
A data driven probabilistic model for well integrity management: case 1 

study and model calibration for the Danish sector of North Sea 2 

The correct functioning of well completion in oil and gas facilities, is eminently 3 
important to assure continuity of production operations together with an adequate 4 
safety level. 5 

To enhance the performance of production wells and reduce maintenance 6 
expenditures, a shift of paradigm from corrective maintenance to a proactive risk 7 
based maintenance is necessary. In order to investigate the feasibility of fully 8 
probabilistic risk based inspection planning approach for subsea wells, a pilot study 9 
has been carried out at Danish Hydrocarbon Research and Technology Centre 10 
(DHRTC).  After establishing a baseline for the system taxonomy, failure modes 11 
and their dependencies on deterioration mechanisms, a data collection and analysis 12 
lead to the calibration of a corrosion probabilistic model, based on pit-size 13 
measured from tubing inspections. This manuscript presents the results of the 14 
feasibility study, the calibration of a bespoke corrosion model for wells in the 15 
Danish sector of North Sea, the reliability analysis (pressure burst failure) and the 16 
identification of a threshold value for the pit penetration to be compared with 17 
current O&G regulations. The model is further used to compare expected 18 
maintenance costs for two policies, namely corrective maintenance, which is the 19 
most used policy in O&G companies, and condition based maintenance. Results 20 
show how the condition based maintenance policy results in lower maintenance 21 
costs and potential extension of well lifetime.  22 
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Introduction 25 

Risk based inspection planning (RBI) has been widely used for the integrity management 26 

of transportation infrastructures and pipelines networks, offshore structures such as 27 

platforms and wind turbines. However, in the context of sub-sea and/or sub-surface well 28 

integrity, this method is seldom applied and risk assessment is used mostly in a qualitative 29 

and semi-quantitative way when aiming at programming workovers (Pedersen et al., 30 



2012, Chilingar, 2013). This testifies the need for a shift of paradigm from 31 

reactive/corrective maintenance of the sub-surface wells to a proactive risk based 32 

maintenance to ensure and enhance performance. Indeed, the use of probabilistic methods 33 

and risk based management approach facilitates this paradigm shift by allowing 34 

formulating the best strategy aiming at obtaining the desired performance for the asset 35 

with respect to a defined service level and safety acceptance criteria (Straub, 2007). The 36 

best maintenance strategy in RBI is obtained as the optimal strategy according to a 37 

classical decision analysis optimization problem, where the objective is to minimize the 38 

risk function, and where risk is defined as the expected value of the consequences 39 

associated to a specific failure mode and therefore is proportional to the probability of the 40 

failure mode and costs.  41 

In order to investigate the feasibility of the use of risk based maintenance for the North 42 

Sea production wells, an extensive data collection has been performed aiming at gaining 43 

both qualitative information in the form of expert opinions and quantitative data from 44 

inspections with logging tools performed during workover operations. The data collected 45 

permitted the calibration of a bespoken probabilistic corrosion failure model targeting the 46 

simulation of pit maxima whose presence might cause the bursting of the tubing with 47 

consequent leak, loss of integrity and trigger therefore a workover.  48 

This manuscript consists of two parts. First the data collected is analysed and the 49 

corrosion model is developed. In the second part the model is used to simulate the 50 

probability of failure for burst over the fixed 30yrs life span, with corresponding costs of 51 

maintenance for two policies: corrective maintenance and condition based maintenance 52 

(with perfect information).  53 



Phenomenology of corrosion process 54 

Multiple studies are available in literature where the need for modelling the corrosion 55 

process as time and spatial variant problem is addressed. In particular, the dependency of 56 

the corrosion rate on multiple variables governing the corrosion phenomena is widely 57 

acknowledged. However, in both field and laboratory observations, often the recording 58 

of data is not done in a consistent way, making difficult the derivation of models able to 59 

comprise those dependencies. Temperature and flow velocity are identified as most 60 

important parameters governing initiation of corrosion in both sea water exposed 61 

elements and in transportation pipelines and tubing (Melchers, 2003a, Chilingar et al, 62 

2013). The uncertainties related to these variables propagates to the corrosion process, 63 

where both spatial variability and time dependency can be observed. In particular, 64 

corrosion losses vary almost linearly in time, with standard deviation of corrosion losses 65 

showing a linear increase with the exposure time.  66 

Different models for the growth rate of uniform and pit corrosion are available, especially 67 

for the offshore industry (Olsen, 2003, Melchers, 2003a,b, Smith, 2005, Nešić, 2007, 68 

Nyborg, 2010). In this context, Engelhart&MacDonald(2004), have widely highlighted 69 

the need for the combination of mechanistic and statistical models pointing at advantages 70 

and disadvantages of both approaches. Mechanistic and empirical models have the 71 

advantage of being built on the interpretation of the corrosion phenomena and address 72 

clearly the dependencies among the variables. Statistical models, are often not based on 73 

phenomenological models, but can capture the correlation among variables and track 74 

evolution over time of the phenomena. However, while in mechanistic models, model 75 

parameters represent physical variables of the problem (e.g. corrosion pit depth), 76 

parameters of statistical models (e.g. EV distributions) do not represent physical 77 

variables, but statistic characterization of the dataset used (Engelhart&MacDonald, 78 



