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The Internet of Things (IoT) is an emerging paradigm that introduces the concept of 
ubiquitous interconnected devices, where everyday objects across the world are 
connected over computing networks to accept, collect, and exchange data.  Although 
there have been growing implementations of IoT in commercial and enterprise-driven 
applications, to date it has not seen substantial development and evaluation within 
creative fields, and less so regarding music and music production. 

Mixing and recording techniques in traditional forms of music production largely employed 
the use of physical and analogue hardware. While each hardware device adds its own 
distinct sound attributes to processed audio, the growth of digital technology and software 
plug-ins granted more accessibility to high-quality production practices. IoT, however, 
presents a unique opportunity to maintain desirable characteristics of past (and perhaps 
lost or disappearing) hardware processes. With IoT-enabled hardware, for example, it is 
possible to add remote connectivity to rare, expensive, and bespoke physical audio 
systems. This can promote the concept of the ‘virtually-extended music studio,’ where 
music producers may work within personal environments and still retain options to access 
remotely-available devices.  

This research explores IoT-enabled music processing by utilising practice-based 
methodologies to develop and evaluate a creative work that facilitates virtual engagement 
with remote audio hardware. The creative work is compounded by mixed-method 
investigations that asses and verify open source technologies and current network 
capabilities that can implement IoT music production systems, and additionally 
incorporates surveyed music producer feedback to give insight into how IoT can better 
bridge musicians to the music production process. The resulting analyses exposes how 
IoT-enabled music systems can empower new forms of creative engagement and 
collaboration, and can help adapt non-traditional techniques for greater options to express 
music, revolutionise new markets for equipment hire and distribution, and bring about the 
‘best of both worlds’ in terms of analogue and digital production benefits. 
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1. Introduction 

1.1 Introducing the Internet of Things 

The Internet of Things represents a vision in which the Internet extends into the 

real world embracing everyday objects. Physical items are no longer disconnected 

from the virtual world, but can be controlled remotely and can act as physical 

access points to Internet services. An Internet of Things makes computing truly 

ubiquitous – a concept initially put forward by Mark Weiser in the early 1990s 

(Mattern and Floerkemeier, 2010, p. 242). 

The Internet of Things, or IoT, is a modern trend where standard, everyday objects are 

embedded with computing technology, creating a virtual interface to the Internet where 

they can collect and share data through networked connections. It is a paradigm where 

smart “things” are continuously interlinked through a series of complex communication 

networks in order to interact freely with humans and other interconnected devices.  

Miorandi, et al. (2012, p. 1497) argue:  

It is predictable that, within the next decade, the Internet will exist as a seamless 

fabric of classic networks and networked objects. Content and services will be all 

around us, always available, paving the way to new applications, enabling new 

ways of working; new ways of interacting; new ways of entertainment; new ways of 

living.  

IoT has become one of the largest growing paradigm shifts in the early 21st century, and it 

is estimated that the number of connected devices world-wide is expected to reach 20 

billion by 2020 (Gartner, 2015). As the number of networkable devices rises, the Internet 

is moving away from simply being a hub of static web pages and human services. The 

Internet of Things is giving way to a virtual framework that “allows people and things to be 

connected anytime, anyplace, with anything and anyone, ideally using any path, network 

and any service” (Vermesan, et al., 2009, p. 8).  
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1.2 Motivations for the Presented Research  

Modern technology trends often inspire new forms of innovation, and many industries are 

exploring how IoT can play a role in their markets. (Newmarker and Buntz, 2017) 

acknowledge: 

Every nascent industry needs a killer app. But in the Internet of Things realm, it 

can be hard [to] identify the most promising use cases. For one thing, the field is 

gargantuan, including everything from drones to connected jet engines.  

Recent years have seen large investments in IoT for industrial and economic 

development. In 2016 the UK established the IoT-focused PETRAS research consortium, 

a group of nine UK universities funded to investigate “critical issues in privacy, ethics, 

trust, reliability, acceptability, and security” (EPSRC, 2016).  The PETRAS group was 

granted £9.8 million in funding in 2016 by the Engineering and Physical Sciences 

Research Council, yet while this investment offers huge contributions into new and 

innovative IoT research, the areas focus predominately around smarter cities, facilities, 

systems, and security, and exemplify a lack of current research and development for IoT 

services within creative fields.  

Audio and music production is one area where IoT can augment creative processes.  

Whalley (2015) expresses concern that current musical applications of the Internet of 

Things have primarily focused on adding remote or virtual dimensions to the traditional 

composer-leader based musical performance, and provides limited focuses on other 

methods of expression.  An unconventional application for music, for example, can be 

using the Internet of Things as a tool for designing unique interfaces to control virtual 

audio production processing, and add greater personal interactions with remote 

technology instead of simply being an amendment to the traditional music performance. 

This research addresses a growing motivation to incorporate IoT into the creative 

landscape by employing creative practice methods to investigate implications of the 

Internet of Things for music, specifically exploring opportunities using IoT technology to 

augment the music production process. IoT infrastructures can allow professional and 

bespoke hardware devices to be remotely extended into personal production 

environments, and thus conceptualise an idea of the virtually-extended music studio, 

where new opportunities to engage musical experiences and production workflows are not 

restricted by the need of physical presence.  

Through practical design, implementation, and analysis this research evaluates how IoT-

enabled music systems can potentially unlock new and impactful creative opportunities for 
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musical artists and professional producers. IoT can offer a wider spectrum of readily-

available music tools to the disposal of musicians, and offer such benefits as greater 

collaboration amongst producers, greater accessibility to devices and acoustic resources 

such as echo chambers and reverberant spaces that can be utilised in private work 

environments, and new strategies to share, distribute, and market audio and music 

assets.  

1.3 Research Approach 

This research follows a ‘creative practice’ approach to developing original contributions to 

knowledge. The creative practice itself is the design and creation of a unique IoT 

demonstrator for use in music production scenarios, inspired by the learnings of a 

thorough review of background literature and prior art practice in the field. A number of 

knowledge ‘gaps’ are identified from the prior art and are constructed as research 

questions to be answered through a justified methodology of creative practice and 

evaluation.  

The research takes an iterative form of creation and testing, evaluating open source and 

emerging technologies that can be manipulated and combined in order to realise a 

working IoT system for use in music production. The developed demonstrator is then 

thoroughly tested both technically and from a user experience perspective, in order to 

realise justified answers to the posited research questions. Significant conclusions are 

drawn from the findings and further suggested work in the field is presented. 

1.4 Original Contributions to Knowledge 

A number of original contributions to knowledge are presented in this thesis, summarised 

as follows: 

 A first original, detailed analysis of open source IoT technologies with respect to 

creative music applications. 

 

 The creative development of a unique and innovative IoT demonstrator unit for use 

in music production scenarios, enabling and realising concepts including the 

‘Internet connected reverb chamber’ and ‘Internet connected hardware units’ for 

music production, and hence enabling the first detailed evaluation of the concept of 

the ‘virtually-extended music studio’. 
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 The first analysis of Internet-controlled hardware alongside Internet streaming 

protocols for real-time, two-way audio streaming and real-time processing via the 

Internet. 

 

 The first and most detailed critical analysis specifically of JackTrip and WebRTC 

streaming protocols in supporting high quality, real-time audio transfer across a 

number of modern computing networks.   

 

 The first case of documented feedback from practitioners and experts in music 

production addressing impressions, principally highlighting perceived opportunities 

and concerns, of IoT-enabled music production systems.  

 

 Original and unique implementation of enhanced mixed-method methodologies to 

critically investigate practical uses of the Internet of Things opportunities within a 

creative industry, focusing specifically on music production. 

1.5 Organisation of the Thesis 

The organisation of the thesis follows the progressive practice and development of the 

research, beginning with a review of relevant literature within IoT and music production, 

and a methodical overview of how the research is conducted to address raised research 

questions. The following sections detail the creative work, showcasing stages of the 

practical build of an IoT-enabled music system including links to relevant media and 

videos, and discuss the mixed-methods analysis of IoT music applications facilitated by 

the practical work. Lastly the thesis is concluded with a summarised discussion of the 

research analysis and the key findings of the investigations. 

The arrangement of the thesis chapters are as follows: 

Chapter 2 provides a review of existing literature exploring modern realisations and 

applications of the Internet of Things, potential opportunities to democratise the 

technology with the availability of open-source resources, and practical applications fusing 

IoT with creativity.  The second half of the chapter offers insight into prior creative practice 

relating to networked music, additionally commenting on the rise of the Internet and its 

impact on Internet-driven applications. The chapter concludes with implications of IoT in 

influencing music production and composition.  
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Chapter 3 offers gaps in knowledge arising from the literature and practice review, and 

presents the research questions, aims, and research objectives. The chapter also 

provides an overview of the formal methods involved to investigate, conduct, and assess 

the goals of the research to answer the research questions.  

Chapter 4 highlights the creative approach to the research and gives a detailed account 

of the practical development of an IoT-enabled music application which serves as a tool to 

answer the research questions and evaluate the research aims.  

Chapter 5 details the first analysis of the research, offering a primarily quantitative 

approach to evaluate the performance of real-time audio streaming platforms over existing 

computing networks that can facilitate efficient delivery of audio to remote, IoT-enabled 

music processors.  

Chapter 6 provides a second analysis focusing on qualitative understandings of current 

production trends, particularly comparing the use of software and hardware among music 

producers, and gathers insights into possible impacts of IoT-enabled systems on music 

production. 

Chapter 7 offers a critical analysis of the overall research and summary of key findings 

obtained from the investigations and evaluations of Chapters 4-6. 

Chapter 8 concludes the research presenting a summary of the main contributions to 

knowledge, addressing each research question and alluding to future work that can be 

derived from the investigations. 

1.6 Associated Publications 

Sections of Chapter 5 were published as: 

Hardin, M. and Toulson, R., 2019. Quantitative Analysis of Streaming Protocols for 

Enabling Internet of Things (IoT) Audio Hardware. In: Proceedings of the 146th 

Audio Engineering Society Convention, Audio Engineering Society, Dublin, March 

2019. 

The author of the thesis wrote and conducted the main research. Secondary author had 

supervising role, adding editorial feedback and assisted with technical programming code. 
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Additionally, elements of this research have been presented at the following international 

conferences, resulting in opportunities for future peer reviewed publications: 

Hardin, M. and Toulson, R., 2019. Development and Evaluation of Internet of 

Things Technologies for Music Production and Creative Collaboration. In: Art of 

Record Production Conference, Boston, May 2019. 

Hardin, M. and Toulson, R., 2019. Development and Evaluation of Internet of 

Things Technologies for Music Production and Creative Collaboration. In: 

Innovation in Music Conference, London, December 2019. 

  



7 
 

2. Literature and Practice Review 

The review of relevant literature presents the primary areas of interest for the Internet of 

Things while giving additional insight into shifting use cases of the technology for personal 

and creative works. The chapter also discusses the development of networked music 

applications and the transition to modern day, Internet driven music processes. The 

chapter additionally presents a review of relevant creative practice and technology, and 

reflects on current investments towards intermixing IoT-based music concepts and theory 

with practice. 

2.1 IoT Vision and Implementation 

2.1.1 IoT Vision 

The Internet of Things envisions a reality of omnipresent devices where the Internet 

provides a universal infrastructure for embedded machines that constantly exchange 

information and interaction. Miorandi, et al. (2012, p. 1497) states, “in such a perspective, 

the conventional concept of the Internet as an infrastructure network reaching out to end-

users’ terminals will fade, leaving space to a notion of interconnected ‘‘smart’’ objects 

forming pervasive computing environments.” In order to realise the Internet of Things, 

Miorandi, et al. (2012, p. 1497) elaborates that “this innovation will be enabled by the 

embedding of electronics into everyday physical objects, making them ‘smart’ and letting 

them seamlessly integrate within the global resulting cyberphysical infrastructure.”  Three 

technological areas can be seen as aiding in the adoption of more smart embedded 

devices: 

1. Identification 

In order to be tracked and managed, non-IoT devices need to be addressable and 

uniquely identified across the network. As discussed by Bandyopadhyay and Sen 

(2011, p. 6), “in the vision of IoT, things have a digital identity (described by unique 

identifiers), are identified with a digital name, and the relationships among things 

can be specified in the digital domain.” One of the earliest technologies enabling 

the Internet of Things was radio frequency identification (RFID).  RFID ‘tags’ can 

be embedded into an object and use radio technology to create a digital 

representation of the object on the virtual network. This also allows encoded 

information about the object (physical properties, historical data, current status of 
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the device, etc.) to be collected and used as desired by a virtual recipient (Thiesse 

and Michahelles, 2009). 

 

2. Sensing and Actuating 

Sensory nodes are small, technical components that allow embedded objects to 

interact with their immediate surroundings. These nodes help IoT-based objects 

become “smart,” as they allow the devices to interact with the environment, gather 

and process information, and seemingly “think” for themselves either 

autonomously or with the assistance of human feedback.  The nodes usually serve 

as an interface to receive analogue signals (sound, light, pressure, displacement, 

etc.) and convert them into a digital format for processing and communication 

(Gubbi, et al., 2013). Actuators are mechanical components (typically small motors 

contained within an IoT system) that accept control information to perform specific 

tasks, such as taking active parts in moving, manipulating, or engaging directly 

with objects in the physical environment. Sensors and actuators serve as bridges 

linking the digital and physical realms of IoT (Miorandi, et al., 2012). 

 

3. Communication 

The Internet itself is a huge network of interconnected communication devices that 

provide swift and widespread dissemination of information.  Ethernet, Wi-Fi, and 

Bluetooth are currently popular communication mediums for computers and smart 

phones, however, new protocols are constantly being developed to additionally 

accommodate the range, speed, and power requirements of newly-adopted 

embedded devices.  Some transport layer protocols include: Bluetooth (more 

specifically Bluetooth Low Energy (BLE) or Bluetooth Smart), Zigbee, and 

LoRaWAN, which allow short and mid-range communication between connected 

devices while reducing power consumption. 

With growing mechanisms for adopting a number of widespread use cases, IoT can help 

contribute to a new world of ubiquitous computing. Ubiquitous computing, or “Ubicomp,” 

explained by Weiser, Gold and Brown (1999, p. 694) “created a new field of computer 

science, one that speculated on a physical world richly and invisibly interwoven with 

sensors, actuators, displays, and computational elements, embedded seamlessly in the 

everyday objects of our lives and connected through a continuous network.”  Within this 

vision, devices will always be connected, always sensing the world and interacting with 

the environment, collecting, processing, and distributing data, and have the option to do 

so autonomously while running in the background of normal human activities.  
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In a ubiquitous IoT world, interconnected devices will develop into an ever-present aspect 

of daily life and have an affective influence on every industry. However for real impact, 

successful implementation of IoT systems requires the cooperation of various 

independent and isolated industries, ultimately encouraging new collaborative markets. 

One example of this is the smart fridge (Miorandi, et al., 2012), where a networked 

refrigerator uniquely identifies its contents by reading RFID tags placed on super market 

items.  In this scenario, the fridge can provide data regarding the number of items and 

properties of those associated items it contains.  The smart fridge requires additional 

collaboration between numerous industries (i.e. electrical appliance companies working 

with the farm and agriculture industry) in order to collectively work together to fulfil the 

needs and demands of the customer (Miorandi, et al., 2012).   

The future of the Internet of Things requires an intricate infrastructure of different, 

independent technologies woven together to create a qualitative change in life.  To create 

a smart vision of the world, multiple systems (sensing and computing networks, signal 

processing, data collection, security, etc.) have to continuously work together to create 

accurate processes that benefit changing environments and the complexity of human 

nature (Stankovic, 2014).  This poses new business models as it increases the need for 

more cross collaboration and research across a spectrum of trades. As summarised by 

Miorandi, et al. (2012, p. 1509): 

Besides enhancing the competitiveness of various vertical markets, IoT 

technologies can open up new business opportunities by: (i) bridging vertical 

markets, giving rise to cross-cutting applications and services, based on the use of 

a common underlying [Information and Computing Technology] platform, (ii) 

enabling the arising and growth of new market segments and applications, made 

possible by the ability, provided by IoT technologies, to interact with physical 

objects via digital means and (iii) optimizing business processes by leveraging on 

advanced analytics techniques applied to IoT data streams. 
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2.1.2 Movements towards Democratised IoT Applications 

In order to make IoT truly ubiquitous, there is a constant push to make IoT-enabling 

technology faster, cheaper, more efficient and accessible. As the technology becomes 

more available to public consumers, unique opportunities emerge allowing individuals to 

produce products and implement projects catered to specific groups and personalised 

audiences. Greater availability to IoT technology creates a growing demand for more 

resources to aid in personal IoT development, and the response has resulted in a rising 

trend of do-it-yourself applications and open-sourced knowledge exchange.  

The open source movement emerged from a decentralised community of programmers, 

coders, and developers who create software with unrestricted access to source code in 

opposition to traditional proprietary software that govern the commercial world 

(Bonaccorsi and Rossi, 2003).  The driving force behind open source software is its 

“community participation model and licensing model” that “encourages community 

participation, which means that open source software is truly software by developers, for 

developers” (Hendrick, 2018). The open source community benefits from free and open 

knowledge transfer through code sharing, as well as software and programs that can be 

used, manipulated, and improved upon by other professionals. Additionally, hobbyists and 

developing programmers benefit from open code that serves as learning aides and 

tutorials that assist in the development of personal projects.  

Although IoT is still in its infancy, open source tools have provided a significant factor in 

driving IoT development and are reported to be used in 39% of cases by enterprises as 

compared to 36% for proprietary tools in the 2017 Worldwide IoT Innovation Survey 

(Hendrick, 2018). The heterogeneity of IoT devices and applications combined with the 

lack of cross platform standards adds some complications to the development of IoT 

projects, and a reliance on dedicated tools from proprietary resources could further 

compound issues. As a result, Bonaccorsi and Rossi (2003, p. 1245) mention that  

Many Open Source projects take shape because the people promoting them have 

looked in vain for a programme to perform a particular function. They arise, that is, 

to satisfy a demand for which there is no corresponding supply, in short to ‘fill an 

unfilled market.’  

Whether used for the benefit of single individuals or entire enterprises, the open source 

community has become a key tool for knowledge exchange used to promote efficient 

implementation of IoT projects that would be difficult to realise and otherwise costly if 

solely reliant on proprietary support.  
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2.1.3 Extensions of IoT into Creative Fields and Applications 

While IoT technology is effectively becoming more available and accessible, Gubbi (2013) 

lists that the four domains largely impacted by the Internet of Things are personal and 

home, enterprise, utilities, and mobile. Within these industries, a bulk of the applications 

are geared towards improving services for home automation, healthcare, information 

technology, power and public services, transportation, and security.  This list arguably 

shows that the Internet of Things is still heavily invested in the business and commercial 

sectors, but cheaper components and readily available prototyping interfaces are making 

the Internet of Things more accessible to innovators, hobbyists, and allowing the creation 

of a niche space for artists and practitioners within creative markets.  The following 

examples explore some IoT use cases within creative industries: 

Long Distance Art 

  

Figure 2.1 Alex Kiessling’s Long Distance Art exhibit (Zolfagharifard, 2013). 

 

The Long Distance Art exhibit was created by Austrian artist Alex Kiessling, and sought to 

use robotics and wireless networks to create and replicate a painting simultaneously in 

three different locations across Europe. The project involved Kiessling sketching a 

drawing in Vienna, Austria, which consisted of a full image of a human face in the centre 

of a canvas with two half-faces drawn on the sides of the canvas. While Kiessling 

produced the drawing in Vienna, two robotic arms located in Trafalgar Square, London 

and Breitscheudplatz, Berlin recreated his drawing at exactly the same time in their 

respective locations (Zolfagharifard, 2013). The technology involved infrared sensors on a 

touch frame canvas that was captured movement by a Microsoft Kinect device.  The 

Kinect tracked the artist’s pen movements on the canvas from Vienna and transmitted the 

coordinates to servers that directly controlled the robots’ movements in both London and 

Berlin over a dedicated satellite network (Visnjic, 2013).  Once the three drawings were 



12 
 

completed they were combined to make one larger, full image that was displayed in 

exhibits in Vienna and London.  

 

Underwater 

  

Figure 2.2 David Bowen’s Underwater art exhibit (Chalcraft, 2012). 

 

Underwater is an exhibit created by American artist David Bowen that articulated the 

motion of water into mechanical movements of a grid structure suspended in air.  In order 

to capture the movement of the water, a circular membrane was placed on the surface of 

the water, and a Microsoft Kinect was mounted above the membrane to capture a 3-

dimensional model of the rippling movement of water under the membrane (Chalcraft, 

2012).  The data from the water movement captured by the Kinect was then sent to 486 

servo motors connected to specific points along the frame of the grid (Chalcraft, 2012).  

The servo motors were able to accurately move the grid in a way that replicates the subtle 

movements of the membrane in the water and thus gave a unique perspective of how the 

real-time waves look in an alternative space. 

 

 

 

 

 

 



13 
 

Silophone 

 

Figure 2.3 [The User]’s Silophone sonic art exhibit ([The User], 2000). 

 

Silophone is a sonic art exhibit created by Thomas McIntosh and Emmanuel Madan, 

collectively known as [The User], that turns an abandoned grain silo in Montreal, Silo #5, 

into a musical instrument. Microphones and speakers are placed throughout the silo and 

audio can be transmitted inside using the speakers, where the audio is then “transformed, 

reverberated, and coloured by the remarkable acoustics of the structure, yielding a 

stunningly beautiful echo” (Reddel, 2003, p. 19).  The transformed audio is then 

recaptured by the microphones and delivered to the listeners outside of the silo.  

Originally, audio files were able to be transmitted inside the silo by uploading and 

streaming the files via the Internet on the www.silophone.net webpage.  Additionally a 

telephone number could be used to place a call directly into the silo, and a permanent, 

publically-accessible sound platform located outside of the silo is currently available for 

users to sing or have other acoustic sounds delivered into the silo returned back to the 

platform. The Silophone exhibit inherently added new significance to a devalued, under-

utilised sonic structure and turned the silo into a natural, remotely-accessible reverb 

chamber.  

While a major drive in the development of IoT is optimising commercial and business 

applications, these examples show diversity in how IoT can stimulate creativity and 

promote development in creative industries.  Networked and interconnected devices can 

assist generating unique productions for arts and humanities, and contribute to novel 

techniques to engage different aspects of multimedia, examples being art, film, and music. 

http://www.silophone.net/
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2.2 Network and Internet-Driven Music 

2.2.1 A Brief History of Networked Music 

A broad concept of “networked” music can extend as far back as the earliest civilisations, 

as collaborations between human performers have been used to create consolidated 

pieces of sound and music compositions. However, it was not until the 20th century that 

network music began to describe musical compositions aided by an assembly of complex 

technology connections. Modern advancements in electronics (i.e. transistor radios, 

personal computers) enabled a new domain in which digital technology added to the 

creative process of music creation. 

One of the earliest contributors to the idea of networked music was John Cage. Cage was 

a music composer who was interested in experimental music, and in the 50s began to 

focus on unstructured music governed by chance operations (Cage, 1990).  

In 1951 Cage performed Imaginary Landscapes No. 4, which was an experimental 

performance using various sound outputs from 12 transistor radios.  The performance 

consisted of 24 performers; a pair for each radio that involved one person tuning the 

stations for the audio streams and the other adjusting the volume levels.  Although there 

was a score sheet dictating the tuning frequencies and sound levels, Cage nor the other 

performers knew what type of sounds would be produced during the experience or if the 

dictated stations would produce sound at all (Worby, 2009).  While not an explicit case for 

networked music, this was notably a first case of electroacoustic music relying heavily on 

the interconnectedness of digital devices.  

 The 20th century continued to see an evolution in digital electronics, and most notably the 

creation of personal computers gave people greater access to computing resources and 

digital networkability that had previously been unavailable. The personal computer 

enabled new tools for independent music making, and in the 1970s The League of 

Automatic Music Composers emerged who, taking influence from musicians like John 

Cage, wanted to investigate new techniques in electronic music.  The League as they 

were sometimes referred to, “arose within a tradition of cooperation and self-directed, self-

designed electronics uniquely configured for the expression of individual pieces” 

(Gresham-Lancaster, 1998, p. 40). Their approach to music making involved individual 

members composing their own pieces of music via computer generated instruments, and 

later these separate pieces would be performed and adapted together into a final 

composition guided by their unique interactions (Gresham-Lancaster, 1998).  The 

individual pieces had to conform to specified configurations and procedures as “scores 
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consisted of sets of specific instructions that related the technical requirements to obtain 

the results the composer wanted to realize” (Gresham-Lancaster, 1998, p. 41), but like 

John Cage’s works the effort put into creating a final composition was based on one-of-a-

kind interactions between the musicians and the music that was difficult to replicate and 

reconstruct. 

In the 1980s The League benefitted from the implementation of MIDI (Musical Instrument 

Digital Interface), allowing more precision and control generating musical sounds as 

computers became capable of exchanging control messages with audio producing 

devices as opposed to just transmitting audio streams. Also in the 1980s The League of 

Automatic Music Composers changed their name to The Hub, and in 1985 performed their 

first network-based concert from two remote locations within New York City (Gresham-

Lancaster, 1998). There were 3 musicians at each site (6 total), and they played 

simultaneously over phone lines connected via a modem (Gresham-Lancaster, 1998). 

The performers individually performed their own computer-generated pieces, but their 

computers were networked to a common, shared memory space within their hub.  This 

allowed the musicians to exchange information with each other during the performance 

and additionally allow them to mutually influence of the overall musical performance in 

real-time (Gresham-Lancaster, 1998).  The League of Automatic Music Composers and 

later The Hub helped usher in the genuine concept of musical composition and 

collaboration over virtual networks.  

One example of a popular form of musical expression using networked technology is the 

music conducting system, where an active listener engages with a piece of music and 

uses a control system interacting with a musical producing device to add, subtract, or 

enhance features of the sound. In 1975, Max Matthews created his Conductor Program, a 

system using networked batons that allows a musician to control or “conduct” the 

playback of a MIDI file (Fabiani, et al., 2013, p. 59). The original design used a 

mechanical baton to strike a mechanical plate, and the electrical pulse generated from this 

action sent control information that determined the tempo of the MIDI file playback 

(Fabiani, et al., 2013). Later, Matthews upgraded his program to incorporate the Radio 

Baton, which “involved two sticks whose 3D position in the space above a plate is 

measured by an antenna array, contained in the plate itself” (Fabian, et al., 2013, p. 59).  

The batons could be customised to interact with the music in a variety of ways, but 

typically one baton was used to keep the tempo of the piece and the other was used to 

control volume levels or dynamics.  
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This Conductor Program was one of the first programmable, networked systems that 

“allowed real-time control of a music performance through the orchestral conductor 

paradigm” (Fabian, et al., 2013, p. 59). 

 

Figure 2.4 Max Matthews and the Conductor Program (Fabian, et al., 2013). 

 

In the early 2000s, music conducting-like systems were implemented into mainstream 

gaming platforms with huge success.  In 2005, Guitar Hero was released where the player 

controls a guitar-shaped game controller and needed to press the correct button 

sequence at the right time based on the tempo of the song to score points and hear the 

full quality of the music.  While the gamer was not creating music or controlling the 

playback of the song itself, Guitar Hero did allow the user to interact and creatively 

manipulate characteristics of the songs. Its popularity led to spinoffs which included more 

instruments, such as Rock Band, and implementations of networked conducting systems 

were also seen on other control systems using different platforms, such as with Nintendo’s 

Wii Music.  

 

Figure 1.5 Guitar Hero controller influencing music playback (ekawa, 2016). 
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2.2.2 Modern Applications of Networked Music 

Arguably the biggest enabler of networked music was the emergence of the Internet.  The 

Internet made it possible for people to share data, whether it was a music file or audio 

stream, to large groups of remote clients with speed and ease. In 1999 the peer-to-peer 

music streaming service, Napster, was created and established a huge marketplace 

where users can share and download music files for free (Evren, 2015).  The service was 

largely opposed by the music industry because accessibility to free music took a financial 

toll on musicians and record labels. However, it did revolutionise a new open market for 

music distribution. As a response, some of the larger music corporations began to work 

together to create online music stores (one example being MusicNet) that allowed users 

to either submit membership payments for their service or pay a fee to download a song. 

These steep prices were not well-received by consumers, however, and musicians felt 

they were not receiving adequate royalty payments for their music (Evren, 2015). In 2001, 

Apple was able to capitalise on this market by releasing the iPod and iTunes. Users were 

able to upload CDs and other legally purchased digital music files to iTunes and make 

copies of their music on CDs to distribute to peers or simply store the music on an iPod for 

mobile listening (Borenstein, 2008). With the creation of the iTunes music store in 2003, 

consumers were able to legally purchase digital downloads of songs (at only $0.99 per 

mp3) or full CDs to iTunes directly, and it successfully created a centralised hub where 

people can purchase and manage their music libraries altogether (Borenstein, 2008). 

Following Apple’s achievement, other large companies, such as Google and Amazon, 

began to follow suit with similar models of online media distribution hubs. 

Apart from online marketplaces, the Internet created opportunities for distributed digital 

music streams and the growth of online radio stations. In 2004, Pandora Radio was able 

to revolutionise the online radio station by creating a service that generates an automatic 

playlist adapted from user-specific listening tastes (Evren, 2015).  When a listener 

searches for an artist, song, or genre of music, Pandora uses complex algorithms to 

analyse the song choice and make a playlist that includes songs by the same or similar 

artists as well as songs with similar sonic attributes. The user can “like” a song they felt 

was a good addition to the playlist to help tailor the listening preferences and “dislike” a 

song that they did not desire or want to hear again.   Subsequent companies like Spotify 

followed this trend, allowing users to stream songs and albums on their platform, and 

using money from adds (on their free services) or membership fees to pay royalties to 

companies and music artists (Hayes, 2019). This paved the way for more advanced 

applications like Tidal, which includes an option for high-fidelity, lossless music streaming 

for their users.  While these types of online services provided a means for the record 
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industry to distribute and monetise commercial music, modern research has recently been 

shifting to uncover ways for consumers to creatively share and express their own, unique 

music with peers. 

The evolution of computing systems and the Internet’s growing ability to handle greater 

processing resources over time has opened doors for experimentation with newer 

networked music applications.  Some of the current investigations into networked music 

applications seek to understand achievable forms of virtual music performances and 

improve areas of remote collaboration.  Schober (2006) examined a project by the New 

School of Social Research that investigated the requirements needed for musicians to 

perceive a virtual space as a proper, compositional environment. Notable issues among 

collaborating musicians when performing in remote environments are being unable to 

receive subtle, non-musical cues typically present while located in the same space in 

addition to timing coordination during performances (Schober, 2006).  The advent of video 

conferencing helped facilitate these issues by providing both audio and visual feedback to 

the performers.  However, a limitation to video conferencing is broadband capacity, where 

speed and video degradation are affected by bandwidth.   

Other areas of interest in networked music evolved to using technology to express 

musical objects. This is done by the embodiment of intelligent machines.  As part of the 

CHI 2015 workshop with emphasis on human-computer interaction, Grote, Anderson, and 

Knees (2015) provided some areas of focus including embodying machines. One area of 

focus involved understanding the physical structure of instruments, such as what traits 

make them perform as they should and how external sources (such as the human 

musician) affect functionality. Another area included understanding how a machine 

interprets ways in which physical musical equipment operates. This means exploring what 

it takes for the machine to comprehend the interaction between the human and musical 

equipment, or simply how the machine itself experiences music.  By enabling intelligent 

machines to embody instruments, “musicians are holding two parallel understandings of 

music simultaneously: On one hand there is the full embodied experience of playing and 

simultaneously experiencing music and on the other hand there is the understanding of 

how the machine or instrument understands the sounds in use” (Grote, Anderson, and 

Knees, 2015, p. 2346). 
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2.3 IoT Implications for Audio and Music 

2.3.1 Moving Towards IoT-Enabled Music Applications 

The IoT framework provides major opportunities for new music applications by turning 

music technology (including instruments, recording devices, and music processing 

equipment) into physical nodes that have network capabilities for communication and 

control.  Some recent efforts have gone into developing practical, user-friendly objects 

that create unique and expressive interpretations of musical data, or finding methods to 

sonify complex data streams. Companies like Lucie Labs in France and Rescued Ideas 

(developers of the Basslet) in Germany have created music influenced wristbands, the 

former used to monitor the pulse of music and user movement to gauge crowd 

engagement at concerts and the latter which vibrates to allow the wearer to feel the pulse 

of the music throughout their entire skeleton (O’Brien, 2015).  

Additionally, artificial intelligence (AI) has been paired with the Internet of Things, allowing 

networked devices to make complex computational decisions that create unique, data-

driven experiences influenced by audio and sound. Popular AI enriched devices like 

Google’s Assistant, Amazon’s Alexa, and Apple’s Siri, utilise IoT-based voice control to 

create ‘smart speakers,’ which serve as personal assistants that address many consumer 

needs like scheduling appointments and services, answering queries, and facilitating other 

daily tasks. As of 2018, smart speakers are reportedly owned by nearly 20% of adults in 

the United States (Kinsella, 2018), and more smart IoT devices have been developed that 

specifically impact music engagement. One such product is the Prizm, a small, pyramid 

shaped music player developed in France that can connect and play music from almost 

any modern streaming service (O’Brien, 2015).  Prizm is instilled with machine learning 

allowing playlists to be configured based on preferred music types as well as updating 

chosen genre types around different times of day and the user’s listening patterns. The 

playlist can also be customised upon the shared preferences of multiple individuals in the 

room and determine the atmosphere of the crowd based upon the ambience of the room.   

Determining new and unique ways to implement IoT technology in practical and creative 

ways offers more challenges outside of simply creating new IoT objects.  Whalley (2015) 

feels what currently is described as “telematic music” focuses too much on old, traditional 

forms of composer-leader based performance architectures; and that IoT technology can 

go deeper allowing users to directly engage each other and devices for added 

collaboration and creativity. With so many pervasive devices finding their home on the 

Internet, he remarks: 
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Our human-focused view of time/space/location in relationship to networks is then 

likely to become secondary to information-centric networks that interface with 

human needs and networks inhabited by ubiquitous intelligent machines that can 

interact with people and other machines (Whalley, 2015, p. 93).  

He feels not enough attention is given to the role of intelligent machines, who themselves 

can add another layer of complexity to music composition and become complementary 

tools to aid the needs of musicians.   

Furthermore, for IoT music to break new grounds there needs to not only to be a focus on 

the enabling technology, but collaborative input of what musicians want to achieve and 

what smart and embedded machines can deliver. In an Ask Audio article, Liam Lacey 

(2015) offers 4 areas within music technology and production can be influenced by IoT:  

1. Remote Performances 

IoT is allowing musicians to replicate performances remotely that could only 

traditionally occur in the same environment. There are a number devices and 

software that now enable the distribution of high resolution audio in almost real 

time.  Lacey (2015), however, alludes to a scenario where performers desire to 

control physical instruments remotely instead of just sending audio streams.  This 

would require sending actual performance and control data to a control system 

that interacts with an instrument to create natural, desired sounds (Lacey, 2015).   

 

2. Remote Recording 

Remote recording often occurs with two or more musicians physically performing 

in different locations and having their individual performances recorded and then 

recombined at a later stage into a final mix. Lacey (2015) offers an idea of being 

able to remotely record an instrument in its natural setting (i.e. embedding a 

church organ with technology so that it can be played and recorded remotely to 

capture the cathedral sound) and being able to deliver the audio back to a studio 

for editing and mixing.  

 

3. Remote Live Mixing 

In the area of live mixing, there are a number of networkable mixing consoles that 

support virtual inputs and outputs to transmit data as well as be controlled using a 

graphical interface operating over the same Local Area Network as the consoles.  

However, these mixing boards do not currently allow for control over the wider 

Internet.  Lacey (2015) proposes a solution of having a set of networkable mixers 
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that can be accessed and controlled through browsers or other interfaces over 

Internet, thus allowing engineers to easily connect and disconnect to desired 

mixers when needing to work different engagements.  

 

4. Generative Music and Algorithmic Composition 

Lastly, Lacey (2015) explains that the Internet of Things can play a larger role in 

generative music and algorithmic composition due to the massive amounts of data 

acquired from sensing devices.  Data recovered and recorded from the 

environment through embedded devices and sensors can be mapped to musical 

tones, scales, and frequencies, providing interesting and unique forms of musical 

expression. 

 

2.3.2 Modern Applications of IoT in Sound and Music Production 

An evolving high-speed Internet continues to provide more robust means of virtual data 

transmission. Networked music based research has already aided in sharing higher 

resolution, bi-directional audio, video, and data control for performance and compositions 

with low latency speeds. The SoundWire group at the Center for Computer Research in 

Music and Acoustics (CCRMA) at Stanford University created JackTrip, a music software 

that uses high-speed education and research networks to distribute multitrack, high-

quality, uncompressed audio across the Internet with low latency (Cáceres and Chafe, 

2010). JackTrip supports online jamming, where remote musicians can play together in-

real using the Internet and stay in sync without noticeable delays. The LoLa (abbreviated 

for LOw LAtency) audio visual streaming system developed by the Conservatorio di 

Musica Giuseppe Tartini in Italy (Drioli, Allocchio and Buso, 2013) added a video 

component to real-time performance applications, boasting 20-50 ms of latency and 

allowed a seamless concert to occur between a clarinettist in Edinburgh and a pianist in 

London in 2012 (Ferguson, 2013). This led to subsequent music performances across 

Europe as well as between the UK and US to occur with visual and auditory cues 

available across the sites (Moir, Ferguson, and Smith, 2019). Open Sound Control (OSC), 

developed at the UC Berkeley Center for New Music and Audio Technology, is a modern 

communication protocol that supports the exchange of low-latency data between 

computers, sound synthesisers, and other media devices over computing networks 

(Wright, 2005).  Primarily use cases for OSC have been interactive computer music 

applications that permit remote control of musical devices and networked music 

performances. Furthermore, protocols for networked audio streaming and open control 
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architectures have been developed as part of the official AES (Audio Engineering Society) 

standards. AES67 specifies recommendations for interoperability between media 

networks and streaming protocols (AES Standards Committee, 2018a). AES70 

establishes a scalable framework for controlling and monitoring network connected 

devices, and specifies attributes such as how these devices are connected, defined media 

stream paths between the connected devices, and control and monitoring configuration 

parameters (AES Standards Committee, 2018b). Open control architectures paired with 

network streaming offer unique solutions for engagement with networked and 

interconnected music systems. With the evolution of high-speed computing networks and 

rise of applications for real-time transmission of media and control data, Moir, Ferguson, 

and Smith (2019) admitted “we are confident that the traditional barriers to network 

performance no longer stand in the wary of real-time, remote, interactive performance and 

recording.” 

