
EMIP: The Eye Movements in Programming Dataset

Roman Bednarik1

University of Eastern Finland

Teresa Busjahn

HTW Berlin, Germany

Agostino Gibaldi

University of Genova, Italy

Alireza Ahadi

University of Technology, Sydney, Australia

Maria Bielikova

Kempelen Institute of Intelligent Technologies, Slovakia

Martha Crosby

University of Hawaii at Mnoa, USA

Kai Essig

Bielefeld University, Germany

Fabian Fagerholm

Aalto University, Finland and University of Helsinki, Finland

Ahmad Jbara

Augusta University, GA, USA

Raymond Lister

University of Technology, Sydney, Australia

Pavel Orlov

Imperial College London, UK

1Corresponding author

Preprint submitted to Science of Computer Programming September 23, 2020



James Paterson

Glasgow Caledonian University, UK

Bonita Sharif

University of Nebraska, Lincoln, USA

Teemu Sirkiä

Aalto University, Finland

Jan Stelovsky

University of Hawaii at Mnoa, USA

Jozef Tvarozek

Slovak University of Technology in Bratislava, Slovakia

Hana Vrzakova

University of Colorado, Boulder, USA

Ian van der Linde

Anglia Ruskin University, Cambridge, UK

Abstract

A large dataset that contains the eye movements of N=216 programmers of
different experience levels captured during two code comprehension tasks is
presented. Data are grouped in terms of programming expertise (from none
to high) and other demographic descriptors. Data were collected through an
international collaborative effort that involved eleven research teams across
eight countries on four continents. The same eye tracking apparatus and
software was used for the data collection. The Eye Movements in Program-
ming (EMIP) dataset is freely available for download. The varied metadata
in the EMIP dataset provides fertile ground for the analysis of gaze behavior
and may be used to make novel insights about code comprehension.

Keywords: eye-tracking, program comprehension, dataset

2



1. Introduction1

The earliest studies that examined of the role of visual attention in pro-2

gramming date back to 1990. Crosby and Stelovsky [1] asked N=19 partici-3

pants, divided into low and high experience groups, to view prose, code, and4

graphical versions of a binary search algorithm while their eye movements5

were recorded. Results included that a range of individual strategies/scan-6

paths were were found; that there were significant differences in the way pro-7

grammers read source code in comparison to prose (e.g., that more fixations8

were directed to relevant areas of code in comparison to prose); that pro-9

grammers with less experience spend more time examining code comments;10

and those with more experience examine code more efficiently, directing their11

attention to the most important (complex) areas of the algorithm.12

With the increasing availability and maturity of eye-tracking apparatus,13

more studies of program comprehension using eye tracking have emerged.14

A number of exemplar studies highlighting the kinds of research questions15

that can be addressed by analysing the eye movements of programmers are16

briefly summarized below, but for more complete reviews see [2] and [3]. In17

2006, Uwano et al. [4] presented typical patterns of eye movements across18

source code. Bednarik and Tukiainen [5] reported on the differences in gaze19

patterns between novice and expert programmers using an interactive dy-20

namic visualization environment. More recent studies examined the effect21

(on the pattern of eye movements elicited) of identifier naming conventions22

[6, 7], programming language [8], and also examined the potential role of23

parafoveal vision (i.e., outside the visual axis) in code comprehension [9].24

Busjahn et al. showed that the order in which novice and expert program-25

mers read through the lines of code in a program differs from the order that26

those lines would be executed [10].27

In the present article, we present the EMIP (Eye Movements In Pro-28

gramming) dataset, a large eye movement dataset recorded from program-29

mers across multiple sites of different levels of expertise as they examined30

two object oriented source code fragments. It is hoped that this dataset will31

enable more questions concerning program comprehension to be addressed,32

and that the size of the dataset will allow this to be done with ample statis-33

tical power (cf. existing studies that typically use much fewer participants).34

For a practical guide on how to design and conduct eye tracking studies in35

software engineering we direct the reader to [11].36

3



2. Motivation for Eye Movements in Programming Dataset37

With the increasing number of published studies examining eye move-38

ments in programming, there is a growing need to compare and consolidate39

theories and results. Aside from systematic reviews [2, 3], one way to accom-40

plish this is through the provision of a large, publicly available dataset that41

