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Abstract 

Introduction: The respiration rate (RR) is a vital sign in physiological measurement and clinical 

diagnosis. RR can be measured using stretchable and wearable strain gauge sensors which detect 

the respiratory movements in the abdomen or thorax areas caused by volumetric changes. In 

different body locations, the accuracy of RR detection might differ due to different respiratory 

movement amplitudes. Few studies have quantitatively investigated the effect of the 

measurement location on the accuracy of new sensors in RR detection. 

Methods: Using a stretchable and wearable inkjet-printed strain gauge (IPSG) sensor, RR was 

measured from five body locations (umbilicus, upper abdomen, xiphoid process, upper thorax, 

and diagonal) on thirty healthy test subjects while sitting on an armless chair. At each location, 

reference RR was simultaneously detected by the e-Health sensor, and the measurement was 

repeated twice. Subjects were asked about the comfortableness of locations. Based on Levene’s 

test, ANOVA was performed to investigate if there is a significant difference in RR between 

sensors, measurement locations, and two repeated measurements. Bland-Altman analysis was 
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applied to the RR measurements at different locations. The effects of measurement site and 

measurement trials on RR difference between sensors were also investigated.  

Results: There was no significant difference between IPSG and reference sensors, between any 

locations, and between the two measurements (all p>0.05). As to the RR deviation between IPSG 

and reference sensors, there was no significant difference between any locations, or between two 

measurements (all p>0.05). All the thirty subjects agreed that diagonal and upper thorax 

positions were the most uncomfortable and most comfortable locations for measurement, 

respectively. 

Conclusion: The IPSG sensor could accurately detect RR at five different locations with good 

repeatability. Upper thorax was the most comfortable location. 
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1. Introduction 

Respiratory rate (RR) is commonly defined as the times of respiration in a minute, with the 

unit of breath per minute (BPM). In physiological measurement and clinical monitoring, RR is a 

vital sign where the RR variations could reflect the state of cardiorespiratory system and related 

diseases [1] [2], such as  cardiac arrest [2], [3] and respiratory failure [2].  Despite its clinical 

importance, RR is often neglected or measured inaccurately by the manual counting of nursing 

staff [4], [5]. The traditional RR monitoring devices such as spirometers and capnography [6] are 

uncomfortable to wear and limit patients’ mobility.. There is an urgent need for more wearable 

and comfortable RR sensors.  

Recently, some stretchable and wearable sensors have been developed to measure RR 

continuously and automatically [7]–[10] based on the detection of volumetric changes in the 

ribcage or abdomen areas [11], [12]. Stretchable and wearable sensors are convenient to use 

during daily activities [13]–[17]. Additionally, flexible and stretchable sensors are comfortable 

sensors to achieve continuous physiological monitoring. The stretchability and flexibility give 

these sensors skin-like characteristics therefore the patients will more likely tolerate these 

sensors [13]. Therefore, these sensors provide the possibility of continuous, convenient, and 

comfortable RR monitoring.  



With stretchable and wearable sensors, RR could be measured in different body locations. Liu 

et al. [18]  assessed the validity of a newly developed wearable strain sensor for respiratory 

movements at four different locations namely axilla, xiphoid process, 10th rib and umbilicus on 

21 subjects. At each location they mounted three wearable sensors at the left, right and middle to 

measure the amount of change in the circumference during inhalation and exhalation, with a 

reference tape sensor recording the respiratory movement. Regarding the results repeatedly 

measured by wearable sensors, the Intraclass Correlation Coefficient (ICC) values for intra-rater 

reliability is high (range of ICC: 0.94 to 0.98) in all the four locations. The largest circumference 

change was observed from the wearable sensor in the middle of the 10th rid (mean±SD: 

0.6±0.19 cm) where the correlation between respiratory movements measured by the wearable 

sensor and reference tape sensor was the largest (0.85, p<0.05). Furthermore, Furtak et al. [19] 

developed a strain sensor for RR monitoring using screen printing technique. Carbon nanotube 

paste was deposited on a textile substrate, then attached to two different shirts using two different 

stitching configurations. They used two sensors placed on the chest (bust) and at the under-bust 

region for each test. The results indicate that there is no significant difference in RR 

measurements between the two locations with 0.6 BPM deviation using the best sensor 

configuration. Furthermore, in Leicht et al. [20] proposed the integration of magnetic induction 

sensor in the diagonal location in safety belts for RR monitoring during driving. 