In addition to the aforementioned developments in distributed music performance and 

control, some organisations have begun utilising the Internet through the sharing of 

resources between individuals, individuals and smart programs, or embedded devices to 

create practical music solutions to facilitate music production and composition. 

Companies like LANDR Audio Mastering (http://www.landr.com) and Sage Audio 

Mastering (http://www.sageaudio.com) have begun using the Internet to optimise mixing 

and mastering. LANDR’s mastering algorithm was composed by a combination of 

musicians, signal processors, and an astrophysicist to use artificial intelligence and 

adaptive listening mechanisms to learn and make subtle, frame-by-frame adjustments to 

audio files uploaded to the site in order to digitally master the audio. Sage Audio allows 

users to create an online profile and upload a recorded piece of music directly to the site 

where a live audio engineer then master the file before returning it back to the user.  The 

site offers a free trial where users can submit their audio and hear a 1-2 minute 

comparison of the original vs mastered file. 

In an IoT realm regarding interconnected, controllable hardware, one example is the 

Patchwerk, developed at the Massachusetts Institute of Technology (MIT). Patchwerk 

consists of a large, networkable synthesiser that can be controlled physically in-person 

inside the MIT Media Lab or through a web interface online. The original, stand-alone 

analogue synthesiser was built by Dr. Joseph A. Paradiso in the 1970s and 1980s and, 

due to its size, became largely underutilised as it was complex to operate and confined to 

the Media Lab. In order to create Patchwerk, a group of postgraduate researchers added 

custom upgrades to the synthesiser, using the digital and analogue outputs of an 

embedded computer to electronically manipulate its functionality and designing a web-

http://www.landr.com/
http://www.sageaudio.com/
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based interface to send Websocket commands allowing virtual engagement from remote 

users (Mayton, Dublon, Joliat, and Paradiso, 2012). The synthesiser could additionally be 

switched into a read-only mode so that patching can occur on-site while virtual users were 

still provided visual and auditory feedback. Virtual control of music devices were 

eventually implemented into commercial hardware, such as Tegeler Audio Manufaktur’s 

Schwerkraftmaschine, a vacuum tube-based analogue vari-mu compressor, which has 

knobs fitted with servo motors allowing control via the Internet or a plug-in in addition to in-

person engagement (Tegeler Audio Manufaktur, n.d.). Additionally artistic applications 

emerged using IoT-enabled music hardware, such as the Google Universal Orchestra. 

The Universal Orchestra, part of the Chrome Web Lab, was a series of five museum 

exhibitions that sought to combine virtual and physical spaces.   The Universal Orchestra 

allowed users to play 8 different percussive instruments in real-time, and the instruments 

could be controlled in either the museum or online through a web browser. 

Other companies found unique ways to market music hardware engaged through the 

Internet. The Audio Hunt (http://www.theaudiohunt.com) allows a community of users to 

share their analogue audio hardware equipment and/or their audio skills for signal 

processing.  Members who do not own a particular piece of hardware equipment can pay 

other members to borrow their devices for a specified time. Remote users can pass along 

audio files and hire other device owners to process audio files on desired equipment.  

After processing, the edited audio can be digitally sent back to the customer. mix:analog 

(http://www.mixanalog.com) is one of the latest instalments in IoT-enabled music systems 

and allows users to interact with bespoke, analogue audio devices that have custom-

made modifications granting them remote control through a virtual, online environment.  

Their web-based control system mimics the appearance of the desired analogue music 

device chosen by the user, and additionally provides real-time VU and audio monitoring of 

the processed sounds.  Personal music tracks simply need to be uploaded to the 

mix:analog application, and their servers deliver the audio to the analogue devices for 

processing. Afterwards, the new audio can be bounced and downloaded when the mix is 

completed.  

These examples demonstrate the capability of the Internet and IoT in granting musicians 

and music producers opportunities to mix, record, or process music remotely using the 

Internet or engage with physical devices through virtual connections. IoT can shape future 

practices for developing music and lead to new, networked-based workflows in music 

production.   

http://www.theaudiohunt.com/
http://www.mixanalog.com/
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2.3.3 New Paradigms Inspired by IoT-enabled Music Composition 

The popularity of personal computers, digital audio workstations (DAWs), and in-the-box 

music processing software in the 21st century has “brought to the territory of home 

practices that were considered the norm in studio production… technologies and 

techniques once reserved almost exclusively to professional studios” (De Carvalho, 2012).  

Some of the older methods of professional music production relied on analogue hardware 

typically found in commercial music studios, but the advent of the digital age allowed 

many popular elements of the music studio to become “reduced to a laptop” (Dixon, 

2016). De Carvalho (2012) mentions that as a result, many of these traditional music 

applications, “from pre-production to mastering and mixing, could then be performed from 

one’s house.” 

Consequently, the standard view of the ‘music studio’ continues to evolve as more 

individuals are opting to work in the security and isolation of their own private spaces, 

promoting the concept of the bedroom musician. Jonze (2010) describes the bedroom as 

being more than just a studio for some, but “essential to their whole aesthetic.” The 

bedroom not only provides a new escape where these artists can feel freedom, but an 

environment where they are more in control of their external identities. There are 

limitations to this practice, however, “whilst there are many musicians making music in 

their bedrooms, there are still bands who want their music recorded and do not simply 

want a whole set of loops and samples editing” (siteadmin, 2013). In some cases artists 

will spend part of their time recording in a studio using professional quality hardware and 

other parts mixing at home (siteadmin, 2013). 

While software tools have become deeply embedded into modern audio processing, 

physical devices continue to hold importance in music production and sound engineering. 

Contradictory views of quality and performance between music producing hardware and 

software are constantly held in public discussions and forums, and with specific regards to 

analogue hardware, Strickland (2008) presents the case of audiophiles who believe that 

digital sampling processes cannot truly replicate the subtleties of a continuous, analogue 

audio signal since sound is naturally analogue. Evens (2002, p. 172) expands on this topic 

describing how the vibration of sound at a point in space “adds up to a single, continuous 

variation in pressure, a wave,” and given the complexity of these waves “it is not 

surprising that engineers are challenged to record and reproduce sound satisfactorily.”  

Additional appeals to the use of physical hardware in modern production emerge around 

the aesthetic of analogue composition. In an interview in The Guardian, Mack Wilson, tech 

editor of DJ Mag states that “guys are sticking to analogue because the sound is softer 
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and it brings a bit of the past into the future, which is something that can’t be achieved 

with new apps and soft synths” (Reidy, 2014). Similarly, DJ and producer Alexander 

Green states:  

You can’t beat a machine that’s 20 years old where the circuits have degraded and 

it has its own character. It may sound a bit romantic but you can’t perfectly emulate 

analogue equipment with software…. Maybe it’s the history behind the 

instruments, maybe it’s the authentic sound of the machines. Or perhaps it’s just 

me (Reidy, 2014). 

IoT processes have opportunities to create novel shifts in modern music by extending 

production workflows to virtually accessible audio hardware.  Having greater options to 

access physical music devices utilising IoT may present an attractive option to individuals 

who desire analogue processing in the current, digital-centric atmosphere, and contributes 

to the seemingly “analogue revival” shown through the growing popularity of vinyl records 

(Morris, 2016) and other tactile devices, both musical and non-musical.  Furthermore, IoT-

embedded musical hardware incites the idea of virtually-extended music studios, where 

producers can have remote access and digitally engage rare, bespoke, or professional 

hardware, retaining the ability to obtain analogue quality processing from distributed music 

systems without a need to leave their personal production environments.  
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3. The Method of Research 

The research methodology details the unanswered questions emergent from the literature 

review and the methodological approach to answering them. In this chapter gaps in 

knowledge are presented, followed by developing research questions and aims, and lastly 

a detailed discussion and justification of the practical analysis conducted to address the 

previously unanswered research questions. 

3.1 Research Goals and Objectives 

3.1.1 Summary of Gaps in Knowledge 

The literature review established a vision of the Internet of Things where an infrastructure 

of ubiquitous computing devices is interwoven into modern industries, however, IoT 

opportunities impacting creative industries represent an area where improvements can be 

explored. The chapter additionally illustrated that creative use cases for IoT often 

emphasise unconventional methods to generate artwork and artistic displays as opposed 

to offering tools for the practical development of projects and workflows by creatives. For 

musicians, this can reflect having greater options and techniques to produce music in 

comparison to what is physically available in the current market. As such, one implicit gap 

of knowledge is the need for original and critical investigations directly exploring IoT 

architectures applied to music production where opportunities, benefits, and challenges 

are evaluated and assessed within an academic context. 

Understanding IoT’s ability to impact music production first requires developing a better 

comprehension of current IoT architectures that can help bridge musicians to remote 

production devices. Specifically, this involves exploring and evaluating technical 

components that can be adapted into analogue and hardware devices in order to facilitate 

meaningful interaction with these remote devices. Once an IoT-enabled music system can 

be realised and achieved through modern techniques, additional gaps arise regarding the 

impacts of these systems on existing methods of music production. The concluding 

sections of the literature review indicated that there is still an appeal for analogue and 

physical hardware in modern music production, so it is important to understand whether a 

virtual music system allowing remote access to physical devices can effect current 

production workflows and have further influence on the creative processes in which music 

is generated. This requires open and in-depth conversations with both amateur and 
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experienced music producers to determine any emerging values from these systems, in 

addition to uncovering notable opportunities and measurable outcomes they may provide.  

 

3.1.2 Research Questions 

The aforementioned gaps in knowledge help draw a number of unanswered research 

questions: 

RQ1:  What are the current capabilities of IoT infrastructures to support distributed 

audio system networks, and what improvements can be identified and 

evaluated? 

Answering this question involves examining current Internet architectures that can 

support robust networked audio systems, which includes control infrastructures 

that allow real-time manipulation of physical systems over extended networks and 

computing protocols that allow for low-latency transmission of control and media 

(audio and visual) data over the Internet with high reliability.  

 

RQ2:  How can IoT-enabled music systems facilitate new music production 

engagement, workflows, and collaboration methods? 

This question seeks to understand how IoT systems can help musicians better 

engage and collaborate with musical resources and the impacts they can have on 

current production processes. New opportunities for networked audio and music 

processing chains can allow the incorporation of numerous physical, analogue 

audio processing devices independent of brand, type, or location into a virtually-

accessible work flow accessible by remote users. Adding IoT components to rare 

and high-demand devices can allow them to operate in a hybrid manner, bringing 

the best qualities of both digital control and natural analogue sound aesthetics. 

 

RQ3:  What cultural, enterprise, and creative benefits do IoT- based music systems 

present? 

IoT-enabled music systems may offer opportunities for enhanced accessibility and 

productivity for music producers from various production backgrounds and 

expertise, and provide them new tools to help generate and express their musical 

works. Networkable audio systems can also add increased value to rare and 

under-utilised hardware, and in unique cases be extended to natural environments 

where the acoustic sound qualities of physical, material spaces can be added as 
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real-time echo and reverb chambers, in addition to other natural effects. Lastly, 

networkable devices may open new business markets where virtually-accessible 

audio hardware can be rented and hired from retailers and collectors.  

 

3.1.3 Aims and Objectives 

Key aims and objectives of the research are developed to address the presented research 

questions and provide a practical roadmap for answering them. These involve researching 

IoT technologies and infrastructures that can effectively support a distributed IoT audio 

system, and conducting further testing, observation, and data gathering to understand 

how an IoT audio system can facilitate novel practices of networked audio and music 

processing. These evaluations additionally help reveal benefits IoT-enabled music 

practices can deliver to the audio and music industry.   

The specific aims and objectives of this research are as follows: 

1. Investigate the emergence of IoT and evaluate cultural and creative aspects with 

respect to music technologies and audio processing systems 

 

2. Design and prototype an IoT-enabled audio and music processing system with 

audio streaming and remote control capability 

 

3. Test and evaluate capability for lossless audio data transfer across various 

broadband Internet networks (i.e. Local Area Network, public Wide Area Network, 

High-speed Research and Educational Networks)   

 

4. Evaluate opportunities and benefits of IoT-enabled music production systems 

through public demonstrations and focus group discussions 

 

5. Evaluate deeper creative, cultural, and enterprise opportunities of IoT-enabled 

music production systems through interviews with audio innovators and music 

technology experts 
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3.2 Research Design 

3.2.1 Experimental Approach 

This research adopts a practical development approach specified by Shakhovskoy and 

Toulson (2015) illustrated in Figure 3.1: 

 

Figure 3.1 "Research-Design-Build-Test-Evaluate" research method approach. 

 

Shakhovskoy and Toulson (2015) used this methodology for developing and evaluating 

mobile applications (apps) for the music industry, funded by the NESTA Digital R&D Fund 

for the Arts programme. Applying the methodology to this research, the research stage 

consists heavily of information gathering and conducting the literature review. From the 

literature review, past and present concepts regarding IoT and music production are 

comprehensively examined and documented, and key challenges, gaps, and opportunities 

are identified allowing research questions to be posed. The research stage lays a 

foundation for conceptualising a practical design of a creative work (the IoT-enabled 

music system) which is then built, tested, and evaluated publically in order to gather 

professional user data that is analysed for the purpose of answering the research 

questions and filling in any relevant gaps of knowledge. The results are then critically 

assessed and discussed, prompting new insights into music production practices 

augmented by IoT and additional future work that can emerge from the research, and 

finally widely disseminated as part of the complete thesis.  A summary of the full 

methodology is presented by Patterson et. al. (2015), who also adopted and enhanced the 

approach of Shakhovskoy and Toulson (2015) for further music app development and 

evaluation funded by the UK Arts and Humanities Research Council in 2014 and 2017. 

The methodology is illustrated in Figure 3.2. 
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Figure 3.2 Summarised, practice-based research methodology (Patterson et. al., 2015, p. 198). 

 

Patterson et. al. (2015) introduces more detail to each stage of the methodology and 

emphasises an iterative process in the artefact build phase of the research. At the central 

stage of the creative practice project, the artefact is rapidly developed and tested regularly 

with incremental improvements until the final artefact is realised. Having been verified by 

Research Council funding for music-technology investigations, this methodology is 

justified as the overarching creative practice presented in this research. 

 

3.2.2 Proof of Concept Design 

The overall design of the research is based upon a practical, creative work showcasing a 

proof-of-concept IoT-enabled music application that demonstrates the abilities of virtual 

control, real-time audio streaming, and remote engagement with physical and analogue 

audio systems. The demonstrated IoT music concept is used to collect feedback 

regarding effective transmission of audio data across the Internet and explore 

opportunities for unique and novel production practices that such a system can empower. 

The following sections give insight into the pragmatic design of the research and the 

processes for data collection and evaluation.  

The practical work revolves around a concept representative of an extended, modular 

virtual channel strip, shown high-level in Figure 3.3. Similar to a channel strip, the IoT-

enabled music application aims to provide virtualised tools allowing a user to incorporate 

any desired audio equipment or other musical resource (i.e. acoustic spaces) into an 
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audio processing chain and enabling remote production work flows independent of each 

devices’ locations.  

 

Figure 3.3 IoT-based channel strip. 

 

The application includes a web-based user experience that utilises IoT communication 

protocols to transmit control and media data to access and manipulate hardware music 

devices in remote locations, therefore allowing the processing of audio to be centralised, 

be it through a workspace, laptop, or mobile device, and ultimately making music mixing 

and composition more global and portable. 

To complete the IoT-enabled music application, the adapted interface experience needs 

to be fitted to network-controlled audio processing devices. One of the audio processors 

involves an audio mixing board embedded with networked actuators allowing a user to 

remotely adjust the Hi and Low EQ (equalisation) frequencies of the mixer. This 

demonstrates the capabilities of augmenting an existing analogue audio processor with 

IoT functionality, creating a hybrid analogue-digital audio system. An additional focus is 

the inclusion of a reverberant space, and utilising virtual networks to incorporate unique 

acoustics of material locations into the audio processing chain. This overall system 

combining the discreet technical components of both networked control and networked 

audio is used to analyse and evaluate the benefit of IoT architectures applied to audio and 

music practices. 
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3.2.3 Prototype Build and Test 

Facilitating the practical nature of this research, the main approach for the design, build, 

and test stages follow a waterfall-style methodology. The waterfall method detailed by 

Keith (2010) is a commonly used methodology in product development and follows a list 

of discreet steps or phases that begin with an initial concept and lead to the testing and 

evaluation of a finished product. Furthermore, each subsequent phase builds upon the 

results of the previous stage to accomplish a larger and more complex overall goal. 

 

Figure 3.4 Example of a Waterfall game development method. 

 

The overall design and build occurs in stages; once the initial concept is specified, small 

targets and testing milestones are set, eventually culminating into a final design.  Adding 

an agile design component, the design and build stage incorporates an “inspect and 

adapt” cycle that analyses the strengths and weaknesses of each developed stage and 

informs decisions to adapt to new goals when significant changes need to be made (Keith, 

2010, p. 30). 

 

Figure 3.5 Agile "Inspect and Adopt" cycle. 
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The major stages in the design and build process is laid out below:  

Stage 1: Embedded systems and fundamental IoT processes research  

The initial research stage (see Figure 3.1) involves exploring emerging developments in 

the Internet of Things and examining the leading technology to determine which hardware 

and/or software solutions can sufficiently support remote interconnectivity and control in 

audio applications.  These solutions are based upon low cost computing resources and 

publically available open source code that are readily available to the general population 

and do not require commitments to proprietary commercial products.   

The key technologies utilised in this research are: 

Microcontrollers 

The primary microcontroller used for this research is the Freescale FRDM-K64F. It 

uses a 32-bit core ARM® Cortex™ M4 processor with 1024 KB of flash memory 

and 256 KB of RAM (ARMmbed, n.d.a). Added benefits to this particular 

microcontroller is that it comes equipped with an Ethernet jack for physical network 

connections and provides extension sockets allowing easy connections for 

external sensor modules and shields that plug directly into the board. This allows 

prototyping technical designs and concepts to be simpler and more efficient. 

 

HTML5 Websockets 

The Websockets protocol allows full-duplex, bi-directional communication between 

a computing server and client over the Internet.  HTML5 Websockets is an 

application programming interface (API) that is implemented into a web browser 

enabling the browser to set up direct communication with a server in real-time, and 

this communication can also extend to other clients (i.e. a networked 

microcontroller) connected to the server (Kaazing, n.d.). Consequently, HTML5 

Websockets set the frame work for establishing the graphical interface to interact 

with the connected IoT devices and allows the design to be more portable across 

mobile devices.     

 

Webservers 

A webserver takes online requests from a client (ex: a computer user trying to 

access a webpage), processes the requests, and serves the client with the desired 

information. Specifically for this research, the webserver mediates the 

communication between the embedded IoT devices and other networked 
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functions. The webserver used in this research is the Tornado webserver and is 

programmed in the Python programming language.  

 

JackTrip 

JackTrip is a Mac OS and Linux based system for streaming high quality, 

uncompressed audio over the Internet.  It can support a max amount of audio 

channels governed by the computers capacity, and can manage bi-directional 

audio streams (Caceres, 2007a). 

 

WebRTC 

WebRTC is an open source platform that allows real-time communication of audio, 

video, and data over web browsers and mobile devices.  WebRTC incorporates 

APIs such as getusermedia allowing access to a computer’s internal and external 

media devices to transfer media data over the web.  While WebRTC contains its 

own APIs for capturing media, it relies on other resources such as signalling and 

NAT and firewall traversal to share data between peer computers.  

 

Motors/Actuators 

The use of motors serves as the bridge between the digital and physical 

components.  Motorised potentiometers in particular allow voltages, commands, 

and input values from digital sources to be interpreted into physical movements 

that can control the rotation of a knob or the sliding of a fader while still allowing 

physical, hands-on interactions to achieve the same effect. Motors connected to 

microcontrollers allow virtual interactivity with physical components.   

 

Stage 2: Design and prototyping IoT control systems 

Two microcontrollers were chosen for this research: the mbed LPC1768 and the FRDM 

K64F. The mbed LPC1768 was one of the original development boards designed by ARM 

and offers a great deal of developer support for application prototyping.  The FRDM K64F 

is designed by Freescale, but runs ARM’s M4 Cortex processor and offers 1024 KB of 

flash memory (twice that of the LPC1768) and 256 KB of RAM (8 times that of the 

LPC1768), making it powerful and capable of managing a range of immediate computing 

requests (ARMmbed, n.d.a). For transmission of control information, HTML5 Websockets 

stood out as a robust communication platform to support a virtual control infrastructure 

between a user interface and microcontroller processing unit.  Websockets allow for bi-
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directional communication over the Internet between a server and a client, and can 

support a HTML5 web-based graphical user interface.  

The current webserver is programmed in the Python programming language and 

incorporates Websockets headers to allow transmission of commands between a server 

and client. During this stage the Websockets server and client HTML5 webpage were 

created and configured to establish an interface for Internet-based control of the 

microcontrollers and the physical hardware systems. Upon successful configuration of the 

microcontrollers with the client interface, actuators were incorporated to demonstrate the 

capabilities of fully developed, IoT control system that can manipulate controls on a 

physical audio device. 

 

Stage 3: Investigating, testing, and incorporating audio streaming functionality 

Modern audio streaming platforms were evaluated for their effectiveness in audio 

transmission to support an IoT-enabled music application. The JackTrip application was 

eventually selected as the primary audio streaming application in this research after 

conducting local and wide area streaming tests to evaluate the quality of network-based 

audio transmission and robustness in managing network data loads. Application testing 

showed that JackTrip accurately maintains the qualities and properties of source audio 

files when streaming over the Internet, making it the optimal for a networked music 

application. Initial tests delivered several instances of audio dropouts and errors in the 

streams, however, further evaluation discussed later in this research determined that 

JackTrip performs better over specific types of networks (i.e. local area and high speed 

educational networks) as compared to traditional, public networks. JackTrip was 

compared to WebRTC, another real-time audio streaming platform used primarily for 

Skype-like voice and video applications within web browsers, and ultimately outperformed 

WebRTC in evaluations conducted in this research.  Details of the audio streaming 

evaluations are presented in Chapter 5. 

 

Stage 4: Design and prototyping hybrid analogue-digital IoT audio systems  

The last design stage combines elements of the IoT control systems and audio streaming 

phases to create a final IoT enabled audio system.  Main focuses involve centralising 

control, audio, and an additional visual element into an integrated user experience. The 

prototyped IoT audio system focused on two audio processors: a physical, analogue 

music device that would be embedded with computing hardware creating a hybrid, 
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digitally-controlled analogue device and the second being a unique space whose acoustic 

qualities could be used for a real-time reverb application. This is discussed in further detail 

in Chapter 4.   

3.3 Research Evaluations 

The final analysis of the research is evaluated using mixed-method data collection which 

account for technological capabilities supporting an IoT music system and public feedback 

regarding the implementation of such a system. The first set of research evaluations 

involves analysing functional attributes of real-time, high-quality audio distribution.  The 

second set of research evaluations focus on user insight data obtained by feedback from 

qualitative professional interviews and open and closed-ended participant survey 

questionnaires. The two evaluations validate the research on two tiers: first by providing 

data showing the effectiveness of emerging technology to support high-quality, real-time 

audio transfer between IoT enabled audio systems with detailed replicable observations, 

and second by offering feedback regarding user impressions of broader, overall IoT audio 

systems and insights into whether distributed physical audio devices give greater value to 

analogue music production and enable innovative practices into how physical audio 

processes are approached.  The data aims to validate novel practices emerging from the 

fusion of IoT and music, and give insight into future implications that should be considered 

through continued research, such as ideas into enhanced designs and accounts of 

interests and issues that can be adapted and rectified in the future.  A deeper context of 

the research evaluations are described in the next two sections. 

 

3.3.1 Audio Streaming Evaluations  

A successful IoT audio system is one that supports professional quality audio, so the 

capability to deliver high-resolution audio streams with low-latency across the Internet 

presents an important characteristic of such systems. The audio streaming evaluations 

firstly compares the effectiveness of two platforms, JackTrip and WebRTC, for enabling 

real-time audio streaming for remote production applications and secondly examines the 

performance of audio transmission across different types of broadband networks.  

An audio testing package containing 3 files: a 1000 Hz sine wave, a 0-22.5 kHz sine 

sweep, and a music sample are used for replicable observations of the audio quality 

transmitted over the network. Two computers conduct 5 streaming trials comparing the 
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following scenarios: WebRTC and JackTrip, JackTrip over public vs high-speed 

educational networks, and JackTrip over Wi-Fi networks vs JackTrip over Ethernet.  The 

final analysis follows a primary quantitative approach with embedded qualitative research 

process discussed by Creswell and Plano Clark (2007), as the recorded audio streams 

are compared to the original audio source file using spectral analysis with additional 

mathematical comparisons of performance, including the number of dropouts, total 

harmonic distortion and noise, and roundtrip latency, being conducted and discussed for 

each trial set. A qualitative listening test has also been implemented to give subjective, 

unbiased public feedback regarding the audio quality perceived from recordings of music 

samples captured from both JackTrip and WebRTC platforms. The full audio streaming 

evaluation is provided in detail in Chapter 5 of the dissertation. 

 

3.3.2 User Insight Evaluations 

Marshall (1996, p. 552) explains that while “the aim of the quantitative approach is to test 

pre-determined hypotheses and produce generalizable results,” qualitative studies 

primarily aim to “provide illumination and understanding of complex psychosocial issues 

and are most useful for answering humanistic 'why?' and 'how?’ questions.” The user 

insight evaluations are primarily qualitative in nature, and seek to obtain rich and 

meaningful data information regarding individuals’ experiences and perceptions of IoT-

enabled music applications. The feedback was initially collected following a brief talk and 

demonstration of the proof-of-concept IoT music application implemented in the design-

build phase of the research.  This consisted of a 10 minute seminar or presentation 

discussing the aims and approach of the research and included a 5 minute, real-time 

demonstration showing remote control of both physical processors (mixing board EQ and 

reverb effects unit) and live manipulation of an audio stream as it is transmitted back and 

forth between the processors and demonstration venue.  Immediately following the 

demonstration, surveys were presented to collect direct feedback from the attendees. As 

the research evolved over time an online webpage providing a summarised context of the 

research, live video demonstrations, and an embedded questionnaire was created at 

http://mjhardin.com/iotsurvey to replace the live demonstrations and provide a virtual 

method for collecting a remainder of user insights from remote respondents. 

Curtis (2016) describes two types of surveys: 

1. Questionnaire based – Involving sets of either open or closed-ended questions 

answered independently by respondents, and 

http://mjhardin.com/iotsurvey
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2. Interview based – Involving asking a set of prepared questions to an interviewee 

and noting the responses. 

Surveys are widely accepted standards in social sciences as they allow information 

gathering “from a smaller group for the purpose of gaining an understanding of the nature 

of the group as a whole” (Curtis, 2016, p. 322).  With regards to questionnaires, the 

attendees are provided a survey questionnaire of 10 questions (with an 11th optional 

question for further comments) that seek to understand their background in music 

production and how the fusion of IoT and music could impact their approach music 

production if these types of technical applications became widely available to the public. 

The respondents are broken down into two core groups, experienced music producers 

and casual music makers, however, the individual identities of the respondents are kept 

anonymous. 

In addition to the questionnaires, a select group of 7 individuals with professional 

expertise in music production and sound engineering underwent interviews to provide 

greater qualitative feedback regarding additional insights and research applications of an 

IoT-enabled music system. The interview questions are modelled after the questionnaire 

questions but with the explicit focus of seeking open-ended responses and encourage 

more conversational feedback amongst the interviewees. 

Three advantages to survey research presented by Curtis (2016) are that they: 

1. Offer better generalisations of a whole population compared to other research 

methods as a result of large data sets collected from “real-world situations,” 

2. Allow for comparisons to be drawn from people who can share opinions and 

experiences anonymously, and 

3. Are flexible in being able to derive both quantitative and qualitative data as a result 

of question design. 

The survey questions are evaluative in nature, focusing on an implemented change in 

which music, particularly involving remote musical production systems, can be engaged 

and explored, and are clear and neutral in their presentation (Curtis, 2016). The analysis 

of the data is split into two parts: a statistical breakdown of the closed-ended 

questionnaire responses reflecting the musical identity of the respondents and thematic 

coding for the open-ended questionnaire questions and interview responses. As the 

questionnaires produce as large volume of data, the closed-ended responses are stripped 

down into cross-tables to clearly and concisely show the key findings (Statistical Service 

Centre, 2001). The tabulated data is represented as percentages comparing the 
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responses of each target group as representative of the whole and is accompanied by a 

brief discussion of the results for the given question.  

The thematic analysis of the open-ended feedback involves searching across each 

individual response and observing repeated patterns or particular topics of interest in the 

data sets, subsequently finding meanings in these patterns.  Theme selection tends “to be 

driven by the researcher’s theoretical or analytic interest in the area, and is thus more 

explicitly analyst-driven” (Braun and Clark, 2006, p. 84).  In the research, theme 

categories are driven directly by the second and third research questions: 

RQ2: How can IoT-enabled music systems facilitate new music production 

engagement, workflows, and collaboration methods? 

RQ3:  What cultural, enterprise, and creative benefits do IoT- based music 

systems present?  

A methodical outline for conducting thematic analysis presented by Braun and Clark 

(2006) with additional feedback derived from (Vaismoradi, et. al, 2016) is provided below: 

Familiarising yourself with your data: This involves transcribing the interview data if 

possible, but also the researcher immersing themselves in the transcripts so to be aware 

of meaningful and reoccurring concepts that are presented. 

Generating initial codes: This involves identifying and labelling texts, passages, and 

data concepts that produce interest insight and may address relevant research topics. The 

process of coding “reduces the amount of raw data to that which is relevant to the 

research question, breaks the data down to manageable sections, and takes researchers 

through the transformation of raw data to higher-level insights or abstractions as the 

development of theme” (Vaismoradi, et. al, 2016, p. 104). 

The coding process will particularly revolve around responding to the subsequent 

research questions.   

RQ2: IoT Workflows: Understanding current workflows of musicians and 

understand how IoT could influence their practices in the future.   

RQ3:  User Benefits: Examining in what ways respondents feel IoT can impact 

the field of music production. 

Searching for themes: This process consists of collating similar codes and identifying 

relevant themes for these codes.  After initial codes are observed, Vaismoradi, et. al 
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(2016, p. 105) states that “if a group of codes are repeated in a patterned way in multiple 

situations, they have potential to become a theme.” Ultimately the more times a similar 

code is found across the data set, the more likely the code is considered to be a theme. 

Reviewing themes: Selected themes should accurately relate to the collation of codes 

while additionally making sure the themes reflect important topics in the research. 

Defining and naming themes: Clear names of the themes should be presented with 

relation to how they fit into the research. The defined themes are detailed in a final report. 

Producing the report: This is the process of analysing each theme and extracting useful 

information and points that present valid arguments toward the research questions.  The 

final analysis sums into a scholarly report providing clear names and definitions of the 

themes as they are related to the research. 

The use of surveys in the data collection process for this research is most effective due to 

the subjective and personal experiences associated with music. However, it is important 

to note that “no survey research, however, is perfect; instead it is a careful balance, 

maximizing the advantages while minimizing the flaws” (Rea and Parker, 2012 cited in 

Curtis, 2016, p. 325).    
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4. Design & Build 

The design and build chapter highlights the efforts of a practice-based creative work, 

shadowing the development of a proof-of-concept, IoT-enabled music system that offers 

new opportunities and unconventional methods for music production.  The chapter gives 

detailed insights into the practical build of the overall system; underlining key technologies 

and the testing and evaluation of each development stage, and culminates into a full 

implementation of the IoT music system.  

4.1 IoT Control Systems 

One of the design and build objectives of the IoT-enabled music processing system is 

establishing remote interaction with physical audio equipment, additionally accounting for 

engagement from very far geographical distances.  Within this research, two key elements 

aim at facilitating this type of interaction: 

1. Embedding control and networking hardware into music devices so that they can 

be controlled virtually, and 

2. Creating an intuitive user experience that uses network-delivered commands to 

interact with the interconnected music device.  

The overall control system incorporates motors and actuators that can create analogue 

movements of physical knobs on a device and a web-based user experience that contains 

virtual buttons and other interactive inputs to deliver digital commands to the actuators. 

 

4.1.1 Microcontroller Selection  

At the early stages of the research, microcontrollers were considered in the 

implementation of the IoT music system to help bridge the digital and analogue 

components of the control system. Numerous types of microcontrollers currently exist on 

the market, many of which are tailored to developing and enhancing IoT-based 

applications. Ultimately, ARM-based microcontrollers were chosen due to familiarity, ease 

of use, and convenience.  Specifically, the two microcontrollers explored in this research 

are the mbed LPC1768 and the FRDM K64F. The mbed LPC1768 was one of the flagship 

development boards designed by ARM and offers a range of developer support for 
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application-based prototyping.  The FRDM K64F is designed by Freescale, but runs 

ARM’s M4 Cortex processor and offers 1024 KB of flash memory (twice that of the 

LPC1768) and 256 KB of RAM (8 times that of the LPC1768), making it powerful and 

capable of managing a variety of immediate computing requests (ARMmbed, n.d.a). The 

FRDM development board also has the added bonus of coming equipped with an on-

board Ethernet socket for networking capability. ARM additionally supports an online 

integrated development environment (IDE) which, although requires Internet connectivity 

to access, allows prototyping to be more portable and flexible across various operating 

systems.    

 

Interconnectivity 

An original research aim was establishing Internet connectivity for the microcontrollers 

using wireless networks.  The Roving Networks Wifly RN-131c module 

(https://www.sparkfun.com/products/10050) was initially selected to connect the mbed to a 

standard Wi-Fi network. However, early tests produced challenges, as connectivity 

success varied with different types of Wi-Fi networks.  The Wifly module was well-suited 

for connecting to older model network routers secured by an SSID and Password (see 

Appendix A). However, further investigations quickly uncovered that at the time of 

development, networks implementing a captive portal (a network login that requires 

submission of personal information and/or user passwords into a webpage) provided 

difficulty for microcontrollers to access, mainly due to lack of a display monitor or input 

device to view and log into the webpages. Even in the early research stages, these types 

of security measures had become widely common in many publicly-accessible networks. 

As a result, wired Ethernet connections were determined to be the best solution to bypass 

the connectivity issues as most did not require a captive portal or extra security to gain 

access to the Internet.  After incorporating the mbed Ethernet Interface library (mbed 

official, 2012) into the microcontroller source code (see Appendix B), there were no issues 

connecting the microcontrollers to the Internet, thus making Ethernet the standard 

connection protocol used.    

 

4.1.2 Establishing the Websockets Server 

The next stage involved exploring platforms that would aid in the development of an 

interface to send virtual commands to physical devices over the Internet.  One of the first 

communication protocols observed was MQTT. MQ Telemetry Transport, or MQTT for 

https://www.sparkfun.com/products/10050
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short, is a lightweight publish/subscribe messaging protocol designed for low-bandwidth 

communication, and is optimised to accurately deliver information over constrained, high-

latency networks (MQTT, 2009). The publish/subscribe model creates a system where a 

server, or in many cases another client, publishes messages or other information that can 

be subscribed to by other clients.  A broker sits in between the publisher and the 

subscribers and filters messages to each subscriber based on the type of message or 

content the subscriber desires to receive (HiveMQ, n.d.). Aspects of MQTT have been 

used in popular messaging applications such as Facebook messenger, and even novel 

scenarios like a “twittering house” (http://mqtt.org/projects/andy_house), which allows IoT 

devices inside the house to send tweets about their status or states.  While MQTT 

presents an effective tool allowing engagement with many client devices at one time, it 

was ultimately bypassed as simpler protocols were found that allow direct interaction with 

individual devices.  

Further research led to the discovery of Websockets, which became the main 

communication protocol used to bridge an interface to interconnected devices in this 

research. Websockets allow full duplex, bidirectional communication between a server 

and a client and is commonly paired with HTML5 code to provide webpages opportunities 

for real-time interaction with webservers (Kaazing, n.d.).  Websockets is presented as an 

upgrade to the standard HTTP (Hypertext Transfer Protocol) application. With traditional 

HTTP standards, a client computing device needs to establish a new connection with a 

server every time there is a server request for information.  This involves sending 

additional header data that contains information regarding the client device and other 

relevant data to help facilitate the connection.  With Websockets, an initial connection is 

established between the client and server, however, that connection is held open over a 

period of time and each subsequent request for information by a client requires fewer 

resources to be transmitted (Lubbers and Greco, n.d.).  Since new connections are not 

required for each information request, the server can provide swifter transmission of data 

with lower latency. This proved to be a more effective case for the real-time interactivity 

requirements of this research.   

A Websockets server can be implemented multiple ways, but a combination of prior 

experience with the Python programming language and sufficient documentation on the 

ARM mbed website made the Tornado Websockets server an ideal server to develop. 

Being based on Python, Tornado requires the installation of Python 2 (version 2.7 or 

higher) or Python 3 (version 3.3 or higher) to properly operate. During this period of 

development Python 3 was not widely implemented and many useful libraries were 

unsupported in this version. As a result, the developed server required scaling back to 

http://mqtt.org/projects/andy_house
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Python version 2 for desired functionality. ARM provided program code for a simple 

Tornado Websockets Server and an HTML5 webpage that echoes back user text input, 

demonstrating opportunities for real-time communication between a client and server 

(ARMmbed, 2012). This ultimately served as skeleton for the interface development going 

forward. 

 

Figure 4.1 Tornado echo back server from ARM (ARMmbed, 2012). 

 

4.1.3 Remote Procedure Calls and Serial Communication 

After development of a Websockets server and HTML5 web client, the next aim was to 

establish communication between a microcontroller and the server, where communication 

would then be extended from a Websockets-enabled webpage to the microcontroller 

through the server. Interaction between the Websockets server and the microcontroller 

was initially established using a method called Remote Procedure Calls. A Remote 

Procedure Call (RPC) is “a protocol that one program can use to request a service from a 

program located in another computer on a network without having to understand the 

network's details” (Rouse 2016a). After incorporation into the Tornado server, RPC was 

used to map Python classes to mbed Libraries that influenced actions and control 

processes on the microcontroller (ARMmbed, n.d.c). Specifically, when the webpage-

based interface sent Websockets commands to the Python server, Remote Procedure 

Calls were able to translate these commands into actions carried out directly by the 

microcontroller.   

A first test involved using the web interface to turn LEDs attached to the microcontroller on 

and off.  The client webpage interface code was modified to incorporate 3 virtual buttons 

that sent 3 different string messages to the Python server (see Appendix C).  The server 
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code was then modified to use Remote Procedure Calls (see Appendix D) to convert 

these messages into serial commands that were forwarded to the microcontroller via 

serial ports of a USB cable. Within the microcontroller source code, the messages were 

finally interpreted as instructions to turn on 3 different coloured LEDs (red, blue, and 

green). 

 

Figure 4.2 Websockets and Remote Procedure Calls illuminating LEDs on a microcontroller 

(https://youtu.be/k-eqnbvftuI). 

