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Abstract  

The global imbalance between the healthcare provider and patient ratio, an increasingly 
elderly population and resource-limited settings have triggered the demand for point-
of-care (POC) platforms, prompting the growth of personalised healthcare and 
homecare solutions. This thesis presents an investigation into an AI-enabled image-
based system to perform automatic colourimetric tests in real-time. The case study of 
wet-chemical-based enzyme-linked immunosorbent assay (ELISA) and dry-chemical-
based lateral flow assay (LFA) were utilised to design and develop an intelligent 
framework for chromaticity analysis with minimal user intervention or additional 
hardware attachments.   

The proposed system was designed by exploring state-of-the-art solutions for each 
component of an image-based colourimetric test, trial and error, and domain 
knowledge. At first, a reaction phase and time-dependent approach was proposed to 
track the dynamic changes in a colourimetric reaction by calculating the Euclidean 
distances. Subsequently, the final static stage of the reactions were considered and the 
images were pre-processed and segmented before applying vigorous noise removal 
techniques. The 10-fold cross-validated classifiers were trained with the optimum 
number of features using supervised machine learning. A completely separate testing 
dataset was utilised while testing the model.  Additionally, a pre-trained model of deep 
learning was deployed to determine the type of colourimetric test, which can be 
integrated into the system where feasible. 

Based on our study, the reaction phase and time-dependent scheme was found to be 
more suitable for wet-chemical-based assays, particularly for low concentration 
samples. In addition to classification, the approach can assist in optimising the reaction 
time.  However, due to the requirement of significant memory space by the video 
frames, the final system consisted of an alternative approach - considering only the 
reaction phase and time-independent scheme. On an ideal condition, the later approach 
provided more than 98% accuracy for colourimetric decision. Furthermore, the 
exploration of a pre-trained deep learning model revealed its strength in the test-type 
detection, instead providing the colourimetric classification. Therefore, deep learning 
was deployed to initiate the system based on the assay type (i.e. ELISA or LFA), which 
provided 100% accuracy.  

The system we demonstrated complies with the ASSURED criteria. As compared to 
the existing systems, the proposed intelligent and robust system with real-time 
processing capabilities has experienced a more extensive course of validation to 
enumerate the reliability of the system. Unlike most of the works in the literature, the 
proposed system provided the colourimetric prediction without any opto-mechanical 
attachment.  Such an easy-to-use and computationally efficient system can be integrated 
into a server or deployed on a mobile platform to create better harmony between 
biochemical and computational complexity and eliminate the subjectivity of 
interpretation.  

Keywords: Colourimetric test, intelligent systems, image processing, feature selection, 
POC system, ELISA, LFA, RDT 
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Chapter 1 

Introduction 

1.1 Background and Motivation  

Recent advancements in the field of widely accessible (GSMA Intelligence, 2017) 

smart personal devices (e.g. Smartphones, Tablets, iPads) have been unprecedented and 

allowed scientists and healthcare professionals to improve our quality of life by leaps 

and bounds. However, the opportunities to exploit this widely accessible technology, 

paradoxically, have not been developed in large parts of the world population due to 

the lack of quality digital healthcare applications, particularly for diagnosis. This 

research aims to investigate the development of an image-based intelligent diagnostic 

test scheme using chromaticity analysis, suitable to be integrated on mobile devices. It 

particularly focuses on the design and development of a comprehensive framework 

which can perform the automatic colourimetric analysis based on user requirements for 

different applications. The proposed system uses hybrid image processing and machine 

learning algorithms to provide a faster solution for a wide range of colourimetric tests 

to automatically separate colours according to its relevance with relatively high 

accuracy, specificity and sensitivity. Two testbeds were chosen to contemplate the 

breadth of colourimetric tests. The proposed scheme has been evaluated, tested and 

validated through a set of experiments. The demonstrated system is capable of 

providing more comprehensive healthcare support where there are no (or limited) 

experts available, particularly in remote locations. 

Socio-Economic Context 

The early diagnosis facility, the disproportional ratio of health professionals (doctor, 

expert, staff, carer) to patients and the advancement of technology have an impact in 

the field of healthcare prompting the sector of mobile phone-based microscopy, assays, 

and sensing platforms for Point-Of-Care (POC) diagnostics (Contreras-naranjo, Wei 

and Ozcan, 2016; Rajan and Glorikian, 2009). There are <1 physician/1000 population 

for more than 44% of the World Health Organisation (WHO) member states (World 

Health Organization, 2017). Even in a developed country such as the UK, there are only 

2.806 doctors for every 1000 people.   
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The longevity of human life has given rise to increasing the understanding of age-

related disabilities and diseases, which can create significant burdens on healthcare 

systems. To support the elderly population, which is expected to increase to 1.91 billion 

in 2050 (P. D. of the Department of Economic and S. A. of the United Nations 

Secretariat, 2012), and limit the spread of pandemics, an intelligent, clearer and easier 

system with the least error-prone diagnosis results is required for both patients and 

clinicians.  

The ratio of health professionals to patients cannot be dramatically changed. However, 

the number of mobile phones and tablets are growing five times faster than the human 

population (U.S. Census Bureau, 2017; GSMA Intelligence, 2017). Therefore, a 

mobile-enabled low-cost POC system could easily reach a wider population quickly. 

The POC devices have the potential to act as cost-effective, autonomous, portable 

diagnosis systems, as well as to detect biological warfare agents, pathogens in animals 

and plants, food and water contamination, environmental such as indoor air quality 

monitoring (Minogue et al., 2014; Liu, Lin and Lillehoj, 2014). Globally, the POC 

testing market is expected to reach over 23.15 billion GBP by 2021 (Research and 

Market and BCC Research, 2016).  

In the absence of expert clinical staff, there is a requirement for systems that are easily 

operable. Such a system could be used by aid workers in remote places to support 

primary health care, in time of epidemic and environmental monitoring for many 

purposes such as identifying safe drinking water. The easy-to-use system could support 

the growing need of the elderly population as well. Moreover, the Artificial Intelligence 

(AI) for the healthcare solution is growing and expected to be 6.6 billion USD by 2021. 

By 2026, an association between health professionals and AI applications can possibly 

save 150 billion USD for the healthcare system in the USA (Accenture, 2017).  

Mobile phone cameras are becoming more powerful every day. The integration of AI 

into mobile phones can administer a technically and financially feasible healthcare 

system. In this way, a smartphone-based expert system would be able to offer 

simplicity, immediacy, non-invasiveness and automatic health risk analysis, diagnosis 

and clinical decision-making process. In the future, temperature, tongue diagnosis, 

retinopathy, facial expressions, skin colour and surface could all be vital parameters for 

such expert systems. However, there are many existing challenges within the recent 
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advances in automatic disease diagnostic tools. The list includes- a requirement of 

blood serum collected by non-professionals, accuracy, reliability, detection time and 

requirement of second confirmatory tests.   

Context of Colourimetric Test 

WHO prefers the diagnostic system to be inexpensive, disposable and easy-to-use 

(Khademhosseini, 2011; Wang, Xu and Demirci, 2010). Such a diagnostic system 

should follow the criteria known as ASSURED (Affordable, Sensitive, Specific, User-

friendly, Rapid and robust, Equipment-free, and Deliverable) (Kettler, White and 

Hawkes, 2004). The colourimetric tests can be considered as a strong candidate to 

accomplish this goal.  

Adoption of colourimetric tests in clinical chemistry goes back to centuries. Newfound 

materials, advances in nanotechnology and optical sensing have opened the door for 

endless possibilities with colourimetric applications, from urinalysis to solving crimes, 

from soil testing to the detection of chemical weapons.  

Acknowledging the broader scope of colour analysis, on close inspection concerning 

the resource-limited settings, however, can impeach the means of colourimetric 

analysis. If a diagnostic result is going to be determined by naked-eye measurements as 

shown by O’Connor, Paterson and de la Rica (2016),  then one should also consider the 

issue of colour vision deficiency, which is widely known as colour blindness. 

Moreover, a complex colour representation such as Matthews et al. (2012) may rely on 

the proficiency of the user. Therefore, the colourimetric tests must be free from the 

subjectivity of interpretation.   

Knowledge Gap and Challenges  

The current point of view in the field is from a number of disciplines; dominated by 

biochemistry, nanotechnology and optoelectronics. Findings concerning such systems 

have presented the prospect of isolated individual colourimetric components but often 

lack in the rigorous detailing of how such a system can be and should be designed. 

Therefore, there is a need for an extensive study to deal with the inadequacy to perceive 

colourimetric tests from the frame of computer vision. The challenges include the quest 

for searching a suitable image processing technique for robust operation of 

colourimetric tests. There is a requirement of knowledge exploration for such 
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techniques to develop a better understanding of colourimetric test data, which can 

facilitate better management of the computational complexity of such data.  

Analysing the extracted features from images of colourimetric tests could help to create 

domain-specific knowledge. Identifying the key features and how the features are being 

analysed can play a crucial role in the core model of a colourimetric Decision Support 

System (DSS). Thus, feature optimisation and feature analysis techniques would be a 

promising contribution.  

Consideration of AI and at the same time resource-limited settings to fulfil the 

ASSURED criteria has compelled us to thoroughly appraise the hindrance to develop a 

low cost computer-aided colourimetric test suitable for mobile devices. The influence 

of mobile phones has drawn the attention of many researchers recently. However 

mobile devices have limited memory, processing and power capacity. Thus, there is a 

need for a system that is computationally inexpensive. The key challenge would be to 

develop a robust system for any colourimetric test with better accuracy, efficiency and 

flexibility. To design, develop and deploy an intelligent colourimetric test scheme in 

'real time' without any additional hardware attachment is going to be the biggest 

challenge because the result has to be produced with the camera and processing capacity 

of mobile devices. The dominant paradigm in AI is the adoption of server-based 

approaches.  

While it is true that a server-based colourimetric test can assist in telepathology and 

compensate the limited capacity of the mobile devices, it could be argued that such 

system can restrict anytime anywhere access and be vulnerable to cybercrimes. 

Consequently, it contradicts with ‘deliverability’ of the ASSURED criteria. Therefore, 

there is a need for a system that is efficient as a stand-alone system for the mobile device 

and does not conflict with the idea of server-based application either.  

Homecare and resource-limited settings including field operation would require a 

system to be simultaneously easy-to-use, flexible, portable and robust. Many 

researchers have insisted on mobile-enabled rapid colourimetric tests. For the 

application in medical diagnosis, colourimetric tests are in vitro and not an auxiliary 

test, more often a confirmatory test.  Real-time execution of a robust colourimetric 

system while maintaining high accuracy in the mobile device is a crucial impediment.  
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1.2 Research Questions 

The key research question of this study is:  

How to develop an intelligent image-based real-time colourimetric test framework 

for diagnosis? 

The key research question can be articulated as the following sub-questions:  

Q.1: How to design and develop an intelligent, robust and real-time processing 

framework for the dynamic changes in a colourimetric test?  

Q.2: How to design and develop an intelligent, robust and real-time processing 

framework using a static image of a colourimetric test? 

1.3 Aims and Objectives 

The broader objective of this thesis is therefore to address the above questions:  

To develop an intelligent framework which can perform the automatic 

colourimetric analysis in real-time using their personal devices based on users’ 

requirements for medical diagnosis. 

The primary objective can be subcategorised into the following specific objectives: 

Objective #1: To investigate and critically observe images of colourimetric tests and 

provide the colourimetric decision considering the change of colours throughout the 

reaction using video-frames analysis.   

Objective #2: To investigate and strategise a completely automatic and 

computationally efficient image processing framework, perform feature selection and 

feature optimisation for wet-chemical and dry-chemical colourimetric assays. 

Objective #3: To investigate the AI algorithms and their suitability to develop the 

proposed colourimetric test framework.  

Objectives #4:  To develop a decision-making scheme to provide anytime anywhere 

real-time colourimetric test results. 
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1.4 List of Contributions 

The research contributions of this doctoral work are as follows:  

1) The investigation into an automatic colourimetric detection framework that fulfils 

the ASSURED (Affordable, Specific, Sensitive, User-friendly, Robust, Rapid, 

Equipment-free and Deliverable) criteria to test wet-chemical-based Enzyme-Linked 

Immunosorbent Assay (ELISA) and dry-chemical based Lateral Flow Assay (LFA). It 

is worth mentioning that most of the other approaches in the literature attempted to 

address ASSURED criteria with some constraints and limitations.  

2) The pseudo-control colours have been proposed as a novel feature-set to be 

considered along with the rest of the features, i.e. lower order colour moments to 

perform classification of paper-based assays.  

3) A new approach is proposed for colourimetric classification using video-frame 

analysis by tracking the colourimetric reaction. 

4) An innovative approach is proposed using advanced machine learning (deep transfer 

learning) algorithms for assay type detection. 

5) The state-of-the-art technologies are explored to identify the research gap for 

colourimetric tests.  

1.5 Case Studies for Validation of the Concept  

Case Study 1 

This thesis investigates an intelligent plasmonic ELISA based Tuberculosis (TB)-

specific antibody detection as the first case study and refers to this case study as TB-

test. To the best of our knowledge, this is the first attempt to use this case study for 

image-based automatic colourimetric detection1. The conventional plasmonic ELISA 

based techniques produce colours for positive and negative samples. However, making 

a final decision based on the colour appearance is not always accurate. Therefore, this 

thesis aims to provide a proof-of-concept for an intelligent wet-chemical-based 

                                                

1 This case study is part of the research project, ‘TB-Test - A smart mobile enabled scheme for 
tuberculosis testing’. This research was supported by British Council Newton Institutional 
Links and Newton-Ungku Omar Fund (Grant ID: 216385726) and was a collaboration between 
Anglia Ruskin University (UK) and Universiti Putra Malaysia (Malaysia). The final outcome 
of the project was devised as an Android application to perform TB-test. The mobile application 
itself is not part of this thesis.  
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qualitative colourimetric tests suitable for POC platform that takes the final decision 

based on the colour analysis using the case study of TB-test. 

Case Study 2 

This thesis considers a dry-chemical based or microfluidic LFA using universal pH 

indicator paper as the second case study. The case study of ELISA and LFA varies 

regarding the geometric features, result type, materials and colours. The second case 

study is chosen due to its stability as compared to the first case study. This case study 

can presumably assist in creating a more consistent dataset so that external factors can 

be analysed with more certainty and the result of the overall system can be claimed with 

more confidence. We acknowledge that due to the nature of the assay type this case 

study may require some corrections in the image processing scheme. Being a dry-

chemical assay, the feature-set probably can be downsized, and we will also examine if 

the same classifier can be used or not. Moreover, the nonexistence of an analogous 

system to the first case study in the literature constricted this research to illustrate any 

comparative analysis. The prevalence of similar case studies as the second case study 

in the literature will enable us to perform a fair comparison with the existing works. 

1.6 Organisation of the Thesis 

Chapter 2 provides an overview of the colourimetric test from the perspective of 

computer vision by describing different aspects of a colourimetric test in the context of 

image processing. The state-of-the-art systems are inspected and described by order of 

associated components. Based on the literature, this chapter portrays the rationales 

behind the thesis.  

Chapter 3 manifests the problem of image-based colourimetric test for POC platform.  

This chapter depicts a high-level illustration of the adopted research methodology and 

research design.  

Chapter 4 evaluates the capacity of deep learning models to perform a colourimetric 

test on the POC platform in real-time. In the proposed framework, the pre-trained model 

of the deep neural network is a discretional layer to detect the type of an assay.  

Chapter 5 presents the case study of an intelligent wet-chemical plasmonic ELISA to 

determine the presence or absence of TB bacteria. This chapter considers the above 
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mentioned specific objects and discusses each objective by analysing the experimental 

results. Considering the dynamic changes in the images of TB-test, this chapter aims to 

provide a unique solution as part of the research contribution. Furthermore, exploring 

the images of the end point of TB-test, this chapter examines the scope of delivering a 

high performing, easy-to-use, robust and rapid system that is suitable for the personal 

devices. 

Chapter 6 presents the case study of an LFA using universal pH indicator paper. This 

chapter aims to provide a proof-of-concept for a dry-chemical based or microfluidic, 

stable and semi-quantitative assay using a larger dataset with diverse conditions. The 

purpose of this chapter is to deliberately examine the scope of an intelligent 

colourimetric test that fulfils ASSURED criteria and demonstrate the claim as well.  

The chapter also asserts the contribution regarding the pseudo-control colour.  

Chapter 7 summarises the contributions of this doctoral research and indicates the 

future scope. 
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Chapter 2 

Literature Review  

2.1 Introduction  

The world surrounded by colours is nothing but a characteristic of human visual 

perception. Thus, analysing colours on a mobile platform can open the door for colour 

painting by toddlers to the detection of oxidised proteins in an Alzheimer patient’s 

brain. Such applications are exemplified in Section 2.2. In Section 2.3, this chapter 

presents an overview of the colourimetric test from the perspective of computer vision. 

The strengths and weaknesses of the computer-aided system using different approaches 

(e.g. hardware attachment, mobile) in the literature are discussed in Section 2.4. This 

chapter also explores the algorithms used in the literature for colourimetric tests to 

discuss the methods and their performances in Section 2.5. Based on our research goal, 

this chapter critically assesses the research gap in the state-of-the-art systems in the 

reported articles with the aid of the evaluation criteria (Section 2.6). Finally, a 

discussion is provided in Section 2.7 regarding the justifications for this research. 

2.2 Applications of Colourimetric Test  

When it comes to colourimetric assays for medical diagnosis, a wide range of rapid, 

visual readout, quantitative detection, low cost and robust systems have been utilised in 

the literature (Guo et al., 2016; Koo, Wee and Trau, 2016; Barbosa et al., 2015; Berg et 

al., 2015; Cate et al., 2015; Giavazzi et al., 2014; Yetisen, 2014; Yetisen, Akram and 

Lowe, 2013; You, Park and Yoon, 2013; Mavandadi et al., 2012; Lin and Scott, 2012b; 

Pollock et al., 2012; Wang, Xu and Demirci, 2010). These are the tests that comply with 

the research aspiration because bringing these tests on mobile-enabled POC platform 

can benefit millions of people and provide ease of use and portability. For visualisation 

of various assays to perform colourimetric tests, a few examples are shown in Fig. 2. 1.  

The motivation of this thesis is related to resource-limited settings and personalised 

healthcare. Lateral flow assays are well-suitable for homecare settings and are widely 

used for a home pregnancy test, where a paper-based inexpensive device can determine 

the existence of a target analyte in a liquid sample. The assay type is frequently referred 
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to as a dry-chemical based assay or a microfluidic assay. An example is shown in Fig. 

2. 1(c), which can also be referred to as a Rapid Diagnostic Test (RDT) reader.   

   

(a) (b) (c) 

Fig. 2. 1: Example of colourimetric tests. (a) Bradford protein assay2, (b) Reaction 

kinetics of alkaline phosphatase on paper3, (c) Rapid diagnostic test reader for 

Chikungunya detection4 

The RDT is an early, easy and fast diagnostic tool, which can promote effective 

monitoring of a chronic condition, assist in epidemic readiness and drug abuse (Banoo 

et al., 2006; Wongsrichanalai et al., 2007; Dinnes et al., 2007; Okeke et al., 2011; 

Cooper et al., 2012; Ozkan and Kayhan, 2016). It can be supervised by less experienced 

or trained medical personnel, but it can provide a precise diagnosis. However, the 

availability of the reader, know-how protocol, cost and device compatibility are some 

of the issues which require more progress. Thus, a computer-aided rapid test reader 

would be much more preferable.   

For healthcare applications, the conventional system operate in the hospitals and 

diagnostic centres are currently bulky, expensive and expert-oriented. Therefore, this 

chapter does not include those conventional practices, instead focuses on the state-of-

the-art systems and system components in the literature that matches with our research 

                                                

2 Courtesy: Dr Grisha Pirianov, Department of Biomedical and Forensic Science, Anglia 
Ruskin University, UK 
3 Courtesy: Dr Mohidus Samad Khan, Department of Chemical Engineering, Bangladesh 
University of Engineering and Technology, Bangladesh 
4 Courtesy: Dr Iqbal Kabir, Department of Epidemiology, National Institute of Preventive and 
Social Medicine, Bangladesh 
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aim. It should also be noted that colourimetric tests are well utilised for diverse 

applications beyond diagnosis; a broader context is exemplified in Table 2.1. 

Table 2. 1: Potential field of application of intelligent colourimetric tests 

Field Application Reference 

Medical 

diagnosis and 

health status 

confirmation  

 

Prostate Cancer Koo, Wee and Trau (2016), Welch 

and Albertsen (2009), de la Rica and 

Stevens (2012) 

Urinalysis  Smith et al. (2016) 

Kidney diseases  Akraa et al. (2018) 

Diabetes  Arnett et al. (2016) 

Pregnancy and 

complications  

Bu et al. (2018), Konnaiyan et al. 

(2017) 

HIV de la Rica and Stevens (2012) 

Dengue Matthews et al. (2012) 

Malaria Wongsrichanalai et al. (2007) 

Environmental 

monitoring 

and quality 

control 

Mercury in water Chen et al. (2016), Wei et al. (2014) 

Pesticides in water Sicard et al. (2015) 

Water hardness Bhattacharjee, Jiang and Behdad 

(2015) 

pH and nitrate in water Lopez-Ruiz et al. (2014) 

Iron test in soil and 

water 

Choodum, Sriprom and 

Wongniramaikul (2019) 

Indoor air quality  Qin et al. (2015) 

Drug 

discovery  

Structural relationship 

between material  

Facchini et al. (2018) 

Food industry  Meat quality Magiati et al. (2019) 

Pasteurisation of milk Yu et al. (2015) 

Antibiotics abuse in 

animals 

Yan et al. (2018) 

Food allergen  Coskun, Ahmet F.Wong et al. (2012) 

Iron detection in white 

wine  

Santos Neto et al. (2018) 
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2.3 Colourimetric Assay Types 

Conventionally, the assay types can be defined based on time point, number of analytes, 

signal amplification method, type of the substrate and format of the result. Regarding 

the detection method, this work considers the assay involving visible colour spectrum 

only. This thesis explores the assay types from a computer vision and machine learning 

perspective and how it relates to the nature of the assay process.  

To the best of our knowledge, the existing works (mentioned in this chapter) on 

computer-aided colourimetric measurements consider only a single or set of specific 

applications for some particular domain (Karlsen, 2018; Yetisen, 2014). By computer-

aided system, this thesis refers to full or partially automatic system utilising either a 

desktop, a server or a mobile application. This thesis aims to explore colourimetric test 

from a unified perspective, rather a single application (Table 2.1). Therefore, it is 

essential to understand that, within this domain, the assays can greatly vary in terms of 

purpose, materials, size, shape and colour. For a better visualisation of the context, this 

chapter mainly uses images from our case studies.  

2.3.1 State of Matter 

Based on the state of the matter, the colourimetric assays can be either dry or wet 

chemicals based. Both of these assays are well utilised in the reported articles (Alankus 

et al., 2018; Sicard et al., 2015; Lin and Scott, 2012b; Matthews et al., 2012). The state 

of matter is an important consideration because based on the critical review conducted 

in this thesis, the physical state of the sample can dictate the overall system regarding 

image processing algorithm and feature-set.  

Bacteria in food Zheng et al. (2018) 

Forensic 

science and 

criminal 

investigation  

Age of bloodstain Shin et al. (2017) 

Driving under the 

influence of alcohol  

Kim et al. (2017) 

Cocaine detection Smith et al. (2014), Cooper et al. 

(2012) 

Materials 

science 

Arc-welding  Serrano et al. (2016) 

Textile  Smart-textile Promphet et al. (2019) 
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(a) (b) (c) 

Fig. 2. 2: Example of assay types. (a) Plasmonic ELISA for TB-antigen specific 

antibody detection, (b) Urine dipstick, (c) ELISA for analysing pro-inflammatory 

protein production (IL-6)5 

In Fig. 2. 2, (a) and (c) are wet-chemical-based ELISA images. It can be heavily affected 

by the ceiling light, which will act as noise during image processing. Sicasys Software 

GmbH (2017), a commercial mobile application on the quantitative colourimetric test, 

has highlighted this particular issue for wet-chemical-based assays. Conceptually, it can 

be well understood that liquid surface can easily be affected by surrounding light 

reflectance. Fig. 2. 2(b) is an image of a dry-chemical based lateral flow assay. 

Although the ambient condition should less affect the dry-chemical based assays, many 

of the recent works have utilised additional hardware attachments (Appendix B.1).   

If the wet samples are placed in a transparent or translucent plate, the image of the assay 

would also have to deal with the shadow of the colours spread across the empty space 

of the plate. Sicasys Software GmbH (2017) referred to this issue as the smearing effect.  

A wet-chemical-based assay can be subject to the shape of the container, i.e. well. In 

Fig. 2. 3(a), TB-test samples are placed in a plate, where the wells have a flat bottom. 

For better demonstration, natural food colours were placed in the same variety of assay 

plate in Fig. 2. 3(b). The samples in Fig. 2. 3(a) and (b) vary in viscosity. Intentionally, 

a minor variation was created within the food colouring as well. The variation is 

apparent from two rows of Fig. 2. 3(b).  

                                                

5 Courtesy: Charys Palmer and the Department of Biomedical and Forensic Science, Anglia 
Ruskin University.  
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(a) (b) (c) 

Fig. 2. 3: Variation in shape of the container. (a) TB-test in a flat plate, (b) Food 

colour in a flat6 plate, (c) Food colour in a round plate6 

On the other hand, by observing the images in the reported articles (Chen et al., 2016; 

Matthews et al., 2012) for various types of assay, this work assumes that, despite the 

materials used, the colour formation and brightness of the chroma component (Fig. 2. 

4) of a sample can play a vital role in a computer-aided colourimetric decision.  

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8 9 10 11 12

  

(a) (b) 

  

(c) (d) 

Fig. 2. 4: Visualisation of the impact of colour concentration. (a) Schematic diagram 

of an assay plate, (b) Variation of the brightness of the same colour or chroma, (c) 

Sample with light colour concentration, (d) Sample with a bright colour concentration  

In both Fig. 2. 4(c) and (d), the concentration of hydrogen peroxide and gold ions were 

varied in A to H direction (see Fig. 2. 4(a)) of the assay plate. The difference between 

                                                

6 The images were generated as part of this thesis to visualise the impact of colour concentration 
and shape of the well.  
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Fig. 2. 4(c) and (d) is the brightness in colour or colour concentration. This research 

assumes that the issue of colour concentration can be more crucial for a computer-aided 

quantitative assay without any hardware attachment. 

2.3.2 Colourimetric Result Evaluation Process 

The conventional method defines the type of the result as the qualitative, semi-

quantitative and quantitative assay, which are re-defined in this section for an intelligent 

system.  

Binary Classification 

A qualitative assay determines the presence or absence of a substance. The result 

obtained from a qualitative test would be in yes or no form. Therefore, it is a binary 

class classification problem. An example is shown in Fig. 2. 5(a).  

   

(a) (b) (c) 

Fig. 2. 5: Object, target and sample in an image of a colourimetric test. (a) TB-test: 

image contains six filled wells. In other words, there are six samples. From the 

computer vision perspective, there are six objects. (b) pH indicator paper: four objects 

separated by blue boxes belong to the same pH test, (c) Multiplex assay: each object 

is directed to a different target  

Although qualitative assays find widespread applications in the various domain, the 

most well-known application of this assay would be the pregnancy test strip to detect 

Human Chorionic Gonadotropin (HCG).  

In theory, the two classes of a qualitative assay should use colour opponents. In this 

way, the assay would provide a naked-eye detection. For a person with no or less 

medical training, the conventional colourimetric result may be complicated to interpret, 

for example, the medical patch used by Matthews et al. (2012). Therefore, the use of 
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mobile-enabled dengue detection proposed by Matthews et al. can support non-medical 

personnel to understand the presence or absence of dengue virus from the binary 

classification provided by their system.  

Multi-class Classification 

The semi-quantitative assay is in between a qualitative and a quantitative test, yielding 

an approximation of the quantity or amount of a substance. The result can be compared 

with a colour chart by a naked-eye measurement. The clinicians use analysers such as 

CLINITEK Status+ Analyzer (Siemens Healthcare GmbH, 2018). This type of test can 

be seen as a multi-class classification problem as well as a regression problem. An 

example is shown in Fig. 2. 5(b). 

Semi-quantitative assays have drawn a lot of attention for computer-aided colourimetric 

quantification (Kim et al., 2017a; Mutlu et al., 2017; Alankus et al., 2018; Solmaz et 

al., 2018). Mutlu et al. (2017) provided the semi-quantitative colourimetric 

quantification of fifteen pH levels (0-14) or classes.  

Although the Quantofix Peroxide 100 is supposed to classify only six concentration 

levels of H2O2 (0, 1, 3, 10, 30 and 100 ppm), Solmaz et al. (2018) added five secondary 

concentration levels (0.5, 2, 6.5, 20 and 65 ppm) to increase the number of classes. In 

the absence of an elaborate description, we assume that the images of the test strips 

containing corresponding colours for these secondary classes can be considered as 

synthetic data, which may have reliability issue in a real-life scenario.  

Research demonstrated in Kim et al. (2017) used paper-based assay to classify five 

standard concentrations of alcohol as well as nine classes by using intermediate 

enhanced concentration level. Due to the purpose and nature of the assay, the standard 

concentration is not an integer value, which is not a concern while performing 

classification, however, might be a point of interest for more elaborate research while 

using the intermediate values.  

Similar to Kim et al. (2017), Alankus et al. (2018) also used class labels of fraction 

numbers to classify six concentration levels of phosphate in water. Nevertheless, the 

number of classes is related to the choice of the classifier and needs to be considered in 

the context of the curse of dimensionality (Bellman, 1961, 2003). Therefore, care 
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should be given while implementing machine learning algorithms for these 

colourimetric detections.  

Regression 

Quantitative assay helps in determining the amount of a substance, which can be seen 

as a pure regression problem such as mercury detection in water (Chen et al., 2016) and 

tracking HE4 biomarker to detect ovarian cancer (Lin and Scott, 2012b). The case 

studies of this thesis mainly focus on the qualitative and semi-quantitative colourimetric 

test. Therefore, while reviewing the literature in this chapter, more attention is provided 

towards the classification-based systems. Conceptually, the image processing 

framework used for a qualitative and semi-quantitative assay can also be used for a 

similar quantitative assay. An example of a quantitative assay is shown in Fig. 2. 2(c). 

In this case, instead of classification, the colourimetric decision has to be produced by 

regression due to the result-type.  

2.3.3 Number of Objects per Sample 

Based on the number of analytes, the assay can be single target or multiplex. However, 

this work considers the sample in image format. Therefore, it is essential for the 

decision making process to realise the number of objects associated with a single 

sample.  

Single Object per Sample 

In Fig. 2. 5, single sample is outlined with a red box, where the single object or well 

represents a single sample and a single test. In Fig. 2. 5(a), single sample implies sputum 

of an individual and single test indicates the plasmonic ELISA for TB-antigen specific 

antibody detection.  

In the literature, most of the work considers the assay as a single object/ sample (Kim 

et al., 2017a; Solmaz et al., 2018). Despite being a single object/ sample kind of assay, 

an assay can hold multiple samples. For an image of a 96-well plate, there can be 

multiple samples (maximum 96 samples).  The assay types are shown in Fig. 2. 5(a) 

and Fig. 2. 2(c). There are mobile applications available in the commercial app-stores 

which can act as a plate reader such as AssayColor (Alidans srl, 2015) and Spotxel® 

Reader (Sicasys Software GmbH, 2017b). Both of these mobile applications can 
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process multiple samples in an assay plate, treating each sample as a single object. 

However, these mobile applications utilise virtual plate to deal with a 96-well plate.   

Multiple Objects per Sample 

In Fig. 2. 5(b), multiple objects belong to a single sample as well as a single test, i.e. 

pH 3 and are collectively responsible for producing a decision. If these objects are to 

be detected individually (outlined in blue boxes), then the feature-set would require to 

be multiplied by the number of objects/ sample. Although the feature-set can be 

elongated, it is not logical to consider all four colour chambers as one object because it 

would contradict the purpose of the assay type. Multiple objects per sample type of 

assays are available in the literature as well (Matthews et al. 2012; Mutlu et al. 2017; 

Sicard et al. 2015).  

Multi-test per Image and Single Object per Test 

The multiplex assays are capable of performing multiple tests on a single sample 

(Devadhasan and Kim 2018; Lopez-Ruiz et al. 2014), e.g. urine of an individual. 

Therefore, each object, block or colour pad in Fig. 2. 5 (c) represents different test type 

such as glucose, pH, protein and ketone. 

2.4 Computer-aided Colourimetric Test  

The focus of this thesis is a computer-aided colourimetric test. For the convenience of 

describing different approaches taken in the reported articles, this work categorises the 

methods into the following four groups: systems with additional hardware attachments 

(Appendix B.1), proof-of-concept provided as a desktop application (Appendix B.2), 

mobile-enabled systems (Appendix B.3), and server-based approach (Appendix B.4). 

Each of these approaches has its own strengths and weaknesses.  

By analysing the systems with hardware attachments in Appendix B.1, the following 

observations for colourimetric tests on POC platforms can be summarised.  

The optomechanical attachments (Akraa et al., 2018; Yang et al., 2018; Kim et al., 

2017a) for the personal devices present considerable advantages to provide a 

colourimetric test result. In some cases, the systems utilised small attachments which 

are capable of offering portability. However, regardless of being portable, in most cases, 

the additional attachments resulted in a bulky system.  
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Due to the position and size of these attachments (Appendix B.1), they can hold a 

compartment to place the sample and control, and components to facilitate minor heat-

treatment. Many additional attributes of these optomechanical attachments are not 

directly associated with the colourimetric tests. However, these facilities could be 

beneficial for an extended research goal to develop an expert system which can benefit 

from fluorescence, spectroscopy, lens-free imaging and holography.  

The optomechanical attachments often possess 3D-printed components (Chen et al., 

2018a; Skandarajah et al., 2014; Ludwig et al., 2015). 3D-printing can offer precise 

measurement, and the cost of these printed components can be often downsized, 

however, it raises a concern regarding the accessibility of these printed components and 

the cost of a 3D-printer itself.  

