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26 Abstract

27 Objectives: This study tests the hypothesis that individuals who achieve a plateau at 𝑉

28 O2max ( O2plat) are more likely to possess alleles, associated with anaerobic capacity, 𝑉

29 than those who do not. 

30 Design: A literature survey, physiological testing and genetic analysis was used to 

31 determine any association between the aerobic and anaerobic polymorphisms of 40 

32 genes and O2plat. 𝑉

33 Methods: 34, healthy, Caucasian volunteers, completed an exercise test to determine 

34 O2max, and O2plat. 28 of the volunteers agreed to DNA testing and 26 were 𝑉  𝑉

35 successfully genotyped. A literature search was used to determine whether the 40 

36 polymorphisms analysed were associated with aerobic, or anaerobic exercise 

37 performance.

38 Results: The literature survey enabled classification of the 40 target alleles as aerobic 

39 [11], anaerobic [24], or having no apparent association (NAA) [5] with exercise 

40 performance. It also found no previous studies linking a genetic component with the 

41 ability to achieve O2plat. Independent t-tests showed a significant difference (p < 𝑉

42 0.001) in the ability to achieve O2plat, but no other measured physiological variable 𝑉

43 was significantly different. Pearson’s χ2 testing demonstrated a highly significant 

44 association (p = 0.008) between anaerobic allele frequency and O2plat, but not with 𝑉 𝑉

45 O2max. There was no association between aerobic alleles and O2plat, or O2max. 𝑉 𝑉

46 Finally there were no significant differences in the allelic frequencies, observed in this 

47 study and those expected of Northern and Western European Caucasians. 

48 Conclusion: These results support the hypothesis that the ability to achieve O2plat is 𝑉

49 associated with alleles linked to anaerobic exercise capacity. 

50
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76 1. Introduction

77

78 Factors contributing to athletic performance are complex, involving the 

79 interaction of numerous factors including training methods, psychology, technology, 

80 diet, and genetics.1 Of these, genetic factors are a major component, with overall 

81 heritability of athletic status estimated at ca. 66%. Despite this no single gene, or 

82 polymorphism, has been definitely associated with elite athletes, in any given sport.2 

83 Accordingly identifying genetic variants that contribute to athletic success has been 

84 challenging with at least 200 genetic polymorphisms, both nuclear and mitochondrial, 

85 been associated with athletic achievement.3 Recent studies have primarily focused on 

86 either endurance,3 or power (sprint) performance 4 and their associated 

87 polymorphisms. Typically such studies have concentrated on relatively few genes 

88 (e.g. ACE, ACTN3, AMPD1, NOS3, PGC1A, PPARG), however conflicting 

89 findings, even within the same populations, means their exact influence has not been 

90 fully resolved.1

91 An important contributor to athletic performance is maximal oxygen uptake (𝑉

92 O2max), which is a measure of aerobic power and cardio-respiratory fitness.3,5 

93 Classically O2max is based on the levelling off, or plateau, in oxygen uptake, despite 𝑉

94 a continued increase in exercise intensity.5 However many participants fail to reach 𝑉

95 O2plat, for a variety of reasons, including experimental methodology, modelling 

96 approaches and populations tested.5 Previous research has also attributed the ability to 

97 attain a O2plat to a greater reliance, in some individuals, on oxygen-independent 𝑉

98 (anaerobic) metabolism,6 also referred to as “anaerobic capacity”. Green7 defined 

99 anaerobic capacity as “the maximal amount of ATP resynthesised via anaerobic 

100 metabolism during a specific type of short duration maximal exercise”.  Examination 
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101 of power–duration relationships shows that exercise, above O2max, involves an 𝑉

102 increased recruitment of type II muscle fibres, to maintain power output.8 Accordingly 

103 it is reasonable to expect that individuals with greater anaerobic capacity and/or an 

104 increased proportion of type II muscle fibres will perform better in short duration 

105 sprint-type activities. Moreover they should also be able to increase their power 

106 output, when already working at O2max  and more readily achieve a O2plat.
7,8 Clearly 𝑉 𝑉

107 the ability to increase work rate when already at O2max, using anaerobic metabolism, 𝑉

108 can be an important determinant of athletic performance. Thus  in 5km and 8km races, 

109 finish place and run-time is correlated with anaerobic, rather than aerobic capacity.9 

110 Hence it is surprising that there are no studies, to date, which have investigated a 

111 genetic component to the ability to achieve a O2plat.1,3 𝑉

112 Accordingly the aim of this study is to test the hypothesis that individuals who 

113 achieve O2plat are more likely to possess polymorphisms, associated with increased 𝑉

114 anaerobic capacity, than those who do not.