2004). Therefore, statistic models may have limited validity depending on the extension 79 

of the dataset and may not be able to capture the full evolution over time of the 80 

phenomena, due to both limitation of the dataset and of extrapolation method itself. 81 

Especially, since statistic distribution parameters do not have physical meaning, no direct 82 

observation can be done and consequently, the use of Bayesian updating to improve the 83 

model is not straightforward (Melchers, 2003a, Engelhart, 2004). Therefore, the 84 

mechanistic model should be combined with statistical calibration on  in-situ data.  85 

A power function of the time 𝑎𝑎 ∙ 𝑡𝑡𝛽𝛽 is commonly used to model the evolution of corrosion 86 

pit depth (see Laycock, 1990, Melchers, 2003a, 2003b, 2004, Engelhardt, 2004, Straub, 87 

2007), with factor 𝛽𝛽 calibrated by regression on experimental data and considered 88 

deterministic. Indeed, both Laycock (1990) and Melchers (2008) highlight that 𝛽𝛽 should 89 

be kept constant (0.5) for pure hypothesis of Fickian diffusion homogenous process. 90 

Moreover, Melchers (2003a) underlines the importance of using in-situ data because the 91 

organic compound is too difficult to reproduce in lab test and short term lab-test will lead 92 

to misinterpretation of long term corrosion process.  93 

Figure 1 illustrates the phenomenogical evolution of corrosion losses (see Melchers 94 

2003a, 2003b). The initial phases 0 and 1 account for initial effects of oxygen on the 95 

surface (kinetic phase) in which micro-pitting appears very rapidly; phase 2 is then leaded 96 

by the rate of oxygen penetration into the corroded surface, phases 3 and 4 are rapid and 97 

steady state progression of pit growth. In particular, experimental data from Melchers 98 

(1999 to 2008) demonstrated how bacteria associated with corrosion have optimal 99 

metabolism at temperatures between 25 and 30°C, while the activity is very low at 5°C 100 

and above 50°C, with no corrosion at freezing temperatures (-2°C). However, these 101 

temperature values are much lower than operating temperature of oil production tubing, 102 



where bacterial concentration is also very low due to the use of nitrogen and bactericide. 103 

When seeking to optimize an inspection and maintenance strategy, corrosion losses and 104 

the rate of corrosion during the intermediate phases (from initial kinetic phase to end of 105 

life) are key variable and estimating corrosion losses based only on corrosion rate may 106 

lead to big erroneous evaluations (Straub, 2007, Melchers, 2008). It can be argued that 107 

(Figure 1), using the rate calculated on short-term lab test data (initial corrosion phase), 108 

will likely lead to overestimating the corrosion rate, therefore leading to the planning of 109 

inspections and maintenance operation at small time intervals, which will not be realistic. 110 

On the contrary, considering only a secant value of corrosion rate (i.e. roughly calculated 111 

as ratio between end-of-life corrosion loss and age of the tubing), leads to a good estimate 112 

of an average corrosion rate, but not of higher rates during steady state corrosion 113 

propagation, where one may want to act using inhibitors in order to control the corrosion 114 

rate.  115 

Choice of probabilistic distribution in corrosion modelling 116 

The choice of the probabilistic distribution used to model time to failure and degradation 117 

process has large influence on the resulting reliability (Quesenberry, 1982, Rausand, 118 

1998). The use of Leví  process (especially Gamma) to simulate deterioration of 119 

components has been largely suggested (Williams et al, 1985, Pandey et al, 2005, 120 

Noortwijk et al., 2007, Amaya-Gómez et al., 2019, Oumouni et al, 2019). Main advantage 121 

of using Gamma distribution lays in the easier inclusion of time variation though the 122 

shape parameter, while keeping constant the scale parameter. However, a Gamma process 123 

has independent positive increments, which makes realizations monotonic and linearly 124 

increasing, thus a dataset of progressive increments of defect size is needed to model the 125 

degradation process where any non-linearity of corrosion processes, , any variation of the 126 



degradation rate and any dependency over operational parameters can be introduced by 127 

Bayesian updating  whenever new observations are available (Pandey et al, 2005, Straub 128 

et al., 2007, Oumouni et al, 2019).  The dataset available for this study does not provides 129 

increments of defect size in between inspections, but only pit sizes at failure, leading to 130 

the choice of a shock load type of distribution, as highlighted in the following sections.  131 

Experimental evidence (Melchers, 2003-2008), showed how in the early phase of 132 

generation, pit location is Poisson-distributed with Exponential size, while full developed 133 

pits can have size following Normal, Lognormal and even Extreme Value distribution 134 

type. In particular, the data analysis done in Melchers (2005a) evidenced a bimodal 135 

behaviour of the pit size distribution, with an initial exponential distribution (first mode) 136 

combined with one or more normal components (for deeper pits). This behaviour is 137 

observed when data are clustered in homogenous populations, while mixed and 138 

inhomogeneous data (stable and metastable pits) would show better fit with extreme value 139 

distributions (especially Gumbel) due to the larger uncertainty associated with the 140 

observations (Scarf, 1996, Engelhardt, 2004, Melchers, 2005a).  141 

A large debate therefore has been developing (Wang et al, 2003, Melchers, 2005a, Valor 142 

et al., 2007) on whether the Gumbel, Weibull or Frechet distributions can be used as 143 

realistically representative for the pit depth distribution. The objection to the use of EV 144 

distribution, or single mode distributions in general, lays in the bad fit of the lower tail, 145 

causing the overestimation of the pit depth in the initial phase and reliability 146 

underestimation. Despite being an open discussion, a solid conclusion is that on the basis 147 

of data regression and classic statistical test, Weibull and Frechet distribution do not 148 

adequately represent the distribution of pit depths while Gumbel distribution or Gaussian 149 

mixture can be used with a good fit. On the contrary, regarding spatial distribution and 150 

generation rate over time, opposite findings can be found (Williams 1985, Valor et al., 151 



