1	The plateau at $\dot{V}O_{2max}$ is associated with anaerobic alleles
2	
3	Authors
4	Dr Don R Keiller.
5	Faculty of Science and Engineering, School of Life Sciences, Anglia Ruskin
6	University, Cambridge, UK.
7	Dr Dan A Gordon
8	Faculty of Science and Engineering, School Psychology and Sports Science, Anglia
9	Ruskin University, Cambridge, UK.
10	Address for Correspondence:
11	Dr D Keiller., Faculty of Science and Engineering, School of Life Sciences, Anglia
12	Ruskin University, East Road, Cambridge, CB1 1PT, UK; Tel. +44 (0)1223- 698151.
13	Email: don.keiller@anglia.ac.uk
14	Word Counts
15	Manuscript (excluding abstract and references); 3460 words.
16	Abstract; 245 words.

17 Number of Tables; Three (3).

1	The plateau at $\dot{V}O_{2max}$ is associated with anaerobic alleles
2	Word Counts
3	Manuscript (excluding abstract and references); 2932 words.
4	Abstract; 246 words.
5	Number of Tables; Three (3).
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Abstract

Objectives: This study tests the hypothesis that individuals who achieve a plateau at \dot{V} 27 O_{2max} (VO_{2plat}) are more likely to possess alleles, associated with anaerobic capacity, 28 29 than those who do not. Design: A literature survey, physiological testing and genetic analysis was used to 30 31 determine any association between the aerobic and anaerobic polymorphisms of 40 genes and $\dot{V}O_{2plat}$. 32 Methods: 34, healthy, Caucasian volunteers, completed an exercise test to determine 33 34 $\dot{V}O_{2max}$, and $\dot{V}O_{2plat}$. 28 of the volunteers agreed to DNA testing and 26 were successfully genotyped. A literature search was used to determine whether the 40 35 36 polymorphisms analysed were associated with aerobic, or anaerobic exercise performance. 37 *Results:* The literature survey enabled classification of the 40 target alleles as aerobic 38 [11], anaerobic [24], or having no apparent association (NAA) [5] with exercise 39 performance. It also found no previous studies linking a genetic component with the 40 41 ability to achieve $\dot{V}O_{2plat}$. Independent *t*-tests showed a significant difference (p < 0.001) in the ability to achieve $\dot{V}O_{2plat}$, but no other measured physiological variable 42 was significantly different. Pearson's χ^2 testing demonstrated a highly significant 43 association (p = 0.008) between anaerobic allele frequency and $\dot{V}O_{2plat}$, but not with \dot{V} 44 O_{2max} . There was no association between aerobic alleles and $\dot{V}O_{2plat}$, or $\dot{V}O_{2max}$. 45 46 Finally there were no significant differences in the allelic frequencies, observed in this study and those expected of Northern and Western European Caucasians. 47 Conclusion: These results support the hypothesis that the ability to achieve $\dot{V}O_{2plat}$ is 48 49 associated with alleles linked to anaerobic exercise capacity.

51	Key Words;
52	Polymorphism
53	Oxygen consumption,
54	Anaerobic capacity
55	Exercise performance
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	

1. Introduction

78	Factors contributing to athletic performance are complex, involving the
79	interaction of numerous factors including training methods, psychology, technology,
80	diet, and genetics. ¹ Of these, genetic factors are a major component, with overall
81	heritability of athletic status estimated at ca. 66%. Despite this no single gene, or
82	polymorphism, has been definitely associated with elite athletes, in any given sport. ²
83	Accordingly identifying genetic variants that contribute to athletic success has been
84	challenging with at least 200 genetic polymorphisms, both nuclear and mitochondrial,
85	been associated with athletic achievement. ³ Recent studies have primarily focused on
86	either endurance, ³ or power (sprint) performance ⁴ and their associated
87	polymorphisms. Typically such studies have concentrated on relatively few genes
88	(e.g. ACE, ACTN3, AMPD1, NOS3, PGC1A, PPARG), however conflicting
89	findings, even within the same populations, means their exact influence has not been
90	fully resolved. ¹
91	An important contributor to athletic performance is maximal oxygen uptake (\dot{V}
92	O_{2max}), which is a measure of aerobic power and cardio-respiratory fitness. ^{3,5}
93	Classically $\dot{V}O_{2max}$ is based on the levelling off, or plateau, in oxygen uptake, despite
94	a continued increase in exercise intensity. ⁵ However many participants fail to reach \dot{V}
95	O _{2plat} , for a variety of reasons, including experimental methodology, modelling
96	approaches and populations tested. ⁵ Previous research has also attributed the ability to
97	attain a $\dot{V}O_{2plat}$ to a greater reliance, in some individuals, on oxygen-independent
98	(anaerobic) metabolism, ⁶ also referred to as "anaerobic capacity". Green ⁷ defined
99	anaerobic capacity as "the maximal amount of ATP resynthesised via anaerobic
100	metabolism during a specific type of short duration maximal exercise". Examination

of power-duration relationships shows that exercise, above $\dot{V}O_{2max}$ involves an 101 increased recruitment of type II muscle fibres, to maintain power output.⁸ Accordingly 102 103 it is reasonable to expect that individuals with greater anaerobic capacity and/or an increased proportion of type II muscle fibres will perform better in short duration 104 105 sprint-type activities. Moreover they should also be able to increase their power output, when already working at $\dot{V}O_{2max}$ and more readily achieve a $\dot{V}O_{2plat}$.^{7,8} Clearly 106 the ability to increase work rate when already at $\dot{V}O_{2max}$, using anaerobic metabolism, 107 can be an important determinant of athletic performance. Thus in 5km and 8km races, 108 109 finish place and run-time is correlated with anaerobic, rather than aerobic capacity.9 Hence it is surprising that there are no studies, to date, which have investigated a 110 genetic component to the ability to achieve a $\dot{V}O_{2plat}$.^{1,3} 111

Accordingly the aim of this study is to test the hypothesis that individuals who achieve $\dot{V}O_{2plat}$ are more likely to possess polymorphisms, associated with increased anaerobic capacity, than those who do not.