115

116 2. Methods

117 Following institutional ethical approval (Faculty of Science and Engineering Research 

118 Ethics Panel, Anglia Ruskin University, UK. FST/FREP/12/339), 34 recreationally 

119 competitive, Caucasians (29 males, 5 females; age = 27.5 ± 3.29 years, mass = 73.1 ± 

120 10.8 kg, stature = 179 ± 8 cm), recruited from a student population, volunteered for 

121 this study. All participants were provided with full, written, information about the 

122 experimental procedures and any associated risks before signing an informed consent 

123 form, as per the Helsinki declaration 1975 (revised 2013), to permit their 

124 participation. Participants also completed a pre-exercise medical questionnaire to 

125 eliminate any with history of cardiopulmonary diseases, diabetes, or recent (within 3 
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126 months) musculoskeletal injuries. Finally all participants were asked to read and sign 

127 a second informed consent form giving permission to sample and test their DNA for 

128 specific polymorphisms.

129 Before testing participants were instructed that they should not eat for 3 hours before 

130 testing and ensure that they arrived in a well-hydrated state, without having consumed 

131 alcohol, or caffeine, for 24 hours. They were also requested not to complete any 

132 heavy training sessions, within 48 hours, either side of testing. All participants 

133 attended a laboratory habituation visit to familiarise themselves with test equipment 

134 and procedures. During this visit each participant’s preferred seat and handlebar 

135 heights was recorded for their subsequent test visit.

136  Prior to all trials a metabolic cart (Metalyzer 3B, Cortex, Leipzig, Germany) 

137 was calibrated for both volume and flow using a 3 L syringe (Hans Rudolph, Kansas, 

138 USA), to establish linearity and reproducibility. Additionally a two-point gas 

139 calibration was undertaken using 15% CO2 and 0% O2 in balanced nitrogen (BOC, 

140 Nottingham, UK) and ambient O2.5,6  All exercise testing was performed using a pre-

141 calibrated cycle ergometer (Lode, Excalibur Sport, Groningen, Netherlands.  A low 

142 resistance turbine and facemask was used to determine respiratory volumes and flow 

143 rates. Using a sampling rate of 60 ml.min-1, expired O2, CO2 and N2 concentrations 

144 were measured, while being drawn, directly, from the turbine assembly, into the 

145 metabolic cart. Gas concentrations and respiratory kinetics were aligned using custom 

146 metabolic cart software, allowing calculation of gas exchange variables ( O2, CO2, 𝑉 𝑉

147 E and RER). Heart rate was continually monitored, throughout each exercise trial, 𝑉

148 using a short-range telemetric monitoring system (Polar 810s, Kemple, Finland).5 

149 Immediately after each O2max trial capillary blood samples (5 μl) were collected, for 𝑉

150 lactate analysis (GM7 Micro-Stat analyser, Analox Instruments, UK). As before, the 
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151 Micro-Stat analyser was calibrated, as per manufacturers’ instructions, before 

152 analysis, with all samples being measured immediately upon collection.10

153 To determine O2max and associated cardio-respiratory responses, participants 𝑉

154 completed an incremental exercise stress test, to volitional exhaustion, on a pre-

155 calibrated cycle ergometer, using a ramp rate of 0.42 W.s-1, with a starting resistance 

156 of 50 W (females), 100 W (males), at a minimum cadence of 60 rpm.  Tests were 

157 terminated, either through volitional withdrawal, or if cadence decreased by > 5 rpm 

158 of that prescribed, despite strong verbal encouragement. Throughout the course of the 

159 test, expired air and gas exchange variables were recorded on a breath-by-breath 

160 basis. Prior to the incremental test the participants undertook a self-selected warm-up 

161 with a duration of 5.2 ± 0.8 min. All testing protocols were in accordance with 

162 previous work.5,6,10 A confirmation of  O2max  was determined by the participant 𝑉

163 recording a ∆ O2 of ≤ 1.5 ml.kg-1.min-1 across the final 2, consecutive, 30-breath 𝑉

164 sampling periods.5,10 Additional (secondary) methods were employed to confirm a 

165 maximal effort, namely a respiratory exchange ratio (RER)  ≥ 1.15; maximal heart 

166 rate (HRmax) of  > 205.9 – 0.685.age  and peak blood lactate (pBLa) ≥ 8.0 mmol.5,10

167 For DNA testing participants were instructed not to eat/drink/smoke/clean 

168 teeth for 3 h prior to sampling. On arrival they were given a coded, sterile, plastic tube 

169 and a cotton wool swab-stick (FitnessGenes Ltd, DiagnOx Laboratory, 77 Heyford 

170 Park, Bicester, OX255HD, UK). This was used to collect a sample of buccal cells, by 

171 rubbing it against the inside of the cheek for 1 min, before sealing in the coded tubes, 

172 which were immediately sent to FitnessGenes Ltd., for genetic analysis. 