 

When one of the coloured buttons was clicked on the webpage, a string of text (either 

“myled1,” “myled2,” or “myled3”) was sent to the Python server via Websockets.  The 

server would then associate the specific string with the correct RPC variable, and the 

microcontroller code (Appendix E) would translate the designated procedure call into a 

specific action performed by the microcontroller (e.g. the variable “myled1” would send a 

digital output command turning on the red LED1 on the microcontroller).  

After successfully transmitting commands to turn an LED on or off, the next step focused 

on variable communication, such as sending a range of numerical values instead of a 

binary “on” or “off” command. The HTML5 code was modified to include a slider that could 

send stepped values between 0 and 1 to the server, and two extra buttons were added to 

allow the user to choose between two LEDs that the numerical slider values were sent to 

(see Appendix F). The server was also updated to accommodate the two LEDs and 

specified the RPC commands that triggered the specific LEDs (see Appendix G). The 

mbed code was finally modified to include 2 pulse width modulation (PWM) outputs (see 

Appendix H) that could transmit the slider values to the LEDs to create a dimming effect. 

https://youtu.be/k-eqnbvftuI
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Figure 4.3 Using Websockets and Remote Procedure Calls to dim LEDs with a virtual slider 

(https://youtu.be/LtTWSq93MTo). 

 

Although serial RPC communication required the microcontroller to be tethered to the 

server computer by a USB cable, this demonstrated the possibility of transmitting 

commands between a client web interface and the host server over a virtual network. 

Furthermore, delivering control messages from the interface to the microcontroller’s PWM 

output was the first step in extending control to actuators and other electrical components 

that use pulse-width modulation for movement.   

 

4.1.4 Dedicated Websockets Communication 

After successfully testing and evaluating network communication with Websockets and 

Remote Procedure Calls, the next phase focused on bypassing the serial connection 

between the microcontroller and server and employing a full communication system solely 

using Websockets. The Tornado server code was simplified, removing elements of the 

Remote Procedure Calls and only including functions that delivered the client web 

interface commands to other clients connected to the server (see Appendix I). At this 

stage, any further development relied on the FRDM K64F microcontroller exclusively due 

to its on-board Ethernet connection and higher processing power.  The microcontroller 

source code was modified to incorporate the Websockets Library (Mokrani, 2012b), 

allowing it to connect directly to the Tornado server when the correct I.P. Address and port 

number of the server computer were provided (see Appendix J).  When both the client 

web interface and microcontroller connected to the server, a user could interact with the 

https://youtu.be/LtTWSq93MTo
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slider on the interface to send values via Websockets to the server, where the server 

would in turn deliver those values to any other connected clients, although only the 

microcontroller would interpret these values into useful commands to perform desired 

actions.  Building on previous tests, the web interface slider was configured to adjust the 

brightness values of an LED on the microcontroller. 

 

Figure 4.4 Using Websockets to control an LED (https://youtu.be/6TyzcbpnU2Y). 

 

The removal of Remote Procedure Calls effectively demonstrated complete IoT-based 

communication between a computing server and clients, and the use of the mbed’s PWM 

output to control the LEDs provided the next steps for incorporating motors and actuators.  

 

4.1.5 IoT Actuator Control 

Since small electric motors and LEDs can both operate using PWM signals from a 

microcontroller, the next stage focused on incorporating actuators into the design and 

build stage.  An Alps RK27 50 kΩ motorised potentiometer was obtained and evaluated 

with the expectation of augmenting a movable knob on a physical music device with a 

rotating motor. 

https://youtu.be/6TyzcbpnU2Y
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Figure 4.5 Alps RK27 50 kΩ motorised potentiometer. 

 

The motorised potentiometer’s movement is driven by a DC motor, so an H-bridge chip 

was needed to control the direction of the current to spin the motor.  A L298 dual full-

bridge driver (https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf) was 

acquired and a simple motor driver code was provided by mbed for both the motor and the 

H-bridge (Ford, 2010), with an additional motordriver library to control speed and dynamic 

braking (Hasler, 2010). Initial tests involved rotating the motor using input from a computer 

keyboard.  The motor driver code was modified to take serial inputs from a computer 

terminal and translate them into stepped movements to turn the motor in either the 

clockwise or counter-clockwise direction (see Appendix K).  Pressing down the ‘u’ button 

on the keyboard would rotate the motor in the clockwise direction, while pressing ‘d’ would 

rotate the motor counter-clockwise. The stop() function in the microcontroller code caused 

the motor to brake just after either button was released. The max rotation of the motor 

was roughly 300 degrees.  

https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf


51 
 

 

Figure 4.6 Rotating a DC motorised potentiometer using keyboard inputs from a computer 

(https://youtu.be/2CccFY-ziMI). 

 

The following step involved tying Websockets into the functionality of the motor control.  

To implement this, the keyboard input values needed to be replaced by values delivered 

from the web interface.  A simple JQuery knob was found online (Terrien, 2015) and 

adopted into the interface, allowing stepped rotations of a virtual turn dial in addition to 

providing the programmer freedom to specify the dial’s angle, offset, and min and max 

values (see Appendix L).  The current numerical value of the dial was sent from the web 

interface to the server using Websockets, and the mbed source code was adapted to 

receive the Websockets’ dial values and rotate the motor clockwise if the numerical values 

increased or rotate the motor counter-clockwise if the values decreased (see Appendix 

M). Since the rotational speed of the motor was not proportional to the rotation of the 

virtual dial, a user would inevitably rotate the dial faster or slower than the actual rotational 

speed of the motor.  To account for this, the virtual dial was allowed to rotate freely in 360 

degrees, thus any rotation clockwise, no matter how fast or slow, would rotate the motor 

clockwise at a constant speed, and similarly any rotation counter-clockwise would rotate 

the motor counter-clockwise at a set speed. When the user stopped rotating the virtual 

dial the motor would stop, although minor drift could occur if the dial was rotated very 

quickly. 

https://youtu.be/2CccFY-ziMI
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Figure 4.7 Using a virtual dial to rotate a motorised potentiometer (https://youtu.be/OADWqp5Pj3Y). 

 

Note: These tests were effective using the interface dial primarily when working on a 

fixed resolution screen, such as on a PC or laptop.  Use of a smart phone or tablet 

added difficultly making tactile contact with the virtual dial due to the image being 

smaller to accommodate the smaller screen sizes.   

Most smart phones and tablets have zooming features, or the HTML “viewport” 

attribute could be set to scale the dial to a more suitable size, but changing the 

natural resolution of the image caused the dial to become less responsive than 

desired. As a result, the dial would either need to be made really large so that it is 

suitable on smaller devices, or it would have to be used at a very small size on a 

mobile device to look a standard size on a desktop. 

 

After successful trials were conducted using the web interface to control an actuator over 

the Internet, the next step involved adapting this functionality into a musical device.  

Initially a Moog Minitaur analogue bass synthesiser was purchased as it contained several 

knobs and controls to easily manipulate sound. 

https://youtu.be/OADWqp5Pj3Y
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Figure 4.8 Moog Minitaur analogue bass synthesiser. 

 

A brief interaction with the Minitaur showed that the device’s low-pass filter produced the 

most noticeable and immediate effect, so bands were used to secure a motorised 

potentiometer to the synthesiser.  Minor slippage occurred at times as a result of the 

bands, however, the control system worked well enough to adjust the knobs on the 

physical synthesiser. 

 

Figure 4.9 Web interface manipulating knobs on a synthesiser (https://youtu.be/2t8-VVcCPTo). 

 

Next, the synthesiser was then connected to a Mac laptop which acted as a MIDI 

controller, and music was transmitted into the synthesiser’s audio input. The web interface 

was then able to allow remote user interaction with the synthesiser to sweep the low-pass 

https://youtu.be/2t8-VVcCPTo
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filter and manipulate the audio in real time. An example of this demonstration is 

referenced in the figure caption below: 

 

Figure 4.10 Synthesizer w/ IoT Motor Control Test (https://youtu.be/6sTJib8oAko). 

 

Virtual interaction with a physical music processor proved that IoT communication 

protocols, such as Websockets, in conjunction with networked computing nodes provided 

by microcontrollers and online interfaces, have the opportunity to present unique tools to 

engage remote musical hardware.  The previous developments can be scaled and 

modified to incorporate different audio devices, and addresses the capabilities of 

accessing and interacting with musical systems without the limitation of physical 

presence. 

4.2 Exploring Audio Streaming Functionality 

4.2.1 Initial JackTrip Audio Streaming Implementation 

After successful implementation of a web-based control interface using Websockets, the 

next development stage involved exploring audio streaming applications that can deliver 

real-time music to the remote audio systems.  Current investigations have been 

undertaken into developing low-latency, high-quality audio distribution over computing 

networks, and one platform in particular showed promise for use in an IoT music 

application: JackTrip. JackTrip is a Mac OS and Linux based system that enables real-

time, online music performances between multiple computer clients over the Internet 

(Caceres, 2007a).  JackTrip operates on top of the Jack Audio Connection Kit, which is a 

low-latency audio server that provides an application programming interface (API) for 

https://youtu.be/6sTJib8oAko
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connecting, routing, and media distribution between sound and audio applications (Davis, 

2001).  JackTrip can support a maximum number of audio channels governed by the 

computers capacity, and manages bi-directional audio streams (Caceres, 2007a). 

 

Figure 4.11 Jacktrip screen shot. 

 

First explorations of JackTrip involved connecting two computers on a local area, Digital 

Subscriber Line (DSL) network using Wi-Fi, and sharing their internal microphone inputs 

to transmit audio.  Although the latency between the streams was minimal, occasional 

artefacts and audio drops outs occurred over the DSL connection.  

A second observatory test involved using JackTrip to stream audio between the United 

States and the United Kingdom. This first international test occurred between a host 

computer using a DSL-based home network in Los Angeles and a client computer on 

Anglia Ruskin University’s enterprise network in Cambridge, UK that utilises the JANET 

high-speed education network. Using laptop microphones again as audio inputs to 

communicate between the two computers, the stream was less reliable, providing more 

latency as well as significant amounts of artefacts and audio drops.  A traceroute taken of 

the connection between the two computers showed inconsistencies in the network signal 

paths between the two computers as well as high latency in the early stages of the 

connection (see Appendix N).  After conducting an Internet speed test on the DSL 

network, one consideration made was that the low connection speed could adversely 

affect quality and not support demands for real-time audio streaming.  
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Figure 4.12 Ookla speed test of Los Angeles DSL network. 

 

To compensate, the US base of testing was moved to the University of Southern 

California where high-speed network transfer could be facilitated by the Internet2 national 

research and educational network (NREN). The incorporation of an Internet2-based 

network in conjunction with JANET provided more reliable results.  Traceroutes showed 

that the data packets from both sites followed more consistent signal paths, and early 

rates of transmission speeds were improved (see Appendix N). Some slight audio 

dropouts occurred at times during transmission, but a clear verbal conversation was able 

to be held between the two sites.  These initial tests set the basis of a more thorough 

exploration of audio streaming detailed in Chapter 5. 

4.3 Merging IoT Control and Audio Streaming 

After initial testing of Websockets for virtual interactivity and JackTrip for real-time audio 

transfer, the next step was to combine the two applications into a first proof-of-concept 

demonstration of an IoT music system.  To begin, an Apple Mac Pro was obtained and 

setup at Anglia Ruskin University to be used as a server computer to host both the 

Websockets and JackTrip connections.  Additionally, an A T.C. Electronic Studio Konnekt 

48 audio interface was added to retrieve audio from the Mac Pro’s sound card and deliver 

it to the Moog Minitaur, where audio processing would occur before being routed back into 

the Mac Pro for re-transmission to a client over JackTrip.   

During this stage, further JackTrip research uncovered the limitation of Wi-Fi networks 

supporting real-time audio transfer over the Internet and the need of a hardwired Ethernet 

connection for stability (see Section 5.5: Wireless Network Testing). The Mac Pro by 

default requires an Ethernet connection for Internet connectivity; however, any connecting 

client laptops were also required to use a wired connection and the overall audio 

streaming quality drastically improved as a result. 
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The first full IoT music tests occurred with computers on Anglia Ruskin’s local area 

network. The web interface was used to control a motorised potentiometer affixed to the 

Minitaur’s low-pass filter knob, with JackTrip streaming a music file between the client and 

server computers. A Skype video call was also arranged between the two computers to 

show the manipulation of the synthesiser to the client.  This test proved successful and 

audio was transmitted, processed, and returned to the client computer with negligible 

latency and no artefacts or audio packet drops.   

 

Figure 4.13 First stage full IoT music test incorporating virtual control and audio streaming 

(https://youtu.be/dwC713Hpdmc). 

 

This ability to stream networked music, virtually control audio processing hardware to 

manipulate sound, and recapture the processed audio all from a centralised space 

showed promise of implementing a real-time IoT-enabled music system, and served as a 

functional concept of the final design. 

4.4 Optimising the User Experience 

4.4.1 Far-end Video Component 

A useful application to optimise the user experience was the inclusion of a video element 

allowing users to monitor the control of any remote audio processing hardware.  This 

ultimately would replace the need for organising a concurrent Skype connection between 

the server and a client computer.   

 

 

https://youtu.be/dwC713Hpdmc
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YouTube Live-Video 

An immediate focus was to utilise one of the popular social media live streaming platforms 

that support real-time video. Facebook and YouTube are two of the largest social media 

providers that allow their users to produce one-to-many live video feeds for remote 

audiences.  During this stage of development, Facebook’s infrastructure to support live 

videos was primarily based on the use of mobile devices. YouTube, however, showed 

potential to be a viable video option, especially with its offering of HTML code that can 

allow videos from their platform to be embedded into an external webpage.   In order to 

live stream a video feed from a desktop computer or non-mobile device, additional 

encoding software was required to capture the camera feed and send it to YouTube. To 

achieve this, the open source software Open Broadcaster Software (OBS) Studio was 

used. The encoder software needed to be provided with a stream key from an active 

YouTube account, where afterwards the YouTube streaming server encodes the PCs 

audio and video feed for playback.  Once the desired encoding properties for a video 

stream are set and the media is encoded, OBS provides a URL where the streamed 

content can be observed in addition to being watched from YouTube’s livestream 

dashboard. 

 

Figure 4.14 YouTube live media stream test (https://youtu.be/qt1UXeNCdtE). 

 

The video quality was sufficient for hardware monitoring, however, the latency of the 

stream provided less than desirable results, as roughly 10 seconds of delay was observed 

and was deemed unsuitable for real-time control applications in this research.  

 

 

https://youtu.be/qt1UXeNCdtE
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WebRTC 

Another option for media streaming was a fairly new concept called WebRTC (Web Real 

Time Communication), which enables real-time communication protocols for audio, video, 

and data transfer through web browsers and the Internet (WebRTC, 2011a). One of 

WebRTC’s noteworthy qualities is that it enables Skype-like video conferencing with very 

low latency self-contained within a web browser.  WebRTC utilises APIs that allow a user 

to capture media streams from input devices, built around the getUserMedia() command, 

and shares these streams with remote devices using RTCPeerConnection (Dutton, 2012). 

While WebRTC enables the functionality to access media inputs on a computer and share 

the media information with a peer, the actual connection between peer devices is 

facilitated by a process called signalling, which is not specified within the WebRTC 

standards so that developers have the flexibility of implement their desired mechanisms 

for connecting peers.  

Signalling sets parameters for peer computing devices to find and identify each other 

behind secured networks and establish connections to exchange data. This process 

“involves network discovery and NAT [Network Access Translation] traversal, session 

creation and management, communication security, media-capability metadata and 

coordination, and error handling” (Castrounis, 2015). Due to security protocols, most 

computers connected to large enterprise networks (such as school or business networks) 

sit behind a firewall which regulates Internet traffic between the internal machine and 

external computers to help protect the internal network and computing devices from 

outside threats. To facilitate communication with the external network, a network access 

translation (NAT) device sets parameters allowing internal devices to be identified 

securely on the external network. Any device connected within a network is provided a 

private I.P. address for identification purposes. NAT devices, however, help establish a 

separate public I.P. address for computing devices that is displayed outside of network, 

allowing these devices to be identified to the outside world beyond the firewall 

(Castrounis, 2015). External devices can then use the public I.P. address to establish 

communication and send or request information to internal machines, where these 

requests are again managed by the firewall and NAT device and, if allowed, delivered to 

the internal machine using the private I.P. address. 

For WebRTC communication to occur, devices rely on STUN (Session Traversal Utilities 

for NAT) and TURN (Traversal Using Relays around NAT) servers that request identifying 

information about the machine or device and subsequently present this information to 

external devices.  After identification, the signalling process occurs, creating the method to 

“negotiate and establish the network session connection with [the] peer” (Castrounis, 
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2015). As WebRTC does not provide APIs or support to handle network traversal and 

signalling, the PubNub API was used as it unified all the components of WebRTC and 

signalling into one package. Pubnub offered tutorials on establishing a one-to-many 

WebRTC video stream with options for embedding the video into a live webpage 

(Gleason, 2015).  The code was modified to develop a video feed for this research and is 

found in Appendix O and P. 

 

Figure 4.15 Pubnub-enabled WebRTC live stream test (https://youtu.be/FB9caB-OtAk). 

 

WebRTC proved to be a suitable option for real-time video feedback, showing negligible 

latency speeds of less than a second when controlling a remote audio processor.  

Additionally, since the code was written using HTML and JavaScript, the video feed was 

able to be embedded into the web interface alongside the Websockets controls. A 

separate WebRTC video broadcasting page was used capture the video of a desired 

audio processor and that was broadcast to the web interface for viewing by the client.  

 

4.4.2 Follow-up Evaluations to Real-time Audio Streaming 

WebRTC offered an effective way to share media data over a webpage and had potential 

to consolidate control, video, as well as audio streaming into a unified interface, a 

desirable trait not currently applicable with JackTrip as it is a self-contained, external 

application. Observing this, new focuses concentrated on evaluating and comparing 

JackTrip and WebRTC to determine which would be a better solution for network-based 

music transfer.  

https://youtu.be/FB9caB-OtAk
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A full assessment of JackTrip and WebRTC used for real-time audio streaming is detailed 

in Chapter 5. However, a comparison of both systems concluded that WebRTC provided 

processes ideal for voice data and video conferencing applications, whereas JackTrip was 

optimal in supporting a wider spectrum of sound frequencies better suited for musical 

instruments and audio files.  Although WebRTC’s native development in HTML5 and 

JavaScript was convenient for developing a centralised audio, video, and control user 

experience, JackTrip provided greater reliability in audio streaming and better accuracy 

preserving musical sounds across the Internet.   

 

4.4.3 Updating the Control Interface 

A reoccurring issue within the design and build stage was the responsiveness of the 

control system; data was effectively transmitted from the web interface to remote audio 

devices, but the response of the virtual control system lacked precision. An original focus 

of the web interface was to model the controls after recognisable elements on a standard 

audio device, such as a rotary knob or dial. HTML5 accurately handles input data from 

many virtual objects, such as graphical buttons or sliders, but there were no simple 

solutions for developing a knob and this task ultimately required using external resources 

and amendable, open-source JavaScript code.  

With regard to solutions, Baskar (2017) states, “typically, an IoT solution needs to handle 

multiple data types from multiple devices on a user interface (UI) that flows seamlessly 

across interfaces… With such diversity at many levels, UX design becomes incredibly 

complex for IoT solutions.” One of the main issues with the web interface was that the 

virtual dial implemented in the earlier design produced linear data to manipulate 

logarithmic tapered potentiometers with undetermined log ratios. Additionally, the dial 

needed to be controlled by screens of different resolution sizes, resulting in issues with 

the tactile experience. While the dial could often be rotated as desired, the response did 

not feel natural (ex: when the knob was rotated to 50% of its max output, 50% of the 

processing affect should occur, however, this was not the case with the logarithmic 

potentiometer). In addition, changes to the screen resolution, including zooming in or out 

of the web interface page, prevented the dial from responding accurately to user input.   

Baskar (2017) argues that choosing complex approaches to simple IoT solutions is often a 

problem, stating “once these multiple data types from multiple devices are together, the 

end user needs to access a simple yet informative visualization on any interface they 

want”.  The initial tests controlling a motorised potentiometer using serial keyboard inputs 
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worked well at rotating a motorised potentiometer, so the rotary dial was scaled back to 

virtual push buttons that determined the direction of rotation for the motors. The push 

buttons provided better feedback than the rotary dial and more accurate movement of the 

motor.  

4.5 Consolidated IoT Music Application 

4.5.1 Networked Mixer and Remote EQ Processing 

The final phase of the design and build stage was incorporating networked audio 

processors to complete the IoT music processing chain.  The first processor involved 

creating a hybrid analogue-digital audio system by augmenting a stand-alone analogue 

music device with digital control capabilities.  This required embedding actuators and 

networking resources into the existing hardware of the device, allowing it to be physically 

controlled and manipulated from a remote location through the Internet.  A decision was 

made to adapt motorised potentiometers into the equalisation (EQ) processing of a mixing 

board so that remote users could adjust the Hi and Low-cut frequencies of the transmitted 

sound.  A Peavey PV8 8-channel mixer was acquired for this purpose. 

  

Figure 4.16 Peavey PV8 8 channel mixing board. 

 

A majority of the knobs on the mixing board are composed of linear potentiometers 

typically ranging from 10-20 kΩs.  To adapt the motorised potentiometers to the mixing 

board, the three legs of the motorised potentiometer were soldered in parallel, creating a 

voltage divider, to the three legs of both the Hi-cut and Low-cut frequency knobs on the 

first channel of the board.  Testing showed that even though the motorised potentiometers 
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had a logarithmic taper, placing them in parallel with the linear potentiometers was able to 

produce a linear-like taper output.   

  

Figure 4.17 Soldering motorised potentiometers to the mixing board EQ knobs. 

 

To achieve a balanced effect, the EQ knobs of the mixing board needed to be set to their 

unity position (direct centre so that there is no attenuation or boost of their respective 

frequencies), allowing the EQ effects to be solely generated by the changing position of 

the motorised potentiometers. New sets of streaming audio tests were conducted from a 

client to the host computer, where the host used an audio interface to route audio into the 

mixing board and back to the computer.  Once the EQ effect was added to the audio, the 

processed audio was transmitted back to the client computer through JackTrip for 

monitoring and recording.   

 

Figure 4.18 IoT EQ processor with host computer and audio interface. 
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The tests provided positive results, and finalised one-half of the complete, proof-of-

concept IoT-enabled music system. A link to a reference video is provided in the figure 

caption of Figure 4.19 

 

Figure 4.19 IoT-based EQ processor (https://youtu.be/3wwX_5OTVaE). 

 

4.5.2 Distributed Natural Reverb Processor 

The second music processor sought to exploit the unique sonic attributes of physical 

spaces and adapt them into a natural, real-time reverb application. The concept involves 

sending audio from a client computer to a host in a remote acoustic environment, 

broadcasting the audio into the space using loud speakers connected to the host 

computer, and finally using a microphone to capture the broadcast audio as it echoes 

through the space, where it is retransmitted as reverberant sound back to the client.  The 

audio captured in the microphone needed to be added to the source signal within an audio 

interface, and the product would then be a mixed sum of the transmitted source audio plus 

the captured reverb. To prevent audio feedback, the sound captured by the microphone 

was not routed to the loudspeaker through the audio interface.  Finally, the client 

computer would have the ability to control the amount of signal collected by the 

microphone through the web interface and determine how much reverb is applied to the 

overall mix. 

To manage how the reverberant sound is acquired, the T.C. Electronic Studio Konnekt 48 

audio interface was connected to the host computer and routed the computer’s system 

audio from one of the interface’s outputs to a loudspeaker. The female end of a balanced 

XLR cable was connected to the left channel output of the interface and the positive (+) 

signal pin of the male end was connected to the first leg of a motorised potentiometer.  

https://youtu.be/3wwX_5OTVaE
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The positive signal pin of another XLR was then connected to the wiper of the 

potentiometer and the opposite end of the cable was plugged into the input of the 

loudspeaker.  The third leg of the potentiometer was simultaneously connected to the 

ground pins of both XLR cables while the inverted (-) signal of the XLRs were left 

unconnected so only an unbalanced signal was transmitted.  The dc motor of the rotating 

motorised potentiometer was controlled through the web interface by a microcontroller 

using a wired Ethernet Internet connection to received control information.  When the 

transmitted audio signal passed through the host computer to the loudspeaker, the client 

could determine how much signal reached the loudspeaker by manipulating the 

potentiometer’s wiper from the web interface.   

 

Figure 4.20 Motorised potentiometer controlling the amount of signal sent to host computer 

(https://youtu.be/iPayeOPipec). 

 

One consideration that needed to be made was the placement of the motorised 

potentiometer in the chain between the microphone and the audio interface.  A dynamic 

SM58 microphone was acquired for the natural reverb application, but these microphones 

require a balanced signal input, causing the initial unbalanced configuration not to work. 

Fortunately, Alps RK27 potentiometers have a dual-gang design, where a single unit 

contains two internal, independent potentiometers controlled equally by the same rotating 

shaft for stereo audio applications. This meant that the signal and the inverted signal of an 

XLR could be sent to the first leg of each potentiometer leg on the RK27, and the wiper 

outputs could be routed to the respective signal and inverted signal pins of the XLR 

connecting to the input of the audio interface. The third legs of the potentiometers would 

then form a common ground with each other, the XLR coming from the microphone, and 

the XLR going to the interface.  

https://youtu.be/iPayeOPipec


66 
 

 

Figure 4.21 Balanced XLR signal routing through the Alps RK27. 

 

To test, the motorised potentiometer was placed in between the microphone and the mic 

input of the audio interface.  This caused problems because mic level signals are very 

low, roughly a thousandth of a line level audio signal. Since the microphone input of the 

audio interface contains a preamp to boost mic level signals to line level, this also 

amplified any noise associated with potentiometer hardware and the movement of the 

motor.  To resolve this, the microphone was connected directly to the mic input of the 

audio interface, where the audio was routed to an XLR output of the interface.  An XLR 

was then run from the output of interface to the potentiometer in order to control the now 

line level signal, and afterwards the audio from the potentiometer was routed back into a 

second input of the interface. At the interface the amount of reverberant audio added from 

the potentiometer was mixed with the original audio before being sent back to the client 

computer.  



67 
 

 

 

Figure 4.22 Signal flow for distributed natural reverb processor. 

 

In a first demonstration, a small reverb chamber was made placing a speaker and a 

microphone into a metal filling cabinet. 

 

Figure 4.23 File cabinet used as a natural reverb chamber. 

 

The filing cabinet successfully produced a hollow-sounding echo chamber where the 

amount of reverb captured could be adjusted from the web interface.  A view of the 

interface as well as a demonstration of the application is show in the image and image 

caption below. 
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Figure 4.24 File cabinet reverb demonstration (https://youtu.be/WVmnwvPhenM). 

 

In a second demonstration, a venue with pronounced echoes was sought to be used as a 

natural reverb chamber. The Ruskin building at Anglia Ruskin University is one of the 

oldest buildings on the Cambridge campus and houses the Cambridge School of Art, 

which contains many facilities where art and media students present academic works and 

artistic projects. The basement of the Ruskin building contains several narrow corridors 

and barren rooms with hard surfaces that are ideal for art exhibitions, and also have the 

added benefit of containing interesting acoustics with engulfing echoes. 

  

Figure 4.25 Art exhibition space in the Cambridge School of Art, Anglia Ruskin University. 

 

One exhibition space was equipped with Ethernet ports that were configured to support a 

host computer, and a microphone and speaker were placed in the room to produce the 

IoT musical reverb effect.  The SM58 was also replaced with an Audio-technica AT2020 

https://youtu.be/WVmnwvPhenM
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condenser microphone as it had better sound pickup. The results were more subtle than 

the file cabinet demonstration, but offered a more true-to-life reverberant experience. 

 

Figure 4.26 Cambridge School of Art real-time reverb demonstration (https://youtu.be/yc0hJcxY9Vg).  

 

4.5.3 Combined IoT Music Processing Application 

After completing initial prototypes and testing of both the IoT-based EQ and reverb 

processors, the final task was combining the two into a consolidated, IoT-enabled music 

application. The full application consists of a client computer transmitting audio to one 

processor, and after some processing the audio would then be delivered to the second 

processor, where it is processed again and completes its round trip journey back to the 

client. In total this required 5 wired network connections (3 for the client computer and 

host processors, and 2 for the microcontrollers controlling the two processors), and two 

JackTrip sessions hosted on the server computer. The signal flow of the system is shown 

in Figure 4.27. 

https://youtu.be/yc0hJcxY9Vg
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Figure 4.27 Audio signal flow of full IoT music application. 

 

In order to allow remote computers to utilise the IoT music application, the server 

computer had to be moved to the virtual DMZ (‘de-militarised zone’ that sits between the 

internal and external firewall) of the university network and given a static I.P. address. 

This allowed the server to host internal and external JackTrip and Websockets 

connections, bridging outside audio traffic to the internal music processors as well as 

control data to manipulate of the microcontrollers and actuators.  

To demonstrate the full IoT music scenario, the Mac Pro server computer (referred to as 

Host 1) was connected to the T.C. Electronic audio interface and was responsible for 

reverb-related audio processing. A second internal client computer (Host 2) was 

connected to the Peavey mixer via another audio interface and was responsible for 

processing and transmitting the EQ audio. Host 1 established a publically-accessible 

Websockets server that allows client computers from either inside or outside Anglia 

Ruskin’s network to connect and send control information to the networked 

microcontrollers controlling the motorised potentiometers attached to each processor. 

Additionally, as a single instance of JackTrip can only connect two computers over a one 

opened network port, two JackTrip instances were run on Host 1, allowing Host 2 and a 

connecting client computer to stream audio between the server over two unique and 

dedicated open ports.  With the two JackTrip instances setup on Host 1, the desired audio 

path can be arranged to route music between the user-based client computer and the two 

processors.  
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Figure 4.28 JackTrip routed connections. 

 

With this arrangement, music was successfully transmitted in real-time to the two remote 

processors and returned to the client computer for monitoring and capturing. Figure 4.29 

shows the full user experience of a system with a demonstration provided in the image 

caption. 

 

Figure 4.29 Complete, IoT music application with natural reverb (https://youtu.be/uIKuf920Y20). 

 

The completed, proof-of-concept IoT music system demonstrates a possible scenario 

where the Internet of Things can increase engagement with physical and analogue 

musical system and augment music production. The overall system was used to evaluate 

the opportunities of virtual production processes for musicians and successfully 

demonstrated to producers from distances up to 50 miles away (max: London to 

Cambridge). To better facilitate the evaluation phase of the research, a completely 

https://youtu.be/uIKuf920Y20
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hardware processing system was implemented, replacing the natural acoustic space with 

an Alesis Nanoverb2.  

  

Figure 4.30 Complete, hardware-only IoT music system for user insight evaluations 

(https://youtu.be/U3X4ekrlmQU). 

 

The Nanoverb2 aided in the user insight evaluations by allowing live demonstrations of 

the full IoT music system to be more flexible, as they could be set up at any time without 

the need for an available natural space.  The results of the music producer evaluations 

are presented and discussed in Chapter 6 of the thesis. 

 

  

https://youtu.be/U3X4ekrlmQU
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5.  Performance Analysis of Audio 

Streaming Platforms 

This chapter details evaluative methods seeking to verify the performance of audio 

streaming platforms and their capabilities to support lossless, networked audio transfer for 

IoT-enabled professional audio systems. The chapter first gives a comparison of two 

platforms (JackTrip and WebRTC), providing an analysis of audio dropouts, distortion 

artefacts, and latency measurements produced by the platforms with accompanying 

spectral analysis and listener perception tests. The second part of the chapter tests the 

higher performing platform to a finer level, observing its functionality over various 

computing networks. This chapter supplements information found in Hardin and Toulson 

(2019). 

5.1 Audio Streaming Test and Analysis Methods 

5.1.1 Test Procedures and Source Audio 

Three specific audio streaming experiments are conducted. These are: 

1. Comparing the performance of JackTrip and WebRTC streaming platforms. 

2. Investigating the performance of lossless streaming on local area networks with 

wired and wireless connections. 

3. Evaluating streaming performance under differing wide area network conditions. 

The primary aim of these streaming tests is to observe and compare any discrepancies 

between the source and the transmitted audio files, as well as documenting errors that 

arise as a result of the streaming process. Typical streaming errors include clicks, pops, 

buzzing sounds, or gaps of silence in the output audio file.   

Three pulse-code-modulation (i.e. uncompressed/lossless) Microsoft Wave audio (.wav) 

files are utilised for the streaming trials (Fleischman, 1998). These are: 

a. 10 second 1 kHz sine wave 

b. 30 second frequency sine sweep from 0-22.5 kHz 

c. 10 seconds of recorded music (acoustic guitar medley) 
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Figure 5.1 Sine wave source audio waveform and spectrogram. 

 

Figure 5.2 Sine sweep source audio waveform and spectrogram. 

 

Figure 5.3 Acoustic guitar source audio waveform and spectrogram. 

 

The 10 second 1 kHz sine wave provides a consistent stream of audio at a single 

frequency, allowing easy observations of data drop outs or distortion to the signal that 

may occur as a result of streaming. Since the 1 kHz sine wave was imperative for the 
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computational analysis, a pure tone was generated using MATLAB (see Appendix Q). The 

30 second 0-22.5 kHz frequency sine sweep determines if the streaming platforms 

accurately preserve or alter any specific range of frequencies within the audible human 

hearing range. The recorded music file provides a complex, dynamic audio sample to help 

determine if the audio streaming platforms manipulate any perceivable characteristics of 

‘real-world’ music.  The sine sweep and dynamic audio samples are solely used to 

determine qualitative differences between the two streaming platforms while the sine 

wave is used for more rigorous quantitative evaluations. All three test audio files are single 

channel (mono) and presented at a 44.1 kHz sampling rate.   

Each audio trial is conducted 5 times allowing them to be evaluated for performance 

consistency and repeatability. Audio is streamed from one networked computer to a 

secondary computer, where the transmitted audio is then recorded as a new Wave audio 

file, matching the settings of the source file.  Audio is analysed using MATLAB scripts to 

visualise waveform and spectrogram data (Appendix R) as well as measure specific 

performance characteristics of the transmitted audio in comparison to the source.  The 

focuses of the streaming analysis are described in detail in each case below.  

 

5.1.2 Measuring Dropouts 

In the context of this research, audio dropouts account for any sudden loss or fluctuation 

in the audio data that causes instantaneous step changes in the transmitted signal, 

altering its characteristics from the source sound. Dropouts can produce undesired 

glitches including clicks, pops, and intermittent loss of sound in the audio playback 

resultant from interruptions to the data packet stream (Robjohns, 2008). Dropouts become 

more pronounced in real-time applications because the low-latency requirements “inhibit 

retransmission of lost packets,” and issues such as network link failures, routers 

discarding packets, packets being received out of order or delayed in delivery (jitter), and 

packets being disregarding by the receiver after being received too late for playback all 

contribute to these interruptions (Voldhaug, Hellerud, and Svensson, 2006). Some 

examples of audio dropouts in a 1000 Hz sinewave are shown in Figure 5.4. 
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Figure 5.4 Example audio dropouts identified at 9.8663 seconds and 9.8721 seconds. 

 

It is possible to count audio dropouts when using a test sinewave, by evaluating the 

sample-to-sample difference in the received audio data. The greatest possible inter-

sample difference for a 1 kHz sinewave, normalised to unity amplitude and sampled at 

44.1 kHz is approximately 0.15, which is observed at the sine wave’s maximum gradient 

at the point of zero crossing, as shown diagrammatically in Figure 5.5. 

 

Figure 5.5 A 1 kHz sine wave’s maximum gradient and inter-sample difference (=0.1425) when sampled 

at 44.1 kHz. 

 

The exact value for the maximum sample-to-sample difference is calculated as follows: 

The gradient of a sine wave is calculated by 

𝑑

𝑑𝑡
sin𝜔𝑡 = 𝜔 cos𝜔𝑡 
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where  is the angular frequency (rad/s) and t is time (s). The maximum gradient is hence 

when cos𝜔𝑡 = 1, so the maximum gradient of a sine wave is simply 𝜔 = 2𝜋𝑓, where f is 

frequency (Hz). The sample period, P, for a signal sampled at 44.1 kHz is 1/44100 

seconds, so the maximum amplitude increment per sample of a 1 kHz sinewave, is 

calculated as 

2𝜋𝑓𝑃 = 2𝜋 ∗ 1000 ∗
1

44100
= 0.1425 

It is therefore possible to count dropouts by identifying any sample value step changes in 

the received sine wave that exceeds 0.1425 multiplied by the amplitude of the sinewave. It 

is of course possible for a dropout to leave samples perfectly aligned as a matter of 

coincidence, and in such rare cases may be missed by the proposed dropout counting 

method. While more elaborate algorithms for identifying dropouts might be possible, the 

method proposed here is sufficiently accurate for evaluating the relative performance of 

network audio platforms. The MATLAB script used for counting dropouts in an audio file is 

included in Appendix S. 

 

5.1.3 Measuring Distortion Artefacts 

As discussed by Moore et al. (2004) and Toulson et al. (2014) nonlinear distortion refers 

to the introduction of harmonic and inharmonic frequency components that were not 

present in the original signal. The amount of unwanted harmonic distortion can be 

calculated as total harmonic distortion (THD), where harmonic frequencies are measured 

at integer multiples of the fundamental test frequency. THD is usually calculated as a 

percentage based on the ratio of the power sum (root-mean-square) of all the harmonic 

components to the power sum of all the harmonics plus the fundamental (Temme, 1992).   

When evaluating a single sinusoid test signal, spectral powers which are not identified as 

fundamental or harmonic are classified as noise. The noise can also be quantified as a 

percentage of the fundamental frequency power (N), so allowing the value of THD+N to 

be calculated. THD+N is a much simpler quantity to measure collectively (rather than 

separately for THD and separately for N) for a single sinusoid test, since it essentially 

refers to the power of spectral components that are evident in the processed signal when 

the raw test signal component is removed, as discussed by Prism Sound (2018), who are 

leading manufacturers of audio test and measurement equipment. In line with the 

published recommendations by Prism Sound, THD+N is measured in this research by 

applying brick wall filters in the frequency domain after the signal spectra has been 
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calculated. The filtering includes a notch filter around the 1000 Hz test frequency, with a 

low-cut filter implemented at 22 Hz, and a high-cut filter implemented at 22 kHz. In order 

to confidently remove any side bands in the signal spectrum, the notch filter is set 

relatively wide to cut all frequencies between 900 Hz and 1100 Hz. The filtering profile 

applied for calculating THD+N is shown in Figure 5.6, which displays the frequency 

spectra of a distorted 1 kHz sine wave as an example.  

 

Figure 5.6 Example distorted 1 kHz sinewave spectrum with THD+N filter profile. 