Due to the different amplitudes in respiratory movement, different locations might differ in 

the accuracy of RR monitoring. It has been reported that the accuracy of RR measurements using 

strain gauge sensors changes with different body locations [18], [19]. However, the majority of 

existing studies on RR monitoring accuracy were focused at two common locations namely 

thorax [21]–[24] and abdomen [21], [23], [25]. Diagonal mounting of RR sensors [9], [20]  was 

also investigated. However, there is a lack of studies investigating the accuracy of stretchable 

and wearable RR strain sensors at more than three positions on human body. Moreover, most of 

the existing studies on the accuracy of RR sensors at different locations did not include the 

validation of sensor repeatability [12], [19], [21]–[25].    

To investigate if RR measurement using the stretchable sensor is repeatable at different 

measurement locations, and to investigate the difference in measurement accuracy between 



locations, this study aims to preliminarily validate the performance and the functionality of a 

stretchable and wearable inkjet-printed strain gauge (IPSG) at five different body locations. 

2. Methodology  

2.1 Physiological Measurements   

2.1.1 Subjects 

Thirty test subjects (six females and 24 males) with an age deviation of 26.67 ± 6.23 years 

(mean ± SD) under normal breathing rhythm without any known respiratory diseases participated 

in this study with written informed consent. The subjects were given a brief of the procedure at 

the beginning of the experiment and reminders during the experiment [26].  

2.1.2 Sensors 

The IPSG RR sensor was fabricated using inkjet printing technology on Polydimethylsiloxane 

(PDMS) substrate [27]. Inkjet printing is an emerging fabrication technique that has been used 

extensively in the development of wearable sensors [28]–[30]. The sensor employs the volume 

change of either the ribcage or the abdomen in RR detection where the inductance of the sensor 

increases during the inhalation process while it decreases while the exhalation. The strain gauge 

sensor was implemented in Wheatstone bridge circuit.  The output signal from the developed 

sensor was processed in a microcontroller and transferred to a computer where the sensor has the 

ability to provide real-time monitoring.  

The results obtained from the developed sensor are compared with the results from the reference 

nasal e-Health sensor (e-Health AirFlow sensor, Cooking Hacks) which was validated by several 

studies in the literature [31]–[34]. The e-Health sensor detects the variation in temperature of the 

nasal airflow. Liu et al. [35] mentioned that airflow measurement is deemed as a more reliable 

method compared with the methods using respiratory movement or respiratory modulation. 

Figure 1 shows a sample of the RR signals measured by the IPSG and e-Health sensors, note that 

the phase shift in the RR signals is due to the working principle of each sensor. The peaks in the 

e-Health sensor signal were formulated during the exhale during which the airflow temperature 

is high while the peaks in the IPSG sensor signal are formulated during the inhale. 



Figure 1. Sample of the RR signal from the IPSG and e-Health sensors. 

2.1.3 Measurement procedure 

In this study, the IPSG sensor was tested at five different locations: umbilicus (navel), upper 

abdomen, xiphoid process, upper part of thorax and diagonal from the shoulder to the end of the 

ribcage as shown in Figure 2. The subjects were asked to sit on armless wooden chair facing the 

wall in an office room [36]. In each location, the test was repeated twice in order to investigate 

the repeatability where in each trial the RR readings were recorded for one minute with a 30s 

break between the two trials. Note that the order of tested locations was selected randomly.  

