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In the UK, fossorial solitary bees account for approximately 52% of bee 
species, but their nesting ecology has received little attention in the 
academic literature. This research gap is largely a result of logistical 
barriers, which centre around the difficulties associated with locating nests 
and the time resources required to collect quality data. It is further 
compounded by the lack of standardised methodologies associated with 
this type of analysis. This PhD used three methodological approaches to 
overcome these obstacles, investigate the efficacy of the methods and 
shed light on the ecological requirements of fossorial solitary bees. 
 
The three principal methods enlisted in this research were a web-based 
citizen science project, which was linked with a field-based observational 
study of nest sites and finally a manipulative field experiment. All three of 
these methods were found to provide important insights into solitary bee 
nesting ecology and the field study benefitted significantly from being linked 
with the citizen science project, which provided accurate locations of active 
nesting sites. 
 
The citizen science data demonstrated the capacity of Andrena fulva, 
Andrena cineraria, Halictus rubicundus and Colletes hederae to nest within 
a broad range of environmental conditions including slope and ground 
cover, while the field-based study indicated that high-density nesting relies 
on the presence of specific environmental characteristics, such as bare 
ground and sandy soil. Significant interspecific differences in nesting 
characteristics were also identified indicating the need for further study of 
individual species. The field experiment found that the creation of bare 
ground and the maintenance of vegetation at a low level increased the 
nesting density of fossorial species six-fold. 
 
This research has explored and interrogated the efficacy of these three 
methodological approaches. Furthermore, it has elucidated some of the 
important environmental considerations for the protection and provision of 
suitable solitary bee nesting sites. 
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1. Introduction 

1.1 Pollinators 

Bees (Hymenoptera: Apoidea: Antophila) first evolved roughly 100 million 

years ago in the early Cretaceous period (Poinar and Danforth, 2006) and 

can be found on all continents except Antarctica. They have a (largely) 

mutualistic relationship with Angiosperms (flowering plants), whose rapid 

diversification and radiation can be attributed to the evolution of animal-

mediated pollen dispersal (Danforth et al, 2006). Of all the pollinators, bees 

are the largest and most important group with more than 20,000 extant 

species (IPBES, 2016; discoverlife.org). The Angiosperms provide a nectar 

source; a substance high in sugar for energy, pollen; a high protein 

substance which bees use to feed their young and resins; which bees use 

to feed and medicate larvae. In return bees transport pollen from male to 

female plants of the same species thereby facilitating germination and the 

persistence of the plants’ progeny through time. Many bee species are 

polylectic meaning that they are generalist species and will feed from many 

different plant species, while others are more specialised to particular plant 

types and are considered oligolectic.  

 

Bee diversity (Biesmeijer et al, 2006) and insect biomass (Hallmann et al, 

2017) have been shown to be in decline, while anthroprogenic change has 

led to increased rates of pollinator species extinction (Ollerton et al, 2014). 

Although much of the evidence of these patterns comes from from only a 

handful of geographical locations (predominantly the UK, Western Europe, 

North America). There is agreement that the most important drivers of 

these changes are habitat loss, agricultural intensification, pesticide use, 

invasive species and climate change (Brown et al, 2016, Potts et al, 2010). 

Despite this consensus, experts also agree that there remain significant 

gaps in our knowledge of pollinators, both in terms of their ecology and 

their geographic location, and calls for further research to address these 

shortcomings are both numerous and frequent (Hallmann et al, 2017, 

Ollerton, 2017, Vanbergen et al, 2012; Breeze et al, 2011). 

1.2 Pollinator ecosystem services 

Pollinators are a crucial part of the global ecosystem, not just because they 

are highly speciose but also because they influence the productivity of 

approximately 75% of crop species (Klein et al, 2007). These pollination 
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services are worth an estimated $235 – 577 billion to the global economy 

annually (IPBES, 2016). Worldwide the number of managed honeybee 

hives is estimated to have grown by approximately 45% over the period 

1961 to 2009 (Aizen and Harder, 2009). However, with an increasing 

reliance on honeybees to pollinate agricultural crops, these same crops 

become highly vulnerable to the threats currently facing honeybee 

population stability (Potts et al, 2010). Wild bees are highly speciose with 

diverse ecological and physical traits, meaning their inclusion in any 

pollination system greatly improves the system’s resilience (Breeze et al, 

2011). This exemplifies the lack of resilience that is inherent in any system 

largely reliant on one component and compounds the importance of 

diversifying with wild bees. Furthermore, honeybees alone are not sufficient 

to provide quality pollination services. A recent study of UK apple orchards 

(a highly valuable crop) found that of the £92.1m per annum that insect 

pollinators contribute to the economic outputs of orchards; £51.4m can be 

attributed to solitary bees (Garratt et al, 2016). In Denmark, the bee 

communities at strawberry farms were found to primarily constitute ground-

nesting solitary bee species (Ahrenfeldt et al, 2019), while in Canadian 

strawberry crops, honeybee pollination was shown to result in lower yields 

than wild bee pollination (MacInnis and Forrest, 2019). 

 

Solitary bees constitute roughly 90% of the approximately 275 wild bee 

species in the UK, but to date have largely been absent from the research 

and policy agenda (Wood et al, 2016).  Not only do solitary bees represent a 

significant portion of UK biodiversity, they are also important and highly 

efficient pollinators (Garratt et al, 2016). Solitary bees can be loosely divided 

into three groups on the basis of their nesting strategy. There are: aerial 

nesting species (nest in pre-existing cavities in the landscape); fossorial 

species (construct a nest subterraneously by digging down into the ground) 

and; parasitic species (do not build a nest but parasitise the nests of others). 

This thesis focuses on fossorial solitary bees, which represent the majority of 

UK solitary bee species and of which, seven are classified as UK BAP priority 

species (jncc.gov.uk). These bees are informally known as “miners” and 

include all species of Andrenidae and Meilttidae (Potts et al, 2005). Most 

species of Halictidae, Colletidae and Anthorophoridae are also categorised 

as mining bees. 
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1.3 The resource requirements of fossorial solitary bees 

Fossorial solitary bees require two principal resources to be present in a 

landscape in order to survive and thrive: forage and a nest site or, in other 

words, food and a home. However, there exists a significant shortfall in 

current knowledge regarding both the importance and characteristics of 

nesting resources. England’s National Pollinator Strategy 

(gov.co.uk/government/publications/national-pollinator-strategy-2014-2024-

implementation plan) places a heavy emphasis on the provision of flower-rich 

habitats for pollinator conservation as there is little quantitative data 

regarding supply or demand of nesting resources (Dicks et al, 2015). 

Furthermore, there is a widely accepted assumption that nest sites are not a 

limiting resource, particularly with regard to ground-nesting species, however 

there is a lack of evidence to support this conclusion (Roulston and Goodell, 

2011). The absence of empirical research surrounding nesting preferences 

and their interaction with landscape features is particularly compelling 

(Sardinas and Kremen, 2014). This research deficit may be attributable both 

to the difficulty associated with finding nests (Wood et al, 2016) and the 

complex task of unravelling the impacts of nest site variables from local 

forage resources (Roulston and Goodell, 2011). As a result of these 

complications, the community of foraging bees at a particular site has been 

accepted as being representative of the species nesting there (Potts et al, 

2005). While there is no significant body of empirical evidence to either 

support or debunk this claim, one recent study that sampled both foraging 

and nesting bees on hybrid sunflower fields in the Sacramento Valley found 

that all nesting bees were represented in the foraging community (Sardinas 

et al, 2015). However the foraging community represented more than double 

the species richness of the nesting community (six nesting species versus 

fourteen foraging species). Whilst this was a relatively small scale study, it 

does indicate that using the foraging community as a proxy for the nesting 

community is not justified. Furthermore, foraging surveys may undersetimate 

the number of species benefitting from the use of an area as a nest site by 

omitting species of cuckoo bee, which may be more often found in the vicinity 

of the hosts’ nests than on forage.  

1.4 Conservation of solitary bees 

While the energy and attention that has been put into pollinator conservation 

has greatly improved, there remain some shortfalls in current conservation 

proactice with regard to solitary bees. The sown flower agri-environment 
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options, which are designed to enhance pollinator species richness and 

abundance rarely include plant species that flower during March and April 

(Wood et al, 2016), which is a crucial period for some solitary bee species. It 

has recently been reported that only 34.7% of solitary bee species present on 

agricultural land in south east England actually utilise the sown flowering 

resources to any meaningful degree (Wood et al, 2016). There have been 

many calls for more fundamental and ecological research of solitary bees 

(Everaars and Dormann, 2014) both to advance our ecological knowledge 

and to better inform policy and management strategies. Furthermore, this 

need for more basic ecological research of pollinators to manage and reduce 

the factors threatening their survival was a key recommendation of a 2012 

workshop report on linking research and policy (Vanbergen et al, 2012). 

Looking to the future, it is important that we establish how to protect, 

conserve and provide for this group. In order to do this, we must first 

establish more thorough understanding of the fundamental needs of these 

important insects. This approach has the potential to lead to meaningful 

impact and policy amendments in terms of agri-environment schemes, 

conservation practices, urban planning and land management.  

 

A substantial knowledge gap exists around solitary bee nesting ecology. At 

the most fundamental level, more data on solitary bee nest site 

characteristics are required. Closing this knowledge gap will allow us to 

understand the impacts of current conservation actions and planning policies 

on the availability of suitable nest sites and help us to better plan for the 

future. Management practices such as tilling (Williams et al, 2010), pesticide 

use (Godfray et al, 2014) and irrigation (Sardinas et al, 2016) could all 

theoretically undermine the suitability of a site for nesting, however, until we 

better understand the fundamental ecology of nest sites, it is difficult to study 

or model the management impacts in any meaningful way. Furthermore, we 

cannot hope to design best practice guidelines for land managers or effective 

policy to help conserve and protect this large group of species without 

empirical understanding of their basic ecology. Empirical nesting data would 

have the potential to improve modelling studies, conservation actions and 

urban planning by facilitating these endeavours to have a basis in empirical 

science. The implications for these data extend to the local, regional and 

national levels. Much of the empirical evidence of solitary bee nesting 

ecology that exists comes from outside the UK in climates, ecosystems and 

with species assemblages substantially different from what exists here 

(Sardinas et al, 2016; Sardinas et al, 2015; Cane, 2015; Wuellner, 1999). 
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a 

Therefore, this research has the potential to provide clear and relevant data 

specific to the British context. 

 

The subterranean structure of fossorial bee nests is variable, but most 

structures are minor variants of the generic structure shown in Fig. 1.1, 

adapted from Cane and Neff (2011). The nest entrance is surrounded by a 

pile of soil excavated from the ground known as a tumulus. A tunnel extends 

down into the soil and nest cells are created. These cells may be constructed 

in branches off the main tunnel (Fig.1.1a) or within the tunnel itself (Fig.1.1b). 

Each nest cell is provisioned with a ball of pollen, which a single larva will 

feed on until it is ready to emerge as an adult.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1: Diagram depicting the two most common structures of fossorial 
bee nests. a represents a branching nest in which nest cells are created in 
branches off the main tunnel. b depicts a non-branching nest, wherein the 
nest cells are situated in the main tunnel itself. Adapted from Cane and Neff 
(2011)  

b 

Nest entrances 

Tumuli 

Tunnels 

Nest cells 
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1.5 Top-down statistical modelling of bee populations 

Although little energy has been focussed on empirically describing nest 

sites, there has been a growing interest in, and reliance upon, top-down 

modelling studies to inform and improve conservation policy. Many of these 

have attempted to model wild bee distribution and vulnerability across 

landscapes (Lonsdorf, 2009; Olsson et al, 2015; Everaars and Dormann, 

2014). However, when it comes to nesting preferences these studies lack 

the basic empirical evidence to support their assumptions, relying on expert 

opinion in the most robust cases, or proxies and major oversimplifications 

in others (Sardinas et al, 2015). The Lonsdorf model was the first 

quantitative model to attempt to predict pollinator abundance in a 

landscape (Lonsdorf, 2009). Although the model was well validated in two 

of the study sites (explaining approximately 80% of the variation) it failed to 

predict a significant amount of variation in the third site, which the authors 

attributed to a lack of fine scale empirical data regarding foraging and 

nesting resources. Olsson et al, (2015) made some improvement to the 

Lonsdorf model by incorporating behavioural components, specifically, 

central place foraging theory was brought in to extend the model so that it 

could be used more effectively in more complex landscape systems. 

However, they did not expand on nesting variables and so there remained 

a shortfall in this approach. Everaars and Dormann (2014) attempted to 

model the way wild solitary bees respond to landscape configuration using 

individual based simulation models (IBMs). Whilst the authors tried to build 

nesting preferences into the model, they simplified the nesting categories to 

above ground or subterranean sites. Furthermore, subterranean nests were 

modelled as equally likely to occur anywhere in the foraging habitat while 

aerial nests had a built in preference for field margins. These assumptions 

are potentially leading to poor prediction because recent evidences 

indicates that soil nesting bees also prefer to nest in margins and almost 

certainly diverge from long held beliefs about where they will and will not 

site a nest (Sardinas et al, 2016). Other parameters in this experiment, 

particularly those relating to foraging behaviour, were based on proxies 

derived from body size. Although this approach has value (Greenleaf et al, 

2007), what actually happens in situ has been shown to be far more 

complex (Zurbuchen et al, 2010). One of the most robust, holistic and 

recent top-down models of pollination ecosystem services was published 

by Häussler et al, (2017). This model explicitly integrates the preferential 

use of higher quality nesting resources, although it focuses primarily on 
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bumblebees. To truly determine the validity of this or any other model, a 

comparison with empirical data is required. In the long run, even top-down 

approaches would benefit from better fundamental understanding of how 

solitary bees operate in the physical environment. 

 

One significant issue with modelling studies is that they can create the 

illusion that they are adding to the body of evidence surrounding 

conservation management practices. Keitt (2009) in their modelling study 

recommended providing nesting habitat without any indication of what 

nesting habitat is. This kind of generic recommendation is insufficient in the 

practical management of species and can lead to a one size fits all approach 

in which only the most robust species are provided for. Modelling studies 

have enormous potential to help both understand ecology and to plan 

conservation actions. However, studies which attempt to address bee 

distribution or pollination services could be greatly improved if there existed a 

wider knowledge base concerning the ecological requirements of the solitary 

bees. 

1.6 Thesis aims 

The aim of this thesis is to better understand what constitutes suitable 

nesting sites for aggregate-nesting, fossorial solitary bees in the UK and to 

begin to understand how to provide suitable nesting habitat using empirical 

approaches. As some of the barriers to fossorial bee nesting research are the 

temporal and logistical issues associated with gathering empirical data on 

nesting ecology, particular attention is paid in this thesis to the designing, 

trialling and validating of various methods. I aimed to use these methods to 

contribute to bridging the knowledge gap relating to solitary bee nesting 

ecology, and as such, there are two central themes to this work: the 

evaluation of methods and the environmental characteristics of nests sites. 

Figure 1.2 illustrates how these themes are dealt with in this thesis. 
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1.7 Structure of thesis 

The following is a brief summary of each of the following chapters and their 

contents. 

 

Chapter 2 uses a citizen science approach to gether data on the 

characteristics of solitary bee nest sites. The research questions addressed 

in this chapter are: 

 

• Can citizen science be used to examine the nesting aggregations of 

solitary bee species?  

• Do Andrena fulva (Müller in Allioni, 1766), Andrena cineraria 

(Linnaeus, 1758), Halictus rubicundus (Christ, 1791) or Colletes 

hederae (Schmidt and Westrich, 1993) associate with particular 

environmental characteristics in choosing a nest site? 

• Do broad scale environmental variables affect the nest aggregation 

size of these four solitary bees? 

 

Chapter 3 explores the spatial differences in nesting density between and 

within fossorial bee nest sites. The research questions addressed in this 

chapter are: 

 

• Do differences in the environmental characteristics of a site influence the 

nesting density of A.fulva, A.cineraria and C.hederae among 

aggregations? 

• Do differences in environmental characteristics within a nesting 

aggregation contribute to the clumped spatial distribution of aggregations 

for these species? 

• Are there interspecific differences in the environmental characteristics of 

where nest sites occur? 

 

Chapter 4 describes a field experiment, which explores how vegetation 

management practices impact fossorial bee and wasp nesting. The 

research questions addressed in this chapter are: 

• Does vegetation cover impact solitary bee nesting? 
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• How do four different vegetation management strategies impact the 

nesting density of solitary bees and wasps? 

• Can Halictus rubicundus return to a nesting site from which it has 

been excluded, within the first year of management change? 

 

Chapter 5 brings together the preceding chapters to establish the novel 

contributions of this work and its implications for wildlife management and 

conservation. 
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Environmental characteristics 

Nest density3,4 Aggregation size2 Species2,3 

Citizen science2 Observational 
field study3 

Experimental 
manipulation4 

Evaluation of methods 

Methods 

Relationships
 

Figure 1.2: Summary of thesis structure. Numbers in superscript indicate chapters where the relationship or method is addressed. The 
environmental characteristics and evaluation of methods are the principal themes running through the thesis. 
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2: The Solitary Bee Project: Using citizen science to examine the 
nesting ecology of fossorial solitary bees 

2.1 Introduction 

2.1.1 Solitary bees 

Solitary bees constitute roughly 250 species of wild bee in the UK, but there 

remains significant knowledge gaps with regard to their ecology (Wood et al, 

2016). This group, which encompasses many important pollinators, including 

those of high value crops such as apples (Garratt et al, 2016), has faced 

diversity loss (Biesmeijer et al, 2006) declines in relative abundance (Bartomeus 

et al, 2013) and extinctions (Ollerton et al, 2014). There are two principal 

resources that solitary bee populations require in order to survive and 

proliferate: suitable and robust nest sites for their offspring to successfully 

mature in, and sufficient forage material both for their own survival and to 

provision their young. The foraging requirements of bees have been well 

studied (Strickler, 1979; MacIvor et al, 2014; Dicks et al, 2015; Wood et al, 

2016) as they are believed to be the principal limiting resource. However, within 

a landscape, Gathmann and Tscharnkte (2002) have speculated that nest sites 

may be a limiting factor for solitary bees more often than forage, although it is 

clear that these resources must work in tandem. There is a lack of empirical 

research regarding the nesting requirements of fossorial solitary bees in the UK 

(but see Potts and Willmer, 1997). Although there are multiple reasons for this 

gap, the difficulties associated with finding sufficient nest sites in the field and 

the lack of robust experimental methods are two of the most significant barriers. 

These issues are further compounded by the short flight periods of many UK 

solitary bees, which result in only a small window of time when active nest sites 

can be discovered and examined.  

2.1.2 Solitary bee nesting ecology 

There have been two main types of empirical study performed on ground 

nesting bees’ nesting ecology; those studies that focus on single species (Potts 

and Willmer, 1997; Wuellner, 1999; Julier and Roulston, 2009; Xie et al, 2013) 

and those that examine the effects of nest site suitability on wider metrics such 

as species richness, abundance and community composition (Grundel et al, 

2010; Sardinas and Kremen, 2014; Martins et al, 2018). A mixed picture 

emerges when the species-specific studies are taken together, indicating that 
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there may be significant interspecific diversity in solitary bee nest site 

preferences. Within the UK, Potts and Willmer (1997) empirically examined 

Halictus rubicundus (Christ, 1791) nest aggregations and identified a preference 

for softer soils with a moderate slope and southern aspect. Wuellner (1999) 

showed that the North American bee Dieunomia triangulifera (Vachel, 1897) 

preferentially nests in areas of bare, compacted soil with a warm soil surface 

temperature and close to visual landmarks. A study in Chinese Camellia oleifera 

(Abel) orchards found that Andrena camellia (Wu, 1977) preferred loose, moist 

and low temperature soil conditions (Xie et al, 2013). The abundance of 

Peponapis pruinosa (Say, 1837), a specialist pollinator of pumpkin in the USA, 

has been shown to be negatively related to soil clay content and positively 

related to soil irrigation (Julier and Roulston, 2009). In all of these studies, nest 

temperature seems to be an important characteristic and comes through either 

directly, in that individuals have been observed nesting in areas with particular 

soil temperatures (Wuellner, 1999; Xie et al, 2013), or indirectly, where they are 

observed nesting at sites whose physical characteristics seem to confer some 

thermal benefits (Potts and Willmer, 1997). Although the direction of preference 

seems to be somewhat mixed. There is a similar pattern when it comes to the 

physical characteristics of the soil, where these attributes appear to be uniformly 

important but the specifics of what is preferred seem to vary on a species to 

species basis. 

