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Abstract 

 
Olfactory communication is an important mediator of social 

interactions in mammals, providing information about an individual’s 

identity and current social, reproductive, and health status. Callitrichids 

(i.e. marmosets and tamarins) constitute a good model for the study of 

olfactory communication, as they make use of a range of odour signals. 

Callitrichids conspicuously deposit odorous secretions, produced by 

specialized scent-glands, on branches in their environment, a behaviour 

called scent-marking. Several functions have been attributed to 

callitrichid scent-marking behaviour, including advertisement of 

reproductive and dominance status, and of identity, territorial defence, 

and spatial orientation and signalling of food resource location. 

 

The present doctoral project combined behavioural and chemical 

information to investigate callitrichid olfactory communication. The study 

explored how environmental, social, and reproductive aspects might 

influence patterns of callitrichid scent-marking behaviour, as well as the 

chemical composition of scent-gland secretions and urine used to 

convey chemosignals. Behavioural observations, along with swabs of 

scent-glands, and of naturally deposited scent-marks and urine, were 

collected from captive groups of bearded emperor tamarins, Saguinus 

imperator subgrisescens, cotton-top tamarins, Saguinus oedipus, and 

silvery marmosets, Mico argentatus, in three British zoos. Chemical 

samples were analysed using headspace gas chromatography-mass 

spectrometry (GC-MS). In addition, scent-gland secretion samples were 

collected from a wild population of sympatric emperor tamarins and 

Weddell’s saddleback tamarins, Leontocebus weddelli, during an annual 

capture-and-release programme in the south-eastern Peruvian Amazon. 

These samples were analysed using both in situ and laboratory-based 

GC-MS techniques.  

 

I established the existence of unique chemical signatures of 

species, groups, sex, reproductive status, and the individual, in 

callitrichid scent samples, which were matched with differences in scent-

marking behaviour. My results support the assumption that 

chemosignalling plays an important role in the advertisement of identity, 

reproductive state/status and dominance in this taxon. Moreover, I 

showed that the social context, as well as spatiotemporal aspects of 

scent-marking deposition, influenced scent-marking activity. Further 

differences in the characteristics of scent-marking deposition revealed in 

this study, both at behavioural and chemical levels, may reflect variable 

strategies of communication to ensure that signals are transmitted to the 

intended receivers, which is especially relevant for sympatric species. 

 

I identified a number of putative semiochemicals (i.e. chemicals 

involved in communication) from the scent samples of captive and wild 
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callitrichids. Notably, I presented results from the first use of the Torion® 

portable GC-MS for in situ analysis of wild mammal scent samples. In 

addition, I revealed differences in the chemical composition of tamarin 

scent-gland secretion samples between wild and captive conditions, 

which may indicate an effect of captivity on the chemicals produced. 

This study provides knowledge of mammalian olfactory communication 

systems, applicable to captive husbandry practices, including 

conservation breeding programmes of rare species. 

 

 

Key words: Olfactory communication; primates; gas chromatography–

mass spectrometry; chemical signatures; semiochemicals. 

 

 

 

 

 

 

 

Résumé 

 

 La communication olfactive est un important médiateur 

d’interactions sociales chez les mammifères, renseignant sur l’identité d’un 

individu et son statut social, reproducteur, ou encore de santé. Les 

callitrichidés (les tamarins et ouistitis) constituent un bon modèle pour 

l’étude de la communication olfactive car ils font l’usage de nombreux 

signaux chimiques capables de réguler d’importantes fonctions 

comportementales. Les callitrichidés déposent des sécrétions odorantes 

produites par des glandes odorifères spécialisées, de manière visible sur 

des branches dans leur environnement. Ce comportement se nomme 

marquage olfactif. Plusieurs fonctions ont été attribuées au comportement 

de marquage olfactif des callitrichidés, notamment l’avertissement 

d’identité, de statut reproducteur et de dominance, la défense territoriale, 

ainsi que l’orientation dans l’espace et la signalisation de ressources 

alimentaires. 

 

 Le présent travail doctoral combine des informations 

comportementales et chimiques afin d’examiner certains aspects de la 

communication olfactive chez les callitrichidés. Mon étude explore 

comment les aspects environnementaux, sociaux, et reproducteurs, 

peuvent influencer le comportement de marquage olfactif des callitrichidés, 

ainsi que la composition chimique des sécrétions glandulaires et de l’urine 

utilisées pour transmettre les signaux chimiques. Des observations 

comportementales en captivité, accompagnées de prélèvements de 

sécrétions odorantes et d’urine, ont été collectées sur des groupes de 

tamarins empereur à barbe (Saguinus imperator subgrisescens), de 

tamarins à crête blanche (Saguinus oedipus) et de ouistitis argentés (Mico 

argentatus) dans trois zoos britanniques. Les prélèvements odorants ont 

été analysés chimiquement par chromatographie en phase gazeuse-
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spectrométrie de masse (GC-MS). De plus, des échantillons de sécrétions 

de glandes odorifères ont été prélevés sur une population sympatrique à 

l’état sauvage de tamarins empereurs et de tamarins à selle de Weddell 

(Leontocebus weddelli) durant un programme annuel de marquage-

recapture en Amazonie péruvienne. Ces échantillons ont été analysés par 

deux méthodes de GC-MS, in situ et en laboratoire. 

 

 Durant ce travail, j’ai établi l’existence de signatures chimiques dans 

les échantillons odorants de callitrichidés, distinguant les espèces, 

groupes, sexes, statuts reproducteurs, et individus, qui coïncident avec des 

différences de comportement de marquage olfactif. Mes résultats 

soutiennent l’hypothèse selon laquelle la signalisation chimique joue un 

rôle important dans l’avertissement de l’identité, du statut reproducteur et 

de dominance chez ce taxon. Par ailleurs, j’ai montré que le contexte 

social, ainsi que les aspects spatiotemporels de la déposition de signaux 

olfactifs, influençaient l’activité de marquage. J’ai de plus observé d’autres 

différences dans les caractéristiques du marquage olfactif tant 

comportementales comme chimiques. Ces différences peuvent refléter des 

stratégies variables de communication afin de s’assurer que les signaux 

sont transmis aux receveurs désirés, un mécanisme important notamment 

chez les espèces sympatriques. 

 

 J’ai identifié un nombre de probables substances sémiochimiques 

(substances chimiques impliquées dans la communication) trouvées dans 

les échantillons odorants de callitrichidés sauvages et en captivité. En 

particulier, j’ai présenté les résultats de la première utilisation du Torion® 

GC-MS, un instrument de GC-MS portable, pour l’analyse in situ 

d’échantillons d’odeurs de mammifères à l’état sauvage. De plus, j’ai révélé 

des différences dans la composition chimique de sécrétions de glandes 

odorifères entre tamarins en captivité et à l’état sauvage, ce qui peut 

indiquer un effet de la vie en captivité sur les substances sémiochimiques 

produites. Mon étude contribue à une plus grande connaissance des 

systèmes de communication olfactive chez les mammifères. Elle peut 

s’appliquer aux procédés d’élevage en captivité, y compris au 

développement de programmes d’élevage conservatoire pour les espèces 

menacées.  

 

 

Mots-clés : Communication olfactive ; primates ; chromatographie en 

phase gazeuse-spectrométrie de masse ; signatures olfactives ; 

substances sémiochimiques. 
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Resumen 

 

La comunicación olfativa es un componente importante en las 

interacciones sociales de los mamíferos, informando sobre la identidad de 

un individuo, su estatus social, estado reproductivo o de salud. Los 

calitrícidos (pichicos o titís) constituyen un buen modelo para el estudio de 

la comunicación olfativa ya que usan numerosas señales químicas 

capaces de regular importantes funciones del comportamiento. Los 

calitrícidos depositan secreciones odorantes producidas por unas 

glándulas odoríferas especializadas, de manera visible encima de las 

ramas a su alrededor. Este comportamiento se llama marcaje olfativo. 

Varias funciones fueron asignadas al comportamiento de marcaje olfativo 

de los calitrícidos, en particular: la advertencia de identidad, de estado 

reproductivo y de dominancia; la defensa territorial así como la orientación 

en el espacio y la señalización de recursos alimenticios. 

 

El presente proyecto de doctorado combina información conductual 

y química con el fin de investigar algunos aspectos de la comunicación 

olfativa de los calitrícidos. Mi estudio explora como los aspectos 

ambientales, sociales y reproductivos pueden influenciar el 

comportamiento de marcaje olfativo de los calitrícidos, así como la 

composición química de las secreciones glandulares y de la orina, 

utilizadas para transmitir las señales químicas. Observaciones de 

comportamiento en cautiverio, acompañadas de muestras de secreciones 

odorantes y de orina, fueron recolectadas en tres parques zoológicos 

británicos. Las especies estudiadas fueron: Saguinus imperator 

subgrisescens (pichicos emperadores o titís bigotudos), Saguinus oedipus 

(titís cabeza de algodón) y Mico argentatus (titís plateados). Las muestras 

odorantes fueron analizadas químicamente por cromatografía de gases-

espectrometría de masas (GC-MS). De igual modo, muestras de 

secreciones de glándulas odoríferas fueron extraídas en una población 

simpátrica silvestre de S. i. subgrisescens y de Leontocebus weddelli 

(pichicos comunes) durante un programa anual de marcado-y-recaptura en 

la Amazonia peruana. Esas muestras se analizaron por dos métodos de 

GC-MS, in situ y en el laboratorio. 

 

En las muestras odorantes de calitrícidos he establecido la 

existencia de firmas químicas únicas de especie, grupo, sexo, estado 

reproductivo y del individuo, las cuales coincidían con diferencias de 

comportamiento de marcaje olfativo. Mis resultados sostienen la siguiente 

hipótesis: la señalización química juega un papel importante en la 

advertencia de identidad, de estado reproductivo y de dominancia en este 

taxón. Además, mostré que el contexto social así como los aspectos 

espaciotemporales de la deposición de señales olfativas, influenciaban la 

actividad de marcaje. Encontré otras diferencias en las características de 

marcaje olfativo a nivel de comportamiento y a nivel de composición 

química. Esas diferencias pueden reflejar estrategias variables de 

comunicación para asegurarse que las señales son transmitidas a los 
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recipientes esperados, un mecanismo importante sobre todo en especies 

simpátricas.  

 

Identifiqué varias probables substancias semioquímicas 

(substancias químicas implicadas en la comunicación) en las muestras 

odorantes de calitrícidos silvestres y cautivos. En particular, presenté los 

resultados del primer uso del Torion® GC-MS, un instrumento de GC-MS 

portátil utilizado en el análisis in situ de muestras de olores de mamíferos 

silvestres. Asimismo, revelé diferencias en la composición química de 

secreciones de glándulas odoríferas entre pichicos cautivos y silvestres. 

Estas diferencias indican un efecto de la cautividad sobre las substancias 

semioquímicas producidas por los animales. Mi estudio contribuye a un 

mayor conocimiento de los sistemas de comunicación olfativa en los 

mamíferos, pudiéndose aplicar a los manejos de cría de animales y como 

herramienta de conservación de especies amenazadas, desarrollando 

programas de cría en cautividad. 

 

 

Palabras claves: Comunicación olfativa; primates; cromatografía de 

gases-espectrometría de masas; firmas olfativas; substancias 

semioquímicas.  
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Glossary1 

   

Aliphatic compound – An open-chained molecule, either straight or 

branched, or a cyclic non-aromatic compound. 

Aromatic compound – An unsaturated, planar, cyclic molecule containing 

conjugated double bonds or electron pairs with a total of 4n+2 π electrons: 

most commonly n=1. 

Behavioural bioassay – The study of an animal’s specific behavioural 

and/or physiological response to an odour signal. 

Callitrichidae – The family of New World primates, composed of the 

tamarins (Saguinus spp. and Leontocebus), the lion tamarins 

(Leontopithecus spp.), the marmosets (Mico and Callithrix spp.), the pygmy 

marmosets (Cebuella spp.), and the Goeldi’s monkey, Callimico goeldii. 

Catarrhines – The group of the Old World primates and apes, 

characterized by nostrils close together and opening downwards, and a 

non-prehensile, often greatly reduced or vestigial tail. 

Chemical diversity – The combination of individual compounds in a scent 

sample. 

Chemical richness – The number of compounds in a scent sample. 

Chemosignalling – The communication by the means of chemical signals, 

i.e. chemosignals.  

Chromatogram – The pattern of separated compounds obtained by 

chromatography. 

Flehmen – The behavioural response of many animals to chemical signals, 

consisting of lip curling, head raising, and a long inhalation with the nostrils 

usually closed, which facilitates the transfer of volatile chemicals into the 

vomeronasal organ. 

Headspace – The volume above a liquid or solid in a closed container. 

Ionization (in GC-MS) – The formation of ions by adding or removing 

electrons from atoms, for instance by action of a highly energetic electron 

field inside a mass spectrometer. 

Kairomone (sensu Wyatt, 2014a) – A chemical signal liberated by prey, 

used by predators. 

 

 

 

1 Some of the definitions given in this glossary may be adapted to the specific use 
of these terms for the present thesis.  



 

xxii 

Macrosmatic / Microsmatic – Having a good/bad sense of smell. 

Mass spectrum (in GC-MS) – The pattern of relative abundance of 

fragment ions of different mass-to-charge ratio derived from a compound 

coming out of the mass spectrometer.   

Mobile phase (in GC-MS) – a flow of inert gas (often helium, more rarely 

nitrogen or hydrogen), circulating inside the gas chromatograph and 

carrying the mixture of compounds being analysed. 

NIST mass spectral library (in GC-MS) – A database, developed and 

supported by the National Institute of Standards and Technology, of mass 

spectra of known molecules, used to compare with the mass spectra of 

unknown compounds and suggest the best match as putative identity. 

Pheromone (sensu Wyatt, 2014a) – A chemical signal used for 

intraspecific communication. 

Pheromonatherapy – The use of chemical signals to manage stress-

related behavioural disorders in pets. 

Platyrrhines – The group of the New World primates, characterized by 

nostrils far apart and opening forwards or sideways, and often a prehensile 

tail.  

Primer effect – A long-lasting physiological or developmental change, 

sometimes mediated by hormones, to a chemical signal. 

Releaser effect – An immediate behavioural response to a chemical 

signal. 

Scent-gland – A specialized secretory gland producing an odorous 

substance used for scent-marking by many mammals. Location, size and 

histology of scent-glands vary across species. Examples of scent-glands in 

this study are the anogenital gland, the suprapubic gland, and the sternal 

gland. 

Scent-marking – The marking of a substrate with an odorous substance 

secreted from a specialized scent-gland. 

Semiochemical – A chemical emitted by an organism that influences the 

physiology or behaviour of an organism of the same or a different species.  

Semiochemistry – The study of the chemical means of communication 

used by living species. 

Stationary phase (in GC-MS) – An absorbent polymer coated into the 

inside of a long column in the gas chromatograph, of varying chemical 

affinity for the compounds composing the sample being analysed.  

Strepsirrhines – The primate suborder including the lemurs, lorises, 

galagos and pottos, characterized by a moist area around the nostrils. 

Synomone (sensu Wyatt, 2014a) – A mutualistic chemical signal, 

recognized by more than one species. 



 

xxiii 

Unsaturated compound – A straight or cyclic molecule containing one or 

more carbon-carbon double or triple bonds. Many natural organic 

compounds are unsaturated. 

Vomeronasal organ (or Jacobson’s organ) – A pair of parallel tubules 

situated on either side of the nasal septum of the buccal cavity involved in 

chemoreception, found in reptiles, amphibians, and most mammals. 
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Chapter I – General introduction 

and study outline 
 

I.1. Importance of chemical communication in 
the animal kingdom 

I.1.1. Definitions 

 Chemical communication is the oldest and most diverse form of 

communication, shared by all organisms including bacteria; all animals are 

pre-adapted to detect chemical signals – chemosignals – in their 

environment (Wilson, 1970; in Wyatt, 2014a). Chemical information in 

animals is used in territorial defence and resource marking, as well as to 

exchange signals during social interactions (Müller-Schwarze, 2006). In a 

large number of animal species, chemosignals of an incredible diversity 

have evolved to become an important mediator of social and sexual 

interactions (Wyatt, 2014a). This is especially true in mammalian species, 

which are often particularly social animals, using multiple modes of 

communication to exchange information among conspecifics. Mammalian 

social systems hinge upon acoustic, visual, facial, and olfactory signals that 

convey information between individuals, both intra- and inter-specifics (Arlet 

et al., 2015; Liebal et al., 2014; Partan, 2013). Olfactory communication 

often involves complex chemosignals, which can give conspecifics 

information on identity, i.e. at the levels of species, group, kinship, sex, and 

the individual (Brennan and Kendrick, 2006; Johnston, 2003; Wyatt, 

2014a), and current status, i.e. social, reproductive, and health status 

(Brown and Macdonald, 1985; Drea, 2015; Wyatt, 2014a).  

Chemosignalling has been subject of investigation in the fields of 

animal communication, ecology, and reproduction, for a long time (e.g. 

Cheal and Sprott, 1971; Ritter, 1979; Thiessen et al., 1976), notably since 

Karlson and Butenandt’s key stone discovery of moth sexual chemical 

signals (Karlson and Butenandt, 1959). Nevertheless, progress in the 

understanding of mammalian chemosignalling has been slow in 

comparison with other communication modalities, mainly due to 

methodological constraints (Albone and Shirley, 1984; Müller-Schwarze, 
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2006). Only recently has the field of semiochemistry, i.e. the study of 

chemical means of communication used by living species (Albone and 

Shirley, 1984), emerged as a key point of study for mammalian taxa (Fig. 

I.1; see Appendix A, Table A.1). Research in this field has been greatly 

enhanced by the rapid development of analytical chemistry techniques in 

the early 2000s (see section I.2.2; Apps, 2013; Soso et al., 2014), thus 

providing an exciting prospect for ongoing research on the subject. This is 

especially true for the primate order, including humans, in a continuous 

effort to shed light on the evolution of humanity, and further justifies the 

present doctorate project. 

 The current literature uses various terms to define the different 

types of animal chemosignals, well described in Wyatt (2014a). Notably, 

pheromones (Karlson and Lüsher, 1959) are chemosignals used for 

intraspecific communication, for instance in intrasexual competition and 

mate choice; kairomones are prey signals used by predators; and 

synomones are mutualistic signals. However, the exact definitions of the 

various types of chemosignals are still debated; therefore I have decided to 

only use generic terms in my study, such as chemosignals, signalling 

compounds, semiochemicals, olfactory signals, and odour signals, a 

conservative choice made by many other authors in the field of 

semiochemistry (e.g. Alberts, 1992; Apps, Weldon and Kramer, 2015; 

Snowdon et al., 2006).
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Figure I.1. History of research on mammalian semiochemistry before the start of the current project, showing the acceleration of published work in 
this field after 2000, as analytical techniques improved. Karlson & Butenandt’s keystone publication on moth pheromone is shown in green; the 
rest are review publications, and books (in bold), on i. vertebrates (in black), ii. mammals (in red), and iii. primates (in blue), on the exclusive or 
partial topic of mammalian semiochemistry (see Appendix A, Table A.1). Original experimental or observational published work is not included.   
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I.1.2. Chemical communication pathways in 
mammalian species 

I.1.2.1. Signal production 

Mammalian chemosignals are complex mixtures of volatile and non-

volatile compounds. Properties of these chemosignals depend upon when, 

where and how they were emitted, the compounds assemblage, as well as 

the physical properties (e.g. volatility) and chemical properties (e.g. 

functional groups) of the component compounds (Müller-Schwarze, 2006). 

These compounds may be direct by-products of essential biochemical 

pathways, derived from the environment (e.g. through diet), or produced by 

commensal bacteria (Archie and Theis, 2011; Ezenwa and Williams, 2014). 

They may be passively conveyed in body fluids and excretions, or actively 

produced in glandular secretions.  

Glandular secretions are fluids produced by different types of 

exocrine glands, the apocrine sweat glands, the sebaceous glands 

producing a lipid secretion, and specialized glands such as the mammary 

glands producing milk, and the anal glands of carnivores (Burger, 2005). A 

range of specialized secretory glands, called scent-glands, have a specific 

role in chemosignalling. Scent-gland secretions are conspicuously 

deposited in the environment (e.g. on rocks or branches) as a form of 

chemical message, a behaviour called scent-marking. Sometimes, the 

scent signal is produced by mixing several body fluids together, such as 

urine, vaginal/seminal discharge, and anogenital scent-gland secretion (e.g. 

in wolves, Canis lupus, Asa et al., 1985; and female giant pandas, 

Ailuropoda melanoleuca, Hagey and Macdonald, 2003). This demonstrates 

the variety and complexity of the chemical cues mediating social 

communication. 

 

I.1.2.2. Chemoreception and signal integration 

Chemosignals are recognized and processed by the recipient, 

which is often a conspecific individual, and sometimes a very different 

organism, such as in prey–predator recognition (Saavedra and Amo, 2018; 

Wyatt, 2014a). The volatile components in secretions evaporate after 

deposition, and signals become weaker over time. Evaporation of the more 

volatile compounds may change the quality of the odour, as well as the 



Chapter I – General introduction and study outline 

5 

range over which it can be detected. Nevertheless, such decay and change 

in the signal may also provide information about the age of the scent-mark 

and, in turn, the recent behavioural history of the signaller (Müller-

Schwarze, 2006). 

Chemoreception is performed by two main chemosensory systems 

in mammals: the main olfactory system (MOS), and the accessory olfactory 

system (AOS), well described in Müller-Schwarze (2006). The MOS is 

formed by the main olfactory epithelium (MOE) beneath the nose, and its 

corresponding main olfactory bulb (MOB) in the brain (Fig. I.2a); the AOS is 

composed of the vomeronasal organ (VNO), also called Jacobson’s organ, 

located above the palate on either side of the nasal septum, and its 

corresponding accessory olfactory bulb (AOB; Fig. I.2b).  

 

 

Figure I.2. Schematic diagrams of the mouse a. main, and b. accessory 
olfactory systems. MOE: main olfactory epithelium; MOB: main olfactory 
bulb; VNO: vomeronasal organ; and AOB: accessory olfactory bulb 
(reproduced from Dulac and Wagner, 2006). 
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The main components of the MOE are the olfactory sensory 

neurons (OSNs), connecting the mucosa covering the nasal cavity with the 

glomeruli in the frontal part of the brain (Fig. I.3). The nasal mucosa 

contains specific odorant-binding proteins that retain the volatile 

compounds present in odours. OSN dendrites have cilia floating in the 

mucosa, covered in binding receptors specific to a certain type of odorant 

compound. When an odorant compound binds with the OSN, the signal is 

transduced along the axon, and delivered in the corresponding glomerulus 

of the MOB. Information is then processed in the brain at higher centres. 

There are many different OSN types, all encoded in the olfactory receptor 

genes, which constitute the largest multigene family in mammals (Issel-

tamer and Rine, 1997).  

 

 

Figure I.3. Schematic diagram of a transversal section of the mammalian 
main olfactory system (reproduced from Wolfe et al., 2017). 

 

Although most mammals possess both MOS and AOS, there is 

currently a debate over the functionality of the VNO in some species 

formerly considered to have a poor sense of smell, such as Old World 

primates including apes (Evans, 2006; Baum and Cherry, 2015; 
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Charpentier et al., 2013). Unlike the MOE receptors, which can only bind 

with volatile odorant compounds, the AOS receptors capture signals from 

both volatile and non-volatile compounds, such as lipids and proteins, 

contained in fluids or solids that can be swallowed. Yet MOS and AOS 

partially overlap in function, the extent of which differs between taxa 

(Mucignat-Caretta, Redaelli and Caretta, 2012). The VNO is formed of a 

pair of parallel tubules, lined with OSNs, which axons connect to the AOB 

(Fig. I.2b). A well-known behaviour related to the VNO activity is flehmen 

(Schneider, 1930), in which an animal opens its mouth with its lips curled in 

a ‘laughing display’, in the direction of an scent source, to pick up odours in 

its mouth (Fig. I.4). Mammals are also known to sometimes lick or muzzle-

rub on deposited secretions or urine of congeners for this same 

physiological reason (reviewed in Estes, 1972).  

 

 

Figure I.4. Flehmen behaviour in the plains zebra, Equus quagga (from 
www.commons.wikipedia.org). 

 

Although there is a lot of research conducted on the 

neurophysiology of odour detection and recognition in mammals (e.g. 

Barkai and Wilson, 2014), it is not the focus of the present thesis. I will 

instead concentrate on the proximate functions of chemical communication 

in the social and sexual behaviours of mammals, in particular primates.  

http://www.commons.wikipedia.org/
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I.2. Methodological approaches to the study of 
mammalian chemosignalling 

In mammals, olfactory communication is both chemical and 

behavioural. Chemosignals produced by the signaller are liberated in the 

environment, either via passive exudation of body odours or in excretions, 

or via active deposition of scent-gland secretions during scent-marking. 

Some mammalian species also perform urine-marking, where urine and/or 

faeces, sometimes mixed with glandular secretions, is applied on a 

substrate, usually the vertical face of a rock, or a prominent log or mount 

(Apps, 2013). In primates in particular, scent-marking is often performed in 

front of conspecifics (Laska and Hudson, 1995; Lazaro-Perea, 2001), which 

suggests that the visual cue associated with scent deposition is also 

important. This conspicuous behaviour has instigated numerous studies in 

captive, semi-free range, and wild conditions (see section I.3.2). 

 

I.2.1. Behavioural approaches 

I.2.1.1. Behavioural observations: study of scent-marking behaviour 

During behavioural observations, social and ecological information 

may be recorded, together with scent-marking patterns, such as scent-

marking frequency according to sex, social or reproductive status, and the 

spatial distribution of scent-marks, in order to infer the likely functions of 

scent-marking behaviour. Three functional hypotheses are commonly 

considered: 1. spatial orientation and signalling of food resource location;  

2. territorial advertisement and defence; and 3. regulation of social and 

reproductive dominance, as well as intrasexual competition/intersexual 

mate choice (Apps, Weldon and Kramer, 2015; Heymann, 2006a; Seyfarth 

and Cheney, 2016; Wyatt, 2014a). 

 

I.2.1.2. Behavioural bioassays: study of specific responses to odour 
signals 

In the case of behavioural bioassays applied to olfactory 

communication, the proximate functions of olfactory signals on the receiver 

are inferred from observations, usually in experimental conditions (Haynes 

and Millar, 1998). Typically in a behavioural bioassay, an odour, either 
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artificially synthetized, or sampled from a congener or another animal or 

plant, is presented to the target individual, and its response, behavioural 

and/or physiological, is recorded (Thom and Hurst, 2004). Experimental 

controlled conditions in captive breeding centres and medical research 

facilities allow the isolation of precise signal triggers and responses, which 

is very valuable for trying to unravel the mechanisms and functions of 

chemosignal transmission. For example, Swaisgood et al. (2000) found 

evidence for the discrimination of sex and female reproductive condition via 

olfactory cues in captive male giant pandas. Similarly, Smith and Abbott 

(1998) showed that common marmosets, Callithrix jacchus, can 

discriminate between circumgenital scent-marks from periovulatory and 

anovulatory females. Moreover, Henkel and Setchell (2018) suggested that 

chimpanzees, Pan troglodytes, recognize group members and kin via 

olfactory cues in urine; and Scordato and Drea (2007) showed that male 

ring-tailed lemurs, Lemur catta, respond primarily to odours from breeding 

and dominant individuals, compared with subordinate congeners. However, 

in wild conditions such behavioural bioassays can be very challenging to 

put in place, and many more factors are likely at play in natural conditions 

(Charpentier et al., 2012; Drea et al., 2013). 

 

I.2.2. Semiochemical approaches 

I.2.2.1. Principles of semiochemical analysis of animal scents 

 Semiochemical analyses use analytical chemistry techniques to 

describe the chemical composition of animal scents used as signals. 

Particular organic compounds may serve as chemosignals in various 

animal species, regardless of whether the ‘chemical meaning’ of a single 

compound is the same across species. To use an analogy, we can relate 

organic compounds to individual letters, which when associated together 

form various chemical messages (i.e. ‘words’) and can be used across 

different species (i.e. ‘languages’). Moreover, mammalian chemosignals 

may be either single compounds or mixtures, and are as likely to be coded 

by the presence and absence of compounds, as by their relative 

concentration, adding a layer of complexity in research in this field (Apps, 

2013). 

In their recent review, Soso and co-workers (2014) identify the most 
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widely used analytical methods for chemical and sensory characterization 

of scent-marking in large wild mammals. They describe the methods 

currently used for the study of mammals, from New World primates to large 

felines, with field applications. Starting from Soso et al.’s review, I present 

the main techniques for sampling and sample extraction, chemical analysis, 

and data analysis, followed by an assessment of potential applications to 

the current project.  

 

I.2.2.2. Scent sampling and sample extraction 

I.2.2.2.1. Scent sample collection and storage 

Scent samples are usually collected on cotton or viscose swabs, 

previously washed in an organic solvent (methanol and/or pentane), by 

rubbing the substrate after natural scent-mark deposition, or the scent-

gland skin area from anaesthetized or restrained animals. Naturally 

deposited scent-marks can sometimes be collected on filter paper placed in 

the animals’ environment (e.g. in captive mandrills, Mandrillus sphinx, 

Vaglio et al., 2016). Captive animals, particularly primates, can also be 

trained to deposit their scent-marks on glass plates or tubes tied to a perch 

(e.g. common marmosets, Smith et al., 1997). Urine is easier to collect, as 

it is usually produced in a more conspicuous quantity than scent-mark 

depositions.  

Generally, samples are immediately stored in solvent-washed glass 

vials and kept frozen in order to avoid sample decay. Contamination can be 

limited by using storage vials directly usable for analysis (e.g. glass 

chromatography vials with septum-fitted lids). Vials are often kept frozen 

until analysis, at -20°C to -80°C, for as long as six months (Birkemeyer et 

al., 2016; Drea et al., 2013). Freezing seems to have no effect on sample 

composition and perceived odour (Lenochova, Roberts and Havlicek, 

2009). 

  

I.2.2.2.2. Solvent-based sample extraction technique 

With solvent-based extraction technique, an organic solvent is used 

to dissolve the volatile compounds present in the sample. Solvents 

commonly employed are methanol- and ethanol-based, sometimes mixed 

with water. Usually, the use of solvent-based extraction involves two to 
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three steps (Drea et al., 2013): 1. dissolving the volatile compounds into the 

solvent; 2. concentrating the compounds by evaporating part of the solvent; 

and 3. (optional) applying chemical derivatization in order to increase the 

volatility of the compounds, and hence reduce their processing time. 

Solvent-based extraction is often used for the identification of 

peptides and proteins, which are of particularly high polarity and low 

volatility. This technique is very popular in most of the literature on 

mammalian semiochemistry and is particularly cost-efficient. However, 

several disadvantages of solvent-based extraction are pointed out by Soso 

et al. (2014): they require a series of procedures and are time-consuming; 

moreover, they can affect the chemical composition of a sample due to 

interactions between the compounds and the solvent, or solvent impurities. 

In addition, solvents are harmful for the environment and must be disposed 

of in a safe manner, thus complicating the procedure. This method is 

currently widely used for the analysis of primate scent-marking, notably by 

Drea and co-workers who are leading the field of olfaction and behaviour in 

captive strepsirrhines (Boulet, Charpentier and Drea, 2009; Charpentier et 

al., 2008; Crawford, Boulet and Drea, 2011; Greene and Drea, 2014; 

Scordato, Dubay and Drea, 2007).  

 

I.2.2.2.3. Solvent-free sample extraction techniques 

In recent years, several solvent-free, environmentally benign, 

sampling techniques have been developed. These solvent-free techniques 

directly extract the volatile constituents of the headspace, i.e. the air above 

the sample, of an enclosed sample. Headspace sample extraction offers 

the advantages of reducing sample preparation time and simplifying the 

process for the extraction of volatile compounds, as well as minimising the 

interferences and impurities induced by solvents. Different solvent-free 

techniques exist and have been used for the analysis of mammalian 

semiochemicals: direct headspace extraction, precolumn heater, solid-

phase microextraction, stir-bar sorptive extraction, solid-phase dynamic 

extraction, and thermal desorption, described in Table I.1. 
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Table I.1. Description of solvent-free sample extraction techniques used for the characterization of mammalian odours, including the main 
processes involved, examples of mammalian studies using these techniques, and an assessment of each technique. 

Extraction 
technique 

Main processes involved References Assessment (positive: , negative: ) 

Direct headspace 

extraction 

Volatile compounds from a solid or liquid 

matrix transferred into the vapour phase 

and carried by a carrier gas 

Volatile compounds in urine of 

lion, Panthera leo (Andersen 

and Vulpius, 1999)  

 Older technique, replaced by more effective 

methods  

Precolumn heater 

Glass cylinder heated to 100°C with 

nitrogen being released simultaneously 

and driving the volatile compounds out of 

the sample 

Volatile compounds in 

interdigital glands of reindeer, 

Rangifer tarandus (Andersson, 

Brundin and Andersson, 1979) 

 Older technique, replaced by more efficient 

methods 

Solid-phase 

microextraction 

(SPME) 

Use of a fused-silica fibre coated with 

absorbent thin polymeric film, to passively 

diffuse volatile compounds from a liquid or 

solid sample via adsorption, absorption, or 

capillary condensation 

Scent-gland volatile 

compounds in ring-tailed lemur, 

Lemur catta (Hayes, Morelli 

and Wright, 2004; Knapp, 

Robson and Waterhouse, 

2006) 

 Can be used for in vivo extraction of volatiles 

 Various fibre coatings and fibre lengths available 

to optimize the compounds to be extracted (e.g. 

from very volatile–semi-volatile, polar–non-polar) 

 Can be easily automatized 

 Can be cleaned and reused 

 Fibre is quite fragile 

 Static technique, which limits the number of 

compounds extracted 

Stir-bar sorptive 

extraction (SBSE) 

Use of a polymer-coated (usually 

polydimethylsiloxane [PDMS]) magnetic 

bar, constantly stirred, to actively extract 

volatile and semi-volatile compounds from 

liquid and gaseous samples 

Volatile compounds in human 

body odour (Penn et al., 2007) 

 Can be easily automatized 

 Dynamic technique, allows for quantification and 

extraction of samples of low concentration 

 Can be cleaned and reused 

 Expensive 

 Requires specialized add-ons for analysis and 

detection of compounds 
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Table I.1. Continued. 

Extraction 
technique 

Main processes involved References Assessment (positive: , negative: ) 

Solid-phase 

dynamic extraction 

(SPDE) 

Use of repetitive dynamic flow of liquid or 

gaseous sample components over an 

absorbent polymer coating (usually PDMS) 

on the inside wall of a stainless steel 

syringe needle. 

Volatile compounds in urine of 

brown lemurs, Eulemur spp. 

(DelBarco-Trillo et al., 2011), 

and African elephant, 

Loxodonta africana (Goodwin 

et al., 2008) 

 Dynamic flow permits concentration of volatile 

compounds 

 Can be easily automatized 

 Various types of polymer coating available 

 SPDE needle more robust than SPME fibre 

 Can be cleaned and reused 

 Expensive 

 Requires specialized add-ons for analysis and 

detection of compounds 

Thermal desorption 

tube 

Gaseous sample is pumped inside a 

stainless steel tube internally coated with 

absorbent polymer, which retains the 

volatile compounds 

Volatile compounds in body 

odour of common marmoset, 

Callithrix jacchus (Kücklich et 

al., 2017)  

 Can be used for in vivo extraction of volatiles 

 Tubes can be transported and stored without 

affecting the quality of the sample they contain 

 Various types of polymer coating available 

 Can be cleaned and reused 

 Expensive 

 Requires specialized add-ons for analysis and 

detection of compounds 

Electronic nose 

Use of the pattern of response of an array 

of gas sensors to match a known odour 

pattern 

Scent-gland volatile 

compounds in ring-tailed lemur 

(Staples and Electronic Sensor 

Technology, n.d.) 

 Sample extraction and chemical analysis 

performed by the same device 

 Portable 

 Limited to pre-set ‘learnt’ odour patterns 

 No discrimination between individual compounds, 

only full odour patterns 
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Thermal desorption, solid-phase microextraction, and solid-phase 

dynamic extraction are now the most popular solvent-free extraction 

techniques for the analysis of biological samples, notably because they 

combine sampling and sample extraction with a procedure that is both 

simple and efficient (Ramos, 2012; Soso et al., 2014). The main 

disadvantage in using these methods is that fibres, desorption tubes and 

needles, used to extract the volatile compounds from the headspace of a 

sample, are more expensive than organic solvents; but since they can be 

used multiple times, costs can be optimized. 

A novel instrument for direct headspace extraction coupled to real-

time chemical analysis, atmospheric chemical ionization-mass 

spectrometer (APCI-MS; Linforth and Taylor, 1997), was used to monitor 

real-time production of volatile chemicals by parasitoid wasps. The wasps 

were placed in air tight chambers were they could behave freely, in the 

context of female-female competition (in Goniozus legneri; Goubault et al., 

2006), or female courtship by males (in Spalangia endius; Mowles et al., 

2013). The air inside the chamber was continuously drawn through a tube 

inside an APCI-MS detector, which provided real-time occurrence and 

quantity of the volatile compounds released by individual wasps. Such in 

vivo chemical analyses have not yet been implemented on mammalian 

species.  

Electronic noses can identify an odour using the pattern of response 

of an array of gas sensors to match a known odour pattern (Nagle, 

Schiffman and Gutierrez-Osuna, 1998). These devices are notably used in 

human clinical research, such as for the screening of diseases in body 

odour and breath (e.g. differentiation of cancerous cells from healthy ones, 

Kateb et al., 2009; detection of signs of pneumonia infection in the breath, 

Hanson III and Thaler, 2005; reviewed in Röck, Barsan and Weimar, 2008). 

Electronic noses have also been employed for the screening of tuberculosis 

infection in cattle, Bos taurus, and European badgers, Meles meles (Fend 

et al., 2005). Moreover, they are often used to characterize odours of plants 

(Huang et al., 2011) and food (Röck, Barsan and Weimar, 2008) for 

manufacturing applications. Ongoing research is aiming at widening the 

range of uses of electronic noses; for example the chemical composition of 

ring-tailed lemur scent-gland samples was tentatively characterized by an 

electronic nose (Staples and Electronic Sensor Technology, n.d.). 
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I.2.2.3. Chemical analysis 

I.2.2.3.1. Principles of chemical analysis 

Mammalian odours are analysed almost exclusively using gas 

chromatography (GC), and sometimes high performance liquid 

chromatography. In GC, a sample is injected into the injection port where it 

is heated to a vaporous phase, and carried by the mobile phase, i.e. a flow 

of inert gas (often helium, more rarely nitrogen or hydrogen). This gas flow 

carries the mixture of compounds into the stationary phase, i.e. an 

absorbent polymer coated into the inside of a long column (usually 30 m). 

Inside the gas chromatograph column, the mixture of compounds is 

separated into individual volatile and semi-volatile compounds according to 

their relative affinity for the stationary phase, their polarity, and chemical 

structure, which elute out of the column one after another (Fig. I.5). Each 

compound is therefore characterized by its time of elution, called retention 

time. GC is ideal for detecting and separating relatively small compounds 

(<550 daltons), of low polarity and high volatility.  

 

Figure I.5. Schematic diagram of a gas chromatograph-mass spectrometer 
(reproduced from Kim et al., 2016). 

 

Combined with a detector, GC allows for the detection of individual 

compounds within a sample. The most commonly used detectors are mass 

spectrometer, flame ionization detector, and Fourier-Transform infrared 

spectroscopy. Mass spectrometry (MS) is the most widely used detector 

because of its capacity to perform a mass spectral search and match for 
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over 200 000 compounds within its mass spectral library (National Institute 

of Standards Technology, NIST; Shen et al., 2014; Stein, n.d.; Fig. I.5). 

However, MS is not ideal for the detection of compounds of high molecular 

weight. Sometimes two detectors can be combined for a better result. 

When the compounds elute from the gas chromatograph into the 

mass spectrometer, they are broken into ionized fragments, which gives 

them a specific mass-to-charge ratio (m/z). The MS then separates the ions 

according to their m/z, and records the relative abundance of each ion type 

(Baker, 2010). Various ion sources can be found in a mass spectrometer, 

including electron ionization: based on electron excitation, it induces strong 

fragmentation of the molecules of the compound being analysed. Electron 

ionization is most commonly used for gaseous samples, hence is often 

coupled to GC (present study; Fig. I.5). Alternatively, chemical ionization 

produces ions through collision of the compounds with primary ions present 

in the source, either at high temperature (e.g. investigation of the comb wax 

of honeybees, Apis sp.; Aichholz and Lorbeer, 2000), or at atmospheric 

temperature (e.g. real-time monitoring of the production of volatile 

chemicals by female parasitoid wasps; Mowles et al., 2013). 

 

I.2.2.3.2. Result outputs: chromatogram and mass spectra 

The primary output of a GC-MS analysis, called a chromatogram, is 

a graphical representation of the diverse compounds composing a chemical 

sample, as a function of their time of elution, i.e. retention time (Fig. I.6a). 

Each peak on the chromatogram represents a unique compound (or 

sometimes a mixture of several compounds), its area the relative 

abundance of this compound in the sample. Mass spectrometers have 

different sensitivities for different compounds, depending on their chemical 

properties. As a result, although peak area may indicate the relative 

abundance of a same compound across two chromatograms (i.e. from two 

different samples), the area of different peaks on a same chromatogram 

are not necessarily in the ratio of their relative concentrations. Each peak is 

characterized by a mass spectrum, representing the distribution and 

abundance of ion fragments composing the compound in function of their 

m/z (Fig. I.6b). Mass spectral libraries, such as the NIST library, compare 

this mass spectrum with those of known compounds in their database, and 

provide the best matches as putative identity (Fig. I.6c).
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Figure I.6. a. Example of a chromatogram produced by SPME–GC-MS analysis of a scent-mark sample from a female cotton-top tamarin, 
Saguinus oedipus, where each peak represents a unique compound; b. Mass spectrum of the peak indicated by a green arrow, showing the 
relative abundances of ion fragments originating from the molecules of the particular compound, in function of their mass-to-charge ratio (m/z);     
c. Mass spectrum of 1-(2-methoxy-1-methylethoxy)-2-propanol, given as putative identity by the NIST mass spectral library with 83% match. 
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I.2.3. Endocrinology approaches 

When performing behavioural bioassays, the animal’s physiological 

responses to the presentation of an olfactory cue may be recorded 

alongside the behavioural response. Subtle changes in endocrinal activity 

in response to olfactory cues may give a more detailed view of the 

mechanisms triggered inside the recipient’s body. The level of hormones 

involved in behavioural regulation, such as cortisol, oestrogen, 

progesterone, testosterone, oxytocin, and prolactin, may be measured in 

samples of urine, faeces, saliva, and hair, all of which can be collected non-

invasively (Petrulis, 2013). In particular, a new emphasis is being placed at 

developing non-invasive endocrinology techniques to monitor hormone–

behaviour interactions in wild mammals (Whitten, Brockman and Stavisky, 

1998), notably primates (Bales et al., 2006; Higham, 2016). Recent reviews 

by Petrulis (2013), and Anestis (2010), summarize the relation between 

chemosignals, hormones, and reproduction and sociality in mammals, and 

in primates, respectively. 

 

I.3. State of research in primate 
chemosignalling  

I.3.1. History of this field in primatology: olfaction as 
the neglected sense 

Since the beginning of systematic research on the evolution and 

behavioural ecology of humans and other primates, this taxon was 

considered to be microsmatic, i.e. to have a poor sense of smell, compared 

with macrosmatic mammal groups such as carnivores and rodents (Albone 

and Shirley, 1984; Andersson, 1994). As a result olfactory communication 

in primates has been understudied (Heymann, 2006b). The consideration 

of primates being microsmatic was mainly based on the hypothesis of an 

evolutionary trade-off between vision and olfaction in social species 

(Barton, 2006; Gilad et al., 2004; Kemp and Kaplan, 2012; Liman and 

Innan, 2003; Melin et al., 2017), partly related to the comparatively smaller 

size of the olfaction-related morphological structures in the brain (Le Gros 

Clark, 1959; Smith and Bhatnagar, 2004; Smith and Rossie, 2006). 

Moreover, the relatively inconspicuousness of olfactory-related behaviours 

in primates, compared with acoustic and visual behaviours, and the 
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methodological difficulties of recording and quantifying odour signals, 

especially in field conditions, have biased our comprehension of the 

importance of this mode of communication in this taxon (Epple, 1986; 

Heymann, 2006b; Wyatt, 2015). Nevertheless, as outlined by Drea (2015) 

in her recent review, ‘D’scent of Man: a comparative survey of primate 

chemosignalling in relation to sex’, parodying Darwin’s pioneer publication 

‘The Descent of Man and Selection Related to Sex’ (1871), researchers in 

the field of semiochemistry are increasingly recognizing the prominent role 

of olfactory communication in the social and sexual lives of primates. 

Recently, we have been witnessing advances in the understanding and 

development of analytical methods for the study of semiochemistry in a 

range of vertebrate taxa, e.g. in carnivores (Buesching, Waterhouse and 

Macdonald, 2002a; b; Gilad et al., 2016; Jordan et al., 2010; Soso and 

Koziel, 2016, 2017; Weiß et al., 2018b); bats (Safi and Kerth, 2003); 

reptiles and amphibians (Mason and Parker, 2010; Saporito et al., 2012); 

and birds (Leclaire et al., 2012; Whittaker et al., 2013). These advances 

have particularly been supported in humans for evolutionary and medical 

purposes (e.g. Havlicek and Roberts, 2009; Penn and Potts, 1998; Roberts 

et al., 2011; Vaglio, 2009; Winternitz and Abbate, 2015). These recent 

findings have opened a new era of research on primate chemosignalling, at 

behavioural, chemical, and genetic levels. 

 

I.3.2. Current research on primate chemosignalling 

Callitrichids, i.e. marmosets and tamarins, kept in laboratory 

conditions have provided a good model for behavioural, physiological, and 

chemical studies on primate chemosignalling (Fig. I.7), as evidenced by the 

important work of Smith and Epple starting in the 1970s (Table I.2). More 

recently, other captive primate populations allowed for in-depth 

chemosignalling studies, such as the research on strepsirrhines, i.e. the 

lemurs and lorises, led by Drea and co-workers at the Duke Lemur Center 

in North Carolina, USA (Table I.2, highlighted in orange). Although scent-

marking behaviour had been described in the wild in several primate clades 

(e.g. in strepsirrhines, Jolly, 1966; and callitrichids, Heymann, 1998; 

Lazaro-Perea, Snowdon and Arruda, 1999), only after the turn of the 

century did it become a quite strong focus of research (Heymann, 2006b). 

One long-term study of sympatric tamarins in northern Peru led by 
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Heymann from the German Primate Centre, and co-workers (Table I.2, 

highlighted in green), together with a number of short-term studies on 

lemurs, and a handful of studies of semi-free range catarrhines, i.e. Old 

World primates, from Setchell and co-workers, constitute the core of 

existing published knowledge of scent-marking in wild primates (Table I.2). 

Captive studies continue to be the main conditions for studies on 

chemosignalling in primates (Fig. I.7), facilitating: 1. behavioural 

observations, as scent-marking behaviour is easier to record than in natural 

conditions; 2. behavioural bioassays, as experimental work is much more 

easily controlled in a captive environment; and 3. chemical analyses of 

scent-gland secretions and/or deposited scent-marks, as sample collection 

and storage is more convenient in captivity (Drea et al. 2013). Today, 

conservation breeding programmes of rare primate species are providing 

an extra incentive for deciphering their chemical communication both in the 

wild and in captivity (Dehnhard, 2011; Jennings and Prescott, 2009; 

Swaisgood and Schulte, 2010). 

 

 

Figure I.7. Number of publications between 1970–2018 in the field of non-
human primate chemosignalling, by study type and primate taxon, in a. 
captive conditions, and b. wild conditions. Reviews are not included. 
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Table I.2. Summary of published work between 1970–2018 in the field of non-human primate chemosignalling, by primate taxon, study conditions 
(i.e. captive or wild conditions) and study type (i.e. behavioural observations, behavioural bioassays, or chemical analyses). Key studies on lemurs 
carried out at the Duke Lemur Center, and on wild tamarins carried out by Heymann and co-workers in northern Peru, are highlighted in orange 
and green, respectively. Reviews are not included. 

Primate taxa and 
families 

Study 
condition 

Study type # Publi. Main species studied and references 

Strepsirrhini 

Lemuridae, 

Indriidae, 

Daubentoniidae 

&  

Tarsiiformes 

Tarsiidae 

(1/2) 

Captive 

Behavioural 
observations 

1 Ring-tailed lemur, Lemur catta (Kappeler, 1998) 

Behavioural 
bioassays 

8 

Black-and-white ruffed lemur, Varecia variegata (Rushmore, Leonhardt and Drea, 2012) 

Coquerel’s sifaka, Propithecus coquereli (Rushmore, Leonhardt and Drea, 2012) 

Gray mouse lemur, Microcebus murinus (Aujard and Némoz-Bertholet, 2004) 

Ring-tailed lemur (Charpentier et al., 2010; Greene et al., 2016a; Kulahci et al., 2014; Mertl- 

Millhollen, 2006; Rushmore, Leonhardt and Drea, 2012; Scordato and Drea, 2007) 

Pygmy slow loris, Nycticebus pygmaeus (Fisher, Swaisgood and Fitch-Snyder, 2003a; b) 

Chemical 
analyses 

14 

Aye-aye, Daubentonia madagascariensis (DelBarco-Trillo et al., 2013) 

Brown lemurs, Eulemur spp. (DelBarco-Trillo et al., 2012)  

Coquerel’s sifaka (Greene & Drea 2014; Hayes et al. 2004) 

Ring-tailed lemur (Boulet, Charpentier and Drea, 2009; Boulet et al., 2010; Charpentier, 

Boulet and Drea, 2008; Charpentier et al., 2010; Crawford and Drea, 2015; Crawford, Boulet 

and Drea, 2011; Knapp, Robson and Waterhouse, 2006; Scordato, Dubay and Drea, 2007)  

12 Strepsirrhine spp. (Delbarco-Trillo et al., 2011; 2014) 
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Table I.2. Continued (1/4). 

Primate taxa and 
families 

Study 
condition 

Study type # Publi. Main species studied and references 

Strepsirrhini 

Lemuridae, 

Indriidae, 

Daubentoniidae 

&  

Tarsiiformes 

Tarsiidae  

(2/2) 

Wild 

Behavioural 
observations 

12 

Bamboo lemur, Hapalemur meridionalis (Eppley, Ganzhorn and Donati, 2016) 

Coquerel’s sifaka (Lewis 2005; 2006; Lewis & Van Schaik 2007) 

Crowned sifaka, P. coronatus (Ramanamisata et al., 2014) 

Milne-Edwards’ sifaka, P. edwardsi (Pochron et al., 2005a; b) 

Red lemur, Eulemur rufus (Gould and Overdorff, 2002)  

Ring-tailed lemur (Gould and Overdorff, 2002; Mertl-Millhollen, 2006; Palagi and Norscia,  

2009; Walker-Bolton and Parga, 2017) 

Pygmy tarsier, Tarsius pumilus (Grow and Gursky-Doyen, 2010) 

Behavioural 
bioassays 

0 NA 

Chemical 
analyses 

2 Milne-Edwards’ sifaka (Hayes et al. 2006; Morelli et al. 2013) 

Platyrrhini 

Callitrichidae  

(1/2) 

Captive 
Behavioural 
observations 

10 

Common marmoset, Callithrix jacchus (Epple, 1970, 1972; Massen, Šlipogor and Gallup,  

2016) 

Cotton-top tamarin, Saguinus oedipus (French and Cleveland, 1984; French, Abbot and  

Snowdon, 1984; Heistermann et al., 1989) 

Pygmy marmoset, Cebuella pygmaea (Converse et al., 1995)  

Red-bellied tamarin, S. labiatus (Smith and Gordon, 2002)  

Saddleback tamarin, Leontocebus sp. (Epple, 1981, 1982) 
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Table I.2. Continued (2/4). 

Primate taxa and 
families 

Study 
condition 

Study type # Publi. Main species studied and references 

Platyrrhini 

Callitrichidae  

(2/2) 

Captive 

Behavioural 
bioassays 

12 

Common marmoset (Barrett, Abbott and George, 1990; Kemp and Kaplan, 2012; Smith and  

Abbott, 1998; Smith et al., 1997; Ziegler et al., 2005, 2012) 

Cotton-top tamarin (Belcher et al., 1988; Washabaugh and Snowdon, 1998) 

Red-bellied tamarin (Caine and Weldon, 1989)  

Saddleback tamarin (Belcher et al., 1986, 1990; Epple, 1981)  

Chemical 
analyses 

7 

Common marmoset (Kücklich et al., 2017; Smith et al., 2001b) 

Cotton-top tamarin (Belcher et al., 1988) 

Saddleback tamarin (Belcher et al., 1986, 1990; Epple et al., 1981; Yarger et al., 1977) 

Wild 

Behavioural 
observations 

12 

Black-tufted marmoset, C. penicillata (Oliveira and Macedo, 2010) 

Common marmoset (Lazaro-Perea, Snowdon and Arruda, 1999) 

Golden lion tamarin, Leontopithecus rosalia (Franklin et al., 2007; Miller, Laszlo and Dietz,  

2003; Snyder, 1972) 

Moustached tamarin, S. mystax (Heymann 1998; 2000; 2001; Huck et al. 2004) 

Saddleback tamarin (Bartecki and Heymann, 1990; Heymann, 2001; Lledo-Ferrer et al. 2010;  

2011)  

Behavioural 
bioassays 

0 NA 

Chemical 
analyses 

0 NA 
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Table I.2. Continued (3/4). 

Primate taxa and 
families 

Study 
condition 

Study type # Publi. Main species studied and references 

Platyrrhini 

Other taxa 

Captive 

Behavioural 
observations 

4 

Common woolly monkey, Lagothrix lagothricha (White et al., 2000) 

Southern brown howler monkey, Alouatta guariba clamitans (Braga Hirano, Coelho Correa  

and Goncalves de Oliveira, 2008) 

Nancy Ma’s night monkey, Aotus nancymaae (Wolovich and Evans, 2007) 

White-faced saki monkey, Pithecia pithecia (Homburg, 1989) 

Behavioural 
bioassays 

5 

Common squirrel monkey, Saimiri sciureus (Laska et al., 2007; Laska and Hudson, 1995; 

Laska, Seibt and Weber, 2000; Laska, Wieser and Hernandez Salazar, 2005) 

Geoffroy’s spider monkey, Ateles geoffroyi (Laska et al., 2004; 2007; Laska, Wieser and  

Hernandez Salazar, 2005) 

Chemical 
analyses 

2 Nancy Ma’s night monkey (MacDonald et al., 2008; Spence-Aizenberg et al., 2018) 

Wild 

Behavioural 
observations 

1 Common woolly monkey (Di Fiore, Link and Stevenson, 2006)  

Behavioural 
bioassays 

0 NA 

Chemical 
analyses 

1 Azara’s owl monkey, A. azarae (Spence-Aizenberg et al., 2018) 
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Table I.2. Continued (4/4). 

