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Abstract 

Real-life problems are dynamic and associated with a decision-making process 

with multiple options. We need to do optimisation to solve some of these dynamic 

decision-making problems. These problems are challenging to solve when we need 

trade-off between multiple parameters in a decision-making process, especially in 

a dynamic environment. However, with the help of artificial intelligence (AI), we 

may solve these problems effectively. This research aims to investigate the 

development of an intelligent decision-making scheme for a dynamic multi-

objective environment using deep reinforcement learning (DRL) algorithm. This 

includes developing a benchmark in the area of dynamic multi-objective 

optimisation in reinforcement learning (RL) settings, which stimulated the 

development of an improved testbed using the conventional deep-sea treasure 

(DST) benchmark. The proposed testbed is created based on changing the optimal 

Pareto front (PF) and Pareto set (PS). To the best of my knowledge, this is the first 

dynamic multi-objective testbed for RL settings. Moreover, a framework is 

proposed to handle multi-objective in a dynamic environment that fundamentally 

maintains an equilibrium between different objectives to provide a compromised 

solution that is closed to the true PF. To proof the concept, the proposed model has 

been implemented in a real-world scenario to predict the vulnerable zones based 

on the water quality resilience in São Paulo, Brazil.  

 

The proposed algorithm namely parity-Q deep Q network (PQDQN) is 

successfully implemented and tested where the agent outperforms in terms of 

achieving the goal (i.e. obtained rewards). Though, the agent requires higher 

elapsed time (i.e. the number of steps) to be trained compared to the multi-

objective Monte Carlo tree search (MO-MCTS) agent in a particular event, its 

accuracy in finding the Pareto optimum solutions is significantly enhanced 

compared to the multi-policy DQN (MPDQN) and multi-Pareto Q learning (MPQ) 

algorithms.  

 

The outcome reveals that the proposed algorithm can find the optimum solution in 

a dynamic environment. It allows a new objective to accommodate without any 

retraining and behaviour tuning of the agent. It also governs the policy that needs 

to be selected. As far as the dynamic DST testbed is concerned, it will provide the 

researchers with a new dimension to conduct their research and enable them to test 

their algorithms in solving problems that are dynamic in nature. 

 

 

Keywords: Deep reinforcement learning, multi-policy, multi-objective optimisation, 

dynamic environment, deep Q network, vector rewards, benchmarks, water quality 

evaluation, resilience. 



iii 

 

Table of Contents 

Acknowledgements ...................................................................................................... i 

Abstract ........................................................................................................................ ii 

Table of Contents........................................................................................................iii 

List of Figures ............................................................................................................ vii 

List of Tables ............................................................................................................... x 

Acronyms.................................................................................................................... xi 

Symbols ..................................................................................................................... xii 

Chapter 1...................................................................................................................... 1 

Introduction ................................................................................................................. 1 

1.1 Motivation .................................................................................................... 4 

1.2 Aims and Objectives .................................................................................... 5 

1.3 Research Questions ...................................................................................... 6 

1.4 Main Scientific Contributions ...................................................................... 6 

1.5 Test Cases ..................................................................................................... 7 

1.5.1 Test case 1 ............................................................................................ 7 

1.5.2 Test case 2 ............................................................................................ 8 

1.6 Deliverables ................................................................................................ 10 

1.7 Terminologies and Notes on Style ............................................................. 11 

1.8 Organisation of the Thesis .......................................................................... 13 

Chapter 2.................................................................................................................... 15 

Literature Review ...................................................................................................... 15 

2.1 Introduction ................................................................................................ 15 

2.2 Background ................................................................................................ 16 

2.3 Intelligent Decision-making Process .......................................................... 17 

2.3.1 Decision support system ..................................................................... 20 

2.3.2 Reviewing existing data-driven decision support systems ................. 21 

2.4 Dynamic Multi-objective Optimisation ...................................................... 22 

2.4.1 Applications of dynamic multi-objective optimisation problems....... 24 

2.4.2 Challenges of dynamic multi-objective optimisation ......................... 25 

2.5 Reinforcement Learning ............................................................................. 26 

2.5.1 Multi-objective reinforcement learning (MORL) ............................... 30 



iv 

 

2.5.2 Reviewing existing approaches of MORL ......................................... 32 

2.6 Markov Decision Process (MDP) .............................................................. 35 

2.6.1 Single objective Markov decision process ......................................... 36 

2.6.2 Multi-objective Markov decision process (MOMDP) ........................ 36 

2.7 Deep Reinforcement Learning (DRL) ........................................................ 38 

2.7.1 Basic architecture of deep reinforcement learning ............................. 40 

2.7.2 Challenges in deep reinforcement learning ........................................ 42 

2.8 A General Framework for Deep Q Network (DQN) .................................. 43 

2.8.1 Q learning ........................................................................................... 43 

2.8.2 Basics of a deep Q network (DQN) .................................................... 44 

2.8.3 Q-function modifications in DQN ...................................................... 45 

2.8.4 Prioritised experience replay for DQN ............................................... 47 

2.8.5       Reviewing different deep Q networks (DQNs) ................................... 48 

2.9 Optimisation Techniques for DRL ............................................................. 52 

2.9.1 Gradient descent ................................................................................. 53 

2.9.2 Stochastic gradient descent (SGD) optimiser ..................................... 54 

2.9.3 Adam optimiser .................................................................................. 55 

2.10 Benchmarks for Multi-objective Optimisation ........................................... 55 

2.10.1 Reviewing existing benchmarks for MORL ....................................... 55 

2.10.2 Reviewing existing benchmarks for evolutionary approaches ........... 58 

2.10.3     Generating benchmark for the dynamic MORL ................................. 59 

2.11 Reviewing the Metrics for Performance Evaluation .................................. 61 

2.11.1 Reviewing performance metrics for MOO problems ......................... 61 

2.11.2 Reviewing performance metrics used in DMO algorithms ................ 63 

2.12 Existing Process of Water Quality Evaluation in São Paulo, Brazil .......... 65 

2.13 Reviewing Machine Learning Studies for Water Quality Evaluation ........ 68 

2.14 Justification of the Study ............................................................................ 71 

2.15 Summary .................................................................................................... 73 

Chapter 3.................................................................................................................... 75 

Methodology .............................................................................................................. 75 

3.1 Introduction ................................................................................................ 75 

3.2 Research design .......................................................................................... 76 



v 

 

3.3 Approaches to defining the conceptual model ........................................... 80 

3.4 Method Details for Test Case 1 .................................................................. 82 

3.4.1 Raw-image approach .......................................................................... 83 

3.4.2 Hardcode approach ............................................................................. 84 

3.5 Method Details for Test Case 2 .................................................................. 88 

3.5.1 Data collection and preparation .......................................................... 91 

3.5.2 Water quality parameter selection and resilience calculation ............. 93 

3.6 Summary .................................................................................................... 98 

Chapter 4.................................................................................................................. 101 

Problem Settings and Experimental Setups ............................................................. 101 

4.1 Introduction .............................................................................................. 101 

4.2 Defining the Dynamic Multi-objective Optimisation Problem (DMOP) . 102 

4.3 Defining the Dynamics of the DMOP ...................................................... 103 

4.4 Proposed Benchmark for a Dynamic Multi-objective Environment ........ 105 

4.5 Empirical Setups for Test Case 1 ............................................................. 108 

4.5.1 The mathematical model for test case 1 ........................................... 108 

4.5.2 Experimental settings for test Case 1 ................................................ 112 

4.6 Empirical Setups for Test Case 2 ............................................................. 114 

4.6.1 Mathematical model to formalise MOMDP for test Case 2 ............. 114 

4.6.2 Experimental settings for test case 2 ................................................ 124 

4.7 Summary .................................................................................................. 128 

Chapter 5.................................................................................................................. 130 

Proposed Algorithm: Parity Q Deep Q Network (PQDQN) ................................... 130 

5.1 Introduction .............................................................................................. 130 

5.2 Deep Q Network (DQN) Selection .......................................................... 131 

5.3 Policy Search in DQN .............................................................................. 133 

5.4 Meta-policy Selection Mechanism ........................................................... 136 

5.5 Tracking the Optimal Policy .................................................................... 141 

5.6 High-level Architecture of the Proposed Algorithm ................................ 148 

5.7 Setup and Training the Model .................................................................. 155 

5.8 Summary .................................................................................................. 156 

Chapter 6.................................................................................................................. 158 



vi 

 

Results and Discussions ........................................................................................... 158 

6.1 Introduction .............................................................................................. 158 

6.2 Evaluating Criteria ................................................................................... 159 

6.2.1 Evaluating criteria for the proposed benchmark ............................... 159 

6.2.2 Evaluation criteria for the considered environments ........................ 160 

6.3 Performance Evaluation ........................................................................... 162 

6.3.1 Comparison of the existing and the proposed benchmark ................ 163 

6.3.2 Comparison of the elapsed training steps and earned rewards ......... 165 

6.3.3 Comparison of the performance of the different algorithms ............ 172 

6.3.4 Comparison of the true PF for identifying the vulnerable zones ...... 176 

6.3.5 Statistical Evaluation of the proposed algorithm .............................. 179 

6.4 Strengths and Weaknesses of the Proposed Method ................................ 180 

6.5 Limitations and Areas for Improvement .................................................. 181 

6.6 Summary .................................................................................................. 183 

Chapter 7.................................................................................................................. 185 

Concluding Remarks and Future Directions............................................................ 185 

7.1 Final Remarks on the Benchmark ............................................................ 187 

7.2 Final Remarks on Test Case 1 .................................................................. 189 

7.3 Final Remarks on Test Case 2 .................................................................. 191 

7.4 Future Works ............................................................................................ 193 

Ethical Considerations ............................................................................................. 197 

References ............................................................................................................... 198 

Appendices .............................................................................................................. 228 

Appendix A: Treasure values and the Pareto frontiers ............................................ 228 

Appendix B: Sample WQR dataset ......................................................................... 229 

Appendix C: Keras implementation ........................................................................ 230 

Appendix D: Visualisation of the deep layers ......................................................... 231 

Appendix E: Weight-bias distributions ................................................................... 237 

Appendix F: Expert system and identified vulnerable zones .................................. 238 

 



vii 

 

List of Figures 

Figure 1. 1: Deep-sea Treasure (DST) hunt environment as test case 1 ........................... 8 

Figure 1. 2: A schematic view of test case 2 ..................................................................... 9 

 
Figure 2. 1: Examples of intelligent applications............................................................ 18 
Figure 2. 2: Data-driven decision-making process ......................................................... 21 
Figure 2. 3: A typical RL model ..................................................................................... 28 
Figure 2. 4: A typical setup for multi-objective reinforcement learning environment ... 30 
Figure 2. 5: Multi-objective optimisation in MORL ....................................................... 32 
Figure 2. 6: Schematic diagram of the learning mechanism based on ANN .................. 38 
Figure 2. 7: Timeline for the evolution of deep reinforcement learning ......................... 39 
Figure 2. 8: The system architecture of deep reinforcement learning ............................. 41 
Figure 2. 9: Q value selection in a Deep Q network ....................................................... 46 
Figure 2. 10: Connection of a prioritised experience replay memory in a DQN ............ 47 
Figure 2. 11: Optimization with gradient descent ........................................................... 54 
Figure 2. 12: Existing benchmarks for MORL ............................................................... 57 
Figure 2. 13: Targeted area (São Paulo) to implement the proposed framework ........... 67 
Figure 2. 14: Distribution of sampling points based on different types .......................... 67 
Figure 2. 15: A flow diagram to select the necessary methods ....................................... 74 
 
Figure 3. 1: Working packages for this research work ................................................... 78 

Figure 3. 2: Overview of the system architecture ........................................................... 79 

Figure 3. 3: An agent traversing within a single environment ........................................ 82 

Figure 3. 4: Traditional Deep-sea Treasure problem: frontier and reward distribution .. 83 

Figure 3. 5: Raw image approach to solve the test case 1 (DST environments) ............. 84 

Figure 3. 6: A simplified visualisation of the MOMDP.................................................. 85 

Figure 3. 7: Sub-criteria impact on each criterion .......................................................... 91 

Figure 3. 8: Water resources of Brazil by Basin ............................................................. 93 

Figure 3. 9: Threshold values for IVA and IQA based on the water quality .................. 95 

Figure 3. 10: Threshold values for IET on the water quality parameters in São Paulo .. 96 

Figure 3. 11: Steps to form the RL agent in this study ................................................... 98 

Figure 3. 12: Process to repeat the work in a different dataset ....................................... 99 
 

Figure 4. 1: Two instances of dynamic deep-sea treasure (type-II) .............................. 105 

Figure 4. 2: Dynamic Deep-sea Treasure problem- Silver and Gold (Type III) ........... 106 

Figure 4. 3: Dynamic Deep-sea Treasure problem- DST Attack by Enemy (Type IV) 107 

Figure 4. 4: A conceptual model of the Markov Decision Process (MDP) of the 

simulated environment .................................................................................................. 108 

Figure 4. 5: Visualisation of the deep layer for the dynamic DST environments ......... 112 
Figure 4. 6: Visualisation of the deep layer for test case 1 ........................................... 113 
Figure 4. 7: Distribution of triangular fuzzy number .................................................... 114 
Figure 4. 8: MDP for the resilient area selection .......................................................... 119 
Figure 4. 9: High-level architecture of the RL implementation on the WQR dataset ... 121 

https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106605
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106606
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106608
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106609
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106610
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106611
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106612
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106613
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106614
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106615
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106616
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106617
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106618
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106619
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106620
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106980
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106982
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106983
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106984
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106985
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106986
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106987
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106988
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40106990
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107192
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107193
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107194
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107195
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107195
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107196
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107197
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107198


viii 

 

Figure 4. 10: A visualisation of knowledge gathering by the agent based on the resilient 

areas .............................................................................................................................. 123 
Figure 4. 11: Structure of the DRL framework that is used in test case 2 .................... 126 
Figure 4. 12: Visualisation of the deep layer for test case 2 ......................................... 127 
Figure 4. 13: Parity Q deep Q network-based Policy selection .................................... 128 

 

Figure 5. 1: Importance sampling based on the image in the Space Invaders game ..... 133 

Figure 5. 2: A visualisation of Q value mapping in DQN architecture for governing 

policies  ......................................................................................................................... 137 

Figure 5. 3: Object-relation mapping to find out the equilibrium between objectives in a 

PQDQN architecture ..................................................................................................... 138 

Figure 5. 4: Meta-policy selection in the dynamic DST environment (silver only) ..... 140 

Figure 5. 5: The agent’s traversing in the dynamic DST (silver and gold) ................... 141 

Figure 5. 6: Objective space and the tracking of global optima .................................... 142 

Figure 5. 7: Sample state transition between different states ........................................ 143 

Figure 5. 8: Visualisation of the changing time while the agent is traversing in the 

dynamic environments .................................................................................................. 145 

Figure 5. 9: The agent’s traversing (clashes) in the dynamic DST (attack by enemy) in 

different timestamps ...................................................................................................... 145 

Figure 5. 10: Changing Pareto frontier (a) at timestamp 1 to 2 (b) at timestamp 2 to 3 146 

Figure 5. 11: Changing Pareto frontier (a) at 7th timestamp and (b) at 19th timestamp . 147 

Figure 5. 12: A visualisation of the trajectory based on the meta-policy (a) the best-case 

scenario and (b) the worst-case scenario ....................................................................... 148 

Figure 5. 13: Sample of the Pareto dominance (a) decision space (b) objective space. 149 

Figure 5. 14: High-level architecture of the proposed parity-q deep q network ........... 152 

Figure 5. 15: Visualisation of the importance sampling while traversing in the dynamic 

DST ............................................................................................................................... 154 

Figure 5. 16: Block-diagram for updating the Q value ................................................. 155 

Figure 5. 17: Proposed PQDQN in the dynamic environment ...................................... 157 

 

Figure 6. 1: All DST environments in this study .......................................................... 163 
Figure 6. 2: Heatmap of average visited states over 100 agents for dynamic DST (silver 

only) .............................................................................................................................. 166 
Figure 6. 3: Learning accuracy over 1M steps for dynamic DST (silver and gold) ...... 167 
Figure 6. 4: Mean squared error over 1M steps for dynamic DST (attack by enemy) . 167 
Figure 6. 5: Bias and weight distributions on the learning rate of 1E-03 for the dynamic 

DST (silver and gold) .................................................................................................... 168 
Figure 6. 6: Weight distributions on the learning rate of 1E-03 with conv =1 and 2 for 

the dynamic DST (attack by enemy)............................................................................. 168 
Figure 6. 7: Bias and weights distributions on the learning rate of 1E-03 for predicting 

water quality resilience ................................................................................................. 169 
Figure 6. 8: PCA visualisation (night mode enabled) for the dynamic DST (silver and 

gold) .............................................................................................................................. 170 
Figure 6. 9: PCA visualisation for the dynamic DST (attack by enemy)...................... 171 
Figure 6. 10: t-SNE visualisation for the objectives in the WQR environment ............ 171 

https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107201
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107201
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107202
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40107203
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561773
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561774
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561774
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561775
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561775
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561776
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561777
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561778
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561779
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561780
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561780
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561781
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561781
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561784
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561784
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561785
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561786
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561787
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561787
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561788
file:///C:/Users/Mahmudul/Dropbox/Sent-12-50-2020/PhD-%20submit%206.docx%23_Toc41561789
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108803
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108804
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108804
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108805
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108806
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108807
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108807
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108808
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108808
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108809
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108809
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108810
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108810
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108811
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108812


ix 

 

Figure 6. 11: Performance comparison of the algorithms in dynamic DST (silver and 

gold) in terms of GD, IGD and HV. ............................................................................. 173 
Figure 6. 12: Performance comparison of the algorithms in dynamic DST (attack by 

enemy) in terms of GD, IGD and HV. .......................................................................... 174 
Figure 6. 13: Performance comparisons of the algorithms for WQR environment in 

terms of GD, IGD and HV ............................................................................................ 175 
Figure 6. 14: Efficient frontiers; red dots: best-known Pareto front and grey dots: 

Obtained Pareto frontier by PQDQN ............................................................................ 177 
Figure 6. 15: Vulnerability in various zones ................................................................. 177 

Figure 6. 16: Vulnerable zones identified by the Parity-Q-Deep Q network based on 

IQA, IET and IVA ........................................................................................................ 178 
Figure 6. 17: a) CETESB (2016)’s IQA mapping for IQA, IVA and IET. ................... 178 
 
Figure D. 1: Bird’s eye view of the deep layer network ............................................... 231 
Figure D. 2: Visualisation of deep layer 1 .................................................................... 232 
Figure D. 3: Visualisation of deep layer 2 .................................................................... 232 
Figure D. 4: Visualisation of deep layer 3 .................................................................... 233 
Figure D. 5: Visualisation of deep layer 4 .................................................................... 233 
Figure D. 6: Visualisation of the output layer ............................................................... 234 
Figure D. 7: Visualisation of the stochastic gradient descent (SGD) layer ................... 234 
Figure D. 8: Visualisation of the iterations ................................................................... 234 
Figure D. 9: Visualisation of the momentum layer ....................................................... 235 
Figure D. 10: Visualisation of the loss layer ................................................................. 235 
Figure D. 11: Visualisation of the decay layer .............................................................. 235 
Figure D. 12: Visualisation of the kernel layer ............................................................. 236 
Figure D. 13: Visualisation of the bias layer ................................................................ 236 
Figure D. 14: Visualisation of the random_uniform layer ............................................ 236 

 
Figure E. 1: Weight-bias distribution for dynamic DST (silver and gold) ................... 237 
Figure E. 2: Weight-bias distribution for dynamic DST (attack by enemy) ................. 237 
Figure E. 3: Weight-bias distribution for WQR environment ....................................... 237 

 
Figure F. 1: Login window of the ES............................................................................ 238 
Figure F. 2: ES to predict water quality resilience based IQA, IET and IVA ............... 239 
Figure F. 3: Identified vulnerable stations of Zone 5 by the ES ................................... 239 
Figure F. 4: Identified the most vulnerable stations based on IQA .............................. 240 
Figure F. 5: Identified the most vulnerable stations based on IET ............................... 240 
Figure F. 6: Identified the most vulnerable stations based on IVA .............................. 241 
 
 
 

https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108813
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108813
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108814
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108814
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108815
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108815
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108816
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108816
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108817
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108818
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%205.docx#_Toc40108818
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113437
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113438
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113439
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113440
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113443
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113446
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113447
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113448
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113449
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113453
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113454
https://studentangliaac-my.sharepoint.com/personal/mmh181_student_anglia_ac_uk/Documents/Thesis%20Version%20Corrections/PhD%20Submit/PhD-%20submit%206.docx#_Toc40113455


x 

 

List of Tables 

Table 2. 1: Data-driven decision support systems .......................................................... 22 

Table 2. 2: Categories of the machine learning (ML) techniques ................................... 27 

Table 2. 3: Different MORL approaches ........................................................................ 33 

Table 2. 4: Reviewing policy optimisation and actor-critic approach ............................ 48 

Table 2. 5: Reviewing different DQNs ........................................................................... 49 

Table 2. 6: Performance metrics and their uses in analysing DMO algorithms .............. 63 

Table 2. 7: Performance metrics and their use in analysing DMO algorithms for the 

statistical tests ................................................................................................................. 64 

Table 2. 8: Freshwater monitoring networks in São Paulo State - 2017 ......................... 66 

 

Table 3. 1: Multi-criteria decision matrix ....................................................................... 90 

Table 3. 2: The quality variables of the Basic Network (freshwater) ............................. 94 

 

Table 4. 1: Dynamic MOP environment types ............................................................. 104 

Table 4. 2: Hyperparameters for test case 1 .................................................................. 113 

Table 4. 3: Global index of importance intensity of WQI by AHP and TFN ............... 115 

Table 4. 4: Hyperparameters for test case 2 .................................................................. 124 

 

Table 5. 1: Comparison of the analysed algorithms ...................................................... 132 

Table 5. 2: Progression of vector function estimation based on the Q values over time 

with the PQDQN ........................................................................................................... 144 

 

Table 6. 1: Comparisons of PF and PS between existing and proposed benchmark .... 164 

Table 6. 2: Average number of steps and total expected return (in thousands) for MPQ, 

MO-MCTS and MPDQN .............................................................................................. 165 

Table 6. 3: Average number of steps and total expected return (in thousands) for the 

proposed PQDQN ......................................................................................................... 166 

Table 6. 4: Frontier features for the vulnerable zones .................................................. 176 

Table 6. 5: Student’s t-test results of different algorithms in different environments .. 179 

 

Table A. 1: DST testbed treasure values ....................................................................... 228 

Table A. 2: Treasure values for the Pareto Frontier (Silver and Gold) ......................... 228 

Table A. 3: Treasure values for the Pareto Frontier (attack by enemy- scenario 1) ..... 228 

Table A. 4: Treasure values for the Pareto Frontier (attack by enemy- scenario 2) ..... 229 

 

Table B. 1: Sample raw dataset for the WQR ............................................................... 229 

Table B. 2: The threshold level to determine the resilience of IQA, IVA and IET ...... 230 

 

Table F. 1: Physical location of the most vulnerable zones .......................................... 241 



xi 

 

Acronyms 

 AI Artificial Intelligence 

ANN Artificial Neural Network 

CETESB Companhia Ambiental do Estado de São Paulo 

CS Coverage Scope 

DMO Dynamic Multi-objective  

DMOP Dynamic Multi-objective Optimisation Problem 

DL Deep Learning 

DRL Deep Reinforcement Learning 

DST Deep Sea Treasure 

DQN Deep Q Network 

ES Expert System 

IET Índice do Estado Trófico 

IQA Índice de Qualidade das Águas 

IVA Aquá Índice de Vida Aquática 

MDP Markov Decision Process 

ML Machine Learning 

MPDQN Multi Policy Deep Q Network  

MPQ Multi Pareto Q Learning  

MO Multi-objective 

MOO Multi-objective Optimisation 

MOP Multi-objective Problem 

MOMCTS Multi-Objective Monte Carlo Tree Search 

MOMDP Multi-objective Markov Decision Process 

MOTSP Multi-objective Travelling Salesman Problem 

MS Maximum Spread 

OR Operational Research  

PCA Principal Component Analysis 

PF Pareto Front 

POF Pareto Optimal Front 

PS Pareto Set 

POS Pareto Optimal Set 

PL Path Length 

RL Reinforcement Learning 

RM Replay Memory 

SC Success Ratio 

SP São Paulo 

t-SNE t-Distributed Stochastic Neighbor Embedding 

VD Variable Distance 

WQ Water Quality 

WQI Water Quality Index 

WQR Water Quality Resilience 



xii 

 

Symbols 

 
𝛾 Discount factor 

𝛿 Global significance 

𝛼 Learning rate 

𝜌 Optimism index 

𝜋 Policy  

𝜇 Probability distribution 

λ Significance of factors 

σ Significance of sub-factors 

𝜏 Time-specific parameter 

𝑄′(𝜃′) Target network 

𝜃 Updating network  

𝑉𝜋 Value function 

𝑟 Vector reward 

 
 



 

1 | P a g e  

 

Chapter 1 

Introduction 

 

Today’s human life is blessed with science and its various applications. Especially, 

artificial intelligence (AI) added a new dimension making people believed that 

human intelligence could be replaced artificially. However, intelligence itself is so 

massive, spontaneous, primitive, and uncertain that it may not be purely replicated 

or replaced in the near future. Nevertheless, there are strong scientific communities 

who believe in this replacement, and it is truly appreciated from an academic point 

of view (Jarrahi, 2018; King and Grudin, 2016). 

 

However, the mechanisms of intelligence can be analysed in a certain boundary 

with building machine, agent, and system or even writing a computer program. 

This artificially developed system can assist human to take a better decision or act 

according to the set of rules defined by the human (Duan, Edwards and Dwivedi, 

2019). In other words, the scientific community will have more success in 

developing the system which learns how to be intelligent and perform accordingly 

(Julian Togelius, 2007; Yannakakis and Togelius, 2015). This thesis focuses on 

building an intelligent decision-making scheme which deals with the dynamics in 

the multi-objective (MO) environment. More specifically, this research directs 

how to develop a computer application which learns to be intelligent and performs 

to identify the optimised solution in a dynamic multi-objective (DMO) 

environment using deep reinforcement learning (DRL).  

 

Human life consists of various problems which are dynamic, multi-parameter 

based and complex. Each of them requires different steps to be followed to make 

a final decision, and it needs optimisation if more than one alternative is available. 

Therefore, multi-objective optimisation, a process to find an optimum solution for 

a problem, has become popular in recent days (Zaroliagis and Christos, 2005; 

Botte and Schöbel, 2019). Many problems involve continuous changing properties 

and need to find an optimal solution from many available solutions, which is very 
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challenging. For instance, booking a flight or hotel, arranging class routines to 

adapt to constant changes because of staff absence and room unavailability, 

deploying a military unit in a war and so on. These scenarios require dynamic 

optimisation since the decisions need to be changed very frequently depending on 

the situation. Another example can be the use of medicines for cancer patients 

where the target is not just to cure them within less time but also to minimise the 

side effects of the drugs (Preissner et al., 2012). The problem also entails the risks 

of any new conditions that may arise during medication. 

 

A common way to solve these dynamic multi-objective optimisation problems 

(DMOPs) in the domain of computational intelligence is an evolutionary approach 

(Azzouz, Bechikh and Said, 2017; Lam, Branke and Abbass, 2005). However, 

recently, many pieces of scientific literature in multi-objective optimisation show 

a radically different perspective in solving the problems using multi-objective 

Markov decision process (MOMDP) especially using reinforcement learning (RL) 

techniques (Lizotte and Laber, 2016; Drugan et al., 2017; Bamakan, Nurgaliev and 

Qu, 2019)  One of the major goals of this technique is to reach the set of solutions 

known as Pareto-optimal solutions (POS) which is as close as to the true Pareto-

optimal front (POF). These techniques not only find the shape of the Pareto front 

but also help to investigate and decode interesting facts that the solutions might 

have (Gopakumar et al., 2018). In addition, recently Multi-objective Markov 

decision process (MOMDP) has received considerable attention not only for its 

applicability but also for solving practical multi-objective problems (Lizotte and 

Laber, 2016). To solve the MOMDP, the common approaches are to define the RL 

model using state, action and reward functions. The reward functions can be scalar 

or vector. However, according to the reward hypothesis (Sutton and Barto, 2018) 

the goal and purposes can be formalised with the maximisation of the expected 

value of the cumulative sum of a received scalar signal (i.e. reward). In other 

words, the resulting MOMDPs can always be transformed into a single objective 

MDPs with aggregated returns. 

 



 

3 | P a g e  

 

Nevertheless, Roijers et al., (2013) rejected Sutton’s view questioning its 

application in real-world scenarios. They presented three static scenarios (i.e. 

known weights, unknown weights, and decision support scenario) where authors 

showed one or both conversions are impossible, infeasible or undesirable. 

Moreover, as far as DMOPs are concerned, very few studies have been conducted 

in this area due to the lack of testbeds (Azzouz, Bechikh and Said, 2017). In this 

study, this research gap has been addressed by proposing a dynamic multi-

objective testbed (i.e. dynamic deep-sea treasure hunt) which may lead the 

researchers to do further investigation in this area. To the best of my knowledge, 

this is the first work in the context of dynamic multi-objective optimisation using 

DRL. Besides, an argument for the necessity of dynamic multi-objective 

optimisation benchmark for RL settings has been established  since the complexity 

of the problem space and finding a solution is computationally intensive in a 

reasonable timeframe such as NP-hard or NP-complete problems (Plaisted, 1984). 

Moreover, an algorithm has been proposed which is primarily responsible to 

handle more than one objective in the defined dynamic environment. After that, 

an implementation of this algorithm has been considered to identify and predict 

the vulnerable zones based on water quality resilience in 22 zones in São Paulo 

(SP), Brazil, which ensures the applicability and efficiency of the proposed 

algorithm. This implementation breaks the boundary of theoretical knowledge and 

helps to solve a practical problem.  

 

Regarding the implementation, the basic network has only been considered which 

has 461 data collection points. The flow measurements in water bodies are carried 

out by Companhia Ambiental do Estado de São Paulo (CETESB) in partnership 

with the Department of Water and Energy of the State of São Paulo. The results 

are obtained by measuring the flow in water bodies by reading scale to sampling 

the water. In 2017, the core network generated approximately 118,000 (e.g. 

physical, chemical, biological, bioanalytical and ecotoxicological) volume of data 

(Publicações e Relatórios | Águas Interiores, 2017). This implementation may also 

lead to solving some of the other dynamic real-world problems that we face every 

day. 
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1.1 Motivation 

 

We live in an era where there is no question that technology has drastically 

changed the way we work. According to Dr Carl Frey and Dr Michael Osborne, 

the economists from Oxford University, 40% of all category of jobs are at risk of 

being lost due to automation (Benedikt Frey et al., 2013). It is inevitable that 

artificial intelligence (AI) and machine learning (ML) will have a serious influence 

on this replacement (Chris Graham, 2018) even in the policy-making (Federico 

Mor, 2018). There are two different schools of opinion regarding the impact of AI 

on humanity (Dwivedi et al., 2019; Zanzotto, 2019). One school believes that AI 

is very much likely to have a destructive impact on mankind (Clarke, 2019) 

whereas the other school expects AI to play a positive role in the progress of 

humanity (Woo, 2020). However, this debate can only be solved in future when 

AI technology will flourish to its fullest. In this automation process, there will be 

a significant impact on job sectors in future and AI will be the trailblazer of this 

digitisation (Syed et al., 2020).  

 

To do so, the computational intelligence researchers will involve more into 

simulation using robots, augmented & virtual reality and gaming environment. In 

this whole process, games or gaming environment will be one of the key 

components to analyse different algorithms and simulate the problems and provide 

solutions. The obvious reason is that a gaming environment can act as a guinea pig 

to design, develop, implement, test, modify and improve the algorithms (Justin 

Francis, 2017). Following the same motto, this study addresses a gap in the domain 

of DMOP and propose a benchmark with the help of the simulated environments 

as a contribution to this field.    

 

In this thesis, a dynamic gaming environment has been created where there are a 

set of conflicting objectives. As mentioned earlier, the objectives and constraints 

of the problems vary dynamically from each other and are always evolving. To 

solve this problem, evolutionary algorithms (EA) are widely used to deal with 

optimisation. However, due to the dynamics over time, DMOPs are more 
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challenging to be solved and EAs often face difficulties to solve them (Jiang et al., 

2018).  

 

In spite of that, there has been a growing interest (Arulkumaran et al., 2017) to 

solve the multi-objective optimisation in sequential decision making using RL 

especially deep reinforcement learning (DRL) after the success of DeepMind in 

2015 (Mnih et al., 2015). This study is also motivated by that achievement and 

intends to add values in a deep RL perspective to solve the problem of dynamic 

multi-objective optimisation. In addition, a water quality test case has been taken 

into consideration which is encouraged by one of the very crucial human needs, 

especially in the 21st century. In this research, water quality resilience has been 

studied thoroughly and a machine learning (ML) technique (i.e. DRL) is used to 

determine the critical areas in one of the cities in Brazil. In this research, a novel 

method called parity Q deep Q network (PQDQN) has been proposed which is 

able to find the non-dominated solutions in the dynamic DST environment and 

predict the vulnerable zones based on the water quality resilience in a dynamic 

multi-objective environment. The agent interacts in these environments that are 

based on the multi-objective Markov decision process (MOMDP) and capable of 

obtaining rewards in the RL setting. 

 

1.2 Aims and Objectives 

In this study, the primary aim is to address the challenges in the existing testbeds 

for dynamic multi-objective optimisation in the context of reinforcement learning. 

The secondary aim of this study is to investigate and develop an appropriate 

decision-making framework for a dynamic multi-objective environment. 

To achieve these aims, the following objectives are identified: 

 

a) To investigate the current state-of-the-art of the dynamic multi-objective 

optimisation in the context of RL. 

b) To design and develop a conceptual and mathematical model for dynamic 

multi-objective optimisation in RL settings. 
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c) To design and develop a new dynamic multi-objective optimisation testbed 

for RL settings. 

d) To design and develop a novel algorithm using deep reinforcement 

learning that can handle dynamics and optimise the decision in a multi-

objective environment. 

e) To apply the proposed algorithm to solve a real-world problem which is 

identifying and predicting the vulnerable zones using water quality 

resilience in the state of São Paulo, Brazil. 

 

1.3 Research Questions 

 

In this study the answers to the following research questions are investigated: 

 

• Q1: Can the proposed benchmark address the gap in the DMOP research 

domain for RL settings?   

• Q2: How a DRL based algorithm can handle multiple objectives and 

predict the vulnerable zones based on water quality? 

 

1.4 Main Scientific Contributions 

 

The major scientific contributions of this research work are as follows: 

a. Design and development of a new and innovative testbed for dynamic 

multi-objective optimisation for RL settings. 

b. Objective-relation mapping (ORM) is used for the first time to construct a 

meta-policy (e.g., govern policy) among different objectives to find out the 

compromising solutions. 

c. A novel method has been developed to validate the real-world applicability 

of the proposed algorithm which identifies and predicts vulnerable zones 

based on water quality resilience in São Paulo, Brazil. 

d. Identifying the research gap through extensive literature review in the 

context of DMOP in RL settings. 
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1.5 Test Cases 

 

1.5.1 Test case 1 

 

Deep-sea Treasure (DST) is a gaming environment. It is a standard multi-

objective problem as well as a testbed introduced by (Vamplew et al., 2011) 

for RL settings. This is one of the popular testbeds and has appeared in the 

literature many times in the context of multi-objective RL research. This 

environment consists of 10 rows and 9 columns with three different types of 

cells such as water cells where the vessel can traverse, sea ground cells that 

cannot be traversed as these cells are the edges of the grid and treasure cells 

that provide different rewards. DST game ends when the agent reaches the 

treasure cells.  

 

Here, the agent controls a submarine that searches for treasures under the 

sea. The objectives of the agent are to find out the highest valued treasure 

within minimum time (i.e. conflicting way). It has got deterministic 

transitions with the non-convex frontier. The submarine starts from the top 

left corner of the grid and can move up, down, right and left. Unlike the 

single objective environment, the agent receives vector rewards. The 

rewards are consisting of a punishment of -1 (i.e. negative reward for RL) 

for every move and the value of achieved treasure which is 0 except the agent 

reaches the location of the treasure when the agent receives the treasure 

amount (i.e. positive reward for RL). The optimal Pareto front has 10 non-

dominated solutions, one per each treasure in the gird. The front is globally 

concave with local concavities at the treasure value of 74, 24 and 8. The 

hypervolume value of the optimal front Pareto front is 10455. Figure 1.1 

shows a classical and static DST testbed where the lowest treasure value is 

1 and the highest is 124. 
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1.5.2 Test case 2 

 

The test case 2 is selected so that the proposed algorithm (i.e. PQDQN) and 

the method (i.e. MOMDP) can solve a real-world problem in one of the 

crowded cities in Brazil. Considering the public water supply for this large 

population, the Government of the State of São Paulo is working for 

universal sanitation in municipals of the state where the increase in the 

percentage of the population served by various services such as measuring 

and maintaining the water quality, sewage services and so on. However, 

water contamination deteriorates the quality of water and impedes the 

sustainable development of São Paulo (Governo do Estado de São Paulo | 

Eleições, 2018). The presence of sewage in the waters of rivers, reservoirs, 

estuaries and coastal regions reduces water quality and restricts its multiple 

usages while increasing the occurrence of waterborne diseases caused by the 

primary contact or by the ingestion of contaminated water (Nogueira et al., 

2018).  

 

To identify the vulnerable areas and take proper actions in those areas, 

massive human efforts and expenses are required. These actions involve 

integrated management of actions involving various sectors and 

organisations associated with the management of the use of industrial and 

Figure 1. 1: Deep-sea Treasure (DST) hunt environment as test case 1 
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agricultural effluents, the complexity of the human resource (HR) 

management, fixed asset and reactive or planned maintenance (Barbosa, 

Alam and Mushtaq, 2016). Therefore, it is important to automate the process 

to detect the vulnerable areas as quick as possible. Hence, an AI-based 

optimal decision support system can reduce the cost of managing such huge 

tasks and can have a socio-economic impact which may help for sustainable 

development. Figure 1.2 shows the bird’s eye view of the test case 2 where 

the agent is capable to predict the vulnerable zones based on the water 

quality resilience. 

 

 

 

 

 

 

 

 

 

 

 

In a nutshell, the identified problems in this test-case are given below: 

 

1. It is a dynamic problem considering the water quality data changes over 

time due to various factors. 

2. Collection of these data is expensive and requires human resources. 

3. Identification of the vulnerable zones is difficult because of manual 

checking and calculation. 

4. Investment optimisation for different zones is complicated. 

5. Prioritise the zones to enhance the water quality is time-consuming. 

 

 

 

WQI 
MOMDP 

Resilience 
Checker 

(Predictive) 

Identification 
of the 

vulnerable 
Zones 

Figure 1. 2: A schematic view of test case 2 
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1.6 Deliverables 

 

Deliverables in this research are given below as a list of publications.  

 

Journal: 

 

Md Mahmudul Hasan, Khin Lwin, Maryam Imani, Antesar Shabut, Luiz 

Fernando Bittencourt, M.A. Hossain, “Dynamic multi-objective optimisation using 

deep reinforcement learning: benchmark, algorithm and an application to identify 

vulnerable zones based on water quality”, Engineering Applications of Artificial 

Intelligence, Publisher: Elsevier, Volume 86, 2019, Pages 107-135, ISSN 0952-

1976, https://doi.org/10.1016/j.engappai.2019.08.014. 

 

 

IEEE Conferences: 

 

1. Md Mahmudul Hasan, Khin Lwin, Antesar Shabut, Alamgir Hossain, 

“Design and Development of a Benchmark for Dynamic Multi-objective 

Optimisation Problem in the Context of Deep Reinforcement 

Learning”, 22nd International Conference on Computer and Information 

Technology, Dhaka, 2019. IEEE Xplore Digital Archive 
Link: https://ieeexplore.ieee.org/document/9038529 

 

2. Md Mahmudul Hasan, Ali Mohsin, Maryam Imani, Luiz Fernando 

Bittencourt, “A novel method to predict water quality resilience using deep 

reinforcement learning in São Paulo, Brazil”, International Conference on 

Innovation in Engineering and Technology (ICIET), Dhaka, 2019.  

 

3. M. M. Hasan, K. Abu-Hassan, Khin Lwin and M. A. Hossain, "Reversible 

decision support system: Minimising cognitive dissonance in multi-criteria 

based complex system using fuzzy analytic hierarchy process," 2016 8th 

Computer Science and Electronic Engineering (CEEC), Colchester, UK, 

2016, pp. 210-215. IEEE Xplore Digital Archive. 
Link: https://ieeexplore.ieee.org/document/7835915  

 

 

Other International Conference:  

 

1. Md Mahmudul Hasan, Khin Lwin, Antesar Shabut, Miltu Kumar Ghosh, 

M A Hossain, “Deep Reinforcement Learning for Dynamic Multi-objective 

Optimisation”, 17th International Conference on Operational Research-

KOI 2018, Zadar, Croatia, 2018. 