can be mined both to verify existing theories and develop new ones. Some42

of the principal motivations for the new dataset are enumerated below.43

First, the question of how to exploit eye-tracking data effectively during44

live programming is unresolved; for instance, in the development of auto-45

mated tools for error correction [12]. Such methods would greatly benefit46

from a large pool of data collected in controlled conditions. A similar ar-47

gument holds for research using machine learning and data-mining. The48

training, optimization, and validation of such systems would benefit greatly49

from the availability of a sufficiently large quantity of labeled data.50

Second, such a dataset has the capacity to inform the use of eye track-51

ing in the programming and software development process. For example, in52

recent studies, eye-tracking has been used to improve awareness and collabo-53

ration between pair programmers [13]. Learning the typical gaze patterns of54

programmers during comprehension activities is more robust in the presence55

of a sufficiently large dataset.56

Third, central questions in eye-tracking programming research focus on57

differences that emerge as a consequence of programmer expertise. Indeed,58

researchers have shown great interest in trying to identify and understand the59

diagnostic markers of expertise. A large dataset, as presented here, supported60

by a large number of participants of different expertise levels, allows for finer-61

grained analyses of expertise-related research questions.62

Fourth, eye-tracking data is gaining popularity as a physiological measure63

of developers’ workload or emotional state [14]. These studies benefit from64

the availability of a large dataset, providing high statistical power. Moreover,65

recent years have seen the development of low-cost eye tracking devices with66

performance that is beginning to approach research grade devices [15, 16],67

and the integration of eye-tracking devices into conventional laptop comput-68

ers, allowing for more widespread use of these approaches in the future.69

Fifth, obtaining a large dataset requires significant technical investment,70

effort, and is costly to collect. A large, free dataset should help support71

the enlargement of the research community in this area, permitting both the72

replication and validation of existing findings and the development of new73

4



avenues of research in the sub-field of program comprehension in software74

engineering.75

This paper describes an international effort to collect a large and carefully76

controlled dataset that is suitable for addressing the questions and research77

problems described above, inter alia.78

3. Materials and Methods79

We describe the logistics of the data collection process, test stimuli (i.e.,80

the code that participants were asked to examine), apparatus, the exper-81

imental procedure, and the format and structure of the captured data in82

detail below. This information is provided to enable users to evaluate the83

robustness of our data, to understand the kinds of research questions that84

can be asked (i.e., which variables describing participants were collected and85

therefore may serve as predictors in analyses), to enable others to replicate86

and/or extend the dataset, and to enable others to compare our results with87

their own by considering any methodological differences.88

To support replication, all materials for conducting the study are available89

at http://emipws.org/stimulus-material/.90

3.1. Data collection logistics91

The EMIP dataset was collected as a community effort involving eleven92

research teams across eight countries and four continents. A call for partic-93

ipation was distributed using mailing lists likely to be used by those with94

an interest in the topic of eye movements in programming. SensoMotoric In-95

struments (SMI) kindly provided two eye-movement recording systems (com-96

prising a laptop computer, software, and eye tracking hardware, described in97

detail in Section 3.2, below) that were shipped to participating labs, along98

with detailed instructions on how to assemble the hardware and how to run99

the experimental software. This high resolution eye-tracking system was100

portable, enabling it to be posted to data collection sites, and the availabil-101