Figure 3 shows the measuring protocol used to inspect the effect of the measurement location on 

the accuracy of the sensor. Finally, after each test the test subjects were asked about the most 

comfortable location of measurement. 

(a) (b) (c) 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

V
o

lt
ag

e 
(V

o
lt

s)

Time (Sec)

IPSG Sensor e-Health Sesnor



(d) (e) 

Figure 2. The sensor’s position on human body: a) umbilicus, b) upper abdomen, c) thorax at 

xiphoid process, d) upper thorax and e) diagonal (from left shoulder to the thorax right end). The 

dotted line represents the end of the ribcage. 

 

Figure 3. The adopted measurements protocol [26]. 
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2.2 Extraction of RR 

The signal processing was performed using MATLAB Simulink (R2018b, MathWorks, 

Natick, MA, USA). The algorithm starts with acquiring raw data from the sensor at a sampling 

frequency of 100Hz as shown in Figure 4 where the respiration frequency is the peak in 

frequency spectrum. It should be noted that the FFT implementation was set to the auto 

implementation mode with 10s window size. 

Figure 4. Derivation flow chart of respiration rate from the RR sensor. 

2.3 Statistical Analysis  

2.3.1 RR Measurement: Effects of Measurements Trials, Sites, and Sensors  

Analysis Of Variance (ANOVA) test was performed on SPSS (SPSS 20.0,  SPSS Inc., 

Chicago, Illinois, USA) to evaluate the existence of significant statistical difference between the 

measurements trials and the statistical difference between the sensor’s readings at different 

locations as well as the readings of the IPSG and reference sensor. In order to properly use 

ANOVA, the normality and the homogeneity of variance (equality of variance) should be 

inspected however since the sample had more than 25 observations (central limit theorem) there 

was no need to inspect the normality of it [37]. It should be noted that the homogeneity of 

variance was inspected using Levene’s test on Minitab (Minitab 16, Minitab Inc., State College, 
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Pennsylvania, USA) which is one of the common tests used in the evaluation of the homogeneity 

of variance. 

2.3.2 RR Deviation: Effects of Measurements Trials and Sites  

For each measurement, RR deviation was calculated as the RR measured by the IPSG sensor 

minus the reference RR. To investigate if the RR deviation is repeatable and independent from 

measurement location, ANOVA with Levene’s test was applied to the RR deviation data.  

2.3.3 Bland-Altman analysis 

Bland-Altman analysis was used to evaluate the accuracy of the IPSG sensor at the five 

locations where Bland-Altman analysis was applied on RR measurements dataset from the two 

trails. Bland-Altman analysis compares the results obtained from two measuring devices or 

techniques where it represents the agreement between the two measuring techniques.  

2.3.4 Linear Regression 

To evaluate the correlation between the measured RRs by the IPSG and e-Health sensors and 

to specify if the RR reading follows a linear correlation, the RR measurements dataset from the 

two trails were fitted to a linear regression model. The correlation was evaluated based on the 

regression coefficient which reflects the consistency of the change in the RR measured by the 

IPSG sensor and the change in RR measured by the reference sensor. Moreover, p-values were 

used to judge the statistical significance of the correlation components where coefficients with p-

values larger than the significance level (0.05) have no statistical significance on the RR 

correlation (null hypothesis is rejected).   

3. Results  

3.1 Repeatability of RR Measurements 

Levene’s test indicates that the dataset satisfies the homogeneity of variance (p=0.86). 

Knowing that the dataset satisfies the homogeneity of variance criteria, ANOVA test can be 

applied on the dataset to inspect the statistical significance between the measurements’ trials, 

measurements locations and measurements source. The ANOVA test applied on the RR dataset 

indicates that there is no significant statistical variance between the measurement’s trials, 

measurements locations and measurements source where the p-value in all the cases in was 

larger than the significance level (0.05).  