 

 

 

 

https://doi.org/10.1016/j.engappai.2019.08.014
https://ieeexplore.ieee.org/document/9038529
https://ieeexplore.ieee.org/document/7835915
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Other Contributions: 

1. Md Mahmudul Hasan, Md Shahinur Rahman, Khin Lwin, Antesar Shabut, 

Adrian Bell, M A Hossain, “Deep Reinforcement Learning for Optimisation”, 

book chapter of ‘Handbook of Research on Deep Learning Innovations and 

Trends’, publisher: IGI Global, 2018.  
Link:https://www.igi-global.com/chapter/deep-reinforcement-learning-for-optimization/227852  

 

2. Technical Reviewer for the book of “Machine Learning for Developers” 

Published by PACKT Publishers in 2017. 
Link: https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-developers  

 

3. Md Mahmudul Hasan, “Predicting Water Quality Resilience: A Machine 

Learning Approach”, 8th FST Conference, ARU, UK, 2019. 

 

4. Md Mahmudul Hasan, “A robust decision support system in dynamic multi-

objective optimization using deep reinforcement learning”, 12th Research 

Student Conference, ARU, UK, 2018. 

 

5. Best PhD Poster publication at 7th FST Conference, ARU, UK, 2017. 

 

6. Md Mahmudul Hasan, “Optimising decision in a multi-criteria based 

environment”, seminar at ARITI, ARU, UK, 2017. 

 

 

1.7 Terminologies and Notes on Style 

 

The following section represents common terminologies that have been frequently 

used in this study. 

Agent: The agent or algorithm lives in the simulated environment and helps to 

make the decision.  

 

State: A state helps to identify the next step which will be determined by the agent. 

 

Action: Agent’s possible moves between different states by observing new state 

and receiving rewards. 

 

Policy: A policy typically represents the agent’s behaviours of the selection of the 

action. 

 

https://www.igi-global.com/chapter/deep-reinforcement-learning-for-optimization/227852
https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-developers
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Environment: An environment is the external entity of the agent where it interacts 

with the states. The environment can be fully observable (i.e. the agent directly 

observes the environment) or partially observable (i.e. the agent indirectly 

observes the environment). 

 

Static environment: The environment that does not change or being affected by 

the changing parameters and constraints.  

 

Dynamic environment: The environment that changes over time. More 

specifically, the changing states influenced by the objective functions, constraints 

and problem parameters. 

 

Reward: The agent has a specific task which needs to be performed by the actions.  

In a finite horizon or episodic environment, the expected return is usually an 

undiscounted finite sum of the scalar rewards until the agent reaches the terminal 

states. 

 

Decision space: This term is used to define the space of the selections that 

represent the choices to make a decision. 

 

Objective space: This space defines dominated and non-dominated solutions 

based on the objectives.  

 

It is worth mentioning that a minimum usage of acronyms and mathematical terms 

have been used to read this thesis reasonably easy and enjoyable to the readers. At 

the end of some chapters, a graphical representation has been provided to give a 

visualisation and conceptual understanding. Moreover, there are some places 

where the mathematical equations are described in a readable format. However, 

readers have been referred adequately in certain places so that they can gather more 

information from relevant sources. In addition, some words (e.g. quick, slow, fast, 

long) have been used to exemplify the performance in the context of convergence, 

elapsed training time and identifying the true PF which have been widely stated 
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and utilised due to the approximation of the true PF (e.g. moving global optima) 

in the fields of optimisation and RL (Moffaert and Nowé, 2014; Lin et al., 2017; 

Farina, Deb and Amato, 2004; Mehnen, Wagner and Rudolph, 2006; Sutton and 

Barto, 2018). Furthermore, prior familiarity with reinforcement learning could 

have a notable impact on readers to follow and enjoy the reading. 

 

 

1.8 Organisation of the Thesis 

 

The organisation of the thesis is illustrated below: 

 

Chapter 2 reviews related research works where it highlights an overview of the 

intelligent application, decision support system, Markov decision process, 

machine learning, reinforcement, deep reinforcement learning, existing 

benchmarks and optimisation techniques. This chapter also represents a 

comprehensive analysis of the essential components to enhance the readability of 

the outcomes of the thesis such as reviewing performance metrics to analyse the 

algorithms. Finally, the justification of the study has been described in this chapter. 

 

Chapter 3 deals with the methodology of the research where the research design is 

explained. This chapter also deals with the method details and the necessary 

approaches for doing this research. It has also provided a comprehensive analysis 

of the data-preparation, water quality parameter selection and the ways of the 

calculating resilience. 

 

Problem settings and experimental setups are discussed in Chapter 4 where the 

mathematical and conceptual models have been described. In this chapter, the 

proposed benchmark, network architecture and a detailed discussion of 

formalising the MOMDP for the real-world scenario and the experimental setups 

for both of the test cases have been described. 
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The high-level architecture of the proposed algorithm has been explained in 

Chapter 5. In this chapter, a step by step working procedure has been explained for 

the proposed algorithm. In addition, this chapter also discusses the tools such as 

necessary software, libraries and machine configuration to develop the proposed 

algorithm. 

 

Empirical analysis and discussions have been presented in Chapter 6 where the 

critical review and the limitations are also elaborated. In this chapter, the 

performance measuring criteria and the rationale behind choosing them are also 

mentioned. Furthermore, the strengths and weaknesses of the proposed algorithm 

have been explained. 

 

Finally, concluding remarks and the future direction of this thesis have been stated 

in Chapter 7. The future direction includes an immediate and long-term goal for 

carrying out the existing research. This chapter also explains the further possible 

directions for both test cases. 
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Chapter 2 

Literature Review 

2.1 Introduction  

This is a threefold study. The major part discusses the gap in the dynamic multi-

objective optimisation in the context of reinforcement learning. After that, a 

benchmark has been created to address that gap and finally, an algorithm has been 

proposed that can effectively optimise multi-objective in a dynamic environment 

both in simulated and in a real-world scenario. In this section, the necessary 

components of this study and the recent works in this domain have been discussed. 

This chapter will help the readers to grasp the core elements and background 

knowledge in the following chapters.  

 

At first, the intelligent decision-making scheme along with comparisons between 

the existing systems have been described. Then, one of the key components has 

been discussed in this research which is the dynamic environment and how it is 

related to the optimisation area. In this section, problems and the challenges of the 

dynamic multi-objective optimisation have been described broadly. After that, a 

comprehensive discussion has been conducted based on reinforcement learning 

and how it is going to solve single-objective and multi-objective problems. Then, 

one of the solving techniques of the RL will be discussed which is the Markov 

decision process (MDP). In this thesis, the MOMDP has been chosen to 

incorporate with RL settings. Therefore, this section will provide a substantial 

amount of the review of the existing solution to solve the problem of multi-

objective RL problems. In addition, a basic component of the deep reinforcement 

learning and the major architecture of the deep Q networks (DQNs) have been 

explained. In this section, a comprehensive analysis and the advantages and 

disadvantages of the different DQNs will be discussing. After that, optimisation 

techniques and performance metrics to evaluate the algorithms will be conferring 

which have been used in this study. Finally, different machine learning approaches 

of the test case 2 will be discussed along with the justification of the study. 
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2.2 Background 

 

Optimisation problems can be categorised into three broad areas, such as single 

objective, multi-objective, and many objectives problems (Types of Optimization 

Problems | NEOS, 2018). The other classifications of the optimisation problem are 

whether the problem is static or dynamic. In both cases, there is a good number of 

researches that have already been conducted using evolutionary approaches. For 

examples, 14 test problems for dynamic multi-objective optimisation called DF1 

to DF14 were proposed (Jiang et al., 2018) based on PF/PS geometrics, irregular 

PF shapes, and disconnectivity. Multi-objective test problems with BIAS 

commonly known as BT1-BT9 (Li, Zhang and Deng, 2017) and Large-scale multi-

objective test Problems (i.e. LSMOP1–LSMOP9) are proposed by (Cheng et al., 

2017). F1–F10 for IM -MOEA by (Cheng et al., 2015), C1_DTLZ1, C2_DTLL2, 

C3_DTLZ4, IDTLZ1, IDTLZ2 (Deb and Jain, 2014) were proposed in 2014. In 

addition, a comprehensive list of the benchmarks for evolutionary optimisation can 

be obtained in (Tian et al., 2017; Li et al., 2008; Jiang et al., 2018).  

 

On the other hand, in the domain of multi-objective reinforcement learning 

(MORL), Vamplew et al., (2011) proposed 4 testbeds including a deep-sea treasure 

hunt, MO puddle world, resource gathering and mountain car problem. Natarajan 

and Tadepalli, (2005) used a modified version of Buridan’s ass problem for MOP. 

Tajmajer (2017) demonstrated a cleaning robot for multi-objective adaptation in 

RL. The classical multi-objective physical travelling salesman problem (MO-

PTSP) is also utilised to explore the search space by (Perez et al., 2015). A wide-

ranging standard can be found in “MORL-Glue” that represents a set of multi-

objective reinforcement learning framework by (Vamplew et al., 2017b). 

However, until writing this thesis and to the best of the author’s knowledge, there 

is no such work on dynamic multi-objective optimisation in the reinforcement 

learning settings. A widespread literature review has been conducted and found 

that there is a lack of a benchmark that can satisfy the dynamic behaviours of the 

environment in RL settings. In this research, this limitation has been addressed and 

proposed a dynamic multi-objective testbed in RL settings. The following 
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discussions provide essential knowledge to establish the concept and formalise the 

problem settings for this study. 

 

2.3 Intelligent Decision-making Process 

 

It is essential to delimit the definition of intelligence in the context of decision-

making scheme. Therefore, this section provides a brief of the related domain of 

intelligent applications and comparison of the decision-making schemes. 

 

Intelligent applications or any decision-making scheme and its impact have 

become an essential part of our daily lifestyles. Recent upgrades in computational 

power and its processing capabilities encourage developers to develop more 

intelligent applications (Nick Routley, 2017). Implementation of AI added a new 

dimension to almost every industry. Most of the applications are using AI to some 

extent to provide customised user experiences or to make the services 

even better. These AI-based applications or appliances can assist human to take a 

better decision or can act according to the set of rules defined by the human. These 

applications are so smart that they can also think and communicate with some other 

entities to form a better decision scheme (Gary Orenstein, 2018). 

 

We are using intelligent applications in every domain of our life; be it a 

complicated one like education, finance, weather, gaming or a simple like one 

ordering food online. These applications help us in recognising a pattern, 

classifying different things, clustering, predicting stocks, finding an anomaly, 

detecting spam and so forth. 

The growing industry on smart applications has a clear indication that upcoming 

days, there will be a lot more applications on medical informatics, business 

intelligence, emotional intelligence, natural language processing, virtual reality 

applications and so on (Kasey Panetta, 2017). As a result, there will be a lot of 

machine learning integrated decision-making scheme in the domain of 

computational intelligence. 
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The following applications shown in Figure 2.1 are a glimpse of thousands of 

intelligent applications which are available in the Apple App Store or Google Play: 

   

   

                                       (a)                                      (b)              

Figure 2. 1: Examples of intelligent applications; (a) is analysing an image and 

transforming to integrate with famous artists by Prisma, (b) shows a personal medical 

doctor based on knowledge model and text mining 

 

The following list provides a landscape view in a broader spectrum of the machine 

learning applications in various branches such as: 

• Medical Informatics: Classified images and open data have already been used 

in this domain to produce a good number of AI and ML integrated healthcare 

applications (Vaishya et al., 2020). 

• Natural Language Processing: NLP is another very exciting and interesting 

area of developing applications among the developers. It has a huge potential 

to increase accuracy and localisation in terms of different languages and 

dialects (Young et al., 2018). 

• Smart App based financial inclusion and business intelligence: Traditional 

business intelligence and the continuous integration of financial inclusion can 
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only boost this area to enhance socio-economic condition by penetrating in 

the financial market (Daniel Faggella, 2018).  

• Enhancing Cybersecurity: Continuous threats on cybersecurity enhances a 

common interest in this area among the developers to produce more security 

and more control in privacy in their developed apps (How Will Artificial 

Intelligence And Machine Learning Impact Cyber Security?, 2018; Shabut, 

Lwin and Hossain, 2016). 

• Intelligent things: A high-end AI integrated Internet of Things (IoT) devices 

which connect almost all the appliances and communicate machine to 

machine usually known as the Internet of Everything (IoE), which have been 

observed an upcoming booming interest to various intelligent decision-

making scheme (Younis, 2018; Bolisetti et al., 2017). 

• Digital persona: A digitally represented persona represents or mimic human 

and assists efficiently from its knowledge and produces an AI-enabled 

intelligent decision-making system (Carmen del Solar Valdés, 2017).  

• Real reality: Blending augmented and virtual reality together with the actual 

impact in real life using IoT devices could have a phenomenal area of interest 

in machine learning engineers’ especially intelligent decision support system 

developers (What is Real Reality (RR)? - Definition from Techopedia, 2018). 

• Smart City: A rapidly growing area where a smart urban life offers all the 

necessary and daily life facilities to its inhabitants with an integrated AI-ML 

based data products and decision-making services (Oktaria, Suhardi and 

Kurniawan, 2017). 

Thus, for the computational researchers, it is obvious that there will be more and 

more intelligent decision-making tools, technologies or framework integrating 

machine learning applications. Almost all the sectors that mentioned above require 

optimisation concerning power, achieving objectives and reducing time-

complexity. In this thesis, the scope has been narrowed down focusing on the 

optimisation area in the domain of intelligent decision-making scheme in DMOPs 

that needs new knowledge, especially in a data-driven RL setting.  
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To put it simply, in this study, a decision-making scheme is referred to the context 

of writing an algorithm (i.e. soft agent) in RL framework that can achieve a 

compromising solution in a dynamic environment. To get started with the 

development of intelligent decision-making scheme, a brief review of the decision 

support system is mentioned in the following sections. 

 

2.3.1 Decision support system 

 

The decision refers to the outcome or a conclusion of a scenario or even to solve a 

specific question. In other words, a decision-making process involves producing a 

decision where no alternatives are available or provide suggestions among several 

alternatives (Hasan et al., 2016; Barraclough et al., 2013). We need to consider or 

perhaps re-consider a lot of choices in our everyday life to make a decision. Several 

of them are indirect or direct and several of them depend on different factors or 

perhaps sub-factors. In almost every case, some steps need to be maintained to 

reach a final decision to resolve a problem or to answer a specific question.  

 

However, when this process takes place with the help of computer-aided 

information system, this refers to as a “decision support system- DSS”. The usage 

of decision support system is increasing in almost every industry such as in 

business intelligence (BI), human resource management, clinical trial, weather 

forecasting, financial prediction, disaster management and so forth. Decision 

support systems (DSSs) are commonly categorised based on their decision making 

key factors such as data-driven (e.g. IBM Watson Analytics (IBM Watson, 2018), 

Amazon ML (Machine Learning on AWS, 2018), image analysis based (e.g. 

optical diagnostics device for cancer detection by MobileODT (MobileODT | The 

Smart Mobile Colposcope, 2018), communication driven (e.g. Google Docs, 

Microsoft SharePoint), and knowledge-driven such as Grand Round Table –GRT, 

a clinical DSS based on knowledge engine (Grand Round Table | Daily Patient 

Huddle Software | Automate Chart Review, 2018). However, to achieve the aim 

with defined objectives, this study focused on the data-driven decision support 
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system. In other words, the proposed algorithm decides based on the data-driven 

decision-making scheme. A brief description of data-driven decision-making is 

given below. 

 

Data-driven decision support systems (DDSs) is related to different types of the 

dataset such as structured (e.g. spreadsheets, relational databases), semi-structured 

(e.g. XML, email) and un-structured such as audio, video, social media posts like 

tweets or Facebook status (Brunner and Kim, 2016). Generally, data-driven 

decision making can be applied where the problem or opportunities are identified 

and relevant data are collected to be analysed (Janssen, van der Voort and 

Wahyudi, 2017). The decision-making process includes the following steps as 

shown in Figure 2.2: 

 

 

 

 

 

 

 

However, in this study, the decision support system is based on structured data 

where data comes from computer-generated environments.  

 

2.3.2 Reviewing existing data-driven decision support systems 

 

In this study, DSSs have been analysed in terms of recent research both in 

academia and industry. An overview of the popular data-driven decision-making 

systems is given in the following Table 2.1. Most of these applications have been 

used in the trial/free version.  

 

 

 

 

Data 

Collecting 

Data 

Preparing 

Data 

Analysing 

Decision 

Making 

Figure 2. 2: Data-driven decision-making process 
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2.4 Dynamic Multi-objective Optimisation 

 

To answer the research questions, an overview of the dynamic environment needs 

to be discussed. The area of dynamic optimisation is concerned with the analysis 

of various issues that are responsible to make the environment dynamic. Within 

this section, several issues associated with the time-variant features of the 

problems will be discussed. Moreover, a review has been carried out regarding the 

challenges and the future perspective of this domain.  

 

It is essential to distinguish between dynamic and static problems. The uncommon 

factor of these two environments is the parameters that change over time. In other 

 Table 2. 1: Data-driven decision support systems 

Items Amazon ML Microsoft Azure 
ML Studio 

IBM Watson 
Analytics 

Data Type 
supported 
  

Structured: √ 
Unstructured: × 

Structured: √ 
Unstructured: × 

Structured: √ 
Unstructured: × 
Data cleaning tool: 
√ 

Data Cleaning × × √ 

Pre-trained 
model 

√ √ √ 

Collaborative  × × 

Knowledge 
Model  

× × × 

Ontology 
Description 

× × √ 

Decision 
Interpolation 
and integration  

√ × × 

Problem Solving 
Types 

Binary 
Classification: : √ 
Regression: : √ 
Multi-Class 
Classification: √ 
Pattern 
Recognition:  
Text mining:  

Classification: √ 
Regression: √ 
Clustering: √ 
Prediction: √ 
Text mining: √ 

Classification: √ 
Regression: √ 
Clustering: √ 
Prediction: √ 
Text mining: √ 

Interactive 
Visualisation 

× × √ 

Fine-tuner 
(Controller) 

× × × 

Social Search 
and social data 
mining 

× × √ 

Scaling √ × √ 

Price Pay per use Pay per use  Obsolete  
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words, in the static environment, there are no such changing factors that may 

influence over time. However, it is opposite to the dynamic environment. A time-

dependent problem reacts differently to the changes as time goes by. A detailed 

definition of the DMOPs has been discussed in Chapter 4. 

 

In the context of the DMOPs, the algorithm’s capability depends on whether the 

algorithm is able to track the changes in a dynamic environment or not.  In another 

sense, the algorithm should be able to trace the behavioural changes over time. 

This process can be related to the time-linkage property of the problem (Nguyen 

and Yao, 2009). The second characteristics in the DMOPs, whether the problem 

can be solved by any meta-heuristic solutions such as evolutionary algorithms. The 

next phase depends on the problem domain whether it belongs to the discrete or 

the continuous search space (Lampinen, Lampinen and Zelinka, 1999).  

 

Moreover, predictability and visibility are the other important factors as described 

in (Nguyen, 2011). The visibility also refers to the frequency of the changes. The 

other criteria are whether the problem has got single or multi or many objectives 

that need to be satisfied over time, subject to any given boundaries and the 

constraints. After that, the target becomes the optimisation goals such as whether 

the problem is considered as minimisation or maximisation problems. 

 

After that, the necessary constraints are required to set the definition of the 

problem such as the dependant or independent variables, number of parameters, 

decision variables, and any related parameters that change over time that has direct 

or indirect influence in the environment. The next task is to outline the types of 

problems such as linear or non-linear, episodic or on-episodic, finite or infinite 

space, stationary or non-stationary problem and so on. 

 

Furthermore, to solve a DMOPs, the characteristics of the problem also needs to 

be identified such as factors that change over time and the source of changes. This 

characteristic is also related to tracking the optima. This is usually based on global 

optima and avoid being stuck in the local optima. Finally, to solve any DMOP, the 
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evaluation procedure also needs to be defined such as the performance measure 

for the considered algorithms. 

 

2.4.1 Applications of dynamic multi-objective optimisation problems  

 

Now, several applications for the DMOPs will be described which can be related 

to one of the considered test cases in this study such as the water quality problem. 

Likewise, there are several real-world dynamic multi-objective optimisation 

problem mentioned in the literature. Helbig and Engelbrecht (2014a) grouped and 

classified these applications as follows: 

 

Control Problems: The regulation of a lake-river system (Hämäläinen and 

Mäntysaari, 2001), the optimisation of indoor heating (Hämäläinen and 

Mäntysaari, 2002), the control of greenhouse system for crops (Ursem et al., 2002). 

 

Scheduling problems: Hydro-thermal power scheduling problem (Deb, Rao N. and 

Karthik, 2007) and the job-shop scheduling problem (Shen and Yao, 2015). 

 

Mechanical design problems: Design optimisation of wind turbine (Maalawi, 

2011). 

 

Apart from these, there are various real-world applications in the domain of 

dynamic multi-objective optimisation such as in resource allocation 

(Hutzschenreuter, Bosman and La Poutré, 2009) and routing problems (Meisel et 

al., 2015) and so on. In addition, Amato and Farina (2005) have proposed an 

artificial-inspired EA for DMOP in the situation of unpredictable parameter 

changes. Azzouz, Bechikh and Ben Said (2014) present a multiple reference point-

based MOEA (MRP-MOEA) that deals with undetectable changes. 
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2.4.2 Challenges of dynamic multi-objective optimisation 

 

While reviewing the challenges in the DMOPs, the complexities, as well as 

conflicts, have been noted carefully. The very first complexity is to identify the 

definition of the problem itself. Though a lot of definitions have been 

recommended to categorise the problem, yet, the characterisation of the problem 

needs to be clearly defined. Therefore, it is needed to be aware of the type of 

DMOPs.  

 

The very first problem in this domain is the availability of the dynamic benchmark. 

Nevertheless, to formalise a generic benchmark in the domain of DMOPs are 

challenging, especially in the combinatorial scenario in which the dynamics rely 

on various factors that have combined impact.  Many researchers have questioned 

if these benchmark concerns are in fact symbolic of real-world problems and can 

only cover the simplest form of real-world complexity (Nguyen, 2011). Therefore, 

these experimental methods are not adaptable or adequate to implement in the real 

world DMOPs. Thus, most of the solutions are not capable to deal with the 

challenges of DMOPs (Nguyen, 2011; Nguyen et al., 2013). 

 

The second problem is concerned with the requirement analysis of the real-world 

problem which may often not aligned with the modelled DMOPs (Apshvalka, 

Donina and Kirikova, 2009). In addition, sometimes, it is hard to exhibit a 

problem’s requirements and modelling a real-world dynamic problem without 

proper knowledge and understanding, there would be a high chance that the 

problem definition is going to be wrong. Therefore, a certain boundary of 

formulating the problems needs to be systematically evaluated. 

 

In this study, the complexities and challenges have been noted carefully while 

reviewing the dynamics. Here, the crucial challenges have been observed carefully 

in the domain of DMOPs. These are given below: 
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a. The first one is the lack of standardisation. Though there are many 

benchmarks in the context of the evolutionary approaches, in the RL or 

especially in the MORL settings, there is a lack of the standard dynamic 

multi-objective benchmark. Therefore, it is obvious for the researchers that 

they measure the performance of the proposed algorithms based on 

different test functions which show a different set of results in different 

settings. This case is also true for performance metrics. Consequently, it is 

not easy to fairly compare the exiting works unless re-implementing and 

re-evaluating all the algorithms and their performances.  

 

b. When analysing the dynamic multi-objective optimisation, a time 

restriction is imposed on the algorithms for checking the convergence as 

quick as to the optimal PF. However, this restriction may introduce to 

missing the location of the local or global optima.  

 

As per the above discussion, the benchmark has been created carefully in the 

context of RL settings to address this problem which has been discussed in detail 

in Chapter 4. 

 

2.5 Reinforcement Learning 

 

Machine Learning (ML) refers to acquire knowledge or skills through data or 

experiences (Jordan and Mitchell, 2015). Machine learning has harnessed its 

applications in various sectors such as decision making and optimisation, medical 

informatics, fraud and anomaly detection, email filtering, and so on (Das, Dey and 

Roy, 2015). This learning procedure can be done with or without the supervision 

of a human. In other words, the way that machine practices to learn can be 

categorised broadly in three categories as mentioned in Table 2.2. 
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To begin with, the implementation of the concept of ML, reinforcement learning 

(RL) is considered because of its applicability in the simulated environment. RL 

deals with the decision-making problems under uncertainty where the agent learns 

through the interaction within the environment by taking feedback (Sutton and 

Barto, 2018; Sutton, 1988). It is a promising way to solve real-world computational 

problems.  

 

This branch of machine learning is inspired by the trial-error process through 

experience. RL is selected as one of the top 10 breakthrough technologies by (MIT 

Technology Review, 2017). It is often described that the concept comes from the 

attitude of the animal towards learning. Here, the agent interacts with the 

environment and learns from the environment. This is an established technique 

now which determines ideal behaviours in a complex environment.  

 

This approach can lead the agent to provide the decision as human-level, but in a 

complicated environment that human cannot do. For instances, this method was 

used to a first-ever victory over the human in the game of Go and recent successes 

in robotics and self-driving cars (Li, 2017). Figure 2.3 shows a typical RL model 

where an agent takes action by interacting within the environment for each state 

and earned some rewarding points (Gábor, Kalmár and Szepesvári, 1998). 

 

Table 2. 2: Categories of the machine learning (ML) techniques 

Machine 

learning type 

Description Common algorithms used 

Supervised 

Learning 

A prior knowledge is set to get 

targeted value or outcome by 

using training data 

Decision tree, Naïve Bayes, 

Ensemble Method, Neural network 

(supervised), Support vector machine 

Unsupervised 

learning  

No prior knowledge of the 

possible outcome from 

unlabelled data 

Clustering, Gaussian mixture model, 

Neural network model (unsupervised) 

Reinforcement 

learning 

Depends on the state, action and 

the environment by using 

positive and negative reward 

with a discount factor 

Markov decision process, Policy 

gradient, Q-learning, value function 

approximation, Actor –critic method, 

Model-based and model-free learning 
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Reward 
(R) 

 

 

 

 

 

 

 

 

 

 

 

In this section, a brief discussion of the core elements of the reinforcement learning 

has been provided. The fundamental components of reinforcement learning can be 

classified as a policy, a reward function, a value function, and a model of the 

environment. In other words, the RL agent needs to regulate the optimal policy 

which is the first factor to determine the behaviour. The second important factor is 

a reward function which defines the goal of RL problem. The aim of the RL agent 

is to maximise the total reward it receives in the long run. The reward function is 

also responsible to select which one is the good or bad event for the agent. For 

instance, if an action is selected by the policy which is determined by low rewards, 

then the policy could be changed at a later stage when the agent gets the higher 

reward. The third core component of the RL is a value function whereas a reward 

function indicates what is good in an immediate sense, and a value function 

specifies what is good in the long run. The final and fourth component is the model 

itself. This is something that mimics the actions of the defined environment. For 

instance, given a state and action, the model is responsible to predict the resultant 

next state and next reward (Nandy and Biswas, 2018).  

 

To justify the reasoning of using RL approach, it is required to explain when and 

why to use RL. This branch of ML generally solves a class of problems where the 

traditional machine learning approaches are not suitable and sometimes not 

desirable because of the interaction, convergence and the changing environment 

Agent 

Action 
(A) 

State 
(S) 

Environment  

Figure 2. 3: A typical RL model (Sutton and Barto, 2018) 
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or the lack of historical dataset. A common implication of the RL approach is for 

sequential decision-making where a problem can be solved by a series of actions.  

 

RL is used to solve the problems where multiple solutions are possible. For 

example, traversing from one route to another. In other words, finding the shortest 

path such as the travelling salesman problem (TSP) which is one of the classical 

problems in this domain (Gambardella and Dorigo, 1995). In addition, supervised 

and unsupervised learning can have decent success considering image and text 

processing where the uncertainty is limited.  

 

However, there are enormous situations where the certainty cannot be predicted 

such as in a situation where it is close to impossible to predict the road situation 

what will be coming next. As a result, it is quite impossible to utilise the supervised 

and unsupervised approaches in this environment. Therefore, there is no way to 

predict the road that what happened next and thus, the algorithm needs to be 

flexible, adaptable to comply with the different, dynamic and unexpected 

conditions. Another example can be a prodigious complex environment such as 

control of an arm of a robot or moving unmanned cars. Though this can be hard-

coded with the traditional if-elseif-else conditions, the process may take abnormal 

time to be trained and there is a high chance of establishing vulnerable AI agent 

(Luke Dormehl, 2018). Contrarily, a self-learning agent can be a time and effort 

saver. In addition, the RL technique is also helpful to know what others are doing 

such as enemy or opponents’ strategy to learn the next steps. In a nutshell, where 

the policy or creativity needs to be followed, the RL can be a righteous choice for 

the AI engineers (Ravichandiran, 2018).  

 

While praising the RL approach, it has also the downside that needs to know for 

further exploration. There are several places where the RL approach will not be 

suitable compared to traditional machine learning approaches. Therefore, RL 

might not be an ideal choice of solving the problems which can be resolved easily 

by supervised and unsupervised learning. In such cases, the RL agent will not be 

as effective as traditional machine learning techniques and applying RL may have 
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little sense in these contexts. Furthermore, RL is usually computationally 

expensive and challenging to use (Collins and Frank, 2012). Besides, the RL agent 

may lead the decision makers to the wrong point if the agent does not explore all 

the states in the environment. Generally, the RL agent requires piles of 

computational power to be trained and to build the environment. All in all, it truly 

depends on the stakeholder’s choice and developers’ freedom to use the technique 

which can bring the best solution according to the nature of the problems. 

 
 
 

2.5.1 Multi-objective reinforcement learning (MORL) 

 

Multi-objective reinforcement learning (MORL) was proposed by (Gábor, Kalmár 

and Szepesvári, 1998). MORL deals with the decision-making problems in 

uncertain situations where the agent learns by interacting and taking feedback 

within the environment (Sutton and Barto, 2018). It is a promising way to solve 

the problem which has more than one objective. Figure 2.4 shows the basic 

structure of a multi-objective reinforcement learning (MORL) setting where the 

agent interacts within the environment and tries to find out the optimum solutions 

based on the pre-defined objectives.  

 

 

 

 

 

 

 

 

 

 

 

 

Objective 1 Objective 2 

Figure 2. 4: A typical setup for multi-objective reinforcement learning 

environment 
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The major difference between single objective and multi-objective reinforcement 

learning depends on the use of reward mechanism; such as scalar reward and 

vector reward which are used for single and multi-objective problem respectively 

(Liu, Xu and Hu, 2015). In the MORL, the agent needs to learn either all Pareto 

optimal policies or identify a single policy that best matches a pre-specified trade-

off between the objectives.  

 

Vamplew et al., (2017a) proposed that Multi-objective reinforcement algorithms 

which can be classified into two broad categories. The first one is the multi-policy 

approach where the agent learns multiple policies to approximate the Pareto front 

or a subset of the Pareto front. While, in the second one, the agent learns a single 

policy which best satisfies the compromising solution between objectives. In 

addition, an MORL agent differentiates multiple policies in three broad types 

namely deterministic stationary, stochastic policy and non-stationary policy 

(Vamplew et al., 2017a).  

 

Furthermore, a constrained MORL method was used to optimise the average 

transmission delay in a cognitive radio network proposed by (Zheng et al., 2012). 

In the area of decision support system, MORL is used in medical informatics as 

mentioned in (Lizotte, Bowling and Murphy, 2010). Moreover, a solution to find 

an optimal path has been investigated in the multi-objective stochastic 

environment by using MORL as described in (Tozer, Mazzuchi and Sarkani, 

2017). In this study, MORL algorithm is formulated to solve multi-objective 

Markov decision process (MOMDP), which was pioneered by (Roijers et al., 

2013). 

 

Consider the following example, where there are two different objectives 

min( 𝑓1) 𝑎𝑛𝑑 max (𝑓2) represent two different conflicting objectives (Herrmann, 

2015). The red area in Figure 2.5 (a) shows the true PF based on the compromising 

solution. In other words, the red-area illustrates the non-dominated solutions 

considering the objectives 1 and 2. If the Pareto area is considered in a shape-

dependent way, it will look like Figure 2.5 (b). 
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2.5.2 Reviewing existing approaches of MORL 

 

There are two strategies to solve the MORL. One is scalarised approach, and the 

other one is the Pareto approach. In the scalarised approach, the MORL agent looks 

for a single policy that optimises the combination of the rewards. This approach 

looks for the preferable reward or weighted sum of the rewards that need to be 

selected in a particular state. On the other hand, the Pareto approach finds multiple 

policies that cover the Pareto front.  

 

Multiple reward signals are parametrised corresponding to the Pareto front. In case 

of a non-connected Pareto front, non-Pareto optimal solutions may be found. A 

parametrised combination of multiple reward signals is used with different 

parameters in different runs to address dissimilar points.  

 

The set of all non-dominated solutions obtained in this way provides the Pareto 

front. The agent may change the parametrisation according to progress on each of 

the goals. Table 2.3 shows the different MORL approaches (Vamplew et al., 2011).   

 

 

(b) (a) 

Figure 2. 5: Multi-objective optimisation in MORL (a) True PF (b) PF covered 

by maxima in a shape-dependent way (Herrmann, 2015) 
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Table 2. 3: Different MORL approaches 

MORL approaches Description  

Single-policy approaches Weighted sum approach  

W-learning approach where each objective has their own 

recommendation and finally the largest value-based 

objective gets selected 

Analytic hierarchy process (AHP) based approach that 

used for multi-criteria selection  

In the ranking approach, partial policies are used to select 

the action 

In the geometric approach, geometric conditions are used 

for a synthetic objective function 

Multiple-policy approaches The convex approach which learns multiple policies in the 

objective space 

The varying parameter approach performs any single-

policy that runs multiple time but with different parameters 

and objective values 

 

Furthermore, converting a multi-objective problem into a single objective one will 

be the simplest way to use RL algorithms. Inside MORL, the profits are provided 

in vector rewards for every objective. On the other hand, a single goal RL has 

scalar incentives. Moreover, a multi-objective task could be minimised to a single 

objective via scalarisation.  

 

Nevertheless, the algorithm can be changed or even modified to recognize the 

values for every objective to produce a better outcome. MORL algorithms are 

accomplished long-range average incentives while staying in the externally 

defined ‘target’ region. As a result, non-stationary policies have created the role of 

the present average rewards connected to the target region. Pareto dominance is 

usually called a ‘good’ compromise in this regard.  

 

As mentioned earlier, this rectifies that an objective is said to be non-dominated if 

it is better at least in objective and not worst in any other objectives. Hence, the 

aim is producing an estimated set of a true Pareto front. It is already been pointed 

out that the majority of the current MORL solution is able to make a single 
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solution. Although several authors have conducted research on producing different 

solutions using a single objective in the case of the multi-objective problem. One 

of the solutions proposed by a policy gradient MORL algorithm which has created 

from the independent use of RL, is non-negative with respect to other goals (Parisi 

et al., 2014). To study the dynamic multi-objective optimisation, there are two 

major approaches in the literature such as synthetic or real-world problem 

(Azzouz, Bechikh and Ben Said, 2017).  

 

In this study, a simulated environment and a real-world scenario have been taken 

into consideration. As cited earlier, a rising approach of solving MO problems is 

using RL technique. This area gets major concentration after the successful 

implementation by DeepMind to solve the Atari Games 2600 as a superhuman 

level with only raw pixels and scores as input (Mnih et al., 2015). To achieve 

human-level expertise on 49 classic Atari games, they used a single architecture 

and showed how the agent can successfully learn control policies in a range of 

different environments with minimal prior knowledge. It uses the same algorithm, 

network architecture and hyperparameters on each game. However, any relevant 

literature was not found that can satisfy the dynamics of type I, II, III and IV as 

mentioned in (Farina, Deb and Amato, 2004) in a MORL setting. According to the 

above discussions, it is inevitable that to solve the problems in the dynamic multi-

objective environment, a vector reward-oriented approach is needed in the MORL 

settings which represents a multi-policy approach.  

 

There are several ways to solve multi-policy RL problems (Sutton and Barto, 

2018). They are as follows:  

a) Markov Decision Process 

b) Dynamic Programming 

c) Temporal difference learning 

d) Q Learning 

e) Deep Learning 
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f) Monte-Carlo Tree Search (MCTS) 

Among these algorithms, in this study, the Markov decision process (MDP) is used 

to analyse the states and necessary actions for each state. The reason behind using 

MDP in this study is to clarify each state and formalise the environments in the 

simulated environment to find out the optimal policy with value approximation 

function. 

 

2.6 Markov Decision Process (MDP) 

 

Markov decision process (MDP) is the widely studied model to analyse dynamic 

and stochastic system (Bertsekas and Tsitsiklis, 1996) and used to solve MORL 

problems. This framework provides a standard model to design the system with 

probabilistic, nondeterministic and controlled behaviour which helps to analyse 

the states and necessary actions for each state. In this study, an MDP helps to 

structure the dynamic environment to identify the non-dominated policies with Q 

point which is often denoted by Bellman’s equation (Understanding RL: The 

Bellman Equations, 2017).  

 

Furthermore, MDP is used in a wide range of real-world tasks such as robot control 

(Kober, Bagnell and Peters, 2013), game playing (Szita, 2012), clinical 

management of patients (Peek, 1999), military planning (Aberdeen, Thiébaux and 

Zhang, 2004), control of elevators (Crites, Crites and Barto, 1996), power systems 

(Glavic, Fonteneau and Ernst, 2017), and water supplies (B. Bhattacharya, A.H. 

Lobbrecht and D.P. Solomatine, 2002) and so forth. MDPs are solved by planning 

a model inside the MDP (e.g., dynamic programming methods), (Bellman, 1958) 

or by learning through interaction with an unknown MDP (e.g., via temporal-

difference methods), (Sutton & Barto, 2018). MDP follows two approaches such 

as single policy and multiple policies by using Pareto optimal values. 
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2.6.1 Single objective Markov decision process 

 

In a single objective RL setting, an MDP is mostly defined with a tuple of state, 

action, transition, reward, probability distribution and discount factor. It is often 

defined as follows (Feinberg and Shwartz, 2014): 

< 𝑆, 𝐴, 𝑇, 𝑅, 𝜇, 𝛾 > 

 

Where S and A represents a finite set of states and a set of actions respectively. T 

represents transition function, R defines the reward function, 𝜇 is the probability 

distribution over initial states, 𝛾 represents a discount factor to signify the 

importance of short and long-term rewards. 

 

In this single objective setting, the objective of the agent is to maximise the 

expected reward function 𝑅𝑡 by a suitable policy 𝜋. Besides, for the policies which 

determine an agent’s action, there will be a single policy or multiple policies with 

the same return. In the single objective MDP, an optimal policy 𝜋∗is responsible 

to find out the maximum expected values for all the states. It is to be noted that, a 

policy is Pareto optimal or non-dominated if the policy is not dominated by any 

other policy. 

 

2.6.2 Multi-objective Markov decision process (MOMDP) 

 

An MOMDP is an extension of MDP where the reward function receives a vector 

of n rewards 𝑟 that represents each objective (Mossalam et al., 2016). The solution 

of the MOMDP is a set of policies that contains at least one optimal policy for each 

possible preference. In an MOMDP, a policy can outperform with one objective. 

However, the performance can be the worst or inferior compared to other 

objectives. A policy which depends on the current state is called the stationary; 

otherwise, it is non-stationary. On the other hand, a policy that chooses the same 

action in the same given condition is called deterministic if not it is stochastic. This 

can be summarised with Pareto dominance relationship such as a policy dominates 

on the other objectives if it is superior at least in one objective or equal or not 
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worse than any other or all objectives (Lwin, Qu and Kendall, 2014). Preferably, 

a non-dominated policy is more acceptable than a dominated policy (Algoul et al., 

2011).  

 

In an MOMDP, a state value function 𝑉𝜋 specifies the expected discounted return 

when following a policy 𝜋 from the initial state 𝑆0. This can be formulated as in 

Equation 2.1 (Ruiz-Montiel et al., 2017): 

 

𝑉𝜋 = 𝐸𝜋 {𝑅⃗⃗𝑡} = 𝐸𝜋 ∑ {𝛾𝑘𝑛
𝑘=1 𝑟𝑡+𝑘+1} …………….…….… (2.1) 

 

Here, a vector reward 𝑟 received after 𝑘 steps is worth 𝛾𝑘 −1, 𝐸𝜋 represents 

expected policy and expected discounted return 𝑅⃗⃗𝑡 which needs to be maximised. 

The policy basically relies on the definition of the Pareto optimality or dominance 

between vectors. For example, a policy 𝜋1 is dominated over 𝜋2, if the value of 

𝑉𝜋1 > 𝑉𝜋2 .  Similarly, 𝜋1 is dominated or equal to 𝜋2, if the value of 𝑉𝜋1 ≥ 𝑉𝜋2. 

There may be many other non-dominated policies which are optimal depends on 

the desired trade-off between policies.  

 

For stationary policies, the state value function is defined as in Equation 2.2 (Ruiz-

Montiel, Mandow and Pérez-de-la-Cruz, 2017), 

 

 𝑉𝜋 = 𝐸𝜋 {𝑅⃗⃗𝑡} = 𝐸𝜋 ∑ {𝛾𝑘𝑛
𝑘=1 𝑟𝑡+𝑘+1⃓𝑆𝑡 = 𝑠} ………… (2.2) 

 

However, in this study, MOMDP is used with deep learning structure to solve 

DMOPs. In this case, an obvious question might be ─ why do we need deep 

reinforcement learning to solve the dynamic multi-objective optimisation 

problem? To answer this question, let us have a close look at the deep 

reinforcement learning architecture in the section below where the agent learns 

itself like a human to achieve successful strategies based on a deep neural network. 