115

116 **2. Methods**

Following institutional ethical approval (Faculty of Science and Engineering Research 117 Ethics Panel, Anglia Ruskin University, UK. FST/FREP/12/339), 34 recreationally 118 competitive, Caucasians (29 males, 5 females; age = 27.5 ± 3.29 years, mass = $73.1 \pm$ 119 10.8 kg, stature = 179 ± 8 cm), recruited from a student population, volunteered for 120 this study. All participants were provided with full, written, information about the 121 experimental procedures and any associated risks before signing an informed consent 122 form, as per the Helsinki declaration 1975 (revised 2013), to permit their 123 participation. Participants also completed a pre-exercise medical questionnaire to 124 eliminate any with history of cardiopulmonary diseases, diabetes, or recent (within 3 125

months) musculoskeletal injuries. Finally all participants were asked to read and sign
a second informed consent form giving permission to sample and test their DNA for
specific polymorphisms.

Before testing participants were instructed that they should not eat for 3 hours before testing and ensure that they arrived in a well-hydrated state, without having consumed alcohol, or caffeine, for 24 hours. They were also requested not to complete any heavy training sessions, within 48 hours, either side of testing. All participants attended a laboratory habituation visit to familiarise themselves with test equipment and procedures. During this visit each participant's preferred seat and handlebar heights was recorded for their subsequent test visit.

Prior to all trials a metabolic cart (Metalyzer 3B, Cortex, Leipzig, Germany) 136 was calibrated for both volume and flow using a 3 L syringe (Hans Rudolph, Kansas, 137 USA), to establish linearity and reproducibility. Additionally a two-point gas 138 calibration was undertaken using 15% CO₂ and 0% O₂ in balanced nitrogen (BOC, 139 Nottingham, UK) and ambient O₂.^{5,6} All exercise testing was performed using a pre-140 calibrated cycle ergometer (Lode, Excalibur Sport, Groningen, Netherlands. A low 141 resistance turbine and facemask was used to determine respiratory volumes and flow 142 rates. Using a sampling rate of 60 ml min⁻¹, expired O₂, CO₂ and N₂ concentrations 143 144 were measured, while being drawn, directly, from the turbine assembly, into the 145 metabolic cart. Gas concentrations and respiratory kinetics were aligned using custom metabolic cart software, allowing calculation of gas exchange variables ($\dot{V}O_2$, $\dot{V}CO_2$, 146 $\dot{V}_{\rm E}$ and RER). Heart rate was continually monitored, throughout each exercise trial, 147 using a short-range telemetric monitoring system (Polar 810s, Kemple, Finland).⁵ 148 Immediately after each $\dot{V}O_{2max}$ trial capillary blood samples (5 µl) were collected, for 149 150 lactate analysis (GM7 Micro-Stat analyser, Analox Instruments, UK). As before, the

151 Micro-Stat analyser was calibrated, as per manufacturers' instructions, before

analysis, with all samples being measured immediately upon collection.¹⁰

To determine $\dot{V}O_{2max}$ and associated cardio-respiratory responses, participants 153 completed an incremental exercise stress test, to volitional exhaustion, on a pre-154 calibrated cycle ergometer, using a ramp rate of 0.42 W·s⁻¹, with a starting resistance 155 of 50 W (females), 100 W (males), at a minimum cadence of 60 rpm. Tests were 156 157 terminated, either through volitional withdrawal, or if cadence decreased by > 5 rpm of that prescribed, despite strong verbal encouragement. Throughout the course of the 158 159 test, expired air and gas exchange variables were recorded on a breath-by-breath basis. Prior to the incremental test the participants undertook a self-selected warm-up 160 with a duration of 5.2 ± 0.8 min. All testing protocols were in accordance with 161 previous work.^{5,6,10} A confirmation of $\dot{V}O_{2max}$ was determined by the participant 162 recording a ΔVO_2 of $\leq 1.5 \text{ ml kg}^{-1} \text{ min}^{-1}$ across the final 2, consecutive, 30-breath 163 sampling periods.^{5,10} Additional (secondary) methods were employed to confirm a 164 maximal effort, namely a respiratory exchange ratio (RER) ≥ 1.15 ; maximal heart 165 rate (HR_{max}) of > 205.9 - 0.685 age and peak blood lactate (pBLa) ≥ 8.0 mmol.^{5,10} 166 167 For DNA testing participants were instructed not to eat/drink/smoke/clean teeth for 3 h prior to sampling. On arrival they were given a coded, sterile, plastic tube 168 and a cotton wool swab-stick (FitnessGenes Ltd, DiagnOx Laboratory, 77 Heyford 169 Park, Bicester, OX255HD, UK). This was used to collect a sample of buccal cells, by 170 rubbing it against the inside of the cheek for 1 min, before sealing in the coded tubes, 171 172 which were immediately sent to FitnessGenes Ltd., for genetic analysis.

DNA was extracted using Qiagen DNA Blood Mini Kits. Samples were analysed, using allele-specific PCR¹¹, for total of 40 putative exercise-associated genes. Primers (Appendix A.1) were designed using Oligo Explorer 1.5 software and