 

Across geographical regions the availability of ground nesting resources has 

been shown to be a strong predictor of bee abundance (Potts et al, 2003; 

Sardinas and Kremen, 2014), species richness (Grundel et al, 2010) and 

community composition (Potts et al, 2005; Grundel et al, 2010). A recent study 

from Quebec, Canada showed that bee diversity in apple orchards, blueberry 

and raspberry fields was influenced by the presence of suitable nesting 

resources (Martins et al, 2018). Again, the important characteristics of the 

nesting resource varies, but the availability of bare ground (Potts et al, 2005), 

sloped terrain (Sardinas and Kremen, 2014), sandy soils (Cane, 1991) and soils 

with low organic matter content (Grundel et al, 2010) are factors that have 

proven to be important in at least some contexts. 

 

Taken together, these studies show that nesting resources, as related to ground 

nesting species, are important for the survival and proliferation of bees in 

general. However, due to geographical differences in community composition 

and interspecific differences in nest site preferences, a ‘one size fits all’ 

approach will not be sufficient in this context. This conclusion was also reached 
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by Kim et al (2006) who found that across agricultural landscapes, ground 

nesting bee density was impacted by proximity to semi-natural habitat and 

edaphic factors of the individual sites. However, species differed in their 

response to the specific measured variables.  

2.1.3 Citizen science approaches 

In this study, I used a citizen science approach to circumvent the logistical and 

temporal issues associated with in-situ solitary bee nesting research and to 

attempt to identify and examine nesting aggregations on a national scale. 

Citizen science is an effective method of up-scaling research projects, both 

temporally and spatially, by capturing far more data than could be achieved by 

one individual (Pocock and Evans, 2014). It is also an excellent way to engage 

and educate the public about their local wildlife and scientific research (Kremen 

et al, 2011). Citizen scientists can be defined as members of the public who 

assist with scientific research on a voluntary basis (Cohn, 2008) and the UK 

boasts a long history of highly engaged amateur naturalists recording wildlife. 

The State of Nature reports are an example of the power of public recording. 

The most recent publication reported that 56% of the 8000 UK species studied, 

declined over the last fifty years (Hayhow et al, 2016). Many of these data were 

a result of the British public observing and recording wildlife voluntarily and 

although these population trends are discouraging, we would not have the 

evidence to show they exist without this level of public engagement. However, 

the success of citizen science projects, even in this country, is not guaranteed 

and there is much to be learned from both the successes and difficulties of 

previous endeavours.  

 

Hypothesis-led projects use citizen science as a tool to test hypotheses 

defined by professional scientists. This differs from traditional citizen 

science approaches which simply require participants to observe and 

record wildlife without a specific goal. Although the hypothesis-led 

approach has gained momentum in the last few years, its potential remains 

largely unharnessed (Roy et al, 2016). The Big Bumblebee Discovery was 

a one-year UK citizen science project that targeted schools and aimed to 

assess the multi-level impact of the landscape on bumblebee abundance 

and diversity (Roy et al, 2016). The participants (pupils aged 7-11) were 

asked to count the bumblebees that visited a lavender plant in a five minute 

time periods and then identify the bees according to six colour types. This 

study also investigated the accuracy of the submitted data through photo 
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verification. This process revealed a high rate of species misidentification, 

meaning the data could not be used to formally test the original 

hypotheses. A North American citizen science project by Delaney et al 

(2008) had more success both in terms of hypothesis testing and data 

quality. This study used volunteers to assess the presence of native and 

non-native crab species in the intertidal zones at sites in the North East 

USA and participants were found to be able to identify the species with 

95% accuracy. The authors partly attributed this result to the fact that they 

narrowed the study to just three crab species, thereby making the protocol 

easier for participants to learn and implement. Pocock and Evans (2014) 

had similar success with a UK based project on Cameraria ohridella 

(Deschka and Dimic, 1986) (the horse chestnut leaf miner). Also a 

hypothesis-led study, this project assessed the rapid range expansion of 

this insect by having participants report instances of the distinctive damage 

it causes to the leaves of horse chestnut trees. It also attempted to assess 

larval parasitism levels, although the data accuracy for this portion of the 

study was low as it required participants to rear the larvae at home. A 

similar observation was made by Birkin and Goulson (2015) that asking 

participants to make a large time investment risks undermining volunteer 

engagement. 

2.1.4 Data quality in nature-based citizen science projects 

The debate around data accuracy in citizen science projects and how to 

optimise it remains contentious (Aceves-Bueno et al, 2017; Specht and 

Lewandowski, 2018) and there is no guaranteed formula or template to 

adhere to when designing citizen science projects that will guarantee high 

data quality. Aceves-Bueno et al (2017) attempted to quantitatively assess 

the capacity of volunteers to record accurate data in line with professionals 

by adopting an approach similar to metaanalysis, where the results of 

multiple, similar studies are pooled and analysed. They found that in 62% 

of the cases studied, citizen science data did not differ significantly from 

professionally-collected data. Based on their analysis they made two 

recommendations for the design of citizen science projects. Firstly, they 

emphasised employing quality assurance methods such as the collection of 

reference data and/or monitoring the activity of the citizens closely.  

Secondly, they advise designing the project with the skill of the citizen in 

mind. In other words, simplify the tasks and provide training where 

possible. They also recommend recruiting citizens with either an economic 
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or health stake in the project as they are more motivated to collect quality 

data. In summary, this analysis took a fairly pessimistic view in terms of 

achieving high data quality from citizen science. However, the methodology 

of this study and therefore its results have been questioned. Specht and 

Lewandowski (2018) argued that this type of analysis is inappropriate in 

this context for three principal reasons 1. Many studies that attempt to 

assess citizen data quality use professionally collected data as the 

reference sample. However, research has shown that professional is not 

always accurate and the more robust method would be to assess both 

citizen and professionally collected data against a common reference. The 

authors also point out that in terms of precision, citizens and professionals 

have been shown to perform to roughly the same standard. 2. There is a 

high degree of methodological variability between studies that attempt to 

assess citizen data quality. In terms of the species being studied, the tasks 

the citizens are required to action, the level of training, participant 

characteristics and so on. Therefore these studies are not suitable to be 

aggregated for the purpose of metaanalysis or summary statistics. 3. When 

the data from multiple participants are viewed only in aggregate and not 

individually, and compared to a single professional reference, a biased and 

pessimistic view of data quality from the whole group can form. Following 

these criticisms, Specht and Lewandowski (2018) made three fundamental 

recommendations for evaluating citizen science data quality which can be 

summarised as 1. Assess both the accuracy and precision of citizen and 

professionally collected data in the same way. 2. Only aggregate data when 

the first condition is met and when the assessed metrics represent a single 

unified concept. 3. Pay close attention to what is driving any variation in 

citizen data quality and adjust the method based on those drivers. To 

summarise, the data quality of citizen science data cannot be aggregated 

and quantitatively assessed to provide a quantitative framework of best 

practice until enough appropriate studies (as outlined by Specht and 

Lewandowski, 2018) exist.  

 

As no empirical framework exists for the design of robust citizen science 

projects, I used previous studies as a grounding for project design (Delaney et 

al, 2008; Pocock and Evans, 2014; Birkin and Goulson, 2015; Roy et al, 2016). 

A random forest algorithm was used to anayse the data. This powerful statistical 

method has been used in a variety of ecological studies due to its capacity to 

cope with nonlinear data with predictor variables that are often part of complex 

interactions (Olden et al, 2008). It has been used to model the habitat of 
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endangered crayfish in Japan (Usio, 2007) and even to estimate solitary bee 

populations from images of ground nests in New Zealand (Hart and Huang, 

2011).  

I propose that citizen science has the potential to be an effective tool for the 

study of fossorial bee nesting ecology and can provide valuable insights 

into this knowledge gap, difficult to achieve via more traditional survey 

approaches.  
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2.1.5 Research questions and hypotheses 

This project set out to address three research questions: 

1. Can citizen science be used to examine the nesting aggregations of 

solitary bee species?  

2. Do Andrena fulva, Andrena cineraria, Halictus rubicundus  or Colletes 

hederae associate with particular environmental characteristics in 

choosing a nest site? 

3. Do broad scale environmental variables affect the nest aggregation size 

of these four solitary bees? 

 

Hypotheses:  

1. Citizen science can be used to examine the nesting aggregations of 

solitary bee species and will generate substantial data for the four species 

included in the study. The number of accurate records submitted by 

participants will be equal between species. 

2.  All four species will exhibit similar preferences for sloped, bare ground in 

open sun. These preferences will be particularly strong for A. fulva and A. 

cineraria as these species are active in early spring and will require their 

nest sites to be thermally optimised due to low temperatures at this point in 

the season. Colletes hederae will similarly exhibit strong preferences for 

these conditions as its flight period is in late autumn. 

3. Environmental variables do affect the size of solitary bee nesting 

aggregations. Nesting aggregations will be significantly larger in areas of 

lawn or bare, sloped ground that are not shaded to optimise thermal 

conditions, digging conditions and nest stability.	  
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2.2 Methods 

2.2.1 Optimisation of record accuracy 

Based on the citizen science literature, a number of control measures were 

taken when designing The Solitary Bee Project to optimise the chances of 

receiving high quality data. These included: 

 

1. Narrowing the study to four species: This decision stemmed from 

the high data accuracy recorded by Delaney et al (2008) in their 

study focussed on three crab species. 

2. Simplifying the tasks: The study by Roy et al (2016) on bumblebees 

found that participants had difficulty matching described colour 

forms to what they observed in the field. Therefore, this study used 

simplified methods, only requiring participants to answer multiple 

choice questions, in order to circumvent this potential issue.  

3. Not requiring repeated visits or a large time commitment: Birkin and 

Goulson (2015) and Pocock and Evans (2014) have recommended 

reducing participant time investment. Both struggled to get sufficient 

data from activities that required substantial participant time and 

commitment in their respective projects. 

2.2.2 Species selection 

A process of elimination protocol was used to choose four solitary bee 

species to build the project around. This selection process was based on a 

number of criteria designed to make the project both scientifically sound 

and to improve the chances of receiving accurate records. Fundamentally, 

this apprach aimed to identify species that are already recorded by the 

public and have been regularly observed in the East of England (based on 

records submitted to iRecord) and nest in aggregations (established based 

on Bees, Wasps and Ants Recording Soceity (BWARS) species accounts 

and Falk (2015)) (see Tables 2.1 and 2.2 for a detailed breakdown of the 

process). The publicly submitted solitary bee iRecord records for the period 

October 2015 - October 2016 across the UK were analysed and the 

following ten species were pulled out: Colletes hederae, Colletes 

succinctus (Linnaeus, 1758), Andrena clarkella (Kirby, 1802), Andrena 

fulva, Andrena cineraria, Halictus rubicundus, Halictus tumulorum 

(Linnaeus, 1758), Dasypoda hirtipes (Fabricius, 1793), Lasioglossum morio 

(Fabricius, 1793), Anthophora bimaculata (Kirby, 1802) (Tables 2.1 and 
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2.2). From this list of ten, four species of scientific interest and trait diversity 

were chosen on the basis of the following reasoning: of the four species, 

two were early season emergers, being on the wing from February or 

March (A. fulva and A. cineraria), one was a mid-season emerger (H. 

rubicundus) and is active from June or July, and one was a late season 

emerger (C. hederae), becoming active in late August or September. 

Halictus rubicundus is the one species for which we have empirical, U.K. 

based data on their nest site preferences and so this species was chosen 

to build upon that knowledge. Halictus rubicundus also has an interesting 

biology, as it has a relatively long flight period and exhibits both solitary and 

eusocial behaviour in different parts of its range (Eickwort et al, 1995). 

Colletes hederae is already the subject of a fairly large scale citizen science 

project run by BWARS (bwars.com). This highly successful project has 

monitored the spread of this species across the U.K. since its first sighting 

here in 2001 (BWARS, 2018). There were two major benefits of including 

this species in the study; from a citizen science perspective, some 

members of the public are already accustomed to submitting records for 

this species, with more than 600 sightings submitted to iRecord between 

Oct 2015 and Oct 2016. From a scientific perspective, this is a species of 

great interest. Having first appeared in the U.K. in 2001 after spreading 

beyond its continental European native range, it has spread rapidly across 

the country (Roberts and Vereecken, 2010). Adding to the knowledge base 

of this species contributes not only to fundamental solitary bee knowledge 

but also to our knowledge base concerning non-native species. Finally, all 

four of these species are morphologically distinct and thus, possible for the 

public to identify. 

2.2.3 Brief biology of the four study species 

Andrena fulva is a species native to the UK. It is very common in southern 

England and is increasing in the Scottish part of its range, although it 

remains rare in Ireland (Falk, 2015). It is a univoltine species and does 

much of its foraging on spring-flowering shrubs such as hawthorn and fruit 

trees. Larvae develop underground and overwinter as adults before 

emerging the following spring. Andrena cineraria is also a native species 

and is widespread across the UK and Ireland. It is univoltine and forages on 

a similar range of plants to A. fulva. Andrena cineraria also overwinters as 
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adults in the natal cells (bwars.com, 20191). Halictus rubicundus is a native 

species, common throughout Britain and Ireland. It is highly polylectic and 

females can be seen on the wing from March through to October (Falk, 

2015). Peak activity for this species occurs from June, when males become 

active. Halictus rubicundus is reported as solitary in the northern parts of its 

range, but eusocial in the south (Soucy, 2002). Colletes hederae is the only 

non-native species included in this study and was first recorded in the UK in 

Dorset in 2001 (bwars.com, 20192). It is the last solitary bee to emerge 

each year in the UK and principally utilises ivy as both a pollen and nectar 

source (Falk, 2015). 

2.2.4 Study design 

The study was designed to measure variables that are accessible to non-

experts (Roy et al, 2016). Participation in the project did not require any 

specialist equipment or training, nor did it ask volunteers for a major time 

commitment. Each individual could submit as few or as many records as 

they wished, with no obligation for repeated visits or monitoring of the site. 

The participants were requested to upload a photo of the bee and the site, 

so an expert could compare the photographs to the submitted data for 

validation purposes, although this was not made compulsory. This 

approach was favoured as many of the most knowledgeable and 

experienced potential participants would be disinclined to photograph 

specimens, particularly common species such as those in this study, as 

they are confident in their identification skills.  A project-specific website 

(thesolitarybeeproject.org) (Appendix 1) was designed and launched both 

as an information tool and a portal through which participants could submit 

records. 

 

The secondary aim of The Solitary Bee Project was to use it as a tool to identify 

nest sites for fine scale ecological analysis. This was attempted in the summer 

of 2016 without the aid of public records but not enough nest sites could be 

identified for robust analysis due to their cryptic nature. As participants in the 

citizen science project needed to record location data, this information was used 

for a separate but linked analysis (Chapter 3). 

 

                                                
1 http://www.bwars.com/bee/andrenidae/andrena-cineraria. Date accessed: 
16/07/19 
2 http://www.bwars.com/bee/colletidae/colletes-hederae. Date accessed: 16/07/19 
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Participants were asked to answer the following simple questions regarding the 

nesting aggregation. These questions were designed with regard to the 

recommendations outlined by previous citizen science projects, detailed in 

section 2.2.1: 

1. How many nests were there? 

a. 1-10 

b. 11-30 

c. 31-50 

d. 51+ 

2. How sloped was the ground? 

a. Flat 

b. Sloped 

c. Vertical 

3. How much shade was the aggregation in? 

a. Aggregation was completely in the open 

b. Aggregation was adjacent to trees or buildings that could provide 

shade 

c. Aggregation was completely shaded by trees or other structure 

4. What was the ground cover like? 

a. Bare earth 

b. Lawn 

c. Under mulch 

d. Other
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Colletes 9 697 C. hederae 614 

   C. succinctus 22 

Hylaeus 12 70 H. communis 19 

   H. hyalinatus 17 

Andrena 67 2063 A. hattorfiana 38 

   A. clarkella 35 

   A. fulva 34 

   A. haemorrhoa 28 

   A. cineraria 20 

Panurgus 2 16 P. banksianus 12 

   P. calcaratus 4 

Halictus 8 108 H. rubicundis 72 

   H. tumulorum 33 

Lasioglossum 34 290 L. calceatum 58 

   L. morio 43 

Dasypoda 1 26 D. hirtipes 26 

Melitta 4 21 M. tricincta 11 

   M. 
haemorrhoidalis 7 

Macropis 1 11 M. europaea 11 

Anthophora 5 807 A. plumipes 664 

   A. furcata 51 

   A. bimaculata 32 

Eucera 2 31 E. longicornis 31 

Table 2.1: Protocol for choosing species included in citizen science project. 
Public records examined were those submitted to iRecord between 
10/10/2015 and 10/10/2016.  
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Species >20 records? 

Nests 
consistently in 

ground 
aggregations? 

East England 
records? 

C. hederae ✔ ✔ ✔ 

C. succinctus ✔ ✔ ✔ 

H. communis ✗   

H. hyalinatus ✗   

A. hattorfiana ✔ ✗  

A. clarkella ✔ ✔ ✔ 

A. fulva ✔ ✔ ✔ 

A. haemorrhoa ✔ ✗  

A. cineraria ✔ ✔ ✔ 

P. banksianus ✗   

P. calcaratus ✗   

H. rubicundis ✔ ✔ ✔ 

H. tumulorum ✔ ✔ ✔ 

L. calceatum ✔ ✗  

L. morio ✔ ✔ ✔ 

D. hirtipes ✔ ✔ ✔ 

M. tricincta ✗   
M. 

haemorrhoidalis ✗   

M. europaea ✗   

A. plumipes ✔ ✗  

A. furcata ✔ ✗  

A. bimaculata ✔ ✔ ✔ 

E. longicornis ✔ ✔ ✗ 

Table 2.2: Protocol for choosing species included in citizen science project. 
Cells highlighted in green were considered for inclusion. Those in red were 
dropped from consideration when they failed to meet a selection criterion. 
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2.2.5 Data validation 

Records received were validated by Stephanie Maher using a traffic light system 

where records coded as ‘red’ were immediately rejected, ‘green’ records were 

immediately accepted and ‘yellow’ records were examined more closely before 

being assigned either ’red’ or ‘green’ status. Ultimately, records were rejected if 

the species identification was incorrect, the bee had not been seen at the nest 

site or if there were missing data.  

2.2.6 Participant recruitment 

Immediately preceding and following the launch of the project, it was 

advertised through BWARS and through the personal contacts of those 

involved in the project. This resulted in the project being ‘target marketed’ 

either to those with a professional interest e.g. university contacts, or 

amateurs who are members of a wildlife recording society and are 

accustomed to wildlife recording. At the beginning of June 2017, three 

months into the project, a press release was circulated to local and national 

media outlets by the university press office. This press release resulted in a 

number of local and national radio and television appearances and 

newspaper articles about The Solitary Bee Project. In this way, the project 

was marketed to a much wider group of potential participants from this 

point on. 

2.2.7 Data analysis 

In the case of the data generated by The Solitary Bee Project, general linear 

modelling was not appropriate as the dependent variable (size of aggregation) 

was measured on a categorical scale and therefore the data did not meet the 

assumptions of normality or unboundedness. Instead, a random forest algorithm 

was developed as a classification model (500 trees) (Breiman, 2001) to try to 

predict the number of nests in an aggregation (categorical outcome of 1-10; 11-

30; 31-50 or 51+ nests) based on the level of shade, slope and type of ground 

cover. A random variable, consisting of values between 0 and 100, was added 

to the model so that the relative contributions of the other variables could be 

examined. Random forest is a machine learning approach that iteratively uses 

different subsets of the data to create many decision trees. Every tree is then 

tested against the data that has not been used to make that tree. The error 

associated with each of these iterations is then averaged to produce the ‘Out of 

Bag Error’ or the prediction error of the random forest. In this way, random 
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forest combines many classifications trees in order to produce more accurate 

classifications and is a robust method of examining variable importance and 

modelling interactions between variables (Cutler et al, 2007).  