This leads to the highest long-term rewards that are constructed and learnt by 

interacting with the environment. 
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2.7 Deep Reinforcement Learning (DRL)  

 

The rise of DRL is very recent. Deep learning or deep neural network has been 

predominant in the reinforcement learning area in the last several years. In the deep 

layer, artificial neural network (ANN) is tailored to mimic natural neural networks 

using a computing procedure (Haykin and Simon, 1994). Generally, an ANN has 

the configurations as shown in Figure 2.6 of the topology of X-H-O-T node where 

X and O are inputs and outputs, respectively. Besides, H and T represent hidden 

nodes and the target output, respectively. All these layers contain a number of 

interconnected neurons (i.e. processing units). 

 

 

 

 

 

 

 

 

 

 

 

Deep RL has significantly reduced the reliance of the domain knowledge and 

enables highly efficient feature engineering which is usually time-consuming, 

over-specified or incomplete (Li, 2017). Many positive outcomes in DRL are 

based on previous studies of RL in high dimensional problems that is due to the 

learning to low dimensional feature representation and the effective feature 

approximation components of neural networks.  

 

Besides, DRL can solve the highly complex computational problems. Since the 

empirical return of trajectory is essential for the computation, the ensuing gradients 

involve a higher adjustment. To reduce the level of variance, impartial estimates 

Figure 2. 6: Schematic diagram of the learning mechanism based on ANN (Fakhreddine 

and Clarence, 2004) 
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that include less distraction needs to be introduced. A common way of doing this 

is to deduct a baseline which means weighing revisions by an advantage rather 

than the original return (Li, 2017). 

 

Figure 2.7 shows the timeline for the evolution of the DRL (Laura Schneider, 

2018). It is clearly noticeable that the process of DRL has not started recently (Gil 

Press, 2018). The whole process was revolutionised when AI came to flourish in 

the decade of 1940 to 1975 (Piero Scaruffi, 1996). After 2000, there was a 

revolution of computation power to compute the complex operations with the help 

of deep learning. Today’s deep reinforcement learning has achieved great success 

around 2015 by DeepMind using the convolutional and recurrent neural networks 

(Schmidhuber, 2015; Mnih et al., 2015). 

 

 

 

 

We witnessed breakthroughs, like deep Q network (Mnih et al., 2015), AlphaGo 

(Silver et al., 2016), unsupervised reinforcement and auxiliary learning (Jaderberg 

et al., 2016; Mirowski et al., 2016). The successful implementation of deep 

reinforcement learning has appeared in different areas such as: 

 

Figure 2. 7: Timeline for the evolution of deep reinforcement learning 
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• Power System: DRL based AI decreases Google data centre bill by 40% 

(DeepMind, 2016). 

• Robotics: Black-Box Data-efficient Policy Search for Robotics 

(Chatzilygeroudis et al., 2017). 

• Games: Human-level Control through Deep Reinforcement Learning 

(Mnih et al., 2015). 

• Spoken dialogue system (Su et al., 2016). 

• Information extraction (Narasimhan, Yala and Barzilay, 2016) 

 

 

2.7.1 Basic architecture of deep reinforcement learning 

 

This section highlights the fundamental architecture of DRL. Figure 2.8 shows a 

multi-objective deep reinforcement learning model where an agent takes an 

optimal action (i.e. policy) for a state in an environment and earns reward points 

(e.g. vector rewards for multi-objective cases). This model is formulated by the Q 

network, target network, emulator and experience replay.  

 

Usually, the Q network is comprised of the convolutional layers, fully-connected 

layers and the output layers. This architecture is different based on the different 

setups such as in the GoogleNet, AlexNet where the number of layers and their 

arrangements are different (Siddharth Das, 2017). This is varied based on the 

internal neural network structure and the weight-bias setup for a certain deep 

network.  

 

In the experience replay, the samples of transitions are stored randomly where the 

agent emphasises the important experiences based on the actions. The emulator is 

responsible to generate the episodes in memory. The learning module is updated 

after each episode and the target network updates based on the updated Q value.  
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From the above Figure 2.8, it is also observable that the target network 𝑄′(𝜃′) is 

iterating until it gets the highest expected reward over time that can easily fit within 

the dynamic environment according to our requirements.  

 

The agent learns the environment based on the traversing and the interaction within 

the environment. The trajectories for heuristic investigation may conduct an 

exhaustive search in the search space. According to (Sutton and Barto, 2018), the 

agent plans the strategy to develop the optimised policy. Inside the DRL structure, 

the agent focuses to access and identify the underlying variety of the environment. 

In the dynamic environment, this is the obvious case since the environment gets 

changed based on different fluctuating factors over time.  

 

Nevertheless, interactions within the environment help the agent to understand the 

truly worth features, policies, and furthermore a model. As we have considered a 

Model-free RL strategy, therefore, the agent tries to find out the optimal policy 

directly from the interactions within the world. However, learning a model by the 

off-policy agent may introduce unwanted complexities. For instance, the planning 

Figure 2. 8: The system architecture of deep reinforcement learning 
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of the agent depends on the output of the convolutional neural networks (CNNs), 

allowing them to find out immediate actions from raw input or substantial 

dimensional of visual inputs. Therefore, DRL is based on instruction heavy neural 

networks with several convolutional layers to acquire the best policy. DRL is used 

in different real-world applications such as in healthcare (Liu et al., 2017), smart 

transportation system (Schultz and Sokolov, 2018), smart grid (Panov, Yakovlev 

and Suvorov, 2018), etc. Besides, DRL has got some interesting applications such 

as music generation (Briot, 2018) and procedural content generation (Justesen et 

al., 2018).  

 

In a nutshell, DRL has the following advantages: 

• It is completely autonomous, 

• Does not need prior knowledge of the environment, 

• Performs online and offline, 

• Learns as well as optimises autonomously, 

• DRL can provide various optimisation techniques and 

• Various reward capabilities help the agent to distinct policies, without the 

demand of re-engineering the process. 

 

On the other hand, the disadvantages of DRL can be listed as follows: 

• Black-box optimization, 

• Time-consuming and requires high-end devices to perform and 

• Being model-free has the cost of being highly computationally expensive. 

 

2.7.2 Challenges in deep reinforcement learning 

 

While working with the DRL in this thesis, several challenges have been observed. 

It is instructive to emphasize some challenges faced in DRL for optimisation which 

may be helpful to the readers for future references and further investigations. They 

are given below (Li, 2017): 
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• Choosing a learning rate, 

• Defining an annealing schedule, 

• Avoiding suboptimal minima, 

• Setting up the vector reward for the multi-objective environment, 

• The observations of the agent can have overestimation or underestimation 

and 

• Can suffer from temporal credit assignment problem (Sutton, 1984). 

 

After reviewing DRL literature, a list of the new scopes of DRL research is given 

below: 

• Deep layer fine-tuning to get more insights and meaningful behaviours of 

the deep Q networks, 

• Self-learning and human-agent teamwork for the optimisation problem 

and 

• Off-policy and model-free integration for an on-demand service by the 

agent. 

 

2.8 A General Framework for Deep Q Network (DQN) 

 

In this section, one of the core components in this research will be discussed which 

is the general framework of the DQN. At first, Q learning and the basics of DQN 

network will be discussed. After that, the different modification procedure of the 

Q learning mechanism will be highlighted. Finally, the prioritised experience 

replay and the comparisons of the different DQNs will be explained to get a deeper 

understanding of the proposed PQDQN algorithm in Chapter 5. 

 

2.8.1 Q learning 

 

Q learning (Watkins and Dayan, 1989) is a model-free technique in a RL setting 

which is used to learn an optimal 𝑄(𝑠, 𝑎) for the agent in an MDP (𝑠, 𝑎, 𝑟, 𝑠´, 𝜋). 

It is also off-policy, optimised value function and most importantly, this fits for 

the simulated environment. In addition, the agent based on the Q learning learns a 
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unique policy in the case of the single objective scenario such as when rewards are 

scalar. This scalar-values 𝑄(𝑠, 𝑎): 𝑆 × 𝐴 →  Ɍ, represent the expected 

accumulated reward when following a given policy after taking an action 𝑎 in 

state 𝑆. The action 𝑎 is selected by the policy in each state. This selection is usually 

expressed by 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄 (𝑠, 𝑎). In a single-objective MDP, a deterministic 

stationary optimal policy is very likely to be found. In this case, the expected return 

is usually an undiscounted finite sum of the scalar rewards until the agent reached 

the terminal states. Regarding the computational complexity of the Q learning, the 

worst-case complexity becomes 𝑂(𝑛3) if no state space has no duplicate actions 

as reported by (Koenig and Simmons, 1993). 

 

2.8.2 Basics of a deep Q network (DQN) 

 

In Q learning, the RL agent interacts within the environment. This decision-

making procedure has been done through a sequence of steps. Thus, it has formed 

a sequential decision-making process. This decision-making process starts at the 

first step which is selected by the agent arbitrarily and the traverse ends when the 

agent reaches the terminal state. The agent observes its current state 𝑆𝑛 while the 

agent is in 𝑛𝑡ℎ state. Then the RL agent performs an action 𝑎𝑛 and observes its 

current state 𝑆′ receives an instant reward 𝑟𝑛 and adjusts the value 𝑄(𝑠𝑛, 𝑎𝑛) using 

a learning factor 𝛼𝑛(0 < 𝛼𝑛 ≤ 1). The updating expression of the scalar Q-

learning algorithm can be expressed using the Bellman equation  (Bellman, 1958). 

However, in the context of MORL, the Q learning needs to be tweaked so that it 

can work with the vector rewards. Thus, the equation requires to be extended to 

handle vector operations. Therefore, in the finite horizon or an episodic 

environment, the reward function 𝑅⃗⃗ = 𝑆 × 𝐴 × 𝑆′ is a vector of n rewards rather 

than a scalar with an element for each objective. Similarly, the reward function is 

also the vector value such as 𝑟 =  𝑅⃗⃗(𝑠, 𝑎, 𝑠′) as defined earlier by Equations 2.1 

and 2.2 (Ruiz-Montiel, Mandow and Pérez-de-la-Cruz, 2017).  
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Moreover, in the vector reward space, an action 𝑎 in state 𝑠 under any non-

dominated policy can be denoted as 𝑄∗⃗⃗ ⃗⃗⃗(𝑠, 𝑎). Here, the fact is the obtained reward 

is a vector where the agent does not learn a single policy but a set of policies at the 

same time. The values learned in this scenario can be denoted as 𝑄⃗⃗(𝑠, 𝑎) of vectors, 

which are used to estimate the optimal 𝑄∗⃗⃗ ⃗⃗⃗(𝑠, 𝑎) sets.  

 

This can be denoted by Equation 2.3 which is inspired by the enhanced proof of 

the Bellman equation mentioned in (Gross, 2016):  

 

𝑄𝑛
∗⃗⃗⃗⃗⃗⃗ {(𝑠, 𝑎), 𝑡} =

{
(1 − 𝛼𝑛)𝑄⃗⃗𝑛−1(𝑠, 𝑎) + 𝛼𝑛[ 𝑟𝑛 + 𝛾 𝑉𝑛−1(𝑠′ ), 𝑡];  𝑖𝑓 𝑠 = 𝑠𝑛 ∧  𝑎 =  𝑎𝑛   

𝑄⃗⃗𝑛−1{(𝑠, 𝑎), 𝑡};                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
… .. (2.3) 

Where, 𝑉𝑛−1 (𝑠) = max
𝑎∈𝐴

𝑄⃗⃗𝑛−1{(𝑠, 𝑎), 𝑡} 

 

2.8.3 Q-function modifications in DQN 

 

In most of the cases, the DQN works based on the modifications of the Q value(s) 

(Li, 2017) . This depends on the different strategies of Q-value exploitations. In 

this study, the major part of the proposed algorithm deals with the Q value 

approximations and updating the Q table. This is a standard procedure for updating 

the Q value in DRL based solutions as discussed earlier.  Hence, a brief discussion 

of the Q-value variations will be deliberated which is necessary to follow the 

proposed framework.  

 

While reviewing the literature, it is observed that Q value is the core characteristics 

to approximate the value of the target network. It has been proved by (van Hasselt, 

Guez and Silver, 2015) that Q learning overestimates the expected return in the 

single estimator setting. The possible solution for this over-estimation is double-

Q learning by offering a better estimate using a two-fold estimator. 
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Nevertheless, decomposing the Q function into meaningful features is another 

common way to solve the overestimation problem. It works as like as the divide 

and conquers method. In this study, the decomposition procedure has been 

followed in the proposed algorithm. In this scenario, the RL agent gets the Q value 

from different DQNs and find out the best one from the Q table to update the 

network. However, in the context of the dynamic environment, at each time step 𝑡, 

the agent receives a reward 𝑟𝑡 in a state space S and selects an action 𝑎𝑡 from an 

action space A. Thus, the agent finds the optimal policy based on these selections 

from (𝑎𝑡|𝑠𝑡). Consequently, the agent forms its behaviour for a particular episode. 

In other words, the agent’s target is to maximise the long-term returns from each 

state. Figure 2.9 illustrates a decomposition structure for formalising a Q value in 

a DQN architecture (Lin et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, to utilise the decompositions architecture of the DQN, prioritised 

experience replay or the replay memory (RM) has been used. Therefore, the 

following section explains prioritised experience replay memory with a brief 

discussion on the duelling architecture. 
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Figure 2. 9: Q value selection in a Deep Q network 
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2.8.4 Prioritised experience replay for DQN 

 

In the DQN, the sampled experiences which are observed by the agent needs to be 

stored. Therefore, the experience transitions are uniformly sampled and stored in 

the replay memory. This process is done regardless of the significance of 

experiences (Schaul et al., 2015). The purpose of using the experience replay 

memory is to iterate the important experiences and prioritise them.  

 

These experiences ensure the transitions that are important in an episodic 

environment. It is worth mentioning that the priority may be biased or the sampled 

might be insufficient if the agent is not capable to traverse all the nodes. Therefore, 

the ε-greedy mechanism has been implemented to ensure the agent has traversed 

all the nodes to sample the transitions more appropriately.  

 

Moreover, the agent calculated the transitions using temporal difference (TD) 

errors that helps the agent to avoid bias (Ruben, 2016). The following Figure 2.10 

illustrates the schematic diagram for the experience replay. 

 

 

 

 

 

 

 

 

Figure 2. 10: Connection of a prioritised experience replay memory in a DQN 
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2.8.5 Reviewing different deep Q networks (DQNs) 

 

A comprehensive review has been conducted in this thesis to choose the 

appropriate DQN structure. As a result, a comparison has been carried out to 

identify the suitability of the different DQN techniques in terms of strengths and 

weaknesses of the considered algorithms. This section describes the common 

DQN algorithms’ aim, description, advantages and disadvantages. Table 2.4 

reviews the policy optimisation and actor-critic methods. 

 

Table 2. 4: Reviewing policy optimisation and actor-critic approach 

 
Policy Optimisation 

Aim To optimise policies in an episodic or stochastic environment where 

values are yet to be explored. It is to be noted that a policy π 

optimisation can be simpler than finding Q and value V. 

Description Step 1: Set the policy parameters 

Step 2: Fix policy rules in accordance with policy variations 

Step 3: Compute gradient to determine policies 

Step 4: Find the optimum policy  

Pros a) Perform better in converging properties  

b) Can learn stochastic process 

Cons a) Usually, converge to a local rather than in global optimum 

b) Challenging to find out a good estimator policy gradient 

c) Validating policies are typically inefficient and high variance  

Actor-critic Method 

Aim To seek a parameter vector which maximizes the return by using a 

policy gradient approach where an actor deals with the policy and 

critic evaluate the current policy. 

Description Step 1: Initialise state and policy factors 

Step 2: Set critic learning rate and actor learning rate 

Step 3: Get sample reward, transitions and actions 

Step 4: Observe reward and evaluate policies prescribed by the actor 

Step 5: Repeat until the terminated state 

 

Pros a) Reducing high variance and effective in high dimension 

b) Evaluated policy by critic 

Cons This method may introduce bias 
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Now, the reviews of the different DQNs have been described to get a depth 

understanding. Table 2.5 highlights the different DQN’s aim, merits and demerits. 

 

Table 2. 5: Reviewing different DQNs 

DQN 

Aim Define function 𝑄(𝑠, 𝑎) which refers to the maximum discounted 

future reward for each action 𝑎 in state 𝑆 and optimise continuously 

from that point. 

Description 

 

Step 1: At first, define Q value and policy π which set the rules of 

how to choose different actions in a particular state. 

Step 2: After setting the Q value, pick the highest q value and fix Q 

function using the Bellman equation (Bellman, 1958). 

Step 3: Sample random transitions from a set of temporary 

experiences  

Step 4: As Q-function converges, the network gets more appropriate 

Q values and thus, exploration decreases 

Step 5: Train the Q network until a terminal state 

 

Pros a) It performs faster while training the network considering it uses 

random minibatches from temporary memory instead of recent 

transitions.  

b) In the episodic environment, if the space is too big then Q-table 

can be replaced instead of the deep neural network. 

Cons As the agent follows greedy approaches to fix the Q value, it is often 

may lead to less optimised policy and increase time complexity.  

 

Double DQN Algorithm 

Aim The aim of double Q-learning is to lessen overestimations which are 

often caused by the standard Q learning algorithm by decomposing 

the 𝑚𝑎𝑥 operation in the target into action selection and action 

evaluation 

Description Step 1: Take inputs of empty and replay buffer, initialise the 

network parameters, training batch size and the target network  

Step 2: For each episode, initialise frame sequences 

Step 3: Set state and sample actions  

Step 4: Append new frame and delete the old one 

Step 5: Sample minibatches and set the target network  

Step 6: Compute the gradient descent step with loss and replace 

target parameters for each step. 

 

Pros a) It performs better to reduce observed overestimations compared 

to Q learning. 

b) Double DQN finds better policies and it is more stable and 

reliable in terms of learning. 

Cons Single stream double DQN performs worse than DuDQn. 
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Dueling Q Network (DuDQN) 

Aim It is a model-free RL algorithm aims to provide two separate 

estimators such as state-value function and state-dependent action 

function to generalise learning across actions 

Description Step 1: Set a stream of a scalar 𝑉(𝑠;  𝜃, 𝛽) that represents a fully-

connected layer. The other stream of output vector 𝐴(𝑠, 𝑎;  𝜃, 𝛼). θ 

represents the parameters of the convolutional layers. The 𝛼 and 𝛽 

are the parameters represented based on these two streams of fully-

connected layers. 

Step 2: Then it can be integrated with Double DQN [shown above] 

or prioritised experience replay 

Pros a) It provides better results for policy evaluation. 

b) The architecture is able to learn the states which are valuable or 

not. This is achieved without learning the effect of each action for 

each state.  

c) It uses two separate streams so that Q values can be combined 

that leads to producing a single Q function. Consequently, this can 

be used to train some other RL algorithms such as DDQN and 

SARSA. 

Cons It performs better than standard Q network only with the large set of 

actions. 

Continuous DQN 

Aim It aims to provide better performance with normalised advantage 

functions as an alternative of policy gradient and actor-critic method 

for continuous actions. 

Description Step 1: Initialise a normalised Q network, a target network and a 

replay buffer  

Step 2: For each episode, initialise the random process for action 

exploration 

Step 3: After getting an initial observation, select action and store 

the transitions 

Step 4: Sample random minibatches from replay memory  

Step 5: Update the target network by minimising loss until the 

terminal state 

 

Pros It substantially improves performance on a set of simulated robotic 

control tasks. 

 

Cons Continuous DQN performs worse than DDPG for finding better 

policies in the continuous domain spaces. 

 

Deep Deterministic Policy Gradient (DDPG) 

Aim It is a model-free RL algorithm that can learn competitive policies 

using low-dimensional observations and can often achieve good 

policies direct from pixels with the same network structure. 

Description Step 1: Initialise critic network and an actor with weights  

Step 2: Initialise a target network and a replay buffer 

Step 3: For each episode, initialise a random process for action 

exploration  
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Step 4: For each time, select actions according to the current policy 

and exploration noise  

Step 5: Store transitions and sample a random minibatch  

Step 6: Update critic, actor and target network 

 

Pros a) It can learn better policy among several competitive policies 

b) DDPG can treat the problem of exploration in the continuous 

spaces independently from the learning algorithm. 

 

Cons Usually, it requires a huge number of training episodes to get 

optimum solutions.  

 

Asynchronous N-step Q Learning (ANSQ) 

Aim To design a RL algorithm that can train the deep neural network 

policies faster and reliably with minimum resource requirements 

Description Step 1: Initialise a counter, a target network with thread-specific 

parameters and network gradients 

Step 2: Select actions using exploration policy until the state reaches 

its final state or up to 𝑡𝑚𝑎𝑥. 

Step 3: Compute gradients for each state-action pair for n-steps of 

the Q-learning updates 

Step 4: Update asynchronously global shared parameter vector θ 

Step 5: The accumulated updates are applied in a single gradient 

step  

Pros a) Learning process becomes faster by propagating rewards faster 

after 𝑛 steps 

b) Propagating rewards to relevant state-action pairs that potentially 

make the algorithm efficient 

Cons Explicitly compute n-steps returns that may increase the 

computational complexity  

Prioritised Experience Replay 

Aim It is an online reinforcement learning algorithm aims to provide 

faster and effective learning by using replay memory for 

experiences based on priority 

Description Step 1: Initialise replay memory and store the 

experience (𝑠, 𝑎, 𝑡, 𝑟, 𝑠′) into it   

Step 2: Select actions from state and store transitions with the 

highest priority 

Step 3: Compute importance sampling and TD-error 

Step 4: Update transition priority and weights into the target 

network 

Step 5: Choose optimal action At from πθ(St) 

 

Pros a) It requires less experiences to be trained due to prioritisation and 

can utilise more computation and memory 

b) Outperforms with sampling using Double DQN 

 

Cons This can introduce bias for non-uniform sampling for experiences 
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Asynchronous Advantage Actor-Critic (A3C) 

Aim A3C aims to provide a simple and robust solution in the domain of 

RL by using a global network and several sub-networks which 

performs asynchronously and update the global network.   

Description Step 1: Initialise a global network and sub-network 

Step 2: Sub-networks interact with the environment  

Step 3: Compute value and policy-loss by the sub-networks 

Step 4: Sub-network gets a gradient from losses asynchronously 

Step 5: Sub-network updates global network with gradients 

after 𝑡𝑚𝑎𝑥 actions or a terminal state is reached 

Step 6: After each update global network propagates new weights to 

the sub-network to share a common policy 

Pros a) This can be implemented for continuous and discrete action 

spaces 

b) It can perform better with the graphical processing unit (GPU). 

 

Cons Employing too many agents or sub-networks can cause a 

computational delay which decreases the convergence speed. 

 

Actor-critic with experience replay (ACER) 

Aim ACER is an off-policy RL algorithm that aims to achieve stable and 

efficient learning by minimising the cost of simulation steps by 

using experience replay buffer. 

Description Here, the algorithm is associated with a master algorithm that is 

responsible to call the associated algorithm for discrete actions. 

Step 1: Reset the gradients and initialise the parameters 

Step 2: Sample the trajectory from the replay memory 

Step 3: Compute the function for on-policy and quantities for trust 

region updating 

Step 4: Accumulate gradients and update the retrace target network 

asynchronously  

Step 5: Update the average policy network. 

 

Pros a) It can perform both in discrete and continuous domain spaces. 

b) It performs faster compare to standard actor-critic.  

 

Cons Rare and infrequent experiences may lead bias. 

 

 

 

2.9 Optimisation Techniques for DRL 

 
Optimisation techniques are one of the key components in the study of deep 

reinforcement learning (DRL). Different optimisation techniques have 

transformed the field of AI (Badar, Umre and Junghare, 2014). In this section, the 

common ways of using various optimisers in the domain of DRL especially based 
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on gradient descent techniques have been discussed. This branch of DRL 

epitomizes a step toward building autonomous systems by understanding different 

experimental parameters and the aim to enhance their capacity to produce the best 

result in the current settings.  

 

In other words, optimisers help to understand the RL agent to interact within the 

environment faster and effectively. It also helps to recognise the visual world 

slickly for a RL agent. Different optimisation techniques are mainly utilised to 

solve the complicated control problems that were previously obstinate and help to 

enlighten the DRL study. The common examples include learning to play video 

games directly from raw pixels, allowing control policies for robots to learn 

through trial-error directly from camera inputs in the real world (Li, 2017). In this 

section, the merits and demerits of the selected optimisers have also been 

mentioned. 

 

2.9.1 Gradient descent 

A good optimiser can take a decision regarding which action is best and how to 

select the best policy in a deterministic or stochastic environment. Gradient 

descent (GD) is a common algorithm to perform optimisation of deep learning. It 

is the technique to minimise an objective function. Many deep learning libraries 

contain various gradient descent algorithms such as Keras, Chainer, Tensorflow, 

Theano and so on (Dan Clark, 2018).  

 

These algorithms are regularly used as a black-box and users are often not clear 

what is going on inside these boxes. The following Figure 2.11 shows a typical 

visualisation of the optimisation technique based on the gradient descent where 

∇θ𝐽(𝜃) is the gradient with respect to the objective functions and parameters where 

it displays the local optima for a minimisation problem (Ruder, 2016). 
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In a nutshell, adaptive learning rate methods such as Adagrad, Adadelta, 

RMSprop, Adam are particularly useful for sparse features concerning gradient 

descent approaches (Ruder, 2016; Le et al., 2011). In this study, Adam and 

stochastic gradient descent (SGD) optimisers have been used for the test case 1 

and 2 respectively. Now, in the following section, these two optimisers have been 

reviewed. 

 

2.9.2 Stochastic gradient descent (SGD) optimiser 

 

SGD optimisers are normally much faster than gradient descent optimisers. In 

addition, this can be used to learn online (Ruder, 2016).  In SGD, each parameter 

is updated in accordance with the minibatches and the learning rate α which is 

smaller than the learning rate in batch gradient descent. 

Pros:  

• Much faster than batch gradient descent and allows online learning. 

 

Cons:  

• It causes high variance where the objective functions fluctuate frequently.  

 

Keras Implementation of the SGD can be found in Appendix C. 

 

Figure 2. 11: Optimization with gradient descent (Ruder, 2016) 
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2.9.3 Adam optimiser 

 

Adaptive Moment Estimation (Adam) was introduced by (Kingma and Ba, 2014). 

This optimisation technique computes the learning rates for every parameter. 

Similar to other gradient descent algorithms, this optimisation technique keeps the 

average of the past gradients.  

 

 

Pros:  

• Adaptive learning rate and force for every parameter. 

• Learning rate does not reduce as in Adaptive Gradient (AdaGrad). 

 

Cons:  

• Does not ‘look forward’ like Nesterov Accelerate Gradient (NAG). 

 

Keras Implementation of Adam can be found in Appendix C. 

 

2.10 Benchmarks for Multi-objective Optimisation 

 

Different benchmarks have played an important role in analysing the algorithms 

for DMOPs. According to the literature, there are several approaches to deal with 

the dynamic multi-objective optimisation. In this study, a comprehensive review 

has been done in the context of different benchmarks especially in the evolutionary 

and in the RL settings. In the following section, a brief discussion has been 

conducted based on the evolutionary and the RL benchmarks. 

 

2.10.1 Reviewing existing benchmarks for MORL 

 

In this section, existing benchmarks have been reviewed which are used as a 

contextual study while designing a new benchmark in the MORL settings. For this 

reason, four benchmarks have been selected which appeared in most of the 

research works. The first one that has been analysed is the resource gathering 
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problem which is observed at first, by the work of (Barrett and Narayanan, 2008) 

for the strategy games. This is a 2D grid-world consist of 100 states with 25 grid 

cells. The agent can move one square among the four cardinal directions at a time. 

In this environment, the agent’s task is to collect resources (i.e. gold and gems) 

and return to the home. An enemy has incorporated in this environment to attack 

the agent with 0.1 probability. When the agent is attacked by the enemy, it loses 

its current resources and must return to the initial location which is the home of 

the agent. Therefore, the reward vector is structured as (enemy, gold, gems). This 

benchmark represents a continuous environment. There are six non-dominated 

solutions according to (Barrett and Narayanan, 2008).  

 

The second one is the PuddleWorld that is introduced by (Boyan and Moore, 1995) 

which was primarily used for a single-objective problem. It is a two-dimensional 

environment where the agent begins each episode randomly. Besides, the agent 

has to move to the top-right corner while avoiding the puddles. The agent moves 

to the left, right, up and down. While traversing the environment, the agent 

receives its current coordinates (𝑥, 𝑦) as input. The obtained Pareto frontier is 

convex in this environment. Though, a number of local concavities are also 

observed by a closer inspection for PuddleWorld environment. However, 

(Vamplew et al., 2011) converted this single objective problem to multi-objective 

problem by presenting two penalties as separate components.  

 

The third benchmark which has been analysed is the non-episodic Linked Rings 

where four deterministic policies exist (Vamplew et al., 2017a). There are four 

Pareto-optimal deterministic policies. This benchmark is a standard form of an 

MDP. Besides, it is used when there is no prior knowledge is available.  

 

The multi-objective mountain car is the last problem that has been reviewed in this 

research work as a background study (Vamplew et al., 2011). Here, the agent 

drives the car where it needs to escape from a valley. While climbing, the car needs 

to obtain additional energy by reversing it. There are two objectives such as to 

minimise the number of steps and the second one is the minimising the number of 
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(d) 

(b) (a) 

(c) 

Figure 2. 12: Existing benchmarks for MORL (a) resource gathering  

(b) MO-Puddleworld (c) Linked Rings (d) Mountain Car 
 

actions for left or right acceleration to reach the goal. The agent is penalised by -1 

for every steps and acceleration action. Thus, this environment has got three 

objectives in total. Figure 2.12 shows all the reviewed environments in this study. 

 

 

 

 

 

 

 

 
 
 
 
  
 
 
 
 

 

 

In addition to the above-mentioned benchmarks, there are some modified versions 

of the DST environment which have been studied in the literature. The Pressurized 

Bountiful Sea Treasure (PBST) Environment is among one of them which is 

proposed by (Moffaert and Nowé, 2014). 

 

Similar to the DST testbed, PBST benchmark concerns with a deterministic 

episodic task where the agent is capable to go into one of the cardinal directions. 

Here, the agent aims to maximise the treasure value within minimum time as well 

as minimum water pressure. In other words, there are three objective functions 

where two of them are responsible for minimising the value and one is for 

maximising it. 

 

Furthermore, some of the existing DRL testbeds have been analysed to get an 

overall understanding before designing and developing the proposed benchmark. 
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It has been observed that one of the popular testbeds in the context of the DRL is 

OpenAI Gym (Justin Francis, 2017). This is actually a toolkit developed in Python 

where the researchers are able to test, simulate and analyse different algorithms. 

Another common framework is the Arcade Learning Environment (ALE) to create 

and evaluate AI agents (Machado et al., 2017). This environment is consist of Atari 

2600 games (Mnih et al., 2013). There are some other gaming environments for 

DRL research such as StarCraft II environment, VizDoom (i.e. AI-based 

environment for visual RL research) and TORCS (i.e. automobile racing simulator) 

(Vinyals et al., 2017).  

 

Moreover, twrl is a framework for RL research by twitter (Torch for RL: 

Introducing torch-twrl, 2016). RLGlue (Tanner and Ca, 2009) is also a prominent 

Python-based library for RL research (Li, 2017). The following section is going to 

highlight the existing benchmarks based on evolutionary approaches. 

 

2.10.2 Reviewing existing benchmarks for evolutionary approaches 

 

Evolutionary approaches have gained a steep ahead concentration in the literature 

to solve the multi-objective optimisation problem (Nedjah and Mourelle, 2015). 

The following list shows several approaches in brief that have been explored in the 

literature: 

 

a. Diversity-based approaches: In this approach, the solution space is 

adequately searched. The dynamic non-dominated sorting algorithm II (D-

NSGA-II) (Deb, Rao N. and Karthik, 2007) and the dynamic constrained 

NSGA-II (DC-NSGA-II) (Azzouz, Bechikh and Ben Said, 2015) are 

prominent in this category. 

 

b. Change prediction-based approaches: This approach of solving DMOPs 

are useful when to exploit past information and anticipate the location of 

the new optimal solutions. Dynamic multi-objective evolutionary gradient 

search (D- MO-EGS) (Koo, Goh and Tan, 2010), dynamic multi-objective 
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EA with ADLM Model (DMOEA/ADLM) (Li et al., 2014), the Kalman 

Filter Assisted MOEA/D-DE algorithm (MOEA/D-KF) (Muruganantham, 

Tan and Vadakkepat, 2016) are some of the examples in this approach.  

 

c. Memory-based approaches: This sort of approach uses extra memory to 

store useful information form the past generations to guide the future 

search. This technique can be utilised when the environment changes 

slightly such as the multi-strategy ensemble MOEA (MS-MOEA) (Wang 

and Li, 2010), the adaptive population management-based dynamic 

NSGA-II (A-Dy-NSGA-II) (Azzouz, Bechikh and Said, 2017). 

In order to evaluate the existing benchmark for the dynamic multi-objective 

optimisation, recently released benchmarks such as DF1 to DF14 are also 

analysed. These benchmarks are primarily used for the evolutionary algorithms 

(Jiang et al., 2018) and deal with up to 3 objectives.  

 

In addition, some of the existing well-known evolutionary algorithms and their 

performances such as DTLZ2 and MOTSP are reviewed using PlatEMO as 

described in (Tian et al., 2017). 

 

2.10.3 Generating benchmark for the dynamic MORL 

 

There are three approaches exist to design and develop the benchmark in the 

literature. These techniques are used to design the benchmark systematically (Li, 

2016). The common approach is the multiple single objective function approach, 

constraint surface approach and the reverse engineering approach (Jiang and Yang, 

2014; Fernandez, Mccarthy and Rakotobe-Joel, 2001).   

 

The first strategy is common while studying the multi-objective evolutionary 

algorithms. The main concern of this tactic is using different single objective 

functions to construct and solve multi-objective problems. The second and third 
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approach is concerned with the Pareto optimal front (Helbig and Engelbrecht, 

2014a, 2014b, 2013b).  

 

In this study, the reverse engineering approach has been utilised where the results 

need to formulate first such as setting up the true Pareto-front and then construct 

the benchmark corresponding to that. The reason for doing this is to provide the 

facility to test the different algorithms impartially (Li et al., 2008). This approach 

is also called the bottom-up approach to construct a benchmark.  

 

Usually, in the case of reverse engineering, mathematical expressions and the 

construction of the environment are required to build a benchmark. Chapter 4 has 

a detailed discussion on these mathematical expressions as well as the definition 

of the MOMDP in the context of MORL settings for both test cases. 

 

In the conclusion of the above discussion, a list of criteria has been set that need 

to be reflected while designing the benchmark. For example, the test problem 

selected for designing a benchmark must have the properties where an algorithm 

can be analysed and tested.  

 

The followings points have been taken into consideration while designing the 

benchmark for the DMOPs in RL settings. 

 

• The benchmark must be easy to construct and should not deviate a lot from 

the existing benchmarks. 

• The benchmark must have the facilities to scaling up. In other words, it has 

to be robust. 

• The benchmark should be capable to incorporate different variables and 

objectives so that any number of goals can be achieved based on the defined 

environment. 

• Researchers should be able to incorporate different gameplay into the 

benchmark. 
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• The resulting Pareto frontier must be determined and easy to generate the 

non-dominated solutions. 

• Corresponding decision variables must be simple to handle and easy to 

construct along with the other factors such as changing parameters and the 

constraints. 

• The benchmark must be easy to converge to the true PF and it should allow 

multi-objectives possibly conflicting objectives.  

• The benchmark should be able to incorporate the common performance 

measuring techniques to evaluate different algorithms 

• Finally, the benchmark should be able to visualise the different PF and PS. 

 

Considering the MOMDP approaches, the benchmark should have the facilities to 

accommodate the continuous or discrete search space whether the agent can 

traverse the environment fully or partially. 

 

2.11 Reviewing the Metrics for Performance Evaluation  

 

When algorithms solve DMOPs, performance appraisal is in fact, vital to 

computing the proficiency of the algorithm. This is also useful to rank the different 

algorithms against each other. In the common setup for the multi-objective 

problem, the objective functions are conflicting to each other and the algorithm 

usually tries to find out non-dominated solutions. In this section, a brief review has 

been discussed in the context of MOO and DMOO problems. 

 

2.11.1 Reviewing performance metrics for MOO problems 

 

In the area of multi-objective optimisation (MOO) problems, the agent tries to find 

out the set of solutions that are close to the true PF where the solutions are diverse 

and evenly spread along with POF. However, the decision maker then decides the 

optimal solutions once POF is found based on the requirements and preferences. 
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An outperformance relation has been introduced by (Hansen, Hansen and 

Jaszkiewicz, 1998) under the following assumptions which is taken into 

consideration in this study. 

 

- The preferences are unknown a priori to the decision taker 

- Let the PFA and PFB are the two solutions, the decision maker will consider 

PFA because of its outperformance iff PFA is better for a specific preference 

and not worse in any other attributes provided by the PFB.  

- The preferences can be modelled in terms of functions. 

 
 

Like the performance metrics in the evolutionary computational area, especially 

for the MOO, there are also metric in order to efficiently evaluate and compare the 

performance of an algorithm in a dynamic environment. There are five main 

performance characteristics to evaluate an algorithm in the context of the dynamic 

optimisation environment when finding an approximation of the true PF, they are 

as follows (Mirjalili and Lewis, 2015): 

 

- convergence,  

- distribution, 

- the number of the obtained Pareto optimal solutions, 

- track the moving global optima, and 

- not stuck in the local optima. 

 

The first characteristic is responsible to the convergence of an algorithm towards 

the true PF. In this scenario, the goal of the agent is to find out the close and 

accurate approximation of the robust and optimal PF. After that, the algorithm is 

responsible in terms of the performance measure that shows the capability of 

finding evenly spread robust and optimal solutions regarding PF. In addition, the 

algorithm is judged based on the number of found vigorous and non-robust optimal 

PF solutions. In this thesis, the considered algorithms are effective if and only if a 

particular algorithm is capable to find out the robust optimal PF solutions as much 

as possible and avoid finding the PF solutions which are not robust. In other words, 
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the success of the algorithm is considered if it can find the solutions in the robust 

region in the dynamic multi-objective optimisation environment. The fourth 

characteristic is dealing with the tracking of the optima in the dynamic 

environment. It is obvious that in the dynamic environment, the optima will be 

moving from one place to another (Morales-Enciso and Branke, 2014).  

 

Therefore, the agent has to trace these moving optima. Finally, in the settings of 

the RL, the agent often gets stuck in the local optima because of the greedy 

approach by the agent while exploring the states in the environment (Andersen, 

Goodwin and Granmo, 2018). Therefore, it is also essential that the algorithm is 

capable of having a healthy balance for exploration and exploitation for traversing 

and visiting all the nodes in a reasonable timeframe (Hazrati, Hamzeh and 

Hashemi, 2013). 

 

2.11.2 Reviewing performance metrics used in DMO algorithms  

 

It is frequently argued that the agent does not truly solve the dynamic MOOPs, yet, 

through a procedure of knowledge is gained by interacting within the environment 

and training over time, the agent starts to behave in harmony with the optimal 

solution (Başçõ and Orhan, 2000). 

 

The following Table 2.6 shows the performance metrics that have been studied to 

analyse the algorithms. 

Table 2. 6: Performance metrics and their uses in analysing DMO algorithms 

Types Performance metric Referenced in 

Diversity  Maximum spread (MS) metric shows a higher value 

of MS that reflects the coverage of optimal PF by the 

obtained PF. 

MS is introduced in (Chi-Keong Goh and 

Kay Chen Tan, 2009) and used in (Azzouz, 

Bechikh and Ben Said, 2015; Azzouz, 

Bechikh and Said, 2017) 

Path length (PL) measure is used to calculate the 

distance between neighbouring solutions on the 

optimal PF. 

PL is introduced in (Mehnen, Wagner and 

Rudolph, 2006)  

Used: nil 

The coverage scope (CS) is used to enumerate the 

coverage of the set of non-dominated solutions.   

CS is introduced in (Zhang and Qian, 2011)  

Used: nil  
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Accuracy  Generational Distance (GD) is used to quantify the 

distance between the optimal PF and the true PF 

GD is introduced in (Mehnen, Wagner and 

Rudolph, 2006)  and utilised in (Chen, Li and 

Chen, 2009; Amato and Farina, 2005) 

Inverted generational distance metric (IGD) specifies 

the distance between the optimal PF and the evolved 

PF. 

IGD is introduced in (Sierra and Coello 

Coello, 2005) and utilised in (Azzouz, 

Bechikh and Ben Said, 2015; Aimin Zhou, 

Yaochu Jin and Qingfu Zhang, 2014; 

Muruganantham, Tan and Vadakkepat, 

2016; Wang and Li, 2010, 2009; Azzouz, 

Bechikh and Ben Said, 2014) 

Variable space generational distance metric (VD) is 

used to calculate the closeness between the 

approximated PF and the optimal one. 

VD is introduced in (Chi-Keong Goh and 

Kay Chen Tan, 2009) and used in (Koo, Goh 

and Tan, 2010; Azzouz, Bechikh and Ben 

Said, 2014)  

Success ratio (SC) measures the ratio of the obtained 

results which are the members of the true PF. 

SC is introduced in (Mehnen, Wagner and 

Rudolph, 2006) 

Used: nil 

Robustness Stability counts the consequence of the changing 

location on accuracy. 