176 checked for uniqueness using the NCBI BLASTW search engine

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). PCR was performed using a thermal cycler 177 (Eppendorf Mastercycler Gradient; Eppendorf, Hamburg, Germany). The final 178 volume of all PCR protocols was 25 µl. PCR conditions were as follows: initial 179 denaturing at 95°C, 10 min.; 35 cycles at 95°C, 1 min.; 52 °C, 45 s; 72°C, 1 min.; with 180 final extension at 72°C, 5 min. PCR products were subject to restriction enzyme 181 182 digest and visualised by gel electrophoresis, using 1.2% agarose gels, for verification. Replicate samples were checked and if there was a mismatch, the genotyping was 183 184 repeated. If, on repetition, no match was found, the sample was excluded from the final dataset. For the insertion/deletion (I/D) ACE polymorphism an indirect detection 185 method was used, based on genotyping rs4341 (C/G; Appendix A.1), which is in total 186 linkage disequilibrium with the I/D polymorphism.¹² 187 A literature search was made of journals in PubMed, Google Scholar and Web 188 of Science databases to determine which alleles of the 40 target alleles were 189 190 associated with aerobic, or anaerobic performance, or whether they had NAA with exercise performance. Key words included the names of each gene and their SNPs 191 (Appendix A.1), together with the terms: athlete, sport, exercise, physical 192 performance, endurance, muscle, power, strength, sprint, aerobic, anaerobic, VO_{2max}, 193 plateau and maximal oxygen consumption. Exclusion criteria were animal-based 194 studies, articles not published in English and articles published before the year 2000. 195 All statistical analyses were performed using the Statistical Package for Social 196 Sciences (SPSS; Version 21.0, Chicago, Illinois, USA). Shapiro-Wilks and Levine 197 198 tests showed all physiological and gas exchange data was normally distributed and with the exception of $\Delta \dot{V}O_2$, to display homogeneity of variance. Two-tailed 199 independent *t*-tests were used to test the null hypothesis that there were no differences 200

between physiological data from $\dot{V}O_{2plat}$ achievers and non-achievers. A further 201 independent *t*-test was used to test the same null hypothesis for $\Delta \dot{V}O_2$, but assuming 202 unequal variance. Power calculations ($\alpha = 0.05$, n = 34) suggested a statistical power 203 >95% for these analyses. Frequencies of alternative alleles, for each gene, were 204 calculated using SPSS "Crosstabs" function. Crosstabs also allowed Pearson's χ^2 205 tests to determine whether the observed allelic frequencies of the participants differed 206 from those of a wider, comparable, European population. Here expected allelic 207 frequencies, calculated from data for Caucasians of Northern and Western European 208 ancestry (HapMap-CEU genetic database: 209 https://www.ncbi.nlm.nih.gov/SNP/index.html), were compared with the allelic 210 frequencies found in this study. Allelic frequencies, for each gene, were also 211 compared with $\dot{V}O_{2plat}$ and $\dot{V}O_{2max}$, using Pearson's χ^2 tests on, either 3 \times 2 212 contingency tables, where all 3 possible allelic combinations were present, or 2 x 2 213 214 contingency tables for genes where only 2 of the possible 3 allelic combinations were observed. These analysis tested the null hypotheses that each gene's allelic frequency 215 had no association with either $\dot{V}O_{2plat}$ achievement, or with achievement of a "low", or 216 "high" \dot{VO}_{2max} . The latter been defined as being lower, or higher, than the final 217 group's mean $\dot{V}O_{2max}$ (53.6 ml kg⁻¹ min⁻¹). Results from these analyses enabled the 40 218 219 polymorphisms to be tabulated in order of the magnitude of their p - values, from lowest to highest, with respect to the allele's association with $\dot{V}O_{2plat}$ achievement and 220 $\dot{V}O_{2max}$ magnitude. Further 3 × 2 (2 x 2, excluding those genes with NAA) χ^2 tests 221 222 were performed to assess the distribution of aerobic and anaerobic alleles within the 223 first 20 and second 20 positions, within these tables, with respect to p - values, for both $\dot{V}O_{2plat}$ and magnitude of $\dot{V}O_{2max}$. Finally a regression analysis was performed to 224 determine any relationship between the values of $\dot{V}O_{2max}$ and $\Delta \dot{V}O_2$. 225

226 **3. Results**

A total of 2627 articles were identified. After deduplication, 2073 articles were 227 scanned, based on title and abstract, following which a further 1986 articles were 228 excluded. The remaining 87 articles enabled the 40 different polymorphisms to be 229 classified either as primarily aerobic (11), anaerobic (24), or having NAA on exercise 230 performance (5) (Table A.1). Alleles associated with muscle size/power and/or sprint 231 232 performance were classified as "anaerobic", whilst those associated with endurance performance, or increased $\dot{V}O_{2max}$, were classified as "aerobic". For some genes (e.g. 233 234 ACE and ACTN3) their alternative alleles could be classified as either aerobic, or anaerobic.²⁰ In this instance classification was made on the basis of the allele that 235 appeared to have the greatest influence. Critically no references were found linking 236 any genes, or their alleles, with $\dot{V}O_{2plat}$ achievement. 237

238

239 **TABLE A.1**

240

Of the 34 participants 19 (56%) achieved $\dot{V}O_{2plat}$, with both achievers and non-241 242 achievers also meeting the various secondary criteria (RER_{max}, HR_{max} and pBLa), to confirm $\dot{V}O_{2max}$. Only $\Delta \dot{V}O_2$ was significantly different (p < 0.001) for achievers (0.8 243 ± 0.39 ml.kg⁻¹.min⁻¹) and non-achievers (2.2 ± 0.68 ml·kg⁻¹.min⁻¹), respectively (Table 244 A.2). Furthermore there were no significant differences for any other measured 245 response variable: Time at VO_{2max} (s); VCO_{2max} ($1min^{-1}$); VCO_{2max} ($mlkg^{-1}min^{-1}$); 246 Time at $\dot{V}CO_{2max}$ (s); RER at $\dot{V}O_{2max}$; Time at RER_{max} (s); V_{Emax} (l·min⁻¹); End time 247 (s) (data not shown). Regression analysis (data not shown) found no relationship ($r^2 =$ 248 0.044) between the magnitude of $\dot{V}O_{2max}$ and $\Delta \dot{V}O_{2}$. 249 250