 

Processed audio can exhibit additional distortion and noise depending on the tools and 

mechanism used for transmission or recording, and THD+N measurements may also vary 

depending on the resolution of the notch filter used to conduct the FFT.  

 

Figure 5.7 THD+N filter used on the 1 kHz sine wave to provide a value of .0048. 

 

While there are no widely agreed values for acceptable THD+N ranges, it is desirable to 

obtain the smallest ratio possible, and in the case of quality measurements for amplifiers, 

Prosuk (2017) recommends a distortion value of less than 1%, or .01. The THD+N value 

calculated for the source 1 kHz sine wave in section 5.1.1 is 0.0048, and for the purpose 
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of this research, relative comparisons between test results are of most value. The 

MATLAB script used for measuring THD+N in an audio file is included in Appendix T. 

Note:  THD+N values captured in this research have been modified since Hardin and 

Toulson (2019), as the audio editor used for the initial recordings was shown to 

add minor noise when exporting signed, 16 bit PCM .wav files. Information 

regarding this can be found in Appendix CC. 

 

5.1.4 Measuring Latency 

In audio engineering, latency is defined as “the time delay experienced between a sound 

or control signal being generated and it being auditioned or taking effect,” and is often 

measured in seconds or milliseconds (Robjohns and White, 2019). While latency 

measurements up to 150 ms is deemed acceptable in traditional telephony cases, the 

average person begins to perceive an individual sound as two distinct sounds after 30 ms 

of latency (Rouse, 2016b) and some musicians can perceive the effects of latency at 

much lower thresholds, sometimes lower than 25 ms dependent on the style of music 

(Bouillot and Cooperstock, 2009). Particularly for live-performance and real-time audio 

scenarios audio transfer relies on small buffers with no compression (Bouillot and 

Cooperstock, 2009), and due to these strict parameters, a “sudden, unexpected, increase 

in latency can cause a drop out in the signal at the destination” (Bouillot et. al, 2009, p. 

732). 

Source-to-destination latency measurements are useful for networked musical 

performances and online jamming sessions, but an IoT music application where audio 

needs to transmitted to a remote node and returned to a central location benefits from the 

observation of roundtrip latency times. Measuring the roundtrip time of audio transmission 

over the network can become complicated when incorporating heterogeneous A-D 

(analogue to digital) and D-A (digital to analogue) processors that account for additional 

delays in their hardware or software.  Bouillot and Cooperstock (2009) propose a manual 

mechanism for measuring latency using a multi-channel audio editor to compare the time 

difference between the playback of the source file and a captured recording of the audio 

as it delivered to a remote node over the network and returned back to the source. 

Building upon this concept, latency measurements in this research are obtained by 

configuring the audio interface of the server computer to loopback any audio streams 

received from the client.  As the client computer transmits audio it simultaneously records 

the audio returned from the loopback server and the timing delay between the two 
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streams determines the round-trip latency. Halving the round-trip delay time determines 

latency from source to destination.  

     

 Figure 5.8 Observing delay between the source and returned audio streams to determine network 

latency. 

 

By setting the linear timecode (LTC) in a desired audio editing programme to display in 

milliseconds, the round trip latency can be determined by observing the offset of the start 

time of the recorded audio as compared to the initial source audio file as shown in Figure 

5.8.  

5.2 Comparing the Performance of JackTrip and WebRTC 

JackTrip and WebRTC are both viable platforms for Internet-based audio streaming 

applications due to their offers of high-quality media distribution with low-latency. JackTrip 

is presented as an effective tool for online jamming, allowing musicians in various remote 

locations to play instruments together and engage in real-time musical performances over 

the Internet (Cáceres and Chafe, 2010). These performances are perceived as 

synchronous with minimal, if any, noticeable timing differences despite large physical 

distances. In comparison, WebRTC is widely used for online video chat applications that 

offer similar benefits to Skype, allowing video and voice conversations to occur naturally 

and in real-time through a web browser (WebRTC, 2011b).  The transfer of high quality 

audio with low latency is the driving appeal for both platforms; however, they differ in the 

fact that JackTrip caters more towards music applications, which includes retaining the 

accurate frequencies of musical instrument sounds. WebRTC conversely employs 

mechanisms to optimise voice conversations, including codecs such as the iSAC and 

iLBC audio codecs by Global IP Solutions that are incorporated into many voice over I.P 

(VoIP) applications (WebRTC, 2011b). 
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In a first test, the three source audio files were transmitted between two networked 

computers utilising both Jacktrip and WebRTC, and a recording of each audio stream was 

captured at the destination computer allowing the results to be compared. The tests were 

conducted within a controlled environment using computers connected to the high-speed 

Local Area Network (LAN) by physical Ethernet connections at Anglia Ruskin University, 

Cambridge, UK. Download and upload speeds of the host and client computers were 

measured using the Ookla Speed Test (http://www.speedtest.net) and are shown in 

Figure 5.9. 

  

Figure 5.9 Host computer (left) and client computer (right) LAN speed tests. 

 

5.2.1 JackTrip Results 

In order to conduct the streaming tests, a Mac Pro desktop computer housed at Anglia 

Ruskin University was configured as a server computer with a fixed I.P. address to allow 

streaming connections from computers both internal and external to the network. A 

secondary Macbook Pro laptop placed on the same LAN using an Ethernet connection 

was configured as a JackTrip client and connected to the server. The tests produced 5 

recordings of each audio sample, resulting in 15 recordings total (See Appendix U).  

 

Figure 5.10 Example 1 kHz sine wave LAN capture waveform and spectrogram with JackTrip. 

 

http://www.speedtest.net/
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Figure 5.11 Example 0-22.5 kHz sine sweep LAN capture waveform and spectrogram with JackTrip. 

 

 

Figure 5.12 Example acoustic guitar LAN capture waveform and spectrogram with JackTrip. 

 

5.2.2 WebRTC Results 

Using a WebRTC media broadcast webpage configured at http://mjhardin.com, the server 

and client computers were allowed to transmit audio streams between each other through 

the web browser.  

The tests were repeated 5 times each per sound file with full results documented in 

Appendix V. 

http://mjhardin.com/
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Figure 5.13 Example 1 kHz sine wave LAN capture waveform and spectrogram with WebRTC. 

 

  

Figure 5.14 Example 0-22.5 kHz sine sweep LAN capture waveform and spectrogram with WebRTC. 

 

 

Figure 5.15 Example acoustic guitar LAN capture waveform and spectrogram with WebRTC. 
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Since Hardin and Toulson (2019), the WebRTC test page became inactive due to 

deprecated RTC functions.  Original WebRTC dropout, THD+N, and latency results are 

provided below, but follow up measurements using the 0.0048 THD+N sine wave was 

conducted using Talky.io and provided in Appendix DD. 

 

5.2.3 JackTrip and WebRTC Dropout Comparison 

The number of dropouts was evaluated for the sinewave source file transmitted between 

local computers using both JackTrip and WebRTC. The average number of dropouts is 

calculated from five repeats of each test. 

Table 5.1 Dropouts for sinewave tests on LAN. 

 Number of Dropouts 

Platform T1 T2 T3 T4 T5 Average 

JackTrip 0 0 0 0 0 0.0 

WebRTC 0 2 0 1 0 0.6 

 

The table above shows that the 1 kHz sinewave test presented no audio dropouts, 

showing effective, real-time audio streaming within the local area network. This 

demonstrated that the local area network was robust enough to appropriately deliver 

audio from source to destination without interruptions or detectable errors. 

Similar to the JackTrip test, WebRTC provided very minimal audio dropouts with the 5, 1 

kHz sinewave tests. Observing the waveform of test 4, there is also a possible false 

dropout reading due an initial, unforeseen amplification of the signal at the start of the 

transmission. While small errors were detected, a majority of the tests were conducted 

without incident. 

 

5.2.4 JackTrip and WebRTC Distortion Measurements 

Distortion was calculated for the sinewave source file transmitted between local 

computers using JackTrip and WebRTC. The average distortion is calculated from five 

repeats of each test. 
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Table 5.2 Distortion measurements for sinewave tests on LAN. 

 THD+N (%) 

Platform T1 T2 T3 T4 T5 Average 

JackTrip 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 

WebRTC 0.3870 1.2633 0.5180 0.6178 0.4668 0.6506 

 

The distortion measurements of JackTrip matched that of the source sinewave, showing 

no additional distortion.  WebRTC produced much higher distortion measurements, 

demonstrating the platform does alter the original signal. 

 

5.2.5 Listening Tests 

The results of the quantitative analysis detail unbiased observations of the capacities of 

JackTrip and WebRTC for real-time audio and music transfer over the Internet.  However, 

audio and music listening experiences are very subjective, and impressions of these 

experiences will differ, sometimes significantly, from person to person.  With this in mind, 

it was important to explore how individuals perceive the differences in the audio captures, 

and determine if human perception provides different feedback regarding the quality of 

JackTrip and WebRTC. Thus the creation of a listening test served to provide subjective 

data regarding JackTrip and WebRTC comparisons to the source audio. 

Toole (1982) describes 3 scenarios for the ideal listening tests: 

1. The tests need to be “reproducible at different times and places and with different 

listeners”, 

2. They need to “reflect only the audible characteristics of the product or system 

under examination”, 

3. And the tests need to “reveal the magnitude of audible differences or a measure of 

absolute values on appropriate subjective scales.” 

Keeping in line with these objectives, a listening test page was created at: 

http://mjhardin.com/listeningtest  

http://mjhardin.com/listeningtest
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Figure 5.16 JackTrip vs WebRTC listening test webpage. 

 

The International Telecommunication Union (ITU) recommends that the best and most 

versatile audio sources for listening tests are taken from computer-controlled digital 

storage systems, and the online audio distribution platform, SoundCloud, provided a 

means to stream audio files over the Internet that are uploaded to their servers (Rec, 

I.T.U.T., 1996). SoundCloud additionally offers an API to allow their streams to be built 

into independent applications and music players, thus allowing the design of a tailor-made 

webpage interface for the sole purpose of comparing streams.  

Within the listening test webpage users can listen to 3 variations of 3 audio files (the 

source, JackTrip capture, and WebRTC capture of the 1 kHz sine wave, acoustic guitar, 

and an additional complex audio file) and compare the JackTrip and WebRTC audio 

streams against the original source file.  The users are provided with no additional 

information regarding the streaming platforms within the confines of the test to prevent 

impaired biases, and a continuous quality scale ranking of numerical values 1 to 5 are 

used to determine how dissimilar to similar the audio recordings are to the source audio 

(Series, B., 2014).  When the test is concluded, the results can be emailed anonymously 

for collection and evaluation. The listening test is conducted with the general public in 

mind, and is not limited to a specific audience with the intention of collecting results from a 

wide spectrum of backgrounds with diverse experiences with music.  Responses were 

obtained from 35 respondents with results presented in Figures 5.17 and 5.18. 
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Number of Responses = 35 

 

 Similarity Ranking Responses 

Audio File 1 2 3 4 5 

1 kHz Sine 0 2 3 5 25 

Acoustic 
Guitar 

1 0 4 11 19 

Complex 
Audio 

0 1 2 9 23 

 

Figure 5.17 Public perceptions of JackTrip captures’ similarity to source audio file. 

 

 

 Similarity Ranking Responses 

Audio File 1 2 3 4 5 

1 kHz Sine 4 10 13 5 3 

Acoustic 
Guitar 

4 11 13 5 2 

Complex 
Audio 

7 11 15 0 2 

 

Figure 5.18 Public perceptions of WebRTC captures’ similarity to source audio file. 
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In regards to the JackTrip listening tests, 91.4% of participants gave the sinewave a ‘4’ or 

‘5’, identifying that the recorded sine was very similar or identical to the source audio. Both 

of the music samples received high rankings of a ‘4’ or ‘5’ from 85.7% of respondents 

equally. In only one case of the acoustic guitar recording did a respondent perceive the 

sound was completely dissimilar to the source audio. Due to subjective nature of these 

tests there was never an expectation of a perfect result, however, the high percentages of 

listeners ranking similar audible attributes of JackTrip recording to original source audio 

files showed promise that the platform upheld the quality of its audio streams. 

WebRTC, on the other hand, offered more neutral responses from respondents, with over 

65% of respondents ranking each file a ‘2’ or ‘3’. Roughly 7% of responses on average 

identified the 3 recordings as identical to their complementary source files.  While this 

does not necessarily represent a negative listening experience, it showed that most 

listeners can perceive some difference in the audio streams from WebRTC.  

 

5.2.6 Discussion of JackTrip and WebRTC Performance 

The analysis of the JackTrip audio recordings show that audio streamed across Jacktrip 

accurately resembles the source audio file.  The waveforms of the transmitted audio are 

similar to the original, showing that JackTrip correctly models the characteristics of the 

source audio without any additional filtering or processing during transmission.  The 

listening tests confirmed that a significant amount of respondents observed similarities 

between the JackTrip and the source audio file, with many perceiving no differences as 

compared to the noticeable differences reported to be perceived from the WebRTC audio 

samples. Additionally, the spectrograms show that the true frequencies of the source 

audio are maintained better using JackTrip than WebRTC.  With the exception of the 

second sine sweep test, JackTrip produced no noticeable network drops or spikes that 

represent streaming errors in 14 of the 15 recorded trials. 

The waveforms of the WebRTC captures do, however, show explicit differences from that 

of the source audio file, and the listening test reveals that these differences are perceived 

audibly. Regarding the sine sweep, the WebRTC captures are initially compressed and 

the audio becomes non-existent at higher frequencies, showing signs of higher frequency 

filtering.  These characteristics correlate with WebRTC’s use of VoIP codecs for video and 

voice chat scenarios.  Additionally, the acoustic guitar audio streamed using WebRTC 

showed some attenuation of the original signal throughout each of the trials. While music 

transmitted with WebRTC may not be an issue for some applications, the fact that the 
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WebRTC captures do not accurately reflect the original source audio makes it unsuitable 

for the high quality music applications presented in this research. 

These tests inherently showed a higher quality of performance from JackTrip compared to 

WebRTC for real-time audio streaming, and also demonstrated that streaming over the 

LAN is very reliable and sufficient for IoT-based music applications. 

 

5.2.7 Local JackTrip and WebRTC Latency Measurements 

WebRTC presents challenges in implementation without the support of public stun/turn 

servers. A JackTrip server, in comparison, can be set up directly within a local area 

network. Standard roundtrip latency measurements for JackTrip can be taken by 

measuring the delay between the source file and the recorded stream using a loopback 

server as outlined in section 5.1.4.   

JackTrip requires an audio stream input/output (ASIO) driver, named JackRouter, to 

transfer audio from source to destination. It conceptually acts as a virtual audio cable 

allowing users to route audio through desired input and output paths between a client and 

server computer. JackTrip additionally has a server configuration that allows a server 

computer to loopback any audio sent to it, which combined with JackRouter allows the 

client computer to route the looped back audio into an audio editor where it can be 

recorded and compared to the source audio it transmits. Average latency speeds were 

calculated for JackTrip over the local using five repeats of this test. 

Table 5.3 Latency measurements over LAN. 

JackTrip LAN Latency (ms) Using Loopback Server 

T1 T2 T3 T4 T5 Average 

8 2 8 2 2 4.4 

 

Audio transmission over the local area network using the JackTrip loopback server 

provided a very low average of 4.4 ms roundtrip latency.  

In a real world scenario that requires streaming audio from a client computer to a remote 

music processor, the processor may need to be connected to an additional audio interface 

at the remote end. A second test was conducted streaming audio from a client computer 

to a server using JackTrip, but the audio was routed back to the client through JackTrip 
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using a T.C. Electronic Impact Twin audio interface instead of the JackTrip loopback 

server.  Results are below: 

Table 5.4 JackTrip Round Trip Latency measurements using an Audio Interface. 

JackTrip LAN Latency (ms) Looped Through Audio 

Interface 

T1 T2 T3 T4 T5 Average 

33 22 33 33 22 28.6 

 

In this scenario, the audio interface did add roughly an additional 20 to 25 ms of latency to 

the audio stream, however, the average was still below the standard threshold of human 

echo perception. 

While not a true representation of a local area test due to support from external servers, 

roundtrip WebRTC latencies were also obtained. In contrast to JackTrip, WebRTC relies 

on the pre-existing audio output devices within a PC as a path to transmit audio through 

the browser. An audio editor can use the same output device as an input to record audio 

being looped back to the client, but this causes signal routing errors as the editor will try to 

simultaneously record the audio it transmits as well as the audio looped back, providing 

inaccurate latency measurements.  To overcome this issue, WebRTC latency 

measurements were captured by virtually streaming audio from the client computer to the 

server using the enabled browser, however, the two computers needed to be placed 

physically nearby each other and the streamed audio was routed back from server to 

client using a 2 meter audio cable.  Any delay added by the cable would be miniscule as a 

sound signal propagates through a cable at approximately the speed of light (Fonseca 

and Monteiro, 2003, p. 2). 

 Table 5.5 WebRTC Latency Measurements. 

WebRTC Roundtrip Latency (ms) using a physical loopback 

T1 T2 T3 T4 T5 Average 

85.5 92 109.5 80.5 89.5 91.4 

 

WebRTC latency measurements averaged around 91 ms of delay, possibly presenting 

some challenges for real-time music applications as it is well above the threshold of echo 

perception by the human ear. 
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5.3 Commercial/Commodity Network Testing 

JackTrip showed capabilities to support high quality networked audio distribution and 

objectively outperformed WebRTC for measured and perceived audio quality.  As a result, 

the next tests were organised to determine network configurations that best support audio 

transmission using JackTrip exclusively. While the LAN-based tests presented an 

adequate baseline for observing the capability of real-time audio streaming over a 

computing network, the following set of trials examined JackTrip streaming capabilities in 

real-world environments independent of the Local Area Network and incorporated external 

computers housed outside of Anglia Ruskin University, extending distributed music 

applications into the Wide Area Network (WAN).  The tests evaluated Jacktrip audio 

streaming on the commercial, commodity Internet from a residential home in London, UK 

to Anglia Ruskin University in Cambridge, UK.  A speed test of the client computer (Figure 

5.19) showed very high upload speeds, while download speeds were fairly low in 

comparison to the LAN network (only 4.58 Mbps), presenting a possible bottleneck for 

high speed audio transfer. 

 

Figure 5.19 External client computer speed test on commercial network. 

 

5.3.1 Investigating JackTrip Performance with Different Buffer Sizes 

A number of JackTrip buffer settings were investigated, with buffer sizes of 128, 256, 512 

and 1024 being compared for performance regarding dropouts, distortion, and latency. 

While a small buffer reduces the amount of time audio interfaces like JackTrip need to 

store and transmit audio packets to ultimately reduce latency, Robjohns (2008) explains 

that “software problems often stem from the audio interface RAM buffers being too small, 

and the data running out before the operating system can get back to top them up 

(playback) or empty them (recording).”  Small buffer sizes can cause audio interfaces to 

run out of data to transmit before having the option to transmit it, and this can result in 

errors such as clicks and pops, or gaps of silence while the buffer is refreshed.  
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The first test of the wide area audio streams was conducted with a 128 size buffer and 

produced many audible errors, representative of loud clicks and large audio spikes in the 

captured recordings. These are evident as broadband noise periods in the spectrograms 

and can be seen in the figure below alongside the spectrogram of the source 1 kHz sine 

wave.  

 

Figure 5.20 Spectrogram of example 1 kHz sine wave capture on commercial network with 128 sample 

buffer size (left), compared to source audio (right). 

 

As expected, increasing the buffer size to 256 samples provided major improvements in 

the results as represented by the spectrogram below. 

 

Figure 5.21 Spectrogram of example 1 kHz sine wave capture on commercial network with 256 sample 

buffer size (left), compared to source audio (right). 

 

Larger buffer sizes showed successful reduction in the errors in the audio streams. 

Further increases of the buffer size to 512 and 1024, however, prompted warnings of 

latency over 30 ms from JackTrip as shown in Figure 5.22.  
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Figure 5.22 JackTrip latency warnings for delays over 30 ms. 

 

The complete set of spectrogram results from the public network streaming tests can be 

found in the Appendix. 

 

5.3.2 Dropouts at Different Buffer Sizes on Commodity Network 

The number of dropouts was evaluated for the sinewave source file transmitted with 

different JackTrip buffer sizes. The average number of dropouts is calculated from five 

repeats of each test. 

Table 5.6 Dropouts for sinewave tests on commercial network with different JackTrip buffer sizes. 

 Number of Dropouts 

Buffer Size T1 T2 T3 T4 T5 Average 

128 12 4 23 13 18 14 

256 0 0 0 0 0 0 

512 0 0 0 0 0 0 

1024 0 0 0 0 0 0 

 

The initial 128 sample buffer produced a higher number of dropouts than the tests 

conducted over the LAN, and dropouts were consistent in each test.  As shown by the 

spectrograms, these drops produced audio spikes and broadband noise that can make 

the listening experience very unpleasant.  Increasing the buffer size drastically improved 

the results, eliminating the drops over the set of the sinewave tests.  
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5.3.3 Distortion Measurements at Different Buffer Sizes on Commodity 

Network 

Distortion was calculated for the sinewave recordings of the source file transmitted over 

the commodity Internet with different JackTrip buffer sizes. The average distortion is 

calculated from five repeats of each test. 

Table 5.7 Distortion measurements for sinewave tests on commercial network with different JackTrip 

buffer sizes. 

 THD+N (%) 

Buffer Size T1 T2 T3 T4 T5 Average 

128 5.2090 1.9509 2.4970 2.5573 3.0517 3.0532 

256 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 

512 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 

1024 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 

 

The distortion measurements were high for the 128 sample buffer.  When the buffer size 

was increased, the distortion was minimised and matched the source.  

 

5.3.4 Latency Measurements at Different Buffer Sizes on Commodity 

Network 

Roundtrip latency measurements were taken at different buffer sizes. The average latency 

was calculated from five repeats of each test. 

Table 5.8 Latency measurements on commercial network with different JackTrip buffer sizes. 

 Roundtrip Latency (ms) 

Buffer Size T1 T2 T3 T4 T5 Average 

128 30  30 30 25 25 28 

256 30 30 30 30 30 30 

512 54 42 42 42 42 44.4 

1024 112 112 112 112 112 112 

 

The 128 and 256 sample buffer sizes both achieved low latency rates.  Further increases 

in buffer sizes helped maintain streaming quality, but introduced greater latency above 30 

ms. 
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5.3.5 Commercial/Commodity Network Audio Streaming Discussion 

The commodity network initially displayed challenges supporting real-time audio 

streaming with low buffer sizes, but significantly improved when the buffer size was 

increased.  It is possible that the lower bandwidth designations and overall network 

congestion on commercial networks can create more opportunities for dropped packets 

and errors in the data stream (Sinatra, 2014). Also, while these tests overall performed 

very well, the results differed from initial results seen in Hardin and Toulson (2019), 

showing that network congestion on different dates may severely impact performance. 

Additionally in addressing errors in Hardin and Toulson (2019), the use of larger buffers 

on commercial networks may create a scenario called bufferbloat, where latency 

increases due to excessive buffering of packets and ultimately reduces network 

throughput and successful message delivery. Nonetheless, these tests showed that in 

optimal conditions the current commercial/commodity computing networks have some 

capability of supporting real-time high quality, low latency music transfer, although 

comparisons to Hardin and Toulson (2019) prove that results may vary over time. 

5.4 High-Speed Network Testing 

A National Research and Educational Network (NREN) is a high-speed computing 

network operated amongst the educational and research communities inside a country 

and serves as a backbone to interconnect higher educational institutions within the 

country and to other research networks abroad (Foley, n.d.).  NRENs provide higher 

bandwidths suitable for transferring large data sets and have shown past success in low-

latency audio streaming applications with JackTrip, demonstrated by a series of ‘telematic’ 

music performances hosted by the SoundWIRE Group at Stanford University (SoundWire 

Group, 2010).  

JANET is the designated high-speed NREN supplied by the Joint Information Systems 

Committee (JISC) in the United Kingdom. The next set of streaming tests evaluated the 

quality of audio transmission incorporating a JANET-based client computer external to 

Anglia Ruskin University. The tests were conducted between the University of 

Westminster in London, UK and Anglia Ruskin University in Cambridge. Measured 

network speed of the JANET-based client computer is shown in Figure 5.23. 
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Figure 5.23 Client Computer Speed Test over JANET. 

 

As a 256 sample buffer size was determined to be effective for streaming in previous 

experiments, this setting was maintained for subsequent testing. Examples of the 

spectrograms are shown in the figures below: 

 

Figure 5.24 Spectrogram of example 1 kHz sine wave capture over JANET network (left), compared to 

source audio (right). 

 

The complete set of spectrogram results from the JANET network streaming tests can be 

found in Appendix AA. 
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5.4.1 Dropouts on Research and Educational Network 

The number of dropouts was evaluated for the sinewave source file transmitted using 

JackTrip over the JANET high-speed research and education network. The average 

number of dropouts is calculated from five repeats of each test. 

Table 5.9 Dropouts for sinewave tests on JANET network. 

Number of Dropouts 

T1 T2 T3 T4 T5 Average 

0 0 0 0 0 0 

 

The initial sets of testing showed no signs of drop outs.  Future tests were additionally 

conducted on separate dates to determine reliability and yielded the same results. 

 

5.4.2 Distortion Measurements on Research and Educational Network 

Distortion was calculated for the sinewave source audio transmitted over JANET. The 

average distortion is calculated from five repeats of each test. 

Table 5.10 Distortion measurements for sinewave tests on JANET network. 

THD+N (%) 

T1 T2 T3 T4 T5 Average 

0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 

 

The THD+N measurements over the JANET-based networked matched that of the source 

audio file, showing that no distortion occurred during transmission. 

 

5.4.3 Latency Measurements on the Research and Educational 

Network 

Roundtrip latency measurements were taken for audio transmission over JANET. The 

average latency was calculated from five repeats of each test. 
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Table 5.11 Latency measurements on JANET network. 

Roundtrip Latency (ms) 

T1 T2 T3 T4 T5 Average 

30 25 36 31 25 29.4 

 

Roundtrip latency measurements overall averaged lower than 30 ms and showed 

adequacy for remote music processing and production.   

 

5.4.4 High-speed Network Audio Streaming Discussion 

The high-speed network tests showed great promise in real-time music distribution. 

Minimal audio errors were observed and round trip latency was kept at a minimum to 

ensure unperceivable delays in transmission. Outside investigations of technology for 

networked music performances have additionally supported these results. A separate 

real-time media platform, the LoLa audio video system, was purposely designed to exploit 

the bandwidth capacity and robustness of dedicated high performance networks like 

JANET, requiring at least 100 Mbps throughput (Drioli, Allocchio, and Buso 2013), and 

has allowed remote musicians to play comfortably together at distances up to 3000 Km 

(Ferguson, 2015). 

These findings show that media distribution over NRENs performs at a higher level than 

commodity networks, and presents possibilities of implementing an IoT-enabled music 

system with real-time audio transfer when supported by high-speed LAN and NREN 

networks. 

5.5 Wireless Network Testing 

The development of wireless Internet networks has made computing resources widely 

available for mobile applications and allows numerous complex digital processes to occur 

fluidly in the real world without the need to be tethered to a specific location. On-the-go 

processes allowing more engagement in personal and professional workflows have been 

greatly enhanced by portable laptops, mobile smart phones, and tablets.  While hard-

wired Ethernet connections effectively enable frameworks for remote networked music 

applications, the following Wi-Fi tests determine effectiveness for on-the-go music 

production scenarios. 
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The Wi-Fi audio streaming tests consists of a client laptop utilising Anglia Ruskin 

University’s internal wireless supported by JANET’s high speed network connecting to the 

existing server computer on the internal wired network.  

 

Figure 5.25 Client computer Wi-Fi speed test. 

 

Examples of the audio streaming tests over Wi-Fi are shown below with full results 

provided in Appendix BB. 

 

Figure 5.26 Spectrogram of example 1 kHz sine wave capture over Wi-Fi network (left), compared to 

source audio (right). 

 

5.5.1 Dropouts on Wi-Fi 

The number of dropouts was evaluated for the sinewave source file transmitted from 

JackTrip over Wi-Fi. The average number of dropouts is calculated from five repeats of 

each test. 
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Table 5.12 Dropouts for sinewave tests on Wi-Fi. 

Number of Dropouts 

T1 T2 T3 T4 T5 Average 

34 60 25 15 24 31.6 

 

The Wi-Fi results faired far worse than streaming audio using physical network 

connections and yielded the highest number of dropouts of all the tests. Additionally there 

were no successful, error-free streams over the 5 Wi-Fi trials, showing that real-time 

wireless audio streaming is highly unreliable. 

 

5.5.2 Wi-Fi Distortion Measurements 

Distortion was calculated for the sinewave source file transmitted from JackTrip over Wi-

Fi. The average distortion is calculated from five repeats of each test. 

Table 5.13 Distortion measurements for sinewave tests on Wi-Fi. 

THD+N (%) 

T1 T2 T3 T4 T5 Average 

1.2938 2.8277 3.3925 1.2570 1.6257 2.0793 

 

Distortion measurements over Wi-Fi were very high. This is most likely a result of the 

broadband errors caused by dropouts that distorted the signal stream. 

 

5.5.3 Wi-Fi Latency Measurements 

Roundtrip latency measurements were conducted over Wi-Fi. The average latency was 

calculated from five repeats of each test.  

Table 5.14 Latency measurements over Wi-Fi. 

Roundtrip Latency (ms) 

T1 T2 T3 T4 T5 Average 

8 8 14 14 14 11.6 
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While Wi-Fi connections introduced low starting latencies, JackTrip would often prompt 

the ‘UDP waiting too long” warnings shown in Figure 5.22 as the recordings occurred. 

This would sometimes result in the tail end of file ranging from 30 to 100 ms longer than 

the 10 second source sine wave.  

 

5.5.4 Wi-Fi Audio Streaming Discussion 

The Wi-Fi audio streaming tests had very little success compared to the hard-wired 

Ethernet tests over the same LAN.  In addition to clicking sounds present in the recordings 

and visible spikes in the spectrograms, some recordings had deep buzzing sounds that 

were not observed in the other network tests. The issue with audio streaming over Wi-Fi, 

inherently, has much to do with the protocol used for low-latency transmission. 

There are two transport protocols used to transmit data packets over the internet: 

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is the 

primary protocol used for standard Internet traffic, and the benefits include packet 

numbering to make sure packets reach their destination in the desired order, and 

additionally error tracking and retransmission of packets that lost over the network 

(Hoffman, 2017a).  This creates efficiency and greater reliability for Internet 

communication, including the upload and download of data.  However, these methods for 

data redundancy unfortunately add latency to network communication.  

In comparison, UDP offers data packet transmission without the error checking. This 

means there is no confirmation that data packets have arrived to their destination and no 

retransmission of missing packets; new packets are continuously delivered with no 

redundancy for lost data. However, without the overhead of error tracking, what UDP 

losses in reliability it makes up for in speed (Hoffman, 2017a).  Data can be delivered 

more rapidly across the Internet using the UDP framework and makes it ideal for real-time 

and low latency audio streaming.  As a result UDP is used for audio transmission over 

JackTrip and it is the default protocol for WebRTC data. 

The lack of error checking is not a major issue on a stable Internet connection.  The 

highest network speeds a Cat-5e Ethernet cable provides data exchanges up to 1 Gb/s 

(10 Gb/s using Cat 6) while currently the fastest wireless router offers max speeds of 

866.7 Mb/s (Hoffman, 2017b).  Speeds over 100 Mb/s are more than enough to support 

high quality audio streaming, however, a big difference between Ethernet and wireless is 

the reliability of the connection. An Ethernet connection provides a straight physical 

connection between a computing device and the Internet. However, Wi-Fi is a radio signal 
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that is subject to interference from other wireless broadcasting devices. These 

interferences often result in latency due to competing network traffic and worse, dropped 

signals (Hoffman, 2017b).  While dropped signals are often reacquired very quickly and 

usually unnoticed, the lack of error checking in UDP transmission tend to create 

pronounced and noticeable errors in audio streaming when these packets are lost. 

Consequently, until the reliability and robustness of wireless networks are improved, high-

quality, real-time audio transfer still favours wired connections in modern networks. 
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6. User Insight Evaluation 

The user insight evaluation presents statistics, views, and impressions of music producers 

regarding IoT-enabled audio systems and the opportunity to remotely engage music 

processing systems interconnected to the Internet.  Data is collected through a mixed-

method process using questionnaire feedback and expert interviews. The findings portray 

a more insightful and qualitative exploration into the impacts of the Internet of Things for 

producers across a variety of musical backgrounds.  

6.1  Questionnaire Evaluations Considerations 

6.1.1 Design of Questionnaire 

The questionnaire is designed using a mixture of closed and open ended questions that 

firstly seek to understand the personal production practices of sampled music producers 

and secondly aim at capturing perspectives of an IoT-enabled music system. The first 6 

questions collect background information regarding the respondents’ approaches and 

experiences in music production and identify their preference for hardware-driven or 

digital techniques in normal mixing conditions.  The remaining 4 questions collect 

feedback directly pertaining to IoT-enabled audio applications; gathering deeper 

perspectives on perceived use cases and how mainstream implementation of these 

systems could promote greater engagement with audio processing hardware. An optional 

comments section is also available for additional thoughts not addressed in the previous 

questions.  

The target audience for the user insight questionnaires are: 

1. Novice and casual music makers 

2. Experienced musicians and music producers 

The first target group involves casual and hobbyist musicians, or novice music students 

who benefit from the modern-day emergence of digital music technology and may or may 

not utilise the traditional music studio environment for production purposes.  The 

ubiquitous nature of computing devices has made digital music software a preferred 

method for mixing music by many music makers, and this research explores if greater 

opportunities to access and utilise music production hardware would factor into increased 

value and engagement in analogue and physical music processes.  The second target 
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audience are audio and music producers who have knowledge and field experience using 

various platforms, including both analogue hardware and digital technology, to make 

music.  This group can provide greater insight into the potential usefulness of an IoT-

enabled audio system and give higher levels of detail into benefits and challenges that 

can emerge from these systems.  An optional respondent category is available for non-

musician feedback that is primarily obtained by creative practitioners from a range of 

backgrounds (artists, film makers, technologists, etc.) who engage in unique and 

imaginative processes to generate original work.  These individuals may have limited 

experience in music production, but their understanding of novel and innovative 

approaches to technology and artistic practices can promote outside interpretations on the 

impact of IoT applications in creative industries for future discussions not reflected in this 

chapter.  

A minimum of 50 respondents were targeted for the questionnaire responses.  Tuckett 

(2004, p. 48) states that “whilst there are no closely defined rules for sample size (Baum 

2002; Patton 1990), sampling in qualitative research usually relies on small numbers with 

the aim of studying in depth and detail (Miles & Huberman 1994; Patton 1990).  For the 

purpose of seeking richness in data about a particular phenomenon, in this case new 

music production opportunities established by IoT-enabled technology, “the sample is 

derived purposefully rather than randomly” from collective groups of music producers 

(Tucket, 2004, p. 48 via Reed et al. 1996; Mays & Pope 1995; Ezzy 2002).  Tuckett (2004, 

p. 49) via Lincoln and Guba (1985) recommends that “sampling continues until the 

researcher recognises no new data were forthcoming – a point of data or information 

redundancy.”   

The sample group was largely composed of music production students within the audio 

music technology and creative music technology courses at Anglia Ruskin University as 

well as local music producers in the Cambridge, UK area.  The proximity to the researcher 

and institution provided optimal opportunities for demonstration and evaluation, and the 

targeted music courses brought about a variance of producers from different skill sets, 

backgrounds, age ranges, and genders. When the online data collection commenced, 

known music producers and their colleagues where specifically targeted, as well as 

members of music professional groups such as the Audio Engineering Society. During the 

data collection process data saturation began to appear when approaching 40 

respondents. At this point there was no new information emerging and it was believed that 

the collected data satisfied the aims of the research goals.  A copy of the questionnaire 

can be found in Appendix EE. 
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6.1.2 Questionnaire Results and Analysis 

The questionnaire produced a total of 56 responses, where an acceptable saturation of 

data trends was observed.  The questions are listed below with a brief analysis of the 

responses: 

Q1. Describe Your Musical Status 

 

 Casual 

Musician 

Music Producer Total 

# of 

Participants  

20 (36%) 36 (64%) 56 

 

Figure 6.1 Music backgrounds of questionnaire participants. 

 

56 responses collected total: 20 casual musicians makers, 36 music producers.  

Note:  1 participant identified as a non-musician or “Other Creative Practitioner.” 

However, due to having some experience in music processing and enrolment in a 

university audio degree programme, it was best to include the respondent’s 

feedback with the casual music maker data. 

 

  

0 5 10 15 20 25 30 35 40

Musician/Music Producer

Casual Music Maker

Q1. Music Backgrounds 
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Q2. If You Mix and Process Your Own Music, Where Does This Normally 

Occur? (Multiple Answers) 

 

 Casual Music Maker Musician/Music 

Producer 

Total 

Other  1 (2%) 1 (2%) 

Don't Mix or Process 

Music 

 1 (2%) 1 (2%) 

Personal PC with 

Software 

16 (28%) 25 (45%) 41 (73%) 

Home Studio w/ 

Hardware 

5 (9%) 16 (28%) 21 (37%) 

Professional 

Recording/Music Studio 

 15 (27%) 15 (27%) 

 

Figure 6.2 Where and how respondents primarily mix music. 

 

Respondents were allowed to select multiple answers regarding where and how they 

produce music.  A majority of the respondents reported producing music within a personal 

space, with 37% reporting to use a home studio with processing hardware and 73% 

choosing to use a personal PC with software.  While many respondents used both a 

mixture of hardware and software in their production workflows, nearly 3 quarters admitted 

to using software techniques while around one-third reported incorporating hardware. 

0 10 20 30 40 50

Other

Don't Mix or Process Music

Personal PC with Software

Home Studio w/ Hardware

Professional
Recording/Music Studio

Q2. Where Music Mixing Occurs 

Casual Music Maker Musician/Music Producer
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Only 1 musician reported not mixing music which is principally due to them identifying as 

an instrument-playing musician instead of music producer. As a result, this respondent 

chose the ‘Non-applicable’ option for subsequent questions relating to their method of 

production. Additionally one Music producer selected “Other,” stating “mixing and 

mastering at home. Some tracking in the studio (Drums/Vocals).” 
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Q3. If You Mix Music, How Likely Are You to Use Physical Audio 

Processing Systems to Process Music in Comparison to Software 

Equivalents (e.g Hardware Compression vs. Software Compression)  

 

 Casual Music Maker Musician/Music 

Producer 

Total 

Never 5 (9%) 5 (9%)  10 (18%) 

Sometimes 13 (23%) 27 (48%) 40 (71%) 

Mostly 1 (2%) 2 (4%) 3 (5%) 

Always  1 (2%) 1 (2%)  

N/A 1 (2%) 1 (2%) 2 (4%) 

 

Figure 6.3 Participants’ likeliness to use physical analogue processors to currently mix music. 