Stability measure is first introduced in 

(Weicker, 2002) and utilised in (Camara, 

Ortega and Toro, 2007)  

Reactivity measures the capability of the algorithm 

to react to variations by evaluating the time to attain 

an anticipated goal. 

Reactivity measure is introduced in (Camara, 

Ortega and Toro, 2007) 

Combined 

measure 

Hypervolume (HV) reflects a space dominated 

region in the objective space. 

HV is introduced in (Zitzler and Thiele, 

1999) and utilised in (Camara, Ortega and 

Toro, 2007; Wang and Li, 2010; Zheng, 

2007; Liu, Wang and Ren, 2015) 

Hypervolume (HVr) ratio determines the dominated 

objectives in the objective space. 

HV ratio is introduced in (Veldhuizen, Van 

Veldhuizen and Van Veldhuizen, 1999) and 

used in (Deb, Rao N. and Karthik, 2007; 

Azzouz, Bechikh and Ben Said, 2015; 

Aberdeen, Thiébaux and Zhang, 2004; Deb, 

2011)  

 

In addition, the following Table 2.7 shows a list of widely used methods for the 

statistical tests in the dynamic multi-objective optimisation sector. 

Table 2. 7: Performance metrics and their use in analysing DMO algorithms for the 

statistical tests 

Category Statistical assessment Referenced in 

Parametric t-test Utilised in (Aimin Zhou, Yaochu Jin and 

Qingfu Zhang, 2014; Wang and Li, 2010) 

Non-

parametric 

Wilcoxon test Utilised in (Azzouz, Bechikh and Ben 

Said, 2015; Azzouz, Bechikh and Said, 

2017; Azzouz, Bechikh and Ben Said, 

2014) 

Kolmogorov-Smirnov test Used in (Koo, Goh and Tan, 2010; Chi-

Keong Goh and Kay Chen Tan, 2009) 
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Among them, three evaluation metrics are used to assess the effectiveness of the 

proposed algorithm. This includes generational distance measure (GD), inverted 

generational distance (IGD), Hypervolume (HV) and parametric tests which are 

described in Chapter 6. The following section describes the applied part of the 

research. 

 

2.12 Existing Process of Water Quality Evaluation in São Paulo, 

Brazil 

 

As discussed in the literature, many studies are focused on the academic problems 

where the objective functions are assumed, and constraints are pre-populated and 

investigated. However, it is not clear whether these problems are still related to 

real-world problems or not.  

 

In this thesis, to make the selected problem relevant and connected to the real-

world scenario, the dataset (Publicações e Relatórios | Águas Interiores, 2017) of 

water quality in São Paulo, Brazil has been utilised to identify and predict the 

vulnerable zones based on water quality resilience. In this section, the existing 

process of water quality evaluation in the targeted area has been discussed. The 

frequency of data collection is different considering various data collection points. 

In this study, our targeted area is in São Paulo that is located in the southeast of 

Brazil (23°33′S  and 46°38′W) and its total municipal area is of 1,521.11 km² (see 

Figure 2.13). Companhia Ambiental do Estado de São Paulo (CETESB, Brazil, 

2000) has been monitoring the quality of surface water in the state of São Paulo 

since 1974. The main purposes of monitoring are:- i) to make a diagnosis of the 

quality of the state’s surface waters, assessing their compliance with 

environmental legislation; ii) to assess the temporal evolution of the quality of the 

state’s surface waters; and iii) to identify priority areas for the control of water 

pollution, such as stretches of rivers and estuaries. The assessment of freshwater 

quality is complemented by temporal and spatial analysis. To set up the trends of 

WQI, the dataset from the previous 17 years (2000-2016) are considered. The 

space was carried out by drawing up health profiles of the main water bodies in 

order to identify critical sections. The presentation of water quality index (IQA), 
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quality of water for public supply purposes (IAP), protection of Marine Life (IVA), 

trophic state (IET), bathing (IB) and Biological Communities (Phyto and 

zooplankton and Benthic organisms represented by ICF, ICZ and ICB, 

respectively), are also part of the evaluation. 

 

According to CONAMA Resolution No. 357 of March 17, 2005 (CONAMA 

Resolution 357/05 – Brazilian NR, 2005), the sweet surface waters are classified 

according to the quality required for their main uses in five quality classes. 

In the existing process, the systematic evaluation of the water quality by CETESB 

has the following objectives.  

 

• Needs to keep up with population growth, 

• Diversification of industries in the state, 

• Control programs of water pollution developed by CETESB and 

• Diagnosis of the sources used for public supply. 

 

Table 2.8 shows the existing practices by CETESB from 1974 where the ‘Points’ 

column refers to the added stations from the corresponding year. 

 

Table 2. 8: Freshwater monitoring networks in São Paulo State - 2017 

 

For each of the uses and quality grades, were established by means of variables 

such as unnatural floating materials, oils and greases provide substances which 

taste or smell, colouring matter from anthropogenic sources, toxicity and 

Monitored 

Sources 

Goals Start of 

Operation 

Points Frequency variables 

Basic network Provide a general diagnosis of water 

resources in the State of São Paulo. 

 

1974 

 

461 

 

Bimonthly 

Physical 

Chemical 

Biological 

Sediment 

Network 

Complement the diagnosis of the 

water column. 

 

2002 

 

26 

 

Yearly 

Physical  

Chemical Biological 

Bathing Rivers 

and reservoirs 

Inform water conditions for primary 

contact recreation / bath to the 

population. 

 

1994 

 

35 

 

Weekly / 

Monthly 

 

Biological 

Monitoring 

Automatic 

Control of domestic and industrial 

pollution sources and control the 

quality of water for public supply. 

 

1998 

 

12 

 

Hourly 

Physical  

Chemical 
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objectionable waste. In terms of the quantitative measures, the existing practice 

contains the collection of pH, BOD, OD, organic substances, and total dissolved 

metals, cyanobacteria density, chlorophyll data. The maximum allowable limit of 

the variables for each class of water is called quality standards. Figure 2.13 

illustrates the targeted area (São Paulo State) for this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distribution of the monitored points in terms of different types of economic 

area is depicted in the following Figure 2.14. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

As discussed earlier, the factors of water quality resilience are changing 

throughout the year due to various reasons and thus, the quality variables are 

changing. Hence, this problem has formed an appropriate real-world test case in a 

dynamic multi-objective environment. 

 

Industrial 
54%

Agricultural
17%

Conservation
11%

In Processing
18%

Total Monitored Points

Industrial

Agricultural

Conservation

In Processing

Figure 2. 13: Targeted area (São Paulo) to implement the proposed framework 

Figure 2. 14: Distribution of sampling points based on different types 
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2.13 Reviewing Machine Learning Studies for Water Quality 

Evaluation 

 

The objective of this section is to utilise the concept of Machine Learning (ML) 

and its usefulness for test case 2. Here, the implementations of ML for water 

quality evaluation have been reviewed. The water resources degradation and 

pollution particularly in developing countries are major concerns due to their 

unsustainable developments (Seto, Güneralp and Hutyra, 2012; FN and MF, 2017; 

Lu et al., 2015; Paul, 2015). Therefore, ML suitability to evaluate the water quality 

can have a fruitful impact and effective approach in the existing process. 

 

Water quality has a strong impact on the natural environment and human life; 

therefore, it is a primary concern in the case of surface water and reservoir 

management. In recent years, dry areas have been facing severe water shortage, 

which is an alarming issue for the environment (Li et al., 2017). Recent studies 

reveal that about 5.5 billion people will face water crisis in 10 years (Amitrano et 

al., 2014).  Besides, the disposal of sewage in rivers and lakes are adding more to 

this threat to arid areas (Lindberg et al., 2014; Zhou et al., 2014). The volume and 

quality of waters (Lima, Lombardo and Magaña Rueda, 2018) in reservoirs (e.g. 

rivers, lakes etc.) are very important not only for the environment but also for 

societal and economic development (Pawara et al., 2017).  

 

Hence, ensuring water quality is one of the crucial conditions of the overall 

development. An AI-based solution can enhance the whole process more easily 

and cost-effectively. Reservoirs not only provide pure water for human 

consumption but also water for various other purposes, like agriculture, industry 

and habitats for aquatic lives (Hoverman and Johnson, 2012). Various properties 

of water in reservoirs, especially its quality, must be assessed. Assessing the 

quality of water critically enables managers to develop optimal water resources 

management plans.  
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In recent years, a resilience-based approach has been extensively promoted and 

used in various aspects of the water systems management, but the potential is not 

equally explored and developed. Resilience has a wide range of definitions and it 

can vary from one context to another. Resilience-informed WQ management 

(Imani et al., 2016) will take a holistic approach and focuses on the promotion of 

key drivers, attributes and role players’ adaptive capacities to cope with the 

changing conditions rather than the use of control-based risk management 

(Etchepare and van der Hoek, 2015) or treating the effects. Therefore, a resilient 

socio-ecological system (SES) can handle negative man-made and environmental 

changes without regime shifts and by improving and using the system adaptive 

capacity more effectively. A resilient WQ management provides a framework to 

view a system that continues operating when subject to challenges over time and 

space.  

 

Moreover, WQ spatial and temporal changes have been widely studied and used 

to identify and assess WQ characteristics due to natural and man-made influences 

(Hendry, Gotanda and Svensson, 2017) or for life cycle assessment of 

geomorphological dynamics (Tooth and Stephen, 2018). In the latest studies, a 

spatiotemporal variation of resilience has been used to evaluate watershed health 

(Sadeghi and Hazbavi, 2017).  

 

WQ monitoring approaches are generally expensive and time-consuming, 

particularly for large-scale and complex catchments (Zeng et al., 2013). Also, there 

are several deterministic and stochastic WQ models (SWAT, RMT, WMS etc.) 

available to manage the best practices for WQ management (Einax et al., 1999; 

Hull, Parrella and Falcucci, 2008). However, most of these models are very 

complex and demand a significant amount of field data with post data collection 

analysis. Furthermore, many statistical-based WQ models, make assumptions for 

simplification, which can negatively affect the accuracy and reliability of the 

analysis  (Chen and Liu, 2015). Therefore, utilising statistical approaches does not 

necessarily hold high precision (Najah et al., 2013).  
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It is inexorable that artificial intelligence (AI)-enabled system can be impactful in 

environmental sectors by capturing non-linear and complex relationships among 

the influential factors more precisely and intelligently than the traditional or 

manual methods. AIs are often used for prediction purposes through the 

development of data-driven models. For example, artificial neural networks 

(ANN) has been extensively used for prediction and forecasting in water systems 

studies (Elsafi, 2014; Güldal et al., 2010), especially river WQ prediction (Khalil 

et al., 2014; Palani, Liong and Tkalich, 2008; Matthews, Hilles and Pelletier, 2002; 

Sarkar and Pandey, 2015) and WQ indexes (Gazzaz et al., 2012; Elshemy and 

Meon, 2016). In addition, there are many advantages of using ANNs for prediction 

purposes such as: eliminating the need to a priori knowledge the underlying 

process and the existing complex relationships of the system elements (Kalin et 

al., 2010). 

 

Additionally, a wide range of water quality indexes in relation to different water 

bodies has been used in many conventional studies using ML techniques. For 

example, Chou, Ho and Hoang (2018) used four ML techniques such as artificial 

neural network (ANN), support vector machines (SVM), classification and 

regression trees (RT), and linear regression (LR) to analyse the quality of water. 

 

Moreover, there are several studies based on multiple linear regression methods 

combined with AI to develop WQ models (Slaughter et al., 2017; Tomas, Čurlin 

and Marić, 2017). An AI system was developed by (Ji et al., 2017), combining 

multiple models based on SVM, ANNs, LR to prove the supremacy of SVM in 

predicting dissolved oxygen (DO) concentration in Wen-Rui Tang River, China. 

Similarly, to predict the level of DO, a general regression neural network (GRNN) 

was proposed by (Antanasijević et al., 2014) for the Danube River, Europe. ML 

algorithms and remote sensing spectral indices have been used to evaluate the 

water quality by (Wang, Zhang and Ding, 2017). A predictive model is developed 

using long and short-term memory neural network (LSTM NN) by (Wang et al., 

2017).  
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The application of deep learning (DL) has some degree of success in WQ 

evaluation as discussed in background studies. A deep learning method is also used 

for mapping the surface water (Isikdogan, Bovik and Passalacqua, 2017). In this 

study, DRL-based WQ resilience evaluation model has been used as a surrogate 

of complex computational WQ models which demand a great deal of data for a 

preliminary evaluation of surface water resilience in the case study area. 

Additionally, this surrogate approach will save time and cost (e.g. financial, 

computational, etc.) of data collection and monitoring used for WQ resilience 

evaluation.  

 

However, reviewing the latest literature, hardly any studies have been found that 

measure water quality “resilience” using artificial intelligence. In this study, deep 

reinforcement learning technique has been used to predict the vulnerable zones 

based on water quality resilience. In this study, three separated networks for each 

water quality index (WQI) have been produced. A detailed discussion of 

formalising MOMDP using DRL for WQ evaluation has been conducted in 

Chapter 4. 

 

2.14 Justification of the Study 

 

Literature shows that no significant works have been done for the dynamic multi-

objective environment in DRL settings. As a result, to the best of the author’s 

knowledge, there is no benchmark in the dynamic (Farina, Deb and Amato, 2004) 

multi-objective DRL context. Therefore, this study has addressed this gap by 

applying the existing knowledge to propose a benchmark which may help to 

investigate in the simulated environment (i.e. test-case 1) as follows: 

 

a. Understanding the dynamics while objectives are conflicting with each 

other and 

b. Applying the existing knowledge to deal with the constraints and 

problem parameters that change over time. 
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In addition, in the context of water quality resilience, there has been no use of 

state-of-the-art machine learning techniques. Though a few studies have been 

conducted in hydrodynamics (French et al., 2017) and other fields such as ocean 

engineering (Sarkar et al., 2015), there is hardly any research done in resilience-

based approaches for water quality evaluation (Mugume et al., 2015). As discussed 

earlier, to investigate the applicability of a well-known deep learning algorithm, 

researchers cannot ignore the dynamic behaviour in the multi-objective 

environment in RL settings. Therefore, in this study, this behaviour has been 

incorporated and discovered the way to fit the dynamics in the multi-objective 

environment.  

 

Moreover, the concept of our proposed benchmark has been applied to address a 

real-world problem. In addition, an algorithm has been developed that can handle 

dynamics in the multi-objective environment based on DQN. To prove the concept 

with an empirical result, the proposed algorithm is designed to tackle the dynamics 

and its complexity in the simulated environment. In these environments, the 

proposed algorithm is integrated to examine whether it can satisfy the goal. 

Another aspect of this algorithm is to identify and predict the vulnerable zones 

based on water quality resilience to observe whether the deep RL domain can 

contribute in the domain of hydrodynamics or decision support systems and to 

direct the researchers for further investigation. 

 

In a nutshell, a successful implementation of an AI-enabled system may have a 

significant impact on test case 2: 

a. To categorise the impacts of water contamination on public supply in 

terms of resilience, 

b. Minimising the manual efforts to collect the data from different zones 

and 

c. Identifying the vulnerable zones that need prioritisation in the decision-

making process for necessary interventions to make the diagnosis 

process faster while preserves the accuracy. 
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2.15 Summary 

 

In this chapter, several concepts have been discussed which are necessary to follow 

the overall thesis. At first, the intelligent application, dynamic environment and 

the MORL approaches are discussed. Later on, the basics of RL and DRL have 

been discussed. Furthermore, various challenges for studying DMOPs are also 

evaluated. Here, a review of the DMOPs has been described that is normally used 

by the researchers to examine their algorithms in various settings.  

 

Furthermore, a brief discussion of the main features and distinction of the current 

optimisation techniques are put forward. After that, different dynamic benchmark 

problems and the real-world DMOPs have been explained in the context of 

evolutionary as well as RL approaches. This chapter also outlined the necessary 

considerations while generating test problems and the benchmark. These were 

useful to assess and compare the considered multi-policy RL algorithms for the 

DMOPs which have been utilised in Chapter 5 and 6. 

 

With the review of the recent RL success, it can be concluded that DRL is one the 

promising techniques to train the machine to respond to a changing environment 

and then take evolutionary actions based on the policy. In this chapter, an argument 

on the different approaches has been described to solve the RL problem and came 

up with the two prominent solutions such as single and multi-policy RL 

approaches. 

 

Furthermore, a brief discussion of the different ways of solving MORL using DRL 

techniques has been explained. Moreover, different DQNs and their aim, 

advantages and disadvantages have been described which are necessary to build 

the proposed algorithm as it is based on DQNs. Two optimisers which have been 

used in this study, are elaborated and their merits and demerits are identified. 

Likewise, several difficulties and scopes were also analysed that still need to be 

handled while using DRL. Figure 2.15 illustrates the sequence of reaching the 

corresponding methods which are going to be applied in this thesis. 
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Figure 2. 15: A flow diagram to select the necessary methods 

 

Furthermore, the existing process of water quality evaluation has been described 

in the state of São Paulo, Brazil. A critical review has been done to identify the 

existing flaws in the current procedure of the targeted area. After that, different 

ML techniques have been reviewed which have been used for water quality study. 

Finally, this chapter is concluded with the justification of the study. Methodology 

of this study will be discussed in the following chapter. 
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Chapter 3 

Methodology 

 

3.1 Introduction 

There are good numbers of researchers who believe that RL is one of the best 

technologies for creating general AI (Scarcello, 2019; Artificial intelligence: The 

saviour of mankind or the end of the world?, 2018). It is an interesting field that has 

huge potential to solve many intractable problems. The recent success of DRL has 

opened the door of many opportunities. However, getting started with DRL requires 

some initial tasks to be performed which are discussed below. 

The main challenge in this research work is to formalise the MOMDP considering 

the simulated environment both for test case 1 and 2. Therefore, the methodology 

to conduct this research work is set carefully that requires several procedures 

which are going to be discussed in this section. Method details for both test cases 

will also be discussed in this chapter. Moreover, data collection, preparation, and 

how resilience has been calculated will also be explained in this chapter. The steps 

are as follows: 

a) At first, a comprehensive review of the existing solutions has been 

conducted. During reviewing the literature, recent advances in DMOPs 

have been studied and a knowledge gap has been identified. Thus, the test 

cases have been finalised in terms of the benchmark and the real-world 

scenario. Therefore, the first objective of this research is going to be 

satisfied. 

b) Secondly, a mathematical model and a computational model have been 

designed and developed which helps to form a new and innovative DMOP 

testbed. Through this process, a wide-ranging requirement elicitation has 

been conducted and a prototype is created for the benchmark. Thus, the 

second and third objective will be achieved.  



 

76 | P a g e  

 

c) After that, a novel method for multi-objective optimisation algorithm in the 

dynamic environment has been established. In addition, the proposed 

algorithm has been evaluated to improve its efficiency. An advanced 

machine learning algorithm such as DRL has been used to build this 

proposed algorithm backed by DQN architecture that provides an 

appropriate mapping in dynamic MO constrained environments. Thus, the 

fourth objective is going to be accomplished to reach the aim of this thesis. 

d) Finally, a real-world problem has been addressed to predict the vulnerable 

zones based on the selected parameters in one of the populous cities in 

Brazil. Hence, the final objective of this research is going to be obtained. 

3.2 Research design 

To achieve the research goal and objectives, an indicative research method and 

overall approach are being discussed and illustrated below. In this study, the 

following key factors are being considered to roll out the research.  

a) To gain profound knowledge and understanding of the decision support 

systems, an extensive literature review has been conducted from different 

sources such as top-quality journals, conferences, recent news, blogs and 

articles. 

b) After analysing recent research works in this domain, a conceptual model 

in the context of dynamic multi-objective decision support system has been 

developed. 

c) Necessary and relevant algorithms have been analysed and evaluated to 

form a new and advanced algorithm.  

d) To prove the concept, a real-world test case has been considered to predict 

the critical zones based on water quality resilience. 

e) Finally, the results and outcome of this research have been evaluated. 

In the high-level abstraction, the overall methodology of this study was divided 

into four working packages (WPs). The first package is responsible to provide the 
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necessary algorithms by analysing the existing algorithms from the literature. In 

this package, the research gap has been identified. Moreover, a widespread 

reviewing of the existing testbeds has been conducted to form the benchmark in 

this package in the context of a multi-objective dynamic environment.  

 

Formalising the MOMDP for the DMOPs is handled by the second package. This 

package 2 is responsible for designing and developing the proposed algorithm. 

Training of the model and continuous improvement is also an integral part of this 

package.  

 

The third package is responsible to evaluate the proposed algorithm and the 

benchmark. Moreover, in this package, the trained model has been integrated into 

the test cases. In this package, the evaluation procedure is also examined for both 

test cases and finalised the algorithm.  

 

The final package is responsible for incrementally improving the whole study so 

that the obtained outcome can have significant scientific and knowledge 

contributions. This package also complies with the performance test module to 

update the overall progress and performance according to the actual results. It also 

gives the final output through the empirical analysis by conducting a critical 

evaluation. Figure 3.1 shows all the working packages (WPs) as per the above 

discussion. 
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Figure 3. 1: Working packages for this research work 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

As discussed earlier, a virtual environment has been considered which satisfies the 

required components of this research such as a multi-objective decision-making 

scheme and optimising the decisions based on that scheme. The following diagram 

3.2 shows an overview of the system architecture that has been followed while 

designing the research methodology for this study. 
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There are four modules in the overall system architecture as shown in Figure 3.2. 

The first module is the system input or in other words, where the end user interacts 

with the system. The second module is the controller between the end user and the 

proposed algorithm. In this module, the system performs through an application 

programming interface (API) that works with the Matlab and the Python library. 

 

The data stream is responsible for the data fusion from the two different sources 

where the agent gains reward based on the observed state and actions which helps 

to determine the meta-policy selection. This reward is based on the vector rewards 

and thus, the optimal policy is selected. This policy determines which action needs 

to be sent through the API for further process. The final module is the core part 

where the algorithm performs an overall action based on the MOMDP and the 

DQN. 

 

 
Figure 3. 2: Overview of the system architecture 

 

 
 
 



 

80 | P a g e  

 

3.3 Approaches to defining the conceptual model 

 

The testing of any algorithm in the DMOPs is usually complex considering the 

dynamics of a problem that involves a wide range of different scenarios including 

uncertainty. Besides, to conduct an empirical study, the approach to solve the 

problem needs to be defined precisely as stated by (Cruz, González and Pelta, 

2011). Therefore, a detailed plan of the defined approaches to the experiment has 

been exemplified in this section.  

 

To define the problem, a conceptual model has been sculpted as DMOPs to 

generalise the objective functions in an abstraction level where some elements of 

the underlying model changeover the course of the optimisation.  

 

In general, the following Equation 3.1 is considered as the DMOP based on 

MOMDP:  

 

𝐷𝑀𝑂𝑃 = {
𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒 𝑓 (𝑥, 𝑡)

𝑠. 𝑡.  𝑥 ∈ 𝐹 (𝑡)  ⊆ 𝑆, 𝑡 ∈ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑡𝑖𝑚𝑒 
            ……. (3.1) 

 

Where S is the search space, t is the time, 𝑓: 𝑆 × 𝑇 ∈ R, is the objective function, 

and 𝐹 (𝑡) represents the feasible solutions at time 𝑡. In other words, the MODOP 

in this context is considered as a dynamic problem where the objective function or 

the restrictions are changed over time.  

 

To solve this problem, the simplest solution would be ignoring the dynamics and 

solving the problem by dividing the multi-objective into a single objective 

problem. The next step is to scalarise the reward to achieve the highest expected 

reward in RL settings.  

 

However, this will not satisfy the goal of this thesis and will not reach any 

pragmatic contribution. As a result, the goal of this experimental problem settings 
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is not only directed to locate the stationary optimal solution but also to track the 

changing optima in the dynamic environment. Therefore, before setting up the 

environment for the RL, a protocol needs to be defined that restricts the setup 

components. 

As discussed earlier, the agent is nothing but the algorithm that interacts within the 

environment. This environment can be deterministic, discrete or continuous and 

stationary or non-stationary. However, in this study, the environment is considered 

based on the following certain factors:  

 

a. The agent should adapt to the environment which is a 2D grid-world, 

b. The environment must be observable (e.g. fully or partially), 

c. The environment or area should be traversable by a single agent and  

d. The agent should receive vector rewards instead of scalar rewards.   

 

When the agent interacts with the RL environment, the state model is either 

deterministic or non-deterministic and this can be represented by deterministic 

finite automata (DFA) and non-deterministic finite automata (NDFA) (Rathod, 

Marathe and Vidhate, 2014). As stated earlier, the agent needs to deal with the 

vector rewards where the actions are not pre-defined and fixed. Thus, the selected 

actions that lead to forming the policy is determined based on the current state and 

the associated action for that state.  

 

Therefore, the agent interacts within the NDFA where the actions are depended on 

the current state and the associated vector rewards for a particular action. In 

addition, the pre-defined environment is needed to be observed whether it is 

wholly or partially observable. For instance, a chess game is a fully observable 

whereas the Poker game is partially observable such as the cards are unknown of 

the one’s player. Besides, only a single agent environment is considered in this 

study.   

 

In a single agent-based environment, an agent only interacts with one environment. 

However, it is to be noted that the proposed single agent interacts in a single 
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environment which is dynamic such as the parameters and objectives are changed 

over time.  

 

Figure 3.3 visualises a typical setup for the single agent environment in the context 

of the DMOPs for RL settings where the agent (i.e. triangle) lives in the 

environment (i.e. oval). The agent’s task is to update its goal based on the actions 

and accumulated knowledge. 

 

 

 

 

 

 

 

 

 

 

3.4 Method Details for Test Case 1 

In this section, the method details for test case 1 is discussed. The selection process 

of test case 1 was not straightforward. The first task was to analyse the existing 

benchmark and then find out the appropriate benchmark that can be robust and 

satisfy multi-objective preferably conflicting objectives.  

 

The following Figure 3.4 illustrates test case 1 with the reward distribution. As 

mentioned earlier in Chapter 1, the agent’s objective is to find out all the state 

vectors for a problem where these define a non-convex Pareto frontier in a reward 

space. Figure 3.4 also shows the traditional DST environment that demonstrates 

the treasure values with the true Pareto front.  

 

 

 

 

Environment 

Goal  
Action 

Knowledge 

Agent 

Figure 3. 3: An agent traversing within a single environment 
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(a) (b) 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To solve the RL problem, two approaches can be followed to formalise and solve 

the problem. The first approach is taking the raw image as input (Mnih et al., 

2015) while the second approach is forming an MOMDP by hardcoding (GitHub 

- ttajmajer/morl-dv, 2018; GitHub - RL-LDV-TUM/morlbench, 2018).  

 

3.4.1 Raw-image approach 

 

The DRL research community has observed how the raw image input can be useful 

to learn 49 games by an agent with only raw frames with 210 × 160 pixels and 

128-colour palette (Mnih et al., 2015). In this process, the computational time and 

the usage of the memory could be highly expensive. Though a basic pre-processing 

can reduce the input dimensionality (Wilson, 2018). Usually, this procedure helps 

to encode a single frame to convert and points out the particular coordinates (x, y) 

of the current location of the agent or the treasure value. Figure 3.5 shows a 

possible visualisation of this process. 

Figure 3. 4: Traditional Deep-sea Treasure problem (a) environment (b) frontier 

(c) reward distribution over the grid (i.e. extracted using Python) 
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On the other hand, the easier and computationally less complex approach with 

lower memory usage is to formalise the MOMDP using hardcoding. This includes 

the matrix functions to form the required components such as the grid-world of 

10×09, state, action and reward functions. The following sections highlight the 

appropriate procedure that has been followed in this thesis.   

 

3.4.2 Hardcode approach  

 

Considering the hardcode approach, the DST treasure hunt is a straightforward 

game which needs to be coded whereas the agent has to find out the highest 

treasure values with minimum time, and for every step, the agent has to be 

penalised by -1 point. At first, it needs to be considered that the agent in the grid-

 Figure 3. 5: Raw image approach to solve the test case 1 (DST environments) 
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world is moving around in a finite horizon. In other sense, this world represents an 

environment using a controlled MDP where the agent works as a controller in that 

MDP.  

The methodology for setting up test case 1 can be categorised with the following 

five key points. 

 

I. Defining the model: 

 

At first, the MDP needs to be set up which defines the environment. In this 

step, the multi-objective Markov decision process (MOMDP) needs to be 

defined as a sample shown in the following Figure 3.6. Here, the agent’s task 

is to move from S0 to S1 where objectives are defined by O1 and O2 and the 

vector reward of setting up the model with the appropriate actions a0 and a1. 

Here, D represents a dynamic value that helps to balance the objectives. The 

model is set based on the vector rewards and punishments. Thus, the agent 

receives the information of a state whether it is a current state or not and which 

action needs to be taken based on the reward. By learning this mechanism, the 

agent moves and takes its action as like as the joystick movement. After that, 

the environment reacts to this action and runs the next state associated with the 

reward function. 
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Figure 3. 6: A simplified visualisation of the MOMDP 
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The rules that have been used for choosing the action is called a policy. The above-

mentioned environment is generally stochastic where the next state is not known 

by the agent. If only 1 episode is considered as mentioned in the above Figure 3.6, 

in a finite sequence of states, actions and rewards, then the formation of the tuple 

will be as like as the following Equation 3.2: 

 

𝑆0, 𝑎0, 𝑟1, 𝑆1, 𝑎1, 𝑟2, … … 𝑆𝑛−1,𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛…………….… (3.2) 

 

Where, 𝑎𝑜 𝑎𝑛𝑑 𝑎1 represent the actions and the episode ends with the terminal 

state 𝑆𝑛. 

 

II. Selecting future discounted rewards: 

 

In this process, a discounted reward function needs to be defined which will help 

the agent to perform better in the long run. So that the agent not only looks at the 

current benefit by looking for only the immediate reward but also attempts to 

maximise the discounted future rewards. To do so, the total vector rewards need 

to be calculated for one run in an MOMDP. Since the environment is stochastic, 

which means the agent will not be sure that it is going to get the same rewards in 

the next state by performing the same actions. The more time the agent spends, the 

more the agent may diverge. Therefore, the solution has to use the discounted 

future reward as shown in Equation 3.3.    

 

𝑅𝑡
⃗⃗⃗⃗⃗ = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ + 𝛾𝑛−𝑡𝑟𝑛……… (3.3) 

 

Here γ represents the discounted future reward that ranges between 0 and 1. This 

range means that as long as the agent depends on the future, it values less to the 

present situation. Therefore, the optimised choice for the agent would be selecting 

an action that maximises the future reward. 
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III. Perception for the Q learning: 

 

In Q-learning, a function is defined as 𝑄(𝑠, 𝑎) representing the maximum 

discounted future reward while the agent makes an action 𝑎 in state 𝑆 at time 𝑡 

until the agent finds the optimal Q value from that point. In a simplified way, the 

Q value function can be defined as the following Equation 3.4. 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = max(𝑅⃗⃗𝑡+1)…………………………… (3.4) 

 

Where the agent maximises the total vector reward 𝑅⃗⃗ at time 𝑡 + 1. The other 

important task is to define and select the DQN network which is discussed in 

Chapter 5 systematically. 

 

IV. Training process: 

 

At this point, an idea is recognised that how to use the future reward in each state 

using the Q-learning function. There are still needs to employ some other tactics 

for the purpose of the convergence. The agent has to store the experiences that are 

observed through the interaction within the environment. These experiences are 

comprised of the sequence of episodes. Hence, the replay memory needs to be 

utilised because of the approximation of Q-values using non-linear functions 

which is not a good choice for stability. 

 

Therefore, the experience replay needs to be deployed. Throughout the interaction, 

all the experiences < 𝑠, 𝑎, 𝑟, 𝑠′ > are kept in a replay memory as mentioned in 

Chapter 2. This process benefits the agent to take random minibatches instead of 

the recent transition while training the network. The other benefit of doing so is 

that it helps the agent not to be stuck in a local minima for random sampling.  

 

Let us consider a buffer with a batch of experiences, the agent needs to find out the 

possible actions by predicting the future reward 𝑄(𝑠′, 𝑎′). After that, the agent 
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determines the 𝑚𝑎𝑥 𝑄(𝑆′, 𝐴′) and train the network using a gradient loss function. 

This training determines how the network value is closed to the target value.  

 

V. Exploration-exploitation dilemma: 

 

The final part to set the model is to create the exploration mechanism for Q 

learning. Sometimes, the agent chooses the best option can end up with some 

unvisited nodes because of a Q network or table is initialised randomly and the 

predictions are also generated randomly. Therefore, always selecting the best 

option might not be the solution to this scenario. In terms of the Q function 

converges, the agent returns most consistent Q-values, as a result, the exploration 

decreases. To avoid this dilemma, an 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy has been utilised instead 

of greedy policy (e.g. may be stuck in local optima without searching all the 

nodes). Therefore, this process ensures that the agent can traverse all the nodes 

including the unexplored one.   

 

In a nutshell, this method includes nth episodes where the agent receives the 

probabilistic rewards by observing the current state, selecting and performing an 

action. It also involves an immediate payoff and updates the target network to 

maximise the highest expected reward. 

 

3.5 Method Details for Test Case 2 

 

Since the last century, many representations of intrinsic data structure and 

approaches to learning patterns have been proposed such as linear or nonlinear, 

supervised or unsupervised, shallow or deep. Particularly, deep architectures are 

widely applied in recent years and have produced top results in many areas 

including image classification, speech recognition, anomaly detection and so on 

(LeCun, Bengio and Hinton, 2015). In this test case, one of the cutting-edge 

techniques has been applied such as deep reinforcement learning (DRL) to identify 

and predict the vulnerable zones in the state of São Paulo, Brazil. 
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DRL is a well-known method for self-learning and has successfully been 

implemented in various sectors such as playing games, image processing, power 

optimisation and so on to achieve human-level expertise (Mnih et al., 2015). 

However, it is still ambiguous whether DRL can be implemented for a historical 

dataset in a dynamic multi-objective optimisation problem by formalising a 

dynamic MOMDP. In this section, this procedure has been explored which is 

responsible to build the model for water quality resilience that results in detecting 

critical stations and incorporated in a real-world scenario using RL techniques. 

Here, an easy and fast procedure has been produced to predict the resilience from 

a historical dataset (2000-2015), produced by Companhia Ambiental do Estado de 

São Paulo (i.e. CETESB, the Brazilian authority for monitoring the quality of the 

surface water) in a multi-objective environment using deep reinforcement learning 

(Governo Do Estado De São Paulo, 2018). In a nutshell, this method is significant 

because of the followings: 

 

a. This method can significantly reduce the manual efforts which are primarily 

expensive, time-consuming and slow to perform. 

b. This process can be used on any water quality dataset to predict the resilience 

based on the set of parameters on the local standardisation of the surface water. 

c. A wide variety of different analysis and techniques can be anticipated which 

may add value to water quality studies. 

 

As this test case 2 is based on the multi-criteria and the changing parameters, 

therefore, it is essential that this study provides a substantial amount of 

concentration in the multi-criteria system. In the context of multi-criteria decision 

analysis, the following stages are considered (Multi-criteria analysis: a manual, 

2009): 

a) Establishing the decision context, 

b) Identifying alternatives, 

c) Identifying criteria and sub-criteria, 

d) Analysing weight of each factor and sub-factor, 
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e) Finding the performance of each criterion and 

f) Deciding the best alternatives as a decision in a dynamic environment. 

To plan for the improvement of WQ resilience, it is necessary to identify and 

prioritise the critical zones in the case study region for interventions. However, 

this is a challenging task in this research due to the conflicting interactions amongst 

WQIs. Hence, this study has developed a method using outcomes of the predictive 

model using WQ resilience model to identify the critical zones (i.e. from the most 

critical to the least one) in the case study region.  

A multi-criteria ranking environment has been adopted by using a decision matrix 

as mentioned in (Hasan et al., 2016) for the given WQI datasets as presented in 

Table 3.1. This matrix uses a bottom-up approach to reach a particular decision 

where every criterion is dependent upon its associated sub-criterion.  

In this study, the parameters in Table 3.1 are defined as: 

• Selected decisions (Di): critical zones 

• Alternative decisions (Ei): critical stations in each zone 

• Criteria: WQI i.e. IQA, IET and IVA 

• Factor: monthly values of WQI 

• Sub-factor: WQIs’ resilience values in each WQ monitoring station in each 

zone 

• z: number of zones 

 

 

 

 

 

 

 

 

 

Table 3. 1: Multi-criteria decision matrix 

 Selected Decisions (D1……..… Dz) 

 Alternative Decisions ( E1 …….En ) 

Factor 1 WQI1 …… WQIn 

Factor 2 WQI2 …… WQIn 

Factor 2 WQI3 …… WQIn 

 

…
. 

…
. 

…
. 

…
. 

…
. 

Sub-factors ( SubF1) WQR1 …… WQRn 

Sub-factors ( SubF2) WQR2 …… WQRn 

Sub-factors ( SubF3) WQR3 …… WQRn 



 

91 | P a g e  

 

The bottom-up approach is formed to satisfy the multi-criteria for selecting the 

vulnerable zones. Here, the process has been categorised into three phases. 

 

Phase 1: To determine the factors as mentioned in Table 3.1, corresponding WQI 

values have been associated in this phase with all the monitored stations. 

Phase 2: In this stage, to determine the weights of each resilient station, a weight 

has linked to each WQ station for all the 22 zones.  

Phase 3: In this phase, the resilience values of WQIs of all the WQ monitoring 

stations (in all 22 zones) are calculated and linked with the stations. 

The following Figure 3.7 demonstrates the scale of significance of each criterion 

that ranges from 0 to 1.  

 

 

 

 

 

 

 

 

 

This scale helps to set the weights for the different stations in the 22 zones in the 

WQ dataset. The weights are used based on the triangular fuzzy number and 

calculated based on the pair-wise matrix. This scale is also adopted from (Hasan 

et al., 2016; Rao et al., 2017). 

 

3.5.1 Data collection and preparation 

 

A recent survey among data scientists by CrowedFlower (i.e. a data mining and 

crowdsourcing company based in the USA) shows that data preparation is the most 

time-consuming task which takes 80% time of the whole job (Gil Press, 2016). 

This primary and fundamental task is known as data wrangling or data munging 

(Endel and Piringer, 2015). It also refers to gathering, extracting, cleaning and 
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Significance 

intensity 

 Figure 3. 7: Sub-criteria impact on each criterion 
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storing of data. Transforming data into a useful form remains challenging and 

tedious (Endel and Piringer, 2015). However, in this study, the following 

procedures of data wrangling are considered: 

 

a) Gathering data from CETESB  (e.g. raw data which is in text formats 

in 16 PDFs and then converted into csv and json formats by using 

Python and pandas library (Python Data Analysis Library, 2018)) 

b) Cleaning data (e.g. to check the completeness and accuracy by using 

python and pandas library) 

c) Identifying missing data (e.g. using dropna and filllna functions in 

pandas library) 

d) Measuring data quality (e.g. validity, consistency, uniformity by 

manually random check as well as using pydqc (SauceCat, 2017)) 

 

In 2017, CETESB’s core network has operated in 62 automatic stations and 27 

manual monitoring points in São Paulo (see Figure 3.8 and Table 3.2). The basic 

network of freshwater has 461 sampling points distributed by major rivers and 

reservoirs and 12 automatic monitoring stations. The network assessment of 

groundwater quality has 313 points. The integrated monitoring network quality 

and quantity have been expanded to 38 points, installed in the main state aquifers. 

The network of coastal waters consisted of 66 monitoring points in estuaries and 

the Atlantic Ocean.  

 

It is worth mentioning that the monitoring of these networks is being done by 

CETESB for more than 40 years (Publicações e Relatórios | Águas Interiores, 

2017). The constraints in the current procedure include a huge human resource 

allocation and financial load. Figure 3.8 shows the water resources of Brazil by 

cubic meters per capita. 
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3.5.2 Water quality parameter selection and resilience calculation 

 

At this point, a comprehensive study has been conducted to select the parameters 

for calculating the resilience for test case 2. To formalise the MOMDP, it was 

essential to set these parameters to predict water quality resilience. 

 

The first step was to select the parameters based on WQ dataset. To do so, an 

intensive analysis of the parameters has been conducted. The selection of quality 

variables is determined by the type of monitoring networks such as the basic 

network, bathing, sediment and automatic. In this thesis, the selection of variables 

is dependent on the usages of water checked by CETESB in partnership with the 

Department of Water and Energy of the State of São Paulo (DAEE). CETESB 

determines about 60 water quality variables (e.g. physical, chemical, 

hidrobiológicas, microbiological and ecotoxicological) considered the most 

significant (see Table 3.2). These variables are determined by at least 70% of the 

basic network. In the case of measurements, the rules to determine the flow rate 

are often periodically adjusted. 

 

 

 Figure 3. 8: Water resources of Brazil by Basin (cubic meters per capita) [Source: 

Brazilian National Water Agency, ANA] 
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Table 3. 2: The quality variables of the Basic Network (freshwater) 

 

 

In this study, the basic network and its IQA (Índice de Qualidade das Águas), IET 

(Índice do Estado Trófico) and IVA (Aquá Índice de Vida Aquática) as shown in 

Table 3.2 have been considered. IQA mainly refers to the contamination of the 

water bodies caused by domestic sewage. IET reflects the quality of water for 

nutrient enrichment and its impact on the growth of algae and cyanobacteria. It is 

also calculated on a priority basis for the protection of aquatic life. IVA is used to 

assess the quality of water for the protection of the aquatic life, including its 

essential variables for aquatic organisms, toxic substances and degree of trophia. 