ity of two systems enabled labs to work concurrently, thereby speeding up102

data collection.103

Assistance was provided via email, when needed. Data were collected at104

the following sites:105

• The Centre for Human Centred Technology Design, University of Tech-106

nology Sydney, Australia;107

5

http://emipws.org/stimulus-material/


• The Department of Computer Science, Aalto University, Finland;108

• The Department of Computer Science, University of Helsinki, Finland;109

• The Faculty of Informatics and Information Technologies, Slovak Uni-110

versity of Technology in Bratislava, Slovakia;111

• Information & Computer Sciences, University of Hawaii at Mānoa,112

USA;113

• Neuroinformatics Group, Bielefeld University, Germany;114

• The School of Mathematics and Computer Science of the Netanya Aca-115

demic College, Netanya, Israel;116

• The School of Computing, Engineering and Built Environment, Glas-117

gow Caledonian University, United Kingdom;118

• Software Engineering Research and Empirical Studies Lab, Youngstown119

State University, USA;120

• The Physical Structure of Perception and Computation Group, Uni-121

versity of Genoa, Italy;122

• The School of Computing and Information Science, Anglia Ruskin Uni-123

versity, Cambridge, United Kingdom.124

3.2. Apparatus125

Eye movements were recorded using a non-invasive screen-mounted SMI126

RED250 mobile video-based eye tracker. The eye tracker provided has a127

sample rate of 250Hz, with an accuracy of < 0.4◦ and a precision of ≈ 0.03◦
128

of visual angle. The working distance from the device is 50 − 80 cm within129

a ‘head box’ of 32× 21 cm at 60 cm, which provided an ideal workspace for130

the experimental procedure (see Section 3.4).131

Stimuli were presented on a laptop computer screen set at a resolution of132

1920 × 1080 pixels. Stimuli were free-viewed (i.e., no head or chin rest was133

used) to simulate a naturalistic programming environment (something that134

would not have been possible had a head-mounted eye tracker or head/chin135

restraint been used).136

The data collection procedure (see below) was implemented in the SMI137

Experimental Suite (a software bundle that was packaged on the laptop).138

6



The experimental apparatus, setup and software were matched as closely as139

possible between collaborating sites by shipping a pre-configured eye tracker140

and laptop computer. Data were collected in a quiet, well-lit environment to141

minimize distractions to participants.142

3.3. Participants143

Participants were recruited at each site by opportunity sampling. Data144

from N=216 participants are included in the dataset, of whom 41 were female145

and 175 were male (mean age 26.56 years, SD = 9.28). All participants com-146

pleted a demographic questionnaire, summarized in Table 1. Participants147

were principally University students enrolled in undergraduate or postgrad-148

uate courses related to computing, but also included academic and adminis-149

trative staff and some professional programmers.150

Participants came from a diverse pool of language families (1 Arabic, 2151

Bengali, 1 Cantonese, 4 Chinese, 2 Czech, 1 Egyptian, 62 English, 1 English152

and Hebrew, 17 Finnish, 10 German, 2 Greek, 8 Hebrew, 3 Hindi, 21 Italian,153

1 Italian and English, 1 Marathi, 2 Nepali, 1 Norwegian, 1 Persian, 2 Por-154

tuguese, 1 Punjabi, 1 Russian and Hebrew, 57 Slovak, 3 Spanish, 2 Swedish,155

1 Tagalog, 1 Tamil, 4 Telugu, 1 Thai, 1 Turkish, 1 Ukrainian). Out of 154156

non-native speakers, 66 participants spoke English fluently. 84 participants157

reported medium English proficiency and 4 participants reported low English158

proficiency.159

All participants had normal or corrected-to-normal vision (17 were wear-160

ing contact lenses, 74 glasses). Ethics clearance for the study was granted161

at all sites. Participation was voluntary, and participants were treated in162

accordance with the tenets of the Declaration of Helsinki. No payment was163

offered.164

3.4. Experimental procedure165

Participants were seated in front of the laptop that had the eye tracker166

installed on it. When participants indicated that they were ready to proceed,167

an instruction screen was presented explaining what they were being asked168

to do. Next, a questionnaire was presented. This included identifying the169

programming language that they wished to be used in the experiment (i.e.,170

the language that they were most familiar with). Three language options171

were provided: Java, Scala, or Python. Programming expertise was self-172

evaluated as none, low, medium or high, and number of years of programming173

experience was also recorded.174

7



Table 1: Metadata provided in emip metadata.csv (as part of the dataset).

Variable Description Value

id Unique identifier, which refers to the
raw gaze data file

[n]

age Age [years]
gender Gender [male, female, other]
mother tongue Mother tongue [full-text]
English level English proficiency [low, medium, high]
visual aid Is the participant wearing glasses or

contact lenses
[no, glasses, contact lenses]

makeup Is the participant wearing mascara or
other eye-make-up

[yes, no]

experiment language Programming language used in the ex-
periment

[Java, Python, Scala]

expertise experiment language Expertise in Java/Python/Scala [none, low, medium, high]
time experiment language How long the participant has been pro-

gramming in Java/Python/Scala
[years]

frequency experiment language How often does the participant program
in Java/Python/Scala