 

All analyses were carried out in R version 3.5.1 (R Core Team, 2015). The R 

package ‘randomForest’ was used for the random forest analysis (Liaw and 

Wiener, 2002).  
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2.3 Results 

2.3.1 Summary of records 

In total, The Solitary Bee Project collected 396 records from across the UK and 

Ireland in 2017. Two hundred and thirty six of these records were assessed as 

being accurate and indicative of an active nesting aggregation (Fig. 2.1). There 

was substantial variability in the number of accurate records submitted per 

species. Close to ten times more accurate records were received for A. fulva 

compared with H. rubicundus (105 and 11 accurate records respectively). There 

were also marked interspecific differences in the proportion of accurate records 

submitted, where again A. fulva had the highest proportion (74.5% of records 

were accurate) and H. rubicundus the lowest (20.8% of records were accurate) 

(Table 2.3).  
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Figure 2.1: Distribution maps for the records submitted for each species: A. 
cineraria – blue dots (n=81); A. fulva –red dots (n=105); H. rubicundus – 
orange dots (n=11); C. hederae – green dots (n=39). Darker pigments 
indicate overlapping records. Photos of bees by Dr. Thomas Ings. 
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Table 2.3: Summary of records by species 

Species Total records Accurate records 

A. fulva 141 105 (74.5%) 

A. cineraria 127 81 (63.8%) 

H. rubicundus 53 11 (20.8%) 

C. hederae 71 39 (54.9%) 

 

2.3.2 Solitary bee nest sites 

Records were used to build a picture of the areas in which the four species 
were nesting in terms of their ground cover (Table 2.4), shade (Fig. 2.2), 
and slope (Fig. 2.3). Standard statistical tests, such as chi square which 
can be used to examine preferences, were not appropriate for use in this 
context. This is because these statistical analyses rely on the assumption 
that every option that is being tested was always available to every 
individual. This was not the case in this study as the four species of bee 
were active at different times in the season, therefore, no statistical test 
was used to interrogate interspecific differences. For individual species, this 
assumption was not met as individuals may have existed in fragmented 
habitats where they could not access areas which represented all levels of 
each variable.  
 
 
Andrena fulva 

The ground cover of A. fulva aggregations was reported to be grass in 56% of 

aggregations and bare in 34% of aggregations (Table 2.4). Eighty two percent of 

records reported this species to be nesting in flat ground with no slope. The 

records also indicated that A. fulva has a broad tolerance for shade with 68% of 

aggregations reported to be experiencing at least partial shade. That said just 

10% of aggregations were reported be in full shade. 

 

Andrena cineraria  

53% of A. cineraria aggregations were reported to be fully in the open and 44% 

were reported to experience some shade (Table 2.4). Just 3% of aggregations 

were reported as fully shaded. Sixty seven percent of A. cineraria aggregations 

occured on flat ground and 30% were sloped. Sixty four percent of aggregations 
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were reported to be in a grassy area and 30% occurred in bare ground. This 

reflects a very similar pattern to A. fulva. 

  

Halictus rubicundus  

From the 11 accurate records of H. rubicundus aggregations, 54% occurred on 

flat ground and 36% on sloped ground (Table 2.4). Most records (74%) 

specified that the ground was bare. No strong trend manifested in terms of 

shade with 45% of records specifying the aggregation was in the open and a 

further 45% specifying the aggregation to be in partial shade. 

 

Colletes hederae  

A majority (74%) of C. hederae aggregations were reported to be subject to no 

shade at all and no aggregations were reported to be fully shaded (Table 2.4). 

Aggregations occurred equally on on flat ground and on sloped ground. Sixty 

two percent of recorded aggregations reported grass as the primary ground 

cover, with 36% recorded as bare. 

 

 

Table 2.4: Species summaries of proportion of records received in each 
category for the three environmental variables. 
  Shade Slope Ground cover 

A. fulva 
(n=105) 

No shade: 36% 

Part shade: 54% 

Full shade: 10% 

Flat: 82% 

Sloped: 18% 

Vertical: - 

Bare: 34% 

Grass: 56% 

Other: 10% 

A. cineraria 
(n=81) 

No shade: 53% 

Part shade: 44% 

Full shade: 3% 

Flat: 67% 

Sloped: 30% 

Vertical: 3% 

Bare: 30% 

Grass: 64% 

Other: 6% 

H. 
rubicundus 
(n=11) 

No shade: 45% 

Part shade: 45% 

Full shade: 10% 

Flat: 54% 

Sloped: 36% 

Vertical: 10% 

Bare: 74% 

Grass: 18% 

Other: 8% 

C. hederae 
(n=39) 

No shade: 74% 

Part shade: 26% 

Full shade: - 

Flat: 49% 

Sloped: 49% 

Vertical: 2% 

Bare: 36% 

Grass: 62% 

Other: 2% 
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Figure 2.2: Frequency distribution of the number of nesting aggregations in 
shade, partial shade and full shade for each of the four study species. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Frequency distribution of the number of nesting aggregations in flat, 
sloped and vertical terrain for each of the four study species. 

0 

10 

20 

30 

40 

50 

60 

A. fulva A. cineraria H. rubicundus C. hederae 

Frequency of 
nesting 

aggregations 
recorded 

No shade 
Partial shade 
Full shade 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

A. fulva A. cineraria H. rubicundus C. hederae 

Frequency of 
nesting 

aggregations 
recorded 

Flat 
Sloped 
Vertical 



 31 

slope

shade

ground

species

random

0 10 20 30 40 50

fit.rft

MeanDecreaseGini

2.3.3 Predicting the aggregation size 

The random forest algorithm could not successfully predict the size of an 

aggregation and had an ‘out of the bag’ error rate of 57.6%. The variable 

importance plot shows that the random variable inserted into the model was the 

main driver of the model (Fig. 2.4). Therefore, none of the measured variables 

are considered to be useful predictors of the number of nests in an aggregation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4: Variable importance plot. This plot illustrates a list of the most 
predictive variables in descending order. In this case, the random variable, 
which is listed first, contributes the most to the model.  
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2.3.4 Participant reach 

The media attention three months into the project resulted in what might be 

considered a ‘high quantity, low accuracy’ scenario where in the first three 

months of the project, a total of 89 records were received, of which 82% were 

verified as accurate and 70% included one or more photographs. However, the 

records submitted post media were of a substantially lower quality. Of the 

records submitted in the three months post media, only 49% were validated and 

taken through for data analysis. Not only were many of the records removed 

from the analysis, the percentage of records with accompanying images 

dropped to 33%. 

2.3.5 Site recruitment 

The project also set out to identify active nesting aggregations for fine scale 

analysis. This aim was met and 27 active nesting aggregations were sampled. 

The interspecific differences in the number of records submitted was in some 

ways reflected in this portion of the analysis (Table 2.5). For example, no H. 

rubicundus nest sites were successfully sampled, which is reflective of the low 

success rate in obtaining accurate records for this species. However, this 

pattern did not hold for A. fulva, which was the most well-recorded species in 

the main but had the second lowest number of sites in the fine scale analysis. 

Colletes hederae, conversely, received the second lowest number of record 

submissions at 71 with a 54.9% accuracy rate but had the highest number of 

sampled sites in the fine scale analysis.  

 

Table 2.5: Summary of the number of sites surveyed at a fine scale, per species 

Species No. of sites 

A. fulva 7 

A. cineraria 9 

H. rubicundus 0 

C. hederae 11 
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2.4 Discussion 
 
The Solitary Bee Project collected 236 accurate records of solitary bee nest site 

locations of four species from across the UK. Although the resolution of the data 

was not fine enough to identify any influence of environmental factors on 

aggregation size, the project did reveal some interesting trends in terms of 

where these four species nest in a landscape. All species were found to have 

broad tolerances for the measured environmental characteristics but they did 

exhibit some differences in their nest site characteristics. Furthermore, these 

results suggest that interspecific differences may be reduced when species are 

closely related and have similar flight seasons, although more rigorous testing is 

required to substantiate this theory. This study took a novel approach to 

overcoming the logistical barriers associated with solitary bee nesting research 

and showed that citizen science can be an effective tool in this context, although 

data resolution would benefit from some methodological changes in the future. 

There was substantial engagement with the project and the near 400 submitted 

nest site records reflect the engagement the public had with this lesser known 

but important group of bees.  

2.4.1 Shade 

Nest sites that are in full sun are understood to be attractive to ground nesting 

species as they experience increased soil temperature (Brockmann, 1979; Potts 

and Willmer, 1997). Colletes hederae followed this trend and was most often 

reported from sites that experienced no shade (Fig. 2.2). The Solitary Bee 

Project was based on broad categories of shade (none, some, complete) and so 

could not pull apart the level of shade the aggregations in the “some” category 

experienced throughout the day. However, there was evidence that all species 

could tolerate at least some level of shade, including H.rubicundus which has 

previously been found to show a strong preference for sites in full sun (Potts 

and Willmer, 1997). In fact, A. fulva was found to nest in open areas in very few 

cases (Fig 2.2), which indicates that there may be benefits to nesting in a 

shaded site that outweigh the disadvantages. In this study, a number of 

participants reported A. fulva to be nesting near and in some cases, directly 

beneath, trees. Although A. fulva is polylectic, a study of their pollen loads in 

Cardiff, Wales, found that females were primarily foraging on flowering trees 

such as maple and cherry (Paxton, 1991), and so the tendency of A. fulva to 

nest in shaded areas may be a function of their decision to nest in close 

proximity to forage material. As A. fulva is active in early spring, when flowering 
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plants are scarce, there may be more pressure on it than summer flying species 

to site a nest close to abundant foraging resources. Trees can also alter the soil 

environment in ways that may facilitate nesting. For example, fossorial insects 

do not nest in hard-packed soil (Gliński et al, 2011; Srba and Heneberg, 2012) 

but tree roots can break up compact or hardened soil layers, which may make 

the area habitable. Trees also help to mitigate extremes in soil surface 

temperature (Edmondson et al, 2016), which may be beneficial to larvae 

developing underground (Potts and Willmer, 1997).  

2.4.2 Slope 

Sloped, south-facing ground experiences higher soil temperatures and this is 

thought to confer significant benefit to species that nest in these areas (Potts 

and Willmer, 1997). In this study, the majority of C. hederae nesting sites were 

reported to be on sloped ground, in line with previous findings for this species 

(Bischoff et al, 2004). Conversely, most A. fulva nesting sites occurred on flat 

ground (Fig 2.3), a tendency that has previously been noted for other Andrena 

species that occur in North America (Youssef and Bohart, 1968). Neither H. 

rubicundus nor A. cineraria demonstrated a trend for any particular terrain 

gradient. This mixed picture is not unusual. When Srba and Heneberg (2012) 

examined the nest sites of five species of digger wasp (four Sphecid and one 

Crabronid), they also identified interspecific differences in the slope of the 

nesting areas, noting that there were preferences for both sloped and flat 

terrain. Potts and Willmer’s (1997) study of H. rubicundus nesting aggregations 

found that across sites studied there was no correlation between slope and 

nesting density, however, within a site this species nested at higher densities in 

areas with steeper slopes. So, although these species possess the capacity to 

nest in variously sloped ground, these may not represent optimal nest sites and 

further study is required to untangle this relationship. 

2.4.3 Ground cover  

Seventy four percent of H. rubicundus nest sites were found in bare ground, but 

for the other three species (A. fulva, A. cineraria and C. hederae), grass was 

reported as the primary ground cover of the aggregation in the majority of 

records. Bare ground has been shown to encourage solitary bee nesting 

(Gregory and Wright, 2005; Dicks et al, 2010), but the results of the current 

study show the capacity of some species to nest in grassy areas. For A. fulva 

and A. cineraria, many participants reported the aggregations to be in mown 
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lawn or grazed grass, indicating that these species can tolerate significant 

anthropogenic disturbance to the surface area of the nest site. This is supported 

by the fact that many of the aggregations recorded in bare ground occurred on 

footpaths with frequent pedestrian or vehicular traffic. Although little work has 

been done on the impact of disturbance on solitary bee nest sites, Ullmann et al 

(2016) found that tillaging the soil to a depth of 40cm delayed the emergence of 

the squash bee P. pruinosa in an agricultural landscape, but roughly 50% of the 

bees survived this management. This suggests that disturbed landscapes in 

both rural and urban contexts, where the level of disturbance is not so extreme, 

could potentially contribute to the persistence of ground nesting solitary bee 

populations. This may indicate that these species have a broad tolerance for the 

surface characteristics of the ground they nest in and that other factors are more 

important for optimising their nest site location. Srba and Heneberg (2012) 

studied the nest site characteristics of five species of digger wasp and found a 

general trend of preference for low vegetation cover with some species more 

strongly selecting for this than others. However, they noted than one species 

showed no preference for vegetation cover and dug nests in areas with up to 

80% cover. The authors did identify strong interspecific differences in the wasps’ 

soil requirements. Evidence shows that edaphic factors such as soil particle size 

(Cane, 1991) and organic matter content (Grundel et al, 2010) can drive the 

presence and density of fossorial bees and wasps and so it is possible that the 

subterranean environment is a more dominant feature compared to surface 

characteristics for some species (this will be explored further in Chapter 3). 

2.4.4 Interspecific similarities and differences 

Overall, A. fulva and A. cineraria exhibited similar trends in terms of their 

environmental characteristics. Furthermore, these two species were sometimes 

reported to be nesting together, a scenario I observed personally. This, taken 

with previous work (Youssef and Bohart, 1968) suggests that these closely 

related species with strongly overlapping flight seasons favour similar nesting 

conditions. This pattern has also been identified in the Colletidae family, where 

steep, south-facing, sandy slopes are preferred (Bischoff et al, 2004). This 

tentatively suggests that phylogenetic relatedness could potentially play a role in 

defining the nest site requirements of a species, but more research with the 

specific aim of testing this hypothesis is required. 

 

There seemed to be some inter-familial differences, with the majority of C. 

hederae and A. fulva nest sites having values for slope and shade in opposite 
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directions. Furthermore, H. rubicundus was the only species for which bare soil 

was identified as the primary ground cover in the majority of records, although 

this is based on a small sample. Summarising previous research on species 

from different families demonstrates some divergences in their preferred nest 

site characteristics (Potts and Willmer, 1997; Wuellner, 1999; Julier and 

Roulston, 2009; Xie et al, 2013). These differences may have originally 

manifested for many reasons. Although all species have a common goal of 

finding a nest site that is suitable for larval development and subsequent 

survival of offspring, they may differ significantly in what constitutes optimal soil 

for digging and what is the optimal position for forage. There is a high degree of 

morphological diversity within the ground nesting solitary bees, particularly with 

regards to body size. Smaller bees are likely to have shorter foraging ranges 

(Greenleaf et al, 2007) and so may be more restricted in requiring a nest site in 

close proximity to suitable food resources. Furthermore, oligolectic species may 

be constrained by the presence of their food plants. Body size may also impact 

the ability of an individual to excavate nests in harder soils. Indeed, Cane (1991) 

found that larger bees tend to nest in soils with higher clay content,  and nesting 

in these conditions results in higher energy costs (Srba and Heneberg, 2012). 

Species’ flight periods may also play a role. Spring flying species such as A. 

fulva and A. cineraria have to cope with lower soil temperatures which will alter 

the digging conditions (Xie et al, 2013). For example, soils with larger particles, 

such as sand, freeze more easily than those with a higher proportion of fine 

particles such as clay. In this way clay rich soils may be easier to dig in the 

spring, but in the summer months sandy soils represent a lower energy 

excavation. The closely related digger wasps Ammophila pubescens (Curtis, 

1836) and A. sabulosa (Linnaeus, 1758) have been shown to preferentially nest 

in areas where the soil has a low gravel content (Srba and Heneberg, 2012).  

 

Although there is evidence to suggest that phylogenetic relatedness can help 

determine nesting requirements, Cane (1991), found that ground nesting bees 

exhibit substantial variability in their preferences for soil grain size. They also 

noted that the species with more similar preferences did not necessarily align 

along taxonomic relationships. The resolution may be that in certain families e.g. 

Colletidae and Andrenidae, taxonomic relatedness does help to delineate 

nesting preferences but this is not true for all fossorial families. Looking ahead, 

significantly more research would be required to gain a clear understanding of 

how these factors interact. 
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2.4.5 Aggregation size 

The data collected did not distinguish any differences in environmental 

conditions for different sized aggregations. This may have been due to the 

broad nature of the questions asked, which is an inherent risk when designing 

hypothesis-led citizen science projects. There is a careful balance to be struck 

between establishing complexity in the methods for scientific robustness but 

maintaining simplicity in order to encourage participation and ensure accurate 

reporting. The categorical nature of the questions seemed to have a negative 

effect on data resolution as the categories were constrained. This was 

especially apparent with the C. hederae data for which 77% of records reported 

the nest site to consist of more than 51 nests (the highest category). A separate, 

fine scale study of a subset of the aggregations revealed a wide range in the 

mean number of nests per square metre (Chapter 3). For example, A. fulva had 

a mean highest nest density of eight nests per square metre and C. hederae 49 

nests per square metre, and so measuring the number of nests in an 

aggregation on a continuous scale would likely have improved the resolution.  

2.4.6 Participant recruitment 

There have been inherent and long standing difficulties with the communication 

of science in mainstream media (Bell, 1994; Barron and Brown, 2012; Mehr, 

2015) and the drop in accurate records following the national media attention of 

this project demonstrates some of the issues that can arise. However, the 

project’s appearance in the media did, overall, result in a higher number of 

accurate records being submitted in absolute terms. The impact of media 

coverage can possibly be tempered by careful planning of the project, for 

example by simplifying the actions and by having clear, concise and readily 

available instructions. Social media has been acknowledged as an important 

tool for citizen science endeavours for engaging participants and creating a 

sense of community around a project  (Stafford et al, 2010; Dickinson et al, 

2012). I found that exploiting social media platforms as forums in which potential 

participants could ask questions and clarify instructions with researchers directly 

was of great help, although this may not be sustainable for large schemes. 

Whether or not records are accurate, greater engagement represents more 

people learning about, and becoming aware of, solitary bees, which is in itself 

an important function of citizen science. 
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2.5 Conclusion 

 

This study represents the first instance of using citizen science as a tool to 

examine solitary bee nesting ecology and illustrated the efficacy of a citizen 

science approach in this context. On the whole, this study demonstrated the 

capacity of the four target species to tolerate a broad range of environmental 

variables, although questions remain around whether these conditions impact 

the nesting density of bees. Srba and Heneberg (2012) in their study of digger 

wasp nesting found that some variables may be used to identify usable nesting 

areas and that others are important for determining nest density at a suitable 

site and the results from this study may be a reflection of this process. Most C. 

hederae nest aggregations occurred at sloped sites in full sun, whereas the 

majority of A. fulva sites were found in flat, shaded areas, although further 

experimental study would help to reinforce these findings. The distance to 

forage and phylogenetic relatedness may play a role in determining the nest site 

requirements of a ground nesting species, but more empirical research is 

required. Despite not being able to discriminate the effects of the measured 

environmental variables on aggregation size, I believe that by calculating the 

total number of nests or nest density on a continuous scale the data resolution 

required for this analysis could be achieved. The location, size and nesting 

density of solitary bee aggregations are likely determined by complex 

interactions between the abiotic environment, foraging resources, phylogeny, 

parasite load and natal nest site fidelity and more empirical studies are needed 

to elucidate these forces. A better understanding of solitary bee nesting ecology 

will assist us in developing robust conservation practices and policy going 

forward as, in order to protect anything, we must first understand what needs 

protecting. 
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3. Analysis of the spatial differentiation in fossorial bee nesting 
densities 

 

3.1 Introduction 
 

This chapter uses the spatial differences both among and within nesting 

aggregations as a mechanism to elucidate physical charateristics that contribute 

to an optimal nesting environment. The approach of this study follows Potts and 

Willmer (1997), where higher nesting density is used as an indicator of a higher 

quality nesting site. In terms of nest density, nesting aggregations can differ on 

two levels: first, at the level of the nest site, there can be differences in 

maximum nest density among aggregations; secondly, within aggregations, 

patches of high density nesting and low density nesting occur. 

3.1.1 Why do nesting aggregations form and why is this important for 

conservation? 