173 DNA was extracted using Qiagen DNA Blood Mini Kits. Samples were 

174 analysed, using allele-specific PCR11, for total of 40 putative exercise-associated 

175 genes.  Primers (Appendix A.1) were designed using Oligo Explorer 1.5 software and 
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176 checked for uniqueness using the NCBI BLASTW search engine 

177 (https://blast.ncbi.nlm.nih.gov/Blast.cgi). PCR was performed using a thermal cycler 

178 (Eppendorf Mastercycler Gradient; Eppendorf, Hamburg, Germany). The final 

179 volume of all PCR protocols was 25 μl. PCR conditions were as follows: initial 

180 denaturing at 95oC, 10 min.; 35 cycles at 95oC, 1 min.; 52 oC, 45 s; 72oC, 1 min.; with 

181 final extension at 72oC, 5 min. PCR products were subject to restriction enzyme 

182 digest and visualised by gel electrophoresis, using 1.2% agarose gels, for verification. 

183 Replicate samples were checked and if there was a mismatch, the genotyping was 

184 repeated. If, on repetition, no match was found, the sample was excluded from the 

185 final dataset. For the insertion/deletion (I/D) ACE polymorphism an indirect detection 

186 method was used, based on genotyping rs4341 (C/G; Appendix A.1), which is in total 

187 linkage disequilibrium with the I/D polymorphism.12 

188 A literature search was made of journals in PubMed, Google Scholar and Web 

189 of Science databases to determine which alleles of the 40 target alleles were 

190 associated with aerobic, or anaerobic performance, or whether they had NAA with 

191 exercise performance. Key words included the names of each gene and their SNPs 

192 (Appendix A.1), together with the terms: athlete, sport, exercise, physical 

193 performance, endurance, muscle, power, strength, sprint, aerobic, anaerobic, O2max,  𝑉

194 plateau and maximal oxygen consumption. Exclusion criteria were animal-based 

195 studies, articles not published in English and articles published before the year 2000.  

196 All statistical analyses were performed using the Statistical Package for Social 

197 Sciences (SPSS; Version 21.0, Chicago, Illinois, USA). Shapiro-Wilks and Levine 

198 tests showed all physiological and gas exchange data was normally distributed and 

199 with the exception of ∆ O2, to display homogeneity of variance. Two-tailed 𝑉

200 independent t-tests were used to test the null hypothesis that there were no differences 
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201 between physiological data from O2plat achievers and non-achievers. A further 𝑉

202 independent t-test was used to test the same null hypothesis for ∆ O2, but assuming 𝑉

203 unequal variance. Power calculations (α = 0.05, n = 34) suggested a statistical power 

204 > 95% for these analyses. Frequencies of alternative alleles, for each gene, were 

205 calculated using SPSS “Crosstabs” function.  Crosstabs also allowed Pearson’s χ2 

206 tests to determine whether the observed allelic frequencies of the participants differed 

207 from those of a wider, comparable, European population. Here expected allelic 

208 frequencies, calculated from data for Caucasians of Northern and Western European 

209 ancestry (HapMap-CEU genetic database: 

210 https://www.ncbi.nlm.nih.gov/SNP/index.html), were compared with the allelic 

211 frequencies found in this study. Allelic frequencies, for each gene, were also 

212 compared with O2plat and O2max, using Pearson’s χ2 tests on, either 3 × 2 𝑉 𝑉

213 contingency tables, where all 3 possible allelic combinations were present, or 2 x 2 

214 contingency tables for genes where only 2 of the possible 3 allelic combinations were 

215 observed. These analysis tested the null hypotheses that each gene’s allelic frequency 

216 had no association with either O2plat achievement, or with achievement of a “low”, or 𝑉

217 “high” O2max. The latter been defined as being lower, or higher, than the final 𝑉

218 group’s mean O2max (53.6 ml.kg-1.min-1). Results from these analyses enabled the 40 𝑉