These optomechanical attachments (Appendix B.1) might be light-weight, but the 

convenience of attaching, as well as detaching, these components to and from the 

mobile devices by non-technical personnel and durability of these hardware 

components are yet be discovered.  

The assays are often placed inside a box to protect the sample or biochemical reaction 

from the ambient air (Appendix B.1). Such attachments would be beyond the scope of 

this thesis. The biochemists or nanotechnologists may find a better solution in future to 

develop these assays for homecare solutions without requiring the samples to be placed 

in a box. With the advancement of label-free assays, it can be predicted that such assays 

would be more popular in the coming years. This thesis is more interested in 

investigating if the boxes along with the other hardware attachments are aiding the 

imaging conditions. For instance, the hardware attachments can channel the light, 

increase the brightness to ease the image processing mechanism and aid in noise 

cancellation so that the machine learning algorithms can perform well.  

The images captured with the aid of these attachments (Appendix B.1) are supposed to 

be of high-quality, noise-free, correctly positioned and often in a magnified condition. 

It would be unfair to provide a direct comparison of the colourimetric images captured 

by a system without any hardware attachments. Mutlu et al. (2017) conducted a 

colourimetric classification to identify the pH level using a mobile phone with and 

without such an additional attachment. The result obtained by Mutlu et al. indicated that 
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it is possible to achieve equally good performance without any additional hardware 

attachments. However, no description was provided for the image processing algorithm 

with which Mutlu et al. achieved this performance. Therefore, it can be assumed that 

Mutlu et al. either manually cropped the image, or did not extensively consider the 

impact of the background other than the Region of Interest (ROI). Moreover, the study 

involved a paper-based assay. Hence, whether a good performance can be achieved for 

liquid samples without any optomechanical attachment or not− is yet to be explored.  

A proof-of-concept for a computer-aided colourimetric test is often provided as a 

desktop application (Appendix B.2) rather on a mobile platform or any standalone 

device. Conceptually, if an algorithm is efficient enough, it can be developed as a 

mobile application. Our research suggests that, in such cases, the algorithm would have 

to comply with the limited capacity of the mobile devices.  

Critically reviewing the mobile-enabled systems for colourimetric tests in Appendix 

B.3, the following observations were made.  

Mobile-enabled systems possess enormous potential to provide a colourimetric 

decision. Studies (Appendix B.3) suggest that these systems can provide equal or even 

better performance than the conventional methods, which need to be validated by 

testing these claims on an ample amount of samples.  It is quite common to repeat a 

scientific experiment for only three to five times for reliability. A computational system 

tested on such a small number of samples (Appendix B.3) while validating the system 

may not be a reliable system.   

The literary works often take advantage of the available mobile applications to capture 

or process colours (Karlsen and Dong, 2017; Wu et al., 2015). On the other hand, for 

colourimetric tests, the use of a wide range of mobile phone camera resolutions is 

noticeable in the reported articles (3.2-20.7 megapixels). Shen, Hagen and Papautsky 

(2012) reported from the International Telecommunication Union that the majority of 

the mobile phone subscribers in 2011 possessed standard camera features of 3–8 

megapixels. In the past few years, personalised devices including the mobile phone 

camera in terms of hardware and software has shown enormous growth; on the other 

hand, advanced mobile devices are now available at a cheaper price than in 2011.  
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The early research using low-resolution cameras have reported poor performance as 

compared to the recently published studies (Appendix B). However, the success 

attained in the recent articles could be due to better algorithms, feature selection and 

processing power, rather that only for the use of a high-resolution camera.  

Studies have been conducted on various platforms including Android, iOS and cross-

platform (Appendix B.3). Due to inter-disciplinary interest in the colourimetric test and 

prospect of commercialisation, the reported articles often did not disclose or provide 

any detailed discussion regarding the technicalities of these mobile-enabled schemes.  

The reported articles (Appendix B) also often neglected to report or to evaluate the 

statistical performance in addition to accuracies, such as specificity and sensitivity. 

Moreover, the computational time was not taken into consideration by many.  

The reported articles often utilise a server to process a colourimetric test result and send 

the result to others (Appendix B). Many researchers compensated for the drawback of 

limited storage, battery and processing capacity of the mobile devices by conducting 

partial or full processing in the server.  

Data portability is one of the advantages of such a server-connected system because the 

test result can be easily shared among patients, their families and health professionals.  

Reinforcement learning (Sutton and Barto, 2018) can be more easily integrated with 

server-based systems. Moreover, a server-based system can readily benefit from 

database and knowledge-base. The geo-tagging can also be evidently incorporated into 

such systems. In this way, a server-based system can offer more enhanced and robust 

performance and more conveniently trained for a new situation. 

Health data could be sensitive information. A system with patient records requires 

protection from cyber-crimes. Hence, a server-based approach can be less secure and 

more expensive than the stand-alone approaches.  

In 2012, a study (Matthews et al., 2012) showed that there is a trade-off between power 

consumption and computational complexity to perform a colourimetric test using a 

server and on mobile devices. The server-based approach can salvage power 

computation on the native devices by taking more time to process an image of a medical 
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patch for dengue detection. By comparing the computation time in a stand-alone as well 

as a server-based system, Kim et al. (2017a) reported the server-based system to be two 

times slower than the stand-alone system. The study (Kim et al., 2017a) involved paper-

based test strips of the single object per sample for saliva alcohol detection on a mobile 

platform using an additional hardware attachment. Our research suggests that the 

computation time can be more affected for wet-chemical-based assays, an image 

containing multiple samples or if it is a multiplex assay and if any heavy image 

processing algorithm is integrated to compensate for the absence of the hardware 

attachment. Therefore, one needs to consider the aforementioned issues before entirely 

relying on a sever-based system.  

2.5 Methods and Algorithms  

Exploring different approaches for the computer-aided colourimetric test in Section 2.4, 

this section intends to provide an overview of the image processing and classification 

methods used in the literature for similar context.  

2.5.1 Image Acquisition  

Image acquisition is an essential step in an image-based system. The early stage and 

conventional studies often acquired images by a flatbed scanner (Suslick, Rakow and 

Sen, 2004; Mazzone et al., 2007, 2013; Zhong et al., 2018). Images acquired by such 

scanning involuntarily solves the issue with lighting condition and camera to sample 

position. However, flatbed scanning is not suitable for wet-chemical-based assays. This 

thesis assumes, the assays which can be analysed from the images acquired by flatbed 

scanners can also be analysed from the images captured by mobile phones.  

The imaging condition can undoubtedly influence the image quality as well as colours. 

A wide range of smartphone camera specifications along with intrinsic and extrinsic 

parameters has been explored in the literature such as the International Organization for 

Standardization (ISO), flash and focus. Such explorations are exemplified in Table 2. 

2.  

Our research assumes, due to the advancement of hardware as well as software 

components of the phone camera, these parameters can be set to the automatic mode. 

For field operation, the systems would be exposed to the ambient illumination condition 

to capture images. Day by day in future, with an advancement of technology, high 



 

23 

 

powered cameras in the mobile devices will be more accessible, and the internal 

software of the phone camera will be more capable of adjusting the camera parameters 

according to the ambient condition.  

Table 2. 2: Variability regarding imaging 

Premise  Parameter Specifics 

Camera 

parameter 

Resolution 

(MP) 

Low: 3.2 (Cooper et al., 2012) 

High: 20.7 (Kim et al., 2017a) 

ISO Varying from 50 (Alankus et al., 2018) to  

800 (Karlsen 2018; Lopez-Ruiz et al., 2014). 

Auto (Karlsen 2018) 

Other 

parameters 

Constant (Mutlu et al., 2017) 

Auto (Solmaz et al., 2018) 

Camera to 

sample 

position 

Distance Low: 5cm (Yetisen et al., 2014) 

High: 2 feet (Feng et al., 2014) 

Exposure 

(Angle) 

Parallel (Alankus et al., 2018) 

Tilted (Karlsen and Dong 2017) 

The image acquisition techniques can influence the gap between training and testing 

datasets (Mutlu et al., 2017; Sicard et al., 2015; Wang et al., 2016b). Therefore, a 

computer-aided colourimetric test should aim for the requirement of minimum fine-

tuning in case of such variations including the variations due to the change of platform.   

2.5.2 Image Processing 

This thesis refers to the term image processing as part of the data pre-processing using 

computer vision. Ideally, image processing would be comprised of image pre-

processing, segmentation and post-processing. Not many works in the literature on 

colourimetric tests have reported to use automatic and intelligent image processing 

algorithms. Only a very few (Karlsen and Dong, 2017; Jonas et al., 2016; Lopez-Ruiz 

et al., 2014; Matthews et al., 2012) have utilised image segmentation techniques, such 

as Otsu’s method (Otsu, 1979), Hough transformation (Fernandes and Oliveira, 2008), 

contour detection (Thevenaz and Unser, 2008) and custom made hybrid algorithms. 
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The task of image processing algorithm is often reduced or subsided as exemplified in 

Table 2. 3. 

Table 2. 3: Alternatives to image segmentation  

Application Additional 

hardware 

Full 

image  

Referencing Cropping  QR 

code 

Virtual 

guideline 

Reference  

H2O2 No No No Yes No No Solmaz et 

al. (2018) 

Urinalysis Yes Yes No No No No Akraa et 

al. (2018) 

Yes No No Yes No No Rahmat et 

al. (2018) 

pH test No No No Yes No No Mutlu et 

al. (2017) 

Saliva 

alcohol 

Yes No No Yes No No Kim et al. 

(2017a) 

Blood test Yes No No Yes No No Kim et al. 

(2017c) 

Water test No No No Yes No Yes Sicard et 

al. (2015) 

Wet-

chemicals 

Yes No No No No Yes Vashist et 

al. (2015) 

Alkaline 

phosphate 

Yes/No No Yes No No No Yu et al. 

(2015) 

Blood test Yes/No No No No Yes Yes Feng et 

al. (2014) 

The reported articles often used colour calibration as part of the image processing 

algorithm (Akraa et al., 2018; Konnaiyan et al., 2017; Yetisen et al., 2014). The study 

performed by Yetisen et al. (2014) showed that the calibration requirement could cost 

a system to consume more time to produce a colourimetric decision.  

The colourimetric test is not an auxiliary diagnosis, instead a confirmatory step for 

medical diagnosis. Thus, dependency on lighting environment condition and devices 

could be crucial for such cases. In the case of medical imaging, where the coloured 



 

25 

 

images are captured in ambient condition, the effect of illumination condition is studied 

elaborately. Within the context, a discussion is provided in our earlier study on tongue 

imaging (Tania, Lwin and Hossain, 2018). The doctoral research of Wang (2013) in a 

similar context showed the difference in the illumination condition can create a vast 

diversity in the imaging condition. Our research suggests that this diversity can result 

in the requirement of alteration in the image processing algorithm, feature-set, 

parameters of the classification and regression algorithm. One should expose the 

machine learning algorithm to a diverse dataset to make the system robust, but of 

course, cannot possibly train the system for all possible conditions. Therefore, in the 

absence of a universal colour correcting algorithm the aim should be to either include 

reinforcement learning so that the system can learn from new conditions or be retrained 

without compelling to fine-tune the algorithm.  

Analysing the articles above on image-based colourimetric tests, it can be concluded 

that the computer-aided system can benefit from more advanced image processing 

algorithms, rather relying on hardware attachment, which will increase the cost of the 

system, limit the flexibility for the user and restrict the accessibility of the system. On 

the other hand, manual or guided cropping of the sample would require the user to 

possess some technical skills. The use of a virtual overlay on the assay can certainly 

simplify the image processing algorithm. However, these virtual plates with specific 

dimensions of the assay as well as sample positioning may restrict the user. In order to 

automate the complete image processing procedure, there is a scope of improvement to 

design a framework which is computationally efficient to be implemented on the mobile 

devices. Therefore, it is necessary to further explore the image processing algorithms 

used for other applications that deal with colours to evaluate the possible employment 

for colourimetric tests.  

2.5.3 Colourimetric Classification and Decision 

An image-based colourimetric detection algorithm would require to consider the 

relevant attributes to be analysed. For the systems incorporating machine learning 

algorithms, one would require to make certain considerations regarding the dataset as 

well. A quantitative colourimetric test will require to perform regression, rather 

classification.  
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Dataset and Sample Selection 

A biochemical procedure is more conventionally repeated three times for reliability and 

reproducibility to avoid anomalies. A colourimetric sample could be expensive data and 

often requires a controlled environment; the experiments could be time-consuming as 

well. On the other hand, an intelligent system using machine learning techniques would 

require a larger number of data to train, test and validate the model. To the best of our 

knowledge, all relevant reported articles used small dataset (<1000), and for most cases, 

the number of the independent tests was even smaller (Table 2. 4). 

Table 2. 4: Dataset enhancement  

Reference Image 

replication 

Variable 

Illumination Device Orientation Region 

Alankus et al. (2018) N/a N/a N/a N/a 50 

Solmaz et al. (2018) N/a 7 5 N/a N/a 

Mutlu et al. (2017) N/a 3 N/a 6 N/a 

Feng et al. (2014) 50 N/a N/a N/a N/a 

Lopez-Ruiz et al. 

(2014) 

27 N/a N/a N/a N/a 

N/a: Not applicable 

The articles above incorporated balanced datasets comprising equal samples from the 

associated classes. Hence, data balancing techniques such as Weiss (2004) were not 

observed. The aforementioned articles also resampled the data using imaging 

conditions, rather using any predominant resampling techniques as implemented in a 

number of disciplines (Estabrooks, Jo and Japkowicz, 2004).  

Feature-set 

Understandably, the most important features for a colourimetric test would be colours, 

which was reflected in the reported articles as well (Table 2. 5). An inadequate feature-

set can lead towards under-fitting, whereas an elongated one would result in a higher 
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dimension of the feature-set which would cost the system in higher computation time 

and occupying more memory space of the personal devices.  

Table 2. 5: Feature analysis methods  

Attribute Description Reference  

Colour moment Mean Rahmat et al. (2018); 

Mutlu et al. (2017) 

Multiple Kim et al. (2017a) 

Colour difference Initial ~ end point Wang et al. (2016); 

Vashist et al. (2015) 

Colour space RGB Rahmat et al. (2018); 

Mutlu et al. (2017); 

Soni and Jha (2017); 

Wang et al. (2016b); 

Sicard et al. (2015) 

HSL Akraa et al. (2018) 

HSV Lopez-Ruiz et al. (2014) 

LAB Alankus et al. (2018); 

Konnaiyan et al. (2017) 

Multiple Kim et al. (2017a) 

Grey value Weighted mean Khan and Garnier (2013) 

Green channel Barbosa et al. (2015) 

Rule-based Sicard et al. (2015) 

Algorithms Used for Colourimetric Tests 

In general, the conventional qualitative test should be presented using colour opponents 

or at least by visually distinct colours, whereas the semi-quantitative tests involve 

reference colours which can be represented by a colour chart. The concentration 

calculation of a quantitative test engages statistical calculation from a standard curve 

using the optical density. In other words, it is possible to obtain a reference colour or a 

colour-ground truth for a colourimetric test despite its result type, even if it applies to a 

specific case study only. Therefore, reported articles often utilised the colour difference 

(∆E) and colour referencing as the sole or partial major component of a colourimetric 
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decision scheme (Alankus et al., 2018; Rahmat et al., 2018; Jonas et al., 2016; Sicard 

et al., 2015). The prevalence of ∆E calculation can also be perceived from Table 2. 6.  

Table 2. 6: Colourimetric classification algorithms and their performances 

Reference Classes ∆E ML Performance metrics Accuracy 

(%) 

Execution 

time (s) 

Alankus et 

al. (2018) 

6x4 Yes No Confusion matrix; 

detection accuracy; 

precision; recall; F1-

score 

76-100 Rapid 

Rahmat et 

al. (2018) 

10* Yes No Accuracy 95.45 N/m 

Kim et al. 

(2017a) 

5,9 No Yes Cross validated 

accuracy, PPV, NPV 

80-100 ~9.3  

Mutlu et 

al. (2017) 

15 No Yes Accuracy; ROC 

curve  

100 N/m 

Wang et 

al. (2016) 

13x6 Yes Yes Cross-validated 

accuracy 

100 Rapid 

Feng et al. 

(2014b) 

2 No Yes k-1 cross validated 

accuracy, correct vs 

incorrect 

100 8  

∆E: Colour difference; ML: Machine learning; N/m: Not mentioned; PPV: Positive predictive value; NPV: 
Negative predictive value; ROC: Receiver operating characteristics  s: second 

*Each of the classes can be further categorised into different concentration levels or subclasses. 

The conventional semi-quantitative test via RDT often offers a colour chart, for 

example, the colour chart for urine dipstick. Rahmat et al. (2018) provided the 

colourimetric measurement using only ∆E calculation. On the other hand, Vashist et al. 

(2015) provided the colourimetric decision by plotting the pixel intensity against the 

concentration of the analyte. Konnaiyan et al. (2017) utilised correlation graph. The use 

of PCA is also quite prevailing  (Akraa et al., 2018). Jonas et al. (2016) performed a 

colour comparison from its ratio. Garg et al. (2014) utilised a calibration curve to 

determine the concentration of glucose. Although a colour chart was available for the 

dipstick used by Shen, Hagen and Papautsky (2012), the study used a calibration curve 
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to measure the pH level. A binary decision for substance tracing in Smith et al. (2014) 

was availed from the known cocaine standards. However, our research was more 

focused to study the prevalence of machine learning, especially classification 

algorithms to perform colourimetric tests (Table 2. 6). Therefore, in this section, more 

attention is provided towards the performance of the classifiers.  

Support Vector Machines (SVM) is one of the most widespread classifiers applicable 

to various disciplines. Feng et al. (2014) used SVM (Burges, 1998; Noble, 2006; 

Theodoridis, Sergios; Koutroumbas, 2009) to provide a qualitative assessment of RDT 

based HIV detection. SVM is capable of performing both classification and regression. 

While quantifying the PSA concentration, instead of SVM Feng et al. (2014) opted for 

the predetermined calibration curve approach.  

From the ∆RGB, Wang et al. (2016) used Linear Discriminant Analysis (LDA) to 

perform a qualitative analysis of catechols and partial least squares for quantification 

of the concentration. Inspired by Manuel A. Palacios et al. (2007), Wang et al. (2016) 

also used Hierarchical Clustering Analysis (HCA) using SPSS to cluster the catechols 

based on their similarity. Later, Wang et al. attained good discrimination among the 

catechols through LDA. The performance of LDA was validated using leave-one-out 

cross-validation. Wang et al. claimed 100% accuracy from concurrent use of PCA, 

HCA and LDA. However, the system needed to be exposed to an adequate number of 

dataset, rather using only five samples per class.  

Similar to Wang et al. (2016), Kim et al. (2017a) also used LDA as one of the 

classification algorithms to classify saliva alcohol concentration. Despite using a 

hardware attachment, Kim et al. (2017a) used relatively elongated feature-set and three 

different classifiers simultaneously, namely LDA, SVM and Artificial Neural Network 

(ANN) to provide a mobile-enabled colourimetric decision. Using five independent 

datasets to train LDA, Kim et al. (2017a) aimed to reduce the variances for within-class 

alcohol concentration, while maximising the variances for between-classes. Based on 

our understanding, Kim et al. used ‘svmtrain’ (MATLAB, 2013) in the MATLAB 

platform and LIBSVM (Chang and Lin, 2011) in the mobile platform. ANN was utilised 

using backpropagation. Based on the user input, the proposed system of Kim et al. used 

either of these three classifiers to provide the classification. Among these classifiers, 

discussed the enhanced capabilities of ANN, especially in LAB colour space. For the 
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enhanced concentration levels, Kim et al. reported SVM to consume longer time than 

ANN, typically which should not be the case (Zanaty, 2012).  

In the absence of detail of the parameters, we assume Kim et al. (2017a) utilised the 

standard parameters of NN toolbox and SVM. Hence, the observations by Zanaty 

(2012) should apply to Kim et al. as well, which is visible from the performance on the 

benchmark dataset in Kim et al. (2017a). While comparing the system using the MLR 

datasets (benchmark dataset), Kim et al. (2017a) found SVM to be faster, while ANN 

to provide higher accuracy, which is more plausible. Using the benchmark datasets, a 

detailed comparison was also provided for different mobile devices (Kim et al., 2017a). 

However, further investigation is required regarding the poor performance for the 

secondary dataset containing enhanced alcohol concentrations, which may have 

occurred due to the mechanism of class enhancement. A context regarding class 

enhancement is provided in Weiss (2004).  

Least Squares Support Vector Machine (LS-SVM) is found to be one of the strongest 

classifiers to perform colourimetric tests (Solmaz et al., 2018; Mutlu et al., 2017).  SVM 

possess inequality constraints and encounters quadratic programming, while LS-SVM 

has equality constraints. LS-SVM (Suykens and Vandewalle, 1999) was created to 

harness the advantages of SVM and at the same time simplifying it by using a set of 

linear equations. Unlike convex optimisation in SVM, the use of robust statistics aids 

weighted LS-SVM to present more robustness. Acknowledging the shortcoming of LS-

SVM regarding sparseness, Suykens et al. (2002) suggested to use pruning techniques.  

The conventional MLPs learn from the pattern of input and output. The parallel network 

architecture can have multiple inputs and outputs. Additionally, it uses a universal 

approximation of continuous nonlinear functions. Although MLPs can often 

outperform SVM, it has the disadvantage of hosting many local minima. The 

requirement of a number of neurons for a given task can also end up in the list of 

disadvantages of MLP. Similar to MLP, LS-SVM can take advantage of Bayesian 

interference and regularisation. Mutlu et al. (2017) achieved 100% accuracy by feeding 

the LS-SVM classifier with the mean RGB values of the universal pH indicator papers.  

Using both LS-SVM and RF, Solmaz et al. (2018) achieved 95% accuracy via cross-

validation to classify peroxide strips. For both primary and secondary concentration 
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levels, LS-SVM outperformed RF. We can perceive the performance from the 

correlation of Random Forest (RF) and rarity (Weiss, 2004).  

For the primary concentration levels, Solmaz et al. (2018) reported LS-SVM to be 

independent of the feature-set. Based on the critical examination of the features and 

classifier, we anticipated a better performance from the overall system of Solmaz et al. 

(2018). Without re-implementing the system or critically exploring the dataset, it is 

difficult to conclude why their system degraded the performance from its initial cross-

validated classification accuracy of 99%. Moreover, the degradation continued when 

the system was deployed on the mobile platform.  

Based on the classification accuracy, required number of samples, model complexity, 

computation time, generalisation, trade-offs and performance of the classifiers above 

on the images of colourimetric tests, one must explore LS-SVM to design a computer-

aided colourimetric scheme. However, similar to any other machine learning 

algorithms, LS-SVM is also not free from weaknesses. LS-SVM can struggle with 

robustness, input selection, on-line learning and large-scale problems as identified by 

its creator (Suykens, 2002). Therefore, it is important to validate the performance of 

LS-SVM to provide a colourimetric decision using a number of performance metrics 

and statistical analysis.  

2.6 Evaluation Criteria 

The WHO popularised the ASSURED criteria (Peeling et al., 2006) as an evaluation 

criteria to detect sexually transmitted infections.  Originally, it was not directed towards 

computer-aided diagnostic tools on POC platform. While reviewing the paper-based 

microfluidic assays, Yetisen, Akram and Lowe (2013) stressed on the ASSURED 

criteria for mobile-enabled systems. The doctoral research of Karlsen (2018) was a 

smart-diaper that fulfils ASSURED criteria. In this section, the ASSURED criteria are 

explored from the computational context for image-based colourimetric tests.  

2.6.1 Affordable Technology  

The mobile phones have a high penetration rate (GSMA Intelligence), making it widely 

accessible and affordable technology to resource-limited settings. By 2019, the number 

of mobile phone users is expected to reach 5.07 billion (Statista, 2015). From the 
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computational context, the use of a mobile phone can act as an affordable-ASSURED 

technology.   

Recently, the use of smartphones for chemical detection and analysis, and medical 

testing has gained popularity. Mobile-enabled sensors and biosensors have also made 

enormous advancements. In general, paper-based assays such as Sicard et al. (2015) are 

more affordable and suitable for less trained personnel. A mobile-enabled paper-based 

assay can enhance the processing of a result (Roda et al., 2016; Lopez-Ruiz et al., 2014), 

ease the effort to interpret the result and make the result conveniently communicable 

(Sicard et al., 2015). The objective of such a system is not aimed to replace the 

biochemical systems but instead to assist (Kim et al., 2017a), simplify (Lopez-Ruiz et 

al., 2014) or accelerate (Jonas et al., 2016) the process. For example, when it is 

challenging to provide visually distinguishable colours, such systems can aid to provide 

a better decision. 

Modern smartphones are fully automated and equipped with high-resolution cameras, 

powerful processors with large storage capacity, wireless connectivity, real-time geo-

tagging, secure data management, and cloud computing. These capabilities allow 

smartphones to be used as small, conveniently carried portable devices for convenient 

on-site diagnostic/chemical analysis and testing with rapid reproduction of results. 

Thus, smartphones have proven to be an attractive alternative for the on-site collection, 

imaging, and analysis of data. However, Zhang and Liu (2016) argued to minimise the 

requirements for additional optical attachments. No additional hardware requirement 

means there is no cost associated with the test reader. In this way, the mobile devices 

including phones can more effectively eliminate the operating cost by minimising the 

requirement of plate readers and analysers. Therefore, there is a need for a system which 

is computationally efficient to be deployed on the mobile platform, making it an 

affordable system.  

2.6.2 Specific and Sensitive Performance  

The next ASSURED criteria are specificity and sensitivity, which require the system to 

have low false negatives and false positives. Although, it is a common practice for the 

computation systems to present the result in the form of accuracy (Table 2. 6), 

evaluating the performance of the system only with accuracy can be misleading.  
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2.6.3 User-friendly System  

The ASSURED criteria emphasise the minimum requirement of training from the users. 

The ratio between health professionals and patients are imbalanced worldwide. The 

global understaffed health systems can benefit from technologies that provide ease of 

use. These easy-to-use systems can support the associated need of growing elderly 

population, provide more autonomy to users for personalised healthcare at home 

settings, and more importantly in remote locations where trained medical personnel is 

scarce.  

Exploring the existing literature, this research suggests, the user-friendly system should 

not only require less medical training but also should not demand high technical skills 

from the user.  Therefore, the system should require minimum user interventions with 

the system in order to provide a decision. In the reported articles on colourimetric tests, 

some systems require users to assist with the data pre-processing techniques, e.g. 

cropping and seed points by the user (Rahmat et al., 2018; Mutlu et al., 2017; Solmaz 

et al., 2018). No detail description was provided in the article (Mutlu et al., 2017) 

regarding the cropping mechanism. Therefore, we assume that the cropping was 

performed manually without any intelligent image processing method.  Solmaz et al. 

(2018) and Mutlu et al. (2017) utilised smartphones, whereas Rahmat et al. (2018) used 

a scanner for image acquisition. The cropping techniques used in these articles 

eliminated the segmentation process. However, the technique compromised the ease of 

use, compelling the user to possess technical skills.  

2.6.4 Rapid and Robust System  

The next criteria are to make the system rapid and robust. This work mainly focuses on 

the machine learning based computational systems.  To evaluate the rapidness, the 

training time should be taken into account so that the system can support in time of any 

sudden outbreak such as climate change-related diseases (Kabir, Rahman and Milton, 

2014). However, the testing time should be considered as the execution time.  

On the other hand, robustness is a vast term and has a direct impact on the ease of use 

of the system. To provide reproducible and accurate results, if there are many rigid 

guidelines for the user to follow, then the system preserves lower robustness as well as 
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reduced user-friendliness. In this case, the robustness could be regarding the format of 

the data or the environmental settings.  

The lighting condition is one of the biggest concerns for image processing, especially 

medical imaging. The ambient light can have a considerable impact on the RGB value. 

Therefore, lighting condition is considered as a critical factor of the robustness (Solmaz, 

2018; H. Kim, Awofeso, Choi, Jung, & Bae, 2017; Mutlu et al., 2017). Solmaz et al. 

(2018) considered seven illumination conditions to train the model. The light condition 

can be channelled through additional optomechanical attachments such as H. Kim et 

al., 2017. The algorithm proposed by Mutlu et al. (2017) for the classification of pH 

test strips showed equal performance with and without such hardware attachments. The 

study (Mutlu et al., 2017) considered three different lighting conditions while 

experimenting without any hardware.  

The camera to sample position can influence the image processing requirements as well 

as the classification performance. The mobile applications available in the app-stores 

utilise a guideline or virtual plate to limit the location of the sample position as well as 

the distance of the camera (Sicasys Software GmbH, 2017b; Enzo Life Sciences inc., 

2015; Alidans srl, 2015). Mutlu et al. (2017) utilised six different orientations of the pH 

test strips (Merck, Germany), effectively varying the position of the sample from the 

camera lens as well as from the source of the light. The purpose of the variety in the 

rotation was to train the system for robust orientation of the sample, resulting in 

robustness within the dataset. The images were then manually rotated before training 

to maintain the same alignment. However, the system did not include any automatic 

image processing technique, instead relied on the user to crop the image.  

Another parameter for robustness is interoperability (e.g. hardware compatibility, 

application programming interface or API). A mobile-enabled algorithm was tested on 

the paper strips to present a system with inter-phone repeatability by Yetisen, Martinez-

Hurtado, Garcia-Melendrez, da Cruz Vasconcellos, & Lowe (2014). The downside of 

the system was longer calibration time. The performance of another smartphone 

application for paper-based saliva-alcohol testing was evaluated by Kim et al. (2017a) 

on five different smartphones, effectively varying the hardware and software 

components including phone-camera. However, the system involves additional 

hardware for illumination and imaging consistency.  



 

35 

 

Therefore, the criteria of robustness might be immeasurable, because how much 

autonomy a single system can provide without compromising the rest of the parameters 

of the ASSURED criteria is an optimisation issue.  

2.6.5 Equipment-free System  

The next ASSURED criterion is to make the diagnostic system equipment-free. This 

criterion is closely associated with the cost of the system. If a system can turn the 

personal device such as a mobile phone and tablet into a colourimetric test reader, 

necessarily there is no need for additional equipment. The standard practice for 

colourimetric tests involves plate reader, e.g. 96-well plate reader utilising light 

absorbance for wet-chemical-based quantitative tests, analysers for paper-based test 

strips and naked-eye tests for qualitative tests. In the literature, substantial amount of 

the reported articles on mobile-enabled systems utilised additional hardware attachment 

to channel the lights, enhance the image or ease the image processing technique (Kim 

et al., 2017a; Hussain et al., 2017; Kim et al., 2017c; Masawat, Harfield and Namwong, 

2015). The ‘additional’ aid to make the smartphone act as a reader can be an obstacle 

to user-friendliness. Moreover, in some cases, these additional attachments are 3D 

printed, which is not available anytime, anywhere. 

2.6.6 Deliverable System  

The last criterion is that the system should be deliverable implying it should be 

accessible by those who will use the system.  There is a close relation between 

affordable and deliverable systems. According to the World Bank, more households are 

likely to possess mobile phones than toilets (World Bank Group, 2016). Therefore, a 

computationally efficient system to be deployable as a mobile-enabled system is 

supposed to be more accessible than the specialised devices.  

With the advancement of cloud computing,  Yetisen et al. (2014), along with many, 

favoured web-based mobile applications. Undoubtedly such web or cloud-based 

applications would help with the dispute about limited storage, power and processing 

capacity of mobile devices. However, regarding accessibility (e.g. network 

connectivity, mobile device’s hardware and native features) and data security, the 

native application without cloud dependence would be preferable.  
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On the other hand, a system compatible to be deployed using a server-based approach 

can make the system more suitable for telemedicine facilities. Therefore, a 

computational system should be efficient to be deployed on the mobile device but at 

the same time needs to be compatible with a server-based approach.  

2.7 Justification of Research  

The colourimetric analysis has been used for diversified fields for years. New methods 

and materials are continually being added to the current global research to make the 

tests more feasible on the POC platform. Unlike the aforementioned reported articles, 

this chapter critically reviewed the image-based colourimetric tests from the broadest 

possible latitude and entirely from the perspective of computer vision and intelligent 

systems. 

Due to the vastly different approaches taken in the literature, it was essential to set 

evaluation criteria to harmonise with our research goal as well as to establish a fair 

comparison, which justifies the use of ASSURED criteria. Using this ASSURED 

criteria, it is evident from the above discussion that no existing study has explored the 

colourimetric tests from computer vision with a broader lens regarding size, shape, state 

of matter, result type and purpose, and for its diverse capability. Therefore, this work 

aims to explore and provide a proof-of-concept as to how a computer-aided system can 

achieve this goal.  

The colourimetric test can be rapid as well as a prolonged process. To the best of our 

knowledge, no existing work in the literature considers the dynamic changes of colours 

throughout the chemical reaction of an end point assay. Few works have considered 

only the initial and final phase of the reaction. Understanding the overall biochemical 

reaction through computer vision by tracking the dynamic changes in the image can 

help us to understand more details about the data through the eyes of machines.  

The state-of-the-art approach for POC based colourimetric tests involves 

optomechanical attachments using a 3D printer, which constrains the applicability to 

anywhere anytime. Due to the socio-economic context, the motivation of this research 

is to investigate a high-performing image-based colourimetric test using as few 

resources as possible.  
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The predominant use of hardware attachments and restricted ease of use in the literature 

led to incompetency in complete automation. Considering inter-disciplinary interest on 

the colourimetric test, there is a gap in the literature in the form of a critical exploration 

of a complete and automatic image processing framework. Firstly, there is a 

requirement for an image processing framework which will not require any support 

from additional hardware to channel the light to reduce the effect of ambience, magnify 

the image with a lens, improve the brightness of samples using LED or rely on a dark 

room. The image processing framework should also require minimum user 

intervention.  

Few other works in the literature require calibration. The long computation time for 

calibration for test type detection is time-consuming. The computation time and 

computation complexity need to be critically considered with respect to accuracy.  