TABLE A.2

253	28 participants agreed to DNA testing and of these 26 participants were				
254	successfully genotyped (14 plateau achievers (54%) and 12 non-plateau achievers).				
255	This final group was identical to the original group in terms of their physiological				
256	responses (Table A.2). Crucially comparisons of their allelic frequencies, with				
257	frequencies obtained from the HapMap-CEU genetic database showed no significant				
258	differences (Table A.1).				
259	Table A.3 shows that individuals who achieve $\dot{V}O_{2plat}$ are much more likely to				
260	possess polymorphisms associated with anaerobic performance than those who do				
261	not. Thus of the first 20 of the 40 genes tested (Table A.3) 16 had alleles classified as				
262	"anaerobic", 2 "aerobic" and 2 "NAA", whilst in the second 20, 8 alleles are				
263	classified as "anaerobic", 9 "aerobic" and 3 "NAA" ($\chi^2 = 7.32$; p = 0.026). Excluding				
264	those genes classified as having NAA ($\chi^2 = 7.10$; p = 0.008) demonstrated that such a				
265	distribution of anaerobic alleles was highly unlikely to occur by chance.				
266					
267	TABLE A.3				
268					
269	Manual inspection of the association of the alleles of genes (ACTN3, IL6,				
270	ADRB213, PPARG: Table A.3) with a significant, or very close to a significant				
271	association, with $\dot{V}O_{2plat}$, (Table A.3) showed that for ACTN3 (C), IL6 (G) and				
272	PPARG (G), it was the anaerobic allele that predominated. Thus for ACTN3 the				
273	homozygous, CC, genotype was associated with 11 plateau achievers and only 3 non-				
274	achievers. For IL6 the homozygous, GG, genotype was associated with 9 plateau				
275	achievers and only 3 non-achievers. In the case of PPARG, where only 2 of the 3				

276	possible genotypes (CC and CG) were recorded, it was the CG genotype that was
277	associated with plateau achievement. Finally the "aerobic" "ADRB213, (Table A.1),
278	also showed a significant relationship with $\dot{V}O_{2plat}$ (Table A.3), where the AA (3) and
279	GA (10) genotypes were associated with $\dot{V}O_{2plat}$, compared with 5 non-achievers.
280	In contrast to the results for $\dot{V}O_{2plat}$, there was no significant association of
281	aerobic alleles with $\dot{V}O_{2max}$ ($\chi^2 = 0.29$; p = 0.86) (Table A.3). Excluding those genes
282	with NAA had no effect ($\chi^2 = 0.06$; p = 0.81). Only CYP1A2 showed a significant
283	relationship with a higher than average $\dot{V}O_{2max}$, with the aerobic PCG1A and ACE
284	genes, being close to significance. For CYP1A2 the AA genotype was present in 13
285	above average $\dot{V}O_{2max}$ performers and one below average performer.
286	
287	4. Discussion
288	
289	It is well-established that the ability to attain $\dot{V}O_{2plat}$ is inconsistent, with
290	different studies reporting considerable variation in attainment. Possible explanations
291	
	include methodology, such as $\dot{V}O_2$ sampling intervals, protocol duration, modelling
292	include methodology, such as $\dot{V}O_2$ sampling intervals, protocol duration, modelling approaches and populations tested. ^{5,6} There is also evidence that the ability to achieve
292 293	include methodology, such as $\dot{V}O_2$ sampling intervals, protocol duration, modelling approaches and populations tested. ^{5,6} There is also evidence that the ability to achieve $\dot{V}O_{2plat}$ has a physiological component, namely anaerobic capacity. ⁶ Such a
292 293 294	include methodology, such as $\dot{V}O_2$ sampling intervals, protocol duration, modelling approaches and populations tested. ^{5,6} There is also evidence that the ability to achieve $\dot{V}O_{2plat}$ has a physiological component, namely anaerobic capacity. ⁶ Such a physiological component would, by necessity, be underpinned by a genetic
292 293 294 295	include methodology, such as $\dot{V}O_2$ sampling intervals, protocol duration, modelling approaches and populations tested. ^{5,6} There is also evidence that the ability to achieve $\dot{V}O_{2plat}$ has a physiological component, namely anaerobic capacity. ⁶ Such a physiological component would, by necessity, be underpinned by a genetic component. ^{4,17} The results of this study strongly support this hypothesis by
292 293 294 295 296	include methodology, such as $\dot{V}O_2$ sampling intervals, protocol duration, modelling approaches and populations tested. ^{5,6} There is also evidence that the ability to achieve $\dot{V}O_{2plat}$ has a physiological component, namely anaerobic capacity. ⁶ Such a physiological component would, by necessity, be underpinned by a genetic component. ^{4,17} The results of this study strongly support this hypothesis by demonstrating that possession of anaerobic alleles showed a highly significant

relationship, ACTN3 4,13 showed the highest level of significance (p = 0.012). ACTN3

299 codes for α -Actinin-3, a protein expressed in fast glycolytic type II fibres, which are

300 responsible for rapid and powerful contractions during anaerobic activities, such as

sprinting and weightlifting.¹³ A common variant R577X (rs1815739 C/T) of this gene 301 results in the replacement of an arginine codon (Arg or R) with a stop codon, (X), 302 producing a non-functional α-actinin-3 protein. This slows the anaerobic metabolism 303 of type II fibres, causing a shift toward increased oxidative metabolism.²⁷ Since 304 achieving $\dot{V}O_{2plat}$ means increasing work rate, without further increase in oxygen 305 consumption,⁵ it is not surprising that type II fibres, which can function under hypoxic 306 conditions, such as are encountered at $\dot{V}O_{2plat}$, could contribute to $\dot{V}O_{2plat}$ achievement. 307 IL6, which also showed a significant association with $\dot{V}O_{2plat}$ is expressed in 308 muscle cells, where it appears to have a role in hypertrophic muscle growth.¹⁷ As with 309 this study, previous work reports that frequencies of the G allele were significantly 310 higher in power athletes, compared with endurance athletes.¹⁷ 311 The ability of muscles to operate under hypoxic conditions also provides an 312 explanation for the significant association seen between ADRB213 and $\dot{V}O_{2plat}$. 313 Although ADRB213 was classified as "aerobic" (TableA.1),^{1,2} there is good evidence 314 to suggest that it also confers an advantage when exercising under hypoxic 315 conditions,²⁸ such as those that will occur at $\dot{V}O_{2plat}$. Here Tsianos et al.²⁸, studying the 316 Mount Olympus Marathon, which reaches an altitude of 2,690 m and represents a 317 significant hypoxic challenge, found that A-allele of ADRB213 was associated with 318 319 faster completion times. In contrast to the strong association between anaerobic alleles and $\dot{V}O_{2plat}$ (Table A.3), 320 there was no significant association with aerobic allelic frequency and $\dot{V}O_{2max}$ (Table 321 A.3). Only one gene, CYP1A2, showed a significant association with $\dot{V}O_{2max}$ (Table 322 A.3). CYP1A2 polymorphisms have been the subject of numerous studies because of 323 their role in the metabolism of caffeine.²⁹. Here the SNP in the CYP1A2 gene 324 (163C>A; rs762551) is responsible for the haplotype which confers a faster capacity 325