 

78% of respondents reported using hardware in some capacity, with 71% acknowledging 

that they ‘Sometimes’ use it for production purposes. The ratio of respondents who used 

hardware was about 13% higher for music producers than casual musicians. Less than 

one-fifth of the overall respondents reported never using hardware at all.  
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Q4. Do You Feel That Physical Processing Hardware Give Better 

Results Than Their Software Equivalent  

 

 Casual Music Maker Musician/Music 

Producer 

Total 

Never    

Sometimes 7 (12%) 14 (25%) 21 (37%) 

Mostly 10 (18%) 14 (25%) 24 (43%) 

Always 2 (4%) 2 (4%) 4 (7%) 

N/A 1 (2%) 6 (11%) 7 (13%) 

 

Figure 6.4 Respondents’ feelings of analogue processing tools providing better results than software 

equivalents. 

 

87% of respondents felt there are times when musical hardware give better results than 

software and none of the respondents reported that hardware ‘Never’ give better results. 

The ratio of casual music makers who felt that hardware ‘Mostly’ give better results (50% 

of casual music makers) also showed to be higher than the music producers (39% of 

music producers). Some optional feedback regarding these choices fell into the following 

areas: 
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Analogue characteristics difficult to replicate 

While software has made drastic improvements over the decades to accurately replicate 

software systems and in many cases have become a convenient and preferred tool over 

hardware, some felt that software cannot always replicate the subtleties of hardware, 

particularly when it comes to tonality and sound characteristics of rare and vintage 

devices.  One respondent mentioned “software has caught up on the physical but it still 

can’t replace all the previous physical units, particularly with tone” (Music producer - 

‘Mostly’). Additionally, another respondent added that:  

The sound of some hardware cannot be easily replicated in the sterile ITB 

environment. An example of this is the sound of resampling multiple times through 

a hardware sampler (emu samplers in particular!). (Casual music maker - 

‘Sometimes’) 

 

Appreciation for physical interfaces of hardware 

For some respondents, there is simply an appreciation of having a “hands-on” experience 

with physical equipment that is not encountered with software.  One respondent 

mentioned “I just personally prefer a more tactile approach to production” (Music producer 

- ‘Mostly’). 

 

Appreciation of audio characteristics of hardware 

Aside from some respondents feeling software struggles to replicate hardware, others felt 

that hardware provides distinct benefits to software. In comparing hardware and software, 

one respondent mentioned “better is not quite the right word though. Different and mostly 

richer, along with direct creative interaction with the mix as it prints” (Music producer - 

‘Mostly’). A common argument is that hardware produces more nature and organic 

sounds, as detailed by one respondent:  

From my musical experience, physical processing tools have given a better result 

as they have a more organic sound, in comparison to their software equivalent 

which digitalises everything and makes it sound artificial, robotic from my point of 

view. (Casual music maker - ‘Always’) 
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About 13% of the respondents answered ‘N/A,’ which typically meant they did not feel that 

one technique gives better results than the other overall. As one music producer reported: 

Depends on the modelling? Some well-designed digital replicas not only sound 

great but often they can also extend the abilities of the original hardware (think 

extra M/S decoder modes, wet/dry balance controls on some compressors that 

didn't originally have them opening up parallel processing within the plug). Of 

course there are also lots of digital plug-ins that fall short of the mark and I am still 

yet to find any [software] that replicates the tactile control of hardware processors. 

So if it is tweakable synths your after you are not going to get the responsiveness 

of a Moog using any current MIDI controllers (even the high end NI stuff still isn't 

great). 

 

  



112 
 

Q5. With Regards to Physical Hardware, Do You Feel Analogue 

Components Provide Better Results than Digital Counterparts?  

 

 Casual Music Maker Musician/Music 

Producer 

Total 

Never    

Sometimes 8 (14%) 19 (34%) 27 (48%) 

Mostly 6 (11%) 9 (16%) 15 (27%) 

Always 4 (7%) 4 (7%) 8 (14%) 

N/A 2 (4%) 4 (7%) 6 (11%) 

 

Figure 6.5 Respondents’ feelings of hardware processing tools providing better results than software. 

 

Regarding physical hardware, 89% of respondents felt there were times when analogue 

hardware provided better results than digital hardware, and 11% reported having no 

preference. There were not any respondents who felt that analogue hardware ‘Never’ 

produce better results than digital hardware.  
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Q.6 Would Your Use of Physical Audio Processing Systems Increase If 

They Were More Accessible? 

 

 Casual Music Maker Musician/Music 

Producer 

Total 

No 2 (4%) 2 (4%) 4 (7%) 

Yes 18 (32%) 32 (57%) 50 (89%) 

N/A  2 (4%) 2 (4%) 

 

Figure 6.6 Comparison of participants who would use analogue audio processing systems if they were 

more accessible. 

 

89% of respondents reported that they would use more analogue audio processors if 

these devices were overall more accessible. Of the 4 ‘No’ responses, 3 of the 

respondents (2 casual music makers and 1 music producer) reported only using a 

personal PC with software to produce music and the last music producer felt that plug-ins 

have reached a level where they are comparable to hardware.  
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Q7. Do You Feel an IoT-Based Music Processing System Adds Greater 

Accessibility to Analogue or Professional Audio Processing Hardware  

 

 Casual Music Maker Musician/Music 

Producer 

Total 

No  1 (2%) 1 (2%) 

Somewhat 6 (11%) 11 (20%) 17 (30%) 

Yes 14 (25%) 24 (43%) 38 (68%) 

 

Figure 6.7 Participants’ feelings that IoT adds greater accessibility to analogue audio processing 

systems. 

 

All respondents aside from one felt that an IoT-enabled music system adds some 

accessibility to music processing hardware. Close to one-third of the respondents felt that 

IoT ‘Somewhat’ adds more accessibility while around two-thirds reported ‘Yes’ it does add 

more accessibility.  Similarly, this is mirrored in both categorical groups, where 30% of 

casual music makers and music producers reported ‘Somewhat’ and 68% of casual music 

makers and music producers reported ‘Yes.’  
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Q8. Briefly Describe Your Impression of an IoT-Based Music Processing 

System: 

Question 8 presented the first opportunity within the questionnaire to collect open-ended, 

qualitative feedback. An analysis of the responses provided 36 comments offering positive 

or supportive impressions of an IoT-enabled music system and 15 comments displaying 

mixed feelings or potential concerns of the technology.  

A breakdown of response themes immerging from positive and supportive respondent 

impressions is shared below: 

Overall/Generic Supportive Feedback 

Many respondents provided general, supportive comments that were not directed towards 

any specific research question, expressing sentiments such as “very interesting 

technology with a lot of potential, provides a good utilization of the IoT for something 

productive and attractive to consumers” (Casual music maker) and “I think this is an 

incredible idea and I would definitely use it” (Musician producer). The responses typically 

showed general expressions of interest in an IoT-enabled music system, while some 

offered excitement about future possibilities, such as: 

Amazing concept that with enough research and development could make a real 

difference to the world of music production. (Casual music maker)  

 

Accessibility/Engagement 

A high number of comments relayed thoughts about IoT promoting greater accessibility 

and engagement into music processes. One music producer states: 

Great way to access equipment around the world to develop personal 

work/projects. Otherwise without one may never get to experience certain types of 

physical equipment. 

Others expanded on opportunities IoT presented in eliminating barriers from access to 

particular equipment. A casual music maker stated: 

Good step forward for the future of music as it takes away the location barrier 

when it comes to audio recording. 

Additionally a couple of respondents presented arguments of IoT extending musical 

processes to individuals with special needs, incurring some health benefits.  This is 
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reflected in comments such as: “I think it can be useful and bring more option to people 

with limited capabilities” (Casual music maker), and “I see that it has potential for curious 

producers but most notably, people with disabilities” (Music producer). 

 

Creative Benefits 

A few respondents spoke on using IoT as a unique tool for adding creativity and creative 

techniques in music. One respondent reported: 

It is a very good idea. I personally would use it more creating sounds instead of 

mixing/mastering. (Music producer) 

However, another respondent saw opportunities outside of standard music production, 

commenting on how IoT can be applied to other audio fields: 

For film, to process audio to occur in a particular space and location of space to 

give a producer an idea of what to emulate with plug-ins. Perhaps, to run a guitar 

DI channel through a one of a kind guitar amp in studio conditions. (Music 

producer) 

 

Enterprise Benefit 

Respondents relayed ways in which IoT can economically support individuals in their 

endeavours to create music, stating “fantastic idea and very useful to music producers 

with limited income or equipment” (Music producer) and “well, it looks to be making the 

expensive hardware accessible for less well-off people. I can get behind that.” (Music 

producer). These comments generally related to IoT granting opportunities for individuals 

with low incomes to access equipment that would normally be out of their financial price 

ranges.  

 

Cultural Benefit 

A last theme showing support of an IoT-enabled music system in the questionnaires was 

cultural benefits.  Most notably this is associated with granting new opportunities for 

“bedroom musicians” to engage more with physical hardware.  One music producer 

mentioned: 
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I believe that, if accomplished, it would be an amazing breakthrough as a business 

and as a product. The idea of being able to obtain all these hardware or physical 

sound obtained properties from my "bedroom" studio would be great.  I happen to 

match the description of the bedroom studio and being able to use synthesizers 

and other tools would become an essential in my production. 

Additionally, it may provide new generation of musicians opportunities to expand their 

creativity, as presented by one music producer: 

Fantastic. IoT Based processing can create a new platform for the new generation 

of producers to expand their creativity whether in a bedroom studio or professional 

studio. It will enable producers to find their own sound while using different 

responses in places such as frequency responses. 

 

While many positive themes emerged from the questionnaire data sets, several 

respondents presented feedback that showed mixed feelings or concerns arising from an 

IoT-enabled music system. The major thematic concerns are listed below: 

Device Use Regulation 

There was an overall concern about how the use of IoT-enabled music devices could be 

regulated if they were more accessible and how overbooking of a particular piece of 

equipment could become a constant issue. One casual music maker mentions: 

I do wonder though about the demand there would be for the best gear, as it can 

only be controlled by one computer at a time, how would the time you would be 

allowed to use the gear in question be regulated? 

Similarly, there were concerns about wait time that could emerge to use ubiquitous audio 

hardware, such as:  

So long as the hardware is widely accessible, i.e. not needing to wait in a queue of 

1000 people to use a compressor unit, then I believe it could be very useful and 

increase the quality of sound. (Casual music maker) 
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Internet Reliability 

Another concern arising from IoT-enabled music systems is the reliance on a stable 

Internet connection. Some felt that unreliable connections could jeopardise the quality of 

the experience, offering statements such as “honestly would rather have the physical 

hardware in front of me because internet connection has to be good” (Casual music 

maker) and “awesome idea, but latency and encoding/decoding seem like big hurdles” 

(Music producer). 

 

Quality of Experience 

Associated with the concerns network stability, a few respondents felt that the reliance on 

the Internet could result in a loss of quality for the production experience, both regarding 

interaction and musical output.  One music producer mentioned “Intriguing. Concerned on 

losing quality of sound” (Music producer), while another expanded further: 

The idea conceptually is great and for static processes that don't get automated 

across the production process they could definitely have a place. My major 

concern would be the responsiveness and interface for using such devices to 

animate the sounds in real-time as per standard DAW automation techniques. 

(Music producer) 

 

  



119 
 

Q9. If Available, How Interested Would You Be In Incorporating IoT -

Based Music Processing Systems Into Your Own Music Workflows?  

 

 Casual Music Maker Musician/Music 

Producer 

Total 

Not Interested 1 (2%) 2 (4%)  3 (5.5%) 

Somewhat Interested 8 (14%) 14 (25%)  22 (39%) 

Mostly Interested 4 (7%) 6 (11%) 10 (18%) 

Very Interested 6 (11%) 12 (21%) 18 (32%) 

N/A 1 (2%) 2 (4%)  3 (5.5%) 

 

Figure 6.8 Participants’ interests in incorporating IoT-based hardware processors into their music 

making process. 

 

89% of respondents showed interest in incorporating IoT-based hardware into their music 

workflows, with about 39% reporting ‘Somewhat interested’ and 50% reporting ‘Mostly 

Interested’ or ‘Very Interested.’ Most of the ‘Not Interested’ or ‘N/A’ choices arose from 

respondents who primarily produced music using a personal PC with software or 

respondents who did not see a major benefit from using hardware over software audio 

systems. 
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Q10. Are There Any Pros and Cons You Can Envision From IoT 

Extensions to Music and/or Other Creative Fields? 

The final question presented another opportunity for open-ended feedback from 

respondents regarding pros and cons they envision about IoT-enabled music production, 

and also allowed them to extend their perspectives to other creative fields if desired. 

Similar to question 8, the responses can be broken down into themes that relate to either 

pros or cons associated with the technology. 

The following are some themes drawn from responses sharing PROS of IoT music 

applications: 

Greater Accessibility and Flexibility 

A high number of responses were collected that highlighted an IoT system providing 

greater accessibility to music production equipment that individuals would rarely 

encounter otherwise.  Sample responses included “great chance to network and use 

equipment you wouldn't normally have the chance to use” (Music producer) and “a pro for 

me would be that you don't necessarily need to own that exact device which would be 

great” (Casual music maker). 

Again, there are also references to health benefits, as one respondent stated “help limited 

accessibility” (Casual music maker) as he later referred to the opportunity of IoT to assist 

individuals with physical impairments to produce music.  

 

Enterprise Benefits 

A number of respondents reflected enterprise benefits in terms of being able to access 

and afford professional quality production devices that are often considered expensive 

and unaffordable. Responses reflecting this included “cheaper alternative for 

musicians/creators to use gear they can't afford” (Music producer) and “wider accessibility 

to high end, less affordable hardware” (Casual music maker). 

 

Cultural Benefits 

As alluded in Question 8, respondents felt IoT applications in music production enabled 

predominately digital software users to also benefit from access to analogue and 

hardware tools. One respondent mentioned that an IoT-enabled music system “could help 

many digital only producers access hardware” (Casual music maker) while another felt 
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these systems can allow people “access to the public to Pro-level kit and have access to 

the pro's niche level kit” (Casual music maker). 

Going further, respondents felt IoT showed potential to help bridge the divide between 

digital and analogue music production.  One respondent mentioned that “this is a very 

innovative way to bridge the gap between analog and digital when producing music” 

(Music producer), while another expanded: 

The trend of the world is digitalization. And even though it can be sad to lose the 

beauty of the real world, the accessibility would give the average user would 

overcome any con. (Music producer) 

 

Educational Benefits 

Educational benefits of IoT-enabled music applications presented an unexpected theme 

that became prevalent in both the questionnaires and the professional interviews.  This is 

reflected in comments by the respondents concerning opportunities to demo and compare 

different devices that they do not personally own. Sample feedback includes “greater 

accessibility and an opportunity to compare otherwise unaccessible equipment” (Casual 

music maker) and “a pro is allowing bedroom productions to try out and access hardware 

they are unable to come across” (Music producer). 

 

Creative Benefits 

Some respondents shared insights into how IoT can bring new creative techniques to 

music and additionally areas expanded outside of music production. Some areas where 

respondents felt IoT benefits can influence creativity included: 

- “Performance (Live), disability, robotics where new ways of signal transfers need 

testing” (Music producer) 

- “Film - creating realistic reverb or echo controlled by a midi interface controlling all 

hardware in a studio” (Music producer) 

- “New genres or mixing styles/producing styles/new trends of music” (Music 

producer) 
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New Workflows 

A last theme reflecting pros of IoT music applications is the development of new 

workflows in music production. As shown statistically in Question 9, many respondents felt 

that IoT applications could be useful tools for influencing their current music production 

processes. One musician mentioned greater flexibility in producing music, stating: 

Good flexibility for musicians.  If you leave the studio but think you want to change 

something after you get home, providing you have a stable connection, you can 

access the physical equipment at any time. (Musician producer) 

While another reflected on greater options for production, stating:  

The applications to post processing are possibly endless and the system is 

probably perfect for this purpose (i.e. using outboard compressors, reverb, etc.). 

(Casual music maker) 

 

In addition to pros of IoT-enabled music applications, many respondents shared feedback 

regarding concerns or perceived CONS of these systems if they became universally 

available.  A selection of themes is presented below: 

Reliability of Internet/Reliability on Performance of Real-time Interaction 

Concerns about Internet stability, latency, and less than ideal, real-time interaction 

produced a number of comments regarding potential cons of an IoT-enabled music 

system. A sample response mentioned that “latency would be a big issue, especially with 

live recording and tracking, this may never be able to be solved, however…” (Casual 

music maker), while another respondent elaborated that: 

Analogue gear has to work in real-time, there is no possibility of time or phase 

compensation at the equipment. This would need to be implemented at the DAW 

end if transfer speeds were slow enough to require it, and this would limit any real 

time interaction as the mix prints. (Music producer) 

Additionally, one respondent spoke on concerns for regions with less developed Internet 

structures, stating: 

If one was to take it to the less fortunate countries who don't have direct access to 

internet or limited access to internet. Would be more difficult to reach those areas. 

(Musician producer) 

 



123 
 

Limited Resources/Oversaturated Market Use of IoT Music Devices 

Another major concern seen across the data is the limitation of available IoT-enabled 

music hardware devices due to oversaturation of demand if the devices became widely 

available to the public.  One respondent asks:  

I do wonder though about the demand there would be for the best gear, as it can 

only be controlled by one computer at a time, how would the time you would be 

allowed to use the gear in question be regulated? (Casual music maker) 

While another reflects: 

The problems I see are (i) that only one user can access any one piece of 

equipment at any particular time, thus limiting the number of users to number of 

physical units... (Music producer) 

 

Unintended Consequences 

Additionally, while some insights aren’t repeated throughout the data, there are 

revelations how the positive aspects of IoT music applications can promote some 

unforeseen negatives.  One being greater isolation of some music makers, as one music 

producer states:  

Like many internet based innovations, this has the power to improve and widen the 

creative musical horizons for many people, yet it also has the potential to isolate 

people as it reduces the need to physically move around. As long as this is 

recognised and treated accordingly, then this innovation will do much good in the 

music industry.   

Another music producer speaks on possible learning curves adopting the technology, 

mentioning  

An answer to one problem usually bring its own questions demanding answers. It 

can save time meanwhile creating more options and versatility which in itself 

demands knowledge and technique, which requires more time invested to become 

fully utilizable. 

Lastly, one music producer introduces the idea that IoT-enabled music devices could 

disrupt the software plug-in market, or conversely negatively impact the demand for new 

hardware devices. In a unique perspective, the respondent states  
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If this truly did take off, there is a possibility of it killing the physical hardware 

market. However, you would also be suffering with the issue of direct comparison 

to plug-ins and the utility of using these "true physical" systems through digital 

means kind of screws over both sides. 

6.2 Interview Evaluations 

6.2.1 Design of Interviews 

The interviews targeted a smaller subset of individuals who have professional expertise in 

audio and music production or sound engineering.  The list of interviewees is as followed:  

1. Todd Reitzell – Musician and sound engineer. Founder and managing director of 

an international creative agency. 

2. Dr. Bill Campbell – University lecturer, sound engineer, and audio producer for 

music, film, and gaming.  

3. Dan Wilde – UK singer, songwriter, and music producer. 

4. Mat Skidmore – Freelance live recording and mix engineer.  

5. Simon Gogerly – University lecturer, Grammy award winner, and leading UK music 

producer and mix engineer.  

6. Alan Branch – Grammy award winning audio engineer, producer, musician, and 

writer. 

7. Gary Bromham – Professional music producer, mix engineer, guitarist, and 

songwriter. 

The interviewees are esteemed by their peers and have made significant contributions to 

music through their years of experience in the field, having earned accolades and awards 

in music and sound production as a result of their outputs and actively sharing their 

knowledge with audio and music students. The selected sample group was ideal based on 

their accessibility, experience, and proximity to the researcher, however the homogeneity 

of the group reflects the overarching demographic of the music industry, a topic further 

exemplified by research from Smith, Choueiti, and Pieper (2019).  

The interviews are qualitative in nature, and provide more subjective views regarding the 

incorporation of IoT for music production.  As identified by Goddard III and Villanova 

(2006), the interview questions provide the following benefits: 

- “Allowing respondents to reveal otherwise concealed attitudes,” 

- “Revealing problems and their potential solutions through discussion,” 
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- “Encouraging free expression,” 

- “Discovery of personal information, attitudes, beliefs, and perceptions that a paper-

and-pencil survey might not uncover,”  

- “Allowing interviewers to probe or follow up on survey items.” 

The interviews are semi-structured; an outline of the questions was arranged prior to the 

interviews in order to set a plan of discussion, but the responses and feedback of the 

interviewees help assist driving further discussion (Stuckey, 2013). The benefits of semi-

structured interviews are that they give more freedom to the interviewee to express their 

views (Stuckey, 2013) and more opportunities to the interviewer to “prompt and probe 

deeper into the given situation” (Kajornboon, 2005) without being tied to a rigid format 

mandated by structured interviews. The developed interview questions are framed as 

open-ended variations of the questionnaire questions and aim at providing additional 

insight into needs and gaps within music production that a possible IoT solution can serve. 

The questions can be found in Appendix FF. 

 

6.2.2 Thematic Analysis of Interview Data 

The analysis of the interview responses involves scanning the transcripts and observing 

consistent topics or themes that are prevalent throughout each of the discussions.  The 

themes “capture something important about the data in relation to the research question, 

and [represent] some level of patterned response or meaning within the data set” (Braun 

and Clark, 2006, p.82).  As discussed in the methodology, theme categories were driven 

directly by the second and third research questions: 

RQ2:  How can IoT-enabled music systems facilitate new music production 

engagement, workflows, and collaboration methods? 

RQ3: What cultural, enterprise, and creative benefits do IoT- based music 

systems present?  

The list of prevalent themes in the interviews is numbered down below: 

1. Predominant production environment 

2. Preferences for analogue and physical hardware over digital software 

3. Preferences for digital software in production. 

4. Engagement with IoT-enabled music hardware 

5. Creative benefits of IoT music application 

6. Cultural benefits of IoT music applications 
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7. Enterprise benefits of IoT music applications 

8. Educational Benefits of IoT music applications 

9. Concerns and risks associated with IoT music applications 

 

6.2.3 Interview Analysis 

As discussed in 6.2.1, the interview questions mirror those of the questionnaires, therefore 

the first 6 questions collect information regarding the interviewees’ backgrounds and 

current preferences for music production techniques, and the last 4 questions gather 

insights into the interviewees’ views on IoT being adopted to facilitate music production.   

In this section the themes will be presented as headers with relevant commentary from 

the interview respondents supporting the discussion of the themes. 

Predominant Production Environment 

The first two questions were posed in order to acquire an understanding of the production 

backgrounds of the interviewees, specifically learning about their experiences relating to 

audio and music processing and the typical spaces in which they conduct their work. The 

questions immediately revealed that while all of the interviewees spend some time 

working inside of a professional studio space, a majority of their time is dedicated to a 

personal or in-home developed studio.  For some, the personal space offers the best 

accommodation for the initial stages of production before moving into a professional 

studio that has a greater range of resources to finalise a mix. Campbell reflects that: 

So for convenience I’ll work in-the-box at home but I obviously don’t have the 

facilities to really get a good mix, so I would go into the studio to finalise in a 

proper environment and then use hardware to supplement it. 

Respondents reported that the personal space, although not always ideal, offers comforts 

of working at a desired pace without the sometimes harsher time constraints of 

professional spaces.  Additionally the personal space provides economic advantages as it 

is not as costly as professional spaces, and those savings can be passed onto the 

customer as a result.  Wilde elaborates on this point, stating: 

It’s not the ideal space but most of what I do is from home because it’s… there are 

no overheads there and I’m trying to provide a service to people that, you know, 

doesn’t cost them the world. 
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A final point highlighted the fact that when a producer reaches a higher professional status 

within the music industry, their clientele almost expects them to have a personal working 

environment available in some capacity. Gogerly adds “the way that the music business 

has changed over the years clients now expect you to have your own studio to mix in” and 

Branch supports his sentiment stating, “I think sometimes we need spaces in studios just 

more for business and personnel and everything else.” 

Preferences for Analogue and Physical Hardware over Digital Software  

Questions three through five asked whether the interviewees use physical hardware, 

digital software, or a combination of the two in their normal production processes and 

probed deeper into why these were the cases. The interviews offered a range of 

responses with insights into the appeal of both hardware and software techniques for 

music processing. While mixing audio and music primarily tended to be in-the-box 

amongst the interviewees, they opened up about the appeal of analogue and physical 

hardware and why some will never tend to completely discard analogue techniques. The 

lure for hardware can be categorised into 2 areas: Quality & Performance of the 

technology and User Experience. 

Quality and Performance 

One argument regarding the performance of physical and analogue devices shared by 

both interview and questionnaire respondents is that there are qualities about physical 

music hardware that separate them from digital software, and that some devices provide 

greater warmth and sonic depth than their software counterparts. Bromham believes that 

analogue compression, saturation, and distortion “provide excellent coloration solutions 

for digital audio which can sometimes be 2 dimensional and slightly sterile.” With regards 

to specific types of hardware like reverb, he feels “the sound is more encompassing and 

immersive than a plugin which often sounds like it is sitting on top of the mix!”  

Similarly, another common view shared among the respondents is that there are attributes 

that software replicas may not be able to accurately recreate about hardware.  Skidmore 

remarks, “yeah there definitely seems to be something happening in that analogue box 

that you don’t get [in software],” while Branch and Bromham give definitive insights 

emphasising the appreciation of the ‘non-linear’ properties of analogue equipment. Branch 

stresses this in his statement: 

But some stuff, you know synthesisers or certain valve compressors that have got 

kind of non-linearities or certain things about it, there are times when you plug in a 

real hardware piece of gear and you just know that it sounds real. 
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In fact, one of the appreciations of hardware is that different devices can give unique, 

unpredictable results every time, and some producers believe this characteristic can 

positively influence the aesthetic of a recording. Gogerly provides a more in-depth view of 

this phenomenon, stating that: 

But to a degree I almost sort of like the slight unpredictability of real hardware, 

there is something about, it’s like playing an instrument.  The difference between 

playing a real instrument and playing a plug-in instrument is that the real 

instrument will react differently and sound differently depending on what you’re 

playing whereas the plug-in, once you record your midi performance, will play back 

exactly the same every time. 

While most of the interviewees were satisfied finalising mixes in software, including 

implementing standard touches such as equalisation, a common preference among the 

respondents was capturing or recording the best quality audio using desired hardware 

before bringing the recording into the mix stage. 

 

User Experience 

In addition to feeling that they sometimes obtain a more pleasurable auditory experience 

from physical hardware, another draw to hardware among the interview respondents is 

the tactile experience.  Both Campbell and Gogerly reflect on instances where a producer 

already knows the workings of specific devices, with Campbell stating, “rather than 

spending hours trolling through settings on a plug-in, I can go straight to a piece of 

hardware that I know works and sounds good.  It’s quicker in some respects than doing 

everything in-the-box I find.”  

The process of manually trying to restore a desired setting on a hardware device is 

arguably a negative trait of hardware compared to software, but there are occasions when 

the tactile experience of rotating a knob or moving a fader is preferred than digitally 

interacting with a software interface or plug-in. Skidmore admits that “there’s something 

kind of nice and tactile about actually using hardware equipment,” and sometimes it’s 

even the nostalgic factor of engaging a process in a traditional manner, as explained by 

Wilde: 

Now it could just be that, you know, that could just be sort of in my head because 

I’m twisting some knobs on a hardware thing and I’m thinking ‘yeah, I’m like a 

proper producer now’ not clicking around with a mouse... 
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Lastly, in many cases producers have a greater appreciation of hardware devices they 

discover and take the time to become familiar with and learn the inner-workings about.  

The physicality of the gear and personal interaction between the person and device can 

build an emotional response.  Branch reflects more by stating: 

I sometimes think there’s a point where you just fall in love with that piece of 

hardware. You know it, you trust it, that kind of thing, so there’s that element of just 

knowing an individual piece and no other software can come close. 

 

Preferences for digital software in production 

On the opposite spectrum, all of the interviewees admitted to using in-the-box software 

primarily for mixing audio, attributing the key factor to convenience. The ability to produce 

music in a personal space at one’s convenience is a modern development that offers a 

number of advantages to traditional, studio-based production schemes. Specifically two 

factors drew a lot of appeal for the use of software in both the questionnaires and the 

interviews: recallability and cost savings. 

Recallability 

The biggest theme regarding the advantage of software in music production amongst the 

interview respondents is the option to recall presets. With software, a producer can save 

the settings of their work and return to a production at a later time, restoring the exact 

settings without losing their initial work.   Reitzell remarks on the value of this, mentioning:  

I’m someone who I like to be able to make some settings and load those settings 

and you know, recall it. Rather than getting frustrated never being able to dial in 

that sound again.  

Particularly with mixing, where all of the respondents reported opting for software over 

hardware, the chance to save and recall work is of significant importance.  Skidmore 

expresses this point saying “for me, the most important thing with mixing has become 

recallability.” 

 

Cost Savings 

The convenience and efficiency of digital mixing in a personal space inherently comes 

with additional financial savings. In most cases, a software plug-in or digital model of a 
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well-known music processing device will cost significantly lesser than the actual hardware 

product. Reitzell expands  

But all of this hassle comes with digital, comes at a price.  It’s less expensive, 

typically less expensive.  I mean rather than spending six or eight-hundred or a 

thousand currency units on a great compressor or EQ you can buy the equivalent 

at 150 currency units, and that’s what I do! 

Additionally, the savings of not having to purchase expensive equipment or rent extra time 

in a professional studio can be passed onto the customer. Skidmore recounts his 

business model of splitting his production process between a studio and his own 

workspace because it results in greater savings for his clients: 

Because of the nature I think of the industry now a days, what tends to happens 

is… so I’ll work with a band, we’ll record in the studio for a period of days, and then 

I tend to mix on my own. And so rather than sort of having the recording session 

and then the mix session together and at the studio… just ‘cause it will save 

money for the band so we don’t have to hire a studio space. 

 

Engagement with IoT-enabled music hardware 

When asked whether their use of physical and analogue equipment would increase if they 

were more accessible, all but one respondent confirmed that they would add IoT-enabled 

hardware to their production workflows. Reitzell felt that IoT would not impact him much 

for his standard process of mixing for film, but most others felt it would be an added 

benefit for their production techniques. Gogerly adds his thoughts stating: 

I would definitely embrace that in a big way I think because it’s almost like having 

an extended studio where you can access pieces of equipment that you don’t have 

or you don’t own and you can’t afford to buy necessarily or just don’t have physical 

access to like plates for example. 

Similarly, Bromham reflects on IoT-enabled music systems being an extension to the 

process of in-studio equipment hires: 

I am amazed that no one has done this before as I think it’s an excellent idea. 

When I started producing music, it was common to hire in equipment on sessions 

and I see this as an extension of this principle. It means that someone that would 
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not otherwise have access to a well-known piece of equipment, due to cost or size 

considerations, might subsequently have access to this world! 

Additionally, while Wilde felt that IoT-enabled devices would not largely influence his 

processes of mixing in-the-box since he felt some processes like equalisation is more 

convenient in software, he reported desired uses for tracking and recording: 

So I think tracking, like on the way in, recording…  If it was I’d use it on the way in, 

tracking, and I might use it for mix bus and if ever I do like masters for people then 

I’d use it. 

Lastly, most of the respondents relayed specific interests in utilising IoT technology for 

unique and untraditional processes. A popular topic included creating real-time reverb 

from acoustic spaces, such as Reitzell mentioning how he would value sending organ 

sounds into a chapel or cathedral, admiring this kind of “location independent processing.” 

IoT may also provide unconventional ways of incorporating instruments or older sound 

producing devices into a mix.  Skidmore reflects more on this: 

I like the idea of instruments. So say, maybe things like synthesisers or that kind of 

thing is quite interesting where it’s something which, isn’t widely available or isn’t 

widely recreated as a VST synth or something. Those kind of things could be 

good. 

 

Creative benefits of IoT music applications 

Expanding upon using IoT for non-traditional music practices, most of the respondents 

showed excitement for creative benefits that could emerge from IoT-enabled music 

systems. Skidmore felt that: 

Anything that can give access to more kinds of equipment and sounds is useful for 

creativity… especially if you have a specific thing that you think you’re after but 

you don’t have access to it, those kinds of times it could be really effective.  

And as mentioned, almost all of the respondents found the possibility of incorporating 

unique acoustic spaces into a real-time reverb scenario a very attractive creative 

application.  Campbell reflects on some famous tracks being recorded by popular 

musicians in unique venues, and how the musicians effectively “played the space.” The 

space became as much a product of the recorded sounds as the vocals and instruments, 

and ultimately added to the overall listening experience. Campbell expands:  
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So that speaking on a live scenario, where you probably wouldn’t get that same 

effect… you wouldn’t get the musician playing in exactly the same way if you’re 

doing it through convolution. So in that sense, if you would have the real-time 

Internet of Things where you would actually have a drummer playing and hearing 

themselves playing in an amazing space that would probably be something that 

would be spectacular in itself. 

Additionally, a unique benefit of IoT is that it can promote innovation amongst its user and 

encourage originality, and as seen by many technical developments in the recent years, 

this is highly desirable for individuals in creative fields. Branch shares his impression:  

When something actually, let’s say, something original comes along, it’s something 

different I can’t get currently that gives me a different sound or, not saying better 

sound, but it gives me a different sound, something I can’t achieve now, that’s 

great because now you’re searching for originality and something new. I can plug 

in, you know, to something and use new plug-ins that can enhance my song, I 

want to see it. 

 

Cultural benefits of IoT music applications 

A key benefit of IoT-enabled music applications mentioned in the both the interviews and 

the questionnaires is the expansion of production processes by extending networked 

analogue and physical hardware to musicians who currently have little or no access to 

these devices. The questionnaires gave insight into how bedroom musicians can benefit 

from accessing devices outside of the limits of their personal spaces, but Wilde also 

presents a case for the nostalgia of analogue technology and how IoT can allow people 

who have had to shift to digital music production techniques over time reconnect and re-

engage with older, hardware-based processes that may still hold sentimental value. He 

also contends a notion of nostalgia for things we haven’t experienced, and how younger 

music producers can still romanticise about vintage hardware, similar to the growing 

appreciation seen for vinyl records among modern-day music listeners who may not have 

grown up with the technology. He closes with a personal relation, “…‘cause people have 

nostalgia for things that they’ve never experienced too, don’t they?”     

Gogerly and Branch also refer to IoT-enabled music opportunities being attractive to 

people with more technical leaning backgrounds because it allows more experimentation 

with music processes while also granting options to understand and utilise an emerging 
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technology trend. The idea of using a browser to interact with an infrastructure of 

interconnected devices could pose an exciting prospect for musicians who like to 

experiment as well as beta test new processes.  

Finally, creativity inspired by IoT music applications can encourage growth in cross-

cultural collaborations.  Branch passionately explains: 

I think the beautiful thing of the Internet of Things in a creative context is creativity 

or let’s say musical art; I think in its general sense brings people together. It brings 

beauty and passion and all those exciting things as us as music makers kind of fills 

their inner beings. 

IoT offers different societies opportunities to become closer by sharing and combining 

their artistic techniques in addition to spreading a greater appreciation of their individual 

heritages.  Branch closes his original point stating:  

…So I think maybe the Internet of Things, if it enables creativity in art to become 

close together around the world maybe there’s a broader sense of things, a beauty 

of joining, of becoming different cultures and different societies, an appreciation 

amongst each other rather than say the music scene in LA and music scene in 

London… I still think cultural communities would have that, music would have its 

kind of heritage I suppose but maybe we could create more together because of 

that.  

 

Enterprise benefits of IoT music applications   

Another key benefit across the interviews was enterprise benefits of IoT.  Bromham 

mentioned that: 

The concept and process almost certainly have a place in post-production and 

mastering where select pieces of hardware might easily cost far more than those 

used in traditional recording and mixing environments. 

Relatedly, one argument is that IoT can allow production studios as well as individuals 

who collect musical hardware opportunities to monetise their equipment.  Wilde remarks, 

“I think there are people that have amassed and collected all this nice gear and they can’t 

be using it 24 hours a day and I’m sure they wouldn’t want to be,” suggesting that IoT 

technology incorporated into their collection of devices would allow individuals to set a 

scheme to rent and hire their unused equipment to the public.  This could potentially 
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create a new source of income for people, especially those who collect rare and highly-

coveted vintage gear, while allowing customers more opportunities to find devices they 

desire.  Wilde follows up to his argument stating: 

… I think everybody even if you really enjoy your job, most people would say if 

they could work a little bit less and still make money from their assets or whatever, 

they would do that.  So I think, yeah, there would be a lot of people who would say, 

right ok this allows me to do a little bit less production and just have these hours 

where I rent out my equipment. 

Similarly, Gogerly envisions an infrastructure where people can access a data base of 

networked music devices and see which particular devices are available and who and 

when they can be hired from. Gogerly elaborates: 

But on a global scale I supposed if you have some kind of directory of users set up 

you could say… say you have a list of 100 people who’ve got Culture Vultures and 

you can see that 30 of them at that time weren’t using them you could use one, 

especially if they were probably in a completely different time zone because they 

may be in bed at that time when you were doing your mix and they can leave all 

their stuff set up so other people could use it in the middle of the night which would 

be really cool. 

Additionally, another enterprise benefit of IoT includes the actual preservation of hardware 

devices themselves. If very expensive devices were set up to only allow digital access 

without physical human interaction it can save them from a lot of the standard wear-and-

tear associated with typical use and misuse, inadvertently resulting in more savings by not 

having to spend additional funds on repairs and replacements.  Reitzell expands: 

So you spend thousands and thousands on a mixing desk and as soon as 

someone gets their little greasy fingers on it we start beating up. So if it could be 

completely robot controlled that would mean that it would take less abuse and 

might last longer. 

Lastly, associated with the robotising of hardware, IoT can help implement new workflows 

in production spaces. Reitzell explains a possibility of optimising a recording session 

explaining: 

I’m an engineer in a control room recording someone and instead of going through 

4 sound proof doors to get to a knob that’s in a room with the performer, I can do it 

using IoT. This is a massive time saving for everyone, time saver for the engineer. 
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It doesn’t disturb the performer and you can more quickly, well with less disruption 

adjust a parameter that might be causing, I dunno, possible ear damage or 

possible equipment damage. 

Wilde adds to this point mentioning how many digital processes can be controlled by a 

networked device like an iPad, “but for all the physical stuff I’m using, like the analogue 

stuff, there’s nothing, I can’t change it. So that would be quite useful, even to control your 

own gear.”  IoT can provide digital benefits of network control to analogue technology, 

influence new methods of engagement and interaction with hardware-based production 

practices. 

