and Analysis - A Review and Synthesis. AMCIS 2008 
Proceedings.  

Youn, B. D., Hu, C., & Wang, P. (2011). Resilience-
Driven System Design of Complex Engineered 
Systems. Journal of Mechanical Design, 
133(October), 101011.  

Zolli, A., & Healy, A. M. (2012). Resilience: Why 



 

things bounce back. Hachette UK. 

Zimmerman, R. (2004). Decision-making and the 
vulnerability of interdependent critical 
infrastructure. Conference Proceedings - IEEE 
International Conference on Systems, Man and 
Cybernetics, 5, 4059–4063 

 