The challenge of this work also includes one robust solution to fit into diversified 

colourimetric problems. The literature reflected the need for parallel observation of wet 

and dry samples and scrutinisation of the similarity and dissimilarity between diverse 

ranges of assays. This inspection will support future researchers in developing a 

universal or adaptive model to provide any colourimetric decision. Therefore, it is 

essential to understand the images of the assay in terms of image processing and to 

optimise the number of features to develop a computationally efficient algorithm.  

Advanced visual recognition algorithms such as deep learning are capable of dealing 

with lighting condition, the distance between camera and sample, the angle of the 

camera, and the orientation of sample, making a system suitable for robust 

environments.  Therefore, deep learning can be a better choice for image processing 

and assay detection for a colourimetric test. On the other hand, deep learning can come 

across as a heavy algorithm to classify colours for a colourimetric test. Moreover, scale 

in terms of dataset, training time and computational device, is an issue for deep learning. 

Hence, deep learning clearly contradicts the ASSURED criteria. However, an 

innovative approach may liberate deep learning to be used for a colourimetric test while 

fulfilling ASSURED criteria. To the best of our knowledge, there is no existing work 

on colourimetric tests using deep learning.  
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Unlike the image processing algorithms and deep learning, the reported articles 

explored a number of classification algorithms to perform colourimetric tests. There is 

a clear indication in the literature regarding the high performing classification algorithm 

for binary and multi-class classification of the colourimetric test. However, due to 

inadequacy in sample selection, lack of depth in feature exploration and optimisation, 

and consideration of only a limited scope of the colourimetric test, there is the need for 

an elaborate and systematic investigation of the colourimetric test using in-contrast case 

studies.  

A prerequisite of assigning deep learning or Traditional Machine Learning (TML) for 

the colourimetric test would be an adequate amount of data. The reported articles failed 

to generate a significant amount of data and also precluded its availability from any 

open access database, which could have gradually turned into a sizeable dataset. The 

lack of independent tests and incredulous repeatability might be due to the primacy of 

stable assays, however in such cases exercising data resampling may offer a solution 

for the data-hungry approaches. At the same time, a study should also consider 

variability and rarity due to the nature of the application such as matrix effect and 

sensitivity to environmental factors. Hence, it is essential to explore different aspects 

of a computational system to deliver a colourimetric decision.   

Our research goal includes a system that is intelligent to make it automatic and user 

intervention free; computationally efficient to be deployed in the mobile environment 

and can be integrated to the cloud as well; adaptable to comply with variability; rapid, 

and the specificity and sensitivity should be balanced and high to produce a reliable 

accuracy.  Therefore, this work aims to investigate a colourimetric system that fulfils 

ASSURED criteria. 

2.8 Summary  

This chapter presented an interpretation of the colourimetric test from the eyes of 

machines and then provided a categorisation of necessary components. The state-of-

the-art image-based colourimetric systems were explored in this chapter for each of 

these key components, such as data pre-processing and classification algorithms. This 

chapter also examined the recently reported articles using ASSURED evaluation 

criteria. Based on the research gap and prospect of the image-based colourimetric test, 
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this chapter reflected the rationale behind our research goal, which was finally 

described in a concise form in Section 2.7.  
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Chapter 3 

Research Design and Methodology  

3.1 Introduction  

This chapter presents an overview of the system framework to perform a colourimetric 

test using image analysis. At first, the interpretive operations of the problem are defined, 

followed by the key elements of the concept. The methodology developed in this 

chapter provides a unique view to explore the various stages of the colourimetric 

reaction of end point assays using two case studies. Using the case studies, the system 

can either reflect upon a collection of a number of phases of the colourimetric reaction 

or only the final stage of the reaction. This chapter presents a novel approach to 

performing the colourimetric test considering the continuous colour change during the 

chemical reaction. Alternatively, in consideration of the nature of the assays under 

investigation, i.e. end point assays, the concept exploits the strength of both TML and 

deep learning focusing on only the final state of the reaction; the key elements for this 

approach include the methods for image processing, feature extraction and 

classification. The evaluation criteria for the overall system is also discussed in this 

chapter. 

3.2 Research Design    

This research aims to explore how to design an automatic colourimetric classification 

scheme to function without a user intervention and any additional hardware attachment, 

suitable for personalised healthcare and resource-limited settings. In order to offer a 

solution to this problem, a computer-aided system is required to provide a decision 

based on the user’s inputs (Fig. 3. 1).  
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Fig. 3. 1: Research design considering dynamic and static changes in the image 

This work aims to consider the diverse category of inputs, which is one of the key 

aspects of our research design. Based on the phase of the biochemical reaction, the 

problem can be depicted under two different scenarios:  

1) Reaction phase and time-dependent approach considering the initial, key 

intermediates and final stage of the colourimetric reactions utilising video 

frames. The context is allied with the first research question, hence the first 

specific objective of the thesis.  

2) Reaction phase and time-independent approach utilising the image of the final 

state of the colourimetric test. This context is associated with the second 

research question, which is to be addressed by the second, third and fourth 

specific objectives of the thesis.  

This approach or context can be further sub-categorised into the following: 

- Using traditional machine learning techniques  

- Using the pre-trained models of state-of-the-art deep learning techniques  

Based on the type of input, the problem can be categorised from the computer vision 

perspective into the following two categories.   

i) Input containing a single object for each sample, however multiple samples 

per image. Example: ELISA (Case Study 1) 
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ii) Input containing multiple objects for each sample to classify any individual 

classes. Example: LFA (Case Study 2). 

3.3 Data Preparation  

The experiments on the case studies, mentioned in Section 3.2, were conducted in 

controlled environments, one in the UK and the other in Malaysia. This work does not 

involve any direct contact with human participants. The term dataset in this work 

mainly implies images and video frames converted as images. The dataset contains 

images in Joint Photographic Experts Group (JPEG) format.  

The image capturing method comprises as diverse scenarios as possible (e.g. use of the 

different camera, lighting). Therefore, the image capturing, data preparation and sample 

selection method is elaborately discussed in the experimental chapters for each of the 

case studies.  However, an example of data preparation at the laboratory environment 

is shown in Fig. 3. 2.  

  

(a) (b) 

Fig. 3. 2: Example of laboratory environments. (a) Image being captured in a typical 

setting of laboratory light, (b) Image being captured in semi-controlled lighting 

environment 

The use of stand shown in Fig. 3. 2, is to maintain a consistent and measured height 

between the camera and the sample. This can also aid in reducing the effect of shaky 

hands which may result in blurred images. However, it is not a mandatory procedure 

for the system to capture images using a mobile-stand. 
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The detail of instrumentation, i.e. the choice of platforms is provided in Appendix D.  

3.4 Reaction Phase and Time-dependent Approach  

A biochemical reaction of a colourimetric test often takes time to produce or transform 

colours. As mentioned in Section 3.2, considering the overall biochemical reaction, 

different states of a reaction can be recorded using personal devices. Due to the rapid 

nature of the lateral flow assays, this approach is more suitable for our first case study 

with wet-chemical-based ELISA, where meaningful information can be extracted from 

the different phases of the reaction.  

In this work, the system input in the form of video, consisting initial to the final stage 

of the reaction is converted to images, i.e. frames taken from the video. To the best of 

our knowledge, this is the first attempt to provide a colourimetric classification based 

on the reaction phases of a wet-chemical ELISA, already published as Tania et al. 

(2017).  

During the complete reaction taking t seconds, the instances (S) of the reaction is 

divided in ti time interval for video sampling.  

S= {1, 2… N}                                                                           (3.  1), (Tania et al., 2017)                                                                  

where S ∈ Z+, Z+ denotes the set of positive integers. 

For chromatic analysis, the colour difference is measured by delta E (∆𝐸), to be specific 

CIE76. With known colour space coordinates, the CIE 1976 formula delivers the colour 

difference. It was the first formula to provide ΔE in the LAB colour space. In LAB, if 

(𝐿ଵ
∗ , 𝑎ଵ

∗, 𝑏ଵ
∗) and (𝐿ଶ

∗ , 𝑎ଶ
∗ , 𝑏ଶ

∗) are two colour coordinates at t1 and t2 seconds respectively, 

then colour difference is given by the following formulae (International Organization 

for Standardization, 2007).  

∆𝐸௔௕
∗ = √{(𝐿ଶ

∗ − 𝐿ଵ
∗ )ଶ + (𝑎ଶ

∗ − 𝑎ଵ
∗)ଶ + (𝑏ଶ

∗ − 𝑏ଵ
∗)ଶ}                                              (3.  2) 

Later, a high pass filter is applied on the calculated colour difference from Eq. 3.2 for 

each instance, which can be expressed as Eq. 3.3 (Tania et al., 2017).                                                                 

∆𝐸(𝑆)௔௕
∗ > 𝐽𝑁𝐷 , where   ∆𝐸(𝑆)௔௕

∗ = √(∆𝐿∗ଶ + ∆𝑎∗ଶ + ∆𝑏∗ଶ)                         (3.  3) 
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An important parameter for ∆E calculation is the just-noticeable difference (𝐽𝑁𝐷) or 

differential threshold. According to experimental psychology, “it is the amount 

something must be changed for a difference to be noticeable, detectable at least half 

the time.’’ As an intuitive value, some suggested ΔE to be 1.0, but a widely acceptable 

value is 2.3 (Mahy, Van Eycken and Oosterlinck, 1994; Sharma, 2003). A good 

example regarding the use of JND in computer vision is provided in Watson (1993). 

The maximum amount of colour change at any instant can be calculated as Eq. 3.4 

(Tania et al., 2017).  

𝛼 = max(∆𝐸(𝑆)௔௕
∗ )                                                                                             (3.  4) 

Then finally, the cumulative sum of the colour difference after each ti interval needs to 

be calculated. In order to calculate the total colour difference at any given instance S, 

the finite series of triangular numbers (Abramowitz and Stegun, 1972) can be utilised 

as Eq. 3.5.  

∆𝐸ௌ = ∑ ∆𝐸௔௕
∗

௞
= ∆𝐸௔௕

∗
ଵ

+ ∆𝐸௔௕
∗

ଶ
+ ∆𝐸௔௕

∗
ଷ

+ ⋯ +  ∆𝐸௔௕
∗

ௌ
௦
௞ୀଵ                           (3.  5)                

                                    =
∆ாೌ್

∗
ೄ

ቀ∆ாೌ್
∗

ೄ
ାଵቁ

ଶ
               

One can also find out the binomial coefficient as ൫௦ାଵ
ଶ

൯ from Eq. 3.5, which represents 

the number of distinct pairs that can be selected from S + 1 instances.  

In the case of colour transformation based studies, this work assumes, the number of 

the transition phase (), obtained from Eq. 3.5, can be represented as Eq. 3.6 (Tania et 

al., 2017).  

= {0, 1, 2,…, N}                                                                                             (3.  6)                                                  

where Z*, Z*= {0} Z+. Z+ denotes the set of positive integers.   

This thesis utilised JND as a threshold value. The captured colour changes in Eq. 3.2 is 

powerful enough to trace even a small change in the colourimetric reaction. However, 

the aim of the reaction phase and time-dependent approach is to track  (Eq. 3.6). 

Therefore, this thesis assumes that it is not necessary to consider the changes below 

JND for Eq. 3.5 to identify  smoothly.  
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Considering the complete reaction process, this approach can compensate for the 

following factors, which needs to be validated by the experiments.  

− Image processing of low concentration wet-chemicals  

− Provide classification without utilising machine learning techniques  

− Optimising the reaction time   

3.5 Reaction Phase and Time-independent Approach   

The case studies utilised in the thesis are end point assays. Therefore, considering the 

final state of the colourimetric test, a reaction phase and time independent approach is 

investigated utilising TML as well as deep learning techniques.  

3.5.1 System Framework  

In this thesis, the computer-aided system for the colourimetric test includes both TML 

and Convolutional Neural Network (CNN) based deep learning. A proof-of-concept is 

delivered in the desktop environment using two case studies, as mentioned in Section 

3.2. The system can be trained offline in the desktop environment as well as in the 

cloud. The trained system can be deployed as a desktop, mobile or web-based 

application. An overview of the workflow can be perceived from the system 

architecture illustrated in Fig. 3. 3.  
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Fig. 3. 3: Reaction phase and time-independent framework for the proposed system 
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3.5.2 Deep Learning  

In this work, the state-of-the-art pre-trained models (ImageNet, 2016) for visual 

recognition problems are investigated to recognise the assay type utilising inductive 

transfer (Karpathy, 2018; Soria Olivas, 2010). When there is a substantial amount of 

large data and similarity between the task is also high, the pre-trained models are 

supposed to exhibit good performance. A more detailed concept is described in 

Goodfellow, Bengio and Courville (2016).  

To the best of our knowledge, this is the first attempt to process any colourimetric test 

using any deep learning technique including CNN. The assay type detection is an 

optional step of the overall system architecture (Fig. 3. 3). This thesis involves two case 

studies, each of which represents a distinct assay type. Therefore, the assay type 

determination is a binary classification problem.   

  

(a) (b) 

Fig. 3. 4: Assay type to be determined by the pre-trained model. (a) ELISA, (b) LFA 

This work explores AlexNet (Krizhevsky, Sutskever and Hinton, 2012), inception 

modules (Szegedy et al., 2015, 2016) and ResNets (He et al., 2015) to determine the 

assay type by using our case studies (Fig. 3. 4). These case studies are different in size, 

shape, colour and materials. Therefore, we assume that the classification task by these 

pre-trained models should be performed effectively with high accuracy.  It is also 

assumed that the classification can be provided without using a large dataset (<1000).  

In addition to providing the broader classification of assay type, these pre-trained 

models should also be effective to fine-tune the system (Fig. 3. 3) for a brand to brand 

and purposeful variation among the assays, which may draw the attention of the future 

researchers (Fig. 3. 5).   
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(a) (b) (c) 

 
    

(d) (e) (f) 

Fig. 3. 5: Variations in the assay. (a) pH and nitrite detection by (Lopez-Ruiz et al., 

2014), (b) conventional litmus paper, (c) universal pH indicator used in this work, (d) 

brand to brand minor colour variation for HCG detection (pregnancy test), (e) 

variation in the well shape, (f) brand to brand variation in the geometric shape in 

dengue detection assay 

Fine-tuning Pre-trained Models 

As mentioned earlier, the input images require re-sizing to comply with the pre-trained 

model (Fig. 3. 6). After loading the pre-trained CNN, the final layers are replaced to 

fine-tune the model. After training the model, the result can be passed on to the 

subsequent stages.  

2 3 . . . . .
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Fig. 3. 6: Deep learning using transfer learning function. fl= final layer and nl= nth 

layer before the final layer, 𝑛 ∈ 𝐙ା and n< fl 
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The AlexNet (Krizhevsky, Sutskever and Hinton, 2012) is trained on more than a 

million images. It contains five convolutional layers and three Fully Connected (FC) 

layers which are marked in Fig. 3. 7. The concept of convolution is well described in 

Ng (2018).  
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Fig. 3. 7: Eight layers of AlexNet 

The fully connected layer utilises the output of the convolutional, activation or pooling 

layer (Scherer, Müller and Behnke, 2010) as the input volume and provides an N-

dimensional vector, where N= number of classes. In the case of the softmax approach, 

FC considers the output of the previous layer and estimates which of the high-level 

features of the previous layer are the mostly correlated features for a specific class. By 

multiplying the input and the weight matrix and adding a bias vector, FC seeks to attain 

the correct probability for the classes. Using AlexNet in Fig. 3. 6, fl=25 and nl=2.  

In the Large Scale Visual Recognition Challenge (ILSVRC2012), the AlexNet, 

containing two parallel convolutional neural network lines, showed 15.3% top-5 error 

rate. AlexNet uses ReLU function (Nair and Hinton, 2010).  

𝑓(𝑥) = max (0, 𝑥)                                                                                                  (3.  7) 

In Eq. 3.7, 𝑓(𝑥) = 0, when 𝑥 < 0 and 𝑓(𝑥) = 𝑥, when 𝑥 ≥ 0. Hence, any negative 

input fed to ReLU function turns the value instantly into zero. Due to ReLU activation 

function after every fully connected layer, AlexNet can be trained faster than sigmoid 

function based TML techniques.  

Few other pre-trained models were also explored in this work such as two versions of 

Inception (Szegedy et al., 2015, 2016) and residual connections based ResNets (He et 
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al., 2015) allowing us to train the model with less number of samples and faster 

computation.  

The inception layer aims to scan a bigger area while retaining a fine resolution for small 

information of the images. The network architecture (Szegedy et al., 2015, 2016) 

presented more freedom regarding the specifics of the convolution. Each inception 

module can perform a number of parallel convolutional computation and concatenating. 

With a hope that a series of Gabor filters of different sizes will be able to provide better 

management of multiple object scales, the parallel convolution of different sizes starts 

from the most accurate detailing, i.e. 1x1, continues to the bigger ones (Fig. 3. 8).  

Previous 
Layer

1x1

3x3 
average 
pooling 

1x1

5x5

3x3

Concatenate

 

(a) 

Inception_5b-1x1

Inception_5b-relu_1x1

Inception_5b-3x3_reduce

Inception_5b-relu_3x3_reduce

Inception_5b-3x3

Inception_5b-relu_3x3

Inception_5b-5x5_reduce

Inception_5b-relu_5x5_reduce

Inception_5b-5x5

Inception_5b-relu_5x5

Inception_5b-pool

Inception_5b-pool_proj

Inception_5b-relu_pool_proj

Inception_5b-output

pool5-7x7_s1

pool5-drop_7x7_s1

fc

softmax

classoutput
 

(b) 

Fig. 3. 8: Architecture of GoogLeNet. (a) Basic idea of inception modules, (b) Final 

layers of fine-tuned GoogLeNet  
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A 1x1 convolution maps an input pixel along with the associated channels to an output 

pixel, not looking at anything around itself. It is often used to reduce the number of 

depth channels, since it is often very slow to multiply volumes with extremely large 

depths. Theoretically, the neural network can 'choose' which input 'colours' to look at 

while using this mapping, instead of multiplying everything, which would be 

extensively expensive. 

Unlike the traditional Gabor filters, the filters of the inception layers are learnable. In 

order to prevent overfitting due to a huge number of parameters involved, the Inception 

exploited bottleneck approaches while rebuilding the inception module with more non-

linearities and fewer parameters, followed by a max pooling layer to summarise the 

content of the previous layer. The results obtained are concatenated one after the other, 

and passed on to the next layer (Fig. 3. 8).  

To fine-tune the model, in the case of inception modules based GoogLeNet, the final 

three layers of the network have to be replaced to retrain the model with our dataset. 

These three layers are 1000 fully connected layer called 'loss3-classifier', softmax and 

the output layer. These layers embrace the mechanism to train the model from the 

extracted features into class probabilities and labels. The final layers can be visualised 

in Fig. 3. 8.  

In the case of an advanced version of GoogLeNet, i.e. Inception-v3, the final three 

layers are replaced and connected to the 313th connection that performs average 

pooling.  

This thesis also explored ResNets. The ResNet (He et al., 2015) investigated that if 

larger function classes contain the smaller ones, then can it be guaranteed that 

increasing them strictly increases the expressive power of the network. The basic idea 

of ResNet includes the identity function as one of the elements while progressing 

through the network (Fig. 3. 9). Therefore, when a newly added layer is trained into an 

identity mapping, 𝑓(𝑥) =input (= 𝑥), the new model is supposed to be as effective as 

the original model. 

The new model can potentially provide a better solution to fit the training dataset, hence 

the added layer may aid in reducing training errors. Using ResNets, the gradients can 
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flow directly through the skip-connections (Fig. 3. 9) backwards from later layers to 

initial filters. 
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classoutput
 

(b) 

Fig. 3. 9: Architecture of ResNet. (a) Basic idea of residual network, (b) Final layers 

of fine-tuned ResNet-50 

Similarly to GoogLeNet, the final layers have to be replaced to fine-tune the model of 

50 layers deep ResNet-50 (Fig. 3. 9) and 101 layers deep ResNet-101.   

However, unlike AlexNet, the learning rate of the intermediate layers of Inception 

models and ResNets are set to zero to minimise the training time and prevent 

overfitting. For example, the GoogLeNet comprises 22 layers with 144 connections. 

Computation of selected gradients is prevented by freezing the initial 110 connections 

up to inception_5a module in Fig. 3. 8, effectively making the process faster.  Freezing 

the initial layer is more particularly helpful when the dataset is small and the similarity 

with the original model (e.g. GoogLeNet, ResNet) is low. In this way, the initial layers 
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would retain what it has been trained on, using a larger dataset, previously. The weights 

of these initial layer are chosen to be frozen. While freezing the layers, one should 

remember that only the high-level features incline towards the class label. Therefore 

few of the layers are required ‘not’ to be frozen.  

In this work, the pre-trained models are explored for the task of assay type detection, 

not the final colourimetric decision. The pre-trained models are useful when the task is 

similar. The colourimetric test of a specific assay would have only one dissimilarity, 

i.e. colour. Therefore, it is not logical to use the deep neural network for such intra-

class classification, especially when one of our goals is resource-limited settings.  

The CNN architectures are used for learning detailed and abstract geometric features in 

relation to the position of those objects. The deeper layer is capable of learning complex 

features7. Colour is one of the features to be looked at the earlier layers of the network. 

In order to learn the assay type as well as to provide the colourimetric classification, 

the network would require a large-scale dataset and/or a different fine-tuning. A large-

scale dataset and high computational resources would enable the scope of a developed 

model approach as well. 

Fine-tuning of the pre-trained models in this work has been done using two approaches: 

feature extraction, where the final layers were replaced, and the overall network of the 

pre-trained models are used as a fixed feature extractor for the case studies used in this 

thesis; and freezing initial layers, while allowing the network to be trained for few 

layers.  

On the other hand, the fine-tuning approach is logical for the assay type detection 

because it is a similar task, i.e. visual recognition. Therefore, there is no need for a 

large-scale dataset. It can save time by not requiring to continuously update the 

parameters for the entire network, thus less requirement of substantial computational 

power. However, for fine-tuning the colourimetric classification process, one possible 

approach could be- using the architecture of the pre-trained model by initialising all the 

weights randomly, train the model up to certain layers before FC layer, and use the 

output of this intermediate layer of the pre-trained model and then feed it into a linear 

                                                

7 The complexity would depend on the context.  
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classifier. This would complex the model unnecessarily, and a good model is usually 

the simpler ones. Moreover, due to a small number of data, this approach can still lead 

towards overfitting problem, which might not be addressable by data-augmentation. 

Therefore, in this work, we investigated TML techniques to seek a computationally 

efficient solution for the colourimetric classification. 

3.5.3 Traditional Machine Learning 

The basic model for image-based classification is well-established in the literature, 

consisting of data pre-processing and training the model with the class label. This work 

carefully explored the existing systems, to design each component and sub-section of 

these components to perform data pre-processing and classification techniques to solve 

our particular problem. Many of these techniques will require trial and error and 

experimentation to finalise the methods. The workflow of the finalised method is 

provided in Appendix E.  

Image Processing  

The image processing technique is a part of the data pre-processing step of the overall 

framework, and is outlined in Fig. 3. 10.  

Input Image
Pre-

processing
Segmentation

Post-
processing

Feature 
Extraction

 

Fig. 3. 10: Overview of image processing technique 

This process can be further sub-categorised into pre-processing, segmentation and post-

processing before extracting the features from the ROI. 

Image Pre-processing 

i) Dimension Reduction  

The images are dynamically scaled to increase the processing speed. The algorithm is 

provided in Appendix E.  

For colour quantisation, quantisation was carried out at each colour channel as well as 

on the entire image to examine the impact on the overall image processing technique.  
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Another approach under consideration was quantisation at super-pixel level (Ren and 

Malik, 2003). The idea is to define a polygonal part of the image, which is larger than 

a normal pixel. This number is varied as 300, 500, 700 and 1000.  This polygonal 

segment is rendered with uniform colour and brightness. This technique can merge 

close colours. An effective reduction of the number of colours can ease the 

segmentation process while creating masks, which could be particularly useful for wet-

chemical-based images.  

JSEG is a region-growing segmentation technique, proposed by Deng and Manjunath 

(2001), finds its usage to merge close clusters and to reduce the colours. Therefore, the 

method was also considered as a pre-processing technique.  

ii) Colour-space transformation:   

The images captured by available mobile phone cameras are more commonly in sRGB 

format. The impact of colour space transformation for segmentation task on colour 

images was explored in our earlier work (Tania, Lwin and Hossain, 2018, 2016). Few 

of the segmentation techniques require colour space transformations to ease the process. 

For example, RGB to the LAB for k-medoids segmentation for the TB test case study.  

The impact of colour spaces was evaluated at the feature analysis stage as well, where 

the RGB images were converted into a LAB, HSV, YCrCb, XYZ and L-RGB.  

iii) Image quality enhancement:  

Sharpening: The RGB image is converted into grayscale and enhanced by sharpening 

the image features (e.g. edges) using unsharp masking method (MATLAB & Simulink, 

2013).  

CLAHE: The grayscale of the input image is enhanced by Contrast-Limited Adaptive 

Histogram Equalization or CLAHE (Zuiderveld, 1994). For colour image enhancement, 

the RGB image is converted into LAB colour space. The L channel value is scaled to 

keep the value within [0 1], to match with the range of equalisation. Then, CLAHE is 

performed on L channel only. The output is multiplied by the range used by LAB space. 

The resultant image is converted back to RGB for better visualisation. Later on, the tile 
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number and clip limit were varied. Then, super-pixel processing (Ren and Malik, 2003) 

was carried out.  

As opposed to enhancement, few image degradation techniques were explored in the 

research. The Gaussian Blur filtering is utilised as a negative image enhancement 

technique. In an image, 𝑥 being the distance from the origin in the horizontal axis,  y 

being the distance from the origin in the vertical axis, 2D Gaussian or normal 

distribution can be written as Eq. 3.8 (Shapiro and Stockman, 2001).   

Gaussian, 𝐺(𝑥, 𝑦) =
ଵ

ଶగఙమ 𝑒
ି

ೣమ శ೤మ

మ഑మ                                                                           (3.  8)                                                                             

 where 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

As a separate technique, the Gaussian noise using Eq. 3.8 is added to each colour 

channel of the image. This additive noise with a variance of 0.01 is introduced to the 

image to increase the number of data.  

Segmentation of ROI 

In order to separate the ROI, at first, the foreground of the image needs to be segmented 

as Eq. 3.9.  

Segmented image, 𝑔(𝑥, 𝑦) = ൜
1   𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙

0  𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙
                     (3.  9)                                                                             

Various segmentation techniques were carried out to explore the best suitable 

segmentation method, e.g. thresholding, clustering and region-based methods. 

Thresholding is one way to find 𝑔(𝑥, 𝑦) in Eq. 3.9. A more detailed concept can be 

found in (Gonzalez and Woods, 2018).  

Among the clustering techniques, this work utilised k-means for colour separation using 

k++ seeding (Arthur and Vassilvitskii, 2007). This work also explored k-medoids 

clustering which looks for centroid or medoid, which can be seen as that object of a 

cluster, whose average dissimilarity to all the objects in the cluster is minimal. The k-

medoid minimises the absolute distance between the points and the selected centroid, 

unlike k-means which minimise the squared distance. The value of enlarging criterion 

∑ ∑ ||஼(௜) 𝑋௜
௄
௞ୀଵ − 𝑐௞||ଶ

ଶ is commonly higher for k-medoid than k-means (where 



 

57 

 

observation 𝑋ଵ, … 𝑋௡, 𝑋 ∈ ℝ௣ and initial assumption for centres 𝑐ଵ, … 𝑐௞; a cluster of 

points 𝑋ଵ, … 𝑋௡=𝑓(𝐶), which assigns each observation 𝑋௜ to a group 𝑘, 𝑘 = 1, … 𝐾). 

Thus, k-medoid can be computationally expensive. 

Post-processing 

After segmentation, post-processing is required to clean the image as well as to separate 

the ROI. The steps include morphological operation, object detection and noise 

filtering. In a simple term, the morphology implies the study of form or structure. In the 

case of image processing, it is the mean to identify and extract meaningful image 

descriptors based on properties of form or shape within the image.   

Performance Evaluation of the Image Processing Step 

The conventional method to evaluate the image processing performance is based on the 

area of the ground truth. However, this work assumes that the area of segmented ROI 

would be less crucial due to the feature-set to be utilised from the extracted ROI. 

Therefore, the performance of image processing is evaluated using the quality of 

segmentation (Table 3. 1).  

Table 3. 1: Segmentation performance evaluation by conventional and proposed 

method 

Metric Conventional Proposed 

True Positive 

(TP) 

Ground truth  

Segmentation 

ROI   Segmentation                                                                                    

False Positive 

(FP) 

Segmented Image  

(Ground truth)’                                     

Segmented Image  (ROI)’                      

False Negative 

(FN) 

Ground truth  

(Segmented Image)’                                   

ROI  (Segmented Image)’                                                                         

True Negative 

(TN) 

(Segmented Image)’  

(Ground truth)’                                

(Segmented Image)’  (ROI)’                                                                     

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100 
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In this case, ROI would refer to the ROI of a single sample in case of TB-test (Case 

Study 1) and ROI of the objects in case of multi-objects per sampled type assay (Case 

Study 2).  

The performance of the overall image processing framework is evaluated based on the 

correctly separated ROI. The success of the colourimetric classification will depend on 

the accuracy as defined in Table 3. 1. 

Feature Extraction 

Once the samples (ROI) are separated, the remaining noise is filtered (if any), and the 

characteristics of these samples are analysed. In this thesis, the feature analysis involves 

the measurement of colour moments (𝑐௠) in various colour spaces (𝑐𝑠). A description 

of the features for any colour channel in any colour space {𝑓𝑡௖௦(𝑐௠)} is provided in 

Table 3. 2. For each colour channel (𝑐௖) of a colour space, let’s assume, 𝑁 (𝑔) =  

Number of pixels at any colour channel  𝑔; 𝐿 = Number of intensity or values available; 

𝑀 = Number of pixels = 𝑁௟ × 𝑁௪; 𝐼 = Value of pixel (e.g. intensity); 𝑟 = 

Corresponding row; 𝑐 = Corresponding column; 𝑛 = Number of observations and 

𝑃(𝑔) = First-order histogram probability =
ே(௚)

ெ
.  

Table 3. 2: Feature set of colour moments 

Feature Equation Description 

Mean 
𝑔 = ෍ 𝑔

௅ିଵ

௚ୀ଴

𝑃(𝑔) =  ෍ ෍
𝐼(𝑟, 𝑐)

𝑀௖௥
 

Average colour or brightness 

of the image  

Standard 

deviation ௚ = ඩ
1

1 − 𝑛
෍(𝑔 − 𝑔

௅ିଵ

௚ୀ଴

)ଶ𝑃(𝑔) 

Contrast of the image 

Mode  𝑚𝑜𝑑𝑒 Most frequent value in the 

distribution  

Skewness 
𝑆𝐾𝐸𝑊 =

 𝑔 − 𝑚𝑜𝑑𝑒

௚

 
Asymmetry of colour 

distribution 

Energy 
𝐸 = ෍[

௅ିଵ

௚ୀ଴

𝑃(𝑔)]ଶ 
Reciprocal to the number of 

intensity level 

Entropy 
𝐸𝑁𝑇𝑅𝑂𝑃𝑌 = − ෍ 𝑃(𝑔) 𝑙𝑜𝑔ଶ

௅ିଵ

௚ୀ଴

[𝑃(𝑔)] 
Bit information 
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The colour histogram of the segmented image, represented as a probability 

distribution, 𝑃(𝑔), signifies the number of pixels at each intensity level of the colour 

channels. More detail description of these features (Table 3. 2) in terms of image 

processing, are provided in Sergyan (2008). 

Regarding colour spaces, this work considers RGB, LAB, HSV, YCrCb, XYZ and L-

RGB colour spaces to begin with. The images captured by mobile phone cameras are 

usually in sRGB or standard Red, Green, Blue colour space. In CIE 1931 XYZ colour 

space, Y symbolises the luminance, whereas the XZ plane holds all possible 

chromaticities at that luminance. Both HSV and LAB are closer to human colour 

perception. HSV separates the intensity of the colour information. Therefore, for a 

robust system, HSV can help to deal with lighting conditions and shadows. 

Similarly, the ‘a’ and ‘b’ channel of LAB colour space signifies the colour. The LAB-

gamut is a superset of the RGB-gamut, and it is more perceptually linear, which 

provides it with an advantage while performing computation using Euclidean distance. 

The YCbCr also separates luma and chroma. Due to the advantage of chroma 

subsampling in YCbCr to make the image and video smaller in size, it finds usefulness 

in image processing, mobile application and game development. Lastly, the 

linearisation of L-RGB or linearised gamma-corrected RGB values is conducted using 

sRGB standard (Adobe, 1998).  

In addition to colour moments, this work also considers the colour difference between 

the control and sample. This feature is denoted as 𝑓𝑡(∆𝐸௅஺஻) in this thesis. This 

feature, 𝑓𝑡(∆𝐸௅஺஻), is obtained by the colour difference calculation introduced earlier 

for reaction phase and time-dependent approach as Eq. 3.2. As explained in section 3.3, 

this difference is computed in LAB colour space only.  

The use of the control is not a new thing in colourimetry (Smith et al., 2014). However, 

the meaning of control in this work merely refers to the colour of a typical sample. 

Regarding image processing, this control colour is the ground truth for the samples. For 

the case study of TB-test, the variation regarding colour is noteworthy. In real-life 

scenario, it can be more diverse due to climate, geo-location or the sample itself. 

Continuous update of the dataset using the TB-test at a different condition and an 

enormous amount of data can assist in finding the correct control colour, which is not 
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the circumstance of this study. Therefore, control colour is not used for the case study 

of TB-test. Using control colours as part of the feature would potentially make the 

system unreliable to completely unseen data, tested in a different environment.  

For the LFA case study of universal pH indicator paper, the conventional method 

involve comparing the test strip against a colour chart. This is a widespread method for 

colourimetric tests, particularly for the semi-quantitative tests. This colour chart can be 

thought of as the control colours, which can be considered as a reliable feature because 

unlike the assay type of TB-test, these assays are stable.  

