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Highligths
• The influence of ground motion models on TMD optimum design parameters is examined.
• TMD damping ratio and tuning ratio are defined as TMD optimum design parameters.
• Both stationary and non-stationary ground motions models are applied.
• The role of the ground motion models bandwidth in TMD optimum design is analysed.
• The role of TMD-structure mass ratio is studied for different earthquake models.

Abstract
Tuned Mass Dampers are frequently used for passive control of vibrations in civil structures 
subject to seismic and wind actions. Their efficiency depends on selection of their mechanical 
properties in relation to main system and excitation characteristics. This paper proposes an 
optimum design strategy of single Tuned Mass Dampers to control vibrations of principal mode 
of structures excited by earthquake ground motion. The main purpose of the paper is to 
investigate the influence of the time modulation of earthquake excitation upon the optimal 
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Tuned Mass Dampers design parameters: frequency and damping ratio. The study is based 
on numerical analyses carried out with different stochastic models for earthquakes: a simple 
filtered White Noise model and two time modulated filtered White Noise models. The numerical 
analyses are carried out to solve an optimization problem with a performance index defined by 
the reduction of the standard deviation of either the structure displacement or its inertial 
acceleration as Objective Function. To complete the work the influence of the bandwidth 
excitation over the values of the optimal Tuned Mass Damper parameters is investigated, as 
well the optimum mass ratio and the structure frequency. The results of the numeral analyses 
carried out infer the earthquake excitation characteristics, including its modulation in time 
domain, highly affect the optimum TMD design parameters values.

Keywords: Tuned Mass Damper, non-stationary earthquake ground motion model, optimum 
design, covariance analysis, passive protection, supplemental damping.

1 Introduction

The protection of new and existing structures had been a challenge tackled by scientists 
worldwide in the last few decades. Several technological solutions had been proposed to 
respond to it. They could be distinguished in energy dissipation systems and vibration 
mitigation devices and also in passive, semi-active and active systems. For sake of brevity, 
only a short introduction about the passive system is presented here. 
The energy dissipation systems includes among the others hysteric devices and base isolation 
systems. Hysteretic devices increase strength and stiffness to the structure and hence they 
reduce the total plastic deformation of the structure measured in terms of inter-storey drift. The 
reduction of the plastic deformation of structure can be combined with reduction of the total 
floor acceleration by adding viscous, viscoelastic, friction or elastomeric devices in the frame 
structure [1, 2, 3, 4, 5]. The optimal effect of the combined action of additional damping devices 
together with energy dissipation ones is obtained through an integrated design of them and 
the frame structure. In [1] an example of this kind of design is proposed to guarantee the 
minimum damage. The work proposed by Apostolakis and Dargush offers an optimal design 
of a bracing system integrating yielding metallic and/or friction dampers to dissipate the energy 
transmitted to the structure by the ground shaking [2]. Other studies proposed the use of 
hysteretic metal shear panels to dissipate the earthquake energy in structures [6, 7]. In other 
studies, optimal design of either simply shaped steel bracing systems is proposed [8, 9, 10] or  
heretical metal connections linking frame elements [11]. Other scientists preferred introducing 
a fully stressed design algorithm to define the additional viscous damping needed for the 
structure to dissipate the seismic energy in the structure [12]. 
The aim of base isolation systems is the reduction of energy transmitted from the foundation 
soil to the structure. This effect is obtained by filtering the frequencies of the seismic signal, 
i.e. by damping those in the range of structure eigenfrequencies. The optimal design of those 
systems are intended to define the value of their design parameters that allow minimizing the 
earthquake energy transmitted by the foundation soil to the structure. An example of this 
optimal design is presented in [13]. Instead of using an energetic approach, other scientists 
proposed to minimize the structural acceleration as objective of the optimal design of a 
parameter of the base isolation system; in particular, Chung et al. [14], optimized the frictional 
coefficient of a base isolation system. The more complex design of frictional base isolation 
system is proposed in [15], where the two conflicting objectives of first passage of probabilities 
of the device and inter-storey displacements are counterpointed to define the optimal friction 
coefficient of the device and the radius of curvature of the friction pendulum system. 
Tuned Mass Dampers (TMD) are other widespread devices used to mitigate the structure 
vibrations. They achieve this mitigation without changing the structure characteristics like the 
base isolation and hysteretic devices. Since they had been first proposed and patented in 1909 
by Frahm [16], TMD became widely used devices to control structural vibrations through a 
passive strategy. They were and are applied to both civil structures and mechanical systems. 
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In the first case, they are used mainly to mitigate vibrations due to wind and earthquakes. They 
are also applied to control man-induced vibrations, in particular to reduce traffic vibrations in 
bridges. 
To maximize their efficiency in vibration control TMD mechanical parameters should be 
selected by optimum design. For this reason, many studies on this subject were proposed in 
the literature during the last century. However, the effectiveness of this kind of dampers in 
controlling vibrations induced in structures by ground motions is still a matter of discussion, as 
pointed out in [17] and [18]. The first investigation on TMD optimum design was carried out by 
Ormondroyd and Den Hartog in 1928, as reported in [19]. That pioneering study was followed 
by many others. A comprehensive survey about optimization methods for TMD proposed until 
the nineties was presented by Sun et al. [20]. A first attempt to optimal design of those devises 
was presented in [19]: it was based on formulas estimating the optimal values of the TMD 
characteristics in closed form. Some recent studies, such as those proposed in [21] and [22], 
adopted also such kind of approach. Other studies suggested numerical methods to estimate 
the TMD optimum design parameters [23]. In particular the researches presented in [24], [25], 
[26], [27] and [28] use nonlinear programming techniques to optimize the TMD characteristics 
to make effective the control of random vibrations of the main system. Complex systems 
composed by multiple masses mitigating the structure vibrations were studied. Those systems 
called Multiple Tuned Mass Dampers (MTMD) had been studied by several scientists in the 
past decades. For instance, Reed and Park [29] used a numerical method to assess the 
performance of uniformly and linearly distributed Multiple Tuned Mass Dampers (MTMDs).  
Other studies proposed methods to estimate the optimum design parameters of TMDs in case 
of uncertain design variables. Among the others, the study presented in [30] suggested a 
robust design-based method to optimize a TMD applied to a MDOF system. In it, the 
uncertainty affecting both main system and excitation characteristics was taken into account. 
Instead, in another study Adam and Furtmüller assessed the effect of the uncertainty of the 
main system parameters on the TMD performance by investigating the mistuning of the 
damper [17].
Besides the method applied, the studies about optimum design of TMDs are different because 
of the model of the mechanical system or structure to protect and the source of the vibrations 
to control. In [31] the optimum parameters of a single and multiple TMD were calculated 
through a parametric study. Their authors investigated the effect of a single TMD applied to a 
structure modelled as either a SDOF system or a Multi-Degrees of Freedom (MDOF) system 
to mitigate harmonic and seismic excitations. In other studies, the external excitation applied 
to the main system is either a harmonic force characterized by a well defined frequency [28-
29] or random vibrations, such as White Noise (WN) [17, 23, 32], filtered WN [27] or seismic 
load [2]. In particular, in studies proposing optimum design of TMD mitigating earthquake 
induced vibrations in civil structures the dynamic excitation is defined through either artificial 
or real earthquake records. The second approach was chosen by a few researchers [17, 29, 
34-35]; whilst the researchers, who opted for the first approach, chose either a stationary 
filtered WN model [23, 25, 26, 36] or an evolutionary filtered WN model [24]. Finally, it is worth 
of mention that some authors investigated also the optimal TMD parameters to mitigate the 
ground motion excitation including the Soil-Structure Interaction (SSI) effect [37], while others 
[38] probed the SSI effect on TMD performance by frequency domain analyses.
The main aim of this study is to investigate the influence of the time modulation of the 
earthquake ground motion signal on the optimum design of single TMDs. Secondly, the effect 
of the soil characteristics on the optimal design parameter of TMDs is studied. More in detail, 
those objectives are accomplished by modelling earthquake ground motion as stationary and 
non-stationary stochastic processes with different bandwidths. Moreover, to strength the 
conclusions drawn about the influence of time modulation of seismic excitation on TMD 
effectiveness the results obtained using two different modulation functions in the seismic load 
model are compared. As this study is directed to the optimal design of TMDs mitigating the 
vibrations of the dominant mode of a structure, the structure is modelled as a damped SDOF 
system and the TMD  as a mass connected to it by a spring and a damper. Thus, the combined 
system acts as two degrees of freedom system. Such model is used to carry out numerical 
analyses, in which two different TMD performance indices are used as Objective Functions 

Page 3 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

(OF) of the optimization problem. The first one is the ratio of the displacement of the main 
system (i.e. the SDOF system modelling the structure) protected by the TMD and the 
displacement of the main system not protected by the TMD. The second one is the ratio of 
inertial acceleration of the main system protected by TMD and the acceleration of the main 
system in case it is not protected by the TMD. Finally, the study presents also the results of 
numerical analyses assessing the effects of the mass ratio on the optimum design of TMDs.