2007,Taratseva, 2010) as a consequence of the difficulties modelling the incubation 152 

period of the pits, when pits generates fast and at non-homogenous rate. Table 1 153 

summarizes the most relevant used probability distributions in corrosion modelling.  154 

Melchers (2003a), proposed a complex model for corrosion losses based on a time 155 

dependent three components stochastic function containing a deterministic mean 156 

function, a Boolean bias function and a zero-mean uncertainty functiondepending on 157 

environmental parameters such as temperature, steel composition, surface finishing etc. 158 

However, a large dataset comprising all environmental parameters would be necessary to 159 

calibrate the model. Such dataset could be available for large experimental campaigns, 160 

but rarely as field data. Moreover, the dependency of corrosion rate on time and 161 

environmental conditions should be carefully investigated by means of e.g. multivariate 162 

analysis, principal component analysis, multiple predictor and bundling methods ( Liu et 163 

al., 2009, Jiménez-Come et al., 2012) to avoid redundant information and   that the error 164 

function is biased by not differentiating the contributions from model error and 165 

approximation, measurement errors, spatial variability and statistical uncertainty, thus 166 

leading to the limitations highlighted in Engelhart (2004).  167 

The DHRTC research activity on North Sea oil production wells 168 

The Danish Hydrocarbon Research and Technology Centre (DHRTC) supported an 169 

extensive data collection. The baseline for system boundaries identification, components 170 

taxonomy and failure modes and deterioration mechanisms for the well completion, d 171 

was established by a structured expert workshop.  172 

Measurements collected during the preparation for workover phase and during inspection 173 

campaign have been made available by DHRTC/Mærsk/Total consortium. Data cover 174 



two fields of the Danish sector of North Sea being operated with (Field 1) and without 175 

(Field 2) gas lifting of the production fluids.  176 

A first set of measurements consists of size of maximum pit penetration with 177 

corresponding depth-location in the production tubing of oil producers (OP) with 178 

respective completion and inspection dates, obtained using multi-finger-calliper logging 179 

tool (MFC). The MFC consists of a tungsten body on which an array of flexible moving 180 

fingers are mounted to  measure inner diameter of tubing and casing strings while logging 181 

it inside the well. Due to the lack of information over the calibration of the MFC, the 182 

measurement uncertainty is here not considered (i.e. perfect information). 183 

A second set consists of measurements of daily maxima of operating pressure recorded 184 

by top head and bottom head pressure gauges.  185 

 186 

The scope of using in-situ data is twofold: 1- learning the distribution of pit sizes at failure 187 

and operating pressure profile from observations; 2- calibrating the parameters of the 188 

Poisson occurrence of maxima pit sizes.   189 

Analysis of survey data and probabilistic model calibration 190 

As measurements of pit depth were obtained from different inspections made with 191 

potentially different MFC tools, it must be assumed that the measured pits represent 192 

independent observations of the same distribution of pit size, i.e. pit measured are all 193 

identically distributed (Laycock et al, 1990, Isogai, 2004, Melchers 2005a, Zhang, 2014, 194 

Ossai et al., 2016). Indeed, there is enough evidence that extreme pitting events at 195 

different hotspots occur as independent events (Turnbull, 1993, Melchers, 2003-2008, 196 

Jarrah et al, 2011), where any apparent correlation among extreme pits shall be interpreted 197 

as caused by uniform exposure rather than a real dependency (Melchers, 2005a). This 198 

hypothesis applies well to our dataset, since pits were measured during inspection for 199 



workover preparations, meaning that, with few exceptions, tubings were all substituted 200 

after the inspections, and that measurements done in the same well at different times, do 201 

not correspond to the same pit.  202 

The average maximum pit depth over time and along tubing depth is depicted in Figure 203 

2 and Figure 3. Field 1 shows higher average of maxima pit size over a shorter life time 204 

respect to Field 2. The average pit size increases with exposure time for both fields in the 205 

short period, then decreases as a larger number of smaller pits are detected, then increases 206 

again due to detection of maxima pits. A hidden effect is the shrinking of population size 207 

for the 4.5in which have been progressively substituted by 5.5in. The increase is faster 208 

for the oil producers of 5.5in with respect to the 4.5in.  209 

Correlation among exposure time (age), location depth size of pits was also investigated. 210 

Correlation of the pit size with depth is lower (10% to 30%), while a higher correlation 211 