Primate taxa and 
families 

Study 
condition 

Study type # Publi. Main species studied and references 

Catarrhini 

Cercopithecidae, 

Hominidae 

Captive 

Behavioural 
observations 

2 

De Brazza’s monkey, Cercopithecus neglectus (Zschoke and Thomsen, 2014) 

Diana monkey, C. diana (Zschoke and Thomsen, 2014) 

Hamlyn’s monkey, C. hamlyni (Zschoke and Thomsen, 2014) 

Siamang, Symphalangus syndactylus (Geissmann, 1987) 

Behavioural 
bioassays 

5 

Chimpanzee, Pan troglodytes (Henkel and Setchell, 2018) 

Japanese macaque, Macaca fuscata (Rigaill et al., 2017) 

Southern pig-tailed macaque, M. nemestrina (Laska et al., 2004, 2007; Laska, Wieser and  

Hernandez Salazar, 2005) 

Chemical 
analyses 

2 
Chimpanzee (Matsumoto-Oda et al., 2003) 

Mandrill, Mandrillus sphinx (Vaglio et al., 2016) 

Wild / 

Semi-free 

range 

Behavioural 
observations 

5 

Mandrill (Charpentier et al., 2013)  

Olive baboon, Papio anubis (Rigaill et al., 2013) 

Vervet monkey, Chlorocebus aethiops (Freeman et al., 2012) 

Western lowland gorilla, Gorilla gorilla (Klailova and Lee, 2014; Masi and Bouret, 2015) 

Behavioural 
bioassays 

2 Rhesus macaque, M. mulatta (Henkel et al., 2015; Weiß et al., 2018a)  

Chemical 
analyses 

3 
Mandrill (Setchell et al. 2010; 2011) 

Rhesus macaque (Birkemeyer et al., 2016) 
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I.4. Study outline 

I.4.1. Presentation of the study 

The present study combines behavioural and semiochemical data 

on both captive and wild callitrichids (family Callitrichidae, New World 

primates), in an attempt to decipher some of the environmental, social, and 

individual aspects of their chemical communication. Moreover, the study is 

aimed at developing techniques for the analysis of primate semiochemicals, 

in an effort to contribute to innovative knowledge in the field. 

The Callitrichidae family is a monophyletic group of New World 

primates, composed of the tamarins (Saguinus and Leontocebus spp.), the 

lion tamarins (Leontopithecus spp.), the marmosets (Mico and Callithrix 

spp.), the pygmy marmosets (Cebuella spp.), and the Goeldi’s monkey, 

Callimico goeldii (Rylands and Mittermeier, 2013; Rylands et al., 2016). 

Callitrichids are small, long-tailed primates, characterized by claw-like nails 

on all digits except the hallux, and a tendency to twin (except for Callimico). 

They range from Panama to southern Brazil, and are found in a variety of 

habitat types, from tall primary forests to farmlands (Sussman, 2003). 

Callitrichids constitute a good model for the study of olfactory 

communication, as they are known to rely a lot on odour signals, notably 

thanks to a well-developed vomeronasal organ, which is known to be at 

least partially functional (Evans, 2006; Smith et al., 2011). In callitrichids, 

olfactory signals are produced via three specialized scent-glands, and 

conspicuously deposited on branches and lianas in the environment (scent-

marking) or on the body of a conspecific (allomarking). Conspecifics 

investigate each other’s scent-marks by sniffing, muzzle-rubbing, licking, or 

overmarking scented spots (Smith et al., 1997). Several functions have 

been attributed to callitrichid scent-marking behaviour, including                 

1. advertisement of identity, and of reproductive and dominance status;     

2. territorial advertisement and defence; and 3. spatial orientation and 

signalling of food resource location (Epple, 1986; Lazaro-Perea, Snowdon 

and Arruda, 1999; Miller, Laszlo and Dietz, 2003; reviewed in Heymann, 

2006a). These functions will be further detailed in the next section.  

The captive part of the study took place between March 2017–

March 2018 in three British zoos, members of the British and Irish 

Association of Zoos and Aquariums (BIAZA). I recorded scent-marking 
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behaviour of several groups of emperor tamarins, Saguinus imperator 

subgrisescens (further referred to as S. imperator), cotton-top tamarins, S. 

oedipus, and silvery marmosets, Mico argentatus. The results of this 

behavioural study constitute Chapter 2 of the present thesis.  

During these observations, I collected scent samples from voided 

urine and naturally deposited scent-marks inside the enclosures. Samples 

from some of the animals’ scent-gland secretions were additionally 

collected when undergoing routine husbandry procedures. I analysed the 

scent samples at Anglia Ruskin University (ARU) by SPME–GC-MS. In 

addition, I used a subset of these samples to experimentally test the 

temporal stability of sample chemical composition. This captive 

semiochemical study is presented in Chapter 3.  

The study of wild callitrichids was conducted in June 2017 at 

Estación Biológica Los Amigos (EBLA) in south-eastern Peru, on two 

sympatric species of tamarin, emperor tamarins and Weddell’s saddleback 

tamarins, Leontocebus weddelli. Scent samples were collected from the 

tamarins’ scent-glands and skin during an annual capture-and-release 

programme at this site, which I analysed in situ using a new generation 

portable GC-MS device. Additional emperor tamarin samples were 

collected in June 2018 and transported to ARU, where I analysed them in 

the laboratory, in order to compare the two analytical methods. Results 

from this study are described in Chapter 4. 

This study provides an important approach in directly comparing    

1. scent-marking behaviour and semiochemistry in several species of 

callitrichids; 2. the chemical composition of scent-gland samples from 

captive and wild tamarins; and 3. the use of laboratory-based and in situ 

analytical methods for the analysis of callitrichid scents. Besides providing 

valuable insight on the chemical composition of the signals conveyed via 

scent communication, I hope the present study can offer a guideline for the 

captive breeding and husbandry of rare callitrichids and other mammals. 

These ideas, following a discussion of the results found in both captive and 

wild conditions, are discussed in Chapter 5. 
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I.4.2. Research questions 

The research questions considered in this study can be divided 

along three axes: 1. questions relating to callitrichid scent-marking 

behaviour; 2. questions relating to differences in the chemical composition 

of callitrichid scent samples; and 3. questions relating to the 

semiochemistry techniques used for the analyses of callitrichid scents. 

These research questions are further summarized in Table I.3. 

 

I.4.2.1. Questions relating to scent-marking behaviour 

Q1. Are there differences in scent-marking behaviour at the levels of 

species, group, sex, reproductive status, and/or the individual?  

In wild callitrichids, overlaps between different groups’ home ranges 

are frequent, sometimes even between two or three sympatric species 

(Smith, 1997; Watsa, 2013). Hence, we might expect differences in scent-

marking activity between species, and between groups, reflecting different 

strategies of communication to ensure that messages are transmitted to the 

correct receivers. This was found by Heymann (2001) in sympatric 

moustached tamarins, Saguinus mystax, and Geoffroy’s saddleback 

tamarins, Leontocebus nigrifrons (formerly S. fuscicollis, recently 

reassigned, Rylands et al., 2016). Differences in scent-marking behaviour 

at the level of species may also indicate variable relative importance of 

olfactory communication compared with other communication modalities 

(Higham and Hebets, 2013). I will explore the differences in scent-marking 

frequency between species and groups of the captive callitrichids studied. 

Dominance and reproductive status are highly entwined in 

callitrichids, owing to their cooperative breeding system (Huck et al., 2005). 

As olfactory cues are involved in reproduction (Huck, Löttker and Heymann, 

2004; Ziegler, 2013), we can predict reproductively active individuals to 

scent-mark more often than the non-reproductive and immature ones, as 

was found in captive common marmosets (Epple 1972). Scent-marking 

may notably play a role in the reproductive suppression of callitrichid 

subordinate females, occurring through both behaviour and chemical cues 

from the dominant female (e.g. in common marmosets, Abbott et al., 1998; 

Barrett, Abbott and George, 1990; Saltzman et al., 1997; Ziegler and 

Sousa, 2002; Ziegler, 2013; golden lion tamarins, Leontopithecus rosalia, 
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French and Stribley, 1985; cotton-top tamarins, Heistermann et al., 1989; 

Savage, Ziegler and Snowdon, 1988; and pygmy marmosets, Cebuella 

pygmaea, Spurlock, 2001; reviewed in Beehner and Lu, 2013). The 

existence of strict reproductive suppression in other callitrichid species is 

still unclear, although probable (Watsa, 2013). However in studies on wild 

common marmosets (Lazaro-Perea, Snowdon and Arruda, 1999; Sousa et 

al., 2005), and moustached tamarins (Huck et al., 2005), subordinate 

females scent-marked more frequently than the reproductive female, 

indicating a possible function of scent-marking in mate attraction and 

intrasexual competition (reviewed in Heymann, 2006a). I will test the 

influence of sex and reproductive conditions on the frequency of scent-

marking behaviour in captive callitrichids and inspect individual differences. 

 
Q2. What is the social context of scent-marking behaviour in captive 
callitrichids? 

Scent-marking is very common in callitrichids, reported both in the 

wild and in captivity (Table I.2; Epple, 1974a; Heymann, 2006a). As for 

many other behaviours in social species, scent-marking, which is a 

conspicuous behaviour, may represent a visual signal in itself, in addition to 

the olfactory message produced (Johnstone, 1996; Liebal et al., 2014). If 

this is the case, we can expect scent-marking behaviour to be performed 

more frequently in the presence of conspecifics and located on substrates 

particularly visible to the rest of the congeners present. We can also predict 

callitrichid scent-marking activity to be influenced by the identity of 

conspecifics present, since effort in marking behaviour may be directly 

linked to the potential receivers, or to other signalling individuals. This 

would indicate a directed transmission of individual signals between two 

given animals via olfactory communication. I will test these hypotheses in 

captive callitrichids.  

 
Q3. How much variation is found in captive callitrichid scent-mark 
deposition? 

 Scent-marking in mammals can differ considerably in its mode of 

deposition, duration, and the type of mark. Notably, different fluids can 

sometimes be mixed together, which is likely to modify the signal content of 

the deposited mark, such as in the case of female giant pandas known to 

use a mixture of urine, vaginal discharge, and anogenital scent-gland 
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secretions as scent-marks (Hagey and Macdonald, 2003). Moreover, most 

mammals possess scent-glands on diverse regions of their body. 

Callitrichids have three distinct specialized scent-glands on the anogenital, 

suprapubic, and sternal regions of their body. Scent-glands may be used in 

different contexts to convey different signals (Heymann, 2001). 

Furthermore, variation in scent-marking duration may reflect differences in 

the amount of secretions deposited during a scent-marking event, which 

could result in the transmission of distinct signals. Such potential disparities 

in scent-marking activity illustrate the variety and complexity of the 

chemical cues mediating social communication. I will assess the diversity of 

scent-marking characteristics in captive callitrichids by comparing types 

and duration of scent-marking, as well as scent-gland use. 

 
Q4. What are the temporal and spatial patterns of scent-marking 

behaviour in captive callitrichids? 

Scent-marking in callitrichids may be associated with territorial 

defence and food resource marking (Miller, Laszlo and Dietz, 2003; Mitani 

and Watts, 2005). Therefore, we can expect this behaviour to occur more 

frequently in the wild than in captivity given the fact that i. home ranges are 

obviously much larger; ii. food resources are unevenly distributed and far 

away from each other; and iii. physical encounters with potential rival 

groups are possible. In a captive environment, we can anticipate scent-

marking behaviour to be performed more frequently in association with 

feeding activities, which would be consistent with a role in the signalling of 

food resources. I will describe the spatiotemporal patterns of scent-marking 

behaviour in captive callitrichids. 

 

I.4.2.2. Questions relating to differences in the chemical composition 
of callitrichid scents 

Q5. To what extent does naturally deposited scent-mark chemical 

composition differ from that of scent-gland secretions, and from 

urine?   

The chemical components of scent-gland secretions after scent-

marking potentially mix with other body fluids such as urine, and with 

chemicals from conspecifics, plants and microorganisms present in the 

environment (Archie and Theis, 2011; Ezenwa and Williams, 2014). 



Chapter I – General introduction and study outline 

31 

Moreover, volatile chemicals naturally change and re-associate as soon as 

they are liberated in the air (Greene et al., 2016a; Charpentier et al., 2012). 

We can therefore expect the chemical composition of scent-mark samples 

to be different from those collected directly from the scent-gland of the 

animal. I will test this assumption in captive callitrichids. Incidentally, a 

change over time of the chemical composition of a scent-mark can be 

biologically meaningful, potentially providing the receiver with information 

on how old the mark is, as well as the context of its deposition (Ezenwa and 

Williams, 2014; Müller-Schwarze, 2006). Urine on the other hand, may 

convey olfactory cues as a by-product of its primary role of excretory body 

fluid, which is well known in many mammals such as dogs, Canis lupus 

domesticus, and rats, Rattus spp. (Wyatt, 2014a). Scent-gland secretions, 

in turn, are purposely deposited in the environment as a discrete chemical 

signal. Urine could thus represent the ancestral state of chemosignalling, 

and glandular secretions a more novel chemosignalling mode shown only 

by some animal taxa (Apps, Mmualefe and Weldon McNutt, 2012; Hagey 

and Macdonald, 2003). Hence, we can anticipate callitrichid scent-gland 

secretion chemical composition to be i. different, and ii. more complex, 

than that of urine, owing to its specific chemosignalling function. 

Alternatively, urine might be chemically more complex than scent-gland 

secretions, since it is an aqueous mixture of many residual chemicals from 

diverse reaction chains. Lastly, urine and scent-gland secretions might 

present similar volatile compounds, but in different quantities. Urine and 

scent-marks are both deposited in the environment and subject to decay 

and mixing. The balance of volatile and semi- or non-volatile compounds 

serving as olfactory cues may change over time, as the most volatile 

compounds rapidly disperse into the air (Müller-Schwarze, 2006). 

Unfortunately non-volatile compounds cannot be detected by the analytical 

technique used in the present study (i.e. headspace GC-MS), therefore 

only a partial picture of the chemical signals can be obtained. I will compare 

the chemical composition of captive callitrichid deposited scent-marks, 

scent-gland secretions, and urine, analysed by SPME–GC-MS. 
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Q6. Do callitrichid scent-gland secretions, scent-marks, and urine 

contain chemical signatures at the levels of species, group, sex, 

reproductive status, and/or the individual? 

As mentioned in Q1, chemosignals may be used to advertise 

territoriality and identity, as well as reproductive and dominance status. In 

primates in particular, it has been shown that chemical signatures are found 

in the chemical profiles of deposited scents at the levels of species (e.g. in 

urine of brown lemurs, Eulemur spp., DelBarco-Trillo and Drea, 2014; in 

glandular secretions of ring-tailed lemurs and Coquerel’s sifakas, 

Propithecus coquereli, Hayes, Morelli and Wright, 2004), and group (e.g. in 

deposited scent-marks of mandrills, Mandrillus sphinx, Vaglio et al., 2016), 

which might reflect different territorial strategies, and ensure interspecific 

recognition in sympatric species. Moreover, chemical signatures at the 

levels of sex (e.g. in glandular secretions of owl monkeys, Aotus spp., 

Spence-Aizenberg et al., 2018), reproductive status (e.g. in glandular 

secretions of Coquerel’s sifakas, Greene and Drea, 2014), and the 

individual (e.g. in glandular secretions of common marmosets, Smith et al., 

2001b), may indicate a role of olfactory communication in mate choice, 

dominance, and reproductive suppression in callitrichids. I will examine 

these assumptions in both captive and wild callitrichids.  

 
Q7. Are there differences in chemical composition between samples 

from different scent-glands in wild tamarins?  

 Tamarins possess three types of scent-glands, anogenital, 

suprapubic, and sternal, of comparable histology (Epple et al., 1993; 

Fontani et al., 2014; Moraes et al., 2006; Perkins, 1966). Previous work on 

the ring-tailed lemur has identified differences in the chemical composition 

of genital and brachial scent-gland secretions, suggesting that different 

messages may be conveyed by each of these glands (Greene et al., 

2016a; Scordato, Dubay and Drea, 2007). I will compare the chemical 

composition of the different glands of individuals of two wild sympatric 

tamarin species. 

 
Q8. Are there differences in chemical composition between scent-

gland samples from captive and wild emperor tamarins?   

Chemosignals used in animal olfactory communication can either be 

by-products of essential biochemical pathways, derived from the 
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environment, or produced by commensal bacteria (Archie and Theis, 2011; 

Ezenwa and Williams, 2014). In a captive environment, variations in diet, 

elements of the enclosure, and husbandry procedures, may influence the 

commensal bacteria communities of the animals, thus resulting in a range 

of different compounds being produced. For instance, diet has been shown 

to have an effect on the production of cuticular hydrocarbons by fruit flies, 

Drosophila melanogaster (Fedina et al., 2012); on the sex pheromones 

released by male cockroaches, Nauphoeta cinerea (South et al., 2011); 

and on the chemical composition of genital secretions of various 

strepsirrhine species (Drea et al., 2013); although Baeckens et al. (2017) 

did not find differences in the chemical composition of femoral gland 

secretions from lacertid lizards (Lacertidae) subjected to different diets. 

Another study revealed that captivity altered the diversity of skin lipids 

produced by red-sided garter snakes, Thamnophis sirtalis parietalis (Rudie, 

2015). Wild tamarins, which have access to a greater variety of food items, 

and potentially interact with a greater diversity of organisms (i.e. con- and 

hetero-specifics, predators, prey, parasites and other microorganisms), 

may produce i. different, and ii. potentially more complex chemical signals, 

than their captive counterparts. I will compare the chemical composition of 

samples from wild and captive emperor tamarins. 

 
Q9. Is there a relationship between scent-marking behaviour and 

semiochemistry in captive callitrichids?   

Scent-marking frequency can be assessed from behavioural 

observations. If differences are found at the levels of species, group, sex, 

reproductive status, the individual, or between scent-glands for the 

callitrichid groups considered in this study (see Q1), it will be interesting to 

examine whether the categories of individuals that scent-mark the most 

also present a more complex, or dissimilar, scent-gland secretion and 

scent-mark chemical composition (see Q6). I will relate chemical and 

behavioural information on captive callitrichid olfactory communication. 
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I.4.2.3. Questions relating to technical development for the chemical 
analysis of callitrichid scents  

Q10. What is the pattern of degradation of tamarin scent samples kept 

at room temperature and subject to repetitive extractions? 

 Researchers in the field of mammalian semiochemistry usually 

recommend that scent samples are transported and stored frozen, as they 

may degrade and change over time, due to the loss of the most volatile 

compounds, and bacterial activity inside the sample containers (Apps, 

Weldon and Kramer, 2015; Drea et al., 2013; MacDonald et al., 2008). 

However, the exact pattern of degradation or change is not yet known for 

this type of samples. I will investigate this general statement by 

experimentally testing the decay pattern of tamarin scent-gland secretion 

samples, subject to repetitive extractions and storage at room temperature.  

 
Q11. How successful was the analytical technique SPME–GC-MS at 

showing patterns in callitrichid scents; and how could it be 

improved? 

The choice of SPME–GC-MS (Table I.1) for the analysis of 

callitrichid scent samples was motivated by i. a careful review of existing 

work using this technique (e.g. Curran et al., 2007; Goodwin et al., 2006; 

Probert, Jones and Ratcliffe, 2004; Tait et al., 2014; Zagrobelny et al., 

2015; see section I.2.2); and ii. an important process of method 

optimization on the available instrumentation at ARU throughout the first 

year of this project. The chromatography results obtained using this 

technique have both their advantages and limitations, which I will assess 

and discuss. 

 
Q12. How successful was the use of the Torion® T-9 GC-MS for the 

analysis of wild tamarin scent-gland secretions; and how could it be 

improved? 

As outlined by Drea et al. (2013), one of the principal difficulties of 

semiochemical analyses in wild conditions is the prior storage and 

transportation of samples in cold conditions, to avoid sample degradation 

(see Q10). The Torion® T-9 (PerkinElmer, 2016), a portable GC-MS 

developed for environmental analyses of air and water in war zones, offers 

a solution to this problem by allowing in situ chemical analyses of freshly 

collected samples. The Torion®, associated with SPME, was employed to 
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analyse the chemical composition of scent-gland secretions from wild 

tamarins. I will assess and discuss the chromatography results obtained 

using this technique, in comparison with laboratory analyses of similar 

samples using a conventional bench-top GC-MS. 

 

Table I.3. Summary of the three axes of research developed in the present 
doctoral project, their associated research questions, and corresponding 
thesis chapters. 

Research axis Q # Research question 
Thesis 
chapter 

1. 

Captive 

callitrichid 

scent-marking 

behaviour 

Q1. 

Are there differences in scent-marking 

frequency at species, group, sex, 

reproductive status, and individual 

levels? 

Chap. 2 

Q2. 
What is the social context of scent-

marking behaviour? 
Chap. 2 

Q3. 
How much variation is found in  scent-

marking deposition? 
Chap. 2 

Q4. 
What are the temporal and spatial 

patterns of scent-marking behaviour? 
Chap. 2 

2. 

Captive and wild 

callitrichid 

semiochemistry 

Q5. 

Does scent-mark chemical 

composition differ between scent-gland 

secretions, scent-marks, and urine, in 

captivity? 

Chap. 3 

Q6. 

Do callitrichid scents contain chemical 

signatures at the levels of species, 

group, sex, reproductive status, and/or 

the individual? 

Chap. 3-4 

Q7. 

Are there differences in chemical 

composition between different scent-

glands in wild tamarins? 

Chap. 4 

Q8. 

Are there differences in chemical 

composition between scent-gland 

samples from captive and wild 

emperor tamarins? 

Chap. 4-5 

Q9. 

Is there a relationship between scent-

marking behaviour and 

semiochemistry in captivity? 

Chap. 5 

3. 

Semiochemistry 

techniques 

 

 

 

Q10. 
What is the pattern of degradation of 

scent samples? 
Chap. 3 

Q11. 
How successful was the use of 

SPME–GC-MS in the captive study? 
Chap. 4 

Q12. 
How successful was the use of Torion® 

T-9 portable GC-MS in the wild study? 
Chap. 4 
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Chapter II – Scent-marking 

behaviour in captive callitrichids 
 

Abstract 

 This chapter describes and compares scent-marking activity 

recorded ad libitum in five captive groups of callitrichids. First, I observed 

patterns of identity in scent-marking activity at the levels of species, group, 

sex, reproductive status, and the individual. I found differences between 

species and groups, possibly partially explained by differences between 

captive environments, as well as group size and composition, at the various 

study sites. Female tamarins scent-marked more than males, suggesting a 

role of scent-marking in advertising female reproductive status, otherwise 

concealed in callitrichids. Reproductive females tended to produce the most 

scent-marks, indicating a possible role of chemosignalling in intrasexual 

competition and reproductive suppression in these cooperative breeding 

primates. Furthermore, the influence of the identity of conspecifics present 

at the time of scent-marking reflected potentially distinct strategies adopted 

by individuals when exchanging chemical signals. Second, I found 

differences in scent-marking type and duration, and scent-gland use, 

between groups. Tamarins mainly marked using their anogenital scent-

gland; marmosets using their suprapubic gland. Both callitrichid taxa 

sometimes combined urine with their scent-marks, and marmosets often 

deposited rapid scent-marks after tree-gouging, thus potentially modifying 

the chemosignals conveyed. Lastly, I observed a variation in the 

spatiotemporal pattern of scent-marking behaviour. Time of day had little 

influence on scent-marking activity, although scent-marking tended to be 

less frequent in the morning. Horizontal and inclined substrates in indoor 

enclosure areas were favoured for depositing scent-marks. These results 

support the view of a main function of scent-marking behaviour in 

callitrichids in advertisement of identity, as well as of reproductive and 

dominance status. Moreover, the different scent-marking characteristics 

recorded in this study emphasize the diversity and complexity of 

chemosignals transmitted via scent-marking.  
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II.1. Introduction and hypotheses 

II.1.1. Scent-marking behaviour in the Callitrichidae: 
mechanisms and functions 

Scent-marking is very common in callitrichids, reported both in 

captivity (Epple, 1972; 1973; 1974a) and in the wild (Heymann, 2006a; b). 

Callitrichids produce scent signals by depositing glandular secretions on 

selected branches in their environment, produced by specialized scent-

glands on the anogenital, suprapubic, and sternal area of their body. 

Sometimes, the secretions are mixed with urine, faeces or genital 

secretions, and produce a potentially distinct scent signal (Sutcliffe and 

Poole, 1978; in Smith et al., 2001b). Scent-marks provide durable olfactory 

cues that potentially remain long after departure of the signaller, as 

opposed to immediate visual or acoustic signals (Alcock, 2013; Liebal et al., 

2014). However, scent signals may change as soon as they are deposited, 

owing to the loss of volatile compounds and to bacterial activity (Archie and 

Theis, 2011; Theis et al., 2013; see Chapter 3). Moreover, scent-marking is 

a particularly noticeable behaviour in callitrichids, in which the animals 

ostensibly crouch down and repeatedly rub their scent-gland area against 

the substrate (usually a branch), often in the presence of conspecifics 

(Lazaro-Perea, 2001; pers. obs.). This conspicuousness of scent-marking 

behaviour may serve to attract the attention of one or several particular 

receivers. It may also constitute a visual signal in itself, regardless of the 

chemical composition of the secretions and/or urine deposited (Johnstone, 

1996). Conspecifics may investigate each other’s scent-marks by sniffing, 

muzzle-rubbing, licking, or over-marking scented spots (Smith et al., 1997). 

Some aspects of scent-marking behaviour include the identity of the 

signaller, scent-mark characteristics (e.g. scent-gland used, presence of 

urine mixed with secretions, and duration of the marking), the choice of 

substrate to mark, the number and identity of potential receivers, and the 

investigatory response elicited. 

Several functions have been attributed to animal scent-marking 

behaviour, including: 1. advertisement of identity at the levels of species, 

group, sex, age, and/or the individual, as well as of reproductive and 

dominance status; 2. territorial advertisement and defence; and 3. spatial 

orientation and signalling of food resource location (Müller-Schwarze, 2006; 

Thiessen and Rice, 1976; Wyatt, 2014a). These functions also apply to the 
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social and sexual lives of primates, as reviewed by Dominy, Ross and 

Smith (2004), Heymann (2006a), and Snowdon et al. (2006). In the 

Callitrichidae (i.e. the marmosets and tamarins), the first function of scent-

marking behaviour, i.e. advertisement of identity, reproductive and 

dominance status, may serve a role in the regulation of social and 

reproductive dominance in this cooperative breeding taxon, such as in 

intrasexual competition and mate choice (Abbott et al., 1998; Savage, 

Ziegler and Snowdon, 1988; Smith et al., 2001b). The second function, i.e. 

territorial advertisement and defence, is the most commonly referred to in 

mammalian studies (Albone and Shirley, 1984). However, there is currently 

a debate about the role of scent-marking in territoriality in the Callitrichidae, 

as patterns of scent-marking do not match home range boundaries in 

sympatric Geoffroy’s saddleback tamarins, Leontocebus nigrifrons (formerly 

Saguinus fuscicollis, recently reassigned, Rylands et al., 2016), and 

moustached tamarins, Saguinus mystax (Lledo-Ferrer, Peláez and 

Heymann, 2011, 2012; Roberts, 2012). Finally, the third function, i.e. spatial 

orientation and signalling of food resource location, has been established in 

wild groups of common marmosets, Callithrix jacchus (Lazaro-Perea, 

Snowdon and Arruda, 1999; Thompson et al., 2018), and golden lion 

tamarins, Leontopithecus rosalia (Miller, Laszlo and Dietz, 2003). However, 

this function is nearly impossible to investigate in captive conditions, where 

space and food resources are so constrained. 

 

II.1.2. Aims and hypotheses 

 This chapter investigates variation in scent-marking activity in five 

groups of captive callitrichids, of three different species, housed at three 

different zoos. First, I compared the frequency of scent-marking behaviour 

between the different species and groups studied, as well as at the levels of 

sex, reproductive status, and the individual. Since the home ranges of 

multiple callitrichid groups, and sometimes even of two or three sympatric 

species, frequently overlap (Heymann, 2006a), we can predict differences 

in scent-marking activity between species, and between groups, reflecting 

different strategies of communication to ensure that signals are conveyed 

to the correct receivers. Differences in scent-marking behaviour at the level 

of species may also indicate a variable relative importance of 

chemosignalling compared with other communication modalities (Higham 
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and Hebets, 2013; Partan, 2013). Moreover, as scent-marking behaviour in 

callitrichids has been shown to play a role in the advertisement of 

reproductive and dominance status (Heymann, 2006a), differences in 

scent-marking activity are expected at the level of sex, reproductive status, 

and the individual, as introduced in Chapter 1, section I.4.2. Notably, 

dominant, reproductive females may scent-mark more as a means to 

indicate their reproductive status to potential mates (Epple, 1972), and to 

suppress ovulation in the subordinate females of the group, as scent-

marking has been shown to play a role in the reproductive suppression of 

subordinate females in this taxon (Beehner and Lu, 2013). I also inspected 

the ‘social context’ of scent-marking activity, defined as the influence of the 

number and identity of conspecifics surrounding the signaller while scent-

marking, as well as the investigatory response elicited by scent-marks. We 

can hypothesize that most scent-marking may happen in the presence of 

conspecifics, where the conspicuous scent-mark deposition would easily 

attract the attention of particular receivers, and that marking from a given 

signaller may be directed to a particular conspecific (Kappeler, 1998). 

Second, I investigated variation in scent-mark deposition, within and 

across callitrichid groups. In particular, I compared the use of glandular 

secretions only, with the use of a mixture of glandular secretions and urine. 

I also explored differences in the use of scent-gland (i.e. anogenital, 

suprapubic or sternal), and in the duration of scent-mark deposition. All 

three characteristics may influence the range and concentration of chemical 

components deposited when scent-marking, thus potentially conveying 

different scent signals. The variation in callitrichid chemosignalling will be 

further investigated at a chemical level in Chapters 3–4.  

Finally, I examined the temporal and spatial variation of scent-

marking activity. As is the case in other mammals such as canids and 

felids, which tend to deposit urine marks on prominent rocks and trunks 

(Apps, Weldon and Kramer, 2015; Soso and Koziel, 2017), we can expect 

callitrichids to preferentially scent-mark on highly accessible substrates, 

commonly visited by conspecifics, thus more easily detectable by potential 

receivers. Callitrichids might also place their scent-marks in key locations 

for the signalling of food resources or sleeping sites, and in association with 

feeding or social activities at certain times of day. However this hypothesis 

is difficult to test in captivity, where space is so constrained.  
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II.2. Methods 

II.2.1. Study sites and species 

Scent-marking behaviour was studied in captive bearded emperor 

tamarins, Saguinus imperator subgrisescens (referred to as Saguinus 

imperator in the rest of this study; Deville, 1849; Rylands et al., 2016), 

cotton-top tamarins, S. oedipus (Linnaeus 1758), and silvery marmosets, 

Mico argentatus (formerly Callithrix argentata, Linnaeus 1758; Rylands, 

1993). A group of six emperor tamarins and a group of eight silvery 

marmosets housed at Twycross Zoo (TZ) were observed in April and 

October 2017, respectively. A group of six cotton-top tamarins housed at 

Paradise Wildlife Park (PWP) was studied in September 2017. Finally, a 

group of four cotton-top tamarins and a pair of emperor tamarins housed at 

Drayton Manor Park (DMP) were observed in January and February 2018, 

respectively. The three study sites are all members of the British and Irish 

Association of Zoos and Aquariums (BIAZA). This project received approval 

from the Faculty of Science and Engineering Departmental Research 

Ethics Panel committee at Anglia Ruskin University (DREP), BIAZA, and 

each of the individual study sites.  

Individuals in each callitrichid group were classified as reproductive 

adults (i.e. fully sexually mature individuals), subordinate adults (i.e. 

offspring of the reproductive pair, of over 18 months old, probably sexually 

mature but not having reproduced), juveniles (i.e. offspring of the 

reproductive pair, of less than a year old), and an infant (i.e. offspring of the 

reproductive pair, not yet weaned; Table II.1). 
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Table II.1. Composition of the five callitrichid groups included in the study. 
Photographs show adults of the three species. 

Species common  
& scientific name 

Study site 
Group 

size 
Group 
composition 

Age (years 
+ months) 

Emperor tamarin,  
Saguinus imperator 
 

 

Drayton 
Manor Park 

2 

Reproductive ♀ 3Y 5M 

Reproductive ♂ 4Y 8M 

Twycross 
Zoo 

6 

Reproductive ♀ 5Y 7M 

Reproductive ♂ 7Y 11M 

Subordinate ♀ 1Y 9M 

Subordinate ♂ 1Y 9M 

Juvenile ♀ 0Y 6M 

Juvenile ♂ 0Y 6M 

Cotton-top tamarin,  
Saguinus oedipus 
 

 

Drayton 
Manor Park 

4 

Reproductive ♀ 4Y 8M 

Reproductive ♂ 4Y 3M 

Juvenile ♀ 0Y 10M 

Juvenile ♂ 0Y 10M 

Paradise 
Wildlife Park 

6 

Reproductive ♀ 11Y 4M 

Reproductive ♂ 10Y 7M 

Subordinate ♀ 2Y 7M 

Subordinate ♂ 1Y 11M 

Juvenile ♀ 0Y 5M 

Juvenile ♂ 0Y 5M 

Silvery marmoset,  
Mico argentatus 
 

 

Twycross 
Zoo 

8 

Reproductive ♀ 7Y 7M 

Reproductive ♂ 11Y 0M 

Older 
subordinate ♀ 

2Y 11M 

Subordinate ♀ 2Y 2M 

Subordinate ♂ 2Y 2M 

Juvenile ♀ 0Y 8M 

Juvenile ♂ 0Y 8M  

Infant (sex unk.) 0Y 2M 
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II.2.2. Recording of scent-marking behaviour and 
individual proximity measures 

II.2.2.1. Scent-marking behaviour 

 Each callitrichid group was observed for 50 hours over a ten day 

period, except for the group of silvery marmosets at TZ, which was 

observed for 45 hours over nine days. One animal was removed from the 

silvery marmoset group by the veterinarian team on the tenth day of 

observation, which had an impact on the general behaviour of the group in 

the following days (pers. obs.), leading to the decision to discard data 

collected after this event. A single observer collected all observational data, 

thus limiting the variability of the recordings (Martin and Bateson, 2007). 

Prior to data collection, at least one day of observation was spent 

habituating the primates to the observer’s continuous presence, and for the 

observer to learn to visually differentiate individuals within a group. Daily 

observation time was five hours, divided into five one-hour bouts at random 

intervals between 09:00 and 16:40. Scent-marking behaviour was clearly 

noticeable to the human observer, and the location of each of the three 

scent-glands on the animals’ body generally allowed the distinction 

between anogenital marking (also called circumgenital marking, e.g. Smith 

et al., 2001b; Fig. II.1a), suprapubic marking (Fig. II.1b), and sternal 

marking (Fig. II.1c). 

Scent-marking events were recorded ad libitum for all individuals 

during each bout of observation. Two occurrences of scent-marking at short 

time interval were considered as separate events, unless the second 

occurrence happened within 2 min and on the exact same spot of the first 

event, in which case it was classified as an overmark in response to the 

first scent-mark event. The following information was recorded for each 

scent-marking event: day, time of day, identity of the marker (i.e. species, 

study site, group, sex, reproductive status, and individual ID), scent-

marking type, scent-gland used, duration of the marking, enclosure area 

and substrate used, presence of conspecifics and identity of the nearest 

neighbour when present in the same enclosure section at the time of the 

scent-marking event, and investigatory response to the mark. These 

categories are described below, and further summarized in Table II.2. 
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Figure II.1. Photographs of scent-marking behaviour in tamarins: a. adult 
female emperor tamarin, Saguinus imperator, anogenital scent-marking 
(right), while being observed by a subordinate male (left); b. adult male 
Weddell’s saddleback tamarin, Leontocebus weddelli, suprapubic scent-
marking (photo credit: Field Projects International); and c. adult male 
emperor tamarin sternal scent-marking. 

a. 

c. 

b. 
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  For statistical purposes, the recorded scent-marking time was 

further categorized into a factor ‘time of day’, comprising morning (i.e. 

09:00–11:30), midday (i.e. 11:31–14:00), and afternoon (i.e. 14:01–16:40). 

Scent-marking types were defined as either glandular secretions only (i.e. 

secretions) or secretions mixed with urine (i.e. urine+secretions), where 

scent-marking was performed just after urination. In addition, silvery 

marmosets at TZ often performed scent-marking in association with tree-

gouging, a natural foraging behaviour in this exudate-feeding species 

(Rosenberger, 1978; Rylands, 1984, 1985, 1993). For this species, when 

scent-marking was performed just after gouging and on the very same spot, 

it was noted as such (i.e. gouging+secretions). Scent-marking duration was 

recorded as a categorical factor, comprising short (i.e. 1–2 sec), medium 

(3–6 sec), and long (>6 sec) depositions. The number of enclosure sections 

and substrate types available varied between zoos, and between 

enclosures. Therefore, for the purpose of this study the factor enclosure 

area only included indoor and outdoor areas, and the factor substrate 

comprised horizontal, inclined, and vertical substrates. The animals were 

free to access all areas of their enclosure at all times during data collection. 

Presence of conspecifics was defined as the number of individuals present 

in the same enclosure section at the time of scent-marking deposition, and 

therefore potentially having the signalling individual in sight. Importantly 

here, unlike the factor enclosure area, enclosure section corresponded to 

the different spaces of both indoor and outdoor areas, divided by walls, 

wooden panels, or mesh covered with branches, platforms and/or 

vegetation, preventing visual contact between the signalling animal and its 

potential receivers. The categories used were one neighbour, >1 

neighbour, and none (i.e. no conspecific present in the same enclosure 

section). Finally, investigatory response by conspecifics, which 

corresponded to either sniffing, muzzle-rubbing, or overmarking a 

deposited scent-mark, was recorded as yes (i.e. occurrence of response) or 

no (i.e. absence of response). Owing to the limited space available to the 

animals in captivity, investigatory responses were only recorded if they 

occurred within 2 min of the scent-marking event, and if the receiver’s head 

approached within 2 cm of the scent-marked spot, in order to avoid 

recording behaviours having happened only by chance. 
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Table II.2. Summary of the information recorded for each scent-marking 
event included in this study.  

Information type Factor recorded Categories included 

Temporal 
information 

Day 
Day 1–Day 10 (only 9 days for 
silvery marmoset group) 

Time of day 
Morning (09:00-11:30); midday 
(11:30-14:00); afternoon (14:00-
16:40) 

Identity of the 
signaller 

Species 
Silvery marmoset; emperor tamarin; 
cotton-top tamarin 

Study site DMP; PWP; TZ 

Group 

Silvery marmosets at TZ; emperor 
tamarins at DMP; emperor tamarins 
at TZ; cotton-top tamarins at DMP; 
cotton-top tamarins at PWP 

Sex Male; female 

Reproductive status Reproductive; non-reproductive 

Individual See Table II.1 

Social context 

Presence of 
conspecifics 

One neighbour; >1 neighbours; 
none 

Identity of the 
nearest neighbour 

See Table II.1 

Investigatory 
response  

Yes; no 

Characteristics 
of scent-marking 
event 

Scent-marking type 
Secretions; urine+secretions; 
gouging+secretions (only M. 
argentatus) 

Scent-gland used Anogenital; suprapubic; sternal 

Scent-marking 
duration 

Short; medium; long 

Location of 
scent-marking 
event 

Enclosure area Indoor; outdoor 

Substrate Horizontal; inclined; vertical 

 

II.2.2.2. General use of space and proximity to conspecifics 

 In addition to the ad libitum scent-marking behaviour data, the 

enclosure area used and the identity of the nearest neighbour were 

recorded for all individuals using group scan sampling every 2 min 

(Altmann, 1974). This enabled the proportion of time spent in each 

enclosure area, and in closest presence of each conspecific, to be 

examined for each individual in the five groups studied. 
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II.2.3. Statistical analyses 

All statistical analyses were performed in R v.3.5.1 operated in 

RStudio (R Core Team, 2018). Scent-marking frequency was calculated as 

the number of scent-marking events per sample category (e.g. species, 

sex, etc.) per one-hour observation bout. First, differences in hourly scent-

marking frequency were assessed using non-parametric Kruskal-Wallis 

rank sum tests of difference (function kruskal.test() in R base package 

‘stats’), between species, study sites, and groups. Then, Dunn’s tests with 

Bonferroni adjustment (i.e. pairwise tests for multiple comparisons of mean 

rank sums; function posthoc.kruskal.dunn.test() in R package ‘PMCMR’; 

Pohlert, 2014) were used as post-hoc tests to investigate pairwise 

differences within the same factors. Only the first nine days of observation 

were included, to account for the fact that the group of silvery marmosets at 

TZ was observed for nine days instead of ten.  

In order to account for differences between callitrichid groups, 

Kruskal-Wallis rank sum tests and Dunn’s post-hoc tests were then used 

for each group independently, to perform pairwise comparisons between 

categories of sex, reproductive status, individual, scent-mark type, scent-

gland used, marking duration, presence of conspecifics, investigative 

response, time of day, enclosure area used, and substrate used. For these 

group-level comparisons, all 10 days of observations were included in the 

four tamarin groups studied. Additionally, the choice of enclosure area 

during scent-marking was related to the general use of space by performing 

Pearson’s χ² tests with Yates’ continuity correction (chisq.test() in base R 

package ‘stats’). This test compared the mean daily observed scent-

marking frequency per callitrichid group in indoor and outdoor enclosure 

areas, with the expected values given the general use of space. These 

expected values were calculated as: 𝑆𝑀𝑒𝑥𝑝(𝑖) = (𝐵(𝑖) × ∑ 𝑆𝑀𝑜𝑏𝑠)/∑𝐵, 

where 𝑆𝑀𝑒𝑥𝑝(𝑖) is the expected daily number of scent-marking events in 

enclosure area 𝑖; 𝐵(𝑖) is the number of daily behavioural scans recorded in 

enclosure area 𝑖; and ∑𝑆𝑀𝑜𝑏𝑠 and ∑𝐵 are the total daily number of 

observed scent-marking events, and of behavioural scans, respectively. 

To further investigate the social context of scent-marking behaviour, 

i.e. the influence of the identity of the nearest neighbour at the time of 

scent-marking, individual marking frequency for each potential pair of 

signaller–neighbour was compared in all five callitrichid groups. For 
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consistency, when individuals were alone in their enclosure section (i.e. out 

of sight from conspecifics) at the time of scent-marking, they were allocated 

the neighbour label ‘None’. First, for each individual a Kruskal-Wallis rank 

sum test assessed the general influence of the factor ‘identity of nearest 

neighbour’ on hourly scent-marking frequency, followed by Dunn’s post-hoc 

tests in order to investigate pairwise differences between potential 

neighbours. Individual signallers usually spent more time in proximity to 

certain conspecifics than others, which was likely to affect the scent-

marking rate recorded for each pair of signaller–neighbour. Therefore, 

values of individual scent-marking frequencies per nearest neighbour were 

then weighted by dividing them by the proportion of time spent in closest 

proximity to each potential nearest neighbour during observations. This was 

measured as the hourly proportion of 2 min scans recorded when closest to 

each potential nearest neighbour. Second, a social network analysis 

approach (Croft, James and Krause, 2007) was applied to describe the 

observed variation in individual scent-marking activity across all potential 

nearest neighbours. Social network analysis in the study of animal 

behaviour was first introduced by Altmann (1968), who described the flow 

of social signals among members of a free-ranging population of rhesus 

macaques, Macaca mulatta, using sociograms, i.e. diagrams representing 

the relationships between each pair of individuals in a social group. More 

recently, sociograms have been used for example to assess intragroup 

affiliative behaviour between mother ring-tailed lemurs, Lemur catta, and 

their offspring (Nakamichi and Koyama, 2000); as well as to describe 

grooming behaviour in female hamadryas baboons, Papio hamadryas 

(Swedell, 2002; review by Krause, Croft and James, 2007). Here, 

sociograms were built using weight matrices of hourly scent-marking 

frequencies of all individual signallers given the identity of their nearest 

neighbour, weighted for the proportion of time each pair spent in proximity, 

for each callitrichid group studied (function qgraph() in R package ‘qgraph’; 

Epskamp et al., 2012). 
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II.3. Results 

II.3.1. Total scent-marking events recorded 

 A total of 847 individual scent-marking events were recorded across 

the 25 animals observed belonging to the five callitrichid groups studied. 

The number of scent-marking events recorded daily ranged from 4–50 per 

group (median 16.5 ±SD 8.94), and from 0–42 per individual (2 ±5.46), 

although there was no statistical difference in overall scent-marking activity 

between days of observation (Kruskal-Wallis rank sum test: χ²= 12.032, df= 

9, P= 0.212). This allowed all daily recordings, i.e. nine days for the silvery 

marmoset group, and ten days for the four tamarin groups, to be pooled 

into a single dataset. 

 

II.3.2. Identity of the signaller: differences at the levels 
of species, group, sex, reproductive status, and the 
individual 

 Scent-marking frequency differed significantly between species 

(Kruskal-Wallis rank sum test: χ²= 13.060, df= 2, P= 0.001), with silvery 

marmosets marking 3 ±3.18 times per hour (median ±SD), emperor 

tamarins 2.5 ±1.41 times per hour, and cotton-top tamarins 4 ±2.67 times 

per hour. Cotton-top tamarins scent-marked significantly more than both 

other species (Fig. II.2a; Table II.3). Scent-marking frequency also differed 

between study sites (χ²= 37.748, df= 2, P< 0.001), with animals at DMP 

scent-marking significantly more frequently (3.5 ±2.44 marks per hour) than 

those at TZ (2.5 ±1.75 marks per hour) and PWP (3 ±2.25 marks per hour; 

Table II.3). Given the significant differences observed between species as 

well as study sites, it appeared important to consider each callitrichid group 

individually for the rest of the analyses. When considering each callitrichid 

group individually, there was an overall variation in scent-marking 

frequency across groups (χ²= 20.359, df= 4, P< 0.001). In particular, the 

cotton-top tamarin group housed at DMP scent-marked the most frequently 

(4 ±4.35 marks per hour), which was significantly more frequent than the 

emperor tamarin groups at DMP (2 ±1.97 marks per hour) and TZ (3 ±1.96 

marks per hour), and the silvery marmoset group at TZ (3 ±3.18 marks per 

hour; Fig. II.2b; Table II.3). The difference with the cotton-top tamarin 

group at PWP (3 ±2.29 marks per hour) was not significant (Table II.3). 
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Figure II.2. Tukey’s box-and-whiskers plots showing variation in scent-
marking frequency between a. the three callitrichid species; and b. the five 
groups studied. Boxes indicate the median and interquartile range (IQR); 
whiskers give the smallest value ≥ lower hinge -1.5*IQR, and largest value 
≤ upper hinge +1.5*IQR; n= sample size. Asterisks indicate statistically 
significant differences in pairwise Dunn’s tests for categories of n>2 ( P≤ 
0.05,  P≤ 0.01,  P≤ 0.001; Table II.3). 
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Table II.3. Results of Kruskal-Wallis rank sum tests of difference, and Dunn’s post-hoc tests on pairwise comparisons, on scent-marking 
frequency (i.e. number of scent-marking events per one-hour observation bout), between species, study sites, and callitrichid groups.        
χ²= χ²-statistic; df= degrees of freedom; Z= Z-statistic; and P= p-value, significant at P≤ 0.05 (in bold). 

Category 
tested 

Kruskal-Wallis rank sum 
tests 

Pairwise comparisons Dunn’s post-hoc tests 

Species χ²= 13.060, df= 2, P= 0.001 

Silvery marmosets – Emperor tamarins Z= 0.020, P= 1.000 

Silvery marmosets – Cotton-top tamarins Z= 3.119, P= 0.005 

Emperor tamarins – Cotton-top tamarins Z= 3.140, P= 0.005 

Study site χ²= 37.748, df= 2, P< 0.001 

DMP – PWP Z= 1.881, P= 0.180 

DMP – TZ Z= 2.829, P= 0.014 

PWP – TZ Z= 0.948, P= 1.000 

Group χ²= 20.359, df= 4, P< 0.001 

Silvery marmosets at TZ – Emperor tamarins at DMP Z= 0.491, P= 1.000 

Silvery marmosets at TZ – Emperor tamarins at TZ Z= 0.202, P= 1.000 

Silvery marmosets at TZ – Cotton-top tamarins at DMP Z= 3.541, P= 0.004 

Silvery marmosets at TZ – Cotton-top tamarins at PWP Z= 0.893, P= 1.000 

Emperor tamarins at DMP – Emperor tamarins at TZ Z= 0.692, P= 1.000 

Emperor tamarins at DMP – Cotton-top tamarins at DMP Z= 4.031, P= 0.001 

Emperor tamarins at DMP – Cotton-top tamarins at PWP Z= 1.383, P= 1.000 

Emperor tamarins at TZ – Cotton-top tamarins at DMP Z= 3.339, P= 0.008 

Emperor tamarins at TZ – Cotton-top tamarins at PWP Z= 0.691, P= 1.000 

Cotton-top tamarins at DMP – Cotton-top tamarins at PWP Z= 2.648, P= 0.081 
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There was an overall variation in scent-marking frequency at the 

level of sex (Kruskal-Wallis rank sum test: χ²= 73.769, df= 1, P< 0.001) and 

reproductive status (χ²= 40.321, df= 1, P< 0.001; Table II.4). However, 

when considering each callitrichid group individually, the differences 

observed were variable. Females scent-marked more than males, 

significant for both emperor tamarin groups and both cotton-top tamarin 

groups; however, this was not observed in the silvery marmoset group at 

TZ (Fig. II.3a; Table II.4). Non-reproductive individuals (i.e. juveniles and 

subordinates) scent-marked significantly more than the reproductive pair in 

the silvery marmoset group at TZ and the cotton-top tamarin group at PWP, 

whereas the reproductive pair of cotton-top tamarins at DMP scent-marked 

more often than the non-reproductive individuals (Fig. II.3b; Table II.4).  
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Table II.4. Results of Kruskal-Wallis rank sum tests of difference, and Dunn’s post-hoc tests on pairwise comparisons, on scent-marking 
frequency (i.e. number of scent-marking events per one-hour observation bout), for each category tested: time of day, sex, reproductive status, 
individual, scent-marking type, scent-gland used, scent-marking duration, enclosure area, substrate chosen, presence of conspecifics, and 
investigative response. All tests are run on the full dataset (i.e. all callitrichid groups) as well as for each callitrichid group studied, for categories of 
sample size n> 2. χ²= χ²-statistic; df= degrees of freedom; Z= Z-statistic; and P= p-value, significant at P≤ 0.05 (in bold).  

Category 
tested 

Kruskal-Wallis 
rank sum tests 

Pairwise comparisons 

Dunn’s post-hoc tests 

All groups 
Silvery 
at TZ 

Emperor 
at DMP 

Emperor 
at TZ 

Cotton-
top 

at DMP 

Cotton-
top 

at PWP 

Sex 
χ²= 73.769,  

df= 1, P< 0.001 
Male – Female Z= 8.589, P< 0.001 

Z= 0.957, 
P= 0.340 

Z= 5.507, 
P< 0.001 

Z= 2.734, 
P= 0.006 

Z= 5.916, 
P< 0.001 

Z= 5.820, 
P< 0.001 

Reproductive 
status 

χ²= 40.321,  
df= 1, P< 0.001 

Reproductive – Non-repro. Z= 6.350, P< 0.001 
Z= 2.467, 
P= 0.014 

 
Z= 0.365, 
P= 0.710 

Z= 8.043, 
P< 0.001 

Z= 2.242, 
P= 0.025 

Individual 
(1/2) 

NA (unbalanced 
groups) 

Repro. ♀ – Repro. ♂ Z= 7.896, P< 0.001 
Z= 2.896, 
P= 0.079 

Z= 5.507, 
P< 0.001 

Z= 3.316, 
P= 0.014 

Z= 6.849, 
P< 0.001 

Z= 2.673, 
P= 0.113 

Repro. ♀ – Older subord. ♀ NA 
Z= 0.642, 
P= 1.000 

    

Repro. ♀ – Subord. ♀ Z= 8.372, P< 0.001 
Z= 2.698, 
P= 0.146 

 
Z= 2.335, 
P= 0.293 

 
Z= 3.674, 
P= 0.004 

Repro. ♀ – Subord.♂ Z= 12.602, P< 0.001 
Z= 2.304, 
P= 0.446 

 
Z= 3.353, 
P= 0.024 

 
Z= 3.935, 
P= 0.001 

Repro. ♀ – Juvenile ♀/♂ Z= 14.634, P< 0.001 
Z= 0.593, 
P= 1.000 

 
Z= 5.272, 
P< 0.001 

Z= 8.785, 
P< 0.001 

n too  
small 

Repro. ♀ – Juvenile ♂ Z= 14.467, P< 0.001 
Z= 0.642, 
P= 1.000 

 
Z= 5.650, 
P< 0.001 

Z= 9.569, 
P< 0.001 

Z= 4.679, 
P< 0.001 

Repro. ♂ – Older subord.♀ NA 
Z= 3.538, 
P= 0.009 

    

Repro. ♂ – Subord.♀ Z= 0.476, P= 1.000 
Z= 0.198, 
P= 1.000 

 
Z= 0.981, 
P= 1.000 

 
Z= 6.347, 
P< 0.001 
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Table II.4. Continued (1/3). 