219 polymorphisms  to be tabulated in order of the magnitude of their p - values, from 

220 lowest to highest, with respect to the allele’s association with O2plat achievement and 𝑉

221 O2max magnitude. Further 3 × 2 (2 x 2, excluding those genes with NAA) χ2 tests 𝑉

222 were performed to assess the distribution of aerobic and anaerobic alleles within the 

223 first 20 and second 20 positions, within these tables, with respect to p - values, for 

224 both O2plat and magnitude of O2max. Finally a regression analysis was performed to 𝑉 𝑉

225 determine any relationship between the values of O2max and Δ O2.𝑉 𝑉
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226 3. Results

227 A total of 2627 articles were identified. After deduplication, 2073 articles were 

228 scanned, based on title and abstract, following which a further 1986 articles were 

229 excluded. The remaining 87 articles enabled the 40 different polymorphisms to be 

230 classified either as primarily aerobic (11), anaerobic (24), or having NAA on exercise 

231 performance (5) (Table A.1). Alleles associated with muscle size/power and/or sprint 

232 performance were classified as “anaerobic”, whilst those associated with endurance 

233 performance, or increased O2max, were classified as “aerobic”. For some genes (e.g. 𝑉

234 ACE and ACTN3) their alternative alleles could be classified as either aerobic, or 

235 anaerobic.20 In this instance classification was made on the basis of the allele that 

236 appeared to have the greatest influence. Critically no references were found linking 

237 any genes, or their alleles, with O2plat achievement.𝑉

238

239 TABLE A.1 

240

241 Of the 34 participants 19 (56%) achieved O2plat, with both achievers and non-𝑉

242 achievers also meeting the various secondary criteria (RERmax, HRmax and pBLa), to 

243 confirm O2max. Only Δ O2 was significantly different (p < 0.001) for achievers (0.8 𝑉 𝑉

244 ± 0.39 ml.kg-1.min-1) and non-achievers (2.2 ± 0.68 ml.kg-1.min-1), respectively (Table 

245 A.2). Furthermore there were no significant differences for any other measured 

246 response variable: Time at O2max (s); CO2max (l.min-1); CO2max (ml.kg-1.min-1); 𝑉 𝑉 𝑉

247 Time at CO2max (s); RER at O2max; Time at RERmax (s); VEmax (l.min-1); End time 𝑉 𝑉

248 (s) (data not shown). Regression analysis (data not shown) found no relationship (r2 = 

249 0.044) between the magnitude of O2max and Δ O2.𝑉 𝑉

250
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251 TABLE A.2  

252

253 28 participants agreed to DNA testing and of these 26 participants were 

254 successfully genotyped (14 plateau achievers (54%) and 12 non-plateau achievers). 

255 This final group was identical to the original group in terms of their physiological 

256 responses (Table A.2). Crucially comparisons of their allelic frequencies, with 

257 frequencies obtained from the HapMap-CEU genetic database showed no significant 

258 differences (Table A.1).

259 Table A.3 shows that individuals who achieve O2plat are much more likely to 𝑉

260 possess polymorphisms associated with anaerobic performance than those who do 

261 not. Thus of the first 20 of the 40 genes tested (Table A.3) 16 had alleles classified as 

262 “anaerobic”, 2 “aerobic” and 2 “NAA”, whilst in the second 20, 8 alleles are 

263 classified as “anaerobic”, 9 “aerobic” and 3 “NAA” (χ2  = 7.32; p = 0.026). Excluding 

264 those genes classified as having NAA (χ2 = 7.10; p = 0.008) demonstrated that such a 

265 distribution of anaerobic alleles was highly unlikely to occur by chance. 

266

267 TABLE A.3

268

269 Manual inspection of the association of the alleles of genes (ACTN3, IL6, 

270 ADRB213, PPARG: Table A.3) with a significant, or very close to a significant 

271 association, with O2plat, (Table A.3) showed that for ACTN3 (C), IL6 (G) and 𝑉

272 PPARG (G), it was the anaerobic allele that predominated. Thus for ACTN3 the 

273 homozygous, CC, genotype was associated with 11 plateau achievers and only 3 non-

274 achievers. For IL6 the homozygous, GG, genotype was associated with 9 plateau 

275 achievers and only 3 non-achievers. In the case of PPARG, where only 2 of the 3 
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276 possible genotypes (CC and CG) were recorded, it was the CG genotype that was 

277 associated with plateau achievement. Finally the “aerobic” "ADRB213, (Table A.1), 