 

Educational Benefits of IoT music applications  

A last IoT-enabled music benefit that emerged across the interview data sets were 

educational benefits. Particularly among the respondents in academia, some interviewees 

envisioned how IoT can allow testing to occur for research purposes or be used as an 

instructional tool for students.  

In one case, Campbell identifies how IoT music devices can be used as a comparative 

tool for evaluating different hardware devices and comparing them to equivalent software 

applications and plug-ins. He related to his postgraduate research experience stating: 

If the Internet of Things would have been available to me it would have been nice 

to do real-time dynamic range compression with people sitting in the room, but you 

could compare digital to analogue or something like that, you know. 

In this case, IoT would allow real-time listening tests to be conducted with actual hardware 

in remote locations with live participants. He expands: 

…if you had like an Internet of Things where you had mass availability to these 

things you could actually get people from all over to be able to do these 

experiments for you or this research to test their abilities. 

In a second case, Skidmore relates to IoT-enabled music devices being complementary 

tools for trainings and tutorials on the use of real musical devices. He explains: 

Particularly I think when you’re learning and you’re sort of watching videos on 

YouTube of people with this actual hardware equipment using these things it 

would be interesting to go, ‘ok well how when they turn that knob up to 4 on the 
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gate how does it differ to my plug-in?’ And actually being able to use a real bit of 

hardware and actually hear the differences I think that would be interesting. 

But going further, this case can be expanded to lessons and courses within academic 

institutions.  While currently working with students in different modules for an audio and 

music technology programme, Skidmore adds: 

…and in fact from a university kind of perspective being able to actually show 

students an actual piece of equipment and actually run audio through it… but 

obviously without the university having to own it I think that could be very useful. 

 

Concerns and risks associated with IoT music applications  

The Interviews presented many themes recognising areas where IoT can positively impact 

music production.  However, addressing pros and cons, the data presented areas where 

concerns arose from the respondents regarding a widespread implementation of this 

musical processes.  

Similar to the questionnaire data, some of the respondents felt that unlimited access to 

ubiquitous music hardware could create higher demands, consequently lower the supplies 

of available devices. In some cases, devices that were normally free and accessible to 

specific users may become harder to access as a result.  Campbell presents the case: 

I also think that you would have… probably if you had like one facility that had a 

Pultec available, it would probably be booked up all the time that you couldn’t get 

access to it when you wanted to have access to it. 

These restrictions could affect the standard operations of local music studios.  Musicians 

who frequented a nearby studio expecting regular access to desired equipment may have 

to be set aside for the growing demands of world-wide consumers who also have the 

desire to access the same hardware.  Wilde expands: 

It would be interesting to see how that affected studio availability I suppose.  Like 

for somebody that actually wants to go and hire out the studio, you know, the 

studio might be like, ‘Well sorry we’re booked up because now, we’re no longer 

serving the people of this area, it’s the whole world.’ 

Additionally the entire process of regulating the use of the networked devices would need 

to be amended.  If these devices became high in demand there would have to be policies 
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in place governing appropriate use in order to allow everyone reasonable access. A 

proper computing infrastructure would need to be in place to monitor use and only allow or 

restrict access based upon the agreements with the studio.  

A last source of concern is that a growing access to musical devices could actually 

devalue music production and the creative process. Branch presents a unique argument: 

I can certainly see patterns emerging, cons, like the easier we make it to make 

music… there is a plethora of terrible music you know. It’s harder for very good 

music to rise to the top, so is there a con if we make it simpler to do things with the 

Internet of Things? 

The opportunity to have a wide arrange of hardware in addition to software readily 

available with little effort can actually stunt the creative process and allow more production 

of lower quality music by less talented producers. Similar implications have occurred with 

other contemporary music processes emerging in recent times, as explained by Gogerly: 

The only downsides I can see to that is the aspect of, when you know software 

instruments came in and a lot of plug-ins came in… this even happened before 

[with] hardware, you know rack mount equipment where you’d get hundreds of 

programs in them and you can spend so much time just literally going through 

listening to presets that you end up losing the plot entirely about what you were 

trying to do creatively. 

However, Branch feels that although these processes have the opportunity to be abused 

and produce poor results, they ultimately stem from a place of creativity and human 

prowess, and as long as people continue to construct good ideas and remain proactive, 

creativity will continue to emerge as a result. He offers a conclusive argument: 

I can only think if there is some type of process that took creativity away from us it 

still has to have good ideas, it still has to have our human intellect creating 

something new, fresh, and original with that, whatever it is… if it crosses over into 

the side it’s just doing stuff for us, we’re just watching it happen aren’t we, we’re 

not creating it anymore. 
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7. Critical Assessment of Research  

Chapter 7 provides a critical assessment of the analysis conducted in the research, giving 

further insight and context to the practical creative work, the evaluation of technology 

through the audio streaming tests, and the feedback considerations from music producers 

regarding opportunities and challenges of IoT-enabled music systems.  

7.1 Realising an IoT-enabled Music System 

This research set out to understand, demonstrate, and evaluate how the Internet of 

Things could impact new music development processes by allowing remote interaction 

with networked physical and analogue music technology. As part of the research, a proof-

of-concept, IoT-enabled music application was conceptualised and prototyped to facilitate 

the investigations and address the following research questions: 

RQ1:  What are the current capabilities of IoT infrastructures to support 

distributed audio system networks, and what improvements can be 

identified and evaluated?  

RQ2:  How can IoT-enabled music systems facilitate new music production 

engagement, workflows, and collaboration methods? 

RQ3:  What cultural, enterprise, and creative benefits do IoT- based music 

systems present? 

Two areas were determined to be beneficial components to the practical development of 

the IoT-enabled music system: the ability to virtually control physical music hardware 

through the Internet and the discovery of tools to deliver uncompressed, low-latency audio 

to these networked devices. The convergence of these two components in the design and 

build stage successfully aided in realising a unique system for Internet-driven music 

production.  

The design, build, and implementation of the IoT-enabled music system took place over a 

two-and-a-half year span, starting with the creation of a webpage interface to send data 

between remotely connected computers and concluding in a complete user experience 

allowing virtual control of two audio hardware devices through the Internet.  Using the 

practice-driven methodology detailed in Patterson et. al. (2015), the practical build of the 

system occurred over multiple iterative stages of research and design, and the 
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progression of each stage built upon the successful employment of the prior. The iterative 

design and build cycle gave greater insight into existing technology that could effectively 

enable desirable processes at each developmental stage, and additionally identified some 

areas (such as network speed and latency, responsiveness, security) where 

improvements can occur. Continuous advancements in both existing technology and the 

Internet will make future IoT music systems ever more capable, but this research proved 

that present-day IoT resources can facilitate remote music production techniques and 

provokes the argument that wide-spread implementation of these systems may one day 

occur.  

Near the conclusion of this research a new company, mix:analog, completed and released 

the most comprehensive realisation of an IoT-enabled music system that allows control of 

bespoke analogue audio processors and real-time VU and audio monitoring through their 

consolidated web application.  The successful implementation of mix:analog’s application 

further highlights the importance and necessity of networked audio systems for remote 

music production, and presents growing possibilities of how combined efforts between 

musicians and engineers can lead to more robust and effective IoT-enabled music 

soultions. Where De Carvalho (2012) and Dixon (2016) see digital software tools 

effectively reducing attributes of the music studio to a laptop, IoT can additionally help 

virtually extend professional studios devices to these laptops and personal spaces. This 

research has also shown that these types of networked architectures can help incorporate 

unconventional creative qualities, such as remotely-connected material environments that 

can produce distributed, natural real-time reverb, into standard music production 

practices. 

 

7.1.1 Democratising IoT-based Development with Low-Cost Computing 

Resources and Open Source Code 

Research Question 1 inquires about IoT infrastructures that can support IoT-enabled 

music applications, and this research notably illustrated that these systems can be 

realised with publicly available tools and non-proprietary resources. Having flexibility in 

product development methods inherently gives more creative input to individuals and 

helps expand technical design without a sole reliance on traditional, commercial-driven 

applications and corporate-based platforms.  

Websockets played an important role in delivering real-time control information to 

networked computing devices, and its HTML5 skeletal code made it convenient to adopt a 
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portable, web-based interface. Microcontrollers continue to become cheaper and 

increasingly more powerful, and allowed a wide array of computing processes to be 

performed to manipulate remote music processing devices in fractions of time. WebRTC 

provided flexibility into how media elements can be programmed and merged into the 

practical design to enrich the user experience, and JackTrip offered a high-performing 

audio streaming application that is freely accessible and user friendly. All of these 

components worked together to create a unified music experience without the need for a 

full assortment of assets typically exclusive to corporate environments. Consequently, this 

shows that other complex creative systems, not limited to music, can be fostered and 

delivered by broader groups of technically capable individuals, helping open new 

processes and opportunities for creative IoT development.  

7.2 Critical Analysis of Research Evaluations 

7.2.1 Discussion of Real-time Audio Streaming Evaluations 

Further focus on Research Question 1 also showed two audio streaming platforms, 

JackTrip and WebRTC, offering prospects of high-quality audio transmission with low-

latency speeds over the Internet.  After extensive testing and evaluation of the two 

platforms, it was observed that they catered to slightly differing audio scenarios. The audio 

streams transmitted using JackTrip consistently maintained the entire frequency spectrum 

of the source audio and proved suitable for transferring full-range music and instrument 

sounds over the Internet. In contrast, the WebRTC recordings were found to show some 

filtering and compression of the original source signal. As discussed in Chapter 5, 

WebRTC employs techniques to preserve and enhance the human voice, thus making it 

more tailored for virtual chat applications and browser based video conferencing.  

Concerning a networked music production scenario, JackTrip provided the most desirable 

results, and this was reflected in the mixed-methods analysis of Chapter 5 where JackTrip 

showed lower measurements of distortion, dropouts, and latency compared to WebRTC in 

repeated trials of audio streaming tests.  These quantitative measurements were 

complemented by general listener feedback from participants who subjectively compared 

the similarities of the recorded audio streams from the two platforms to their source audio 

files. JackTrip was highly favoured among the respondents, with many perceiving minor to 

no differences between the source audio file and the JackTrip stream recording.  

After direct comparisons of JackTrip and WebRTC over the local area network showed 

that JackTrip objectively outperformed WebRTC in cases of real-time music streaming 

scenarios suitable for this research, the next step aimed at determining the types of 



142 
 

networks that best supported JackTrip audio transfer. Subsequent tests evaluated 

JackTrip streaming implemented over four network scenarios: 1.) two computers 

transmitting audio between each other using hard-wired Ethernet connections within a 

local area network, 2.) remote computers transmitting audio using Ethernet over a wide 

area network using the commercial commodity Internet, 3.) remote computers transmitting 

audio using Ethernet over a wide area network utilising a high-speed national research 

and educational network (NREN), and 4.) computers using wireless Wi-Fi connections 

over the local area network.  In the case of Wi-Fi networks, the lack of suitable bandwidth 

and possible network congestion yielded unstable streaming results as dropouts and 

audio errors were regularly present in all of the trials.  The commodity network presented 

mixed results, and while the data in Chapter 5 showed minimal errors in the audio tests, 

separate testing dates shown in Hardin and Toulson (2019) provided a higher number of 

errors across all sets of streaming tests.  This may reflect similar issues to Wi-Fi, where 

dates of higher network congestion can lead to unreliable service. Additionally the case of 

Wi-Fi streaming resulted in higher latency times than the Ethernet streams, and increased 

buffer sizes applied in the commercial network streams also accounted for greater 

latency. The LAN streaming tests performed exceptionally well, showing low latency 

speeds below the threshold of human echo perception (30 ms) with very rare to no cases 

of dropouts or errors over the entire series of tests. More importantly, repeated WAN trials 

utilising NRENs provided consistent successful results mirroring the reliability of the LAN 

performance. Similar to the successful results of other real-time streaming applications 

exploiting NREN networks for media transfer (Drioli, Allocchio, and Buso, 2013; Ferguson, 

2015), the high-speed network tests offered proof that real-time audio distribution can 

effectively occur over extended distances.  

 

7.2.2 Opportunities for Improved Performance of Real-time Audio 

Streaming  

NRENs proved to be robust enough to support remote IoT music applications with reliable 

audio transmission. However, the lack of stability on modern, commodity Internet 

networks challenged a case for universal adoption, especially since NRENs are often not 

accessible to the general public. However, a developing communication infrastructure that 

may provide more reliable, real-time audio streaming over the commercial Internet is the 

5G network. 
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Some key features of 5G as detailed by ITU-R specifications is that it will provide downlink 

peak data rates of 20 Gbit/s and uplink peak data rates of 10 Gbit/s (SG05, I.T.U.R., 

2017). The minimal requirement latency speeds call for 4 ms for enhanced mobile 

broadband (eMBB) and 1 ms for ultra-reliable and low-latency communications (URLLC).  

Baratè, Haus, and Ludovico (2018) explain that these figures translate into 10 to 1000 

times higher data transfer speed, and 5 times the reduced end-to-end latency of current 

commercial networks.  

In relation to music, attempts to conduct distributed music concerts utilising 5G networks 

have been successfully accomplished.  In 2018, the telecommunications company, 

Ericsson, set out to conduct live, real-time music concerts between London, England and 

Berlin, Germany in order to demonstrate the effectiveness and possible opportunities of 

5G communication technology (Patzold, 2018). In one of the concerts, musician and 

Professor of Wireless Communication, Mischa Dohler, played the piano at the 

Brandenburg Tor in Berlin while his daughter, Noa, sung accompanying vocals at the 

Guildhall in London. Using a 5G network established by Ericsson to transmit media 

between the two locations, negligible delay was observed between the performance 

venues, with Dohler reporting around 20 ms of end-to-end latency between the two sites 

and no noticeable errors in the audio stream (Dohler, 2018).  

5G is still currently in its early stages, but its promise to deliver high bandwidth data 

transfer with low-latency speeds makes an IoT music application with errorless, real-time 

media transmission a real possibility in the future. 

 

7.2.3 Discussion on User Insight Evaluations 

The user insight evaluations presented documented feedback from music producers 

answering Research Questions 1 & 2, and helped identify new production workflows that 

can emerge from IoT-enabled music systems as well as benefits and challenges these 

systems can offer. The feedback responses provided greater awareness of modern 

production techniques used by musicians, and meanwhile shared a modern appeal and 

affinity for the use of physical and analogue music processing systems compared to digital 

software. The feedback similarly helped develop an understanding whether remote IoT-

based engagement with musical devices could influence greater hardware-based music 

production practices. It was observed that despite their professional experiences 

(respondents self-identifying as music producers or casual music makers), a vast majority 

of the questionnaire respondents, nearly 75%, reported using a personal computer with 
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digital music software in their standard production processes. Comparatively, all of the 

professional producers and sound engineers in the interviews defaulted to using software 

as their primary tool to mix music.  While the use of digital software and patches is the 

preferred case for most modern musicians, the evaluations revealed that physical and 

analogue hardware still have value in music production. A majority of the survey 

respondents acknowledged scenarios where hardware provided better results than their 

software equivalents. Furthermore, almost 90% of respondents reported they would use 

more physical devices if they were more accessible and would equally be inclined to 

incorporate IoT-enabled music systems in their personal workflows if they were widely 

implemented. The appreciation for hardware in the respondent data coincides with 

sympathies expressed in section 2.3.3 of the literature review and reiterates the views of 

the interviews shared by Reidy (2014). 

The next two sections dive deeper into the survey feedback by providing a greater 

discussion of the perceived benefits and potential challenges of IoT-enabled music 

systems collected within the user insight evaluations. 

 

7.2.4 Primary Perceived Benefits of an IoT-enabled Music System 

The thematic analysis of the respondent data from both the questionnaires and interviews 

presented various areas where music producers favoured incorporating an IoT music 

system into music production. A primary benefit discussed among respondents is the 

increased opportunity to engage music technology and develop personal production 

techniques with remote hardware. Responses reflected how IoT can provide more 

flexibility in mixing and recording by delivering a greater range of analogue techniques in 

conjunction to the digital processes prominently used in personal settings.  With respect to 

analogue production, the research revealed that a desire for analogue techniques is still 

prevalent among modern music producers. While many respondents felt software 

production techniques have vastly improved over time and are, in some instances, 

preferred to hardware, some felt that the in-the-box environment is too artificial and sterile 

and presents difficulty in replicating the subtle tonalities of analogue equipment. Similarly, 

the non-linear characteristics of analogue offers appeal in that hardware devices can 

generate completely unique sound characteristics with each use, likening the experience 

to playing a real, physical instrument. Lastly, nostalgia may be a perceived factor in the 

desirability of analogue, with some arguments mentioning it provides a more authentic 

music experience that resists modern culture (Brennan, 2018), and that it similarly gives 

younger generations new technology complementary to their digital lifestyles (Patel, 
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2017). In the evaluations, Wilde additionally references sentimental values attached to 

reconnecting and engaging with hardware-driven processes of the past. 

Furthermore, the driving theme of the user insight evaluations centred on accessibility and 

IoT granting music producers access to rare and desirable music processing hardware not 

normally available in their standard production environments.  The evaluations presented 

a strong case for IoT in music production arguing that it serves to break down the location 

barrier between the music producer and physical music technology, adding greater variety 

to music production and directly impacting consumers and influencing their production 

methods. Within the evaluations it was discussed that IoT may allow individuals with 

limited resources to expand their experiences making music outside of their traditional 

means. Modern music processes are typically split between a professional ‘in-studio’ and 

personal ‘in-home’ experience, with both offering advantages and aesthetics that drive 

productivity in their respective spaces. The opportunity to virtually extend aspects of the 

studio into a personal space can create a higher level of collaboration that can reshape 

modern work ethics. Additionally, for people who have geographical, financial, or physical 

limitations that restrict their access to desired music hardware, or those who primarily 

work in spaces where these devices are not readily available, remotely accessible 

hardware has been cited as a possible tool to expand creativity as it grants those users 

opportunities to produce more distinctive and expressive sounds. Lastly, IoT can help 

bridge the gap between analogue and digital music technology by giving new generations 

of producers the opportunities to find unique sounds and generate a wider selection of 

sonic content for more innovative music making. For a growing number of musicians, as 

identified by Jonze (2010), who feel that the “bedroom” or their personal space is essential 

to their production aesthetics, the user insight feedback shared cases where IoT can grant 

these musicians the opportunity to observe, learn, and experience the qualities of 

hardware systems that they would not normally investigate from their preferred working 

conditions. 

Finally, independent collectors and commercial entities that provide musical hardware to 

consumers can benefit from IoT-enabled devices since virtually-accessible hardware 

grants them additional vehicles to distribute their products and services to customers. 

Respondent feedback alluded to new enterprise and market schemes that could be 

arranged by companies and collectors of rare and bespoke hardware through remote 

consumption of their equipment. This can effectively result in new mechanisms to 

generate income. Drawing back to the model of the Audio Hunt 

(https://www.theaudiohunt.com/) where audio files are distributed amongst users and 

processed by the device owner for the customer, IoT can expand upon this idea by 

https://www.theaudiohunt.com/
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allowing customers to connect directly to the remote devices and independently facilitate 

their own mixing sessions without depending on the owner’s time and availability. These 

virtually-hireable music systems have great potential to benefit the hardware owners; 

however, this research subsequently revealed hopes that wide spread accessibility could 

result in saved costs for the consumers as well.   

 

7.2.5 Primary Perceived Challenges of an IoT-enabled Music System 

Any major technological development comes with inherent risks, and one of the major 

concerns surrounding the implementation of an IoT based music system is its perceived 

reliability. A high percentage of concerns surrounding IoT music systems centred around 

audio quality and the reliance on stable Internet connections. Some felt that current 

Internet speeds render these systems unusable, and that the constant need for a steady 

network connection is a deterrent when hands-on hardware or software works efficiently, 

independent of the Internet.  Several respondents hinted at latency being a concern for 

tracking and real-time engagement, while others felt the Internet would invoke 

compression or other destructive processing techniques that would degrade the overall 

audio experience. The audio streaming evaluation was able to address some of these 

issues, showing that high-quality, real-time audio transfer can occur with less than 30 ms 

of latency and negligible distortion to the source audio stream on robust and high-speed 

computing networks.  However, the same quality and performance standards would 

require enhancements to the commercially available Internet to be widely adopted. 

Additionally, regulation of IoT accessible devices is another concern that was regularly 

mentioned by respondents in the research evaluations.  Making musical hardware more 

accessible to the public could inadvertently decrease how accessible they are to their 

regular users.  Compared to software patches, there are only a finite number of physical 

music units that exist, and depending on the brand and model, some devices are more 

highly sought after than others.  If desirable hardware can be easily accessed at anytime 

from anywhere in the world there could be an overcrowding of the equipment and 

potentially stifle musical experiences and engagement for producers. Several respondents 

proposed implementing a virtual booking system that could help regulate use. However, 

concerns emerge over long queues to operate the devices and may eventually dissuade 

users from seeking physical devices altogether due to further drops in accessibility.  

These factors can only be fully assessed after an IoT music system is broadly employed 

and consumer trends observed, but prior planning and analysis of foreseeable 

complications are imperative to proper execution.   
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8. Conclusion 

This chapter concludes the thesis by offering a concise discussion of the main 

contributions to knowledge as related to the research questions, and summarises the 

analysis undertaken in addressing the goals and aims of the research. Additionally, 

proposed future work is presented stemming from the findings of the work. 

8.1 Summary of Main Contributions to Knowledge 

To recap, the original contributions to knowledge obtained in this research are:  

 A first original, detailed analysis of open source IoT technologies with respect to 

creative music applications. 

 

 The creative development of a unique and innovative IoT demonstrator unit for use 

in music production scenarios, enabling and realising concepts including the 

‘Internet connected reverb chamber’ and ‘Internet connected hardware units’ for 

music production, and hence enabling the first detailed evaluation of the concept of 

the ‘virtually-extended music studio’. 

 

 The first analysis of Internet-controlled hardware alongside Internet streaming 

protocols for real-time, two-way audio streaming and real-time processing via the 

Internet. 

 

 The first and most detailed critical analysis specifically of JackTrip and WebRTC 

streaming protocols in supporting high quality, real-time audio transfer across a 

number of modern computing networks.   

 

 The first case of documented feedback from practitioners and experts in music 

production addressing impressions, principally highlighting perceived opportunities 

and concerns, of IoT-enabled music production systems.  

 

 Original and unique implementation of enhanced mixed-method methodologies to 

critically investigate practical uses of the Internet of Things opportunities within a 

creative industry, focusing specifically on music production. 
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The primary contribution identified in the research is its in-depth academic investigation 

identifying and exploring new opportunities that may arise from the convergence of the 

Internet of Things and music production. Innovative audio applications are regularly being 

evaluated through virtual processes, and in 2001 an annual conference regarding New 

Interfaces of Musical Expression has brought together experts across the world to share 

knowledge and expertise for expressing music using digital interfacing and human-

computer interaction (Poupyrev, Lyons, and Fels, 2001). In relation, this research uses an 

analytical approach to investigate new paradigms emerging from IoT-driven music 

production, and incorporates practical design, testing, and evaluation of untraditional, 

virtual methods to promote meaningful engagement with music technology.      

In addressing the research questions raised in Chapter 3 of the thesis, three knowledge 

areas have seen direct contributions:  

IoT Capabilities to Augment Physical Music Production Processes 

Modern IoT frameworks facilitate ubiquitous communication and data exchange, granting 

network-based interactivity with physical music hardware. This is demonstrated in the 

research by the creation of unique user experiences that merge IoT control protocols and 

the transfer of high resolution multimedia data, effectively pushing the idea of a virtualised 

studio where distributed music devices can be engaged remotely from a centralised 

environment.  Testing and experimentation demonstrated that interconnected 

microcontroller units can serve as resourceful tools to operate remote audio systems, 

while HTML5 Websockets allowed web browsers to function as portable vehicles allowing 

engagement and control of physical systems.  The use of Jacktrip and low-latency audio 

streaming platforms allows audio to be transmitted across vast distances without 

perceivable losses of integrity, eliminating the dependence on physical audio connections 

and cables.  

 

IoT-enabled Music Systems Influencing New Workflows for Music Production  

Networked music hardware allows methods for distributed music composition to become 

readily available to the wider population. Through IoT it is shown that unique opportunities 

are presented to better bridge the musician to interconnected music production devices by 

removing the need of physical presence. A shift in musical engagement promoted by the 

Internet of Things adds new layers of complexity to the music making process resulting in 

more opportunities to discover and develop unique sound experiences.  Similarly, having 

options to mix and record music using a combination of hardware and software resources 

offers greater flexibility in production techniques.  
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Potential Benefits Emerging from an IoT-enabled Music System  

IoT and the virtually-extended music studio helps expand the professional studio 

experience to a culture of musicians who work independently outside of traditional 

production spaces, and additionally to those who may have physical limitations restricting 

them from accessing desired devices and technology.  The qualitative evaluations 

provided prospective insights into how access to rare and exclusive devices around the 

world can provide creative opportunities for more inventive development of personal 

projects and musical works that may not be experienced if solely reliant on digital software 

techniques. These opportunities are not limited to hardware, but material spaces with 

unique acoustics can be adapted into creative musical workflows as echo chambers and 

natural, real-time reverb processors. Additionally, access to a variety of production tools 

allows producers to be more informed about the range of technology available to them 

and sounds they can acquire, potentially improving the overall quality of music they can 

produce. Finally, IoT-enabled music hardware has the opportunity to create new business 

models for hardware exchange and hire, which could generate greater value for neglected 

technology and spaces while potentially raising demands for hardware and lower costs for 

users.  

 

While this research presents explicit contributions to knowledge for music production, an 

important impact comes from the consideration that IoT-driven processes can reflect 

greater cultural benefits for the larger creative industry. 

IoT Extension to the Greater Creative Industry 

Complex IoT processes have become more accessible throughout time, and a number of 

features in this research were made possible due to low cost electronics and open source 

tools that are free and available to the public.  Open source resources can provide 

opportunities for understanding how a range of IoT applications are developed and 

evaluated, and aid in the development and reproductions of future creative projects.  The 

use of networked technology also provides more opportunities for collaboration amongst 

individuals and provides non-traditional methods for working with technology to express 

creative works. 

The research evaluations addressed how IoT can be expanded both artistically and 

innovatively outside of music production. Questionnaire respondents felt that IoT can offer 

benefits to health and safety, with some respondents posing ideas of how hospitals can 

better monitor patients with networked wearables. Another opportunity mentioned is how 

IoT can provide better regulation of speed laws by equipping vehicles with GPS 
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monitoring hardware that rewards or penalises drivers, effectively gamifying traffic safety.  

Respondents additionally saw scenarios where people with disabilities or limited mobility 

could have more opportunities to interact with remote music systems and have more 

handicap friendly interfaces available to interact with standard hardware. In more 

distinctively creative applications, respondents felt that IoT can impact real-time 

interaction with networked robots, possibly in a live performance setting for generative 

performances including dance and visual art, or even the control of networked 

instruments.  Strong cases were also made for sound-based applications outside of 

traditional music production, such as applying the real-time reverb scenarios using 

acoustic spaces to create more true-to-life sound effects and experiences for film and 

gaming.  

The development and progression of this research sheds light on how anyone with 

imagination and original ideas can benefit from the IoT architecture. Artists can profit from 

collaborative relationships and open source data exchange that enables the use, 

modification, and development of embedded systems for greater engagement with both 

desired technology and their target audiences. IoT technology is not limited solely to 

industrial and economic driven applications, but can be utilised to benefit the broader, 

diverse interests of society as well.  

8.2 Future Work 

Being able to access and control remote objects is part of the allure of the Internet of 

Things, however, IoT is not limited to simply interconnecting devices over the Internet. An 

important product of IoT applications is the large amount of information produced by 

sensing and actuating devices, and these complex data streams can be collected and 

manipulated into performing other in-depth, data-driven processes. Future advances in 

this research could be achieved through added intelligence to IoT processes, such as 

incorporating machine learning and smart algorithms, which can help optimise 

functionality and improve interaction with the interconnected musical devices. One 

scenario demonstrating this is the idea of smart network path selection, where round-trip 

data packets are sent from a client connection to the server to determine which network 

path offers the best speed and most stable link for reliable data transmission.  

Expanding upon added intelligence, one of the most important factors for survey 

respondents who reported preferred use of in-the-box software for music production is the 

ability to recall presets and previous settings of a mix. A practical benefit of software is the 

ability to save and restore settings of previous productions for future recreation, taking 
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away some of the headache of recalling mix parameters associated with analogue 

hardware. Control information transmitted between IoT devices can be reinterpreted into 

practical actions used to designate settings and functionality of a device.  One example of 

this is using numerical data values delivered by IoT interfaces to set the position of a 

servo motor.  Servo motors are popular types of actuators that allow precise control of 

linear or rotational movement, and their positional feedback can be used to dictate 

stepped movements and desired motor positions. In the mentioned scenario, a numerical 

value sent from a control input of an interface, like a virtual knob, can be translated into 

the exact rotational position of a servo motor. Being able to manoeuvre the physical motor 

to a precise location with virtual data allows predetermined positions to be re-obtained, 

taking away the guess work of trying to manually reset the motor position by hand. More 

importantly, the digital position data can be saved and stored into system memory that 

can be recalled and used for automation in future instances of a production.  

A last future work of this research is the consolidation of a complete web-based interface.  

With control aspects implemented into a webpage with Websockets, WebRTC had the 

greatest potential for adding both high-resolution audio transfer and a real-time video 

stream of the remote hardware directly into the browser with its HTML5 backbone. The 

audio streaming evaluations in Chapter 5 deemed WebRTC unsuitable for music transfer 

in this research, but as the research neared conclusion, companies like mix:analog have 

had some success incorporating both lossless and lossy real-time audio streaming into an 

IoT-enabled music application for real-time monitoring.  mix:analog requires the initial 

upload of an audio file to their servers versus streaming the audio directly from an audio 

editor on the client’s computer as proposed in this research, but they have worked with 

technology like Web Audio API to deliver real-time audio monitoring of the processed 

music and visual feedback in the form of VU meters on a graphical representation of the 

controlled musical device. This technique has worked well for their application and 

removed the need for both a live video feed and round-trip audio stream. However, similar 

to JackTrip utilising the JACK Audio Connection Kit for audio distribution in its application, 

the JACK Audio API could potentially be configured into HTML code or a web plug-in 

allowing both the control interface and audio streaming to be provided directly into the 

browser. This would give users more freedom to connect their preferred audio editors to 

the API and greater control over the audio stream for recording and tracking. 



152 
 

  



153 
 

References 

Literature References 

AES Standards Committee, 2018a. AES standard for audio applications of networks - 

Open Control Architecture -  Part 1: Framework. Audio Engineering Society, Inc.  

AES Standards Committee, 2018b. AES standard for audio applications of networks - 

High-performance streaming audio-over-IP interoperability. Audio Engineering Society, 

Inc.  

Bandyopadhyay, D., and Sen, J., 2011. Internet of Things – Applications and Challenges 

in Technology and Standardization. [pdf] Available at: 

<http://arxiv.org/pdf/1105.1693v1.pdf> [Accessed 17 April 2016]  

Baratè, A., Haus, G. and Ludovico, L.A., 2018, June. Advanced Experience of Music 

through 5G Technologies. In IOP Conference Series: Materials Science and 

Engineering(Vol. 364, No. 1, p. 012021). IOP Publishing. 

Baskar, S., 2017. 6 Reasons Why Designing UX for IoT is So Difficult. Machine Design. 

[online] 28 July. Available at: <http://www.machinedesign.com/industrial-automation/6-

reasons-why-designing-ux-iot-so-difficult> [Accessed 20 February 2018] 

Bonaccorsi, A. and Rossi, C., 2003. Why open source software can succeed. Research 

policy, 32(7), pp.1243-1258. 

Brennen, B., 2019. Opting Out of Digital Media. New York: Routledge. 

Borenstein, G., 2008. A Brief History of the Music Industry over the Last 10 Years. Urban 

Honking, [blog] 12 January. Available at: 

<http://urbanhonking.com/ideasfordozens/2008/01/12/a_brief_history_of_the_music_i/> 

[Accessed 5 June 2016]    

Bouillot, N. and Cooperstock, J.R., 2009, June. Challenges and Performance of High-

Fidelity Audio Streaming for Interactive Performances. In NIME (pp. 135-140). 

Bouillot, N., Cohen, E., Cooperstock, J.R., Floros, A., Fonseca, N., Foss, R., Goodman, 

M., Grant, J., Gross, K., Harris, S. and Harshbarger, B., 2009. Aes white paper: Best 

practices in network audio. Journal of the Audio Engineering Society, 57(9), pp.729-741.  

http://arxiv.org/pdf/1105.1693v1.pdf
http://www.machinedesign.com/industrial-automation/6-reasons-why-designing-ux-iot-so-difficult
http://www.machinedesign.com/industrial-automation/6-reasons-why-designing-ux-iot-so-difficult
http://urbanhonking.com/ideasfordozens/2008/01/12/a_brief_history_of_the_music_i/


154 
 

Braun, V. and Clarke, V., 2006. Using thematic analysis in psychology. Qualitative 

research in psychology, 3(2), pp.77-101. 

Cáceres, J.P. and Chafe, C., 2010. JackTrip: Under the hood of an engine for network 

audio. Journal of New Music Research, 39(3), pp.183-187. 

Cage, J., 1990. John Cage: Autobiographical Statement. JohnCage.org [online] Available 

at: <http://www.johncage.org/autobiographical_statement.html> [Accessed 23 May 2016] 

Chalcraft, E., 2012. Underwater by David Bowen. Dezeen Magazine. [online] Available at: 

<http://www.dezeen.com/2012/11/04/underwater-installation-by-david-bowen/> [Accessed 

27 May 2016]  

Char, K., u. Internet of Things System Design with Integrated Wireless MCUs. Silicon 

Labs. [PDF] available at 

<http://www.silabs.com/Support%20Documents/TechnicalDocs/Internet-of-Things-

System-Design-with-Integrated-Wireless-MCUs.pdf> [Accessed 3 March 2016]  

Creswell, J.W. and Plano Clark, V.L., 2007. Designing and Conducting Mixed Methods 

Research. Thousand Oaks: Sage. 

Curtis, S., 2016. Survey Research. In: B. Wheeler and K, Murphy, ed. 2016. Music 

Therapy Research: Third Edition. Dallas: Barcelona Publishers. Ch. 27. 

De Carvalho, A.T., 2012. The discourse of home recording: authority of pros and the 

sovereignty of big studios. Journal of the Art of Record Production, 7. [online] Available at 

<https://www.arpjournal.com/asarpwp/the-discourse-of-home-recording-authority-of-

%E2%80%9Cpros%E2%80%9D-and-the-sovereignty-of-the-big-studios/> [Accessed 18 

February 2019]  

Dixon, A., 2016. 31 December. How Has The Recording Studio Affected The Ways In 

Which Music Is Created? Classic Album Sundays. [blog] Available at: 

<http://classicalbumsundays.com/how-has-the-recording-studio-affected-the-ways-in-

which-music-is-created/> [Accessed 11 May 2018] 

Dohler, M., 2018. World's First 5G Distributed Concert London - Berlin. [video online] 

Available at: <https://youtu.be/mB_w-ml-dZY> [Accessed 17 April 2019]. 

Drioli, C., Allocchio, C. and Buso, N., 2013. Networked performances and natural 

interaction via LOLA: Low latency high quality A/V streaming system. In Information 

http://www.johncage.org/autobiographical_statement.html
http://www.dezeen.com/2012/11/04/underwater-installation-by-david-bowen/
http://www.silabs.com/Support%20Documents/TechnicalDocs/Internet-of-Things-System-Design-with-Integrated-Wireless-MCUs.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/Internet-of-Things-System-Design-with-Integrated-Wireless-MCUs.pdf
https://www.arpjournal.com/asarpwp/the-discourse-of-home-recording-authority-of-%E2%80%9Cpros%E2%80%9D-and-the-sovereignty-of-the-big-studios/
https://www.arpjournal.com/asarpwp/the-discourse-of-home-recording-authority-of-%E2%80%9Cpros%E2%80%9D-and-the-sovereignty-of-the-big-studios/
http://classicalbumsundays.com/how-has-the-recording-studio-affected-the-ways-in-which-music-is-created/
http://classicalbumsundays.com/how-has-the-recording-studio-affected-the-ways-in-which-music-is-created/
https://youtu.be/mB_w-ml-dZY


155 
 

Technologies for Performing Arts, Media Access, and Entertainment. Berlin: Springer, pp. 

240-250. 

EPSRC, 2016. New Internet of Things Research Hub announced. [press release] 06 

January 2016. Available at: <https://www.epsrc.ac.uk/newsevents/news/iotresearchhub/> 

[Accessed 28 March 2017]  

Evens, A., 2002. Sound ideas. In: Massumi, B., 2005. A shock to thought: Expression 

after Deleuze and Guattari. London: Routledge, pp. 171-187. 

Evren, A., 2015. Tracing the History of Music Streaming, and Why It’s More Important 

Now Than Ever. Bit-of-News, [blog] 17 June. Available at: 

<http://news.bitofnews.com/tracing-the-history-of-music-streaming-and-why-its-more-

important-now-than-ever/> [Accessed 4 June 2016] 

Fabiani, M., Friberg, A., and Bresin, R., 2013. Systems for Interactive Control of Computer 

Generated Music Performance. In: Kirke, A. and Miranda, E., 2013. Guide to Computing 

for Expressive Music Performance. London: Springer-Verlag London 2013, Ch. 2. 

Ferguson, P., 2013, May. Using Low-Latency Net-Based Solutions to Extend the Audio 

and Video Capabilities of a Studio Complex. In Audio Engineering Society Convention 

134. Audio Engineering Society. 

Ferguson, P., 2015. Real-time long-distance music collaboration using the Internet. In: 

Hepworth-Sawyer, R., Hodgson, J., Toulson, R. and Paterson, J.L., 2016. Innovation in 

music II. Future Technology Press, UK, pp. 174-178. 

Fleischman, E., 1998. WAVE and AVI codec registries. Microsoft Corporation. [online] 

Available at: <https://tools.ietf.org/html/rfc2361>  [Accessed 3 March 2018] 

Foley, M., n.d. National Research and Education Networks. GEANT Association. [pdf] 

Available at: 

<https://www.casefornrens.org/Resources_and_Tools/Document_Library/Documents/Wha

t%20is%20an%20NREN.pdf> [Accessed 22 December 2018]  

Fonseca, N. and Monteiro, E., 2003, March. Latency in Audio Ethernet Networks. In Audio 

Engineering Society Convention 114. Audio Engineering Society. 