Category 
tested 

Kruskal-Wallis 
rank sum tests 

Pairwise comparisons 

Dunn’s post-hoc tests 

All groups 
Silvery 
at TZ 

Emperor 
at DMP 

Emperor 
at TZ 

Cotton-
top 

at DMP 

Cotton-
top 

at PWP 

Individual 
(2/2) 

NA (unbalanced 
groups) 

Repro. ♂ – Subord. ♂ Z= 4.706, P< 0.001 
Z= 0.593, 
P= 1.000 

 
Z= 0.163, 
P= 1.000 

 
Z= 1.262, 
P= 1.000 

Repro. ♂ – Juvenile ♀/♂ Z= 6.739, P< 0.001 
Z= 3.489, 
P= 0.010 

 
Z= 1.956, 
P= 0.575 

Z= 1.936, 
P= 0.317 

n too  
small 

Repro. ♂ – Juvenile ♂ Z= 6.572, P< 0.001 
Z= 2.254, 
P= 0.508 

 
Z= 2.334, 
P= 0.294 

Z= 2.720, 
P= 0.039 

Z= 2.007, 
P= 0.672 

Older subord.♀ – Subord.♀ NA 
Z= 3.340, 
P= 0.018 

    

Older subord.♀ – Subord.♂ NA 
Z= 2.946, 
P= 0.068 

    

Older subord.♀ –  
Juvenile ♀/♂ 

NA 
Z= 0.049, 
P= 1.000 

    

Older subord.♀ – Juvenile ♂ NA 
Z= 1.284, 
P= 1.000 

    

Subord.♀ – Subord.♂ Z= 4.230, P< 0.001 
Z= 0.395, 
P= 1.000 

 
Z= 0.818, 
P= 1.000 

 
Z= 7.609, 
P< 0.001 

Subord.♀ – Juvenile ♀/♂ Z= 6.262, P< 0.001 
Z= 3.291, 
P= 0.021 

 
Z= 2.937, 
P= 0.050 

 
n too  
small 

Subord.♀ – Juvenile ♂ Z= 6.095, P< 0.001 
Z= 0.836, 
P= 0.056 

 
Z= 3.315, 
P= 0.014 

 
Z= 8.354, 
P< 0.001 

Subord. ♂ – Juvenile ♀/♂ Z= 2.032, P= 0.884 
Z= 2.896, 
P= 0.079 

 
Z= 2.120, 
P= 0.511 

 
n too  
small 

Subord. ♂ – Juvenile ♂ Z= 1.865, P= 1.000 
Z= 1.661, 
P= 1.000 

 
Z= 2.498, 
P= 0.188 

 
Z= 0.745, 
P= 1.000 

Juvenile ♀/♂ – Juvenile ♂ Z= 0.167, P= 1.000 
Z= 1.235, 
P= 1.000 

 
Z= 0.378, 
P= 1.000 

Z= 0.784, 
P= 1.000 

n too  
small 
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Table II.4. Continued (2/3). 

Category 
tested 

Kruskal-Wallis 
rank sum tests 

Pairwise comparisons 

Dunn’s post-hoc tests 

All groups 
Silvery 
at TZ 

Emperor 
at DMP 

Emperor 
at TZ 

Cotton-
top 

at DMP 

Cotton-
top 

at PWP 

Scent-
marking type 

Silvery only: χ²= 
5.494, df= 1, P= 

0.019 

Gouge+secretions –  
Secretions or 
Urine+secretions 

NA 
Z= 2.344, 
P= 0.019 

    

Tamarins only: 
χ²= 141.920,  

df= 1, P< 0.001 

Gouge+secretions – 
Secretions 

NA 
Z= 4.048, 
P< 0.001 

    

Gouge+secretions –
Urine+secretions 

NA 
Z= 6.061, 
P< 0.001 

    

Urine+secretions – 
Secretions  

Z= 11.763, P< 0.001 
Z= 2.013, 
P= 0.132 

Z= 4.344, 
P< 0.001 

Z= 4.109, 
P< 0.001 

Z= 7.667, 
P< 0.001 

Z= 7.077, 
P< 0.001 

Scent-gland 
χ²= 295.660,  

df= 2, P< 0.001 

Anogenital – Suprapubic Z= 10.645, P< 0.001 
Z= 4.722, 
P< 0.001 

Z= 7.058, 
P< 0.001 

Z= 6.654, 
P< 0.001 

Z= 8.440, 
P< 0.001 

Z= 5.520, 
P< 0.001 

Anogenital – Sternal Z= 17.017, P< 0.001 
Z= 2.341, 
P= 0.058 

n too 
small 

Z= 8.443, 
P< 0.001 

n too 
small 

Z= 8.393, 
P< 0.001 

Suprapubic – Sternal Z= 6.371, P< 0.001 
Z= 7.063, 
P< 0.001 

n too 
small 

Z= 1.789, 
P= 0.220 

n too 
small 

Z= 2.873, 
P= 0.012 

Scent-
marking 
duration 

χ²= 59.844,  
df= 2, P< 0.001 

Short – Medium Z= 0.464, P= 1.000 
Z= 6.594, 
P< 0.001 

Z= 6.265, 
P <0.001 

Z= 3.153, 
P= 0.005 

Z= 6.818, 
P< 0.001 

Z= 5.755, 
P< 0.001 

Medium – Long Z= 6.455, P< 0.001 
n too 
small 

n too 
small 

Z= 0.722, 
P= 1.000 

Z= 7.950, 
P< 0.001 

Z= 3.752, 
P= 0.001 

Short – Long Z= 6.919, P< 0.001 
n too 
small 

n too 
small 

Z= 2.431, 
P= 0.045 

Z= 1.132, 
P= 0.770 

Z= 2.003, 
P= 0.135 
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Table II.4. Continued (3/3). 

Category 
tested 

Kruskal-Wallis 
rank sum tests 

Pairwise comparisons 

Dunn’s post-hoc tests 

All groups 
Silvery 
at TZ 

Emperor 
at DMP 

Emperor 
at TZ 

Cotton-
top 

at DMP 

Cotton-
top 

at PWP 

Time of day 
χ²= 9.114,  

df= 2, P= 0.010 

Morning – Midday Z= 2.445, P= 0.043 
Z= 0.436, 
P= 1.000 

Z= 2.788, 
P= 0.016 

Z= 2.171, 
P= 0.090 

Z= 0.688, 
P= 1.000 

Z= 0.909, 
P= 1.000 

Midday – Afternoon Z= 0.311, P= 1.000 
Z= 0.141, 
P= 1.000 

Z= 0.296, 
P= 1.000 

Z= 1.213, 
P= 0.675 

Z= 1.452, 
P= 0.439 

Z= 1.550, 
P= 0.360 

Morning – Afternoon Z= 2.756, P= 0.018 
Z= 0.295, 
P= 1.000 

Z= 2.496, 
P= 0.038 

Z= 3.384, 
P= 0.002 

Z= 2.141, 
P= 0.097 

Z= 0.640, 
P= 1.000 

Enclosure 
area 

χ²= 280.630,  
df= 1, P< 0.001 

Indoor – Outdoor Z= 16.752, P< 0.001 
n too 
small 

n too 
small 

Z= 3.969, 
P< 0.001 

n too 
small 

n too  
small 

Substrate 
χ²= 330.220,  

df= 2, P< 0.001 

Horizontal – Inclined Z= 10.826, P< 0.001 
Z= 0.854, 
P= 1.000 

n too 
small 

Z= 8.349, 
P< 0.001 

Z= 0.208, 
P= 1.000 

Z= 6.615, 
P< 0.001 

Horizontal – Vertical Z= 18.053, P< 0.001 
n too 
small 

n too 
small 

n too 
small 

Z= 7.576, 
P< 0.001 

Z= 8.674, 
P< 0.001 

Inclined – Vertical Z= 7.227, P< 0.001 
n too 
small 

n too 
small 

n too 
small 

Z= 7.784, 
P< 0.001 

Z= 2.058, 
P= 0.120 

Presence of 
conspecifics 

χ²= 116.900,  
df= 1, P< 0.001 

NA  
(unbalanced 

groups) 

None – ≥1 Z= 10.812, P< 0.001 
Z= 4.340, 
P< 0.001 

Z= 0.492, 
P= 0.620 

Z= 5.585, 
P< 0.001 

Z= 6.605, 
P< 0.001 

Z= 7.732, 
P< 0.001 

None – One Z= 0.631, P= 1.000 
Z= 0.429, 
P= 1.000 

Z= 0.492, 
P= 0.620 

Z= 1.101, 
P= 0.810 

Z= 2.909, 
P= 0.011 

Z= 3.242, 
P= 0.004 

None – >1 Z= 6.818, P< 0.001 
Z= 3.237, 
P= 0.004 

 
Z= 5.617, 
P< 0.001 

Z= 6.252, 
P< 0.001 

Z= 6.824, 
P< 0.001 

One – >1 Z= 7.448, P< 0.001 
Z= 2.808, 
P= 0.015 

 
Z= 6.719, 
P< 0.001 

Z= 9.160, 
P< 0.001 

Z= 3.582, 
P= 0.001 

Investigative 
response 

χ²= 314.040,  
df= 1, P< 0.001 

Yes – No Z= 17.721, P< 0.001 
Z= 6.798, 
P< 0.001 

n too 
small 

Z= 7.411, 
P< 0.001 

n too 
small 

Z= 8.071, 
P< 0.001 
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Figure II.3. Tukey’s box-and-whiskers plots showing variation in scent-
marking frequency between a. males and females; and b. reproductive and 
non-reproductive individuals, for each callitrichid group. Boxes indicate the 
median and interquartile range (IQR); whiskers give the smallest value ≥ 
lower hinge -1.5*IQR, and largest value ≤ upper hinge +1.5*IQR; n= sample 
size. Asterisks indicate statistically significant differences in pairwise 
Dunn’s tests for categories of n> 2 ( P≤ 0.05,  P≤ 0.01,  P≤ 
0.001; Table II.4). 

 

In particular, the reproductive females in both emperor tamarin 

groups, and the cotton-top tamarin group at DMP, scent-marked more 

frequently than any of the other individuals (Fig. II.4; Table II.4). However, 

in cotton-top tamarins at PWP and silvery marmosets at TZ, the 

subordinate female scent-marked the most. Juveniles generally marked 

less than adults (Fig. II.4; Table II.4). 
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Figure II.4. Tukey’s box-and-whiskers plots showing variation in scent-marking frequency between individuals for each callitrichid group. The 

Juvenile fem./male category (in yellow) corresponds to juvenile females in the silvery marmoset and emperor tamarin groups at TZ, and the 

cotton-top tamarin group at PWP, and to a juvenile male in the cotton-top tamarin group at DMP. Boxes indicate the median and interquartile 

range (IQR); whiskers give the smallest value ≥ lower hinge -1.5*IQR, and largest value ≤ upper hinge +1.5*IQR; n= sample size. Asterisks 

indicate statistically significant differences in pairwise Dunn’s tests for categories of n> 2 ( P≤ 0.05,  P≤ 0.01,  P≤ 0.001; Table II.4).
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II.3.3. Differences in scent-marking type, scent-gland 
use, and marking duration  

 A variety of scent-marking behaviour characteristics were observed 

during the study. First, callitrichids sometimes urinated just before 

depositing scent-marks, thus mixing glandular secretions with freshly 

voided urine, which potentially modified the scent signal produced. In 

addition, silvery marmosets at TZ often scent-marked immediately after 

gouging a hole in a wooden branch, thus covering with their secretions the 

exact spot they had just gouged. There was a significant variation in scent-

marking types between simple glandular scent-marking and urine mixed 

with glandular secretions in the four tamarin groups studied (Kruskal-Wallis 

rank sum test: χ²= 141.92, df= 1, P< 0.001); as well as between simple 

glandular scent-marking, urine mixed with glandular secretions, and scent-

marking associated with tree-gouging in silvery marmosets (χ²= 38.11, df= 

2, P< 0.001; Table II.4). Tamarins, which do not gouge trees as part of their 

foraging behaviour, did not perform this scent-marking type. All tamarin 

groups scent-marked significantly more frequently without mixing 

secretions with urine; while in the silvery marmoset group at TZ scent-

marking in association with tree-gouging was predominant (Fig. II.5a; 

Table II.4). 

Second, callitrichids were observed to differentially use their three 

distinct scent-glands (i.e. anogenital, suprapubic, and sternal) to scent-

mark (χ²= 295.66, df= 2, P< 0.001; Table II.4). Silvery marmosets at TZ 

scent-marked mainly using their suprapubic gland; while tamarins from all 

four groups mainly used their anogenital gland (Fig. II.5b; Table II.4). The 

sternal gland was the most rarely used in all the groups studied. 

Finally, the duration of scent-mark deposition was highly variable 

(i.e. short, medium, or long duration; χ²= 59.844, df= 2, P< 0.001; Table 

II.4), thus potentially modifying the amount of secretion deposited at a given 

time. Most of the scent-marks produced by the groups of silvery marmosets 

and emperor tamarins at TZ, and the cotton-top group at PWP, were short; 

while both the emperor tamarins and cotton-top tamarins at DMP primarily 

produced medium duration scent-marks (Fig. II.5c; Table II.4). 
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Figure II.5. Tukey’s box-and-whiskers plots showing variation in scent-
marking frequency with a. marking type, b. scent-gland used, and c. 
marking duration (i.e. short: 1–2 sec, medium: 3–6 sec, long: >6 sec), for 
each callitrichid group. Boxes indicate the median and interquartile range 
(IQR); whiskers give the smallest value ≥ lower hinge -1.5*IQR, and largest 
value ≤ upper hinge +1.5*IQR; n= sample size. Asterisks indicate 
statistically significant differences in pairwise Dunn’s tests for categories of 
n> 2 ( P≤ 0.05,  P≤ 0.01,  P≤ 0.001; Table II.4). 
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II.3.4. Temporal and spatial differences in scent-
marking activity 

Scent-marking activity differed between time of day (χ²= 9.114, df= 

2, P= 0.010), where callitrichids marked less in the morning and more in the 

afternoon (Table II.4). When looking at differences between individual 

groups, this result was significant for emperor tamarins at DMP and TZ, 

while no difference was observed for silvery marmosets at TZ, and cotton-

top tamarins at DMP and PWP (Fig. II.6; Table II.4).  

 

 

Figure II.6. Tukey’s box-and-whiskers plots showing variation in the 
number of scent-marking events recorded at different times of day, i.e. in 
the morning (09:00–11:30), around midday (11:30–14:00), and in the 
afternoon (14:00–16:40), for each callitrichid group. Boxes indicate the 
median and interquartile range (IQR); whiskers give the smallest value ≥ 
lower hinge -1.5*IQR, and largest value ≤ upper hinge +1.5*IQR; n= sample 
size. Asterisks indicate statistically significant differences in pairwise 
Dunn’s tests ( P≤ 0.05,  P≤ 0.01,  P≤ 0.001; Table II.4). 

 

Scent-marking activity differed between enclosure areas used (i.e. 

indoor and outdoor areas; Kruskal-Wallis rank sum test: χ²= 280.630, df= 1, 

P< 0.001), and the substrate chosen (i.e. horizontal, inclined, or vertical 
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branches; χ²= 330.220, df= 2, P< 0.001; Table II.4). The emperor and 

cotton-top tamarin groups at DMP only scent-marked in their indoor 

enclosure areas (Fig. II.7a; Table II.4). Similarly, the silvery marmosets at 

TZ and cotton-top tamarins at PWP almost exclusively scent-marked 

indoors. Yet the emperor tamarins at TZ scent-marked outdoors 27.7% of 

the time (Fig. II.7a; Table II.4).  

 

 
Figure II.7. Tukey’s box-and-whiskers plots showing variation in scent-
marking frequency between a. enclosure areas, and b. substrate chosen, 
for each callitrichid group. Boxes indicate the median and interquartile 
range (IQR); whiskers give the smallest value ≥ lower hinge -1.5*IQR, and 
largest value ≤ upper hinge +1.5*IQR; n= sample size. Asterisks indicate 
statistically significant differences in pairwise Dunn’s tests for categories of 
n> 2 ( P≤ 0.05,  P≤ 0.01,  P≤ 0.001; Table II.4). 



Chapter II – Scent-marking behaviour in captive callitrichids 

63 

Nevertheless, this choice of enclosure area simply reflected the 

general use of space for all the groups, as indicated by non-significant 

Pearson’s χ² tests of difference between observed and expected scent-

marking frequencies in indoor and outdoor enclosure areas (Table II.5).  

 

Table II.5. Results of Pearson’s χ² tests with Yates’ continuity correction, 
comparing mean daily observed scent-marking frequency in indoor and 
outdoor enclosure areas, with expected values given the general use of 
space recorded during observation, for each callitrichid group. SE= 
standard error of the mean; χ²= χ²-statistic; df= degrees of freedom; and P= 
p-value, significant at P≤ 0.05 (in bold).  

Group 
Enclosure 
area 

Mean daily 
observed 

scent-marking 
frequency 

(±SE) 

Mean daily 
expected 

scent-marking 
frequency 

(±SE) 

Pearson’s χ² 
test of 

difference  

Silvery 
marmosets 
at TZ 

Indoor 17.375 (±2.449) 16.346 (±0.627) χ²< 0.001,  
df= 1,  

P= 0.979 Outdoor 0.125 (±0.125) 1.154 (±0.465) 

Emperor 
tamarins  
at DMP 

Indoor 12.900 (±1.303) 11.551 (±0.283) χ²= 0.095,  
df= 1,  

P= 0.758 Outdoor 0.000 (±0.000) 1.349 (±0.276) 

Emperor 
tamarins  
at TZ 

Indoor 9.800 (±1.227) 9.974 (±0.747) χ²= 0,  
df= 1,  

P= 1.000 Outdoor 4.100 (±0.912) 3.926 (±0.726) 

Cotton-top 
tamarins  
at DMP 

Indoor 27.800 (±3.126) 27.641 (±0.131) χ²< 0.001,  
df= 1,  

P= 1.000 Outdoor 0.000 (±0.000) 0.159 (±0.106) 

Cotton-top 
tamarins  
at PWP 

Indoor 15.900 (±2.079) 14.764 (±0.665) χ²= 0.013,  
df= 1,  

P= 0.911 Outdoor 0.200 (±0.133) 1.336 (±0.468) 

 

Horizontal and inclined substrates were the most used to scent-

mark, used significantly more than vertical ones (Table II.4). Silvery 

marmosets at TZ and cotton-top tamarins at DMP used inclined substrates 

as much as horizontal ones; whereas in the other groups horizontal 

substrates were used more for scent-marking (Fig. II.7b; Table II.4).  
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II.3.5. Social context of scent-marking behaviour 

II.3.5.1. Presence of conspecifics and investigatory response to scent-marks 

 Scent-marking generally occurred in the presence of at least one conspecific 

(Kruskal-Wallis rank sum test: χ²= 116.90, df= 1, P< 0.001); except for the pair of 

emperor tamarins at DMP, which scent-marked as often alone as they did in the 

presence of each other (Table II.4). In addition, cotton-top tamarins at DMP scent-

marked significantly more often on their own than in presence of a single conspecific; 

while the opposite was found for the cotton-top tamarin group at PWP (Fig. II.8a; 

Table II.4).  

Very few scent-marks elicited a visible investigative response (i.e. sniffing, 

muzzle-rubbing or overmarking) to the scent-mark (Kruskal-Wallis rank sum test 

comparing presence/absence of response: χ²= 314.04, df= 1, P< 0.001; Fig II.8b; 

Table II.4). Twelve occurrences of an investigative response were recorded in the 

emperor tamarin group at TZ (8.6% of scent-marks recorded), seven occurrences in 

the cotton-top tamarin group at PWP (4.4% of scent-marks); and only three times in 

the silvery marmoset group at TZ (2.1% of scent-marks), and once in both tamarin 

groups at DMP (0.8% and 0.4% of all scent-marks in emperor, and cotton-top 

tamarins, respectively).  
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Figure II.8. Tukey’s box-and-whiskers plots showing variation in scent-marking 
frequency with a. presence of conspecifics, and b. response to the scent-mark, for 
each callitrichid group. Boxes indicate the median and interquartile range (IQR); 
whiskers give the smallest value ≥ lower hinge -1.5*IQR and largest value ≤ upper 
hinge +1.5*IQR; n= sample size. Asterisks indicate statistically significant differences 
in pairwise Dunn’s tests for categories of n> 2 ( P≤ 0.05,  P≤ 0.01,  P≤ 
0.001; Table II.4). 

  

Out of the 24 scent-marks that elicited a response, nine were deposited by 

reproductive females of both tamarin species (37.5%), 3 by the reproductive males 

(12.5%), 5 by the subordinate females (20.8%), 6 by the subordinate males (25%), 

and 1 by a juvenile female (4.2%). Identity of the responders varied between groups 

and individual signallers (Table II.6). Scent-marks from reproductive females were 

investigated mostly by reproductive and subordinate males; in the cotton-top tamarin 

group at PWP the subordinate and juvenile females also investigated the 
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reproductive female’s marks. The reproductive male’s scent-mark was only 

investigated by the reproductive female in the emperor tamarin group at TZ, and by 

the subordinate female in the cotton-top tamarin group at PWP. Individual responders 

to scent-marks from subordinate females varied between groups: in the silvery 

marmoset group at TZ the responder was the subordinate male, in the emperor 

tamarin group at TZ it was the reproductive male, while in the cotton-top tamarin 

group at PWP it was the reproductive female and the juvenile male. Scent-marks 

from the subordinate male emperor tamarin at TZ were investigated by the 

reproductive male and the subordinate female. Finally, the juvenile male silvery 

marmoset at TZ investigated a scent-mark from his twin sister (Table II.6). 

 

Table II.6. Correspondence between individual signallers and responders for the 
scent-marks recorded to have elicited an investigatory response, across the five 
callitrichid groups studied. Numbers in brackets indicate the total number of scent-
marks for which a response was recorded (N=24, although in four occurrences the 
responder was not identified). 

Signallers 

Responders 

Silvery 
marmosets 
at TZ 

Emperor 
tamarins 
at DMP 

Emperor 
tamarins 
at TZ 

Cotton-top 
tamarins 
at DMP 

Cotton-top 
tamarins  
at PWP 

Repro. ♀ NA Repro.♂ (1) 
Repro. ♂ (2) 
Subord. ♂ (1) 

Repro. ♂ 
(1) 

Subord. ♀ (1) 
Subord. ♂ (1) 
Juvenile ♀ (1) 

Repro. ♂ NA NA Repro. ♀ (1) NA Subord. ♀ (2) 

Subord. ♀ 
Subord. ♂ 
(1) 

 Repro. ♂ (1)  
Repro. ♀ (1) 
Juvenile ♂ (1) 

Subord. ♂ NA  
Repro. ♂ (2) 
Subord. ♀ (2) 

 NA 

Juvenile ♀ 
Juvenile ♂ 
(1) 

 NA NA NA 
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II.3.5.2. Individual variation in scent-marking activity with the identity of the 
nearest neighbour 

 Individual patterns of scent-marking were sometimes influenced by the 

identity of the nearest neighbour at the time of marking. After weighting individual 

values of scent-marking frequency for the proportion of time each pair of signaller–

neighbour spent in closest proximity, sociograms were built to illustrate the relative 

distribution of individual scent-marking effort between potential nearest neighbours, 

for each callitrichid group. The emperor tamarin group at DMP was not included at 

this level of analysis because it was composed of two individuals only. The weighted 

hourly individual scent-marking frequencies ranged from 0–1.3 in the silvery 

marmoset group at TZ (see Appendix B, Table B.1); 0–1.1 in the emperor tamarin 

group at TZ (Table B.2); 0–3.2 in the cotton-top tamarin group at DMP (Table B.3); 

and 0–1.3 in the cotton-top tamarin group at PWP Table B.4). 

In the silvery marmoset group at TZ, the subordinate male and female 

primarily scent-marked when they were alone (weighted hourly marking frequency = 

1.267 and 0.916, respectively; Fig. II.9; see Appendix B, Table B.1). The 

reproductive male often marked next to the reproductive female (weighted hourly 

marking frequency = 0.912) and the juvenile female (weighted hourly marking 

frequency = 0.852); and the juvenile male next to the older subordinate female 

(weighted hourly marking frequency = 0.357), although this was not reciprocal. 

Similarly, the subordinate male and female marked more when next to every potential 

nearest neighbour than was reciprocal (Fig. II.9; Table B.1). The older subordinate 

female marked more next to the reproductive male (weighted hourly marking 

frequency = 0.278) than when she was alone (weighted hourly marking frequency = 

0.126), which contrasted with the unweighted scent-marking frequency values. The 

reproductive female never marked next to the subordinate male or alone; the older 

subordinate female when next to any conspecific but the reproductive male; the 

subordinate female when next to the subordinate male or the infant; the juvenile 

female when next to the reproductive female, the older subordinate female, the 

subordinate male, the infant or alone; and the juvenile male when next to the 

subordinate female or alone (Fig. II.9; Table B.1). 

 



Chapter II – Scent-marking behaviour in captive callitrichids 

68 

 

Figure II.9. Sociogram representing the relative distribution of scent-marking effort 
when in the presence of different nearest neighbours, for each individual silvery 
marmoset at TZ. Each node represents an individual, and directed arrows of 
matching colour indicate scent-marking frequency of this individual when next to each 
potential neighbour, weighted for the proportion of time the pair spent in proximity. 
Arrows’ thickness is proportional to weighted scent-marking frequency for each pair 
of signaller–neighbour (see Appendix B, Table B.1). 

 

In the emperor tamarin group at TZ, the reproductive male and the 

subordinate male scent-marked preferentially when next to each other (weighted 

hourly marking frequency = 0.317 and 1.064, respectively; Fig. II.10; see Appendix 

B, Table B.2). Moreover, the reproductive female mainly marked next to the juvenile 

female (weighted hourly marking frequency = 0.983) and the reproductive male 

(weighted hourly marking frequency = 0.596); the subordinate female marked more 

next to the reproductive male (weighted hourly marking frequency = 0.425), the 

reproductive female (weighted hourly marking frequency = 0.399), and the juvenile 

male (weighted hourly marking frequency = 0.397), although this was not reciprocal. 

The reproductive male and the subordinate male never marked next to the 

reproductive female; the juvenile female next to the subordinate female or alone, and 

the juvenile male next to the subordinate male or alone (Fig. II.10; Table B.2). 
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Figure II.10. Sociogram representing the relative distribution of scent-marking effort 
when in the presence of different nearest neighbours, for each individual emperor 
tamarin at TZ. Each node represents an individual, and directed arrows of matching 
colour indicate scent-marking frequency of this individual when next to each potential 
neighbour, weighted for the proportion of time the pair spent in proximity. Arrows’ 
thickness is proportional to weighted scent-marking frequency for each pair of 
signaller–neighbour (see Appendix B, Table B.2). 

 

In the cotton-top tamarin group at DMP, the reproductive female mainly scent-

marked next to the reproductive male and the juvenile male M1 (weighted hourly 

marking frequency = 3.215 and 3.210, respectively; Fig. II.11; see Appendix B, 

Table B.3). The reproductive male marked more next to either of the juveniles 

(weighted hourly marking frequency for M1= 0.288; M2= 0.205) than when he was 

alone, and he never marked next to the reproductive female. Neither of the juveniles 

marked when they were alone in the enclosure section (Fig. II.11; Table B.3).  

 

Repro.
F

Repro.
M

Subord.

F

Subord.

M

Juvenile
F

Juvenile
M

None



Chapter II – Scent-marking behaviour in captive callitrichids 

70 

 

Figure II.11. Sociogram representing the relative distribution of scent-marking effort 
when in the presence of different nearest neighbours, for each individual cotton-top 
tamarin at DMP. Each node represents an individual, and directed arrows of 
matching colour indicate scent-marking frequency of this individual when next to each 
potential neighbour, weighted for the proportion of time the pair spent in proximity. 
Arrows’ thickness is proportional to weighted scent-marking frequency for each pair 
of signaller–neighbour (see Appendix B, Table B.3). 

 

Finally, in the cotton-top tamarin group at PWP, the reproductive female 

scent-marked mainly next to the subordinate male and the reproductive male 

(weighted hourly marking frequency = 1.347 and 1.052, respectively; Fig. II.12; see 

Appendix B, Table B.4). This was not reciprocal, as the subordinate male marked 

more next to the reproductive male (weighted hourly marking frequency = 0.123) and 

the juvenile female (weighted hourly marking frequency = 0.127); and the 

reproductive male marked more next to both juveniles (weighted hourly marking 

frequency = 0.318 and 0.349, respectively). Similarly, the subordinate female marked 

more when next to the subordinate male (weighted hourly marking frequency = 

1.218) or the reproductive male (weighted hourly marking frequency = 0.965), which 

was not reciprocal. The reproductive male was never observed marking when next to 

the subadult male; the subordinate male when he was alone; and the juvenile male 
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M Juvenile
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when next to the reproductive male, the juvenile female or alone. The juvenile female 

did not scent-mark at all (Fig. II.12; Table B.4). 

 

 

Figure II.12. Sociogram representing the relative distribution of scent-marking effort 
when in the presence of different nearest neighbours, for each individual cotton-top 
tamarin at PWP. Each node represents an individual, and directed arrows of 
matching colour indicate scent-marking frequency of this individual when next to each 
potential neighbour, weighted for the proportion of time the pair spent in proximity. 
Arrows’ thickness is proportional to weighted scent-marking frequency for each pair 
of signaller–neighbour (see Appendix B, Table B.4). 
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II.4. Discussion 

II.4.1. Characteristics of scent-marking behaviour in 
captive callitrichids  

II.4.1.1. Patterns of identity in scent-marking activity at the levels of 
species, group, sex, reproductive status, and the individual 

 Results from this behavioural study showed that scent-marking 

activity differed between species and study sites, and further revealed 

variation between groups. Hourly scent-marking frequencies for silvery 

marmosets, emperor tamarins, and cotton-top tamarins, were 3 ±3.18, 2.5 

±1.41, and 4 ±2.67 marks per hour (median ±SD), respectively. Differences 

in scent-marking frequencies have also been observed between wild 

sympatric species. For example, Smith (1997) and Heymann (2001) found 

that Geoffroy’s saddleback tamarins scent-marked more than sympatric 

moustached tamarins. Similarly, Watsa (pers. comm.) recorded a higher 

rate of scent-marking behaviour in Weddell’s saddleback tamarins, 

Leontocebus weddelli, than in sympatric emperor tamarins. In addition, 

Koprowski (1993) found higher rates of cheek-rubbing in wild fox squirrels, 

Sciurus niger, than in sympatric eastern grey squirrels, S. carolinensis. 

These field observations support the hypothesis that characteristics of the 

species might influence scent-marking activity more than potential 

ecological characteristics, which could explain the interspecific differences 

found in the present study.  

In comparison to the rates found in the present study, a much 

higher scent-marking frequency has been reported in laboratory-kept 

cotton-top tamarin pairs (ca. 25 marks per hour; French and Snowdon, 

1981), common marmoset groups (30 marks per hour; Epple, 1970), and 

female red-bellied tamarins, S. labiatus (13 marks per hour; Coates and 

Poole, 1983). However, Smith and Gordon (2002) reported a mean of 1.88 

marks per hour in three captive pairs of red-bellied tamarins. Furthermore, 

other studies on wild callitrichids have generally found similar lower hourly 

frequencies (i.e. 2.30 ±0.41 marks per hour in golden lion tamarins, Miller, 

Laszlo and Dietz, 2003; 2.06 marks per hour in common marmosets, 

Lazaro-Perea, Snowdon and Arruda, 1999; 0.52 marks per hour in 

moustached tamarins and 5.59 marks per hour in Geoffroy’s saddleback 

tamarins, Heymann, 2001). Such variation between captive and wild 

studies might be explained by the differences in home range size, with 
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greater distances to travel between scent-marking locations in the wild 

compared with captivity, thus reducing the rate of marking. Alternatively, 

they could simply be an artefact of the fact that visibility of the animals’ 

behaviour is poorer in wild conditions, in which a number of the deposited 

scent-marks may fail to be recorded. In the present study, visibility was 

enhanced by the captive environment. Nevertheless, enclosures were 

divided into several areas separated by walls or mesh, which made it 

impossible for a single observer to keep sight of all animals at all times; 

therefore whilst we expect the proportion of scent-marking successfully 

recorded to be greater than in wild conditions, it may be lower than in 

laboratory cages. Furthermore, general visibility of the animals varied 

between sites in this study. Tamarins at DMP were generally more visible 

than at the other sites, because the main enclosure areas were only 

separated by mesh, covered at places by the enclosure’s furnishing, 

instead of walls, or even tunnels (i.e. between indoor and outdoor spaces), 

which might explain why observed scent-marking frequency at this site (i.e. 

3.5 ±2.44 marks per hour) was greater than at TZ (2.5 ±1.75) and PWP (3 

±2.25). In addition, differences in enclosure size and furnishing, as well as 

husbandry procedures (e.g. number of daily feeding and enrichment 

sessions; Wormell et al., 2012) may have further led to differences in scent-

marking behaviour between sites.  

A conservative way to account for potential differences between 

species and sites was therefore to consider each callitrichid group 

individually. The callitrichid groups studied differed in size and composition, 

ranging from a pair of reproductive adults alone (i.e. emperor tamarins at 

DMP), to eight individuals including a reproductive pair and three 

generations of offspring (i.e. silvery marmosets at TZ), which may have 

further influenced scent-marking activity in this study. Nevertheless, the 

frequency of scent-marking behaviour recorded in this study was not 

proportional to group size, as the cotton-top tamarin group housed at DMP, 

composed of an reproductive pair and juvenile twins, scent-marked the 

most (4 ±4.35 marks per hour), whereas emperor tamarin groups at DMP 

and TZ, composed of a single reproductive pair, and an reproductive pair 

with two generations of offspring (N=6), respectively, scent-marked the 

least frequently (2 ±1.97, and 3 ±1.96 marks per hour). Intergroup variation 

in scent-marking frequency was also observed by Heymann (2001; range 

of hourly group scent-marking: 0.36–0.68, N=3 groups) and Huck et al. 
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(2004; range= 0.18–0.47 marks per hour, N=2) in wild moustached 

tamarins, Lazaro-Perea et al. (1999) in wild common marmosets (range= 

1.14–2.25 marks per hour, N=5), and Epple (1970) in laboratory-kept 

common marmosets (range= 27.13–34.85 marks per hour, N=3). Various 

aspects of group composition will be further inspected in the following 

paragraphs. 

 Tamarin females scent-marked more frequently than males overall. 

A number of studies have found the same result in various callitrichid 

species in captivity (e.g. in cotton-top tamarins, Epple, Kuderling and 

Belcher, 1988; French and Snowdon, 1981; saddleback tamarins, French 

and Snowdon, 1981; red-bellied tamarins, Coates and Poole, 1983;  Smith 

and Gordon, 2002; golden-headed lion tamarins, Leontopithecus 

chrysomelas, De Vleeschouwer et al., 2000; and common marmosets, 

Epple, 1970, 1972), as well as in the wild (e.g. in moustached tamarins, 

Heymann, 1998; and golden lion tamarins, Miller, Laszlo and Dietz, 2003). 

However, Lazaro-Perea, Snowdon and Arruda (1999) found no difference 

in scent-marking frequency between male and female wild common 

marmosets, nor did Oliveira and Macedo (2010) in black-tufted marmosets, 

C. penicillata, or Wolovich and Evans (2007) in captive pairs of another 

New World primate, the owl monkey, Aotus nancymaae. Anogenital and 

suprapubic scent-glands of callitrichids have been reported to be larger in 

females than males (first reported in Perkins, 1975; in cotton-top tamarins, 

French and Cleveland, 1984; and saddleback tamarins, Watsa, 2013; Zeller 

et al., 1988). This observation is in accordance with a reproductive function 

of scent-marking behaviour. Unlike males, female reproductive state varies 

cyclically with ovulation. While many female primates provide visual and/or 

acoustic cues of ovulation (e.g. sexual swellings in female mandrills, 

Mandrillus sphinx, Setchell, 2016; mating calls in female Barbary 

macaques, Macaca sylvanus, Pfefferle et al., 2008a; b), in female 

callitrichids ovulation is concealed (Dixson, 2012; Ziegler et al., 1993). 

Although female callitrichids engage in sexual behaviour throughout their 

reproductive cycle, which lasts 23 days in tamarins (French, Abbott and 

Snowdon, 1984), several studies have shown an increase of male sexual 

activity in the female periovulatory period (e.g. Smith and Abbott, 1998; 

Ziegler et al., 2005). Female callitrichids hence communicate their 

reproductive state to their pair-bonded mate, or other potential mates, via 

odour cues (e.g. in cotton-top tamarins, Ziegler et al., 1993; pygmy 
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marmosets, Cebuella pygmaea, Converse et al., 1995; and golden-headed 

lion tamarins, De Vleeschouwer et al., 2000). Similar studies of other 

primate taxa have further demonstrated the importance of odour cues in 

indicating female reproductive state (e.g. in Coquerel’s sifakas, Propithecus 

coquereli, Greene and Drea, 2014; olive baboons, Papio anubis, Rigaill et 

al., 2013; and even humans, Homo sapiens sapiens, Haselton and 

Gildersleeve, 2016). Nevertheless, in the present study male silvery 

marmosets at TZ scent-marked more than females; indeed, in many 

mammalian species males scent-mark more frequently than females, 

primarily to signal territory and/or dominance (Albone and Shirley, 1984; 

Wyatt, 2014a). In wild callitrichids in particular, it was suggested that scent-

marking by males may be a means of chemical mate guarding (Huck, 

Löttker and Heymann, 2004; Lledo-Ferrer, Peláez and Heymann, 2010; 

Manson, 1997). In addition, male odours are also known to trigger ovulation 

in young adult females, a phenomenon called the ‘Vandenbergh effect’ 

(Vandenbergh, 1969), particularly studied in the house mouse, Mus 

musculus (reviewed in Petrulis, 2013).  

There was a significant effect of reproductive status on scent-

marking behaviour overall, although this varied between groups, and 

appeared highly dependent on the presence of subordinate individuals in 

the groups. In both groups of emperor tamarins as well as the cotton-top 

tamarin group at DMP, the reproductive female scent-marked the most. 

This was in accordance with a role of scent-marking in advertisement of 

female reproductive state. However, in the cotton-top tamarin group at 

PWP and the silvery marmoset group at TZ, the subordinate female scent-

marked more than the reproductive female. Callitrichids are cooperative 

breeders, which means that the dominant female is usually the only one to 

reproduce, and all group members participate in the raising of the young 

(Garber et al., 2016; Huck, Löttker and Heymann, 2004; Rylands and 

Mittermeier, 2013). Instead of reproducing themselves, subordinate 

females in their natal groups usually assist in the care of the infants. 

Reproductive suppression in subordinate females, usually the daughters of 

the dominant female, has been shown to occur through both behaviour and 

chemical cues from the dominant female (e.g. in common marmosets, 

Abbott et al., 1998; Barrett, Abbott and George, 1990; Saltzman et al., 

1997; Ziegler and Sousa, 2002; Ziegler, 2013; cotton-top tamarins, 

Heistermann et al., 1989; Savage, Ziegler and Snowdon, 1988; and pygmy 
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marmosets, Spurlock, 2001; reviewed in Beehner and Lu, 2013). Common 

marmoset daughters experimentally separated from their mother rapidly 

start ovulating, yet the onset of ovulation is delayed if they are kept within 

scent contact of their mother (Barrett, Abbott and George, 1990; Saltzman 

et al., 1997), emphasizing the importance of chemosignals in callitrichid 

reproductive suppression. Yet several field studies have reported 

occurrences of multiple breeding females in groups of tamarins (e.g. in 

cotton-top tamarins, Savage et al., 1996; Geoffroy’s saddleback tamarins, 

Calegaro-Marques, Bicca-Marques and Azevedo, 1995; and moustached 

tamarins, Smith et al., 2001a). Lazaro-Perea (2001), and Sousa et al. 

(2005; see also Arruda et al., 2005), suggested that various reproductive 

strategies may alternatively be used by subordinate common marmoset 

females: 1. subordinate females may stay in their natal group as non-

reproductive members for a certain period of time while waiting for a more 

favourable opportunity to reproduce, e.g. if the reproductive female dies or 

emigrates; they might at the same time engage in intergroup copulations 

with neighbouring males as a way to scan for vacancies for reproductive 

positions. Alternatively, 2. subordinate females may attempt to reproduce, 

which can be successful (Smith et al., 2001a), but involves the risk of 

infanticide on their offspring. Finally, 3. subordinate females may emigrate 

from their natal group when they reach reproductive maturity and establish 

a new group with neighbouring males. While scent-marking is used by 

dominant females to impose reproductive suppression on subordinate 

females; subordinate females, on the other hand, may use scent-marking 

as a way of advertising their reproductive state to the available males within 

their group, or to males of neighbouring groups (Heymann, 2006a; Lazaro-

Perea, 2001; Lledo-Ferrer, Peláez and Heymann, 2011; Ziegler and Sousa, 

2002). As a result, it is possible that the differences observed in the present 

study reflect different levels of female intrasexual competition for access to 

reproduction. Nevertheless, the exact mechanisms in place, as well as the 

overall variation between callitrichid species and between existing socio-

sexual organizations both in the wild and in captivity, are yet to be 

described (Beehner and Lu, 2013).  

The case of the silvery marmoset group in this study was 

particularly interesting: the reproductive female scent-marked very 

infrequently, which was likely owing to the fact that she was still nursing her 

last-born offspring at the time of the study. The older subordinate female 
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showed an even lower tendency to scent-mark; she was also the primary 

carer for the infant, besides the mother, and showed a very low aggression 

rate towards the other group members (pers. obs.). Hence, she displayed a 

typical subordinate helper behaviour. The younger subordinate female, on 

the other hand, scent-marked much more frequently, and showed more 

aggressive behaviour. It is plausible that this subordinate female, as she 

was becoming reproductively mature, was starting to challenge the 

reproductive female for dominance. The same can be hypothesized for the 

subordinate female cotton-top tamarin at PWP, which scent-marked more 

frequently than any other individuals in the group. In captivity, natural 

dispersal of young adult females from their natal group is of course 

impossible. Besides the risk of aggression from and towards animals that 

would have left their natal group should they have been in natural 

conditions, there is the risk of inbreeding if offspring reproduce with their 

parents. Increasing aggression between parents and older offspring is 

closely monitored by zookeepers, and individuals reaching sexual maturity 

are usually removed from their natal group and transferred to other zoos if 

they start showing exaggerated aggression (Twycross Zoo, pers. comm.). 

Juveniles generally scent-marked less frequently than adults and 

subordinates (no scent-marking was recorded for the female juvenile 

cotton-top tamarin at PWP), which further suggests an important role of 

scent-marking in reproduction and intrasexual competition in sexually 

mature animals. 

 

II.4.1.2. Characteristics of scent-marking activity: differences in 
scent-mark type and duration, and scent-gland used 

 Scent-marks recorded in this study differed in type and duration. 

Callitrichids used pure glandular secretions as scent-marks more often than 

secretions mixed with urine. This was particularly noticeable for both 

groups of cotton-top tamarins. Voided urine is a known olfactory cue in 

mammals (Albone and Shirley, 1984; Burger, 2005; Goodwin et al., 2006), 

including primates (Colquhoun, 2011; DelBarco-Trillo et al., 2011, 2013; 

Osada et al., 2008; Palagi, Dapporto and Borgognini Tarli, 2005; Palagi and 

Norscia, 2009; Rigaill et al., 2017). Moreover, some primates such as 

squirrel monkeys, Saimiri spp., perform urine-marking by urinating on their 

hands, then rubbing them onto a substrate (Laska and Hudson, 1995), in a 
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similar fashion to glandular scent-marking. In callitrichids, pools of voided 

urine are often investigated by conspecifics (Epple et al., 1981; pers. obs.); 

and Heymann (2001) observed scent-marking accompanied by urination in 

wild moustached and Geoffroy’s saddleback tamarins. By adjusting the 

proportion of the two fluids in their scent-marks, callitrichids may be able to 

convey different types of signal. In Chapter 3, I will assess whether the 

chemical composition of glandular secretions, deposited scent-marks, and 

urine differs, which would further support the idea of different signals, and 

potentially different functions, carried by various olfactory cues.  

Silvery marmosets at TZ often combined scent-marking with tree-

gouging, where they carved a hole in the enclosure wooden furniture using 

their strong specialized incisors, and scent-marked the spot just after; or 

they alternated gouging and scent-marking. Such behaviour has been 

observed in this species by Omedes (1981), and in other marmoset species 

(e.g. black-tufted marmosets, Lacher et al., 1981; and Aripuaña 

marmosets, Mico intermedius (formerly Callithrix humeralifer intermedius, 

Rylands, 1990). Marmosets naturally feed on gum and other tree exudates, 

which they stimulate the flow of by gouging holes through the bark to the 

cambium layer (Rylands, 1984). Tamarins occasionally feed on tree 

exudates, however they lack the dental adaptations to gouge trees 

(Rosenberger, 1978; Rylands and Mittermeier, 2013; Smith and Smith, 

2013). The fact that silvery marmosets at TZ performed scent-marking 

while doing this foraging activity may support the hypothesis that scent-

marking plays a role in food resource signalling, as was suggested by 

Thompson et al. (2018) in captive common marmosets. However, in 

captivity the branches gouged are dry, and therefore do not provide any 

food resource. Alternatively, silvery marmosets may favour newly gouged 

branch areas to scent-mark simply because the irregular surface absorbs 

and/or retains better the deposited secretions, as has been suggested by 

Rylands (1984, 1990).  

Tamarins of both species preferentially used their anogenital scent-

gland when scent-marking, followed by the suprapubic scent-gland. This 

was also found in another study on cotton-top tamarins (French and 

Cleveland, 1984), as well as in other tamarins: red-bellied tamarins (Coates 

and Poole, 1983), moustached tamarins, Geoffroy’s saddleback tamarins, 

pied tamarins, S. bicolor, and golden-mantled tamarins, S. tripartitus 
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(reviewed in Heymann, 2001). Conversely, the silvery marmoset group at 

TZ scent-marked more frequently using their suprapubic scent-gland. This 

was also found in Aripuaña marmosets, and Santarem marmosets, Mico 

humeralifer (formerly genus Callithrix; Rylands, 1984, 1990). However, 

Omedes (1981) recorded only anogenital and sternal scent-marks in 

captive silvery marmosets, and Lazaro-Perea, Snowdon and Arruda (1999) 

showed that wild common marmosets produced primarily anogenital scent-

marks. In addition, some authors have considered a more complex way to 

distinguish scent-marking types; for instance Rylands (1990) made the 

distinction between single suprapubic or sternal marks, and suprapubic 

mark directly followed by sternal mark. Histologically, the three callitrichid 

scent-glands have very similar aspects (Fontani et al., 2014; Perkins, 1966, 

1975). Nonetheless, the chemicals secreted by each gland might vary in 

diversity and/or concentration, potentially leading to the production of 

different scent signals. A handful of studies have identified differences in 

the chemical composition of various scent-glands in other mammalian 

species, notably between genital and brachial scent-gland secretions in the 

ring-tailed lemur (Scordato, Dubay and Drea, 2007), subcaudal and 

pectoral scent-gland secretions in the owl monkey (Spence-Aizenberg et 

al., 2018), and cloacal and spur wax secretions in the echidna, 

Tachyglossus aculeatus (Harris et al., 2014). These studies suggest that 

different signals may be conveyed by each of these glands (Greene et al., 

2016a). I will further assess this hypothesis in Chapter 4, by comparing the 

chemical composition of anogenital, suprapubic, and sternal scent-glands 

of two wild sympatric tamarins.   

In addition, the duration of scent-mark deposition recorded in the 

present study varied. While all groups performed both short (i.e. 1–2 sec), 

medium (i.e. 3–6 sec), and long (i.e. >6 sec) scent-mark depositions, silvery 

marmosets at TZ preferentially performed short depositions, and emperor 

tamarins and cotton-top tamarins at DMP produced mainly scent-marks of 

medium duration. This variation in scent-marking duration might be 

explained by differences in body mass in these three species. On average, 

silvery marmosets have a lower body mass (♂ 0.330–♀ 0.360 kg) than 

emperor tamarins (♂ 0.474–♀ 0.475 kg) and cotton-top tamarins (♂ 0.418–

♀ 0.404 kg; Smith and Jungers, 1997); hence they may produce less 

glandular secretions, which are quicker to deposit, than the two tamarin 

species. Alternatively, as we can assume that the amount of secretion 
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deposited on the substrate is proportional to the duration of the scent-

marking event, the differences observed may reflect different scent-marking 

strategies, leading to the transmission of different signals (Müller-

Schwarze, 2006). Additionally, if scent-marking is a visual signal as well as 

an olfactory one, the use of various fluids, scent-glands, and duration of 

deposition, may constitute a variety of immediate visual signals able to be 

conveyed to the receivers (Johnstone, 1996; Kappeler, 1998; Palagi and 

Norscia, 2009).  

 

II.4.1.3. Temporal and spatial characteristics of scent-marking activity 

 There was no global variation of scent-marking frequency between 

days of observation, which was expected given the short-term design of the 

study (i.e. 10 days). Had the study been longer, we may have expected 

variation in scent-marking behaviour across seasons, as well as with 

changes in the groups’ social dynamic (e.g. reproductive state of the 

dominant female, subordinate individuals escaping reproductive 

suppression, removal of an individual, birth of new offspring, etc.; Wyatt, 

2014a). Scent-marking behaviour of the two emperor tamarin groups varied 

with the time of day: they scent-marked more frequently in the afternoon 

than in the morning and around midday. A similar result was found by 

Nogueira et al. (2001) on captive groups of common marmosets; however 

this was in opposition to a field study by Bartecki and Heymann (1990), 

which found that Geoffroy’s saddleback tamarins scent-marked nearly twice 

as much in the morning than in the afternoon. Wild emperor tamarins in 

south-eastern Peru also tend to scent-mark more frequently in the morning 

(Watsa, pers. comm.), which is a highly active foraging and travelling period 

in their daily routine. The difference observed between these field studies 

and the present captive study likely arises from the constraints of captive 

environments, in which food availability and light intensity are artificially set. 

Alternatively, restrictions of observations in the present study may have 

omitted a highly active phase of scent-marking activity, if this happened 

before the beginning of daily observations (i.e. ca. 09:00 h). Indeed, a 

captive study of common marmosets showed a bimodal pattern of scent-

marking behaviour, where the animals marked the most in the 06:00–07:00 

h, and 15:00–16:00 h intervals (Sousa, Nogueira Moura and de Lara 

Menezes, 2006). Scent-marking frequency appeared constant throughout 
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the day for the silvery marmosets at TZ and the cotton-top tamarins at 

PWP, which was also observed by Smith (1997) in wild moustached and 

Geoffroy’s saddleback tamarins.  

All callitrichid groups studied were provided with three or more 

enclosure areas, separated by walls or mesh covered with branches and 

platforms. Silvery marmosets at TZ and cotton-top tamarins at DMP scent-

marked almost exclusively in their indoor enclosure areas, while the group 

of emperor tamarins at TZ scent-marked both indoors and outdoors; which 

matched the general use of space for these groups. The difference 

observed between these groups is probably owing to the fact that the 

emperor tamarin group at TZ was observed in the spring, while the silvery 

marmoset group at TZ and both tamarin groups at DMP were studied in the 

winter, when the temperature and daylight length had diminished and the 

animals rarely went outdoors. Nevertheless, the cotton-top tamarin group 

studied at PWP very rarely scent-marked outdoors despite the fact that it 

was observed during summer, and the emperor tamarin pair at DMP never 

marked outdoors, yet both groups spent over 8% of their time outdoors in 

general. These groups appeared to have a preference for scent-marking in 

the indoor enclosure areas compared with the outdoor one. However, this 

result may have been an artefact of the difficulty of observations of these 

groups, for which visual access to the outdoor enclosure required the 

observer to leave the building housing the indoor enclosure and walk 

around it before the animals could be in sight again. These conditions 

made it more challenging to keep sight of the animals at all times compared 

with the other groups, and it is quite possible that some scent-marks were 

missed, especially at times when some animals were moving rapidly 

between the indoor and outdoor areas.  

The enclosures of all callitrichid groups studied were provided with 

various branches, ropes and platforms, all constituting potential scent-

marking substrates. The two main substrates chosen to scent-mark were 

horizontal and inclined branches. This result is similar to those found by 

Smith (1997) and Heymann (2001) on wild moustached and Geoffroy’s 

saddleback tamarins. This preference may be explained by the fact that it is 

easier for the animal to rub its scent-gland on a horizontal or inclined 

substrate, than it is on a vertical substrate, although other species, such as 

the ring-tailed lemur (Palagi, Dapporto and Borgognini Tarli, 2005), and the 
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giant panda, Ailuropoda melanoleuca (White, Swaisgood and Zhang, 2003; 

Swaisgood, Lindburg and Zhou, 1999), are known to perform ‘hand-stand 

scent-marking’ where they stand on their hands and rub their anogenital 

area on a vertical tree trunk. In addition, as in Heymann (2001), the use of 

inclined branches to scent-mark was variable, with silvery marmosets at TZ 

and cotton-top tamarins at DMP using inclined substrates as much as 

horizontal ones, while the other groups favoured horizontal substrates. 