Monitoring 

Network 

Quality 

Index 

Main purpose Network Points Variables that make up the index 

 

 

 
 

 

 
 

 

 
 

 

 
Basic network 

 

 

IQA 

 

effluent 

dilution(Mainly 
domestic) 

 

 

All 

Temperature, pH, dissolved oxygen, biochemical 

oxygen demand, Escherichia coli / coliform 

thermotolerant, Total Nitrogen, total phosphorus, 
total solids and turbidity. 

 

 
 

IAP 

 

 
 

Public supply 

 

 
 

Utilised for public 

supply 

Temperature, pH, dissolved oxygen,Biochemical 

Oxygen Demand, Escherichia coli, Total Nitrogen, 
Total Phosphorus, Total Solids, Turbidity, 

Iron,Manganese, Aluminum, Copper, Zinc, 

Trihalomethanes formation potential, number of 
cyanobacteria cells (lentic Environment), Cadmium, 

Lead, Chromium Total, Mercury and Nickel. 

 
IET 

 
eutrophication 

 
All except the rivers 

 
Chlorophyll a and Total Phosphorus. 

 

 
IVA 

 

 
Protection of 

aquatic life 

classified in Class 4 

(CONAMA 357/05) 
presenting bad 

quality 

Dissolved oxygen, pH, Ceriodaphnia dubia 

ecotoxicological Assay, copper, zinc, lead, 
chromium, mercury, nickel, cadmium, surfactants, 

Chlorophyll a and Total Phosphorus. 

 
ICF 

 
Protection of 

aquatic life 

lentic environments 
used to supply; 

or state mesotrophic 

 
Phytoplankton community, phosphorus and chlorophyll a 

 

ICZ 

 

Protection of 

aquatic life 

 

some reservoirs 

 

Community zooplankton and chlorophyll a 

Network bathing  
IB 

 
Bathing / 

Recreation 

 
All 

Coliforms or thermotolerant 
Escherichia coli or Enterococci 

 

 
Sediment 

Network 

 

CQS 

 

Protection of 
aquatic life 

 

All 

Chemical contaminants that have values set by the 

ECCM (1999); Ecotoxicological test with Aztec 
Hyalella, Benthic Community 

 
ICB 

 
Protection of 

aquatic life 

Points that do not 
have bad quality / 

very poor in water 

 
Benthic Community 



 

95 | P a g e  

 

Threshold values for resilience evaluation of the selected parameters are shown in 

the following figures 3.9 and 3.10. 

 

The following Figure 3.9 shows the IVA and the IQA parameters where threshold 

values are classified into 5 categories starting from the high quality to the very 

poor quality.  

 

 
 

 
 

On the other hand, as mentioned earlier, in the case of IET (as shown in Figure 

3.10) the lower values are the better and it has been classified into six categories 

starting from the high oligotrophic to very highly eutrophic. See Appendix B for 

the threshold values in a numeric form. 
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Figure 3. 9: Threshold values for IVA and IQA based on the water quality parameters in 

São Paulo, Brazil 
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Figure 3. 10: Threshold values for IET on the water quality parameters in São Paulo  

 

These above two Figures 3.9 and 3.10 show the conflicting behaviour of the 

selected parameters and thus, form an ideal conflicting objective scenario in the 

context of MOMDP in a dynamic RL setting.   

 

To identify an appropriate methodology for test case 2 in a real-world scenario, 

the threshold values of the WQ parameters and resilience need to be calculated. 

Therefore, resilience calculation in the context of predicting WQR has been 

described to validate the applicability and competency of the proposed framework. 

 

For resilience evaluation, the lower bound of average quality (i.e. IQA=36, 

IVA=3.4 and IET=52) for each water quality index has been considered as the 

threshold in resilience evaluation. This could be justified by the fact that the 

surface water quality, within the average quality range still has maintained 

essential quality factors.  

 

Resilience is calculated based on Equation 3.5.  

𝑅𝑖 = 1 − ∫ (𝐹𝑚𝑎𝑥 − 𝐹𝑖(𝑡))(𝑡𝑖 − 𝑡1). 𝑑𝑡
𝑡2

𝑡1
…………………. (3.5) 

where, Ri is the resilience at the time Ti, Fmax is the maximum water quality index, 

Fi is the water quality index at the time Ti and, ti is the time elapsed and t1 is the 
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failure start time. In this study, resilience is scaled between 0 and 1 and hence, 

different water quality variables could be compared. One of the most used scaling 

methods i.e. Min-Max, as shown in Equation 3.6, is used for this purpose. 

𝑅𝑖
𝑛 =

(𝑅𝑖 − 𝑅𝑚𝑖𝑛)
(𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)⁄ ………………………. (3.6) 

Where, 𝑅𝑖
𝑛  is the normalised value, Rmin and Rmax are the minimum and maximum 

values for each water quality index, respectively. It should be noted that the worst 

and best water quality indexes for IQA and IVA are interpreted in a different way 

than IET. The higher IQA indicates a better quality of surface waters while this is 

opposite regards to IET and IVA (i.e. the lower is better). Therefore, the lowest 

value (Rmin) is set to 0 and the highest value (Rmax) is set to the maximum resilience 

value over the period of resilience evaluation.  

 

As like as the DST testbed, this test case also provides the dynamics where the 

values are not static over time. These data are changing which depends on natural 

factors such as weather, temperature, drought, precipitation and man-made 

changes such as usages and contamination caused by human (Lima, Lombardo and 

Magaña, 2018).  

 

Finally, in this step critical zones are determined using Equation 3.7. For this 

purpose, WQ monitoring stations are ranked based on their total weight. The 

higher value of total weight represents more criticality and the lower ones 

represent less criticality. Here, the critical stations have been selected based on the 

IET, IQA and IVA as mentioned earlier. The threshold values have been set for 

the selected parameters as mentioned earlier. This includes the highest values for 

IET with the lowest values of IQA and IVA for a station. Moreover, a zone has 

only considered if it has more than two critical stations.  

Drawing on that, Equation 3.7 presents the alternatives (i.e. critical stations) in the 

case study area.  

𝑍 = [𝑆𝑧
𝑐𝑠] … … … … … . (3.7) 

where, Z denotes the critical zones across the case study area (i.e. 22 zones); z is 

the number of zones; and cs denotes the number of critical stations in each zone. 
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3.6 Summary 

 

This methodology is based on empirical research and can be replicated to solve 

similar problems. It is worth stating that deep learning in the context of supervised 

and unsupervised learning has received widespread adoption in the AI and ML 

community. However, when it comes to DRL it has some ambiguity. In this 

chapter, the possible approach to form a RL agent has been illustrated. In addition, 

the method details for the purpose of building an MOMDP are also explained 

comprehensively.  

 

In a nutshell, the following Figure 3.11 and the queries can be helpful to get started 

or replicated the whole process for defining the RL model for both test cases. 

 

I. How can the RL model be formalised using Markov Decision Process 

with long-term strategies?  

II. How can the future reward be approximated? 

III. How can the deep Q network be selected? 

IV. How to set the strategy for exploration and exploitation for the Q 

learning algorithm along with experience replay technique? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Setup the 

environment 

Set the 

MOMDP 

Shaping 

reward 

functions 

Selecting 

DQN 

network 

setup 
 

Figure 3. 11: Steps to form the RL agent in this study 
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Moreover, the proposed DRL based framework is utilised to predict the critical 

zones effectively that can be integrated with the conventional approach (Governo 

Do Estado De São Paulo, 2018) which may lead to a cost-effective solution. The 

efficient method can leverage multi-level controls to detect the water quality 

resilience in each station.  

 

Furthermore, DRL algorithms may be effective to investigate any unexplored 

complexity compared to the traditional approach. Moreover, this model can be 

utilised for other water catchments, reservoirs or rivers (subject to the local 

standard of the water quality indices). The initial phase of the project can be 

considered of a quantitative nature to build the model. The model uses numerical 

input data that is gathered from the CETESB dataset for water quality in 22 zones 

in São Paulo, Brazil.  

 

In this chapter, a guideline is provided to form an MOMDP, selection of the water 

quality parameters and the necessary procedures for calculating the resilience. This 

starting point may help further to determine the critical or resilient zones and the 

current forecasting practices and constraints. Figure 3.12 shows a glimpse of how 

to repeat the process where the novelty is to formalise the MOMDP for a historical 

dataset in RL settings. 

 

 
Figure 3. 12: Process to repeat the work in a different dataset 
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To sum up, this study can help the concerned authorities to check the water 

resilience level. The manual approach of data collection is expensive, time-

consuming and difficult in certain cases due to adverse weather conditions. The 

proposed method may eradicate these problems.  

 

Since the optimisation and the RL technique require lots of mathematical 

expressions and it is at the heart of any machine learning algorithm, the followings 

were necessary to form the equations and build the algorithm: 

 

- Linear algebra 

- Probability and statistics 

- Calculus 

- Optimisation procedures 

 

The next chapter will be dealing with the problem settings and the experimental 

setups based on the methodology that has been discussed here. 
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Chapter 4 

Problem Settings and Experimental Setups 

4.1 Introduction 

 

Recently, significant advancements have been achieved in the field of DMOPs 

(Bechikh, Datta and Gupta, 2018). However, only a few studies are related to 

defining the problem and classifying them. To define the dynamics in the multi-

objective environment, Farina et al. (Farina, Deb and Amato, 2004) classified the 

dynamic problems based on the changing Pareto Front (PF) and Pareto Set (PS). 

This classification also shows the difficulty of solving the DMOPs by describing 

the changing PF and PS. However, it does not deal with the changing objectives, 

parameters, and time-linkage properties (Nguyen, Yang and Bonsall, 2012). In 

addition, this classification also does not look at the source of the dynamics of the 

problems (Helbig, Deb and Engelbrecht, 2016). Therefore, benchmark problems 

and constructing the problem are still an important and challenging task in the 

context of DMOPs (Helbig and Engelbrecht, 2013).  

 

On the other hand, algorithms that solve DMOPs should be tested on the 

benchmark functions to check the capabilities of a particular algorithm to 

overcome the difficulties in a specific point and how it is close to the true PF 

(Younes, Calamai and Basir, 2005). In this chapter, at first, the problem and the 

overall dynamics of the defined problem have been formulated. After that, the 

mathematical model of the defined problems has been articulated where the 

objective functions are generated based on the decision variables and the 

constraints. Moreover, one of the contributions of this thesis is represented in this 

chapter which is creating a DMOP benchmark in the context of RL settings. 

Besides this, experimental setups for both test cases have been discussed that is 

followed holistically to test the performance of all the considered algorithms.  
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4.2 Defining the Dynamic Multi-objective Optimisation Problem 

(DMOP) 

 

A dynamic multi-objective optimisation problem (DMOP) can be defined as a 

vector of decision variables x (t), that satisfies the objectives and constraints that 

change over time. Here, a general approach to defining DMOP has been 

articulated. Therefore, a minimisation or maximisation problem has been formally 

defined by Equation 4.1: 

𝑀𝑖𝑛./𝑀𝑎𝑥. 𝐹(𝑥, 𝑡) = {𝑓1(𝑥, 𝑡), 𝑓2(𝑥, 𝑡), … . . , 𝑓𝑀(𝑥, 𝑡)}  \𝑥 ∈  𝑋𝑛 …...….. (4.1) 

𝑠. 𝑡.  𝑔(𝑥, 𝑡) > 0 ;  ℎ(𝑥, 𝑡) = 0 

Where, x, f, g and h represent decision variables, a set of objective functions that 

need to be minimised or maximised, inequality and equality constraints 

respectively.  

In the context of decision space, the objective 𝑥∗(𝑖, 𝑡) dominates over 𝑥 (𝑗, 𝑡). In 

other words, the dominating one is better in at least one objective and not worst in 

any other objectives. This can be rewritten as in Equation 4.2: 

𝐹(𝑗, 𝑡) <  𝑓 (𝑖, 𝑡)∗ \ 𝑓(𝑗, 𝑡)  ∈  𝐹𝑀 …………………….……...……….... (4.2) 

In this study, the dynamics of the environment is defined based on two parameters 

namely dynamic optimal Pareto front (DOPF) and dynamic optimal Pareto set 

(DOPS). DOPF can be represented with respect to the objective space as in 

Equation 4.3: 

𝑃𝐹(𝑡)∗ = {𝑓(𝑖, 𝑡)∗⃓ ∄ 𝑓(𝑗, 𝑡)} < {𝑓(𝑖, 𝑡)∗, 𝑓(𝑗, 𝑡) ∈ 𝐹𝑀}……………... (4.3) 

 

Dynamic optimal Pareto set with respect to the decision space at time t is denoted 

by 𝑃𝑆(𝑡)∗in Equation 4.4. 

𝑃𝑆(𝑡)∗ = {𝑥𝑖
∗⃓ ∄ 𝑓(𝑥𝑗 , 𝑡) < 𝑓(𝑥𝑖

∗, 𝑡)∗, 𝑓(𝑥𝑗 , 𝑡)  ∈ 𝐹𝑀}…………...……. (4.4) 

 

Moreover, the following Δf signifies how frequent the environment changes based 

on the actual PF, T(PF) and the obtained PF, O(PF) (Azzouz, Bechikh and Ben 

Said, 2017) as shown in the following Equation 4.5. 

Δf = |T(PF) − O(PF)∗|………………………………………………....... (4.5) 
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4.3  Defining the Dynamics of the DMOP 

 

In order to solve the real-world DMOPs more effectively, it is necessary to take 

the following characteristics of the dynamics and problem types into account when 

designing new methodologies. There are several types to define dynamics in the 

literature for multi-objective optimisation. Frequency, severity and predictability 

are the prominent categories among them (Azzouz, Bechikh and Ben Said, 2017). 

Tantar et al. (Tantar, Tantar and Bouvry, 2011) proposed a classification model 

based on components that focus on the sources of the dynamism of the 

optimisation problem. They proposed the following four categories of dynamics. 

 

- 1st order: dynamic parameter evolution modelled as 𝐻 (𝐹𝜎 , 𝐷, 𝑥, 𝑡) =

𝐹𝜎(𝐷(𝑥, 𝑡)) 

- 2nd order: dynamic function evolution modelled as  𝐻 (𝐹𝜎 , 𝐷, 𝑥, 𝑡) =

𝐷 (𝐹𝜎 , 𝑥, 𝑡) 

- 3rd order: dynamic state dependency evolution modelled as 

𝐻(𝐹𝜎, 𝑇[𝑡−𝑗,𝑡], 𝑥, 𝑡) given a transformation function T over time 𝑡 and 𝑡 − 𝑗. 

- 4th order: Online dynamic evolution modelled as 𝐻(𝐹𝜎 , 𝐷, 𝑥, 𝑡) =

𝐹𝐷(𝜎,𝑡)(𝐷(𝑥, 𝑡)) 

 

Where, H represents the model, 𝐹𝜎 is the multi-objective support function, D 

represents the vector of time-dependent functions where t and 𝜎 characterise time 

and the parameters. However, this model does not generalise the dynamic 

constrained problems which are associated with changing parameters, objectives 

and limitations.   

 

On the other hand, (Farina, Deb and Amato, 2004) describes four types of 

Dynamic Multi-objective Optimisation Problems (DMOPs) according to the 

changes affecting the optimal PF and PS. In this study, the standardisation that is 

provided by (Farina, Deb and Amato, 2004) has been utilised which is mentioned 

in Table 4.1: 
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The reason for using the above-mentioned standard is that it can deal with the 

changing PF and PS and this is required in both test cases that have been selected 

in this study. This standard can also provide the classification of the DMOPs and 

the sources of the dynamics which help to get the insights to analyse the 

performance of the proposed algorithm.  

 

To define the optimisation functions in general in such a dynamic environment 

where the dynamics are controlled by a time-specific parameter 𝜏 (i.e. a changing 

step when the problem changes) can be represented as in Equation 4.6: 

 

{
𝐷𝑡(𝑡(𝜏), 𝜏) = 𝑡 (𝜏) + 1, 𝑤ℎ𝑒𝑛 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝐷𝑡(𝑡(𝜏), 𝜏) = 𝑡 (𝜏),                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. . (4.6) 

 

Therefore, the dynamic multi-objective optimisation problem in the finite period 

[1, 𝜏𝑒𝑛𝑑] can be defined as in Equation 4.7 (Raquel and Yao, 2013): 

 

𝑂𝑝𝑡𝑖𝑚𝑖𝑠𝑒 {∑ Ƒ
𝛾(𝑡𝜏,𝑋Ƒ

𝐺[1,𝜏] 
 )

𝜏𝑒𝑛𝑑

(𝑥𝑡)} … … … … … … . . … … … … … … … … … … . . . . (4.7) 

 

Where, Ƒ represents a number of objective functions, 𝑋Ƒ
𝐺[1,𝜏] 

is the set of solutions 

achieved by the applying algorithm G to solve Ƒ during [1, 𝜏]. 

From the above discussions, the overall dynamics are set to design the proposed 

benchmark which leads to forming the first test case. 

 

Table 4. 1: Dynamic MOP environment types 

PF(t)* PS(t)*  

No Change Change 

No change Type 4 Type 1 

Change Type 3 Type 2 
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4.4  Proposed Benchmark for a Dynamic Multi-objective 

Environment  

 

In order to construct a dynamic environment in the RL settings, this study proposes 

the use of a grid-world which is a modified version of the traditional DST as 

described in Chapter 1 and 2. In this test case, the agent has to maximise its 

cumulative reward compared to the penalty that the agent will get while traversing 

the environment.  

 

To extend this static DST environment and produce a dynamic DST, three different 

scenarios have been considered. The first environment is shown in Figure 4.1 

which consists of different treasure values. These values change randomly over 

time. This randomness depends on the computers present time that helps to 

generate a random value in a finite horizon while the agent traverse in an episodic 

environment. 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 4. 1: Two instances (a, b) of dynamic deep-sea treasure  

(random treasure values-Type II)  
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(a) (b) 

(c) 

Due to the random allocation of the treasure values, this environment can be 

categorised in type II where both PS* and PF* changes. This means that in every 

episode the true PF and PS will not be similar, and the agent cannot find any 

patterns that will help the agent to converge. Due to this randomness (i.e. ML 

incompatibility without having pattern) of the environment, this has been excluded 

for further implementation and analysis (Takeuchi, Kitahashi and Tanaka, 1975).   

 

The next environment is similar to the random one. However, the treasure values 

follow a fixed amount of numbers which is categorised as silver (i.e. lower value) 

and gold (i.e. higher value). The agent dynamically collects the treasures from the 

grid world. This dynamic environment can be considered as Type III where PF* 

changes and PS* remains invariant. Figure 4.2 represents dynamic DST (silver and 

gold) environment where red and black dots represent identified gold and silver 

treasures respectively.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

Figure 4. 2: Dynamic Deep-sea Treasure problem- Silver and Gold (Type III)  

(a) gold environment  (b) silver environment (c) frontier 
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(a) (b) 

(c) 

In the final environment, as shown in Figure 4.3, an enemy submarine (i.e. red 

submarine) has been introduced that attacks the agent (i.e. black submarine). The 

enemy submarine aims to hit the agent and in every clash between these two 

submarines results into the damage of the black agent’s health meter by -2. This 

health parameter creates another objective that needs to be satisfied over time to 

survive.  

 

This environment satisfies the dynamics of the environment in the category of type 

IV where both PF* and PS* remains unchanged. As the agent’s vessel approaches, 

the enemy intends to hit the agent. At this moment, the priority of the black 

submarine is to save its life by not let the enemy damage its health meter and thus, 

a new objective is formed to be safe in addition to achieving the treasure. Hence, 

it has accommodated a different objective while traversing the environment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 3: Dynamic Deep-sea Treasure problem- DST Attack by Enemy (Type IV) 
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Figure 4. 4: A conceptual model of the Markov Decision Process (MDP) of the 

simulated environment 

 

4.5 Empirical Setups for Test Case 1 

 

4.5.1 The mathematical model for test case 1 

 

At first, a conceptual model of this test case 1 has been created based on the 

mathematical model. To construct the model which is a 2D grid-world, the 

conventional approach to solve this sort of problems would be using the raw image 

as input for deep layer where the convolutional network and the output layer deals 

with images. The other approach is setting up the environment using raw code by 

formalising the MOMDP as argued in Chapter 3. Since another test case does not 

have any image input, both test cases are considered in a similar way. Therefore, 

the hardcode approach has been chosen by formalising the MOMDP. However, 

the latest success of DRL is based on the raw images by (Mnih et al., 2015) to play 

49 Atari games with the same algorithm where the agent learns itself and achieves 

human-level expertise.  

 

To get started with the concept of hard-code approach, let us consider a scenario 

as illustrated in Figure 4.4 which shows a sample of MDP.  In this scenario, the 

agent needs to go from the root node to the destination node by satisfying all the 

objectives that are subject to the pre-defined constraints. 
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In the above Figure 4.4, Sr represents the source node where the traverse is started, 

and Sd is the destination node where the traverse will be ended. Each of the states 

is segmented with other objectives and criteria. 

 

The following code snippets 4.1 and 4.2 show the reward allocations and the states 

respectively in the DST environment.  

 

if scene is None: 

    # While the scene is empty  

    self._scene = np.zeros((11, 10)) 

 

    # Default Map as used in general MORL papers for DST 

    self._scene[2:11, 0] = -100 

    self._scene[3:11, 1] = -100 

    self._scene[4:11, 2] = -100 

    self._scene[5:11, 3:6] = -100 

    self._scene[8:11, 6:8] = -100 

    self._scene[10, 8] = -100 

    # Rewards of the default map in the context of a static DST 

    self._scene[1, 0] = 1 

    self._scene[2, 1] = 2 

    self._scene[3, 2] = 3 

    self._scene[4, 3] = 5 

    self._scene[4, 4] = 8 

    self._scene[4, 5] = 16 

    self._scene[7, 6] = 24 

    self._scene[7, 7] = 50 

    self._scene[9, 8] = 74 

    self._scene[10, 9] = 124 

 

Snippet 4.1: Rewards map in the DST environment 

 

_state_map = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 

9, 

              10: 10, 11: 11, 12: 12, 13: 13, 14: 14, 15: 15, 16: 16, 

17: 17, 18: 18, 19: 19, 

              21: 20, 22: 21, 23: 22, 24: 23, 25: 24, 26: 25, 27: 26, 

28: 27, 29: 28, 

              32: 29, 33: 30, 34: 31, 35: 32, 36: 33, 37: 34, 38: 35, 

39: 36, 

              43: 37, 44: 38, 45: 39, 46: 40, 47: 41, 48: 42, 49: 43, 

              56: 44, 57: 45, 58: 46, 59: 47, 

              66: 48, 67: 49, 68: 50, 69: 51, 

              76: 52, 77: 53, 78: 54, 79: 55, 

              88: 56, 89: 57, 

              98: 58, 99: 59, 

              109: 60} 

 

Snippet 4.2: States map in the DST environment 

 

To illustrate the first test case mathematically, the components of the environment 

are given below: 
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- A submarine (i.e. black coloured) that works as an agent, 

- the treasure values, 

- time,  

- rewards and  

- health meter for the dynamic DST environment (attack by enemy) 

 

Considering the objectives, the agent needs to hunt the highest treasures in the least 

possible time. However, for every step, the agent is penalised by -1 point. So, these 

two aims consist the conflicting objectives such as maximisation and minimisation 

for all the considered environments. In the third environment, an extra constraint 

has been introduced that is the health meter of the agent where the value of the 

meter is decreased by the hit of the enemy submarine. The followings are the list 

of the decision variables and constraints to formalise the objective functions.  

 
Variable 1: Treasure values are divided into four categories as a tuple  

based on the defined benchmarks 

1. Tsilver = [1, 2, 3, 5, 8, 16, 24, 50, 74, 124] 

2. T𝑔𝑜𝑙𝑑 = [100, 925, 1231, 1442, 1525, 1597, 1797, 1829, 1889, 1900] 

3. T𝑎𝑡𝑡𝑎𝑐𝑘 𝑏𝑦 𝑒𝑛𝑒𝑚𝑦 = [1, 2, 3, 5, 8, 16, 24, 50, 74, 124] 

4. 𝑇𝑟𝑎𝑛𝑑𝑜𝑚 =  𝑟𝑎𝑛𝑑 [1 𝑡𝑜 ∞], where only integer values are considered 

 

In general, the treasure values can be expressed by the following Equation 4.8: 

 

Treasure =  (𝑇𝑖=0
𝑖=∞, 𝑡)

𝑒𝑝𝑖𝑠𝑜𝑑𝑒
; 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑠 ………. (4.8) 

 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 2: 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝐸, 𝑡ℎ𝑒 𝑠𝑝𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡 𝑐𝑎𝑛 𝑏𝑒  

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.9 

 𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 =  𝑋𝑐𝑜𝑠𝑡(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑔)
𝐸 … … … … … … … … … . (4.9) 
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𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 3: 𝑇ℎ𝑒 ℎ𝑒𝑎𝑙𝑡ℎ 𝑚𝑒𝑡𝑒𝑟 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑏𝑦 𝑗 = −2 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑟𝑒 −

𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑛 = 10 

𝑏𝑦 𝑒𝑣𝑒𝑟𝑦 ℎ𝑖𝑡 𝑏𝑦 𝑡ℎ𝑒 𝑒𝑛𝑒𝑚𝑦 𝑠𝑢𝑏𝑚𝑎𝑟𝑖𝑛𝑒 𝑎𝑠 𝑠ℎ𝑜𝑤𝑛 𝑖𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.10.  

ℎ𝑒𝑎𝑙𝑡ℎ 𝑚𝑒𝑡𝑒𝑟 = ∑ (𝐻, 𝑡)𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ≥ 
𝑛=𝑗+(−2)

𝑗=−2
0………………………. (4.10) 

 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 4: 𝑇ℎ𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡  

The reward function is defined by the vector 𝑅⃗⃗ = 𝑆 × 𝐴 × 𝑆′ of n rewards in an 

MOMDP. This can be defined as following Equation 4.11 (Ruiz-Montiel, Mandow 

and Pérez-de-la-Cruz, 2017): 

𝑅⃗⃗ =  ∑ 𝛾𝑘∞
𝑘 𝑟𝑡+𝑘+1 ……………………………………………….. (4.11) 

Where, the agent gets a penalty of (-1) for every step during the traverse in the 

grid-world and 𝛾 ∈ [0,1] represents the discounted factor where the reward is 

received after k steps. 

 

Hence, the two objective functions are defined as the following Equations 4.12 

and 4.13: 

 
𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟏 →

  𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝑓1): ∑ (𝑋𝑐𝑜𝑠𝑡(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑔)
𝐸

𝑖
, 𝑡)𝑛

𝑖=1 ;  ∀𝑒𝑝𝑖𝑠𝑜𝑑𝑒….. (4.12) 

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟐 →   𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒(𝑓2):  (𝑓𝑡𝑟𝑒𝑎𝑠𝑢𝑟𝑒𝑣𝑎𝑙𝑢𝑒𝑠 , 𝑡) ;  ∀𝑒𝑝𝑖𝑠𝑜𝑑𝑒…… (4.13) 

 

Subject to, 

𝑓(𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒) = (
0 × 0 ⋯ 0 × 9

⋮ ⋱ ⋮
10 × 0 ⋯ 10 × 9

) ; 𝑒𝑥𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑎𝑟𝑒𝑎𝑠 

 

The blocked areas in the grid-world are given below (see test case 1 in Chapter 1 

for refreshing the orientation): 

 
(2 × 0); (3 × 0 ⋯ 3 × 3); (4 × 0 ⋯ 4 × 4); (5 × 0 ⋯ 5 × 5); 

(6 × 0 ⋯ 6 × 6); (7 × 0 ⋯ 7 × 5); (8 × 0 ⋯ 8 × 7); 
(9 × 0 ⋯ 9 × 7); (10 × 0 ⋯ 10 × 8) 

 
The time for changing the parameters are based on current time (pc clock) and the 

movement of the agent must not take place in the future (pc clock).    

 
(i) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑖𝑛𝑔 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑝𝑜𝑐ℎ 
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4.5.2 Experimental settings for test Case 1 

 

Considering the analysis of the algorithms, a set of hyperparameters are required 

to establish the experimental setup. This is also essential to make an impartial 

comparison for the considered algorithms. These hyperparameters need to be 

similar and the same for every case. To form the experimental setup for test case 

1, the following network architecture has been followed as shown in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this structure as shown in Table 4.2, an experience replay, and a target network 

have been utilised to stabilise the network and the learning procedure. To reach all 

the states including the unvisited nodes, an ε-greedy exploration policy has been 

implemented with annealing from 1 to 0.05. The discount factor is γ = 0.97, and 

the target network is reset in every 150 episodes. To stabilise the learning, mini-

batches of 32 is used where the number of training chunk for each Adam update is 

computed. The replay memory size is set to 10K where Adam is sampled from 

recent actions. The optimisation algorithm of Adam of Keras implementation with 

a learning rate of 0.001 is used which is based on RMSProp (Wilson et al., 2017). 

For the experimental interval, the average steps have been counted after 1000 

steps. Here, two convolutional layers of 16×3×3 and 32×3×3 with the rectified 

 Figure 4. 5: Visualisation of the deep layer for the dynamic DST environments 
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linear unit (ReLU) are used as an activation function. Moreover, a fully connected 

layer has been established on the top of the two layers. See Appendix D for the 

whole setup including the decay, loss and the kernel functions architecture with 

the number of tensors. In addition, in the beginning, the number of “do nothing” 

actions have been set to 40 at the start of an episode. 

 

 

 

 

 

 

 

 

 

The following Figure 4.6 shows the visualisation of the graph edifice for the 

above-mentioned planning. 

 

 

 

 

 

 

 

 

 

 

Table 4. 2: Hyperparameters for test case 1 

Parameter Value 

Learning steps 3 Million 

Agent’s Evaluation (Interval) 1 Million 

Replay memory size 10000 

Target network update rate 1000 

Learning rate (α) 0.001 

Exploration rate  0.4 

𝜀 end step 1000 

Discount factor 0.97 

Optimiser Adam 

Batch size 32 

No-op max 40 

Figure 4. 6: Visualisation of the deep layer for test case 1 (extracted using TensorBoard) 
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4.6 Empirical Setups for Test Case 2 

4.6.1 Mathematical model to formalise MOMDP for test Case 2 

 

In the second test case, the whole environment has been formulated using 

MOMDP. During the conceptual design, a multi-criteria system has been defined 

which has different inputs such as I1= [IQA1, IET1, IVA1] up to I22= [IQA22, IET22, 

IVA22].  

The first task was to form the MOMDP in this scenario based on the dataset which 

has been utilised using the multi-criteria selection mechanism. To do so, fuzzy 

AHP (FAHP) method has been used. The detailed description of the method can 

be found in (Hasan et al., 2016). 

 

The external influences such as WQI values have been denoted by (λi; i=1:z). To 

normalize, each set of attributes is defined by a global parameter of influence 

which is denoted by (δ1, δ2, δ3… δ n) as mentioned in (Hasan et al., 2016; Klir and 

Yuan, 1995; Haiyunnisa, Alam and Salim, 2017). In this study, the criticality (of 

the zones) is set using the triangular fuzzy number (TFN) and scaled between 0 

(resilient) and 1 (critical). In relation to the required fuzzy algorithm, set of 

membership functions have been used and defined by the triplet (l, m, n) as shown 

in Equation 4.14 and Figure 4.7. 

U(x)={
(x − l)/ (m − l), l ≤ x ≤ m

(n − x)/(n − m), m ≤ x ≤ n
0, otherwise

… … … … … … … … … … (4.14)                                                                                                           

 

  

 

  

where, l denotes the smallest likely value; m denotes the most probable value; and  

n denotes the largest possible value of any fuzzy event. In other words, m is the 

Figure 4. 7: Distribution of triangular fuzzy number (Wang, Wang and Qi, 2016) 
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most possible value of the fuzzy number U(x), l and n are the lower and upper 

bounds, respectively. Table 4.3 outlines the results of the pair-wise comparisons 

matrix. In order to show the importance intensity of each criterion, factors (λ) and 

sub-factors (σ) are utilised using TFN. 

 

Table 4. 3: Global index of importance intensity of WQI by AHP and TFN (Bahri, Ben 

Amor and El-Ghazali, 2014) 

 

Equation 4.15 calculates the global significance of factor and sub-factor for 

selecting the critical zones based on the parameters (i.e. IQA, IET and IVA) and 

their threshold values which have been discussed in Chapter 3: 

 

𝛿 = ∑ (𝜆𝑖 × 𝜎𝑖)
𝑧
𝑖=1 …………... (4.15) 

where, 𝛿 denotes global significance; λ and σ are the significance of factors and 

sub-factors, respectively; and z denotes the number of zones. Therefore, each WQ 

monitoring station can be expressed by Equation 4.16:  

𝐸𝑖=1
𝑘 = {(𝐼𝑄𝐴𝑧 , ∑ 𝛿𝑖

𝑘𝑧
𝑖=1 ), (𝐼𝑉𝐴𝑧 , ∑ 𝛿𝑖

𝑘𝑧
𝑖=1 ), (𝐼𝐸𝑇𝑧 , ∑ 𝛿𝑖

𝑘𝑧
𝑖=1 ) }….... (4.16) 

Where, 𝑆𝑖=1
𝑘  denotes a set of alternatives, Z= [E1

k, E2
k,…….., En

k] 

Hence the two objective functions are defined in Equation 4.17 and 4.18: 
 

IQA/ IVA IET 

Linguistic variable to 
select the decision 

Crisp 
scale 

of 
AHP 

Scale of TFN 
Significance intensity 
for IET 

Scale in 
Traditional 

AHP 
Scale of TFN 

Very poor quality (λ1) 1 (0.1,0.2,0.3) 
High 
oligotrophic/High 
quality(σ1) 

6 (0.9, 1.0,1.0) 

Poor quality (λ2) 2 (0.3,0.4,0.5) 
Oligotrophic/Good 
quality(σ2) 

5 (0.8,0.9,1.0) 

Average quality (λ3) 3 (0.5,0.6,0.7) 
Mesotrophic/Average 
quality(σ3) 

4 (0.7,0.8,0.9) 

Good quality(λ4) 4 (0.7,0.8,0.9) 
Eutrophic/Average 
Quality(σ4) 

3 (0.4,0.5,0.6) 

High quality(λ5) 5 (0.9,1.0,1.0) 
Highly/Poor quality 
eutrophic(σ5) 

2 (0.0,0.1,0.2) 

 

 
  

Very highly 

eutrophic/Very poor 

quality(σ6) 

1 (0.0,0.1,0.2) 
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𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟏 →

  𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝑓1): ∑ ((𝐼𝑉𝐴𝑧 , ∑ 𝛿𝑖
𝑘𝑧

𝑖=1 , 𝑡)& (𝐼𝐸𝑇𝑧 , ∑ 𝛿𝑖
𝑘𝑧

𝑖=1 ), 𝑡)𝑛
𝑖=1 ;  ∀𝑒𝑝𝑖𝑠𝑜𝑑𝑒. (4.17) 

 

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝟐 →   𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒(𝑓2):  ((𝐼𝑄𝐴𝑧, ∑ 𝛿𝑖
𝑘𝑧

𝑖=1 ), 𝑡) ;  ∀𝑒𝑝𝑖𝑠𝑜𝑑𝑒………. (4.18) 
 
Subject to, 

𝑖) 𝑓(𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒) = (
0 × 0 ⋯ 0 × 21

⋮ ⋱ ⋮
21 × 0 ⋯ 21 × 21

) ;  𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑠 

 
 

The time for changing the parameters are based on current time (pc clock) and the 

movement of the agent must not take place in the future (pc clock). 

ii) 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑝𝑜𝑐ℎ 
 
 

The total weight of each criterion is determined using fuzzy mean, as shown in 

Equation 4.19: 

𝑤̅ = [
𝑙𝑖

∑ 𝑛𝑖
𝑧
𝑖=1

,
𝑚𝑖

∑ 𝑚𝑖
𝑧
𝑖=1

,
𝑛𝑖

∑ 𝑙𝑖
𝑧
𝑖=1

] … … … … … … … … . … . . … . . . (4.19) 

where, 𝑤̅ denotes global fuzzy mean; l, m and n are the membership functions to 

select a particular criterion (i.e. critical zone or station); and z represents the 

number of zones.  

 

In this step, the total weight of each criterion (i.e. WQI’s resilience) should be 

defuzzified before normalisation of the results of global fuzzy mean in crisp values 

(which are subject to fuzzy sets and the corresponding membership degrees). This 

process interprets membership degrees into a specific decision (Rondeau et al., 

1997). Equation 4.20 is used to defuzzify the total weights. The total weights are 

used to rank the stations in different zones. 

𝑊𝑖𝑑 = [𝜌 (
𝛼(𝑤𝑖𝑛)

∑ 𝛼𝑖
𝑧
𝑖=1

) × (1 − 𝜌) (
𝛼(𝑤𝑖𝑙)

∑ 𝛼𝑖
𝑧
𝑖=1

)] ;  𝜌 ∈ [0,1] … … . (4.20) 

 

where, 𝑊𝑖𝑑 denotes the total weight of each criterion, ρ represents optimism index 

(i.e. reflects risk-taking attitude of decision makers’); α denotes the cut values in 
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the crisp; win and wil are the upper and lower bounds of the α-cut values, 

respectively (Klir and Yuan, 1995; Kim and Park, 1990) determined using the 

weighting average method. It should be noted that the factors belonging to the IQA 

and IVA have five α-cut values and IET have six cut values.  

Finally, in this step critical zones are determined using Equation 4.21 and Equation 

4.22. The higher weight values represent more critical and the lower ones represent 

the less critical zone.  

𝑓𝑣𝑊𝑄𝐼
= ∑ (𝑤𝑖𝑑 × 𝜌𝑝)𝑧

𝑖,𝑝=1 ……. (4.21) 

𝑍 = ∑ 𝑓𝑣𝑊𝑄𝐼𝑖

𝑧
𝑖=1 ………………. (4.22) 

 

where, 𝑓𝑣𝑊𝑄𝐼
 represents variable alternatives (i.e. critical stations in each zone) for 

each WQI individually; WQI could be either IQA, IET or IVA; 𝑊𝑖𝑑 denotes the 

total weight of each criterion; 𝜌 denotes optimism index; p represents the number 

of iteration of the satisfaction level; and z represents the total number of critical 

stations; Z denotes the zone. 

 

Now, the procedure of formalising the multi-objective environment in the RL 

settings for this test case has been explained. For a comprehensive evaluation of 

RL, readers are referred to (Sutton and Barto, 2018). To solve the RL in this 

context, Markov Decision Process (MDP) has been defined as the collection of the 

following components (see terminology and its explanation for an MDP): 

• States: 𝑆 

• Actions: 𝐴(𝑠), 𝐴 

• Transition model: 𝑇(𝑠, 𝑎, 𝑠’) ~ 𝑃(𝑠’|𝑠, 𝑎) 

• Rewards: 𝑅(𝑠), 𝑅(𝑠, 𝑎), 𝑅(𝑠, 𝑎, 𝑠’) 

• Policy:   𝜋(𝑠) → 𝛼𝜋∗ is the optimal policy 

In this case of an MDP, the environment is partially observable because of the 

dynamics of the environment. Thus, the agent needs a memory (i.e. experience 

replay) to store the past observations to make the best possible decisions. The 



 

118 | P a g e  

 

problem settings will be clearer to understand by analysing the Markov property 

as below. 

In the Markov property, the information of the near future (i.e. at time 𝑡 + 1) 

depends on the present information at time t. A sequence of the zones 

[𝑧1, 𝑧2, … … , 𝑧22] in the selected state follows the first order of Markov property as 

expressed by Equation 4.23 (Silver, 2015): 

𝑃(𝑧𝑡|𝑧𝑡−1, 𝑧𝑡−2, … . , 𝑧1) = 𝑃(𝑧𝑡|𝑧𝑡−1)……………….……. (4.23) 

𝑤here 𝑧𝑡 depends only on 𝑧𝑡−1. Therefore, 𝑧𝑡+1 will depend only on 𝑧𝑡.  

However, in this scenario, the Equation can be expressed by Equation 4.24.   

𝑃(𝑧𝑡|𝑧𝑡−1, 𝑧𝑡−2, … . , 𝑧1) = 𝑃(𝑧𝑡|𝑧𝑡−1, 𝑧𝑡−2) ………………. (4.24) 

where, 𝑧𝑡 depends on 𝑧𝑡−1 and 𝑧𝑡−2. 

 

Thus, the stations can be converted to a Markov property if the probability of the 

new state depends on the next state and claim that 𝑧𝑡+1, depends on the current 

state, 𝑧𝑡, such that the current state captures and remembers the property and 

knowledge from the past. Therefore, as per the Markov property, the grid-world 

(i.e. the environment) is considered to be stationary (Feinberg and Shwartz, 2014). 

However, in this scenario, type III dynamics exist in this environment as 

mentioned in (Farina, Deb and Amato, 2004).  