Gartner, 2015. Gartner Says 6.4 Billion Connected “Things” Will be in Use in 2016, Up 30 

Percent From 2015. [press release] 10 November 2015, Available at: 

<http://www.gartner.com/newsroom/id/3165317> [Accessed 18 April 2016]  

https://www.epsrc.ac.uk/newsevents/news/iotresearchhub/
http://news.bitofnews.com/tracing-the-history-of-music-streaming-and-why-its-more-important-now-than-ever/
http://news.bitofnews.com/tracing-the-history-of-music-streaming-and-why-its-more-important-now-than-ever/
https://tools.ietf.org/html/rfc2361
https://www.casefornrens.org/Resources_and_Tools/Document_Library/Documents/What%20is%20an%20NREN.pdf
https://www.casefornrens.org/Resources_and_Tools/Document_Library/Documents/What%20is%20an%20NREN.pdf
http://www.gartner.com/newsroom/id/3165317


156 
 

Goddard III, R.D. and Villanova, P., 2006. Designing surveys and questionnaires for 

research. The psychology research handbook: A guide for graduate students and 

research assistants, pp.114-125. 

Gresham-Lancaster, S., 1998. The Aesthetics and History of the Hub: The Effects of 

Changing Technology on Network Computer Music. Leonardo Music Journal, pp. 39-44 

Grote, F., Anderson, K., and Knees, P., 2015. Collaborating with Intelligent Machines: 

Interfaces for Creative Sound. CHI 2015 Workshop, pp. 2345-2348. 

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M., 2013. Internet of Things (IoT): A 

Vision, Architectural Elements, and Future Directions. [pdf] Available at 

<http://arxiv.org/ftp/arxiv/papers/1207/1207.0203.pdf> [Accessed 24 February 2016] 

 

Hardin, M. and Toulson, R., 2019, March. Quantitative Analysis of Streaming Protocols for 

Enabling Internet of Things (IoT) Audio Hardware. In Audio Engineering Society 

Convention 146. Audio Engineering Society. 

Hayes, A., 2018. How Does Spotify Make Money? Investopedia.  [blog] Available at: 

<https://www.investopedia.com/articles/investing/120314/spotify-makes-internet-music-

make-money.asp> [Accessed 28 April 2019]  

Hendrick, S, 2018. The Impact of Open Source Software on Developing IoT Solutions. RT 

Insights [online] Available at: <https://www.rtinsights.com/the-impact-of-open-source-

software-on-developing-iot-solutions/> [Accessed 10 April 2018]  

Hoffman, C., 2017a. What’s the Difference Between TCP and UDP? How-To Geek. [blog] 

7 June.  Available at: <https://www.howtogeek.com/190014/htg-explains-what-is-the-

difference-between-tcp-and-udp/> [Accessed 15 February 2018] 

Hoffman, C., 2017b. Wi-Fi vs. Ethernet: How Much Better Is a Wired Connection? How-To 

Geek. [blog] 7 June.  Available at: <https://www.howtogeek.com/217463/wi-fi-vs.-ethernet-

how-much-better-is-a-wired-connection/> [Accessed 15 February 2018]  

Jonze, T., 2010. The bedroom artists who prefer creative solitude.  The Guardian. [online] 

Available at: <https://www.theguardian.com/music/2010/apr/04/tim-jonze-indie-music> 

[Accessed 23 April 2018] 

Kajornboon, A.B., 2005. Using interviews as research instruments. E-journal for Research 

Teachers, 2(1), pp.1-9. 

http://arxiv.org/ftp/arxiv/papers/1207/1207.0203.pdf
https://www.investopedia.com/articles/investing/120314/spotify-makes-internet-music-make-money.asp
https://www.investopedia.com/articles/investing/120314/spotify-makes-internet-music-make-money.asp
https://www.rtinsights.com/the-impact-of-open-source-software-on-developing-iot-solutions/
https://www.rtinsights.com/the-impact-of-open-source-software-on-developing-iot-solutions/
https://www.howtogeek.com/190014/htg-explains-what-is-the-difference-between-tcp-and-udp/
https://www.howtogeek.com/190014/htg-explains-what-is-the-difference-between-tcp-and-udp/
https://www.howtogeek.com/217463/wi-fi-vs.-ethernet-how-much-better-is-a-wired-connection/
https://www.howtogeek.com/217463/wi-fi-vs.-ethernet-how-much-better-is-a-wired-connection/
https://www.theguardian.com/music/2010/apr/04/tim-jonze-indie-music


157 
 

Keith, C., 2010. Agile game development with Scrum. New Jersey: Pearson Education. 

Kinsella, B., 2018. New Voicebot Report Says Nearly 20% of U.S. Adults Have Smart 

Speakers. Voicebot, 7 March. [online] Available at: <https://voicebot.ai/2018/03/07/new-

voicebot-report-says-nearly-20-u-s-adults-smart-speakers/> [Accessed 12 March 2019] 

Lacey, L., 2015.  How the Internet of Things Could Impact Music Composition, Production 

& Performance. Ask.Audio. [online] Available at <https://ask.audio/articles/how-the-

internet-of-things-could-impact-music-composition-production-performance> [Accessed 21 

March 2016] 

Marshall, M.N., 1996. Sampling for qualitative research. Family practice, 13(6), pp.522-

526. 

Mattern, F. and Floerkemeier, C., 2010. From the Internet of Computers to the Internet of 

Things. In From active data management to event-based systems and more (pp. 242-

259). Springer, Berlin, Heidelberg. 

 

Mayton, B.D., Dublon, G., Joliat, N. and Paradiso, J.A., 2012, May. Patchwork: Multi-User 

Network Control of a Massive Modular Synthesizer. In NIME. 

Miorandi, D., Sicari, S., De Pellegrini, F. and Chlamtac, I., 2012. Internet of things: Vision, 

applications and research challenges. Ad hoc networks, 10(7), pp.1497-1516. 

Moir, Z., Ferguson, P., and Smith, G., 2019. Real-Time Remote, Interactive Recording 

Sessions: Music Production Without Boundaries. In Hepworth-Sawyer, R., Hodgson, J., 

and Marrington, M., 2019. Producing Music. New York: Routledge. Ch. 12. 

Moore, B.C. and Tan, C.T., 2003. Perceived naturalness of spectrally distorted speech 

and music. The Journal of the Acoustical Society of America, 114(1), pp.408-419.  

Moore, B.C., Tan, C.T., Zacharov, N. and Mattila, V.V., 2004. Measuring and predicting 

the perceived quality of music and speech subjected to combined linear and nonlinear 

distortion. Journal of the Audio Engineering Society, 52(12), pp.1228-1244.  

Morris, C., 2016. Vinyl Record Sales Are At A 28-Year High. Fortune. [blog] 16 April. 

Available at <http://fortune.com/2016/04/16/vinyl-sales-record-store-day/> [Accessed 17 

February 2019] 

https://voicebot.ai/2018/03/07/new-voicebot-report-says-nearly-20-u-s-adults-smart-speakers/
https://voicebot.ai/2018/03/07/new-voicebot-report-says-nearly-20-u-s-adults-smart-speakers/
https://ask.audio/articles/how-the-internet-of-things-could-impact-music-composition-production-performance
https://ask.audio/articles/how-the-internet-of-things-could-impact-music-composition-production-performance
http://fortune.com/2016/04/16/vinyl-sales-record-store-day/


158 
 

Newmarker, C. and Buntz, B., 2016. 11 Innovative IoT Use Cases. Internet of Things 

Institute. [blog] 6 December. Available at: <https://www.iotworldtoday.com/2016/12/07/11-

innovative-iot-use-cases/> [Accessed 19 April 2017]  

O’Brien, C., 2015. 10 gadgets that demonstrate the potential of the Internet of Music 

Things. Venture Beat, [blog] 15 June. Available at: 

<http://venturebeat.com/2015/06/15/10-gadgets-that-demonstrate-the-potential-of-the-

internet-of-music-things/> [Accessed 7 June 2016] 

Patel, N., 2017. The Resurgence of Analog Makes Sense in a Post-Digital Era. 

Inverse.com. [online] Available at: <https://www.inverse.com/article/27543-david-sax-

revenge-of-analog-digital> [Accessed 1 January 2020] 

Paterson, J., Toulson, E.R., Lexer, S., Webster, T., Massey, S. and Ritter, J., 2015. 

Interactive digital music: enhancing listener engagement with commercial music. In: 

Hepworth-Sawyer, R., Hodgson, J., Toulson, R. and Paterson, J.L., 2016. Innovation in 

music II. Future Technology Press, UK, pp. 193-209. 

Patzold, M., 2018. It’s Time to Go Big with 5G [Mobile Radio]. IEEE Vehicular Technology 

Magazine, 13(4), pp.4-10. 

Poupyrev, I., Lyons, M.J. and Fels, S., 2001, March. New interfaces for musical 

expression. In CHI'01 Extended Abstracts on Human Factors in Computing Systems (pp. 

491-492). ACM. 

Prism Sound, 2018. Glossary definition of 'Total Harmonic Distortion Plus Noise. Prism. 

[online] Available at: 

<http://www.prismsound.com/define.php?term=Total_Harmonic_Distortion_Plus_Noise> 

[Accessed 4 February 2018] 

Prosuk, A., 2017. What is Total Harmonic Distortion (THD)? Siemens. [blog] Available at: 

<https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/What-is-

Total-Harmonic-Distortion-THD/ta-p/440629> [Accessed 2 May 2019] 

Rec, I.T.U.T., 1996. P. 800: Methods for subjective determination of transmission quality. 

International Telecommunication Union, Geneva. 

Reddell, T., 2003. Laptopia: the spatial poetics of networked laptop 

performance. Contemporary Music Review, 22(4), pp.11-23. 

https://www.iotworldtoday.com/2016/12/07/11-innovative-iot-use-cases/
https://www.iotworldtoday.com/2016/12/07/11-innovative-iot-use-cases/
http://venturebeat.com/2015/06/15/10-gadgets-that-demonstrate-the-potential-of-the-internet-of-music-things/
http://venturebeat.com/2015/06/15/10-gadgets-that-demonstrate-the-potential-of-the-internet-of-music-things/
https://www.inverse.com/article/27543-david-sax-revenge-of-analog-digital
https://www.inverse.com/article/27543-david-sax-revenge-of-analog-digital
http://www.prismsound.com/define.php?term=Total_Harmonic_Distortion_Plus_Noise
https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/What-is-Total-Harmonic-Distortion-THD/ta-p/440629
https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/What-is-Total-Harmonic-Distortion-THD/ta-p/440629


159 
 

Reidy, T., 2014. Retro electronics still popular – but why not just use modern software? 

The Guardian. [online] Available at: <https://www.theguardian.com/music/2014/feb/15/old-

electronic-instruments-popular-software> [Accessed 23 April 2018] 

Robjohns, H., 2008. Digital Problems, Practical Solutions: Getting The Best From Digital 

Audio. Sound on Sound. [blog] Available at: 

<https://www.soundonsound.com/techniques/digital-problems-practical-solutions> 

[Accessed 29 January 2018] 

Robjohns, H. and White, P., 2019. Glossary Of Technical Terms. Sound on Sound. [blog] 

Available at: <https://www.soundonsound.com/sound-advice/glossary-technical-terms> 

[Accessed 5 July 2019] 

Rouse, M., 2016b. Latency. WhatIs.com [online] Available at: 

<https://whatis.techtarget.com/definition/latency> [Accessed 23 December 2018]  

Schober, M., 2006. Virtual environments for creative work in collaborative music-making. 

Virtual Reality. Volume 10, Issue 2, pp 85-94. London: Springer-Verlag London Limited.  

Series, B., 2014. Method for the subjective assessment of intermediate quality level of 

audio systems. International Telecommunication Union Radiocommunication Assembly. 

SG05, I.T.U.R., 2017. Draft New Report ITU-R M.[IMT-2020. TECH PERF REQ]-Minimum 

requirements related to technical performance for IMT-2020 radio interface(s). ITU-R 

SG05 Contribution 40. 

Shakhovskoy, J. and Toulson, R., 2015. Future Music Formats: Evaluating The ‘Album 

App.’ Journal on the Art of Record Production, Issue 10. [online] Available at: 

<http://arpjournal.com/future-music-formats-evaluating-the-album-app/> [Accessed 29 

June 2016] 

siteadmin, 2013, 4 March. What future is there for independent recording studios? Mill Hill 

Music Complex. [blog] Available at: <https://www.millhillmusiccomplex.co.uk/what-future-

is-there-for-independent-recording-studios/> [Accessed 23 April 2018]  

Sinatra, M., 2014. Research and Commodity Networks: What are they and what’s the 

difference? NANOG on the Road, 20 May. [pdf] Available at: 

<https://www.nanog.org/sites/default/files/Research-Commodity.pdf> [Accessed 21 

December 2018] 

https://www.theguardian.com/music/2014/feb/15/old-electronic-instruments-popular-software
https://www.theguardian.com/music/2014/feb/15/old-electronic-instruments-popular-software
https://www.soundonsound.com/techniques/digital-problems-practical-solutions
https://www.soundonsound.com/sound-advice/glossary-technical-terms
https://whatis.techtarget.com/definition/latency
http://arpjournal.com/future-music-formats-evaluating-the-album-app/
https://www.millhillmusiccomplex.co.uk/what-future-is-there-for-independent-recording-studios/
https://www.millhillmusiccomplex.co.uk/what-future-is-there-for-independent-recording-studios/
https://www.nanog.org/sites/default/files/Research-Commodity.pdf


160 
 

Smith, S.L., Choueiti, M. and Pieper, K., 2019. Inclusion in the recording studio? Gender 

and race/ethnicity of artists, songwriters and producers across 700 popular songs from 

2012-2018. USC Annenberg Inclusion Initiative. 

SoundWIRE Group, 2010. SoundWIRE Group at CCRMA. CCRMA. [online] Available at: 

<https://ccrma.stanford.edu/groups/soundwire/> [Accessed 22 April 2019] 

Stankovic, J., 2014. Research Directions for the Internet of Things. IEEE Internet of 

Things Journal. [online] Available at: 

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6774858&tag=1> [Accessed 29 

February 2016] 

Statistical Services Centre, 2001. Approaches to the Analysis of Survey Data. Reading: 

Statistical Services Centre, University of Reading. Available at: 

<https://www.ilri.org/biometrics/TrainingResources/Documents/University%20of%20Readi

ng/Guides/Guides%20on%20Analysis/ApprochAnalysis.pdf> [Accessed 11 September 

2018]  

Strickland, J., 2008. Does digital sound better than analog? HowStuffWorks.com. [online] 

Available at: <http://electronics.howstuffworks.com/digital-versus-analog.htm> [Accessed 

21 March 2017] 

Stuckey, H.L., 2013. Three types of interviews: Qualitative research methods in social 

health. Journal of Social Health and Diabetes, 1(2), p.56. 

 [The User], 2000.  Silophone. Undefine. [website] Available at: 

<http://www.undefine.ca/en/projects/silophone/> [Accessed 30 October 2017] 

Temme, S., 1992. Audio distortion measurements. Application Note, Bruel & Kjar.  

Thiesse, F., and Michahelles, F., 2009.  Building the Internet of Things Using RFID: The 

RFID Ecosystem Experience. IEEE Computer Society. [pdf] Available at: <http://sam-

raymer.com/pub/welbourne-ieeeic09.pdf> [Accessed 17 April 2016]  

Toole, F.E., 1982. Listening tests-turning opinion into fact. Journal of the Audio 

Engineering Society, 30(6), pp.431-445. 

Toulson, E. R., Campbell, W. and Paterson, J., 2014.  Evaluating harmonic and 

intermodulation distortion of mixed signals processed with dynamic range compression, 

in: Innovation In Music 2013, Future Technology Press, ISBN 9780956151681. 

https://ccrma.stanford.edu/groups/soundwire/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6774858&tag=1
https://www.ilri.org/biometrics/TrainingResources/Documents/University%20of%20Reading/Guides/Guides%20on%20Analysis/ApprochAnalysis.pdf
https://www.ilri.org/biometrics/TrainingResources/Documents/University%20of%20Reading/Guides/Guides%20on%20Analysis/ApprochAnalysis.pdf
http://electronics.howstuffworks.com/digital-versus-analog.htm
http://www.undefine.ca/en/projects/silophone/
http://sam-raymer.com/pub/welbourne-ieeeic09.pdf
http://sam-raymer.com/pub/welbourne-ieeeic09.pdf


161 
 

Tuckett, A., 2004. Qualitative research sampling-the very real complexities. Nurse 

Researcher. 12(1): 47-61 

Vaismoradi, M., Jones, J., Turunen, H. and Snelgrove, S., 2016. Theme development in 

qualitative content analysis and thematic analysis. Journal of Nursing Education and 

Practice, 6(5), pp.100-110. 

Vermesan, O. et al., 2009. The Internet of things: Strategic Research Roadmap. [online] 

Available at: <http://sintef.biz/upload/IKT/9022/CERP-IoT%20SRA_IoT_v11_pdf.pdf> 

[Accessed 13 April 2016]  

Visnjic, F., 2013. Long Distance Art – One artist, two robots and three paintings in Vienna, 

Berlin and London. Creative Applications Network. [online] Available at: 

<http://www.creativeapplications.net/vvvv/long-distance-art-one-artist-two-robots-and-

three-paintings-in-vienna-berlin-and-london/> [Accessed 22 May 2016]  

Voldhaug, J.E., Hellerud, E., and Svensson, P., 2006, May. Evaluation of packet loss 

distortion in audio signals. In Audio Engineering Society Convention 120. Audio 

Engineering Society. 

WebRTC, 2011a. WebRTC. [online] Available at: <https://webrtc.org/> [Accessed 31 July 

2017] 

WebRTC, 2011b. Frequent Questions. [online] Available at: <https://webrtc.org/faq/> 

[Accessed 31 July 2017]  

Weiser, M., Gold, R., Brown, J.S., 1999. The origins of ubiquitous computing research at 

PARC in the late 1980s. IBM Systems Journal. Vol 38, No. 4. [pdf] Available at: 

<http://www.cs.cmu.edu/~./jasonh/courses/ubicomp-sp2007/papers/03-weiser-origins.pdf> 

[Accessed 20 April 2016] 

Whalley, I., 2015. Developing Telematic Electroacoustic Music: Complex networks, 

machine intelligence and affective data stream sonification. Organised Sound, 20, pp 90-

98 [online] Available at 

<http://journals.cambridge.org/download.php?file=%2F2008_9D29F88E5E96FBE9E208F

0745469B579_journals__OSO_OSO20_01_S1355771814000478a.pdf&cover=Y&code=2

3f51f9807891a661339879b90c07d0c> [Accessed 9 March 2015]  

Worby, R., 2009. Tune on, tune in: John Cage’s symphony for 12 radios. The Guardian. 

[online] Available at: <http://www.theguardian.com/music/2009/aug/06/john-cage-

symphony-for-radios> [Accessed 23 May 2016]  

http://sintef.biz/upload/IKT/9022/CERP-IoT%20SRA_IoT_v11_pdf.pdf
http://www.creativeapplications.net/vvvv/long-distance-art-one-artist-two-robots-and-three-paintings-in-vienna-berlin-and-london/
http://www.creativeapplications.net/vvvv/long-distance-art-one-artist-two-robots-and-three-paintings-in-vienna-berlin-and-london/
https://webrtc.org/
https://webrtc.org/
http://www.cs.cmu.edu/~./jasonh/courses/ubicomp-sp2007/papers/03-weiser-origins.pdf
http://journals.cambridge.org/download.php?file=%2F2008_9D29F88E5E96FBE9E208F0745469B579_journals__OSO_OSO20_01_S1355771814000478a.pdf&cover=Y&code=23f51f9807891a661339879b90c07d0c
http://journals.cambridge.org/download.php?file=%2F2008_9D29F88E5E96FBE9E208F0745469B579_journals__OSO_OSO20_01_S1355771814000478a.pdf&cover=Y&code=23f51f9807891a661339879b90c07d0c
http://journals.cambridge.org/download.php?file=%2F2008_9D29F88E5E96FBE9E208F0745469B579_journals__OSO_OSO20_01_S1355771814000478a.pdf&cover=Y&code=23f51f9807891a661339879b90c07d0c
http://www.theguardian.com/music/2009/aug/06/john-cage-symphony-for-radios
http://www.theguardian.com/music/2009/aug/06/john-cage-symphony-for-radios


162 
 

Wright, M., 2005. Open Sound Control: an enabling technology for musical 

networking. Organised Sound, 10(3), pp.193-200. 

Zolfagharifard, E., 2013. One artist, two robots and three cities: Painter creates a work of 

art in Vienna - while robot arms create the same picture in London and Berlin at the SAME 

time. Daily Mail. [online] Available at: <http://www.dailymail.co.uk/sciencetech/article-

2433471/Artist-Alex-Kiesslings-Long-Distance-uses-robots-copy-painting.html> [Accessed 

22 May 2015]  

Image References 

DJ City, n.d. PV8. [image online] Available at: <https://cdn.djcity.com.au/wp-

content/uploads/2016/07/22122415/115033_26028.jpg> [Accessed 11 November 2017]. 

ekawa, 2016. Guitar Hero: Live - Through the Fire and Flames (Expert 97%). [image 

online] Available at: < https://www.youtube.com/watch?v=cmB2ucBlrhQ> [Accessed 11 

March 2019]. 

Design References 

ARMmbed, n.d.a FRDM-K64F. ARMmbed. [online] Available at: 

<https://developer.mbed.org/platforms/FRDM-K64F/> [Accessed 1 July 2016]   

ARMmbed, n.d.b. Interfacing Using RPC. ARMmbed. [online] Available at: 

<https://developer.mbed.org/cookbook/Interfacing-Using-RPC> [Accessed 19 October 

2015] 

ARMmbed, n.d.c. Interfacing with Python. ARMmbed. [online] Available at: 

<https://developer.mbed.org/cookbook/Interfacing-with-Python> [Accessed 19 October 

2015] 

ARMmbed, n.d.d. DC Motor. ARMmbed. [online] Available at: 

<https://developer.mbed.org/components/DC-Motor/> [Accessed 4 April 2017] 

ARMmbed, 2012. Websocket Tutorial. ARMmbed. [online] Available at: 

<https://developer.mbed.org/cookbook/Websockets-Server> [Accessed 19 October 2015] 

Cáceres, J., 2007a. About Soundwire. CCRMA – Stanford University, [webpage] Available 

at: <https://ccrma.stanford.edu/groups/soundwire/about/> [Accessed 6 June 2016]  

http://www.dailymail.co.uk/sciencetech/article-2433471/Artist-Alex-Kiesslings-Long-Distance-uses-robots-copy-painting.html
http://www.dailymail.co.uk/sciencetech/article-2433471/Artist-Alex-Kiesslings-Long-Distance-uses-robots-copy-painting.html
https://cdn.djcity.com.au/wp-content/uploads/2016/07/22122415/115033_26028.jpg
https://cdn.djcity.com.au/wp-content/uploads/2016/07/22122415/115033_26028.jpg
https://www.youtube.com/watch?v=cmB2ucBlrhQ
https://developer.mbed.org/platforms/FRDM-K64F/
https://developer.mbed.org/cookbook/Interfacing-Using-RPC
https://developer.mbed.org/cookbook/Interfacing-with-Python
https://developer.mbed.org/components/DC-Motor/
https://developer.mbed.org/cookbook/Websockets-Server
https://ccrma.stanford.edu/groups/soundwire/about/


163 
 

Cáceres, J., 2007b. JackTrip Documentation. CCRMA – Stanford University, [webpage] 

Available at: < https://ccrma.stanford.edu/groups/soundwire/software/jacktrip/> [Accessed 

31 July 2016]  

Castrounis, A,. 2015. What is WebRTC and How Does It Work? Innoarchitech. [online] 

Available at: <https://www.innoarchitech.com/what-is-webrtc-and-how-does-it-work/> 

[Accessed 9 August 2017]  

Davis, P. et al., 2001. JACK-AUDIO-CONNECTION-KIT. Jackaudio.org. [online] Available 

at: <http://jackaudio.org/api/> [Accessed 24 July 2017]  

Dutton, S. 2012. Getting Started with WebRTC. HTML5 Rocks. [online] Available at: 

<https://www.html5rocks.com/en/tutorials/webrtc/basics/> [Accessed 4 August 2017]  

Ford, S., 2010. Motor_HelloWorld. ARMmbed. [online] Available at: 

<https://developer.mbed.org/users/simon/code/Motor_HelloWorld/file/7bbc230e00d6/main

.cpp> [Accessed 4 March 2017]  

Gleason, K., 2015. WebRTC Live Video Stream Broadcasting from One-to-Many. 

PubNub. [online] Available at: <https://www.pubnub.com/blog/2015-08-27-webrtc-live-

video-stream-broadcasting-from-one-to-many/> [Accessed 7 February 2017]  

Hasler, C., 2010. Motordriver. ARMmbed. [online] Available at: 

<https://developer.mbed.org/users/littlexc/code/Motordriver/> [Accessed 4 March 2017]  

HiveMQ, n.d. MQTT Essentials: Publish/Subscribe. HiveMQ. [online] Available at: 

<http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe> [Accessed 5 

October 2015] 

Kaazing, n.d. About HTML5 Websocket. Websocket.org. [online] Available at: 

<https://www.websocket.org/aboutwebsocket.html> [Accessed 1 July 2016] 

Lubbers, P and Greco, R, n.d. HTML Websocket: A Quantum Leap in Scalability for the 

Web. Websocket.org. [online] Available at: <http://websocket.org/quantum.html> 

[Accessed 23 December 2016] 

mbed official, 2012. EthernetInterface. ARMmbed.org. [online] Available at: 

<https://developer.mbed.org/users/mbed_official/code/EthernetInterface/docs/183490eb1

b4a//classEthernetInterface.html> [Accessed 17 November 2015] 

https://www.innoarchitech.com/what-is-webrtc-and-how-does-it-work/
http://jackaudio.org/api/
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://developer.mbed.org/users/simon/code/Motor_HelloWorld/file/7bbc230e00d6/main.cpp
https://developer.mbed.org/users/simon/code/Motor_HelloWorld/file/7bbc230e00d6/main.cpp
https://www.pubnub.com/blog/2015-08-27-webrtc-live-video-stream-broadcasting-from-one-to-many/
https://www.pubnub.com/blog/2015-08-27-webrtc-live-video-stream-broadcasting-from-one-to-many/
https://developer.mbed.org/users/littlexc/code/Motordriver/
http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://www.websocket.org/aboutwebsocket.html
http://websocket.org/quantum.html
https://developer.mbed.org/users/mbed_official/code/EthernetInterface/docs/183490eb1b4a/classEthernetInterface.html
https://developer.mbed.org/users/mbed_official/code/EthernetInterface/docs/183490eb1b4a/classEthernetInterface.html


164 
 

Mokrani, S., 2012a. Wifly_HelloWorld. ARMmbed. [online] Available at: 

<https://developer.mbed.org/users/samux/code/Wifly_HelloWorld/file/867d16e948eb/main

.cpp> [Accessed 9 December 2015]  

Mokrani, S., 2012b. WebsocketClient. ARMmbed.org. [online] Available at: 

<https://developer.mbed.org/users/samux/code/WebSocketClient/> [Accessed 17 

February 2016] 

MQTT, 2009. Frequently Asked Questions. [online] Available at: <http://mqtt.org/faq> 

[Accessed 21 December 2016] 

Rouse, M., 2016a. Remote Procedure Call (RPC). TechTarget. [online] Available at: 

<http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC> 

[Accessed 2 February 2017]  

Terrien, A., 2015. JQuery Knob. AnthonyTerrien.com. [online] Available at: 

<http://anthonyterrien.com/knob/> [Accessed 12 October 2016]  

Audio Samples 

Buzbe20, 2017. Ukele jingle.wav. freesound. [sound recording] Available at: 

<http://freesound.org/people/buzbe20/sounds/389758/> [Accessed 16 June 2017] 

Hughesj333, 2010.  1000hz.wav. freesound. [sound recording] Available at: 

<http://freesound.org/people/hughesj333/sounds/99202/> [Accessed 16 June 2017]  

kate_dilemma, 2016. Female Vocal 2 100bpm. Freesound. [sound recording] Available at: 

<https://freesound.org/people/kate_dilemma/sounds/364214/> [Accessed 15 January 

2018] 

kwahmah_02, 2015. 0Hz to 22500kHz in 30 seconds.flac. freesound. [sound recording] 

Available at: <http://freesound.org/people/kwahmah_02/sounds/262333/> [Accessed 19 

July 2017] 

MTG, 2016. Violin – A major. freesound. [sound recording] Available at 

<https://freesound.org/people/MTG/sounds/356188/> [Accessed 18 November 2017] 

peridactyloptrix, 2013. African tribal drums, beat 3. freesound. [sound recording] Available 

at: <http://freesound.org/people/buzbe20/sounds/389758/> [Accessed 16 June 2017] 

Tyops, 201. Dramatic Beat. freesound. [sound recording] Available at: 

<http://freesound.org/people/tyops/sounds/392620/> [Accessed 16 June 2017] 

https://developer.mbed.org/users/samux/code/Wifly_HelloWorld/file/867d16e948eb/main.cpp
https://developer.mbed.org/users/samux/code/Wifly_HelloWorld/file/867d16e948eb/main.cpp
https://developer.mbed.org/users/samux/code/WebSocketClient/
http://mqtt.org/faq
http://searchmicroservices.techtarget.com/definition/Remote-Procedure-Call-RPC
http://anthonyterrien.com/knob/
http://freesound.org/people/buzbe20/sounds/389758/
http://freesound.org/people/hughesj333/sounds/99202/
https://freesound.org/people/kate_dilemma/sounds/364214/
http://freesound.org/people/kwahmah_02/sounds/262333/
https://freesound.org/people/MTG/sounds/356188/
http://freesound.org/people/buzbe20/sounds/389758/
http://freesound.org/people/tyops/sounds/392620/


165 
 

Appendices 

Appendix A – Wifly mbed Code (Modified from Mokrani (2012)) 

#include "mbed.h" 
#include "WiflyInterface.h" 
#include "Websocket.h" 
Serial pc(USBTX, USBRX); 
 
/* wifly interface: 
*     - p28 and p27 are for the serial communication 
*     - p25 is for the reset pin 
*     - p26 is for the connection status 
*     - "virginmedia" is the ssid of the network 
*     - "password" is the password 
*     - true means that the security of the network is WPA 
*/ 
Websocket ws("ws://***.***.*.***:****/ws"); 
WiflyInterface wifly(p28, p27, p25, p26, "*****", "************", true); 
 
int main() { 
    wifly.init(); //Use DHCP 
    while (!wifly.connect()); 
    printf("IP Address is %s\n\r", wifly.getIPAddress()); 
    ws.connect(); 
    while (1) { 
            ws.send("WebSocket Hello World from Marques over Wifly"); 
            wait(1.0); 
    } 
} 
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Appendix B – /FRDM_Ethernet_Helloworld/main.cpp 

#include "mbed.h" 
#include "EthernetInterface.h" 
 
Serial pc(USBTX, USBRX); 
 
int main() { 
    EthernetInterface eth; 
    eth.init(); //Use DHCP 
    eth.connect(); 
    printf("IP Address is %s\n\r", eth.getIPAddress()); 
    // Prints I.P. Address to terminal upon connection 
}     
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Appendix C – led_RPCSerial.html 

<!doctype html> 
<html> 
  <head> 
    <title>LED WebSockets Hello World</title> 
    <meta charset="utf-8" /> 
    <style type="text/css"> 
      body { 
        text-align: center; 
        min-width: 500px; 
      } 
 
      #red{ 
        background-color: red; 
        font-size: 1.25em; 
        font-weight: bold; 
      } 
       
      #green{ 
        background-color: green; 
        font-size: 1.25em; 
        font-weight: bold; 
      } 
       
      #blue{ 
        background-color: blue; 
        font-size: 1.25em; 
        font-weight: bold; 
      } 
    </style> 
    <script src="http://code.jquery.com/jquery.min.js"></script> 
    <script> 
 
      // log function 
      log = function(data){ 
        $("div#terminal").prepend("</br>" +data); 
        console.log(data); 
      }; 
  
      $(document).ready(function () { 
        $("div#message_details").hide() 
  
        var ws; 
  
        $("#open").click(function(evt) { 
          evt.preventDefault(); 
  
          var host = $("#host").val(); 
          var port = $("#port").val(); 
          var uri = $("#uri").val(); 
  
          // create websocket instance 
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          ws = new WebSocket("ws://" + host + ":" + port + uri); 
            
          // Handle incoming websocket message callback 
          // *will only print if self.write_message() is in python code 
          ws.onmessage = function(evt) { 
            log("Message Received: " + evt.data) 
            }; 
  
          // Close Websocket callback 
          ws.onclose = function(evt) { 
            log("***Connection Closed***"); 
            alert("Connection close"); 
            $("#host").css("background", "#ff0000");  
            $("#port").css("background", "#ff0000");  
            $("#uri").css("background",  "#ff0000"); 
            $("div#message_details").empty(); 
  
            }; 
  
          // Open Websocket callback 
          ws.onopen = function(evt) {  
            $("#host").css("background", "#00ff00");  
            $("#port").css("background", "#00ff00");  
            $("#uri").css("background", "#00ff00"); 
            $("div#message_details").show(); 
            log("***Connection Opened***"); 
          }; 
        }); 
         
        $("#close").click(function(evt) { 
            ws.close(); 
        });   
                 
        $("#red").click(function(evt) { 
            log("Sending Message: "+$("#red").val()); 
            ws.send($("#red").val()); 
        }); 
 
        $("#blue").click(function(evt) { 
            log("Sending Message: "+$("#blue").val()); 
            ws.send($("#blue").val()); 
        }); 
 
        $("#green").click(function(evt) { 
            log("Sending Message: "+$("#green").val()); 
            ws.send($("#green").val()); 
        }); 
      }); 
    </script> 
  </head> 
  
  <body> 
    <h1>WebSockets Hello World</h1> 
    <div id="connection_details"> 
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      <label for="host">host:</label> 
      <input type="text" id="host" value="localhost" 
style="background:#ff0000;"/><br /> 
      <label for="port">port:</label> 
      <input type="text" id="port" value="8888" 
style="background:#ff0000;"/><br /> 
      <label for="uri">uri:</label> 
      <input type="text" id="uri" value="/ws" 
style="background:#ff0000;"/><br /> 
      <input type="submit" id="open" value="open" /></br> 
      <input type="submit" id="close" value="close" /> 
    </div> 
     
    <div id="led_buttons"> 
        </br> 
        <h2>Select the LED you wish to turn on</h2>         
        <button type="button" id="red" onclick="console.log('red')" 
value="myled1">Red</button> 
        <button type="button" id="green" onclick="console.log('green')" 
value="myled2">Green</button> 
        <button type="button" id="blue" onclick="console.log('blue')" 
value="myled3">Blue</button>     
    </div> 
 
    <div id="terminal"> 
         
    </div> 
  </body> 
</html> 
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Appendix D – led_rpc.py 

#!/usr/bin/env python 
 
import tornado.httpserver 
import tornado.websocket 
import tornado.ioloop 
import tornado.web 
import socket 
 
class WSHandler(tornado.websocket.WebSocketHandler): 
    num = 0 
    num_red = 0 
    num_green = 0 
    num_blue = 0 
    def open(self): 
        print 'new connection' 
       
    def on_message(self, message): 
         
        name = str(message) 
        print name 
         
        # Changes Write State Everytime Button Pressed 
        if name == "myled1": 
            if WSHandler.num_red == 0: 
                WSHandler.num_red = 1 
                myled1.write(WSHandler.num_red) 
            elif WSHandler.num_red == 1: 
                WSHandler.num_red = 0 
                myled1.write(WSHandler.num_red) 
                 
        elif name == "myled2": 
            if WSHandler.num_green == 0: 
                WSHandler.num_green = 1 
                myled2.write(WSHandler.num_green) 
            elif WSHandler.num_green == 1: 
                WSHandler.num_green = 0 
                myled2.write(WSHandler.num_green) 
         
        elif name == "myled3": 
            if WSHandler.num_blue == 0: 
                WSHandler.num_blue = 1 
                myled3.write(WSHandler.num_blue) 
            elif WSHandler.num_blue == 1: 
                WSHandler.num_blue = 0 
                myled3.write(WSHandler.num_blue) 
  
    def on_close(self): 
        print 'connection closed' 
  
    def check_origin(self, origin): 
        return True 
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from mbedRPC_new import * 
serdev = 2 # For LPC1768 
#serdev = 4 # For k64F 
mbed = SerialRPC(serdev, 9600) 
print 'test something' 
 
#Turn on/off LED 
myled1 = RpcDigitalOut(mbed, "myled1") 
myled2 = RpcDigitalOut(mbed, "myled2") 
myled3 = RpcDigitalOut(mbed, "myled3") 
 
 
 
application = tornado.web.Application([ 
    (r'/ws', WSHandler), 
]) 
  
  
if __name__ == "__main__": 
    http_server = tornado.httpserver.HTTPServer(application) 
    http_server.listen(8888) 
    myIP = socket.gethostbyname(socket.gethostname()) 
    print '*** Websocket Server Started at %s***' % myIP 
    tornado.ioloop.IOLoop.instance().start() 
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Appendix E - /RPC_Serial_LED/main.cpp 

#include "mbed.h" 
#include "mbed_rpc.h" 
 
RpcDigitalOut myled1(LED1,"myled1"); 
RpcDigitalOut myled2(LED2,"myled2"); 
RpcDigitalOut myled3(LED3,"myled3"); 
RpcDigitalOut myled4(LED4,"myled4"); 
 
Serial pc(USBTX, USBRX); 
int main() { 
    //The mbed RPC classes are now wrapped to create an RPC enabled 
version - see RpcClasses.h so don't add to base class 
     
    // receive commands, and send back the responses 
    char buf[256], outbuf[256]; 
    while(1) { 
        pc.gets(buf, 256); 
        //Call the static call method on the RPC class 
        RPC::call(buf, outbuf);  
        pc.printf("%s\n", outbuf); 
    } 
} 
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Appendix F – mult_slider_gui.html 

<!doctype html> 
<html> 
  <head> 
    <title>LED WebSockets Hello World</title> 
    <meta charset="utf-8" /> 
    <style type="text/css"> 
      body { 
        text-align: center; 
        min-width: 500px; 
      } 
       
      #red, #green, #blue, #btn1, #btn2{ 
        font-size: 1.1em; 
        font-weight: bold; 
      } 
       
      /* 
      #red{ 
        background-color: red; 
      } 
       
      #green{ 
        background-color: green; 
      } 
       
      #blue{ 
        background-color: blue; 
      } 
      */ 
    </style> 
     
    <script src="http://code.jquery.com/jquery.min.js"></script> 
    <script src="js/foundation/foundation.js"></script> 
    <script src="js/foundation/foundation.slider.js"></script> 
     
    <!-- Script for sliders--> 
    <link rel="stylesheet" 
href="//code.jquery.com/ui/1.11.4/themes/smoothness/jquery-ui.css"> 
    <script src="//code.jquery.com/jquery-1.10.2.js"></script> 
    <script src="//code.jquery.com/ui/1.11.4/jquery-ui.js"></script> 
    <link rel="stylesheet" href="/resources/demos/style.css"> 
     