Nevertheless, the choice of substrate to deposit scent-marks may be 

correlated with the general time spent on each substrate, such as was 

found for the choice of enclosure area. It may also depend on the location 

of the substrate with respect to key elements of the enclosure, such as the 

sleeping box, feeding platforms, or door entrances, and the placement of 

the potential receivers. Unfortunately, the data collected for this study only 

included information on substrate inclination, which was insufficient to test 

further the hypothesis of a role of scent-marking in food resource location, 

territoriality, and/or orientation.  

 

II.4.1.4. Influence of the presence and identity of conspecifics on 
scent-marking behaviour 

Although in all callitrichid groups most individuals scent-marked in 

presence of one or several conspecifics as well as on their own, they did 

more frequently when in presence of several conspecifics, except in the 

case of the pair of emperor tamarins at DMP, which scent-marked as often 

on their own as they did when the other individual was present. This 

suggests that despite the fact that olfactory signals may linger in the 

environment until well after departure of the signallers, there may also be a 

choice to aim scent-marks at particular individual receivers. This was 

suggested in the case of acoustic communication, notably in Wield’s black 

tufted-ear marmosets, C. kuhlii (Smith et al., 2009), pygmy marmosets 

(Snowdon and Elowson, 1999), squirrel monkeys, Saimiri sciureus (Biben, 

Symmes and Masataka, 1986), and Japanese macaques, Macaca fuscata 

(Arlet et al., 2015), in the context of social bonding; in Barbary macaques 

(Pfefferle et al., 2008a; b), in the context of sexual behaviour; and in 

chimpanzees, Pan troglodytes (Schel et al., 2013), in the context of food 

sharing. In addition, the fact that signallers often scent-marked in sight of 

conspecifics further supports the idea of scent-marking behaviour having a 

visual function as well as an olfactory one. Kappeler (1998), and Palagi and 
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Norscia (2009), demonstrated that ring-tailed lemurs perform ostentatious 

urine-marking with their stripy tail erected, not unlike tomcats do, while 

simple urination is done tail down. Furthermore, experimental bioassays by 

Kulahci et al. (2014) showed that ring-tailed lemurs can recognize 

individuals through olfactory–auditory matching. Such redundant signalling 

across several communication modalities may enhance signal transmission 

and maximize signal detection; it is widespread in the animal kingdom 

(Johnstone, 1996; Liebal et al., 2014; Moreira, Pessoa and Sousa, 2013).  

Results from the present study at the individual level provided 

further indication that scent-marking behaviour might constitute a 

directional communication from signallers to receivers within the group, as 

some individuals scent-marked significantly more when next to certain 

conspecifics than others. For example, the male silvery marmoset at TZ 

scent-marked mostly next to his mate, which could indicate a role of the 

scent signals in reproduction, perhaps an incitement to mate; and next to 

the juvenile and subordinate females, which could serve as a dominance 

signal. Both the subordinate male and the subordinate female silvery 

marmoset at TZ scent-marked more when they were alone in their 

enclosure area, where they may have been avoiding dominants reacting to 

their marks. It could also be evidence of them trying to escape their 

subordinate status by looking for reproductive opportunities away from their 

parents, a strategy described in female callitrichids in the previous section 

(Lazaro-Perea, 2001; Sousa et al., 2005). Furthermore, the subordinate 

male emperor tamarin at TZ principally scent-marked next to the 

reproductive male, a potential sign of challenge, or on the contrary, of 

submission, towards his father. In the cotton-top tamarin group at PWP, the 

reproductive female marked more next to the reproductive male and the 

two subordinates, possibly informing on her reproductive state as well as 

dominance status. Finally, the reproductive female cotton-top tamarin at 

DMP scent-marked more next to the reproductive male, and one of the 

juvenile males, than to his twin; and this same juvenile scent-marked more 

when he was next to his mother. This may indicate an effort of the juvenile 

to imitate his mother’s own scent-marking behaviour, as it is well 

established that young mammals learn a lot by imitation (Thorpe, 1956). 

Nevertheless, care must be taken when interpreting a signaller’s ‘choice’ of 

neighbour when scent-marking, as it is not possible to distinguish a 

situation where the individual signaller decides to position itself next to a 
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particular conspecific for marking, from one where a conspecific moves 

close to the signaller individual just before scent-marking.   

When looking at individual investigatory responses to scent-marks, 

in the form of sniffing, muzzle-rubbing, or overmarking, marks deposited by 

male and female callitrichids in this study were mainly investigated by 

individuals of the opposite sex, which further suggests a reproductive 

function of scent-marking behaviour. Yet overall, although most recorded 

scent-marks were produced in presence of given conspecifics, few of them 

seem to have elicited an investigatory behaviour. This result contrasts with 

other primate studies; for instance, Kappeler (1998) found that, in semi 

free-ranging ring-tailed lemurs, 62% of deposited scent-marks were 

investigated, with a median latency of 30 sec. Nonetheless, the chemical 

signals conveyed by scent-marks may trigger quick responses, called 

primer effects (Brown and Macdonald, 1985), at endocrinal and 

neurological levels, which would not be visible to the human observer (e.g. 

Laska et al., 2004; Laska, Wieser and Hernandez Salazar, 2005, in several 

species of primates; Snowdon et al., 2006, in callitrichids; Roberts and 

Gosling, 2004, in harvest mice, Micromys minutus; reviewed in Wyatt, 

2014a). Several other studies of the primate order have reported important 

rates of investigatory response over scent-marks deposited by 

conspecifics. For instance, Epple, Kuderling and Belcher (1988) showed 

that scent-marks from novel female cotton-top tamarins elicited more 

investigatory responses from conspecifics than those from females to which 

the subjects had been habituated. Smith and Gordon (2002), as well as 

Kappeler (1998), observed that captive male red-bellied tamarins, and ring-

tailed lemurs, respectively, investigated scent-marks from the dominant, 

reproductive female, more than scent-marks from other group members. 

Heymann (1998) found a similar result when examining investigatory 

responses to scent-marks in a wild population of sympatric moustached 

and Geoffroy’s saddleback tamarins. In the case of the present study 

however, it is more likely that the way the data were collected did not 

correctly reflect the range of responses elicited by deposited scent-marks. 

Indeed, in this study responses to scent-marks were only recorded if they 

happened within 2 min of deposition. The reason for this was simply 

logistical: a single observer would not have been able to monitor older 

scent-mark spots for later responses, as well as recording ad libitum scent-

marking activity and individual proximity measures every 2 min. This aspect 
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of data recording may have led to mislabelling overmarks for scent-marks, 

or sniffing in response to a mark for sniffing in the context of foraging. 

 

II.4.2. Limitations of the study 

 The sample size in the present study was relatively small, thus 

limiting the interpretations from the results discussed in this chapter to 

hypotheses. In particular, the three species studied were observed in three 

different sites, which did not permit discrimination between interspecific and 

site differences in scent-marking behaviour. Moreover, only one group of 

silvery marmosets was observed, and the five callitrichid groups were of 

different sizes and composition. A more balanced study design would have 

included at least two groups of each species, composed of the same 

number of individuals, and sites housing all three species, to disentangle 

species and site differences. Unfortunately, study sites large enough to 

allow such a study could not be found in the UK, and access to farther sites 

in other parts of Europe and the world was beyond the scope of this PhD, 

both in terms of logistics, costs, and permissions. Nevertheless, as seen in 

the previous discussion sections, the present results were consistent with 

other existing studies on callitrichids and mammals in general, hence giving 

them value. 

 In addition, a possible drawback of the current study may have been 

to consider multiple scent-marks deposited by the same animal over a short 

time as distinct scent-marking events. Other studies, such as Heymann’s 

on wild moustached and Geoffroy’s saddleback tamarins (Bartecki and 

Heymann, 1990; Heymann, 2001), have considered a sequence of scent-

mark deposition as the unit of scent-marking event. Heymann even 

quantified the intensity (i.e. the number of scent-marking acts per event) 

and complexity (i.e. the number of scent-marking types per event) of scent-

marking behaviour. It is therefore possible that the present data comparing 

scent-marking type, duration, and behavioural response, did not reflect the 

reality. The choice of scent-marking recording was motivated by the 

constrained space in which the callitrichid groups were studied. Indeed, 

whilst in the wild scent-marking events may be well spaced out, and thus 

readily discernible, in captivity however it can be difficult to distinguish a 

sequence of scent-marks from independent scent-marking events. 
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Considering each scent-marking act as an independent event seemed a 

more conservative way to proceed. 

 

II.4.3. Conclusion 

The present study showed differences in scent-marking behaviour 

at the levels of species, group, sex, reproductive status, and the individual. 

Moreover, the presence and identity of conspecifics influenced an 

individual’s scent-marking activity. In addition, scent-marking activity 

differed in type and duration, as well as scent-gland used. Finally, 

differences in enclosure area and substrate use were further observed. 

Interspecific, intersexual, and individual variation in scent-marking 

behaviour, including the frequency of marking, scent-gland use, duration of 

the marking, and choice of substrate, may reflect different strategies of 

communication to ensure that signals are conveyed to the intended 

receivers, which is especially relevant for species living sympatrically. 
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Chapter III – Scent-marking 

semiochemistry in captive 

callitrichids 
 

Abstract 

 This chapter examines variation in the chemical composition of 

captive primate scent samples. First, I evidenced differences in chemical 

richness (i.e. the number of compounds present in a sample) and chemical 

diversity (i.e. the combination of individual compounds in a sample) 

between sample types (i.e. glandular secretions, deposited scent-marks 

and urine), species, tamarin groups, and at the levels of sex, reproductive 

status, and individual females. Moreover, I verified the identity of a subset 

of 47 compounds retrieved from the samples; and discussed their chemical 

aspects and prevalence in the different categories of sample tested. In 

addition, I experimentally tested the temporal stability of sample chemical 

composition. Results from this study support the idea of a role of 

chemosignalling in callitrichids in species and group recognition, as well as 

in mate choice and intrasexual competition. Furthermore, this study reveals 

some aspects of the complex chemical composition and temporal stability 

of callitrichid scent signals, and enhances our current knowledge of putative 

mammalian semiochemicals. 

 

III.1. Introduction and hypotheses 

III.1.1. Callitrichid semiochemicals 

In callitrichids, secretions produced by three specialized scent-

glands on the sternal, suprapubic, and anogenital areas of the body, are 

deposited on branches in the environment through conspicuous scent-

marking behaviours (Epple et al., 1993). Con- and hetero-specifics often 

inspect these scent-marks by sniffing, licking, or muzzle-rubbing the 

marked spots (Smith et al., 1997). They also perform this investigative 

response to voided urine, suggesting that both scent-marks and urine play 
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a role in chemosignalling in this taxon. The combination and relative 

concentration of volatile compounds picked up from a deposited scent-mark 

or urine pool constitute a potentially unique chemical message (Wyatt, 

2014a). 

As early as 1981, Epple suggested that there might be species 

differences in callitrichid scent-gland secretion chemical composition (Epple 

et al., 1981; Epple, Kuderling and Belcher, 1988). Several more recent 

publications on the Primate order suggest that chemical signatures at the 

levels of species, group, sex, reproductive status, and the individual, can be 

conveyed in the chemical profiles of scent-gland secretions (e.g. in 

Coquerel’s sifakas, Propithecus coquereli, Greene and Drea, 2014; 

common marmosets, Callithrix jacchus, Smith et al., 2001b; and owl 

monkeys, Aotus spp., Spence-Aizenberg et al., 2018), deposited scent-

marks (e.g. in ring-tailed lemurs, Lemur catta, Scordato, Dubay and Drea, 

2007; and mandrills, Mandrillus sphinx, Setchell et al., 2010; Vaglio et al., 

2016), and urine (e.g. in brown lemurs, Eulemur spp., DelBarco-Trillo and 

Drea, 2014). 

As previously mentioned in Chapter 1, relatively few studies have 

investigated the identity of primate semiochemicals, in comparison with 

other mammalian taxa such as carnivores and rodents (Heymann, 2006b). 

The main classes of semiochemicals found in studies of Lemuridae (Boulet 

et al. 2009; Hayes et al. 2004; Knapp et al. 2006; Scordato et al. 2007), 

Callitrichidae (Belcher et al., 1988; Epple et al., 1981; Smith et al., 2001b), 

Aotidae (MacDonald et al., 2008), Cercopithecidae (Birkemeyer et al. 2016; 

Setchell et al. 2010), and Hominidae (De Lacy Costello et al., 2014; 

Matsumoto-Oda et al. 2003), were short- and long-chained carboxylic acids 

and their esters, ketones, and aldehydes, as well as hydrocarbons, fatty 

alcohols, aldehydes, alkenes, terpenes, and sterols. 

 

III.1.2. Aims and hypotheses  

 This chapter explores variation in the chemical composition of 

captive callitrichid scent samples, and tests for chemical signatures at the 

levels of sample type, study site, species, group, sex, reproductive status, 

and the individual. Differences between sample categories can be 

assessed by comparing their chemical richness, i.e. the number of 
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compounds present in the sample, as well as their chemical diversity, i.e. 

the combination of individual compounds in a sample and their 

commonness among samples.  

First, I tested whether the chemical composition (i.e. chemical 

richness and diversity) of various types of sample, i.e. scent-marks, scent-

gland secretion and urine, differed, and differed from that of branch and air 

samples collected inside the enclosures. Voided urine and scent-gland 

secretions originate from two different biochemical pathways; therefore, 

they can be expected to contain a very different range of compounds. 

Moreover, chemical changes are likely to happen after the deposition of 

scent-gland secretions, owing to bacterial activity once in the open air, and 

reactions with existing compounds on the substrate (Ezenwa and Williams, 

2014; Theis et al., 2013). Consequently, scent-mark swabs may be of 

different, potentially more complex, chemical composition than scent-gland 

secretion swabs collected directly from the animals. I then examined 

differences between study sites, species, and groups. The callitrichid 

groups housed at each of the three zoos included in the present study have 

different genetic backgrounds, which is likely to translate into chemical 

differences. For instance, Kean et al. (2017) presented evidence for ‘odour 

dialects’ in genetically distinct subpopulations of Eurasian otter, Lutra lutra, 

across the UK. Besides, differences in husbandry procedures (e.g. diet, 

cleaning, and enrichment routines) at the three study sites might be 

reflected in the chemical composition of callitrichid scents. Indeed, Drea et 

al. (2013) found chemical differences between scent-marks of ring-tailed 

lemurs fed different diets. In addition, I investigated the existence of 

chemical signatures at the levels of sex, reproductive status, and the 

individual. As suggested in Chapter 2, these may play a role in mate 

choice, intrasexual competition and reproductive suppression in callitrichids 

(Heymann, 2006a; Snowdon et al., 2006). 

Second, I inspected the putative identity of the compounds retrieved 

from the samples, verified this identity for a subset of compounds of 

interest, and described the main chemical aspects of these putative 

semiochemicals. I then compared the prevalence of individual compounds 

across the different categories of samples tested (i.e. sample type, study 

site, species, group, sex, reproductive status, and individual females). We 
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can hypothesise that different compounds may code for chemical 

signatures at different levels. 

Finally, I experimentally assessed the temporal stability of sample 

chemical composition. The existing literature on mammalian 

semiochemistry unanimously recommends researchers in this field to store 

and transport scent samples frozen, because the high volatility of their 

chemical components makes them prone to degrade very quickly at room 

temperatures (e.g. Charpentier et al., 2012; Drea et al., 2013). However, 

the exact pattern of degradation for this category of samples, i.e. a gaseous 

headspace above the swabs, is not known. Here I experimentally tested 

patterns of sample decay, by extracting samples multiple times and 

controlling for the delay between extractions. I compared different 

conditions of time delay at room temperature, and different numbers of 

successive extractions. The conditions tested aimed to i. confirm that 

samples degraded over time when not kept frozen, ii. test whether the time 

spent at room temperature, or the number of extractions, had the greatest 

effect on sample degradation or change, and iii. describe the pattern of 

degradation for this category of samples.  

 

III.2. Methods 

III.2.1. Odorant sample collection 

Scent-mark and urine samples were collected from two groups of 

bearded emperor tamarins, Saguinus imperator subgrisescens (later 

referred to as S. imperator) housed at Drayton Manor Park (DMP) and 

Twycross Zoo (TZ), along with two groups of cotton-top tamarins, S. 

oedipus, housed at DMP and Paradise Wildlife Park (PWP; Table III.1). All 

three study sites are members of the British and Irish Association of Zoos 

and Aquariums (BIAZA). This project was approved by the Anglia Ruskin 

University, Faculty of Science and Engineering, Departmental Research 

Ethics Panel committee (DREP), and BIAZA. 

Scent-marks and voided urine were located during continuous 

observation of the tamarin groups from the public area of the zoo (50 hours 

of observation per group, see Chapter 2). Scent-marking events were 

systematically recorded for the purpose of the behavioural study detailed in 
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Chapter 2. A subset of these recorded scent-marks was sampled for 

emperor and cotton-top tamarins in the few cases in which access inside 

the animals’ enclosure was made possible shortly after deposition (i.e. less 

than 10 min). A number of samples were also collected outside the 

behavioural observation time, depending on the availability of the members 

of staff at each zoo. Moreover, only scent-marks that had not been 

overmarked or stepped on by other tamarins after initial deposition were 

collected. In addition, veterinarians at TZ collected suprapubic scent-gland 

samples from one group of emperor tamarins and one group of another 

callitrichid species, the silvery marmoset, Mico argentatus, during routine 

health checks. Scent-mark and urine samples were also collected 

opportunistically from two other New World primate species, the white-

faced saki monkey, Pithecia pithecia, and the black-headed spider monkey, 

Ateles fusciceps, at DMP. 

Collection of scent-marks and urine was performed by swabbing the 

branch spot (usually a wet mark was visible to help locate the secretion), 

using a clean 1–2 cm2 square of viscose gauze – thereafter referred to as 

swab – held by clean forceps. Forceps were wiped with methanol prior to 

each swab collection. Scent-gland secretion collection was similarly 

achieved by gently rubbing a swab over the scent-gland area a few times 

(Fig. III.1a). Swabs were kept individually in 4 mL glass chromatography 

vials closed by a screw-top polytetrafluoroethylene septum lid (Fig. III.1b).  

Prior to use, both vials and swabs were washed in HPLC-grade 

methanol and pentane (ACROS OrganicsTM, London, UK), then baked at 

130°C for 30 min prior to use, as recommended by Birkemeyer et al. 

(2016). After collecting the secretion, the swab was quickly returned to its 

vial and closed, and the forceps were wiped on clean gauze with pentane. 

Sample vials were kept in an insulated cool box filled with frozen gel packs 

at a temperature close to 0°C, then stored in a freezer onsite (-15°C at 

DMP and PWP, -20°C at TZ) within two hours (usually 30 min). Swabs from 

the enclosure branches where no scent-mark was deposited (branch 

swabs), and swabs exposed for 30 sec to the ambient air inside the 

enclosure (air swabs), were also collected. At the end of each data 

collection period, the samples were transported in the cool box to Anglia 

Ruskin University (ARU), where they were stored at -80°C until analysis. 
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Figure III.1. a. Genital area of an adult male emperor tamarin, Saguinus 
imperator (from Watsa, 2013). The suprapubic gland (indicated by a box) is 
a pink coloured, granulated skin surface. Sampling procedure consists of 
gently wiping a gauze swab, several times up and down (indicated by the 
blue arrow); b. Naturally deposited scent-mark sample collection, using a 
gauze swab rubbed on the scent-mark spot, and stored in a glass vial. 

 

III.2.2. Sample extraction and GC-MS analyses 

Samples were analysed one by one using headspace solid-phase 

microextraction (SPME) and gas chromatography-mass spectrometry (GC-

MS) at ARU. Each sample was retrieved from the -80°C freezer just before 

analysis, and placed in a heat block at 40°C for an equilibration period of 10 

min. Samples were extracted using a 65 µm polydimethylsiloxane/ 

divinylbenzene StableFlex™ SPME fibre (Supelco, Bellefonte, PA, USA) for 

a period of 30 min at 40°C. The sample-coated fibre was then manually 

injected at 250°C into the injection port of a Clarus 500 GC (PerkinElmer), 

fitted with a Thermogreen® LB-2 pre-drilled septum, and a splitless 1 mm 

liner. A flow of helium of 1 mL/min was used as carrier gas. Splitless mode 

was applied for injection, which meant that all the material desorbed from 

the fibre was allowed to enter the column at the time of injection. A non-

polar, thermally stable capillary column, made of polydimethylsiloxane 

cross-linked with 5% divinylbenzene (30 m x 0.25 mm x 0.25 µm film 

b. a. 
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thickness, Equity™ 5, Supelco) was used. The oven temperature 

programme started at 40°C, held for 2 min, followed by an increase of 

6°C/min to the final temperature of 200°C, held for 8 min. A cool-down 

ramp was added, decreasing the temperature to 40°C at 20°C/min, held for 

4 min. The total run lasted 43 min. The electron ionization Clarus 500 MS 

(PerkinElmer) was equipped with a quadrupole, and set to scan for mass-

to-charge ratios between 41–300 m/z, from 2–40 min. These scanning 

parameters were set after a refining process aimed to reduce baseline 

noise to a minimum. Before each sample was analysed, the fibre was 

conditioned 1 min at 250°C in the injection port of the GC-MS; then a blank 

run, in which nothing was injected, was performed, to ensure the GC 

column was clean. Samples from each of the three collection sites were 

analysed in random order to ensure that no batch effect was artificially 

created. However, the GC-MS instrument was serviced between the 

analysis of samples from TZ and PWP and that of samples from DMP, 

which may have led to a slight variation in the analytical performance.  

The resulting chromatograms were converted from .raw to .cdf 

format using the open access software OpenChrom® (Wenig and Odermatt, 

2010), and further analyses were carried out using the software 

ChemStation™ (Agilent, Santa Clara, CA, USA). Blank fibres, empty vials 

and vials containing an unused swab were added to the pool of samples to 

analyse, thereafter referred to as blank samples, in order to identify 

extraneous contaminant compounds in the samples. Over 30 samples were 

collected from each site, some of which were repeat samples from the 

same animals. Sample quality was evaluated on the basis of sample 

freshness (i.e. the delay between scent-marks or urine deposition, and 

collection), cool box temperature, latency to storage in a freezer, 

cleanliness of the GC column at time of analysis (assessed via a blank run 

prior to analysing the sample), SPME fibre ageing (i.e. the number of times 

the fibre had been used prior to the analysis), and any unforeseen event 

during sample analysis. A total of 95 best-quality samples, including animal, 

branch and air samples, were ultimately included in the present analysis 

(Table III.1).  
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Table III.1. Number of good quality animal samples (i.e. scent-marks, SM, 
scent-gland secretions, SG, and urine, Ur), as well as air and branch (Br) 
controls, collected from each individual composing the seven primate 
groups included in the study. 

Species 
studied 

Study 
Site 

Group 
composition 

Number of samples Total 
per 

group SM SG Ur Air Br 

Emperor 
tamarin,  
S. imperator 

DMP 
Repro. ♂ 1 0 1 

2 2 13 
Repro. ♀ 5 0 2 

TZ 

Repro. ♂ 1 0 1 

3 4 40 

Repro. ♀ 9 1 5 

Subord. ♂ 4 1 0 

Subord. ♀ 4 1 1 

Juvenile ♂ 1 1 1 

Juvenile ♀ 1 1 0 

Cotton-top 
tamarin,  
S. oedipus 

DMP 

Repro. ♂ 0 0 0 

2 2 8 
Repro. ♀ 2 0 1 

Juvenile ♂1 0 0 1 

Juvenile ♂2 0 0 0 

PWP 

Repro. ♂ 2 0 1 

3 5 23 

Repro. ♀ 3 0 1 

Subord. ♂ 1 0 1 

Subord. ♀ 4 0 0 

Juvenile ♂ 1 0 0 

Juvenile ♀ 0 0 1 

Silvery 
marmoset,  
M. 
argentatus 

TZ 

Repro. ♂ 0 1 0 

0 0 6 

Repro. ♀ 0 0 0 

Older 
subord. ♀ 

0 0 0 

Subord. ♂ 0 1 0 

Subord. ♀ 0 1 0 

Juvenile ♂ 0 1 0 

Juvenile ♀ 0 1 0 

Infant  0 1 0 

White-faced 
saki monkey, 
P. pithecia 

DMP 
Adult ♂ 1 0 0 

1 1 3 
Adult ♂ 0 0 0 

Black-
headed 
spider 
monkey,  
A. fusciceps 

DMP 

Subadult ♀ 0 0 2 

0 0 2 
Unk. 0 0 0 

Total 
samples 

All All 40 11 19 11 14 95 
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In addition, a subset of lower-quality scent-mark and urine samples 

was used to experimentally investigate the pattern of sample decay. Three 

conditions were tested, under which samples were analysed by SPME–GC-

MS between two and five times and kept at room temperature (ca. 20°C) 

between each run. Under the first condition, samples were analysed five 

times at short interval, at time 0 h, 1.5 h, 3 h, 4.5 h, and 5 h. As the analysis 

of each sample lasted 1.5 h, including equilibration, extraction and GC-MS 

run, this was the shortest time interval applicable. Under the second 

condition, samples were analysed five times at long time interval, at time 0 

h, 10 h, 24 h, 48 h, and 72 h. Under the third condition, samples were 

analysed only twice at the maximum time interval, i.e. at time 0 h and 72 h. 

Six repeats of each condition were run. 

 

III.2.3. Interpretation of analytical results 

For each GC-MS chromatogram, automatic peak detection, 

integration, and tentative identification using the National Institute of 

Standards and Technology (NIST) mass spectral library (Shen et al., 2014), 

was performed in ChemStation™. Only peaks with a minimum height of 1% 

of that of the largest peak were selected, in order to limit the inclusion of 

background noise. All detected peaks were listed using the information of 

retention time, peak area and height, mass spectrum, and putative NIST 

identification. Careful visual comparison of the peaks’ mass spectra made it 

possible to determine whether peaks of similar retention times represented 

the same or different compounds. In addition, all peaks found in at least 

one of the blank samples were classified as contaminants and removed 

from the list of compounds of interest. These time-consuming steps were 

essential, as the results of the NIST library cannot be taken for a certainty, 

especially when the compounds identity matches given by the library were 

below 80%. The identities of 22 compounds were further confirmed by 

comparison of their retention times with those of commercially obtained 

compounds, analysed under identical conditions. However, as the main 

objective of this study was to investigate differences in chemical 

composition between samples, rather than to name individual compounds, 

patterns can be discussed without knowing the definite chemical identity of 

each compound (e.g. Charpentier, Boulet and Drea, 2008; Kean, Chadwick 

and Müller, 2015). 
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III.2.4. Statistical analyses 

All statistical analyses were performed in R v.3.5.1 operated in 

RStudio (R Core Team, 2018). Chemical richness (i.e. the total number of 

compounds retrieved from a sample), and chemical diversity (i.e. the 

combination of compounds in a sample) were examined across categories 

of samples: sample types, study sites, species, groups, sexes, reproductive 

status, and individuals. While sample type was compared between all 

classes of samples, the other categories were tested only on a subset of 

the data, owing to the variable sample size across categories. For this 

reason, four distinct nested datasets were created (Table III.2), which are 

referred to in the text and figures throughout the analyses in order to avoid 

confusion.  

 

Table III.2. Nested datasets used to visualize and test the significance of 
differences in samples chemical richness and chemical diversity between 
sample types, study sites, species, and tamarin groups, sex, reproductive 
status, and individual. 

# Dataset name Samples included in dataset 
Number of 

samples 

1. 
All samples 

dataset 
All samples 95 

2. 
Animal samples 

dataset 

Only animal samples, no branch and air 

samples 
70 

3. 
Tamarin 

samples dataset 

Only emperor and cotton-top tamarin 

scent-mark and urine samples, no branch 

and air samples 

56 

4. 

Adult female 

tamarin samples 

dataset 

Only samples from reproductive and non-

reproductive adult females of the four 

groups of tamarins (i.e. six females)  

37 

 

Chemical richness was compared between sample types (all 

samples dataset), study sites and species (animal samples dataset), as 

well as groups (tamarin samples dataset), using non-parametric Kruskal-

Wallis rank sum tests of difference (function kruskal.test() in R base 

package ‘stats’). In addition, Dunn’s tests with Bonferroni adjustment (i.e. 

pairwise tests for multiple comparisons of mean rank sums; function 

posthoc.kruskal.dunn.test() in R package ‘PMCMR’; Pohlert, 2014) were 
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used as post-hoc tests to assess pairwise differences within the same 

categories. Then, Kruskal-Wallis rank sum tests and post-hoc Dunn’s tests 

were performed to investigate differences in chemical richness at the levels 

of sex and reproductive status (tamarin samples dataset), as well as the 

individual (adult female tamarin samples dataset), for each tamarin group 

independently. Additionally, a generalized linear mixed model (glmer() in R 

package ‘lme4’; Bates et al., 2015) with Poisson family and log link function 

was fitted to assess the relative effect of species, sex, reproductive status, 

sample type, and their interactions, on the number of compounds retrieved 

in the tamarin samples dataset. Group, and individual nested into group, 

were included as random effects. Study site was not included in the 

models, as it was redundant with species and group. Determination of the 

variance inflation factor (vif() in R package ‘car’; Fox and Weisberg, 2011) 

revealed no collinearity issue (max VIF= 3.6). Visual inspection of residual 

plots did not reveal any obvious deviations from homoscedasticity or 

normality. Research of the best-fit model through model selection was not 

carried out since both significant and non-significant effects were discussed 

here. 

A more detailed comparison of the chemical composition of the 

different types of samples was further conducted by assessing differences 

in chemical diversity. A classic way to measure chemical diversity is to 

compute diversity indices such as those used in ecology (Legendre and 

Legendre, 1998). For example, Charpentier, Boulet and Drea (2008) used 

the richness, Shannon and Simpson indices to assess seasonal variations 

in male ring-tailed lemurs’ scent-gland chemical diversity. However, the 

chemical data in this study consisted of patterns of presence/absence of 

certain compounds in the different samples, but did not include a measure 

of compound abundance, thus preventing the use of these classic indices. 

Instead, the approach chosen was the use of Non-Metric Multidimensional 

Scaling (NMDS), which allowed quantification and graphical visualization of 

chemical diversity between groups of samples, followed by Permutational 

Multivariate Analysis of Variance Using Distance Matrices (PerMANOVA). 

Such analyses can be computed using the R package ‘vegan’ (Oksanen et 

al., 2017). This package was created for the multivariate analysis of 

ecological communities, offering ordination and diversity analysis methods 

to explore patterns of presence/absence, or abundance, of animal and 

vegetal species within an ecological community. It seemed well adapted to 
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the present study, and has notably been employed in semiochemical 

studies of Eurasian otters (Kean, Chadwick and Müller, 2015; Kean et al., 

2017), and meerkats, Suricata suricatta (Leclaire, Nielsen and Drea, 2014; 

Leclaire et al., 2017).  

The first step in assessing sample chemical diversity was to 

compute a distance matrix of samples and their respective compound 

composition (vegdist() R function), using the Jaccard dissimilarity index. 

This index is calculated as  𝐽 = 2𝐵/(1 + 𝐵), where B  is the Bray-Curtis 

dissimilarity measure between every pair of samples based on the relative 

compound composition (both in terms of richness and diversity). Second, 

three-dimensional NMDS coordinates were calculated from the values of 

Jaccard dissimilarity index in the distance matrix, with metaMDS(). The 

default number of dimensions for metaMDS() is two; however, using three 

dimensions reflected better the data ordination here, as measured by the 

stress factor. These three coordinates, plotted as scatterplots on the x–y, 

y–z, and z–x planes, allowed for the visualization of dissimilarity between 

groups of samples. Scores of three-dimensional stress factor measured the 

goodness-of-fit between predicted and observed values (similar to the R2 

value in a regression), considered a good fit when stress ≤0.2. Third, a 

PerMANOVA was carried out with adonis(), to test whether the observed 

differences in chemical composition between groups of samples were 

significant. The PerMANOVA test is a non-parametric method fitting a linear 

model to the distance matrix. It applies a permutation test to calculate the 

sequential sum of squares, mean squares, pseudo-F statistic, partial R2, 

and P-value for each term in the model. In this analysis, 999 permutations 

and the Jaccard dissimilarity index were used. Unlike most statistical 

models, the only statistical assumption for adonis() is to ensure multivariate 

homogeneity of variance within each group tested. This assumption was 

tested using the permutation test for homogeneity of multivariate dispersion 

(permutest(), using 99 permutations), on the measure of group multivariate 

homogeneity of variance computed using betadisper(), prior to running 

adonis(). In addition, pairwise PerMANOVA tests (pairwise.adonis(); 

Martinez Arbizu, 2019) allowed for detailed comparisons of chemical 

diversity between pairs of sample categories. A multifactorial PerMANOVA 

(adonis() R function) was then built to assess the relative effect of sample 

type, species, group, sex, reproductive status, and the individual, on 

sample chemical diversity. This global model accounted for multicollinearity 
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between factors, where sex, reproductive status and individual were 

included as terms nested into group, and study site, which was redundant 

with species and group, was not included. 

To investigate the temporal stability of scent samples under 

experimental conditions, Kruskal-Wallis rank sum tests were performed, 

followed by pairwise Dunn’s post-hoc tests with Bonferroni adjustment. 

These tests compared the chemical richness of samples subject to different 

conditions, comprising the number of repetitive extractions and the delay 

between extractions. Sample stability was not tested for chemical diversity. 

Then, a generalized linear mixed model with Poisson family and log link 

function was built to further assess the effect of experimental conditions on 

sample chemical richness. The fixed effects in the model were 

experimental condition (i.e. delay between extractions) and extraction 

number; and the random effect was sample ID. Determination of the 

variance inflation factor revealed no collinearity issue (max VIF= 1). 

However collinearity appeared when adding interaction terms between 

experimental condition and extraction number; for this reason interactions 

were removed from the linear model. Visual inspection of residual plots did 

not reveal any obvious deviations from homoscedasticity or normality.  

 

III.3. Results 

III.3.1. Total number of compounds retrieved 

A total of 407 different volatile compounds were revealed by SPME–

GC-MS analysis of the 95 scent-gland secretion, scent-mark, urine, air, and 

branch samples included in this analysis (Table III.1; see Appendix C, 

Table C.1). Another 119 compounds were detected, which were classified 

as contaminants and removed from the pool of compounds, after 

comparison with blank samples (e.g. empty vials and empty fibres) and 

visual inspection of the mass spectra. Numbers of compounds in each 

sample varied from 3–94 (median= 18 ±SD 15.1 compounds). While 36.1% 

of compounds appeared to be unique to a sample, the rest were common 

to at least two samples (Fig. III.2). Only 1.2% of the compounds were 

present in more than half of the samples.
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Figure III.2. a. Overlaid chemical profiles, and b. zoom of the section framed in grey, of scent samples obtained by SPME–GC-MS. Different 

colours indicate scent-mark samples from reproductive females emperor (in red) and cotton-top tamarin (in green) at DMP, and emperor tamarin 

at TZ (in blue), as well as a blank run (i.e. empty SPME fibre, in black). Each peak represents a unique compound; while some peaks are common 

to all three tamarin samples, i.e. overlapping peaks (e.g. at 14.5 and 19.1 min), others appear unique to a sample (e.g. at 17.2 and 18.4 min). 



Chapter III – Scent-marking semiochemistry in captive callitrichids 

101 

III.3.2. Variation in the chemical composition of scent 
samples 

III.3.2.1. Variation in sample chemical richness 

III.3.2.1.1. Differences between sample types 

Chemical richness (i.e. the total number of compounds retrieved 

from the samples) differed significantly between sample types (Table III.3; 

all samples dataset). In particular, scent-mark, scent-gland and urine 

samples contained more compounds than air and branch samples (only 

significant for scent-mark–branch), whereas no difference was found 

between scent-mark, scent-gland and urine samples, nor between air and 

branch samples (Fig. III.3a; Table III.3). However, when comparing only 

samples from the two tamarin species, for which most samples were 

collected (tamarin samples dataset), chemical richness of scent-mark 

samples was significantly greater than that of urine samples (Fig. III.3b; 

Table III.3). 

 

 

Figure III.3. Tukey’s box-and-whiskers plots showing differences in sample 
chemical richness between a. all five sample types (all samples dataset); 
and b. scent-mark and urine of emperor and cotton-top tamarins (tamarin 
samples dataset). Boxes indicate the median and interquartile range (IQR); 
whiskers give the smallest value ≥ lower hinge -1.5*IQR and largest value ≤ 
upper hinge +1.5*IQR. n= sample size. Asterisks indicate statistically 
significant differences in pairwise Dunn’s post-hoc tests ( P≤ 0.05,  
P≤ 0.01,  P≤ 0.001; Table III.3).  
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Table III.3. Results of Kruskal-Wallis sum rank tests of difference, and Dunn’s post-hoc tests on pairwise comparisons (for categories of sample 
size n >2), on sample chemical richness (i.e. number of compounds retrieved from the samples), for each category tested: sample type, study site, 
species, group, sex, reproductive status, and the individual. χ²= χ²-statistic; df= degrees of freedom; Z= Z-statistic; and P= P-value, significant at 
P≤ 0.05 (in bold). 

Category tested Dataset used Kruskal-Wallis rank sum tests Pairwise comparisons Dunn’s tests 

Sample type 

All samples dataset χ²= 11.416, df= 4, P= 0.022 

Air – Branch Z= 0.526, P= 1.000 

Air – Scent-gland  Z= 1.652, P= 0.980 

Air – Scent-mark Z= 1.936, P= 0.530 

Air – Urine Z= 0.508, P= 1.000 

Branch – Scent-gland Z= 2.275, P= 0.230 

Branch – Scent-mark Z= 2.805, P= 0.050 

Branch – Urine Z= 1.148, P= 1.000 

Scent-gland – Scent-mark Z= 0.134, P= 1.000 

Scent-gland – Urine Z= 1.352, P= 1.000 

Scent-mark – Urine Z= 1.674, P= 0.940 

Animal samples dataset χ²= 3.175, df= 2, P= 0.204 

Scent-gland – Scent-mark Z= 0.290, P= 1.000 

Scent-gland – Urine Z= 1.452, P= 0.440 

Scent-mark – Urine Z= 1.620, P= 0.320 

Tamarin samples dataset χ²= 6.333, df= 1, P= 0.012 Scent-mark – Urine Z= 2.516, P= 0.012 
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Table III.3. Continued (1/3). 

Category tested Dataset used Kruskal-Wallis rank sum tests Pairwise comparisons Dunn’s tests 

Study site Animal samples dataset χ²= 4.738, df= 2, P= 0.094 

DMP – PWP Z= 0.786, P= 1.000 

DMP – TZ Z= 2.106, P= 0.110 

PWP – TZ Z= 1.127, P= 1.780 

Species Animal samples dataset n too small 

Spider monkey – Saki monkey n too small 

Spider monkey – Silvery marmoset n too small 

Spider monkey – Emperor tamarin n too small 

Spider monkey – Cotton-top tamarin n too small 

Saki monkey – Silvery marmoset n too small 

Saki monkey – Emperor tamarin n too small 

Saki monkey – Cotton-top tamarin n too small 

Silvery marmoset – Emperor tamarin Z= 3.040, P= 0.024 

Silvery marmoset – Cotton-top tamarin Z= 2.589, P= 0.096 

Emperor tamarin – Cotton-top tamarin Z= 0.413, P= 1.000 

Group (1/2)  Tamarin samples dataset χ²= 13.650, df= 3, P= 0.003 

Emperor at DMP – Emperor at TZ Z= 3.677, P= 0.001 

Emperor at DMP – Cotton-top at DMP Z= 2.069, P= 0.231 

Emperor at DMP – Cotton-top at PWP Z= 2.491, P= 0.077 

Emperor at TZ – Cotton-top at DMP Z= 0.310, P= 1.000 

 



Chapter III – Scent-marking semiochemistry in captive callitrichids 

104 

Table III.3. Continued (2/3). 

Category tested Dataset used Kruskal-Wallis rank sum tests Pairwise comparisons Dunn’s tests 

Group (2/2)  Tamarin samples dataset  
Emperor at TZ – Cotton-top at PWP Z= 1.122, P= 1.000 

Cotton-top at DMP – Cotton-top at PWP Z= 0.344, P= 1.000 

Sex 

Tamarin samples dataset χ²= 0.003, df= 1, P= 0.957 Male – Female Z= 0.054, P= 0.960 

Tamarin samples dataset, 
only Emperor at DMP 

χ²= 1.059, df= 1, P= 0.306 Male – Female n too small 

Tamarin samples dataset, 
only Emperor at TZ 

χ²= 0.510, df= 1, P= 0.475 Male – Female Z= 0.714, P= 0.480 

Tamarin samples dataset, 
only Cotton-top at DMP 

χ²= 0.000, df= 1, P= 1.000 Male – Female n too small 

Tamarin samples dataset, 
only Cotton-top at PWP 

χ²=0 .908, df= 1, P= 0.341 Male – Female Z= 0.953, P= 0.340 

Reproductive 
status 

Tamarin samples dataset χ²= 0.733, df= 1, P= 0.392 Reproductive – Non-reproductive Z= 0.856, P= 0.390 

Tamarin samples dataset, 
only Emperor at DMP 

No non-reproductive individual 

Tamarin samples dataset, 
only Emperor at TZ 

χ²= 1.581, df= 1, P= 0.209 Reproductive – Non-reproductive Z= 1.257, P= 0.210 

Tamarin samples dataset, 
only Cotton-top at DMP 

χ²= 0.000, df= 1, P= 1.000 Reproductive – Non-reproductive n too small 

Tamarin samples dataset, 
only Cotton-top at PWP 

χ²= 1.235, df= 1, P= 0.266 Reproductive – Non-reproductive Z= 1.111, P= 0.270 
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Table III.3. Continued (3/3). 

Category tested Dataset used Kruskal-Wallis rank sum tests Pairwise comparisons Dunn’s tests 

Adult female 
identity 

Adult female tamarin 
samples dataset 

χ²= 11.801, df= 5, P= 0.038 

Repro. ♀ Emperor at DMP –  
Repro. ♀ Emperor at TZ 

Z= 3.042, P= 0.035 

Repro. ♀ Emperor at DMP –  
Repro. ♀ Cotton-top at DMP 

Z= 1.776, P= 1.000 

Repro. ♀ Emperor at DMP –  
Repro. ♀ Cotton-top at PWP 

Z= 1.007, P= 1.000 

Repro. ♀ Emperor at DMP –  
Subord. ♀ Emperor at TZ 

Z= 2.731, P= 0.095 

Repro. ♀ Emperor at DMP –  
Subord. ♀ Cotton-top at PWP 

Z= 1.598, P= 1.000 

Repro. ♀ Emperor at TZ –  
Repro. ♀ Cotton-top at DMP 

Z= 0.288, P= 1.000 

Repro. ♀ Emperor at TZ –  
Repro. ♀ Cotton-top at PWP 

Z= 1.370, P= 1.000 

Repro. ♀ Emperor at TZ –  
Subord. ♀ Emperor at TZ 

Z= 0.366, P= 1.000 

Repro. ♀ Emperor at TZ –  
Subord. ♀ Cotton-top at PWP 

Z= 0.717, P= 1.000 

Repro. ♀ Cotton-top at DMP –  
Repro. ♀ Cotton-top at PWP 

Z= 0.778, P= 1.000 

Repro. ♀ Cotton-top at DMP –  
Subord. ♀ Emperor at TZ 

Z= 0.511, P= 1.000 

Repro. ♀ Cotton-top at DMP –  
Subord. ♀ Cotton-top at PWP 

Z= 0.293, P= 1.000 

Repro. ♀ Cotton-top at PWP –  
Subord. ♀ Emperor at TZ 

Z= 1.442, P= 1.000 

Repro. ♀ Cotton-top at PWP –  
Subord. ♀ Cotton-top at PWP 

Z= 0.524, P= 1.000 

Subord. ♀ Emperor at TZ –  
Subord. ♀ Cotton-top at PWP 

Z= 0.890, P= 1.000 
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III.3.2.1.2. Differences between study sites, species, and tamarin groups 

Sample chemical richness was not significantly influenced by study 

site (Table III.3; Fig. III.4a), however it varied across species (Table III.3; 

Fig. III.4b; animal samples dataset). In particular, samples from black-

headed spider monkeys contained more compounds (median: 92.5 ±SD 

2.1) than samples from any other species (white-faced saki monkey: 19.0 

±0.0; silvery marmoset: 32.5 ±5.7; emperor tamarin: 18.0 ±10.7; and cotton-

top tamarin: 18.0 ±8.3). However this difference was not verifiable 

statistically, since only two samples were available for black-headed spider 

monkeys, and one for white-faced saki monkeys. Samples from silvery 

marmosets contained significantly more compounds than those from 

emperor tamarins (Table III.3; Fig. III.4b). No difference in chemical 

richness was observed between the two tamarin species, nor with white-

faced saki monkeys (Table III.3; Fig. III.4b). Moreover, chemical richness 

differed between tamarin groups (Table III.3; Fig. III.4c; tamarin samples 

dataset). Samples from emperor tamarins at TZ contained significantly 

more compounds than those from emperor tamarins at DMP (Table III.3; 

Fig. III.4c). 

 

III.3.2.1.3. Differences between sex, reproductive status, and individual 

adult female tamarins 

Sample chemical richness did not significantly differ between male 

and female samples (Table III.3; Fig. III.5a; tamarin samples dataset). 

Similarly, no difference was observed between the chemical richness of 

samples from reproductive and non-reproductive individuals (Table III.3; 

Fig. III.5b). However, sample chemical richness significantly differed 

between the reproductive emperor tamarin female at DMP and the 

reproductive emperor tamarin female at TZ (Table III.3; Fig. III.5c). 
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Figure III.4. Tukey’s box-and-whiskers plots showing differences in sample 
chemical richness between a. study sites (animal samples dataset); b. 
primate species (animal samples dataset); and c. tamarin groups (tamarin 
samples dataset). Boxes indicate the median and interquartile range (IQR); 
whiskers give the smallest value ≥ lower hinge -1.5*IQR, and largest value 
≤ upper hinge +1.5*IQR. n= sample size. Asterisks indicate statistically 
significant differences in pairwise Dunn’s post-hoc tests for categories of n> 
2 ( P≤ 0.05,  P≤ 0.01,  P≤ 0.001; Table III.3). 
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Figure III.5. Tukey’s box-and-whiskers plots showing differences in sample 
chemical richness between a. males and females (tamarin samples 
dataset); b. reproductive and non-reproductive individuals (tamarin samples 
dataset); and c. reproductive and non-reproductive adult female tamarins 
(adult female tamarin samples dataset). Boxes indicate the median and  
interquartile range (IQR); whiskers give the smallest value ≥ lower hinge -
1.5*IQR, and largest value ≤ upper hinge +1.5*IQR. n= sample size. 
Asterisks indicate statistically significant differences in pairwise Dunn’s 
post-hoc tests for categories of n> 2 ( P≤ 0.05,  P≤ 0.01,  P≤ 
0.001; Table III.3). 
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III.3.2.1.4. Linear model including all factors 

In addition, a generalized linear mixed model assessed the variation 

in sample chemical richness across all categories tested, using the tamarin 

samples dataset for which the number of samples per category was most 

balanced. The model included the fixed effects species, sex, reproductive 

status, sample type, and their interactions, as well as the random effects 

group and individual nested into group. Only sample type had a significant 

effect (Table III.4). 

 

Table III.4. Results of best-fit generalized linear mixed model (Poisson 
family, log link function), testing the variation in sample chemical richness 
across categories of species, sex, reproductive status, sample type, and 
their interactions (tamarin samples dataset). Group, and individual nested 
into group, were included as random effects in the model. P-values were 
significant at P≤ 0.05 (in bold). SE: standard error of the mean, SD: 
standard deviation. 

Fixed effects 
Paired 
comparisons 

Estimate (±SE) 
Z-

statistic 
P-

value 

(intercept) 2.933 (± 0.337) 8.701 < 0.001 

Species 
Emperor – Cotton-
top 

0.040 (± 0.476) 0.084 0.933 

Sex Female – Male  0.062 (± 0.227) 0.274 0.784 

Repro. status Repro. – Non-repro. -0.381 (± 0.236) -1.617 0.106 

Type Scent-mark – Urine -0.522 (± 0.111) -4.694 < 0.001 

Species : Sex 
Cotton-top :  
Female – Male 

0.344 (± 0.260) 1.325 0.185 

Species : 
Repro. status 

Cotton-top :  
Repro. – Non-repro. 

0.522 (± 0.282) 1.853 0.064 

Species : Type 
Cotton-top :  
Scent-mark – Urine 

-0.115 (± 0.175) -0.657 0.511 

Sex :  
Repro. status 

Male :  
Repro. – Non-repro. 

-0.264 (± 0.267) -0.991 0.325 

Sex : Type 
Male :  
Scent-mark – Urine 

0.141 (± 0.169) 0.836 0.403 

Repro. Status : 
Type 

Non-repro. :  
Scent-mark – Urine 

0.292 (± 0.180) 1.621 0.105 

Random effects Variance (±SD)   

Group 0.184 (± 0.428)  

Group : Individual 0.035 (± 0.186)  
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III.3.2.2. Variation in sample chemical diversity 

III.3.2.2.1. Differences between sample types 

To investigate variation in chemical diversity (i.e. the combination of 

individual compounds in a sample) between the different types of sample 

collected, NMDS was first applied to the all samples dataset. Fig. III.6a 

shows partial discrimination between sample types, in particular between 

animal samples (i.e. scent-marks, scent-gland swabs, and urine) and the 

‘background smell’ (i.e. air and branch samples), most visible on the x ̶ y 

and y ̶ z dimensions (left and middle plots). However, homogeneity of 

multivariate dispersion between sample types was not validated for this 

dataset (Table III.5), preventing the use of PerMANOVA to further evaluate 

the significance of the observed variation.  

To further assess dissimilarity between the chemical diversity of 

scent-mark, scent-gland secretion, and urine samples, the animal samples 

dataset was then used, for which homogeneity of multivariate dispersion for 

sample type was validated (Table III.5). Fig. III.6b shows partial 

discrimination between the chemical composition of scent-marks, scent-

gland secretions, and urine, which were statistically significant (Table III.5). 

In addition, individual pairwise PerMANOVA tests confirmed a significant 

difference in chemical diversity between scent-mark and scent-gland 

samples (Table III.5). 
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Figure III.6. Non-metric multidimensional scaling (NMDS) plots of scent 
samples showing similarity in chemical composition between a. samples of 
deposited scent-marks (▲), scent-gland secretion (●), urine (■), ambient air 
(), and branch ()(all samples dataset; 3D stress=0.16); and b. only 
samples of deposited scent-mark, scent-gland secretion, and urine (animal 
samples dataset; 3D stress=0.15). The three plots correspond to the same 
three-dimensional cloud of points, plotted on each dimension (x–y, y–z, and 
z–x). Ellipses represent the 50% confidence interval for each group. 
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Table III.5. Results of independent tests of homogeneity of multivariate dispersion for each group tested. When these were not significant (i.e. the 
group was homogenous), a permutational multivariate analysis of variance (PerMANOVA) was conducted to assess the importance of each group 
in explaining the differences in sample chemical diversity, followed by pairwise PerMANOVAs for categories of more than two levels. F= pseudo-F 
statistic; df= degrees of freedom; res.df= residual degrees of freedom; R2= proportion of residual variance explained; P= P-value, and Padj= P-
value with Bonferroni adjustment, significant at P≤ 0.05 (in bold).  

Dataset used 
Category 

tested 

Homogeneity of 
multivariate dispersion 

(Fdf, res.df, P) 

PerMANOVA  
(Fdf, res.df, R2, P) 

Pairwise comparisons 
Pairwise PerMANOVA  

(F, R2, Padj) 

All samples 

dataset 
Sample type F4,90= 3.709, P= 0.010 NA   

Animal samples 

dataset 

Sample type F2,67= 1.721, P= 0.220 
F2,67= 2.469, R2= 0.069, 

P= 0.001 

Scent-gland – Scent-mark 
F= 2.903, R2= 0.056,  

Padj= 0.003 

Scent-gland – Urine 
F= 2.810, R2= 0.091,  

Padj= 0.003 

Scent-mark – Urine 
F= 1.940, R2= 0.033,  

Padj= 0.015 

Study site F2,67= 0.908, P= 0.420 
F2,67= 5.170, R2= 0.134, 

P= 0.001 

DMP – PWP 
F= 3.616, R2= 0.111,  

Padj= 0.003 

DMP – TZ 
F= 5.220, R2= 0.090,  

Padj= 0.003 

PWP – TZ 
F= 6.060, R2= 0.104,  

Padj= 0.003 

Species F4,65= 16.46, P= 0.010 NA   
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Table III.5. Continued (1/2). 

Dataset used 
Category 

tested 

Homogeneity of 

multivariate dispersion 
(Fdf, res.df, P) 

PerMANOVA  

(Fdf, res.df, R2, P) 
Pairwise comparisons 

Pairwise PerMANOVA  
(F, R2, Padj) 

Tamarin 

samples dataset 

Species F1,54= 0.233, P= 0.660 
F1,54= 4.427, R2= 0.076, 

P= 0.001 
  

Group F3,52= 0.860, P= 0.550 
F3,52= 4.129, R2= 0.192, 

P= 0.001 

Emperor at DMP  

– Emperor at TZ 

F= 5.140, R2= 0.128,  

Padj= 0.006 

Emperor at DMP  

– Cotton-top at DMP 

F= 1.601, R2= 0.127,  

Padj= 0.282 

Emperor at DMP  

– Cotton-top at PWP 

F= 3.552, R2= 0.139,  

Padj= 0.006 

Cotton-top at DMP 

– Emperor at TZ 

F= 2.642, R2= 0.081,  

Padj= 0.006 

Cotton-top at DMP 

– Cotton-top at PWP 

F= 2.374, R2= 0.123,  

Padj= 0.012 

Cotton-top at PWP 

– Emperor at TZ 

F= 6.213, R2= 0.132,  

Padj= 0.006 

Sex F1,54= 3.717, P= 0.080 
F1,54= 1.640, R2= 0.029, 

P= 0.024 
  

Repro. status F1,54= 0.599, P= 0.510 
F1,54= 1.970, R2= 0.035, 

P= 0.001 
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Table III.5. Continued (2/2). 