Within a nesting aggregation there is no cooperation between individuals and 

each female excavates her nest and provisions her eggs solitarily (Linsley, 

1958), although, there are some species of solitary bee that do demonstrate 

loose eusocial behaviour (e.g. H. rubicundus) (Eickwort et al, 1996). 

Fundamentally, in order for nesting aggregations to form and be maintained, the 

benefits associated with aggregate nesting must outweigh the significant costs 

of increased intraspecific competition, increased risks of predation and parsitism 

and enhanced pathogen transmission (Rosenheim, 1990). Holistically speaking, 

there is no definitive explanation for why bees nest in aggregations and how 

they overcome these disadvantages, but there are a number of theories that 

have been investigated to varying degrees.  

 

Natal philopatry (the tendency of an animal to habitually return to its natal 

site) is a significant force acting on the nesting behaviour and decision 

making of solitary bees (Steffan-Dewenter and Schiele, 2004; Yanega, 

1990). However, in order for this strategy to develop there must first be 

significant costs and/or benefits associated with nesting in a particular 

location. Therefore natal nest site fidelity cannot drive the formation of 

aggregations but simply helps to maintain them over generations. 

 

Solitary bee nesting aggregations can be heavily parasitized and many species 

are specific hosts to cleptoparasitic species (Linsley, 1958). These interactions 
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influence the behaviour and life histories of the host species (Lienhard et al, 

2009) and since a significant level of parasitism occurs at the nest, parasitism 

has the potential to impact the nesting strategies of solitary bees. The evidence 

to support the hypothesis that parasitism drives the formation of aggregations is 

mixed. Steffan-Dewenter and Schiele (2008), whom carried out experiments 

with the aerial nesting solitary species Osmia bicornis (Linnaeus, 1758), found 

that population growth was not impacted by natural enemies and concluded that 

it was most likely driven by nest site availability. Furthermore, parasites that end 

up in solitary bee nests do not always get there directly. The meloid beetle 

Tricrania stansburyi (Haldeman) is a cleptoparasite of the gregarious, aerial 

nesting bee Osmia lignaria (Say) (Torchio and Bosch, 1992) that is transferred 

to its hosts’ nests by phoresis. However, a significant amount of nest parasitism 

does occur at the nest site (Potts, 1995; Wcislo and Cane, 1996) and so may 

play a role in the spatial configuration of aggregations.  

 

One of the most popular theories in this context is that nesting aggregations 

form as selfish herds (Hamilton, 1971). In this way, nests at the centre of the 

aggregation would experience less parasitism than those on the periphery, 

conferring enough benefit to successful individuals to drive the formation of 

aggregations. Studies, which have found that nest parasitism decreases as 

nesting density increases within an aggregation, have been used as evidence to 

support this theory (see Wcislo, 1984) who studied the digger wasp Crabro 

cribrellifer and Larsson (1986) who studied the digger wasp Bembix rostrata and 

its nest parasite Metopia leucocephala. Although these results have been 

interpreted to show that aggregations as a whole behave as selfish herds, in the 

strictest sense, they do not. Hamilton (1971) in his definitive paper of a selfish 

herd pointed out that a nest site in the centre of a colony does not behave in the 

same manner as an individual at the centre of a herd because it is not mobile 

and, more importantly, there is an assumption that the parasitic animal is likely 

to approach from the periphery of the colony. Therefore, in order for the 

aggregation to act as a selfish herd the parasites must enlist a peripheral 

approach wherein the nests on the outside of the aggregation are parasitized 

first and most heavily, but there is no evidence for this.  

 

Rosenheim (1990) pointed out that “nest density, rather than geometric position 

relative to the centre of the aggregation appears to be the critical factor.” 

Aggregations are not regularly spaced and do not follow a pattern of increasing 

nest density towards the geometric centre. Instead aggregations clump into 
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areas of high and low density, on a continual gradient, and so while individual 

patches may be considered to be proximate selfish herds, the aggregation as a 

whole, is not. In terms of the spatial distribution of nests within aggregations, 

parasite pressure may be an important factor, as the density dependence of 

parasite load demonstrates (Wcislo, 1984; Larsson, 1986). This relationship 

may be the demonstration of a Turing pattern in nature, whereby the bee nests 

are acting as the activators and the parasites the inhibitors (Turing, 1952). As 

the activators, the bee nests stimulate production of more bee nests and more 

parasites and the parasites, acting as the inhibitors, slow down the production of 

more bee nests and more parasites. As parasitic species require multiple nests 

to parasitise, their range expands faster than the range of bee nests, resulting in 

high density patches of nests with lower parasite load than the low density areas 

surrounding them. But this is just a theory and requires empirical investigation. 

The literature demonstrates that parasitism does impact the spatial structures of 

nesting aggregations, certainly at the within-aggregation scale (Wcislo, 1984; 

Larsson, 1986) although more research is required to elucidate the impacts of 

parasitism on the formation of aggregations as a whole. Closely related 

aggregate and individual nesting species offer a potential opportunity to 

investigate these dynamics further and fully elucidate how these forces work in 

tandem. 

 

Rosenheim (1990) proposed that the information centre hypothesis might have 

importance for aggregate nesting solitary bees. This mechanism was first 

described for cliff swallows where individuals that have an unsuccessful foraging 

trip return to the colony, identify a successful individual and follow them to the 

food resource (Brown, 1986). This strategy has not been specifically 

investigated for solitary bees and so it cannot be substantiated (Wcislo and 

Cane, 1996). Theoretically, this mechanism could confer significant benefit to 

individuals in an aggregation who must quickly locate appropriate forage in their 

proximity after emergence. Local enhancement (the attraction of a foraging 

animal to other feeding conspecifics) may also contribute to foraging efficiency 

for solitary bees, as has been shown for some eusocial (Slaa et al, 2003) and 

social (Avarguès-Weber and Chittka, 2014) species. However this strategy 

operates at forage and so individuals would not need to nest gregariously in 

order to exploit this mechanism.  

 

The opportunity to reuse old nests may encourage aggregate nesting 

(Myers and Loveless, 1976) as, theoretically, this could confer significant 
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benefit. In this scenario, females would not have to expend significant and 

valuable energy on finding and excavating a nest and instead focus their 

efforts on reproducing and providing food for their developing broods. 

There is evidence that this is an important mechanism in the nest site 

dynamics of the digger wasp Cerceris arenaria (Linnaeus, 1758) (Polidori et 

al, 2006) but, to date, no studies have explicitly validated this strategy for 

soil-nesting bees. Eickwort et al (1977) proposed that aggregations might 

form as a result of individual females using the presence of conspecifics at 

a site as an indicator of high quality nesting habitat (Rudolf and Rödel, 

2005). However, this hypothesis relies on two further assumptions. First, 

the assumption that not all habitats are created equal and, that different 

patches within a landscape represent varying quality in terms of nest site 

suitability. Second, there must be a considerable cost associated with 

finding a suitable nest site independently if the costs of aggregate nesting 

(intraspecific competition and increased predation being the two most 

significant) are to be outweighed. Both of these assumptions rely on the 

fact that high quality nesting habitat is rare, suggesting that specific 

physical properties are required of a potential nest site. These fundamental 

assumptions form what is referred to as the ‘limited substrate hypothesis’. 

 

It is unlikely that all habitats have the same capacity to support populations 

of nesting bees (Grundel et al, 2010) and the ‘limited substrate hypothesis’ 

postulates that there are restricted areas within a landscape with the 

necessary physical characteristics to be suitable nest sites for bees. As I 

have established in Chapter 2, the tendency of fossorial bees to nest in a 

location with particular physical or edaphic attributes has been well 

documented and it has been determined that these factors do influence the 

nesting behaviour of bees. For example, Potts and Willmer (1997) found 

that the patterns of nest site selection of H. rubicundus supported the 

‘limited substrate hypothesis’ as females chose to nest in areas that 

conferred thermal stability to the nest by establishing themselves in sloped, 

south facing ground. The hypothesis was reinforced by the observation that 

within aggregations females nested in areas with softer soils that required 

less energy to excavate and avoided areas with harder substrates. Despite 

this evidence, there remain significant knowledge gaps around the extent of 

the validity of the ‘limited substrate hypothesis’ and how it relates to the 

size and density of nesting aggregations. There is also little clarity around 

whether there are species-specific requirements of the physical attributes of 
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a nest site or whether the important features are common across all 

fossorial species. This is an important aspect of nesting biology to 

understand as the physical landscapes both in the UK and around the 

world have gone through monumental change over the last one hundred 

years, with the proliferation of intensive agricultural practices and the 

expansion of urban developments. If we can establish the importance of the 

abiotic environment and understand how to provide nesting habitat for soil-

nesting species then, theoretically, we can help to protect and provide 

additional opportunities for these populations in changing environments. 

Examining spatial differences both within and among aggregations of 

individual species and comparing them to other species can help to answer 

these questions. 

 

The principal focus of this chapter is to understand what constitutes suitable 

nesting habitat for fossorial solitary bees so that these areas may be protected 

and, if necessary, provided. In terms of the spatial distribution of the nests within 

the aggregations, these patterns may help identify preferences for certain 

environmental characteristics. These spatial dynamics are highly likely to be 

impacted by other forces, including nest site parasitism. Although these 

mechanisms may also be important for spatial patterning, the scope of this 

study is to analyse spatial patterning only in terms of differences in physical 

attributes. 

3.1.2 Methodological considerations 

This study follows Michener’s (1974) definition of a nesting aggregation as 

grouped nests in a restricted area, where each female makes her own nest. I 

define an active nest aggregation as one where females are present and 

exhibiting nest building behaviour or nest provisioning behaviour. This is an 

important distinction as artefacts of nests or emergence holes are often seen in 

the field but do not correspond with current conditions nor can they be explicitly 

linked to a species. As I have established in Chapters 1 and 2, there is a limited 

number of empirical studies of fossorial solitary bee nesting ecology. One 

consequence of this is a current lack of standardised methods for surveying 

solitary bee nesting aggregations. The traditional methods used to measure bee 

species richness and abundance at a site (i.e. pan traps and sweep netting on 

forage) are not appropriate in this setting as they fail to link the specimens with 

their nest sites. Therefore, the survey methods for this study were developed 

using the work of Potts and Willmer (1997) and Potts et al, (2005) as guidance. 
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Locating a sufficient number of nesting aggregations in the field for in situ study 

of their ecology presents a significant logistical barrier and nesting studies are 

historically poor at reporting how study nests were located. Some completely 

omit this information (Cane, 1991; Potts and Willmer, 1997), while others seem 

to rely heavily on local knowledge of the study site (Potts et al, 2003 and 2005), 

an approach, which cannot be repeated at other locations. Recently, the use of 

emergence traps has been enlisted in an attempt to standardise survey 

methods (Sardinas and Kremen, 2014; Sardinas et al, 2016). Although this 

method can be effective in terms of estimating the nesting species richness at a 

site (Sardinas and Kremen, 2014) it would probably not suffice as a method for 

examining nest ecology or estimating abundance as nests are commonly 

aggregated. That said, this approach might be useful for identifying and 

quantifying the ecology of inconspicuous nests (such as those constructed by 

Lasioglossum species), which are difficult to spot by eye. I circumvented this 

challenge by enlisting the help of the public under the umbrella of my citizen 

science project, The Solitary Bee Project (Chapter 2).       

3.1.3 Research questions and hypotheses 

This chapter set out to address three research questions: 

1. Do differences in the environmental characteristics of a site influence the 

nesting density of A. fulva, A. cineraria and C. hederae among aggregations? 

2. Do differences in environmental characteristics within a nesting aggregation 

contribute to the clumped spatial distribution of aggregations for these species? 

3. Are there interspecific differences in the environmental characteristics of 

where nest sites occur? 

 

Hypotheses 

1. The environmental characteristics of the nesting sites will influence nesting 

density. Factors that will lead to increased nesting density will be: availability of 

bare ground, sloped terrain, sandy soil and open sites. Lower density 

aggregations will occur in areas that are shaded, flat, have high clay content in 

the soil and and experience little direct sunlight.   

2. Environmental characteristics will not impact spatial distribution of nests 

within the aggregation. There will be no differences in the physical 

characteristics of high and low density nest patches within the aggregations for 

any species. 
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3. Interspecific differences will exist between C. hederae and the two Andrena 

species. No interspecific differences will be identified between the Andrena 

species. Colletes hederae will occur more frequently on sloped ground 

compared to the two Andrena species, which will most often be found on flat 

terrain. 
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3.2 Methods 

3.2.1 Study species’ and field sites 

The species chosen for this study were based on those in the citizen science 

project. A detailed explanation of how and why these focal species were chosen 

can be found in the methods section of chapter two. The Solitary Bee Project 

asked members of the public to submit sightings of the nesting aggregations of 

four solitary bee species: A. fulva, A. cineraria, H. rubicundus and C. hederae. 

This study used those records to identify and sample active nesting 

aggregations (Table 3.1). 
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Site  Site name Coordinates Date 
sampled Quadrats Species 

1 
Cambridge Uni 
Botanic Gardens TL 45495719 30/03/17 6 

Andrena 
fulva 

2 Jesus College, 
Cambridge University 

TL 45425893 30/03/17 6 Andrena 
fulva 

3 Mill Road Cemetery, 
Cambridge 

TL 462582 03/04/17 6 Andrena 
fulva 

4 
Natural History 
Museum, London 

TQ 
26627898 08/04/17 6 

Andrena 
fulva 

5 
Wandlebury Country 
Park, Cambridge 

TL 498532 12/04/17 6 
Andrena 
fulva 

6 Holland Park, London TQ 247797 08/04/17 6 A.fulva/ A. 
cineraria 

7 
Barnack Hills and 
Holes NNR TF 077044 15/04/17 6 

Andrena 
cineraria 

8 
Tyntesfield House, 
Bristol 

ST 
5012871678 16/04/17 6 

Andrena 
cineraria 

9 Tyntesfield House, 
Bristol 

ST 
5068971192 

16/04/17 4 Andrena 
cineraria 

10 Nailsea Tesco, Bristol ST 
4789770821 

16/04/17 2 Andrena 
cineraria 

11 
Paxton Pits NR, St. 
Neots TL 192623 04/05/17 6 

Andrena 
cineraria 

12 
Pitsford Reservoir, 
Northamptonshire 

SP 774711 11/05/17 6 
Andrena 
cineraria 

13 Calke Abbey, Derby SK 371230 24/05/17 6 Andrena 
cineraria 

14 
Dartmouth Park, 
West Bromwich SP 013915 24/05/17 6 

Andrena 
cineraria 

15 
Cambridge Uni 
Botanic Gardens TL 453571 18/09/17 6 

Colletes 
hederae 

16 Wandlebury Country 
Park, Cambridge 

TL 496533 19/09/17 6 Colletes 
hederae 

17 Cranwich Heath, 
Norfolk 

TL 775941 21/09/17 6 Colletes 
hederae 

18 
Beeston Common, 
Norfolk TG 163419 28/09/17 6 

Colletes 
hederae 

19 
Ladybird Nurseries, 
Suffolk 

TM 387588 29/09/17 3 
Colletes 
hederae 

20 Argal Reservoir, 
Cornwall 

SW 761328 11/10/17 6 Colletes 
hederae 

21 Loe Bar, Cornwall SW 641242 11/10/17 6 
Colletes 
hederae 

22 
Little Dartmouth, 
Devon SX 883496 12/10/17 6 

Colletes 
hederae 

23 Red Lodge Heath, 
Suffolk 

TL 695700 26/10/17 6 Colletes 
hederae 

24 Lackford Lakes, 
Suffolk 

TL 801706 07/11/17 6 Colletes 
hederae 

Table 3.1: Summary of field sites that were used to study nesting aggregations 
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3.2.2 Sampling the nesting aggregation 

This study aimed to evaluate both ‘among aggregation variation’ and ‘within 

aggregation variation’ in nesting density. Among aggregation variation refers to 

the relationship between the environmental characteristics of the aggregations 

and the number of nests in the highest nest density patches. Within aggregation 

variation is the differences in environmental factors between patches of highest 

density nesting and lowest density nesting within aggregations. Each 

aggregation was first examined to ensure that it was an active site (females 

present and exhibiting either nest building behaviour or nest provisioning 

behaviour) and to identify the nesting species. The entire aggregation was 

surveyed and the three patches with the highest nesting densities were 

identified subjectively, by eye. A 1m2 quadrat was laid down in every high 

density patch (Fig. 3.1) and a number of measurements were taken (explained 

below). The quadrat was then moved to the nearest patch of ground which had 

no nests (or the lowest density patches where this was not possible) and the 

measurements were repeated. Low density quadrats were used to evaluate 

within aggregation variation. Three pairs of quadrats were used in all 

aggregations except for sites nine and ten, which had to be sampled under time 

pressure, and site nineteen. The aggregation at site nineteen occurred in a 

small earth bank against a large greenhouse and all areas of the bank were 

occupied by nests, therefore only high density quadrats were sampled at this 

site. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Illustrative example of placement of the three pairs of quadrats at 
each aggregation. Brown dots indicate nests. Blue squares indicate high density 
quadrats and green squares indicate low density quadrats. 
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3.2.3 Quadrat measurements 

Within each quadrat, the following variables were measured: 

1. Number of nests. 

2. Soil hardness - measured at the centre of the quadrat using a hand-held 

penetrometer (ELE International, UK). 

3. Slope and aspect - measured at the centre of the quadrat using a clinometer. 

4. Ground cover; the amount and type of vegetation in the quadrat- estimated as 

a percentage. 

5. Shade; an estimation of the level of shade that part of the aggregtaion 

experienced throughout the day, based on surrounding structures. 

 

A standard soil corer (LaMotte handheld soil sampler; 25cm length, 2.5cm core 

diameter) was used to obtain a soil sample (approx. 100g) from the centre of the 

quadrats to 12 cm depth. This depth roughly correlates to the depth at which 

brood cells are situated. The samples were sealed in plastic bags and 

refrigerated at 4°C to maintain soil moisture until they were analysed. These 

samples were used to analyse soil composition. Soil moisture content was 

established via laboratory analysis. This was attempted in the field using a soil 

moisture probe but I reasoned that taking a soil sample would be more 

informative as probes only measure moisture levels at approximately three 

cemtimetres below the surface. Solitary bee brood cells are deeper in the soil 

and so a soil sample measured at 12cm would be more likely to represent 

moisture level at the critical depth. When nest searching solitary bee females 

will perform test digs at the soil surface before choosing a nest site. However, 

the key factors for brood survival occur at brood cell depth. Following standard 

laboratory procedures for establishing soil moisture content, the samples were 

weighed, dried in an oven at 105°C for 24h, and then reweighed (Standards 

Association of Australia, 1990). Using a pestle and mortar, the sample was 

ground for 45 seconds to break down any soil aggregates and then passed 

through a 2mm aperture sieve for two minutes to separate the gravel fraction, 

which was weighed. Thirty-five grams of the remaining non-gravel fraction of 

each sample was placed in a furnace at 550°C for 3h, cooled and re-weighed 

for loss on ignition analysis. This sample mass, furnace temperature and 

duration were chosen in accordance with the guidelines laid out in Hoogsteen et 

al, (2015). The mass loss indicated the mass of the organic matter present in 

the sample. There are two principal methods for determining soil texture, the 

hydrometer method and the sieving method. The hydrometer method is based 

on Stokes law which states that particles fall out of suspension at different rates, 
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based on their size. For this method, soil particles are dispersed and then 

agitated. After dispersion, the proportion of each particle group (sand, silt, clay) 

is determined using a hydrometer, which measures the amount of particles in 

suspension. The sieving method is similarly based on particle size but instead a 

de-aggregated soil sample is passed through sieves of varying sizes to 

determine the amount of each particle fraction in the sample. The sample is 

sieved for two minutes through 250µm and 63µm aperture sieves to derive the 

sand, silt and clay component fractions. Both of these methods were trialled for 

this analysis but the sieving method was pursued as there was precedent for 

using it in the context of soil analysis of solitary bee nests (Potts and Willmer, 

1997). Particulate fractions and size classes used were in accordance with 

British Standard System (BSS): gravel (> 2mm in diameter); sand (250µm to 

2mm); silt (63–250µm); and clay (< 63µm). 