This work also considers pseudo-control colours as part of the feature-set. This is a 

novel feature. This feature is applicable for the assay containing multiple objects such 

as urine dipstick and the pH indicator paper used in this study (Case Study 2). 

Therefore, more detail is provided in Chapter 6, where the feature is being used.  

As similar to the control colour, pseudo-control colour is also not suitable for the TB-

test. First of all, the TB-test is not multiple-objects per sample type assay; rather it can 

have multiple samples per image. Moreover, the assay plate could contain only one 

class. Therefore, this control colour would have to generated from each plate as shown 

in Smith et al. (2014). Hence, it would be control colour, not pseudo-control colour.   

In order to optimise the number of features, the impact of the features is analysed by 

univariate analysis as part of the exploratory data analysis or EDA (Tukey, 1977). As 

illustrated in Fig. 3. 11, the feature optimisation is conducted using the process of 

elimination technique (Burden and Faires, 2001).  

Initial 
assessment of 
the classifiers

Initial 
assessment of 
the features

Assessment of 
colour spaces

Find the best 
Classifier

Good
Features

Assess features 
for further 

optimisation

Validate on 
different number 

of datasets

Statistical 
Analysis

 

Fig. 3. 11: Feature selection, optimisation and classifier selection 
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Classification  

After extracting the features, the classifiers are trained using supervised learning. In this 

work, the case study of TB-test is a binary classification problem, whereas the pH test 

strips are to be classified in eight different classes. Although this work investigates a 

wide range of conventional machine learning techniques for classification, in this 

chapter, more attention is provided towards LS-SVM due to its performance in the 

literature for similar applications (Solmaz et al., 2018; Mutlu et al., 2017).  

LS-SVM, utilised in this work, was proposed by Suykens et al. (2002) and was 

originally introduced in Suykens and Vandewalle (1999). This work utilises Radial Bias 

Function (RBF) as the kernel. This work also takes advantage of Bayesian interference 

and regularisation proposed by Suykens et al. (2002) to take full benefit of probabilistic 

interpretations, automatic hyperparameter tuning and relevance determination. 

However, simplification of the model using least square and equality constraints has 

few shortcomings as well such as the issue with sparseness and robustness. Suykens et 

al. (2002) compensated for these issues by introducing weights to the LS-SVM 

algorithm and trade-offs between efficiency and robustness.  Finally, a robust cross-

validation (Brabanter et al., 2002) is employed as suggested by Suykens (2002).  

Performance of the Classifier 

The performance of the classifiers is primarily evaluated based on the confusion matrix. 

The performance was sequentially evaluated to finalise an optimal solution as 

illustrated in Fig. 3. 11. The Receiver Operating Characteristic (ROC) curve is also 

presented for the finally selected classifier utilising the optimised feature-set to 

demonstrate the quality of the classifier.  

The data-partitioning mechanism for the overall thesis is illustrated in Fig. 3. 12.  

Data.Tr Data.Tst

10-fold cross validated 
Training, testing and validation

Training Data Testing Data

 

Fig. 3. 12: Training and testing data division 
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The training dataset (Data.Tr) in Fig. 3. 12 is k-fold cross-validated. In k-fold cross-

validation, the dataset or sample-set is randomly partitioned into k equal sized 

subsamples. In each case (of k), a single subsample is retained as the validation data for 

testing the model, and the remaining k − 1 subsamples are used as training data. The 

cross-validation process is then repeated k times, with each of the k subsamples used 

exactly once as the validation data. The k results from the folds (k) can then be averaged 

to produce a single estimation. The advantage of this method over repeated random sub-

sampling is that all observations are used for both training and validation, and each 

observation is used for validation exactly once. In this work, k was chosen to be 10, 

which is the most conventional value.  

A small dataset (Data.Tst) is reserved till the very end to test the final system. In this 

way, the system can easily be tested for the entirely unseen data, which can assist in 

identifying the overfitting problem, if any. Hence, the overall cross-validation can also 

be seen as a k-1 cross-validation method.  

3.6 ASSURED Evaluation Criteria  

As mentioned in Chapter 1 and 2, this work evaluates the final system to comply with 

the ASSURED criteria. Therefore, the proposed system does not involve any additional 

hardware or operational cost to comply with the ASSURED-affordability. The methods 

presented in this chapter aspired to necessitate minimal user intervention. The system 

is supposed to act as an expert to provide a colourimetric decision. This work aims to 

present a computationally efficient system, which can be easily deployable to mobile 

devices to make the system accessible to the target audience.   

All the initial computational performance assessment in this work is based on the 

accuracy. However, a machine learning model with a known level of accuracy may 

have higher predictive power than the models with higher accuracy (Zhu and Davidson, 

2007). The formal terminology of this phenomena is known as accuracy paradox. The 

accuracy of a system can be a misleading evaluation metric because it cannot 

differentiate between the impact of the majority and minority class. Weiss and Provost 

(2003) showed that accuracy could lead towards a low minority-class performance. 

Therefore, this work utilises specificity and sensitivity, supported by the ASSURED 

criteria as well. The performance in terms of true positive and false positive rates can 
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also be explained by the ROC curve. The area under the curve expresses how much a 

model is capable of distinguishing between classes. 

This work also considers the Confidence Intervals (CI) of accuracy, specificity and 

sensitivity using Clopper-Pearson’s confidence intervals (Clopper and Pearson, 1934) 

in short known as the ‘exact’ method.  

Few other evaluation metrics such as precision, F-measure and Cohen’s kappa 

coefficient is presented in our published research (Abuhassan et al., 2017; Shabut et al., 

2018), however is not included in this thesis, because the ASSURED criteria requires 

only specificity and sensitivity; more focus of this thesis is drawn towards the data-

balancing issue.  

For predictive models such as the work presented in this thesis, a balanced dataset 

would be preferable to explain the performance of the classifier in terms of specificity 

and sensitivity. However, data-balancing can be tricky due to definite bias and 

permanent bias issue (Matloff, 2017). It should also be mentioned that the imbalance in 

the classes should not be perceived by the ratio of classes. This is a particular concern 

when there is no substantial amount of dataset to learn the pattern of the minority class.  

In the medical image processing, finding an adequate amount of balanced dataset has 

always been a challenge. In the case of imbalance data, it is not always possible to 

generate more dataset for the minority-class. Hence, it is necessary to deploy a 

resampling technique such as Chawla et al. (2002), Estabrooks, Jo and Japkowicz 

(2004).  

Before performing any balancing operation, this study considers two types of rarity: i) 

rare class and ii) rare case. In theory, the rarity should be considered in the context of 

underlying unknown distribution (Weiss, 2004). The rare class refers to the issue of 

class imbalance, whereas the rare case is a domain-specific problem, which can be in 

the form of both labelled and unlabelled data. With consideration of both scenarios, 

data-balancing is described in each of the experimental chapters before implementing 

it.  



 

64 

 

The robustness of the system can be perceived by the performance of k-fold and k-1 

cross-validation as shown in Fig. 3. 12. Moreover, the system is going to be tested on 

the different proportion of the dataset.  

This work explores the optimum number of features and the best suitable classifiers to 

reduce the computational complexity (Fig. 3. 11). This work defines a computationally 

efficient system in terms of accuracy, required memory size and computational time 

(Appendix E).  

Finally, the performance of the system is evaluated by statistical analysis (Appendix F) 

to quantify the reliability of the claim.  

3.8 Summary  

The aim of this chapter was to investigate and develop a model for both of the case 

studies with as much similarity as possible regarding the image processing, features and 

classification algorithm while presenting a computationally efficient system. The 

rationale for the research design and methods described in this chapter are heavily 

dependent on our research objectives, domain knowledge for the type of data and the 

evaluation criteria. The next three chapters present the result of the experiments based 

on the research design and the methods described in this chapter. The first experimental 

chapter is based on the optional layer (step), as shown in Fig. 3. 3, to detect the type of 

the assay. Based on the type of the assay, the system will initiate the rest of the model, 

described as either of the case studies. In the absence of the optional layer or step using 

a pre-trained model, the start point of the system will be the case study itself (the 

workflow is illustrated in Appendix E).  
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Chapter 4 

Assay Type Detection using Deep 

Learning    

4.1 Introduction  

Deep learning has demonstrated incredible success in recent years for image 

classification including object identification reducing the exasperation of the image 

processing (Krizhevsky, Sutskever and Hinton, 2012; Szegedy et al., 2015; He et al., 

2015). Despite the advantages of deep learning of advanced analysis and feature 

extraction, it is a resource-demanding technology, which contradicts with our attention 

towards resource-limited settings. Under the circumstances, transfer learning function 

is utilised, where the model is trained on one task and re-used on a second similar task. 

Two most widely used transfer learning approaches are the develop model and the pre-

trained model. In the case of a developed model approach, one would require an 

enormous amount of data while selecting the source-task. On the other hand, the success 

of the ongoing ImageNet project (ImageNet, 2016), trained on over 14 million images, 

has opened the door for faster implementation of deep learning on a smaller dataset 

using the state-of-the-art pre-trained model to classify images through magnificent 

features. In this chapter, we have utilised the pre-trained model of AlexNet 

(Krizhevsky, Sutskever and Hinton, 2012), inception module based GoogLeNet and 

Inception v-3 (Szegedy et al., 2015, 2016) and residual network based ResNets (He et 

al., 2015) to determine the assay type. For proof-of-concept, the following two assay 

types were selected to be determined: 1) ELISA and 2) LFA.  

4.2 Dataset for the Pre-trained Models 

4.2.1 Data Resampling Technique  

For assay type determination, the dataset called D.ELISA. 1 and D.LFA.1 were utilised. 

An overview of the dataset can be seen from Table 4. 1. Each of class in Table 4. 1 

contains 800 images. The LFA dataset contains one sample per image, whereas most 

of the images in the ELISA dataset contain multiple samples.  
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Table 4. 1: Dataset for assay type determination 

Class label Name of the 

dataset 

Number of 

images before 

resampling  

Resampling 

technique  

Number of 

images 

ELISA  D.ELISA. 1 264 Gaussian 

noise,  

CLAHE 

800 

LFA  D. LFA. 1 800 Not applicable 800 

Total 1,600 

The dataset of LFA (D.LFA.1) is consist of an equal number of tests strips from pH 

level 3-10. Therefore, resampling techniques were not required to balance the LFA 

dataset (Table 4. 1).  

The ELISA (D.ELISA.1) dataset contains both positive and negative samples from TB-

test. The assay plate contains an uneven distribution of positive and negative samples. 

Moreover, the original dataset of ELISA is too small to be trained by the CNN. 

Therefore, in addition to the best images, video frames were included to increase the 

volume of data to 264. In order to create more diversity in the dataset as well as to create 

an ample amount of data to be trained by CNN, the dataset was resampled by changing 

the quality of the image as shown in Fig. 4. 1.  

In this chapter, two techniques were deployed to change the image quality as part of the 

resampling technique. At first, the image quality was degraded by adding Gaussian 

noise. Another technique was carried to generate more data by enhancing the original 

images by using CLAHE as mentioned in Section 3.5.3. The change in the image 

quality is apparent from the histogram (Fig. 4. 1).  
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 Image Histogram 
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Noisy 
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Fig. 4. 1: Image resampling by adding Gaussian noise and enhancement by CLAHE. 

In the first row, the histogram is shown for the original image before deploying any 

image quality alteration. The second row shows the noisy image and its histogram. 

The change in the image quality and its colour components is visible from the 

histogram. The last row shows the enhanced image and its histogram. The histogram 

shows that CLAHE enhancement resulted in higher pixel intensities in the enhanced 

image than the original image. For better visualisation, the horizontal axis is shown in 

logarithmic scale.  
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While further extending our experiment with deep learning, for proof-of-concept, only 

one of the two assay types (Table 4. 1) was considered for intra-class classification. For 

intra-class classification of LFA, D.LFA.1 was inapplicable due to the need of 

partitioning based on the intermediate classes. The dataset for intra-class classification 

of LFA to determine pH levels is summarised in Table 4. 2.  

Table 4. 2: Dataset for intra-class classification of pH test  

Name Samples/ 

Class 

Classes Total 

samples 

Total 

images  

Resampling 

technique  

original 65 8 520 520 Not applicable 

D. LFA. 2 100 8 800 8000 Gaussian noise,  

CLAHE 

D. LFA. 3 100 8 800 4472 Not applicable 

D. LFA. 4 100 8 800 3160 Not applicable 

The dataset D.LFA.2 is the final dataset after enhancing the volume of LFA data (Table 

4. 2), and {original, D.LFA.3, D.LFA.4} ∈ D.LFA.2. In Table 4. 2, the dataset named 

‘original’ contains 520 images, captured in the laboratory environment using a 

Samsung Galaxy S6. The original dataset contains the consistent image of independent 

test samples without any duplication. It is worth mentioning that deep learning is a data-

hungry approach. Therefore, in order to feed the network a large amount of data, the 

volume of LFA dataset was increased by several techniques considering a minimal 

violation of ‘rarity’ (Weiss, 2004).  

The reported articles often increase the volume of the data by capturing the same sample 

in different illumination conditions, several devices, various orientations and 

converting the image into different file formats (Mutlu et al., 2017; Solmaz et al., 2018; 

Kim et al., 2017a). In this chapter, we applied such techniques to increase the number 

of images to be fed to CNNs.  

Before reaching to 8000 images (D.LFA.2), the dataset was gradually enhanced by 

capturing the image of 15-30% of the samples under four illumination conditions and 

using different devices (D.LFA. 3-4).  Up to this point, the dataset can considered as 
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the clean data (Goodfellow, Bengio and Courville, 2016).  Then, data resampling 

technique was applied on the LFA dataset to further enhance the volume of the data 

(D.LFA.2) by image degradation and enhancement techniques as described earlier in 

this section.  

4.2.2 Data Pre-processing  

The pre-trained models require the input images to possess a specific size. Resizing 

thousands to millions of images is computationally expensive. However, the required 

image size is defined by the model itself. The reduction in size may result in a loss of 

information, which is already expected to happen in the successive layers of the 

network. Therefore, the images were down-scaled before initiating the model.  

In theory, the pre-processing including image resizing can be performed while data-

augmentation. In this chapter, the datasets were separately resized for the pre-trained 

models to enable a faster execution (Appendix D). The images were converted to the 

size of 227x227x3 for AlexNet. The GoogLeNet and ResNets require a relatively 

smaller size of the image, i.e. 224x224x3. The Inception v-3 expects the image to be of 

relatively larger size (299x299x3).  

In general, larger image size would mean more computational processing at each layer, 

which would demand more memory. However, it should be mentioned that the CNNs 

above do not deal with the whole image as a single input, instead work on fixed 

windows sliding over the full image. During the training process, the models operate in 

mini-batches comprising many tensors (DoITPoMS, 2010). To ensure better 

performance, the tensor is supposed to fit into the memory properly. In addition to the 

overall faster performance due to a smaller data load, the resizing aids the pre-trained 

models to perceive the key features at earlier layers. The networks may require later 

layers to learn the key features of a bigger image, eventually requiring longer 

computational time.  

Data Augmentation 

Data-augmentation is a popular technique to increase the dataset. In this work, data 

augmentation is utilised to handle the data partitioning for training, validation, testing, 

and prediction. Data augmentation process in MATLAB is illustrated in Fig. 4. 2 and 

depicted from MATLAB & Simulink (2018c). 
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Fig. 4. 2:: Data-augmentation in MATLAB (MATLAB & Simulink, 2018c) 

Pre-processing while data augmentation such as rotation and reflection needs to be 

randomised by perturbing the training data for every epoch (Appendix E). As shown in 

Fig. 4. 2, every epoch uses the dataset with some variation. This process assists in 

preventing the network to remember the exact details of the training image, which 

ultimately assists in preventing the overfitting problem. Then, normalisation is 

performed at the image input layer, which is the first layer of the pre-trained models 

used in this work. The normalisation is conducted by using the mean of the augmented 

images, rather using the mean of the original input images. The mean is calculated only 

once, i.e. for the 1st epoch.  Understandably, all the epochs will have the same mean. 

Otherwise the average image would be altered during the training process.  

Table 4. 3: Data augmentation for advanced image pre-processing   

Property Specification  Description 

Reflection Direction: Left→ Right; 

Amount: With 50% probability 

Random reflection; Each image is 

reflected horizontally. 

Translation  Direction: Horizontal and 

Vertical; 

Specified by the pixel range  

Each augmented image is translated 

by a distance, in pixels, picked 

randomly from a uniform 

distribution within the range. 

Scaling  Direction: Horizontal and 

Vertical; 

Specified by a 2-element 

vector of positive numbers 

Each image is scaled by a factor 

picked randomly from a uniform 

distribution within the range. 
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This chapter utilised random affine geometric transformations, namely resizing, 

reflection, and translation while building the mini-batches. The specifics of the 

augmentation for training deep neural networks is provided in Table 4. 3. 

4.3 Assay Type Determination   

4.3.1 AlexNet  

In terms of top-5 error rate, the best performing pre-trained model of ImageNet 

challenge considered in this work chronologically are ResNet, GoogLeNet and AlexNet 

(ImageNet, 2016). Among these models, AlexNet is computationally the least complex 

one.  

For the large-scale data (ImageNet, 2016), AlexNet can take about six days to be 

trained, if stochastic gradient descent or SGD learning rate is 0.01, momentum, 𝛾 = 0.9 

and weight decay is 0.0005 using two GTX 580 GPUs. After reaching the accuracy 

plateau, the learning rate is divided by 10. The learning rate decreases three times during 

the overall training.   

Table 4. 4: Training parameter of AlexNet 

Input Arguments Description 

Solver training network SDGM (Murphy, 2012):  

𝜃௟ାଵ = 𝜃௟ − 𝛼∇𝐸(𝜃௟) + 𝛾(𝜃௟ − 𝜃௟ିଵ)  

𝜃 = parameter vector 

𝑙 = iteration number 

𝐸(𝜃) = cost function 

𝛾 = 0.9 

Initial learning rate=0.001 

Mini-batch options Maximum number of epochs= 20 

The training parameters of AlexNet utilised are listed in Table 4. 4. The gradient of loss 

or cost function, ∇𝐸(𝜃) uses the whole training set, whereas 𝜃௟ାଵ utilises the whole 

dataset. The stochastic gradient descent algorithm is used with a momentum to reduce 

the oscillation effect by controlling the influence of prior gradient step to the current 

one (Murphy, 2012). The Stochastic Gradient Descent with Momentum (SDGM) 
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algorithm assesses the gradient followed by updating the parameters utilising a mini-

batch i.e. subset of the training set.   

The detailed structure, including the weights and bias at each layer of the network, can 

be perceived from Fig. 4. 3. The total number of learnables utilised in our study can be 

calculated from the learners, which is briefly discussed in this section. 

 

Fig. 4. 3: Detailed layers of AlexNet 

As shown in Fig. 4. 3, the input image is of 227x227x3. Considering 11x11x3 blocks of 

pixels within the input image, each block was stretched into a column vector sized of 
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(11*11*3=) 363. In other words, the local regions of the image were stretched and 

converted into columns. There are 96 filters in this layer, which can also be thought of 

as the depth of the first convolutional layer. Therefore, the weight of the matrix was 

96x363, which is denoted as 𝑊. The first convolutional layer operated with 11x11x3 

filters and the stride was 4. There are many approaches to perform convolution.  

Let us assume,  

𝑂௪  = Width of the output image  

𝐼௪ = Width of the input image  

𝐾 = Size or width of the kernels used in the convolutional layer  

𝑁 = Number of kernels 

S = Stride of the convolutional operation  

𝑃 = Padding  

The size of the output tensor of a convolutional layer can be calculated as 𝑂௪ =

 
ூೢ ି௄ାଶ௉

ௌ
+ 1 and the number of channels of this output tensor or image is equal to 𝑁. 

This is a typical convolutional operation. Using this method, the output of the first 

convolutional layer would be [{(227-11)/4} +1] x [{(227-11)/4} +1] x 96=55x55x96, 

where 𝑃=0. However, for an image-based task including AlexNet, this operation is 

perform by GEneral Matrix Multiplication (GEMM)8. If 𝑀 is the result matrix, where 

𝑀= 396 x (55*55), then GEMM would provide 𝑀 × 𝑊.  

The next step was to stop all the negative values to propagate through the network by 

activating the ReLU layer. After normalising the output of the ReLU layer with five 

channels per element, max pooling was conducted. One can calculate the output 

as 𝑂௪ =  
ூೢ ି௉ೞ

ௌ
+ 1, where 𝑃௦  = Pool size. In this case, the input was 55x55x96 and max 

pooling signifies sub-sampling operation using a maximum of the four values in a 2x2 

window. Therefore, the outcome of this operation was {(55-3)/2+1} x {(55-3)/2+1} x 

96= 27x27x96.  The step is supposed to reduce the computation and to deal with the 

                                                

8 Many researchers have favoured GEMM for image-based convolutional operation (Hadjis et 
al., 2015). GEMM has the disadvantage of overlapping blocks of pixels, which consumes a 
huge memory. Due to GEMM operation, the matrix is required to be reshaped after 
multiplication. Therefore, it is not clear that why researchers have favoured this operation.   
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overfitting problem. There are 256 filters in the second convolutional layer and the filter 

size is 5x5x48. The output of this layer was 27x27x256. This is to draw the attention of 

the readers again to the fact that these CNNs work on volume. Within the second 

convolutional layer, the dimension (plane or length x width x height) altered from 

227x227x3 to 27x27x256. This work utilised a single CPU. If there were two GPUs, 

then this computation task would have distributed as 27x27x128 for each of GPU.  

The similar convolutional operation continued for 3rd, 4th and 5th convolutional layer. 

In both third and fourth convolutional layer, there are 384 kernels, varying in the size. 

The size of the kernels in the third layer is 3x3x256, whereas 3x3x192 in the fourth one. 

The final convolutional layer has 256 kernels. The size of the kernels is similar to the 

fourth convolutional layer, i.e. 3x3x192.  

The deep learning model does not rely on the domain experts to process the images, 

extract the ROI and feed the selected features to the machine learning algorithm. 

Instead, these convolutional layers act as the enhanced feature extractors. Therefore, in 

a conventional sense, the FC layer is the actual network of the AlexNet (Fig. 4. 3).  

The first FC layer is the sixth layer of the eight-layer deep AlexNet. In this case, the 

13x13x256 input is transformed into a vector, and max-pooling operation is performed 

before flattening the output to 4x4x256=4096 for the FC layer. The weight of the FC 

layer is 9216x4096. In order to map 6*6*256= 9216 neurons to 4096 neurons, this much 

weight is needed for the FC layer. After connecting each of the 9216 neurons to 4096 

neurons to create a full connection using general matrix vector multiplication, the 

output would become 4096x1. In a more proper form, the output can be expressed as 

[9216x4096]T∙ [9216x1]=[4096x1]. In this way, the FC layer will have a sufficient 

amount of neurons to apprehend the variability of the large-scale dataset.  

One can also calculate the number of parameters involved in this layer by combing the 

number of weights of the first FC Layer connected to the convolutional layer, 6*6*256-

4096= 3,77,48,736 and the bias, 4096. Therefore, the first FC layer has 3, 77, 52,832 

parameters connected to the convolutional layer.  

As most of the computation is conducted in the initial convolutional layers, the 

computational cost is much lower in the FC layers. The FC layer combines all the 

features detected from the patches of the images to produce the decision. In other words, 
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the layer contains most of the model parameters. Instead of placing all the burdens on 

a single FC layer, there are three FC layers in this structure, as shown in Fig. 4. 3. In this 

way, more flexibility can be attained to overcome memory constraints.  

As explained in Chapter 3, the final layers have to be replaced with our particular 

problem to fine-tune the pre-trained model; the final FC layer had only two fully 

connected layers to detect the assay type. Selecting the final FC layer and two class 

indices as the channels, Fig. 4. 3 illustrates detailed images that strongly activate these 

classes. However, it is difficult to perceive any significant information from Fig. 4. 4.  

 

 

 

 

 

 

 

 

Fig. 4. 4: Visualisation of features at FC layer  

From the training progress in Table 4. 5, the mini-batch accuracy and mini-batch 

objective function can be observed.   

Table 4. 5: Training progress of AlexNet for assay type determination 

Epoch  Iteration Mini-batch 
accuracy (%) 

Mini-batch 
loss 

1 1 48.44 0.9782 

3 50 100.00 1.7509e-07 

6 100 100.00 7.8231e-08 

9 150 100.00 5.1100e-05 

12 200 100.00 1.7659e-06 

15 250 100.00 4.1723e-07 

18 300 100.00 1.2871e-06 

20 340 100.00 1.6391e-07 

Input Input 
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The training was stopped after the 340th iteration. In this case, the number of iteration 

implies the number of passes, where a single pass signifies one forward-pass and one 

backward-pass, and each pass utilises the ‘batch-size-number’ of examples. The 

number of training examples in either forward or backward-pass is the batch size. 

Hence, iteration can be phrased as one forward pass and one backward pass of each 

batch size. There were 20 epochs, where each epoch represents one forward pass and 

one backward pass of all the training examples. In the case of 70:30 proportion of 

training and testing data, there were 17 iterations per epoch9. 

The overall accuracy revealed that the learning rate and maximum number of iteration 

were adequate for the binary classification of the selected assay types. The training 

progress per epoch can also be visualised in Fig. 4. 5. 
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Fig. 4. 5: Training progress of AlexNet for assay type detection 

Unlike the rest of the chapters, this chapter excluded k-fold cross-validation, which is 

the gold standard for TML. The k-fold cross-validation can assist in achieving a robust 

estimate of the performance of any model, including deep learning, on unseen data. 

However, the common notion of deep learning models to subside k-fold cross validation 

                                                

9 There is no thumb-rule regarding the best or right number of epochs, however, the number of 
epoch is highly dependent on the diversity and rarity within the dataset.  
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is due to higher computational expense. Instead of training k different models, in this 

case, a random subset of the training data is retained as the hold-out dataset for 

validation. At first, 70% of the data (Table 4. 1) was used for training and 30% for 

testing. The confusion matrix of Fig. 4. 6 is an illustration of the testing performance 

using 30% of the data. 
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Fig. 4. 6: Confusion matrix of the testing dataset using AlexNet  

Later, the ratio between training and testing was re-partitioned to 80:20 and 90:10. For 

verification of the system against potential random variation, the training and testing 

were repeated three times. The performance of AlexNet was consistent throughout the 

process.  

From Table 4. 6, it can be seen that the accuracy of assay type detection by AlexNet is 

between 99.77-100% using 95% CI. Fig 4.5-4.6 and Table 4.6- all suggest that AlexNet 

can be used for assay type detection.  

Table 4. 6: Result of AlexNet for assay type detection 

Metric  Value (%) 95% CI (%) 

Sensitivity 100 99.54-100 

Specificity 100 99.54-100 

Accuracy 100 99.77-100 

In Fig. 3.2, the layer of assay type detection acts as an object identification layer. It can 

be helpful to automatically fine-tune the system for different assay type and mitigate 

any brand-to-brand difference. Then, the successive layers of Fig. 3.3 can be initiated 

with reliability, based on the output of the assay type. 
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The overall model was 621MB including the training and testing images. The fine-

tuned core model was 202MB, which might not be suitable for standalone native 

operation on the currently available and widely accessible mobile devices. 

The training on 1,600 images took 15 min 42 seconds on a single CPU, whereas the 

prediction was provided within a fraction of a second. This trained model is heavy for 

the mobile devices, however, can be easily uploaded to a server. An example is 

illustrated in Fig. 4. 7, where the trained model is uploaded to the MATLAB server and 

then called on MATLAB Mobile (MATLAB & Simulink, 2018b).  

Upload the trained 
model

25
24

Pre-trained AlexNet CNN

Gallary Third-party 
application

Capture
Image Live Image

Result2
3
.
.
.
.
.

24: Output size
25: Label

1

replace

 

Fig. 4. 7: Mobile-enabled server-based pH test using AlexNet 

To provide a prediction of assay type of an entirely unseen image, a third party 

application10 was utilised to capture the new image on-site by MATLAB mobile. The 

server takes less than a minute to be connected with the mobile phone, depending on 

the specification of the mobile device, server and internet connection. The prediction 

time on the mobile platform was slightly lower than the desktop application when the 

trained model was uploaded to the server and connection was established with the 

mobile due to a fast internet connection and advanced mobile device, which may not 

be the case all the time. As discussed in Chapter 2, a detailed study of Kim et al. (2017) 

                                                

10 At this moment, MATLAB Mobile cannot pull input image without using any third party 
application.  
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showed that a server-based approach could make a colourimetric classification system 

two times slower.  

4.3.2 Inception Modules  

The performance of GoogLeNet and Inception v-3 was evaluated using the same 

computational platform with the same dataset as AlexNet (Table 4. 1). At first, for 

GoogLeNet the input images were converted to 224x224x3. In the first layer, these 

images were normalised by subtracting the mean image of the training set, which is 

known as ‘zerocentre’ data transformation. The model itself is 22 layers deep. However, 

the Directed Acyclic Graph (DAG) network architecture considers all the intermediate 

layer-array as layers. Therefore, it can be stated that the network is consist of 144 layers 

and 170x2 connections. The initial 110 layers of GoogLeNet were chosen to be frozen. 

The filter output at different layers can be visualised in Fig. 4. 8. 

  

(a) (b) 

 
 

(c) (d) 

Fig. 4. 8: Random testing data at a different layer of GoogLeNet. (a) Layer 2: 'conv1-

7x7_s2', (b) Layer 3: 'conv1-relu_7x7', (c) Layer 112: 'inception_5a-1x1', (d) Output 

with predicted label  
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A random image from the testing dataset was chosen by random permutation. In layer 

2, which is the first convolution layer as well, 64 filters were used. The output of this 

operation can be seen from Fig. 4. 8(a). Each filter was 7x7x3, and the filter output was 

down-sampled by a factor of 2 in each direction. The immediate successive layer 

utilises the ReLU function to nullify the negative values in the previous layer. The 

outcome is shown in Fig. 4. 8(b). In Fig. 4. 8(c), the output of 256 filters at the final 

convolution layer called 'inception_5a-1x1' can be visualised. There were 832 channels 

with zero padding.  

The training progress can be visualised in Fig. 4. 9. There were six epochs, and the 

maximum iteration was 672. The learning rate was 0.0001. In this chapter, we have 

utilised pre-trained models, and these pre-trained weights are supposed to be better than 

randomly initialised weights. Therefore, one should aim at retaining the essence of the 

traits of the original models, so that the pre-trained weights are not highly altered 

instantly. Therefore, the common practice is to use initial learning rate ten times smaller 

than the actual model. Although a smaller learning rate would elongate the convergence 

time, this hyperparameter can assist in tracking all the local minima by controlling the 

weights-adjustment with regarding the loss gradient. 
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Fig. 4. 9: Training progress of GoogLeNet for assay type detection 
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The training accuracy (Fig. 4. 9) is the classification accuracy on each mini-batch. The 

initial error is visible from the smoothened training accuracy. The loss function was 

calculated by cross-entropy loss (Bishop, 2006). The overall accuracy of the model was 

100%. The statistical output (Table 4. 6) and the confusion matrix (Fig. 4. 6) of AlexNet 

and GoogLeNet were identical. However, regarding training time, the model was 6.7 

times more expensive than the AlexNet.  

On the other hand, Inception models have several advantages over AlexNet such as 

batch normalization and image distortion. The later versions of Inceptions aimed at 

reducing the representational bottleneck. An advanced version of GoogLeNet, called 

Inception v-3 was deployed to evaluate the impact on the overall performance. This 

network includes batch normalisation in the ‘Auxiliary Classifiers’. It also holds 

advanced regularising components to the loss formula that prevents the network from 

becoming too confident about a class to prevent overfitting.  

Although the final accuracy by Inception v-3 was 100%, the training progress in Fig. 4. 

10 revealed, the trend of accuracy and loss were nosier than GoogLeNet and the training 

time was more than three times higher as well.  
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Fig. 4. 10: Training progress of Inception v-3 for assay type detection 
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The spikes shown in Fig. 4. 10 were due to the local minima, which could be thought 

of as the saddle points. The empirical study in Goodfellow, Bengio and Courville 

(2016) showed that the parameter optimisation of high-dimensional NN could 

circumvent any global minimum. Therefore, the saddle points occurred during 

Inception v-3 (Fig. 4. 10) are the local minima for the mini-batches which were 

applicable to certain dimensions. The model often was often trapped in these minima, 

and it can happen in many dimensions at the same time. However, the model recovered 

and managed to escape the local minima as the loss function was approaching towards 

the global minimum. On the other hand, based on the convergence of the model as 

shown in Fig. 4. 10, it appears that the training should have continued for a more 

extended period, to evaluate if the network can circumvent its pattern of entrapping in 

the local minima. 

4.3.3 ResNets 

The residual networks, ResNet-50 and ResNet-101, were explored in this thesis for 

assay type classification. In the ImageNet challenge, the top-5 error rate of ResNet-50 

was 3.6%, which is lower than the inception models (ImageNet, 2016).  
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Fig. 4. 11: Training progress of ResNet-50 for assay type detection 
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The performance of the residual networks for assay type detection can be perceived 

from Fig. 4. 11 and Fig. 4. 12.  

The number of iterations, epochs and learning rate for ResNets were kept as same as 

the inception models. Both ResNet-50 and ResNet-101 produced 100% accuracy. The 

initial training was noisy for both of them. However, the overall training progress was 

smoother for ResNet-101 (Fig. 4. 12). Therefore, based on the convergence on our 

dataset for assay type detection, ResNet-101 performed better than ResNet-50 (Fig. 4. 