The respiratory rate had high individual difference due to several factors such as gender, 

health status and age. Moreover, the amount of volume change during respiration depends on the 

measurement location on human body. The measured respiration rate of the thirty test subjects 

by the IPSG sensor varies between 7.8 BPM and 39.06 BPM. The RRs measured by the IPSG 

and reference sensors are not significantly different at the five different locations, and for the two 

measurements trials. 

3.2 The Effect of The Measurement Location on RR   

The functionality and the accuracy of the IPSG sensors depend on the amount of force applied 

to it. The force depends on the amount of volume change which causes different respiratory 

movements in different locations [18]. The stretchability and wearability of the IPSG sensors 

make them more vulnerable to the amount of volume change during the respiration process at 

different locations in the abdomen and thorax areas. ANOVA test applied to the deviation results 

concluded that there was no statistical significance between the measurements locations and 

trials. Figure 5 shows the average deviation in the respiration rate measured by IPSG sensor 

compared with the e-Health sensor at the five measurement’s locations, while Figure 6 shows the 

Bland-Altman analysis for the measured respiratory rate at five measurement’s locations.   

Figure 5. Average respiration rate deviation of the two trials compared with the reference sensor 

for the thirty test subjects at different measurements locations. 
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Figure 6. Bland-Altman analysis of the measured respiratory rate of the thirty adults at different 

measurements locations. Each data point represents the RR measured in each trial for the thirty 

subjects. The black continues line is the bias which is the average differences between the actual 

RR and the measured one while the dashed black lines are the limits of agreement (LoA) where 

95% of the data lays in between. 

Notice in Figure 5 that the RR measurements at xiphoid process and upper thorax had zero 

deviation from the reference sensor measurements on average where the measurements at the 

diagonal location had the largest deviation with 0.036 BPM on average. Finally, Bland-Altman 

analyses in Figure 6 show that the measurements at all the measurements locations lie within the 

agreement limits.  The RR measurements from the IPSG and e-Health sensors had a very high 

correlation with regression coefficients between 0.9922 and 0.993 at the five measurement 

positions as shown in Table 1.  

 

Table 1. The correlation between the RR measurements from the IPSG and e-Health sensors at 

different measurement locations. 

Location Equation R2 p-value 

Umbilicus 𝑦 =  1.0076𝑥 −  0.1544 0.9993 p<0.001 

Upper Abdomen 𝑦 =  0.9964𝑥 −  0.0096 0.9992 p<0.001 
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Xiphoid Process 𝑦 =  0.9981𝑥 +  0.0679 0.9992 p<0.001 

Upper Thorax 𝑦 =  0.9995𝑥 −  0.0027 0.9993 p<0.01 

Diagonal 𝑦 =  1.0014𝑥 −  0.0562 0.9993 p<0.001 

 

3. Discussion 

Strain gauge sensors can be employed in the detection of the RR where it can be estimated by 

the detection of either the change in the volume of ribcage or the volume of the abdomen. The 

amount of volume change differs within the abdomen and thorax areas [18] which may affect the 

sensor’s accuracy. Stretchable and wearable strain gauge sensors are more likely to be affected 

by the RR measurement’s location due to their mechanical properties which highlights the need 

for further investigation on the performance of stretchable and wearable sensors for RR 

measurements at different locations.  

 4.1 RR Measurements: Comparison with Other Sensors  

The RR measurements using the IPSG sensor were accurate compared with the sensors 

reported in the literature [8], [21], [38]–[43]. Moreover, the IPSG sensor was very accurate 

compared with the sensors reported in the literature  [18], [21] with high regression coefficients 

as shown in Table 2.  

Table 2. Comparison between the performance of different RR sensors reported in the literature 

and the IPSG sensor in this study. 