(20% to 50%) is found with tubing age. 212 

 213 

The pit maxima occurrence 214 

Figure 2 and Figure 3 show pits are detected even after short exposure time. The high 215 

uncertainty in modelling nucleation rate over time makes it difficult to model initiation 216 

time from detected defects (Valor et al., 2007, Tarantseva, 2010).. Herein, the assumption 217 

of Normal distribution for the initiation time is made and the parameters in Table 2 were 218 

derived considering average time to occurrence of pits within the first five years of tubing 219 

exposure.  220 

Under the hypothesis of independent observations, the number of pits 𝑁𝑁(𝑡𝑡) generated per 221 

well per year can be modelled as a Poisson point process (Benjamin&Cornell, 1970) with 222 

probability distribution in Eq.1, with mean rate of event 𝜆𝜆 in the interval (0, 𝑡𝑡).  223 



𝑃𝑃(𝑁𝑁(𝑡𝑡) = 𝑛𝑛) = 𝑒𝑒−𝜆𝜆𝜆𝜆
(𝜆𝜆𝜆𝜆)𝑛𝑛

𝑛𝑛!
,𝑛𝑛 ≥ 0 

(1)  

The choice of a Poisson process lays in the fact that the available data consist of 224 

independent observations of maxima pit sizes at failure. This extreme type of defect is 225 

more correctly assimilated to shock loads in terms of occurrence (Poisson) rather than to 226 

a gradual degradation (increments) which instead should be modelled with Gamma 227 

process (Singpurwalla, 1997, Pandey et al., 2005). In addition, any peak over threshold 228 

approach, which would reduce uncertainty in the defect simulations with respect to the 229 

block maxima approach, (van Noortvijk et al, 2007), would converge to a Poisson process 230 

as the data consist of maxima over a selected threshold of pit size.  231 

For both fields the occurrence of pits increases over time (see Figure 2 and Figure 3). 232 

Therefore, a linear function for the parameter 𝜆𝜆 is fit over time such that 𝜆𝜆(𝑡𝑡) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏, 233 

with constants 𝑎𝑎 and 𝑏𝑏 listed in Table 3.  234 

Maxima pit size distribution 235 

Maximum likelihood algorithm (MLE) is used to estimate probability distribution 236 

parameters for the maximum pit size. The data (Figure 4 and Figure 5) show an evident 237 

bi-modal trend. Therefore, a two-component Gaussian mixture as in Eq.(2) is chosen. The 238 

calibrated parameters are listed in Table 4, where Φ𝑖𝑖 represents the Normal distributed i-239 

th component and 𝜋𝜋𝑖𝑖 its weight.  240 

𝐹𝐹�𝑑𝑑𝑝𝑝� = �𝜋𝜋𝑖𝑖

2

𝑖𝑖=1

∙ Φ𝑖𝑖�𝑑𝑑𝑝𝑝� (2)  

To obtain faster convergence of the MLE, the standard deviation is constrained to be the 241 

same for all the components (see Table 4). 242 

Due to the limited number of data points, any variation over time of the parameters of the 243 

distribution of pit sizes is omitted at this stage. 244 



Maxima values of operating pressure 245 

The probability distribution of operating pressure is calibrated on records from the gauges 246 

located at bottom head (BHP) and top head (THP) inside the wells. In Figure 6, the 247 

empirical marginal density functions of yearly maxima of the pressure at Top (THP) and 248 

Bottom (BHP) Head for Field 1 and Field 2 is depicted. As expected, BHP and THP show 249 

to be good correlated in both Fields. No significant variation over time of yearly maxima 250 

value is observed over 15 years of operation.  251 

A Weibull marginal distribution is chosen (Eq.5) to model THP and BHP, on basis of 252 

best fit of data in the tails. The parameters are listed in Table 5 and Table 6, for Field 1 253 

and Field 2 respectively.  254 

In addition, two Normal distributed independent components ω𝑇𝑇 and ω𝐵𝐵 are added to 255 

simulate the fluctuation over time of the THP and BHP ( Eqs.(3) & (4)). The two Normal 256 

components have zero mean and standard deviation equal to the sample standard 257 

deviation of THP and BHP (i.e. simple Gaussian increment, see Eqs.(6) & (7)). 258 

𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑤𝑤𝑡𝑡ℎ𝑝𝑝 + ω𝑇𝑇(𝑡𝑡) (3)  
𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡) = 𝑤𝑤𝑏𝑏ℎ𝑝𝑝 + ω𝐵𝐵(𝑡𝑡) (4)  

𝑤𝑤𝑡𝑡ℎ𝑝𝑝,𝑏𝑏ℎ𝑝𝑝 =
𝑝𝑝2
𝑝𝑝1
�
𝑝𝑝
𝑝𝑝1
�
𝑝𝑝2−1

exp �−
𝑝𝑝
𝑝𝑝1
�
𝑝𝑝2

 
(5)  

ω𝑇𝑇 = 𝑁𝑁�0,𝜎𝜎thp2 � (6)  
ω𝐵𝐵 = 𝑁𝑁�0,𝜎𝜎bhp2 � (7)  

 259 

Failure model,   reliability analysis and evaluation of the maintenance strategy 260 

The developed probabilistic model for corrosion is used for reliability analysis of one oil 261 

producer (tubing) with the aim of evaluating the best maintenance strategy between 262 

corrective maintenance (most used in O&G companies) and condition based maintenance 263 