    <script> 
 
      // log function 
      log = function(data){ 
        $("div#terminal").prepend("</br>" +data); 
        console.log(data); 
      }; 
  
      $(document).ready(function () { 
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        $("div#message_details").hide() 
  
        var ws; 
  
        $("#open").click(function(evt) { 
          evt.preventDefault(); 
  
          var host = $("#host").val(); 
          var port = $("#port").val(); 
          var uri = $("#uri").val(); 
  
          // create websocket instance 
          ws = new WebSocket("ws://" + host + ":" + port + uri); 
            
          // Handle incoming websocket message callback 
          // *will only print if self.write_message() is in python code 
          ws.onmessage = function(evt) { 
            log("Message Received: " + evt.data) 
            }; 
  
          // Close Websocket callback 
          ws.onclose = function(evt) { 
            log("***Connection Closed***"); 
            alert("Connection close"); 
            $("#host").css("background", "#ff0000");  
            $("#port").css("background", "#ff0000");  
            $("#uri").css("background",  "#ff0000"); 
            $("div#message_details").empty(); 
            }; 
  
          // Open Websocket callback 
          ws.onopen = function(evt) {  
            $("#host").css("background", "#00ff00");  
            $("#port").css("background", "#00ff00");  
            $("#uri").css("background", "#00ff00"); 
            $("div#message_details").show(); 
            log("***Connection Opened***"); 
          }; 
        }); 
         
        $("#close").click(function(evt) { 
            ws.close(); 
        });   
                 
        /*Value Changed for RED GREEN and BLUE for K64F*/ 
        $("#red").click(function(evt) { 
            log("Sending Message: "+$("#red").val()); 
            ws.send($("#red").val()); 
        }); 
 
        $("#blue").click(function(evt) { 
            log("Sending Message: "+$("#blue").val()); 
            ws.send($("#blue").val()); 
        }); 
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        $("#green").click(function(evt) { 
            log("Sending Message: "+$("#green").val()); 
            ws.send($("#green").val()); 
        }); 
 
        $("#btn1").click(function(evt) { 
            //log("Sending Message: "+$("#green").val()); 
            ws.send($("#btn1").val()); 
        }); 
 
        $("#btn2").click(function(evt) { 
            //log("Sending Message: "+$("#green").val()); 
            ws.send($("#btn2").val()); 
        });         
         
        $("#qty").click(function(evt) { 
            //log("Sending Message: "+(typeof $("#qty").val())); 
            ws.send($("#qty").val()); 
        }); 
         
        $("#send").click(function(evt) { 
            ws.send($("#qty").val()); 
        }); 
         
        $("#slider").on("input change", function(){ 
            ws.send($("#slider").val()); 
        });  
     
      });  
     
    </script> 
  </head> 
  
  <body> 
    <h1>WebSockets Hello World</h1> 
    <div id="connection_details"> 
      <label for="host">host:</label> 
      <input type="text" id="host" value="localhost" 
style="background:#ff0000;"/><br /> 
      <label for="port">port:</label> 
      <input type="text" id="port" value="8888" 
style="background:#ff0000;"/><br /> 
      <label for="uri">uri:</label> 
      <input type="text" id="uri" value="/ws" 
style="background:#ff0000;"/><br /> 
      <input type="submit" id="open" value="open" /></br> 
      <input type="submit" id="close" value="close" /> 
    </div> 
     
    <!-- 
    <div id="message_details"> 
        </br></br> 
        <label for="message">message:</label> 
        <input type="text" id="message" value="Hello World!"/><br /> 
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        <input type="submit" id="send" value="send" /> 
    </div> 
    --> 
     
    <div id="led_buttons"> 
         
        <!-- NOTE: Values changed for K64F 6/1/15 (myled1 = red, myled2 
= blue)--> 
        </br> 
        <h2>Select the LED you wish to turn on</h2>         
        <!-- REMOVED FOR PWM K64F LEDs 
        <button type="button" id="red" onclick="console.log('red')" 
value="myled1">Red/LED1</button> 
        <button type="button" id="green" onclick="console.log('green')" 
value="myled2">Green/LED2</button> 
        <button type="button" id="blue" onclick="console.log('blue')" 
value="myled3">Blue/LED3</button> 
        </br></br> 
        --> 
         
        <button type="button" id="btn1" onclick="console.log('btn1')" 
value="btn1">Light 1</button> 
        <button type="button" id="btn2" onclick="console.log('btn2')" 
value="btn2">Light 2</button> 
        </br> 
                 
        <h3>LED Slider</h3> 
        <input type="range" orient="vertical" id="slider" step=".01" 
min="0"  max="1">        
    </div> 
     
    <div id="terminal"> 
    </div> 
     
  </body> 
</html> 
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Appendix G – mult_led_server.py 

#!/usr/bin/env python 
 
import tornado.httpserver 
import tornado.websocket 
import tornado.ioloop 
import tornado.web 
import socket 
 
class WSHandler(tornado.websocket.WebSocketHandler): 
    ws_clients = [] 
    num = 0 
    num_red = 0 
    num_green = 0 
    num_blue = 0 
     
    button = 10 
     
    def open(self): 
        if self not in WSHandler.ws_clients: 
            WSHandler.ws_clients.append(self) 
        print 'new connection' 
       
    def on_message(self, message): 
        for c in WSHandler.ws_clients:     
            name = str(message) 
             
            c.write_message(name) 
            print "Incoming message: " + name 
            #print "Message type: " + str(type(message)) 
            print "Button Value: " + str(WSHandler.button)  
 
                     
            ## Selection of LED By button 
             
            if name == "btn1": 
                WSHandler.button = 1 
            elif name == "btn2": 
                WSHandler.button = 2 
            elif name == "btn3": 
                WSHandler.button = 3 
            ## Writes only numerical values when slider is moved 
             
            if (WSHandler.button == 1 and name !="btn1"): 
                ext_led1.write(name) 
                #c.write_message(name) 
            if (WSHandler.button == 2 and name !="btn2"): 
                ext_led2.write(name) 
                #c.write_message(name) 
  
    def on_close(self): 
        if self in WSHandler.ws_clients: 
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            WSHandler.ws_clients.remove(self) 
        print 'connection closed' 
  
    def check_origin(self, origin): 
        return True 
  
 
from mbedRPC_new import * 
#serdev = 2 # For LPC1768 
serdev = 3 # For k64F (4 MB/3 MB Pro) 
mbed = SerialRPC(serdev, 9600) 
print 'Load mbedRPC' 
 
#Turn on/off LED 
#myled1 = RpcDigitalOut(mbed, "myled1") 
#myled2 = RpcDigitalOut(mbed, "myled2") 
#myled3 = RpcDigitalOut(mbed, "myled3") 
ext_led1 = RpcPwmOut(mbed, "ext_led1") 
ext_led2 = RpcPwmOut(mbed, "ext_led2") 
 
application = tornado.web.Application([ 
    (r'/ws', WSHandler), 
]) 
  
if __name__ == "__main__": 
    http_server = tornado.httpserver.HTTPServer(application) 
    http_server.listen(8888) 
    myIP = socket.gethostbyname(socket.gethostname()) 
    print '*** Websocket Server Started at %s***' % myIP 
    tornado.ioloop.IOLoop.instance().start() 
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Appendix H – /RPC_Serial_LED/main.cpp 

#include "mbed.h" 
#include "mbed_rpc.h" 
 
RpcDigitalOut myled1(LED1,"myled1"); 
RpcDigitalOut myled2(LED2,"myled2"); 
RpcDigitalOut myled3(LED3,"myled3"); 
RpcDigitalOut myled4(LED4,"myled4"); 
 
RpcPwmOut ext_led1(p21, "ext_led1"); 
RpcPwmOut ext_led2(p22, "ext_led2"); 
 
Serial pc(USBTX, USBRX); 
int main() { 
     
    // receive commands, and send back the responses 
    char buf[256], outbuf[256]; 
    while(1) { 
        pc.gets(buf, 256); 
        //Call the static call method on the RPC class 
        RPC::call(buf, outbuf);  
        pc.printf("%s\n", outbuf); 
    } 
} 
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Appendix I – ws_server.py 

#!/usr/bin/env python 
 
import tornado.httpserver 
import tornado.websocket 
import tornado.ioloop 
import tornado.web 
import socket 
 
class WSHandler(tornado.websocket.WebSocketHandler): 
    ws_clients = []     
    def open(self): 
        if self not in WSHandler.ws_clients: 
            WSHandler.ws_clients.append(self) 
        print 'new connection' 
       
    def on_message(self, message): 
        for c in WSHandler.ws_clients:     
            name = str(message) 
             
            c.write_message(name) 
            print "Incoming message: " + name 
            #print "Message type: " + str(type(message)) 
            #print "Button Value: " + str(WSHandler.button) 
  
    def on_close(self): 
        if self in WSHandler.ws_clients: 
            WSHandler.ws_clients.remove(self) 
        print 'connection closed' 
  
    def check_origin(self, origin): 
        return True 
  
application = tornado.web.Application([ 
    (r'/ws', WSHandler), 
]) 
  
if __name__ == "__main__": 
    http_server = tornado.httpserver.HTTPServer(application) 
    http_server.listen(8888) 
    myIP = socket.gethostbyname(socket.gethostname()) 
    print '*** Websocket Server Started at %s***' % myIP 
    tornado.ioloop.IOLoop.instance().start() 
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Appendix J - /FRDM_WS_Eth_Ctrl/main.cpp 

#include "mbed.h" 
#include "EthernetInterface.h" 
#include "Websocket.h" 
 
Serial pc(USBTX, USBRX); 
//BusOut l(LED1, LED2, LED3, LED4); 
PwmOut led(PTD1); 
 
//websocket: configuration 
Websocket ws("ws://**.**.***.**:****/ws"); 
 
int main() { 
    EthernetInterface eth; 
    eth.init(); //Use DHCP 
    eth.connect(); 
    printf("IP Address is %s\n\r", eth.getIPAddress()); 
    char recv[] = ""; 
     
    ws.connect(); 
    while (1) { 
        if(ws.read(recv)){ 
            printf("Received message: %s\r\n", recv); 
            float temp = atof(recv); 
            led = temp;     
        } 
    } 
}     
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Appendix K - /Motordriver_HelloWorld_Serial/main.cpp (Modified 

from (ARMmbed,n.d.d))  

#include "mbed.h" 
#include "motordriver.h" 
 
Serial pc(USBTX, USBRX); // tx, rx 
Motor m(p23, p6, p5, 1); // pwm, fwd, rev 
 
int main() { 
    int val = 0; 
    pc.printf("\rPress 'u' to move motor fwd up, 'd' to reverse\n\r"); 
    float s; 
    while(1) { 
        char c = pc.getc(); 
        if(c == 'u'){ 
            s = 1.00; 
            m.speed(s); 
            wait(.02); 
            m.stop(.1); 
            val++; 
            pc.printf("\rval = %d\n", val); 
        } 
        if(c == 'd'){ 
            s=-1.0; 
            m.speed(s); 
            wait(.02); 
            m.stop(.1);  
            val--; 
            pc.printf("\rval = %d\n", val); 
        }  
    } 
} 
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Appendix L – Additional Rotating Knob Snippet (Terrien, 2015) 

$(function() { 

$(".dial").knob({     

"min": 1, 

"max": 100, 

"angleArc": 360,  

"angleOffset": -155, 

"width": 200, 

"height": 200, 

"thickness": .85, 

"stopper": "false", 

"displayInput": false, 

"fgColor": "black", 

"bgColor": "grey", 

"cursor": 3, 

"change": function (v) {ws.send(v);} 

}); 

}); 
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Appendix M - /FRDM_WS_Motordriver/main.cpp 

#include "mbed.h" 

#include <string> 

#include "EthernetInterface.h" 

#include "Websocket.h" 

#include "motordriver.h" 

#include "math.h" 

 

Serial pc(USBTX, USBRX); 

PwmOut led(PTD1); 

Motor m(PTC10, PTB2, PTB3, 1); // pwm, fwd, rev 

 

//websocket: configuration 

Websocket ws("ws://**.**.**.***:****/ws"); // ARU 

//Websocket ws("ws://***.***.*.***:****/ws"); //Los Angeles 

//Websocket ws("ws://***.**.**.**:****/ws"); // Railyard 

 

int main() { 

    EthernetInterface eth; 

    float temp = 0; 

    float s = 1.00; 

    m.speed(s); 

    wait(1); 

     

    eth.init(); //Use DHCP 

    eth.connect(); 

    printf("IP Address is %s\n\r", eth.getIPAddress()); 

    char recv[] = ""; 
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    ws.connect(); 

    ws.send(eth.getIPAddress()); 

     

    while (1) { 

        if(ws.read(recv)){ 

            printf("Received message: %s\r\n", recv); 

            float val = atof(recv); 

            if (val > temp){ 

                s = 1.00; 

                m.speed(s); 

                wait(.018); 

                m.stop(.9); 

                temp = val; 

            } 

            else if (val < temp){ 

                s = -1.00; 

                m.speed(s); 

                wait(.018); 

                m.stop(.9); 

                temp = val; 

            }   

        } 

    } 

}   
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Appendix N – Initial Jacktrip Traceroutes 

  
LA (Residence) -> UK (ARU) 

UK (ARU) -> LA (Residence) 
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LA (USC - Internet2) -> UK (ARU) 

UK (ARU) -> LA (USC - Internet2) 
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Appendix O – broadcast.html (Modified from Gleason (2015)) 

<!DOCTYPE html> 
 
<html> 
<head> 
    <title>WebRTC Vid Stream</title> 
     
    <meta charset="utf-8" /> 
    <meta http-equiv="Content-type" content="text/html; charset=utf-8" 
/> 
    <meta name= "viewport" content="width=device-width, initial-scale=1" 
/> 
     
    <script 
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"><
/script> 
    <script src="https://cdn.pubnub.com/pubnub-3.7.14.min.js"></script> 
    <script src="https://cdn.pubnub.com/webrtc/webrtc.js"></script> 
    <script src="https://cdn.pubnub.com/webrtc/rtc-
controller.js"></script> 
</head> 
 
<style> 
 #watch{ 
  display: none; 
 } 
 #inStream{ 
  display: none; 
 } 
</style> 
 
<body> 
 
 <div id="vid-box"><!-- Stream goes here --></div> 
 
 <form name="streamForm" id="stream" action="#" onsubmit="return 
stream(this);"> 
  <input type="text" name="streamname" id="streamname" 
placeholder="Pick a stream name!" /> 
  <input type="submit" name="stream_submit" value="Stream">  
  </form> 
  
 <form name="watchForm" id="watch" action="#" onsubmit="return 
watch(this);"> 
  <div id="stream-info">Watching: <span id="here-
now">0</span></div> 
  <input type="text" name="number" placeholder="Enter stream 
to join!" /> 
  <input type="submit" value="Watch"/> 
 </form> 
  
 <div id="inStream"> 
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  <button id="end" onclick="end()">Done</button> <br> 
  Generate Embed: <button 
onclick="genEmbed(400,600)">Tall</button><button 
onclick="genEmbed(600,400)">Wide</button><button 
onclick="genEmbed(500,500)">Square</button><br> 
  <div id="embed-code"></div> 
 </div> 
  
 <br/> 
 <button id="mute" onclick="mute()">Mute</button>  
 
    <script> 
        var video_out  = document.getElementById("vid-box"); 
  var embed_code = document.getElementById("embed-code"); 
  var here_now   = document.getElementById('here-now'); 
  var streamName; 
   
  function stream(form) { 
   streamName = form.streamname.value || 
Math.floor(Math.random()*100)+''; // Random stream if not provided 
   var phone = window.phone = PHONE({ 
    number        : streamName, // listen on 
username else random 
    publish_key   : 'pub-c-********-****-****-****-
a8e8cc477574', // Your Pub Key 
    subscribe_key : 'sub-c-********-****-****-****-
02ee2ddab7fe', // Your Sub Key 
    oneway        : true, // One-Way streaming 
enabled 
    broadcast     : true, // True since you are the 
broadcaster 
    media    : {audio : false, video : true} 
   }); 
    
   var ctrl = window.ctrl = CONTROLLER(phone); 
   ctrl.ready(function(){ 
    form.streamname.style.background="#55ff5b";  
    form.stream_submit.hidden="true";  
    ctrl.addLocalStream(video_out); 
    ctrl.stream();  // Begin streaming video 
   }); 
    
   ctrl.streamPresence(function(m){ 
here_now.innerHTML=m.occupancy; }); 
   return false;  // So form does not submit 
  } 
    
  function watch(form){ 
   var num = form.number.value;  // Stream to join 
   var phone = window.phone = PHONE({ 
    number        : "Viewer" + 
Math.floor(Math.random()*100), // Random name 
    publish_key   : 'pub-c-********-****-****-****-
a8e8cc477574', // Your Pub Key 
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    subscribe_key : 'sub-c-********-****-****-****-
02ee2ddab7fe', // Your Sub Key 
    oneway        : true, // One way streaming 
enabled 
    media    : {audio : false, video : true} 
   }); 
  
   var ctrl = window.ctrl = CONTROLLER(phone, true); 
   ctrl.ready(function(){ 
    ctrl.isStreaming(num, function(isOn){ 
     //if (isOn) 
     ctrl.joinStream(num); 
     //else alert("User is not streaming!"); 
    }); 
   }); 
   ctrl.receive(function(session){ 
    session.connected(function(session){ 
     video_out.appendChild(session.video); 
    }); 
   }); 
   ctrl.streamPresence(function(m){ 
    here_now.innerHTML=m.occupancy; 
   }); 
   return false;  // Prevent form from submitting 
  } 
   
  function genEmbed(w,h){ 
   if (!streamName) return;  // If global var not set, 
not streaming 
   var url = "http://<your-webstie>/embed.html?stream=" + 
streamName; 
   var embed    = document.createElement('iframe'); 
   embed.src    = url; 
   embed.width  = w; 
   embed.height = h; 
   embed.setAttribute("frameborder", 0); 
   embed_code.innerHTML = 'Embed Code: '; 
  
 embed_code.appendChild(document.createTextNode(embed.outerHTML)); 
  } 
  function mute(){ 
   var audio = ctrl.toggleAudio(); 
   if (!audio) $("#mute").html("Unmute"); 
   else $("#mute").html("Mute"); 
  } 
 
    </script> 
</body> 
</html> 
  



200 
 

  



201 
 

Appendix P – embed.html (Modified from Gleason (2015)) 

<!DOCTYPE html> 
 
<html> 
<head> 
    <title>WebRTC Vid Stream</title> 
     
    <meta charset="utf-8" /> 
    <meta http-equiv="Content-type" content="text/html; charset=utf-8" 
/> 
    <meta name= "viewport" content="width=device-width, initial-scale=1" 
/> 
     
    <script 
src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"><
/script> 
    <script src="https://cdn.pubnub.com/pubnub-3.7.14.min.js"></script> 
    <script src="https://cdn.pubnub.com/webrtc/webrtc.js"></script> 
    <script src="https://cdn.pubnub.com/webrtc/rtc-
controller.js"></script> 
 
 
 <style> 
  #vid-box{ 
  width: 100%; 
  height: 100%; 
  text-align: center; 
  } 
 
  #vid-box video{ 
  width: 100%; 
  height: 100%; 
  } 
 
 #stream-info{ 
  position: absolute; 
  bottom: 3vh; 
  right: 5vw; 
 } 
 </style> 
 
</head> 
 
<body> 
 <div id="vid-box"></div> 
 <div id="stream-info"><span id="here-now"></span></div> 
 
 <script src="https://cdn.pubnub.com/pubnub.min.js"></script> 
 <script 
src="http://kevingleason.me/SimpleRTC/js/webrtc.js"></script> 
 <script src="http://kevingleason.me/SimpleRTC/js/rtc-
controller.js"></script> 
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    <script> 
        (function() { 
 
   var urlargs     = urlparams(); 
   var video_out   = document.getElementById("vid-box"); 
   var stream_info = document.getElementById("stream-
info"); 
   var here_now    = document.getElementById("here-now");  
 
   // Handle error if stream is not in urlargs. 
    
   if (!('stream' in urlargs)) { 
    handleNoStream(); 
    return; 
   } 
    
   // Get URL params 
   function urlparams() { 
    var params = {}; 
    if (location.href.indexOf('?') < 0){ 
     return params; 
    } 
     
    PUBNUB.each( 
     location.href.split('?')[1].split('&'), 
     function(data) { var d = data.split('='); 
params[d[0]] = d[1]; } 
    ); 
    return params; 
   } 
 
   function handleNoStream(){ 
    video_out.innerHTML="<h2>That stream no longer 
exists!</h2>"; 
    stream_info.hidden=true; 
   } 
 
   var stream = urlargs.stream;  
 
   var phone = window.phone = PHONE({ 
    number        : "EmbedViewer" + 
Math.floor(Math.random()*100), // random viewer name 
    publish_key   : 'pub-c-********-****-****-****-
a8e8cc477574', // Your Pub Key 
    subscribe_key : 'sub-c-********-****-****-****-
02ee2ddab7fe', // Your Sub Key 
    oneway        : true, 
    media    : {audio : false, video : true} 
   }); 
 
   var ctrl = window.ctrl = CONTROLLER(phone); 
   ctrl.ready(function(){   
    ctrl.isStreaming(stream, function(isOn){ 
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     //if (isOn) 
     ctrl.joinStream(stream); 
     //else handleNoStream(); 
    });  
   }); 
   
   ctrl.receive(function(session){ 
    session.connected(function(session){ 
     stream_info.hidden=false; 
     video_out.appendChild(session.video); 
    }); 
    session.ended(function(session){ 
     handleNoStream(); 
    }); 
   }); 
 
   ctrl.streamPresence(function(m){ 
    here_now.innerHTML = m.occupancy; 
   }); 
   
   ctrl.unable(function(){ handleNoStream(); }); 
 
  }()); 
    </script> 
 
</body> 
</html> 
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Appendix Q – MATLAB Script to Generate Pure 1 kHz Sine Wave 

clc; 
clear all; 
  
Amp=.25; 
Fs=44100; 
ts=44100/44100000; 
tf=0:1/Fs:10-1/Fs; 
y=Amp*sin(2*pi*1000*tf); 
plot(tf,y); 
  
yd=length(y)/Fs;                    
t=linspace(0,yd,length(y));  
         
    
figure % plot waveform 
plot(t,y,'b'); 
title('pure sine'); 
ylabel('16-bit data'); 
xlabel('Time, s') 
axis([0 yd -1.1 1.1]) 
     
figure %plot spectrogram 
F=[0:10:6000]; % frequencies for which to calculate spectrogram for 
S = abs(spectrogram(y,8192,512,F,Fs)); 
[r,c] = size(S);     T = [0:c]*t(end)/c; 
imagesc(T,F,20*log10(S)); 
axis xy 
xlabel('Time, s') 
ylabel('Frequency, Hz') 
  
% Write Wav 
filename = 'pure_1k_sine.wav'; 
audiowrite(filename,y,Fs); 
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Appendix R – MATLAB Script to Analyse Audio Waveform and 

Spectrogram 

% load wav file and show data, spectrogram and fft 
% only works for mono data 
  
clear all 
  
[filename, pathname] = uigetfile('*.wav','Open file'); 
  
if filename~=0 
           
    wavfile = [pathname filename]; 
    [y,Fs]=audioread(wavfile);  
     
    yd=length(y)/Fs;                   % yd = y duration 
    t=linspace(0,yd,length(y));  
     
    Fres = Fs*8;           %freq resolution 8times 0 padding 
    Frange=round(Fres/2); 
    Faxis=linspace(0,Fs,Fres+1); 
     
    hanning_window = hann(length(y)); 
    y_hann=y.*hanning_window; 
    y_fft_raw=abs(fft(y_hann,Fres));     % calculate fft 
    y_fft=y_fft_raw/max(y_fft_raw); % normalise 
    
    figure % plot waveform 
    plot(t,y,'b'); 
    title(filename); 
    ylabel('16-bit data'); 
    xlabel('Time, s') 
    axis([0 yd -1.1 1.1]) 
     
    figure %plot spectrogram 
    F=[0:10:6000]; % frequencies for which to calculate spectrogram for 
    %F=[0:10:22000]; 
    S = abs(spectrogram(y,8192,512,F,Fs)); 
    [r,c] = size(S);     T = [0:c]*t(end)/c; 
    imagesc(T,F,20*log10(S)); 
    axis xy 
    xlabel('Time, s') 
    ylabel('Frequency, Hz') 
  
    figure % plot fft 
    plot(Faxis(1:Frange),20*log10(y_fft(1:Frange)),'b') 
    xlabel('Frequency, Hz') 
    ylabel('Normalised FFT power, dB') 
    axis([0 20000 -85 6]); 
  
end 
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Appendix S – MATLAB Script to Calculate Packet Dropouts 

% load wav file and show data, spectrogram and fft 
% only works for mono data 
  
clear all 
  
[filename, pathname] = uigetfile('*.wav','Open file'); 
  
if filename~=0 
              
    wavfile = [pathname filename]; 
    [y,Fs]=audioread(wavfile);  
     
    yd=length(y)/Fs;                   % yd = y duration 
    t=linspace(0,yd,length(y));  
    sinewave=sin(2*pi*t*1000); 
    figure 
    plot(t*1000,sinewave,'-*') 
    ylabel('Normalised 16-bit data'); 
    xlabel('Time, ms') 
     
    x=0; 
    maxd=0.15*max(y); % although max is 0.1425, use 0.15 to allow for 
potential rounding errors 
    droptime=[]; 
    y0=y(1); 
    for i=1:length(y) 
        if abs(y(i)-y0)>maxd; 
            x=x+1; 
            droptime(x)=t(i);  % array of dropout times in the data 
        end 
        y0=y(i); 
    end 
     
    drops=length(droptime) % total number of identified dropouts 
  
    
    figure % plot waveform 
    plot(t,y,'b'); 
    title(filename); 
    ylabel('16-bit data'); 
    xlabel('Time, s') 
    axis([0 yd -1.1 1.1]) 
      
end 
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Appendix T – MATLAB Script to Calculate THD+N Measurements  

% load wav file and calculate THD+N 
% only works for mono data 
  
clear all 
  
[filename, pathname] = uigetfile('*.wav','Open file'); 
  
if filename~=0 
     
           
    wavfile = [pathname filename]; 
    %[y,Fs]=wavread(wavfile); 
    [y,Fs]=audioread(wavfile); 
     
    yd=length(y)/Fs;                   % yd = y duration 
    t=linspace(0,yd,length(y));  
     
    % test pure simewave to verify (uncomment to implement) 
    %ys = sin(2*pi*1000*t); 
    %y=ys'; 
     
    Fres = Fs*16;           %freq resolution 16 times 0 padding 
    Frange=round(Fres/2); 
    Faxis=linspace(0,Fs,Fres+1); 
     
    hanning_window = hann(length(y)); 
    y_hann=y.*hanning_window; 
    y_fft_raw=abs(fft(y_hann,Fres)); % calculate fft 
    y_fft=y_fft_raw/max(y_fft_raw);  % normalise 
     
    % filter in frequency domain (brick wall) 
    y_fft_filtered=y_fft; 
    fft_length=round(length(y_fft)/2); 
    y_filterprofile(1:length(y_fft_filtered))=1; % profile data for plot  
     
    % remove below 22Hz  
    filt_22hz=round(22*Fres/Fs); 
    for i=1:filt_22hz  
        y_fft_filtered(i)=0; 
        y_filterprofile(i)=0.000001;   
    end 
     
    % remove above 22kHz  
    filt_22khz=round(22000*Fres/Fs); 
    for i=filt_22khz:length(y_fft_filtered)  
        y_fft_filtered(i)=0; 
        y_filterprofile(i)=0.000001;   % non-zero to enable plot 
    end 
     
    % remove notch between 900 Hz - 1100 Hz 
    filt_notchstart=round(900*Fres/Fs); 
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    filt_notchend=round(1100*Fres/Fs); 
     
    y_fft_notched=y_fft_filtered; 
     
    for i=filt_notchstart:filt_notchend  
       y_fft_notched(i)=0; 
       y_filterprofile(i)=0.00001;     % non-zero to enable plot 
    end 
     
    %find power of the fft and the filtered fft (sum of squares) 
    fftpower=0; 
    distpower=0; 
    for i=1:fft_length 
        fftpower=fftpower+(y_fft_filtered(i)^2); 
        distpower=distpower+(y_fft_notched(i)^2); 
    end 
     
    fftpowermean=fftpower/fft_length; 
    distpowermean=distpower/fft_length; 
     
    %calculate ratio by two methods (both give same answer) 
    THDN_fft=100*(distpowermean^0.5)/(fftpowermean^0.5) % fft rms 
    yfiltered=ifft(y_fft_filtered); % inverse fft 
    ynotched=ifft(y_fft_notched);   % inverse fft 
    THDN_t=100*rms(ynotched)/rms(yfiltered)  % time domain rms 
  
    h=figure; % plot fft and filter window; 
    axes1 = axes('Parent',h,'XScale','log','XMinorTick','on'); 
    hold on 
    semilogx(Faxis(1:Frange),20*log10(y_fft(1:Frange)),'b') 
    semilogx(Faxis(1:Frange),20*log10(y_filterprofile(1:Frange)),'r') 
    xlabel('Frequency, Hz') 
    ylabel('Normalised FFT power, dB') 
    axis([20 23000 -85 6]);   
     
end 
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Appendix U – JackTrip LAN Audio Captures 

1 kHz Sine Wave 

 

Source Audio 

 

Streaming Capture 1 

 

Streaming Capture 2 
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Streaming Capture 3 

 

Streaming Capture 4 

 

Streaming Capture 5 

 

 



215 
 

0-22.5 kHz Sine Sweep 

 

Source Audio 

 

Streaming Capture 1 

 

Streaming Capture 2 
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Streaming Capture 3 

 

Streaming Capture 4 

 

Streaming Capture 5 

 

 



217 
 

Acoustic Guitar 

 

Source Audio 

 

Streaming Capture 1 

 

Streaming Capture 2 
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Streaming Capture 3 

 

Streaming Capture 4 

 

Streaming Capture 5 

  



219 
 

Appendix V – WebRTC LAN Audio Captures 

1 kHz Sine Wave 

 

Source Audio 

 

Streaming Capture 1 

 

Streaming Capture 2 
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Streaming Capture 3 

 

Streaming Capture 4 

 

Streaming Capture 5 
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0-22.5 kHz Sine Sweep 

 

Source Audio 

 

Streaming Capture 1 

 

Streaming Capture 2 
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Streaming Capture 3 

 

Streaming Capture 4 

 

Streaming Capture 5 
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Acoustic Guitar 

 

Source Audio 

 

Streaming Capture 1 

 

Streaming Capture 2 
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Streaming Capture 3 

 

Streaming Capture 4 

 

Streaming Capture 5 
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Appendix W – JackTrip Public Network Audio Captures (128kbps 

Buffer) 

1 kHz Sine Wave 

 

     Source Audio     Streaming Capture 1 

 

Streaming Capture 2     Streaming Capture 3 

 

   Streaming Capture 4    Streaming Capture 5 
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Appendix X – JackTrip Public Network Audio Captures (256kbps 

Buffer) 

1 kHz Sine Wave 

 

     Source Audio     Streaming Capture 1 

 

Streaming Capture 2     Streaming Capture 3 

 

Streaming Capture 4    Streaming Capture 5 
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Appendix Y – JackTrip Public Network Audio Captures (512kbps 

Buffer) 

1 kHz Sine Wave 

 

     Source Audio     Streaming Capture 1 

 

Streaming Capture 2     Streaming Capture 3 

 

Streaming Capture 4     Streaming Capture 5 
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Appendix Z – JackTrip Public Network Audio Captures (1024kbps 

Buffer) 

1 kHz Sine Wave 

 

     Source Audio     Streaming Capture 1 

 

Streaming Capture 2     Streaming Capture 3 

 

Streaming Capture 4     Streaming Capture 5 
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Appendix AA – JackTrip High Speed Research Network Audio 

Captures 

1 kHz Sine Wave 

 

     Source Audio     Streaming Capture 1 

 

Streaming Capture 2     Streaming Capture 3 

 

Streaming Capture 4     Streaming Capture 5 
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Appendix BB – JackTrip Wi-Fi Audio Captures 

1 kHz Sine Wave 

  

     Source Audio     Streaming Capture 1 

  

Streaming Capture 2     Streaming Capture 3 

  

Streaming Capture 4     Streaming Capture 5 
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Appendix CC – Disparities in Distortion Measurements Using 

Different Audio Editors 

THD+N Measurements 

Test ‘Sine-1000hz’ Source File: 0.0075  

Non-Streaming Measurements – Import Source into Audio editor and Output as .wav 

1. Logic Pro 16 bit .wav:    0.0183 (Exported Track as Audio File) 

2. Logic Pro (2) 16 bit .wav:   0.0183 (Exported Track as Audio File) 

3. Logic Pro (3) 16 bit .wav:   0.0075 (Export as Audio File using Right Click on Audio) 

4. Logic Pro 24 bit .wav:   0.0183 (Exported Track as Audio File) 

5. Logic Pro 24 bit .wav:   0.0075 (Export as Audio File using Right Click on Audio) 

6. Logic Pro 32 bit unsigned: *Can only export as .aiff 

7. Audacity 16 bit signed .wav:  0.0357 

8. Audacity 32 bit float .wav:  0.0075 

9. Adobe Audition 16 bit .wav: 0.0075 

10. Adobe Audition 24 bit .wav: 0.0075 

11. Adobe Audition 32 bit .wav: 0.0075 

 

Empty (Zeros) .Wav Spectrogram in Sonic Visualiser 

Spectrogram of an empty wave file (MATLAB .wav generated by array of zeros) visualised using 

Sonic Visualiser. 

Source  Logic 16 bit Audition 16 bit  Audacity 16 bit  Audacity 32 bit 
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Appendix DD – Follow Up WebRTC Audio Streaming Tests Data 

 WebRTC LAN Measurements 

Category T1 T2 T3 T4 T5 Average 

Dropout 0 5 0 0 0 1 

THD+N 2.9082 1.3686 7.0821 4.6278 5.3677 0.26814 

RT Latency (ms) 149 135 134 132 135 137 

*The WebRTC test page at http://mjhardin.com went down prior to 2nd round of testing due to 

deprecated RTC functions. Testing was conducted using https://talky.io/, which may implement 

additional latency over servers*  

  

http://mjhardin.com/
https://talky.io/
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Appendix EE – IoT-Based Music Survey Questionnaire Questions 

Terminology 

- Physical Processing Systems:  Hands-on devices that can be found in a live music studio (i.e. physical EQ, 
reverb, compressors, etc). 

- Digital Software: Software programs like Logic, Ableton, etc, that provide virtual tools and synthesised 
processors to produce music 

 

PART 1: MUSIC BACKGROUND/CULTURAL QUESTIONS 

 

1. Describe Your Musical Status. 

 

 Musician/Music Producer   Casual Music Maker    Other Creative 

Practitioner 

 

 

2. If You Mix and Process Your Own Music, Where Does This Normally Occur? 
 

 Professional Recording/Music Studio  

 Home Studio with Musical Processing Hardware 

 Personal Computer With Digital Music Software (In-The-Box Software Only)   

 I Don’t Mix/Process My Own Music   

Other: ________________________________  

 

 

3. If You Mix Music, How Likely are You to Use Physical Audio Processing Systems to Process Music in 
Comparison to Software Equivalents (e.g Hardware Compression vs. Software Compression) 

 

 Never   Sometimes   Mostly   Always   N/A 

 

 

4. Do You Feel That Physical Processing Hardware Give Better Results Than Their Software Equivalent  
 

 Never   Sometimes   Mostly   Always   N/A 

Optional (Explain Choice) 
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5. With Regards to Physical Hardware, Do You Feel Analogue Components Provide Better Results than 
Digital Counterparts? 

 

 Never   Sometimes   Mostly   Always   N/A 

 

 

6. Would Your Use of Physical Audio Processing Systems Increase If They Were More Accessible?  

No    Yes     N/A 

PART 2: IOT MUSIC PROCESSOR QUESTIONS 

 

7. Do You Feel an IoT-Based Music Processing System Adds Greater Accessibility to Analogue or 
Professional Audio Processing Hardware 

 

 No    Somewhat    Yes 

 

 

8. Briefly Describe Your Impression of an IoT-Based Music Processing System if these systems were 
widely available: 
 

 

 

 

 

 

 

 

 

9. If Available, How Interested Would You Be In Incorporating IoT-Based Music Processing Systems Into 
Your Own Music Workflows? 

 

 Not Interested  Somewhat Interested   Mostly Interest  Very Interested

  N/A 

 

 

10. Are There Any Pros and Cons You Can Envision From IoT Extensions to Music and/or Other Creative 
Fields? 
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11. Please Use this space to give any further comments or feedback regarding IoT-based Audio 
Applications: 
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Appendix FF – IoT-Based Music Survey Interview Questions 

Terminology 

- Physical Processing Systems:  Hands-on devices that can be found in a live music studio (i.e. 

physical EQ, reverb, compressors, etc). 

- Digital Software: Software programs like Logic, Ableton, etc, that provide virtual tools and 

synthesised processors to produce music 

PART 1: MUSIC BACKGROUND/CULTURAL QUESTIONS 

Question 1: Please provide your name and a brief description of your professional background in 

music? 

Question 2: Can you discuss the regular space(s) where you ideally mix and/or record music? 

Question 3: Do you normally use physical music hardware or digital processing systems to mix 

music? Why is this the case? 

Question 4: Can you think of situations where physical processing hardware give better results 

than their software equivalents (E.G Hardware Compression vs Software Compression) 

Question 5: With regards to physical devices specifically, can you speak on your impressions 

between analogue vs digital hardware, and preferred use cases for either? (Example: analogue vs 

digital effect pedals, reverb springs/plates vs digital reverb hardware) 

Question 6: {Outside of IoT} To what extent would your processes for mixing (and recording) 

music be affected if analogue and professional music processing hardware were more accessible 

and why?  

 

PART 2: IOT MUSIC PROCESSOR QUESTIONS 

Question 7: Do you feel an IoT-Based music processing system adds greater accessibility to 

analogue and hardware processing systems and why or why not do you think so? 

Question 8: Briefly give an account of your overall impression of an IoT-Based music processing 

system if these systems were widely accessible: 

Question 9: If IoT-based music processing systems were available, can you discuss if you would be 

encouraged or not to incorporate them into your musical processes/workflows?  

Question 10: Are there any additional pros or cons you can envision from IoT and the fusion with 

music technology and/or other creative fields?  

Question 11: Please share any other thoughts relating to IoT implemented music systems or other 

areas that can be influenced by creative uses of IoT that have not been previously discussed. 

 