3.2.4 Spatial analysis of sites 

Principal Components Analysis is often used to summarise and visualise 

environmental data (House and Spellerberg, 1983). It is an ordination method 

and transforms data into fewer dimensions thereby simplifying the complexity in 

high-dimensional data (Lever and Krzywinski, 2017), which often occurs in 

environmental studies. Ordination is the term used for techniques wherein a 

multi-dimensional dataset is adapted, such that when it is projected onto two 

dimensional space, any inherent patterns in the data become apparent visually 

(Pielou, 1984). In this study, there are high dimensional data as every nesting 

aggregation was measured on the basis of a large range of environmental 

features. PCA was thus used to visualise the environmental variation between 

sites for all species on the basis of a smaller number of derived variables or 

principal components. This analysis was performed using the R package ‘vegan’ 

(Oksanen et al, 2009) using standardised, centred data. The mean values of the 

environmental characteristics for the high density quadrats from each site was 

used in this analysis. The specific variables used in the PCA were: 

• Slope of the ground 
• Soil penetration 
• Percentage sand present in soil 
• Percentage silt present in soil 
• Percentage clay present in soil 
• Percentage gravel present in soil 
• Percentage organic matter content of the soil 
• Soil moisture content 
• Proportion of the nest site covered in grass 
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• Proportion of the nest site that was bare ground 
• The approximate amount of shade experienced by the nest site 

 

The slope variable was log transformed so that the PCA was not dominated by 

its skewedness. Nest sites were also investigated according to their soil texture 

and visualised on the soil texture triangle. The soil texture triangle was 

developed by Davis and Bennett (1927) and is a graphical representation of the 

twelve soil types. It can be used to determine soil type based on the proportions 

of sand, silt and clay particles in the sample.  

3.2.5 Interspecific variation in nest density 

The data were investigated to identify any interspecific differences in nesting 

density. The mean nest density value for all high density quadrats for each 

species was used in this analysis. This analysis followed the procedures used in 

Srba and Henberg (2012), where differences in the nest site characteristics of 

multiple Sphecid species were investigated. The data were analysed using a 

one-way ANOVA. Tukeys test was used for post hoc analysis and eta squared 

to identify effect size. The density data were not normally distributed and so 

were transformed using a log transformation to conform to the assumptions of 

normality. 

3.2.6 Among aggregation variation in nest density for each species 

Due to the low sample sizes for each species relative to the number of predictor 

variables in this dataset, logistic regression approaches were not appropriate. 

Therefore, multivariate methods were again explored as an alternative analytical 

approach. The linearity of the environmental data for each species was 

investigated using detrended correspondence analysis where a gradient of less 

than two indicated a linear relationship (Šmilauer and Lepš, 2014). Linear 

relationships were established for all variables (all gradients < 2) and so the 

Redundancy Analysis (RDA) method was employed. RDA is a constrained 

ordination method wherein the capacity of the constrained variable(s) to explain 

the variation in the response variables is examined. In this study, the analysis 

was performed in ‘reverse’ fashion, where the variation in nesting density was 

used as the predictor, or constrained variable, to determine the amount of 

variation it explained in the environmental characteristics. In this way, insights 

could be gained into the relationships between nest density and environmental 

characteristics, but the issues with small sample sizes and large groups of 

predictor variables were overcome. Each species was analysed individually due 
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to the interspecific differences in nesting density. For this analysis, the values 

from the high nest density quadrats were used, where the values for each site 

were determined by taking a mean of the values measured in the three qudrats 

at that site. Post RDA, the marginal testing method was used to test for 

significance as per Legendre et al, (2011). Marginal tests are ANOVA-like 

permutation tests for the effects of constraints, consisting of 999 permutations. 

RDA analyses were performed using the R package ‘vegan’ (Oksanen et al, 

2009), marginal tests were performed in ‘sdat’ (Zhang and Laber, 2015). 

3.2.7 Within aggregation variation for all species 

Variation in nesting density within aggregations was analysed using the data 

from all six quadrats measured at each site. For each site the measurements for 

the environmental variables (shade, slope, soil texture, soil gravel content, soil 

moisture, soil penetration, proportion of bare ground, proportion of grass, height 

of vegetation) from the three high density quadrats were averaged to obtain 

values for high density nest patches. The same procedure was applied to the 

three low density quadrats. The response variable was binary and coded as 

either ‘high’ or ‘low’. In the first instance, a generalized linear mixed model with 

site as a random effect and all other variables as fixed effects was run. Site was 

found to have no significant effect and so was removed from the model, 

according to model simplification methods (Crawley, 2013). The data were 

subsequently modelled using a generalized linear model with binomial error 

distribution as the outcome variable had two levels: high density and low 

density. Model fit was evaluated using Akaike Information Criterion (AIC) values. 

Comparison of AIC is a useful method for distinguishing between two competing 

models, where a lower AIC value is indicative of superior goodness of fit 

(Murtaugh, 2014). Selection of variables for the final model was done using a 

backward selection procedure. The final model was evaluated using the 

following parameters: sensitivity (proportion of observed positive outcomes (high 

density) that were predicted to be positive), specificity (proportion of observed 

negative outcomes (low density) that were predicted to be negative), overall 

classification and goodness of fit. Sensitivity, specificity and overall classification 

were calculated using a threshold cut-off value of 0.5. This value is the 

probability that a prediction is true and is a trade-off between the false positives 

and false negatives. 0.5 was chosen as it represented the best balance between 

specificity, sensitivity and overall classification (Table 3.2). This method of 

threshold selection is known as Max SSS and has been shown to be the most 

robust method of threshold selection for presence-only data (Liu et al, 2013).  
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Table 3.2: Changes in specificity, sensitivity and overall 
classification across the full sprectrum of cut-off threshold values 

 

 

 

 

 

 

 

3.2.8 Interspecific variation in nest site characteristics 

The data were investigated to identify whether nesting characteristics varied 

between species and were analysed using the procedures from Srba and 

Heneberg (2012) (as with differences in nest density). Shapiro tests were used 

to check the data for normality and Bartlett’s test for equal variances. Variables 

which could not be transformed to exhibit a normal distribution and equal 

variances (silt and shade) were analysed using kruskal-wallis tests and Dunn’s 

test for post-hoc analysis. Epsilon squares were used to calculate effect sizes 

(Tomczak & Tomczak, 2014). Normally distributed variables with equal 

variances were analysed using one-way ANOVAs with Tukey’s test for post hoc 

analysis. The variable ‘slope’ was log transformed to meet these assumptions. 

Eta squared was subsequently used to measure effect size. Data were not 

collected for vegetation height at A. fulva nest sites as this was added to the 

protocol after these sites had been surveyed. Therefore, difference sbetween A. 

cineraria and C. hederae was investigated using Mann-Whitney U test as the 

data were not normally distributed. 

 

All analyses were performed using R version 3.5.1 (R core team, 2015).  

Cut-off 
threshold Specificity Sensitivity Overall 

0.9 100 0 48 

0.8 100 12 54 

0.7 87 36 60 

0.6 78 52 65 

0.5 78 64 71 

0.4 52 68 60 

0.3 0 100 48 

0.2 0 100 48 

0.1 0 100 48 
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3.3 Results 

3.3.1 Spatial analysis of sites. 

In total, 132 quadrats were measured as part of this study, 69 from high 

density nesting areas and 66 from low density nesting areas. The PCA 

analysis considered the data from the high density nesting areas and found 

that the first two components explained 61% of the environmental variation 

between field sites (eigenvalues: axis 1 = 0.38, axis 2 = 0.23). The analysis 

showed that most C.hederae nesting sites were similar to each other in 

terms of environmental characteristics and distinct from the Andrena nest 

sites (Fig. 3.2). In terms of soil analysis, the majority of sites in this study 

fell into the ‘loam’ or ‘sandy loam’ categories of soil texture (Fig. 3.3).  

 
Figure 3.2: Biplot of principal components analysis for all sites and 
environmental characteristics showing the relationships between all 
variables. Positively correlated variables are grouped together, whereas 
negatively correlated variables are on opposite sides of the plot origin. The 
length of the arrow indicates the strength of the correlation between the 
variable and the principal component. Shapes indicate the species present 
at the site (A. fulva: triangle; A. cineraria: circle; C. hederae: square). 
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Figure 3.3: Soil texture triangle (Davis and Bennett, 1927) showing the 
position of the soil type of every sample site. A. fulva sites: red (n=6); A. 
cineraria sites: blue (n=9); C. hederae sites: green (n=10). 



 56 

0.0

0.5

1.0

1.5

A.cineraria A.fulva C.hederae
Species

Lo
gd
en
si
ty

3.3.2 Interspecific variation in nest density 

Nesting density differed among all three species (ANOVA: F2,22 = 13.89, p = 

0.00013; Tukey: p<0.05), with highest densities occurring in C. hederae 

(Fig. 3.4). The effect size of this difference was medium (eta squared = 

0.56). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Barplot showing difference in mean log nest density between 
species with standard deviation. Letters indicate post hoc groupings and 
show that all three groups differ from each other (p<0.05). 
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3.3.3 Redundancy analyses for each species with nesting density 

constrained 

In the case of A. fulva, nesting density explained 23% of the variation in 

environmental characteristics, compared to just 4% for A. cineraria (Fig. 

3.5). Twenty five percent of the variation in environmental characteristics 

was explained by nesting density for C. hederae. The variation in 

environmental characteristics was not significantly related to nesting 

density for any of the species (Fig 3.5; A. fulva - marginal test: F1,4 = 1.19, p 

=0.32; A. cineraria – marginal test: F1,6 = 0.24, p = 0.8; C. hederae - 

marginal test: F1,8 = 2.65, p = 0.09). For both C. hederae and A. fulva the 

variables that were best explained by nest density were the proportion of 

bare ground, grass and sand, as these variables were most highly loaded 

on the first axis of the RDA (Table 3.3). For both species, nest density was 

positively associated with bare ground and negatively associated with 

grass. For C. hederae sand was positively associated with nest density but 

the opposite relationship was identified for A. fulva. 

 

 

 

 

  

Variable A. fulva loadings C. hederae loadings 

Bare ground 4.8 3.46 

Proportion of sand 1.57 -1.68 

Proportion of grass -3.59 -2.4 

Table 3.3: Summary of the loading values for the three most important 
variables on the first axis of the RDAs for both A. fulva and C. hederae. 
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Figure 3.5: Redundancy analyses for A. fulva (a) and C. hederae 
(b) nest sites with nesting density constrained. The variables 
percentage sand, percentage grass and percentage bare ground 
were best explained by variation in nest density. Grey circles 
represent sites and nesting density increases with the black arrow.  

a: A. fulva 

b: C. hederae 
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Table 3.4: Summary of the binary logistic regression analysis of factors 
affecting high and low density nesting.  

3.3.4 Within aggregation variation in nest density 

The pattern of both high and low density patches of nests occurring within 

aggregations was significantly influenced only by the proportion of bare 

ground (Table 3.4). High density nesting was more likely to occur in areas 

with more bare earth (Fig. 3.6). The final model parameters were: 

specificity = 78%; sensitivity = 64%; overall classification = 71%. The model 

was well fitted (Hosmer-Lemeshow goodness-of-fit test: χ²8 = 7.46, p = 

0.49), but explained just 18% of the variation in nesting density (Nagelkerke 

R2 = 0.18). This indicates that while the relationship between the proportion 

of bare ground and high or low density nesting within aggregations is small, 

it is reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Estimate Std. Error z value P 95% C.I. for 
Exp(Est) 

 Lower Upper 
(Intercept) -0.78 0.46 -1.71 0.09 -1.67 0.11 
Bare 0.03 0.01 2.43 0.01 0.01 0.05 
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Figure 3.6: Boxplot showing the proportion of bare ground at 
high nest density and low nest density patches for all species. 
Data are given as medians (lines in the boxes), 25th and 75th 
quartiles percentile (boxes), 10th and 90th percentile ranges 
(whiskers), and outliers (circles). 
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3.3.5 Interspecific differences 

Soil penetration, slope, percentage shade and soil organic matter content 

differed between the nest sites of the three species (Table 3.5; Fig. 3.7). 

This effect was largest for soil penetration, with an effect size of 0.71. The 

only factor for which all three species were different from each other was 

slope (Tukey HSD: p<0.05; Fig. 3.7). In this case, A. fulva was found to 

nest in flat terrain with a mean slope angle of 2.6°, whereas A. cineraria 

nest sites had a mean slope of 9.3°. Colletes hederae occurred in terrain 

with the highest mean slope of 37.2°. With regard to soil penetration (Tukey 

HSD: p<0.05), shade (Dunn: p<0.05) and organic matter content (Tukey 

HSD: p<0.05) the differences were inter-familial, occurring between C. 

hederae and the Andrena species (Fig. 3.7). The mean values for soil 

properties (soil penetration and organic matter content) at C. hederae sites, 

were approximately half that measured at the Andrena sites (Table 3.6). 

For percentage shade, the gap was larger with the Andrena nest sites 

experiencing more than five times the amount of shade as C. hederae 

nesting aggregations (Table 3.6). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Boxplots showing the differences in soil penetration, shade, 
slope and organic matter content between A.cineraria, A.fulva and 
C.hederae nest sites. Letters indicate post hoc groupings. Data shown 
are as explained in Figure 3.6 legend. 
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  Test Test 
statistic 

p-value Effect 
size 

LogSlope (°) One way 
ANOVA 

F = 15.49 6.32x10-5 0.58 

Shade (%) Kruskal Wallis χ2 = 10.877 0.004 0.45 

Soil 
penetration 
(kgf cm–2) 

One way 
ANOVA 

F = 26.31 1.46x10-6 0.71 

Soil moisture 
(%) 

One way 
ANOVA 

F = 0.729 0.494  

Gravel (%) One way 
ANOVA 

F = 0.367 0.697  

Organic 
matter (%) 

One way 
ANOVA 

F = 9.196 0.00125 0.46 

Sand (%) One way 
ANOVA 

F = 0.059 0.943  

Silt (%) Kruskal Wallis χ2 = 0.37 0.83  

Clay (%) One way 
ANOVA 

F = 2.58 0.1  

Bare (%) One way 
ANOVA 

F = 1.116 0.345  

Grass (%) One way 
ANOVA 

F = 2.199 0.135  

Veg height 
(cm) 

Mann-Whitney W = 30 0.394  

Table 3.5: Summary of statistical tests investigating interspecific differences in 
nest site characteristics. Significant results (p<0.05) are highlighted in bold. 
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Table 3.6: Mean and standard deviation values of environmental 
characteristics for the three species at sites occupied by high density 
nesting (n=25).  

  

 A. cineraria A. fulva C. hederae 

Sand (%) 49.2 ± 10.7 50.5 ± 15.9 50.4 ± 19.7 

Silt (%) 33.1 ± 7.2 34.4 ± 8.7 40.4 ± 19 

Clay (%) 17.7 ± 5.8 15.1 ± 9.8 9.42 ± 8.5 

Gravel (%) 8.4 ± 8.9 12.7 ± 11.9 12.6 ± 7.1 

Organic matter (%)  11.7 ± 3.9 11.4 ± 2.7 5.3 ± 4.2 

Soil penetration (kgf 
cm–2) 

3.7 ± 1 3.4 ± 1.3 1.3 ±  0.7 

Soil moisture (%) 15.5 ± 6.3 16.9 ± 5.4 12.8 ± 8.3 

Shade (%) 37.3 ± 28.6 29.7 ± 30.8 5.5 ± 14.3 

Slope (°) 9.3 ± 6.2 2.6 ± 4.2 37.2 ± 25.8 

Bare (%) 36.8 ± 32.5 38.6 ± 30 54.2 ± 36.1 

Grass (%) 43.2 ± 25 57 ± 29.6 27.1 ± 33.4 

Veg height (cm) 2.5 ± 1.3 N/A 4.2 ± 4.4 
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3.4. Discussion 
 

This study has found that there is a relationship between the environmental 

characteristics of a site and the differences in nesting densities observed 

both between and within nesting aggregations of A. cineraria, A. fulva and 

C. hederae. Species was also found to play an important role, both in 

defining what represented ‘high nesting density’ and in determining what 

environmental attributes led to the optimisation of a site as nesting habitat. 

The findings from this study support the ‘limited substrate hypothesis’ as 

high-density nesting was associated with areas that had particular abiotic 

qualities. 

3.4.1 Spatial analysis of differences between nesting sites 

The PCA visualised the differences between nest sites and demonstrated a 

clear split between C. hederae sites and sites of both Andrena species (Fig. 

3.2). Only two C. hederae sites did not fall into this group; site 20, which 

had the mean lowest nesting density of all C. hederae sites and site 16. 

This suggests that there are potentially differences in the nesting 

requirements of Colletidae species and Andrenidae species, but this cannot 

be established by the present study and more targeted research is 

required. 

3.4.2 Nest density  

The findings from this study indicate that these three species nest in 

different densities in the UK. Colletes hederae nested at significantly higher 

densities than both A. fulva and A. cineraria and A. cineraria nested in 

higher densities than A. fulva. This finding meant that it was not valid to 

examine these three species in a combined analysis with nesting density as 

the response variable.  

Colletes hederae was first recorded in the UK in 2001, but despite its recent 

appearance, the largest recorded populations of this species occur in 

Southern England, where they nest in the tens of thousands (Dellicour et al, 

2014). At the time of writing, C. hederae lacks specific natural enemies in 

this country that are present in the more southern parts of its range 

(species such as the cleptoparasitic bee Epolus fallax (Morawitz, 1872) and 

the meloid beetle Stenoria analis (Schaum)) and this may be driving its 

capabilities to nest in much higher densities in the UK (Dellicour et al, 
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2014). This situation does represent an excellent opportunity to study the 

influence of parasites on the nesting dynamics of fossorial solitary bees by 

comparing C.hederae aggregations in the UK to aggregations elsewhere in 

its geographical range. In comparison, the native species A. fulva has been 

found to experience significant parasitism from specific natural enemies 

(Paxton and Pohl, 1999). At one nesting site in Wales, the parasitic bee 

Nomada panzeri (Lepeletier, 1841) was found to have replaced 18% of the 

host’s offspring (Paxton and Pohl, 1999). 

Dellicour et al (2014) in their analysis of the rapid range expansion of C. 

hederae into the UK also pointed to forage as an important driver of its 

success. Colletes hederae utilises Hedera helix as its principal foraging 

plant. Because of this, they likely experience minimal competition for locally 

abundant forage that can have a long flowering period (6-8 weeks) 

(Dellicour et al, 2014). This can lead to females provisioning a lot more 

brood cells than other, closely related, species. In contrast, both Andrena 

species are active in spring and early summer when there is likely 

increased competition for locally abundant forage (such as flowering trees), 

which do not flower for as long as ivy. 

3.4.3 Among aggregation variation 

For C. hederae, changes in nesting density accounted for 25% of the 

variation in environmental conditions between sites. Three factors were 

particularly well explained: the amount of bare ground and grass, and the 

proportion of sand in the soil (Fig. 3.5). Levels of bare ground and sand 

increased with increasing nesting density. For A. fulva, changes in nest 

density explained 23% of the environmental variation in the sites but in the 

case of A. cineraria only 4% of the variation in environmental 

characteristics was explained by nest density. This may have been due to 

outliers in the A. cineraria dataset that did not exist in the A. fulva dataset. 

In the case of A. fulva, nest density best explained differences in the 

amount of bare ground and grass and, the proportion of sand in the soil 

(Fig. 3.5), although this result was not significant. Higher nest densities 

occurred at sites with more bare ground and lower sand content, while low 

nesting densities occurred at sites with more grass. Sandy soils allow for 

easier digging conditions as these soils generally do not clump into 

aggregates and have better drainage (Cane, 1991). The current literature 

establishes bare ground as one of the most important predictors of nesting 
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occurrence (Potts et al, 2005; Sardinas and Kremen, 2014), although some 

evidence does exist to the contrary (Pane and Harmon-Threatt, 2017). This 

paper suggested that nesting studies may be biased toward sampling in 

areas with bare ground as, anecdotally, this feature is thought to be an 

important driver of nest site occurrence. However, given the spectrum of 

independent scientists who have reached this conclusion, over significant 

timescales and using multiple scientific approaches, this determination 

appears improbable (Wuellner, 1999; Potts et al, 2005). That said, it is 

likely that as the body of research on nesting ecology expands, primary 

assumptions will be challenged, but this is a symptom of the empirical 

knowledge base being so small and not necessarily any indicator of bias. 