326	to metabolize caffeine on AA homozygotes. ³⁰ Rapid production of these metabolites							
327	is believed to be responsible for performance-enhancing effects of caffeine among							
328	AA homozygotes. ²⁹ With respect to the significant association with CYP1A2 and \dot{V}							
329	O_{2max} seen in this study, specifically the AA genotype, there is also increasing							
330	evidence that the AA genotype is overrepresented in endurance athletes, ²⁰ supporting							
331	the findings of this study.							
332	Finally the allelic distribution of participants, in this study, did not differ							
333	significantly from those of Caucasians of Northern and Western European ancestry.							
334	This suggests the findings, described above, are likely applicable to this wider							
335	population group. Accordingly further research is required to confirm these findings							
336	and to determine whether they apply to different population groups.							
337								
338	5. Conclusion							
339								
340	This study has demonstrated that:							
341	• Allelic frequencies, of the participants, are representative of the wider							
342	Northern and Western European Caucasian population.							
343	• There is a statistically significant association of anaerobic alleles with $\dot{V}O_{2plat}$							
344	attainment.							
345	• Hence the ability to $\dot{V}O_{2plat}$. has a genetic component.							
346								
347								
348								
349								
350	Acknowledgements:							

- 351 This research did not receive any specific grant from funding agencies in the public,
- 352 commercial, or not-for-profit sectors.
- 353 I acknowledge my employer, Anglia Ruskin University, for providing my co-author
- and I the use of their equipment and premises for conducting this research.
- 355 The authors also wish to thank Dr Sam Decombel, Chief Knowledge Officer,
- 356 FitnessGenes Ltd. DiagnOx Laboratory, 77, Heyford Park, Bicester, OX255HD, UK
- 357 for performing the genetic analysis, reported in this study.

- _ , 0
- **References**

376	1.	Yvert, T, Miyamoto-Mikami E, Murakami H, Miyachi M, Kawahara T, Fuku
377		N. Lack of replication of associations between multiple genetic
378		polymorphisms and endurance athlete status in Japanese population. Physiol
379		<i>Rep</i> 2016; 4(20):1-9.
380	2.	Ahmetov II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and
381		Athletic Performance: An Update. Med Sport Sci 2016; 61:41-54.
382	3.	Williams CJ, Williams MG, Eynon N, et al. Genes to predict $\dot{V}O_{2max}$
383		trainability: a systematic review. BMC Genomics 2017; 18 (suppl. 8):831 DOI
384		10.1186/s12864-017-4192-6.
385	4.	Weyerstraß J, Stewart K, Wesselius A, Zeegers M. Nine genetic
386		polymorphisms associated with power athlete status – A Meta-Analysis. J Sci
387		<i>Med Sport</i> 2018; 21:213–220.
388	5.	Keiller D, Gordon D. Confirming Maximal Oxygen Uptake: Is Heart Rate the
389		Answer? Int J Sports Med 2018; 39(3):198-203.
390	6.	Gordon D, Hopkins S, King C, Keiller D, Barnes R. Incidence of the plateau
391		at $\dot{V}O_{2max}$ is dependent on the anaerobic capacity. Int J Sports Med 2011;
392		32:1–6.
393	7.	Green, S. A definition and systems view of anaerobic capacity. Eur J Appl
394		Physiol 1994; 69:168-173.
395	8.	Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue and
396		the limits of human performance. Eur J Sport Sci 2018; 1:1-12.
397	9.	Blumkaitis JC, Sandefur CL, Fahs, CA, Rossow LM Anaerobic and aerobic
398		contributions to 800 m and 8 km season bests. J Train 2016; 5:38-42.
399	10.	Gordon D, Wood M, Porter A, et al. Influence of blood donation on the
400		incidence of plateau at VO _{2max} . Eur J Appl Physiol 2014; 114:21-7.

401	11. Gaudet M, Fara A-G, Beritognolo I, Sabatti M. Allele-Specific PCR in SNP
402	Genotyping. In A.A. Komar (ed.), Single Nucleotide Polymorphisms. Methods
403	Mol Biol 2009; 578:415-24.
404	12. Glenn KL, Du ZQ, Eisenmann JC, Rothschild MF. An alternative method for
405	genotyping of the ACE I/D polymorphism. Mol Biol Rep 2009; 36:1305-1310.
406	13. Ma F, Yang Y, Li X, et al. The Association of Sport Performance with ACE
407	and ACTN3 Genetic Polymorphisms: A Systematic Review and Meta-
408	Analysis. PLoS ONE 2013; 8(1):e54685.
409	14. Miyamoto-Mikami E, Murakami H, Tsuchie H, et al. Lack of association
410	between genotype score and sprint/power performance in the Japanese
411	population. J Sci Med Sport 2017; 20(1):98-103.
412	15. Eynon N, Hanson ED, Lucia A, et al. Genes for elite power and sprint
413	performance: ACTN3 leads the way. Sports Med 2013; 43(9):803-17.
414	16. Domínguez-Reyes T, Astudillo-López CC, Salgado-Goytia L, et al. Interaction
415	of dietary fat intake with APOA2, APOA5 and LEPR polymorphisms and its
416	relationship with obesity and dyslipidemia in young subjects. Lipids Health
417	Dis 2015; 14:106.
418	17. Ahmetov II, Fedotovskaya ON. Sports genomics: Current state of knowledge
419	and future directions. Cell Mol Exerc Physiol 2012; 1:1-22.
420	18. Chunyang Chen C, Sun Y, Liang H, Dan Yu D, Songnian Hu S. A meta-
421	analysis of the association of CKM gene rs8111989 polymorphism with sport
422	performance. <i>Biol Sport</i> 2017; 34(4):323–330.
423	19. Garcia-Rios A, Gomez-Delgado FJ, Garaulet M, et al. Beneficial effect of
424	CLOCK gene polymorphism rs1801260 in combination with low-fat diet on