2 System dynamics equations and covariance analysis

2.1 Earthquake model

As said in the introduction, a TMD is composed by a mass connected to the system to protect 
by a spring and a damper (see Figure 1). It mitigates the vibrations that can ultimately damage 
the system by vibrating at almost the same frequency, but out of phase. In civil engineering, 
the systems to protect are mostly buildings, bridges, towers, offshore platforms, etc. Those 
structures can be modelled as MDOF systems characterized by several vibration modes. To 
mitigate their vibrations multiple TMDs can be used. This is the strategy adopted by Lee et al. 
in [23]. However, generally civil structures are characterized by a dominant vibration mode, so 
their model can be reduced to a SDOF system. In order to mitigate their vibrations caused by 
dynamic loads either simple TMDs or multiple TMDs can be used, as proposed by Park and 
Reed in [29]. Moreover, most of the civil structures have a non-linear hysteretic behaviour; 
therefore, some researchers took into account this aspect in the methods for TMD optimization 
they presented, as [28]. 
This study proposes an optimum design method for a linear TMD to reduce vibrations of the 
dominant mode of a structure excited by a dynamic non-stationary stochastic force. The 
structure is assumed to have a linear elastic behaviour, so a linear elastic SDOF system is 
used to model its dominant mode and the hysteretic behaviour of the structure is neglected. 
The optimal design of the TMD presented in this work is intended to minimize the structural 
dynamic response amplitude and avoid structural large displacements and inelastic 
deformations.
The dynamic equations of the system composed by the SDOF oscillator modelling the 
structure, also called main system in the following sections, and the single TMD (Figure 1) are: 

{ 𝑥𝑇(𝑡) + 2𝜔𝑇𝜉𝑇(𝑥𝑇(𝑡) ― 𝑥𝑆(𝑡)) + 𝜔2
𝑇(𝑥𝑇(𝑡) ― 𝑥𝑆(𝑡)) = ― 𝑥𝑔(𝑡)

𝑥𝑆(𝑡) + 𝛾𝑇𝑀𝐷2𝜉𝑇𝜔𝑇(𝑥𝑆(𝑡) ― 𝑥𝑇(𝑡)) + 2𝜔𝑆𝜉𝑆𝑥𝑆(𝑡) ― 𝛾𝑇𝑀𝐷𝜔2
𝑇(𝑥𝑆(𝑡) ― 𝑥𝑇(𝑡)) + 𝜔2

𝑆𝑥𝑆(𝑡) = ― 𝑥𝑔(𝑡),

(1)

where  is the oscillator vibration frequency, ) its damping ratio, 𝜔𝑆 = 𝑘𝑆 𝑚𝑆 𝜉𝑆 = 𝑐𝑆 (2 𝑚𝑆𝑘𝑆 𝜔𝑇

 the TMD vibration frequency and ) its damping ratio. Moreover, in = 𝑘𝑇 𝑚𝑇 𝜉𝑇 = 𝑐𝑇 (2 𝑚𝑇𝑘𝑇

equation (1) ,  and  are respectively acceleration, velocity and displacement of the main 𝑥𝑆 𝑥𝑆 𝑥𝑆

system, while ,  and  indicate acceleration, velocity and displacement of the TMD and 𝑥𝑇 𝑥𝑇 𝑥𝑇

 is the mass ratio, i.e. the ratio of TMD mass  to the main system mass  (𝛾𝑇𝑀𝐷 𝑚𝑇 𝑚𝑆 𝛾𝑇𝑀𝐷 =
). Finally,  indicates the seismic acceleration and in this study is defined by filtering 𝑚𝑇 𝑚𝑆 ― 𝑥𝑔

a zero-mean Gaussian WN process with a second order linear filter, known as Kanai-Tajimi 
(KT) filter [39-40]:
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. (2){ 𝑥𝑓(𝑡) + 2𝜉𝑓𝜔𝑓𝑥𝑓(𝑡) + 𝜔2
𝑓𝑥𝑓(𝑡) = ―𝑤(𝑡)𝑉(𝑡)

𝑥𝑔(𝑡) = 𝑥𝑓(𝑡) + 𝑤(𝑡)𝑉(𝑡) = ―(2𝜉𝑓𝜔𝑓𝑥𝑓(𝑡) + 𝜔2
𝑓𝑥𝑓(𝑡))

In this equation, ,  and  are respectively the displacement, velocity and acceleration of 𝑥𝑓 𝑥𝑓 𝑥𝑓

the SDOF system defining the KT filter. This filter models the effects of the soil layer between 
the bedrock and the ground level. It is defined by four parameters. The first is , i.e. a 𝑤(𝑡)
stationary zero-mean Gaussian WN process representing the seismic excitation at the bedrock 
and characterized by Power Spectral Density . The second and third parameters are  and 𝑆0 𝜔𝑓

 that are respectively the KT filter frequency and damping ratio. They model the resonance 𝜉𝑓

bandwidth limitation effect due to the soil layer between the bedrock and the ground level. The 
fourth parameter is the modulation function  that defines the intensity variation of the  𝑉(𝑡)
random signal within its duration. It has constant unitary value for the stationary KT model, 
while it is a time dependent function for the non-stationary KT model. In this paper, two different 
modulation functions are applied: the deterministic modulation function proposed by Jennings 
et at. [41] and the deterministic exponential modulation function proposed by Hsu and Bernard 
[42]. The Jennings et al. modulation function is  

, (3)𝑉(𝑡) = { ( 𝑡
𝑡1)

2
𝑡 < 𝑡1

1 𝑡1 ≤ 𝑡 ≤ 𝑡2
𝑒 ―𝛽(𝑡 ― 𝑡2) 𝑡 > 𝑡2

where the parameters t1 and t2 indicate the beginning and the end of the “strong shaking” 
phase, whereas  controls the shape of the decaying end of the function [41]; whilst the 𝛽
exponential modulation function is

, (4)𝑉(𝑡) = 𝛼𝑡𝑒 ―𝛽𝑡         𝛽 > 0
Where  and  [42]. 𝛽 = 1/𝑡𝑚 𝛼 = 𝑒/𝑡𝑚
To compare the effect of the two modulation functions on the TMD optimal design their effect 
must be comparable through a parameter. For this study, the selected parameter is Arias 
intensity

(5)𝐼𝐴 =
𝜋

2𝑔∫𝑡𝑓

0 𝑥2
𝑔(𝑡)𝑑𝑡,

as it is related to the ground motion energy. The expected value of the Arias intensity for the 
two non-stationary earthquake models must be the same for ground motions with the same 
total energy. The expected value of the Arias intensity is

, (6)𝜇[𝐼𝐴] =
𝜋

2𝑔∫ ― 𝑡𝑓

0 〈𝑥2
𝑔(𝑡)〉𝑑𝑡 =

𝜋
2𝑔∫𝑡𝑓

0 𝑉2(𝑡)𝑑𝑡∫ +∞
―∞𝑆𝑥𝑔(𝜔)𝑑𝜔

where  is the power spectral density function of the ground acceleration [43] which is 𝑆𝑥𝑔(𝜔)
constant for the two non-stationary earthquake models. Thus, the integral of the squared 
modulation function is the element to estimate and compare to obtain earthquakes with the 
same energy by applying the two different modulation functions:

,   (7)∫𝑡𝑓

0 𝑉2
𝐽𝑒𝑛(𝑡)𝑑𝑡 = ∫𝑡𝑓

0 𝑉𝑒𝑥𝑝
2(𝑡)𝑑𝑡

The values of the two square modulations functions were proposed in [43]; therefore, Equation 
(7) becomes

. (8)
𝑡𝑚𝑒2

4 =
𝑡1

5 + 𝑡𝑑 +
1

2𝛽,
where . Finally, from Equation 8 the value of the time at which the exponential 𝑡𝑑 = 𝑡2 ― 𝑡1
modulation function exhibits the maximum value  is obtained 𝑡𝑚

. (9)𝑡𝑚 =
4
𝑒2(𝑡1

5 + 𝑡𝑑 +
1

2𝛽)
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The two modulation functions are showed in Figure 2. It is clear that they spread the energy in 
different ways along the earthquake duration. Whilst the exponential function as a peak and a 
smooth decay after it; the Jennings et al,’s modulation function has a plateau and fast decay. 
During the plateau, the energy is distributed equally for a long time respect to the duration of 
the peak of the first modulation function: this indicates that such model has a stationary 
characteristic in that time interval. This affects the structure response and on the optimum 
design of the TMD. 