3.4.4 Within aggregation variation 

This study has found that the environmental characteristics of the nest site 

do influence the spatial distribution of the nests within the aggregation. 

Higher density nesting was found to occur in areas where there was more 

bare ground. The importance of bare ground for the facilitation of solitary 

bee nesting has already been established (Wuellner, 1999; Potts et al, 

2005). Although it is clear that bare ground is not a requirement for nesting, 

it does seem to encourage high density nesting and therefore likely 

improves the quality of a potential nesting site.  There are three potential 

reasons why bare ground is preferred. The presence of bare ground 

indicates the absence of vegetation and this may facilitate easier nest 

digging. The less vegetation there is at a site, the less obstruction there will 

be in the ground for straightforward nest construction in the earth. 

Furthermore, a lack of vegetation means that nests are not obscured and 

makes navigation back to the nest after foraging bouts more efficient. 

Finally, it has been demonstrated that soil temperatures increase with 

decreasing vegetation cover (Song et al, 2013) and this could confer 

significant benefit to developing larvae. There are few clear drawbacks to 

establishing nests in bare patches of ground. The most obvious is that the 

location of the nest is not at all obscured and therefore may be easier for 

parasites to locate. This may reinforce the motivation of females to nest in 

high densities in bare ground as this may dilute the effects of their particular 

nest being easier to find. 

 

It is unlikely that the proportion of bare ground alone determines the spatial 

distribution of nests in an aggregation. As the findings from this study 
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accounted for less than 20% of the within-aggregation variation in nest 

density, the hypothesis that other forces are more important drivers of the 

spatial distribution is supported. Evidence that parasite load decreases with 

increasing nest density (Wcislo, 1984; Larsson, 1986) indicates that these 

forces may work in tandem to create the clumped spatial distribution 

characteristic of solitary bee nesting aggregations. An empirical study that 

took into account both the physical characteristics and parasite dynamics of 

nesting aggregations would likely be very revealing in this context. 

3.4.5 Interspecific differences 

Soil penetration, organic matter content, shade and slope were all found to 

differ significantly between the nesting sites of the three species (Fig 3.7; 

Tables 3.5 and 3.6). The results for both slope and shade are aligned with 

the findings of Chapter 2. Significant interspecific differences in slope were 

identified between all three species in this study. Colletes hederae occurred 

at sites with the steepest slopes and A. fulva nested at sites with the 

flattest. In terms of shade, C. hederae aggregations were found to 

experience significantly less shade than both A. fulva and A. cineraria. 

Further discussion on the implications of these findings can be found in 

Chapter 2. 

 

Soil penetration was significantly higher at A. fulva and A. cineraria sites 

than at C. hederae sites, with this relationship exhibiting the largest effect 

size of any environmental variable. Harder soils likely confer greater 

stability to the nesting burrow, which may be why the Andrena species 

exhibited a preference for this characteristic. Although previous work has 

shown that some fossorial species prefer softer soils as they require less 

energetic investment for excavation (Potts and Willmer, 1998). A study of 

the nesting densities of A. camellia at sites with homogenous and abundant 

foraging resource availability, Xie et al (2013), found that this species 

nested in significantly higher densities where the soil was loose (low 

penetration resistance), moist and experienced low temperatures. They 

placed particular emphasis on the importance of low soil compactness 

explaining that low soil temperatures could lead to increased soil moisture, 

in part due to reduced water transpiration and subsequently looser soil that 

requires less energetic investment for digging. The difference in preference 

between C. hederae and the Andrena species could be explained by 

differences in their brood cell linings. The lining produced by Colletes 
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species is far more robust than that produced by the Andrena species, 

therefore Andrena species may rely more heavily on the stability offered by 

harder soils than Colletes. 

 

Organic matter content was found to be significantly lower in the soils of C. 

hederae nest sites than in the nest sites of both Andrena species. The 

organic matter content of the soil is the sum of decomposing plant and 

animal material along with soil organisms and the material they produce. 

The high organic matter contents at the Andrena sites may be due to the 

fact that all seven A. fulva sites and many A. cineraria sites were urban 

green areas such as parks and cemeteries, where the aggregations often 

occurred in grassy spaces adjacent to trees. This high presence of 

vegetation in the vicinity of the nest sites can lead to higher organic matter 

content in the soil. Therefore, this may be a consequence of the females’ 

decision to nest near trees, which can provide a significant food source 

when in flower. Although this study found no significant difference between 

the nest sites of the two Andrena species in terms of organic matter 

content, a study of A. vaga (Panzer, 1799) nesting ecology in Cologne, 

Germany, reported the organic matter content of the soil at their study site 

to be 3.1% (Bischoff, 2003), substantially lower than the mean values for 

the two Andrena species recorded in this study  (11.7% and 11.4%). This 

discrepancy could be attributable to multiple factors, but significantly, the A. 

vaga site in question is singular in its size and nesting density 

(approximately 10,000 nests in one location) and so is likely a poor 

candidate for comparison. Very few nesting studies have reported values 

for organic matter content and none could be identified for the species 

particular to this study. One UK study found that H. rubicundus nest sites 

had a mean organic matter content of 0.06%  (Potts and Willmer, 1997) 

and while this is substantially smaller than the values reported here, they 

also reported that organic matter content did not vary significantly within or 

between H. rubicundus aggregations. This pattern of stability between 

aggregations of the same species does reconcile with the results of this 

study. Going beyond species-specific studies, organic matter content was 

shown to be a significant predictor of bee community composition at sites in 

Northwest Indiana, USA (Grundel et al, 2010). The percentage of soil 

nesting bees at a site was negatively correlated with soil organic matter 

content within 150m of the sampling transect. While soil organic matter 

content may not impact the nesting density of a species across nest sites or 
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within them, it may act as an environmental filter that can exclude species 

from certain sites and restricts them to particular areas (Kraft et al, 2015). 

 

It should be noted that interspecific differences in the environmental 

attributes of nesting sites do not necessarily indicate differences in habitat 

preference between species. These differences may exist because certain 

characteristics are not available to all three species for a variety of reasons. 

These reasons may include temporal variation in the landscape between 

flight seasons or because the absence of suitable forage excludes a 

species from certain sites. What these differences do establish is that 

suitable nesting area is not the same for all fossorial solitary bees and that 

more detailed study of the ecological requirements of this group is required 

at the species level.  

3.4.6 Why do aggregations form? 

Synthesising the current literature on this topic, the findings from this study and 

the findings of the citizen science project (Chapter 2), I hypothesise that 

aggregations form, and are spatially distributed in high density patches because 

of the interaction between three principal driving forces: abiotic properties of the 

site, proximity to forage and parasite pressure. As discussed previously, the 

physical location of the nest site is important because its physical characteristics 

such as its edaphic attributes and slope of the ground confer advantages 

including architectural stability, optimal digging conditions and thermal 

properties. Second, and moving beyond the scope of this study, these abiotic 

factors must exist at a site, which is within flight range of abundant foraging 

material. This theory is supported by findings that bees forage within just one 

per cent of their potential range in areas of floral abundance (Sardinas et al, 

2015) and studies of specialist bees that show they preferentially nest in 

proximity to their host plant species (Julier and Roulston, 2009). I propose that 

bees nest in aggregations because suitable nest sites, both in terms of physical 

properties and proximity to forage are highly restricted within a landscape. This 

can also explain why some species of solitary bee, which are active at similar 

times and have similar foraging strategies, are frequently observed nesting 

together in one aggregation. An example of this are the three Andrena species 

A. fulva, A. cineraria and A. nitida (Müller,1776), which I have observed nesting 

together on multiple occasions. This phenomenon has also been observed in 

Trigona species (Eltz et al, 2001). Parasite pressure then acts at the level of the 

aggregation along with the finer scale differences in the physcial characteristic 
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of the site i.e. the amount of bare ground available. Together, these forces result 

in the spatial patterning of nests within aggregations into high and low density 

patches. 

 

3.5 Conclusion 
 
It has been established that the availability of suitable nesting habitat in a 

landscape can contribute to the long term stability of ground-nesting bee 

populations (Lopez-Uribe et al, 2015). With this in mind, it is imperative that 

we have a clear understanding of what constitutes a suitable nest site for 

the many species of fossorial solitary bee. This study represents a step 

towards that goal and has found that the environmental characteristics of a 

nesting site can influence nesting density. In terms of surface 

characteristics, both A. fulva and C. hederae nesting densities exhibited a 

positive relationship with bare ground and a negative relationship with 

grass, a finding that could potentially be used in practice for the creation of 

high quality nesting habitat. Within aggregations, across all three species, 

spatial patterning of nests was also related to the proportion of bare 

ground, reinfocing the importance of this factor. However, it is likely that 

other forces (such as parasitism) also contribute heavily to the spatial 

configuration of nesting aggregations. There were significant interspecific 

differences in nest site characteristics, with most divergence occurring 

between C. hederae and both Andrena species, indicating a potential role 

of taxonomic relatedness, flight period or differences in brood cell linings. 

Irrespective of mechanism, these findings indicate that one suite of physical 

attributes cannot be used to create optimal nesting habitat for all fossorial 

species. The results from both the nest density analyses and the 

characterisation of interspecific differences are in line with previous studies 

of both fossorial wasps (Srba and Heneberg, 2012; Bonte, 2005) and bees 

(Potts et al, 2003, 2005), which have found that while the limitation of 

suitable nest sites can impact nest density, species respond differently to 

abiotic characteristics.  
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4: The effects of vegetation management on fossorial bee and 
wasp nesting: a field experiment 
 

4.1 Introduction 
 

Solitary bees constitute the majority of bee species in the UK, they are 

important pollinators, and there is some evidence that they are 

experiencing declines in both occupancy and species richness in some 

parts of the world (IPBES, 2016). It is therefore crucial that we begin to 

establish quality guidance for the protection and creation of suitable nesting 

sites. While the previous two chapters of this thesis have focussed on 

adding to the knowldge base of what constitutes suitable nesting habitat, 

this chapter moves the research into practical application and will focus on 

testing the efficacy of potential management actions for the creation of 

suitable nesting habitat. 

4.1.1 Fossorial bees and wasps 

Halictus rubicundus was the focal species for this experiment as it had 

been recorded nesting successfully at the experimental site in the 1990s 

(Potts, 1995), but had left the site in the interim years (K.Wilson, pers. 

comm.). Halictus rubicundus is one of the largest species of halictine bee in 

the UK, it is highly polylectic and is widely distributed throughout the 

country (Collins and Roy, 2018). It exhibits interesting social behaviour and 

is reported to be eusocial in the warmer, southern parts of its range but 

solitary in the north (Potts and Willmer, 1997; Soucy, 2002). In a eusocial 

setting, mated queens found new nests in the spring and produce workers. 

The colony then produces males and females at the end of the summer. 

Halictus rubicundus is an aggregate nesting species and is one of the few 

fossorial bees for which empirical studies of its nesting environment have 

been carried out in the UK (Potts and Willmer, 1997).  

 

Bees are not the only group of hymentopteran that nests solitarily in the 

ground as there are many species of wasp that also utilise this nesting 

strategy. These species are commonly known as digger wasps and there 

are more than 110 species present in Britain (bwars.com, 2019. About bees 

wasps and ants. Available at: http://www.bwars.com. [Accessed 15 August 

2019]). As predatory species, they do not have the same requirement for 

flowering plants to be present in the landscape as solitary bees, but they 
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still face pressure to optimise their nesting sites. In this way, the provision 

of suitable nesting areas has the potential to attract not just multiple 

species of bee, but also wasps. Therefore, as a conservation action, the 

improvement/provision of nesting sites may represent high return on 

investment in terms of biodiversity.  

4.1.2 Providing nesting habitat 

It has been demonstrated for one species of fossorial bee, that they can 

potentially prosper when the physical landscape is managed in their favour. 

The US native ground nesting bee Nomia melanderi (Cockerell, 1906, 

family: Halictidae), is the most successful managed fossorial bee in the 

world (Cane, 2008) and is singular in its capacity to thrive in artificially 

created nesting environments. This species is a highly effective pollinator of 

alfalfa (Medicago sativa) and is routinely translocated to agricultural 

contexts for the purposes of crop pollination. The principal reason for this 

species’ success as an intensively managed animal is the combination of 

its unique biology and nesting requirements, which are fully elucidated. 

Nomia melanderi creates shallow nests in silty damp nesting soils (Cane, 

2008), which means that it is amenable to being physically removed from a 

nesting site in soil blocks and transferred to a suitably prepared site. These 

prepared sites are cleared of vegetation, periodically sealed with salt and 

supplementally subirrigated to maintain a favourable nesting environment 

for the bees. Nomia melanderi’s foraging requirements are also easily met 

by the presence of the alfalfa crop, whose flowering season coincides with 

N. melanderi’s flight season. This mechanism of management is not 

feasible for the majority of fossorial species as the physical characteristics 

of their nesting sites (i.e heavily sandy soils) cannot be easily translocated 

intact. Furthermore, there is significantly less clarity around how to provide 

and maintain a suitable nesting site for most fossorial bee species. 

However, the success of N. melanderi confirms that fossorial species can 

profit significantly from sympathetic landscape management.  

 

Much of the current, available advice for creating solitary bee nesting 

habitat outside of agri-environment schemes, focuses on the provision of 

nests for aerial nesting species (Wildlife Trusts: wildaboutgardens.org.uk, 

RSPB: rspb.org.uk, Friends of the Earth: friendsoftheearth.uk. Date 

accessed: 01/02/2019). Of the organisations that have published 

recommendations for ground nesting habitat, almost all advise the creation 
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of bare patches of soil in sunny, well-drained locations (Buglife: 

buglife.org.uk, The Xerces Society: xerces.org, Penn State: ento.psu.edu. 

Date accessed: 01/02/2019), although none cite the sources of evidence 

for these actions. Conservation Evidence, a UK-based organisation that 

aims to provide evidence-based guidance for the conservation of wildlife, 

also recommends the creation of bare patches of ground for soil-nesting 

bees (Dicks et al, 2010), but this recommendation is formed on the basis of 

five studies. The first, and most robust, was a replicated controlled trial from 

Germany that found that fossorial bees and wasps preferred to nest in 

areas free of vegetation, where the soil had been dug and raised 

(Wesserling & Tscharntke, 1995). The four smaller trials, which were not 

replicated and controlled, also showed that the presence of bare ground 

had a positive impact on fossorial bee and/or wasp nesting (Severns, 2004; 

Gregory and Wright, 2005; Edwards, 1998; Edwards, 1996). This is the 

best guidance available at this time but even these actions have only been 

robustly tested by one experimental study, although the four smaller trials 

do help indicate that manipulating the environment can successfully 

increase nesting density.  

 

In the absence of an appropriate evidence base detailing the physical 

nesting requirements of all fossorial species and the efficacy of potential 

management actions, very little guidance for the provision and maintenance 

of nesting habitat exists within policy guidelines and that which does exist is 

not always fit for purpose. For example, the Green, Low-carbon, Agri-

environment Scheme (GLAS) is the agri-environment scheme in place in 

the Republic of Ireland for 2014-2020. Within this policy document there is 

an action for the provision of solitary bee nesting habitat on farmland 

(GLAS, 2015). The ‘conservation of solitary bees’ is a tier three general 

action for which participants are paid 45 euro per habitat per year for the 

‘sand’ portion of this action. The objective is ‘to improve biodiversity in the 

farming landscape and replace habitats lost through changes in farming 

practice’ and requires participants to ‘create a bee habitat by placing 1 

tonne of builders’ sand in a mound in a LPIS (Land Parcel Identification 

System) parcel or field and fence it from livestock by the 31st May’. The 

detail of this action includes the following:  ‘The fenced off area around the 

bee habitat must be strimmed annually and throughout the GLAS contract 

to keep shading vegetation under control. Pesticides cannot be applied to 

the habitat.’ However, there is no evidence that this management yields 
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any results and confers any significant benefit to solitary ground nesting 

bee populations in agricultural contexts.  

 

While we may not have a full and complete understanding of solitary bee 

nesting ecology, it is important that potential management actions are 

empirically tested for efficacy and practicality, or, in the absence of 

evidence, that expert opinion is sought. In this way effective 

recommendations can be made, although we may still lack intimate 

understanding of why these strategies work. Furthermore, a significant 

issue associated with conservation policy that is not grounded in evidence 

is that conservation as a whole may be seen as an unjustifiable expenditure 

if the policies that are in place do not yield results (Sutherland and Wordley, 

2017). Therefore, in order to protect and conserve fossorial solitary bee and 

wasp populations for the long term robust, evidence-informed policy is 

required.  

4.1.3 Nesting experiments 

Roulston and Goodell (2011) laid out some common issues with solitary 

bee nesting studies in general and I attempt to address these in this 

experiment. They are particularly critical of the fact that of the few nesting 

studies that exist, none (or very few) have manipulated the nesting 

resources. They argue that ‘nest site limitation should be demonstrated by 

associating an increase in nesting resources with a subsequent increase in 

population sizes of bees, without changing other important variables.’  

 

This chapter describes a replicated controlled trial, which set out out to test 

the effects of both surface characteristics and anthroprogenic disturbance 

on the success of a location as a nest site for fossorial, solitary bees and 

wasps. In terms of surface characteristics, bare ground has been found to 

be an important factor for solitary bee and wasp nesting (Wuellner, 1999; 

Potts et al, 2005), but how much more suitable bare ground is compared to 

other ground cover has not yet been quantified experimentally. Two of the 

experimental treatments in this study resulted in the creation of bare 

ground, by mechanical means (digging) and chemical means (spraying with 

herbicide). The aim of this approach was to understand whether both the 

presence of bare ground itself and the mechanism by which it is created 

influence the occurence of nests. The other two treatments did not create 

bare ground directly, but manipulated the height of the vegetation in the 
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plots over the experimental period. Chapter 2 found that bees had the 

capacity to nest in areas that are vegetated and the aim of this approach 

was to more clearly understand the impacts of both the presence of 

vegetation and the height of vegetation on nesting density. There is some 

evidence that fossorial bees can withstand anthroprogenic disturbance to 

the nest site and will nest in areas that experience frequent disturbance to 

the ground surface (Ullman et al, 2016), but again, this has not been 

quantified experimentally. This replicated controlled trial included fifty 

experimental plots in total, with ten repeats of five treatments. Anderson 

and Harmon-Threatt (2016) tested the effects of three different seed mixes 

on the occurence of bee nests in a short, three day field experiment. They 

allocated four 0.3ha plots per treatment, but reported low statistical power. 

Wesserling and Tscharntke (1995) used five experimental fields per 

treatment in their similar study of fossorial bee nesting. This experiment ran 

for 12 weeks and the number of nests in the plots was counted every two 

weeks. This included both holes with tumuli and those without, which may 

have represented emergence holes. These were included as solitary bees 

have been found to reuse emergence nests in this way (Cane, 2003) and 

Cane (2008) found that in N. melanderi nest aggregations, holes without 

tumuli were being used as nests just as frequently as holes with tumuli. 

Although population level effects could not be detected by this experiment, 

as it ran for only one year, it can show whether manipulating the 

environment in a certain way will lead to the local population of fossorial 

bees and wasps utilising that site as a nesting area. This experiment was 

also restricted to one site, meaning that landscape level effects, including 

foraging resources, did not change between plots and so the impact of 

nesting resource availability could be isolated.  

4.1.4 Research questions and hypotheses 

This experiment set out to address three research questions: 

1. Does vegetation cover impact solitary bee nesting? 

2. How do four different vegetation management strategies impact the 

nesting density of solitary bees and wasps? 

3. Can H. rubicundus return to a nesting site from which it has been 

excluded, within the first year of management change? 
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Hypotheses: 

1. Vegetation cover does impact solitary bee nesting and differences 

will be exhibited between the treatments. Plots with lower vegetation 

cover will support high nesting densities. 

2. Through the creation of bare earth, the uprooting and chemical 

spraying treatments will increase the number of bee and wasp 

nests. Plots that are strimmed once will not see an inrease in nests 

due to the lack of bare earth and plots that are strimmed regularly 

will also be unattractive due to the regular disturbance to the surface 

of the ground. 