278 also showed a significant relationship with O2plat (Table A.3), where the AA (3) and 𝑉

279 GA (10) genotypes were associated with O2plat, compared with 5 non-achievers.𝑉

280 In contrast to the results for O2plat, there was no significant association of 𝑉

281 aerobic alleles with O2max (χ2 = 0.29; p = 0.86) (Table A.3).  Excluding those genes 𝑉

282 with NAA had no effect (χ2 = 0.06; p = 0.81). Only CYP1A2 showed a significant 

283 relationship with a higher than average O2max, with the aerobic PCG1A and ACE 𝑉

284 genes, being close to significance. For CYP1A2 the AA genotype was present in 13 

285 above average O2max performers and one below average performer. 𝑉

286

287 4. Discussion

288

289 It is well-established that the ability to attain O2plat is inconsistent, with 𝑉

290 different studies reporting considerable variation in attainment. Possible explanations 

291 include methodology, such as O2 sampling intervals, protocol duration, modelling 𝑉

292 approaches and populations tested.5,6 There is also evidence that the ability to achieve 

293 O2plat has a physiological component, namely anaerobic capacity.6 Such a 𝑉

294 physiological component would, by necessity, be underpinned by a genetic 

295 component.4,17 The results of this study strongly support this hypothesis by 

296 demonstrating that possession of anaerobic alleles showed a highly significant 

297 association with O2plat attainment (Table A.3). Of those genes showing a significant 𝑉

298 relationship, ACTN3 4,13 showed the highest level of significance (p = 0.012). ACTN3 

299 codes for α-Actinin-3, a protein expressed in fast glycolytic type II fibres, which are 

300 responsible for rapid and powerful contractions during anaerobic activities, such as 
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301 sprinting and weightlifting.13 A common variant R577X (rs1815739 C/T) of this gene 

302 results in the replacement of an arginine codon (Arg or R) with a stop codon, (X), 

303 producing a non-functional α-actinin-3 protein. This slows the anaerobic metabolism 

304 of type II fibres, causing a shift toward increased oxidative metabolism.27 Since 

305 achieving  O2plat means increasing work rate, without further increase in oxygen 𝑉

306 consumption,5 it is not surprising that type II fibres, which can function under hypoxic 

307 conditions, such as are encountered at O2plat, could contribute to O2plat achievement. 𝑉 𝑉

308 IL6, which also showed a significant association with O2plat, is expressed in 𝑉

309 muscle cells, where it appears to have a role in hypertrophic muscle growth.17 As with 

310 this study, previous work reports that frequencies of the G allele were significantly 

311 higher in power athletes, compared with endurance athletes.17

312 The ability of muscles to operate under hypoxic conditions also provides an 

313 explanation for the significant association seen between ADRB213 and O2plat. 𝑉

314 Although ADRB213 was classified as “aerobic” (TableA.1),1,2 there is good evidence 

315 to suggest that it also confers an advantage when exercising under hypoxic 

316 conditions,28 such as those that will occur at O2plat. Here Tsianos et al.28, studying the 𝑉

317 Mount Olympus Marathon, which reaches an altitude of 2,690 m and represents a 

318 significant hypoxic challenge, found that A-allele of ADRB213 was associated with 

319 faster completion times.

320 In contrast to the strong association between anaerobic alleles and O2plat (Table A.3), 𝑉

321 there was no significant association with aerobic allelic frequency and O2max (Table 𝑉

322 A.3). Only one gene, CYP1A2, showed a significant association with O2max (Table 𝑉

323 A.3). CYP1A2 polymorphisms have been the subject of numerous studies because of 

324 their role in the metabolism of caffeine.29. Here the SNP in the CYP1A2 gene 

325 (163C>A; rs762551) is responsible for the haplotype which confers a faster capacity 
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326 to metabolize caffeine on AA homozygotes.30 Rapid production of these metabolites 

327 is believed to be responsible for performance-enhancing effects of caffeine among 

328 AA homozygotes.29 With respect to the significant association with CYP1A2 and 𝑉

329 O2max seen in this study, specifically the AA genotype, there is also increasing 

330 evidence that the AA genotype is overrepresented in endurance athletes,20 supporting 

331 the findings of this study.

332 Finally the allelic distribution of participants, in this study, did not differ 

333 significantly from those of Caucasians of Northern and Western European ancestry. 

334 This suggests the findings, described above, are likely applicable to this wider 

335 population group. Accordingly further research is required to confirm these findings 

336 and to determine whether they apply to different population groups.