2.2 System response covariance 

Equations 1 and 2 are combined and expressed in state-space, therefore the motion equation 
of the system becomes

. (10)𝐙(t) = 𝐀𝐙(t) + 𝐅(t)

In Equation (4)  indicates the state-space vector𝐙

, (11)𝐙 = [𝑥𝑇 𝑥𝑆 𝑥𝑓 𝑥𝑇 𝑥𝑆 𝑥𝑓]𝑇

 is the force vector𝐅

, (12)𝐅 = [0 0 0 0 0 ―𝑉(𝑡)𝑤(𝑡)]𝑇

and  is the state matrix𝐀

 , (13)𝐀 = ( 𝟎 𝐈
𝐇𝐾 𝐇𝐶)

with

(14)𝐇𝐾 = ( ― 𝜔2
𝑇 𝜔2

𝑇 𝜔2
𝑓

𝛾𝑇𝑀𝐷𝜔2
𝑇 ― (𝛾𝑇𝑀𝐷2𝜔2

𝑇 + 𝜔2
𝑆) 𝜔2

𝑓
0 0 ― 𝜔2

𝑓
)

and

. (15)𝐇𝐶 = ( ―2𝜉𝑇𝜔𝑇 2𝜉𝑇𝜔𝑇 2𝜉𝑓𝜔𝑓
𝛾𝑇𝑀𝐷2𝜉𝑇𝜔𝑇 ― (𝛾𝑇𝑀𝐷2𝜉𝑇𝜔𝑇 + 2𝜉𝑆𝜔𝑆) 2𝜉𝑓𝜔𝑓

0 0 ―2𝜉𝑓𝜔𝑓
)

In this study, all parameters of the main system and the TMD are assumed to be quantities 
deterministically defined, so the state-space covariance matrix  is obtained as 𝐐𝐙𝐙 = 𝐸[𝐙𝐙T]
solution of the Lyapunov equation: 

. (16)𝐐𝐙𝐙 = 𝐀𝐐𝐙𝐙 + 𝐐𝐙𝐙𝐀𝑇 + 𝐁

In Equation (10)  indicates the input matrix. It has all elements equal to zero, except the last 𝐁
one: .𝐵66 = 2𝜋𝑆0(𝑉(𝑡))2
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The vector of the inertial accelerations is , so the system inertial acceleration 𝐘 = [𝑦𝑇 𝑦𝑆]𝑇

covariance matrix  is . It is obtained from the equation𝐐𝒀𝒀 = 〈𝐘𝐘𝑇〉 = ( 𝜎2
𝑦𝑇 𝐸[𝑦𝑇𝑦𝑆]

𝐸[𝑦𝑆𝑦𝑇] 𝜎2
𝑦𝑆

)
, (17)𝐐𝒀𝒀 = 𝐃𝐐𝐙𝐙𝐃𝑇

where 

𝐃 = ( ― 𝜔2
𝑇 𝜔2

𝑇
𝛾𝑇𝑀𝐷𝜔2

𝑇 ― (𝛾𝑇𝑀𝐷2𝜔2
𝑇 + 𝜔2

𝑆)
―2𝜉𝑇𝜔𝑇 2𝜉𝑇𝜔𝑇

𝛾𝑇𝑀𝐷2𝜉𝑇𝜔𝑇 ― (𝛾𝑇𝑀𝐷2𝜉𝑇𝜔𝑇 + 2𝜉𝑆𝜔𝑆))
and . 𝐙 = [𝑥𝑇 𝑥𝑆 𝑥𝑇 𝑥𝑆]𝑇

The response of the unprotected main system is also calculated by solving the respective 
Lyapunov equation in order to define the performance indices of the TMD optimum design.
For sake of clarity, the authors remind that the unprotected system is the SDOF system 
modelling the dominant vibration mode of the structure without TMD, while the protected 
system indicates the same SDOF system coupled with the TMD.

3 Statement of the optimization problem

A few researchers [44-47] developed methods for optimum design of TMDs. The damper 
performance in those optimum designs was defined in different ways: reduction of either 
displacement or inertial acceleration of the system to protect, maximization of the energy 
dissipation [27-30]. For flexible structures, generally, displacement is the dominant quantity 
that need to be controlled. On the contrary, for stiff structures the acceleration is of more 
concern, because it generates high inertia forces in structures that must be mitigated.
To reach one or more of those objectives a suitable set of values of TMD design variables are 
searched within their admissible domain . Those variables are collected in a vector called 𝛀
Design Vector (DV) . Eventually constraint conditions must be also satisfied by the solution 𝐛
of the optimum design problem. 
In this study an unconstrained optimization problem is defined to search the optimum value of 
a two-dimensional DV . The mass ratio  is held constant owing to 𝐛 = [𝜔𝑇 𝜉𝑇]𝑇 𝛾𝑇𝑀𝐷

technological limits for civil structures. In fact, some studies [24-26] estimated also the optimum 
value of that parameter and it was found to be rather high for most of the technological solutions 
in civil engineering. Moreover, two different optimization criteria are considered here and for 
both the Objective Function (OF) is the ratio of a physical quantity of the main system response 
protected by a single TMD to the same quantity of unprotected main system response. In this 
way, a dimensionless value of the vibration mitigation produced by the TMD is assessed. The 
OF unitary value indicates the boundary between positive and negative effect of the TMD on 
reduction of the main system vibrations. The OF of the first optimization criterion is the ratio of 
the displacement standard deviation of the SDOF system protected by the vibration absorber 
and the displacement of the system without such device; therefore, the first optimization 
problem is so defined:

(18)min
𝐛 ∈ 𝛀

(𝜎𝑥𝑆(𝐛)

𝜎𝑥0
𝑆
(𝐛)),  𝑤𝑖𝑡ℎ 𝐛 = [𝜔𝑇 𝜉𝑇]𝑇
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Thus, the displacement is used here as structure excitation or damage indicator. In the second 
optimization criterion the OF is the ratio of the standard deviation of the inertial acceleration of 
the main system equipped with a TMD to the one of the system unprotected by such damper; 
the second optimization problem results to be

(19)min
𝐛 ∈ 𝛀 (𝜎𝑦𝑇(𝐛)

𝜎𝑦0
𝑇
(𝐛)),  𝑤𝑖𝑡ℎ 𝐛 = [𝜔𝑇 𝜉𝑇]𝑇

The inertial acceleration is used in this problem as structure excitation or damage indicator, as 
suggested also in [39].

4 Numerical analyses

In this section, the results of two optimization problems defined by Equations 18 and 19 are 
presented and discussed. In order to estimate the effect of the earthquake ground motion 
characteristics on TMD optimum design, non-stationarity and stationary artificial 
accelerograms with different bandwidths are considered. The optimization method proposed 
in this work uses the seismic signal parameters organized in the As said before, the bandwidth 
is defined by the  KT filter parameters, therefore two different sets of their values are used in 
the numerical analyses: one for soft soil and the other for stiff soil (see Table 1). The power 
spectral density of the WN defining the seismic excitation at the bedrock is calculated through 
the formula proposed by Buchholdt [49]

. (20)𝑆0 =
0.141𝜉𝑓𝑥𝑔_𝑝𝑒𝑎𝑘

2

𝜔𝑓 (1 + 4𝜉2
𝑓)

In Equation 20  is the Peak Ground Acceleration (PGA) expected at the site where the 𝑥𝑔_𝑝𝑒𝑎𝑘
structure to protect is located. The length of the seismic excitations used in the optimization is 
30s and the sampling time interval is 0.01s. The use of artificial accelerograms has been 
preferred to real accelerograms in order to compare easily results obtained with stiff soil and 
soft soil conditions due to constant length of the excitation and intensity of the WN power 
spectral density. Indeed the selection of natural earthquakes with the same length and 
comparable power spectral density is an arduous task. Moreover, though natural 
accelerograms provide the information for the assessment of the structural response, they are 
strongly related to the geophysical and geological characteristics of the area where they were 
recorded, such as the fault mechanism, the epicentral distance and the depth of the focus, the 
geology and its variation on the path of waves. The most common tool used to overcome this 
challenge is the response spectra averaged from response spectra obtained from response of 
SDOF systems to a set of natural earthquakes. However, this tool has some limitations: it does 
not includes the uncertainty of the structural response due to the uncertainty of the real seismic 
input and it is not related to other energy dependent intensity measures. Thus, artificial 
accelerograms generated through a stochastic parametric function were preferred to natural 
recorded accelerograms.  
Sensitivity analyses are also carried out to assess the efficiency of TMDs under different 
conditions. In particular, the characteristics of the main system are varied within ranges: the 
vibration period  in the range [0.05s – 4s] and the damping ratio  in the range [0.02 𝑇𝑆 = 2𝜋 𝜔𝑆 𝜉𝑆
- 0.10]. The range of the main system vibration period is chosen by taking into account the 
correspondence between the dominating frequency range of most of the earthquakes (1-10 
Hz) and the range of the fundamental period of the most common structures [51]. Furthermore, 
the vibration period range of structures with a response spectrum independent from 
acceleration and displacement is from 0.05 s to 4 s. The constant value of the mass ratio used 
in the first numerical analyses is , while also in the sensitivity analyses for 𝛾𝑇𝑀𝐷 = 𝑚𝑇 𝑚𝑆 = 0.05
mass ratio it is varied in the range [0.05  4].
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The design parameters domain  is defined by boundary values collected in Table 2. The Ω
lower boundary value of the TMD damping ratio indicates a TMD without any damping element, 
as it was firstly proposed by Frahm [16]. The upper boundary value of the TMD damping ratio 
is defined by taking into account that the vibration absorber could be a structural element with 
a damping ratio value depending on its construction material. The lower boundary value of the 
tuning ratio of the TMD and structure vibration frequency  does not include zero: it 𝜌𝑇 = 𝜔𝑇 𝜔𝑆
indicates that the TMD does not move. The upper limit value of this tuning ratio, i.e. TMD-
structure frequency ratio, is defined only in order to limit the search domain of the optimum 
solution.
The optimization problems are solved by a hybrid method: a classical Genetic Algorithm (GA) 
[52] combined with an interior-point algorithm. The used GA setting parameters are uniform 
initial distribution of the design parameters over their domain , elitism of the best two Ω
individuals, crossover fraction 0.6, population size of 150 individuals and 15 generations. The 
number of individuals and generations is taken relatively low, because this study is directed to 
estimate the correlations among the different problem parameters and not to design a real 
TMD.
In the following subsections, the results of the analyses performed with different values of the 
problem parameters are presented.