Dataset used 
Category 

tested 

Homogeneity of 

multivariate dispersion 
(Fdf, res.df, P) 

PerMANOVA  
(Fdf, res.df, R2, P) 

Pairwise comparisons 
Pairwise PerMANOVA  

(F, R2, Padj) 

Adult female 

tamarin samples 

dataset 

Female 

identity 
F5,31= 0.458, P= 0.770 

F5,31= 2.034, R2= 0.247, 

P= 0.001 

Repro. ♀ Emperor at DMP  

– Repro. ♀ Emperor at TZ 

F= 3.228, R2= 0.145,  

Padj= 0.015 

Repro. ♀ Emperor at DMP  

– Repro. ♀ Cotton-top at DMP 

F= 1.294, R2= 0.139,  

Padj= 1.000 

Repro. ♀ Emperor at DMP  

– Repro. ♀ Cotton-top at PWP 

F= 2.139, R2= 0.192,  

Padj= 0.150 

Repro. ♀ Emperor at DMP  

– Subord. ♀ Emperor at TZ 

F= 3.035, R2= 0.233,  

Padj= 0.075 

Repro. ♀ Emperor at DMP  

– Subord. ♀ Cotton-top at PWP 

F= 2.268, R2= 0.201,  

Padj= 0.060 

Repro. ♀ Emperor at TZ  

– Repro. ♀ Cotton-top at DMP 

F= 1.780, R2= 0.106,  

Padj= 0.240 

Repro. ♀ Emperor at TZ  

– Repro. ♀ Cotton-top at PWP 

F= 2.053, R2= 0.114,  

Padj= 0.045 

Repro. ♀ Emperor at TZ  

– Subord. ♀ Emperor at TZ 

F= 0.774, R2= 0.044,  

Padj= 1.000 

Repro. ♀ Emperor at TZ  

– Subord. ♀ Cotton-top at PWP 

F= 2.157, R2= 0.119,  

Padj= 0.045 

Repro. ♀ Cotton-top at DMP  

– Repro. ♀ Cotton-top at PWP 

F= 1.959, R2= 0.282,  

Padj= 0.450 

Repro. ♀ Cotton-top at DMP  

– Subord. ♀ Emperor at TZ 

F= 2.115, R2= 0.261,  

Padj= 0.165 

Repro. ♀ Cotton-top at DMP  

– Subord. ♀ Cotton-top at PWP 

F= 1.791, R2= 0.264,  

Padj= 0.795 

Repro. ♀ Cotton-top at PWP  

– Subord. ♀ Emperor at TZ 

F= 2.261, R2= 0.244,  

Padj= 0.180 

Repro. ♀ Cotton-top at PWP  

– Subord. ♀ Cotton-top at PWP 

F= 0.841, R2= 0.123,  

Padj= 1.000 

Subord. ♀ Emperor at TZ  

– Subord. ♀ Cotton-top at PWP 

F= 2.268, R2= 0.245,  

Padj= 0.150 
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III.3.2.2.2. Differences between study sites, species, and tamarin groups  

Differences in sample chemical diversity between study sites was 

assessed using the animal samples dataset, for which homogeneity of 

multivariate dispersion for study sites was validated (Table III.5). Fig. III.7 

shows a good discrimination between the three study sites, in particular on 

the x–z dimension (right plot). This suggests a strong effect of study site on 

sample chemical diversity, further confirmed by the result of the 

PerMANOVA (Table III.5). Moreover, pairwise PerMANOVA tests 

confirmed a significant difference in sample chemical diversity between all 

three sites (Table III.5). 

 

 

Figure III.7. NMDS plots of scent samples showing similarity in sample 
chemical composition between the three study sites: Drayton Manor Park 
(■), Twycross Zoo (●), and Paradise Wildlife Park (▲) (animal samples 
dataset; 3D stress=0.16). The three plots correspond to the same three-
dimensional cloud of points, plotted on each dimension (x–y, y–z, and z–x). 
Ellipses represent the 50% confidence interval for each group.  

 

In order to compare sample chemical diversity between species, the 

animal samples dataset was first used. Fig. III.8a shows partial 

discrimination between species, in particular between the three callitrichid 

species (i.e. silvery marmosets, and emperor and cotton-top tamarins) and 

the two non-callitrichid species (i.e. black-headed spider monkeys and 

white-faced saki monkeys). Homogeneity of variance in the species 

category was not validated for this dataset (Table III.5), owing to the limited 

sample size for silvery marmosets, black-headed spider monkeys and 

white-faced saki monkeys. To further assess differences of chemical 

diversity between the two tamarin species, which are the focus of the 

present study and for which most samples were collected, the tamarin 
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sample dataset was then employed (Table III.2). Homogeneity of 

multivariate dispersion for species was validated for this dataset and the 

difference observed was significant (Table III.5). Fig. III.8b shows good 

discrimination between the chemical composition of samples from emperor 

and cotton-top tamarins, especially on the x–y and z–x dimensions (left and 

right plots). 

 

 

Figure III.8. NMDS plots of scent samples showing similarity in sample 
chemical composition between a. all five primate species: emperor 
tamarins, S. imperator (●), cotton-top tamarins, S. oedipus (▲), silvery 
marmosets, M. argentatus (■), white-faced saki monkeys, P. pithecia (), 
and black-headed spider monkeys, A. fusciceps () (animal samples 
dataset; 3D stress=0.16); and b. the two tamarin species (tamarin samples 
dataset; 3D stress=0.14). The three plots correspond to the same three-
dimensional cloud of points, plotted on each dimension (x–y, y–z, and z–x). 
Ellipses represent the 50% confidence interval for groups composed of at 
least four samples.  

 

 In addition, differences in sample chemical diversity between 

tamarin groups was assessed using the tamarin samples dataset, for which 

homogeneity of multivariate dispersion was validated. The difference 

between groups was significant (Table III.5). The four groups appear well 

clustered on the NMDS plots, especially on the x–y dimension (left plot; 

Fig. III.9). In particular, the emperor tamarin group at TZ appeared well 
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differentiated from the others. Moreover, pairwise PerMANOVA tests were 

significant between all pairs of tamarin groups, except between emperor 

and cotton-top tamarins at DMP (Table III.5). 

 

 

Figure III.9. NMDS plots of scent samples showing similarity in sample 
chemical composition between the four tamarin groups studied: emperor 
tamarins at DMP (●), emperor tamarins at TZ (▲), cotton-top tamarins at 
DMP (■), and cotton-top tamarins at PWP () (tamarin samples dataset; 3D 
stress=0.14). The three plots correspond to the same three-dimensional 
cloud of points, plotted on each dimension (x–y, y–z, and z–x). Ellipses 
represent the 50% confidence interval for each group.  

 

III.3.2.2.3. Differences between sex, reproductive status, and individual 

adult female tamarins 

Sex differences in sample chemical diversity was assessed using 

the tamarin dataset, for which homogeneity of multivariate dispersion was 

validated (Table III.5). Similarly to results of chemical richness, NMDS did 

not show discrimination between the chemical diversity of male and female 

tamarin samples (Fig. III.10). Nevertheless, difference in chemical diversity 

for sex was significant in the PerMANOVA analysis, although the proportion 

of residual variance explained and pseudo-F statistic were low, and the 

associated P-value high, compared with the previous categories tested 

(Table III.5). This likely indicates a smaller effect of sex and would explain 

why samples from male and female tamarins were not discriminated on the 

NMDS plots. 
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Figure III.10. NMDS plots of scent samples showing similarity in chemical 
composition between male (■) and female (●) tamarin samples (tamarin 
samples dataset; 3D stress=0.14). The three plots correspond to the same 
three-dimensional cloud of points, plotted on each dimension (x–y, y–z, and 
z–x). Ellipses represent the 50% confidence interval for each group. 

 

 To investigate differences in the chemical diversity of samples from 

reproductive and non-reproductive tamarins, the tamarin samples dataset 

was used. Homogeneity of multivariate dispersion for reproductive status 

was validated, and the difference observed was significant (Table III.5). 

Fig. III.11 shows partial discrimination between samples of reproductive 

and non-reproductive individuals of the two tamarin species. As for sex, the 

proportion of residual variance explained and pseudo-F statistic were lower 

than that of the previous categories tested, which reflects the absence of 

complete discrimination between reproductive and non-reproductive 

tamarins on the NMDS plots (Table III.5). 

 

 

Figure III.11. NMDS plots of scent samples showing similarity in sample 
chemical composition between reproductive (▲) and non-reproductive (■) 
tamarins of both sexes (tamarin samples dataset; 3D stress=0.14). The 
three plots correspond to the same three-dimensional cloud of points, 
plotted on each dimension (x–y, y–z, and z–x). Ellipses represent the 50% 
confidence interval for each group. 
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It was only possible to collect multiple scent-mark samples from a 

few individuals included in this study. Therefore, chemical differences at the 

individual level were only tested on six reproductive and non-reproductive 

adult female tamarins, for which at least three samples were collected. 

Using the adult female tamarin samples dataset, homogeneity of 

multivariate dispersion for the individual was validated, and the difference 

between individual female tamarins was significant (Table III.5). Fig. III.12 

shows partial discrimination between samples of the six females included in 

the analysis. In particular, pairwise differences in chemical diversity 

between individual females were significant between the reproductive 

female emperor tamarin at DMP and the reproductive female emperor 

tamarin at TZ, and between the reproductive female emperor tamarin at TZ 

and both the reproductive and non-reproductive females cotton-top tamarin 

at PWP (Table III.5), reflected in the NMDS plots (Fig. III.12). 

 

 

Figure III.12. NMDS plots of scent samples showing similarity in sample 

chemical composition between six adult female tamarins: reproductive 

female emperor tamarin at DMP (●), reproductive female emperor tamarin 

at TZ (), reproductive female cotton-top tamarin at DMP (), reproductive 

female cotton-top tamarin at PWP (▲), non-reproductive female emperor 

tamarin at TZ (), and non-reproductive female cotton-top tamarin at PWP 

(■) (female tamarin samples dataset; 3D stress: 0.13). The three plots 

correspond to the same three-dimensional cloud of points, plotted on each 

dimension (x–y, y–z, and z–x). Ellipses represent the 50% confidence 

interval for groups composed of at least four samples. 

 

III.3.2.2.4. Multifactorial PerMANOVA including all factors 

A multifactorial PerMANOVA using the tamarin samples dataset 

assessed the relative effect of all the sample categories on sample 

chemical diversity. This model accounted for multicollinearity between 
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factors, where sex, reproductive status and individual were included as 

terms nested into group, and site was not included as it was redundant with 

species and group. All the factors, except for individual, had a significant 

effect on the dissimilarity of sample chemical diversity (Table III.6). Species 

and group had the greatest effect, as indicated by the highest Pseudo-F 

statistics in Table III.6. 

 

Table III.6. Results of a PerMANOVA testing the effect of sample type, 
species, group, sex, reproductive status (nested in group), and individual 
(nested in group), on sample chemical similarity. df= degrees of freedom, 
SSoS= sequential sum of squares, MS= mean squares, Pseudo-F= 
pseudo-F statistic, R2= proportion of residual variance explained, and P= P-
value (significant at P≤ 0.05, in bold). 

Effect tested df SSoS MS Pseudo-F R2 P 

Sample type 1 0.675 0.675 2.401 0.035 0.003 

Species 1 1.475 1.475 5.244 0.076 0.001 

Group 2 2.212 1.106 3.933 0.114 0.001 

Sex 1 0.757 0.575 2.044 0.030 0.003 

Group : Repro. status 3 1.117 0.372 1.324 0.058 0.022 

Group : Individual 8 2.395 0.299 1.065 0.123 0.226 

Residuals 39 10.967 0.281  0.565  

Total 55 19.415   1.000  

 

III.3.3. Identification of compounds in callitrichid scent 

samples 

III.3.3.1. Identifty of compounds 

 The automated NIST mass spectral library provided putative 

identities to all 407 compounds retrieved from the samples (see Appendix 

C, Table C.1). Nevertheless, in most cases this identification was not 

trustworthy unless the identity match was very high (≥80%), notably owing 

to the fact that the chromatogram peaks, many of which might have very 

similar retention times, were often not fully resolved, hence their mass 

spectra may have contained fragments from more than one compound. 

This was especially a problem for peaks of low relative abundance. In 
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addition, synthetic organic compounds were the main candidate identities 

given by the NIST library. Synthetic organic compounds are widely used in 

industry, which is the primary user of the NIST library. However, all 

authentic compounds originating from the samples were naturally occurring 

organic compounds, many of which may be unregistered on the NIST 

database. For these reasons, a subset of 47 compounds was selected, for 

which the NIST library identity was individually verified by visual inspection 

of the peaks’ mass spectra and retention times (i.e. compounds #01–#47; 

Table III.7). These 47 compounds of interest were also chosen given their 

prevalence in the samples, and/or their prior mention in the mammalian 

semiochemistry literature. The same compound retrieved from different 

samples did generally not show identical retention times, as in 

chromatography retention times commonly vary slightly between runs. 

Therefore, values of compound average retention time and associated 

standard deviation were used instead, as presented in Table III.7.  

Whenever possible, the identity of a compound was confirmed, or 

refuted, by comparison of its retention time with that of the commercially 

obtained compound analysed under the same conditions. As a result, 22 

compounds were positively identified (marked with an asterisk in Table 

III.7). Since authentic compounds and corresponding commercially 

obtained compounds were not co-injected, their retention times usually 

differed slightly, as retention times may vary between GC-MS runs. Hence, 

compound identity was considered validated if 1. the mass spectra of the 

compound in the sample (Fig. III.13a), and that of the commercially 

obtained compound (Fig. III.13b), were closely matched; and 2. the 

retention time of the compound in the sample fell within the width of the 

genuine compound’s peak at mid-height (Fig. III.13c); which was visually 

assessed. In some cases, identification was less certain. For example, 

commercially obtained samples of butanoic acid, pentanoic acid, tridecane, 

and hexadecane, eluted a short time after the corresponding compounds in 

the samples, suggesting that the compounds in the secretion were 

branched-chain variants of same molecular weight as the commercially 

obtained compounds (Table III.7).  
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Table III.7. Subset of 47 compounds retrieved from the samples, selected as compounds of interest given their prevalence in the samples, and/or 
their prior mention in the mammalian semiochemistry literature. Putative identity of the compounds was established by mass spectral library 
search, then verified by visual inspection of the mass spectra and retention times (RT). Identity of the 22 compounds marked with an asterisk () 
was confirmed by comparison of their retention times with those of commercially obtained compounds. Diagrams of the compounds ’ chemical 
structure are reproduced from the NIST chemistry WebBook (www.webbook.nist.gov). SD= standard deviation. 

# 
Mean RT  

±SD (min) 
Candidate compound identity Functional group Chemical structure Prevalence† 

01 3.04 ±0.01 Butan-1-ol Alcohol  11 

02 3.19 ±0.04 Methoxypropan-2-ol Multifunctional compound  
 

8 

03 3.34 ±0.01 Pentan-2-one Ketone 
 

3 

04 3.58 ±0.01 Pentan-2-ol Alcohol 
 

5 

05 4.70 ±0.06 Propane-1,2-diol  Alcohol 
 

10 

06 6.14 ±0.01 Hexanal Aldehyde 
 

47 

07 6.30 ±0.09 2-Methylpropanoic acid Carboxylic acid 
 

3 

08 7.24 ±0.02 Furfural Heteroaromatic aldehyde 
 

14 

09 7.93 ±0.03 3-Methylbutanoic acid Carboxylic acid  3 

10 8.05 ±0.02 2-Furanmethanol Alcohol 
 

23 

11 8.83 ±0.02 Cyclopent-2-en-1,4-dione Ketone  5 

http://www.webbook.nist.gov/
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Table III.7. Continued (1/3). 

# 
Mean RT  

±SD (min) 
Candidate compound identity Functional group Chemical structure Prevalence† 

12 8.99 ±0.00 1,2-Dimethylbenzene Aromatic hydrocarbon 
 

2 

13 9.15 ±0.01 Methylcycloheptanone Ketone Unk. 14 

14 9.33 ±0.02 Heptanal Aldehyde 
 

32 

15 9.74 ±0.06 2,5-Dimethylpyrazine Heteroaromatic compound  
 

2 

16 9.79 ±0.02 Anisole Aromatic ether 
 

12 

17 11.14 ±0.03 Benzaldehyde Aromatic aldehyde  
 

54 

18 11.33 ±0.00 1,3,5-Trimethylbenzene Aromatic hydrocarbon 
 

3 

19 11.78 ±0.00 1-Octen-3-ol Unsaturated alcohol 
 

7 

20 11.98 ±0.01 6-Methyl-5-hepten-2-one Unsaturated ketone 
 

3 

21 12.08 ±0.00 1,2,3- or 1,2,4-Trimethylbenzene Aromatic hydrocarbon 
 

9 

22 13.42 ±0.01 Benzyl alcohol Alcohol 
 

3 

23 13.56 ±0.03 Benzeneacetaldehyde Aldehyde 
 

26 

24 14.21 ±0.04 Acetophenone Aromatic ketone 
 

36 
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Table III.7. Continued (2/3). 

# 
Mean RT  

±SD (min) 
Candidate compound identity Functional group Chemical structure Prevalence† 

25 14.58 ±0.05 p-Cresol Aromatic alcohol 
 

41 

26 14.70 ±0.01 p-Cymene Aromatic hydrocarbon 
 

5 

27 14.85 ±0.04 2-Methoxyphenol Multifunctional compound 
 

29 

28 15.07 ±0.02 3,7-Dimethyloctan-3-ol Alcohol  15 

29 15.71 ±0.07 Methyl octanoate Ester 
 

2 

30 16.14 ±0.01 Dimethyl pentanedioate Ester 
 

5 

31 16.62 ±0.04 trans-1-Methyl-4-(1-methylethyl)cyclohexanol Alcohol 
 

26 

32 17.02 ±0.01 1-Nonanol Alcohol  5 

33 17.18 ±0.04 Branched C8 carboxylic acid Carboxylic acid Unk. 4 

34 18.79 ±0.01 Dimethyl hexanedioate Ester 
 

3 

35 19.10 ±0.07 4-Methoxybenzaldehyde Multifunctional compound 
 

63 

36 19.43 ±0.03 Cyclodecane Cycloalkane 
 

30 

37 19.99 ±0.00 Branched C13 alkane Alkane Unk. 10 



Chapter III – Scent-marking semiochemistry in captive callitrichids 

125 

Table III.7. Continued (3/3). 

# 
Mean RT  

±SD (min) 
Candidate compound identity Functional group Chemical structure Prevalence† 

38 21.48 ±0.01 Eugenol Multifunctional compound 
 

4 

39 21.54 ±0.07 3-Methyltridecane Alkane 
 

3 

40 22.49 ±0.01 Do- or Tri-decanal Aldehyde  
 

11 

41 23.12 ±0.06 Diethylene glycol dibutyl ether Ether  23 

42 23.86 ±0.07 Cyclododecane Cycloalkane 
 

43 

43 24.93 ±0.07 Myristicin Multifunctional compound 
 

18 

44 25.25 ±0.01 2-Methyldecylpropanoate Ester 
 

4 

45 26.27 ±0.07 Branched C16 alkane Alkane Unk. 31 

46 27.46 Tetra- or Penta-decanal Aldehyde  
 

1 

47 28.44 ±0.01 Heptadecane Alkane  3 

† Prevalence is the number of samples containing the compound of interest. 
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Figure III.13. Mass spectra of a. p-cresol retrieved from a sample, and      

b. commercially obtained p-cresol analysed under the same conditions, 

showing an almost identical ion pattern; c. overlaid chromatogram portions 

showing authentic p-cresol peak (in green), and commercially obtained p-

cresol peak (in red). The horizontal black dashed line indicates the 

background threshold. Vertical dashed lines mark the peak apex, which 

corresponds to the compounds’ retention time. Horizontal dotted lines mark 

the peak mid-height. The yellow shaded area indicates overlap in retention 

time of the two peaks, which means they can be considered as the same 

compound.  

 

 



Chapter III – Scent-marking semiochemistry in captive callitrichids 

127 

Over 60% of the compounds of interest retrieved from the samples 

were hydrocarbons (i.e. alkanes, cycloalkanes and aromatic hydrocarbons, 

21.3%), alcohols (21.3%), and aldehydes (14.9%; Fig. III.14; Table III.7). 

Nearly 35% of these compounds contained an aromatic group, i.e. a 

benzene ring (e.g. benzaldehyde [#17]) or a furan ring (e.g. furfural [#08]); 

the rest were aliphatic, i.e. open-chain compounds, either straight (e.g. 

heptadecane [#47]), branched (e.g. pentan-2-ol [#04]), or cyclic compounds 

(e.g. cyclodecane [#36]). 

 

 

Figure III.14. Functional group and structural aspect (i.e. aliphatic or 
containing an aromatic group) of the 47 compounds of interest retrieved 
from the samples. 

  

III.3.3.2. Occurrence of compounds of interest across the different 
categories of samples 

III.3.3.2.1. Occurrence of compounds of interest in the different sample 

types and primate species studied 

While some of the 47 compounds of interest identified in this study 

were ubiquitous, i.e. found in all five species sampled, and/or in both 

glandular secretions, deposited scent-marks, and urine, others appeared to 

be specific to a single sample type or species (Table III.8). In particular, 
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cyclododecane (#42) were retrieved from many samples of the three types, 

and from all five species of primates. Most compounds were found in all 

three types of samples (34.0%), or in both deposited scent-marks and urine 

(25.5%; animal samples dataset; Fig. III.15; Table III.8). The two 

multifunctional compounds methoxypropan-2-ol (#02) and 2,5-

dimethylpyrazine (#15) were the only compounds solely found in glandular 

secretions. One aldehyde, tetra- or penta-decanal (#46); two esters, methyl 

octanoate (#29) and dimethyl hexanoate (#34); three hydrocarbons, 1,2-

dimethylbenzene (#12), 1,3,5-trimethylbenzene (#18), and 3-

methyltridecane (#39); and one ketone, cyclopent-2-en-1,4-dione (#11), 

were specific to scent-mark samples. Finally, no compound was specific to 

urine in this study (Fig. III.15; Table III.8).  

Do- or tri-decanal (#40) and the branched C16 alkane (#45) were 

found in all species but black-headed spider monkeys; heptanal (#14), 1-

octen-3-ol (#19), benzeneacetaldehyde (#23), and p-cresol (#25) in all 

species but white-faced saki monkeys, while 21.3% of the compounds were 

specific to the three callitrichids (Fig. III.16; Table III.8). In addition, an 

important proportion of compounds of interest (17.0%) were shared 

between the two tamarin species only: pentan-2-one (#03), cyclopent-2-en-

1,4-dione (#11), anisole (#16), methyl octanoate (#29), dimethyl 

pentanedioate (#30), 1-nonanol (#32), dimethyl hexanoate (#34), 

cyclodecane (#36), eugenol (#38), and myristicin (#43). Moreover, in the 

present study 2-methylpropanoic acid (#07) and 3-methyltridecane (#39) 

were unique to emperor tamarins; 1,3,5- and 1,2,3-/1,2,4-trimethylbenzene 

(#18 and #21), 2-methyldecylpropanoate (#44), and tetra- or penta-decanal 

(#46) to cotton-top tamarins. However, no compound was unique to saki or 

spider monkeys, maybe owing to the fact that only one, and two samples, 

respectively, of these species were included in the animal dataset. 

Similarly, 2,5-dimethylpyrazine (#15) was the only compound specific to 

silvery marmosets; however the species was represented in the present 

dataset by only six samples of suprapubic scent-gland secretion, which 

may explain the absence of other compounds unique to silvery marmosets 

( Fig. III.16; Table III.8). 
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Table III.8. Occurrence of the 47 compounds of interest in the five primate species included in the study, retrieved from suprapubic scent-gland 
secretions (G, collected for emperor tamarins and silvery marmosets), deposited scent-marks (S, collected for emperor and cotton-top tamarins, 
and white-faced saki monkeys), and urine (U, collected for emperor and cotton-top tamarins, and black-headed spider monkeys), and their 
prevalence in the samples (numbers in brackets). Candidate compound identities verified by comparison with authentic compounds are marked 
with an asterisk (), the other names are tentative identities. 

Compounds 
functional group 

Compound identity (#) 

Primate species 

Emperor tamarin 
Cotton-top 

tamarin 
Silvery 

marmoset 
White-faced 
saki monkey 

Black-headed 
spider 

monkey 

Alcohol 

Butan-1-ol  (#01) G(1) S(3) S(1) G(6) - - 

Pentan-2-ol  (#04) S(1) U(1) S(1) U(1) - S(1) - 

Propane-1,2-diol  (#05) G(3) S(3) - G(4) - - 

2-Furanmethanol  (#10) G(1) S(10) S(7) U(1) G(4) - - 

1-Octen-3-ol  (#19) S(1)  S(2) U(3) - - U(1) 

Benzyl alcohol  (#22) G(1) S(1) U(1) - - - - 

p-Cresol  (#25) G(3) S(12) U(3) S(13) U(6) G(3) - U(1) 

3,7-Dimethyloctan-3-ol  (#28) G(1) S(6) S(2) G(6) - - 

trans-1-Methyl-4-(1-
methylethyl)cyclohexanol  (#31) 

S(18) U(5) - G(3) - - 

1-Nonanol  (#32) S(1) U(2) S(2) - - - 

Aldehyde  
(1/2) 

Hexanal  (#06) G(3) S(16) U(6) S(10) U(3) G(6) S(1) U(2) 

Furfural  (#08) S(6) S(2) U(1) G(5) - - 

Heptanal  (#14) S(13) U(1) S(7) U(3) G(6) - U(2) 
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Table III.8. Continued (1/2). 

Compounds 
functional group 

Compound identity (#) 

Primate species 

Emperor tamarin 
Cotton-top 

tamarin 
Silvery 

marmoset 
White-faced 
saki monkey 

Black-headed 
spider 

monkey 

Aldehyde 
(2/2) 

Benzaldehyde  (#17) G(2) S(20) U(10) S(7) U(6) G(6) S(1) U(2) 

Benzeneacetaldehyde  (#23) G(1) S(7) U(5) S(5) U(1) G(5) - U(2) 

Do- or Tri-decanal  (#40) S(2) U(1) S(3) U(2) G(2) S(1) - 

Tetra- or Penta-decanal (#46) - S(1) - - - 

Carboxylic acid 

2-Methylpropanoic acid  (#07) S(1) U(2) - - - - 

3-Methylbutanoic acid  (#09) G(1) S(1) - - S(1) - 

Branched C8 carboxylic acid  (#33) G(1) U(1) U(1) G(1) - - 

Ester 

Methyl octanoate  (#29) S(1) S(1) - - - 

Dimethyl pentanedioate  (#30) S(2) S(3) - - - 

Dimethyl hexanedioate  (#34) S(2) S(1) - - - 

2-Methyldecylpropanoate  (#44) - S(3) U(1) - - - 

Ether 
Anisole  (#16) S(5) U(5) S(1) U(1) - - - 

Diethyleneglycol dibutyl ether  (#41) G(3) S(11) U(6) - G(3) - - 

Hydrocarbon 
(1/2) 

1,2-Dimethylbenzene  (#12) - S(1) - S(1) - 

1,3,5-Trimethylbenzene  (#18) - S(3) - - - 

1,2,3- or 1,2,4-Trimethylbenzene  (#21) - S(7) U(2) - - - 

p-Cymene  (#26) - S(3) - - U(2) 
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Table III.8. Continued (2/2). 

Compounds 
functional group 

Compound identity (#) 

Primate species 

Emperor tamarin 
Cotton-top 

tamarin 
Silvery 

marmoset 
White-faced 
saki monkey 

Black-headed 
spider 

monkey 

Hydrocarbon 
(2/2) 

Cyclodecane  (#36)  S(15) U(4) S(9) U(2) - - - 

Branched C13 alkane  (#37) S(6) S(2) G(2) - - 

3-Methyltridecane  (#39) S(3) - - - - 

Cyclododecane  (#42) G(4) S(18) U(8) S(3) U(2) G(5) S(1) U(2) 

Branched C16 alkane  (#45) S(17) U(5) S(3) G(5) S(1) - 

Heptadecane  (#47) - S(2) G(1) - - 

Ketone 

Pentan-2-one  (#03) S(1) U(1) S(1) - - - 

Cyclopent-2-en-1,4-dione  (#11) S(4) S(1) - - - 

Methylcycloheptanone  (#13) G(1) S(6) S(3) U(1) G(3) - - 

6-Methyl-5-hepten-2-one  (#20) S(1) - G(2) - - 

Acetophenone  (#24) G(1) S(19) U(4) S(5) U(1) G(6) - - 

Multifunctional 
/Other 

Methoxypropan-2-ol  (#02) G(3) - G(5) - - 

2,5-Dimethylpyrazine  (#15) - - G(2) - - 

2-Methoxyphenol  (#27) S(10) U(3) S(10) U(4) - - U(2) 

4-Methoxybenzaldehyde  (#35) G(3) S(24) U(10) S(13) U(6) G(4) S(1) U(2) 

Eugenol  (#38) S(2) S(1) U(1) - - - 

Myristicin  (#43) S(11) U(1) S(6) - - - 
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Figure III.15. Distribution of the 47 compounds of interest retrieved from 
the samples of the five primate species studied across scent-gland 
secretions, deposited scent-marks, and urine (animal samples dataset). 
Compounds’ names are given in Table III.7. 
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Figure III.16. Distribution of the 47 compounds of interest retrieved from 
the samples across the five primate species studied: black-headed spider 
monkey, A. fusciceps, silvery marmoset, M. argentatus, white-faced saki 
monkey, P. pithecia, emperor tamarin, S. imperator, and cotton-top tamarin, 
S. oedipus (animal samples dataset). Compounds’ names are given in 
Table III.7. 
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III.3.3.2.2. Occurrence of compounds of interest in the different tamarin 

groups 

Most compounds from the tamarin samples dataset (N=46) were 

common to all four tamarin groups (26.1%) or shared by the emperor 

tamarin group at TZ and the cotton-top tamarin group at PWP (26.1%; Fig. 

III.17). 6-methyl-5-hepten-2-one (#20) was only retrieved from samples 

from the emperor tamarin group at DMP; and 1,2-dimethylbenzene (#12) 

and tetra- or penta-decanal (#46) from the cotton-top tamarin group at 

DMP. Furthermore, 1,3,5-trimethylbenzene (#18), 1,2,3- or 1,2,4-

trimethylbenzene (#21), p-cymene (#26), 2-methyldecylpropanoate (#44), 

and heptadecane (#47) were specific to the cotton-top tamarin group at 

PWP. Finally, 1-methoxypropan-2-ol (#02), propane-1,2-diol (#05), 2-

methylpropanoic acid (#07), 3-methylbutanoic acid (#09), benzyl alcohol 

(#22), trans-1-methyl-4-(1-methylethyl)cyclohexanol (#31), 3-

methyltridecane (#39), and diethylene glycol dibutyl ether (#41), were 

uniquely found in samples from the emperor tamarin group at TZ (Fig. 

III.17). 
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Figure III.17. Distribution of the 46 compounds of interest retrieved from 
the samples across the four groups of emperor and cotton-top tamarins 
(tamarin samples dataset; compound #15 absent from dataset). 
Compounds’ names are given in Table III.7. 
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III.3.3.2.3. Occurrence of compounds of interest across sex, reproductive 

status, and individual female tamarins 

 The majority of compounds were shared between males and 

females (89.1%; Fig. III.18), and between reproductive and non-

reproductive individuals (78.3%; Fig. III.19; tamarin samples dataset). Five 

compounds were uniquely found in females: 3-methylbutanoic acid (#09), 

2-cyclopenten-1,4-dione (#11), 1,2-dimethylbenzene (#12), 6-methyl-5-

hepten-2-one (#20), and tetra- or penta-decanal (#46); whereas no 

compound was specific to males (Fig. III.18). Similarly, eight compounds 

were only retrieved from samples from reproductive tamarins: 3-

methylbutanoic acid (#09), 1,2-dimethylbenzene (#12), 6-methyl-5-hepten-

2-one (#20), 1-nonanol (#32), the branched C8 carboxylic acid (#33), 3-

methyltridecane (#39), tetra- or penta-decanal (#46), and heptadecane 

(#47). Only two compounds were only found in samples from non-

reproductive tamarins: 1,3,5-trimethylbenzene (#18) and p-cymene (#26; 

Fig. III.19). Moreover, when comparing the six reproductive and non-

reproductive adult female tamarins only, 6-methyl-5-hepten-2-one (#20) 

was unique to the reproductive female emperor tamarin at DMP; 1,2-

dimethylbenzene (#12) and tetra- or penta-decanal (#46) were specific to 

the reproductive female cotton-top tamarin at DMP; and 3-methylbutanoic 

acid (#09) was only found in samples from the reproductive female emperor 

tamarin at TZ. 
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Figure III.18. Distribution of the 46 compounds of interest retrieved from 
the samples across males and females of the two tamarin species, emperor 
and cotton-top tamarins (tamarin samples dataset; compound #15 absent 
from dataset). Compounds’ names are given in Table III.7. 
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Figure III.19. Distribution of the 46 compounds of interest retrieved from 
the samples across reproductive and non-reproductive individuals of the 
two tamarin species, emperor and cotton-top tamarins (tamarin samples 
dataset; compound #15 absent from dataset). Compounds’ names are 
given in Table III.7.
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III.3.4. Experimental test of temporal stability of 
sample chemical composition 

Temporal stability was tested using tamarin scent-mark samples of 

lower quality than the ones used in the previous section (see section 

III.2.2). The conditions experimentally tested were 1. samples extracted five 

times with short delay between extractions (i.e. 1.5 hour); 2. samples 

extracted five times with long delay between extractions (i.e. 10–24 hours); 

and 3. samples extracted twice with long delay between extractions (i.e. 72 

hours). In all three conditions, sample chemical richness decreased (i.e. 

compounds were lost) after the first extraction, and at each following 

extraction (Fig. III.20). 

 

 

Figure III.20. Tukey’s box-and-whiskers plot showing variation in the 
number of compounds (i.e. chemical richness) retrieved from samples 
tested under three experimental conditions: samples extracted five times at 
short (1.5 h), and long (10–24 h) interval, and samples extracted twice at 
long interval (72 h). Six samples were run under each experimental 
condition. Boxes indicate the median and interquartile range (IQR); 
whiskers give the smallest value ≥ lower hinge -1.5*IQR, and largest value 
≤ upper hinge +1.5*IQR. 
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a significant effect of the number of extractions on sample chemical 

richness, even at the second extraction. However, no significant difference 

was found between experimental conditions, i.e. number of extractions and 

delay between extractions (Table III.9). These results indicate that 

repeated extraction of the same sample had the most effect on the 

diminution of compounds retrieved, regardless of whether the samples 

were left at room temperature for a short or long period between 

successive extractions.   

 

Table III.9. Results of a generalized linear mixed model (Poisson family, log 
link function) testing the effect of experimental conditions, and the two or 
five successive extractions, on the number of compounds retrieved from 
the samples. P-values were significant at P≤ 0.05 (in bold). SE: standard 
error of the mean, SD: standard deviation. 

Fixed effects 
Paired 
comparisons 

Estimate (± SE) Z-value P-value 

(intercept) 3.687 (±0.213) 17.284 < 0.001 

Condition 

5 extractions short  
– 5 extractions long 

0.263 (±0.298) 0.882 0.378 

5 extractions short  
– 2 extractions long 

-0.056 (±0.302) -0.186 0.853 

Extraction 

1st – 2nd -0.228 (±0.051) -4.508 < 0.001 

1st – 3rd -0.361 (±0.061) -5.935 < 0.001 

1st – 4th -0.465 (±0.063) -7.403 < 0.001 

1st – 5th -0.542 (±0.064) -8.414 < 0.001 

Random effect  Variance (±SD)   

Sample ID  0.260 (±0.510)   

 

Looking solely at changes in sample chemical richness would fail to 

take into account the possible appearance with time of new compounds, 

owing to bacterial activity or other chemical reactions inside the sample vial 

at room temperature. Therefore, all compounds from the different 

treatments were subsequently separated into three categories: i. the lost 

compounds group, i.e. compounds present in the sample at first extraction, 

but absent at any of the following extractions; ii. the gained compounds 

group, i.e. compounds not present at first extraction and appearing at one 
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of the following extractions; and iii. the ambiguous compounds group, i.e. 

compounds retrieved at some extractions, but not others, from the same 

sample (e.g. a compound appearing at the second extraction, absent from 

the sample in the third and fourth extraction, and retrieved again at the fifth 

extraction). The ambiguous compounds group was removed from further 

analysis. Fig. III.21 shows the cumulative proportion of compounds           

a. gained, and b. lost, accounting for the number of compounds retrieved 

from the samples at each extraction, in the three experimental conditions.  

  

 

Figure III.21. Cumulative proportion (in %) of compounds a. gained, and   
b. lost, accounting for the number of compounds retrieved from the 
samples at each extraction for three experimental conditions: samples 
extracted five times at short (1.5 h), and long (10–24 h) interval, and 
samples extracted twice at long interval (72 h). 

 

While up to 41% of compounds present at first extraction were lost 

over time, new compounds constituted up to 14% of the total compounds 
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retrieved from the samples. No difference was observed between the short- 

and long-delay conditions with five successive extractions. Measures of 

gained and lost compounds in the condition with only two extractions were 

very likely to be overrepresented, because it was not possible to distinguish 

between genuinely gained, or lost, compounds, and possible artefacts from 

the analyses (i.e. the ambiguous compounds category). 

In addition, some of the compounds either having been lost, or 

having been gained between the first, and the second or third extraction, 

were tentatively identified using the NIST mass spectral library using a 

threshold of identity match of 80% and over, and visual comparison of the 

mass spectra (Table III.10).  

 

Table III.10. Subset of the compounds lost and gained between the first, 
and the second or third extraction of the same samples. Tentative names 
were given by NIST mass spectral library search, with identity match ≥80%. 
SD= standard deviation. 

Lost / Gained 
Average retention 

time ±SD (min) 
Compounds tentative name 
(identity match) 

Lost 6.157 ±0.013 Hexanal (91%) 

Gained 6.449 ±0.017 Butanoic acid (90%) 

Gained 7.547 ±0.032 4-Hydroxypentan-2-one (83%) 

Lost 8.996 ±0.002 o-Xylene (94%) 

Lost 9.347 ±0.007 Heptanal (96%) 

Lost 11.995 ±0.011 6-Methyl-5-hepten-2-one (93%) 

Gained 12.131 ±0.053 Hexanoic acid (80%) 

Lost 13.113 ±0.004 D-Limonene (99%) 

Gained 13.471 ±0.010 3,3,5-Trimethylcyclohexanone (90%) 

Gained 14.737 ±0.013 Heptanoic acid (94%) 

Lost 14.884 ±0.006 2-Methoxyphenol (97%) 

Gained 17.141 ±0.009 Octanoic acid (86%) 

Lost 17.626 ±0.004 Methyl salicate (97%) 

Gained 21.728 ±0.004 2,6,10-Trimethyldodecane 
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III.4. Discussion 

III.4.1. Searching for chemical signatures in callitrichid 
scents 

 Results from the chemical analyses confirmed a difference in the 

chemical composition of scent-gland secretions, scent-marks, and urine, 

which are all used in olfactory communication, suggesting that they may 

each convey different scent messages, and/or serve different functions. 

Such variation in chemical composition is hardly surprising: upon 

deposition, glandular secretions would mix with the environment. In 

addition, bacterial activity and loss of the most volatile compounds 

potentially lead to a rapid change in the chemical composition of the scent-

mark (Ezenwa and Williams, 2014), as inferred in the results of the 

experimental test of temporal stability of samples in section III.3.4. Results 

from this experiment will be discussed further in section III.4.3. Such 

variation with time and the effect of bacterial activity is also likely to happen 

for urine, as shown by Delbarco-Trillo et al. (2013), who found that voided 

urine from captive aye-ayes, Daubentonia madagascariensis, contained 

17% more compounds than urine collected directly inside the animals’ 

bladder. Moreover, scent-marks are often a mixture of secretions and urine, 

faecal materials and/or vaginal/seminal fluids (e.g. in wolves, Canis lupus, 

Asa et al., 1985; and giant pandas, Ailuropoda melanoleuca, Hagey and 

Macdonald, 2003), which could further explain the chemical differences 

observed with scent-gland secretions. Urine, the production of which 

involves a different biochemical pathway than glandular secretions, is 

believed to contain different, less volatile compounds (Müller-Schwarze, 

2006). Nevertheless, the present results also established that many urine 

and glandular volatile compounds are shared, which has been reported 

across many mammalian taxa (e.g. reviews by Apps, Weldon and Kramer, 

2015; and Charpentier et al., 2012; see Table V.1 in Chapter 5 for a 

comprehensive review of all compounds of interest identified in this study). 

Statistical analyses further confirmed the existence of particular 

chemical signatures in the scent samples, at the levels of species and 

group. Other studies have found similar results in primates and other 

mammalian taxa, with differences between species (e.g. in glandular 

secretions of two owl monkeys, Aotus azarae and A. nancymaae, Spence-

Aizenberg et al., 2018; urine of brown lemurs, DelBarco-Trillo et al., 2011; 
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anal gland secretions of sympatric Siberian weasels, Mustela sibirica, and 

steppe polecats, M. eversmanni, Zhang et al., 2002; swabs from cheeks 

and forehead of large felines, Soini et al., 2012; and urine of several 

Phodopus hamster species, Soini et al., 2005), subspecies (e.g. in the anal 

gland of Scandinavian beavers, Castor fiber fiber and C. f. albicus, Rosell 

and Steifetten, 2004), and groups (e.g. in axillary odours of rhesus 

macaques, Macaca mulatta, Weiß et al., 2018a; sternal gland secretions of 

mandrills, Vaglio et al., 2016; anal gland secretions of meerkats, Leclaire et 

al., 2017; and interaural gland secretions of Bechstein's bats, Myotis 

bechsteinii, Safi and Kerth, 2003). Nevertheless, species and group 

chemical signatures observed in this study may have been partly masked 

by differences between study sites, as a result of the unbalanced sampling 

design (i.e. not all species were present at all zoos). Although it was 

removed from the global linear models testing the effect of all factors on 

sample chemical richness and diversity, study site appeared to affect 

sample chemical diversity (section III.3.2.2.2). In a wild environment, 

differences between study sites would represent variation between distinct 

animal populations, which may be linked to different habitats, food 

resources, commensal bacteria communities, and genetic dissimilarities 

(e.g. variation in the chemical composition of anal gland secretions of 

geographically distinct wild populations of Eurasian otters in England and 

Wales, Kean et al., 2017; chin gland secretions of European rabbits, 

Oryctolagus cuniculus, across southeastern Australia, Hayes et al., 2002; 

and interaural secretions of several wild colonies of Bechstein's bats in 

Germany, Safi and Kerth, 2003). In captive conditions however, it may 

correspond instead to the husbandry under which captive primates are 

housed. Differences in diet, elements of the enclosure, husbandry 

procedures (e.g. enrichment routines), climate and illumination, etc., can 

play a role in the bacterial environment (Clayton et al., 2016), and therefore 

influence the compounds produced (e.g. the effect of diet on ring-tailed 

lemurs’ genital secretions, Drea et al., 2013; and on the volatile compound 

composition of mouse urine, Kwak et al., 2008). 

In addition, chemical differences were observed at the levels of sex, 

reproductive status, and between individual female tamarins. Sex 

differences have been reported in other primates (e.g. in genital secretions 

of Coquerel’s sifakas, Greene and Drea, 2014; subcaudal secretions of owl 

monkeys, A. nancymaae, MacDonald et al., 2008; and sternal gland 
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secretions of mandrills, Setchell et al., 2010), and carnivores (e.g. in urine 

of lions, Panthera leo, Andersen and Vulpius, 1999; and binturongs, 

Arctictis binturong, Greene et al., 2016b; anogenital gland secretions of 

giant pandas, Hagey and Macdonald, 2003; Yuan et al., 2004, and anal 

gland secretions of banded mongooses, Mungos mungo, Jordan et al., 

2011; brown bears, Ursus arctos, Rosell et al., 2011; and ferrets, Mustela 

furo, Zhang et al., 2005). Similarly, chemical signatures of reproductive 

state (e.g. in genital secretions of female Coquerel’s sifakas, Greene and 

Drea, 2014), and dominance status (e.g. in sternal gland secretions of male 

mandrills, Setchell et al., 2010), concur with the present findings of an 

effect of callitrichid reproductive status on the chemical composition of their 

deposited scents. In addition, individual differences in chemical composition 

have previously been reported in a number of primates (e.g. in genital and 

brachial gland secretions of ring-tailed lemurs, Boulet et al., 2010; 

Charpentier, Boulet and Drea, 2008; Scordato, Dubay and Drea, 2007; 

sternal gland secretions of mandrills, Setchell et al., 2010; and deposited 

scent-marks of common marmosets, Smith et al., 2001b; Smith, 2006), as 

well as in other mammals (e.g. in sternal gland secretions of koalas, 

Phascolarctos cinereus, Salamon and Davies, 1998; subcaudal gland 

secretions of European badgers, Meles meles, Buesching, Waterhouse and 

Macdonald, 2002a; b; anogenital gland secretions of giant pandas, Hagey 

and Macdonald, 2003; anal gland secretions of spotted hyenas, Crocuta 

crocuta, Burgener et al., 2009; and ferrets, Zhang et al., 2005; and 

interaural gland secretions of Bechstein's bats, Safi and Kerth, 2003). 

Similar to the results presented on scent-marking behaviour in Chapter 2, 

section II.4.1.1, chemical differences at the levels of sex, reproductive 

status, and the individual, may indicate a role of chemosignalling in mate 

choice, intrasexual competition, dominance and/or reproductive 

suppression in callitrichids. 

 

III.4.2. Identity of compounds of interest in callitrichid 
scent samples 

The total number of compounds found in samples from the two 

tamarin species (N=281), for which most samples were collected, was in 

the range of previous findings in primate semiochemistry: Smith et al. 

(2001b) found 162 compounds in scent-marks of female common 
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marmosets; Greene and Drea (2014) detected 252 compounds in the 

genital secretions of Coquerel’s sifakas; MacDonald et al. (2008) found 300 

volatile compounds in the subcaudal gland secretions of owl monkeys; but 

Setchell et al. (2010) found only 47 compounds in 88 swabs of mandrill 

sternal gland secretions; and Delbarco-Trillo et al. (2011) retrieved 74 

volatiles from the urine of twelve species of brown lemurs. 

Many of the compounds identified in this study by mass spectral 

library search (N=47) have been reported in previous work on mammalian 

semiochemistry (see Table V.1 in Chapter 5). In addition, I was able to 

verify the identity of 22 of these compounds, by comparison of retention 

times with those of commercially obtained compounds. In cases when the 

retention time of the compound from the biological sample, and that of the 

commercial compound, were too different for them to be the same 

compound, it was still possible to infer putative identity of the compound, if 

its mass spectrum was very similar to that of the commercially obtained 

compound. This was the case when compounds of similar mass spectra to 

that of their corresponding commercial compounds yet eluted earlier. For 

example, I inferred compound #33 to be a branched chain C8 carboxylic 

acid, as its mass spectrum was identical to that of commercial octanoic 

acid, but its retention time was significantly less. In a series of structural 

isomers, such as C8 carboxylic acids, the retention time reduces as the 

degree of branching increases, owing to reduced van der Waals’ attraction 

between the molecule and the stationary phase in the GC-MS. Identified 

compounds of interest were mainly alcohols, hydrocarbons, aldehydes, and 

ketones, sometimes containing an aromatic group, which have been 

mentioned in reviews on mammalian semiochemicals (Apps, Weldon and 

Kramer, 2015; Charpentier et al., 2012). 

A few of the identified compounds appeared to be specific to single 

sample categories. Notably, 2-methylpropanoic acid (#07) and 3-

methyltridecane (#39) were unique to emperor tamarins; 1,3,5- and 1,2,4-

trimethylbenzene (#18 and #21), 2-methyldecylpropanoate (#44), and tetra- 

or penta-decanal (#46) to cotton-top tamarins; and 2,5-dimethylpyrazine 

(#15) to silvery marmosets. Therefore, these compounds may play a role in 

species-specific chemosignalling. Moreover, 3-methylbutanoic acid (#09), 

1,2-dimethylbenzene (#12), 6-methyl-5-hepten-2-one (#20), and tetra- or 

penta-decanal (#46), which were only retrieved from reproductive female 
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tamarin samples, might be indicators of female reproductive state, and 

hence constitute important cues for breeding and/or reproductive 

suppression in the genus Saguinus. Yet all of these compounds, except 

#39 and #44, have also been found in secretions and/or urine from other 

mammals (see Table V.1 in Chapter 5). Nevertheless, the same 

compound may very well serve different functions in different species. For 

instance, Goodwin et al. (2006) revealed the existence of well-known bark 

beetle (Scolytinae) aggregation pheromones frontalin, exo-brevicomin, and 

endo-brevicomin, as well as the aphid (Aphidoidea) alarm pheromones 

(E,E)-α-farnesene and (E)-ꞵ-farnesene, in urinary chemical signals from 

ovulatory female African elephants, Loxodonta africana. 

Importantly, several of the compounds of interest listed in Table III.6 

may have not been directly produced by the animals. For example, anisole 

(#16), p-cresol (#25), p-cymene (#26), 2-methoxyphenol (#27), and 

eugenol (#38), are definitely of non-mammalian origin, because their 

metabolic pathway only exists in plants, fungi and bacteria (Charpentier et 

al., 2012). Nevertheless, these compounds may originate from diet or 

commensal bacteria. A well-known example of the use of substances 

derived from alimentation in animal communication is that of feather 

colouration in birds (Endler, 1980). Birds acquire carotenoids from food, 

which once passed to the tegument of their feathers provide bright 

colouration. Plumage colouration has become an important honest signal of 

health, favoured by sexual selection. Similarly, Ferkin et al. (1997) 

experimentally demonstrated that differences in diet affected the 

attractiveness of meadow voles, Microtus pennsylvaticus, to the other sex. 

Moreover, commensal bacteria present in the scent-glands or on the skin 

may take an active part in the composition of the secretions, as seen in 

section III.4.1. Such findings were acknowledged in mammalian studies 

such as by Goodwin et al. (2012), on African elephants; Leclaire et al. 

(2014; 2017) on meerkats; and Theis et al. (2012; 2013) on spotted 

hyenas, and striped hyenas, Hyaena hyaena. Some compounds of interest 

given tentative identities in the present study were also found to be 

produced by human commensal bacteria using similar analytical methods 

(i.e. 2-methylpropanoic acid, 2-methylbutanoic acid, heptanal, 

benzaldehyde, and benzeneacetaldehyde found in the human faecal 

microbiome, Raman et al., 2013; and pentan-2-one retrieved from cultures 

of Staphylococcus aureus, Tait et al., 2014). In addition, some compounds 
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of plant origin may have been incorporated into the swabs during sampling 

and correspond to the odour of the substrate branches themselves, or to 

contamination of the surface swabbed by food remains and/or excrement. 

Nevertheless, callitrichids, as many animals, may very well use such 

extraneous compounds as chemosignals, even if they do not directly 

produce them. Archie and Theis (2011), and Ezenwa and Williams (2014), 

offer good reviews of the relationships between microbial communities and 

animal olfactory communication. 

 

III.4.3. Temporal stability of sample composition  

Results from the sample decay experiment confirmed the loss of 

over 40% of compounds in samples over time, and showed that repeated 

extraction of a sample enhanced the loss of compounds. Such results 

reveal the low concentration of many of the compounds retrieved from 

these samples, for them to be removed completely at first or second 

extraction using the SPME fibre. Moreover, samples not only lost 

compounds over time, they also gained new compounds, with over 5% of 

new compounds appearing over time after successive extractions. These 

new compounds may originate from the degradation of previous 

compounds at room temperature, and/or via bacterial activity inside the 

sample vial. When comparing some of the compounds lost from the 

samples with those newly gained, it appeared that some of the new 

compounds appeared to be a degraded version of the compounds of origin. 

For instance, while hexanal and heptanal disappeared at the second 

extraction, hexanoic acid and heptanoic acid appeared. Hexanal and 

heptanal may well have been oxidized into their corresponding carboxylic 

acids via action of microorganisms inside the vial when left at room 

temperature. Other compounds, such as 2,6,10-trimethyldodecane, are 

known products of bacteria chemical pathways. Besides, some 

compounds, such as 2-methoxyphenol, are quite reactive when exposed to 

air and light, and would have naturally degraded when left at room 

temperature. Such natural decay of deposited scent-marks and urine may 

in fact participate to the information conveyed in chemosignals, as the 

progressive loss and/or replacement of compounds in an odour would 

relate to the time elapsed since the signaller animal was physically present 
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in the area, and/or displaying a certain physiological state such as ovulation 

(Goodwin et al., 2012; Müller-Schwarze, 2006). 

Finally, the results showed no evidence that long delays at room 

temperature, as opposed to short delays, affected more sample chemical 

composition, which implies that temperature may not directly impact sample 

quality to a damaging level. Nevertheless, the variability in chemical 

composition observed over time in the samples used for this experiment, 

analysed with SPME–GC-MS, supports the recommendation made by 

many authors in the field of mammalian semiochemistry to keep samples 

frozen until their analysis, to avoid instability as much as possible (e.g. 

Apps, Weldon and Kramer, 2015; Drea et al., 2013).  

 

III.4.4. Limitations of the study 

The present study showed evidence for various types of chemical 

signatures in callitrichid scents, and tentatively identified 47 compounds as 

putative semiochemicals. Nevertheless, the chemical sampling and 

analysis procedure presented several flaws. First, the sample size was 

limited to one or two groups of each callitrichid species, which restricted the 

interpretation of the present chemical results. In addition, the two groups of 

emperor and cotton-top tamarins were studied at three different sites (i.e. 

one group of emperor tamarin at TZ, one group of cotton-top tamarin at 

PWP, and one group of each at DMP), which did not permit the strict 

distinction between site, species, and group differences in the linear model, 

nor in the permutational analysis of variance. Besides, collection of 

suprapubic scent-gland swabs only for silvery marmosets and emperor 

tamarins at TZ did not allow comparisons with other species or sites. 