(with perfect information). Main difference between corrective and condition based 264 

maintenance consists in the planning of workover operations (i.e. complete renewal of 265 

the tubing). In a corrective maintenance strategy, workovers are executed upon the 266 



occurrence of the tubing failure, generally detected due to an anomaly in the wellhead 267 

functioning (e.g. pressure). In condition based maintenance, the workover is planned after 268 

an inspection where a detection is made of one or more corrosion pits exceeding a defined 269 

threshold.  270 

The evaluation of the condition based strategy is made for two fixed inspection interval 271 

of 3 and 10 years and considering thresholds of pit size to thickness ratio of 60% and 272 

80%. These values are chosen on the basis of requirements in Norsok Y-002 and DNV-273 

GL/ST-F101, which indicate a minimum safety factor of 1.1 and 1.3 (high consequence 274 

class) respectively, with material partial safety factor of 1.15. On this basis, from the 275 

cumulative distribution of the pit size at burst (Figure 8-right), the corresponding 276 

thresholds of 80% and 60% are computed corresponding to the safety factors of 1.1 and 277 

1.3. 278 

Production tubing subject to internal corrosion, exhibit two main failure modes: leak due 279 

to pit growth to full thickness and burst due to reduced pressure capacity at the section 280 

contouring the defect (pit).  281 

Several criteria are available to calculate the residual pressure capacity 𝑝𝑝𝑐𝑐(𝑡𝑡) at localized 282 

defects (Ahammed, 1996, Yong et al., 2001, Ossai et al., 2016). In absence of detailed 283 

information regarding the shape of the pits, the assumption of near rectangular pit with 284 

mean value of length 𝑙𝑙  equal to 2𝑑𝑑𝑝𝑝 is made, while the effect of width of the defect can 285 

be neglected (Netto et al., 2005). In Eq.(8) and (9), 𝜎𝜎𝑝𝑝 and 𝜎𝜎𝑓𝑓 represent respectively the 286 

hoop stress at failure and the flow stress. The latter is a function of the material yielding 287 

stress as in Eq.(9) with the factor 𝑚𝑚𝑓𝑓 ranging values 1.10÷1.15 (Ahammed, 1996). The 288 

concentration of stresses around a defect on the tubing surface is taken into account using 289 

the bulging or Folias factor 𝑀𝑀 (Eq.(11), Yong et al., 2001 ).  290 



𝜎𝜎𝑝𝑝(𝑡𝑡) = 𝜎𝜎𝑓𝑓
1 − 𝑑𝑑𝑝𝑝(𝑡𝑡) 𝑡𝑡𝑛𝑛⁄

1 − 𝑑𝑑𝑝𝑝(𝑡𝑡) 𝑡𝑡𝑛𝑛𝑀𝑀⁄  
(8)  

𝜎𝜎𝑓𝑓 = 𝑚𝑚𝑓𝑓𝜎𝜎𝑦𝑦 (9)  
𝑝𝑝𝑐𝑐(𝑡𝑡) = 2𝜎𝜎𝑝𝑝(𝑡𝑡)𝑡𝑡𝑛𝑛 𝐷𝐷⁄  (10)  

𝑀𝑀 =

⎩
⎪
⎨

⎪
⎧�1 + 0.6275

𝑙𝑙2

𝐷𝐷𝑡𝑡𝑛𝑛
− 0.003375 �

𝑙𝑙2

𝐷𝐷𝑡𝑡𝑛𝑛
�
2

,
𝑙𝑙2

𝐷𝐷𝑡𝑡𝑛𝑛
< 50

0.032�
𝑙𝑙2

𝐷𝐷𝑡𝑡𝑛𝑛
� + 3.3,   

𝑙𝑙2

𝐷𝐷𝑡𝑡𝑛𝑛
> 50 

 

(11)  

 291 
Two limit states functions describing leak and burst over time can be defined (Eq.(12) 292 

and Eq.(13) respectively). In Eq.(13), 𝑝𝑝𝑐𝑐(𝑡𝑡) indicates the residual capacity of the tubing 293 

with a defect and 𝑝𝑝𝑠𝑠(𝑡𝑡) indicates the service pressure at time 𝑡𝑡. The two mechanisms are 294 

considered to act in series.  295 

𝑔𝑔𝑙𝑙(𝑿𝑿, 𝒕𝒕) = 𝑡𝑡𝑛𝑛 − 𝑑𝑑𝑝𝑝(𝑡𝑡) (12)  
𝑔𝑔𝑏𝑏(𝑿𝑿, 𝒕𝒕) = 𝑝𝑝𝑐𝑐(𝑡𝑡) − 𝑝𝑝𝑠𝑠(𝑡𝑡) (13)  

 296 
The tubing is modelled as a series system of sections containing a defect with changing 297 

dimensionality according to the number of sampled defects  𝑵𝑵(𝑡𝑡). A deterministic 298 

distance between top and bottom gauge is assumed (L=7000ftMDRT) and the location of 299 

maximum pit generated is considered uniformly distributed in the range 0-1000ftMDRT 300 