4.1 Analyses for soft soil conditions

Figures 3, 4 and 5 show the results of the analyses performed for soft soil conditions both 
stationary and non-stationary earthquake models. A comparison of the results calculated with 
artificial earthquake modulated by the function proposed by Jennings et al. [41] and the one 
modulated by the exponential function proposed by Hsu and Bernard [42] allows to highlight 
the effect of the stationary characteristics of the seismic excitation on the TMD optimal design. 
The Figures 3, 4 and 5 show respectively the minimum OF value and the respective design 
parameters values (i.e. TMD damping  and TMD frequency  obtained by solution of either 𝜉𝑇 𝜔𝑇)
optimization problems defined by Equations 18 and 19. Such values are showed as function 
of both the structure vibration period , on the graphs lower abscissa axis, and the ratio of the 𝑇𝑆
structure dominant frequency to the KT filter frequency  (also called structure-KT tuning 𝜔𝑆/𝜔𝑓
ratio or frequency ratio), on the upper horizontal axis. In order to make easy the comparison 
between the results they show the results for the main system characterized by two different 
values of its damping ratio  ([0.02, 0.10]). In particular, for structures with damping ratio 𝜉𝑆 𝜉𝑆

 the solid black line indicates the results obtained for the analyses performed with the = 0.02
stationary KT model, the dash-dot red and solid magenta lines the results for the non-stationary 
KT model modulated by respectively the function proposed by Jennings et al. [41] and the 
exponential function proposed by Hsu and Bernard [42]. Instead, for structures with damping 
ratio  the dotted blue, dashed green and dashed grey lines show respectively the 𝜉𝑆 = 0.1
results for the stationary earthquake model, for the non-stationary model with Jennings et al.’s 
modulation function [41] and the non-stationary model with the exponential modulation function 
[42]. Those colours are used for all figures presenting the results of the optimization problems 
with constant mass ratio value ( ).𝛾𝑇𝑀𝐷 = 𝑚𝑇 𝑚𝑆 = 0.05
A first analysis of the results shown in Figure 3 reveals an increase of the TMD efficiency owing 
to the decrease of the structure damping ratio in case either the displacement optimization 
criterion (Equation 18) or the acceleration one (Equation 19) is applied: the magenta, red and  
black curves are below the green, blue and grey ones. This result falls in with the literature 
[26]. It is possible to notice the complete overlapping of the curves resulting from the analysis 
of structure with high damping ( ) excited by ground motion modelled either as 𝜉𝑆 = 0.1 
stationary filtered WN (blue curve) or the two non-stationary filtered WN modulated by 
Jennings et al. function [41] (green curve). The grey curve presenting the results for structures 
excited by the non-stationary KT model modulated by the exponential function is partially 
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overlapped to those blue and green curves. In particular, for structures more flexible than the 
soil, i.e. for , the effectiveness of a TMD optimized for a structure excited by artificial 𝜔𝑆/𝜔𝑓 < 1
earthquake modulated by the exponential function is lower than those optimized to mitigate 
vibrations due to earthquake model with stationary characteristics, although these are limited 
to the plateau interval of Jennings et al. modulation function. Indeed the grey curve runs above 
those blue and green for . Therefore, the influence of restricted distribution of energy 𝜔𝑆/𝜔𝑓 < 1
along the earthquake duration on the TMD effectiveness is clear. Instead, for structures with 𝜉𝑆

 and structure-KT model tuning ratio in a range between 2 and 1 the effectiveness of the = 0.1
TMD optimized using the non-stationary earthquake model modulated by the exponential 
function is slightly higher than those optimized by applying either stationary earthquake models 
or non-stationary model modulated by Jennings et al. function [41]. This brings to the 
conclusion that artificial earthquakes modulated in such way have high energy in the range of 
frequencies similar to the one of the structure. These results are true for both optimization 
criteria. By observing the upper horizontal axis, it is clear that the maximum positive effect of 
the TMD is reached in case of resonance of the structure with KT filter, i.e. , for all 𝜔𝑆 𝜔𝑓 = 1
earthquake models. 
The curves of the analyses performed for structures with damping ratio  show that the 𝜉𝑆 = 0.02
TMD effectiveness in mitigation of vibrations caused by the earthquake ground motion is 
function of the model used to define the latter. For such low damped structures characterized 
by structure-KT model frequency ratio , i.e. for structure stiffer than the soil, the 𝜔𝑆 𝜔𝑓 > 2
effectiveness of TMD in mitigating the vibrations caused by a stationary artificial earthquakes  
or by non-stationary artificial earthquakes modulated by Jennings et al.’s function is the same. 
This result is independent of the applied optimization criterion. In fact, the solid black curve is 
overlapped to the dash-dotted red one in Figures 3a and 3b. The same figures show higher 
effectiveness of TMD optimized to mitigate vibrations produced by a stationary KT model than 
those produced by a non-stationary KT model in case of structure-KT filter frequency ratio 

. This is valid for both non-stationary KT models. However, the effectiveness of TMD 𝜔𝑆 𝜔𝑓 < 2
design to mitigate vibrations due to the non-stationary earthquake model modulated by the 
exponential function is lower than the one of TMD designed for non-stationary model 
modulated by Jennings et al. function. Indeed the magenta curve has values higher that the 
red and black one. It is possible to conclude that the concentration of energy of the excitation 
in short time reduces the efficiency of the TMD in case it is designed to mitigate the vibrations 
of structures characterized by a low damping ratio ( ). These results are independent 𝜉𝑆 = 0.02
of the optimization criterion. 
Figure 3a shows also the ineffectiveness of a TMD applied to structures with low vibration 
period ( ) when its design parameters are optimized through the displacement 𝑇𝑆 < ~0.3𝑠
optimization criterion. This result was already clear in [26] for stationary KT model and in this 
study it is proved also for earthquake defined by non-stationary KT models. For such vibration 
period, structures on soft soil site are acceleration sensitive, so the displacement optimization 
criterion is not suitable. As consequence, for such vibration period range ( ) Figure 𝑇𝑆 < ~0.3𝑠
4a shows a sudden change of optimal value of the structure-TMD frequency ratio  𝜌𝑇 = 𝜔𝑇/𝜔𝑆
reaching the minimum value of  within the search domain  (see Table 2); whilst Figure 5a 𝜌𝑇 𝛀
presents a sharp decrease of the optimum value of TMD damping ratio . It is possible to 𝜉𝑇
conclude that a change of the optimal TMD vibration frequency corresponds to an increase of 
its optimal damping ratio to guarantee that it does not amplify the structural vibrations during 
earthquakes. This behaviour is independent of the modulation in time domain of the 
earthquake signal, although the time modulation of the artificial earthquake influences the 
decrease of the optimum value of the TMD damping ratio. 
By observing the results presented in Figure 4 for the optimal values of the TMD-structure 
frequency ratio  few further results can be abstracted. First, Figure 4a shows that in the case 𝜌𝑇
of the displacement criterion the optimum value of the TMD-structure tuning frequency is 
almost independent from the earthquake model applied both for  and   the 𝜉𝑆 = 0.02 𝜉𝑆 = 0.10
few differences can be observed. For  the optimum TMD frequency is different 1 < 𝜔𝑆/𝜔𝑓 < 2
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in case of non-stationary earthquake model modulated by the exponential function respect the 
other two earthquake models; for  the trend of curves is equal with value of  𝜔𝑠/𝜔𝑓 < 1 𝜌𝑇
between 0.9 and 1. From the last observation, it is possible to conclude that the tuning of TMD 
and structure is critical for the vibration mitigation in case of displacement optimization criterion 
whatever is damping ratio the structure and the earthquake model applied.
Figure 4b presents the optimum values of the TMD-structure tuning ratio in case the 
acceleration optimization criterion is applied. In it, the curves highlight how TMD-structure 
tuning ratio depends on the earthquake model applied. For values of structure-KT filter 
frequency ratio , i.e. for flexible structure, the optimum values of the TMD-structure 𝜔𝑆/𝜔𝑓 > 1
tuning ratio increases becoming higher than one in case the non-stationary model modulated 
by the exponential function is applied. It is possible to infer that the energy of the artificial 
earthquakes obtained with this model is concentrated in a short time respect to its whole 
duration and this requires a TMD more flexible than the structure. This result is equal for both 
structure damping ratio used in the analyses:  and . For structures excited by 𝜉𝑆 = 0.02  𝜉𝑆 = 0.1
an earthquake model with stationary characteristics, i.e. a stationary model or a non-stationary 
modulated by Jennings et al. function, the optimum TMD-structure tuning ratio is around 1 if 𝜔𝑆