[not at all, less than 1h/m, less
than 1h/w, less than 1h/d, more
than 1h/d]

other languages Other programming languages the par-
ticipant knows

[language level of expertise]

expertise programming Overall programming expertise [none, low, medium, high]
time programming How long the participant has been pro-

gramming
[years]

frequency other language How often the participant uses pro-
gramming languages other than
Java/Python/Scala

[not at all, less than 1h/m, less
than 1h/w, less than 1h/d, more
than 1h/d]

For each stimulus program:
answer {rectangle—vehicle} Answer to the comprehension question [full-text]
correct {rectangle—vehicle} Evaluation of the answer [0,1]
order {rectangle—vehicle} Order in which the stimulus programs

were shown
[1,2]

stimulus {rectangle—vehicle} Filename of the screenshot in folder
“stimuli”

[full-text]

{mother tongue—
time experiment language—
time programming—
other languages} original

unedited participant entries [full-text]

8



Next, the eye tracker was calibrated using a 9-point calibration routine,175

and its accuracy checked with a validation procedure. This required partici-176

pants to attend predefined regions of interest (ROIs) while the experimenter177

visually checked that gaze and the regions coincided correctly.178

Following successful calibration, participants completed two code compre-179

hension tasks (Vehicle and Rectangle, each comprising 11-22 lines of code),180

presented in the same order for all participants. Participants were instructed181

to read and try to understand the code, and to press space bar when they182

were done. Next, a multiple-choice question was presented on the screen183

that evaluated code comprehension. No time limit to answer the question184

was applied. At the end of the experiment, eye movement coordinates and185

question responses were stored for offline analysis.186

3.5. Code and comprehension questions187

The code presented to participants was chosen to be simple enough to be188

understood by novices, yet not too trivial for experts. In particular, static189

metrics such as Cyclomatic Complexity [17] and control structure nesting190

indicate that the code was simple, whereas the results of the comprehension191

questions (See Section 4) show that they were not necessarily too trivial for192

the participants. If more complex code had been used then we may have193

risked inexperienced programmers giving up or examining the code pseudo-194

randomly. Furthermore, the code was short enough to fit onto a single screen195

without scrolling, enabling straightforward eye movement analysis.196

Rectangle:197

The Rectangle code defines a class Rectangle that contains four coor-198

dinate variables, a constructor, and methods to compute area, width, and199

height. In the main method, two rectangle objects are instantiated and their200

areas calculated. It was adapted from a code comprehension study written201

in Python [18] which we translated to Java and Scala. The comprehension202

question for the Rectangle task is shown in Table 2.203

Vehicle:204

The Vehicle code defines a class Vehicle that contains a number of vari-205

ables, a constructor, and an accelerate method that could modify a current206

speed variable. In a main method, a single object is instantiated and its207

speed subsequently modified. The comprehension question for the Vehicle208

task is shown in Table 3.209

9



Table 2: Multiple choice comprehension question for the Rectangle code

The program:

• computes the area of rectangles by multiplying their width (x1-x2)
and height (y1-y2).

• computes the area of rectangles by multiplying their width (x2-x1)
and height (y2-y1).

• computes the area of rectangles by multiplying their width (x1-y1)
and height (x2-y2).

• I’m not sure.

3.6. Dataset structure and contents210

The dataset is available for download as a 560MB ZIP file at http:211

//emipws.org/wp-content/uploads/emip_dataset.zip. It is distributed212

under the Creative Commons CC-BY-NC-SA license. Table 4 lists the con-213

tents of the package. The eye movement data is in a generic .tsv (tab sepa-214

rated value) format to maximize compatibility with analysis software.215

In order to allow for automatic processing, some of the information pro-216

vided by the participants required editing: (1) multiple answers were sepa-217

rated by a semicolon (e.g., two or more native languages were provided); (2)218

text in answers to numeric questions was converted to numbers (e.g., one219

year was converted to 1 ); (3) redundant information was removed. The ex-220

act information entered by the participants is also retained, in the columns221

with the same name and “ original” added (see Table ??).222

4. Results223

This section provides the accuracy results for each comprehension ques-224

tion along with some descriptive statistics on programming languages used225

and participant expertise.226

4.1. Code comprehension results227

Table 5 summarizes the number of correct and incorrect answers for both228

items of code examined. Most participants responded correctly to the ques-229

10

http://emipws.org/wp-content/uploads/emip_dataset.zip
http://emipws.org/wp-content/uploads/emip_dataset.zip
http://emipws.org/wp-content/uploads/emip_dataset.zip


Table 3: Multiple choice comprehension question for the Vehicle class

The program:

• defines a vehicle by producer that has a type and can reduce its
speed.