Additionally, samples from silvery marmosets were unfortunately very 

scarce (i.e. only one suprapubic gland swab was collected per individual 

during health check), thus preventing multiple comparisons with other 

species or sample types to be made. Finally, it was not possible to collect 

multiple samples from all animals included in this study, owing to limited 

access into the enclosures and constraints in the amount of time dedicated 

to sample collection overall. Moreover in some instances, while collection of 

repeat samples was achieved, some did not pass the sample quality 

assessment and had to be removed from the pool of samples used in the 
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analyses. The total sample size for this project would have preferably 

included at least two repeats of all three sample types (i.e. scent-gland 

secretion, deposited scent-mark and urine) for each individual in all the 

groups studied, and at least one occurrence of two groups of the same 

species hosted at the same zoo. However, such conditions were not 

possible to follow in the present study (see Chapter 2, section II.4.2). 

Although scent-marks were collected as fresh as possible, access 

into the enclosure was not always readily possible, thus affecting the quality 

of samples. Moreover, in a zoo environment enclosure elements used as 

scent-marking substrates, such as dry branches and platforms, are at 

places covered by several layers of old food remains, faeces, scent-marks 

and urine, potentially strongly affecting the smell swabbed after a scent-

marking event. Similarly, the ambient air in a captive tamarin enclosure, 

which is a small enclosed space, is saturated with odours of food, faeces, 

urine, and other body odours, forming a strong background smell. In wild 

conditions, the use of a wider range of substrates, and regular rainfall, 

might ensure a more neutral substrate prior to scent-marking. The present 

study was initially designed to use branch swabs (i.e. swabs of branch 

substrate on a spot not covered with a freshly deposited scent-mark), and 

air swabs (i.e. swabs held in the enclosure without touching anything) as 

controls, to differentiate urine and scent-mark volatile compounds from the 

enclosure’s ‘chemical background’. The chemical results showed that 

although branch and air compounds could be distinguished from those of 

scent-marks and urine via non-metric multidimensional scaling (see section 

III.3.2.2.1), their chemical composition was quite similar. The original data 

processing methodology was to remove all compounds found in branch or 

air samples as well as in the genuine animal samples. However, many of 

the compounds retrieved from branch and air samples might in fact have 

originated from scent-marks or urine deposition, in such a closed 

environment. It was thus decided to include these compounds, provided 

that their tentative NIST identity or mass spectrum was not that of obvious 

contaminants. There is therefore no confident way in the present dataset, to 

tell apart genuine compounds from a scent-mark freshly collected, from 

compounds already present in the air or on substrates at the time of 

deposition, because these can in fact be the same compounds. 

Nevertheless, the analytical techniques employed in the present study (i.e. 

SPME–CG-MS) were designed to retrieve only the most volatile 
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compounds from the swabs; hence, they increased the likelihood that the 

compounds identified from the animal swabs were newly produced instead 

of having been present prior to deposition, or else they would have 

evaporated by the time of swab collection. 

Another limitation of the sampling procedure was that it did not allow 

for the control of the amount of sample collected on each swab, making 

impossible any attempt at measuring individual concentration of the 

different compounds. Even though a standardized swabbing, where the 

swab was rubbed for the same number of times and in the same fashion for 

each sample, was employed, there was an important variation in the 

amount of secretion or urine collected each time (pers. obs.). In addition, 

the mass spectrometric detector has different sensitivities for different 

compounds. This means that whilst the area of a peak on a chromatogram 

is proportional to the concentration of the corresponding compound in the 

sample injected, peak areas of different compounds are not proportional to 

their relative concentrations. Nevertheless, it is likely that the amount of 

scent-gland secretion deposited in a scent-mark at one time constitutes an 

aspect of the chemical message broadcast by the signalling individual 

(Müller-Schwarze, 2006). Callitrichids may be more sensitive to certain 

compounds than others, and to their relative concentration as well as their 

identity, as shown by Laska and co-workers on other primates (Laska et al., 

2004; Laska, Wieser and Hernandez Salazar, 2005; Laska et al., 2007; 

Eliasson, Hernandez Salazar and Laska, 2015). Hence unfortunately the 

chemical messages exchanged by these animals have the potential to be 

much more complex than the level of analysis reached in this study.  

In addition, it is essential to note that the sample extraction 

technique employed, headspace SPME, was selective for the more volatile 

components of the samples (see Chapter 1, section I.2.2.2.3). Indeed, the 

compound of highest molecular weight identified in the present study was 

heptadecane, a C17 molecule (i.e. composed of 17 carbon atoms), while 

other studies using different methods retrieved compounds up to C24 or 

C26 (e.g. Zhang et al., 2008, on the giant panda). The true ‘odour bouquet’ 

conveyed in individual callitrichid scent-marks is likely to be more complex 

than the assemblage of compounds retrieved from the samples in this 

study. 
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Finally, despite my best intentions to maintain the analytical 

equipment at the same level of precision throughout the project, some 

variation in the quality of the analyses happened. For example, the GC-MS 

instrument used for this project was serviced between the analysis of 

samples from TZ and PWP, and that of samples from DMP. GC-MS users 

would acknowledge that any variation in the components or parameters of 

the instrument may lead to a change in the analytical results, which are 

very difficult to identify. Besides, the five SPME fibres used throughout the 

project to extract volatile compounds from the samples’ headspace, were at 

different stages of ageing for each sample. This potentially influenced the 

number of chemicals retrieved, as fibres lose efficiency as they age, and 

the amount of contamination found, as contamination on the fibre tends to 

increase the more it is used. 

 

III.4.5. Conclusion 

In spite of its limitations, the present study sheds light on the 

chemical composition of scent-gland secretions, scent-marks and urine 

deposited by callitrichids in a captive environment. Whatever messages are 

ultimately encoded in the glandular secretions produced by the animals, it 

is important to remember that they are naturally altered as soon as they are 

deposited, by mixing with other body fluids such as urine, and with 

chemicals from conspecifics, plants and microorganisms present in the 

environment, and due to post-deposition odour decay. The resulting 

chemosignals transmitted to con- and hetero-specifics hence reach a great 

level of complexity that will be difficult to decipher, even with the progress 

of analytical techniques. As is recognized in the field of mammalian 

semiochemistry (Apps, 2013; Drea et al., 2013; Müller-Schwarze, 2006; 

Wyatt, 2014a), combining chemical analyses with behavioural bioassays 

may be a good way to reach further into understanding the variable function 

of the diverse forms of chemical messages used in olfactory 

communication.  
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Chapter IV – Scent-gland 

semiochemistry in two wild 

sympatric tamarins 
 

Abstract 

 In this chapter, I presented results from the first use in the field of 

the Torion® T-9 portable GC-MS device for in situ analysis of wild mammal 

scent samples, and compared them with similar results using a 

conventional bench-top GC-MS in the laboratory after transporting the 

samples back to the UK. Scent-gland and skin swabs were collected from 

15 groups of two sympatric species of wild emperor tamarins, Saguinus 

imperator, and Weddell’s saddleback tamarins, Leontocebus weddelli, 

during two successive seasons of a long-term capture-and-release 

programme in the Peruvian Amazon. I found chemical signatures in the 

samples at the levels of species, group, sex, reproductive status, the 

individual, and between sample types (i.e. anogenital, suprapubic, and 

sternal gland, and the skin of the inner thigh or arm). Moreover, I tentatively 

determined the identity of putative tamarin semiochemicals for 11 

compounds of interest retrieved from in situ analyses, and 25 compounds 

from laboratory analyses. The use of the Torion® GC-MS yielded results of 

lower quality than the laboratory analyses; I provided recommendations for 

future use of this instrument for in situ analyses of mammalian chemical 

signals. In addition, I compared the chemical results obtained in the present 

field study with similar analyses in captive conditions. 

 

IV.1. Introduction and hypotheses 

IV.1.1. Challenges of semiochemistry studies in the 
wild 

Knowledge of primate chemical communication is still limited 

(Heymann, 2006b), notably due to the methodological difficulties of 

recording and quantifying odour signals, especially in wild conditions (Drea 

et al., 2013). Nevertheless, this field of research has recently been building 
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up at a much faster pace, as mentioned in Chapter 1, section I.3. The 

development of modern analytical chemistry techniques has improved our 

ability to investigate a wider range of semiochemicals (i.e. of various 

molecular weight, polarity, or chemical class) from the scent-gland 

secretions and body odours of numerous mammalian species (see reviews 

by Apps, Weldon and Kramer, 2015; Burger, 2005; and Soso et al., 2014). 

However, state-of-the-art semiochemistry techniques do not resolve the 

common challenges faced by field biologists when studying animals in the 

wild, which are the collection, storage, and transportation of samples. As 

the chemical composition of scent samples is likely to change if they are 

not kept frozen (see Chapter 3, sections III.3.4 and III.4.3), the logistics of 

bringing samples from the field back to the laboratory can be difficult (Drea 

et al., 2013). At present, two approaches are used in the field of 

semiochemistry in wild conditions. The first approach is to collect samples 

on swabs (e.g. Leclaire et al., 2017; Weiß et al., 2018a) or sometimes, in 

the case of volatile compounds only, in thermal desorption tubes (e.g. 

Kücklich et al., 2017; Weiß et al., 2018b), and transport them to the 

laboratory for analysis by chromatography (see Chapter 1, section I.2.2). 

The second approach is to extract and analyse semiochemicals in situ 

using portable devices such as an electronic nose, which is able to identify 

an odour using the response pattern of an array of gas sensors to match a 

known odour pattern (Nagle, Schiffman and Gutierrez-Osuna, 1998). 

Electronic noses are notably used in human clinical research, such as for 

the screening of diseases in body odour and breath (reviewed in Röck, 

Barsan and Weimar, 2008). More recently, several chromatography 

companies have begun developing miniaturized gas chromatography-mass 

spectrometry (GC-MS) devices, such as the Torion® T-9 GC-MS developed 

by PerkinElmer (2016), which can conduct full chemical analysis of volatile 

components, while being portable. These devices were originally developed 

for the screening of specific volatiles in the fields of environmental science, 

food manufacturing, and chemical warfare, but are now starting to be used 

in the field of animal semiochemistry (e.g. analysis of the body odour of 

captive common marmosets, Callithrix jacchus, Kücklich et al., 2017). While 

promising, the use of these portable devices for the identification of a 

multitude of unknown mammalian semiochemicals is considerably more 

complex than screening for a few known compounds, and hence 

constitutes a further challenge.  
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IV.1.2. Aims and hypotheses 

This chapter presents results from the chemical analysis of scent-

gland and skin samples collected from two sympatric species of wild 

tamarins, analysed in situ using the Torion® T-9 portable GC-MS 

(PerkinElmer, 2016), as well as in the laboratory using a conventional 

bench-top GC-MS after transporting the samples back to Anglia Ruskin 

University (ARU). First, I investigated the existence of chemical signatures 

in wild tamarin scent-gland secretions at the levels of species, group, sex, 

and reproductive status, and between scent-gland types, in a similar 

approach as carried out in Chapter 3 on captive callitrichid semiochemistry. 

Species, group and sex are markers of identity, likely to be conveyed in 

scent-marks in the form of chemical signatures (e.g. species differences in 

owl monkeys, Aotus spp., Spence-Aizenberg et al., 2018; group and sex 

differences in mandrills, Mandrillus sphinx, Setchell et al., 2010; Vaglio et 

al., 2016). Since chemosignalling is assumed to be involved in female 

primates’ advertisement of reproductive status (Boulet, Charpentier and 

Drea, 2009; Semple and Higham, 2013; Snowdon et al., 2006), we can 

anticipate that breeding females might show a different, potentially more 

complex, range of chemicals in their scent-glands, used to advertise their 

current reproductive status. In addition, chemical signals may play a role in 

intrasexual competition in both males and females, for dominance and 

access to mates. Furthermore, the three tamarin specialized scent-glands 

(i.e. anogenital, suprapubic, and sternal glands) may also contain different 

semiochemicals, allowing different signals to be conveyed via one or 

another of the scent-glands, as suggested in ring-tailed lemurs, Lemur catta 

(Greene et al., 2016a). 

Second, I examined the putative identity of the compounds retrieved 

from these wild samples using both in situ and laboratory-based 

approaches, which I compared with results from previous research on 

mammalian semiochemistry, including the compounds identified in Chapter 

3 on captive callitrichid semiochemistry. We can expect some of the 

compounds to be ubiquitous, found in all the samples analysed in this study 

as well as in other mammals; and others to constitute a unique signature of 

the species studies here (Wyatt, 2014a; see Chapter 3). I then discussed 

the success of the use of the Torion® GC-MS for the analysis of primate 

semiochemicals overall, as opposed to the widely used approach of 
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collecting samples in the field and transporting them to the laboratory for 

analyses. Finally, I provided advice for future field research using this 

device. I hope that the current study, though preliminary, will help decipher 

some of the signals conveyed in wild tamarin scents. Moreover, this study 

is aimed at developing novel techniques for the analysis of primate 

semiochemicals, in an effort to contribute to knowledge in the field. 

 

IV.2. Methods 

IV.2.1. Study site and species 

Two sympatric tamarin species, the bearded emperor tamarin, 

Saguinus imperator subgrisescens (Hershkovitz, 1979, further referred to 

as S. imperator; Fig. IV.1a) and the Weddell’s saddleback tamarin, 

Leontocebus weddelli (formerly Saguinus fuscicollis weddelli, Deville 1849, 

recently reassigned; Buckner, Alfaro, Rylands, & Alfaro, 2015; Matauschek, 

Roos and Heymann, 2011; Fig. IV.1b), were studied in June 2017 at 

Estación Biológica Los Amigos (EBLA) in the south-eastern Peruvian 

Amazon (12°34’S, 70°05’W). 

 

 

Figure IV.1. Adults of the two study species: a. bearded emperor tamarin, 
Saguinus imperator, and b. Weddell’s saddleback tamarin, Leontocebus 
weddelli. Photos credit: (a) S. Cassalett Malagón and (b) M. Guerra Vargas 

a. b. 
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EBLA is located in a 1400 km² conservation concession privately 

managed by the Peruvian non-governmental organization Asociación para 

la Conservación de la Cuenca Amazónica, under the umbrella of the 

international organization Amazon Conservation Association (Fig. IV.2). 

 

 

Figure IV.2. Map of the location of the study site Estación Biológica Los 
Amigos (labelled Los Amigos on the map) in south-eastern Peru (12°34’S, 
70°05’W). From the Amazon Conservation Association website 
(www.amazonconservation.org).  

 

EBLA has an extended trail system incorporating a range of 

rainforest habitats, from extended palm swamps to high terra firme forest, 

able to host a great diversity and abundance of flora and fauna (Pacheco et 

al., 2009; Pitman et al., 2001). This richness in habitats and species, in 

http://www.amazonconservation.org/
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addition to relatively easy access (i.e. a 6–8 hours journey by car and 

motorboat from Puerto Maldonado), have made EBLA an attractive field 

site for a range of international research projects since its creation in 2001. 

Notably, the substantial primate community present at this site (i.e. 11 

species) makes EBLA a place of choice for primatological studies (e.g. 

Pacheco et al., 2009; Palminteri, Powell and Peres, 2011; Watsa, 2013). At 

EBLA, saddleback tamarins are commonly found in groups of 3–9 

individuals, with a group density of 2.0 groups per km², while emperor 

tamarins are found in groups of 2–7 individuals, with a group density of 1.5 

groups per km² (Watsa, 2013). The two species often form mixed-species 

foraging troops during the day. Groups of both species are also observed 

travelling and associating with dusky titi monkeys, Callicebus brunneus, 

Goeldi’s monkeys, Callimico goeldii, and Bolivian squirrel monkeys, Saimiri 

boliviensis, although less frequently (Pacheco et al., 2009; Palminteri, 

Powell and Peres, 2011; Watsa, 2013). 

 

IV.2.2. Capture-and-release programme 

Field Projects International (FPI, formerly Primates Peru), a non-

profit organization based in Saint Louis, MO, USA, has been leading since 

2009 one of the most remarkable long-term research projects at EBLA. 

FPI’s research focuses on the demography, feeding ecology, social 

behaviour, communication, and parasites of emperor and saddleback 

tamarins (www.fieldprojects.org). The project involves an annual capture-

and-release of 14–17 groups of tamarins of both species. Annual capture of 

the EBLA tamarin population enables individual growth and reproduction to 

be monitored, collection of an array of biological samples, and individual 

marking of all the animals using radio-collars, beaded collars, and tail 

bleach patterns (Watsa et al., 2015). FPI’s capture-and-release programme 

is unique in repeatedly targeting multiple groups of two sympatric species 

of callitrichids in a relatively short time frame (i.e. 20–30 days of capture 

each year).  

Tamarin groups are captured using baited mesh traps composed of 

six to eight compartments, individually fitted with a manually controlled 

door. Upon trapping, animals are sedated and processed singly for 

biological sampling and collar fitting, using a two-step sedation procedure 

http://www.fieldprojects.org/
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(Watsa et al., 2015). FPI’s capture-and-release programme provided a 

great opportunity to obtain quick and non-invasive swabs of tamarin scent-

glands while the animals were anesthetized. FPI’s research is conducted 

with annual authorization from the Peruvian Ministry of the Environment 

(SERFOR), as well as the Animal Care and Use Committees of 

Washington University in Saint Louis, the University of Missouri–Saint 

Louis, and the University of Calgary (ACC protocol # AC15-0161). It 

adheres to the American Society of Primatologists’ Principles for the Ethical 

Treatment of Non-Human Primates, and follows the Animal Behavior 

Society Guidelines (2018) and the American Society of Mammalogists’ 

Guidelines on wild mammals in research (Sikes and Gannon, 2011). 

 

IV.2.3. Scent-gland sample collection, extraction, and 
GC-MS analyses 

 For the purpose of this project, samples of tamarin scent-gland 

secretions were collected over 20 days in June 2017, during FPI’s annual 

capture-and-release season, and analysed in situ. Sampling procedure 

consisted of gently wiping a sterile cotton bud, previously wetted with clean 

distilled water, over the scent-gland area of the skin. For each of the 29 

emperor tamarins and 33 saddleback tamarins captured, the following 

swab samples were collected: a. anogenital scent-gland, b. suprapubic 

scent-gland, c. sternal scent-gland (or sternal skin area when not visible), 

and d. the animal’s inner thigh, a relatively hairless region. In addition,       

e. two air controls (i.e. swab left out in the open for 30 sec, to control for 

background volatiles in the ambient air), and f. two blank controls (i.e. 

empty vial and unused swab) were collected per capture session. An entire 

tamarin group was captured at each successful trapping session, giving us 

the opportunity to collect samples from all animals in the group during the 

first phase of the sedation procedure. This permitted all swabs to be 

collected within a short time interval, and before the animals’ scent-glands 

risked getting in contact with other surfaces, which would have introduced 

extraneous compounds in the swabs. Swabs were stored in new 4 mL 

glass screw-top vials fitted with a polytetrafluoroethylene/rubber septum 

(Supelco) and kept in a cool Thermos® flask filled with ice packs for a 

maximum of seven hours. Upon return from each capture session, samples 

were stored in a cold refrigerator at the field station until analysed (mean 
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temperature 0.5 ±2.4°C, recorded hourly by an automatized temperature 

data logger). 

Scent samples were analysed at the field station an average of 3.8 

±2.8 days after collection, using headspace extraction and a new 

generation portable GC-MS (Torion® T-9; PerkinElmer, 2016) provided by 

Dr Amanda Melin at the University of Calgary (www.amandamelin.com). 

The samples were extracted individually using a 65 µm solid-phase 

microextraction (SPME) fibre coated with divinylbenzene/ 

polydimethylsiloxane (Custodion®; PerkinElmer, 2016) for 2 min at room 

temperature (23.9 ±3.1°C), after heating them for 2 min in a bath of 

simmering water (ca. 100°C). The volatile-coated fibre was then desorbed 

at 300°C for 5 sec into the injection port of the Torion® GC, which was 

equipped with a low polarity MXT-5 Low Thermal Mass capillary column. 

Helium was used as the carrier gas and the injection was on splitless 

mode, with split mode applied at 2 sec with a ratio of 10:1, then 50:1 at 10 

sec. The temperature of the column started at 50°C, held for 10 sec, 

followed by an increase of 2°C/sec to the final temperature of 300°C, which 

was held for 2 sec. The total run time was of 137 sec per sample. Mass 

separation was performed by the Torion® toroidal ion trap MS under 

electron ionization mode at 70 eV, in full-scan mode in 45–500 mass-to-

charge ratio (m/z) range. Each day, animal samples, blank and air controls, 

and fibre blanks (i.e. clean fibre run in the same conditions to control for 

carry over), were run in random order. This prevented batch effect, which is 

an artificial source of variation added to a group of samples during 

handling, equilibration, extraction, or GC-MS analysis. Although the Torion® 

possesses a built-in data interpretation software, all resulting 

chromatograms were taken back to ARU for further interpretation, because 

the Torion® was being used for another project after sample analysis. 

An additional 29 scent-gland samples, collected during FPI’s 2018 

capture-and-release season, were shipped to ARU, where they were 

analysed by SPME–GC-MS following the same method as detailed in 

Chapter 3, section III.2.2. Temperature varied between below zero and 

room temperature during transportation (owing to unforeseen logistical 

difficulties, sample shipment between Peru and the UK was executed in 

several steps, during some of which the samples were left to thaw). These 

samples were collected from the anogenital, suprapubic and sternal scent-

http://www.amandamelin.com/


Chapter IV – Scent-gland semiochemistry in wild tamarins 

161 

glands, and a control region on the skin of the inner arm, of three males 

and five females belonging to two groups of emperor tamarins which had 

not been sampled during the 2017 season. Sample collection was 

performed following the same approach as detailed above, with the 

exception that viscose swabs held by forceps (the same as used in the 

captive study, see Chapter 3, section III.2.2) were employed instead of wet 

cotton buds. 

 

IV.2.4. Interpretation of analytical results 

For each GC-MS chromatogram, automatic peak detection, 

integration, and tentative identification using the National Institute of 

Standards and Technology (NIST) mass spectral library (Shen et al., 2014), 

was performed in ChemStation™ (Agilent, Santa Clara, CA, USA). All 

detected peaks were listed using the information of retention time, peak 

area and height, mass spectrum, and putative NIST identification. Only 

peaks with a minimum height of 1% of that of the largest peak were 

selected, in order to limit the inclusion of background noise. Additionally, in 

chromatograms generated in situ with the Torion® GC-MS, only peaks 

eluted before 1.6 min were selected, since peaks after this time generally 

displayed excessively noisy baselines (i.e. greater than one sixth of the 

highest peak); and peaks that were too flat to be distinguished from the 

baseline or from a neighbouring peak were removed from further analysis. 

Visual comparison of mass spectra between compounds originating from 

the tamarin scent-gland samples, the air and blank control samples, and 

the fibre blanks (i.e. when the clean SPME fibre was run like a sample), 

allowed the tentative identification of candidate tamarin semiochemical 

compounds, in the same way as in Chapter 3 (section III.2.3). 

 

IV.2.5. Determination of reproductive status 

Reproductive status of all individuals of the two study species, 

defined as primary breeders, secondary breeders, and nonbreeders, was 

determined using a multivariate statistical algorithm developed by Watsa, 

Erkenswick and Robakis (2017). The model used indices of reproductive 

morphology (i.e. vulvar index, testicular volume, suprapubic gland area, 
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and mean nipple length), combined with known reproductive status of a 

subset of animals in the population obtained by direct observation of 

copulations, to predict the reproductive status of all other individuals 

(Watsa, Erkenswick and Robakis, 2017). Primary breeders were 

reproductively active males and females, regardless of whether they sired 

offspring. Secondary breeders were both males and females aged one to 

two years old and sexually mature, but not having bred yet. Nonbreeders 

were all offspring born that year and sexually immature.  

 

IV.2.6. Statistical analyses 

All statistical analyses were performed in R v.3.5.1 operated in 

RStudio (R Core Team, 2018). The limited number of samples collected, 

and of compounds retrieved from both in situ and laboratory chemical 

analyses, did not allow for the use of multivariate analyses to examine 

differences in chemical composition across samples, as was carried out in 

Chapter 3; therefore, most results in this chapter are solely descriptive. 

Nevertheless, in the case of the samples analysed in situ it was possible to 

test the influence of the factors species, group, sex, reproductive status, 

and sample type, on the likelihood of finding a compound of interest in the 

samples (i.e. compounds presence/absence). First, non-parametric 

Kruskal-Wallis rank sum tests (function kruskal.test() in R base package 

‘stats’) tested variation in the presence/absence of compounds across the 

different factors. Dunn’s tests with Bonferroni adjustment (function 

posthoc.kruskal.dunn.test() in R package ‘PMCMR’; Pohlert, 2014) were 

then used as post-hoc tests to assess pairwise differences within the same 

factors. In the case of the samples analysed in the laboratory, Pearson’s χ² 

tests with Yates’ continuity correction (chisq.test() in base R package 

‘stats’) were used to assess variation in the occurrence of compounds of 

interest across categories of group, sex, reproductive status, and sample 

type. 
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IV.3. Results 

IV.3.1. In situ analyses of wild tamarin samples using 
the Torion® GC-MS 

IV.3.1.1. Chemical differences at the levels of species, group, sex, 
reproductive status, and the individual, and between scent-glands 

 Swabs from the scent-glands and bodies of 62 animals in 14 

tamarin groups of both species, as well as the ambient air, and blanks, 

were collected. Swabs presenting obvious contamination such as visible 

faecal material were excluded from the analysis. All samples from one 

emperor tamarin group (five animals) were excluded, because the GC-MS 

method used was refined after analysing these samples (e.g. change in run 

time, column temperature, injection conditions, etc.), which made the 

results non-comparable with the other samples. A total of 278 samples 

were hence included in the final analysis (Table IV.1; see Appendix D, 

Table D.1). 

 

Table IV.1. Sample composition used for the in situ analysis of wild tamarin 
scent-gland secretion samples. 

Species # Groups Sex # Indiv. # Samples 

Saddleback  
tamarin, 
Leontocebus 
weddelli 

8 

♂ 22 85 

♀ 11 42 

Emperor  
tamarin, 
Saguinus 
imperator 

5 

♂ 10 39 

♀ 14 49 

Total individuals in analysis                         57 Total animal samples      215                                    

 Air and blank samples       63                                                           

Total samples     278 

 

Peaks with similar retention times in different chromatograms could 

represent the same, or different, compounds. I decided which of the two 

possibilities applied by comparing the mass spectra of individual 

chromatographic peaks, as illustrated in Fig. IV.3. Visual inspection of the 
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chromatograms of the 215 animal samples collected (from the anogenital, 

suprapubic, and sternal scent-glands, and the inner thigh skin) permitted 

the recognition of a number of peaks that were absent in all the controls 

(i.e. the air samples, the blank samples, or the fibre blanks). The majority of 

these peaks, however, were poorly resolved, i.e. they represented a 

superposition of two or more compounds of similar m/z, visible through a 

very complex mass spectrum. It was thus only possible to provide a 

tentative identification of 11 compounds (i.e. compounds A–K). These 

compounds, referred to here as ‘compounds of interest’, were present in 33 

of the samples (Table D.1).
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Figure IV.3. a. Overlaid chromatograms of the anogenital (blue), and suprapubic (green) gland swabs of two female emperor tamarins, the sternal 
gland swab of a male saddleback tamarin (orange), and a fibre blank ran at the same time as the samples (red), analysed using the Torion® 

portable GC-MS. The mass spectra b., c., d., and e. correspond to the peaks of respective colours framed in grey, the retention times of which 
were similar enough to qualify for being the same compound. Peaks b. and c., of nearly identical mass spectra, were selected as a compound of 
interest; whereas peak d., which was very similar to the blank peak e., was discarded as a likely contaminant. 
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Compounds A, B, D, G, H, I and J were found in at least two 

different samples, while compounds C, E, F and K appeared to be unique 

to an individual (see Appendix D, Table D.1). Only compound D was found 

in both species; compounds A, B, C, E, F, H and K were specific to 

saddleback tamarins, the other three to emperor tamarins (Fig. IV.4a; 

Table D.1). The majority of compounds were only retrieved from one or two 

groups; however compound A was found in six out of the eight saddleback 

tamarin groups, and compound G from three out of the five emperor 

tamarin groups (Table D.1). Compounds A, B, D, G, and H were found in 

both sexes, while compounds C, E, and F were male-specific, and 

compounds I, J and K were female-specific (Fig. IV.4b; Table D.1). Most of 

the compounds were exclusively found in primary breeders; compounds A, 

G, and J were also present in samples from secondary breeders; and 

compound F was only found in a secondary breeder (Fig. IV.4c; Table 

D.1). Compound A was unique in being found principally in secondary 

breeding males. Samples from individual tamarins generally contained only 

one compound of interest, and compounds C, E, F and K were only found 

in single animals (Table D.1). Nevertheless, compounds A and F, and 

compounds B and C, were retrieved from the samples of a secondary 

breeding male saddleback tamarin (LW2_M1), and a primary breeding 

male saddleback tamarin (LW6_M4), respectively; and compounds D, I, 

and J were found in samples from a primary breeding female emperor 

tamarin (SI2_F1; Table D.1). Finally, compounds C, D, E and G were only 

found on anogenital gland swabs, while compounds J and K were only on 

suprapubic gland swabs, and compound F on a sternal gland swab (Fig. 

IV.4d; Table D.1). Compounds A, B, and H were retrieved from all areas 

sampled, including the skin, suggesting a non-specialized glandular 

compound, or even an exogenous origin. 
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Figure IV.4. Distribution of the 11 compounds of interest obtained in situ, between the different categories of a. species, b. sex, c. reproductive 
status (i.e. primary and secondary breeders only, as nonbreeder samples did not show any of the compounds of interest), and d. sample type.
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Anogenital, suprapubic, sternal scent-glands, and the inner thigh 

skin region, respectively accounted for 34%, 24%, 30%, and 12% of the 

pool of samples containing one or several of the 11 compounds of interest 

(Fig. IV.5). Anogenital and suprapubic scent-gland samples from both 

species showed compounds of interest, while sternal scent gland and skin 

samples from saddleback tamarins only, presented compounds of interest 

(Fig. IV.5a). Scent-gland samples containing compounds of interest were 

represented in both sexes, although the majority of compounds of interest 

in suprapubic, and sternal gland samples, were from females, and males, 

respectively (Fig. IV.5a). Similarly, compounds of interest from all three 

scent-gland types were retrieved from both primary and secondary 

breeders, although the majority of compounds of interest from anogenital 

gland samples were from primary breeders (Fig. IV.5b). Compounds of 

interest retrieved from skin samples were only found in primary breeders. 

 

 

Figure IV.5. Distribution of the four types of sample presenting a compound 
of interest, between a. species and sexes, and b. species and reproductive 
status (i.e. primary and secondary breeders only, as nonbreeder samples 
did not show any of the compounds of interest). 
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Additionally, the likelihood of presence of compounds of interest in 

the samples was tested across categories of species, sex, reproductive 

status, and sample type. It was significant at the levels of species (Kruskal-

Wallis rank sum test: χ²=5.286, df=1, P= 0.022) and reproductive status 

(χ²=10.360, df=2, P= 0.006; Table IV.2). In particular, saddleback tamarin 

samples were more likely to contain a compound of interest than emperor 

tamarin samples (Dunn’s post-hoc test: Z=2.180, P= 0.029), and samples 

from primary breeders were more likely to show compounds of interest than 

samples from nonbreeders (Z=3.167, P= 0.005; Table IV.2). 

 

Table IV.2. Results of Kruskal-Wallis sum rank tests of difference, and 
Dunn’s post-hoc tests on pairwise comparisons, on the likelihood of 
presence of compounds of interest in the samples analysed in situ, across 
categories of species, sex, reproductive status, and sample type. χ²= χ²-
statistic; df= degrees of freedom; Z= Z-statistic; and P= p-value, significant 
at P≤ 0.05 (in bold). 

Category 
tested 

Kruskal-Wallis 
rank sum test 

Pairwise comparisons 
Dunn’s post-hoc 

test 

Species 
χ²= 4.739,  

df= 1, P= 0.029 
Emperor tamarin  
– Saddleback tamarin 

Z= 2.180,  
P= 0.029 

Sex 
χ²= 0.107,  

df= 1, P= 0.744 
Male – Female 

Z= 0.327,  
P= 0.740 

Reproductive 
status 

χ²= 10.099,  
df= 2, P= 0.006 

1ary – 2ary 
Z= 1.269,  
P= 0.613 

1ary – None 
Z= 3.167,  
P= 0.005 

2ary – None 
Z= 1.986,  
P= 0.141 

Sample type 
χ²= 4.408,  

df= 3, P= 0.223 

Anogenital – Suprapubic 
Z= 0.896,  
P= 1.000 

Anogenital – Sternal 
Z= 0.321,  
P= 1.000 

Anogenital – Skin 
Z= 1.946,  
P= 0.310 

Suprapubic – Sternal 
Z= 0.576,  
P= 1.000 

Suprapubic – Skin 
Z= 1.060,  
P= 1.000 

Sternal – Skin 
Z= 1.631,  
P= 0.620 
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IV.3.1.2. Identity of compounds of interest in wild tamarin scent-gland 
and skin samples analysed in situ 

Automatic search in the NIST mass spectral library, together with 

visual inspection of the mass spectra and retention times of the peaks of 

interest, permitted the tentative identification of some of the compounds 

characterized by these peaks: methyl hexanoate (B), benzaldehyde (D), 

ethyl hexanoate (E), acetophenone (F), a branched C15 alkane (G), 4-

methoxybenzaldehyde (I), and hexadecan-1-ol (K; Table IV.3). However, 

unlike the captive callitrichid samples analysed in the laboratory (see 

Chapter 3, section III.3.3), these identifications could not be validated, as I 

was unable to compare the retention times with those of commercially 

obtained compounds on the Torion® GC-MS. Moreover, I was unsuccessful 

at assigning an identity to compounds A, C, H and J, due to high peak 

impurity (i.e. the peaks detected by the GC-MS were not fully resolved, 

hence their mass spectra were likely composed of more than one 

compound, impossible to tell apart). 
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Table IV.3. Tentative identity of the 11 compounds of interest retrieved from wild tamarin scent-gland samples analysed in situ. Identity was 
achieved by automated search on the NIST mass spectral library, followed by visual inspection of the peaks’ mass spectra. RT= retention time in 
minutes; SD= standard deviation. Diagrams of the compounds’ chemical structure are reproduced from the NIST chemistry WebBook 
(www.webbook.nist.gov).  

Compound 
label 

Mean RT ±SD Candidate compound identity Functional group 
Chemical 
structure 

Prevalence in 
samples† 

Also found in 
captive study? 

A 0.757 ±0.008 
Unidentified, probably of non-
mammalian origin 

Unk. Unk. 10 NA 

B 0.804 ±0.001 Methyl hexanoate Ester 
 

4  

C 0.849 ±0.000 Unidentified Unk. Unk. 1 NA 

D 0.868 ±0.003 Benzaldehyde Aromatic aldehyde 
 

2 ✓ 

E 0.900 ±0.000 Ethyl hexanoate Ester 
 

1  

F 1.043 ±0.000 Acetophenone Aromatic ketone 
 

1 ✓ 

G 1.066 ±0.014 Branched C15 alkane Alkane Unk. 3  

H 1.300 ±0.004 Unidentified carboxylic acid Carboxylic acid Unk. 6 NA 

I 1.304 ±0.015 4-Methoxybenzaldehyde Aromatic aldehyde 
 

2 ✓ 

J 1.321 ±0.002 Unidentified Unk. Unk. 2  

K 1.551 ±0.000 Hexadecan-1-ol Alcohol  1  

† Prevalence is the number of samples containing the compound of interest.

http://www.webbook.nist.gov/
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IV.3.2. Laboratory analyses of wild emperor tamarin 
samples 

IV.3.2.1. Chemical differences at the levels of group, sex, 
reproductive status and the individual, and between scent-glands 

 A total of 27 swabs of anogenital, suprapubic, and sternal scent-

glands, as well as swabs of the skin of the inner arm (skin), were 

additionally collected from eight wild emperor tamarins at EBLA during 

FPI’s 2018 field season (see Appendix E, Table E.1), and transported for 

analyses in the laboratory at ARU. Two air samples collected at the same 

time as the animal samples, and several blanks (i.e. empty vial, empty 

fibre), were also run together with the animal samples. Visual inspection of 

the chromatograms permitted tentative identification of 25 compounds of 

interest present in 25 of the samples, but not in any of the blanks (Table 

E.1). 

The majority of the selected compounds of interest were unique to a 

sample (56%), and only three were found in at least eight samples. In 

addition, most of the compounds of interest were present solely in group 

SI7 (56%), only represented by 11 samples from three animals, while five 

compounds were specific to group SI6 (20%; Fig. IV.6a). Five of the 

compounds were retrieved only from females (20%), and 12 only from 

males (48%; Fig. IV.6b). The majority of compounds were unique to 

secondary breeders (88%), and no compound was specific to the only 

primary breeder (Fig. IV.6c). Several compounds were retrieved from the 

samples of each individual emperor tamarin, ranging from 2–13 compounds 

of interest per individual (Table E.1). Finally, nine compounds were found 

exclusively in anogenital gland swabs (36%), one in suprapubic gland 

swabs (4%), six in sternal gland swabs (24%), but none in skin swabs only 

(Fig. IV.6d). Only two compounds were retrieved from all four sample types 

(8%). The variation in the occurrence of compounds of interest across 

categories of group, sex, reproductive status, and sample type, was non-

significant (Pearson’s χ² tests of difference; Table IV.4). 
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Figure IV.6. Distribution of the 25 compounds of interest retrieved by 
laboratory analyses, between the different categories of a. group, b. sex,    
c. reproductive status, and d. sample type. 
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Table IV.4. Results of Pearson’s χ² tests with Yates’ continuity correction, 
on the differences of distribution of the 25 compounds of interest across 
emperor tamarin groups, sexes, reproductive status, and sample types.  
χ²= χ²-Statistic, df= degrees of freedom, P= P-value, significant at P< 0.05. 

Category tested Pearson’s χ² test 

Group χ²= 26.651, df= 24 , P= 0.321 

Sex χ²= 25.657, df= 24 , P= 0.371 

Reproductive status χ²= 8.192, df= 24 , P= 0.999 

Sample type χ²= 68.167, df= 72 , P= 0.606 

 

 

IV.3.2.2. Identity of compounds of interest in wild tamarin scent-gland 
and skin samples analysed in the laboratory 

Automatic search in the NIST mass spectral library, together with 

visual inspection of the mass spectra and retention times of the peaks of 

interest, allowed most of the 25 compounds of interest to be tentatively 

identified (Table IV.5). As the analytical method employed here was the 

same as in the captive study, it was also possible to verify the identity of 

some of the compounds common to those found in the captive samples, by 

direct comparison of their retention times with those of commercially 

obtained compounds (see Chapter 3, section III.3.3.1). Hence, identity was 

verified for butan-1-ol (#01), benzaldehyde (#06), 1-octen-3-ol (#07), 

acetophenone (#10), and 4-methoxybenzaldehyde (#15). Identity of the rest 

of the compounds of interest remained tentative. The three most prevalent 

compounds were butan-1-ol (#01), 2-butoxyethanol (#04), and a branched 

C12 alkane (#08), retrieved from 15, eight, and 23 samples, respectively 

(Table IV.5). 
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Table IV.5. Tentative identity of the 25 compounds of interest retrieved from wild emperor tamarin scent-gland samples analysed in the laboratory. 
Identity was achieved by automated search on the NIST mass spectral library, followed by visual inspection of the peaks’ mass spectra. Identity of 
the five compounds marked with an asterisk was confirmed by comparison of their retention times with those of commercially obtained 
compounds. RT= retention time in minutes, SD= standard deviation. Diagrams of compounds’ chemical structure are reproduced from the NIST 
chemistry WebBook (www.webbook.nist.gov).  

# Mean RT (±SD) Candidate compound identity 
Functional 
group 

Chemical structure 
Prevalence 
in samples† 

Also found in 
captive study? 

Also found in in 
situ analyses? 

01 3.016 ±0.010 Butan-1-ol Alcohol 
 

15 ✓  

02 4.044 ±0.000 3-Hydroxybutan-2-one α-hydroxyketone 
 

1   

03 4.411 ±0.000 3-Methylbutan-1-ol Alcohol 
 

1   

04 9.535 ±0.010 2-Butoxyethanol Alcohol 
 

8   

05 10.793 ±0.000 Branched C9 alcohol Alcohol Unk. 1   

06 11.125 ±0.007 Benzaldehyde 
Aromatic 
aldehyde  

2 ✓ ✓ 

07 11.759 ±0.002 1-Octen-3-ol 
Unsaturated 
alcohol  

2 ✓  

08 11.940 ±0.006 Branched C12 alkane Alkane Unk. 23   

09 12.315 ±0.000 Ethyl hexanoate Ester 
 

1  ✓ 

10 14.221 ±0.003 Acetophenone Aromatic ketone 
 

3 ✓ ✓ 

11 16.396 ±0.010 Branched C7 carboxylic acid Carboxylic acid Unk. 2   

12 17.239 ±0.000 Branched C8 carboxylic acid Carboxylic acid Unk. 1 ✓  

http://www.webbook.nist.gov/
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Table IV.5. Continued. 

# Mean RT (±SD) Candidate compound identity 
Functional 
group 

Chemical structure 
Prevalence 
in samples† 

Also found in 
captive study? 

Also found in in 
situ analyses? 

13 17.401 ±0.000 Ethyl oct-3-enoate 
Unsaturated 
ester  

1   

14 17.589 ±0.004 Ethyl octanoate Ester 
 

4   

15 19.096 ±0.000 4-Methoxybenzaldehyde 
Multifunctional 
compound  

1 ✓ ✓ 

16 21.606 ±0.000 Butyl 2-methylpent-4-enoate 
Unsaturated 
ester  

1   

17 21.694 ±0.000 Decanoic acid Carboxylic acid 
 

1   

18 21.782 ±0.000 Ethyl dec-3-enoate 
Unsaturated 
ester  

1   

19 22.184 ±0.003 Ethyl decanoate Ester 
 

4   

20 23.893 ±0.000 Cyclododecane Cycloalkane 
 

1 ✓  

21 25.743 ±0.000 Dodecanoic acid Carboxylic acid 
 

1   

22 26.281 ±0.002 Ethyl dodecanoate Ester 
 

2   

23 29.972 ±0.000 Ethyl tetradecanoate Ester 
 

1   

24 31.221 ±0.000 Ethyl pentadecanoate Ester 
 

1   

25 33.980 ±0.003 Unknown ethyl ester Ester Unk. 3   

† Prevalence is the number of samples containing the compound of interest. 
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IV.4. Discussion 

IV.4.1. Chemical signatures in wild tamarin scent-gland 
secretions 

 The present study revealed differences in the chemical composition 

of material swabbed from the scent-glands and skin of wild emperor and 

saddleback tamarins at the levels of species, groups, sex, reproductive 

status, the individual, and between sample types (i.e. anogenital, 

suprapubic, and sternal glands, and the skin from the inner thigh or arm). 

Using the Torion® GC-MS for in situ chemical analyses of 218 wild tamarin 

samples, I was able to tentatively identify 11 putative tamarin 

semiochemical compounds. Furthermore, I retrieved 25 compounds of 

interest from 27 additional wild emperor tamarin scent-gland samples, 

transported back to ARU and analysed in the laboratory. 

The compounds retrieved from the wild tamarin scent-gland 

samples analysed in situ appeared to be species-specific, as only one (i.e. 

benzaldehyde [D]), out of the 11 compounds of interest, was found in both 

tamarin species. This suggests a conspicuous species chemical signature, 

and even potential involvement of different biosynthetic pathways, in 

emperor and saddleback tamarins. Nevertheless, at EBLA these two 

sympatric tamarin species regularly form mixed-species foraging troops. 

There is evidence that the two species recognize each other’s calls, despite 

their being quite different, and that individuals of one species use vocal 

cues from the other species in foraging and predator avoidance 

(Windfelder, 2001). This has also been established in other sympatric 

tamarin associations such as between Geoffroy’s saddleback tamarins, 

Leontocebus nigrifrons (formerly Saguinus fuscicollis, recently reassigned, 

Rylands et al., 2016), and moustached tamarins, Saguinus mystax (Smith, 

1997). Besides, emperor and saddleback tamarins at EBLA are often 

observed sniffing and overmarking in response to scent-marks from the 

other species (Watsa, 2013; pers. obs.). These sympatric tamarins may 

very well recognize and respond to each other’s scent signals despite the 

differences in their chemical composition. 

All groups of both species of tamarin presented at least one sample 

containing a compound of interest. Most compounds were common to 

samples from several groups, suggesting a similarity between groups 
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sharing the same compound. For instance, samples from SI2 and SI4 

shared ethyl hexanoate (E) and a branched C15 alkane (G), and samples 

from SI1 and SI5 shared the unidentified compound H, suggesting that 

these groups are more closely related to each other, than they are with the 

other emperor tamarin groups with which they do not share compounds. 

Indeed, home ranges of emperor tamarin groups SI2 and SI4, and SI1 and 

SI5, respectively, are closer to each other geographically than they are to 

any of the other groups. Neighbouring groups are more likely to exchange 

individuals; for example it is not uncommon for a young female to disperse 

from her native group and associate with males from neighbouring groups 

(Watsa, 2013). This could result in a more similar chemical signature 

between these groups, owing to the fact that they share similar commensal 

bacteria communities (Theis et al., 2013) and genetic pool, especially at the 

major histocompatibility complex (Charpentier, Boulet and Drea, 2008; 

Knapp, Robson and Waterhouse, 2006; Setchell et al., 2011). Unidentified 

compound A was found in samples from all but two of the saddleback 

tamarin groups, while methyl hexanoate (B) and unidentified compound C 

were only found in samples from group LW6, and unidentified compound H 

in group LW8. While compound A appears species-specific, compounds B 

and C might belong to a given chemical signature of group LW6, and 

compound H of group LW8. Similarly, in the emperor tamarin samples 

analysed in the laboratory, five compounds were specific to group SI6, and 

14 to SI7, while only eight compounds were common to both groups. The 

home ranges of these two groups were over 2 km apart (i.e. nearly the 

opposite sides of the area monitored by FPI at EBLA), which could explain 

why they did not share more compounds. Other studies have also found 

chemical signatures at the group level (e.g. in mandrills, Vaglio et al., 2016; 

Eurasian otters, Lutra lutra, Kean et al., 2017; and Bechstein’s bats, Myotis 

bechsteinii, Safi and Kerth, 2003). 

Three of the compounds of interest retrieved from the in situ 

analyses, i.e. 4-methoxybenzaldehyde (I), hexadecan-1-ol (K), and 

unidentified compound J, and four from the laboratory analyses, i.e. 3-

hydroxybutan-2-one (#02), a branched C9 alcohol (#05), 1-octen-3-ol (#07), 

and a branched C8 carboxylic acid (#12), were only found in female 

samples; while three compounds from in situ analyses, i.e. ethyl hexanoate 

(E), acetophenone (F), and unidentified compound C, and 12 from 

laboratory analyses, i.e. 3-methylbutan-1-ol (#03), ethyl hexanoate (#09), 
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ethyl oct-3-enoate (#13), butyl 2-methylpent-4-enoate (#16), decanoic acid 

(#17), ethyl dec-3-enoate (#18), cyclododecane (#20), dodecanoic acid 

(#21), ethyl dodecanoate (#22), ethyl tetradecanoate (#23), ethyl 

pentadecanoate (#24) and an unknown ethyl ester (#25), were specific to 

male samples. Hence these putative tamarin compounds could be sex-

specific, potentially involved in mate choice or intrasexual competition. 

However, the presence of 1-octen-3-ol, acetophenone, 4-

methoxybenzaldehyde, and cyclododecane in multiple samples from both 

males and female captive tamarins (see Chapter 3, section III.3.3) 

suggests that these results may be an artefact of the small sample size in 

the present field study. A greater sample size will be needed to be able to 

confirm the specificity and function of given semiochemicals. 

In tamarins, which are cooperative breeders, male reproductive 

status is difficult to determine, as all males of a group usually mate with the 

reproductive female(s) and help raise the offspring, regardless of whether 

they have achieved paternity (e.g. in moustached tamarins, Huck et al., 

2005). As expected in a polyandrous mating system, several males per 

group were qualified as primary breeders in EBLA’s study population. 

Female reproductive status, on the other hand, is easier to monitor, as 

pregnancy and nursing are visible externally. The dominant female of a 

group is often the only one to reproduce (Garber et al., 2016; Huck, Löttker 

and Heymann, 2004). Subordinate females, usually offspring of the 

dominant female, often show an absence of ovulation, and play the role of 

helpers in the family group. This originates from a suppressive effect of the 

dominant female, at behavioural and olfactory levels, and benefits the 

family unit by ensuring a higher survival rate of the offspring (e.g. in 

common marmosets, Abbott et al., 1998; Barrett, Abbott and George, 1990; 

Saltzman et al., 1997; Ziegler and Sousa, 2002; Ziegler, 2013; cotton-top 

tamarins, S. oedipus, Heistermann et al., 1989; Savage, Ziegler and 

Snowdon, 1988; and pygmy marmosets, Cebuella pygmaea, Spurlock, 

2001; reviewed in Beehner and Lu, 2013). However in the study population, 

groups frequently possessed more than one primary breeding female, 

indicating a less straightforward relationship between reproduction and 

dominance (Watsa, Erkenswick and Robakis, 2017). Polygyny was 

reported in another wild population of saddleback tamarins (Calegaro-

Marques, Bicca-Marques and Azevedo, 1995), as well as in wild groups of 

moustached tamarins, cotton-top tamarins, common marmosets, buffy-
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tufted marmosets, C. aurita, buffy-headed marmosets, C. flaviceps, golden 

lion tamarins, Leontopithecus rosalia, and Goeldi’s monkeys (reviewed in 

Smith et al., 2001a). Indeed, different reproductive strategies may be used 

by subordinate female tamarins, hence explaining variation in reproductive 

status, as was suggested in common marmosets (Arruda et al., 2005; 

Lazaro-Perea, 2001; Sousa et al., 2005; see Chapter 2, section II.4.1.1). In 

both species studied in situ, all but one of the female samples, and half of 

the male samples, presenting a compound of interest, originated from 

primary breeders. Therefore, methyl hexanoate (B), unidentified compound 

C, benzaldehyde (D), ethyl hexanoate (E), unidentified compound H, 4-

methoxybenzaldehyde (I), and hexadecan-1-ol (K), which were exclusively 

retrieved from primary breeders, are likely to be associated with 

reproduction, mate choice and/or intrasexual competition (see Chapter 2, 

section II.4.1.1). In contrast, compounds retrieved from the samples 

analysed in the laboratory were for the most part uniquely found in 

secondary breeding emperor tamarins; and no compound was specific to 

primary breeders. However, only one of the eight individuals for which 

swabs were collected was a primary breeding male, which probably 

explains the over-representation of secondary breeders in the compounds 

list. 

In samples analysed in situ, compound C, ethyl hexanoate (E), 

acetophenone (F), and hexadecane-1-ol (K) were found in single individual 

tamarins, which may indicate a role for these compounds in signalling 

individual identity. Moreover, methyl hexanoate (B) was retrieved from two 

different individuals belonging to group LW6, and compound H from two 

different individuals in group LW8. As seen earlier, animals belonging to the 

same family group have more closely related scents. These two 

compounds may hence constitute part of the chemical signature at the 

group level. Conversely, compound A, benzaldehyde (D), a branched C15 

alkane (G), 4-methoxybenzaldehyde (I), and compound J, were common to 

two or more individuals from different groups, suggesting that they do not 

contribute in individual chemical signatures. In samples analysed in the 

laboratory, 3-hydroxybutan-2-one (#02), 3-methylbutan-1-ol (#03), a 

branched C9 alcohol (#05), ethyl hexanoate (#09), a branched C8 

carboxylic acid (#12), ethyl oct-3-enoate (#13), 4-methoxybenzaldehyde 

(#15), butyl 2-methylpent-4-enoate (#16), decanoic acid (#17), ethyl dec-3-

enoate (#18), cyclododecane (#20), dodecanoic acid (#21), ethyl 
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tetradecanoate (#23), and ethyl pentadecanoate (#24), were found in single 

individual emperor tamarins, hence these compounds may play a role in 

signalling individual identity in this species. 

Finally, some of the compounds of interest were specific to one type 

of scent-gland, while others were retrieved from different scent-glands. This 

suggests that the chemical composition of tamarin glandular secretions has 

common characteristics, but also differences, between the anogenital, 

suprapubic, and sternal scent-gland areas. Histological analyses of the 

anogenital and suprapubic scent-gland skin of cotton-top tamarins (Fontani 

et al., 2014), the anogenital scent-gland of saddleback tamarins (Zeller et 

al., 1988), and the suprapubic and sternal scent-gland skin of lion tamarins, 

Leontopithecus spp. (Moraes et al., 2006), showed no difference between 

the tissues of these different glands. The same can therefore be expected 

for the two tamarin species studied here. Similar to the present results, 

Scordato, Dubay and Drea (2007) found chemical differences between 

swabs of labial, scrotal, and brachial scent-glands in ring-tailed lemurs; and 

Spence-Aizenberg et al. (2018) between swabs of pectoral and subcaudal 

glands in owl monkeys. In samples analysed in situ, unidentified compound 

A, methyl hexanoate (B), and unidentified compound H were retrieved from 

swabs of the inner thigh skin region of saddleback tamarins, as well as from 

scent-gland samples from different individuals. In samples analysed in the 

laboratory, butan-1-ol (#01), 2-butoxyethanol (#04), 1-octen-3-ol (#07), a 

branched C12 alkane (#08), and acetophenone (#10) were found in swabs 

of the inner arm of emperor tamarins as well as from glandular swabs. It 

may be argued that these compounds may then not originate from the 

scent-gland itself and should therefore be classified as a contaminant. 