 

A finite block of 22 zones is considered with their corresponding data stations that 

are changing based on the monthly data. For each station, the velocity of the data 

has been formulated in a continuous manner where the data changes at next time 

step 𝑡 + 1 that is only determined by the current system state. It is independent 

from the previous states due to the changing values of the monthly data such as 

weather (e.g. drought, precipitation) and man-made changes such as usages and 

contamination as mentioned in Chapter 2 and 3. Therefore, the stations of each 

zone can be treated as an MOMDP (i.e. see a sample in Figure 4.8).  
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Figure 4. 8: MDP for the resilient area selection 

Here, the key concepts to facilitate the DRL-based WQR prediction have been 

formulated. The terminal of each zone is related to the dataset, which is chosen 

from the discrete levels, denoted as 𝑍 = {𝑍1, 𝑍2, … . , 𝑍𝑛 }. Therefore, the entire 

action space is denoted as: 𝐴 = {𝐴1, 𝐴2, … . , 𝐴𝑛}. On the other hand, the action 

space is determined based on the observation of the multi-objective optimisation 

and the selection on the actions based on the satisfaction of the objectives 

(maximising IQA and minimising IET, IVA). In this work, the current (physical) 

time and the values of IQA (i.e. the higher the better) and IET and IVA (i.e. the 

lower the better) are considered to determine the optimal control action.  

 

Incorporating the current time information in the state enables the DRL algorithm 

to adapt the time-related activities, such as time-varying data for months that 

changes across the year. This is important because the weather pattern varies 

significantly throughout the year and thus, the recorded dataset reflects the changes 

on a monthly basis. Hence, it is required to facilitate the system and give the 

flexibility for the MOMDP to adapt to time-variant variables. 

 

Considering a reward function, the agent does the job by taking a sequence of 

actions 𝑎𝑡−1 at state 𝑠𝑡−1, the block will evolve into a new state 𝑆𝑡 and the DRL 

algorithm will receive an immediate reward 𝑟𝑡 in the MOMDP, the reward function 

𝑅⃗⃗ = 𝑆 × 𝐴 × 𝑆′ is a vector of n rewards rather than a scalar with an element for 
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each objective. Similarly, the reward function is also the vector value such as 𝑅⃗⃗⃗⃗ =

(𝑠, 𝑎, 𝑠′). This can be defined by Equation 4.11 as mentioned in the first test case. 

The rewarding factor includes a penalty of (-1) for detecting the wrong station 

which is not resilient and (+1) for detecting the right one.  

 

During the traverse in the block, the target is to maximise the accumulative reward 

R, where 𝛾 = [0,1] is a decay factor. Agent’s target is to find the optimal policy 

(𝜋∗), which maximises the projected reward. The optimal policy, in this case, is 

responsible to maximise the amount of reward received or expected to receive over 

a lifetime. Thus, in this method, the policy is nothing but a guide to direct which 

action needs to be taken in a given state. The agent determines the resilient area 

with the highest IQA values compared to the lowest IET and IVA as mentioned in 

the threshold values in Chapter 3 and Appendix B. 

 

The optimal value 𝑄∗(𝑠𝑡, 𝑎𝑡) is used to represent the maximum accumulative 

vector reward to determine all the Pareto solutions that can be calculated by the 

Bellman Equation (Gross, 2016) as shown in Equation 4.25. 

 

𝑄𝑛
∗⃗⃗⃗⃗⃗⃗ {(𝑠, 𝑎), 𝑡} =

{
(1 − 𝛼𝑛)𝑄⃗⃗𝑛−1(𝑠, 𝑎) + 𝛼𝑛[ 𝑟𝑛 + 𝛾 𝑉𝑛−1(𝑠′ ), 𝑡];  𝑖𝑓 𝑠 = 𝑠𝑛 ∧  𝑎 =  𝑎𝑛   

𝑄⃗⃗𝑛−1{(𝑠, 𝑎), 𝑡};                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
… . (4.25) 

 

Where, 𝑉𝑛−1 (𝑠) = max
𝑎∈𝐴

𝑄⃗⃗𝑛−1{(𝑠, 𝑎), 𝑡} 

 

In this test case, the value has been estimated by a Q-learning method as described 

in (van Hasselt, Guez and Silver, 2015). A high-level structural design of the RL 

agent that interacts within the environment is given below as shown in Figure 4.9. 
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Figure 4. 9: High-level architecture of the RL implementation on the WQR dataset 

 

To dig into deeper, let us consider the following environment and 

the given information. The agent in the MOMDP needs to identify the resilient 

zones based on the IQA, IET and IVA. The following visualisation (presented in 

Figure 4.10) shows a conceptual understanding of how the agent traverses in the 

environment and lists the resilient areas. The MOMDP represents a grid-world as 

shown in the visualisation. The filled circle shows the critical zones whereas the 

white circles show the resilient areas.  

This grid-world is formed into states (i.e. zones with stations), actions (i.e. which 

zone to traverse), transition models (i.e. the selection from one zone to another) 

and rewards (i.e. achieved by identifying the resilient zone). The solution for this 

MOMDP is an optimal policy that relies on the vector rewards which determines 

the critical as well as the resilient zones. These rewards are connected to the 

objectives to find the optimal policy. Since, the dynamic nature and partially 

observable MOMDP, the agent requires an experience replay as shown in the 

Figure 4.11 to store the past observations to make the best possible decisions which 

are close to the Pareto Front. 
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Consequently, the continuous input from the agent can play an important role in 

state formation. Hence, the state spaces can be either discrete or continuous. The 

agent starts from the start state S1 and must reach the resilient zone by calculating 

the parameters (e.g. IQA, IET and IVA).  

 

Consider the following grid-world as having 22 discrete states, where the orange-

colour grid is the goal state, and the black one is the agent that needs to identify the 

resilient zone and distinguish them in a stack. The states are represented by the 

coordinates of (x, y) whereas the actions are the execution by the agent in a 

particular state. In other words, actions are sets of things that an agent is allowed to 

do in the given environment.  

 

Consider this example, 22 discrete states with 4 discrete actions such as up, down, 

right and left. Therefore, the action, a ∈ A where, A = {up, down, right and left}. 

Needless to mention, this action can be treated as a function of the state, that is, 𝑎 =

𝐴(𝑠), where depending on the state function, it decides the best possible action in 

the current state based on the vector rewards. The transition model is defined by the 

current state (s), action (a), and the new state (s′). This can be represented 

as T(s, a, s′) that defines the rules to traverse in the environment. It gives the 

probability P(s′|s, a) for the new state s′. 

 

Let us consider the following information is pre-defined for this environment: 

• Agent traverse between the Zones Z1 to Z22 and their corresponding 

stations within a grid-world. 

• Once the agent reaches the goal state G (critical stations), it receives a 

reward of +1. However, for every step, it gets -0.04 rewards. 

• The agent gets -1 for selecting the wrong station C. 

• Thus, these two states (i.e. G and C) are the terminal states, by reaching 

any of these two, the traverse is over. If the agent encounters the G state, 
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the agent wins, while if it enters the other one, then the agent loses the 

game. 

• Discounted factor 𝛾 = 0.9, the utility at the first-time step is 0, except 

for the G and C states. 

• Transition probability 𝑇(𝑠, 𝑎, 𝑠′) is equal to 0.8 if the agent traverses 

the preferred direction; otherwise, 0.1. For example, if the optimal 

location is up and the agent does the same then the action’s probability 

is 0.8 otherwise for every movement the probability is 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. 10: A visualisation of knowledge gathering by the agent based on 

the resilient areas 
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4.6.2 Experimental settings for test case 2 

 

Similar to the first test case, an identical setting of the hyperparameters has been 

used for a fair comparison and the experimental setup for all of the considered 

algorithms. The following Table 4.4 shows the list of hyperparameters that has 

been used for second test case to determine the vulnerable zones based on the water 

quality resilience in the RL settings.  

 

 

 

Table 4. 4: Hyperparameters for test case 2 

 

 

 

 

 

 

 

 

 

 

 

Where, the network architecture has 4 convolutional layers. The first convolutional 

layer is devised by 32 filters of size 8x8 and a stride of 4. Also, the first layer is 

followed by 2 layers with 64 filters of size 4x4 and a stride of 2. The last 

convolutional layer comprised of 64 filters of size 3x3 and a stride of 1. These 

convolutional layers are followed by a 512 units of a fully connected layer.  

 

Furthermore, the fully connected layer is responsible for projecting to the output 

of the network (i.e. the Q-values). All these layers are detached by Rectifier Linear 

Unit (ReLU) activation function. The reason for using ReLU is the sparsity and 

fewer chances to vanish the gradient. The only exception is the output layer which 

has linear activation.  

 

Parameter Value 

Learning steps 3 Million 

Agent’s Evaluation (Interval) 1 Million 

Replay memory size 10000 

Target network update rate 1000 

Learning rate (α) 0.001 

Exploration rate  0.4 

𝜀 end step 1000 

Discount factor 0.9 

Optimiser Stochastic Gradient Descent (SGD) 

Batch size 32 

No-op max 40 
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In this deep layer, stochastic gradient descent (SGD) optimisation technique is 

used. Finally, the output layer is connected to multiple groups of nodes. The 

number of groups is identical to the number of objectives (e.g., time vs. treasure 

value or resilient data). Each group comprises a number of nodes that corresponds 

to the number of possible actions which leads to governing the policy. Technically, 

the DQN architecture has been created using TensorFlow and Keras. The 

visualisation and fine-tuning have been done using TensorBoard.   

 

 

Given the RL framework using MOMDP discussed above, the optimum Q value 

is needed to find out from different deep Q networks for all actions a ∈ 𝐴. These 

DQNs represent the state-actions portfolio that needs to be selected by an optimal 

policy as described in (Silver et al., 2016). A convolutional neural net has been 

used as the Q network estimator to separate state-value and actions. State-action 

networks learn the Q-values for each action 𝑎1 given a state S1, at some particular 

time step 𝑡 by minimising the temporal difference error.  

 

With this structure, the Q-value estimates for all control actions for each objective 

in different states. Performing one forward pass (inference) in the neural network 

improves efficiency when selecting actions with the 𝜀 −greedy policy. The linear 

layer is used for conjecturing action value at the output.  

 

Figure 4.11 shows the network architecture with episodes {𝑒1, 𝑒2, … , 𝑒𝑟} and loss 

function integrating into the whole process to update the Q network for each 

episode from the emulator. This also shows the utilisation of the experience replay 

for vector reward for each action in the MOMDP. 
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𝑅⃗⃗
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∞
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𝑟𝑡+𝑘+1 

Experience 

replay 

Target network 𝑄’(𝜃’) Q network 𝑄(𝜃) 

𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 
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Gradient 
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𝜕𝐿

𝜕𝑊
 

{𝑒1, 𝑒2, … , 𝑒𝑟} 

Generate an episode in the 
emulator 

 Figure 4. 11: Structure of the DRL framework that is used in test case 2 
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The gradient of loss as an error function has utilised between the target Q value 

and the actual one. The underlying principle is that while the agent has found a 

resilient zone based on IQA, IET and IVA, it does not reveal the worse control 

actions. Thus, the agent focuses on finding better control actions. As shown in 

Figure 4.8, the one-step state transition process is represented by a tuple of 

previous state (𝑆𝑡−1), previous action (𝑎𝑡−1), immediate reward 𝑟𝑡 and current 

state 𝑆𝑡. The target vector of the neural network is calculated by Equation 4.26. 

 

𝜋∗ (𝑎 |𝑠1)  = 

{
𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑣𝑎𝑙 (𝑠𝑡−1, 𝑎) ≥ 1; 𝑖𝑓 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄∗(𝑠𝑡, 𝑎) , 𝑤ℎ𝑒𝑟𝑒 ;  ∀𝑎𝑐𝑡𝑖𝑜𝑛𝑠

0;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝑉𝜋∗(𝑠𝑡+1) = max
𝑎∈𝐴𝑡+1

𝑄𝜋∗(𝑠𝑡+1, 𝑎)……….. (4.26) 

 

Figure 4.12 shows the overall graph structure based on the TensorFlow that is 

produced by the TensorBoard for the above-mentioned network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4. 12: Visualisation of the deep layer for test case 2 (extracted using TensorBoard) 
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For other control actions, the target value is set to the estimated current value of 

that action. Each DQN is responsible for approximating the Q-value for a 

particular policy (Tajmajer, 2017). At each time step, all networks will receive the 

state information and then determine the control action separately. A brief 

overview of policy selection mechanism is shown in Figure 4.13. However, a 

detailed discussion has been mentioned in Chapter 5. 

 

 
 

Figure 4. 13: Parity Q deep Q network-based Policy selection 

 

4.7 Summary 

 

Problem settings are always crucial in the study of the DMOP. Moreover, 

developing a dynamic environment in the context of RL is also a challenging task. 

In this chapter, an overview of the problem settings and their definition as well as 

experimental setups are presented. Here, the essential components for designing 

the benchmark and how it has been defined as a dynamic benchmark is described.  

Besides, problem definition and mathematical models of the considered test cases 

are explained.  

 

In a nutshell, this chapter delivers 4 environments which are dynamic in nature. 

They are as follows: 

 

1. Dynamic DST (silver and gold), 

2. Dynamic DST (random), 

3. Dynamic DST (attack by enemy) and  

4. Dynamic WQR environment. 



 

129 | P a g e  

 

In summary, the followings can be drawn regarding the DMOP in this chapter: 

 

a. Optimisation goal in the DMOP: In the context of the RL settings, the 

proposed benchmark satisfies the primary goal of the benchmark which has 

got the several challenges in terms of changing parameters including the 

conflicting objectives. 

 

b. Constraints: Overall, the constraints of the benchmark have been identified 

clearly which have helped to form the mathematical model. 

 

c. Detectability of the changing optima: In every scenario of the proposed 

benchmark, the changing optima needs to be detected by the enforced 

algorithm. Therefore, this benchmark satisfies the dynamic behaviour in 

the multi-objective environment.   

 

Finally, as discussed earlier in Chapter 2, many DMOPs studies are not related to 

the real-world problem. In this study, the real-world problem has been addressed 

and formulated the MOMDP in the context of the changing parameter dynamically 

in the RL settings.  These changing parameters of test case 2 are based on the 

changing PF and PS. This chapter also highlights to visualise the network 

architecture. In the context of the real-world situation, the problem settings can be 

related to some other real-world and complex scenarios as mentioned in (Nguyen, 

2011). 
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Chapter 5 

Proposed Algorithm: Parity Q Deep Q Network 

(PQDQN)  

5.1 Introduction  

 

In this chapter, a novel approach for computing the Pareto frontier in the MOMDP 

using MORL has been discussed. In this method, typical features of the RL method 

are integrated such as state, action, and reward (i.e. vector reward for multi-

objective) based on MOMDP as discussed in the previous chapter. The working 

procedure of the algorithm is also deliberated in this chapter. 

 

Here, this method makes the PF more beneficial as a decision support system by 

mapping different objectives and balance them. The method also allows to select 

the ideal multi-objective preference given by the assured boundaries with self-

learning and mapping among different objectives. It is worth mentioning that, in 

this method, the boundary of the problem has set in the finite horizon. The problem 

also considers as ergodic and controllable MDP. The vector rewards procedure 

that has been applied is similar to the method that is described in (Roijers et al., 

2013). For the optimisation technique, the Adam and the stochastic gradient 

approach (SGD) have been implemented in test case 1 and test case 2 respectively. 

The optimisation processes include several targets such as identifying the changing 

optimal and the distance from the obtained PF and the true PF. The decision-

making process explored in this proposed method corresponds to the object-

relation mapping that is a combination of Q values provided by the different 

DQNs. 

 

In general, the aim of this chapter is to develop an algorithm which can ensure 

convergence and diversity for the defined problems that need to be addressed in 

the context of DRL settings. To achieve this target, a well-established 

reinforcement learning can be approached such as dynamic programming, Monte 

Carlo tree search (MCTS) and temporal difference learning (TD). To solve the 
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defined problem, the solution needs to find all the non-dominated policies at once 

as explained in (Barrett and Narayanan, 2008). Considering the simultaneous 

multi-policy search and updating the current state, a temporal difference learning 

mechanism has been chosen that is a model-free and off-policy algorithm such as 

Q learning. Moreover, it has been considered because of its capability to determine 

the optimal action-value function which learns from the reward function in an 

MDP that is compatible with the considered two test cases. 

 

5.2 Deep Q Network (DQN) Selection 

 

Both DL and DRL are the ML techniques that learn autonomously. However, the 

difference between DL and DRL lies in the learning procedure followed by the 

agent. While DL requires a training dataset and then applying that learning to a 

new dataset, DRL learns by interacting within the environment by adjusting 

actions based on the feedback to maximise the highest expected reward. However, 

these two techniques are not mutually exclusive. To implement the DRL 

mechanics using deep Q networks (DQN), some strategies need to be followed 

such as selecting the double DQN or dueling DQN, asynchronous DQN and so on 

(Thomas Simonini, 2018). 

 

Mnih et al. (2015) introduced Deep Q-Network and ignited the area of RL. The 

deep Q networks have been critically reviewed and the drawbacks of using Deep 

Q networks such as incompatibility in the non-Markov model (i.e. next state 

always relies on the current state), overestimation for continuous action space, 

overfitting and poor exploration due to sparse feedback (Mnih et al., 2013) are 

considered. These characteristics of DQNs are always important before applying 

to solve a problem. The common extensions of the DQN architecture are double 

DQN (Van Hasselt et al., 2016), multi-policy DQN (Nguyen, 2018), multi-

objective Monte Carlo Tree Search (Wang et al., 2012), multi-policy Q learning 

(Ruiz-Montiel, Mandow and Pérez-de-la-Cruz, 2017), prioritised experience 

replay (Schaul et al., 2015), duelling architecture (Wang et al., 2016). In addition, 

(Anschel, Baram and Shimkin, 2017) proposed an average of previous Q-values 
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estimation to reduce inconsistency and instability. He et al., (2016) proposed a way 

to accelerate DQN by optimality tightening to propagate reward more rapidly as 

well as improve accuracy over DQN.  

 

The following algorithms shown in Table 5.1 are considered in this study based on 

the policy evaluation in DQNs: 

 

Table 5. 1: Comparison of the analysed algorithms 

 

 

In the context of the dynamic environment and handling MOMDP, the algorithms 

are considered which support multi-policy (i.e. Multi-policy DQN, MO-MCTS, 

and MPQ). To understand the working procedure of the proposed algorithm, it is 

important to describe how policy selection works in the given context. The 

following section reinvigorated this discussion. 

 

 

 

 

Item Algorithms 

Deep Q Network 
(DQN) 

Double DQN 
(DDQN) 

Multi-policy 
DQN 

(MPDQN) 

Multi-objective Monte 
Carlo Tree Search  

(MO-MCTS) 

Multi-Pareto Q 
Learning (MPQ) 

Support Multi-
policy 

✖ ✖ ✔ ✔ ✔ 

Vector reward ✖ ✖ ✔ ✔ ✔ 

Pros It performs faster 
while training the 
network using 
random mini-
batches from 
temporary 
memory instead 
of recent 
transitions 

It performs 
better to 
reduce 
observed 
overestimations 
compared to 
DQN learning 

Learn parallel 
multiple 
policies and 
adapt rapidly 
when there is 
a change 

It acquires multiple 
unsupported policies in 
a single run by 
constructing a tree-
walk using upper 
confidence bounds 
(UCB) 

Finds all deterministic 
PF policies for an 
MORL settings 

Cons Overestimation 
and the agent 
follows greedy 
approaches to fix 
the Q value, it 
often may lead to 
less optimized 
policy and 
increase time 
complexity 
 

Single stream 
double DQN 
performs worse 
than Dueling 
DQN (DuDQN) 
 

It may be 
stuck in local 
optima due 
to the 
assumption 
of optimal 
policy in 
advance 

The agent does not 
support bootstrap and 
has to wait for the 
outcome to update the 
predictable reward 

Requires high 
convergence time 

Used in a 
dynamic 
environment 

✖ ✖ ✖ ✖ ✖ 
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5.3  Policy Search in DQN 

 

Usually, policy search methods aim to find out the optimal policies based on 

gradient-free or gradient-based approaches (Ng, 2003; Felix Yu, 2017). However, 

several successful methods in DRL disdained the commonly used backpropagation 

method in the literature in favour of evolutionary algorithms that are 

predominantly gradient-free based policy search algorithms (Gomez and 

Schmidhuber, 2005; Koutník et al., 2013). However, in the context of RL, a 

combination with an ANN weight are used to train large networks; such a 

technique resulted in the first deep neural network to learn the RL task, straight 

from high-dimensional visual inputs (Koutník et al., 2013). Recent work has 

reignited the interest of using policy search methods for RL as they can potentially 

be distributed at larger scales than techniques that rely on gradients (Salimans et 

al., 2017). For example, Figure 5.1 shows the Space Invaders game (Bellemare et 

al., 2012) where the agent can learn what parts of the image is important (Mnih et 

al., 2015).  

 

 

 

 

 

 

 

 

 

However, the main strength of the DRL has remained the backpropagation. In 

general, the RL rule helps to determine the networks to learn stochastic policies by 

applying a trial-error procedure in a task-dependent manner. This allows the agent 

to find out where to look at an image to track and decide to capture the action 

information. In these scenarios, the stochastic variable helps to fix the coordinates 

(x, y) based on the pixels to crop an image and hence, determine the coordinates 

 Figure 5. 1: Importance sampling based on the image in the Space Invaders game   
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of a small crop of that image. Therefore, the computational complexities are 

reduced. This procedure in the domain of RL is one of the most popular methods 

to track the optimum policy (Mnih et al., 2013).  

 

However, searching directly for a policy represented by a neural network with 

many parameters can be a problematic approach and the model can suffer to stick 

in a local optima (Hauser, Eftekhari and Matzinger, 2018; Mark Lake, 2001). The 

possible solution to solve this problem is by using a guided policy search (GPS) 

(Levine and Koltun, 2013). In this procedure, a few sequences of actions from 

another controller learn by implementing supervised learning in a combination 

with the importance sampling. This sampling is responsible for the off-policy 

models. Thus, this mechanism effectively biases the search to find out the optimal 

policy. In addition, this procedure iterates to find out the optimal policies by 

sampling trajectories and optimising the trajectory distributions.  

 

On the other hand, to track the changing policy the agent needs to balance the 

exploration towards unexplored areas of the state space and the exploitation of 

non-dominated actions. However, while traversing the whole environment, there 

might be some points where the agent needs to apply its own experience and 

already learned policy. The process of applying this policy is different in the 

context of single and multi-objective environments for the RL agent. In the single-

objective environment, the learned policy can be easily traced by applying a 

function that calculates each action where it will find the highest value for each 

state by applying greedy policy selection.  

 

Contrarily, in the context of a multi-objective environment where the agent needs 

to handle multi-policy simultaneously, then a modified definition of a greedy 

policy needs to be defined for MORL by applying vector rewards to select the 

actions (Vamplew et al., 2011). In the multi-policy selection environment, the 

agent needs to find out the actions consistently in order to retrieve the desired 

policy based on the 𝑄⃗⃗⃗⃗  (𝑠, 𝑎). A question may arise − what the steps would be if the 

agent does not or cannot work in this way? There is a high chance that the agent 
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would be stuck in a local optimum because the obtained Pareto front is based on 

the local information and there would be no guarantee that the agent may find out 

the solution which is reached to global optima or at least close to the global optima. 

 

To solve this behaviour of the agent and to get rid of this problem, a global greedy 

policy needs to be defined that continuously follows or tracks a given expected 

return vector. In other words, the agent needs to find out the global policy 𝜋∗ from 

the initial state to the terminal state. Nevertheless, this process is not a 

straightforward way due to stochastic behaviour and the dynamics of the 

environment (van Wissen et al., 2012). Therefore, it is important to track the 

necessary actions for the desired vector rewards. In the selected test cases, for this 

study, the agent needs to traverse the environment to find the optimal policy. 

Consequently, the agent starts from a starting point and after that, it follows a 

particular policy based on the vector reward to achieve the highest expected reward 

i.e., 𝑉𝜋∗(𝑠). This accumulated reward is updated to the Q table at the end of each 

episode. For each action a, the agent averaged the immediate reward 𝑅(𝑠, 𝑎) and 

the long-term discounted reward 𝛾𝑅(𝑠, 𝑎).  

 

However, the selection is only executed if the sum of these two rewards is equal 

to the target vector that needs to be followed. After achieving the target vector, the 

agent proceeds to the next state and observe the corresponding action on that 

particular state (Barrett and Narayanan, 2008). When the vectors have not 

completely converged or the transition become stochastic, the action is selected 

based on the average value of the experiences, which is stored in the replay 

memory. In the experiments, a dynamic value has been assigned that helps to find 

out the optimal Q value based on the state and action. Thus, the optimal policy is 

dynamically selected for both test cases. The following section is going to discuss 

the way of selecting a meta-policy based on the policy search mechanism which 

has been discussed here. 
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5.4  Meta-policy Selection Mechanism 

 

As far as the dynamic environment is concerned, a meta-policy (i.e. governing the 

policies in the policy lifecycle) has been introduced that defines which policy 

needs to be counted and prioritises the objectives. However, it is difficult to define 

the meta-policy with respect to all the objectives. In other words, all the objectives 

can be fully satisfied only in utopia. Therefore, in reality, the optimisation 

algorithm can achieve only a compromising solution which best fits for a particular 

situation according to the preferences. To overcome this problem and achieve the 

best compromising solutions, a parity value (i.e. dynamic weight) has been 

introduced before summing up the Q-values from DQNs. To make the system 

robust and personalised, a preference value or bias value (e.g. if any) has been 

added to prioritise the alternatives and matches the criteria in a dynamic Pareto 

optimal set 𝑃𝑆(𝑡)∗. Moreover, the agent helps to devise the action selection 

mechanism that can lead to a better decision. The meta-policy is selected by 

updating the process of selecting each action by choosing 𝑄 (𝑠, 𝑎) as follows:  

 

a. The set of 𝑄(𝑠, 𝑎) is updated with vectors from 𝑆′ at time step t for the first 

time after performing an action 𝑎 in state 𝑆. In the meantime, actions in 𝑆′ 

are sampled at the time (𝑡 + 1) that is previously unexplored. 

b. As estimations are being done over time, it is likely that the 𝑄(𝑠, 𝑎) can be 

created, updated and deleted at time step (𝑡 + 1). As a result, vectors, in 

𝑆′can be dominated by other vectors (Moffaert and Nowé, 2014).  

 

However, in the dynamic environment, the location of the optimum moves either 

deterministically or stochastically. This move can also be linear, non-linear, 

periodical or random over time during the optimisation process. The core 

difference between stationary and dynamic optimisation problems is that any 

component that exists in the environment changes over time in the latter case. In 

the defined problem with time-varying, the desired goal of the algorithm is: 
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a. to find the global optima to detect the changes and  

b. tracking the changing optima over time. 

 

To identify the meta-policy in the changing environment the followings need to be 

done: 

a. detecting changes by re-evaluating detectors or changing components, 

b. detecting changes based on the algorithmic behaviours and 

c. balancing the objectives using objective relation mapping based on a 

dynamic weight (parity value). 

 

 

In an MOMDP, where the dynamics of the problem changes to different 

trajectories through the metric space 𝛿(𝑡)  ∈  ∆, are the parameters of the function 

𝑡 can be expressed by Equation 5.1. 

𝛿(𝑡) →   𝛿(𝑡 + 1)  →  𝛿(𝑡 + 2)  → ⋯  (5.1) 

Where, T is a period index such that (𝑡) ≠ 𝛿(𝑡 + 1) , ∀𝑇 

 

The following Figure 5.2 demonstrates the Q value mappings for the different 

policies in DQN structures. For the visualisation purpose, the selected policies 

have been colour-coded whereas policy is chosen based on the yellow columns of 

different objectives. Eventually, the MORL agent produces the green one which is 

the mapped version of the meta-policy. 

 

 
 
 

 

(a) 

 
Figure 5. 2: A visualisation of Q value mapping in DQN architecture for governing 

policies to detect the changes of the optima (a) without mapped (b) mapping among 

different objectives 

 

(b) 

 
(a) 
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The meta-policy of selecting a policy is defined by the parity value which is 

obtained by the objective-relation mapping (ORM) in a dynamic environment to 

satisfy or closely satisfy the objectives. From Figure 5.2, it is also observable that 

the policy is selected based on the individual input of the DQNs which are the 

representatives of the state and action for a particular objective. 

The agent selects an action 𝑎 in the state s to form the vector of 𝑄⃗⃗(𝑠, 𝑎) that is 

composed with the reward vectors 𝑟𝑡⃗⃗⃗ =  [𝑟1, 𝑟2, … . . 𝑟𝑛]. For each pair of the policy 

Π(𝑖) = 𝑄⃗⃗𝑖(𝑠, 𝑎) and the next policy Π(𝑖 + 1) = 𝑄⃗⃗𝑖+1(𝑠′, 𝑎′), the agent creates a 

matrix as in Equation 5.2: 

Πn[i],n[i+1] (𝜃(𝑡)), 𝑤ℎ𝑒𝑟𝑒: 𝜃(𝑡) = 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 (𝜃(𝑡 − 1))……...…. (5.2) 

A transformation matrix is obtained by the following Equation 5.3: 

Π𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 = Πn[1],n[2](𝜃(𝑡)). Πn[3],n[4](𝜃(𝑡)) … Πn[p−1],n[p](𝜃(𝑡)) …..…. (5.3) 

Update the Pareto Front (PF) position by the following Equation 5.4: 

𝑋(𝑡 + 1) = 𝑋(𝑡). Π𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 ………………………………………………. (5.4) 

Where the changing severity  Δf = |T(PF) − O(PF)∗|is set to different points 

based on true PF T (PF) and obtained PF O (PF). 

The following Figure 5.3 shows the relation mapping for different objectives based 

on selected policies where the convolutional layers direct to form a compromised 

solution. This process is predominantly executed by the neural network of the deep 

layer and by adjusting the weights and bias for each neuron (Schmidhuber, 2015). 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 3: Object-relation mapping to find out the equilibrium between 

objectives in a PQDQN architecture 
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From the above Figure 5.3, it is observable that the agent determines the 

compromising solutions based on the balance of the several objectives. These Q 

values are forwarded by the DQNs which consist of the set of state and action 

values for a particular episode that is generated by the emulator. In the deep layer, 

the weights of the neural network are adjusted based on the backpropagation 

procedure (Baldi and Sadowski, 2018). The obtained Q value by the agent is the 

average value from the DQNs that characterise all the objectives. Therefore, the 

selected objectives are the representation of the compound structure of all the 

objectives. Needless to mention, this value is made by the Q values in a finite 

horizon. In other words, this can be represented as the most compromising 

solutions that the agent could achieve in a particular episode.  

 

The selection of these average accumulated Q values of each objective is sent to a 

buffer which follows the FIFO (i.e. first in first out) mechanism. This ensures the 

dominated solutions has removed or replaced by the non-dominated solutions 

based on the associated vector reward that estimates 𝑄𝑛−1 (𝑠, 𝑎 ). Therefore, the 

agent has now represented a non-dominated policy unless it is replaced by a new 

one. In other words, the agent finds the optimal policy which is good at least in 

one objective and not worst in any other objectives (Lwin, Qu and Kendall, 2014). 

 

Figure 5.4 shows the changing policy in a dynamic DST environment (silver only 

for simplification) that is governed by the agent. The highlighted arrows (e.g. 

yellow and red) denote the changing path where the red one (i.e. treasure value 

74.0) deserves more attention than the orange one (i.e. treasure value 50.0). The 

directions are changed to explore the greater value with the aim to maximise the 

highest expected reward. Since the objectives can be added with a separate DQN 

structure, thus, this method provides the robustness and its capacity to scale up.  

 

Therefore, a new objective can be added or there is an opportunity to add several 

objectives based on the requirements. In view of that, the proposed algorithm 

proves that it is not rigid to accommodate new objectives and produce the solutions 

without fine-tuning the agent. The agent finds the best solutions which are not 
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biased considering the current state due to the random allocation of the experiences 

that are stored in the replay memory and not only depends on the current transition 

based on the actions. Accordingly, the agent governs the policy that is 

compromising among all the objectives. However, it is possible that in a particular 

episode, the agent may not achieve the best optimal policy if the parity value is 

influenced by the preference values. Thus, the ultimate selection of the policy is 

designated. The colour code of Figure 5.4 shows the emphasising attitude of the 

agent while traversing the environment. The deep red colour shows the higher 

intensity for choosing that node compared to the orange one and the arrowhead 

directs the movement towards north-south or east-west performed by the agent. 

 

The following Figure 5.5 shows an episode where the treasure values change 

randomly but with the set of the fixed values of silver and gold. Figure 5.5 also 

shows the true Pareto frontier (i.e. non-convex) achieved by the agent. See 

Appendix A for the full set of the reward distribution for every environment and 

the Pareto frontier values. The true Pareto frontier achieved by the agent is consists 

of three gold and seven silver treasures.  

 Figure 5. 4: Meta-policy selection in the dynamic DST environment (silver only)  
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5.5  Tracking the Optimal Policy  

 

In the proposed algorithm, the goal of the agent is to find out the optimum policy 

by maximising the expected reward that is usually defined by the sum of the total 

rewards. Here, the interaction between the agent and environment goes in the finite 

set of the states. Therefore, the tasks are episodic and within a finite horizon. The 

agent needs to find out the policy which will determine the actions. In this case, a 

policy depends only on the outcome of each DQNs according to the objective and 

time. Since the policy is utilised to communicate within the environment will not 

be the same that is already learnt. Therefore, only one policy can be followed per 

episode. However, several policies still need to be improved concurrently 

considering the next state 𝑆′ at time t+1. 

 

(a) 

 
(b) 

 
(c) 

 

(d) 

 Figure 5. 5: The agent’s traversing (a, b and c) in the dynamic DST (silver and gold) at the 

different states (d) true PF   
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Notice that PQDQN learns the vector in 𝑄(𝑠, 𝑎) for each possible combination of 

the non-dominated vectors. However, only the subset of non-dominated state 

vectors of 𝑉(𝑠) can be determined to retain action vectors in other Q sets by 

Bellman’s optimality principle (Martin, 2011). Thus, the proposed algorithm 

traces the number of policies. 

 

The following Figure 5.6 shows the decision space (a), objective space (b) and 

tracking the optima in slow (c) and fast-moving (d) situations over time in a 

dynamic environment which is observed by detecting the moving optima (Lam, 

Branke and Abbass, 2005; Farina, Deb and Amato, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Since the PQDQN algorithm is based on the Q learning, it is also an off-policy 

algorithm that means learning a new policy is not identical as like as the learned 

one. In addition, the agent learns several policies at once, which is the most 

important feature needed for the multi-objective scenario. This feature allows the 

agent to follow any policy which has been learned during the interaction within 

the environment. 

Figure 5. 6: Objective space and the tracking of global optima: (a) decision space (b) 

objective space (c) tracking slow-moving optima and (d) tracking fast-moving optima 

(a) 

 

(c) 

 
(d) 

 

(b) 

 
(a) 
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𝑟5 = (𝑟𝑖 , 𝑟𝑗) 

 

𝑟4 = (𝑟𝑔 , 𝑟ℎ) 

 

𝑟3 = (𝑟𝑒 , 𝑟𝑓) 

 

𝑟1 = (𝑟𝑎 , 𝑟𝑏) 

 

𝑟2 = (𝑟𝑐 , 𝑟𝑑) 

 

𝑟6 = (𝑟𝑘, 𝑟𝑙) 

 

𝑟7 = (𝑟𝑚 , 𝑟𝑛) 

 

𝑟8 = (𝑟𝑜, 𝑟𝑝) 

 

𝑟9 = (𝑟𝑞 , 𝑟𝑟) 

 
𝑎8 

 
Figure 5. 7: Sample state transition between different states along with the vector rewards 

 

Let us consider an MOMDP where an agent needs to move from the state S0, 

source node to a destination node S1 with the transition probability 0.5 and the 

discount factor is 1. This leads to an expected accumulated reward of (0.5, 1) 

for this multi-objective MDP in RL settings. However, if we consider the 

MOMDP as depicted in Figure 5.7 where the agent needs to go across from 

the source node S0 to the destination nodes either S7 or S8. In this case, the 

agent needs to traverse all the nodes to reach the terminal states. Since the task 

is episodic and the traverse starts at S0 and it ends whenever the agent reaches 

the terminal state, in this case, both S7 and S8. Hence, the responsible action 𝑎1 

has a probabilistic outcome and may lead to states S1 or S2. Similarly, with the 

actions (a2 and a3), the agent can reach either S3 or S4 along with the reward 

functions 𝑟3 = (𝑟𝑒 , 𝑟𝑓) and 𝑟4 = (𝑟𝑔, 𝑟ℎ) and the associated discount factor(s) 𝛾, 

respectively. Later, the agent may reach the terminal state S7 either following the 

𝑟7 𝑜𝑟 𝑟8vectors to maximise the highest expected rewards. Similarly, to reach the 

terminal state, S8, the agent follows similar ways. In this case, the agent utilises 

the reward functions 𝑟2 = (𝑟𝑐, 𝑟𝑑), 𝑟6 = (𝑟𝑘, 𝑟𝑙), 𝑎𝑛𝑑 𝑟9 = (𝑟𝑞 , 𝑟𝑟) and the discount 

factor up to 𝛾2. Let us also consider that for the all terminal states 𝑆7 𝑎𝑛𝑑 𝑆8, we 

have 𝑉(𝑠′)  = (0 , 0)  with the reward r= {0, 0}, i.e., each state has a single zero 

vector at the initial state. Therefore, there will not be any action at the terminal 

states.  
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Table 5.2 shows a general view of gaining the rewards by the agent with only eight 

states along with the sample vector reward of 𝑅⃗⃗ = {𝑟𝑥, 𝑟𝑦} where x and y represent 

magnitude and direction respectively. Here, in the initial state, the agent receives 

the value function of 𝑣⃗0 = [(𝑟𝑎, 𝑟𝑏 ) , (𝑠1 , 𝑎1)]. Similarly, in the later episodes, the 

agent gains reward based on the Q value estimations.  

 

Table 5. 2: Progression of vector function estimation based on the Q values over time 

with the PQDQN 

Time State  Q (s, a) 𝑽̃𝒕 = (𝒔𝒏) 

0 𝑆0 (𝑠1, 𝑎1) 𝑉 (𝑠0) = 𝑣⃗0 = {[(𝑟𝑎 , 𝑟𝑏 ) , (𝑠1 , 𝑎1)]} 

𝑆0 (𝑠2, 𝑎1) 𝑉(𝑠0)  =  𝑣⃗1 = {[(𝑟𝑐, 𝑟𝑑 ) , (𝑠2 , 𝑎1)]}  

1 𝑆1 (𝑠3, 𝑎2) 𝑉(𝑠1)  = 𝑣⃗2 = {[(𝑟𝑎 , 𝑟𝑏 ), (𝑠1 , 𝑎1)] +   𝛾 [(𝑟𝑒, 𝑟𝑓 ), (𝑠3 , 𝑎2)]}  

𝑆1 (𝑠4, 𝑎3) 𝑉(𝑠1)  =  𝑣⃗3 = {[ (𝑟𝑎 , 𝑟𝑏), (𝑠1, 𝑎1)] +   𝛾 [(𝑟𝑔, 𝑟ℎ ), (𝑠4, 𝑎3)]} 

2 𝑆2 (𝑠5, 𝑎4) 𝑉(𝑠2) =  𝑣⃗4 = {[(𝑟𝑐 , 𝑟𝑑 ), (𝑠2 , 𝑎1)] +  𝛾 [(𝑟𝑖, 𝑟𝑗 ), (𝑠5, 𝑎4)]} 

𝑆2 (𝑠6, 𝑎5) 𝑉(𝑠2)  =  𝑣⃗5 = {[(𝑟𝑐 , 𝑟𝑑 ), (𝑠2 , 𝑎1)] + 𝛾 [(𝑟𝑘, 𝑟𝑙 ), (𝑠6, 𝑎5)]} 

3 𝑆3 (𝑠7, 𝑎6) 𝑉(𝑠3) =  𝑣⃗6 = {[(𝑟𝑎 , 𝑟𝑏 ), (𝑠1 , 𝑎1)] +   𝛾 [(𝑟𝑒 , 𝑟𝑓 ), (𝑠3 , 𝑎2)] +  𝛾2 [(𝑟𝑚, 𝑟𝑛 ), (𝑠7 , 𝑎6)]} 

4 𝑆4 (𝑠7, 𝑎7) 𝑉(𝑠4) =  𝑣⃗7 = {[(𝑟𝑎, 𝑟𝑏 ), (𝑠1 , 𝑎1)] +   𝛾 [(𝑟𝑔, 𝑟ℎ ), (𝑠4 , 𝑎3)] +  𝛾2 [(𝑟𝑜, 𝑟𝑝 ), (𝑠7 , 𝑎7)]} 

5 𝑆6 (𝑠8, 𝑎8) 𝑉(𝑠6)  =  𝑣⃗8 = {[(𝑟𝑐, 𝑟𝑑 ), (𝑠2 , 𝑎1)] + 𝛾 [(𝑟𝑘, 𝑟𝑙 ), (𝑠6, 𝑎5)] + 𝛾2 [(𝑟𝑞 , 𝑟𝑟 ), (𝑠8 , 𝑎8)]} 

 

The following Figure 5.8 shows the time-changing property for one particular 

Pareto-optimal solution to another solution. For the visualisation purposes, time-

unit has been shown in Figure 5.8 where it reflects the next time and the changing 

Pareto frontier based on a particular episode. For instance, in episode 0 and with 

the state (𝑠1, 𝑎1), the agent moves from one place to another when the arrow 

changes from 10 to 11. This change is traceable by Δt = (t11 − 𝑡10 ) based on the 

changing time step. In other words, this can be represented as the change tracker 

based on the time interval that traces any changes that may occur in the 

environment.  
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The following Figure 5.9 represents the movement of the two submarines in the 

DST (attack by enemy) environment. The arrow indicates the points of clashes 

between the two submarines. Figure 5.9 (a) represents clashes between two 

submarines without the intensity (i.e. an accentuating attitude to choose a node) 

whereas Figure 5.9 (b) shows the clashes with the intensity of the different 

movements by the agent while traversing the environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, the Pareto frontier will be examined based on the changing time that is 

observed by the agent in Figure 5.10. In the first instance as shown in Figure 5.10, 
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Figure 5. 8: Visualisation of the changing time while the agent is traversing in the 

dynamic environments 

 

(b) 

 
(a) 

 

Figure 5. 9: The agent’s traversing (clashes) in the dynamic DST (attack by enemy) in 

different timestamps (a) without highlighting the intensity of the agent’s move (b) with 

the intensity of the agent’s move 
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when the agent traverse at timestamp 1, the agent has received (-1, 10, 0.01), 

where, -1 is the time cost, the health meter is pre-defined as 10, and the treasure 

value is 1. In this case for the consistency of the graph and the visualisation, the 

reward is divided by 100 and that is why it becomes 0.01. In another case, when 

the agent moves from the timestamp 2 to 3. The health condition is 10 at this 

timestamp which means that the agent is still not hit by the enemy submarine. 