337

338 5. Conclusion

339

340 This study has demonstrated that:

341  Allelic frequencies, of the participants, are representative of the wider 

342 Northern and Western European Caucasian population.

343  There is a statistically significant association of anaerobic alleles with O2plat 𝑉

344 attainment. 

345  Hence the ability to O2plat. has a genetic component.𝑉

346

347

348

349
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Table A.1 Genes, single nucleotide polymorphisms (SNP) and classification 

according to whether a specific nucleotide is associated with anaerobic, aerobic 

performance, or having no apparent association (NAA). A, T, G and C are the SNP-

specific nucleotide bases. Performance associated bases in bold. χ2 values (χ2 Freq) 

and p - values are for the allelic frequencies obtained in this study, compared with 

expected Northern and Western European Caucasian frequencies.

Gene SNP Anaerobic Aerobic Reference χ2 Freq p-value
ACE rs4341 G C 13 2.57 0.28
ACTN3 rs1815739 C T 13 3.62 0.16
ACVR1B* rs2854464 A G 14 0.02 0.99
ADRB213 rs1042713 G A 2 0.08 0.96
ADRB214 rs1042714 G C 2 0.09 0.96
AGT rs699 C T 14 5.69 0.06
AKT1 rs1130214 G T 4 0.09 0.96
AMPD1 rs17602729 C T 15 0.49 0.78
APOA2 rs5082 NAA NAA 16 1.68 0.43
APOA5* rs662799 NAA NAA 16 2.06 0.36
BDKRB2 rs1799722 C T 17 0.09 0.96
CKM rs8111989 G A 18 1.18 0.55
Clock rs1801260 NAA NAA 19 0.51 0.79
CNTF rs1800169 G A 14 0.49 0.78
CYP1A2 rs762551 C A 20 0.50 0.78
ESR1 rs722208 A G 21 0.25 0.88
FTO rs9939609 T A 22 2.32 0.31
HIF1A rs11549465 T C 17 1.2 0.55
IGF1-35* rs35767 T C 2 2.4 0.30
IGF1-71 rs7136446 C T 23 0.81 0.67
IGFBP-3 rs2854744 C A 23 2.62 0.27
IL15RA rs2296135 A C 17 2.41 0.31
IL6 rs1800795 G C 17 3.32 0.19
IL6R rs2228145 C A 17 0.92 0.63
MCM6* rs4988235 NAA NAA 24 3.18 0.34
MSTN* rs1805086 G A 25 1.34 0.51
MTHFR rs1801131 C A 17 0.24 0.88
MTR rs1805087 G A 2 1.94 0.38
MTRR rs1801394 G A 2 2.75 0.25
NOS3 rs2070744 T C 4 3.21 0.20
PGC1A rs8192678 G A 2 0.68 0.71
PPARA rs4253778 C G 2 0.08 0.95



PPARG* rs1801282 G C 2 1.23 0.54
SHBG rs1799941 A G 21 1.02 0.61
SLC16A1 rs1049434 T A 1 2.93 0.63
UCP1* rs6536991 NAA NAA 26 1.47 0.48
UCP2 rs660339 C T 1 0.16 0.92
UCP3 rs1800849 C T 1 0.08 0.96
VDR rs2228570 T C 14 3.54 0.17
VEGFA* rs2010963 G C 2 1.99 0.37

* Only 2 of the possible 3 allelic combinations present.



Table A.2. Physiological data for participants classified as plateau achievers, or non-

achievers, as described in methodology for all 34 participants (Original) and those 26 

participants (Final) who provided a DNA sample that was successfully analysed. 

Parameter Group Plateau Non Plateau p - value
Mass (kg) Original

Final
72.4 ± 9.86
72.9 ± 10.22

73.7 ± 12.03
74.3 ± 13.24

0.73 
0.62 

O2max  𝑉
(ml.kg-1.min-1)

Original
Final

54.5 ± 9.75
52.3 ± 10.98

53.0 ± 9.11
55.1±12.53

0.79 
0.48 

Δ O2𝑉
(ml.kg-1.min-1)

Original
Final

0.76 ± 0.387
0.69 ± 0.418

2.21 ± 0.682
2.32 ± 0.740

< 0.001a

< 0.001a

RERmax Original
Final

1.18 ± 0.072
1.19 ± 0.079

1.19 ± 0.076
1.18 ± 0.081

0.75
0.58 

HRmax (bpm) Original
Final

192.8 ± 8.41
192.2 ± 8.60

193.3 ± 9.71
194.1 ± 10.72

0.66 
0.81

pBLa (mmol) Original
Final

9.6 ± 2.39
10.7 ± 1.64

9.9 ± 2.30
10.5 ± 1.71

0.59 
0.72 

Data are presented as means ± SD.

a Significant at the 99.9% level.