• defines a vehicle by producer that has a type and can accelerate its
speed.

• defines a vehicle by producer that has a type and can accelerate and
reduce its speed.

• I’m not sure.

Table 4: Overview of dataset content

Content Description Size

rawdata folder with 216 TSV-files containing raw eye
movement data

2.5
GB

stimuli folder with screenshots of the experiment
slides in JPG-format and CSV-files with AOI
coordinates for the stimulus programs

1 MB

emip metadata CSV file with participants’ background in-
formation, order in which the stimulus pro-
grams were show and information about the
comprehension questions

93
kB

date TXT-file specifying when the dataset was up-
loaded

13 B

tion about the Rectangle code, but fewer did so for the Vehicle code. The230

majority of participants understood the general idea of the Vehicle program,231

but did not realise that the (signed) datatype used as an argument to the232

method that modified the value of the speed variable supported the possi-233

bility of decreasing as well as increasing the speed of vehicle objects (i.e.,234

11



Task Correct Incorrect Total

Rectangle 152 64 216
Vehicle 50 166 216

Total 202 230 432

Table 5: Crosstabulation of task performance.

that passing a negative integer to the accelerate method would decrease the235

speed of the vehicle). Hence, even though it is not a complex program, many236

participants did not fully grasp this more subtle nuance of the language.237

Whilst negative acceleration, in physics, can decrease speed, one might238

argue that our name for the accelerate method was misleading in relation239

to the question posed given the expertise of the target audience (i.e., the240

question asked whether speed reduction was possible, and in the vernacular241

the term accelerate is commonly taken to mean increase speed), which will242

have increased the number of incorrect responses, despite being technically243

valid. It is important to note that participants did not know what they244

would be asked after they had examined the code, so this should not have245

affected the distribution of eye movements, as participants were instructed to246

examine the code in order to understand it. Figure 3 represents the fixation247

density map for one participant for both code stimuli. The fixation density248

map was computed using EMA, a free Eye Movement Analysis toolbox [19].249

4.2. Programming languages250

Most participants elected to have the code presented in Java (95.83%),251

potentially reflecting the continued widespread use of Java in undergraduate252

teaching and in industry. A much smaller number of participants selected253

Python (2.31%) or Scala (1.85%). In the questionnaire, participants reported254

having expertise in a wide variety of other languages (see Figure 2). Interest-255

ingly, C together with its extensions and derivatives (Handel-C, Embedded256

C, C++, C#, Objective-C) was the language mentioned most often (81%),257

followed by Python (31%), and JavaScript (26%).258

4.3. Participant expertise259

As noted above, participants indicated their level of expertise in the260

programming language used in the experiment. The distribution of expe-261

12

https:://sourceforge.net/projects/ema-toolbox/


rience levels for our participants was: none (13.89%), low (31.94%), medium262

(46.29%), and high (7.87%). On average, participants has 2.29 years (SD =263

3.34) of experience in the programming language selected for the experiment.264

This information can be used to examine correlations in the eye tracking265

data to participant expertise. For example, in Figure 4 low expertise (e.g.,266

null or small) is characterized by gaze density maps with greater spatial267

dispersion across the code page, potentially indicating a more exploratory268

approach rather than one that is focused on the most important/diagnostic269

features of the program. Similarly, Figure 5 shows how participants with270

low expertise produced more spatially distributed fixations, and fixations271

of longer duration, compared to expert participants. Note that these are272

cursory high-level observations and more detailed analysis is needed to learn273

more about how expertise affected the results.274

5. Discussion275

Experimenter and participant time, equipment cost and availability, the276

provisioning and maintenance of repositories, data processing skills, and277

other factors limit the availability of large datasets of eye movements. By dis-278

tributing the efforts across a number of sites, we reduced some of these costs279