425	insulin metabolism in the patients with metabolic syndrome. Chronobiol Int
426	2014; 31(3):401-8.
427	20. Guest N, Corey P, Vescovi J, El-Sohemy A Caffeine, CYP1A2 Genotype, and
428	Endurance Performance in Athletes. Med Sci Sports Exerc 2018; 50(8):1570-
429	1578.
430	21. Ahn J, Schumacher FR, Berndt SI, et al. Quantitative trait loci predicting
431	circulating sex steroid hormones in men from the NCI-Breast and Prostate
432	Cancer Cohort Consortium (BPC3). Human Mol Gen 2009; 18(19):749-3757.
433	22. Eynon N, Nasibulina ES, Banting LK, et al. The FTO A/T polymorphism and
434	elite athletic performance: a study involving three groups of European
435	athletes. PLoS ONE 2013; 8(4):https://doi.org/10.1371/journal.pone.0060570.
436	23. Huuskonen A, Lappalainen J, Oksala N, et al. Common genetic variation in
437	the IGF1 associates with maximal force output. Med Sci Sports Exerc 2011;
438	43(12):2368-74.
439	24. Friedrich DC, de Andrade FM, Fiegenbaum M, et al. The lactase persistence
440	genotype is a protective factor for the metabolic Syndrome. Gen Mol Biol
441	2014; 37(4):611-615.
442	25. Ben-Zaken S, Meckel Y, Nemet D, Eliakim A. The combined frequency of
443	IGF and myostatin polymorphism among track & field athletes and swimmers.
444	Growth Hormone & IGF Res 2017; 32:29–32.
445	26. Nishimura T, Katsumura T, Moto M, Oota H, Watanuki S. Experimental
446	evidence reveals the UCP1 genotype changes the oxygen consumption
447	attributed to non-shivering thermogenesis in humans. Scientific Reports 2017;
448	7: 5570 DOI:10.1038/s41598-017-05766-3.

449	27. Lee FX, Houweling PJ, North KN, Quinlan KG. How does alpha-actinin-3
450	deficiency alter muscle function? Mechanistic insights into ACTN3, the 'gene
451	for speed'. BBA Mol Cell Res 2016; 1863 686–693.
452	28. Tsianos GI, Evangelou E, Boot A, et al. Associations of polymorphisms of
453	eight muscle- or metabolism-related genes with performance in Mount
454	Olympus marathon runners. J Appl Physiol 2010; 108: 67-574.
455	29. Salinero JJ, Lara B, Ruiz-Vicente D, et al. CYP1A2 Genotype Variations Do
456	Not Modify the Benefits and Drawbacks of Caffeine during Exercise: A Pilot
457	Study. Nutrients 2017; 9:269-271.
458	30. Ghotbi, R, Christensen, M, Roh HK, Ingelman-Sundberg M, Aklillu E,
459	Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme
460	activity and the genotype-phenotype relationship in Swedes and Koreans. Eur
461	J Clin Pharmacol 2007; 63:537–546.

Author Declaration of Interest Statement

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We further confirm that any aspect of the work covered in this manuscript that has involved either experimental animals or human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author and which has been configured to accept email from: don.keiller@anglia.ac.uk

Signed by all authors as follows: (15/03/2109)

Don Keiller

Dan Gordon

Table A.1 Genes, single nucleotide polymorphisms (SNP) and classification according to whether a specific nucleotide is associated with anaerobic, aerobic performance, or having no apparent association (NAA). A, T, G and C are the SNPspecific nucleotide bases. Performance associated bases in bold. χ^2 values (χ^2 Freq) and p - values are for the allelic frequencies obtained in this study, compared with expected Northern and Western European Caucasian frequencies.

Gene	SNP	Anaerobic	Aerobic	Reference	χ^2 Freq	p-value
ACE	rs4341	G	С	13	2.57	0.28
ACTN3	rs1815739	С	Т	13	3.62	0.16
ACVR1B*	rs2854464	Α	G	14	0.02	0.99
ADRB213	rs1042713	G	Α	2	0.08	0.96
ADRB214	rs1042714	G	С	2	0.09	0.96
AGT	rs699	С	Т	14	5.69	0.06
AKT1	rs1130214	G	Т	4	0.09	0.96
AMPD1	rs17602729	С	Т	15	0.49	0.78
APOA2	rs5082	NAA	NAA	16	1.68	0.43
APOA5*	rs662799	NAA	NAA	16	2.06	0.36
BDKRB2	rs1799722	C	Т	17	0.09	0.96
СКМ	rs8111989	G	А	18	1.18	0.55
Clock	rs1801260	NAA	NAA	19	0.51	0.79
CNTF	rs1800169	G	А	14	0.49	0.78
CYP1A2	rs762551	C	Α	20	0.50	0.78
ESR1	rs722208	Α	G	21	0.25	0.88
FTO	rs9939609	Т	А	22	2.32	0.31
HIF1A	rs11549465	Т	С	17	1.2	0.55
IGF1-35*	rs35767	Т	С	2	2.4	0.30
IGF1-71	rs7136446	С	Т	23	0.81	0.67
IGFBP-3	rs2854744	С	А	23	2.62	0.27
IL15RA	rs2296135	Α	C	17	2.41	0.31
IL6	rs1800795	G	C	17	3.32	0.19
IL6R	rs2228145	C	A	17	0.92	0.63
MCM6*	rs4988235	NAA	NAA	24	3.18	0.34
MSTN*	rs1805086	G	A	25	1.34	0.51
MTHFR	rs1801131	С	А	17	0.24	0.88
MTR	rs1805087	G	A	2	1.94	0.38
MTRR	rs1801394	G	А	2	2.75	0.25
NOS3	rs2070744	Т	С	4	3.21	0.20
PGC1A	rs8192678	G	Α	2	0.68	0.71
PPARA	rs4253778	C	G	2	0.08	0.95