11). On the other hand, both of the ResNets performed better than Inception v-3, 

however less than GoogLeNet. 
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Fig. 4. 12: Training progress of ResNet-101 for assay type detection  

4.4 Comparative Performance of the Pre-trained models  

For assay type determination, all the pre-trained models mentioned above exhibited 

100% accuracy. It is worth mentioning that the accuracy mentioned in Section 4.3 as 

well as in Table 4. 7, is the final validation accuracy after completing the training.  
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Table 4. 7: Comparative performance for the assay type detection 

Model Accuracy Comparative 

time 

Total 

Size 

Core 

Model Size 

Network 

 (%)  (MB) (MB)  

AlexNet 100 1 621 207.2 Series 

GoogLeNet 100 x 6.71 65.6 22.2 DAG 

Inception v-3 100 x 22.65 232 79.4 DAG 

ResNet-50 100 x 17.72 253 86.2 DAG 

ResNet-100 100 x 30.38 456 155.5 DAG 

x reads as times, e.g. the training time of GoogLeNet was 6.71 times higher than AlexNet 

From Fig. 4. 9- 4.12, this accuracy is identified as the Final point. The training 

accuracies and losses are shown in Fig. 4. 9- 4.12 were only for the individual mini-

batches. The validation accuracy, as well as loss for both inception models and ResNets, 

are the classification accuracy using the entire validation dataset, which was held-out 

while initiating the training procedure.  

The confusion matrix and statistical output provided the identical result as the models 

above. Regarding prediction time, a new image can be classified within a fraction of a 

second. Therefore, these models were evaluated based on the model complexity, 

convergence time, smoothening and size of the model.  

From Table 4. 7, it can be observed that AlexNet required the lowest training time, 

which is easily understandable that the deeper layers and more complexity of the rest 

of the models resulted in higher computational expense. The AlexNet converged more 

smoothly within the earlier epochs than the other pre-trained models. Although the 

initial layers for rest of the models were chosen to be frozen, the training time for 1600 

images (of relatively smaller sized input) was significantly higher than AlexNet.  

Comparing the trend of training progress, AlexNet and GoogLeNet were found to be 

more stable models for the assay type detection using the chosen parameters. The size 

of the models mentioned in Table 4. 7 contains all the variables including the training 

and testing dataset. The core model is much smaller in size.  
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Regarding total memory size, the AlexNet is bigger than the others. As shown in Table 

4. 7, the GoogLeNet occupied the least amount of memory space. Unlike the rest of the 

models, the gradients in AlexNet were computed at each layer during the re-training 

process, which justifies the larger size.  However, the memory size of different networks 

can be better explained with the number of parameters.  

One of the biggest successes of the inception module based network is its capability to 

operate on multiple sized filters at the same level, effectively making the network wider 

rather than deeper (Szegedy et al., 2015, 2016). A lower dimensional embedding may 

contain many useful information about a relatively large image patch. In the inception 

module architecture (Fig. 3. 8(a), in Chapter 3), 1x1 convolutions are used to compute 

reductions before the expensive 3x3 and 5x5 convolutions. Due to the network structure 

performing several small convolutions to drastically reduce the number of parameters, 

the memory occupancy by the Inceptions was downsized (Table 4. 7). The memory 

occupancy of the ResNets in Table 4. 7 can be understood from the higher number of 

parameters originated from the ‘network-in-network’ architecture of ResNets (Fig. 3. 

9, in Chapter 3).  

Regarding model complexity, the AlexNet utilised a series network for deep learning, 

where all the layers are arranged one after the other. Among the 25 layers within the 

network, there is a single input layer, eight layers with learnable weights consisting 

convolutional layers and fully connected layers, and a single output layer. The rest of 

the pre-trained models mentioned in this chapter utilises the DAG network. Therefore, 

in addition to having longer layers, these model possess a much more complex network 

than AlexNet.  

4.5 Intra-class Classification 

The intention behind using pre-trained models was to determine the type of the assay, 

where the type of the assay signified the class label. In this section, we extended our 

experiments on the pre-trained models for intra-class classification of the assays. In 

other words, in Section 4.3, the class was defined as the assay type; in Section 4.5, 

further classification within the class (i.e. assay type) is provided, which is referred to 

as the intra-class classification. This intra-class classification is the colourimetric 

classification that provides a decisive analysis of the present elements in a qualitative 

or semi-quantitative manner. This experiment aims to evaluate the scope of using pre-
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trained models for a complete colourimetric classification, rather than using the 

framework proposed in Fig. 3.3.  

4.5.1 AlexNet for pH Test 

At first, the LFA was chosen to be classified for intermediate classes within LFA using 

the same universal paper strips of pH indicator as a case study. In this case, there were 

eight classes for pH level ranging from 3.0 to 8.0. Keeping the rest of the model-

parameters as given in Table 4. 4, the AlexNet was trained as described in Section 3.5.2, 

replacing the final layers only. The detail of the final layers is provided in Table 4. 8.  

Table 4. 8: Details of the final layers of AlexNet for intra-class classification of pH 
test 

Layer Name of the layer  Type Activation  Learnable 

23 FC 

8 fully connected layer 

Fully 

Connected 

1x1x8 Weights 8x4096 

Bias 8x1 

24 prob 

softmax 

Softmax 1x1x8 - 

25 Classoutput 

Crossentropyex  

Classification 

Output  

- - 

The convolutional layers embody many two dimensional arrays. These arrays are called 

channel. In order to explore deep learning-features by examining the activations within 

convolutional layers, each of the five convolutional layers was critically inspected. 

Initial layers of a convolutional network are supposed to learn basic features such as 

colours and edges, whereas the deeper features should be able to learn complex features. 

Each of the successive layers structures the features by relating to features of the 

preceding layers as well.  

The first convolutional layers consist of 96 11x11x3 convolutions with [4 4] stride and 

[0 0 0 0] padding, as shown earlier in Fig. 4. 3. The output of the activations can be 

represented by a three-dimensional array. In this case, the third dimension indexes the 

channel of the first convolutional layer. For illustration purpose, an arbitrary image 
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from the dataset D. LFA. 2 was chosen by random permutation. The class label of the 

image is pH 7. The image was passed on to the first convolutional layer of AlexNet, 

and Fig. 4. 13 (a) represents the montage of the images for each channel, by taking it 

into a four-dimensional shape, where the 3rd dimension in the input to montage is for 

colours, and fourth dimension is the index of the channel.  

 

(a) 

1st Convolutional Layer 
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(b) 

2nd Convolutional Layer 
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(c) 

3rd Convolutional Layer 
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(d) 

4th Convolutional Layer 
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(e) 

Fig. 4. 13: Activations of the convolutional layer for pH test. (a) First convolutional 

layer, (b) Second convolutional layer, (c) Third convolutional layer, (d) Fourth 

convolutional layer, (e) Fifth convolutional layer 

The activations are colour blind. Therefore, the images were normalised and scaled, 

and the outputs are shown as grey images. Due to the choice of the activation function, 

in this case, minimum activation=0 and maximum activation=1. Similar to the 

activations in the first convolutional layer in Fig. 4. 13 (a), each of the convolutional 

layer along with its channels were investigated as shown in Fig. 4. 13(b-e). The 

maximum activations in each of the layers of Fig. 4. 13 is separately shown in Fig. 4. 

14 for better understanding.  

5th Convolutional Layer 
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(a) (b) (c) 

   

(d) (e) (f) 

Fig. 4. 14: Comparison of the strongest activations in each convolutional layer of 

AlexNet. (a) Input Image. The strongest activation in the (b) first, (c) second, (d) 

third, (e) fourth and (f) fifth convolutional layer  

It appears from the Fig. 4. 14 that the most massive activations in the deeper layers may 

not be the point of interest. The point of interest may have been buried in some other 

channels. Moreover, the later layers of Fig. 4. 14 is suggesting an indication of both 

positive and negative activations, which was rectified in the ReLU layers.  

 

Fig. 4. 15: Visualisation of features at final FC layer for pH test 

Using Deep Dream Images (Mordvintsev, Alexander; Olah and Tyka, 2015; 

Mordvintsev, Alexander; Olah, Christopher; Tyka, 2015; MATLAB & Simulink, 

Input 
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2018a), the output of the 23rd layer is shown in Fig. 4. 15 for each of the class label. 

The pH test strip was chosen by random permutation. There were eight pH levels; 

therefore, the last position for an image in Fig. 4. 15 appeared blank. For the 

convenience of the readers, the blank place is filled with the input image.  

Using the same arbitrary image of class label pH 7 as the previous figure, the detailed 

output images is shown in Fig. 4. 16 that strongly activated the mentioned class label. 

  
(a) (b) 

Fig. 4. 16: Detailed image with strong activation at (a) layer 23rd and (b) layer 24th  

The larger output was generated by increasing the number of pyramid levels and 

iterations for each pyramid levels (Fig. 4. 16). To perform a colourimetric classification, 

these layers were supposed to search for only colours of each block of the pH test strip 

and block to block colour difference. However, as mentioned in Section 4.3.1, it is 

difficult to gather any significant information for the classification from these images.  

Table 4. 9: Training progress of AlexNet for intra-class classification of pH test 

Epoch  Iteration Mini-batch 
accuracy (%) 

Mini-batch 
loss 

1 1 7.81 2.4580 

1 50 62.50 0.8779 

2 100 85.94 0.3926 

2 150 82.81 0.4963 

3 200 89.06 0.2573 

3 250 90.63 0.2136 

4 300 95.31 0.1276 

5 350 89.06 0.2425 

5 400 93.75 0.1701 

6 450 93.75 0.1719 
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6 500 87.50 0.2094 

7 550 93.75 0.1145 

7 600 96.88 0.0713 

8 650 96.88 0.1075 

9 700 98.44 0.0948 

9 750 89.06 0.1822 

10 800 96.88 0.0853 

10 850 100.00 0.0371 

11 900 92.19 0.1696 

11 950 95.31 0.0781 

12 1000 93.75 0.0914 

13 1050 90.63 0.1451  

13 1100 98.44 0.0725 

14 1150 96.88 0.0544 

14 1200 90.63 0.1097 

15 1250 96.88 0.0643 

15 1300 98.44 0.0386 

16 1350 95.31 0.0958 

17 1400 90.63 0.1295 

17 1450 92.19 0.1311 

18 1500 96.88 0.0544 

18 1550 98.44 0.0304 

19 1600 96.88 0.1187 

19 1650 93.75 0.1247 

20 1700 93.75 0.0970 

20 1740 93.75 0.0721 

From the training progress in Table 4. 9, the mini-batch accuracy and mini-batch 

objective function can be analysed. Within the first epoch, the network managed to 

learn more than 62% regarding the data.  

There were 87 iterations for each of 20 epochs with a constant learning rate of 0.001. 

The trend of training accuracy and loss is showed in Fig. 4. 17. 
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Fig. 4. 17: Training Progress of AlexNet for pH test  

The overall accuracy of the model was ~93%. The accuracy of intra-class classification 

is considerably lower than the classification conducted for assay type detection. For a 

stable assay such as universal pH indicator paper, the classification accuracy obtained 

from the pre-trained model of AlexNet is not acceptable. The general perception 

regarding CNNs is larger dataset produces a better result. Therefore, this chapter 

explores if the poor accuracy was due insufficient amount of data or some other factors 

(Fig. 4. 18).   

The AlexNet required only 15 minutes and 42 seconds while training on 1600 images 

for the assay type detection (Section 4.3.1). Using 8000 images, the pre-trained model 

of AlexNet, consisting series network, was trained by a considerable amount of time. 

Further exploration of the computation time of AlexNet confirmed that larger dataset 

takes longer time (Fig. 4. 18).  Therefore, it was necessary to explore the impact of the 

size of the dataset on AlexNet. The dataset D. LFA. 2 utilised for pH test is already 

resampled. Hence, the investigation of the impact of the size of the dataset did not 

involve any further resampling. 
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Fig. 4. 18: Increase in elapsed time with respect to increment in data size 

The model trained on the original dataset consisting 520 images (Table 4. 2), took 6 

minutes and 34 seconds as shown in Fig. 4. 18. The dataset containing 3,160 images 

(D.LFA.4), took 31 minutes and 54 seconds. In order to generate more data-points to 

attain an interpolation of the trend of computational time with respect to the number of 

images, the dataset containing 4,472 images (D.LFA.3) was is shown with training and 

testing data-partitioning of 70:30 (42 minutes and 52 seconds), 80:20 (49 minutes and 

02 seconds) and 90:10 (55 minutes and 43 seconds). The experimental analysis shows 

how the computational time is affected by the number of training dataset, even if the 

total dataset remains the same.  

  

 (a)  (b) 

          original (70|30) original (80|30)               original (90|30) 
          D. LFA. 3 (70|30)          D. LFA. 3 (80|30)               D. LFA. 3 (90|30) 
          D. LFA. 2 (70|30)          D. LFA. 2 (80|30)               D. LFA. 2 (90|30) 

Fig. 4. 19: Performance of AlexNet for pH test. (a) Ratio of training and testing 

datasets, (b) With respect to datasets 

In addition to the computation time, a detail inspection of the impact of the size of the 

dataset is shown in terms of classification accuracy. When the model was trained on the 
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original dataset consisting of 520 images, the classification accuracy was below 90% 

(Fig. 4. 19). 

With an 8.6 times larger dataset, the accuracy increased to 95.3%. On 8000 images, the 

accuracy decreased to ~93%. One possible explanation of this degradation of 

performance could be resampling technique itself. The LFA dataset is consistent in 

terms of samples per class, exposure of the plane and image capturing technique. As 

explained in Section 4.2.1, resampling was used to feed the network a bigger dataset. 

Instead of using an exact duplicate, the resampling technique involved image 

enhancement techniques and induced noise (D.LFA.2). Although Goodfellow, Bengio 

and Courville (2016) showed that adding computer-generated noise to the training 

dataset can improve the overall accuracy of the model, because in this way the model 

is exposed to a more adversarial scenario and more generalisation can be achieved, the 

experimental result obtained in this section was not consistent with the claim. 

Therefore, a bigger dataset without excessive resampling may improve the 

classification accuracy of AlexNet.  

Another noticeable factor regarding the size of the dataset was revealed by varying the 

proportion of training and testing data. This variation was created from changing the 

parameters of augmentation.  The data augmentation by creating batches of training, 

validation, test, and prediction data, aids the model to deal with overfitting. It also 

prevents the model to memorise the exact specifications of the training images. The 

ratio was varied from 70:30 to 90:10. In Fig. 4. 19(b), the classification performance on 

the original dataset reveals prompt increase with an increase in the training dataset. On 

the larger datasets, the larger proportion of training dataset had a slower impact. This 

phenomenon indicates potential saturation of the classification accuracy, even if the 

dataset is further extended.  

From the critical analysis of the features of each layer of AlexNet and the training 

progress from Table 4. 9 and Fig. 4. 17, another explanation of poor classification 

accuracy for pH test could be the training cycles. The number of iterations and epoch 

were inadequate to provide an accurate colourimetric classification for the pH levels. It 

is already mentioned that Fig. 4. 19 suggests a slower increase in the accuracy with the 

higher number of the dataset, which could be due to the resampling technique.  In 

addition to the need of significant amount a larger dataset, Table 4. 9 indicates a need 
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for longer training cycle which would effectively require more enhanced resources, e.g. 

higher computational power11, which contradicts with our research goal.  

4.5.2 Rest of the Models for pH test 

This section presents an investigation for the rest of the models mentioned in Table 4. 

7 to explore the possibility of better classification accuracy using a pre-trained model. 

Unlike Table 4. 7, the performance of GoogLeNet degraded for pH test. It provided 

only 67.58% accuracy on D.LFA.2 as shown in Fig. 4. 20. 
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Fig. 4. 20: Training progress of GoogLeNet for pH test 

There were six epochs and 560 iterations during epoch (Fig. 4. 20), which resulted in a 

total of 3360 iterations. The learning rate was kept as same as for the assay type 

detection, i.e. 0.0001. Based on the trend of the convergence, more extended training 

                                                

11 Another alternative would be developed model approach, which would be contradicting our 
research aim due to more computationally expensive scheme. 
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period probably would have provided a better accuracy, which was avoided to prevent 

over-training.   

With the same number of epochs and iterations as GoogLeNet, Inception v-3 provided 

76.17% accuracy to classify eight pH levels as shown in Fig. 4. 21. 
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Fig. 4. 21: Training progress of Inception v-3 for pH test 

The performance of Inception v-3 was slightly higher than GoogLeNet, however 

considerably lower than AlexNet and its own performance in Table 4. 7. Based on the 

convergence, it is difficult to say if only a longer training cycle and a bigger dataset 

would have provided a high accuracy or not.  

From AlexNet to Inception v-3, the layers grew deeper for each of the models. One may 

wonder if only the deeper layers are the solution for every problem. He et al. (2015) 

discussed in their paper on ResNet that because of the vanishing gradient problem, the 

model weights of the initial layers are unable to be updated adequately using 

backpropagation of the error gradient.  
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In an ANN using gradient-based learning and backpropagation, the weights of each 

network receive an update. This update is proportional to the partial derivative of the 

error function corresponding to the weight for the current iteration, which continues for 

each iteration during training. For some cases, the gradient can be ‘vanishingly’ small. 

This phenomenon can prevent the weights to be updated. He et al. (2015) was motivated 

to retain the gradient, which is one of the key advantages of ResNet. Using the pre-

trained model of the ResNet-50 on the D. LFA. 2, 76.17% accuracy was attained for 

pH level determination (Fig. 4. 22). 
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Fig. 4. 22: Training progress of ResNet-50 for pH test 

The ResNet-50 evidently showed better performance than the inception modules on 

D.LFA.2. The computation time was higher than Inception v-3 but lower than 

GoogLeNet. The ResNet-101 showed slightly better performance on D.LFA.2 than 

ResNet-50 (Fig. 4. 23). 
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Fig. 4. 23: Training progress of ResNet-101 for pH test 

The computation time for ResNet-101 was significantly higher than any other models. 

However, the accuracy was still low (67.11%). Without more fine-tuning the model 

including data cleaning (Reed et al., 2015), incremental feature construction and 

hyperparameter tuning such as cyclical learning rate, activation function and more 

experimenting with weight initialisation, which may require more resources, it is 

difficult to claim if a longer training period can assist in the convergence rate of the 

ResNet-101.  

Performance of these pre-trained models with 70:30 training and testing data ratio can 

be summarised as Table 4. 10. The model sizes were similar to Table 4. 7. Therefore, 

the discussion regarding memory occupancy is not repeated for D.LFA.2.  
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Table 4. 10: Comparative performance for the assay type detection  

Model original D.LFA.2 
Accuracy 

(%) 
Comparative 

time 
Accuracy 

(%) 
Comparative 

time 

AlexNet 86.86 1 92.92 x 12.03 

GoogLeNet 50.00 x 2.08 67.58 x 383.66 

Inception v-3 55.26 x 7.46 76.17 x 1216.75 

ResNet-50 63.82 x 5.58 84.42 x 996.15 

ResNet-100 67.11 x 10.59 85.58 x 1633.04 

x reads as times, e.g. the training time of GoogLeNet is 2.08  times higher than AlexNet 

In Table 4. 10, the accuracy of pH level recognition or determination was higher for 

AlexNet than the other pre-trained models. Rest of the models with deeper networks 

with frozen layers are insufficient to provide the colourimetric classification using the 

chosen parameters.  For a better illustration of the accuracy achieved using original 

dataset and the final dataset containing resampled images, Fig. 4. 24 is separately 

showing the accuracy per model for two datasets, where the trend can be better 

perceived.   

 

Fig. 4. 24: Performance of the pre-trained models with respect to datasets for pH test  

The comparative performance of the models trained on 520 images of the original 

dataset and 8000 images of D. LFA. 2, illustrated in Fig. 4. 24, suggests the scope of 

improved performance from Inception modules and ResNets using a bigger dataset and 
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longer training period. Based on the comparative performance (Fig. 4. 24) and the trend 

of convergence, these models are more capable of learning from these resampled data 

than AlexNet. However, in order to preserve ‘rarity’ (Weiss, 2004), the dataset was not 

further resampled. Moreover, these models were computationally more expensive even 

with the frozen layers.  

4.5.3 Intra-class Classification for ELISA  

The intra-class classification was conducted for LFA only, not ELISA due to the 

following reasons. 

- For proof-of-concept, we found only one intra-classification would be sufficient 

because the intra-class classification accuracy obtained by the pre-trained 

models was unsatisfactory. Therefore, the approach would have had to be 

rejected for the final colourimetric classification, despite the outcome of the case 

study of ELISA.  

- The case study of LFA is a stable assay. The dataset possesses consistency. A 

large number of images were fed to the network. The classification accuracy 

was still poor. The case study of ELISA contains less stable samples. Therefore 

it would be more difficult to understand and explain the underlying reasons of 

the hypothetical poor performance of the pre-trained models.   

- The resampling techniques assisted in generating two times larger volume of 

data for LFA. The final dataset contained 1000 images per class (D.LFA.2). The 

analysis of the classification accuracy suggested the requirement of samples 

with less resampled data. The ELISA dataset is already smaller than the LFA 

dataset. Therefore, the number of images would be insufficient for these data-

hungry pre-trained models.  

4.6 Summary 

The determination of assay type can aid a less medically trained person to begin the 

colourimetric test without any prior knowledge about the nature of the assay. It can also 

assist to initiate the rest of the framework based on the output of the pre-trained model. 

Moreover, the variation regarding size, shape and colour of the assay by different 

commercial brands (Fig. 3. 5) can be mitigated to certain extent using these deep neural 

networks.  
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In the overall framework, the assay type determination is indicated as an optional step. 

Considering one of the focus of the research being resource-limited settings, the present 

state of the processing capacity of the mobile phones would require the pre-trained 

models to utilise a server-based approach.  

Based on the analysis of the result obtained by the pre-trained models, considering the 

training time, AlexNet would be a better option. Moreover, utilisation of the series 

network makes the model less complex as well. However, a trained system does not 

require to be trained each time when a user provides an image to be tested. Therefore, 

considering the requirement of memory size, GoogLeNet can be chosen for initiating 

the rest of the framework based on the output regarding the assay type.  

The performance of the models was evaluated for intra-class classification as well. The 

result indicates that these pre-trained models are more suitable for assay type detection 

rather than binary or multi-class classification within the assay type. The geometric 

shape of assay and location of the coloured samples are easily distinguishable for these 

pre-trained models using the standard kernels with a reasonable amount of dataset. 

However, the intra-class classification would require the model to search for only the 

colours even when the rest of the geometric features are similar, and occurrence of those 

colours are in the same location. Therefore, it is more logical to use a simpler machine 

learning model for the colourimetric classification, instead of building more deep layers 

which would require more processing capacity, memory size, larger dataset and more 

dependency on the cloud-based approach.  
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Chapter 5 

Experiments and Results: Case Study 1 

5.1 Introduction  

This chapter explores the data structure and number of algorithms to provide an 

automatic colourimetric decision for the wet-chemical-based assay. The case of Gold 

Nanoparticles (AuNP) based plasmonic enzyme-linked immunosorbent assay for 

tuberculosis antigen-specific antibody detection is the main focus of the chapter. The 

case study is referred to as TB-test in the thesis, as mentioned earlier in Section 1.5 

(Chapter 1). This chapter sequentially discusses the impact of the case study, several 

methods to solve the problem using existing knowledge of computer vision and 

machine learning, and based on the performance of several alternative approaches, this 

study outlines an optimal solution for the presented problem.  

5.2 Background of the Case Study 

TB is a communicable disease, infecting one-third of the world’s population. In 2015, 

1.8 million TB-related deaths were reported (Centers for Disease Control and 

Prevention, 2017). On the other hand, every year about 244 million migrants cross 

international borders (Department of Economic and Social Affairs, 2016). The carriage 

of TB in a mobile population is a global challenge, which is a particular concern for the 

border agencies (Posey, Marano, & Cetron, 2017). However, TB is curable with 

appropriate early diagnosis. The most common diagnostic procedure for TB is a skin 

test12 or a blood test13 (Centers for Disease Control and Prevention.; NHS). Despite 

many commercial test schemes, there is still a need for an easy-to-use, effective and 

feasible point-of-care TB diagnostic tool, particularly for the remote community where 

there are very limited or no diagnostic facilities. Such a tool should possess the 

following features: low-cost mobile solution, anytime anywhere access, low energy 

consumption, ease of use, fast and automatic identification of TB.  

                                                

12 Mantoux test 
13 Interferon-Gamma Release Assay (IGRA) 
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There are commercial and endorsed mobile applications for TB in the popular mobile 

application stores (Appendix C). When it comes to diagnosis, the applications are for 

screening purposes only. The available mobile applications can ensure the data 

portability and can be used for the diagnostic decision. However, they lack automation 

to produce a diagnostic result from the specimen. Thus, there is a need for a system that 

does not require any additional hardware (e.g. microplate photometer) and can produce 

laboratory scale test results. 

To the best of our knowledge, there is no existing mobile, desktop or server-based 

system for plasmonic ELISA based detection of TB antigen-specific antibodies. In the 

literature, only a few studies employed machine learning techniques to assist in the 

diagnosis and monitoring of TB to offer a low-cost, simple, rapid and portable platform. 

For example, Tracey et al. (2011) utilised acoustic signals to track the recovery of 

pulmonary tuberculosis patients. The MLP showed 88.2% accuracy for ambulatory 

cough analysis.  

Osman, Mashor, & Jaafar (2010) proposed a tuberculosis bacteria detection technique 

from the tissue sample by Ziehl-Neelsen staining method. The prepared sample image 

from an optical microscope was segmented by k-mean clustering for tuberculosis 

bacteria extraction. Both RGB and C-Y colour were utilised to acquire a robust and 

improved segmentation under various staining conditions. The hybrid MLP selected the 

features among the geometrical features of Zernike moments to detect tuberculosis 

bacteria. The result showed 98.0%, 100% and 96.19% of accuracy, sensitivity and 

specificity respectively to find the class of definite and possible TB. 

Sutherland et al. (2016) presented an affordable and easy-to-use system for TB 

diagnosis on POC platform. Although the system is not image based, the system is 

based on LFA. The system aimed at a primary indication of TB and similar respiratory 

diseases. The classification accuracy was only 92%, hence it heavily relies on a 

secondary confirmatory test.    

Tsai, Shen, Cheng, & Chen (2013) developed colourimetric sensing using unmodified 

gold nanoparticles and single-stranded detection oligonucleotides for a TB test. The 

focus of the work was salt-induced AuNP colourimetric diagnosis for sensing target TB 

DNA sequences without multiple PCR cycles to amplify specific MTB target DNA 
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sequences from extracted sputum or tissue samples. A smartphone was utilised just to 

collect the multiple detection results of colour variation from the concentration on 

cellulose paper and transmit the data to the cloud. 

Most of the articles mentioned above do not involve colourimetric test, even if they 

comprise intelligent systems. Therefore, in the absence of a similar technology to 

diagnose TB, this chapter does not include any comparative analysis with the proposed 

system.  

5.3 Reaction Phase and Time-dependent Approach 

This section explores the first research question of this thesis using the case study of 

TB-test.  

5.3.1 Video Frames Acquisition  

The case study of sandwich ELISA presented in this chapter is an end point assay. The 

reaction time of TB-test was typically from 14 to 50 minutes  (N.A. Yusof, 2018; Tania 

et al., 2017). The reaction time and the colours produced can be affected by geo-location 

and climate. For a conventional naked-eye measurement, a single measurement is 

performed after a fixed incubation period. In this work, we have taken a novel approach 

to monitor the entire reaction to provide a computer-aided classification, instead of 

considering only the end point.  

Regarding the biochemical protocol, a batch of 96-well plates went through a series of 

processes as illustrated in Fig. 5. 1. However, the focus of this thesis is not the 

biochemical components. 

 

Fig. 5. 1: Stepwise plasmonic ELISA based TB-test 
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Three separate experiments were conducted on three sample plates (𝑃𝑙ଵ ,𝑃𝑙ଶ, 𝑃𝑙ଷ) and 

all of the experiments were recorded. There were 31 samples in total- 1 in 𝑃𝑙ଵ , 6 in 𝑃𝑙ଶ 

and 24 in 𝑃𝑙ଷ. The videos were recorded using iPhone 7 plus (12MP, wide-angle: ƒ/1.8 

aperture, telephoto: ƒ/2.8 aperture) and iPhone 4 (5MP) in laboratory environment in 

the Universiti Putra Malaysia. The videos were converted from MOV to JPEG based 

images using a conversion software taking time interval (ti) as 0.0332 (every frame), 1, 

5, 10, 20 and 50 seconds. The conversion along with the processing can be performed 

by direct video acquisition using the MATLAB toolbox as well. 

The plasmonic ELISA based TB-test shown in Fig. 5. 2(a), (b) and (c) were conducted 

in 14:26, 13:10 and 14:09 minutes respectively. The video frames shown in Fig. 5. 2 

were sampled at ten seconds interval. The readers can visually track the dynamic 

changes in colour for all three plates in Fig. 5. 2. However, interpretation of the colour 

can be subjective.  In Fig. 5. 2, the blank frames appeared as black.  

 
Original video: 14:26 min; Frame width: 1920; Frame height: 1080; 

Frame rate: 29.98 frames/ second. Plate contains only one sample. Initial frames do not show 
any visible colour.  

(a) 
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Original video: 13:10 min; Frame width: 1920; Frame height: 1080; 

Frame rate: 29.98 frames/ second. Six more samples were added to the plate shown in (a). 
Therefore, initial frames only show the sample from (a). 

(b) 
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Original video: 14:09 min; Frame width: 1920; Frame height: 1080; 

Frame rate: 30.00 frames/ second. Plate contains twenty-four samples. The concentration 
varies in each column of the assay plate. 

(c) 

Fig. 5. 2: Video frames of overall reaction sampled at 10 seconds interval (a) 𝑃𝑙ଵ , (b) 

𝑃𝑙ଶ and (c) 𝑃𝑙ଷ 

The frame rate per second signifies the quality of the video. Due to the involvement of 

the number of devices, there is a minor variation in the quality of the videos, which can 

be perceived from the frame rates shown in Fig. 5. 2.  

5.3.2 Image Segmentation   

For a sample plate containing a mixture of the positive and negative specimen, one 

would require to perform image segmentation before classification. In Fig. 5. 2, other 

than 𝑃𝑙ଵ , the plates contained multiple samples. Therefore, utilising Eq. 3.5, the images 

were segmented for each instances. 
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At first, a mask was created using the colour difference of initial and the end point 

images (Appendix E). This mask served the same purpose as the virtual plates described 

in Section 2.3.3 (Chapter 2). The images at each instance were segmented using this 

mask, followed by separating each sample as the smallest rectangle of 1xQ, containing 

the ROI, where Q is the number of dimensions of the image. However, the mask is 

created using the experiment itself. Therefore, it provides more flexibility over the 

virtual plates regarding the geometric features of the assay plate.   

Another advantage of this segmentation technique is its strength to segment the samples 

with lower colour concentration14. Therefore, the segmentation technique can be used 

to segment the whole assay plate without taking any additional time. On the other hand, 

this technique would compel the system to segment all the frames defined by the 

interval, which would lead towards more memory requirement and higher processing 

capacity. The impact of the power storage of the personalised device would also play 

its role.  

5.3.3 Classification  

All of the assay plates in Fig. 5. 2 contained only one class. In order to determine the 

class of the sample, Eq. 3.6 can be expressed as Eq. 5.1 (Tania et al., 2017).  


்஻

= ቄ
1, 𝑇𝐵 − 𝑣𝑒
2, 𝑇𝐵 + 𝑣𝑒

 , where 
்஻

≠ f(α)                                                             (5. 1) 

Without any stopping agent, the positive sample exhibits two colour transitions (=2), 

whereas the negative sample gradually turns into pink without any intermediate colour 

transition phase. For a better illustration of the concept, the colour transition is shown 

in Fig. 5. 3. A hypothetical line is drawn for TB negative (Fig. 5. 3). The TB positive 

sample initially shows a gradual transition towards blue, and then eventually segregates 

to pink, if there is no stopping agent. ∆ is the time taken for the specimen to turn from 

blue to pink.  

                                                

14 For example, Fig. 2. 2(c). This chapter focuses on the TB-test. Therefore, such segmentation 
result is not included in this chapter to avoid confusion. However, the issue was highlighted in 
Section 3.4 (Chapter 3) as well. 
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   Transition phase                

         TB positive  

         Hypothetical line for TB negative  

Fig. 5. 3: Concept of colour transition for both positive and negative samples 

In Fig. 5. 2(a), there is only one sample. Therefore, the process did not require any 

segmentation to provide the classification. The same plate was filled with six more new 

samples, which is denoted as 𝑃𝑙ଶ and shown in Fig. 5. 2(b). Both (b) and (c) contain 

more than one sample, hence required segmentation. At first, the concept is explained 

with 𝑃𝑙ଵ for its simplicity.  

For  𝑃𝑙ଵ with ti =10 seconds, the total number of images, f(S) = 86. Eliminating the 

number of images where the wells were being filled, the number of images was 

downsized to 77, which are shown in Fig. 5. 2(a). Let us denote it as 𝑓(𝑆௡௘௪)= 77. 

Ideally, the video should be recorded after filling the wells with samples. Therefore, the 

instances should be 𝑆௡௘௪.  The colour difference for  𝑃𝑙ଵ at each instance is shown in 

Fig. 5. 4(a). 

At each instance, there is ‘some’ colour change traced by the system. Hence, JND 

required to be taken into account, which assisted in eliminating a certain part of the 

noise using Eq. 3.3. One of the conventional value for JND is 1.  

As explained in Section 3.4 (Chapter 3), the colourimetric classification will depend on 

Eq. 3.6, and on Eq. 5.1 in the case of TB-test. Therefore, changes in Fig. 5. 4 (a) below 

the red reference line (JND), occurred mainly due to changes15 in the intensity can be 

considered as noise, and was rectified before further computation.  

  

 

                                                

15 This is a result of change in the colour concentration, not the chroma. Please see Fig. 2. 4(b) 
in Chapter 2.  
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(a) 

 
 

(b)  

Fig. 5. 4: Dynamic changes in the colour of the images. (a) Time response analysis for 

 𝑃𝑙ଵ  with ti = 10 seconds, (b) Peak detection after considering JND 

During the colour transition period, there were number of instances where the change 

was apparent in the video frames of Fig. 5. 4 (a). During the first transition phase, there 

was an abrupt increase at 𝑆௡௘௪=23, which continued till 𝑆௡௘௪=24, where the change 

was the maximum (Eq. 3.4). 