. Finally, figure 4b shows also that the minimum value of the optimal TMD-structure /𝜔𝑓 < 1
tuning ratio is obtained for structure-KT frequency ratio higher than one, in particular for 

. Such observation is independent of the structure damping ratio. 𝜔𝑆 𝜔𝑓 = 1.33

Figure 5a shows optimum values of the TMD damping ratio in case the displacement criterion 
is applied. First, it is possible to notice that for structures with damping ratio  the value 𝜉𝑆 = 0.1
of the TMD optimum damping ratio decreases abruptly for structure-KT filter frequency ratio 
higher than 0.2. The change occurs when the structure becomes more sensitive to 
displacement than to acceleration, as explained for the figures presenting TMD effectiveness 
and optimum TMD-structure tuning ratio. The value of the TMD damping ratio becomes zero 
in case the Hsu and Bernard exponential function [42] is used to modulate the artificial 
earthquake. This means that a TMD optimized to mitigate vibrations due to a dynamic load 
with energy concentrated in short time has no need of a TMD with a viscous damping, but an 
additional mass and stiffness is enough, as Frahm proposed in his first study [16]. In general, 
for all types of earthquake model the optimum value of the TMD damping ratio is lower than 
the structure damping ratio in case it is  for almost all values of . The observation 𝜉𝑆 = 0.01 𝜔𝑆/𝜔𝑓
of Figure 5a shows a reduction of the optimum value of the TMD damping ratio also in case of 
low structure damping ratio ( ). Such reduction is higher for non-stationary earthquake 𝜉𝑆 = 0.02
models than for the stationary one. In particular, for the artificial earthquake modulated by the 
exponential function [42] the optimum value of TMD damping ratio reaches values close to 
zero for . This indicates that the TMD mitigating better  vibrations due to artificial 𝜔𝑆/𝜔𝑓 < 1
earthquakes with the energy concentrated in short interval of time does not need damping 
ratio. Moreover, by comparing the results shown in Figure 5a with those presented in Figure 
4a it is clear that the optimal TMD is an additional mass and stiffness linked to the structure 
and for  and stationary earthquake model the TMD should have a damping ratio 𝜔𝑆/𝜔𝑓 < 1 𝜉𝑇

 and  for the displacement optimization criterion.≅0.1 𝜔𝑇 = 𝜔𝑆
Figure 5b presents the optimum values of TMD damping ratio in case the objective is to 
minimize the structure acceleration due to earthquakes. By observing this figure, it is possible 
to notice that also in this case the value of the optimum TMD damping ratio drops to zero with 
the increase of structure-KT filter frequency ratio in case the structure is excited by artificial 
earthquakes modulated by the exponential function. Comparing this result with the one 
presented for Figure 5a it is clear that this occurs for higher values of  respect to those 𝜔𝑠/𝜔𝑓
in case of displacement optimization criterion. Figure 5b shows also that in case of acceleration 
optimization criterion and stationary earthquake model the minimum value of optimum TMD 
damping ratio occurs for . Finally, the optimum values of the TMD damping ratio 𝜔𝑆/𝜔𝑓 = 1
obtained with the same criterion and the non-stationary earthquake model modulated by 
Jennings et al. function present a trend with a local minimum for  and a decrease for 𝜔𝑆/𝜔𝑓 = 1

. Thus, few general results can be abstracted. The value of the optimum TMD 𝜔𝑆/𝜔𝑓 < 1

Page 11 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12

damping ratio tends to decrease in case of artificial earthquake modulated in time, expecially 
for flexible structures ( ); the minimum value of the optimum parameter is obtained 𝜔𝑆/𝜔𝑓 < 1
for structure in resonance with the soil ( ) in case the earthquake model is at least 𝜔𝑆/𝜔𝑓 = 1
partially stationary.

4.2 Analyses for stiff soil conditions

Figures 6, 7 and 8 show the results of numerical analyses carried out with values of the KT 
filter parameters for stiff soil site (Table 1). The horizontal and vertical axes of those figures 
present the same physical quantities as in Figure 3, 4 and 5. The results shown in Figure 6 
agree with those in Figure 3 about the TMD effectiveness. Also in this case the lowest minimum 
value of the OF is obtained under frequency resonant conditions of the structure and the KT 
filter, i.e. . For stiff soil site condition the acceleration optimization criterion results 𝜔𝑆 𝜔𝑓 = 1
more efficient: the OF values of the Figure 6a are lower than the ones in Figure 6b. One can 
observe that the performance of the TMD connected to a structure with high damping ratio (𝜉𝑆

) is independent from the earthquake ground motion model used in the analyses in case = 0.1
has a part with stationary characteristics, i.e. stationary KT model and non-stationary KT model 
modulated with the function proposed by Jennings et al []. The results obtained for the same 
structure, but the non-stationary KT model modulated by the exponential function present a 
reduction of the TMD effectiveness with lower values of the frequency ratio  starting from 𝜔𝑆 𝜔𝑓
the resonant condition of structure and KT filter. In fact, the blue dotted line and the green 
dashed one are fully overlapped in Figure 6a and in Figure 6b whereas only the grey line 
moves away from previous one. Regarding the performance of TMD optimally designed to 
mitigate vibrations of a structure with low damping ratio ( ), no difference is observed 𝜉𝑆 = 0.02
for structure–KT filter frequency ratio  if the stationary or the non-stationary KT model 𝜔𝑆 𝜔𝑓 > 1
modulated by the function proposed by Jennings et al. is applied. On the contrary, for structure-
KT filter frequency ratio  the TMD performance is overestimated if the optimization 𝜔𝑆 𝜔𝑓 < 1
problem is formulated with the stationary ground motion model instead of the non-stationary 
one with Jenning et al. modulation function [41]. The magenta curve showing the effectiveness 
of the TMD optimized for a structure excited by a non-stationary earthquake signal modulated 
by the exponential function is above those calculated by applying the other earthquake models, 
i.e. the red dash-dotted and black solid curves, independently of the value of . These 𝜔𝑆/𝜔𝑓
results are true for both displacement and acceleration optimization criterion. Therefore, the 
TMD optimization performed with a stationary earthquake model leads to an overestimation of 
the damper effectiveness and this is even more evident through the comparison of the results 
calculated with the stationary artificial earthquake and those with non-stationary artificial 
earthquake modulated by the exponential function, which has the energy concentrated in a 
short time interval. The comparison of Figure 6a and 6b shows that for structure with 
fundamental frequency higher than the one of the site where it is located ( ) the TMD 𝜔𝑆 𝜔𝑓 > 1
optimized through the acceleration criterion has a better performance than the one optimized 
by the other criterion. This result was also presented in [26].
Figure 7 shows optimum values of the TMD-structure tuning frequency ratio. First, Figure 7a 
shows for structures with low damping ratio ( ) lack of dependence of the optimum 𝜉𝑆 = 0.02
TMD frequency  from the earthquake model applied, especially if it is also only partially 𝜔𝑇
stationary, as the non-stationary KT earthquake model modulated by Jennings et al. function 
[41]. In case of structures with high damping ratio ( ) and extremely flexible, i.e. 𝜉𝑆 = 0.1
characterized by a vibration period  according to the parameters used for this study, the 𝑇𝑆 > 2𝑠
optimum value of the TMD-structure tuning frequency ratio  results higher if the non-𝜌𝑇 = 𝜔𝑇 𝜔𝑆
stationary KT model modulated by the Jennings et al. function [41] is applied rather than the 
stationary one. Such difference increases with structure vibration period , as the dashed 𝑇𝑆
green curve running above the dotted blue one show. On the contrary, for such structure the 
TMD-structure tuning frequency ratio  obtained using artificial earthquakes 𝜌𝑇 = 𝜔𝑇 𝜔𝑆
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modulated by the exponential function decreases with the increase of the structure-earthquake 
model tuning ratio ( ) and the dashed grey line run below the blue one.𝜔𝑆/𝜔𝑓
Figure 7b proposes the results obtained for the acceleration optimization criterion. Those 
results show that the optimum values of the TMD-structure tuning ratio is in the range between 
0.9 and 1 and it is independent of the structure damping ratio and the earthquake model, 
except in case it is non-stationary modulated by the exponential function [42]. Indeed the figure 
presents the solid magenta and dashed grey curves above all the others, which they touch in 
case the structure is in resonance with the soil ( ). For structures with low values of 𝜔𝑆/𝜔𝑓 = 1

 and excited by non-stationary artificial earthquake modulated by the exponential 𝜔𝑆 𝜔𝑓
function proposed by Hsu and Bernard [42] the TMD-structure tuning ratio   increases with 𝜌𝑇
higher structure-KT filter tuning ratio. This means that for earthquake excitation with energy 
concentrated in a short interval of time the TMD must be even more flexible than the structure 
to mitigate structure acceleration. However, this increase of damper flexibility is not justified by 
the reduction of its effectiveness shown in Figure 6b.
Figures 8a shows slightly higher optimal values of the TMD damping ratio , independently  𝜉𝑇 
of the applied earthquake ground motion model in case of structure stiffer than the soil (𝜔𝑆 𝜔𝑓