3. Halictus rubicundus will return to plots where bare ground is 

available. 
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4.2 Methods 

4.2.1 Site 

Gibraltar Point National Nature Reserve is an area of approximately 414ha 

in Lincolnshire, England (coordinates: 53°06'N 00°20'E) (Fig. 4.1), which 

comprises two parallel ridges of sand dunes, separated by approximately 

half a kilometre of salt marsh. Key habitats at this site include sand dunes, 

salt marshes, freshwater habitats and open water. The site is used for both 

recreation and grazing and supports a variety of vegetation including ferns, 

sea holly and sea campion. It is also a significant site for some important 

bird species including grey plover, bar-tailed godwit and brent goose. In the 

mid 1990s a 600m eroded path along the west dunes at this site housed a 

large (roughly 500 nests) nesting aggregation of the solitary bee H. 

rubicundus (Potts, 1995). However, a survey carried out in July 2017 and 

observations by the site ranger over previous years revealed that the 

species may no longer nest in this area. In the interim years, the former 

nesting area has become covered in vegetation due to a decline in the 

rabbit population and a lack of vegetation management in this area of the 

site (K. Wilson pers. comm.).  

 

 
Figure 4.1: Map of Gibraltar Point NNR. Blue outline shows boundaries of 
the reserve. Map retrieved from ramsar.org 2019.  



 78 

4.2.2 Experimental set up 

This experiment enlisted ten replicates of each treatment to try to achieve 

robust results with high statistical power. This decision was validated by a 

post hoc power analysis of control and bare ground plots, based on the 

means and the theta value (0.905) observed in this study. The relationship 

between control plots and plots where bare ground was created was 

investigated because it represented the most biologically interesting on the 

basis of what is known about solitary bee nesting i.e. that bare ground is 

important. This analysis determined that a sample size of seven plots per 

treatment would be the minimum needed to obtain statistical power at the 

recommended 0.80 level (Cohen, 1988) and was carried out using the 

power analysis test for negative binomial models in the MKmisc R package 

(Kohl, 2018).  

 

In 2018, the experimental plots were established at the interface of sand 

dune and salt marsh habitat (Fig. 4.2) along a 360 x 1.5m (540m2) stretch 

of land. Each plot measured 3 x 1.5m (4.5m2). The size of the plots was 

constrained by the area available for experimental mainpulation, which was 

bounded by fencing on one side and a public footpath on the other. The fifty 

plots were segregated into ten experimental blocks, within which each 

treatment was represented once (Fig 4.2). This was done to ensure that the 

experimental treatments were sufficiently spread along the full length of the 

experimental area. In this way if local populations of fossorial species 

emerged in close proximity to the experimental area, their choice to 

establish nest sites within certain tretatment plots would not be constrained 

by their potentially limited flight ranges. The configuration of plot treatments 

within each block was assigned randomly, using a random number 

generator. Each experimental plot was buffered by a ‘blank’ plot, which had 

the same spatial configuration. This prevented positive spatial 

autocorrelation. This scenario can occur when experimental plots that are 

similar are directly adjacent to one another, thereby potentially confounding 

an individual’s choice to nest in a plot with its spatial proximity to another 

plot instead of the experimental treatment. The blocks were not physically 

separated in space anymore than plots were. The idea of blocks was only 

used to ensure even spread of treatments across the experiemntal area. 
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Figure 4.2: Experimental setup for a field experiemnt testing the 
effects of vegetation management on solitary bee nesting. The 
map at the top indicates the area where the fifty experimental plots 
were established. The diagram below represents one unit of the 
experimental area. There were ten repeats of this unit with the 
order of the treatments within each unit randomly generated. 

1 – Dug 

2 – Strim once 

3 – Strim regularly 

4 – Sprayed  

5 – Control  

Blank 
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Each of the fifty experimental plots was assigned to one of five 

experimental treatments (four mainpulations and one control), which 

manipulated the resident vegetation. Plot treatments were designed to 

mimic natural spatial variation in habitat, but critically, the treatments 

reflected the dfferent strategies by which land managers currently manage 

vegetation. In this way, the outputs from this research could offer insights 

into how familiar practices could potentially be optimised for the creation of 

solitary bee and wasp nesting habitat. Each plot was subject to one 

treatment only to clearly examine the impacts of each potential 

management action in isolation. 

 

The following is a description of how the experimental treatments were 

applied and includes their shortened labels by which they will be referred 

to, from this point on. All experimental manipulations were carried out in 

May 2018 and had been completed by the beginning of the survey period, 

unless otherwise stated: 

 

Treatment one 

Label: Dug 

Plots subject to this treatment had all resident vegetation uprooted 

and the resulting bare ground compacted (Fig. 4.3a). Vegetation 

was dug out manually using a spade, ensuring that the plant and 

associated roots were removed. The bare ground was then 

stamped down underfoot so the soil surface was not loose. 

 

 

Treatment two 

Label: Sprayed  

Plots subject to this treatment were sprayed twice, ten days apart, at the 

beginning of the experimental period (Fig. 4.3b). Plots received two 

sprays to fully remove the vegetation and create bare ground. A 

glyphosate-based herbicide spray was used (roundup pro biactive, 

manufactured by Monsanto). This chemical was already in use for 

vegetation management on the site. Glyphosate is the active ingredient in 

this herbicide and, as per product guidance, the dosage was at the rate of 

250ml/10l of water (as per label standard) using a standard nozzle, giving 

a surface of 5l/ha. Spraying was carried out by a member of reserve staff 

in calm conditions. The correct nozzle size was used to avoid any fine 
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spray drift that might cause damage to non-target areas. Dead material 

was removed using a rake. 

 

Treatment three 

Label: Strimmed once 

Plots subject to this treatment were strimmed once, in the middle of 

May 2018, two weeks before the survey period commenced (Fig. 

4.3c). Strimming was done to take the vegetation to as short a 

height as possible (approximately 2cm) and all strimming, for this 

treatment and treatment four was carried out by one member of 

reserve staff. 

 

Treatment four 

Label: Strimmed repeatedly 

Plots subject to this treatment were strimmed as described in 

treatment three, but this management was repeated once every 

two weeks over the entire experimental period of twelve weeks 

(Fig. 4.3c).  

 

Treatment five 

Label: Controls 

Control plots were not subject to any management of the resident 

vegetation (Fig. 4.3d). 

  
Plots were monitored for fossorial bee and wasp nests every two weeks 

from June 5th to August 25th 2018. Each plot was investigated 

systematically, the observer started at the bottom left corner and 

systematically surveyed the entirety of the plot, until the top right corner 

had been reached. Plots were examined for approximately three minutes 

by the same individual at every survey to try to prevent bias in sampling 

effort. Although search efficiency was likely reduced in plots with more 

vegetation. At each survey, all holes within the plots were counted. Any 

individuals that were present and exhibiting nest-building or nest-

provisioning behaviour were identified in the field or sampled for 

laboratary identification. A hand net was used to collect individual insects, 

which were killed immediately using ethyl acetate infused specimen pots. 

To demonstrate that the effects of the treatments were maintained 

through to the final survey, percentage vegetation cover (estimated by 

eye) was estimated for each experimental plot at the final survey. 
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Empirical measurements of soil texture, soil moisture, soil penetration and 

slope were taken from across the experimental area. Measurements were 

taken from every tenth plot. A 100g soil sample was taken for soil 

analysis. Procedures for the measurement of slope and soil analysis were 

as described in Chapter 3.



a: Dug plot               b: Sprayed plot (one spray)          c: Strimmed plot 

d: Plots before treatment (control)           e: Most highly vegetated sprayed plot at final survey Figure 4.3:Images of example treatment plots. 
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4.2.3 Data analysis 

This dataset was split into six surveys for nesting activity. Because the 

experiment was not concerned with the effects of time on nesting (this is 

well established as species’ have differing flight seasons), the data from 

each survey were analysed independently. Survey six was excluded from 

analysis, as this survey returned only two nests. 

 

The experimental setup for this project included the separation of 

treatments into ‘blocks’. This blocking was carried out, not to control for 

any differences in environmental characteristics across the experimental 

area, but to ensure satisfactory separation of the different treatments 

along the full length of the experimental area. This area was largely 

homogenous in its physical attributes. This was substantiated by empirical 

measurements of soil texture, soil moisture, soil penetration and slope 

taken from across the experimental area. The experimental area was 

south east facing. Mean soil moisture content was 16.2% ±�0.03. The soil 

had a mean organic matter content of 12.5% ±�0.1 and gravel proportion 

10.2% ±�0.1. Soil texture was loam with mean sand content of 47.1% ±�

0.1, silt 44.7% ±�0.1 and clay 8.2% ±�0.02. Individual measurements can 

be found in Table 4.1. Landscape level effects were not a confounding 

variable, as noted previously, this experiment occurred on one site and so 

its scale precluded it from suffering from landscape level heterogeneity. 

For these reasons, treatment was not nested within the block variable and 

instead block and treatment were included as independent variables in the 

analyses. This way any magnitude of difference between blocks could be 

elucidated. 

 

The data from each survey were tested for overdisperion using the 

dispersion test from R package ‘AER’ (Kleiber and Zeileis, 2008) and were 

found to be overdispersed (c>1).  Overdispersion occurs when the 

variance in the data has a value that is greater than the mean value. 

Overdispersion often occurs in count data as they can not include 

negative values and frequently include zero counts. Data with these 

characteristics fail the assumption of homogeneity of variance 

(variance=mean) on which most linear regression models rely.  
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The data were subsequently modelled using negative binomial regression. 

Negative binomial regression has the capacity to analyse overdispersed 

data and has been used in a number of similar studies including Martins 

et al (2018) study of the relationship between bee abundance and 

landscape features. All analyses were carried out in R version 3.5.1 (R 

core team, 2015). 

 

Table 4.1: Measurements of site characteristics at five points (within every 
tenth plot) along the experimental area 
 A B C D E 
Soil penetration 
(kgf cm–2) 1.3 1.3 1.5 2.1 2.1 

Soil moisture (%) 20 13 15 15 18 
Slope (°) 12 12 20 8 10 
Gravel (%) 9 2 5 20 12 
Sand (%) 45.5 31.6 45.4 61.2 51.6 
Silt (%) 47.9 58.8 49.1 30.6 37 
Clay (%) 6.6 9.6 5.4 8.2 11.4 
Organic matter (%) 14 18 11 8 12 
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4.3 Results 

4.3.1 The effects of vegetation treatment on nesting 

In all five survey periods that were analysed, the vegetation management 

significantly impacted the number of fossorial bee and wasp nests in the 

experimental area (Table 4.2). For all five surveys, plots that were 

strimmed regularly had higher numbers of nests compared to control plots 

(Table 4.2, Fig. 4.4), as did plots that were dug, although no difference 

was identified at the fifth survey for this treatment. Across the entire 

experimental period, the mean number of nests per plot for both regularly 

strimmed and dug plots was thirteen nests per plot. In total, plots with 

these tretments supported 133 and 121 nests respectively. This is in 

comparison to control and sprayed plots which housed 15 and 24 nests 

respectively and had a mean value of two nests per plot. Plots that were 

strimmed once supported 32 nests with a mean of three. Control plots had 

a mean nesting density of two nests per plot, despite having significant 

vegetation coverage. Nests in these plots were observed in naturally 

occurring, bare earth patches within the plot, reinforcing the importance of 

bare earth for colonisation. No significant differences between control 

plots and sprayed or strimmed once plots were found at any survey date 

(Table 4.2, Fig. 4.4). The blocks had an effect on the number of nests in 

surveys one, three and five, indicating that there was a spatial effect 

operating (Table 4.2).  

 

Survey six, on the 14th of August, was not inluded in the analysis as it 

returned only two nests from the entire experimental area. The survey of 

vegegtation cover found that this chracteristic still varied between the 

treatments, establishing that an effect was still acting on this date (Table 

4.3). The low return of active nests on this date was likely due to the fact 

that there are few species of fossorial bee and wasp that are active at this 

point in the season. This effect of seasonality was apparent across the 

three months of the experiment within the plots that had been subject to 

the most successful treatments (Fig. 4.5). Survey two, on the 16th of 

June, was the most productive survey, returning 105 nests from the fifty 

plots. 
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Table 4.2: Summary statistics for the five negative binomial models of the 
effects of vegetation treatment on the number of nests for each survey. 
(N=50 for each model). Control plots were defined as the reference level 
for treatment and block one for the blocks. Results in bold indicate a 
significant result. 

 Survey 
One 

Survey 
Two 

Survey 
Three 

Survey 
Four 

Survey 
Five 

Dug 
Est: 2.33 
z: 3.07 
p: 0.002 

Est: 2.5 
z: 4.6 
p: 4.8x10-6 

Est: 2.63 
z: 3.47 
p: 0.0005 

Est: 2.81 
z: 2.66 
p: 0.008 

Est: 0.79 
z: 0.92 
p: 0.36 

Strimmed 
once 

Est: -0.41 
z: -0.41 
p: 0.68 

Est: 0.58 
z: 0.9 
p: 0.37 

Est: 0.921 
z: 1.05 
p: 0.29 

Est: 1.7 
z: 1.53 
p: 0.13 

Est: 0.87 
z: 1.02 
p: 0.31 

Strimmed 
regularly 

Est: 1.88 
z: 2.43 
p: 0.02 

Est: 2.22 
z: 4.02 
p: 5.9x10-5 

Est: 2.62 
z: 3.46 
p: 0.0005 

Est: 2.94  
z: 2.8 
p: 0.005 

Est: 1.89 
z: 2.37 
p: 0.02 

Sprayed 
Est: -1.5 
z: 1.33 
p: 0.26 

Est: 0.72 
z: 1.13 
p: 0.26 

Est: 1.41 
z: 1.73 
p: 0.08 

Est: 1.11 
z: 0.94 
p: 0.35 

Est: 0.31 
z: 0.34 
p: 0.73 

Block 2 
Est: -2.44 
z: -2.37 
p: 0.02 

Est: 0.75 
z: 1.27 
p: 0.21 

Est: 0.08 
z: 0.12 
p: 0.9 

Est: 1.75 
z: 2.15 
p: 0.03 

Est: 0.35 
z: 0.34 
p: 0.73 

Block 3 
Est: -1.42 
z: -1.61 
p: 0.11 

Est: 0.85 
z: 1.44 
p: 0.15 

Est: -0.54 
z: -0.76 
p: 0.45 

Est: 1.29 
z: 1.53 
p: 0.13 

Est: 0.01 
z: 0.01 
p: 0.99 

Block 4 
Est: -1.5 
z: 1.33 
p: 0.03 

Est: 1.17 
z: 2.07 
p: 0.04 

Est: 0.06 
z: 0.09 
p: 0.93 

Est: -0.86 
z: -0.68 
p: 0.5 

Est: -1.15 
z: -0.82 
p: 0.41 

Block 5 
Est: -0.92 
z: -1.1 
p: 0.27 

Est: 0.98 
z: 1.7 
p: 0.09 

Est: -0.59 
z: -0.81 
p: 0.42 

Est: 0.62 
z: 0.68 
p: 0.5 

Est: 1.86 
z: 2.03 
p: 0.04 

Block 6 
Est: -3.5 
z: -2.6 
p: 0.01 

Est: 0.23 
z: 0.36 
p: 0.72 

Est: 0.28 
z: 0.47 
p: 0.64 

Est: -0.85 
z: -0.67 
p: 0.5 

Est: -0.36 
z: -0.31 
p: 0.76 

Block 7 
Est: -1.64 
z: -1.82 
p: 0.07 

Est: 1.03 
z: 0.57 
p: 0.07 

Est: 0.89 
z: 1.59 
p: 0.11 

Est: 1.52 
z: 1.83 
p: 0.07 

Est: 0.25 
z: 0.24 
p: 0.81 

Block 8 
Est: -1.83 
z: -1.97 
p: 0.048 

Est: 0.37 
z: 0.59 
p: 0.56 

Est: 0.04 
z: 0.06 
p: 0.96 

Est: -0.36 
z: 0 
p: 1 

Est: 0.97 
z: 0.99 
p: 0.32 

Block 9 
Est: -1.84 
z: -1.98 
p: 0.048 

Est: 0.36 
z: 0.57 
p: 0.57 

Est: -1.21 
z: -1.41 
p: 0.16 

Est: -0.17 
z: -0.16 
p: 0.87 

Est: -36 
z: 00 
p: 1 

Block 10 
Est: -3.5 
z: -2.6 
p: 0.009 

Est: 0.06 
z: 0.09 
p: 0.93 

Est: -0.05 
z: -0.08 
p: 0.93 

Est: 0.48 
z: 0.51 
p: 0.61 

Est: 0.06 
z: 0.06 
p: 0.95 

 

Table 4.3: Mean and standard deviation of percentage vegetation cover 
for all five treatments. This was calculated as a mean of the ten relevant 
plots for the treatment. 

 
 

 

 

 

 

 

Treatment Veg cover (%) 

Dug 3 ± 2 
Strim once 65 ± 29 
Strim regularly 41 ± 24 
Spray 16 ± 26 
Control 98 ± 3 
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Figure 4.4: Boxplots illustrating the differences in the number of nests between treatments. Numbers represent the survey period. Letters 
indicate post hoc groupings for each treatment compared to control. Data shown are as explained in Figure 3.6 legend. 
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Figure 4.5: Line graphs showing the changes in the total number of nests over time for each treatment. Each value represents the combined number of nests 
from every replicate of the treatment (n=10) on the date of a survey. 
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4.3.2 Halictus rubicundus  

Halictus rubicundus was observed nesting in two adjacent plots in early 

July, specimens were collected and confirmed as this species. One nest 

was identified in a plot that had been strimmed once and fifteen active 

nests were found in a plot that had been dug. There were further nests 

outside of the experimental plots but in close proximity to them, in bare 

earth formed by an infrequently used footpath. 

4.3.3 Other significant species identified in experimental plots 

In plots that had been dug and bare earth was created the following wasp 

species were identified exhibiting nest building or provisioning behaviour 

or, in the case of parasitic species, investigating nests: Cerceris rybyensis 

(Linnaeus, 1771) (a species of digger wasp of the Sphecid family), 

another Sphecid species;  and an Arachnospila species. 
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4.4 Discussion 
 

This experiment has shown that the creation of suitable nesting areas leads 

to an increase in the number of solitary bee and wasp nests. The creation 

of bare ground through digging and compacting the soil, and regularly 

strimming the resident vegetation were the two mechanisms by which 

suitable nesting habitat was established. Seventy seven percent of the 331 

nests identified in this experiment were found in plots that were subject to 

one of these two treatments (now designated successful treatments). 

4.4.1 Successful treatments 

In line with previous findings (Wesserling & Tscharntke 1995; Severns, 

2004; Gregory and Wright, 2005) and the accepted wisdom, plots where 

firm, bare ground was created were successful at attracting nesting 

species. In Oxfordshire, where nesting habitat was also created by digging 

out the ground, the managed areas experienced rapid colonisation by 

fossorial bees and wasps in the first year (Gregory and Wright, 2005). 

Three years post management, 80 species had been recorded nesting in 

the area. In Oregon, USA, the clearance of vegetation from small 1m2 plots 

for the plantation of a rare plant, Kincaid’s lupine, led to similarly rapid 

colonisation of the site by native fossorial bee species, in particular 

Lasioglossum anhypops (McGinley, 1986) (Severns, 2004). Therefore, the 

support grows for the establishment of bare ground to benefit fossorial bees 

and wasps. 

 

A novel finding from this research is that plots where the vegetation was 

strimmed repeatedly were as successful as the dug plots, indicating that 

individuals can tolerate high levels of physical disturbance to the surface 

vegetation around the nest. This is encouraging and suggests that highly 

disturbed urban lawned areas, such as gardens and parks, may represent 

suitable nesting sites for fossorial species. This theory is supported by the 

fact that ground-nesting bee species can dominate bee communities in 

urban settings (Sirohi et al, 2015). That said, in tests of garden verses non-

garden sites, greater ground-nesting bee species richness has been 

recorded at non-garden sites, where more spring-blooming trees and 

possibly, better nesting sites, were available (Langellotto, 2017). Similarly, 

a study of grassland habitats that were intensively grazed and extensively 

(unintensively) grazed found that while differences in vegetation 
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characteristics had little impact, insects at sites with high intensity grazing 

suffered from the disruption to plant-insect interactions (Kruess and 

Tscharntke, 2002). Again, the importance of combining suitable nest sites 

with sufficient forage material is clear. These studies, combined with the 

results from this experiment, seem to indicate that while fossorial species 

can potentially tolerate significant disturbace to the surface of the nest site, 

it is important that this disturbance does not undermine their acess to 

sufficient foraging material in the surrounding habitat. 