PPARG*	rs1801282	G	С	2	1.23	0.54
SHBG	rs1799941	Α	G	21	1.02	0.61
SLC16A1	rs1049434	Т	Α	1	2.93	0.63
UCP1*	rs6536991	NAA	NAA	26	1.47	0.48
UCP2	rs660339	C	Т	1	0.16	0.92
UCP3	rs1800849	C	Т	1	0.08	0.96
VDR	rs2228570	Т	C	14	3.54	0.17
VEGFA*	rs2010963	G	С	2	1.99	0.37

* Only 2 of the possible 3 allelic combinations present.

Table A.2. Physiological data for participants classified as plateau achievers, or nonachievers, as described in methodology for all 34 participants (Original) and those 26 participants (Final) who provided a DNA sample that was successfully analysed.

Parameter	Group	Plateau	Non Plateau	p - value
Mass (kg)	Mass (kg) Original		73.7 ± 12.03	0.73
	Final	72.9 ± 10.22	74.3 ± 13.24	0.62
$\dot{V}O_{2max}$	Original	54.5 ± 9.75	53.0 ± 9.11	0.79
$(ml kg^{-1} min^{-1})$	Final	52.3 ± 10.98	55.1±12.53	0.48
$\Delta \dot{V}O_2$	Original	0.76 ± 0.387	2.21 ± 0.682	< 0.001ª
$(ml kg^{-1}min^{-1})$	Final	0.69 ± 0.418	2.32 ± 0.740	< 0.001 ^a
RER _{max}	Original	1.18 ± 0.072	1.19 ± 0.076	0.75
	Final	1.19 ± 0.079	1.18 ± 0.081	0.58
HR _{max} (bpm)	Original	192.8 ± 8.41	193.3 ± 9.71	0.66
	Final	192.2 ± 8.60	194.1 ± 10.72	0.81
pBLa (mmol)	Original	9.6 ± 2.39	9.9 ± 2.30	0.59
	Final	10.7 ± 1.64	10.5 ± 1.71	0.72

Data are presented as means \pm SD.

^a Significant at the 99.9% level.

Table A.3. Results of χ^2 analyses to determine; (**A**) the gene's association with allelic frequency and presence/absence of $\dot{V}O_{2plat}$ ($\chi^2 \dot{V}O_{2plat}$) and (**B**) to determine the gene's allelic frequency association ($\chi^2 \dot{V}O_{2max}$) with low (< 53.6 ml·kg⁻¹·min⁻¹) and high \dot{V} O_{2max} (> 53.6 ml·kg⁻¹·min⁻¹). Genes are ordered with respect to increasing p -values for $\chi^2 \dot{V}O_{2plat}$ and $\chi^2 \dot{V}O_{2max}$, respectively. Class = Classification: anaerobic (An), aerobic (A), or no apparent association (NAA), as defined in Table1.

A (gene)	$\chi^2 \dot{V}O_{2plat}$	p-value	Class	B (gene)	$\chi^2 \dot{V}O_{2max}$	p-value	Class
ACTN3	8.82	0.012ª	An	CYP1A2	8.94	0.011ª	A
IL6*	6.37	0.041ª	An	PGC1A	4.53	0.10	A
ADRB213	6.04	0.049 ^a	А	IL15RA	4.57	0.10	An
PPARG*	3.69	0.055	An	ACE	3.72	0.15	A
IGFBP-3	4.1	0.13	An	IGF1-71	3.49	0.17	An
VDR	3.74	0.15	An	FTO	3.51	0.17	An
ESR1	3.75	0.15	An	AKT1	3.48	0.17	A
СКМ	3.75	0.15	An	UCP1*	1.64	0.20	NAA
MTHFR	3.11	0.21	An	BDKRB2	3.16	0.21	A
IGF1-71	2.85	0.24	An	MTR	2.99	0.22	An
AGT	2.83	0.24	An	ADRB214	2.94	0.23	An
HIF1A	2.82	0.24	An	ADRB213	2.88	0.24	A
AMPD1	2.76	0.25	An	MTHFR	2.83	0.24	An
FTO	2.69	0.26	An	MSTN*	1.27	0.26	An
ACVR1B*	1.21	0.27	An	AGT	2.67	0.26	An
MTR	2.51	0.28	An	IGFBP-3	2.40	0.30	An
MCM6*	0.91	0.34	NAA	NOS3	1.92	0.38	An
CNTF	2.16	0.32	An	MTRR	1.86	0.39	An
UCP3	1.92	0.38	A	APOA5*	0.65	0.42	NAA
APOA2	1.78	0.41	NAA	VDR	1.66	0.44	An
CLOCK	1.67	0.43	NAA	CNTF	1.63	0.44	An
NOS3	1.66	0.43	An	PPARA	1.45	0.48	A
MTRR	1.65	0.44	An	UCP3	1.44	0.49	A
UCP1*	0.52	0.47	NAA	ESR1	1.37	0.50	An
APOA5*	0.48	0.49	NAA	HIF1A	1.35	0.51	An
IL6R	1.41	0.49	An	MCM6*	0.39	0.53	NAA
SLC16	1.41	0.49	A	IGF1-35*	0.39	0.55	An
CYP1A2	1.36	0.51	A	IL6R	1.17	0.56	An
VEGFA*	0.34	0.56	A	СКМ	1.13	0.57	An
ADBR214	1.36	0.51	An	UCP2	1.13	0.57	A
PPARA	1.14	0.56	A	CLOCK	1.05	0.59	NAA