in the creation of this EMIP dataset. In addition, the collaborative knowl-280

edge, skills, peer-support and discussion allowed us to support the validity281

of the setup and the resulting data.282

The EMIP dataset presents a range of possible use cases, some of which283

were outlined above. Relating gaze behavior with participants’ programming284

expertise and other metadata can potential reveal novel insights concerning285

the relationship between code comprehension and demographic variables.286

Low-level eye movement parameters observed in reading text, from [20],287

are listed below:288

• Saccade frequency - Experienced readers make a saccade during reading289

every quarter of a second on average.290

• Fixation duration - The average fixation duration is 200-250ms, and291

the range is 100ms to over 500ms.292

• Saccade amplitude - At each saccade, the eyes move forward a num-293

ber of characters that varies from 1 to 20, with the average being 7-9294

characters.295

13



• Saccade duration - Saccades are relatively short and on average last for296

20-40 ms.297

The large size of the dataset can provide baseline data that highlights how298

reading source code may differ from reading of text. For instance, source code299

may elicit different kinds of low-level eye movement parameters compared300

to examining images [21][22] or reading prose [20], given that since code is301

not typically read sequentially and will likely entail repeated regressions to302

particularly important areas. In addition to the metrics listed in [20], we303

direct the reader to [23] for a list of eye movement metrics used in software304

engineering studies.305

Along with the programming language experience and other metadata,306

our dataset could be used in predictive models of expertise by examining the307

efficiency of the code examination process. This has potential applications308

in teaching, assessment and recruitment (although clearly such data must be309

treated cautiously). To accomplish this, deep learning networks trained on310

expertise-labeled eye movement data could be used [24].311

Other potential uses of the dataset unrelated to program comprehen-312

sion research include: (i) to evaluate the potential of eye-movement-based313

biometric identification systems, in which the oculomotor behavior of an in-314

dividual potentially represents a uniquely identifiable signature [25]; (ii) to315

evaluate the degree to which participants calibration is aligned correctly with316

expected regions of interest (here, lines of text in a computer program), en-317

abling eye tracker accuracy and precision to be evaluated; (iii) to compare the318

eye movement data with that obtained using consumer-grade web-cam based319

eye trackers, which are just beginning to offer reasonable levels of accuracy320

(e.g., [26][27]).321

6. Limitations322

The present study has a number of limitations worth highlighting: (i)323

Only two code fragments were examined by participants, and both were324

object oriented, thus any findings may or may not generalise to more algo-325

rithmic code or code written in languages in other programming paradigms;326

(ii) Since this was a multi-site study, small differences in experimental setup327

may have occurred, despite the same eye tracker and laptop computer being328

shipped to all sites to try to standardize to the greatest degree possible; (iii)329

The code comprehension questions used, although administered post-hoc (i.e.,330

14



did not affect the eye movements elicited during code examination) were, in331

retrospect, quite limited. The first question could have been answered using332

algebraic knowledge, and the second may have been affected by some par-333

ticipants not knowing that negative acceleration is standard terminology in334

physics to elicit a reduction in velocity, and thus that the accelerate method335