During the next transition phase, when the sample started to turn pink at 𝑆௡௘௪=51, 

similar to the previous transition phase, the change continued till the next instance. In 
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order to reflect the true colour transition, not just any abrupt colour change, the 

prominence of peaks was determined as shown in Fig. 5. 4 (b). It is a relative peak based 

on the intrinsic height and location as compared to other peaks. Hence, spike at 23rd and 

24th instances were detected as one peak in Fig. 5. 4 (b), where the events of colour 

change were clustered (gathered) together. This is the peak when the sample turned into 

blue due to the presence of the bacteria. Although, the amount of change of colour at 

𝑆௡௘௪=24 was higher than 𝑆௡௘௪=52, it was not considered as a separate transition phase; 

because the spike at 𝑆௡௘௪=24 is the continuation of the change in colour started at 

𝑆௡௘௪=23. Similarly, when the sample was turning into pink, the clustered peaks were 

considered as the second transition phase, confirming the sample to be TB positive.  

 
𝑓(𝑆௡௘௪) 

Fig. 5. 5 Detection of colour transition in  𝑃𝑙ଵ  

After tracing the prominence (Fig. 5. 4), the transition was tracked in Fig. 5. 5, which 

followed the trajectory of the class of TB positive as theorised in Fig. 5. 3. The trajectory 

was consistent even if the assay plate contained multiple samples and required image-

segmentation to calculate the number of transition (Fig. 5. 6). 

 

 

𝑓(𝑆௡௘௪) 𝑓(𝑆௡௘௪) 
(a) (b) 

Fig. 5. 6 Detection of colour transition in  𝑃𝑙ଶ  and  𝑃𝑙ଷ. (a)  𝑃𝑙ଶ containing 6 samples 

and (b)  𝑃𝑙ଷ containing 24 samples 
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Varying ti, it was observed that the transition is smoother for lower ti. However, a 

consideration of ti < 1 second is irrational because then the TB-test would become more 

time consuming without providing any useful new information.  

Each column of  𝑃𝑙ଷ varied in concentration, which can be observed from Fig. 5. 2 (c). 

From the experiment conducted for the reaction phase and time-dependant approach, it 

was also observed that a higher concentration provides a faster result.  

Tracking the dynamic changes of the overall reaction, this approach aided us to 

understand the data from the eyes of the machine. One of the key findings of the 

approach was to confirm the need for a reduced reaction time. In other words, the 

machines can perceive a better meaning of colour at a 𝑓(𝑆௡௘௪) lower than the human 

vision. 

In the literature, the ∆E calculation found its usage for various purpose (Table 2. 6 in 

Chapter 2). However, this is the first attempt to provide such a colourimetric 

classification using ∆E  calculation. The method presented has the advantage of using 

a lightweight algorithm. The computation can be completed within ~34 seconds. As the 

system works based on the difference between the colours in LAB space with time 

variation, the dependency on camera quality was reduced, which can be seen in Fig. 5. 

2. Thus, the dependency on high configuration camera can be avoided. The work being 

independent of lighting environment is another paramount advantage. This method is 

applicable to a wide range of colourimetric examinations such as on-site cocaine 

detection (Smith et al., 2014). On the other hand, the outcome of the lightweight 

algorithm to process multiple video frames led towards the issue with memory 

occupancy and heavy processing for the mobile devices, contradicting the ASSURED 

criteria. One possible alternative could be more rigid sampling rate. The sampling rate 

was set by an empirical study. Therefore, excessive reduction of samples may impose 

unreliability of the approach. Another possibility is to fix the sampling rate from the 

anticipated time of the change of the phase. In a control environment at the same geo-

location, it may be possible. For such a case, one would require to explore  and 

𝑓(𝑆௡௘௪) for that particular test before setting a rigid sampling rate.  
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5.4 Reaction Phase and Time-independent Approach 

A detail description of the biochemical protocol is provided in Bakhori et al. (2018), 

inspired by de la Rica and Stevens (2012). As described earlier, in a conventional sense, 

the method is supposed to be treated as an end point assay. From this point forward, the 

chapter deals with the data as an end point assay. In this way, only the static image of 

the final stage of the reaction is taken into consideration to investigate the second 

research question of this thesis.   

5.4.1 Materials Preparation 

A brief description of the protocol is described in Appendix D for the readers to 

perceive the overall process. One major difference with the biochemical process 

described in Section 5.3.1 is the use of the stoping agent. However, as mentioned earlier 

(Section 5.3.1), the biochemical assay preparation is beyond the scope of this thesis.  

In this work, the presence of TB-specific antibodies can be confirmed if the sample 

turns into blue in the ELISA plate. In Fig. 5. 7(a), gold ions were reduced when H2O2 

was present. The bottom 3 samples in Fig. 5. 7(a) were free from TB-specific 

antibodies. In the presence of H2O2, non-aggregated nanoparticles are formed, turning 

the solution pink. In the top three samples in Fig. 5. 7(a), the concentration of H2O2 was 

decreased, turning the samples into blue, confirming the presence of TB-specific 

antibodies. 

Positive sample
(Blue)

Negative sample
(Pink)  

Positive sample
(Blue)

Negative sample
(Pink)

(a) (b) 

Fig. 5. 7: Samples in a plasmonic ELISA plate. (a) Samples are hard to visually 

distinguish, (b) Samples are visually distinguishable 

5.4.2 Dataset of TB-test 

The dataset of this case study contains images of 96-wells, which were partially filled, 

which means the plates contained both empty wells in addition to wells filled with the 
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sample. The final selection of 27 images16 from 22 independent observations was 

conducted in the laboratory lighting environment. These images contained 266 samples 

- 81 of them were positive for TB-specific antibody, 181 were negative, and three of 

the samples failed to produce any indicative result. Thus 263 samples were finally 

selected. These samples from the 27 images are referred to in this thesis as the UPM-

selected samples.  

The acquired images varied regarding well size, camera to ELISA plate position, light 

exposure and mobile phone. Considering a robust application, this variation is expected 

in real life incoming images. 

Let us assume, the assay plate, 𝐴 = 𝑓(X୶, Y୷, Z୸), where {X, Y} ∈ Z+ and Z ∈  ℝ and, 

Z> 0. In this work,  X = {1,2, … , 12} and Y = {𝐴, 𝐵, … , 𝐻}. In order to explain the 

sample and assay position, an illustration is provided in Fig. 5. 8.  

1 2 3 4 5 6 7 8 9 10 11 12X

Y

A
B

C
D

E
F

G
H

Z

Cp

 

Fig. 5. 8: Impact of sample and camera position with respect to ELISA plate. X and Y 

are the length and width of the ELISA plate respectively. Z= volume of sample in the 

well and Cp= camera position. 

For the commercially available 96-well plates, X and Y will maintain such positions in 

rows and columns. The space between these wells can vary from plate to plate. Thus, 

the wells are signified in (x, y, z) coordinates. Each well denoted by 𝑤ଡ଼,ଢ଼ ∈ 𝑤௫,௬ in the 

plate and 𝑠ଡ଼,ଢ଼ ∈ 𝑤ଡ଼,ଢ଼ = sample, i.e. the well is filled with the sample. Both the shape 

and depth of the well can vary, depending on the specification of the assay plate. Due 

to the dimension of the well itself, the distance between these wells can differ from 

                                                

16 A description of the data sorting method is provided in Appendix D. 
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plate to plate. Depending on the biochemical protocol, the amount of sample to fill these 

wells can vary as well. All this information has a direct impact on the imaging. 

However, the colour of each sample, 𝑠௖(𝑟, 𝑔, 𝑏) ≠ 𝑓(𝑥, 𝑦, 𝑧).  

As opposed to Karlsen (2018), we have maintained the camera position (Cp) parallel to 

the A, giving the wells a uniform exposure to the camera (Fig. 5. 8). For a static Cp, the 

distance between Cp to each 𝑤ଡ଼,ଢ଼ was not equal. Thus, the sample to camera exposure 

was not equal. In theory, it would make 𝑠௖(𝑟, 𝑔, 𝑏) appear as 𝑠௖௡(𝑟, 𝑔, 𝑏). The best 

exposure would be attained by the median 𝑤ଡ଼,ଢ଼. 

The 𝑠௖(𝑟, 𝑔, 𝑏) can potentially differ due to the ambient conditions such as temperature, 

weather and geo-location, and certainly for the sample itself. However, this work was 

conducted in the laboratory environment.  

After acquiring the data, it is important to understand the underlying structure of the 

data and maximise the insight regarding the presented problem to develop an intelligent 

colourimetric scheme. Exploring the dataset visually, there were some initial 

assumptions regarding the background and foreground colours as illustrated in Fig. 5. 

9. The speculations are closely associated with the issue of signal vs. noise during image 

processing and classification stages. 

Background

ELISA plate

Background
 

 ELISA plate

 Empty wells
 Empty space between 

wells
 Smearing 
 Shadow
 Ambient lighting effect 

 Shadow
 Ambient lighting effect 

Foreground

Positive 
sample

Negative 
sample

 Sample in mid-well
 Sample in well boundary
 Ceiling light
 Ambient light
 Shadow

 Sample position in the plate
 Sample position in the image
 Sample-sample distance
 Positive-negative sample 

position

 

Fig. 5. 9: Observation of the associated colours and key variables in the image 

The critical observations from the detailed inspection of the dataset are listed below. 
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Obs. 1: In the presented dataset, the sample-to-sample distance was not constant (Fig. 

5. 8). If the wells are filled within a close neighbourhood, there is an unavoidable 

smearing effect. Thus, the background cluster holds many pixels which are close to the 

foreground pixels. With varying position (𝑥, 𝑦), depending on the class of  𝑠ଡ଼,ଢ଼, the 

background cluster would be difficult to separate from the foreground clusters. 

Obs. 2: In some cases, the positive and negative samples are hardly visually 

distinguishable. For example, in Fig. 5. 7(b), the samples are adequate for naked-eye 

measurements. For sample image, e.g. Fig. 5. 7(a), the indicated sample pair are hard 

to differentiate.  This issue can worsen if the plate contains only one sample and the 

colour is as ambiguous as in Fig. 5. 7(a), which can lead to subjective interpretation. 

Moreover, there is a conscious variation in the sample colour, 𝑠௖(𝑟, 𝑔, 𝑏) on 

independent A.  

Obs. 3: In the dataset, the value of Z (the volume of sample in a well) had an impact on 

the size of the sample (𝑠୶,୷). It implies that the 1st order colour moment can vary based 

on how the wells are filled. 𝑠௖௡(𝑟, 𝑔, 𝑏) = 𝑓(Z). A well filled up to the surface would 

have a better exposure even if they are positioned at the far edge of the plate. 

Obs. 4: This case study is comprised of the wet sample, which is not immune to light 

reflection from its surroundings (Fig. 5. 9). 

Initially, our hypothesis was: the  𝑤ଡ଼,ଢ଼ with median (𝑥, 𝑦) would be the ideal position 

for the samples, which might be immune to the ceiling light. However, the critical 

observations suggested that even a well filled up to the surface (Obs. 3) in the median 

position can suffer from the ceiling light reflection.  

Obs. 5: The impact of ‘camera to well position’ (Fig. 5. 8) is aligned with our prediction 

in this section (Section 5.4.2). The SKEW can analyse such influence. 

The observations Obs. 1, Obs. 3 and Obs. 4 have a definite impact on the image 

processing measures. The Obs. 2 works in our favour. The qualitative colourimetric 

tests are usually suitable for naked-eye detection, which necessitates (i) adequate 

biosensors to produce visually distinguishable colours and (ii) a user who has 

appropriate colour vision. Firstly, the use of intelligent systems can reduce the 

biochemical complexity without compromising the accuracy, specificity, sensitivity 
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and reliability. For instance, the positive and negative samples do not require to be 

visually distinguishable.  Secondly, an intelligent system such as the system we 

presented in this work can eliminate the subjectivity of interpretation. A robust system 

should be able to handle the variation of sample colour, as mentioned in Obs. 2.  

5.4.3 Data Resampling Technique  

From Section 5.4.2, it can be observed that the dataset is imbalanced, where the number 

of negative samples is double that of the number of positive samples. The imbalanced 

dataset is a particular concern for the machine learning based classification algorithms. 

This imbalance is neither uncommon nor unexpected (He and Garcia, 2009). In this 

chapter, the data balancing was conducted by under-sampling, over-sampling as well 

as resampling, particularly for classification (Table 5. 1). 

Table 5. 1: ELISA Dataset for TB-test 

Sl. Name Number of 

samples 

Balanced  Sampling  

1 UPM-

selected 

266 x x 

2 D-E.1 186 √ Under-sampling 

3 D-E.2 254 x x 

4 D-E.3 348 √ Modified over-sampling 

Before beginning with any balancing operation, three samples, which produced to fail 

colour, were discarded from the classification-dataset. As mentioned earlier in Section 

5.4.2, the assay plate contained multiple samples with an uneven distribution. 

Therefore, it is not possible to discard these samples during the image processing stage. 

Thus, there were 263 images in the UPM-selected dataset. Then, nine samples were 

taken out of the UPM-selected dataset for final testing and validation as shown in Fig. 

3. 12 (Chapter 3). This dataset is denoted as D-E. 2 in Table 5. 1, which also does not 

contain a balanced dataset.  

Based on the UPM-selected dataset, we introduced a partial selective resampling 

technique in Shabut et al. (2018). The resampling technique (Shabut et al., 2018) has 
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been excluded from this thesis to maintain consistency in the research methodology of 

this thesis.  With an aim to create a balanced dataset in this chapter, at first, the UPM-

selected samples were down-sampled and analysed (D-E.1). Then, we have balanced 

the minority class of the D-E. 2 by duplicating the samples, varying the density of data 

points (pixels); the dataset is denoted as D-E.3 in Table 5. 1.  

5.5 Image Processing of the End point Assay 

The proposed image processing framework is illustrated in Fig. 5. 10. This section 

sequentially discusses each component of the framework. If the output of the 

framework (Fig. 5. 10) is erroneous (Table 3.1), then the final colourimetric 

classification will also contain error.  
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Fig. 5. 10: Image processing framework for TB-test 

5.5.1 Image Pre-processing  

At first, the acquired images were scaled and quantised to reduce the size of the image. 

For a simple method such as Otsu, the impact of scaling on processing time is negligible 

(Fig. 5. 11). On the other hand, to perform numerous iterations, the aid of scaling is 

obligatory for a heavy segmentation technique. The execution of algorithms such as 

superpixel, watershed and k-means can be considerably faster if the full-sized image 

(100%) is resized to a smaller dimension (Fig. 5. 11). 
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Fig. 5. 11: Execution time for different segmentation method using various size 

reduction 

Bourouis et al. (2014) utilised 32x32 pixels retinal images, which is not substantial to 

analyse the colour features of the presented dataset. Moreover, the resizing in Bourouis 

et al. (2014) was not dynamic. For a known condition, the height and the width of the 

image will not vary to a great extent.  However, it may vary due to factors such as the 

position of the camera, size of the plate, and camera configuration. Thus, the size 

reduction in this work was performed dynamically and proportionally so that the 

geometry of the ROI was not deformed (Appendix E).   

Initially, a wide range of pre-processing techniques was explored to aid the image 

segmentation process, as illustrated in Fig. 5. 12.   
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Dynamic
Scaling

Adaptive Thresholding 0.420872 0.299939 0.26956 0.246409 0.224484

Watershed 5.926099 3.346057 1.751006 0.822585 0.621361

Otsu Multilevel
thresholding 0.199969 0.266984 0.22578 0.21463 0.222837

Global histogram 
thresholding by Otsu’s 

method
0.184661 0.229378 0.221198 0.216305 0.214806

k-means 7.31429 4.354801 2.270487 0.893477 0.525735
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

  
            (j)        (k) 

Fig. 5. 12: Initially explored image pre-processing techniques. (a) Samples in a 

plasmonic ELISA plate. Gradual enhancement of the image: (b) sharpened, (c) 

smoothened, and (d) final enhancement before colour space transformation. 

Quantisation input: (e) full size quantisation, (f) plane-by-plane quantisation, (g) 

Superpixel, (h) JSEG (i) Gabor filtering, (j) k-means17, and (k) Gaussian filtering17 

After exploring the effect of the pre-processing methods (Fig. 5. 12), the proposed pre-

processing technique is comprised of scaling and sequential image enhancements (Fig. 

5. 13).  In Fig. 5. 13(b), the resized image was enhanced by the edge-aware local 

contrast operation. The edge threshold was carefully varied from 0.1 to 1.0 before 

setting the threshold value to uphold the strongest sharp edges. The higher value would 

sharpen the edge of the empty wells as well. Then the contrast was increased by 50%. 

This step improved the image quality to identify the filled wells and considerably 

enhanced the colours of the filled wells for both positive and negative samples.  

                                                

17 The displayed image was produced in OpenCV 
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(a) (b) (c) (d) 

Fig. 5. 13: Image pre-processing of TB-test. (a) Input image, (b) Enhancement of the 

scaled image, (c) Smoothened image, (d) Enhanced contrast of the smoothened image 

Exploring several smoothing techniques, e.g. Wiener Filter, Gaussian Filter, in Fig. 5. 

13(c), the image was smoothened by further manipulating the edge-aware local contrast 

to reduce the detail of the image with an aim to diminish the edges of empty wells. This 

process weakened the contrast of the image, which required to be improved again. 

Therefore, finally, CLAHE (Zuiderveld, 1994) was utilised in Fig. 5. 13(d). 

5.5.2 Image Segmentation  

Regarding segmentation techniques, a number of processes (Wang et al., 2016a) were 

explored. This work deals with colour; therefore at first, colour thresholding was 

explored as a segmentation technique. Analysing the histogram, it was revealed that 

thresholding the colours would not provide an adequate segmentation, however, 

separating the colour channels can assist in the overall segmentation process.  

In the field of image processing, Otsu (Otsu, 1979) is one of the most popular methods 

for image segmentation due to its simplicity and effectiveness. The method performed 

well for only a certain number of images (Fig. 5. 14). Therefore, more advanced 

clustering techniques were explored using unsupervised machine learning. 

In our preliminary study, we performed the k-means with k=6 without any pre-

processing and with minimum resizing (Abuhassan et al., 2017). Later we downsized it 

to k=4 (Shabut et al. 2018).  In this chapter, based on the silhouette (Rousseeuw, 1987) 

suggested optimum number of clusters18, the hybrid algorithm19 (Appendix E) utilising 

                                                

18 An example is shown in Fig. 5. 14 (b). 
19 A proof-of-concept is already provided in Shabut et al. (2018) that heavy clustering algorithm 
such as k-means utilising four clusters can be handled in the mobile devices in real time. The 
computational complexity of k-medoids is very close to k-means. Therefore, conceptually, k-
medoids using only two clusters should be deployable on mobile devices in real time as well. 
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k-medoids aimed at minimising the required number of the cluster to k=2. However, 

the random selection of cluster centroid position at initial stage compelled a requirement 

for a rule-based best cluster persuasion (Appendix E).  

 
(a) 

   
(b) 

  

(c) (d) 

Fig. 5. 14: Image segmentation and post-processing of TB-test. (a) Colour histogram, 

(b) Investigation into the required number of clusters, (c) k-medoids on the pre-

processed image, and (d) post-processed image.  

5.5.3 Image Post-processing  

After segmenting the image, irrespective of the technique, the image requires cleaning 

to ensure the minimal noise level at feature extraction stage. The overall process can be 

summarised as the hybrid algorithm (Appendix E).  
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The image processing framework (Fig. 5. 10) provided 99.62% accuracy to segment 

UPM-selected 266 samples (Table 5. 2). The accuracy was obtained from the number 

of correctly identified samples (Table 3. 1, in Chapter 3), rather than using the area of 

ROI.  

Table 5. 2: Performance of image processing framework for the TB-test 

Metric (%) Value 95% CI 

Accuracy  99.62 98.65- 99.95 

Sensitivity 99.62 97.92- 99.99 

Specificity  99.62 97.92- 99.99 

Fig. 5. 15 represents segmented wells concerning the number of filled wells in the input 

image. In other words, Fig. 5. 15 shows how many samples were in the original input 

image and how many samples were segmented using the image. For example, the first 

image contained only one samples, whereas the 27th image contained 24 samples (Fig. 

5. 15). After processing the images, there was only one segmented well for the first 

image, which is correct. On the other hand, there were 25 segmented wells for the 27th 

image. Therefore, the false positive and false negatives can also be tracked from the 

chart (Fig. 5. 15).  

 
s: second 

Fig. 5. 15: Performance of image processing framework with respect to computation 

time per sample 
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Fig. 5. 15 also shows the time taken to process the whole image, which is represented 

as ‘total time’ in seconds. Time taken to provide the segmented ROI as the output is 

also presented in the figure, as time/sample. The average time for segmenting a single 

well was found to be 0.6 seconds. With three times of repetition, the computation time 

was divided by the number of segmented samples per image, which provided the 

average segmentation time.  

Analysis Fig. 5. 15, it can be stated that the segmentation time was not entirely 

dependent on the number of samples per image, instead was more inclined towards the 

observations made in Section 5.4.2. Based on the image quality, well to well difference, 

the impact of different colours as shown in Fig. 5. 9, the image processing algorithm 

was often forced to use more than one clustering techniques, which elongated the image 

segmentation process. Among 266 samples, 18.05% of the samples were processed 

using both Otsu and k-medoids clustering.  

5.6 Classification and Feature Analysis  

5.6.1 Feature Selection 

This chapter utilises lower order colour moments from the extracted pixels of the 

segmented ROIs to be analysed for the classification purpose (Appendix E). Our 

preliminary study (Abuhassan et al., 2017) provided a good result using the RF 

classifier.  Therefore, the colour moments and colour spaces were evaluated (as 

proposed in Fig. 3. 11) using RF. Considering only the mean colours of extracted ROIs 

in three colour channels of six colour spaces, tested on D-E. 1, YCrCb, LAB and HSV 

showed good performance (Fig. 5. 16). 

 

 

Fig. 5. 16: Performance of colour spaces for the TB-test 
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It is beneficial to use HSV colour space in time for colour correction, colour picking 

and artistic colour application, neither of which is necessary for the case study of this 

chapter. Originally, HSV was created to compensate for the issue with low CPU 

overhead, which was eventually overcome with the advancement of technology and 

LAB colour space (Margulis and Dan, 2005; Smith, 1978). Moreover, between LAB 

and HSV, LAB is preferable due to its ability to perceive relative perceptual differences 

between colours. The use of the cylindrical model in HSV is another downside.  

Table 5. 3: Performance of features in LAB colour space for the TB-test (% accuracy)  

Feature Algorithm D-E. 1 D-E. 2 D-E. 3 

Mean RF 91.4 94.9 96.3 

LS-SVM 94.09 96.46 98.28 

Standard 

Deviation  

RF 89.8 89.4 92 

LS-SVM 94.62 96.06 97.41 

Mode RF 88.2 70.9 78.2 

LS-SVM 94.09 86.61 80.7 

Skew 

 

RF 88.7 83.5 80.7 

LS-SVM 91.4 95.67 96.26 

Energy RF 80.1 94.1 96 

LS-SVM 86.56 96.85 97.13 

Entropy RF 78.5 85 89.7 

LS-SVM 73.66 87.01 93.68 

Colour 

Moments 

RF 94.6 95.7 97.4 

LS-SVM 98.92 100 100 
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Y, in YCrCb, holds the luma or luminance, can be directly computed from nonlinear 

RGB and Cr and Cb are the chrominance components. The Cb is the difference between 

blue and components of luminance, and Cr is the difference between red and luminance 

component. Due to the advantage of chroma subsampling, this colour space finds its 

particular usefulness in the computer gaming industry and video streaming. In 

MATLAB, the colour space is a better fit, if the computation is conducted in uint8 (8-

bit unsigned integer arrays) than a double precision value.  Moreover, YCrCb is a device 

dependent colour space. The case study utilised in this chapter has a comparatively 

smaller dataset. Although the images were captured using various mobile phone 

cameras, the proportion of these devices was not uniform. The images captured by 

different devices were not of the same assay plate either. Therefore, the LAB colour 

space was chosen over YCrCb. The performance of colour moments in LAB colour 

space considering all three colour channels is outlined in Table 5. 3.  

The RF exhibited better performance when all colour moments in LAB colour space 

were considered (Table 5. 3). From the univariate analysis, mean, energy and standard 

deviation were found to be the more valuable features, whereas entropy was identified 

as a less important feature. This phenomenon was noted, however entropy as a feature 

was not fully discarded.  

Table 5. 4: Levene’s test F for the feature selection 

 

Number 

of 

features 

Mean Standard  

Deviation 

Standard  

Error 

Mean 

15 99.72 0.254 0.046 

18 100 0.000 0.000 

 

Degree of Freedom  58 

Equal variances assumed 

Levene’s test F 107.46 

Mean Difference  -0.28 

T -5.794 

p 0.000 

The symbols carry usual meaning. 

An inferential statistical test was conducted to explore the impact of inclusion and 

exclusion of entropy (Table 5. 4). The statistical test utilising the Student’s t-test 

involved two groups, one containing the accuracies obtained using fifteen features, 
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excluding entropy and the other considered all eighteen features including the entropy. 

Levene’s test in Table 5. 4 suggested that there is a statistically significant difference 

in the variances between these two groups. Therefore, the result of the intelligent 

colourimetric test for Case Study 1 would be more reproducible if all 18 features are 

considered (Table 5. 4). Due to this reason, entropy was not discarded from the feature-

set.  

5.6.2 Performance of Classification Method 

Unsupervised Machine Learning 

For a qualitative colourimetric test which can provide a naked-eye detection, the close 

points in data space are supposed to be in the same class, which implies, the positive 

and negative samples should be distinguishable without training the system with the 

corresponding class label. For such a case, the decision boundaries should lie in low-

density regions. Thus, the subjectivity of colour interpretation for a binary classification 

can be easily removed by an unsupervised machine learning technique.  

As the image segmentation techniques described in Section 5.5.2, involves clustering 

techniques, i.e. k-medoids clustering using colours in AB space, we used k-medoids 

and kmeans to determine the presence or absence of TB antigen-specific antibodies. 

The two-phase iterative algorithms were used to minimise the sum of point-to-centroid 

distances for 18 features, summed over 2 clusters present in here. 
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(b) 

Fig. 5. 17: Cluster assignments and centroids using mean colour values in ‘a’ and ‘b’ 

channel (a) k-medoids and (b) kmeans 

It is difficult to produce 18-dimensional illustration on paper; thus, the distribution of 

only mean a and b colour value of the samples are shown in Fig. 5. 17. Based on the 

same features, k-means and k-medoids showed the same performance. Therefore, the 

result is explained using only one of the algorithms, i.e. kmeans. At first, the squared 

Euclidean distance was used, later replaced by other proximity measures such as 

correlation, cosine and Manhattan distance, which played no difference in the result.  

A dataset of n x p matrix can be presented as Xijℝnxp, cluster centroid location 

Cijℝkxp, where, k=2 and row j implies the centroid of cluster j. Using k-means++ 

algorithm (Arthur and Vassilvitskii, 2007), ten different sets of seeds were selected. In 

this way, the clustering process was repeated ten times using new initial cluster centroid 

positions. In return, k-means provided the lowest within-cluster sums of point-to-

centroid distances, which is a 2x1 vector, where element j is the sum of point-to-

centroid distances within cluster j.  

From the ratio between correctly classified samples and classified samples, the correct 

rate for k-means clustering was found to be 85.43%. The overall accuracy was below 

50% while considering 15 features, excluding entropy in three colour channels. 

Considering the full feature-set, 18 features including entropy, the accuracy improved 
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M
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to 68.1%, which is still low. The conceivable reason for such poor performance is the 

use of k-means using dependent variables and the translation invariance.  

The colour channels l, a and b are independent variables. Therefore, the use of k-means 

(Abuhassan et al., 2017; Shabut et al., 2018) and k-medoids (Section 5.5.2) clustering 

for image segmentation is justified. The use of Euclidean distance in the image 

processing framework satisfies the underlying assumptions (including independence of 

the variables). In this chapter, the presented dataset does not provide easily 

distinguishable naked-eye detection of TB antigen-specific antibodies. Therefore, the 

decision boundary does not lie within the mean colour value of the low-density regions 

in l, a and b.  

As mentioned earlier, the meaningful attributes were extracted from the pixel lists in 

LAB colour space. Thus, variables derived from the histogram in l, a and b are not 

independent. Moreover, some of the features have a more direct dependency on the 

other features as well.  Neither k-means nor k-medoids is able to comprehend such 

dependencies.  

Supervised Machine Learning  

Using 18 features in LAB colour space, both parametric and non-parametric classifiers 

were trained, and 10-fold cross-validated on the datasets. The supervised machine 

learning techniques showed significantly better performance than the unsupervised 

techniques.  The only disadvantage in the case of supervised learning is its ability to 

function only using labelled data. 

Considering the original dataset for ELISA containing 254 images (D-E.2), the top 

performing classifiers were LS-SVM (Suykens and Vandewalle, 1999; Suykens, 2002), 

Bayesian Regularisation Artificial Neural Network or BRANN (Hagan and Menhaj, 

1994) and fine K-Nearest Neighbours (KNN). The performance is shown in Fig. 5. 18.  

The KNN showed 96.29% accuracy (Fig. 5. 18), without any hyperparameter tuning. 

The most common distance metric for KNN is the Euclidean distance. For the fine 

KNN, which uses medium prediction speed in MATLAB, i.e. ~1 second, the number 

of neighbours (k) was chosen to be 1. After standardising the data, such prevalent 

parameters provided the mentioned accuracy. The KNN tends to perform better with 

Euclidean distance when a higher number of neighbours are chosen. However, the 
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increment in k degraded the performance. The medium KNN with k=10 and the coarse 

KNN with k=100 provided 92.1% and 69.7% accuracy, respectively.  Thus, other 

distance metrics were explored.  

 
 

Fig. 5. 18: Performance of different classifiers for the TB-test 

Among the distance metrics, in addition to Euclidean distance, some other Minkowski 

distances were explored in this work, e.g. Hamming and Manhattan distance. These two 

are equivalent when all features are in binary form, which is not the case in here. 

In this work, both Hamming and Jaccard distance provided poor performance. In the 

case of Jaccard, the number of common attributes is divided by the number of attributes 

that exist in at least one of the two objects. The performance from Jaccard distance was 

predictable from the clustering performance.  

The Chebyshev, correlation and cosine distance showed similar performance. The 

cosine (or angular) distance is proportional to the squared Euclidean distance, which 

dissatisfies the triangular inequality. The KNN cosine works well when the subset of 

original data is consistent with the original data. From this context, a large dataset, 

maintaining the same camera to sample distance and ambient condition may work well.  

The magnitude of the vector is another point of concern for the presented dataset, for 

which cosine KNN is not a good choice for our case.  

The best performance from KNN was achieved using Manhattan (also known as the 

city block) distance. This is another case of Minkowski distance, where p=1. It has L1 

norm, whereas the Euclidean distance is of L2-norm. The Manhattan distance usually 

performs better in case of high dimensional data. The 10-fold cross-validated accuracy 

was 97.6%, which is still lower than the close performing classifiers LS-SVM and 

BRANN.  

98
.7

6

96
.8

3

94
.4

7

90
.0

2

92
.2

8 96
.5

6

99
.1

8

10
0

87
.4

4 91
.9

5 96
.2

9

96
.2

87
.0

4

98
.8

7

10
0

90
.1

2 93
.9

5

96
.4

1

96
.5

8

89
.3

99
.3

3

LS - S V M LD A S V M KN N R F S u b .  D i s c . B R A N N

A
cc

ur
ac

y 
(%

)

D-E.1

D-E.2

D-E.3

Algorithms 



 

134 

 

In this work, we employed an MLP with a feedforward neural network (Rosenblatt, 

1961). The hidden layers used hyperbolic tangent sigmoid transfer function (tanh(N), 

N= input), whereas the output layer was implemented by a linear transfer function. The 

feedforward network provided 94.9% accuracy.  

Using error calculation from the training output and the target, the backpropagation can 

adjust the weights and biases of the input and hidden layers. To improve the 

performance furthermore, Bayesian regularisation was deployed. A combination of 

squared errors and weights were minimised to produce a corrected combination. Thus 

a better generalisation is produced. Using BRANN, the weights and bias values were 

updated by Levenberg-Marquardt optimisation (Hagan and Menhaj, 1994).  The 

network architecture is shown in Fig. 5. 19.  

 

Fig. 5. 19: Network architecture of MLP with Bayesian regularisation 

backpropagation 

The hidden layers were varied from 2 to 10. The best result was achieved when the 

number of hidden layers is either 5 or 6. For a more stable network, six hidden layers 

were chosen. No validation stopping was used, as regularisation was utilised. In this 

way, the training was carried out until an optimal combination of errors and weights 

was obtained. Regularisation aims to build a more generalised model. The performance 

of training and testing stage can be visualised from the mean squared normalised error 

with respect to epochs (Fig. 5. 20).  

The best training performance was 3.3411e-09 at epoch 83. The error tends to reduce 

after more epochs of training. However, it affects the training time. In an ideal case, the 

testing graph in Fig. 5. 20 was supposed to follow the training one. Although the error 

was low for both cases, with more epochs, the minimisation of testing error stopped 

earlier, which may have occurred due to overfitting. This issue needs to be further 

investigated in future (Section 7.3).   
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Fig. 5. 20: Result of MLP with Bayesian regularisation backpropagation. (a) 

Confusion matrix, (b) Training and testing performance 

The parametric methods (e.g. LDA) are independent of the number of samples, easier 

to understand and interpret and fast to learn. On the original dataset, without under or 

oversampling, the non-parametric methods (e.g. LS-SVM, KNN) performed better than 

the parametric models (Fig. 5. 21). This chapter focuses on colourimetric tests of wet-

chemicals, where the colour of samples can vary due to ambient condition, the position 

of the sample in the assay plate, bio-chemicals and shape of the well. Therefore, for 

robust operation, the system should be flexible while making assumptions regarding 

the form of the mapping function. More generalisation can be achieved for the unseen 

data by such algorithms. Hence, the better performance of non-parametric models is 

conceivable and more logical.  