Author Sensor Type Average Error R2 p-value 

Hesse et al. [12] force sensor -0.32 ± 0.68 Hz - - 

Chu et al. [21] strain gauge sensor 

0.14±0.01 to 

0.153 ± 0.0115 

BPM 

0.929-

0.962 
p>0.05 

Kwak et al. [22] strain gauge sensor no apparent error - - 

Chung et al. [38] stretchable and wearable RR sensor 0.3±0.95 BPM - - 

This study IPSG sensor 
0±0.109 to 0.082 

±0.109 BPM 

0.992-

0.993 
p>0.05 

 

4.3 The Effect of The Measurement Location on RR  



Notice in Figure 6 that the measurements at the upper thorax location had the lowest means 

and SD of bias (0.012 ± 0.137 BPM) while the upper abdomen had the largest mean and SD of 

bias (0.074 ± 0.497 BPM). Furthermore, the measurements at the xiphoid process had the 

smallest limit of agreement range (0.538 BPM) while measurements at the upper abdomen had 

the biggest limit of agreement range (1.95 BPM). The RR measurements at the xiphoid process 

and the upper thorax were the most accurate ones compared with the reference sensor. Note that 

the dataset measurements at the upper abdomen area were the only one that had outliers could be 

related to an error during the measurement. 

While the least accurate ones were taken at the upper abdomen followed by the diagonal 

location. Excluding the outlier from the regression analysis increases the regression coefficient to 

0.9992 and make it more approximate to the other measurement’s locations. It was reported in 

[18] that the abdomen area has the least volume change due to respiration while the thorax area 

had the biggest change (upper thorax followed by the xiphoid process) which justifies the 

accuracy of the measurements taken at the upper thorax and the xiphoid process. It can be then 

concluded that the amount of volume change had an insignificant effect on the RR detection by 

the IPSG sensor where the sensor was sensitive enough to detect the RR at any location in the 

abdomen and thorax areas. Finally, it can be concluded that the best location for the RR detection 

is either at the upper thorax (had the least bias and least difference) or at the xiphoid process (had 

the narrowest limits of agreements) which agree with [18] where they reported the largest 

volume change due to the respiration movement at these two locations. 

It can be depicted from Figure 6 that the IPSG sensor was capable of detecting the RR at the 

five measurements locations accurately compared with the sensor reported in the literature [12], 

[19], [21], [22]. Moreover, the RR measurements by the IPSG sensors at the different locations 

in the abdomen and thorax areas had better regression coefficients compared with the sensors in 

the literature [18] at the same measurement locations as shown in Table 3. Finally, the test 

subject agreed that the RR measurements at the diagonal location were the most uncomfortable 

test while the measurements at the xiphoid process and the upper thorax were the most 

comfortable ones. 



Table 3. Comparison between the correlation coefficients of the RR measurements by the IPSG 

sensor and the strain gauge sensor in [18] at different measurements locations. 

Location  Correlation Coefficients 

This Study [18] 

Umbilicus  0.9993 0.82 

Xiphoid  0.9992 0.82 

Upper Thorax 0.9993 0.85 

 

4.4 Limitations and Future Work 

There were some limitations in this pilot study. Firstly, the IPSG was tested on thirty test 

subjects at different measurement body sites only while sitting and under normal breathing 

rhythms only. For further evaluation, the IPSG sensor should be tested while running, standing 

and sleeping under normal and abnormal breathing rhythms. Secondly, in this study the 

performance of the sensors was evaluated only at the middle of the abdomen and thorax areas as 

well as diagonal position where it is important to further evaluate the performance at the left and 

right positions of each location. The subjects were mainly healthy and young (age: 26.67±6.23 

years).  Thirdly, in some pathological cases such as acute asthma and pneumonia, the RRs are 

hard to measure where the investigation of the RR sensor location during such cases is important 

[44], [45]. In future studies, various subjects (age, weight, thoracic circumference) with different 

physiological conditions such as walking and running- where high RR measurement is still 

difficult to achieve [6], [21]- could be considered. Moreover, the lack of full validation of e-

Health airflow sensor is a limitation. However, in this pilot study, we only measured the normal 

RR range, therefore the effect of possible inaccuracy of e-Health sensor is quite limited. In the 

future, more reliable reference sensor should be used with more cases to cover a wide range of 

RR. 