(approximation based on data observation).  301 

The operating pressure 𝑝𝑝𝑠𝑠(𝑥𝑥𝑖𝑖, 𝑡𝑡) at location 𝑥𝑥𝑖𝑖 of the pit 𝑖𝑖 is considered linearly depending 302 

on the values THP and BHP as in Eq.(14). 303 

𝑝𝑝𝑠𝑠(𝑥𝑥𝑖𝑖, 𝑡𝑡) = �
𝑥𝑥𝑖𝑖 − 𝐿𝐿
𝐿𝐿

� [𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) − 𝐵𝐵𝐵𝐵𝐵𝐵(𝑡𝑡)] (14)  

 Figure 7 illustrates the simulation model and the simplified tubing geometry utilized. The 304 

variables of the probabilistic model are summarized in Table 7. The reliability analysis is 305 

the performed with crude Monte Carlo for four cases:  306 

• Field 1 with tubing 4.5inc; 307 

• Field 1 with tubing 5.5inc; 308 

• Field 2 with tubing 4.5inc; 309 



• Field 2 with tubing 5.5inc.  310 

 311 
Results of the numerical analysis and comparison of two maintenance strategies  312 

The results of the numerical investigation comprise both reliability analysis and the 313 

evaluation of the two maintenance strategies. No occurrence of pure leaking failure is 314 

found, as it is rather the local bursting, due to the reduced resistance of the corroded 315 

tubing, to cause the creation of a hole and the leak of produced fluids.  316 

In Figure 8, the cumulative probability distribution (CDF) of pressure (left) and pit size 317 

[in] at burst (right) are depicted. As expected, burst failure occurs with non negligible 318 

probability even for small pit size in the case of small tubing diameter (D1=4.5in) while 319 

the larger tubing (D2=5.5in) would generally fail for larger pits. A minimum threshold of 320 

10% of wall thickness can already cause the failure in all considered cases. This is 321 

consistent with most O&G regulations imposing the evaluation of the safety level and 322 

corresponding maximum allowed operating pressure for corrosion defect of 10-80% of 323 

wall thickness (ASME-B31G,1991). In addition, D1 tubing in Field 1(gas lifted) shows 324 

high burst probability in the interval 10-30% pit depth to wall thickness ratio. Tubing D2 325 

located in Field 2 (not gas lifted) shows high probability for lower values of depth to 326 

thickness ratio in combination with a higher reliability index, thus indicating that the 327 

failure of this tubing occurs only for high value of operating pressure (in the upper tail of 328 

pressure probability distribution). This is evident when looking at the cumulative 329 

probability distribution of the pressure values at burst event (Figure 8-left), showing that 330 

for D2 in Field 2, burst occurs with higher probability at higher values of pressure.  331 

Figure 9, Figure 10 and Figure 11 depict the cumulative probability of failure over the 332 

30yrs life time and the reliability index for the cases considered. As expected, failure 333 

probability is increasing over time with slower increase for Field 2. This is the effect of 334 

both a smaller number of detected pits in Field 2, symptom of slower corrosion rate, and 335 



a higher uncertainty in the pit size and occurrence for Field 1. The failure probability and 336 

correspondent reliability index do not change significantly for the two maintenance 337 

strategies, neither for the two inspection intervals (3&10yr) for the condition based 338 

strategy (Figure 10, Figure 11). However, the gradient of failure probability is smaller for 339 

condition based policy, indicating that this strategy allows for a slower degradation of the 340 

tubing and smaller uncertainty. In particular, the smaller threshold for the defect size 341 

(60%) leads to a slightly higher reliability especially in the early stage of lifetime, where 342 

pits detected are more likely to be smaller than 80% of thickness and therefore the renewal 343 

of the system becomes more frequent.  344 

 345 
The total costs per year for corrective and condition based maintenance strategies are 346 

evaluated. The influence of the discount rate and ratio between failure cost and workover 347 

cost is investigated. The evaluation of the discount rate in the appraisal of O&G 348 

investments is a complex task, which involves knowledge of the oil-field and company 349 

market value, company tax rate, market value of the interest-bearing debt of the company, 350 

etc. (Smith, 1999). Due to lack of detailed information, the values of 5%, currently most 351 

used rate in investment appraisal for O&G (Weijermars, 2013), and 11%, common risk 352 

adjusted rate in O&G(Smith, 1999) are used.  353 

Workover costs might vary largely, depending on duration of operations and severity of 354 

damage. Indeed, there might be little difference between workover and failure costs, as 355 

the only possible repair is to substitute the full completion, and the cost of the rig per day 356 

is the major cost voice. Therefore, when cost of failure and cost of workover are 357 

comparable, a little difference in the life cycle costs among strategies is expected. When 358 

cost of failure largely differs from workover costs, a trade-off might be visible when 359 

comparing maintenance strategies. This is confirmed by the results of the simulations 360 



(Figure 12 and Figure 14). In the following, for reason of conciseness, results are 361 

illustrated for Field 1 only, but same trend is found for Field 2. 362 

The annual discounted cost of maintenance shows no difference among the strategies in 363 

the early lifetime with a bifurcation of the curve, which back-shifts when the discount 364 

rate increases and when failure costs are significantly larger than workover costs 365 