The parametric methods showed good performance in D-E.1 (Fig. 5. 21). The linear 

models such as linear SVM and LDA showed good performance on the downsized 

balance dataset (D-E.1) of 186 samples. However, the performance was not well 

maintained when exposed to rare data (Fig. 5. 21). 

Among the discriminant analysis, the quadratic discriminant analysis provided a better 

result than ensemble subspace discriminant analysis. The performance of different tree 

models including RF was also good (>90-96.5%).  
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Fig. 5. 21: Performance of different classifiers with respect to the number of samples 

and data-balance 

Based on the performance of all the classification models mentioned above on all three 

datasets, the LS-SVM was found to be the top performing classifier20. The closest 

performance was achieved by BRANN. Hence, further analysis is presented for LS-

SVM only. These analyses include final optimisation of features using all the dataset 

(Table 5. 1) and statistical analysis.  

Table 5. 5: Performance of LS-SVM on the TB-test datasets21 

Dataset Sensitivity (%) Specificity (%) Accuracy (%) 

Value 95% CI Value 95% CI Value 95% CI 

D-E.1 100 96.11-100 97.89 92.60-99.74 98.94 96.21-99.87 

D-E.2 100 95.44-100 100 97.91-100 100 98.56-100 

D-E.3 100 97.90-100 100 97.90-100 100 98.95-100 

Using all 18 features in LAB colour space, LS-SVM showed 100% accuracy on the 10-

fold cross-validated UPM-selected dataset, D-E.2. When the execution was repeated 30 

times, the average accuracy was maintained at 100%. The overall dataset is small, and 

D-E. 2 is not balanced. Therefore, the classifiers required to be examined for the balance 

                                                

20 The LS-SVM was not considered in our preliminary study (Abuhassan et al., 2017).  
21 The performance was obtained in a random execution of the classifier. 
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dataset. The average accuracy of Fig. 5. 18 is within the 95% confidence interval shown 

in Table 5. 5.  

The performance can also be visualised from the ROC curve in Fig. 5.22. The ROC for 

LS-SVM was found to be identical for D-E.2 and D-E.3, which can be seen in Table 5. 

5 as well.  

Se
ns

iti
vi

ty

1- Specificity

Receiver operating characteristic curve 
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(a) (b) 

area: Area under the ROC curve; std: Standard deviation  

Fig. 5. 22: ROC of LS-SVM for the TB-test on (a) D-E.1, and (b) D-E.2 and D-E.3 

LS-SVM showed the average accuracy of 98.76% on the balanced dataset of under-

sampled D-E. 1 (Fig. 5. 21). The non-parametric LS-SVM was able to learn from the 

newly introduced ‘rare’ data; the accuracy increased to 100% when exposed to D-E. 2. 

This classifier showed consistent performance for the resampled dataset (D.E.-3) with 

altered data-points distribution. Finally, the system was tested and validated by using 

unseen samples; the system provided a correct classification for all of them.  

As rapidness is one of the key criteria of this thesis, Fig. 5. 23 presents the average 

computational time of top performing classifiers for each of the datasets. For better 

visualisation, time in second is presented in logarithmic scale.   

With a higher number of data, the classifiers were supposed to take a longer time to 

compute. The repeated execution (three times) matches of prediction as shown in Fig. 

5. 23. For D-E.1, D-E.2 and D-E.3, the computation time by LS-SVM were 0.0219, 

0.0265 and 0.0289 seconds, respectively. 
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Fig. 5. 23: Computation time by different classifiers with respect to the number of 

samples and data-balance 

For D.E-1, the close performing classifiers were LDA and LS-SVM (Fig. 5. 23). Due 

to the computation process, one can assume that LDA would be the fastest classifier 

among the five classifiers shown in Fig. 5. 23, and BRANN would take a longer time 

to compute. BRANN was found to be the slowest one, as predicted; however, for all 

the datasets, LS-SVM was found to be the fastest classifier.  

Statistical Analysis 

As mentioned earlier in this section (Section 5.6.2), the performance of the classifier 

varied based on the balanced dataset as well as the ability to learn from the bigger 

dataset. The statistical analysis was conducted to portray a clear picture of the overall 

performance.  

Based on the results obtained by different classifiers including supervised and 

unsupervised, parametric and non-parametric, and neural network, Student’s t-test was 

conducted in SPSS for the top performing classifiers (Lwin, 2015; Hatem Al-jamal, 

2017).  

The statistical results obtained by a two-tailed t-test at a 0.05 level of significance are 

given in Table 5. 6. The result of Algorithm 1 ↔ Algorithm 2 stated as “+”, “−”, or “∼” 

can be read as- Algorithm 1 is significantly better than, worse than, or statistically 

equivalent to Algorithm-2, respectively.  
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The performance obtained by Student’s t-test is consistent with our analysis described 

in Section 5.6.2. To summarise the overall performance achieved by different classifiers 

on balanced and unbalanced data, and the ability to learn from new data, the LS-SVM 

was found to be the best performing classifier for the presented problem. The 

performance of LS-SVM for qualitative classification of TB-test is supported by the 

performance of colourimetric classification in the literature as well (Section 2.5.3, in 

Chapter 2). 

Table 5. 6: Student’s t-test results of the top performing classifiers for the TB-test 

Algorithm 1 ↔ Algorithm 2 D-E.1 D-E.2 D-E.3 

LS-SVM ↔ LDA + + + 

LS-SVM ↔ KNN + + + 

LS-SVM ↔ RF + + + 

LS-SVM ↔ BRANN - + + 

LDA ↔ KNN + - - 

LDA ↔ RF + - - 

LDA ↔ BRANN - - - 

KNN ↔ RF - - ∼ 

KNN ↔ BRANN - - - 

RF ↔ BRANN - - - 

5.7 Summary  

This chapter inspected the case study of TB-test to deliver the specific objectives. 

Considering the ELISA reaction as a continuous process, a novel classification 

approach was presented using video-frames analysis. A detail discussion is provided 

for this method as reaction phase and time-dependent approach. In addition to providing 

classification, this Euclidean distance-based method, without using any complex 

machine learning technique, indicated that the computational system could recognise 

the colour at an earlier ‘end point’ than the conventional end point designated for naked-

eye measurement. However, treating an end-point assay under time-dependent scheme 

resulted in handling multiple images, whereas consideration of only end-point would 

require only one image as an input of the system. Therefore, the reaction phase and 
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time-dependent approach will be a better fit for the kinetic assays (Khan and Garnier, 

2013) where the chemical reaction can easily be tracked using the proposed method.  

Considering the case study of ELISA as an end point assay, this chapter also 

demonstrated an intelligent image-based expert system to perform automatic detection 

of TB antigen-specific antibodies with the integration of machine learning techniques. 

Using a robust image processing technique comprised of histogram analysis including 

clustering, the system can detect samples (wells) without any guide or virtual plate. The 

decision components facilitated the selection of the right cluster among the clusters, 

detection of wells and transcending the samples from noise. Therefore, unlike the 

reported articles, the system does not require the user to provide seed points or perform 

cropping. Moreover, the system is capable of reading multiple samples and classifying 

them as positive or negative in real time. 

This work incorporated supervised machine learning to free the TB test result from the 

colour perception of individuals and its subjectivity of interpretation. Utilising 18 

histogram features, we achieved 100% accuracy with LS-SVM classifier. The 

performance of k-fold cross-validated LS-SVM was verified through statistical analysis 

as well as by entirely unseen samples to the classifier.  

Although the performance of the system for TB-test was outstanding, images were 

captured as robustly as possible, plate to plate colour variation was also present, which 

is supposed to aid the classifier to learn the data as dynamically as possible and overall 

system was trained, tested and validated as critically as possible- the dataset was small. 

Additionally, plate to plate sample variation was immensely noticeable, because it is 

not a stable type of assay. The image capturing process was also not consistent, and 

variation in the image capturing process was not proportionally distributed. Considering 

more dynamic real-life application, the colours in the filled wells, i.e. sample colour 

can vary due to climate and geo-location. Based on the experimental analysis, it is 

difficult to prove how much variation was caused by the sample, due to the randomness, 

or lack of proficient use of the protocol of the biochemical assay; all of them are grounds 

to the rarity (Weiss, 2004). Therefore, in order to support our claim regarding the 

performance achieved in this chapter, another case study was considered (Chapter 6). 

We will further extend the scope to deal with multi-class classification and multi-

objects per sample in the next chapter.   
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Chapter 6 

Experiments and Results: Case Study 2 

6.1 Introduction  

This chapter utilises a case study of a lateral flow assay. The LFA is mainly popular for 

POC platforms since they are easy-to-use, fast and low-cost. However, they often suffer 

from limited specificity and sensitivity due to the limitation of materials including 

biochemical components (Koczula and Gallotta, 2016). As a POC system, integration 

of computational system to LFA can enhance the overall diagnosis experience such as 

the research conducted by Ozkan (2017). This chapter mainly utilises paper-based 

assays, using universal pH test strip as one of the test studies. In general, paper-based 

assays such as filter paper-based water-quality monitoring scheme by Sicard et al. 

(2015) are more affordable and suitable for less trained personnel. This chapter aims to 

explore a stable assay at diverse conditions, mechanism to perform multiclass 

colourimetric tests using histogram thresholding based image processing and machine 

learning algorithm without any user intervention, and propose an intelligent, high 

performing, robust and rapid method to perform colourimetric test for the assays similar 

to the case study.  

6.2 Experimental Selection 

6.2.1 Materials Preparation 

As a paper-based LFA, this chapter mainly focuses on pH indicator universal test strips. 

The pH ranging from 3.0 to 10.0 was considered for this work. As the objective is to 

deliver a proof-of-concept, the whole range (0-14) was not considered. In this work, we 

used buffer solutions to ensure more stability and longevity of the solution, therefore 

increasing the reliability of the overall experiment.   

For pH 3.0-5.0, the citrate buffer was prepared as 𝑥 ml 𝐴 + 𝑦 ml 𝐵 diluted in deionised 

water, where 𝐴= X citric acid (C6H8O7) and 𝐵= Y sodium citrate (Na3C6H5O7), where 

X and Y represents the concentration in molar or M (Gomori Buffers). Traditionally 

0.1M is used. However, a higher concentration would result in longevity of the solution. 

Similarly, for pH 6.0-7.0, the phosphate buffer was prepared from NaH2PO4 and 
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Na2HPO4. Using NaHCO3 as the weak base and Na2CO3 as the strong base, buffer 

solution for pH 9 was prepared. The pH 8 and 10 were tested by commercially available 

National Institute of Standards and Technology (NIST) traceable borate pH buffer 

solution (Fisher Scientific, UK). The pH level measurements were controlled with 

calibrated pH meter (HI 208, Hanna Instruments). The calibration was conducted with 

standard buffer of pH 4 and pH 7.  

The Fisherbrand® pH test strips were immersed in the prepared pH solutions. The test 

strips instantly form the colour and change it quickly after drying. Therefore, images 

were captured rapidly. Some of the test strips were allowed to dry on tissue paper, while 

some of them were purposefully not allowed to dry the residue on tissue paper 

(Appendix D). The purpose of it was to make the dataset more diverse.  

6.2.2 Experimental Setup 

The ambient condition can be a vital influential factor for colour image processing using 

mobile devices. Therefore, the experimental condition is described in detail to deliver 

a reproducible system (Fig. 6. 1). All the experiments were conducted in a controlled 

environment (Biosafety level 2), where the room temperature was maintained at 

approximately 20±2˚ C. 

 

 

 

 

 

 

 

 

Fig. 6. 1: Experiment condition 

Lighting condition, Ἇ =𝐴௜ + 𝐴௖                                                                                (6. 1) 
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𝐴௜= Natural light coming through the window  

𝐴௜ = 𝑓(𝐸௘௫௧)                                                                                                            (6. 2) 

𝐸௘௫௧ = 𝐸௦௖ ∙ (1 + 0.033412 ∙ cos (2𝜋 
ௗ೙ିଷ

ଷ଺ହ
))             (6. 3), (Kandilli and Ulgen, 2008) 

𝐸௦௖= Solar Illuminance constant  

𝑑௡= Number of day in the year 

The experiments were conducted during winter and spring in the UK. Therefore 𝐸௘௫௧ 

in Eq. 6.3 potentially varied from < 1 to 11.1 × 10ସ lx.  

𝐴௖= Controlled ambient light  

In this work, three different controlled lights were added to 𝐴௜ in Eq. 6.1.  

𝐴௖ (𝑙)= Office environment with fluorescent ceiling lights  

𝐴௖ (𝑑𝑙)= Daylight lamp, 10 Watt, 6500 K 

𝐴௖ (𝑗𝑙)= Warm white lamp, 5 Watt, 2700K 

Ἇ௘ = Light exposure on sample plane 

Ἇ௘(𝑡) =

⎩
⎪
⎨

⎪
⎧ ~4200𝐾,  Ἇ௘ =  𝐴௜

~3700𝐾,  Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙)

~3000𝐾,  Ἇ௘ =  𝐴௜ + 𝐴௖ (𝑗𝑙)

~5300𝐾,  Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑑𝑙)

 

 

-- Light exposure on sample plane (Ἇ௘) 

Fig. 6. 2: Camera and light exposure on sample plane. The numbers carry the same 

meaning as in Fig. 6. 1 
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The average colour temperature was measured on the sample plane with an Android 

application (QuArt Studio, 2018). An elaborate illustration of the exposure plane in Fig. 

6. 1 is sketched in Fig. 6. 2.  

The sensitivity rating of the camera is defined by the International Organization for 

Standardization (ISO). Agudo Acemel (2017) drew attention towards the impact of 

parameters such as pixel resolution, ISO number, and white calibration on colour 

quantification. In the reported articles, works have been done keeping these parameters 

constant (Mutlu et al., 2017) as well as variants (Solmaz et al., 2018).  

In this chapter, the SM-G920F camera (f/1.9, exposure time 1/50 second, focal length 

4mm, maximum aperture 1.85, 35mm focal length =28, normal exposure program, 

without flash) was set on its default mode.  The idea is to utilise the strength of the 

available camera with minimum user interaction. The camera automatically adjusted 

the white balance, ISO speed, metering mode and set the brightness by the internal 

software of the smartphone (G920FXXU6ERC9).  

The metering mode signifies the camera exposure method. The quantity of light/unit 

area to imaging sensor estimated by the shutter speed, aperture and scene luminance is 

expressed as the camera exposure. The dataset contains images where the camera 

measured 1–5% of the viewfinder area (spot metering) as well as the images where the 

meter concentrated ~60–80% of the sensitivity towards the central part of the 

viewfinder (centre-weighted average metering).  

The native and extended ISO of the mentioned device can vary from 100-800. Lopez-

Ruiz et al. (2014) conducted their experiments by setting the ISO at 200 using LED 

flash at dark environment. Their study found lower noise in the image at ISO 200 than 

higher ISO.  This work observed that the camera selects lower ISO speed at the bright 

ambient condition. For example, ISO speed 64 in case of 𝐴௜ + 𝐴௖ (𝑑𝑙) and 160 at 𝐴௜ +

𝐴௖ (𝑗𝑙) and 200 at 𝐴௜ (varied for image to image).  

In addition to the SM-G920F camera, this work also utilised iPad Pro ((f/2.2, exposure 

time 1/50 second, focal length 4mm, without flash) and SM-J327T (f/1.9, exposure time 

1/50 second, focal length 4mm, maximum aperture 1.85, without flash) to generate 

diversity in the dataset.  
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6.2.3 Dataset for LFA 

The original dataset in Table 6. 1 is utilised to investigate the required image processing 

framework, classification algorithm and an optimum number of features. The original 

dataset contains 520 images.  

Table 6. 1: LFA dataset for intelligent image-based colourimetric test  

Sl.  Name Description  Brand  Lighting 

Environment  

Device Samples/ 

class 

Total  

1 original 

U
ni

ve
rs

al
 p

H
 in

di
ca

to
r 

pa
pe

r 

F
is

he
rb

ra
nd

®
 p

H
 

Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙) Samsung 

Galaxy 

S6 

65 520 

2 𝑛𝑒𝑤_𝑝𝐻10 Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙) Samsung 

Galaxy 

S6 

65 65 

3 D-𝐴௜  Images captured in 

without any 

controlled light 

Samsung 

Galaxy 

S6 

15 120 

4 D-𝑑𝑙 Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑑𝑙) Samsung 

Galaxy 

S6 

15 120 

5 D- 𝑗𝑙 Ἇ௘ =  𝐴௜ + 𝐴௖ (𝑗𝑙) Samsung 

Galaxy 

S6 

15 120 

6 D-i Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙) iPad Pro 20 20 

7 D-j Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙) Samsung 

Galaxy 

J3 Prime 

20 20 

8 ℵ_𝑝𝐻 Hicarer-pH 

Test Strips-

01 

Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙) Samsung 

Galaxy 

S6 

65 65 

9 untested 

urine 

dipstick  

Reagent 

strips for 

urinalysis  

Multistix® 

GP, Siemens 

Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙) Samsung 

Galaxy 

S6 

5 5 

Total 1,055 

D-𝐴௜ + D-𝑑𝑙 + D- 𝑗𝑙 =D-lights 
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Let us denote the samples of pH 3-9 in the original dataset as ‘D-o1-9’. Once the model 

was developed, the rest of the datasets were utilised to explore the merits and 

capabilities of the proposed scheme. 

As already discussed in Section 2.5.3 (Chapter 2), Mutlu et al. (2017) used single test 

strip per class and extended the dataset by changing the format of the file, the orientation 

of the test strip and capturing the image of the same strip for five times. Their study did 

not repeat the test on pH strips to consider potential anomalies. They tried to 

compensate for the issue by capturing the image of the same test strip using different 

controlled-lighting conditions. We acknowledge that the presented case study is a stable 

assay which is not subject to as much variations as the TB-test. However, the dataset of 

Dhar, Mehta, & Sit (2017) indicated that even a stable paper assay could have 

nonconformities when the solution is not held within the colour pads, and it is spread 

across the base paper. Our research suggests that this can potentially increase the false 

positive ROI (region of interest) area during image processing and act as a noise during 

classification. Consideration of such noise level at different test attempt would have 

asserted statistical likelihood and demonstrated a more reliable system by Mutlu et al. 

(2017). In order to rectify the issue, in our research, the original dataset contains 65 

images of individual pH indicator strips for each of the mentioned levels. The samples 

were allowed to have any arbitrary orientation as well as position within the sample 

plane exposed to the camera (Fig. 6. 2).   
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Fig. 6. 3: Proportion and distribution of the dataset  

The original dataset was utilised to develop the system from image pre-processing to 

feature extraction and classification. Using 10-fold cross-validation, the dataset assisted 

in optimising the features and identifying the best suitable classifier. Later, 535 images 
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were considered as the extended dataset to evaluate the concept using a wider latitude. 

The proportion of data distribution is illustrated with a heat-map (Fig. 6. 3). 

The purpose of using these extended datasets was to evaluate the robustness of the 

image processing algorithm, the stability of the classifier and reliability of the overall 

system by investigating the following questions.  

i) How the system performs on an unseen data under the similar condition?  

- (𝑛𝑒𝑤_𝑝𝐻10) 

ii) Can the system be trained for a similar assay from a different commercial brand?  

- (ℵ_𝑝𝐻) 

iii) Does the image process algorithm adaptable to analogous assay type?  

- (untested urine dipstick) 

iv) Is the system trainable for images under different illumination condition without 

fine-tuning the image processing framework, feature set and hyper-parameters? 

-(D-lights) 

v) Is the system trainable for images captured by different devices without fine-

tuning the image processing framework, feature set and hyper-parameters?  

- (D-i and D-j) 

Extended Dataset 

Among these extended samples, aside from the urine dipstick, the rest of the samples 

were immersed in pH buffer solutions. 

i) At first, a dataset (𝑛𝑒𝑤_𝑝𝐻10) was created using the same assay brand and same 

ambient condition, placing the test strips in an arbitrary position within the 

sample plane with the aim to create more diverse conditions. This 𝑛𝑒𝑤_𝑝𝐻10 

dataset was used as a testing dataset to validate the system on the entirely unseen 

data.  

ii) In order to validate the robustness of the image processing algorithm, universal 

pH indicator paper of a different brand (Hicarer-pH Test Strips-01) was utilised, 

denoted as ℵ_𝑝𝐻 papers. The dimension, including the thickness of the colour 

pads of ℵ_𝑝𝐻 papers is slightly different than the original dataset. The colour 

pads in ℵ_𝑝𝐻 papers are densely situated and the base papers are more 
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hydrophilic than our original test strips. Therefore, the image-processing 

technique would have to deal with more noise for these test papers.  

iii) In the reported articles (Yetisen et al., 2014; Rahmat et al., 2018; Smith et al., 

2016; Chen, Wu and Dong, 2014; Wirth et al., 2018), the urine dipstick is a 

well-utilised example of LFA using with and without additional hardware.  Due 

to the resemblance of the assay, a urine dipstick was included in the extended 

dataset. Similar to these multi-object assays, e.g. original dataset, the urine 

dipstick has multiple colour pads. Although these assays are different in terms 

of the number of targets, the image processing framework should be able to 

segment the ROIs. Image of a single untested urine dipstick was captured five 

times with a slight variation in the position for repeatability. Due to different 

targets, the dataset was not used for classification.  

iv) The reported articles emphasize creating a diverse dataset by considering 

different illumination conditions and mobile devices (Kim et al., 2017a; Solmaz 

et al., 2018). Therefore, we have further extended our dataset (Table 6. 1) to 

include the additional three different illumination conditions as described in the 

experimental setup. The original dataset was generated in an indoor laboratory 

environment. Without the ceiling lights (in the presence of  𝐴௜), for each pH 

level, 15 samples were generated- a) without any controlled light, using natural 

daylight only (D-𝐴௜) b) using warm light (D- 𝑗𝑙) and c) using cold light (D-𝑑𝑙). 

Therefore, from 120 independent pH tests, 360 images were produced using 

these lighting conditions (D-𝐴௜, D- 𝑗𝑙, D-𝑑𝑙). From this point forward, these 

images are collectively denoted as ‘D-lights’.  

v) The properties of images captured with different devices may vary due to the 

camera, optics and imaging software (Solmaz et al., 2018), even when the 

interoperability issue (Yetisen et al., 2014) of the mobile application is not 

considered. Hence, a small dataset22 (D-i and D-j) was generated from images 

captured using different devices to explore the impact (Fig. 6. 3).  

                                                

22 The dataset of D-i and D-j are relatively small (<30 samples for 2 classes). Rest of the pH 
samples per class, e.g. original dataset, contain 65 images per class. Therefore, D-i and D-j were 
not considered for statistical analysis in order to maintain the statistical assumptions.  
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To summarise the overall dataset, this work includes an LFA dataset of 1,055 images 

in total.  

6.3 Data Processing of the Paper Strips using Computer Vision 

The use of an intelligent image processing scheme can make the system user-friendly 

by reducing the required user intervention to produce the result. A robust image 

processing algorithm can also eliminate the necessity of additional hardware 

attachments. In our wet-chemical-based case study (Abuhassan et al., 2017; Shabut et 

al., 2018) (Chapter-5), we segmented the images using extensive processing including 

iterative method such as k-medoids clustering. The colour of the samples of our 

qualitative test were bluish-pink and pinkish-blue. The R and B channels had an 

overlap. Therefore, k-medoids provided a better performance among the histogram 

thresholding based image processing techniques. In this chapter, the associated colour 

of the samples are mostly colour opponents. Using clustering algorithms such as k-

means and k-medoids would create more matrices to accommodate the images of 

multiple clusters before selecting the best cluster. Moreover, due to the multiple colour 

opponent objects of the same sample, it would be difficult to keep these colour pads in 

the same cluster. Being a ‘multi-object/ sample’ type colourimetric test, the ROIs 

divided into different clusters would occupy more memory space and the feature 

extraction stage would require more iterations, essentially taking more time to process. 

Therefore, this work presents an image processing algorithm circumventing the 

iterative approach, making it more suitable for mobile environments of limited storage 

and processing capacity.  

Scaling 
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Fig. 6. 4: Image processing framework for LFA based colourimetric assay 



 

150 

 

The key steps of the algorithm are illustrated as a framework in Fig. 6. 4. 

At first, the dimensions of the images were reduced by dynamic scaling and then the 

colour channels were separated.  

𝑥௥  = 8-bit unsigned integer array of filtered image in red channel 

𝑥௚  = 8-bit unsigned integer array of filtered image in green channel 

𝑥௕  = 8-bit unsigned integer array of filtered image in blue channel 

The examples used in this chapter, both universal pH strip and urine dipstick contain 

multi-objects per sample. Using the same concept as Eq. 3.9 (Chapter 3), the relevant 

colours of our original dataset can be placed in 5 clusters or groups in theory. Therefore, 

the segmented image can be expressed as Eq. 6.423.  

𝑔(𝑥, 𝑦) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑔ଵ   𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙

(𝑐𝑜𝑙𝑜𝑢𝑟 𝑝𝑎𝑑 1)

𝑔ଶ   𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙

 (𝑐𝑜𝑙𝑜𝑢𝑟 𝑝𝑎𝑑 2)

𝑔ଷ   𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙

(𝑐𝑜𝑙𝑜𝑢𝑟 𝑝𝑎𝑑 3)

𝑔ସ   𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙

(𝑐𝑜𝑙𝑜𝑢𝑟 𝑝𝑎𝑑 4)

𝑔଴  𝑖𝑓 𝑓(𝑥, 𝑦) = 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑖𝑥𝑒𝑙

                                                               (6. 4) 

In order to separate these clusters, clustering algorithm such as k-means, k-medoids and 

c-means can be used. However, as explained earlier, for rapid execution, the relevant 

colours should be categorised as the foreground region of interest (ROI) and the 

background colours (e.g. paper, tricyte) to minimise the required number of clusters, 

instead of using five clusters as Eq. 6.4.   

From the colour histogram analysis (Fig. 6. 5), it can be observed that the higher band 

of G (green channel) and B (blue channel) holds the background pixels from 𝑔଴. 

However, in the case of green channel, the threshold level overlaps with the foreground 

                                                

23 There are four colour pads in the universal pH test strip used in this chapter. Therefore, 
considering the background as well as the foreground (consisting four colour pads), there are 
five colour groups in theory. If the segmentation is performed based on the ‘colour groups’, 
then it would result in five clusters as expressed in Eq. 6.4.  
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pixels of one of the four groups in Eq. 6.4. Therefore, the background separation can 

be performed more convincingly in the blue channel. 
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Fig. 6. 5: Histogram-based image segmentation 

For better visualisation, Fig. 6. 6 (a) illustrates one of the input images and in Fig. 6. 6 

(b) the full colour gamut is represented as point clouds in RGB colour space. When the 

channels are separated as it is mentioned in the framework (Fig. 6. 4), the R channels 

holds both background as well as foreground pixels, shown in Fig. 6. 6 (c) and (d).  
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From Fig. 6. 6 (g), it is visible that the background is better perceivable in the blue 

channel.  

 

 
(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Fig. 6. 6: Histogram of a pH test strip. (a) Paper strip tested on pH 3, (b) three 

dimensional colour gamut as point cloud in RGB, (c) image ‘a’ in red (R) channel, (d) 

histogram of R channel, (e) image ‘a’ in green (G) channel, (f) histogram of G 

channel, (g) image ‘a’ in blue (B) channel and (d) histogram of B channel 
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The intensity of 𝑥௕ was then normalised by Otsu (1979), prior converting it into a binary 

image. At this point, the processed image only contained 𝑔଴. The logical negative of 

the matrix is capable to provide the foreground pixels.  

To extract all the blocks of the colour pad, Euler24 number property was utilised.  

I= Binary foreground pixels 

O௜(n) = Objects in I by 8-connectivity, where n = 1, 2, … N 

h௢ = Number of holes in O௜(n) 

𝑒௅,ு = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 O௜ − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 h௢, where 𝐿 and 𝐻 are low and high value, 

respectively. 

C = Connected components by 2-D Euler Number (𝑒௅,ு)  

All the pixels in C lower than the threshold value were eliminated to remove the noise 

in the binary image. Therefore, the image contained the pixel position of ROI only. As 

it is mentioned earlier, the main focus of this chapter is the assays that contain multi-

objects per sample where the number of objects per sample would vary from assay to 

assay. In our original dataset as well as the ℵ_𝑝𝐻 dataset, the universal pH test papers 

hold four colour pads and the decision of the pH level depends on the combination of 

these colour pads. Therefore, an object counting rule was deployed to increase the 

reliability of the system, discarding the false positive ROIs.  

𝐼௖= 8-bit unsigned integer array from logical array containing C  

𝑌 = ቐ

𝑥௥ × 𝐼௖

𝑥௚ × 𝐼௖

𝑥௕ × 𝐼௖

 

 

The final output obtained by the AND gate operation can be expressed as 𝑌 and 

illustrated in Fig. 6. 5 as the segmented image. The algorithm is provided in Appendix 

E. The performance of the algorithm or framework (Fig. 6. 4) is illustrated in Fig. 6. 7. 

                                                

24 Although conventionally, Euler number refers to the base of the natural logarithm, 𝑒௅,ு 
computes the morphological Euler number of regions in a binary image. The Euler numbers are 

defined in terms of Euler polynomials: e(n) = 2௡ ቀ𝑛,
ଵ

ଶ
ቁ, where n = Index of the Euler number 

or polynomial. In plain words, the Euler number is the total number of objects in the image 
minus the total number of holes in those objects. 
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Fig. 6. 7: Performance of the image processing algorithm for pH test 

The overall image processing performance showed >98% accuracy. Considering the 

fact that the light source ‘5’ in Fig. 6. 2 varied during winter and spring in the UK while 

the images were taken, the image processing method exhibited good accuracy and 

reliable for the indoor environment.  

After image segmentation, due to rule-based noise filtering, false positive ROI area was 

minimum. The image processing framework showed >97% accuracy for pH 4-10. 

Among the pH levels, the algorithm showed comparatively poor performance on pH 3. 

Further investigation revealed that the light source of Eq. 6.2 had more variation on the 

days when dataset of pH 3 was generated, which created more shadows on the images. 

The position of the sample plate (Fig. 6. 2) was kept constant for all the experiments. 

There were shadows due to the ambient objects that could have been avoided by moving 

the sample plane based on ‘5’ (Fig. 6. 2). 

In this chapter, we also evaluated the possibility of performance degradation of the 

histogram-based image processing algorithm due to scaling operation tested in a 

desktop environment. Without scaling and keeping the rest of the framework same, the 

full-sized images provided 98.94% accuracy on average. If the framework (Fig. 6. 4) is 

followed, then the mean accuracy of the image processing algorithm was 98.23% (Fig. 

6. 7). Therefore, it can be stated that the dynamic scaling had a negligible impact on the 

image quality. There is an emphasis on scaling in the literature for mobile-enabled 

medical image processing (Bourouis et al., 2014). As the image processing algorithm 

in this work was not affected by resizing, after applying dynamic scaling, the maximum 

dimension of the image was 300 on average. The dimension reduction at a different 

stage, without compromising the performance, effectively reduced the overall memory 

occupancy of the system (Fig. 6. 8), making it suitable for the mobile environment.  
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Original size:
2899x5312x3

(uint8)
2.62 MB

Extracted 
features: 

1x29 (double)
1 KB

 

Fig. 6. 8: Example of dimension reduction at different stage. The memory occupany 

for each image was reduced to ~60% by downscaling the image. After extracting the 

ROIs, the final feature-set of the whole dataset was less than 1KB.  

As shown in Fig. 6. 3, the ℵ_𝑝𝐻 papers were immersed in pH 10 buffer solution, 

maintaining rest of the parameters similar to Fig. 6. 2. The image processing framework 

(Fig. 6. 4) was found to be robust enough to successfully separate the ROI of ℵ_𝑝𝐻 

papers without any additional fine-tuning (Fig. 6. 9).  

Sample Input Image Segmented 
image 

pH 10 

  

Untested urine 
dipstick  

  

Fig. 6. 9: Image processing of ℵ_𝑝𝐻 paper using pH 10 buffer solution and untested 

urine dipstick  

In order to further examine the adaptability of the image processing algorithm, another 

example (Multistix® GP, Siemens) of a lateral flow assay was utilised, consisting eight 

pads for different indicators (such as glucose, ketone, pH). There are two additional 

blocks for referencing. These pads or blocks have similar length and width as our 

original dataset. However, the thickness and block-to-block distance are different. 

Moreover, the base is made of trycite, which are more hydrophobic than paper and has 

different reflectance. These test strips are multi-objects/ sample assays. However, each 

of these objects is designated or targeted for different test (e.g. pH, glucose) performed 

on the same sample (e.g. urine of a subject). Although each image contains multiple 
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objects for a single test strip, they are single object/ target, known as multiplex assay. 

As illustrated in Fig. 6. 9, the image processing framework (Fig. 6. 4) was successful 

to separate the ROI of the multiplex assay of urine dipstick.  

Different illumination conditions can influence the performance of an image processing 

algorithm (Smith et al., 2014). However, the proposed image processing framework 

showed consistent performance for D-𝐴௜, D- 𝑗𝑙 and D-𝑑𝑙. The framework provided 353 

correct segmentation out of 360 images with 98.06% accuracy.  

The same pH test strip under different illumination conditions is visibly showing 

different histogram pattern using the same mobile phone camera in Fig. 6. 10.  

   

− Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑙)     ...  Ἇ௘ =  𝐴௜      ∆  Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑗𝑙)     *  Ἇ௘ =  𝐴௜ +  𝐴௖ (𝑑𝑙) 

Fig. 6. 10: Histogram of an image of a pH test strip under different illumination across 

three colour channels. In the colour histogram, the horizontal and vertical axis 

represent the intensity and the frequency or number of pixels, respectively.  

The histograms in Fig. 6. 10 confirm the need to include diverse illumination condition 

to develop a robust system, which is supported by the reported articles as well (Kim et 

al., 2017a; Solmaz et al., 2018).  

In Fig. 6. 11, the impact of capturing an image of the same pH test strip using same the 

illumination condition can be observed while incorporating the camera of a number of 

personal devices. Comparing the colour histogram of Fig. 6. 10 and Fig. 6. 11, it 

appeared that the images can be more affected by the illumination condition than the 

variation of the mobile devices.  