Nevertheless, tamarins spend a lot of time in physical contact with each 

other, while sleeping in tree knots, and grooming (Smith et al., 2007). They 

also perform allomarking, where they deposit a scent-mark on the body of a 

conspecific (Lledo-Ferrer, Peláez and Heymann, 2010). It is therefore 

conceivable to find a glandular compound on another body part of the 

animal. As all compounds found on an animal’s skin were also retrieved 

from a scent-gland in other individuals of the same species, I decided not to 

rule out these compounds from my list of compounds of interest. However, 

these results demonstrate that neither the inner thigh, nor the inner arm 

skin area, constitute good control regions to use for tamarin semiochemical 

studies. 
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IV.4.2. Identity of the compounds of interest retrieved 
from wild tamarin scent-gland samples and comparison 

with other studies 

Identities of compounds of interest from the samples analysed in 

situ using the Torion® GC-MS, as well as those from the samples analysed 

in the laboratory for which verification by comparison with a commercially 

obtained compound was not possible, remain tentative. Benzaldehyde (D & 

#06), acetophenone (F & #10), and 4-methoxybenzaldehyde (I & #15) were 

found to be common compounds, retrieved from several samples analysed 

both in situ and in the laboratory, as well as from samples from suprapubic 

scent-glands or deposited scent-marks of captive emperor tamarins, cotton-

top tamarins, and silvery marmosets, Mico argentatus (see Chapter 3, 

section III.3.3). In addition, ethyl hexanoate (E & #09) was retrieved from 

both a swab of anogenital gland of a male saddleback tamarin analysed in 

situ, and a swab of sternal gland of a male emperor tamarin analysed in the 

laboratory. Moreover, butan-1-ol (#01), 1-octen-3-ol (#07), a branched C8 

carboxylic acid (#12) and cyclododecane (#20), which were retrieved from 

laboratory analyses of wild samples, were also found in samples from 

captive emperor tamarins, cotton-top tamarins, and silvery marmosets (see 

Chapter 3, section III.3.3).  

The number of compounds retrieved from the 27 wild emperor 

tamarin scent-gland samples analysed in the laboratory (N=25 in total, 

ranging from 1–12 per sample) was fewer than found in the five captive 

emperor tamarin suprapubic scent-gland samples (N=37 in total, ranging 

from 6–20 per sample, of which 17 were selected as compounds of 

interest; see Chapter 3, section III.3.3.2.1), despite the fact that the exact 

same analytical method (i.e. SPME–GC-MS using the same instrument at 

ARU) was employed. Moreover, only seven compounds were common to 

the two datasets, i.e. butan-1-ol, benzaldehyde, 1-octen-3-ol, 

acetophenone, a branched C8 carboxylic acid, 4-methoxybenzaldehyde, 

and cyclododecane. Such diverging results suggest that captivity likely 

affects the chemical composition of emperor tamarin scent-gland 

secretions. Differences in diet, elements of the enclosure, and husbandry 

procedures, can influence the commensal bacteria communities in these 

captive primates, thus resulting in different compounds being produced 

(Archie and Theis, 2011; Clayton et al., 2016). Wild tamarins, which have 

access to a greater variety of food items, and potentially interact with a 
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greater diversity of organisms (i.e. con- and hetero-specifics, predators, 

prey, parasites and other microorganisms), could therefore be expected to 

produce more complex chemical signals. On the other hand, in an indoor 

zoo enclosure the air is often saturated with smells of the animals’ 

excrement and urine, as well as food, mixed with those of neighbouring 

enclosures (pers. obs.), which could participate in the chemical blend 

sampled on the swab. Nonetheless, the variation in chemical composition 

between samples from wild and captive emperor tamarins may also 

originate from natural differences between the two populations. Indeed, 

even though both captive and wild emperor tamarins sampled belonged to 

the same subspecies, S. i. subgrisescens, important genetic differences 

can be expected between the two populations, potentially leading to 

chemical differences in their produced scents (see section IV.4.1). The fact 

that some compounds of interest were retrieved from both wild and captive 

samples indicates that captive conditions, including diet and environment, 

may not completely transform an animal’s odour, which further legitimises 

the use of captive studies to help understand wild animals’ 

chemosignalling. 

Some of the compounds retrieved from the wild samples analysed 

in the laboratory, but not in the wild samples analysed in situ, nor in the 

captive samples, may have originated from the degradation of previous 

compounds during transportation of the samples. Indeed, owing to 

unforeseen logistical difficulties sample shipment between Peru and the UK 

was executed in several steps, during some of which the samples were left 

to thaw. As was experimentally tested in Chapter 3, sections III.3.4 and 

III.4.3, the chemical composition of this type of samples is likely to change 

over time when they are not kept frozen. For instance, the esters retrieved 

from the samples, ethyl decanoate (#19) and ethyl dodecanoate (#22), are 

frequent products from the esterification of their carboxylic acid precursors, 

decanoic acid (#17) and dodecanoic acid (#21), which were also found in 

the samples. Therefore, it is probable that these esters, as well as ethyl 

hexanoate (#09), ethyl octanoate (#14), ethyl tetradecanoate (#23), and 

ethyl pentadecanoate (#24) also retrieved from the samples, originate from 

chemical reactions inside the sample vial after swab collection. In addition, 

many compounds were potentially lost during transportation of the samples 

at room temperature, which could explain why fewer compounds were 

retrieved from the wild samples than from the captive samples. Spence-
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Aizenberg et al. (2018) reached the same conclusions, after finding that 

subcaudal and pectoral scent-gland samples of wild owl monkeys, A. 

azarae, contained fewer compounds than those of captive animals of the 

same genus. They had also transported their samples at room temperature. 

Importantly, as the number of scent-gland samples collected in captivity 

was very small, increasing sample size will be necessary to further 

understand the influence of captive and wild conditions on the chemical 

composition of primate scent-gland secretions. 

All wild tamarin semiochemicals tentatively identified from in situ 

analyses, and most of those identified from laboratory analyses, have been 

reported before as candidate mammalian semiochemicals (see Chapter 5, 

Table V.1 for an exhaustive review of the mammalian semiochemicals 

common to the compounds found in the present study). Nevertheless, 

some compounds are also known to be produced by plants and bacteria 

(https://pubchem.ncbi.nlm.nih.gov; www.pherobase.com), which suggests 

they might not have been directly produced by the animals. This was for 

instance the case for 3-hydroxybutan-2-one (#02) and 3-methylbutan-1-ol 

(#03), which were reported to be produced by plants, and were retrieved 

from cultures of human commensal bacteria (i.e. Staphylococcus aureus, 

Escherichia coli, and Klebsiella pneumoniae, Tait et al., 2014). However, as 

seen in Chapter 3, section III.4.2, it is possible that a compound of plant 

origin, derived from alimentation, or produced by commensal bacteria 

present on the scent-gland, serves as a mammalian semiochemical (e.g. in 

greater sac-winged bats, Saccopteryx bilineata, Voigt, Caspers and Speck, 

2005; meerkats, Suricata suricatta, Leclaire, Nielsen and Drea, 2014; 

Leclaire et al., 2017; and spotted hyenas, Theis, Schmidt and Holekamp, 

2012; Theis et al., 2013). 

 

IV.4.3. Limitations in the identification of putative wild 
tamarin semiochemicals, and future directions 

As recommended by Charpentier et al. (2012) in their critical review 

of the chemical ecology of mammalian communication, great care must be 

given when attempting to identify a particular compound as a 

semiochemical. Many potential sources of contamination may occur at the 

time of scent-mark deposition and sample collection, storage, or extraction, 

https://pubchem.ncbi.nlm.nih.gov/
http://www.pherobase.com/


Chapter IV – Scent-gland semiochemistry in wild tamarins 

185 

which can make it considerably difficult to establish whether a chemical 

detected i. really originates from the animal’s secretion, ii. is actually 

present in the sample, not an artefact of contamination during the analysis, 

and iii. is truly the chemical targeted by the mass spectral library search. 

Therefore, in the chemical analyses presented here, the identity, and 

potential specificity across categories of samples (e.g. group- or sex-

specific), of many compounds of very low prevalence in the samples must 

be considered with great caution. Repeated samples should help minimize 

many of these potential confounding aspects. However, even two swabs 

taken consecutively from the same gland area might contain different 

compounds, as the scent-gland is continuously producing secretions. 

Ideally, the presence of a certain compound in a natural secretion should 

be validated by replicating the chemical analysis using the authentic 

compound, as was done for some of the compounds of interest identified in 

the captive callitrichid semiochemistry study in Chapter 3 (section III.3.3.1). 

Additional validation should be sought by performing a behavioural 

bioassay to assess the response of conspecifics to this particular 

compound (see Chapter 1, section I.2.1.2). A particular compound may be 

genuinely a component of glandular secretion, and yet show no signalling 

role, i.e. not be a semiochemical. Such bioassays have been carried out in 

captive primates, such as in common marmosets (Addessi, Chiarotti and 

Visalberghi, 2007; Smith and Abbott, 1998), ring-tailed lemurs (Scordato 

and Drea, 2007), rhesus macaques, Macaca mulatta (Henkel et al., 2015), 

and Japanese macaques, M. fuscata (Rigaill et al., 2017). In natural 

conditions however, conducting behavioural bioassays is more challenging. 

Thanks to the habituation work carried out by FPI at EBLA, future work on 

scent communication in this tamarin population will include behavioural 

bioassays. 

 The use of the Torion® GC-MS for the analyses of tamarin 

semiochemicals was principally motivated by its portability. This study was, 

to the best of my knowledge, the first attempt to analyse animal scent 

chemical composition using this instrument. Nevertheless, the number of 

compounds of interest retrieved from the in situ analyses (N=11 

compounds) was quite limited when compared with the laboratory analyses 

(N=25 compounds), despite the fact that over eight times more samples 

were analysed in the in situ conditions (N=218 samples) than the laboratory 

conditions (N=27 samples). This suggests that the capacity of the 
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stationary phase of the Torion® gas chromatograph to separate individual 

compounds, and/or the sensitivity of the Torion® mass spectrometer, was 

lower than that of the bench-top instrument used in the laboratory at ARU. 

Similarly Kücklich et al. (2017), who compared the performance of a 

portable GC-MS device containing a thermal desorption trap, to that of 

cotton swabs analysed on a bench-top GC-MS, for the analysis of body 

odour of captive common marmosets, found that the portable GC-MS 

retrieved fewer compounds. Moreover, although the Custodion® SPME fibre 

used for sample extraction with the Torion® GC-MS was of identical 

composition as the Supelco SPME fibre used in the laboratory; the 

conditions of sample extraction time and temperature were different, which 

may have added to the variation observed between the two sets of 

analytical results. Nonetheless, a number of methodological aspects can 

readily be optimized to ensure greater success in future analyses of 

mammalian semiochemicals using the Torion® GC-MS. This includes 

improving sampling procedures, to limit the incorporation of volatile 

contaminants from the chemicals, and humans, present during sample 

collection and extraction. Incidentally, two of the most prevalent compounds 

retrieved from the swabs of wild tamarins analysed in the laboratory were 

subsequently identified as 2-phenoxyethanol and diethyltoluamide (DEET), 

two main components of insect repellent products, most likely originating 

from the clothes of the researchers conducting sample collection. Further 

optimization of the instrument working conditions (e.g. power generation, 

helium connection, availability of disposable material replacements), and 

preparation for on-site troubleshooting, will be necessary. A 

recommendation to future users of the Torion® GC-MS in isolated field 

conditions would be to carefully plan for all the technical challenges of their 

study. For example, the present project suffered from the fact that airline 

companies prohibited the transport of the Torion®-specific battery and 

helium canisters. This forced me instead to rely on a generic helium tank, 

which was costly and difficult to fit to the Torion® system, and a portable 

fuel generator, which released fumes that were likely responsible for a large 

hydrocarbon tail in the resulting chromatograms, thus preventing any 

interpretation of peaks of higher retention time. Future work using the 

Torion®, still a novel instrument, will take into account this preliminary 

experience. 
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IV.4.4. Conclusion 

 The present study revealed chemical signatures in scent-gland and 

skin swabs from wild sympatric tamarins at the levels of species, group, 

sex, reproductive status, and the individual, and between scent-gland 

types. Moreover, a number of compounds retrieved from the wild samples 

were tentatively identified as putative tamarin semiochemicals. Although 

preliminary, as a result of a relatively small sample size, a lack of 

repeatability, and the methodological problems encountered, this study 

provides the first attempt at analysing the chemical composition of wild 

tamarin scent-gland secretion samples in situ using the Torion® GC-MS. 

The use of this portable instrument was not as effective as the analyses of 

similar samples using a conventional bench-top GC-MS, after transporting 

the samples back to the UK. This laboratory analysis of wild samples, in 

turn, revealed a lower number of compounds identified as putative tamarin 

semiochemicals, than found in captive samples from the same species, 

analysed using the same methods. Furthermore, an important variation in 

sample chemical composition was found between the three types of 

analyses, which may originate from differences in sample storage and 

transportation. Nevertheless, portable GC-MS instruments have 

considerable potential to aid the study of primate olfactory communication 

in field conditions, and I hope the present results will provide help in this 

direction. 
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Chapter V – General discussion 
 

V.1. Summary of the results 

V.1.1. Correspondence between scent-marking 

behaviour and semiochemistry in captive callitrichids 

V.1.1.1. Variation at the levels of species and group 

 In Chapter 2, I presented evidence for differences in the scent-

marking behaviour of three species of captive callitrichids (see Q1 in 

Chapter 1, section I.4.2). Cotton-top tamarins, Saguinus oedipus, scent-

marked more frequently than emperor tamarins, S. imperator, and silvery 

marmosets, Mico argentatus. In addition, silvery marmosets often 

combined scent-marking with tree-gouging, a common foraging activity in 

this species, absent in tamarins (Rylands and Mittermeier, 2013). 

Moreover, silvery marmosets marked mainly using their suprapubic gland, 

in short depositions, while tamarins of both species principally deposited 

anogenital scent-marks, of variable duration. Differences in scent-marking 

behaviour have been documented in other callitrichid species both in the 

wild (e.g. in moustached tamarins, S. mystax, and Geoffroy’s saddleback 

tamarins, Leontocebus nigrifrons, formerly S. fuscicollis, recently 

reassigned, Rylands et al., 2016) and in captivity (e.g. in common 

marmosets, Callithrix jacchus, Epple, 1970; and red-bellied tamarins, S. 

labiatus, Smith and Gordon, 2002). Such variation across species may 

reflect different strategies of olfactory communication, and maybe even 

differences in the relative importance of chemosignalling compared with 

other communication modalities (Higham and Hebets, 2013). In the 

semiochemical analyses conducted in Chapter 3, I further revealed a 

greater chemical richness in samples from silvery marmosets than from 

both tamarin species (see Q6 & Q9 in Chapter 1, section I.4.2). Samples 

from emperor and cotton-top tamarins did not differ in their chemical 

richness; nevertheless, their chemical diversity differed, suggesting a 

species-specific chemical signature, and thus potential involvement of 

different biosynthetic pathways in these different callitrichid species. Similar 

disparities have been found in other primate taxa (e.g. among owl 

monkeys, Aotus spp. Spence-Aizenberg et al., 2018; and brown lemurs, 

Eulemur spp., DelBarco-Trillo et al., 2011), as well as in other mammalian 
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taxa (e.g. among mustelids, Mustela spp., Zhang et al., 2002; and large 

felids, Panthera spp., Soini et al., 2012). Such interspecific variation in 

chemosignalling at behavioural and chemical levels supports the idea that 

different strategies of communication may be used by different species. 

This could help ensure that signals are conveyed to the intended receivers, 

which is especially relevant for species living sympatrically.  

In addition, I revealed differences between groups of tamarins 

housed at different sites (see Q1 & Q6 in Chapter 1, section I.4.2): cotton-

top tamarins at DMP scent-marked more often than the other groups of 

both emperor and cotton-top tamarins, although the chemical richness of 

their scent-marks was not significantly different. Samples from emperor 

tamarins at DMP had a lower chemical richness than those from the other 

callitrichid groups, in particular the emperor tamarins at TZ. Importantly, 

samples from all five groups displayed quite dissimilar chemical diversity. 

Other studies have also shown differences between groups at both 

behavioural level (e.g. in common marmosets, Epple, 1970; and yellow 

mongooses, Cynictis penicillata, Le Roux, Cherry and Manser, 2008), and 

chemical level (e.g. in mandrills, Mandrillus sphinx, Vaglio et al., 2016; 

Bechstein’s bats, Myotis bechsteinii, Safi and Kerth, 2003; Eurasian otters, 

Kean et al., 2017; and spotted hyenas, Crocuta crocuta, Theis, Schmidt 

and Holekamp, 2012). These results suggest that group size and 

composition, as well as the characteristics of captive conditions (e.g. 

variations in diet, husbandry practices, temperature and illumination), likely 

play an important role in chemosignalling activity in captive animals. 

 

V.1.1.2. Variation at the levels of sex, reproductive status, and the 
individual 

My study indicated a variable effect of sex, reproductive status, and 

the individual, on callitrichid scent-marking behaviour (see Q1 in Chapter 1, 

section I.4.2). Females marked more than males overall, although some 

males marked as much, or more, than females. Other studies have 

reported scent-marking activity to be performed mainly by female 

callitrichids (e.g. French and Snowdon, 1981; Miller, Laszlo and Dietz, 

2003; Smith and Gordon, 2002), suggesting that it plays an important role 

in the advertisement of female reproductive state and mate choice 

(Heymann, 2006a). Yet other studies found no differences between sexes 
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(e.g. Lazaro-Perea, Snowdon and Arruda, 1999; Oliveira and Macedo, 

2010). In many animal species, males use scent-marking more frequently 

than females, particularly to signal territory and dominance (Albone and 

Shirley, 1984). In callitrichid scent-marking in males has also been 

suggested to play a role in mate choice and to serve as a means of 

chemical mate guarding (Huck, Löttker and Heymann, 2004; Lledo-Ferrer, 

Peláez and Heymann, 2010).  

As was the case for sex, reproductive status significantly influenced 

scent-marking overall, although this varied between groups. Either the 

reproductive male, the reproductive female, or the subordinate female of a 

group, was the principal signaller. Moreover, there were important 

differences in scent-marking behaviour between individuals, both in terms 

of marking frequency, and the social context of scent-marking (i.e. the 

identity of neighbours present at the time of scent-marking, and the 

response to deposited marks; see Q1–Q2 in Chapter 1, section I.4.2). As 

detailed in Chapter 2, section II.4.1.1, reproduction in callitrichids is usually 

monopolized by the dominant, polyandrous female; while subordinate 

females typically show a suppression of ovulation, and act as helpers in the 

rearing of the young instead of investing into their own reproduction 

(Beehner and Lu, 2013; Savage, Ziegler and Snowdon, 1988; Snowdon et 

al., 2006; Ziegler and Sousa, 2002). Nevertheless, the strictness of this 

cooperative breeding model seems to vary between species and/or 

populations, as some authors have reported occurrences of multiple 

breeding females in the same group (reviewed in Smith et al., 2001a). 

Hence different reproductive strategies may be used by subordinate female 

callitrichids, following diverse levels of female intrasexual competition 

(Arruda et al., 2005; Heymann, 2006a; Lazaro-Perea, 2001). Moreover, as 

scent-marking plays a role in intersexual mate choice and advertisement of 

ovulation (Abbott et al., 1998; Smith et al., 2001b), the differences observed 

at the level of sex and the individual may indicate differences in female 

reproductive state across groups at the time of the study. In addition, 

although there was no difference in the chemical richness of the scent 

samples collected at the levels of sex, reproductive status, nor between 

individual female tamarins, their chemical diversity varied (see Q6 & Q9 in 

Chapter 1, section I.4.2). Similarly, differences have been reported in other 

primates (e.g. in ring-tailed lemur, Lemur catta, Boulet et al., 2010; 

Charpentier, Boulet and Drea, 2008; Greene and Drea, 2014; and 
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mandrills, Setchell et al., 2010; Vaglio et al., 2016). Hence, in callitrichids at 

least, scent-marking frequency does not appear to relate directly to the 

complexity of deposited scents; instead, both aspects of chemosignalling 

may be under differing influences of socio-sexual and environmental 

contexts (Greene and Drea, 2014). 

 

V.1.1.3. Variation in scent-marking characteristics 

As seen in Chapter 2, section II.4.1.2, captive callitrichid scent-

marking behaviour may take various forms, thus contributing to the 

complexity of the signals conveyed via olfactory communication (see Q3 in 

Chapter 1, section I.4.2). Notably, glandular secretions were sometimes 

mixed with voided urine. Voided urine can contain chemosignals in 

primates (Colquhoun, 2011; DelBarco-Trillo et al., 2012, 2013; Laska and 

Hudson, 1995; Palagi, Dapporto and Borgognini Tarli, 2005). In addition, 

silvery marmosets often associated scent-marking with tree-gouging, a 

common behaviour in marmosets (Rylands and Mittermeier, 2013), which 

may indicate a role for scent-marking behaviour in food resource signalling. 

Moreover, emperor and cotton-top tamarins primarily used their anogenital 

scent-gland for scent-marking, as was found in other tamarins (Heymann, 

2001); while silvery marmosets mostly used their suprapubic gland, as 

shown in other marmosets (Rylands, 1984, 1990). Scent-marking duration 

was also variable, mainly of short and medium duration (i.e. <6 sec). 

Furthermore, Chapter 3 established that scent-gland secretions, scent-

marks and urine differed in their chemical composition (see Q5 in Chapter 

1, section I.4.2); and Chapter 4 revealed chemical differences between 

scent-gland types (see Q7 & Q9 in Chapter 1, section I.4.2). Therefore, by 

adapting the relative amount of fluids deposited during scent-marking, and 

scent-gland use, callitrichids may be able to vary the chemosignals 

conveyed. Additionally, if scent-marking constitutes a visual signal as well 

as an olfactory one, as suggested in the ring-tailed lemur (Kappeler, 1998; 

Palagi and Norscia, 2009), varying scent-mark deposition may yield a 

variety of immediate visual signals able to be conveyed to conspecifics 

(Johnstone, 1996). 

I also found temporal and spatial differences in scent-marking 

behaviour in captive callitrichids (see Q4 in Chapter 1, section I.4.2). 
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Scent-marking activity was generally higher in the afternoon than in the 

morning for the two tamarin species. There also seemed to be a preference 

for certain enclosure areas amongst those available at each site, and for 

horizontal and inclined substrates. Spatiotemporal variation in scent-

marking activity was similarly observed in other tamarin species (e.g. in 

golden lion tamarins, Leontopithecus rosalia, Miller, Laszlo and Dietz, 2003; 

moustached and Geoffroy’s saddleback tamarins, Smith, 1997), and 

support the hypothesis that scent-marking is associated with orientation 

and food resource marking (Heymann, 2006a). 

 

V.1.2. Identity of putative semiochemicals from captive 
and wild callitrichids 

  In Chapter 3, section III.3.3, and Chapter 4, sections IV.3.1.2 and 

IV.3.2.2, I identified a number of putative semiochemicals from the scent 

samples of captive silvery marmosets, emperor tamarins and cotton-top 

tamarins, and of wild emperor tamarins and saddleback tamarins, 

respectively (see Q6–Q8 in Chapter 1, section I.4.2). These compounds of 

interest differed between species, groups, individuals, and at the level of 

sex and reproductive status, potentially constituting a first step in 

deciphering the role of chemosignals in these species. In addition, I 

revealed differences in the chemical composition of the three types of 

scent-gland (i.e. anogenital, suprapubic and sternal) in the two wild tamarin 

species (see Chapter 4, section IV.4.1). Chemical differences have 

similarly been found between labial, scrotal and brachial scent-glands of 

ring-tailed lemurs (Scordato, Dubay and Drea, 2007), and between 

subcaudal and pectoral scent-glands of owl monkeys (Spence-Aizenberg et 

al., 2018).  

Some of the compounds identified as putative callitrichid 

semiochemicals have not been mentioned in any of the 92 publications 

reviewed in Table V.1. This was the case of pentan-2-ol, 3-hydroxybutan-2-

one, 3-methylbutan-1-ol, methylcycloheptanone, 2-butoxyethanol, anisole, 

3,7-dimethyloctan-3-ol, trans-1-methyl-4-(1-methylethyl)cyclohexanol, ethyl 

oct-3-enoate, cyclodecane, 3-methyltridecane, butyl 2-methylpent-4-

enoate, ethyl dec-3-enoate, diethylene glycol dibutyl ester, myristicin, and 

2-methyldecylpropanoate. Therefore, these compounds may be unique 
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semiochemicals of scent-gland secretions, scent-marks, and/or urine of one 

or several of the four callitrichid species studied, which could constitute an 

interesting novel addition to our current knowledge of mammalian 

semiochemistry. Nevertheless, a larger sample size and more advanced 

chemical analyses will be needed in order to help ensure that these 

compounds i. were assigned the correct identity by the mass spectral 

library, and ii. were not of exogenous origin.  

Most of the compounds of interest identified in the present study 

have been mentioned in the existing literature on mammalian 

semiochemistry, in primates as well as rodents, lagomorphs, carnivores, 

artiodactyls, perissodactyls, marsupials, and elephants (Table V.1). 

Notably, a number of compounds were common, retrieved from the diverse 

types of sample analysed in my study, as well as from scent-gland 

secretions, scent-marks, skin swabs, urine, and/or faeces of diverse 

mammalian taxa. This was the case of butan-1-ol, hexanal, 2-

methylpropanoic acid, heptanal, benzaldehyde, 1-octen-3-ol, 

acetophenone, p-cresol, 4-methoxybenzaldehyde, and dodecanoic acid. 

Nevertheless, these compounds are likely to serve different functions in 

different species, and/or may be semiochemicals only in some species.   

In addition, in Chapter 4 I compared the chemical composition of 

wild and captive emperor tamarin scent-gland swab samples, using 

identical analytical methods (see Q8 in Chapter 1, section I.4.2). Butan-1-

ol, 1-octen-3-ol, benzaldehyde, acetophenone, a branched C8 carboxylic 

acid, 4-methoxybenzaldehyde, and cyclododecane, were common to the 

two sets of samples; yet most compounds were not shared. This result 

indicates that captivity likely modifies the chemical composition of emperor 

tamarin scent-gland secretions, although not entirely. Indeed, diet, 

husbandry procedures (e.g. feeding and enrichment routines), climate, and 

illumination in a captive environment can influence an animal’s bacterial 

environment and hence cause changes in the chemicals produced and 

used as signals (Drea et al., 2013; Kwak et al., 2008; Rudie, 2015). 

I further compared the use of the new generation Torion® portable 

gas chromatography-mass spectrometry (GC-MS) device with that of a 

conventional bench-top GC-MS, for the analysis of wild tamarin headspace 

samples (see Q11–Q12 in Chapter 1, section I.4.2). The number of volatile 
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chemicals retrieved using the Torion® was lower than with the laboratory 

bench-top instrument. This indicates that this portable device was probably 

a less suitable technique than the conventional laboratory-based 

techniques for the analysis of the complex mixtures of compounds that 

constitute tamarin chemosignals. Nevertheless, as detailed in Chapter 4, 

section IV.4.3, a number of methodological aspects can readily be 

optimized to ensure greater success in future use of the Torion® GC-MS, 

which has great potential to enhance the study of animal chemosignalling in 

field conditions. 

Finally, in Chapter 3 I explored the temporal stability of the samples 

collected for my study (see Q10 in Chapter 1, section I.4.2). I found that 

compounds are lost and transform over time inside the sample vials, 

reflecting the versatility of scent signals. Such natural decay of scent 

signals is likely to participate to the information transmitted, indicating past 

physical presence and physiological state of the signaller animal (Müller-

Schwarze, 2006). My experience also showed that sampling the headspace 

above the sample multiple times has more deleterious effect on the quality 

of the sample than storage at room temperature (see Chapter 3, sections 

III.3.4 and II.4.3). Overall, these results concur with the standard 

recommendation in this field, to store samples frozen before analysis and to 

extract each sample only once, in order to ensure optimum results (Apps, 

Weldon and Kramer, 2015; Drea et al., 2013). 
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Table V.1. Review of the compounds of interest identified in the present study, in the existing literature on mammalian semiochemicals, compiled from 92 
publications from 1988–2019. Colour shading indicates primates, rodents and lagomorphs, carnivores, artiodactyls, and other taxa. SG= scent-gland; SM= 
deposited scent-mark; U= urine; F= faeces. References are indicated by numbers in super-script; = present results from captive study (Chapter 3); †= 
present results from wild samples analysed in situ, and = from wild samples analysed in the laboratory (Chapter 4). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Butan-1-ol 

Emperor tamarin, Saguinus imperator subgrisescens 
(all SG; suprapubic SG, SM) 

Emperor tamarin (skin) Brown rat, Rattus norvegicus (U)4 

Silvery marmoset, Mico argentatus (suprapubic SG) Human, Homo sapiens sapiens (skin)2,3 Siberian tiger, Panthera tigris altaica (U)5 

Cotton-top tamarin, Saguinus oedipus (SM)  
White-tailed deer, Odocoileus virginianus 
(U)6 

Owl monkey, Aotus azarae (subcaudal SG)1   

Methoxypropan-2-
ol 

Emperor tamarin (suprapubic SG) Human (skin)3 
House mouse, Mus musculus domesticus 
(U)7 

Silvery marmoset (suprapubic SG) House mouse, (body)7  

Pentan-2-one 

Emperor tamarin (SM) Human (skin)8 Emperor tamarin (U) 

Cotton-top tamarin (SM) House mouse (body)7 Brown lemurs, Eulemur spp. (U)9 

Owl monkey, Aotus nancymaae (subcaudal SG)1  Dwarf hamsters, Phodopus spp. (U)10 

  House mouse (U)7 

  Binturong, Arctictis binturong (U)11 

  Lion, Panthera leo (U)12,13 

  Cheetah, Acinonyx jubatus (U)14 

  White-tailed deer (U)6 

  African elephant, Loxodonta africana (U)15 

Pentan-2-ol 

Emperor tamarin (SM)  Emperor tamarin (U) 

Cotton-top tamarin (SM)   

White-faced saki monkey, Pithecia pithecia (SM)   

3-hydroxybutan-2-
one 

Emperor tamarin (anogenital SG)   
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Table V.1. Continued (1/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

3-methylbutan-1-ol Emperor tamarin (anogenital SG)   

Propane-1,2-diol 

Emperor tamarin (suprapubic SG, SM)  African wild dog, Lycaon pictus (U, F)16 

Silvery marmoset (suprapubic SG)  
Black-backed jackal, Canis mesomelas 
(F)16 

Hexanal 

Emperor tamarin (suprapubic SG, SM) 
Common marmoset, Callithrix jacchus 
(body)26 

Emperor tamarin (U) 

Cotton-top tamarin (SM) Ring-tailed lemur, Lemur catta (tail)17 Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG) Human (skin3,27, para-axillary region28) 
Black-headed spider monkey, Ateles 
fusciceps (U) 

White-faced saki monkey (SM) Waterbuck, Kobus defassa (body)29 House mouse (U)7 

Ring-tailed lemur (brachial SG)17  Ferret, Mustela furo (U)30 

Red-ruffed lemur, Varecia rubra (anogenital SG)18  Siberian tiger (U)5 

Mandrill, Mandrillus sphinx (sternal SG)19  Bengal tiger, Panthera tigris tigris (U)31 

Dwarf hamster (cheek SG)20  Lion (U)12 

Iberian wolf, Canis lupus signatus (anal SG)21  Cheetah (U)14 

Domestic dog, Canis lupus familiaris (anal SG)16  African wild dog (U, F)16 

Red hartebeest, Alcephalus buselaphus caama 
(interdigital SG)22 

 Eurasian otter, Lutra lutra (F)32 

Suni, Neotragus moschatus (preorbital SG)23   

Sika deer, Cervus nippon (metatarsal SG)24   

Koala, Phascolarctos cinereus (sternal SG)25   

2-Methylpropanoic 
acid (1/2) 

Emperor tamarin (SM)  Emperor tamarin (U) 

Mandrill (sternal SG)19,33  Brown rat (F)38 

Chimpanzee, Pan troglodytes (vaginal secretions)34  African wild dog (U, F)16 

Dwarf hamster (cheek SG)20  Iberian wolf (F)21 
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Table V.1. Continued (2/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

2-Methylpropanoic 
acid (2/2) 

Giant panda, Ailuropoda melanoleuca (SM)35  Black-backed jackal (F)16 

African wild dog (anal SG)16  Domestic dog (U)16 

Iberian wolf (anal SG)21  Eurasian otter (F)32 

Black-backed jackal, Canis mesomelas (anal SG)16   

Wolverine, Gulo gulo (anal SG)36   

Small Indian mongoose, Herpestes auropunctatus 
(anal SG)37 

  

Coyote, Canis latrans (anal SG)16   

Domestic dog (anal SG)16   

Red fox, Vulpes vulpes (anal SG)16   

Koala (sternal SG)25   

Furfural 

Emperor tamarin (SM) Bengal tiger (head)40 Siberian tiger (U)5 

Silvery marmoset (suprapubic SG) Lion (head)40 African wild dog (U)16 

Common marmoset (SM)39 Leopard, Panthera pardus (head)40  

 Puma, Puma concolor (head)40  

3-Methylbutanoic 
acid (1/2) 

Emperor tamarin (suprapubic SG, SM) 
2-methylbutanoic acid: House mouse 
(body)7 

2-methylbutanoic acid: House mouse (U)7 

White-faced saki monkey (SM)  
2-methylbutanoic acid: African wild dog (U, 
F)16 

2-methylbutanoic acid: Dwarf hamster (cheek SG)20  2-methylbutanoic acid: Iberian wolf (F)20 

2-methylbutanoic acid: Iberian wolf (anal SG)21   

2-methylbutanoic acid: Coyote (anal SG)16   

2-methylbutanoic acid: Domestic dog (anal SG)16   

2-methylbutanoic acid: Red fox (anal SG)16   

2-methylbutanoic acid: Wolverine (anal SG)36   
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Table V.1. Continued (3/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

3-Methylbutanoic 
acid (2/2) 

2-methylbutanoic acid: Giant panda (SM)35   

2-methylbutanoic acid: Koala (sternal SG)25   

2-Furanmethanol 

Emperor tamarin (suprapubic SG, SM) Human (skin2, para-axillary region28) Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG) Leopard (head)40 Domestic dog (U)16 

Cotton-top tamarin (SM) Puma (head)40 Bengal tiger (U)31 

 Bengal tiger (head)40 African wild dog (U, F)16 

  Black-backed jackal (F)16 

Cyclopent-2-en-
1,4-dione 

Emperor tamarin (SM)   

Cotton-top tamarin (SM)   

Common marmoset (SM)39   

1,2-
Dimethylbenzene 

Cotton-top tamarin (SM)  1,4-dimethylbenzene: House mouse (U)7 

White-faced saki monkey (SM)  Lion (U)12 

1,3-dimethylbenzene: European rabbit, Oryctolagus 
cuniculus (chin SG)41 

 Iberian wolf (F)21 

Giant panda (SM)35   

Methyl hexanoate 

Weddell’s saddleback tamarin, Leontocebus weddelli 
(all SG)† 

Weddell’s saddleback tamarin (skin)† Iberian wolf (F)21 

 Human (para-axillary region)28  

Methyl-
cycloheptanone 

Emperor tamarin (suprapubic SG, SM)  Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG)   

Cotton-top tamarin (SM)   

Heptanal (1/2) 

Emperor tamarin (SM) Human (skin3,8, para-axillary region28) Emperor tamarin (U) 

Cotton-top tamarin (SM) House mouse (body)7 Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG) Bengal tiger (head)40 Black-headed spider monkey (U) 
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Table V.1. Continued (4/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Heptanal (2/2) 

Mandrill (sternal SG)19 Lion (head)40 Dwarf hamster (U)10 

Red hartebeest (interdigital SG)22 Leopard (head)40 House mouse (U)7 

Suni (preorbital SG)23 Puma (head)40 Bengal tiger (U)31 

Sika deer (metatarsal SG)24 
Reticulated giraffe, Giraffa camelopardalis 
(body)42 

Lion (U)12 

Koala (sternal SG)25 African buffalo, Syncerus caffer (body)29 Eurasian otter (F)32 

 Waterbuck (body)29  

2-butoxyethanol Emperor tamarin (suprapubic, sternal SG) Emperor tamarin (skin)  

Branched C9 
alcohol 

Emperor tamarin (all SG) Emperor tamarin (skin)  6-methyloctan-2-ol : Dwarf hamsters (U)10 

2,5-
Dimethylpyrazine 

Silvery marmoset (suprapubic SG) Common marmoset (body)26 House mouse (U)43 

Common marmoset (SM)39  Tree shrew, Tupaia belangeri (U)38 

  Pine vole, Microtus pinetorum (U)44 

  Dwarf hamsters (U)10 

  Ferret (U)30 

  Maned wolf, Chrysocyon brachyurus (U)45 

  Lion (U)13 

  Siberian tiger (U)5 

  African wild dog (F)16 

Anisole 
Emperor tamarin (SM)  Emperor tamarin (U) 

Cotton-top tamarin (SM)  Cotton-top tamarin (U) 

Benzaldehyde (1/2) 

Emperor tamarin (anogenital SG†,; suprapubic SG, 
SM) 

Common marmoset (body)26 Emperor tamarin (U) 

Weddell’s saddleback tamarin (anogenital SG)† Human (skin2,8,27,  para-axillary region28) Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG) House mouse (body)7 Black-headed spider monkey (U) 
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Table V.1. Continued (5/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Benzaldehyde (2/2) 

Cotton-top tamarin (SM) Bengal tiger (head)40 Brown lemurs (U)9 

White-faced saki monkey (SM) Reticulated giraffe (body)42 Pine vole (U)44 

Common marmoset (SM)39  Dwarf hamsters (U)10 

Owl monkey (subcaudal SG)1  House mouse (U)7 

Red-ruffed lemur (anogenital SG)18  Brown rat (U)4 

Mandrill (sternal SG)19  Giant panda (U)47 

European rabbit (chin SG)41  Bengal tiger (U)31 

Crested porcupine, Hystrix cristata (perianal SG)46  Siberian tiger (U)5 

Giant panda (SM)35  Lion (U)12 

African wild dog (anal SG)16  Cheetah (U)14 

Ferret (anal SG)30  Binturong (U)11 

Black-backed jackal (anal SG)16  Red fox (U)16 

Iberian wolf (anal SG)21  African wild dog (U, F)16 

Wolverine (anal SG)36  Ferret (U)30 

  Black-backed jackal (F)16 

  Iberian wolf (F)21 

  Eurasian otter (F)32 

1,3,5-
Trimethylbenzene 

Cotton-top tamarin (SM)  Eurasian otter (F)32 

Unknown trimethylbenzene: Common marmoset 
(SM)39 

  

1-Octen-3-ol (1/2) 

Emperor tamarin (SM, suprapubic SG) Emperor tamarin (skin) Cotton-top tamarin (U) 

Cotton-top tamarin (SM) Human (skin)2 Black-headed spider monkey (U) 

Silvery marmoset (suprapubic SG)  African wild dog (F)16 

African wild dog (anal SG)16  Eurasian otter (F)32 

Iberian wolf (anal SG)21   
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Table V.1. Continued (6/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

1-Octen-3-ol (2/2) 
Black-backed jackal (anal SG)16   

Wolverine (anal SG)36   

Branched C12 
alkane 

Emperor tamarin (all SG) Emperor tamarin (skin)  

4-methylundecane: European rabbit (chin SG)41   

2-methylundecane: Red hartebeest (interdigital SG)22   

6-Methyl-5-hepten-
2-one 

Emperor tamarin (SM) Common marmoset (body)26 House mouse (U)7 

Silvery marmoset (suprapubic SG) Human (skin2,8,27,  para-axillary region28) Dwarf hamsters (U)10 

Ferret (anal SG)30 House mouse (body)7 Ferret (U)30 

 Bengal tiger (head)40 Maned wolf (U)45 

 Lion (head)40 Red fox (U)38 

 Leopard (head)40 White-tailed deer (U)6 

 Puma (head)40  

 Waterbuck (body)29  

1,2,3- or 1,2,4-
Trimethylbenzene 

Cotton-top tamarin (SM)  Cotton-top tamarin (U) 

1,2,4-trimethylbenzene: European rabbit (chin SG)41   

Ethyl hexanoate 
Emperor tamarin (sternal SG) Human (skin)3  

Weddell’s saddleback tamarin (anogenital SG)†   

Benzyl alcohol 

Emperor tamarin (suprapubic SG, SM) Human (para-axillary region)28 Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)  Siberian tiger (U)5 

Black-backed jackal (anal SG)16  African wild dog (U, F)16 

Wolverine (anal SG)36   

Benzene 
acetaldehyde (1/2) 

Emperor tamarin (suprapubic SG, SM)  Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)  Cotton-top tamarin (U) 
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Table V.1. Continued (7/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Benzene 
acetaldehyde (2/2) 

Cotton-top tamarin (SM)  Black-headed spider monkey (U) 

Giant panda (SM)35   

Acetophenone 

Emperor tamarin (suprapubic SG, SM; sternal SG) Emperor tamarin (skin) Emperor tamarin (U) 

Weddell’s saddleback tamarin (sternal SG)† Common marmoset (body)26 Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG) Human (skin)2 Brown lemurs (U)9 

Cotton-top tamarin (SM) Bengal tiger (head)40 House mouse (U)43 

North American beaver, Castor canadensis (anal SG)38 Lion (head)40 Dwarf hamsters (U)10 

African wild dog (anal SG)16 Leopard (head)40 Brown rat (U)4 

Ferret (anal SG)30 Puma (head)40 Bengal tiger (U)31 

  Ferret (U)30 

  Red fox (U)38 

  Lion (U)13 

  Cheetah (U)14 

  Maned wolf (U)45 

  Coyote (U)16 

  Domestic dog (U)16 

  Black-backed jackal (U, F)16 

  African wild dog (U, F)16 

  Iberian wolf (F)21 

  African elephant (U)15 

p-Cresol (1/2) 

Emperor tamarin (suprapubic SG, SM) Human (skin)2 Emperor tamarin (U) 

Silvery marmoset (suprapubic SG) Reticulated giraffe (body)42 Cotton-top tamarin (U) 

Cotton-top tamarin (SM)  Black-headed spider monkey (U) 

Common marmoset (SM)39  Brown lemurs (U)9 
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Table V.1. Continued (8/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

p-Cresol (2/2) 

Red-ruffed lemur (anogenital SG)18  Brown rat (U)38 

Mandrill (sternal SG)33  Pine vole (U)44 

Giant panda (SM)35  Lion (U)13 

Small Indian mongoose (anal SG)37  Siberian tiger (U)5 

  African wild dog (U, F)16 

  Iberian wolf (F)21 

  Black-backed jackal (F)16 

  Moose, Alces alces (U)48 

  African elephant (U)15 

  Horse, Equus ferus (U)38 

Branched C15 
alkane 

Emperor tamarin (anogenital SG)†   

2-methyltetradecane: Suni (preorbital SG)23   

p-Cymene 

Cotton-top tamarin (SM) Human (skin)2,8 Black-headed spider monkey (U) 

Giant panda (SM)35 Bengal tiger (head)40 Pine vole (U)44 

Koala (sternal SG)25 Lion (head)40  

 Leopard (head)40  

 Puma (head)40  

2-Methoxyphenol 

Emperor tamarin (SM) African buffalo (body)29 Emperor tamarin (U) 

Cotton-top tamarin (SM) Waterbuck (body)29 Cotton-top tamarin (U) 

 Zebu, Bos taurus indicus (body)29 Black-headed spider monkey (U) 

  Brown rat (U)4 

3,7-Dimethyloctan-
3-ol 

Emperor tamarin (suprapubic SG, SM)   

Silvery marmoset (suprapubic SG)   

Cotton-top tamarin (SM)   
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Table V.1. Continued (9/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Methyl octanoate 
Emperor tamarin (SM) Human (para-axillary region)28  

Cotton-top tamarin (SM)   

Dimethyl 
pentanedioate 

Emperor tamarin (SM)  Bengal tiger (U)31 

Cotton-top tamarin (SM)   

Branched C7 
carboxylic acid 

Emperor tamarin (sternal SG) 2-methylhexanoic acid: Human (skin)49  

2-methylhexanoic acid: Wolverine (anal SG)36   

2-methylhexanoic acid: Small Indian mongoose (anal 
SG)37 

  

trans-1-Methyl-4-
(1-methylethyl)-
cyclohexanol 

Emperor tamarin (SM)  Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)   

1-Nonanol 
Emperor tamarin (SM)  Emperor tamarin (U) 

Cotton-top tamarin (SM)  Bengal tiger (U)31 

Branched C8 
carboxylic acid 

Emperor tamarin (suprapubic SG), 2-methylheptanoic acid: Human (skin)49 Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)  Cotton-top tamarin (U) 

6-methylheptanoic acid: Red hartebeest (interdigital 
SG)22 

  

Ethyl oct-3-enoate Emperor tamarin (sternal SG)   

Ethyl octanoate 
Emperor tamarin (all SG)   

Meerkat, Suricata suricatta (anal SG)50   

Dimethyl 
hexanedioate 

Emperor tamarin (SM) Human (para-axillary region)28 Bengal tiger (U)31 

Cotton-top tamarin (SM)   

4-Methoxy-
benzaldehyde (1/2) 

Emperor tamarin (anogenital SG,†, suprapubic SG†,, 
SM) 

 Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)  Cotton-top tamarin (U) 
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Table V.1. Continued (10/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

4-Methoxy-
benzaldehyde (2/2) 

Cotton-top tamarin (SM),51  Black-headed spider monkey (U) 

Common marmoset (SM)39   

White-faced saki monkey (SM)   

Cyclodecane 

Emperor tamarin (suprapubic SG, SM)  Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)  Cotton-top tamarin (U) 

Cotton-top tamarin (SM)   

Branched C13 
alkane 

Emperor tamarin (SM)  2,8-dimethylundecane: Eurasian otter (F)32 

Cotton-top tamarin (SM)   

Silvery marmoset (suprapubic SG)   

4-methyl- and 6-methyl-dodecane, 3,6-
dimethylundecane: Mandrill (sternal SG)33 

  

Eugenol 
Emperor tamarin (SM) Human (skin)52 Cotton-top tamarin (U) 

Cotton-top tamarin (SM)   

3-Methyltridecane Emperor tamarin (SM)   

Butyl 2-methylpent-
4-enoate 

Emperor tamarin (sternal SG)   

Decanoic acid 

Emperor tamarin (sternal SG) Human (skin)49 Bengal tiger (U)31 

Crested porcupine (perianal SG)46 Bengal tiger (head)40 African wild dog (U)16 

Brown bear, Ursus arctos (pedal SG)53 Lion (head)40  

Wolverine (anal SG)36 Leopard (head)40  

Sika deer (metatarsal SG)24 Puma (head)40  

 Waterbuck (body)29  
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Table V.1. Continued (11/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Ethyl dec-3-enoate Emperor tamarin (sternal SG)   

Ethyl decanoate 
Emperor tamarin (anogenital, suprapubic, sternal SG)  Bengal tiger (U)31 

Meerkat (anal SG)50   

Dodecanal or 
tridecanal 

Emperor tamarin (SM) 
dodecanal: Human (skin)2,27; tridecanal 
(skin)52 

Emperor tamarin (U) 

Cotton-top tamarin (SM) 
do- and tri-decanal: African buffalo 
(body)29 

Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG) do- and tri-decanal: Zebu (body)29 
do- and tridecanal: African wild dog (U, 
F)16 

White-faced saki monkey (SM)  dodecanal: Lion (U)13 

do- and tri-decanal: Mandrill (sternal SG)19  dodecanal: Iberian wolf (F)21 

dodecanal: African wild dog (anal SG)16  dodecanal: Coyote (U)16 

do- and tri-decanal: Sika deer (metatarsal SG)24  
dodecanal: Asian elephant, Elephas 
maximus (U)54 

Diethylene glycol 
dibutyl ether 

Emperor tamarin (suprapubic SG, SM)  Emperor tamarin (U) 

Silvery marmoset (suprapubic SG)   

Cyclododecane 

Emperor tamarin (anogenital SG, suprapubic SG, 
SM) 

 Emperor tamarin (U) 

Cotton-top tamarin (SM)  Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG)  Black-headed spider monkey (U) 

White-faced saki monkey (SM)   

Ring-tailed lemur (anogenital SG)55   

Coquerel’s sifaka, Propithecus coquereli (anogenital 
SG)55 

  

Myristicin 
Emperor tamarin (SM)  Emperor tamarin (U) 

Cotton-top tamarin (SM)   
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Table V.1. Continued (12/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

2-Methyldecyl-
propanoate 

Cotton-top tamarin (SM)  Cotton-top tamarin (U) 

Dodecanoic acid 

Emperor tamarin (anogenital SG) Human (skin2,49, para-axillary region28) African wild dog (U)16 

North American beaver (anal SG)38 Bengal tiger (head)40 Eurasian lynx (U)58 

Crested porcupine (perianal SG)46 Lion (head)40 Bengal tiger (U)31 

African wild dog (preputial SG)16 Leopard (head)40 Iberian wolf (F)21 

European badger, Meles meles (anal SG)56 Puma (head)40  

Banded mongoose, Mungos mungo (anal SG)57   

Meerkat (anal SG)50   

Wolverine (anal SG)36   

Sika deer (metatarsal SG)24   

Ethyl dodecanoate 
Emperor tamarin (anogenital, sternal SG)   

Meerkat (anal SG)50   

Branched C16 
alkane 

Emperor tamarin (suprapubic SG, SM)  Emperor tamarin (U) 

Cotton-top tamarin (SM)  Cotton-top tamarin (U) 

Silvery marmoset (suprapubic SG)  
3-methyl- and 7-methyl-pentadecane: 
Eurasian otter (F)32 

White-faced saki monkey (SM)   

2-methyl- and 3-methyl-pentadecane: Mandrill (sternal 
SG)19 

  

Tetradecanal or 
pentadecanal (1/2) 

Cotton-top tamarin (SM) 
tetradecanal: Human (para-axillary 
region)28 

pentadecanal: African wild dog (U, F)16 

tetradecanal: Mandrill (sternal SG)19 
tetra- and penta-decanal: African buffalo 
(body)29 

tetra- and penta-decanal: Iberian wolf (F)21 

pentadecanal: Crested porcupine (perianal SG)46 tetra- and penta-decanal: Zebu (body)29  

tetra- and penta-decanal: Giant panda (anogenital 
SG)59 
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Table V.1. Continued (13/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Tetradecanal or 
pentadecanal (2/2) 

tetra- and penta-decanal: Meerkat (anal SG)50   

pentadecanal: African wild dog (anal SG)16   

tetradecanal: Sika deer (metatarsal SG)24   

Hexadecan-1-ol 

Weddell’s saddleback tamarin (suprapubic SG)† 
Rhesus macaque, Macaca mulatta 
(body)62 

African wild dog (U, F)16 

Ring-tailed lemur (anogenital SG)55 Bengal tiger (head)40 Bengal tiger (U)31 

Coquerel’s sifaka (anogenital SG)55 Lion (head)40 Iberian wolf (F)21 

House mouse (preputial SG)60 Leopard (head)40  

Syrian golden hamster, Mesocricetus auratus (vaginal 
secretions)61 

Puma (head)40  

Crested porcupine (perianal SG)46   

African wild dog (anal SG)16   

Black-backed jackal (anal SG)16   

Small dwarf mongoose, Helogale parvula (anal SG)63   

Banded mongoose (anal SG)57   

Meerkat (anal SG)50   

Brown bear (pedal SG)53   

Sika deer (metatarsal SG)24   

Heptadecane 

Cotton-top tamarin (SM) Human (para-axillary region)28  

Silvery marmoset (suprapubic SG)   

Red-ruffed lemur (anogenital SG)18   

Mandrill (sternal SG)19   

Giant panda (anogenital SG)64   

Suni (preorbital SG)23   
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Table V.1. Continued (14/14). 

Compound Scent-glands / deposited scent-marks Skin / body region Urine / faeces 

Ethyl 
tetradecanoate 

Emperor tamarin (anogenital SG) Human (skin)52  

Meerkat (anal SG)50   

Giant panda (anogenital SG)59   

Ethyl 
pentadecanoate 

Emperor tamarin (anogenital, suprapubic SG) Human (skin)52  

Meerkat (anal SG)50   

Giant panda (anogenital SG)59   

1. Spence-Aizenberg et al., 2018; 2. Gallagher et al., 2008; 3. Meijerink et al., 2000; 4. Osada, Kashiwayanagi and Izumi, 2009; 5. Soso and Koziel, 2016; 

6. Miller et al., 1998; 7. Röck et al., 2006; 8. Mochalski et al., 2014; 9. Delbarco-Trillo et al., 2011; 10. Soini et al., 2005; 11. Greene et al., 2016b; 12. 

Andersen and Vulpius, 1999; 13. Soso and Koziel, 2017; 14. Burger et al., 2006; 15. Goodwin et al., 2012; 16. Apps, Mmualefe and McNutt, 2012; 17. 

Knapp, Robson and Waterhouse, 2006; 18. Janda et al., 2019; 19. Vaglio et al., 2016; 20. Burger et al., 2001; 21. Martín, Barja and López, 2010; 22. 

Reiter, Burger and Dry, 2003; 23. Stander, Burger and Le Roux, 2002; 24. Wood, 2003; 25. Salamon and Davies, 1998; 26. Kücklich et al., 2017; 27. 