Table A.3. Results of χ2 analyses to determine; (A) the gene’s association with allelic 

frequency and presence/absence of O2plat (χ2 O2plat) and (B) to determine the gene’s 𝑉 𝑉

allelic frequency association (χ2 O2max) with low (< 53.6 ml.kg-1.min-1) and high 𝑉 𝑉

O2max (> 53.6 ml.kg-1.min-1). Genes are ordered with respect to increasing p -values for 

χ2 O2plat and χ2 O2max, respectively. Class = Classification: anaerobic (An), aerobic 𝑉 𝑉

(A), or no apparent association (NAA), as defined in Table1. 

A (gene) χ2 O2plat𝑉 p-value Class B (gene) χ2 O2max  𝑉 p-value Class
ACTN3 8.82 0.012a An CYP1A2 8.94 0.011a        A
IL6* 6.37 0.041a An PGC1A 4.53 0.10        A
ADRB213 6.04 0.049a A IL15RA 4.57 0.10      An
PPARG* 3.69 0.055 An ACE 3.72 0.15        A
IGFBP-3 4.1 0.13 An IGF1-71 3.49 0.17      An
VDR 3.74 0.15 An FTO 3.51 0.17      An
ESR1 3.75 0.15 An AKT1 3.48 0.17        A
CKM 3.75 0.15 An UCP1* 1.64 0.20  NAA
MTHFR 3.11 0.21 An BDKRB2 3.16 0.21        A
IGF1-71 2.85 0.24 An MTR 2.99 0.22      An
AGT 2.83 0.24 An ADRB214 2.94 0.23      An
HIF1A 2.82 0.24 An ADRB213 2.88 0.24        A
AMPD1 2.76 0.25 An MTHFR 2.83 0.24      An
FTO 2.69 0.26 An MSTN* 1.27 0.26      An
ACVR1B* 1.21 0.27 An AGT 2.67 0.26      An
MTR 2.51 0.28 An IGFBP-3 2.40 0.30      An
MCM6* 0.91 0.34 NAA NOS3 1.92 0.38      An
CNTF 2.16 0.32 An MTRR 1.86 0.39      An
UCP3 1.92 0.38 A APOA5* 0.65 0.42  NAA
APOA2 1.78 0.41 NAA VDR 1.66 0.44      An
CLOCK 1.67 0.43 NAA CNTF 1.63 0.44      An
NOS3 1.66 0.43 An PPARA 1.45 0.48       A
MTRR 1.65 0.44 An UCP3 1.44 0.49       A
UCP1* 0.52 0.47 NAA ESR1 1.37 0.50      An
APOA5* 0.48 0.49 NAA HIF1A 1.35 0.51      An
IL6R 1.41 0.49 An MCM6* 0.39 0.53  NAA
SLC16 1.41 0.49 A IGF1-35* 0.39 0.55     An
CYP1A2 1.36 0.51 A IL6R 1.17 0.56      An
VEGFA* 0.34 0.56 A CKM 1.13 0.57      An
ADBR214 1.36 0.51 An UCP2 1.13 0.57      A
PPARA 1.14 0.56 A CLOCK 1.05 0.59  NAA



BDKRB2 1.09 0.58 A IL6* 0.97 0.60      An
AKT1 0.75 0.68 A APOA2 0.96 0.62  NAA
PGC1A 0.56 0.75 A SLC16 0.92 0.62      A
IGF1-35* 0.07 0.79 An PPARG* 0.23 0.63     An
UCP2 0.36 0.83 A SHBG 0.65 0.72     An
ACE 0.36 0.83 A ACVR1B* 0.46 0.79     An
SHBG 0.36 0.84 An AMPD1 0.41 0.81     An
IL15RA 0.20 0.90 An ACTN3 0.08 0.96     An
MSTN* 0.01 0.92 An VEGFA* 0.06 0.97     A

* Only 2 of the possible 3 allelic combinations present.



Appendix A.1. Genes, SNPs and primers used, in this study, together with primer 
orientation.