(F=100WO) (Figure 14, Figure 15). When failure costs and workover costs are 366 

comparable (F=3WO) (Figure 12, Figure 13) the cost per unit of time for the two 367 

maintenance strategies is almost the same with a slight gain choosing the condition based 368 

strategy with 10yrs inspection interval and 60% defect size to thickness ratio as 369 

acceptance threshold, as this allows for slightly higher reliability. The 80% threshold 370 

shows to be too high and results in terms of costs for this choice converge to the corrective 371 

maintenance (Figure 13).  372 

For failure and workover cost of comparable magnitude, the annual cost of maintenance 373 

reaches a steady state value after 15yrs. For failure costs largely exceeding workover 374 

costs, the difference among the strategies becomes more evident with a cost curve 375 

resembling the classic failure bathtub curve (Figure 14, Figure 15).  376 

  377 

Conclusions 378 

The prediction of service life of tubing in offshore oil&gas production wells presents 379 

several challenges due to the specific operational condition and exposure to chemicals 380 

that vary from well to well, even in the same production field. Herein, results from the 381 

feasibility study for the application of condition based asset management is presented. 382 

Data has been collected for two fields: Field 1, characterized by gas lifted production and 383 

higher corrosion rate; Field 2, operated without gas lifting and with slower corrosion rate. 384 



Results of the numerical analysis showed that gas lifted fields clearly exhibit higher 385 

probability of tubing failure due to the interaction of corrosion mechanisms weakening 386 

the tubing resistance with the pressure gradient caused by the gas-lifting procedure. For 387 

gas-lifted fields tubing with small diameter and thickness are not advised. 388 

Expected costs per unit of time in corrective and condition based maintenance policies 389 

shows negligible difference in the early life (up to 10years). The cost reduction in 390 

condition based maintenance becomes more evident with the increase of life span of the 391 

asset, showing how it allows for both cost reduction and extension of the lifetime of the 392 

asset, whereas the value of the field is still of economic interest.  393 

In particular, results demonstrated how for assets with repair (workover) costs much 394 

smaller than failure costs, the benefit from choosing a condition based maintenance policy 395 

is evident. In assets such as oil&gas wells, the workover costs are often comparable to 396 

the failure costs, making more difficult to evaluate the optimal maintenance strategy, 397 

which will likely be a combination of corrective and condition based policies.  398 

It must be highlighted that the available data allowed only to estimate occurrence and size 399 

of pit maxima leading to a series of limitation in the results. First, an underestimation of 400 

the failure probability might be possible, because the effect of the resistance reduction of 401 

the tubing caused by smaller but more numerous pits (i.e. clusters and geometry effects) 402 

is neglected. This underestimation may be affecting mostly the assessment of Field 2, 403 

where the damage of smaller pits may cause more failures than evaluated with this model, 404 

while for Field 1, due to the higher operating pressure, this effect may be irrelevant as it 405 

could be hidden in the burst failure mode. Indeed, discarding pit geometry by using only 406 

pit penetration depth simplifies the problem by reducing its dimensionality, but does not 407 

allow to take into account for area losses neither to estimate the number of pits per unit 408 

area and the local effect of pit clusters. Therefore, the use of full available information 409 



collected during inspections shall be used (all pit measurement of depth and full 410 

geometry). This in combination with adequate information on the uncertainty of 411 

measurement from the caliper, would certainly allow for the optimization of inspection 412 

intervals and of the best maintenance policy, bespoke for each production field. In 413 

addition, a sensitivity analysis on measurement uncertainty and on estimates of future 414 

production (economic value of the field) could be of interest for further analysis.  415 
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Tables & Figures 539 

 540 

Table 1 Overview of probabilistic distribution used in corrosion modelling 541 
Author pith depth number of pits 

generated/area 
time  

variation 
spatial 

variation 
Williams et al. 
(1985) 

× non-homogenous 
Poisson 

✓ × 

Laycock et al. (1990) GEV Exponential Mean and standard 
deviation of GEV 

× 

Scarf&Laycock 
(1996) 

GEV GEV Power law for mean 
and parameters 

× 

Turnbull (1993) Exponential 
GEV 

× Power law for 
parameter 

GEV parameters  

× 

Melchers (2003d) GEV Weibull Decreasing rate of pit 
generation over time 

Poisson 

Melchers (2005a,b) Normal & 
Weighted 
Normal 

× Parameters vary over 
time 

× 

Engelhardt& 
Macdonald (2004), 

Gumbel type I Poisson Non homogenous 
Poisson 

Poisson 

Isogai et al. (2004) GEV Poisson × × 
Valor et al. (2007) GEV Gumbel × × 
Caleyo et al (2009) GEV × × × 
Jarrah et al. (2011) Generalized 

Lambda 
Poisson Mean value of GLD Poisson 

Zhang et al (2012) Normal × × × 
Zhang&Zhou (2014) Weibull Gamma Bayesian Updating × 

 542 

 543 



Table 2 Normal distribution parameters for initiation time in years 544 
Case μ σ 
Field 1 OP-4.5in 2.80 0.50 
Field 1 OP-5.5in 3.58 0.76 
Field 2 OP-4.5in 3.03 1.26 
Field 2 OP-5.5in 1.96 0.26 

 545 

Table 3 Constants calibrated on the data for the linear function 𝜆𝜆(𝑡𝑡) 546 
Case a b 
Field 1 OP-4.5in -0.0093 0.004 
Field 1 OP-5.5in -0.0098 0.0041 
Field 2 OP-4.5in -0.00038 0.0018 
Field 2 OP-5.5in -0.0013 0.002 