 

4. Conclusions   

In this study, IPSG sensor showed good repeatability and accuracy in all the five locations for 

RR monitoring. The accuracy and the performance of the new sensor were comparable with 

commercial sensors, and better than the sensors reported in the literature.  
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Appendix A 



Table 1. The average respiration rates of the thirty subjects at different positions.  

Subject 
Umbilicus Upper Abdomen Xiphoid Process Upper Thorax Diagonal 

IPSG e-Health IPSG e-Health IPSG e-Health IPSG e-Health IPSG e-Health 

1 11.7 11.7 15.6 15.6 11.7 11.7 11.7 11.7 7.8 7.8 

2 13.65 13.65 31.26 31.26 21.48 21.48 11.7 11.7 13.65 13.65 

3 29.31 29.31 27.36 27.36 27.36 27.36 27.36 27.36 29.31 29.31 

4 21.51 21.51 23.46 23.46 19.56 19.56 23.46 23.46 21.51 21.51 

5 19.53 19.53 13.65 13.65 13.65 13.65 11.7 11.7 13.65 13.5 

6 17.58 17.58 19.53 19.53 23.46 23.46 19.56 19.56 21.51 21.51 

7 15.63 15.63 11.7 11.7 11.7 11.7 11.7 11.7 9.75 9.75 

8 17.58 17.58 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 

9 19.56 19.56 15.63 15.63 11.7 11.7 15.6 15.6 13.65 13.65 

10 15.6 15.6 15.6 15.6 15.6 15.6 19.56 19.56 19.56 19.56 

11 15.63 15.63 15.6 15.6 15.6 15.6 13.65 13.65 15.6 15.6 

12 19.56 19.56 15.63 15.63 19.56 19.56 19.56 19.56 19.53 19.53 

13 17.58 17.58 15.63 15.63 11.7 11.7 11.7 11.7 11.7 11.7 

14 17.58 17.58 17.58 17.58 17.58 17.58 21.51 21.51 11.7 11.7 

15 17.58 17.58 13.65 13.65 11.7 11.7 13.65 13.65 15.63 15.63 

16 17.58 17.58 19.56 19.56 19.56 19.56 19.56 19.56 19.56 19.56 

17 17.58 17.58 17.58 17.58 19.56 19.56 17.58 17.58 21.51 21.51 

18 19.53 19.53 23.46 23.46 17.58 17.58 15.6 15.6 19.56 19.56 

19 17.58 17.58 15.6 15.6 9.75 9.75 9.75 9.75 9.75 9.75 

20 23.46 23.46 17.58 17.58 15.6 15.6 15.6 15.6 23.46 23.46 

21 17.58 17.58 19.56 19.56 21.51 21.51 21.51 21.51 23.46 23.46 

22 17.55 17.55 16.44 16.44 15.72 15.36 16.8 16.8 15 15.36 

23 20.85 20.67 20.85 21.24 21.93 21.57 21.21 21.21 21.21 21.57 

24 12.06 12.465 12.06 12.06 12.06 12.06 14.25 13.89 10.59 10.98 

25 10.59 10.95 9.12 9.48 10.98 10.98 10.23 10.23 9.84 9.84 

26 12.42 12.42 16.8 18.27 18.66 18.66 20.13 20.49 19.02 19.02 

27 12.42 12.42 12.225 12.225 12.42 12.06 10.59 10.95 11.31 11.31 

28 15.63 15.63 17.58 17.58 11.7 11.7 17.58 17.58 17.58 17.58 

29 23.46 23.46 19.53 19.53 23.46 23.46 21.51 21.51 23.46 23.46 

30 25.41 25.41 29.31 29.31 29.31 29.31 39.06 39.06 33.21 33.21 
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