) and high structure damping ratio ( ). This result is not observed in case the > 1 𝜉𝑓 = 0.10
acceleration criterion is applied (see Figure 8b). In Figure 8, it is possible to observe that for 
flexible structures ( ) the optimum value of the TMD damping ratio depends on the 𝜔𝑆 𝜔𝑓 < 1
earthquake model and partially on the structure damping ratio, it does not on the optimization 
criterion applied. The values of the TMD damping ratio decreases with the increase of the 
flexibility of the structure respect to the soil if a non-stationary earthquake model is applied. In 
particular, Figures 8a and 8b shows that for , the blue dotted and black solid curves 𝜔𝑆 𝜔𝑓 < 0.2
are fully overlapped, the red dash-dotted and green dotted curve run below the blue and black 
one, while the magenta solid and grey dashed curves drops to zero. This means that the 
concentration of energy of the earthquake in a short interval of time reduces the need of adding 
damping to the TMD to mitigate the vibrations induced by the earthquake for structure more 
flexible than the soil, but TMD stiffer than the structure. Therefore, the energy of artificial 
earthquake with a time modulation is dissipated through a stiffer TMD with low or null damping.

4.3 Study of the mass ratio influence on the TMD optimal design

Here a sensitivity study of the TMD optimum design parameters as function of the mass ratio 
 is presented. For sake of brevity, in this study only numerical analysis for 𝛾𝑇𝑀𝐷 = 𝑚𝑇 𝑚𝑆

stationary earthquake model and non-stationary earthquake model modulated using the 
function proposed by Jenning et al. [41] are presented and the optimum mass ratio is 
calculated only for a constant value of the structure vibration frequency . Figures 9, 10 𝜔𝑆 = 𝜋
and 11 show the results of such study for soft soil parameters of the ground motion model and 
Figures 12, 13 and 14 for stiff soil parameters (Table 1). All these figures show the value of the 
mass ratio  on the horizontal axis. On the vertical one Figures 9 and 12 show the OF 𝛾𝑇𝑀𝐷
values obtained from numerical analyses performed with the two different values of structure 
damping ratio, i.e.  and the two ground motion models, i.e. the stationary and 𝜉𝑆 = [0.02,  0.1]
the non-stationary filtered WN. Figures 10 and 13 show on the vertical axis the optimum values 
of TMD-structure frequency  ratio , while  Figures 11 and 14 the optimum values 𝜌𝑇 = 𝜔𝑇 𝜔𝑆
of TMD damping ratio . The colours and styles used in these figures are identical to those 𝜉𝑇
used to present the results of the numerical analyses carried out with constant value of the 
mass ratio.
The first interesting result of Figure 9 is the lower TMD efficiency for structures with high 
damping ratio, i.e.  than for those characterized by low damping ratio, i.e. . 𝜉𝑆 = 0.1 𝜉𝑆 = 0.02
This is true for both displacement (Figure 9a) and acceleration (Figure 9b) optimization criteria 
and confirms the results presented in the previous subsections for constant value of the mass 

Page 13 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

14

ratio  and variable structure vibration frequency. In case of analyses carried out with soft 𝛾𝑇𝑀𝐷
soil condition, the structure is tuned with the KT filter, i.e.   and . Furthermore, in 𝜔𝑓 = 𝜋 𝜔𝑆 = 𝜋
that case the damping ratio of the KT filter is , so the filtered WN defining the seismic 𝜉𝑓 = 0.2
load has energy concentrated almost all around the filter frequency. For such conditions it is 
important to observe that the optimization criterion used influences the optimum value of the 
mass ratio . Figure 9a clearly presents a minimum of the OF for mass ratio , 𝛾𝑇𝑀𝐷 𝛾𝑇𝑀𝐷≅0.6
whatever is the structure damping ratio or the model of ground motion. The acceleration 
optimization criterion produces a different result: the TMD does not reach its maximum 
efficiency in the range of mass ratio taken into account in the study, i.e. 𝛾𝑇𝑀𝐷 = 𝑚𝑇 𝑚𝑆 =

. In Figure 9b the value of the OF decrease with the increase of the mass ratio . [0.05 ― 4] 𝛾𝑇𝑀𝐷
Few comments about the influence of the ground motion model on the efficiency of the TMD 
are worth of mention. Firstly for structures with high damping ratio (  the KT model 𝜉𝑆 = 0.1)
used has not influence on the TMD efficiency, except for high mass ratio value, i.e. 𝛾𝑇𝑀𝐷 =

. In that case, the TMD efficiency is lower if the stationary ground motion model 𝑚𝑇 𝑚𝑆 > ~2.5
is applied in the formulation of the optimum problem rather than the non-stationary one. In both 
figures, indeed, the green dashed and blue dotted lines are overlapped for , but the 𝛾𝑇𝑀𝐷 < 2.5
first lines runs below the others for higher value of  . For the acceleration criterion, this 𝛾𝑇𝑀𝐷
trend is barely perceptible. On the contrary, for structures with low damping ratio (𝜉𝑆 = 0.02) 
the TMD efficiency is always lower in case the earthquake model is non-stationary rather than 
stationary; therefore in Figures 9 the red dash-dotted  curves run above the black solid ones.  
Figures 10 present the optimum values of TMD-structure frequency ratio  as function of the 𝜌𝑇
mass ratio . When the displacement optimum criterion is applied (Figures 10a), the 𝛾𝑇𝑀𝐷
optimum of such ratio appears to be fully independent of the earthquake model, but not of the 
structure damping ratio . In fact, the optimum TMD-structure frequency ratio is slightly higher 𝜉𝑆
for structures with low damping ratio ( . Furthermore, such ratio decreases with the 𝜉𝑆 = 0.02)
increase of the mass ratio  for both values of structure damping ratio and both earthquake 𝛾𝑇𝑀𝐷
models. The optimal TMD must have frequency more tuned with the structure, whether it is 
very small respect to those of the structure. When the acceleration criterion is applied for the 
optimum design, (Figure 10b) the TMD-structure frequency ratio results to be unrelated to of 
the structure damping ratio  and the KT model used, whether the mass ratio is . In 𝜉𝑠 𝛾𝑇𝑀𝐷 < 2
the opposite case, i.e., for mass ratio , it is related to both structure damping ration 𝛾𝑇𝑀𝐷 > 2
and ground motion model used: the optimum TMD frequency results to be more tuned with the 
structure one if the non-stationary earthquake model is used in the optimum design problem 
and still more for low structure damping ratio. Figures 11 present the optimum TMD damping 
ratio . For the displacement optimum criterion the value of this TMD parameter increases 𝜉𝑇
with the mass ratio .It reaches the boundary of the solution existence domain  (see 𝛾𝑇𝑀𝐷 𝛀
Table 2) of the optimization problem for mass ratio . Such value is close to the 𝛾𝑇𝑀𝐷 = ~0.5
one for which the TMD reaches its maximum performance (see Figure 8a). Thus, it is possible 
to conclude that the TMD effectiveness obtained in case of displacement optimization criterion 
is strictly dependent on the boundaries of the solution existence domain  and a wider domain 𝛀
would produce different results in terms of TMD effectiveness. It is important to remind that 
those boundary values of the TMD parameters are defined according to technological limits. 
The dependence of the TMD damping ratio  from the mass ratio  appears clearly both 𝜉𝑇 𝛾𝑇𝑀𝐷
in Figure 11a and 11b. The latter presents the results obtained with the acceleration optimum 
criterion. In it the optimum value of the TMD damping ratio  increases till the TMD mass 𝜉𝑇
reaches the structure one ( ). For TMD with mass larger than the structure one, i.e. 𝛾𝑇𝑀𝐷 = ~1