could validly accept a negative argument.336

7. Conclusions and Future Work337

In this article, a large dataset that contains the eye movements of pro-338

grammers recorded during two code comprehension tasks is presented. The339

data were collected collaboratively across eleven research teams, and were340

subsequently organized and cleaned, and published in a public (online) repos-341

itory that can be found at (http://emipws.org). Extensive metadata is342

provided that can be used to address a wide variety of research questions.343

The dataset is sufficiently large and varied to enable code comprehension344

questions to be addressed with ample statistical power.345

Given the limitations outlined in the previous section, future work could346

usefully be directed to collect the eye movement of programmers while exam-347

ining code written in languages that use other programming paradigms (i.e.,348

not just object oriented), code spanning a broader range of difficulty levels349

(e.g., algorithms of greater complexity), and for which a greater number and350

variety of comprehension questions were asked. In addition, we welcome the351

program comprehension and eye tracking community to use the dataset and352

extend it with other post processing and analyses.353

Acknowledgements354

The authors would like to thank all participants who took part in the355

study.356

8. References357

[1] M. E. Crosby, J. Stelovsky, How do we read algorithms? A case study,358

Computer 23 (1) (1990) 25–35.359

[2] A. H. M. . C. P. C. H. Obaidellah, U., A survey on the usage of eye-360

tracking in computer programming, ACM Computing Surveys 51 (1)361

(2018) 1–58.362

15

http://emipws.org


[3] Z. Sharafi, Z. Soh, Y.-G. Guéhéneuc, A systematic literature review363

on the usage of eye-tracking in software engineering, Information and364

Software Technology 67 (2015) 79–107.365

[4] H. Uwano, M. Nakamura, A. Monden, K.-i. Matsumoto, Analyzing in-366

dividual performance of source code review using reviewers’ eye move-367

ment, in: Proceedings of the 2006 symposium on Eye tracking research368

& applications, ACM, 133–140, 2006.369

[5] R. Bednarik, M. Tukiainen, An eye-tracking methodology for charac-370

terizing program comprehension processes, in: Proceedings of the 2006371

symposium on Eye tracking research & applications, ACM, 125–132,372

2006.373

[6] B. Sharif, J. I. Maletic, An eye tracking study on camelcase and un-374

der score identifier styles, in: Program Comprehension (ICPC), 2010375

IEEE 18th International Conference on, IEEE, 196–205, 2010.376

[7] D. W. Binkley, M. Davis, D. J. Lawrie, J. I. Maletic, C. Morrell,377

B. Sharif, The impact of identifier style on effort and comprehension,378

Empirical Software Engineering 18 (2) (2013) 219–276, URL https:379

//doi.org/10.1007/s10664-012-9201-4.380

[8] R. Turner, M. Falcone, B. Sharif, A. Lazar, An eye-tracking study assess-381

ing the comprehension of C++ and Python source code, in: Proceedings382

of the Symposium on Eye Tracking Research and Applications (ETRA),383

ACM, 231–234, 2014.384

[9] P. A. Orlov, R. Bednarik, The role of extrafoveal vision in source code385

comprehension, Perception 46 (5) (2017) 541–565.386

[10] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson,387

C. Schulte, B. Sharif, S. Tamm, Eye movements in code reading: Relax-388

ing the linear order, in: Program Comprehension (ICPC), 2015 IEEE389

23rd International Conference on, IEEE, 255–265, 2015.390

[11] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik,391

M. Crosby, A Practical Guide on Conducting Eye Tracking Studies in392

Software Engineering, Empirical Software Engineering (2020) in press.393

16

https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.1007/s10664-012-9201-4


[12] C. Palmer, B. Sharif, Towards automating fixation correction for source394

code, in: Proceedings of the Ninth Biennial ACM Symposium on Eye395

Tracking Research & Applications, ACM, 65–68, 2016.396

[13] S. D’Angelo, A. Begel, Improving Communication Between Pair Pro-397

grammers Using Shared Gaze Awareness, in: Proceedings of the 2017398

CHI Conference on Human Factors in Computing Systems, ACM, 6245–399

6290, 2017.400

[14] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, M. Züger, Using psycho-401