4.4.2 Other treatments 

Plots that were strimmed just once did not successfully attract nesting bees 

and wasps. This may be because the height of the vegetation in these plots 

over the course of the experiment did not offer sufficient access to the 

surface area of the soil for individuals to dig a nest. Furthermore, ground 

nesting bees use geographical landmarks to assist them when returning to 

the nest (Brünnert et al, 1994). High vegetation may make it more diffiult for 

individuals to navigate back to the nest if landmarks cannot be easily 

distinguished from an appropriate distance. The temperature of the soil also 

decreases as the height of the surrounding vegetation increases (Song et 

al, 2013) adding to the unsuitability of the area as a nest site. The findings 

from this treatment indicate that a suitable nesting site must be easily 

accessible and not heavily obscured by surrounding structures or tall 

vegetation that may also reduce the soil temperature. 

 

Sprayed plots did not provide suitable nesting habitat, despite the fact that 

these plots did offer patches of bare earth. After initial spraying there was 

some dead vegetation left on the ground, which may have impeded digging 

initially, but by the time the second survey occured this had naturally 

dissipated and by the end of the experiment, there were just a few areas of 

vegetation within the plots. Figure 4.3d depicts the most highly vegetated 

sprayed plot at the final experimental survey. Despite the bare earth, these 

plots were not exploited as nesting sites as frequently as dug plots, with 

only 24 nests being found in sprayed plots over the entire experimental 

period, contrasting sharply with the 121 found in dug plots. There are 

multiple potential explanations for why these plots were unattractive to 

nesting females and further work is required to conclusively elucidate this. 

There may have been some dead vegetation left on the plots after spraying 

and raking that deterred females from nesting there. Glyphosate is 
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biodegraded both aerobically and anaerobically by soil mircorganisms 

(Zhan et al, 2018) and so should dissipate away after a few days, although 

it’s possible that glyphosate residues remained in the soil throughout the 

experimental period and that these had a repellent effect. More detailed 

analyses would be required to explicitly determine why these plots were 

unattractive, but it may be that the chemical spray alters the environment in 

such a way that nesting species avoid it. Recent work has begun to show 

that glyphosate has a lethal effect on developing stingless bee larvae, 

which come into contact with this compound in their larval food (Seide et al, 

2018). Furthermore, Chan et al, (2019) found that direct exposure of 

solitary bees to insecticide residues in soil can be lethal and so there may 

be a selection pressure on bees to be able to actively avoid areas with high 

levels of pesticide. It has been established for other invertebrate species 

that they can express avoidance behaviour when pesticides are detected in 

soil (Louriero et al, 2005), although this has not been shown for glyphosate. 

Contrarily, experimental work has found that honeybees and bumblebees 

cannot detect and avoid neonicitinoid pesticides in sucrose solution 

(Kessler et al, 2015). Although it is unclear what mechanism is acting here, 

this result does tell us that it is not just the end product that matters but the 

process that was used to create the product that can significantly impact 

the outcome. For future management this research highlights that while the 

creation of bare ground is important and can encourage soil nesting bees 

and wasps into an area, this habitat should be created through physical 

manipulation of the environment and not by chemical means. Additionally, 

while the results from this experiment indicate that managed lawned area 

may have the potential to support nesting species, these findings also 

suggest that if these areas are exposed to pesticides, this may deter bees 

and wasps from establishing at these sites. 

4.4.3 Nest sites in the landscape 

The importance of bare ground for soil-nesting species has come through 

strongly in this experiment but looking at the bigger picture and where sites 

with plentiful bare ground currently exist is concerning. Brownfield sites 

may represent important refugia in the landscape for fossorial species due 

to their high proportion of bare earth but with this in mind, the current trend 

of loss of brownfield sites and their use for urban development (Macadam 

and Bairner, 2012) may have significant detrimental consequences for this 

group. That said, the species in this study seem to be able to exploit small 



 94 

fragments of bare soil in an otherwise highly vegetated environment. This 

indicates that the provision of patches of open ground may be enough to 

positively impact fossorial bee and wasp populations over time. Whether 

patch size affects the quality of a nest site and bigger patches have the 

capacity to support higher nesting densities remains unknown. Again, as 

discussed in chapters two and three, the availability of forage in the 

surrounding landscape is likely to be an important factor in determining 

these dynamics. 

 

To reiterate its importance, a reminder that the findings from this 

experiment do not represent a population effect, just that individuals from 

the local, existing population moved into the nesting sites when they were 

created. A longer term experiment over multiple seasons would be required 

to establish whether increasing the amount of suitable nesting area in a 

landscape has a positive impact on fossorial bee and wasp populations. 

4.4.4 Halictus rubicundus and other sampled specimens 

Halictus rubicundus re-established itself in the experimental area, marking 

this management as a success at attracting the local population into the 

newly created plots. Fifteen of the sixteen H. rubicundus nests identified in 

this study occurred in a plot that had been returned to bare earth so the 

females exhibited a strong preference for this treatment. The preference of 

H. rubicundus females to nest in bare ground has been demonstrated in a 

number of studies, both in Europe (Potts et al, 2005) and the USA (Cane, 

2015; Soucy, 2002). Furthermore, there is evidence to suggest that bare 

earth nest sites are enhanced by the presence of pebbles or stones (Potts 

and Willmer, 1997; Soucy, 2002; Cane, 2015). This phenomenon may be 

driven by the thermal benefits that the presence of stones confers to the 

adjacent soil (Potts and Willmer, 1997) or because they represent useful 

landmarks when navigating back to the nest (Brunnert et al, 1994). 

Although the exact mechanisms of this preference is unknown, it has been 

shown that even in the case where bare earth is available, females will 

preferentially nest next to pebbles (Cane, 2015). Therefore the plots at 

Gibraltar Point may benefit from the addition of this material to the bare 

ground plots. H. rubicundus nests in sandy loam soil (Cane, 2015), which 

was the soil type present at the experimental site. This demonstrates that 

the site had the edaphic capacity to support this nesting species, but was 

not being utilised due to the surface characteristics. This is important 
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because it shows that managing the vegetation and creating bare ground at 

a site may not be enough to support nesting fossorial species if the soil 

conditions at that site are not favourable. Therefore, any plans to create 

nesting habitat must start with an investigation of the soil environment, the 

importance of this has also been demonstrated by the findings from 

Chapter three. 

 

Not all nests could be associated with a specific species as individuals 

were not always present at the nest at the time of the survey. Of the 

individuals that were identified, three wasp species were found nesting in 

the dug plots. Cerceris rybyensis or the ornate-tailed digger wasp is a 

member of the Crabronidae family and is a common and widely distributed 

species in the UK. Similar to the closely related species C. halone (Banks, 

1912), C. rybyensis nests in sandy soils in areas where there is little 

vegetation (Byers, 1978). The second specimen was of the genus 

Arachnospila which is a member of the Pompilidae or spider wasp family 

and many of the species in this group are fossorial. The final specimen was 

from the Sphecidae or digger wasp family but could not be identified further 

than this. Fossorial wasps have very little profile with the wider public, 

despite their importance as predators of pest species and their contribution 

to pollination, but it is clear from this experiment that managing a site to 

favour fossorial bees can also benefit fossorial wasps. 

 

4.5 Conclusion 
 
The sympathetic management of vegetation at a site with favourable soil 

conditions can encourage local solitary bee and wasp species to utilise that 

site for nesting. Sympathetic management involves the creation of bare 

ground or patches of bare ground through physical manipulation of the 

vegetation i.e. digging and strimming. Regular strimming of vegetation does 

not appear to have a negative impact on the success of an area as a 

nesting site, as long as foraging resources remain present in the 

surrounding landscape. Vegetation that is of a height to obscure nest 

entrances and/or impede digging may discourage nesting. Futhermore, the 

use of the chemical glyphosate to clear vegetation deters individuals from 

nesting at a site. Similar management strategies can be successful for both 

solitary bee and wasp species and so can be highly effective methods of 

increasing biodiversity and potentially safeguarding the future of 
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populations of these species. The findings of this replicated, controlled 

experiment substantiate previous findings and taken together, these results 

provide an appropriate evidence base for the advocation for the creation of 

bare ground as a conservation action for fossorial bees and wasps.  

  



 97 

5: General discussion and concluding statement 

5.1 General discussion 
 
Looking to the future, as the global environment continues to experience 

unprecedented change, Murray et al (2009) put it well when they stated ‘the 

sensitivity of particular bee species to the wide range of natural and 

anthropogenic drivers remains largely unknown. It is therefore essential to 

understand the basic ecology of bees in order to predict how they respond 

to environmental change and how these changes can be mitigated against.’ 

This thesis addresses one particular gap in our understanding of basic bee 

ecology and as such, has contributed to our potential to appropriately 

protect and conserve solitary bees in the future. 

5.1.1 Solitary bee nest site characteristics 

The citizen science project showed that while the four species of solitary 

bee examined had the capacity to nest within a range of environmental 

characteristics, there were indications that differences between the species 

existed. These findings were further developed by the fine scale studies of 

Chapter 3, which described the similarities and differences between the 

nest sites of the solitary bee species and demonstrated that particular 

environmental characteristics could lead to higher density nesting.  

 

The importance of bare ground for the facilitation of fossorial bee nesting 

came through strongly, in all three data chapters. This finding builds on 

previous work (Wuellner, 1999; Potts et al, 2005) and emphasises the 

ubiquity of this requirement across fossorial species. However, this 

conclusion raises concerns as the provision of bare ground is rarely, if ever, 

included in conservation actions or land management plans. Bare ground is 

important not just for solitary bee nesting but for the proliferation of other 

insect groups, such as Carabid beetles (New, 2007; Cameron and Leather, 

2011). This thesis supports the notion that the provision of bare earth is 

important in terms of insect conservation and should be included in more 

conservation management actions. However, as the findings from Chapter 

4 demonstrated, it is important to consider how the bare ground is 

produced and physical manipulaiton of the environment is favoured over 

chemical approaches. Brownfield sites in particular can contain vast 

quantities of this important site chacteristic and their future protection 

should be safeguarded (Eyre and Woodward, 2003). 



 98 

 

In order to explicitly define the nesting requirements of solitary bees, more 

experimental study is called for. This thesis has demonstrated the efficacy 

of field experiments in this context and there would be significant value in 

repeating and up-scaling this approach. Furthermore, laboratory 

experimental analysis has the potential to provide substantial insights due 

to its capacity to control for all confounding variables. While there is some 

published information on how to take wild larval specimens into the 

laboratory for further development (Sommeijer, 2012), more guidance is 

required. 

5.1.2 Vegetation management and conservation of solitary bees 

Both the field studies and field experiment found that regularly strimmed or 

mown vegetation or grass can support sizeable populations of fossorial 

bees, a finding that contradicts some of the accepted wisdom that intensive 

management of a site will have a negative impact on bee populations. 

However, it is important to stress that while nest sites themselves can occur 

in managed grasslands, the bee populations will still require access to 

suitable forage material in close proximity (Dicks et al, 2015). Therefore, in 

terms of land management, it is important to note that while some lawned 

areas can be tolerated, they must co-exist with habitat that offers foraging 

opportunities such as, wildflowers. As has been recommended many times 

before (Williams and Kremen, 2007; Mandelik et al, 2012), the creation and 

curation of mosaic habitats is likely to be most beneficial for fossorial bee 

and wasp populations. In terms of nesting sites, Chapter 4 demonstrated 

that the provision of even small areas of bare ground can benefit fossorial 

bees and wasps. Therefore this represents a simple, low investment way of 

improving sites for bee and wasp conservation. 

5.1.3 Methodological considerations 

This thesis has explored three methodological approaches for the 

assessment of fossorial bee nesting ecology. The most novel approach 

was the citizen scence project, as hypothesis-led citizen science is, in itself, 

a nascent field and citizen science approaches have never before been 

used to collect data on solitary bee nest sites. Although this approcah 

proved successful and has the potential to be a very useful tool in this area 
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of research, there are some considerations to be taken into account for 

future endeavours. 

The use of the citizen science project to recruit field sites for the fine scale 

study proved successful and this represents a potential framework for 

overcoming the logistical issue of identifying active nest sites quickly for the 

purposes of analysis. However, in this case, the recruitment of sites was, in 

a way, biased by a lack of ethical approval to gather personal data (such as 

names and email addresses) from citizen scientists. This led to the 

exclusion of any nesting aggregations that were recorded on private land 

as potential field sites, as site permissions could not be obtained. This was 

a particular issue for A. fulva, for which many records were reported from 

gardens. This also explains why, despite being the most successful species 

in terms of the number of records submitted (141) only seven A. fulva field 

sites were sampled. For future work, the collection of participant contact 

information would facilitate access to these sites and reduce the associated 

biases. 

Another bias that likely presented itself in the citizen science data was that 

of remote verses populated areas. Nest sites were probably more likely to 

be reported if they occurred in areas where participants were likely to find 

them e.g. public places with lots of footfall. In this way, nest sites that were 

present in more remote areas with little or no public access were probably 

excluded from the study. This dynamic may also have presented itself in 

the results of the study. For example, although the majority of records from 

the citizen science project reported A. fulva to be nesting in grassy areas, 

the fine scale study of Chapter three found that increasing bare ground 

favours increasing nest density for this species. These results may indicate 

a bias in the citizen data towards lawned areas such as gardens and parks, 

which participants encountered more frequently. It may also be 

demonstrating that A. fulva is frequently nesting sub-optimally due to a lack 

of high quality nesting sites within dispersal distance, but this would require 

further study. 

Future research would benefit from the continuation of the use of citizen 

science to understand solitary bee nesting ecology. One potential 

mechanism would be to build a recording scheme for solitary bee nest sites 

into established monitoring networks, such as iRecord. The availability of a 

current database of active nesting sites could potentially facilitate a lot more 

research in this area as it would negate the requirement of the researcher 
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to locate nest sites at the outset of any study. The Solitary Bee Project 

focussed on four charismatic solitary bee species, that can be identified in 

the field. The same level of success could probably not be achieved for 

species that are more difficult to identify, however, records of nesting sites, 

even if the specific species nesting there is unknown, are still valuable. 

Additionally, if photographs of the species are included in the record, then 

in some cases these could be identified by experts, at least to genus level. 

5.1.4 Environmental filtering 

Environmental filtering is a metaphor for the way in which the 

characteristics of an environment only permit species with certain traits or 

phentotypes to establish and be maintained there (Lailberte et al, 2014). 

Kraft et al (2015) expanded this definition and developed a framework 

(summarised in Fig. 5.1) for the consideration of how environmental filtering 

may act within an environment in light of species coexistence theory. 

Although these theories are typically discussed in terms of the community 

assembly at a site, it is interesting to view the presence of nesting bees and 

the density of those nests through the lens of these concepts. And so I use 

this framework to examine the findings from this thesis with regard to the 

nesting ecology of fossorial solitary bees.  

 

The first level of this framework is dispersal limitation. Dispersal limitation 

is a separate mechanism to environmental filtering and occurs when there 

is no capacity for a species to arrive at a suitable site as it too far from the 

source site, in this case, the natal nest site. Therefore, the first step of 

evaluating an observed pattern in terms of environmental filtering is to 

discount the potential effects of dispersal limitation. Part of the reason why 

presence/absence studies were not used as part of the observational 

studies in this thesis was because the absence of nest sites does not 

indicate that the abiotic environment is unsuitable for nesting, instead, 

dispersal limitation may be acting. Therefore, the patterns observed in this 

research can not be attributed to dispersal limitation. 

 

Once dispersal limitation has been excluded, environmental filtering may 

subsequently be considered. In the context of this research, this step is 

represented by the abiotic attributes that must be present at a site in order 

to facilitate nesting. This would include fundamental characteristics, such 

as, the ground must be diggable, through to attributes that exist on a 
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spectrum, including those most closely considered by this thesis such as 

soil texture and surface characteristics. Other features, including the 

presence of suitable forage within reasonable proximity, would also act at 

this level of the framework. 

 

Competitive exclusion is the next level of the framework and refers to the 

effects of competitors on the establishment of species. The significant 

interaction at this level is the interaction with parasitic species and how that 

drives the organisation of nests within an aggregation. 

 

The final level of the framework is within-site heterogeneity, which 

considers finer scale differences in the abiotic environment. Applying this to 

nesting ecology, it could potentially include considerations such as the 

availability of bare ground within an aggregation or the maintenance of nest 

architectural integrity in areas of high density nesting. 

 

This thesis did not set out to test the theory of environmental filtering and 

the data collected cannot be used to either support or contradict any of the 

associated theories. However, the findings from this study and the theories 

presented, when viewed in light of environmental filtering, as defined by 

Kraft et al (2015) (Fig. 5.1) are interesting. The presence of fossorial bees 

at a site and the spatial dynamics of the nesting sites may be well 

encapsulated by this framework. While more species specific studies are 

required to elucidate any specific ecological needs, if this framework was 

empirically validated, it could offer a more global understanding of solitary 

bee nesting that would be particularly useful for informing top-down 

modelling studies of bee populations.  
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Figure 5.1: The diagram on the left shows the environmental filtering 
framework taken from and defined by Kraft et al, (2015). The diagram on 
the right demonstrates how solitary bee nesting dynamics may fit that 
framework. 

Suitable nest site Natal nest 

   X 
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5.1.5 Future research directions and potential policy implications 

There are a number of research questions that have been raised by this 

work. First, it would be useful to better understand the interaction between 

the provision of suitable nesting sites and the provision of foraging 

resources. For example, how far will different species travel from the nest 

site to access forage? By better understanding this relationship more robust 

conservation strategies can be designed wherein all critical ecological 

resources are provided within suitable proximity. On the question of the 

provision of nesting resources, this thesis has described some of the 

important physical attributes of nesting sites and the next step is to 

decipher whether artificial nesting sites with these particular characteristics 

would be utilised by ground nesting bees. This research would be 

particularly useful in informing some of the ineffective recommendations 

that are currently part of the Irish agri-environment scheme (discussed in 

Chapter 4). Finally, this thesis has focussed on the nesting ecology of 

aggregate nesting species of solitary bee, but many species do not nest in 

these formations and instead establish nests individually, away from 

conspecifics. Future research could focus on this group of species, 

although there would be significant difficulties associated with carrying out 

this work due to the highly cryptic and ephemeral nature of these nests. 

Insights from this thesis go some way to overcoming these issues. By using 

our findings to provide suitable nesting sites, potentially attracting non-

aggregate nesting species into these sites and monitoring them over 

multiple years, we could begin to develop an understanding of the nesting 

requirements of non-aggregate nesting species.  

 

  



 104 

5.2 Concluding statement 
 

This thesis has made significant, original contributions to scientific 

knowledge both in terms of fundamental ecological knowledge and in the 

exploration of methodological approaches, thereby potentially enhancing 

our capacity to protect and conserve wild bees. 

 
With regard to ecological knowledge, this thesis represents the first 

empirical body of work examining the nesting ecology of fossorial bees in 

Britain for more than twenty five years. It is the first piece of research to 

empirically describe the nest site characteristics of the native species A. 

fulva and A. cineraria and the non-native species C. hederae in the UK 

context. It is also the first in the UK to empirically examine nest site 

management strategies for the conservation of fossorial bees and wasps 

and make evidence-informed recommendations for the implementation of 

these strategies in the future. 

 

With regard to research methods, this thesis has presented the first 

instance of the use of citizen science to gather data on fossorial bee nest 

sites. It has validated this approach and demonstrated its efficacy in 

overcoming some of the innate difficulties with gathering fossorial bee 

nesting data. By linking this approach with a field observational study, this 

thesis has shown how traditional approaches can be successful when a 

database of active nest sites is available to the researcher. Finally, this 

thesis has demonstrated that experimental studies are highly effective in 

the context of nesting research and represent an approach by which great 

gains can be made in both the understanding of fossorial bee and wasp 

nesting and in developing and validating management practices for the 

protection and conservation of this important group.  
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