 547 

Table 4 Gaussian mixture model parameters  548 
Case Ncomp weight μ [in] σ [in] 

Field 1  
OP-4.5in 

Φ1 
Φ2 

0.2727 0.0727 0.4126·10-4 
0.7273 0.0196 0.4126·10-4 

Field 1  
OP-5.5in 

Φ1 
Φ2 

0.8030 0.0422 2.811·10-4 
0.1970 0.1130 2.811·10-4 

Field 2  
OP-4.5in 

Φ1 
Φ2 

0.7877 0.0239 0.630·10-4 
0.2123 0.0722 0.630·10-4 

Field 2  
OP-5.5in 

Φ1 
Φ2 

0.8618 0.0390 3.136·10-4 
0.1382 0.1273 3.136·10-4 

 549 

 550 
Table 5 BHP and THP parameters (in psi) of the marginal distributions for Field 1 with 551 
correlation coefficient ρ 552 

Variable Symbol Distribution p1 p2 ρ 
Pressure Yearly maxima 
𝒘𝒘𝒑𝒑  

BHP WB 2506.7 3.012  
0.388 THP WB 1731.8 1.465 

 553 
Table 6 BHP and THP parameters (in psi) of the marginal distributions for Field 2 with 554 
correlation coefficient ρ 555 

Variable Symbol Distribution p1 p2 ρ 
Pressure Yearly maxima 
𝒘𝒘𝒑𝒑  

BHP WB 2879 4.409  
0.415 THP WB 1437 2.483 

 556 

Table 7 Stochastic variables of failure model 557 
Variable Symbol Distribution μ c.o.v. 
Initiation 
Time 

𝐼𝐼𝑡𝑡 See Table 2  - - 

Pit depth 
[in] 

𝑑𝑑𝑝𝑝  See Table 4 - - 

Diameter 
[in] 

   D Deterministic 4.5 
5.5 

- 
- 

Nominal 
wall 
thickness 
[in] 

𝑡𝑡𝑛𝑛 Deterministic 0.271 
0.361 

- 



Pit length 
[in] 

    l Normal 2𝑑𝑑𝑝𝑝 0.05 

Factor mf 𝑚𝑚𝑓𝑓 LogN  1.1 0.05 
Material 
Yield 
stress  
[psi] 

𝜎𝜎𝑦𝑦 LogN  80000 0.05 

Fluid 
Pressure 
[psi] 

𝑝𝑝𝑠𝑠 See Table 5 
& Table 6 

- - 

Gaussian 
increment 

ω𝑇𝑇 Normal 0 0.56 
0.48 

Gaussian 
increment 

ω𝐵𝐵 Normal 0 0.58 
0.25 

 558 

 559 

 560 

 561 

Figure 1. Phenomenogical evolution of corrosion losses (Melchers, 2003a)  562 
 563 

 564 



  

Figure 2 Average of maximum pit size measured over exposure time (left) and depth 565 
(right) for Field 1 566 
 567 

  

Figure 3 Average of maximum pit size measured over exposure time (left) and depth 568 
(right) for Field 2 569 
 570 
 571 

  

Figure 4 CDF of maximum pit size for OP-Field1-4.5in (left) and OP-Field1-5.5in (right) 572 

  

Figure 5 CDF of maximum pit size for OP-Field2-4.5in (left) and OP-Field2-5.5in (right) 573 



 574 

  

Figure 6 Empirical marginal density functions for yearly maxima of BHP and THP for 575 
Field 1(left) and Field 2(right) 576 

 577 
Figure 7 Illustration of simulation model 578 
 579 
 580 

  

Figure 8 Cumulative probability of (left) burst pressure at failure and (right) pit size at 581 
failure  582 
 583 



  

Figure 9 Cumulative probability of burst failure (left) and reliability index (right) for 584 
corrective maintenance 585 

  

Figure 10 Cumulative probability of failure (left) and reliability index (right) for condition 586 
based maintenance (3yr) with thresholds of 60% and 80%  587 

  

Figure 11 Cumulative probability of failure (left) and reliability index (right) for condition 588 
based maintenance (10yr) with threshold of 60% and 80%  589 
 590 

  



Figure 12 Cost per unit of time for corrective (corr) and condition based maintenance 591 
(cond) at 3yr and 10yr inspection interval with threshold of defect size at 60% (left) and 592 
80% (right) thickness, 5% discount rate and Fc =3*WO  593 

  

Figure 13 Cost per unit of time for corrective (corr) and condition based maintenance 594 
(cond) at 3yr and 10yr inspection interval with threshold of defect size at 60% (left) and 595 
80% (right) thickness, 11% discount rate and Fc =3*WO  596 

 597 
Figure 14 Cost per unit of time for corrective (corr) and condition based maintenance 598 
(cond) at 3yr and 10yr inspection interval with threshold of defect size at 60% thickness, 599 
5% discount rate and Fc =100*WO 600 



 601 

Figure 15 Cost per unit of time for corrective (corr) and condition based maintenance 602 
(cond) at 3yr and 10yr inspection interval with threshold of defect size at 60% thickness, 603 
11% discount rate and Fc =100*WO 604 

 605 
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