Gene SNP Primer Orientation
ACE rs4341 GGGCTGGAGCTCAAG[C/G]CATTCAAACCCCTA Forward
ACTN3 rs1815739 CTGCCCGAGGCTGAC[C/T]GAGAGCGAGGTGCC Forward
ACVR1B rs2854464 GTGTTAGTGTCAGCC[A/G]TGGGAAATGAGCCA Forward
ADRB213 rs1042713 TTGCTGGCACCCAAT[A/G]GAAGCCATGCGCCG Forward
ADRB214 rs1042714 CACGACGTCACGCAG[C/G]AAAGGGACGAGGTG Forward
AGT rs699 CTGGCTGCTCCCTGA[T/C]GGGAGCCAGTGTGG Forward
AKT1 rs1130214 CCCAGGAGGTTTTTG[G/T]GCTTGCGCTGGAGG Forward
AMPD1 rs17602729 TAATGCAATACTCAC[A/G]TTTCTCTTCAGCTG Reverse
APOA2 rs5082 GGTCCTTGGACTTGA[A/G]TGCAACAGGAAGCA Reverse
APOA5 rs662799 AACTGGAGCGAAAGT[A/G]AGATTTGCCCCATG Forward
BDKRB2 rs1799722 AGGCTGATGACATCA[C/T]TACCCAGCCCTTGA Forward
CKM rs8111989 AGAAATGGGGAGCCA[G/A]GGCAGGTTCTTGAG Forward
Clock rs1801260 GTGATCATAGGGGCA[C/T]AGCCAGTTCTGACA Forward
CNTF rs1800169 TTTTCCTGTATCCTC[A/G]GCCAGGTGAAGCAT Forward
CYP1A2 rs762551 GTGAGCTCTGTGGGC[A/C]CAGGACGCATGGTA Forward
ESR1 rs722208 GGTGGGGTGGAAGAC[A/G]CTGAAATGAATTTT Forward
FTO rs9939609 GACTGCTGTGAATTT[A/T]GTGATGCACTTGGA Forward
HIF1A rs11549465 TTCGATCAGTTGTCA[C/T]CATTAGAAAGCAGT Forward
IGF1-35 rs35767 TTTTTTTTTTTTTCC[A/G]CATGACTCTCAGGG Reverse
IGF1-71 rs7136446 CACTGCCCTAAGTGC[C/T]GCGTAGTATGTGAA Forward
IGFBP-3 rs2854744 CGGGCTCCGGGCGTG[A/C]GCACGAGGAGCAGG Forward
IL15RA rs2296135 TTTCTCTGTGAACTG[A/C]AAGTTAGGATGAGG Forward
IL6 rs1800795 CTAGTTGTGTCTTNC[C/G]ATGCTAAAGGACGT Forward
IL6R rs2228145 TTAACCTAGTGCAAG[A/C]TTCTTCTTCAGTAC Forward
MCM6 rs4988235 GATAAGATAANGTAG[C/T]CCCTGGCCTCAAAG Forward
MSTN rs1805086 ACAATAAAGTAGTAA[A/G]GGCCCAACTATGGA Forward
MTHFR rs1801131 AGCTGACCAGTGAAG[A/C]AAGTGTCTTTGAAG Forward
MTR rs1805087 AAGATATTAGACAGG[A/G]CCATTATGAGTCTC Forward
MTRR rs1801394 CATNGCAGAAGAAAT[A/G]TGTGAGCAAGCTGT Forward
NOS3 rs2070744 AAGCTCTTCCCTGGC[T/C]GGCTGACCCTGCCT Forward
PGC1A rs8192678 GAAGCAGACAAGACC[A/G]GTGAACTGAGGGAC Forward
PPARA rs4253778 CTTGATATCTAGTTT[C/G]GATTCAAAAGCTTC Forward
PPARG rs1801282 GATTCTCCTATTGAC[C/G]CAGAAAGCGATTCC Forward
SHBG rs1799941 CTCCACCGCCCACAC[A/G]CAAGGCTGCCTGCC Forward
SLC16A1 rs1049434 CCAGAAAGACACAGA[A/T]GGAGGGCCCAAGGA Forward
UCP1 rs6536991 CCCAAAACATGTCTT[C/T]TCTTCACTGACATG Forward
UCP2 rs660339 CGGTACTGGGCGCTG[A/G]CTGTAGCGCGCACT Reverse
UCP3 rs1800849 TGGTCTTATACACAC[A/G]GGCTGACCTGAAAC Reverse
VDR rs2228570 CTGTTCTTACAGGGA[C/T]GGAGGCAATGGCGG Forward
VEGFA rs2010963 TGCGAGCAGCGAAAG[C/G]GACAGGGGCAAAGT Forward