BDKRB2	1.09	0.58	A	IL6*	0.97	0.60	An
AKT1	0.75	0.68	Α	APOA2	0.96	0.62	NAA
PGC1A	0.56	0.75	A	SLC16	0.92	0.62	А
IGF1-35*	0.07	0.79	An	PPARG*	0.23	0.63	An
UCP2	0.36	0.83	А	SHBG	0.65	0.72	An
ACE	0.36	0.83	A	ACVR1B*	0.46	0.79	An
SHBG	0.36	0.84	An	AMPD1	0.41	0.81	An
IL15RA	0.20	0.90	An	ACTN3	0.08	0.96	An
MSTN*	0.01	0.92	An	VEGFA*	0.06	0.97	А

* Only 2 of the possible 3 allelic combinations present.

Appendix A.1. Genes, SNPs and primers used, in this study, together with primer orientation.

Gene	SNP	Primer	Orientation
ACE	rs4341	GGGCTGGAGCTCAAG[C/G]CATTCAAACCCCTA	Forward
ACTN3	rs1815739	CTGCCCGAGGCTGAC[C/T]GAGAGCGAGGTGCC	Forward
ACVR1B	rs2854464	GTGTTAGTGTCAGCC[A/G]TGGGAAATGAGCCA	Forward
ADRB213	rs1042713	TTGCTGGCACCCAAT[A/G]GAAGCCATGCGCCG	Forward
ADRB214	rs1042714	CACGACGTCACGCAG[C/G]AAAGGGACGAGGTG	Forward
AGT	rs699	CTGGCTGCTCCCTGA[T/C]GGGAGCCAGTGTGG	Forward
AKT1	rs1130214	CCCAGGAGGTTTTTG[G/T]GCTTGCGCTGGAGG	Forward
AMPD1	rs17602729	TAATGCAATACTCAC[A/G]TTTCTCTTCAGCTG	Reverse
APOA2	rs5082	GGTCCTTGGACTTGA[A/G]TGCAACAGGAAGCA	Reverse
APOA5	rs662799	AACTGGAGCGAAAGT[A/G]AGATTTGCCCCATG	Forward
BDKRB2	rs1799722	AGGCTGATGACATCA[C/T]TACCCAGCCCTTGA	Forward
CKM	rs8111989	AGAAATGGGGAGCCA[G/A]GGCAGGTTCTTGAG	Forward
Clock	rs1801260	GTGATCATAGGGGCA[C/T]AGCCAGTTCTGACA	Forward
CNTF	rs1800169	TTTTCCTGTATCCTC[A/G]GCCAGGTGAAGCAT	Forward
CYP1A2	rs762551	GTGAGCTCTGTGGGC[A/C]CAGGACGCATGGTA	Forward
ESR1	rs722208	GGTGGGGTGGAAGAC[A/G]CTGAAATGAATTTT	Forward
FTO	rs9939609	GACTGCTGTGAATTT[A/T]GTGATGCACTTGGA	Forward
HIF1A	rs11549465	TTCGATCAGTTGTCA[C/T]CATTAGAAAGCAGT	Forward
IGF1-35	rs35767	TTTTTTTTTTTTCC[A/G]CATGACTCTCAGGG	Reverse
IGF1-71	rs7136446	CACTGCCCTAAGTGC[C/T]GCGTAGTATGTGAA	Forward
IGFBP-3	rs2854744	CGGGCTCCGGGCGTG[A/C]GCACGAGGAGCAGG	Forward
IL15RA	rs2296135	TTTCTCTGTGAACTG[A/C]AAGTTAGGATGAGG	Forward
IL6	rs1800795	CTAGTTGTGTCTTNC[C/G]ATGCTAAAGGACGT	Forward
IL6R	rs2228145	TTAACCTAGTGCAAG[A/C]TTCTTCTTCAGTAC	Forward
MCM6	rs4988235	GATAAGATAANGTAG[C/T]CCCTGGCCTCAAAG	Forward
MSTN	rs1805086	ACAATAAAGTAGTAA[A/G]GGCCCAACTATGGA	Forward
MTHFR	rs1801131	AGCTGACCAGTGAAG[A/C]AAGTGTCTTTGAAG	Forward
MTR	rs1805087	AAGATATTAGACAGG[A/G]CCATTATGAGTCTC	Forward
MTRR	rs1801394	CATNGCAGAAGAAAT[A/G]TGTGAGCAAGCTGT	Forward
NOS3	rs2070744	AAGCTCTTCCCTGGC[T/C]GGCTGACCCTGCCT	Forward
PGC1A	rs8192678	GAAGCAGACAAGACC[A/G]GTGAACTGAGGGAC	Forward
PPARA	rs4253778	CTTGATATCTAGTTT[C/G]GATTCAAAAGCTTC	Forward
PPARG	rs1801282	GATTCTCCTATTGAC[C/G]CAGAAAGCGATTCC	Forward
SHBG	rs1799941	CTCCACCGCCCACAC[A/G]CAAGGCTGCCTGCC	Forward
SLC16A1	rs1049434	CCAGAAAGACACAGA[A/T]GGAGGGCCCAAGGA	Forward
UCP1	rs6536991	CCCAAAACATGTCTT[C/T]TCTTCACTGACATG	Forward
UCP2	rs660339	CGGTACTGGGCGCTG[A/G]CTGTAGCGCGCACT	Reverse
UCP3	rs1800849	TGGTCTTATACACAC[A/G]GGCTGACCTGAAAC	Reverse
VDR	rs2228570	CTGTTCTTACAGGGA[C/T]GGAGGCAATGGCGG	Forward
VEGFA	rs2010963	TGCGAGCAGCGAAAG[C/G]GACAGGGGCAAAGT	Forward