, the optimum value of the TMD damping ratio  decreases. This trend is observed 𝛾𝑇𝑀𝐷 > 1 𝜉𝑇
for structures with either high or low damping ratio and seismic excitation modelled as either 
stationary or non-stationary filtered WN. However, the optimum value of the damping ratio of 
TMDs protecting structures with low dissipating capacity ( =0.02) is higher than the one of 𝜉𝑆
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TMDs protecting structures with high dissipation capacity ( =0.1). Finally, for the main 𝜉𝑆
purpose of this study it is important to notice that the TMD damping ratio  obtained by solving 𝜉𝑇
the optimization problem formulated with the stationary earthquake ground motion model is 
higher the one obtained from that problem formulated with the non-stationary one. 
Figures 12, 13 and 14 present respectively OF value and optimum value of the TMD design 
parameters obtained through application of either optimum design criteria and for stiff soil 
condition (Table 1). The earthquake excitation resulting for such soil condition is characterized 
by broad band with prevalent earthquake frequency , therefore not tuned with the 𝜔𝑓 = 6𝜋
structure one ( ). The remarks made for Figures 9, 10 and 11, i.e. for soft soil condition,  𝜔𝑆 = 𝜋
are generally fitting to this other related to the stiff soil condition. However, in Figure 13b and 
in both the Figures 14 the boundaries of the solution existence domain of the optimization 
problem  are reached. In particular, in first of these figures the lowest TMD-structure 𝛀
frequency ratio value possible within the search domain   is reached ( ), 𝛀 𝜌𝑇 = 𝜔𝑇/𝜔𝑆 ≥ 0.1
while in second figure the highest value limiting the search domain of the TMD damping ratio 
( ).𝜉𝑇 ≤ 0.2

6 Conclusions

The study presented dealt with the optimum design of a single TMD applied to a structure 
excited by earthquake ground motion. Two different optimization criteria were defined and 
independently applied. The first one aims to mitigate the structure displacement produced by 
earthquake excitation, while the second one to reduce the structure acceleration caused by 
such excitation. Here the structure was modelled as a linear elastic SDOF and the ground 
motion excitation thought the KT filter and eventually modulated with functions proposed either 
by Jennings et al. [41] or Hsu and Bernard [42] to include the non-stationarity in time of real 
earthquake ground motion signal. Numerical analyses are performed to assess the TMD 
performance and the optimum values of its design parameters. Different sets KT filter 
parameters are used in them: one producing a broad band excitation and the other one a 
narrow band excitation. The first one is typical of earthquakes occurring on stiff soil, while the 
latter on soft soil. The TMD-structure mass ratio is taken constant in the first sets of numerical 
analyses. Their results are compared and few observations are made. They can be 
summarized as follow.

 The performance of TMDs in mitigating vibrations in structures with high damping ratio 
is lower than the one of those applied to structures with low damping ratio.

  For structures with low damping ratio the TMD performance is influenced also by the 
ground motion model used: it is lower in case a non-stationary filtered WN modulated by 
the exponential function [42] is used rather than a stationary one. This result is obtained 
for different values of the structure vibration period. It is true also in case TMD-structure 
mass ratio is varied while the structure frequency value is constant. This indicates that the 
amplitude modulation of artificial earthquakes can lead to lower values of the TMD 
effectiveness; hence the use of stationary earthquake model produces misleading results 
in case of real applications. This result brings to the conclusion that also the use of specific 
real earthquake records can produce non careful optimization of TMD design.  

 The amplitude modulation in time of the ground motion excitation affects also the 
optimum values of the TMD damping ratio and vibration frequency. The first ones are 
lower than the value obtained for the stationary ground motion excitation, whereas the 
second ones are higher, but only in case the acceleration optimization criterion is applied 
and structure is more flexible than the soil. Such result is valid for mass ratio value equal 
to 0.5. For values of that ratio higher the one, no general remark can be easily made, also 
in case of variable value of the mass ratio and constant structure frequency.

Page 15 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16

References

[1] Karavasilis T.L., Kerawala S., Hale E., “Hysteretic model for steel energy dissipation 
devices and evaluation of a minimal-damage seismic design approach for steel buildings”, 
Journal of Constructional Steel Research, 2012, 70, 358-367.
[2] Apostolakis G., Dargush G.F., “Optimal seismic design of moment‐resisting steel frames 
with hysteretic passive devices”, Earthquake Engineering and Structural Dynamics, 2010, 
39(4), 355-376.
[3] Brando G., D'Agostino F., De Matteis G., “Seismic performance of MR frames protected by 
viscous or hysteretic dampers”, The Structural Design of Tall and Special Buildings, 2015, 
24(9), 653– 671.
[4] Gluck, N., Reinhorn, A. M., Gluck, J., & Levy, R. “Design of Supplemental Dampers for 
Control of Structures”, Journal of Structural Engineering, 1996, 122(12), 1394–1399. 
[5 ] Symans M. D., Charney F. A., Whittaker A. S., Constantinou M. C., Kircher C. A., Johnson 
M. W.,  McNamara R. J., “Energy Dissipation Systems for Seismic Applications: Current 
Practice and Recent Developments”, Journal of Structural Engineering, 2008, 134(1), 3–21. 
[6] De Matteis G., Sarracco G., Brando G., “Experimental tests and optimization rules for steel 
perforated shear panels”, Journal of Constructional Steel Research, 2016, 123, 41-52.
[7] Brando G., D’Agostino F., De Matteis G., “Experimental tests of a new hysteretic damper 
made of buckling inhibited shear panels”, Materials and structures, 2013, 46(12), 2121-2133. 
[8] Formisano A., Mazzolani F.M., “On the selection by MCDM methods of the optimal system 
for seismic retrofitting and vertical addition of existing buildings”, Computers & Structures, 
2015, 159, 1-13
[9] Fahnestock L. A., Sause R., Ricles J. M., “Seismic Response and Performance of Buckling-
Restrained Braced Frames”, Journal of Structural Engineering, 2007, 133(9), 1195–1204. 
[10] Fahnestock L. A., Ricles J. M., Sause R., “Experimental Evaluation of a Large-Scale 
Buckling-Restrained Braced Frame”, 2007, Journal of Structural Engineering, 133(9), 1205–
1214. 
[11] Ghabraie K., Chan R., Huang X., Xie Y. M., “Shape optimization of metallic yielding 
devices for passive mitigation of seismic energy”, Engineering Structures, 2010, 32(8), 2258-
2267.
[12] Levy R., Lavan O., “Fully stressed design of passive controllers in framed structures for 
seismic loadings”, Structural and Multidisciplinary Optimization, 2006, 32(6), 485-498.
[13] Baratta A., Corbi I., “Optimal design of base-isolators in multi-storey buildings”, Computers 
and Structures, 2004, 82, 2199-2209.
[14] Chung L.-L., Kao P.-S., Yang C.-Y.,  Wu L.-Y., Chen H.-M., „Optimal frictional coefficient 
of structural isolation system”, Journal of Vibration and Control, 2015, 21(3), 525-538.
[15] Bucher C., “Probability-based optimal design of friction-based seismic isolation devices”, 
Structural Safety, 2009, 31, 500-507. 
[16] Frahm H. Device for damping vibrations of bodies, US-Patent 989958, 1911
[17] Adam C., Furtmüller T., “Seismic performance of Tuned Mass Dampers” In: Mechanics 
and Model Based Control of Smart Materials and Structures, Publisher: Springer, Vienna, 
Editors: Irschik, H., Krommer, M., Watanabe, K. ,2010, pp. 11–18.
[18] Iemura H., “Principles of TMD and TLD — Basic Principles and Design Procedure”. In 
book: Passive and Active Structural Vibration Control in Civil Engineering, Publisher: Springer, 
Vienna, Editors: Soong, T.T., and Costantinou, M.C., 1994; pp. 241-253.
[19] Den Hartog J.P. Mechanical vibrations, McGraw-Hill, New York, 1956.
[20] Sun J.Q., Jolly M.R., Norris M.A.,  “Passive, adaptive and active tuned vibration absorbers 
– A survey”, Transactions of the ASME, 1995; 117,  234-242.
[21] Anh N.D., Nguyen N.X., “Design of TMD for damped linear structures using the dual 
criterion of equivalent linearization method”, International Journal of Mechanical Sciences, 
2013; 77, 164-170.