Consequently, the agent achieves the treasure values which is 2 with the cost of 

the time penalty of -3.  

 

 

 

 

 

 

Figure 5. 10: Changing Pareto frontier (a) at timestamp 1 to 2 (b) at timestamp 2 to 3 

 

Moreover, the following Figure 5.11 illustrates the overall condition of the agent 

where the agent gets -2 penalty at timestamp 7 to get the treasure value of 50. This 

is the first time in this episode when the agent collides with the enemy submarine 
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and thus, the health meter is damaged, and the health condition decreases from 10 

to 8. It also means that from the next state the agent has to be careful to save itself 

when it faces the enemy submarine.  

 

Hence, the agent is now assigned with another new objective such as searching the 

treasures and save itself at the same time when it is attacked by the enemy 

submarine. Furthermore, when it comes to the 19th timestamp, the agent loses its 

whole health power and now it becomes 0 to achieve the highest reward 124 

treasure value in that particular episode. In other words, the enemy submarine hits 

the agent 5 times before the agent has achieved the highest treasure in this episode. 

This also reflects that the developed benchmark is dynamic because of the 

changing behaviour at different timestamps.  

 

 

 

 

 

 

Figure 5. 11: Changing Pareto frontier (a) at 7th timestamp and (b) at 19th timestamp 
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The following Figure 5.12 shows a visualisation of the DST environment where 

the agent traverse based on the best and worst path using a meta-policy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth mentioning that in a special scenario in a dynamic environment such as 

the agent creates a loop or the environment is influenced by unknown factors, the 

changes can be undetected, and thus, the moving optima cannot be identified. As 

a result, the solution cannot be reached. 

 

5.6  High-level Architecture of the Proposed Algorithm 

 

In this section, the fundamental architecture of the proposed algorithm has been 

described. RL is an influential paradigm for sequential decision-making under 

uncertainties (Kantas, 2009; Ravichandiran, 2018). On the other hand, MORL 

deals with the multi-objective possibly conflicting objectives. To solve this sort of 

problem using RL, one solution is to make the multi-objective problem into a 

single-objective problem and then apply the algorithm. Another solution is to reach 

the optimal solutions based on the Pareto dominance and Pareto frontier. 

Therefore, to solve the MOO in this thesis, a set of solutions that approximate the 

(b) 

 
(a) 

 
Figure 5. 12: A visualisation of the trajectory based on the meta-

policy (a) the best-case scenario and (b) the worst-case scenario 
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real Pareto front has been considered (Deshpande, Watson and Canfield, 2013). 

This process can be illustrated in Figure 5.13. 

 

 

 

 

 

 

 

 

In the above Figure 5.13, the solution P is better than R in at least in one objective 

and P is also superior or at least equal to R in other objectives where 

𝑓1 𝑎𝑛𝑑 𝑓2  represent max and min functions respectively. In other words, the 

solution R is dominated by the solution P and Q. This scenario can be matched 

with the considered test cases where the MOO problem can be solved using the 

observation of the Pareto dominance. As it is difficult to find out all the Pareto 

frontier in test case 2 because of those are unknown based on the definition that 

has been set in this study, therefore, the best-known Pareto frontier has been 

chosen for test case 2.  

 

To construct the algorithm in the MORL settings, as mentioned earlier, the reward 

functions should deal with the vectors. As a result, defining a vector was crucial. 

Here, a vector is an array of numbers and the space that the vector contains is called 

the vector space. A vector has a magnitude and direction. In these test cases, the 

vector is two dimensional and follows the matrix operation (Idris, 2015). For 

example, this matrix is formed of the rows and columns such as in the dynamic 

DST, which is a grid-world of 10×09.  

 

Before going to further details, MORL architecture needs to be determined in the 

context of this study. This is crucial to characterise the basic construction of 

MORL in advance. At this point, the technique for the reward distribution needs 

to be settled. It is worth mentioning that the MORL structure is not identical as 

(a) 

 
(b) 

 Figure 5. 13: Sample of the Pareto dominance (a) decision space (b) objective space 
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like as the traditional RL architecture. The main reason is that handling more than 

one objective simultaneously makes MORL different from the single objective 

RL. In the MORL settings, the agent’s present vector reward is delivered by the 

response signal of a specific state from the environment for each objective. As 

discussed in chapter 2, there are several approaches to solve MORL problems. In 

this thesis, the weighted sum approach has been used. In this approach, the optimal 

policy is picked up by the weighted value of the Q function. In addition, in the 

settings of MORL, the agent learned the reward functions by a vector operation 

such as summation or multiplication of the two-dimensional matrix. The action is 

chosen by applying an ε-greedy selection mechanism, with the probability of ε for 

a random and (1 − ε) for an action that is selected (Ruiz-Montiel, Mandow and 

Pérez-de-la-Cruz, 2017). These vector rewards represent the corresponding actions 

that are selected for a particular state. Each objective has the threshold values 

subject to their constraints. The agent estimates the objective values based on these 

threshold values. In other words, the expected maximum and minimum values are 

the upper bound and the lower bound for a specific objective.  

 

While traversing the considered environments, the agent has to decide the optimal 

policy that needs to be selected. In the first environment (dynamic DST), the agent 

navigates the environment and selects the actions to achieve the highest 

accumulative reward. This reward is based on the vector (i.e. magnitude and 

action) which is offered by the next states. The environment changes to a new state 

during traversing due to the dynamic nature of the problem. Because of the 

episodic environments, the Q value of the observed environment also gets changed 

for dynamic behaviour. Moreover, the environments in this thesis are considered 

based on the non-deterministic finite automata (NDFA) due to their dynamic 

behaviour over time (Becher, Carton and Heiber, 2015).  

 

Additionally, a replay memory (RM) is used for training the DQN. The purpose of 

using a RM is to store the transitions which are observed by the agent. This also 

allows the agent to reuse the data at the later stage for traversing and finding the 

optimal policy. By random sampling, the transitions that build up a batch helps to 
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stabilise and improves the DQN training procedure. Therefore, the following 

classes are required: 

 

- Transition- that represents a tuple of a single environment   

- ReplayMemory- which is a cyclic buffer that stores recent transitions. 

 

Now, considering the Q value approximation, the agent looks for the pair of the 

state and actions. The combination of the state and actions form a table that 

contains the Q values. In the simplest form, the Q value can be denoted by 

Equation 5.5: 

𝑄[𝑠, 𝑎] = (Instant + discounted) reward………. (5.5) 

 

Where, the agent gains the immediate reward when it moves from one state to 

another while performing an action. On the other hand, the discounted reward 

determines the future performance of the agent. 

 

Generally, the Q values come up from the scenarios where the agent looks at the 

Q value to confirm which action to take or which policy needs to be implemented 

when in state S. In a particular state S, the agent needs to determine which action 

is the best. Before moving to the next state, the agent goes through all the possible 

actions so that it helps to determine the largest values of the action and thus, the 

agent selects a particular next state. For MDP, the policy that needs to be 

implemented depends on the current state (Silver, 2015; Mitchell, 2006) to 

maximise the rewards to get the optimal solution. 

 

The proposed solution consists of two different blocks which represent a common 

RL setting such as selecting states and actions. The agent interacts within the 

environment and selects the actions based on the mapping with different 

objectives. This mapping is named objective relation mapping (ORM). The 

following Figure 5.14 shows the components of the proposed algorithm to handle 

dynamic MOMDP. 
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From the above Figure 5.14, it is observable that the Q values are selected based 

on the states and actions. The state is selected based on the DQN networks and this 

value is sent to a stack where the agent looks for the best Q value. After that, the 

highest value is mapped with the ORM module where it forwards the best 

compromising objectives after satisfying the constraints. This module balances the 

Q values to achieve the possible optimal Q values for the different objectives by 

averaging them or multiplying with the preference values (e.g., if any).  This action 

is performed based on the balancing of all the objectives. Therefore, the solutions 

that are provided by the PQDQN must be a compromising solution if there is more 

than one objective are available. From this module, the Q value forwards to a 

buffer where the final action gets selected and the agent has learnt the environment 

in an episodic style. In the buffer setting, the first Q values pass to the agent since 

it follows the queue mechanism. It is worth stating that the highest Q value passes 

because of the argmax operator. The learning module of the agent is based on the 

hyperparameters that are mentioned in Chapter 4. In addition, while traversing, the 

agent ensures that the traversing is completed to visit all the nodes so that there is 

no unexplored state. Thus, the agent interacts within the environment and learns 

the optimum values which lead to select the policy as discussed in the earlier 

section.  

The target of the proposed algorithm is to detect the changes and then tracking the 

changing optima (i.e. local optima or ideally the global optima) over time. From 

the below algorithm 1, it is noticeable that the vector rewards need to be provided 

Figure 5. 14: High-level architecture of the proposed parity-q deep q network 
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for each action and prioritise the objectives (i.e. if needed as like as the DST-enemy 

attack environment to prioritise health more than treasure). Therefore, unlike the 

other DST environments, DST (attack by enemy) belongs to three objectives. After 

that, the agent needs to convey the state-action pair into a deep Q network and get 

the highest achieved Q value (multiply with the preference value -if any) in the 

stack for each episode. Furthermore, the agent makes a map among the objectives 

with parity-Q value and scalarise the Q value to determine the non-dominated 

solutions (if any) and distance from each other. Finally, the agent sends the 

achieved Q value to a buffer for argmax and finally select the action and update 

the target network. 

The following algorithm 1 shows the proposed PQDQN. 
 

Parity-Q Deep Q learning Network (PQDQN): 
Line 1: Initialise: Temp Memory T // temporary list 

Line 2: Initialise: Set action value-function Q with random/arbitrary numbers 

Line 3: Initialise: Set two fully connected layers for the nth objective (two/three different 

objectives) attached to the vector reward 𝑟𝑡+𝑘+1 for multiple policies 

Line 4: Initialise: Set the temp functions for each objective 

Observe: initial state S 

Line 5: for each episode e ∈ {1, 2, . . . ,M } do  
Line 6: observe reward r and new state s' 

    Line 7:  if (state!=0){ 

    Line 8:  select an action a arbitrarily with the possibility of µ 

   Line 9: else  

Line 10: select action 𝑎 =  𝑀𝑎𝑥 𝑎′ 𝑄 (𝑠, 𝑎′) // identified the highest Q value to 
select the action  

    Line 11:} 

Line 12: store experience in Temp 𝑇 [𝑠, 𝑎, 𝑟, 𝑠′] 
Line 13: Get sample transitions from Temp T 

Line 14: Create a list/table R (to store combined Q values) 

Line 15: While (Transitions!=0 in store experience){ 

 

Line 16: If (ss'== terminal state) 

   Line 17: tt= rr+yMaxa' Q(ss', aa') 

Line 18: else   

   Line 19: set tt=rr 

Line 20: Train the Q network with pre-defined loss 

Line 21: s=s' 

Line 22: end  

Line 23: Create a stack for objective 1, Ŝ1 which consists of [𝐸1 … … 𝐸𝑛] for the value 
functions 

Line 24: while (Ŝ1 is not empty) 

Line 25: Push 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘 Ŝ1 →  𝐸1: {𝑄1 (𝑠1, 𝑎1) 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1(𝑟𝑡+𝑘+1)} 

Line 26: If (𝐸1 < 𝐸𝑛  ) 

Line 27: Pop the stack Ŝ1   

Line 28: Insert 𝐸𝑛 into the stack 

Line 29: Otherwise, Insert 𝐸1 into the stack  

Line 30: end  

Line 31: Create a stack for objective 2, Ŝ2 which consists of [𝐸1 … … 𝐸𝑛] for the value 
functions 

Line 32: while (Ŝ2 is not empty) 

Line 33: Push 𝑖𝑛 𝑠𝑡𝑎𝑐𝑘 Ŝ2 →  𝐸2: {𝑄1 (𝑠1, 𝑎1) 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2(𝑟𝑡+𝑘+1)} 

Line 34: If (𝐸2 < 𝐸𝑛  ) 

Line 35: Pop the stack Ŝ2   

Line 36: Insert 𝐸𝑛 into the stack 

Line 37: Otherwise, Insert 𝐸2 into the stack 

Line 38: end [continue the push/pop block up to nth objectives] 

Line 39: Select the action <association map (𝐸1 ~ 𝐸2) || (𝐸1~ 𝐸𝑛 )> based on the dynamic weight to 
balance the objectives (i.e. parity value) 

Line 40: Store the value of Q = 𝑄𝑛
∗⃗⃗⃗⃗⃗⃗ {(𝑠, 𝑎)} in a Buffer for enqueue and dequeue at time t (i.e. 

changing optima). 

Line 41: Select the argmax (Q) 

Line 42: Update target network 𝑄∗ → 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑎𝑚𝑜𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1, 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 𝑎𝑛𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑛 
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This is to be mentioned that the internal architecture of the algorithm is based on 

the DQN and the basic principle of the stack and queue (Cormen, 2009) have 

been utilised in the context of data structure. 

 

It can be summarised that a state is selected based on the probabilistic values of 

the actions. In a simplified way this can be classified as follows: 

 

a. Find the optimal policy, 𝜋∗(𝑎|𝑠) = 𝑃 [𝐴𝑡=1|𝑆𝑡=𝑠]. 

b. Decide where to go such as the direction based on the vector reward. 

c. Find the stochastic matrix. 

d. Once the policy is selected, the agent determines the next move.  

 

In a simplified version, the traversing can be visualised by the following Figure 

5.15 according to the above-mentioned arguments where the agent looks for the 

state and the corresponding actions. These are determined based on the vector 

rewards for the next state. Since the treasure value is 50 which is greater than 24 

in Figure 5.15, the agent moves towards the higher value rather than visiting the 

24 value in this particular situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 15: Visualisation of the importance sampling while 

traversing in the dynamic DST 
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In a nutshell, the simplified approach of the PQDQN can be represented by the 

following Figure 5.16 in the context of Q value update. In the pre-defined 

MOMDP, when the agent traverses the environment, it tries to maximise the 

expected rewards. In both test cases, the agent updates the target network by 

updating the Q table. This is completed by relating the changes in the following 

stages in a particular timestamp and finally, the agent makes the decision by the 

proposed PQDQN algorithm. 

 

 

 

 

 

 

 

 

5.7  Setup and Training the Model 

 

Using deep learning by nature is CPU intensive, however, GPU is recommended 

to enhance the matrix operations.  

The whole project has been implemented using the following tools:  

For Development: MATLAB with AppDesigner Toolbox and Python libraries 

Here, the system requirements have been mentioned so that one can also adhere 

to: 

a. A quad-core processor (Core i7-4770 CPU at 3.4 GHz) or higher (dual-

core is not preferable) 

b. 16GB of RAM (8GB is not recommended) 

c. Bus Speed- 5GT/s DMI2 

d. At least 256GB of storage (512GB is recommended) 

e. Premium graphics cards can enhance the performance (otherwise 

performance can be hampered) 

f. Hyperparameters of the trained model can be found in Chapter 4.  

Q Table  
(Agent looks for 
the current state 
and the action) 

Q* Table  
(Agent looks for 
the next state 
and the next 

action) 

Q** Table  
(Agent selects 

the action based 
on the vector 

rewards) 

Final update on 
the Q Table  

𝑸̃
= 𝑸 + 𝑸∗ + 𝑸∗∗  
(Agent updates 

the target 
network) 

Figure 5. 16: Block-diagram for updating the Q value 
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The major python libraries that are used in this study is Keras and TensorFlow. 

Both are open-source libraries with a strong and active community. In the context 

of the Keras, it is a front-end library that is backed by Theano, CNTK or 

TensorFlow. However, TensorFlow backend is used in this study. The reason for 

using the Keras is that it is well-suited with the RL model and comparatively easy 

to formalise the activation functions such as using the sequential model offered by 

the Keras library. 

On the other hand, in the context of the TensorFlow, a tensor is a multidimensional 

array of numbers. Here, vectors and matrices can be treated as 1-D and 2-D tensors. 

In the deep layer networks, tensors are mostly used for storing and processing data. 

Here, an episode can be represented using MDP and stored in a three-dimensional 

tensor. These dimensions can be represented as a matrix. Furthermore, Keras 

library is used based on the following considerations: 

- This can be easily deployed for fast prototyping. 

- Keras supports both the convolutional and recurrent networks regarding 

the deep layer architecture. 

- It also executes seamlessly with the Central Processing Unit (CPU) and 

Graphical Processing Unit (GPU). 

It is worth mentioning that the whole experiments are done based on the Keras 

model which is namely ‘sequential’. Besides, a graphical user interface (GUI) of 

the expert system (ES) has been developed to predict the vulnerable zones which 

are demonstrated in Appendix F. 

5.8  Summary 

 

In this chapter, the proposed algorithm has been discussed.  This chapter deals with 

the working procedure of the agent and how it becomes proficient in an unknown 

environment. A step by step process has been demonstrated to formalising the 

object relation mapping (ORM). In summary, this chapter has got the following 

outcomes: 

a. In the PQDQN, the ORM works to balance the objectives to find the best 

compromising solution that is closed to the Pareto front. 
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b. A comparison of the multi-policy DQN networks has been shown. 

c. Tracking the moving optima has been exemplified. 

d. Necessary tools and setups are also described.  

 

All in all, this chapter provides an overall idea of using the PQDQN algorithm in 

the context of dynamic multi-objective environments as shown in Figure 5.17. In 

other words, this chapter provides the fundamental concepts of using the proposed 

algorithm in MORL settings. The tools with libraries are also discussed along with 

the Q value functions update which is performed by the agent. 

 

 

 

 

 

 

 

 

 

 

 

The main advantages of using MORL can be summarised from this chapter as 

follows: 

- The performance is enhanced with the highly diverse Pareto-optimal 

models such as in a dynamic environment while dealing with multi-

objective environments. 

- A trade-off can be determined between correctness and interpretability for 

sequential decision-making tasks. 

- The agent remains flexible to decide about goals after learning.  

- Constraints can be expressed by rewards “being dominated by”- that directs 

a partial order which is sufficient for many RL approaches. 

The following chapter will discuss the outcome of the considered algorithms. 

Figure 5. 17: Proposed PQDQN in the dynamic environment 
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Chapter 6 

Results and Discussions 

6.1 Introduction 

 

In this chapter, the findings and outcomes of this study have been discussed. There 

is always a need to analyse and assess the outcome to measure the performance of 

the different algorithms to evaluate the quality of the achieved solutions. These 

solutions are based on the convergence, diversity, and closeness to the obtained 

Pareto frontier (Cheng, Shi and Qin, 2012). Measuring different criteria are useful 

to compare and rank the effectiveness of different algorithms. Therefore, the 

choice of suitable measures and the statistical test is vital to produce a non-

discriminatory judgment for the considered algorithms (Okabe, Yaochu Jin and 

Sendhoff, 2003).   

 

For the performance measure, there are different approaches based on the 

problems’ types. In the context of the static problems, the usual evaluation 

procedure of the obtained result is to check convergence at the end of the search 

process. However, this is not identical when it comes to a dynamic problem 

(Cámara, Ortega and de Toro, 2009). The crucial factor for the dynamic 

environment is that the effectiveness of the algorithm which does not only depends 

on the final outcome but also to its behaviour and robustness towards the dynamics 

(Helbig and Engelbrecht, 2013a; c).  

 

Stereotypically, this process includes how the algorithms are able to detect the 

changes in the dynamic environment and acts accordingly. When the global optima 

move from one place to another, ideally the algorithm should be able to track the 

solutions as they move from one search space to a different search space to avoid 

the escaping tendency to look for the global optima (Morales-Enciso and Branke, 

2014). In addition, in the context of RL settings, the solution of one state may look 

like the algorithm has reached the solution based on the local information. In this 

type of problems, the agent often gets stuck in the local optima if the agent follows 
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the greedy approach (Samonji and Watanabe, 2017). Consequently, the agent 

cannot reach the solution to detect global optima. Therefore, the agent must need 

to explore all possible states in the finite horizon to establish the compromising 

solutions based on the optimal PF and PS where the solution is better at least in 

one objective and not worst compared to any other objectives (Moritz et al., 2014). 

Hence, the agent needs to keep tracking the actions and based on that; it selects the 

policy over the changing environment. In this chapter, at first, the evaluation 

criteria have been set. After that, performance evaluation and statistical analysis 

have been explained broadly. Finally, the strengths and limitations of the proposed 

algorithm have been described. 

 

6.2 Evaluating Criteria  

Since both test cases are defined for the first time, there are no known solutions or 

any previous references that can be used to validate the obtained result. Therefore, 

technically speaking, the best-known true PF and PS have been considered for two 

test cases as a reference point.  

 

Another assumption made for the sake of the performance evaluation is that all the 

considered algorithms can produce a smaller value of a robust metric which 

reflects less sensitivity to perturbation. These assumptions were necessary to 

consider since there is a lack of dynamic MOO study in the context of 

reinforcement learning.  

 

6.2.1 Evaluating criteria for the proposed benchmark 

 

In order to evaluate the benchmark, the categorisation of the benchmarks that 

depends on the dynamics has been taken into consideration. As mentioned in 

chapter 4, there are four types of dynamics based on the PF and PS such as type I, 

II, III and IV (Farina, Deb and Amato, 2004) as described in Chapter 4. This well-

known scale is utilised to set the dynamics for the benchmark based on PF and PS. 

As a result, to make an impartial judgement of the existing and the proposed 

benchmark, a comparison between two benchmarks have been taken into 
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consideration. This criterion has been achieved by setting up the environment as 

described in Chapter 3. This comparison is also helpful to assess how the 

benchmark is satisfying the criteria in the dynamic environment. 

 

Besides, visual perception can be made by watching the video as mentioned in 

Appendix A. In this video, it is observable that the environment becomes dynamic 

by the changing values and parameters in the gameplay. 

 

6.2.2 Evaluation criteria for the considered environments 

 

In order to do an impartial analysis, the first criterion is selected in the context of 

accuracy performance measures is generational distance (GD). Equation 6.1 

defines the distance between the optimal PF and the true one. To calculate GD, 

knowledge of POF is required and a reference set of POF. In this study, the best-

known POF has been considered for all the defined problems such as DST (silver 

and gold), DST (attack by enemy) and to predict the vulnerable zones. 

Additionally, scaling and normalisation of the objectives are required to calculate 

the GD. It is to be noted that GD is computationally expensive, especially where a 

large number of objectives are used (Helbig and Engelbrecht, 2013). 

𝐺𝐷 =
√ ∑ 𝑑𝑖

2ηPOF∗ 

i=1

ηPOF∗   
…………………... (6.1) 

 

Where, ηPOF∗ represents the number of solutions in POF* (i.e. a set of scattered 

points of optimal PF) and 𝑑𝑖 represents the Euclidean distance that places in the 

objective space. This solution also represents the distance between the obtained 

POF and the nearest neighbour of POF*. 

 

As discussed in Chapter 2, the second criterion is selected as inverted generation 

distance (IGD) which is introduced by (Sierra & Coello, 2005) to overcome the 

non-adherence by GD. It is defined mathematically by Equation 6.2: 

𝐼𝐺𝐷 (𝑃𝐹, 𝑃𝐹∗) =
∑ 𝑑(𝑣,𝑃𝐹)𝑣∈𝑃𝐹∗

|𝑃𝐹∗|  
…… (6.2) 



 

161 | P a g e  

 

Furthermore, IGD is well-suited with monotony, because this measure is going to 

rate a POF with more non-dominated solutions that are close to POF as a better set 

than another POF that only has one solution which falls within POF. However, 

IGD is also expensive in terms of computational aspects. The distance function is 

utilised for the purpose of the scaling and normalisation of the objective function 

values as like as the GD. 

 

Hypervolume (HV) is selected as the third criterion to measure the performance of 

all considered algorithms. It is utilised to measure the dominance of the solutions 

by a non-dominated set. HV can be determined by the following Equation 6.3:  

 

𝐻𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑈𝑖=1
𝑆 𝑣𝑖) … … … … . . (6.3) 

 

Here, 𝑈𝑖=1
𝑆  represents the union of all hypercubes of 𝑣𝑖 in accordance with a 

reference point of POF where 𝑖 ∈ 𝑆 (Cámara, Ortega and de Toro, 2009). 

 

It is inevitable that the performance of the algorithms cannot be measured 

adequately by one unary metric. Therefore, to analyse the effectiveness of the 

considered algorithms, a thorough study has been conducted as mentioned in 

Chapter 2.  

 

Finally, a set of common characteristics have been considered to compute the 

performance such as required steps and obtained rewards in an identical setting to 

avoid any partiality. In addition to that, Student’s T-test is also considered for the 

statistical analysis based on IGD which measures how far an obtained Pareto front 

from the true Pareto Front achieved by an algorithm. 

 

 

 

 

 

 



 

162 | P a g e  

 

6.3 Performance Evaluation  

 

In the context of the dynamic settings of RL agent, the evaluation of the agent’s 

learning procedure is challenging, because the changes in the states/actions are not 

known by the agent in advance. This changing distribution of a state-action pair 

makes it difficult for the agent to selecting a particular policy. In order to lessen 

these instabilities, performance measures are evaluated, and results are analysed 

in comparison to each other. A number of experiments have been performed to test 

the overall evaluation. In most cases, the performance is evaluated based on the 

100 runs by the agents. 

 

Therefore, this section represents the comparisons in the context of the proposed 

benchmark, the training time of the algorithm, accuracy, error rate, performance 

measure (i.e. GD, IGD and HV) and statistical test. It is to be noted that one 

algorithm can perform better for a particular metric of the performance measure 

while it may not produce a good result in different settings. As a result, in this 

thesis, the comparison of the considered algorithms has been measured separately 

with respect to similar settings and measuring parameters. In addition, since the 

deep layer works as a black box, data visualisation techniques have been used to 

get meaningful insights into the performance for different algorithms. This 

visualisation is based on the TensorBoard which has been used as a primary tool 

for the analysis in this thesis. 

 

In order to assess the performance of the considered algorithms that solve DMOPs, 

performance metrics are frequently used. One of the primary goals of these metrics 

is to assess the ability of how well the optimisation algorithms can track the 

changing Pareto front. Considering the performance measure of the proposed 

algorithm and a fair comparison among the considered algorithms, the 

comparisons are made with the well-known deep Q learning algorithms which can 

handle multi-policies such as multi-policy DQN (MPDQN), multi-objective 

Monte Carlo tree search (MO-MCTS), and multi Pareto Q learning (MPQ) as 

discussed in Chapter 5. 
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6.3.1 Comparison of the existing and the proposed benchmark 

 

It is observable from Figure 6.1 that there are no changing parameters and 

constraints or changing objectives while traversing the grid-world by the agent in 

the existing DST testbed. In other words, the existing DST testbed has fixed PF 

and PS (Perez, Samothrakis and Lucas, 2013). While the proposed dynamic DSTs 

as shown in Figure 6.1 (b, c and d) have the changing parameters (i.e. DST – silver 

and gold) over time as well as the changing objectives (i.e. dynamic DST – attack 

by enemy). Therefore, the evaluating attributes have been set based on the variance 

of the PF and PS (Binois et al., 2015). Here, the agent hunts a treasure by traversing 

a particular state based on the vector rewards. 

 

  

 

 

 

 

  

   

 

(a) Static DST 

 

(b) Dynamic DST -silver 

and gold 

 

(c) Dynamic DST -random 

 

(d) Dynamic DST – 

attack by enemy 

 

 

 

From the above Figure 6.1, it is also noticeable that the upper portion (i.e. treasure 

values) of Figure 6.1 (b, c, d) are changed from the lower part. For example, Figure 

6.1 (b) shows the treasure values are getting changed based on the types of silver 

and gold. In the random environment, mentioned in Figure 6.1 (c), the values are 

changing randomly which has got no known patterns. Finally, the last environment 

as shown in Figure 6.1 (d), has an enemy submarine which continuously moving 

Figure 6. 1: All DST environments in this study 
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and hitting the other submarine that damages the health meter of the agent. Hence, 

the process of attacking has affected the environment. As a result, this environment 

(i.e. attack by enemy) brings dynamics over time in terms of changing objectives 

while the agent needs to save itself in addition to hunting the treasures. 

 

Besides, a new enemy submarine has been introduced in the third environment 

whereas the enemy agent’s target is to attack the traversing submarine and damage 

its health condition. In this third scenario (i.e. dynamic DST-attack by the enemy), 

the agent needs to satisfy a new objective that dynamically changes while 

traversing. To sum up, the following Table 6.1 shows the changing PF and PS 

criteria of the existing DST and the proposed dynamic DSTs. 

 

Table 6. 1: Comparisons of PF and PS between existing and proposed benchmark 

Testbeds PF PS Objective(s)  

Classic DST Invariant  Invariant Invariant 

Dynamic DST (random) Variant Variant Invariant 

Dynamic DST (silver and 

gold) 

Variant Invariant Invariant 

Dynamic DST (attack by 

enemy) 

Invariant  Invariant  Variant 

 

In this thesis, the study is being conducted based on the simulation where the RL 

agent needs to interact within the environment. Here, the conflicting objectives are 

handled based on the trade-offs between the objectives to find out the 

compromising solutions. This outcome is provided by the benchmark which has 

the pre-defined set of rules that supports the changing PF and PS as mentioned in 

the above Table 6.1. This is also responsible for ensuring the efficiency or fairness 

for the performed algorithms in such a dynamic environment.  

 

Therefore, the proposed benchmark has satisfied the dynamics based on the 

changing optimal PF and PS. As a result, this benchmark follows the setting of 

dynamics as type II, III and IV which has been described in Chapter 4. Thus, the 
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proposed benchmark is successful in producing a dynamic multi-objective test bed 

in RL settings. 

 

6.3.2 Comparison of the elapsed training steps and earned rewards 

 

In this section, the elapsed time (i.e. number of steps) for the purpose of training 

has been discussed for all the considered algorithms for both test cases. The 

following Table 6.2 shows the average number of steps in thousands to reach the 

goal state and total expected return (i.e. reward) of MPQ, MO-MCTS, and 

MPDQN. The ± shows the average higher and lower values to reach the goal state 

and obtain the rewards. The average calculation has been measured based on 100 

agents. 

 

Table 6. 2: Average number of steps and total expected return (in thousands) for MPQ, 

MO-MCTS and MPDQN 

 

 

The following Table 6.3 shows the training steps until convergence over 100 

agents for the proposed algorithm. In this table, the maximum steps have also been 

mentioned to get more insights into the proposed algorithm. 

Cases  Environment 

 

Metric MPQ MO-MCTS MPDQN 

Test case -1  Dynamic DST 

(Silver and Gold) 

#Steps 34320.5 

(±253.1) 

45065.2 

(±174.2) 

58323.0 

(±223.6) 

#Return 6225.2 

(±123.6) 

7055.0 

(±89.4) 

5015.4 

(±100.6) 

Dynamic DST 

(Attack by enemy) 

#Steps 76552.2 

(±348.6) 

40349.5 

(±296.5) 

68233.2 

(±463.8) 

#Return 2642.5 

(±229.0) 

3405.6 

(±74.2) 

2215.7 

(±152.2) 

Test case -2  Water quality 

resilience 

#Steps 93680.2 

(±328.1) 

87462.3 

(±64.2) 

94275.5 

(±325.9) 

#Return 22151.2 

(±213.5) 

30255.3 

(±18.6) 

14695.7 

(±175.8) 
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Table 6. 3: Average number of steps and total expected return (in thousands) for the 

proposed PQDQN 

 

 

 

 

 

 

From the above two tables (6.2 and 6.3), it is clear that the proposed PQDQN earns 

highest expected rewards than MPDQN, MPQ and MO-MCTS in all the cases. 

However, the proposed algorithm takes reasonably higher steps compared to MO-

MCTS in the Dynamic DST (attack by enemy) environment. The possible reason 

for this is the randomness generated by the enemy because of the enemy submarine 

hits the agent randomly and damages its health meter.  

 

The following Figure 6.2 shows the heatmap of traversing by the agents in 4 

different algorithms. The deep red zone shows the better path to be followed 

according to the true PF. For the simplification, here, the DST (silver) is only 

demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cases Environment Parity Q Deep Q Network (PQDQN) 

Average 

Steps 

Maximum 

Steps 

Average 

Return 

Test case - 1 Dynamic DST (Silver and Gold) 25849.01 65882.19 9128.06 

 

Dynamic DST (Attack by enemy) 55894.24 92586.30 4305.21 

 

Test case -2  Water quality resilience 86365.89 256748.53 38130.26 

 

 
 
 
 
 
 
 

a 

 
b 

 

 
c 

 

 
d 

 
c 

 
 
c 

 
c 

Figure 6. 2: Heatmap of average visited states over 100 agents for 

dynamic DST (silver only) (a) Parity-Q DQN, (b) MO-MCTS, (c) 

MPQ and (d) MPDQN 
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From the above Figure 6.2, it is noticeable that the average traverse of the 100 

agents is more accurate for PQDQN compared to other algorithms. 

 

The following Figure 6.3 shows the accuracy graph for dynamic DST (silver and 

gold) over 1 million steps where PQDQN performs better than other algorithms. 

In this environment, MPDQN performs worse than any other algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following Figure 6.4 shows the mean squared error of the different algorithms 

for the environment of the dynamic DST (attack by enemy) over 1Million steps 

where the developed algorithm performs reasonably better than the MO-MCTS 

algorithm. 
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Figure 6. 3: Learning accuracy over 1M steps for dynamic DST (silver and gold) 

MPDQN 

 
MPQ 

 
MPQ 

 
MPQ 

Figure 6. 4: Mean squared error over 1M steps for dynamic DST (attack by enemy) 
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Furthermore, the distribution of the weight-bias has been analysed. Considering a 

typical ANN, each neuron is connected via a weight to another neuron. Besides, 

the bias unit is an extra neuron to each pre-output layer that is not connected to the 

previous layers. The following Figure 6.5 shows the bias and weights distribution 

for the different convolutional and connected layers in the given network settings 

as mentioned in Chapter 4.  

Figure 6.5 also represents the bias and weights in the convolutional network in the 

dynamic DST (silver and gold) environment with the learning rate of 0.001. 

 

 

 

 

 

 

 

 

 

 

The following Figure 6.6 represents the weight distributions in the Rectified Linear 

Units (ReLU) with the learning rate of 1E-03 for the convolutional network in the 

dynamic DST (attack by enemy) environment. In the case of the weight 

distribution, conv=2 has shown where it shows after 200K steps, the distribution 

of the weights becomes symmetric for the rest of the dispersal. 

 

 

 

 

 

 

  

 

 

 

Figure 6. 5: Bias and weight distributions on the learning rate of 1E-03 for the dynamic 

DST (silver and gold) 

Figure 6. 6: Weight distributions on the learning rate of 1E-03 with conv =1 and 

2 for the dynamic DST (attack by enemy) 
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The following Figure 6.7 represents bias and weight distributions with a 

convolution network and the fully-connected layer of 2 with the learning rate of 

1E-3 for the prediction of the water quality resilience. 

 

 

The distribution of bias and weights as shown in Figure 6.5, 6.6 and 6.7 reflect a 

normal distribution of the weights and bias values. This representation also 

illustrates that the overall connectivity of the neural network in the defined model 

is sparse and the network is robust to the noisy data. Hence, the solution to both 

test cases produced a robust solution that convergences with the limited number of 

iterations that have been set up in the network iterations for the sampling points 

and to find an accurate approximation of the true PF. A full list is mentioned in 

Appendix E.  

 

Apart from the above criteria, as discussed earlier, a visualisation technique is used 

in this study to obtain more insights into the evaluation process and the relevant 

discussions. It is always important to visualise the high-dimensional data which 

can reveal unknown patterns and the perceptions of the dataset and the solution. 

For this reason, t-Distributed Stochastic Neighbor Embedding (t-SNE) and 

Principal Component Analysis (PCA) are used for the visualisation purpose 

(Laurens van der Maaten, 2018). This technique becomes one of the established 

features in the domain of ML and it is integrated with TensorBoard. However, it 

Figure 6. 7: Bias and weights distributions on the learning rate of 1E-03 for predicting 

water quality resilience 
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is often argued that the interpretation from these two features are sometimes 

difficult, misleading and varies with the different input parameters (Wattenberg, 

Viégas and Johnson, 2016).    

The purpose of using t-SNE is to produce an envisioning for non-linear and non-

deterministic algorithms that reserves local neighbourhoods in the data. On the 

other hand, PCA tries to capture data variability in a few dimensions. The 

following Figure 6.8 and 6.9 show the PCA in a 3D view for the dynamic DST 

(silver and gold) and dynamic DST (attack by enemy) with the points of 3136 and 

the dimension is 1024 with 92% variance described of two objectives and three 

objectives respectively. From Figure 6.8, it is observable that the objectives are 

conflicting, and the obtained locations are almost in different positions on the map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following Figure 6.9, it is also noticeable that the obtained objectives are 

scattered and loosely coupled in terms of the distribution of the objectives. The 

possible reason behind this is the randomness generated by the enemy submarine. 

Figure 6. 8: PCA visualisation (night mode enabled) for the dynamic DST 

(silver and gold) 
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Figure 6. 10: t-SNE visualisation for the objectives in the WQR 

environment 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, the following Figure 6.10 shows the t-SNE with the perplexity (i.e. 

defined two the power of Shannon entropy) of 14, the learning rate of 10 and with 

5000 iterations. The cluster represents the two different objectives, the lower 

portion is responsible with the highest value of the IQA and the upper cluster 

represents the combination of the objectives which is based on the lower values of 

the IET and IVA. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 9: PCA visualisation for the dynamic DST (attack by 

enemy) 
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6.3.3 Comparison of the performance of the different algorithms 

 

In the dynamic environment, when algorithms solve the DMOPs, the environment 

changes frequently. As a result, the true PF found by the algorithms has gained 

certain outliers based on defined hyperparameters. These outliers are skewed the 

obtained results using: 

 

- distance based performance by GD and IGD, which is the lower the better 

and 

- the dominance is measured by the HV where a higher value of the HV is 

better (Lwin, Qu and Kendall, 2014; Zhou et al., 2019). 

 

The effect of the outlier elucidates the calculation of the considered evaluating 

criteria as mentioned in section 6.2.2. Here, the performance comparisons are 

shown between four multi-policy DQN algorithms in terms of GD, IGD, and HV 

for the dynamic DST and the WQR environments. To gain an intuitive view of the 

considered algorithms, GD, IGD, and HV have been plotted for each of the cases 

where the results are averaged over 100 runs. The outcome confirms that all the 

considered algorithms are capable of converging. 

 

For the dynamic DST (silver and gold), PQDQN performs better compared to the 

MO-MCTS, MPQ, and MPDQN with the smallest mean values for the IGD and 

GD metrics over 100 agents as shown in Figure 6.11. In addition, PQDQN 

achieved the highest mean values for HV that reflects its dominance in this testbed. 

In this scenario, the second-best algorithm is MO-MCTS that performs better than 

MPQ and MPDQN in terms of all the cases except for the IGD where MPDQN 

performs better than MPQ and MO-MCTS. However, MPDQN performs poorly 

in all the measured criteria, especially compared to the proposed algorithm.       
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On the other hand, for the dynamic DST environment (attack by enemy), MO-

MCTS performs better compared to PQDQN, MPQ and MPDQN for GD as shown 

in Figure 6.12. However, in terms of IGD, PQDQN has achieved a better result 

compared to all the considered algorithms. In this scenario, MPQ performs best in 

terms of HV and the second-best performer is MO-MCTS.  

 

However, MPQ has performed poorly when it comes to IGD. As like as the other 

environment, MPDQN performs the worst except for the IGD. A possible reason 

of an unusual act of all the considered algorithms may be triggered by the 

randomness that is generated by the enemy submarine in this scenario that has been 

classified as type IV dynamics in the context of the DMOPs. 

 

 

× 10−3 

 

× 10−3 

 
× 10−3 

 
× 10−3 

 
× 10−3 

Figure 6. 11: Performance comparison of the algorithms in dynamic DST (silver and gold) in terms of 

GD, IGD and HV. 
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The following Figure 6.13 shows the GD, IGD and HV measure to predict the 

vulnerable zones based on the water quality resilience environment. In this 

scenario, the proposed algorithm shows superiority in all the measured criteria (i.e. 

GD, IGD and HV). MO-MCTS becomes the second best-performer in terms of 

GD and IGD.  