physiological measures to assess task difficulty in software development,402

in: Proceedings of the 36th International Conference on Software Engi-403

neering, ACM, 402–413, 2014.404

[15] K. Ooms, L. Dupont, L. Lapon, S. Popelka, Accuracy and precision405

of fixation locations recorded with the low-cost Eye Tribe tracker in406

different experimental setups, Journal of Eye Movement Research 8 (1).407

[16] A. Gibaldi, M. Vanegas, P. J. Bex, G. Maiello, Evaluation of the Tobii408

EyeX Eye tracking controller and MATLAB toolkit for research, Behav-409

ior Research Methods 49 (3) (2017) 923–946.410

[17] T. J. McCabe, A Complexity Measure., IEEE Trans. Software Eng. 2 (4)411

(1976) 308–320, URL http://dblp.uni-trier.de/db/journals/tse/412

tse2.html#McCabe76.413

[18] M. Hansen, Quantifying code complexity and comprehension, Ph.D. the-414

sis, Indiana University, 2015.415

[19] A. Gibaldi, S. Sabatini, The saccade main sequence revised: a fast and416

repeatable tool for oculomotor analysis, Behavior Research Methods .417

[20] K. Rayner, B. J. Juhasz, A. Pollatsek, Eye movements during reading,418

The Science of Reading: A Handbook (2005) 79–97.419

[21] I. van der Linde, U. Rajashekar, A. C. Bovik, L. K. Cormack, DOVES: A420

database of visual eye movements, Spatial Vision 22 (2) (2009) 161–177.421

[22] U. Rajashekar, I. van der Linde, A. C. Bovik, L. K. Cormack, Foveated422

analysis and selection of visual fixations in natural scenes, in: Proc.423

IEEE Int. Conf. Image Processing (ICIP), Atlanta GA, IEEE, 453–456,424

2006.425

17

http://dblp.uni-trier.de/db/journals/tse/tse2.html#McCabe76
http://dblp.uni-trier.de/db/journals/tse/tse2.html#McCabe76
http://dblp.uni-trier.de/db/journals/tse/tse2.html#McCabe76


[23] Z. Sharafi, T. Shaffer, B. Sharif, Y. Guéhéneuc, Eye-Tracking Metrics in426

Software Engineering, in: J. Sun, Y. R. Reddy, A. Bahulkar, A. Pasala427

(Eds.), 2015 Asia-Pacific Software Engineering Conference, APSEC428

2015, New Delhi, India, December 1-4, 2015, IEEE Computer Soci-429

ety, 96–103, doi:\let\@tempa\bibinfo@X@doi10.1109/APSEC.2015.53,430

URL https://doi.org/10.1109/APSEC.2015.53, 2015.431

[24] M. Kümmerer, T. S. Wallis, M. Bethge, DeepGaze II: Reading fixa-432

tions from deep features trained on object recognition, arXiv preprint433

arXiv:1610.01563 .434

[25] T. Busjahn, C. Schulte, B. Sharif, A. Begel, M. Hansen, R. Bednarik,435

P. Orlov, P. Ihantola, G. Shchekotova, M. Antropova, et al., Eye tracking436

in computing education, in: Proceedings of the tenth annual conference437

on International computing education research, ACM, 3–10, 2014.438

[26] A. Canessa, A. Gibaldi, M. Chessa, S. P. Sabatini, F. Solari, The439

perspective geometry of the eye: toward image-based eye-tracking, in:440

Human-Centric Machine Vision, IntechOpen, 2012.441

[27] A.-H. Javadi, Z. Hakimi, M. Barati, V. Walsh, L. Tcheang, SET: A pupil442

detection method using sinusoidal approximation, Frontiers in Neuro-443

engineering 8 (2015) 4.444

18

\let \@tempa 10.1109/APSEC.2015.53
https://doi.org/10.1109/APSEC.2015.53


(a) Rectangle

(b) Vehicle

Figure 1: Code in Java

19



Figure 2: Programming languages that the participants claimed to know in addition to the
language used in the experiment. C includes C-based derivatives such as Handel-C and
Embedded C. The category other includes all entries that are not programming languages
strictly speaking (including Arduino, Closure, CSS, Excel, HTML, Unix, and XML).

20



Figure 3: Gaze density maps of a single participant for Rectangle (top) and
Vehicle (bottom) code. Computed using a Gaussian kernel density function wherein
red denotes a high density of fixations and green a low density.

21



Figure 4: Gaze density maps grouped by programming expertise for Rectangle
(top) and Vehicle (bottom) code. The maps are computed by grouping the partici-
pants into expertise levels, from left to right none, low, medium or high. Computed using
a Gaussian kernel density function wherein red denotes a high density of fixations and
green a low density. Each map represents the mean among of the fixation density maps
across participants in each group.

22



Figure 5: Distribution of fixations for expert and inexpert participants. Fixation
patterns corresponding to participants with no (left) and high expertise (right), for the
Rectangle (top) and Vehicle (bottom) code. Each circle represents a fixation, and the
radius is proportional to the fixation duration. Blue colors correspond to the start of the
trial while red colors to the end of the trial, according to the colorbar at the bottom.

23


	Introduction
	Motivation for Eye Movements in Programming Dataset
	Materials and Methods
	Data collection logistics
	Apparatus
	Participants
	Experimental procedure
	Code and comprehension questions
	Dataset structure and contents

	Results
	Code comprehension results
	Programming languages
	Participant expertise

	Discussion
	Limitations
	Conclusions and Future Work
	References