Page 16 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17

[22] Salvi J., Rizzi E., “Closed-form optimum tuning formulas for passive Tuned Mass Dampers 
under benchmark excitations”, Smart Structures and Systems, 2016; 17(2), 231-256.
[23] Lee C.-L., Chen Y.-T., Chung L.L., Wang Y.-P., “Optimal design theories and applications 
of tuned mass dampers”, Engineering Structures, 2006; 28, 43-53.
[24]  Leung A. Y. T., Zhang H., Cheng C.C., Lee Y.Y., “Particle swarm optimization of TMD by 
non-stationary base excitation during earthquake“, Earthquake Engineering & Structural 
Dynamics, 2008; 37(9), 1223-1246. 
[25] Hoang N., Fujino, Y., Warnitchai P., “Optimal tuned mass damper for seismic applications 
and practical design formulas”, Engineering Structures, 2008; 30(3), 707-715.
[26] Marano G.C., Greco R., Chiaia B., “A comparison between different optimization criteria 
for tuned mass dampers design”, Journal of Sound and Vibration, 2010; 329(23), 4880-4890
[27] Marano G.C., Greco R., “Optimization criteria for Tuned Mass Dampers for structural 
vibration control under stochastic excitation”, Journal of Vibration and Control, 2011; 17(5), 
679-688.
[28] Zhang Z., Balendra T., “Passive control of bilinear hysteretic structures by tuned mass 
damper for narrow band seismic motions”, Engineering Structures, 2013; 54, 103-111.
[29] Park J., Reed D., “Analysis of uniformly and linearly distributed mass dampers under 
harmonic and earthquake excitation”, Engineering Structures, 2001; 23, 802–14.
[30] Greco R., Marano G.C., “Optimum design of tuned mass dampers by displacement and 
energy perspectives”, Soil Dynamics and Earthquake Engineering, 2013; 49, 243-253.
[31] Rana R., Soong T.T., “Parametric study and simplified design of tuned mass dampers”, 
Engineering Structures, 1998; 20(3), 193-204.
[32] Crandall S.H. and Mark W.D. Random vibration in mechanical systems, Academic Press, 
New York,  1973.
[33] Greco R., Lucchini A., Marano G.C., ”Robust design of tuned mass dampers installed on 
multi-degree-of-freedom structures subjected to seismic action”, Engineering Optimization, 
2014; 47(8), 1009-1030.
[34] Bendaş G., Nignelim S. M., “Optimization of Tuned Mass Dampers for minimizing story 
drift of structures”. In: Proceedings of 2nd European Conference on Earthquake Engineering 
and Seismology, Istanbul, 2014; Contribution 399.
[35] Bekdas G., Nigdeli S.M. “Mass ratio factor for optimum tuned mass damper strategies”, 
International journal of mechanical sciences, 2013; 71, 68-84.
[36] Farshidianfar A. and Soheili S., “Ant colony optimization of tuned mass dampers for 
earthquake oscillations of high-rise structures including soil-structure interaction“, Soil 
dynamics and earthquake engineering, 2013; 51, 14-22.
[37] Khatibinia M., Gholami H., Labafi S.F., “Multi-objective optimization of Tuned Mass 
Dampers considering soil-structure interaction”, International Journal of Optimization in Civil 
Engineering, 2016; 6(4), 595-610.
[38] Ghosh A., Basu B., “Effect of soil interaction on the performance of tuned mass dampers 
for seismic applications”, Journal of Sound and Vibration, 2004; 274(3–5), 1079-1090.
[39] Kanai K., “Semi-empirical formula for the seismic characteristics of the ground”, Bulletin 
of Earthquake Research Institute, University of Tokyo, 1957; 35, 309-325
[40] Tajimi H., “A statistical method of determining the maximum response of a building 
structure during an earthquake“, In: Proceedings of 2nd International Conference Earthquake 
Engineering, Tokyo, 1960; 2, 781-797.
[41] Jennings P.C., Housner G.W., Twai C., “Simulated earthquake motions for design 
purpose”, In: Proceedings of 4th Word Conference on Earthquake Engineering, Santiago, 
1968, A-1, 145-160.
[42] Hsu T.I., Bernard M.C., “A random process for earthquake simulation”, Earthquake 
Engineering Structural Dynamics .1978, 6(4), 347–362
[43] Greco R., Fiore A., Marano G.C., “The role of modulation function in nonstationary 
stochastic earthquake model”, The journal of Earthquake and Tsunami, 2014; 8(5), 450015.
[44] Özsar𝚤y𝚤ld𝚤z Ş.S., Bozer A., ”Finding optimal parameters of tuned mass dampers”, The 
Structural Design of Tall and Special Buildings, 2015; 24(6), 461-475.

Page 17 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

18

[45] Mohtasham M., Abdolreza J., ”Designing optimal tuned mass dampers for nonlinear 
frames by distributed genetic algorithms”, The Structural Design of Tall and Special Buildings, 
2012; 21(1), 57-76.
[46] Ribakov Y., Agranovich G., “Control of structural seismic response by a limited set of active 
dampers”, The Structural Design of Tall and Special Buildings, 2011; 20, 594-611.
[47] Marano G.C., Greco R., Trentadue F., Chiaia B., “Constrained reliability-based 
optimization of linear tuned mass dampers for seismic control“, International Journal of Solids 
and Structures, 2007; 44(22), 7370-7388.
[48] Motavalli M., Feltrin G., Gsell D., Meyer J. ”Instrumentation of the Indoor Cable Stayed 
Bridge at Empa”,  In book: Sensing Issues in Civil Structural Health Monitoring, Netherlands, 
Publisher: Springer, Editors:  Ansari F., 2005.
[49] Buchholdt H. Structural dynamics for engineering, Thomas Teldfort, London, 1997
[50] Der Kiureghian A., “A Coherency model for Spatial Varying Ground Motions“, Earthquake 
Engineering and Structural Dynamics, 1996; 25, 99-111.
[51] Iemura  H., Jain S.K., Pradomo M. H., “Seismic base isolation and vibration control”, In 
book: Vibration monitoring, testing and instrumentation, Publisher: CRC Press, Editors: De 
Silva C.W., 2005
[52] Srinivas N., Deb K., “Multi-objective optimization using non dominated sorting in Genetic 
Algorithms”, Journal of Evolutionary Computation, 1994; 2(3), 221-248.

Page 18 of 45

http://mc.manuscriptcentral.com/tall

The Structural Design of Tall and Special Buildings

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Stiff Soil Soft soil
Ground motion intensity  (PGA) [g]𝑥𝑔_𝑝𝑒𝑎𝑘 0.2 0.2

[rad/s] [41]f 6π πKanai-Tajimi filter 
parameters

[41]f 0.6 0.2

White Noise S0 [cm2/s3] [40] 110.6 320.8
t1 [s] 5 5
t2 [s] 10 10

Modulation function 
proposed by Jennings et 
al. [32] β 0.4 0.4
Exponential modulation 
function [33], parameter 
calculated according 
equation (9)

𝑡𝑚 3.92 3.92

Table 1: Values of the Kanai-Tajimi filter parameters [41], modulation function [33, 34] and WN 
intensity [40].

Lower boundary Upper boundary
𝜉𝑇 ≥ 0 ≤ 0.2

𝜌𝑇 = 𝜔𝑇/𝜔𝑆 ≥ 0.1 ≤ 1.5
Table 2: Boundaries of the optimization problem search domain.
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Figure 1: Structure modelled as a SDOF  and protected by a single TMD. 
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Figure 2: Modulations functions. 
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Figure 3: OF value of the displacement (a) and acceleration (b) optimum criteria as function of the structure 
vibration period T_S in case of soft soil earthquake ground motion model. 
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Figure 4: Optimum values of ρ_T=ω_T⁄ω_S  as function of the structure vibration period T_S obtained 
through displacement (a) and acceleration (b) optimum criteria in case of soft soil earthquake ground 

motion model. 
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Figure 5: Optimum values of ξ_T as function of the structure vibration period T_S obtained through 
displacement (a) and acceleration (b) optimum criteria in case of soft soil earthquake ground motion model. 
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Figure 5: Optimum values of ξ_T as function of the structure vibration period T_S obtained through 
displacement (a) and acceleration (b) optimum criteria in case of soft soil earthquake ground motion model. 
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Figure 6: OF value of the displacement (a) and acceleration (b) optimum criteria as function of the structure 
vibration period T_S in case of stiff soil earthquake ground motion model. 
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Figure 6: OF value of the displacement (a) and acceleration (b) optimum criteria as function of the structure 
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Figure 7: Optimum values of ξ_T as function of the structure vibration period T_S obtained through 
displacement (a) and acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 7: Optimum values of ξ_T as function of the structure vibration period T_S obtained through 
displacement (a) and acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 8: Optimum values of ξ_T as function of the structure vibration period T_S obtained through 
displacement (a) and acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 8: Optimum values of ξ_T as function of the structure vibration period T_S obtained through 
displacement (a) and acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 9: OF value of the displacement (a) and acceleration (b) optimum criteria as function of the mass 
ratio in case of soft soil earthquake ground motion model. 
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Figure 9: OF value of the displacement (a) and acceleration (b) optimum criteria as function of the mass 
ratio in case of soft soil earthquake ground motion model. 
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Figure 10: Optimum values of ρ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of soft soil earthquake ground motion model. 
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Figure 11: Optimum values of ξ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of soft soil earthquake ground motion model. 
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Figure 11: Optimum values of ξ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of soft soil earthquake ground motion model. 
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Figure 12: Optimum values of ρ_T=ω_T⁄ω_S  as function of the mass ratio obtained through displacement 
(a) and acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 12: Optimum values of ρ_T=ω_T⁄ω_S  as function of the mass ratio obtained through displacement 
(a) and acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 13: Optimum values of ρ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 13: Optimum values of ρ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 14: Optimum values of ξ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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Figure 14: Optimum values of ξ_T as function of the mass ratio obtained through displacement (a) and 
acceleration (b) optimum criteria in case of stiff soil earthquake ground motion model. 
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