 

However, MPQ performs better compared to the MO-MCTS and MPDQN in 

terms of HV. As like as the other two dynamic environments, MPDQN has 

performed the poorest in terms of the GD criterion. Alike other two environments, 

MPDQN has performed better than MPQ in terms of IGD. However, MPDQN 

performed quite similar to MPQ considering the upper bound for HV in this 

scenario. 

× 10−3 × 10−3 
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× 10−3 

Figure 6. 12: Performance comparison of the algorithms in dynamic DST (attack by enemy) in terms 

of GD, IGD and HV. 
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Overall, this can be concluded that the selected performance measuring criteria are 

satisfactory to judge the considered test cases (i.e. dynamic DSTs and WQR) and 

the performance of the algorithms. The results also show that the proposed 

algorithm PQDQN performs significantly better in all the test cases except the 

dynamic DST (attack by enemy) environment. PQDQN outperforms the 

considered algorithms in terms of convergence. The results also show that the 2nd 

best algorithm in this context is MO-MCTS.  

 

However, MO-MCTS has performed poorly in some cases such as in the IGD 

calculation in the dynamic DST (silver and gold) and the HV computation for the 

WQR environment. Moreover, the MPQ has also performed well while it comes 

to the HV computation in almost every considered environment. In addition, the 

outcome also reveals that MPDQN performs poorly in every environment. 

 

× 10−4 × 10−3 
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× 10−4 

Figure 6. 13: Performance comparisons of the algorithms for WQR environment in terms of GD, 

IGD and HV 
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6.3.4 Comparison of the true PF for identifying the vulnerable zones 

 

In this study, the proposed algorithm is responsible to identify the solutions that 

are closed to the Pareto front or a compromising solution that best satisfies the 

objectives. In the real-world scenario, the dataset has been classified based on the 

preset objectives (i.e. minimising IVA, IET and maximising IQA) as mentioned in 

Chapter 4. Therefore, the best-known true Pareto front has been established using 

WQI. 

 

As a result, the obtained PF is compared with this best-known true Pareto front. 

The following Table 6.4 shows the vulnerable zones (e.g., 5, 6 and 15) which are 

predicted by the proposed algorithm.  

 

It is noticeable that the proposed algorithm can identify all the vulnerable zones. 

Appendix F shows the full list of the most vulnerable stations based on WQI. It is 

also visible that, for the zones 6 and 15, the proposed algorithm can support all the 

solutions while for zone 5, it is short of 2 for the Pareto solutions. 

 

 

Table 6. 4: Frontier features for the vulnerable zones 

Predicted 

Vulnerable Zones 

Points Supported Solutions Pareto Solutions 

5 Ribeirão Quilombo 4 6 

Rio Jundiaí  

Rio Piracicaba 

Rio Piraí 

6 Reservatório do 

Guarapiranga 

3 3 

Reservatório do Rio 

Grande 

Rio Guaió 

15 Ribeirão do 

Marinheiro 

1 1 
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The following Figure 6.14 shows the comparison of the efficient Pareto frontier 

obtained by the PQDQN with the best-known Pareto frontier based on IQA, IET 

and IVA. Here, the red dots show the true Pareto front while the grey dots show 

the achieved Pareto frontier by the proposed algorithm. 

 

Figure 6.15 shows the intensity of the vulnerability (i.e. 1 equals most vulnerable) 

among zones where it is observable that 5, 6 and 15 are the most critical. 

 

 

The predicted vulnerable areas are illustrated in Figure 6.16. The outcome has been 

compared between the proposed algorithm and the CETESB result (Publicações e 

Relatórios | Águas Interiores, 2017). These areas have been characterized 

descriptively by colour codes, varying from deep red (very critical) to light red 

(less critical). The observation shows that most of the predicted critical zones are 

located close to the South East of SP with the dense and growing population, and 

rapid developments. As a result, WQ stresses are expected in these areas as 
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Figure 6. 14: Efficient frontiers; red dots: best-known Pareto front and grey dots: 

Obtained Pareto frontier by PQDQN 

Figure 6. 15: Vulnerability in various zones 
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mapped by CETESB (i.e. 2016 results) as shown in Figure 6.17 for IQA, IVA and 

IET, respectively. 

 

 

 

 

 

 

From Figure 6.16 and 6.17, it is observable that the vulnerable areas are predicted 

by the proposed algorithm based on IQA, IET and IVA. It is also noticeable that 

the proposed algorithm can identify all the zones which are the most vulnerable.  

 

   

Figure 6. 17: a) CETESB (2016)’s IQA mapping; b) CETESB (2016)’s IVA mapping; 

(c) CETESB (2016)’s IET mapping. 

 

From the interpretations of these comparisons and the observations in Figure 6.16 

and 6.17, the predicted critical areas in this research reasonably conform to the 

observations of CETESB for WQI (CETESB, 2016). Therefore, this could be 

concluded that the results of the resilience prediction model are acceptable. 

Figure 6. 16: Vulnerable zones identified by the Parity-Q-Deep Q network based on IQA, IET 

and IVA 
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6.3.5 Statistical Evaluation of the proposed algorithm 

 

The statistical test is done to explain the difference between the obtained results 

from each other on the basis of the variance between the sample means. This is 

common for the hypothesis testing that tells how significant these differences are. 

In this study, IGD values have been considered among the performance measuring 

criteria because of its capability to evaluate the convergence and diversity 

simultaneously. In addition, the smaller value of IGD stipulates all the generated 

solutions are on the true Pareto front. 

 

The results are obtained by a two-tailed t-test with 38 degrees of freedom. The p-

value and t-value are set at a 0.05 level of significance and ±2.02 respectively. The 

result of Algorithm1 ↔ Algorithm 2 is shown as “+” and “−” when Algorithm 1 

is significantly better or worse compared to Algorithm 2, correspondingly. This 

process has been adopted from (Lwin, Qu and Kendall, 2014).  

 

Table 6. 5: Student’s t-test results of different algorithms in different environments 

 

 

 

 

 

 

 

The result as shown in Table 6.5 demonstrates that the proposed algorithm 

outperforms other considered algorithms in almost every case except the dynamic 

DST (attack by enemy) instance where MO-MCTS performs better than the 

PQDQN in terms of the solution quality and run time.  

 

In addition, MO-MCTS outperforms in each environment compared to the 

MPDQN in terms of solution quality. The result also shows that the MPDQN 

performs worse in every case except the dynamic DST (attack by enemy) where it 

Algorithm 1          

Algorithm 2 

Dynamic 

DST  

(Silver and 

Gold) 

Dynamic 

DST  

(Attack by 

enemy) 

Water 

Quality 

Resilience 

PQDQN   ↔  MO-MCTS + − + 

PQDQN   ↔  MPDQN + + + 

PQDQN   ↔  MPQ + + + 

MO-MCTS ↔MPDQN + + + 

MO-MCTS↔ MPQ − + + 

MPDQN↔MPQ − + − 
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performs better than MPQ. MPQ performs worse in dynamic DST (silver and gold) 

environment compared to the MO-MCTS. 

 

Therefore, this can be concluded that the proposed PQDQN has the best 

optimisation performance in general, considering all the dynamic environments 

compared to the other measured algorithms except for the dynamic DST (attack 

by enemy). In other words, the proposed algorithm has achieved the result with a 

good quality solution in terms of convergence and diversity. 

 

6.4 Strengths and Weaknesses of the Proposed Method 

 

Strengths: 

 

 

• This MOMDP based PQDQN algorithm learns more properties and 

complex features by interacting within the environment using vector 

rewards. This approach reduces the feature-engineering part. 

 

• This method can be fitted into unstructured data and implemented in the 

automatic network of CETESB dataset for real-time tracking to detect the 

critical zones based on the WQR. There is an overabundance of the 

unstructured data in various forms such as images, text, dialogue system, 

sensor data, and so forth. This utilisation may transfigure different 

domains, such as portfolio optimisation, healthcare, manufacturing, 

banking, stock exchange, aviation, e-commerce and so on. 

 

• Another useful feature of this method is applying the preference value 

along with the parity value (i.e. dynamic value) allocation. It helps to set 

the users’ preference to make the algorithm more robust and adjustable.  
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Weaknesses: 

 

• Formalising MOMDP in DRL settings, generally requires having a lot of 

parameters and a pre-defined model in terms of states, actions and rewards 

functions. For such applications, there is a need to gather a sufficiently 

large volume of data to train; otherwise, the model can suffer from 

overfitting. This portion of the ML study is typically a time-consuming 

activity (Leger et al., 2017; Schmidhuber, 2015). 

 

• The learning process in the deep layer of the deep reinforcement learning 

paradigm is often hard to interpret. In this method, the agent naturally 

requires colossal computational power and time to be trained. The rationale 

of doing so is the divide and conquer attitude of each DQN that produce 

the 𝑄⃗⃗(𝑠, 𝑎) to select the optimal policy. 

 

• AI-enabled any decision support system is generally questionable to the 

new legislation of the data security such as compliance with the GDPR 

(EUGDPR – Information Portal, 2018) where any automated DSS should 

have legal bindings and a detailed explanation and consent from the user 

(Paramita Ghosh, 2018). 

 

6.5 Limitations and Areas for Improvement 

 

There is a famous aphorism in machine learning research, “All models are wrong, 

but some models are useful”- by George Box (Box and Draper, 1987). To some 

extent, this proverb is true because all the models are simplified versions of reality. 

Like every other solution, the proposed model also has the limitations and 

drawbacks such as it cannot solve all the dynamic problems. This can only solve a 

pre-defined model that uses MOMDP.  
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In the context of the developing dynamic multi-objective optimisation benchmark, 

the benchmark based on type 2, 3, and 4 has only been considered. There is an 

opportunity to extend this work for type 1 (i.e. optimal PS fluctuates where the 

optimal PF remains unmoved). Overall, the benchmarks can be further modified 

by introducing different obstacles which may change over time. In this study, up 

to three objectives are considered (i.e. DST attack by enemy). It is possible to 

increase the objectives and convert this benchmark into many objectives problem.  

 

As the benchmark is created based on a grid-world gaming environment, the 

gameplay can be formulated in such a way that more obstacles and objectives can 

be integrated. Considering the proposed algorithm, only Q learning has been 

implemented and tested, the model-based approach also needs to be explored and 

investigated further for this scenario. 

 

Considering the application of the proposed algorithm, water quality has been 

considered. However, the recent approach and implementations of DRL such as 

images as input were not considered. To improve the model, precipitation and the 

time-series of the whole dataset can be taken into consideration.  

 

Areas for improvement: 

 

I. Forming the environment in a stochastic and non-stationary partially 

observable MOMDP. 

 

II. Comparing with different models of architectures, training parameters 

and reward functions. 

 

 

III. Improving the abilities of the method in sediment and automatic 

networks for the WQR dataset in São Paulo, Brazil. 

 

IV. Evaluate the method with real end-users. 
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V. Incorporating parallel computing for faster computational 

performance. 

 

 

6.6 Summary  

 
 

Designing an appropriate dynamic environment is the key task in studying DMOPs 

using RL. Throughout this chapter, the evaluating criteria and performance have 

been evaluated for the proposed benchmark and the real-world scenario. In 

summary, the proposed DRL based model has utilised in the following categories: 

 

- The benchmark has successfully satisfied the dynamic behaviour in the 

RL settings where there is more than one objective, possibly conflicting 

objectives. 

 

- The proposed algorithm has successfully implemented in both test cases 

and outperforms the other algorithms except in the case of the dynamic 

DST (attack by enemy) environment. 

 

 

- The findings in this chapter show an effective way to analyse the 

algorithms for DRL especially in the context of the DMOPs. 

 

- A formulation of the water quality dataset has been presented as an 

MOMDP to identify the critical stations in the targeted area (i.e. São 

Paulo, Brazil) with the definitions of the system state, control action and 

reward function which are the rudiments in the proposed DRL based 

method. 

 

- Furthermore, the network architecture has been developed to get the 

optimal policy in each DQNs for each episode generated by the emulator. 

 



 

184 | P a g e  

 

Throughout this chapter, the proposed algorithm is also critically evaluated from 

a neutral stand. As the PQDQN works based on the policy-search method, it is 

observable that the performance is affected by the direct representation of the 

policy mapping as discussed in the previous chapter. The proposed algorithm 

outperforms other considered algorithms which are observable with the 

performance measures (i.e. GD, IGD and HV) except for the DST (attack by 

enemy) environment where there is a random attack by the enemy submarine. This 

chapter also sheds light on the statistical tests (i.e. Student’s T-test) to analyse the 

performance of the proposed algorithm. The variation of the performance in a 

stochastic domain can be resolved if the randomness can be eradicated in advance. 

The evaluation process has also enlightened the potential of using RL to solve 

various ML problems where there is a high-dimension or partially observable 

environment. In these scenarios, the agent may learn the behaviours from 

thousands even millions of elementary stages.  

 

Based on the obtained results and corresponding analysis, the findings have been 

demonstrated critically where the algorithms performed with respect to the 

predefined experimental setups. It is worth mentioning that the attained results 

may vary in a different setting. Therefore, the comparisons have been presented 

with similar settings for every considered algorithm to avoid any bias. Then, for 

each algorithm, its average rank is considered.  

 

Furthermore, the hyperparameters were selected cautiously so that the outcome 

may not lead to wrong assumptions or can draw an incorrect perception. Therefore, 

to test the algorithms, the best-known POFs are selected for both test cases. Still, 

further research is necessary to determine the best performance measure(s) for the 

cases where POF is unknown. 
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Chapter 7 

Concluding Remarks and Future Directions 

 

In this study, deep reinforcement learning method is investigated to address three 

challenges in the domain of DMOPs in RL settings. The challenges include 

establishing a benchmark and developing an algorithm for DMOPs, and its 

application in the real-world scenario. The absence of a benchmark in the area of 

DMOP in RL settings has successfully been identified. Later, a benchmark has 

been created based on the classic DST. The extended and modified version of the 

DST has fruitfully satisfied the dynamics in terms of changing parameters of a pre-

defined environment. These variations are based on the changing optimal PF and 

PS over time.  

 

In this thesis, a comprehensive analysis and a recent trend of DRL were discussed 

in the second chapter. The chapter has also highlighted the core elements and the 

necessary components for RL and DRL. Moreover, the test cases and the 

justification for doing this empirical research have been mentioned in the second 

chapter. The methodology has been discussed in the following Chapter 3. The 

proposed benchmark has been discussed in Chapter 4 where three environments 

have been created based on the dynamics that are presented by (Farina, Deb and 

Amato, 2004). These three environments are created based on the random treasure 

values, silver and gold treasure values, and the dynamic DST (attack by enemy) 

where a new objective has been integrated.  

 

The problem definition and the mathematical model have also been discussed with 

the explanation of the network architecture and their corresponding 

hyperparameters in the fourth chapter. Two different experimental setups have 

been used for two different test cases that are common for every algorithm for fair 

comparison and analysis. Technically, in both cases, Keras framework is used with 

the backend of the TensorFlow based on the central processing unit (CPU) only.  
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Thus, this study has underlined an easy implementation of the MOMDP based 

system in the real-world scenario and solve an actual problem using the trial-error 

method. Hardcode approach of formalising the MOMDP is used to solve the 

problem instead of using the raw images as input. Chapter 5 sheds light on the 

proposed algorithm. 

 

It has been observed that the proposed algorithm (i.e. PQDQN) enables the 

decomposition of problems into sub-problems and make a relationship among 

different objectives. This is nothing but the mapping between different conflicting 

objectives to get a compromising solution that adheres to the POF. It also provides 

a method for robust manipulation of priorities after the training which may ignore 

a specific behaviour or objective provided by a DQN. It permits a new objective 

to accommodate in the current settings because of the decompositions by different 

DQNs and combining with the preference values (e.g., if any).  

 

The results in Chapter 6, perceives forming a Meta-policy that can have a 

significant impact on governing the optimal policy that needs to be selected in a 

particular state in an MOMDP. Besides, successful implementation of an MOMDP 

in a real-world scenario has been anticipated where the trained agent outperforms 

multi-policy algorithms such as MO-MCTS, MPQ, and MPDQN. Although the 

agent requires slightly higher elapsed time compared to the MO-MCTS agent in 

the dynamic DST (attack by enemy) environment, its accuracy in finding the 

Pareto optimum solutions is improved. Regarding the implementation, testing and 

validation of the proposed algorithm in a real-world situation, the dataset for water 

quality resilience in SP, Brazil has been used.  

 

 

The proposed algorithm is based on the DRL that has successfully identified the 

most vulnerable zones which belong to the zone of 5 (Ribeirão Quilombo), 6 

(Reservatório do Guarapiranga) and 15 (Ribeirão do Marinheiro). This 

experiment also shows how to use an MOMDP using DRL to solve a practical 

problem. The result also confirms that in a stochastic MOMDP setting where there 
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is randomness, the proposed algorithm performs better than MPQ and MPDQN.  

 

In a nutshell, the contributions made in this thesis are as follows:  

• It is the first study to create a new benchmark for DMOP in RL settings. 

This benchmark satisfies the dynamics of type II, III and IV. 

• A novel algorithm (PQDQN) has been developed that can handle multi-

objective using different DQNs based on DRL. 

• Objective-relation mapping (ORM) is used for the first time to formulate 

meta-policy. 

• An innovative method has been implemented to identify and predict the 

vulnerable zones based on water quality resilience in São Paulo, Brazil and 

• A research gap has been identified through an extensive review of the 

existing state-of-the-art techniques and literature in the context of RL. 

Hence, the concluding remarks are divided into the following sub-sections. 

 

7.1 Final Remarks on the Benchmark 

 

To conclude the argument on the proposed benchmark, it is now established that 

there was a lack of a standard in the context of DMOPs study in RL domain. 

Therefore, it was important to investigate and analyse it further in the context of 

DMOPs in RL settings. Consequently, it was much needed to develop a benchmark 

that can handle the dynamics in a multi-objective environment. The benchmark 

was proposed in a way so that it does not deviate from the conventional settings 

(e.g., games, grid-world, and control problems) of the RL research. 

 

Therefore, the benchmark was designed based on the existing testbed which is a 

modified version of the classical DST problem for RL research. Furthermore, the 

benchmark is designed to make it robust and scalable for the purpose of analysis 
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and evaluation. This may allow the researchers to modify, improve and compare 

different settings and analyse the benchmark further.  

 

The proposed benchmark for DMOPs can satisfy the types that have been 

mentioned in the problem definition section which are type II, III and IV based on 

the changing optimal PF and PS. From the proposed dynamic environments, the 

purely random environment has been excluded where the treasure values change 

arbitrarily. The reason for excluding this environment was not to have any known 

patterns in this scenario and ML inconsistency in such circumstance. Likewise, the 

benchmark does not address the type I problem where optimal PS varies, and the 

optimal PF remains unchanged. Incorporating this scenario may have a significant 

impact on further investigation and may contribute to some new knowledge in the 

context of RL and DMOPs.  

 

Another important observation is that the benchmark is not only capable of 

handling dynamics of the different RL settings but also provides the facilities to 

handle the changing objective such as in the attack by the enemy submarine DST 

environment. It is also possible to incorporate more than one enemy submarine or 

the existing enemy submarine that follows a pattern to hit the good agent and gives 

a tough time to the opponent to survive. This process surely will generate some 

new dynamics in this grid-world.  

 

Therefore, the benchmark has got every potential to be enhanced further and 

become an appropriate testbed for solving dynamic optimisation problems in RL 

backgrounds. It is to be mentioned that this thesis does not take any credit of the 

original version of the DST testbed which was undoubtedly a remarkable 

contribution in the context of RL and optimisation research. 
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7.2 Final Remarks on Test Case 1  

 

Test case 1 is related to the proposed benchmark. This test case is based on the 

dynamic environments that use the MOMDP model. Here, the vector rewards are 

utilised by the agent to find out the optimum solution over the scalar reward. 

PQDQN outperforms the other considered algorithms in finding the solution that 

is closed to the true PF. The elapsed time for training and obtaining the average 

rewards was commendable for the proposed algorithm in this test case. The 

proposed algorithm shows its capability to obtain all the Pareto frontiers in every 

environment. The elapsed time to be trained varies for every run that agent 

witnesses for every setting. However, the convergence time of the proposed 

algorithm was higher in the DST (attack by enemy) environment compared to MO-

MCTS.  

 

The algorithm also reveals that the obtained GD values in test case 1 are better 

compared to the others except for the DST (attack by enemy) environment based 

on hyperparameters as mentioned in Chapter 4. Like GD, PQDQN performs 

identically for HV concerning the evaluation of the performance measurements for 

the considered algorithms. The possible reason might be the enemy submarine’s 

behaviour that is generated arbitrarily. Conversely, the proposed PQDQN 

outperforms other considered algorithms in terms of the IGD. The statistical test 

(i.e. Student’s t-test) also signifies the same result that the PQDQN outperforms 

the other algorithms except for the dynamic DST (attack by the enemy) 

environment.   

 

The dynamic weight allocation based on the Q values of each DQN has unlocked 

the opportunities to deal with the changing behaviour of the DMOPs and may work 

with the new objective even without re-training. This Q-function learned by the 

agent is represented in the tabular form which is one output for each tuple. In the 

PQDQN, the agent updates its target network to keep twiddling the policy as long 

as the performance gets better. Consequently, the converging time increases as 

space gets larger. 
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The suggested algorithm is based on the beliefs of the Q learning and it has two 

major pillars that distinguish from the single objective agent. This belongs to the 

vector reward and the learning capability of all the set of non-dominated solutions 

at the same time. However, in the light of the achieved results, it looks sensible to 

speculate that in the context of the dynamic environment, PQDQN tends to need 

less training steps compared to the other algorithms. This is due to the reward 

structure and the exploration mechanism of the proposed algorithm. It is to be 

argued that the Q learning approach may suffer from the overfitting and absolute 

greedy attitude to reach the goal. 

 

With the help of the obtained results, it is clear that the proposed algorithm 

provides the way of storing the utility information which does not need a model 

either for learning or for selecting an action. As the Q learning algorithm is 

fundamentally based on the model-free approach, thus, the proposed algorithm 

achieves the obtained Pareto front by mapping multi-objective based on ORM as 

described in Chapter 5. Consequently, the agent is capable of reaching the 

supported solutions in a reasonable time frame. However, it could be 

argumentative that in the large space, a policy search-based method might not be 

the appropriate solutions as it often uses a stochastic policy. However, due to the 

policy selection mechanism mentioned in Chapter 5, it is noticeable that even in 

the dynamic search space, the proposed algorithm can perform and converge 

within the defined episodes.  

 

Besides, the convolutional layers that are used in the network architecture by the 

proposed algorithm are two for test case 1. The agent also utilises Adam optimisers 

for this test case. These setups also emphasise the capability to fit in the real-world 

scenario compared to other deep learning algorithms such as AlexNet which has 5 

convolutional layers (Krizhevsky, Sutskever and Hinton, 2012). Therefore, this 

study shows an easy formation of customising the layers in the DRL architecture 

where MOMDP is being used. The further implementation of different layers 

would also be appreciable and could be an impressive extension of the current 

setting. 
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It is worth mentioning that the proposed algorithm deals with the vector rewards 

in a 2-dimensional space. However, a fundamental and new knowledge would be 

the creation and investigation of the compatibility of the reward distribution in a 

three dimensional or an n-dimensional space. It should also be stated that a non-

stationary policy may be unsuitable in a specific application as mentioned in 

(Vamplew et al., 2017a; Roijers et al., 2013). Therefore, the current algorithm still 

needs to be better for identifying the strategies for stationary deterministic policy. 

However, a recent approach of the Pareto-set algorithm as mentioned in (Moffaert 

and Nowé, 2014; Moffaert, Drugan and Nowé, 2014) represents an encouraging 

new tactic for identifying such policies.  

 

The whole procedure of establishing the benchmark and using it as a test case was 

successful. Consequently, the proposed algorithm has implemented in the 

benchmark without any constraints and thus, the study accomplished its objectives 

1, 2, 3 and 4 as mentioned in Chapter 1. This also answers the research question 1 

which efficaciously fills the gap to establish the benchmark and address the 

problem settings by the proposed algorithm. All in all, this also signifies that test 

case 1 can be related to many problems in the domain of computer vision where 

the PF and PS changes or remains invariant. 

 

7.3 Final Remarks on Test Case 2 

 

To accomplish the urgings on test case 2 which is related to the prediction of the 

vulnerable zones based on the water quality resilience, this thesis has successfully 

addressed this problem. This problem has addressed using one of the state-of-the-

art machine learning techniques such as DRL. This also leads to conducting a 

feasibility study to investigate the potential and suitability of using RL methods 

for WQR predictions to identify and predict the critical zones in the domain of 

water engineering applications. Machine learning methods, particularly, artificial 

neural network, has been widely used in water systems engineering studies with 

fairly satisfactory performance as discussed in Chapter 2.  
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On the other hand, a new approach such as using RL and MOMDP to study water 

quality resilience may bring an effective solution in preparing the engineering 

systems. This approach also may help to tackle and cope with emerging challenges 

in the hydroinformatics domain. This study combines the ML and WQR which can 

provide an opportunity for more effective adoption of the resilience to face the 

various challenges and help to provide a sustainable environment. In this thesis, a 

dataset has been utilised which is produced by the CETESB from the state of São 

Paulo, Brazil. The agents’ task was to identify and predict the critical zones where 

the IQA values are less and the IET and IVA values are high as described in 

Chapter 4 and 5. Thus, the last objective of this research work has been achieved. 

 

Therefore, successful implementation of RL settings in predicting water quality 

resilience is a new paradigm and can enrich the implementation of AI and ML 

technologies to study the hydroinformatics and hydrodynamics arena. Its impact 

and formalising MOMDP in this context can be argumentative from an academic 

point of view. However, the researcher community cannot decline the future 

possibilities of using DRL in different industries including water treatment, smart 

cities, sustainable drainage systems, wearable computing and so on.  

 

Moreover, this study can also have a significant impact on reactive and planned 

maintenance for water supply. It also shows a direction for the researchers to 

implement the proposed model in various water reservoirs to measure water 

quality resilience, which may help to reduce the efforts of manual data collection 

and support to build a sustainable environment. 

 

To sum up, the implementation of DRL methods can be improved using various 

ML techniques and carried out further from this point. It can be concluded that test 

case 2 successfully answers the second research question and helps to achieve the 

final objective to reach the intended research goal. Besides, a new approach to 

solving an emerging problem such as water quality can always enlighten hidden 

potential associated with it. 
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7.4 Future Works 

 

The AI community has observed a different dimension of solving the problem 

using RL. By combining the RL approach and traditional supervised machine 

learning, it is possible to augment machine learning with expert knowledge. As a 

result, embedding the deep neural network with RL can be fed with the expert 

input and the RL can provide the flexibility to use the knowledge in the new 

context respectively. Besides, RL agents are expected to be outperforming humans 

in many situations such as playing Go, Chess, Atari 2600 and so on (Li, 2017).  

 

Despite the successes of DRL, a proper investigation needs to be made before 

applying it to solve a real-world and complex problem because of its 

overwhelming computational costs. A deep learning amalgamation with other 

traditional AI approaches can significantly improve the performance and achieve 

the desired goal. Possibly, it is not too far when AI systems will be able to acquire 

knowledge and act like a human in increasingly complicated environments 

(Enriquez et al., 2020).  

 

In the context of the algorithm development, the off-policy algorithms have been 

considered predominantly. However, a model-based and on-policy algorithm can 

be explored further to investigate the applicability and efficacy in this context. The 

scope of the PQDQN can be enhanced in many objectives scenario. Besides, 

incorporating parallel computing can significantly reduce the elapsed time of being 

trained for the developed algorithm.  

 

The proposed algorithm is being tested for the two objectives scenario (i.e. DST 

(silver and gold) and WQR model) and the three objectives (DST attack by the 

enemy) settings. At this stage, the immediate application will be using deep 

deterministic policy gradient (Lillicrap et al., 2015)  to train the agent. After that, 

the ANOVA test will be performed to get an improved insight for statistical 

analysis. However, many objectives (i.e. more than four objectives) scenario is 

also in the plan to be implemented in the future (Jaimes and Coello, 2015). 
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To handle the partially observable, nondeterministic and uncertain environment, 

there are still many challenges that need to be considered such as benchmark 

evaluation in the dynamic environment as well as the performance measuring 

criteria in such benchmarks. Furthermore, the connections between AI and the 

real-world problems need to be more coupled so that practical problems can have 

effective as well as realistic solutions with an explainable format (e.g. XAI) to 

simplify the understanding and usage of AI (Barredo Arrieta et al., 2020). Besides, 

the findings from test case 2 with an automatic decision process need to be further 

investigated to comply with the existing systems. 

  

Additionally, hierarchical reinforcement learning (HRL) can be used to extend the 

traditional (RL) methods to solve more complex tasks such as working with many 

objectives problems (Levy, Platt and Saenko, 2018). However, the majority of 

current HRL methods require on-policy training and these methods are difficult to 

apply in real-world scenarios. In a highly complex setting such as in a dynamic 

environment with the high-variance behaviours of the constraints, objectives or 

parameters, this approach can be useful.  

 

However, this may be computationally expensive whereas the cost of a few million 

steps will be required to just do a simple step along with several days for training 

(Nachum et al., 2018). The ultimate vision of AI since its inception has been to 

construct autonomous agents that can interact with the environment and amongst 

each other. To achieve this level of success, multi-agent RL (MARL) may be a 

good solution that matches with the vision (Lopes Silva et al., 2019).  

 

Nevertheless, the success of the MARL agent yet to be explored in the future 

(Kapoor, 2018). It is to be mentioned that, Vinyals et al., (2017) has introduced 

“The StarCraft II Learning Environment” which is a testbed for MARL research. 

This allows for granular control over the objectives and constraints in the pre-

defined map of the environment. Incorporating these two approaches into the 

proposed algorithm can bring a hidden success for the DMOPs which may bring a 
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new horizon in the operational research (OR). Thus, RL can be suitable for the 

environment where the agent’s task is to interact within the environment and win 

by self-learning. Therefore, multi-agent implementation can be utilised to solve a 

particular problem in the future which has not been considered in this study to 

identify the better policy. Additionally, human-agent teamwork can also be 

integrated to make a better and on-demand resolution in real-time for the decision-

making process (van Wissen et al., 2012). Applying this technique in this 

benchmark may enhance the performance by allowing cooperation that can help 

to build a smarter decision-making scheme. 

 

The parallel approach of solving DMOPs such as incorporating parallel computing 

can be scrutinised in the future to produce more competent and realistic solutions. 

The study of the dynamic applications will enhance more viable solutions for well-

being and enhance the quality of life. In addition, the training and convergence 

time can be improved significantly in future with the help of using edge AI (Li et 

al., 2019) technique. This can also be helpful to implement in many practical 

applications such as for smart homes, Internet of Things (IoT) appliances (Chen 

and Giannakis, 2017; Liu, Zhang and Wang, 2018) and so on, considering our 

daily life is also dynamic with many constraints.  

 

The DRL approach can also be operated to solve various metaheuristics problems 

(Torres-Jiménez and Pavón, 2014) such as in healthcare (Liu et al., 2017), 

chemical reaction optimisation (Bechikh, Chaabani and Ben Said, 2015), artificial 

immune systems (Azzouz, Bechikh and Said, 2012), radiation optimisation (Feng 

et al., 2018), particle swarm optimisation (Hein et al., 2016; Zhang et al., 2015), 

and ant colony optimisation (Desell et al., 2015). 

 

On the other hand, in the near future, access to clean water will be more of a 

strategic issue. Besides, climate change will also have a major impact on drinking 

water quality and its availability. The manual process of data collection can be 

very time-consuming and thus, it will be replaced by the automatic process 
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eventually. As a result, integrating different machine learning methods can have a 

significant impact in this domain. 

 

Therefore, the cutting-edge technologies such as DRL may bring even greater 

success to achieve human-level expertise to determine not only the vulnerable 

zones but also the associated reasons to be vulnerable such as the influence of 

drought or precipitation. In terms of integrating real-world scenarios, raw pixels 

of the environment can be embedded for an interesting enhancement of this work 

which may help to study in computational fluid dynamics, ocean engineering, 

naval hydrodynamics, a study of marine and aquatic life, and water conservancy. 

This can also be implicated in the conventional study of ML such as in video 

games, stock-exchange prediction, image processing and so on.  

 

Lastly, as an ending note, the readers are reminded of Isaac Asimov’s (Asimov, 

1950) law of the agents’ saying that we must create the agent which is helpful to 

human. This can be achieved by applying governance and ensuring the facilities 

of tractability (Matt O’Brien, 2020). In this thesis, the discussion on the possibility 

of vulnerable or dangerous AI has been eschewed. The author would like to leave 

the discussion to an open-end so that the readers can have their own portrayal of 

future AI, be it a positive or negative one. However, the author believes that 

mankind will be more benefitted from AI and the self-learning ability of the 

machines if they can imagine the revolutionary outcomes of it. Finally, the author 

would like to conclude the thesis with a quote of Alan Turing, the famous British 

scientist and the computer science pioneer:  

 

 

“Those who can imagine anything, can create the impossible.”  

― Alan Turing 
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Ethical Considerations 

This study proves the concept of optimisation in the dynamic multi-objective 

environment. To satisfy this, computer-generated simulated environments have 

been considered. In other words, gaming environments have been incorporated to 

do the experiments. Therefore, human participation was not required during the 

research period. 
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Appendices 

Appendix A: Treasure values and the Pareto frontiers 

In this appendix, treasure distributions have been shown in Table A.1. Identified 

treasure values (i.e. Pareto frontier) for the dynamic DST (silver and gold) have 

been shown in Table A.2. Two scenarios are described in the dynamic DST (attack 

by enemy) environment with the identified treasure values along with the time 

cost.  

To get more details, click the following video link:   

(https://www.dropbox.com/sh/joku75dhwckjhbu/AAAdPEr2lOyZjdMe0Q-

fI3eTa?dl=0) which has been created while traversing the agent in different 

scenarios. 

 
 
 
 
 
 
 
 
 

Table A. 2: Treasure values for the Pareto Frontier (Silver and Gold) 

Treasure Types Identified Treasures 

Silver 1, 2, 3, 5, 50, 74, 124 

Gold 1597, 1797, 1829 

 
 

Table A. 3: Treasure values for the Pareto Frontier (attack by enemy- scenario 1)  

Identified Treasures Time Cost Health Meter 

1 1 10 

2 3 10 

0 4 8 

3 5 10 

5 7 10 

8 8 8 

16 9 10 

24 13 10 

50 14 10 

74 17 10 

124 19 2 

 

Table A. 1: DST testbed treasure values 

 Treasure values 

DST (silver and gold) Silver 1,2,3,5,8,16,24,50,74,124 

Gold  100,925,1231,1442,1525,1597

,1797,1829,1889,1900 

DST (attack by enemy) 1,2,3,5,8,16,24,50,74,124 

https://www.dropbox.com/sh/joku75dhwckjhbu/AAAdPEr2lOyZjdMe0Q-fI3eTa?dl=0
https://www.dropbox.com/sh/joku75dhwckjhbu/AAAdPEr2lOyZjdMe0Q-fI3eTa?dl=0
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Table A. 4: Treasure values for the Pareto Frontier (attack by enemy- scenario 2) 

Identified Treasures Time Cost Health Meter 

1 1 10 

2 3 10 

3 5 10 

5 7 10 

8 8 10 

16 9 10 

24 13 10 

50 14 8 

74 17 10 

124 19 8 

 

Appendix B: Sample WQR dataset 

A sample dataset has mentioned in Table B.1. Here, the stations of the zone 1 

and 2 have been mentioned. The language of the raw dataset is in Portuguese. 

Table B. 1: Sample raw dataset for the WQR 

 

U
G

R
H

I 

              

Corpo Hídrico Ponto Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez 

  Rio da Prata PRAT02400   61   53   60   58   45   51 

    SAGU02050   57   53   60   52   53   55 

1 
Rio Sapucaí 
Guaçu 

SAGU02250   71   60   63   65   63   59 

  Rio Sapucaí-
Mirim 

SAMI02200   59   55   62   61   55   59 

  
Braço do Rio 
Paraibuna 

IUNA00950   91   85   89   89   87   88 

  
Braço do Rio 
Paraitinga 

INGA00850   89   83   87   88   89   90 

  
Cór. do 
Pontilhão ou 
Barrinha 

PONT04950   15   17   26   13   14   15 

  Reservatório do 
Jaguari - UGRHI 
02 

JAGJ00200   81   80   83   81   64   80 

  JAGJ00900   87   83   86   89   89   86 

2 
Reservatório 
Santa Branca 

SANT00100   84   82   79   84   82   91 

  Ribeirão da 
Água Limpa 

ALIM02950   48   44   31   41   31   37 

  
Rio Buquira BUKI02950   45   57   56   50   49   51 

  

Rio 
Guaratingueta 

GUAT02800   73   65   75   69   72   73 
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The following Table B.2 shows the threshold values of the IQA, IET and IVA. 

 

Table B. 2: The threshold level to determine the resilience of IQA, IVA and IET 

 

Index Categories 

IQA 

High quality Good quality Average 

quality 

 Poor quality Very poor 

quality 

79<IQA≤100 51<IQA≤79 36<IQA≤51 19<IQA≤36 IQA≤19 

IVA IVA≤2.5 2.6<IVA≤3.3 3.4<IVA≤4.5 4.6<IVA≤6.7 6.8≤IVA 

IET 

High 

oligotrophic 

Oligotrophic Mesotrophic Eutrophic Highly 

eutrophic 

Very 

highly 

eutrophic 

IET≤47 47<IET≤52 52<IET≤59 59<IET≤63 63<IET≤67 67<IET 

 
 

Appendix C: Keras implementation 

 

Keras Implementation for SGD: 

sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)  

model.compile(loss='mean_squared_error', optimizer=sgd)  

 

 

Keras Implementation for Adam: 
 
keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, 
decay=0.0, amsgrad=False) 

model.compile(loss='mean_squared_error', optimizer=adam)  
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Appendix D: Visualisation of the deep layers 

In this section, a detailed visualisation of the deep layers has been illustrated 

which is generated by the TensorBoard. 

 

 
Figure D. 1: Bird’s eye view of the deep layer network 
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Figure D. 3: Visualisation of deep layer 2 
 

Figure D. 2: Visualisation of deep layer 1 
 



 

233 | P a g e  

 

 

 
Figure D. 5: Visualisation of deep layer 4 

 

 
 

 
Figure D. 5: Visualisation of deep layer 4 

 
 

 
 

Figure D. 4: Visualisation of deep layer 3 
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Figure D. 6: Visualisation of the output layer 

 

 

 

Figure D. 7: Visualisation of the stochastic gradient descent (SGD) layer 

 

 
 
 

 

Figure D. 8: Visualisation of the iterations  
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Figure D. 9: Visualisation of the momentum layer 

 
 

 
Figure D. 10: Visualisation of the loss layer 

 
 

 

Figure D. 11: Visualisation of the decay layer 
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Figure D. 12: Visualisation of the kernel layer 

Figure D. 13: Visualisation of the bias layer 

Figure D. 14: Visualisation of the random_uniform layer 
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Appendix E: Weight-bias distributions 

 
 

 
Figure E. 1: Weight-bias distribution for dynamic DST (silver and gold) 

 
 
 

 
Figure E. 2: Weight-bias distribution for dynamic DST (attack by enemy) 

 
 

 
Figure E. 3: Weight-bias distribution for WQR environment 
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Appendix F: Expert system and identified vulnerable 

zones 

The Expert System (ES) is developed for identifying the water quality and 

predicting the vulnerable zones as a standalone system and can be accessed with 

the MATLAB extension. The external user of the proposed ES can be accessed 

through a web browser over the Internet. As a result, the system can be used in PC 

and mobile device. However, for the mobile device, MATLAB Mobile needs to 

be installed. The following link is the Git repository (i.e. source code) for the 

MATLAB code. 

Link: https://gitlab.com/mahmudul.05/wqn-brazil  

 

Figure F.1 shows the login screen of the ES to predict vulnerable zones using water 

quality resilience. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure F.2 demonstrates the resilience prediction based on the IQA, IET and IVA 

associated with the overall impact for the corresponding stations out of 22 zones.  

Figure F. 1: Login window of the ES 

https://gitlab.com/mahmudul.05/wqn-brazil


 

239 | P a g e  

 

 

Figure F.3 shows the outcome of the ES such as the most vulnerable zones based 

on a particular zone. Here, four vulnerable stations are identified for zone 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 
(b) 

 
Figure F. 2: ES to predict water quality resilience based on (a) IQA, (b) IET and (c) IVA 

Figure F. 3: Identified vulnerable stations of Zone 5 by the ES 

(c) 

 
(b) 
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Identified vulnerable zones based on IQA, IVA and IET have been shown in 

Figure F.4, Figure F.5 and Figure F.6 respectively. 

 

  

Figure F. 4: Identified the most vulnerable stations based on IQA 

 

Figure F. 5: Identified the most vulnerable stations based on IET 
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Figure F. 6: Identified the most vulnerable stations based on IVA 

 

Table F.1 shows the most critical zones and their physical location based on 

latitude and longitude. 

 
 

Name Zone Latitude Longitude 

Ribeirão Quilombo 5 -15.58568 -56.10695 

Reservatório do 

Guarapiranga 6 -21.97582 -48.25019 

Ribeirão do Marinheiro 15 -27.57763 -48.59243 
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Table F. 1: Physical location of the most vulnerable zones 
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