Logan et al., 2008; 28. Curran et al., 2005; 29. Gikonyo et al., 2002; 30. Zhang et al., 2005; 31. Burger et al., 2008; 32. Kean, Chadwick and Müller, 2015; 

33. Setchell et al., 2010; 34. Matsumoto-Oda et al., 2003; 35. Hagey and Macdonald, 2003; 36. Wood, Terwilliger and Copeland, 2005; 37. Miyazaki et al., 

2018; 38. Apps, Weldon and Kramer, 2015; 39. Smith et al., 2001b; 40. Soini et al., 2012; 41. Hayes, Richardson and Wyllie, 2002; 42. Wood and Weldon, 

2002; 43. Novotny et al., 2007; 44. Boyer et al., 1989; 45. Jones, 2017; 46. Massolo, Dani and Bella, 2009; 47. Wilson et al., 2018; 48. Whittle et al., 2000; 

49. Akin, 2005; 50. Leclaire et al., 2017; 51. Belcher et al., 1988; 52. Penn et al., 2007; 53. Sergiel et al., 2017; 54. Rasmussen, Krishnamurthy and 

Sukumar, 2005; 55. Hayes, Morelli and Wright, 2004; 56. Buesching, Waterhouse and Macdonald, 2002a; 57. Jordan et al., 2010; 58. Vogt et al., 2016; 59. 

Yuan et al., 2004; 60. Zhang et al., 2007; 61. Briand et al., 2004; 62. Birkemeyer et al., 2016; 63. Decker, Ringelberg and White, 1992; 64. Zhang et al., 

2008. 
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V.2. Limits of the study and recommendations 
for future research 

V.2.1. Importance of conducting behavioural bioassays  

 As mentioned in Chapter 1 (section I.2.1.2; Table I.2), behavioural 

bioassays, in which odours are experimentally presented to target animals, 

are able to inform on the proximate functions of a particular intra- or inter-

specific olfactory signal (Haynes and Millar, 1998). For instance, Smith and 

co-workers (Smith et al., 1997; Smith and Abbott, 1998) showed evidence 

for behavioural discrimination between circumgenital odours of familiar and 

unfamiliar individuals, and of periovulatory and anovulatory female common 

marmosets, by performing a series of behavioural bioassays in laboratory-

housed animals. Henkel et al. (2015) similarly demonstrated that semi-free 

range rhesus macaques, Macaca mulatta, are able to recognize group 

members via olfactory cues alone. Without testing the behavioural, 

physiological, and/or neuronal response of an animal to a scent signal, it is 

not possible to infer its exact function. Therefore, although my study 

indicates that scent-marking behaviour may have a function in mate choice, 

intraspecific competition, and regulation of reproduction in callitrichids, no 

definite answer can be given without first carrying out bioassays. 

 As well as informing us on potential species-specific functions of 

chemosignalling, bioassays may help the understanding of a species’ 

biology and physiology, as our knowledge of the exact mechanisms of the 

olfaction sense is still limited (Alberts, 1992; Heymann, 2006b; 

Wackermannová, Pinc and Jebavý, 2016). For example, functional 

magnetic resonance imaging (fMRI) has been used to identify the brain 

areas involved in the sexual arousal of male common marmosets in 

immediate response to the presentation of female odours (Ferris et al., 

2001; reviewed in Snowdon et al., 2006). Moreover, behavioural bioassays 

can inform us on species-specific differences in odour detection abilities. 

For instance, experimental research by Laska and co-workers (Eliasson, 

Hernandez Salazar and Laska, 2015; Laska et al., 2004, 2007; Laska and 

Hudson, 1995; Laska, Seibt and Weber, 2000; Laska, Wieser and 

Hernandez Salazar, 2005), based on behavioural bioassays on common 

squirrel monkeys, Saimiri sciureus, Geoffroy’s spider monkeys, Ateles 
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geoffroyi, and pig-tailed macaques, Macaca nemestrina, is progressively 

filling the gap of knowledge of odour detection thresholds in primates. 

 

V.2.2. Methodological challenges to the study of wild 

primate chemosignalling 

As highlighted by Heymann (2006b), progress in semiochemistry 

research in the field of primate olfactory communication is highly dependent 

on future methodological advances. Unlike acoustic and visual signals, the 

properties of an olfactory signal cannot be easily measured and quantified, 

especially in field conditions. Nevertheless, rigorous recording and 

quantification of chemosignals will be essential if future research is to 

understand functional relationships. As sample collection and analytical 

techniques develop, hence providing guidelines for future studies, there is 

hope that the challenges of semiochemistry research in field conditions will 

progressively be overcome. Novel techniques are starting to be employed 

in this field for the study of large mammals and humans, such as electronic 

noses (e.g. lemur scent-gland secretion composition, Staples and 

Electronic Sensor Technology, n.d.; multiple applications to the screening 

of human diseases reviewed by Röck, Barsan and Weimar, 2008), thermal 

desorption (e.g. body odour of common marmosets, Kücklich et al., 2017; 

feathers of king penguins, Aptenodytes patagonicus, Gabirot et al., 2018; 

human foot odour, Stevens et al., 2015), and portable GC-MS devices (e.g. 

body odour of common marmosets, Kücklich et al., 2017; wild tamarin 

scent-gland secretions, present study). However, these techniques require 

further sophistication and optimization to be usable at most primate field 

study sites, where vegetation, humidity, as well as conditions of storage 

and transportation, are still a challenge. 

 

V.2.3. Need for a more cross-disciplinary research 

In their review of the chemical ecology of mammalian 

communication, Charpentier and co-workers (2012) draw attention to the 

errors commonly found in the mammalian semiochemistry literature over 

the past two decades, in chemical characterization of molecules, as well as 

interpretation of their roles as chemical mediators of communication. For 
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example, semiochemicals reported in the literature are often misnamed, 

and sometimes inorganic compounds, undoubtedly originating from 

contamination, are mistakenly provided as putative identity. In particular, 

primatologists in the field of chemical ecology and semiochemistry need to 

acquire a stronger expertise in chemistry in order to progress in the 

deciphering of primate chemosignalling, or seek collaboration with 

specialists in analytical biochemistry (Charpentier et al., 2012; Drea et al., 

2013). 

One markedly growing cross-disciplinary field of research is 

microbial ecology. As discussed in Chapters 3–4, commensal bacteria and 

other microorganisms contribute to the production of animal chemosignals 

(reviewed in Archie and Theis, 2011; and Ezenwa and Williams, 2014). A 

number of studies have started to combine mammalian semiochemistry 

with bacterial culture (e.g. analysis of the tarsal tufts of white-tailed deer, 

Odocoileus virginianus, Alexy et al., 2003; and urine of African elephants, 

Loxodonta africana, Goodwin et al., 2012), and microbiomic analyses, i.e. 

bacterial DNA or rRNA sequencing (e.g. analysis of the anal sac of spotted 

hyenas, Theis, Schmidt and Holekamp, 2012; Theis et al., 2013; the anal 

sac of wild meerkats, Suricata suricatta, Leclaire et al., 2017; and the 

human foot, Stevens et al., 2015). A better understanding of the 

interactions at play between bacteria communities and their animal hosts 

has the potential to enhance the study of both animal behaviour and 

semiochemistry (Archie and Theis, 2011; Leclaire et al., 2017). 

 

V.2.4. When communication goes multimodal  

One of the main criticisms made about studies of animal 

communication is that they often look at acoustic, visual, or olfactory 

signalling as a discrete modality. In fact, much, if not all, of primate 

signalling is multimodal, i.e. signals are simultaneously sent via several 

communication channels (Liebal et al., 2014). The message resulting from 

a single modality might fail to capture the full richness and complexity of the 

global signal (Partan, 2013; Semple & Higham 2013). It is thus ideal, when 

studying primate communication, to investigate signals through several 

modalities. For instance, Buesching et al. (1998) showed that female 

mouse lemurs, Microcebus murinus, a nocturnal primate, use a 
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combination of olfactory (i.e. scent-marking activity) and acoustic (i.e. 

mating trills) cues, resulting in a multimodal advertisement of their oestrus. 

Similarly, Partan and Marler (1999) demonstrated the bimodality of threat 

displays in rhesus macaques, which combine visual (i.e. the open-mouth 

facial expression) with acoustic cues (i.e. the “bark” vocalization); and 

Palagi and Norscia (2009) suggested that ring-tailed lemurs’ olfactory 

communication combines olfactory cues (i.e. urine-marking) with visual 

signals (i.e. ostentatiously raised tail). However, experimental designs 

conjointly assessing two or more communication modalities can be 

understandably difficult to carry out, due to methodological constraints 

(Moreira, Pessoa and Sousa, 2013). Consequently, a general 

recommendation is to put individual results in the perspective of a more 

complete, multimodal approach (Dominy, Ross and Smith, 2004; Higham 

and Hebets, 2013; Liebal et al., 2014; Waller et al., 2013). 

 

V.3. Applications of semiochemistry research 

V.3.1. Application to conservation breeding 
programmes 

Reproductive success can have important consequences for the 

conservation of rare mammal species. When a wild population becomes 

too small or too inbred, or in the case of captive animals kept in unnatural 

social conditions (e.g. in very small groups in the case of social species, in 

groups in the case of solitary animals, or in groups with unbalanced sex 

ratio), breeding success may decrease, sometimes to an alarming level 

(Swaisgood and Schulte, 2010). As noted in Chapters 2–4, olfactory 

signals are thought to be important regulators of mate choice, intrasexual 

competition and sexual receptivity in mammals (Wyatt, 2014a). Modern 

breeding programmes are starting to make use of natural reproductive cues 

to artificially enhance breeding success in these populations at risk 

(Lindburg and Fitch‐Snyder, 1994; Swaisgood and Schulte, 2010). For 

instance, the work by Swaisgood and co-workers (Swaisgood, Lindburg 

and Zhou, 1999; Swaisgood et al., 2000; Swaisgood, Lindburg and Zhang, 

2002; Swaisgood et al., 2004; White, Swaisgood and Zhang, 2003) on 

captive giant pandas, Ailuropoda melanoleuca, was able to increase the 

natural mating record at the Wolong breeding centre (China) to the highest 
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of any giant panda breeding facility, by taking into account the importance 

of chemosignalling in this species. Notably, their research revealed the 

releaser effect, i.e. behavioural effect, that panda odours have on the 

sexual receptiveness of individuals of the opposite sex, and successfully 

exploited this effect: they exposed periestrous females and their mate-to-be 

to each other’s scents prior to the physical mating introduction. This initial 

olfactory familiarization resulted in a decreased aggression, and an 

increased sexual activity, between the male and the female panda once 

placed in the same enclosure (Swaisgood et al., 2004). Furthermore, 

Fisher, Swaisgood and Fitch-Snyder (2003a; b) used odour cues to 

experimentally manipulate mate choice in a small wild population of the 

threatened pygmy loris, Nycticebus pygmaeus: they artificially presented 

females with scent-marks from specific males chosen on the basis of 

optimal outbreeding. As shown in mice by Rich and Hurst (1999), and 

Gosling and Roberts (2001a), familiarity with a male’s odour may be one of 

the proximate mechanisms by which females choose a mate, because the 

ability of the male to countermark his rivals’ scent-marks can be seen as an 

honest signal of high mate quality (reviewed in Swaisgood and Schulte, 

2010). Fisher et al.’s (2003a; b) experimental olfactory manipulation 

successfully resulted in a genetically optimal mating, which reinforced the 

status of the population of pygmy lorises. A similar experimental 

manipulation was conducted by Roberts and Gosling (2004) on female 

harvest mice, Micromys minutus, where increased familiarity of females 

with the scent of particular males enhanced mating compatibility between 

them, which improved the conservation of this species in the wild. Such 

approaches could very well be implemented to aid the conservation of wild 

populations of endangered callitrichids, such as golden lion tamarins in the 

highly fragmented Brazilian lowland Atlantic rainforest (Kierulff et al., 2012; 

Rylands and Mittermeier, 2013). 

 

V.3.2. Application to captive husbandry and welfare 

Knowledge of mammalian chemosignalling is not only beneficial to 

conservation breeding programmes of rare species; it can also be used to 

stimulate reproduction in agricultural species. The primer effect of male 

odours to stimulate female sexual receptivity, called the Whitten effect 

(Whitten, Bronson and Greenstein, 1968), and their ability to accelerate 
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sexual maturation in young females, called the male effect, or the 

Vandenbergh effect (Vandenbergh, 1969), has been long known in 

livestock (e.g. in pigs, Sus scrofa, Brooks and Cole, 1970; sheep, Ovis 

aries, Knight and Lynch, 1980; and cattle, Bos taurus, Zalesky et al., 1984). 

The economic benefits of using these natural primer effects to increase the 

onset of puberty and reduce postpartum anoestrus in domestic animals can 

notably serve as a management tool in tropical areas, where livestock 

production faces more challenges than in temperate climates (Rekwot et 

al., 2001). Such knowledge may also be employed to enhance breeding in 

zoo facilities (Dehnhard, 2011). 

The relatively new concept of ‘olfactory enrichment’ in zoo 

environments, where olfactory stimuli are introduced to an animal’s 

enclosure to enhance activity and welfare, is proving successful (Clark and 

King, 2008; Wells, 2009). For example, captive lions, P. leo, exposed to the 

faeces of their natural prey species such as zebras, Equus quagga, and 

gazelles, Gazella spp., showed increased activity (Schuett and Frase, 

2001). In a zoo environment, the animals’ diet, the choice of enclosure 

furnishing elements, and the frequency and mode of cleaning, all have a 

potentially high impact on the olfactory communication of zoo residents, 

which should be taken into account in captive husbandry procedures 

(Dehnhard, 2011; Jennings and Prescott, 2009; Surov and Maltsev, 2016). 

Further knowledge in this area still needs to be assembled from all the trials 

conducted by individual zoos and laboratories, in order to draw 

comprehensive guidelines in this respect for the welfare of captive animals 

(Clark and King, 2008), including non-human primates (Jennings and 

Prescott, 2009; Wormell et al., 2012). 

Pheromonatherapy, a modern branch of veterinary medicine, makes 

use of chemical signals to relieve stress and reduce behavioural disorders 

in pets (Mills, Braem Dube and Zulch, 2013). In particular, two chemical 

products are currently commercially available for clinical use, synthetically 

replicated from naturally produced glandular compounds. The first product, 

the dog-appeasing pheromone (DAP), is originally derived from the region 

around the mammary gland of the domestic dog, Canis lupus familiaris. It is 

commercialized as a spray, a diffuser and an impregnated collar, and has 

been reported to have a calming effect on dogs, thus relieving diverse 

behavioural problems such as anxiety during travelling by car, and 
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adaptation to an unfamiliar environment such as a veterinary hospital or a 

new kennel (Mills, Braem Dube and Zulch, 2013). The second product, the 

feline facial fraction, is originally issued from the perioral and cheek regions 

of the domestic cat, Felis catus. A couple of these cat-specific fraction 

mixtures are currently commercialized as sprays and diffusers for the 

house, which have been shown to resolve problems of urine spraying 

(Mills, Redgate and Landsberg, 2011), and to reduce aggression towards 

unfamiliar people and other pets (Mills, Braem Dube and Zulch, 2013). 

Moreover, the use of feline facial fraction has successfully helped reducing 

stereotypical urine spraying and head rubbing in captive tigers, Panthera 

tigris, although interestingly it showed no effect on lions (Spielman, 2000). 

In addition, novel research on human psychology has suggested that states 

of stress, happiness, and friendliness, are likely to be conveyed by human 

body odours (de Groot et al., 2015; Gaby and Zayas, 2017); all the more 

personal information that could unconsciously be transmitted during social 

encounters. Such new knowledge of how olfactory communication 

contributes to the regulation of social interactions may prove useful in 

improving welfare in highly social zoo animals such as monkeys and apes 

(Clark and King, 2008). 

Finally, as much as odours may attract or soothe receiver animals, 

they can also serve as a repellent. In particular, biological control research 

is interested in using kairomones, i.e. the chemical signals used in 

recognition between prey and predator, to deter invasive mammals from 

certain areas. For instance, Ferrero et al. (2011) isolated 2-

phenylethylamine from the urine of various felids, and demonstrated its 

repelling effect on mice, Mus musculus, and rats, Rattus spp. The use of 

kairomones in pest control – a non-painful, non-toxic, and environmentally 

friendly method – constitutes a good alternative to the current approaches 

in place (Grau et al., 2019). 

 

V.4. General conclusion 

 The present study constitutes an important contribution to the field 

of mammalian communication in directly comparing scent-marking 

behaviour and semiochemistry in multiple species of callitrichids. I found 

differences in scent-marking behaviour and semiochemistry of captive and 
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wild callitrichids at the levels of species, group, sex, reproductive status, 

and the individual. My results support the idea that chemosignalling plays 

an important role in the advertisement of identity, reproductive state/status 

and dominance in this taxon. Moreover, I showed that the social context, as 

well as spatiotemporal aspects of scent-marking deposition, influenced 

scent-marking activity, which suggests a complex pattern of individually 

tuned signals transmitted via olfactory communication. Further differences 

in the characteristics of scent-marking deposition revealed in this study, 

both at behavioural and chemical levels, may reflect variable strategies of 

communication to ensure that signals are conveyed to the intended 

receivers, which is especially relevant for sympatric species.  

 I was also able to identify a number of putative semiochemicals 

from the scent samples of captive and wild callitrichids, which contributes to 

the current knowledge of mammalian chemosignals. Notably, I presented 

results from the first use of the Torion® portable GC-MS for in situ analysis 

of wild tamarin scent-gland samples. This portable device yielded results of 

lower quality than the analysis of similar samples in the laboratory. I 

provided recommendations for future use of portable GC-MS for in situ 

analyses of mammalian chemosignals, which have considerable potential 

to enhance the field of semiochemistry in wild conditions. Moreover, I found 

differences in the chemical composition of tamarin scent-gland secretion 

samples between wild and captive conditions, which may indicate an effect 

of captivity on the chemicals produced. This contrast between captive and 

wild tamarin chemical communication constitutes a particularly novel aspect 

in the study of mammalian chemosignalling, applicable to conservation 

breeding programmes, captive husbandry and animal welfare.  

 

 

 

 

 

 

End of word count. 
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Appendices 
 

Appendix A 

Table A.1. List of review articles and books (in bold) included in Fig. I.1, on 
the exclusive or partial topic of mammalian semiochemistry, published 
between 1959–2016. 

Karlson and Butenandt, 1959 Snowdon et al., 2006 

Wilson and Bossert, 1963 Wyatt, 2006 (2nd ed. 2014)  

Epple and Lorenz, 1967 Ferkin and Pierce, 2007 

Tembrock, 1968 Johansson and Jones, 2007 

Gleason and Reynierse, 1969 Symonds and Elgar, 2008 

Schultze-Westrum, 1969 Havlicek and Roberts, 2009 

Mykytowycz, 1970 Swaney and Keverne, 2009 

Wilson, 1970 Wyatt, 2009 

Cheal and Sprott, 1971 Colquhoun, 2011 

Thiessen, Owen and Lindzey, 1971 Dehnhard, 2011 

Eisenberg and Kleiman, 1972 Smith et al., 2011 

Epple, 1972 Charpentier et al., 2012 

Estes, 1972 Roberts, 2012 

Epple, 1974a; b Apps, 2013 

Steiner, 1974 Beehner and Lu, 2013 

(Thiessen and Rice, 1976) Charpentier et al., 2013 

(Ritter, 1979) Drea et al., 2013 

(Epple, 1981) Moreira, Pessoa and Sousa, 2013 

Albone and Shirley, 1984 Petrulis, 2013 

Brown and Macdonald, 1985 Semple and Higham, 2013 

Epple, 1986 Stockley, Bottell and Hurst, 2013 

Gosling and McKay, 1990 De Lacy Costello et al., 2014 

Alberts, 1992 DelBarco-Trillo and Drea, 2014 

Epple et al., 1993 Ezenwa and Williams, 2014 

Penn and Potts, 1998 Liebal et al., 2014 

Gosling and Roberts, 2001a; b Schaal and Aïn, 2014 

Heymann, 2003 Soso et al., 2014 

Johnston, 2003 Wyatt, 2014b 

Dominy, Ross and Smith, 2004 Apps, Weldon and Kramer, 2015 

Smith and Bhatnagar, 2004 Baum and Cherry, 2015 

Thom and Hurst, 2004 Corona and Lévy, 2015 

Burger, 2005 Drea, 2015 

Barton, 2006 Ferkin, 2015 

Brennan and Kendrick, 2006 Lübke and Pause, 2015 

Evans, 2006 Martín-Sánchez et al., 2015 

Heymann, 2006a; b Wyatt, 2015 

Müller-Schwarze, 2006 Setchell, 2016 

Mundy, 2006 Seyfarth and Cheney, 2016 

Smith, 2006 Surov and Maltsev, 2016 

Smith and Rossie, 2006 . 
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Appendix B 

Table B.1. Weight matrix representing hourly scent-marking frequency given the identity of the nearest neighbour, for each individual silvery 
marmoset at TZ. Numbers in bold represent hourly scent-marking frequencies weighted for the proportion of time the pair spent in proximity, used 
to create the sociogram in Fig. II.6; numbers in brackets are the original hourly scent-marking frequencies. 

Silvery marmosets 
at TZ 

Nearest neighbour 

Repro. ♀ Repro. ♂ 
Older 

subord. ♀ 
Subord. ♀ Subord. ♂ Juvenile ♀ Juvenile ♂ Infant None 

S
ig

n
a
ll
in

g
 i

n
d

iv
id

u
a
l 

Repro. ♀  
0.059 

(0.050) 
0.281 

(0.025) 
0.234 

(0.050) 
0.000 

(0.000) 
0.047 

(0.025) 
0.140 

(0.025) 
0.056 

(0.025) 
0.000 

(0.000) 

Repro. ♂ 
0.912  

(0.325) 
 

0.284 
(0.025) 

0.594 
(0.200) 

0.219 
(0.125) 

0.852 
(0.075) 

0.214 
(0.050) 

0.190 
(0.075) 

0.069 
(0.075) 

Older 
subord. ♀ 

0.000  
(0.000) 

0.278 
(0.025) 

 
0.000 

(0.000) 
0.000 

(0.000) 
0.000 

(0.000) 
0.000 

(0.000) 
0.000 

(0.000) 
0.126 

(0.100) 

Subord. ♀ 
0.520  

(0.150) 
0.629 

(0.200) 
0.025 

(0.025) 
 

0.000 
(0.100) 

0.407 
(0.075) 

0.000 
(0.150) 

0.000 
(0.000) 

0.916 
(0.250) 

Subord. ♂ 
0.267  

(0.125) 
0.354 

(0.075) 
0.481 

(0.075) 
0.137 

(0.025) 
 

0.091 
(0.025) 

0.055 
(0.025) 

0.274 
(0.075) 

1.267 
(0.275) 

Juvenile ♀ 
0.000  

(0.000) 
0.140 

(0.025) 
0.000 

(0.000) 
0.140 

(0.025) 
0.000 

(0.000) 
 

0.141 
(0.100) 

0.000 
(0.000) 

0.000 
(0.000) 

Juvenile ♂ 
0.229  

(0.100) 
0.000 

(0.050) 
0.357 

(0.100) 
0.000 

(0.000) 
0.028 

(0.025) 
0.179 

(0.125) 
 

0.056 
(0.025) 

0.000 
(0.000) 
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Table B.2. Weight matrix representing hourly scent-marking frequency given the identity of the nearest neighbour, for each individual emperor 
tamarin at TZ. Numbers in bold represent hourly scent-marking frequencies weighted for the proportion of time the pair spent in proximity, used to 
create the sociogram in Fig. II.7; numbers in brackets are the original hourly scent-marking frequencies. 

Emperor tamarins  
at TZ 

Nearest neighbour 

Repro. ♀ Repro. ♂ Subord. ♀ Subord. ♂ Juvenile ♀ Juvenile ♂ None 

S
ig

n
a
ll
in

g
 i

n
d

iv
id

u
a
l 

Repro. ♀  
0.596 

(1.320) 
0.000 

(0.120) 
0.211 

(0.080) 
0.983 

(0.280) 
0.185 

(0.040) 
0.256 

(0.080) 

Repro. ♂ 
0.000  

(0.000) 
 

0.152 
(0.060) 

0.317 
(0.080) 

0.047 
(0.040) 

0.048 
(0.020) 

0.210 
(0.080) 

Subord. ♀ 
0.399  

(0.120) 
0.425 

(0.120) 
 

0.040 
(0.020) 

0.000 
(0.160) 

0.397 
(0.080) 

0.112 
(0.040) 

Subord. ♂ 
0.000  

(0.000) 
1.064 

(0.240) 
0.075 

(0.040) 
 

0.287 
(0.100) 

0.040 
(0.020) 

0.390 
(0.060) 

Juvenile ♀ 
0.095  

(0.020) 
0.071 

(0.020) 
0.000 

(0.000) 
0.036 

(0.020) 
 

0.196 
(0.100) 

0.000 
(0.000) 

Juvenile ♂ 
0.071  

(0.020) 
0.041 

(0.020) 
0.041 

(0.020) 
0.000 

(0.000) 
0.028 

(0.020) 
 

0.000 
(0.020) 
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Table B.3. Weight matrix representing hourly scent-marking frequency given the identity of the nearest neighbour, for each individual cotton-top 
tamarin at DMP. Numbers in bold represent hourly scent-marking frequencies weighted for the proportion of time the pair spent in proximity, used 
to create the sociogram in Fig. II.8; numbers in brackets are the original hourly scent-marking frequencies. 

Cotton-top tamarins  
at DMP 

Nearest neighbour 

Repro. ♀ Repro. ♂ Juvenile ♂1 Juvenile ♂2 None 

S
ig

n
a
ll
in

g
 i

n
d

iv
id

u
a
l 

Repro. ♀  
3.215 

(1.320) 
3.210 

(1.720) 
1.754 

(1.754) 
1.001 

(1.001) 

Repro. ♂ 
0.000  

(0.280) 
 

0.288 
(0.180) 

0.205 
(0.205) 

0.159 
(0.159) 

Juvenile ♂1 
0.448  

(0.180) 
0.169 

(0.060) 
 

0.016 
(0.016) 

0.000 
(0.000) 

Juvenile ♂2 
0.063  

(0.040) 
0.135 

(0.040) 
0.020 

(0.020) 
 

0.000 
(0.000) 
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Table B.4. Weight matrix representing hourly scent-marking frequency given the identity of the nearest neighbour, for each individual cotton-top 
tamarin at PWP. Numbers in bold represent hourly scent-marking frequencies weighted for the proportion of time the pair spent in proximity, used 
to create the sociogram in Fig. II.9; numbers in brackets are the original hourly scent-marking frequencies. 

Cotton-top tamarins  
at PWP 

Nearest neighbour 

Repro. ♀ Repro. ♂ Subord. ♀ Subord. ♂ Juvenile ♀ Juvenile ♂ None 

S
ig

n
a
ll
in

g
 i

n
d

iv
id

u
a
l 

Repro. ♀  
1.052 

(1.340) 
0.513 

(0.100) 
1.347 

(0.160) 
0.264 

(0.120) 
0.289 

(0.100) 
0.452 

(0.060) 

Repro. ♂ 
0.256  

(0.020) 
 

0.103 
(0.040) 

0.000 
(0.000) 

0.318 
(0.160) 

0.349 
(0.120) 

0.099 
(0.060) 

Subord. ♀ 
0.725  

(0.240) 
0.965 

(0.260) 
 

1.218 
(0.420) 

0.779 
(0.260) 

0.828 
(0.400) 

0.519 
(0.040) 

Subord. ♂ 
0.082  

(0.040) 
0.123 

(0.020) 
0.041 

(0.020) 
 

0.127 
(0.060) 

0.035 
(0.020) 

0.000 
(0.000) 

Juvenile ♀ 
0.000  

(0.000) 
0.000 

(0.000) 
0.000 

(0.000) 
0.000 

(0.000) 
 

0.000 
(0.000) 

0.000 
(0.000) 

Juvenile ♂ 
0.085  

(0.020) 
0.000 

(0.000) 
0.064 

(0.020) 
0.114 

(0.040) 
0.000 

(0.000) 
 

0.000 
(0.000) 
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Appendix C 

Table C.1. Volatile compounds revealed by SPME–GC-MS analysis of the 
95 samples included in the present analysis, and associated retention times 
(RT) in minutes. Compounds #01–#47 (in bold) were tentatively identified 
(see list of compounds of interest in Table III.7); compounds #48–#407 are 
unknown, listed in order of retention time. 

# RT range (min) # RT range (min) # RT range (min) 

01 3.021–3.057 33 17.151–17.236 65 6.047 

02 3.142–3.248 34 18.783–18.797 66 6.075–6.103 

03 3.330–3.348 35 18.985–19.276 67 6.150–6.153 

04 3.567–3.589 36 19.368–19.481 68 6.164–6.167 

05 4.628–4.798 37 19.982–19.996 69 6.320 

06 6.121–6.178 38 21.461–21.589 70 6.692 

07 6.203–6.369 39 21.471–21.482 71 7.848 

08 7.210–7.267 40 22.482–22.504 72 7.969–7.980 

09 7.909–7.973 41 23.053–23.192 73 7.994 

10 8.026–8.097 42 23.759–23.964 74 7.997–8.011 

11 8.799–8.859 43 24.841–25.000 75 8.001 

12 8.987–8.990 44 25.241–25.255 76 8.043–8.068 

13 9.129–9.189 45 26.181–26.350 77 8.100–8.139 

14 9.292–9.356 46 27.463 78 8.178–8.235 

15 9.700–9.778 47 28.426–28.451 79 8.324 

16 9.792–9.810 48 2.330 80 8.405 

17 11.083–11.186 49 2.447 81 8.501–8.547 

18 11.331–11.338 50 2.539–2.582 82 8.512 

19 11.775–11.782 51 2.716–2.727 83 8.583–8.618 

20 11.973–11.987 52 2.862–2.972 84 8.749 

21 12.072–12.083 53 3.167–3.184 85 8.841 

22 13.410–13.424 54 3.365–3.380 86 8.923–8.944 

23 13.505–13.601 55 4.465–4.468 87 9.033 

24 14.151–14.254 56 4.944 88 9.161–9.189 

25 14.474–14.622 57 5.231–5.245 89 9.200–9.207 

26 14.686–14.722 58 5.398 90 9.200 

27 14.782–14.885 59 5.437 91 9.207 

28 14.995–15.091 60 5.437 92 9.207 

29 15.658–15.761 61 5.461 93 9.210–9.221 

30 16.130–16.151 62 5.461 94 9.235 

31 16.580–16.687 63 5.490 95 9.334–9.338 

32 17.010–17.031 64 5.834 96 9.338 
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Table C.1. Continued (1/3). 

# RT range (min) # RT range (min) # RT range (min) 

97 9.483–9.501 134 14.275 171 16.339 

98 9.600–9.611 135 14.325–14.410 172 16.346 

99 9.739 136 14.406 173 16.357–16.368 

100 9.778–10.193 137 14.473 174 16.385 

101 10.193 138 14.683 175 16.389 

102 10.203–10.253 139 14.857 176 16.396 

103 10.253–10.278 140 15.013 177 16.399 

104 10.707–10.707 141 15.037–15.041 178 16.428 

105 10.796–11.008 142 15.101–15.105 179 16.445 

106 10.902–10.906 143 15.123–15.140 180 16.460–16.460 

107 11.026–11.079 144 15.218–15.222 181 16.566–16.570 

108 11.133–11.140 145 15.229–15.591 182 16.659 

109 11.189–11.246 146 15.346–15.424 183 16.687–16.690 

110 11.218 147 15.406 184 16.701–16.708 

111 11.402–11.402 148 15.481 185 16.708–16.708 

112 11.565–11.572 149 15.495–15.530 186 16.758–16.761 

113 11.672–11.682 150 15.608 187 16.768–16.793 

114 11.711–11.792 151 15.630 188 16.818–16.839 

115 11.778 152 15.740–15.747 189 16.864 

116 11.782–11.817 153 15.765–15.885 190 16.907–16.999 

117 11.849–11.863 154 15.839 191 16.931–16.949 

118 12.101–12.154 155 15.938–15.988 192 16.981 

119 12.172–12.182 156 15.949–16.020 193 16.988–17.009 

120 12.388–12.477 157 16.006 194 16.992 

121 12.736–12.753 158 16.041–16.048 195 17.002–17.009 

122 12.888–12.895 159 16.048 196 17.013–17.020 

123 12.913–12.927 160 16.059–16.059 197 17.017 

124 12.988–12.991 161 16.062 198 17.017 

125 13.168–12.200 162 16.066–16.098 199 17.038–17.041 

126 13.239–13.257 163 16.073–16.077 200 17.084–17.190 

127 13.300 164 16.094–16.105 201 17.112 

128 13.356–13.374 165 16.215–16.219 202 17.116 

129 13.605–13.754 166 16.229–16.247 203 17.318–17.329 

130 13.835–13.913 167 16.289–16.314 204 17.396–17.417 

131 13.938–14.027 168 16.311–16.332 205 17.449–17.456 

132 13.952–13.963 169 16.311 206 17.453–17.460 

133 13.970–13.973 170 16.325–16.357 207 17.513 
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Table C.1. Continued (2/3). 

# RT range (min) # RT range (min) # RT range (min) 

208 17.513 245 19.538 282 22.163 

209 17.662 246 19.542 283 22.163–22.173 

210 17.715–17.719 247 19.613 284 22.163 

211 17.715–17.719 248 19.829–19.879 285 22.237–22.237 

212 17.740 249 19.875–19.896 286 22.280 

213 17.768 250 19.889 287 22.411 

214 17.963 251 19.911–19.925 288 22.461 

215 17.974–17.985 252 19.982–19.989 289 22.464–22.475 

216 17.974–18.063 253 19.985–20.219 290 22.471–22.478 

217 18.002–18.006 254 20.120 291 22.482–22.493 

218 18.038–18.045 255 20.138–20.149 292 22.493–22.496 

219 18.056–18.059 256 20.226–20.272 293 22.500–22.501 

220 18.081 257 20.460–20.482 294 22.596–22.624 

221 18.244–18.247 258 20.482 295 22.599 

222 18.268–18.297 259 20.609 296 22.712–22.744 

223 18.378–18.407 260 20.751–20.755 297 22.741–22.744 

224 18.403–18.410 261 20.758–20.890 298 22.883–22.886 

225 18.492–18.503 262 20.811–20.851 299 22.915 

226 18.534–18.552 263 20.886–21.038 300 22.922 

227 18.613–18.620 264 20.946 301 23.074–23.078 

228 18.680–18.687 265 20.992 302 23.142 

229 18.793 266 21.035 303 23.230–23.252 

230 18.829–18.836 267 21.131 304 23.305 

231 18.879–18.889 268 21.155–21.230 305 23.319–23.472 

232 18.928 269 21.230 306 23.326–23.351 

233 19.017 270 21.241–21.255 307 23.436–23.436 

234 19.056–19.063 271 21.258–21.273 308 23.447–23.535 

235 19.084 272 21.595 309 23.454 

236 19.088 273 21.677–21.698 310 23.525 

237 19.169 274 21.695–21.727 311 23.546–23.564 

238 19.173 275 21.698–21.712 312 23.606 

239 19.290–19.301 276 21.727 313 23.610–23.610 

240 19.304–19.304 277 21.797–21.822 314 23.620 

241 19.446 278 21.819 315 23.762–23.780 

242 19.503–19.503 279 21.893–21.897 316 23.769 

243 19.513 280 21.936–21.936 317 23.830–23.837 

244 19.531 281 22.053–22.068 318 23.840–23.851 
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Table C.1. Continued (3/3). 

# RT range (min) # RT range (min) # RT range (min) 

319 24.007 349 25.515–25.767 379 29.036–29.059 

320 24.050–24.182 350 25.532–25.571 380 29.189 

321 24.053–24.181 351 25.582 381 29.242 

322 24.142 352 25.706–25.709 382 29.313 

323 24.188 353 25.865 383 29.866–30.047 

324 24.188–24.195 354 26.025 384 29.888–30.054 

325 24.195 355 26.032–26.193 385 29.892–30.022 

326 24.369–24.497 356 26.298 386 30.044 

327 24.450–24.457 357 26.316 387 30.048 

328 24.472 358 26.518–26.518 388 30.051–30.217 

329 24.557–24.560 359 26.749 389 30.182–30.205 

330 24.596–24.621 360 26.759–26.766 390 31.070–31.214 

331 24.606–24.755 361 27.007–27.018 391 31.267–31.456 

332 24.670–24.699 362 27.153–27.156 392 31.555–31.555 

333 24.716–24.748 363 27.252 393 31.700–32.636 

334 24.785–24.794 364 27.386 394 32.101–32.108 

335 24.858–24.887 365 27.415–27.419 395 32.212 

336 24.897–25.025 366 27.486–27.490 396 32.296–32.299 

337 24.908 367 27.579–27.582 397 32.392–32.399 

338 24.911 368 27.582–27.596 398 32.839–32.846 

339 25.021–25.036 369 27.696 399 33.016–33.193 

340 25.050–25.064 370 27.713 400 33.520 

341 25.160 371 27.983–27.983 401 33.633–33.640 

342 25.181–25.224 372 27.983–27.994 402 34.343–34.350 

343 25.216–25.220 373 28.167 403 34.796 

344 25.225–25.227 374 28.178–28.193 404 34.910–34.910 

345 25.245 375 28.302 405 35.776–36.052 

346 25.319–25.390 376 28.331 406 36.755 

347 25.330–25.343 377 28.380 407 36.886 

348 25.461 378 28.388  
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Appendix D 

Table D.1. Samples collected in 2017 from the scent-glands (i.e. 
anogenital, AG, suprapubic, SP, and sternal, ST) and skin of 13 groups of 
wild emperor tamarins, S. imperator (SI) and saddleback tamarins, L. 
weddelli (LW), analysed in situ. Compounds of interest are listed A–K (see 
Table IV.3). NA= no compound of interest found in the sample. 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

1 LW LW1 F 1ary LW1_F1 AG NA 

2 LW LW1 F 1ary LW1_F1 SP NA 

3 LW LW1 F 1ary LW1_F1 ST NA 

4 LW LW1 F 1ary LW1_F1 Skin A 

5 LW LW1 M 2ary LW1_M1 AG NA 

6 LW LW1 M 2ary LW1_M1 SP NA 

7 LW LW1 M 2ary LW1_M1 ST NA 

8 LW LW1 M 2ary LW1_M1 Skin NA 

9 LW LW1 M 1ary LW1_M2 AG NA 

10 LW LW1 M 1ary LW1_M2 SP NA 

11 LW LW1 M 1ary LW1_M2 ST NA 

12 LW LW1 M 1ary LW1_M2 Skin NA 

13 LW LW1 M None LW1_M3 AG NA 

14 LW LW1 M None LW1_M3 SP NA 

15 LW LW1 M None LW1_M3 ST NA 

16 LW LW1 M None LW1_M3 Skin NA 

17 LW LW2 F 1ary LW2_F1 AG NA 

18 LW LW2 F 1ary LW2_F1 SP NA 

19 LW LW2 F 1ary LW2_F1 ST NA 

20 LW LW2 F 1ary LW2_F1 Skin NA 

21 LW LW2 F None LW2_F2 AG NA 

22 LW LW2 F None LW2_F2 SP NA 

23 LW LW2 F None LW2_F2 ST NA 

24 LW LW2 F None LW2_F2 Skin NA 

25 LW LW2 M 2ary LW2_M1 AG A 

26 LW LW2 M 2ary LW2_M1 SP A 

27 LW LW2 M 2ary LW2_M1 ST F 

28 LW LW2 M 2ary LW2_M1 Skin NA 

29 LW LW2 M 1ary LW2_M2 AG NA 
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Table D.1. Continued (1/5). 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

30 LW LW2 M 1ary LW2_M2 SP NA 

31 LW LW2 M 1ary LW2_M2 ST A 

32 LW LW2 M 1ary LW2_M2 Skin NA 

33 LW LW2 M None LW2_M3 AG NA 

34 LW LW2 M None LW2_M3 SP NA 

35 LW LW2 M None LW2_M3 ST NA 

36 LW LW2 M None LW2_M3 Skin NA 

37 LW LW3 F 1ary LW3_F2 SP NA 

38 LW LW3 F 1ary LW3_F2 ST NA 

39 LW LW3 F 1ary LW3_F2 Skin NA 

40 LW LW3 M 2ary LW3_M1 AG NA 

41 LW LW3 M 2ary LW3_M1 SP A 

42 LW LW3 M 2ary LW3_M1 Skin NA 

43 LW LW3 M 2ary LW3_M2 AG NA 

44 LW LW3 M 2ary LW3_M2 SP NA 

45 LW LW3 M 2ary LW3_M2 ST A 

46 LW LW3 M 2ary LW3_M2 Skin NA 

47 LW LW4 F 1ary LW4_F2 SP NA 

48 LW LW4 F 1ary LW4_F2 ST NA 

49 LW LW4 F 1ary LW4_F2 AG NA 

50 LW LW4 F 1ary LW4_F2 Skin NA 

51 LW LW4 M None LW4_M1 AG NA 

52 LW LW4 M None LW4_M1 SP NA 

53 LW LW4 M None LW4_M1 ST NA 

54 LW LW4 M None LW4_M1 Skin NA 

55 LW LW4 M 1ary LW4_M2 AG NA 

56 LW LW4 M 1ary LW4_M2 SP NA 

57 LW LW4 M 1ary LW4_M2 ST NA 

58 LW LW4 M 1ary LW4_M2 Skin NA 

59 LW LW4 M 1ary LW4_M3 AG NA 

60 LW LW4 M 1ary LW4_M3 SP NA 

61 LW LW4 M 1ary LW4_M3 ST A 

62 LW LW4 M 1ary LW4_M3 Skin NA 

63 LW LW5 F 1ary LW5_F1 AG NA 

64 LW LW5 F 1ary LW5_F1 SP NA 

65 LW LW5 F 1ary LW5_F1 ST NA 

66 LW LW5 F 1ary LW5_F1 Skin NA 
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Table D.1. Continued (2/5). 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

67 LW LW5 F 1ary LW5_F2 AG NA 

68 LW LW5 F 1ary LW5_F2 SP NA 

69 LW LW5 F 1ary LW5_F2 ST NA 

70 LW LW5 F 1ary LW5_F2 Skin NA 

71 LW LW5 F None LW5_F3 AG NA 

72 LW LW5 F None LW5_F3 SP NA 

73 LW LW5 F None LW5_F3 Skin NA 

74 LW LW5 M 1ary LW5_M1 AG E 

75 LW LW5 M 1ary LW5_M1 SP NA 

76 LW LW5 M 1ary LW5_M1 ST NA 

77 LW LW5 M 1ary LW5_M1 Skin NA 

78 LW LW5 M 2ary LW5_M2 AG NA 

79 LW LW5 M 2ary LW5_M2 SP NA 

80 LW LW5 M 2ary LW5_M2 ST A 

81 LW LW5 M 2ary LW5_M2 Skin NA 

82 LW LW5 M 1ary LW5_M3 AG NA 

83 LW LW5 M 1ary LW5_M3 SP NA 

84 LW LW5 M 1ary LW5_M3 ST NA 

85 LW LW5 M 1ary LW5_M3 Skin NA 

86 LW LW6 F 1ary LW6_F1 AG B 

87 LW LW6 F 1ary LW6_F1 SP B 

88 LW LW6 F 1ary LW6_F1 ST B 

89 LW LW6 F 1ary LW6_F1 Skin NA 

90 LW LW6 M 2ary LW6_M1 AG NA 

91 LW LW6 M 2ary LW6_M1 SP NA 

92 LW LW6 M 2ary LW6_M1 ST A 

93 LW LW6 M 2ary LW6_M1 Skin NA 

94 LW LW6 M 2ary LW6_M2 AG NA 

95 LW LW6 M 2ary LW6_M2 SP NA 

96 LW LW6 M 2ary LW6_M2 ST A 

97 LW LW6 M 2ary LW6_M2 Skin NA 

98 LW LW6 M None LW6_M3 AG NA 

99 LW LW6 M None LW6_M3 SP NA 

100 LW LW6 M None LW6_M3 Skin NA 

101 LW LW6 M 1ary LW6_M4 AG C 

102 LW LW6 M 1ary LW6_M4 SP NA 

103 LW LW6 M 1ary LW6_M4 ST NA 
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Table D.1. Continued (3/5). 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

104 LW LW6 M 1ary LW6_M4 Skin B 

105 LW LW7 F 1ary LW7_F1 AG NA 

106 LW LW7 F 1ary LW7_F1 SP K 

107 LW LW7 F 1ary LW7_F1 ST NA 

108 LW LW7 F 1ary LW7_F1 Skin NA 

109 LW LW7 M 1ary LW7_M1 AG NA 

110 LW LW7 M 1ary LW7_M1 SP NA 

111 LW LW7 M 1ary LW7_M1 ST NA 

112 LW LW7 M 1ary LW7_M1 Skin NA 

113 LW LW7 M 1ary LW7_M2 AG D 

114 LW LW7 M 1ary LW7_M2 SP NA 

115 LW LW7 M 1ary LW7_M2 ST NA 

116 LW LW7 M 1ary LW7_M2 Skin NA 

117 LW LW8 F 1ary LW8_F1 AG H 

118 LW LW8 F 1ary LW8_F1 SP H 

119 LW LW8 F 1ary LW8_F1 ST H 

120 LW LW8 F 1ary LW8_F1 Skin H 

121 LW LW8 M 1ary LW8_M1 SP NA 

122 LW LW8 M 1ary LW8_M1 ST NA 

123 LW LW8 M 1ary LW8_M1 Skin NA 

124 LW LW8 M 1ary LW8_M2 AG NA 

125 LW LW8 M 1ary LW8_M2 SP NA 

126 LW LW8 M 1ary LW8_M2 ST H 

127 LW LW8 M 1ary LW8_M2 Skin H 

128 SI SI1 F 1ary SI1_F1 AG NA 

129 SI SI1 F 1ary SI1_F1 SP J 

130 SI SI1 F 1ary SI1_F1 ST NA 

131 SI SI1 F 1ary SI1_F1 Skin NA 

132 SI SI1 F 2ary SI1_F2 AG NA 

133 SI SI1 F 2ary SI1_F2 SP NA 

134 SI SI1 F 2ary SI1_F2 ST NA 

135 SI SI1 F 2ary SI1_F2 Skin NA 

136 SI SI1 F 2ary SI1_F3 AG NA 

137 SI SI1 F 2ary SI1_F3 SP NA 

138 SI SI1 F 2ary SI1_F3 ST NA 

139 SI SI1 F 2ary SI1_F3 Skin NA 

140 SI SI1 M 2ary SI1_M1 AG NA 
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Table D.1. Continued (4/5). 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

141 SI SI1 M 2ary SI1_M1 SP NA 

142 SI SI1 M 2ary SI1_M1 ST NA 

143 SI SI1 M 2ary SI1_M1 Skin NA 

144 SI SI1 M None SI1_M2 AG NA 

145 SI SI1 M None SI1_M2 ST NA 

146 SI SI1 M None SI1_M2 Skin NA 

147 SI SI1 M 2ary SI1_M3 AG NA 

148 SI SI1 M 2ary SI1_M3 SP NA 

149 SI SI1 M 2ary SI1_M3 ST NA 

150 SI SI1 M 2ary SI1_M3 Skin NA 

151 SI SI2 F 1ary SI2_F1 AG D, I, J 

152 SI SI2 F 1ary SI2_F1 SP NA 

153 SI SI2 F 1ary SI2_F1 ST NA 

154 SI SI2 F 1ary SI2_F1 Skin NA 

155 SI SI2 F 2ary SI2_F2 AG NA 

156 SI SI2 F 2ary SI2_F2 SP NA 

157 SI SI2 F 2ary SI2_F2 ST NA 

158 SI SI2 F 2ary SI2_F2 Skin NA 

159 SI SI2 M 1ary SI2_M1 AG NA 

160 SI SI2 M 1ary SI2_M1 SP NA 

161 SI SI2 M 1ary SI2_M1 ST NA 

162 SI SI2 M 1ary SI2_M1 Skin NA 

163 SI SI3 F 2ary SI3_F1 AG NA 

164 SI SI3 F 2ary SI3_F1 SP NA 

165 SI SI3 F 2ary SI3_F1 ST NA 

166 SI SI3 F 2ary SI3_F1 Skin NA 

167 SI SI3 F None SI3_F2 SP NA 

168 SI SI3 F None SI3_F2 ST NA 

169 SI SI3 F None SI3_F2 Skin NA 

170 SI SI3 F 2ary SI3_F3 AG NA 

171 SI SI3 F 2ary SI3_F3 SP NA 

172 SI SI3 F 2ary SI3_F3 ST NA 

173 SI SI3 F 2ary SI3_F3 Skin NA 

174 SI SI3 M 1ary SI3_M1 AG G 

175 SI SI3 M 1ary SI3_M1 SP NA 

176 SI SI3 M 1ary SI3_M1 ST NA 

177 SI SI3 M 1ary SI3_M1 Skin NA 
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Table D.1. Continued (5/5). 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

178 SI SI3 M 2ary SI3_M2 AG NA 

179 SI SI3 M 2ary SI3_M2 SP NA 

180 SI SI3 M 2ary SI3_M2 ST NA 

181 SI SI3 M 2ary SI3_M2 Skin NA 

182 SI SI4 F 1ary SI4_F1 AG NA 

183 SI SI4 F 1ary SI4_F1 SP I 

184 SI SI4 F 1ary SI4_F1 ST NA 

185 SI SI4 F 1ary SI4_F1 Skin NA 

186 SI SI4 F None SI4_F2 SP NA 

187 SI SI4 F None SI4_F2 ST NA 

188 SI SI4 F None SI4_F2 Skin NA 

189 SI SI4 F None SI4_F3 SP NA 

190 SI SI4 F None SI4_F3 ST NA 

191 SI SI4 F None SI4_F3 Skin NA 

192 SI SI4 M 1ary SI4_M1 AG NA 

193 SI SI4 M 1ary SI4_M1 SP NA 

194 SI SI4 M 1ary SI4_M1 ST NA 

195 SI SI4 M 1ary SI4_M1 Skin NA 

196 SI SI4 M 2ary SI4_M2 AG NA 

197 SI SI4 M 2ary SI4_M2 SP NA 

198 SI SI4 M 2ary SI4_M2 ST NA 

199 SI SI4 M 2ary SI4_M2 Skin NA 

200 SI SI4 M 2ary SI4_M3 AG G 

201 SI SI4 M 2ary SI4_M3 SP NA 

202 SI SI4 M 2ary SI4_M3 ST NA 

203 SI SI4 M 2ary SI4_M3 Skin NA 

204 SI SI4 M 1ary SI4_M4 AG NA 

205 SI SI4 M 1ary SI4_M4 SP NA 

206 SI SI4 M 1ary SI4_M4 ST NA 

207 SI SI4 M 1ary SI4_M4 Skin NA 

208 SI SI5 F None SI5_F2 SP NA 

209 SI SI5 F None SI5_F2 ST NA 

210 SI SI5 F None SI5_F2 Skin NA 

211 SI SI5 F 2ary SI5_F3 AG NA 

212 SI SI5 F 2ary SI5_F3 SP J 

213 SI SI5 F 2ary SI5_F3 ST NA 

214 SI SI5 F None SI5_F4 AG NA 

215 SI SI5 F None SI5_F4 ST NA 
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Appendix E 

Table E.1. Samples collected in 2018 from the scent-glands (i.e. 
anogenital, AG, suprapubic, SP, and sternal, ST) and skin of two groups of 
wild emperor tamarins, S. imperator (SI), transported to Anglia Ruskin 
University and analysed in the laboratory. Compounds of interest are listed 
#1–#25 (see Table IV.5). NA= no compound of interest found in the 
sample. 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

1 SI SI6 F 2ary SI6_F1 SP #08, 15, 23 

2 SI SI6 F 2ary SI6_F1 ST #08, 15 

3 SI SI6 F 2ary SI6_F1 Skin 
#01, 08, 15, 

23 

4 SI SI6 F 2ary SI6_F2 AG 
#02, 05, 06, 
15, 16, 23 

5 SI SI6 F 2ary SI6_F2 SP 
#01, 04, 08, 

15 

6 SI SI6 F 2ary SI6_F2 ST #01, 04, 08 

7 SI SI6 F 2ary SI6_F2 Skin 
#01, 08, 15, 

23 

8 SI SI6 F 2ary SI6_F3 SP 
#01, 07, 08, 
12, 15, 23 

9 SI SI6 F 2ary SI6_F3 ST #08, 15 

10 SI SI6 F 2ary SI6_F3 Skin #15 

11 SI SI6 F 2ary SI6_F4 SP NA 

12 SI SI6 F 2ary SI6_F4 ST 
#04, 08, 10, 

11, 15 

13 SI SI6 F 2ary SI6_F4 Skin #07 

14 SI SI6 M 1ary SI6_M1 ST 
#01, 08, 15, 

23 

15 SI SI6 M 1ary SI6_M1 Skin #01, 08, 10 

16 SI SI7 F 2ary SI7_F1 AG #08, 15 

17 SI SI7 F 2ary SI7_F1 SP 
#01, 04, 08, 
14, 15, 20 

18 SI SI7 F 2ary SI7_F1 ST 
#01, 04, 08, 

10 

19 SI SI7 F 2ary SI7_F1 Skin 
#01, 04, 08, 

15, 23 
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Table E.1. Continued. 

# Species Group Sex 
Repro. 
status 

Indiv. 
Sample 

type 
Compounds 
of interest 

20 SI SI7 M 2ary SI7_M1 AG 

#01, 03, 06, 
08, 14, 15, 
20, 21, 22, 
24, 25, 26, 

27 

21 SI SI7 M 2ary SI7_M1 SP #08, 15, 27 

22 SI SI7 M 2ary SI7_M1 ST #01, 08, 15 

23 SI SI7 M 2ary SI7_M1 Skin #08, 15 

24 SI SI7 M 2ary SI7_M2 AG 
#01, 08, 14, 
15, 20, 27 

25 SI SI7 M 2ary SI7_M2 SP 
#01, 04, 08, 

15 

26 SI SI7 M 2ary SI7_M2 ST 

#08, 09, 11, 
13, 14, 15, 
17, 18, 19, 

20, 24 

27 SI SI7 M 2ary SI7_M2 Skin 
#01, 04, 08, 

15 
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