In addition to Samsung Galaxy S6 (original dataset), the images were captured by two 

other devices: iPad Pro and Samsung Galaxy J3 Prime. The sizes of these devices are 

different, which effectively varied the exposure plane shown in Fig. 6. 2. 
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− Samsung Galaxy S6                        iPad Pro                   Samsung Galaxy J3 Prime  

Fig. 6. 11: Histogram of an image of a pH test strip across three colour channels using 

different mobile phone cameras. In the colour histogram, the horizontal and vertical 

axis represent the intensity and the frequency or number of pixels, respectively. 

Therefore, the focal length of these devices had to be adjusted for the consistency of 

the overall system. The dimension of Samsung Galaxy J3 Prime is similar to Samsung 

Galaxy S6. Therefore, no adjustments were conducted on the focal length for this 

device. The iPad Pro was held at 11 inches away, varying the 35mm focal length within 

66-68.  It should also be mentioned that the images captured by the different devices 

varied in size due to the system-defined standardisation. Nevertheless, the image 

processing algorithm (Appendix E) showed consistent performance (Fig. 6. 12) to 

segment the images captured by different devices. It was also observed that the 

presented system is capable of handling such variation in the focal length.  

Device Input Image Segmented Image 

iPad Pro 

  

Samsung Galaxy  

J3 Prime 

  

Fig. 6. 12: Image segmentation by different devices  
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6.4 Feature Extraction  

Once the ROIs were segmented, the characteristics of these samples were analysed from 

its colour moments. However, it should be noted that the colourimetric classification 

based on the colour moments depends on the successful separation of the segmented 

ROIs (Table 3. 1, in Chapter 3). 

In our earlier study (Abuhassan et al., 2017), we have utilised lower order colour 

moments, 𝑐௠ (Sergyan, 2008) in only LAB colour space (𝑐𝑠) for all the colour channels 

(𝑐௖) to classify wet-chemical-based qualitative colourimetric tests. For stable paper 

assays such as pH indicator strips and urine dipsticks, the required feature-set may vary. 

Therefore, the impact of different attributes is required to be analysed. This thesis 

expresses the required features (𝑓𝑡) for colourimetric tests as Eq. 6.5.    

𝑓𝑡 = {𝑓𝑡௖௦(𝑐௠)  × 𝑓𝑡௖௦(𝑐௖)} + 𝑓𝑡(∆𝐸௅஺஻)                                                               (6. 5) 

where ∆𝐸௅஺஻ represents the colour difference with respect to the control colours.  

The feature-set in Abuhassan et al. (2017) can be described as Eq. 6.6, where six colour 

moments where considered in L, a and b channel, discarding the entropy in L channel. 

As the images involved single objects per sample, there were 17 features in total.  

𝑓𝑡 = 𝑓𝑡௅஺஻(𝑐௠)  × 𝑓𝑡௅஺஻(𝑐௖) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦௅                                                            (6. 6)   
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mean mode std. 
Deviation

skew-
ness
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Rearrange 
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Fig. 6. 13: Feature extraction at initial stage before feature optimisation 

The feature extraction framework is illustrated in Fig. 6. 13. In this work, the colour 

differences in LAB colour space are calculated in a closed loop as additional features 

(Tania et al., 2017). If the colour block is 𝑏௣ and position of the block is 𝑝;  𝑝 ∈ 𝐙ା, 

then let’s measure the colour difference for each block calculated from its previous 

block using the following equation.  
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∆𝐸௕೛

∗ =  √{(𝑚𝑒𝑎𝑛 𝐿௕೛

∗ − 𝑚𝑒𝑎𝑛 𝐿௕೛షభ

∗ )ଶ + (𝑚𝑒𝑎𝑛 𝑎௕೛

∗ − 𝑚𝑒𝑎𝑛 𝑎௕೛షభ

∗ )ଶ +

(𝑚𝑒𝑎𝑛 𝑏௕೛

∗ − 𝑚𝑒𝑎𝑛 𝑏௕೛షభ

∗ )ଶ}                                                                                   (6. 7) 

The features generated from Eq. 6.7 are novel features, where a pseudo-control colour 

set is generated for each test using the user input image itself. However, in real life 

situation, one would require to compare the tested paper assay with a colour chart. This 

colour chart holds the control colour for the block or sample. In the literature, the colour 

of the block is often tracked against the colour chart (Rahmat et al., 2018; Solmaz et 

al., 2018). In this work, we have also used the colour difference of each colour block 

from the corresponding control colour block (𝑐௣) as part of the feature-set (Appendix 

D).  

∆𝐸௖೛
∗ =  √{(𝑚𝑒𝑎𝑛 𝐿௖೛

∗ − 𝑚𝑒𝑎𝑛 𝐿௕೛

∗ )ଶ + (𝑚𝑒𝑎𝑛 𝑎௖೛
∗ − 𝑚𝑒𝑎𝑛 𝑎௕೛

∗ )ଶ + (𝑚𝑒𝑎𝑛 𝑏௖೛
∗ −

𝑚𝑒𝑎𝑛 𝑏௕೛

∗ )ଶ}                                                                                                             (6. 8) 

In Eq. 6.5, 𝑓𝑡(∆𝐸௅஺஻) was obtained from Eq. 6.7 and Eq. 6.8, which could be stated as 

Eq. 6.9.  

𝑓𝑡(∆𝐸௅஺஻) =  ∆𝐸௕೛

∗ + ∆𝐸௖೛
∗                                                                                        (6. 9) 

The case study involves multi-objects for single sample per image, which elongated the 

feature set. Therefore, initially 440 features25 in total were considered to train the 

classification model.  

6.5 Classification and Feature Analysis 

6.5.1 Feature Selection 

At first, the classifiers were trained using 440 colour features. Among the standard 

classifiers including discriminant analysis, SVMs, KNNs and ensemble methods, the 

ensemble method called Subspace discriminant analysis showed the best performance. 

                                                

25 Eq. 6.5: (6 colour moments x 4 blocks x 3 colour channels x 6 colour spaces) + Eq. 6.9 = 432 
features + Eq. 6.9;  
Eq. 6.7: No of features: 1 x4=4;  
Eq. 6.8: No of features: 1 x4=4;  
Eq. 6.9: No of features 4+4=8.  
Therefore, Eq. 6.5= 432+8= 440 features  
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Using 30 base learners and subspace dimension of 220, the classifier provided 99.4% 

accuracy with three misclassifications. The training was conducted in 33.418 seconds, 

and the prediction speed was in 350 samples/seconds. However, more features would 

mean more model complexity and requirement of more storage and processing capacity. 

Therefore, the number of features was required to be optimised. The optimisation was 

conducted using univariate analysis at different stages. For the convenience of faster 

training, the analysis was executed via MATLAB classification learner application.  

The use of histogram features in the reported articles can be observed from Table 6. 2. 

Table 6. 2: Region of interest, feature-set and classification algorithm for paper-based 
assays 

Reference  Object/ 
sample 

Histogram 
Features 

Colour 
Spaces  

Algorithm  Result  
Accuracy  

H. Kim et al. 
(2017) 

Single Mean, 
Median, 
Mode, Bin 
median and 
Bin centroid  

RGB, 
HSV, 
YUV, 
LAB 

LDA, 
SVM, 
ANN 

80%; 
100%  

Solmaz et al. 
(2018) 

Single  With and 
without 
grey-world 
corrected 
mean 

RGB, 
HSV, 
LAB 

LS-SVM, 
RF 

90.3%; 
95% 

Mutlu et al. 
(2017) 

Multi Mean of 
JPEG, 
RAW and 
RAWc 

RGB  LS-SVM 100%  

Rahmat et al. 
(2018) 

Multi* Mean  RGB Euclidean 
distance  

95.45%  

*Multi-object per sample but single object per target (Multiplex assay) 
LDA: Linear Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural Network; 

LS-SVM: Least squares support vector machine; RF: Random Forest 

This chapter systematically investigated the impact of the histogram features including 

colour moments and colour spaces. Additionally, the impact of control colours was 

studied as well. We have explored the colour moments in LAB colour space to begin 

with (Fig. 6. 14).   

Based on the univariate analysis conducted on 𝑓𝑡௅஺஻(𝑐௠), the best performing features 

were found to be mean and energy (Fig. 6. 14). These two features comprise a good 
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signal, performing as proficient (97.1% accuracy) as the combined features of 

𝑓𝑡௅஺஻(𝑐௠). 

 
1: Mean; 2: Standard deviation; 3: Mode; 4: Skew; 5: Energy; 6: Entropy; 7: Colour moments; 8: All 
features in LAB (Eq. 6.5); 9: Pseudo-control colours (Eq. 6.7); 10: Control colours (Eq. 6.8); 11: Both 

category of control colours (Eq. 6.9); 12: 440 features in 6 colour spaces. The features with dotted 
outlines are functions of 𝑓𝑡௅஺஻(𝑐௠) 

Fig. 6. 14: Performance of the features for the pH test 

Considering the fact that we are analysing the colourimetric tests, the average colour or 

brightness of the ROI is a key feature. The mean colour value is considered to be the 

most important features in the reported articles as well (Mutlu et al., 2017; Rahmat et 

al., 2018). On the other hand, the energy in L, a and b are the amplified brightness level. 

Therefore, energy is directly linked with the performance of the mean colours. Due to 

the reflectance on the two dimensional surface, the unbiased standard deviation within 

each colour pad did not provide a significant contrast to improve the classification 

performance. The mode of colours on the solid surface of individual ROI without any 

opto-mechanical attachment can be misleading. Because, the system would be 

susceptible to the ambient lighting environment. The mode is supposed to provide 

effective information, if the ROI is scaled such as hardware based systems of 

CLINITEK Status® + Analyzer and the wavelength is filtered (Siemens Healthcare 

GmbH, 2018). On an ideal condition, there should not be any asymmetry of colour 

distribution, therefore the SKEW can also be discarded from the feature-set.   Hence, 

among the features from 𝑓𝑡(𝑐௠), only mean and energy were considered to train the 

classifier.  

As illustrated in Fig. 6. 14, the control colours were also found to be influential features. 

Only the control colours (both categories) are sufficient enough to provide 98.7% 

accurate classification using Eq. 6.9, which was studied further while exploring and 

fine-tuning the classifier. Similar to our earlier work (Tania et al., 2017) on wet-
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chemical-based colourimetric test, the colour differences (Eq. 6.7-6.9) are considered 

in LAB space only. The L, a and b, imitating the nonlinear response of the human eyes, 

can also resemble the uniform changes in the perceived colour facilitated by the uniform 

changes in the LAB- components. Therefore, the control colour related calculations 

were computed in a colour space which has more advantages at Euclidean space.  

The standard devices capture the image in sRGB colour space. After the initial 

assessment of the colour moments and control colours as features, the colour spaces 

were appraised (Fig. 6. 15). 

 
 

1: Mean; 2: Energy; 3: Mean, energy and pseudo-control colour; 4: Colour moments;  
5: Mean, energy and pseudo-control colour using LS-SVM 

Fig. 6. 15: Performance of colour spaces using top-performing classifiers with respect 

to top performing features identified at the previous stage. 1-4 are the performances 

by the best performing classifier excluding LS-SVM and 5 is the performance using 

LS-SVM.  

H. Kim et al. (2017) utilised four colour spaces to provide a colourimetric decision, 

whereas Solmaz et al. (2018) used three (Table 6. 2). Mutlu et al. (2017) used RGB 

images in JPEG along with capturing the images at the RAW format. In this work, we 

have studied the performance of six colour spaces on the original dataset. Among the 

colour spaces, the LAB was found to be the most influential colour space.  The strength 

of the LAB is the perceptual uniformity property. 

Another popular dimension reduction technique, PCA, combining correlated attributes 

to create superior new features, did not improve the overall performance. Therefore, 

based on the performance of different features and colour spaces, mean, energy and the 
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control colours in three channels of the LAB were chosen to be feature-set (32 features) 

to explore the performance of the classifiers.  

6.5.2 Performance of Classification Methods  

Exploring 440 features, the selected 32 features were identified as the good features to 

ensure that the classifiers are trained with signals, not noise. Different supervised 

learning techniques were evaluated to provide the semi-quantitative colourimetric 

classification. The list of classifiers includes LS-SVM, LDA and RF which provided 

good accuracy in the reported articles for similar classification task (Mutlu et al., 2017; 

Solmaz et al., 2018; Dhar, Mehta and Sit, 2017). The classifiers were trained and 10-

fold cross-validated by the original dataset, followed by a re-evaluation of the good 

features (mean, energy and control colours).  

After careful selection of 32 features, SVM, KNN and discriminant analysis exhibited 

similar performance in Fig. 6. 16 (>98% accuracy). 

 
 

1: Mean; 2: Mean and energy; 3: Mean, energy and pseudo-control colours; 4: Mean, energy and 
control colours; Mean, energy and both category of control colours 

Fig. 6. 16: Performance of different classifiers 

The overall performance from the discriminant analysis was good. For a different 

combination of the good features, the LDA and quadratic discriminant analysis 

outperformed each other. Therefore, subspace discriminant also exhibited good 

performance as an ensemble method. The performance of RF was also notable. 

However, the LS-SVM (Suykens and Vandewalle, 1999; Suykens, 2002) showed the 

best performance using the selected features as illustrated in Fig. 6. 16. Due to the 

weighted function with a modified cost function, LS-SVM is more robust than SVM. 
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The performance of LS-SVM was consistent for any good features in any colour space 

(Fig. 6. 15 and Fig. 6. 16).  

After identifying the best performing classifier using good features or signals (as 

proposed in Fig. 3. 11 in Chapter 3), the selected 32 features were explored again which 

revealed that the features can be further reduced to 28. The selected 32 features, 

including both feature-set of control colours (i.e. Eq. 6.9), LS-SVM provided 100% 

accuracy. As shown in Fig. 6. 16, in addition to mean and energy, the use of only one 

feature-set of control colours, i.e. either Eq. 6.7 or Eq. 6.8, is capable of providing 100% 

accurate colourimetric classification for LFA. Therefore, instead of Eq. 6.9, only one 

set of control colours can be used. The final performance can be seen in terms of ROC 

and area under the ROC curve (=1) in Fig. 6.17 as well.  

Se
ns

it
iv

ity

1- Specificity

Receiver operating characteristic curve 
area=1, std= 0

 
area: Area under the ROC curve; std: Standard deviation  

Fig. 6. 17: ROC curve of LS-SVM for the pH test using the optimised 28 features26  

Furthermore, in order to specify between the choices of control colours, this work 

suggests, it is better to use the pseudo-control colours (Eq. 6.7), especially for multi-

object single-target colourimetric tests. The control colours (Eq. 6. 8) generated from 

the colour chart are the features generated one time, acting as a ground truth may widely 

vary from the condition where the user input image is captured. Thus, the user input 

can appear as a noisy image. The pseudo-control colours (Eq. 6.7) are generated each 

                                                

26 Due to the equal and perfect classification, all 8 classes are clustered together. 
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time using the user input itself. Therefore, these features are more reliable. Finally, the 

optimised feature-set can be summarised as mean, energy and pseudo control colours 

in three colour channels of LAB colour space.  

From Table 6. 3 as well as from Fig. 6.17, it can be observed that the specificity and 

sensitivity achieved by LS-SVM is also 100%, which are our key evaluation criteria. 

Among the reported articles in Table 6. 2, Mutlu et al. (2017) performed the 

colourimetric classification utilising the same application, i.e. paper-based pH test strip. 

Similar to Mutlu et al., this research also found LS-SVM to be the best performing 

classifier for the presented classification problem. Mutlu et al. showed that, with and 

without apparatus, the system can exhibit the same performance. The experiment of 

Mutlu et al.  without any apparatus included 270 images to provide the classification of 

pH strips, which explains the confidence interval percentage in Table 6. 3. The 95% CI 

for accuracy, specificity and sensitivity works in favour of our proposed scheme due to 

the choice of the dataset.  

Table 6. 3: Comparative performance of LS-SVM with the reported article 

Ref.  Number of 
independent 
tests/ class 

Number 
of 

classes 

Number 
of 

samples/ 
class 

Sensitivity/ 
class (%) 

Specificity/ 
class (%) 

Accuracy/  
class (%) 

Value 95% 
CI 

Value 95% 
CI 

Value 95% 
CI 

Mutlu et 
al. 
(2017) 

1 15 18 100 81.47- 
100 

100 98.56-
100 

100 98.66-
100 

Proposed 
method 

65 8 65 100 94.48-
100 

100 99.19-
100 

100 99.29-
100 

Mutlu et al. (2017) utilised images saved in different file formats which increased the 

volume of the data, however did not carry any significance regarding features or 

classifiers. Therefore, the effective feature-set of the experiment of  Mutlu et al. can be 

considered as the mean colours at RGB colour space. Using the feature-set of Mutlu et 

al. 27 on our original dataset, the performance degraded from 100% to 98.85% accuracy 

                                                

27 In case of literary work re-implemented using our dataset, it is cited with the symbol ‘ŧ’. For 
an example, Mutlu et al. (2017) as Mutluŧ.  
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(Fig. 6. 18), which can be perceived from the data generation point of view. Due to the 

light source ‘5’ in Fig. 6. 2 and use of 65 independent test strips for each class, the 

original dataset contains much robust data, whereas Mutlu et al. used the same pH test 

strip at different orientation using three different light sources. The absence of rarity 

(Weiss, 2004) generated from independent test strips constrained Mutlu’s approach 

regarding robustness and reproducibility.  

 

Using original dataset- 1: Mean; 2: Mean and energy; 3: Mean, energy and pseudo-
control colour; 4: Using 𝑛𝑒𝑤_𝑝𝐻10 and 28 features (mean, energy and pseudo-control 

colour); 5: Using ℵ_𝑝𝐻 and 28 features (mean, energy and pseudo-control colour); 
6: Using D-lights and 28 features (mean, energy and pseudo-control colour) 

*Using the feature-set of Mutluŧ 

Fig. 6. 18: Comparative performance of selected featured in LAB and RGB using LS-

SVM 

Mutlu et al. (2017) used RGB colour space and our research suggested LAB to be a 

better choice for the presented problem. For the chosen case study, the same 12 features 

of Mutluŧ, i.e. mean colours in the LAB, instead of RGB colour space showed better 

performance due to its strength of colour separation and handling shadows. The RGB 

is good at modelling the output of the phone camera, but LAB is closer to the ‘human 

colour perception’ and the presented problem deals with mimicking the naked-eye 

measurement of the colourimetric tests using computer vision. Therefore, LAB is a 

better choice of colour space.  

To further explore the performance of the classifier as well as the optimised 28 features 

on unseen images and to validate the system using a similar lateral flow assay, we 

extended our experiment using  𝑛𝑒𝑤_𝑝𝐻10 and  ℵ_𝑝𝐻 from Table 6. 1. The extended 

experiment can validate the reliability, adaptability and robustness of the system. 

The 𝑛𝑒𝑤_𝑝𝐻10 contains 65 images of pH test strips of level 10 at various random 
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orientation. The classifier was not effected by more variation in the orientation, as it 

provided 100% accuracy using 10 fold cross validation (Fig. 6. 18).  

In order to validate the system’s adaptability to similar lateral flow assays, the ℵ_𝑝𝐻 

dataset was utilised. A similar dataset is available in GitHub (Dhar, Mehta and Sit, 

2017). However, there are only 10 samples per class available in the open source 

domain. The pH indicating colours of the ℵ_𝑝𝐻 dataset are different than our original 

dataset, therefore the classifier was re-trained using the optimised 28 features, keeping 

rest of the hyper-parameters same. The 10 fold cross-validation showed the consistent 

result with 100% accuracy (Fig. 6. 18).  

Using a pH indicator paper of different brand (ℵ_𝑝𝐻 dataset) effectively changed the 

colours of each block for the same class label. There was a slight variation in the block 

size and block to block distance as well. As the performance of the system was as good 

as the original dataset, it justifies our choice of the classifier as well as the feature set, 

endorsing the reliability and adaptability of the system.  

After finalising the classifier, optimising the features and cross-sectional performance 

evaluation, the extended dataset (D-lights) was utilised. As mentioned earlier, due to 

significant shift in the colour histogram (Fig. 6. 10 and Fig. 6. 11), consideration of 

such diversity would enhance the reliability of the system. After including these 360 

images with the original dataset, the optimised features and LS-SVM showed consistent 

performance for the dataset (D-lights). The effect was further analysed separately 

without including the original dataset (Fig. 6. 18).  

6.5.3 Statistical Analysis  

Based on the results obtained by different classifiers in Fig. 6. 16 and the classifiers 

mentioned in the reported articles (Table 6. 2), top five classifiers were selected for 

further statistical analysis. These classifiers are: LS-SVM, LDA, SVM, and two 

ensemble algorithms RF and subspace discriminant.  In Section 6.5.2, the obtained 

accuracy is relatively close. Hence, the statistical analysis was necessary to claim the 

performance and establish reliability. In this research, we compared the performance of 

the best performing classifiers by using Student’s t-test. As this chapter includes 30 

observations of the best performing algorithms, normality is assumed by the central 

limit theorem. 
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The performances mentioned in Fig. 6. 14-6.17, are the mode of accuracies. Therefore, 

at random execution of the algorithm, these are the accuracies more likely to be 

achieved. However, for statistical analysis, each of the algorithms were executed 30 

times; the average accuracy achieved by LS-SVM on three different datasets are shown 

in Fig. 6. 19.   

 

1: original dataset; 2: 𝑛𝑒𝑤_𝑝𝐻10; 3: ℵ_𝑝𝐻; 
 4: D-lights using 28 features (mean, energy and pseudo-control colours)  

Fig. 6. 19: Average performance of LS-SVM on different dataset 

The statistical results obtained by a two-tailed t-test at a 0.05 level of significance are 

given in Table 6. 4 (Lwin, 2015; Hatem Al-jamal, 2017). The result of Algorithm 1 ↔ 

Algorithm 2 stated as “+”, “−”, or “∼” can be read as- Algorithm 1 is significantly better 

than, worse than, or statistically equivalent to Algorithm-2, respectively. Among the 

listed algorithms in Table 6. 4, none of them was statistically equivalent28. Based on the 

observations and Table 6. 4, it can be stated that LS-SVM outperformed the rest of the 

algorithms for all the dataset, which justifies our choice of the algorithm.  

Although LDA performed well on the original dataset, the performance was 

significantly reduced as compared to SVM and RF when the classifiers were exposed 

to more variations in terms of colours and illumination. LDA being a parametric method 

is highly constrained to the specific form and exhibited less robustness as compared to 

SVMs and RF.   

                                                

28 We acknowledge that a substantial amount of observations has an impact on the significance 
level, i.e. significance is not equivalent to importance.  
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Among the ensemble methods, subspace discriminant analysis requires less memory 

space and showed good performance at initial stage. This random subspace ensemble 

performs well for multiclass classification problem when there are more features. 

Therefore, after feature optimisation, the subspace discriminant showed significantly 

poor performance among the classifiers mentioned in Table 6. 4.  

Table 6. 4: Student’s t-test results of the top performing classifiers for the pH test 

Algorithm 1 ↔ Algorithm 2 original 𝑛𝑒𝑤_𝑝𝐻10 ℵ_𝑝𝐻 D-lights 

LS-SVM ↔ LDA + + + + 

LS-SVM ↔ SVM + + + + 

LS-SVM ↔ RF + + + + 

LS-SVM ↔ Sub. Disc. + + + + 

LDA ↔ SVM + - - - 

LDA ↔ RF + + - - 

LDA ↔ Sub. Disc. + + + + 

SVM ↔ RF + + + + 

SVM ↔ Sub. Disc. + + + + 

RF ↔ Sub. Disc. + + + + 

6.6 Regression  

The qualitative colourimetric test can be seen as a pure classification problem, whereas 

the quantitative colourimetric test can be presented as a regression problem. The semi-

quantitative colourimetric tests such as pH test can be described with a classification as 

well as a regression model (Fig. 6. 20).  

Among different regression model such as linear, support vector machine and ensemble 

methods, the Gaussian Process regression (GPR) (Rasmussen et al., 2006) showed 

better performance using the optimised 28 features (Fig. 6. 20). The performance was 

compared by the square root of the mean squared error (RMSE). It is an estimation of 

the standard deviation of the error distribution. The coefficient of determination (R2) 

value suggested that the model can explain approximately 99% of the variability in the 
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selected response variables. It took 11.51 seconds to train the model and the prediction 

speed was approximately 7300 observations per second. We have utilised an isotropic 

kernel. The covariance function, 𝑘(𝑥௜ , 𝑥௝) estimates the course of response at point 𝑥௜ 

effecting the response at a further point 𝑥௝, where 𝑥௜  = predictor values, 𝑖 = 1 + 2 +

3 + ⋯ + 𝑛 and 𝑖 ≠ 𝑗. The Euclidean distance between 𝑥௜  and 𝑥௝, 𝑟 = {(𝑥௜ +

𝑥௝)்൫𝑥௜ − 𝑥௝൯}ଵ/ଶ. If 𝑦௝  = target, 𝜎௙ = signal standard deviation, 𝜎௙ > 0 and 𝜎௟  = 

characteristic length scale, 𝜎௟ > 0, then the kernel function having same length scale 

for each predictor utilised in this work can be expressed as Eq. 6.10 (Rasmussen et al., 

2006).   

Covariance function, 𝑘(𝑥௜ , 𝑥௝) = 𝜎௙
ଶ(1 +

√ହ௥

ఙ೗
+

ହ௥మ

ଷఙ೗
మ 𝑒

൬ି
√ఱೝ

഑೗
൰
                                    (6. 10) 

 

 

Fig. 6. 20: Performance of Gaussian Process Regression. RMSE: 0.22 

In this work, as the system was trained on <1000 samples using the best performing 

features only, the GPR performed better than the other models due to well-balanced 

bias and variance, smoothing, optimised hyper-parameters and local generalisation. The 

kernel scale parameter attained the random basis for random feature expansion utilising 

sub-sampling-based heuristics. The model may require further rectification using 

continuous pH levels (quantitative) as well as a larger dataset to substantiate the 

performance. 
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6.7 Comparative Performance and Evaluation by ASSURED Criteria   

This work evaluates the performance of analogues computational systems for lateral 

flow assays using ASSURED criteria. In the absence of the exact dataset, in this work, 

we have compared the performance based on the concept of recently reported high 

accuracy systems (Table 6. 5).  

Table 6. 5: Comparative performance using ASSURED criteria   

Reference Application A S S U R E D 

H. Kim et 
al. (2017) 

Alcohol 
saliva test 

↓ PPV-NPV:  
>95% 

↓ Robust, 
<30s 

No Yes 

Solmaz et 
al. (2018) 

H2O2 ↑ N/A N/A ↓ Robust, 
N/A 

Yes Yes 

Mutlu et 
al. (2017) 

pH test ↑ 100% 100% ↓ Robust, 
N/A 

Yes Yes 

Rahmat et 
al. (2018) 

Urine 
dipstick  

↑ >98.25% >98.25% ↓ Not 
robust, 

N/A 

Yes Yes 

Proposed 
method 

pH test ↑ 100% 100% ↑ Robust, 
Real-
time  

Yes Yes 

N/A: Information not available 

6.7.1 Affordable, Equipment-free, User-friendly and Accessible System  

As mentioned in Section 3.6 (Chapter 3) regarding the evaluation criteria, the affordable 

systems are more likely to be equipment-free and more accessible. In Table 6. 5, the 

expense of the systems are comparative, e.g. although the additional hardware 

attachment is low-cost and straightforward (Kim et al., 2017a), it would be still more 

costly than a system which does not require such attachments at all. The presented 

system in this work utilises the built-in camera of the personal devices such as mobile 

phone without enhancing or channelling the light with any additional hardware such as 

in Kim et al. (2017a), making the system convincingly more portable and easily 

operable.  
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6.7.2 Specificity and Sensitivity  

The accuracy of the reported articles is presented in Table 6. 2. The specificity and 

sensitivity (or similar metric such as precision-recall, type I- type II error, PPV-NPV) 

are often not described in the articles. Based on the available information, a comparison 

is provided in Table 6. 5. It should be also taken into account that the dataset of Table 

6. 5 varied in terms of number of test strips, images of the same sample for repeatability 

and variation within dataset. The data were often pre-processed manually or with an aid 

of additional hardware.  

Table 6. 6: Comparison of accuracy (%) conducted on the original dataset27  

Features LDA SVM ANN RF Sub disc LS-SVM 

Kimŧ Failed 97.7 68.8 97.9 99.6 100 

= 97.7 

Solmazŧ 98.7 97.5 57.8 96.3 98.3 99.62 

Multuŧ 88.1 96.9 64.2 91.2 76 98.85 

Proposed 
method 

98.5 97.1 83.1 96.5 92.7 100 

Sub disc: Subspace discriminant. Highlighted cells represent the algorithms used in the original 
articles  

Using the original dataset, we have trained the better performing classifiers affirmed in 

the reported articles using the same feature-set as mentioned in Table 6. 2.  In the case 

of few missing hyper-parameter values, we have utilised the default values in 

MATLAB. Rahmat et al. (2018) of Table 6. 2 is excluded from Table 6. 6, as it involves 

the same feature-set as Mutlu et al. (2017). Analysing the performance from these 

tables, the justification behind the choice of our classifier, i.e. LS-SVM is well 

supported by Table 6. 2 and evident from Table 6. 6. Among the classifiers, the ANN 

with ten hidden layers (Kim et al., 2017a) showed a poor performance, which requires 

further investigation.  

A detailed comparison with Mutlu et al. (2017) is already presented earlier, in Section 

6.5. Both paper test strips of H. Kim et al. (2017) and Solmaz et al. (2018) has only one 

colour pad. Therefore, average binning of four colour pads could not aid the classifier 

in Table 6. 6 while reproducing Kim’s work using our dataset. H. Kim et al. (2017) 
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utilised hardware attachment as well, which helped to discard noise from the colour 

signals. In this chapter, using the feature-set and classifier of H. Kim et al. (2017) on 

our original dataset, the attained accuracy was 97.7%, whereas the same feature-set of 

Kimŧ provided a higher accuracy using LS-SVM as well as the ensemble classifiers 

(Table 6. 6).  

Solmaz et al. (2018) used LS-SVM and RF utilising with and without grey-world 

corrected mean in RGB, HSV and LAB colour space. The performance of the 

combination of the features of Solmaz et al. (2018) in Table 6. 6 can be perceived from 

the performance of mean colours in different colour spaces in Fig. 6. 15.  

Our research has managed to optimise the number of features (both colour moments 

and colour spaces) and proposed pseudo-control colours as an additional feature-set, 

which demonstrated better accuracy, specificity and sensitivity than the existing 

systems as shown in Table 6. 6.  

6.7.3 Robust and Rapid System  

In Table 6. 5, different works included a different element of robustness. As described 

earlier in Section 2.6.4 (Chapter 2), the robustness of the system can be represented by 

adaptability. In this work, we utilised analogous separate data set to evaluate the 

adaptability of the image processing algorithm, selected optimised feature-set and 

classifier. The system was found to be adaptable to the new sample sets.  

The elapsed time for training and prediction for the systems described the reported 

articles, evaluated using our original dataset is shown in Fig. 6. 21. 
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Fig. 6. 21: Comparative performance in terms of elapsed time for classification 
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A ranking in Fig. 6. 21 is provided based on the computational cost and model size. A 

higher number of features would undoubtedly increase the size of the model. The size 

can also get affected by the complexity of the classifier itself.  

The system proposed in this chapter, does not involve heavy algorithm or extensive 

iterations, making it computationally efficient to be deployable on the mobile devices 

using native features without requiring it to process the image or analyse the features 

on the server (Solmaz et al. (2018). Therefore, the system is real-time and more secure 

(Appendix B.4).  

For the other R-criteria, i.e. robustness, we have also included different orientation of 

the sample to vary the camera to sample position. The randomness of the light source 

‘5’ in Fig. 6. 2 created variation in the illumination condition.  

Based on the elapsed time, our work showed similar rapidness as Mutluŧ. The combined 

use of three different classifiers along with a larger feature-set by Kimŧ resulted in a 

considerably larger model size and higher computational time.  

6.8 Summary  

This chapter presented an intelligent system for paper-based lateral flow assays. Due to 

technical and economic feasibility, we have utilised universal pH indicator papers, 

possessing multi-objects/sample to demonstrate a proof-of-concept. Due to the 

intelligent histogram-based image processing technique, the system is user-friendly. 

Unlike the literature (Table 6. 2), the system does not require any user intervention. The 

automatic image processing technique provided 98.94% accuracy to separate the ROI. 

The developed system can automatically process the image of the assays without any 

additional hardware component. The system is equipment-free, does not have any 

operating cost and accessible and can be deployed to mobile devices.  

The system was trained under the semi-controlled ambient condition on a balanced 

dataset using cross-validation. The performance was validated on completely unseen 

data. The system showed high accuracy, specificity and sensitivity for colour 

classification without compromising the degree of freedom. 

The system possesses adaptability to work on similar assays without compromising the 

performance, confirmed by experiments conducted on the assay from a different brand 
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(ℵ_𝑝𝐻 dataset) as well as on the urine dipstick.  To the best of our knowledge, there is 

no such evaluation for robustness performed in the literature.  

Among the reported articles, the research conducted by Mutlu et al. (2017) is the most 

similar research to the case study of this chapter. Therefore, we have deployed Mutlu’s 

method using our dataset to present a fair comparison. Mutlu et al.  performed the 

colourimetric study using the mean RGB value of JPEG, RAW and RAW-corrected 

image formats in different illumination conditions on the same paper test strip. Mutlu 

reported the accuracy to be 100%. Re-implementation of Mutlu’s work using our 

dataset revealed our system to be less dependent on user-intervention and to be more 

reliable, robust and reproducible due to the choice of bigger and more diverse dataset, 

feature-set and the validation process (Fig. 6. 18-6.19 and Table 6. 6). 

The comparative performance analysis was further extended and reported as Table 6. 

6. Similar works from the reported articles were re-implemented using the same 

features and classifiers on our dataset so that a direct comparison can be provided. The 

detailed study indicated the strength of our proposed scheme which demonstrated better 

accuracy and more compatibility with the ASSURED criteria.  

Due to less iterative image processing, optimised feature-set and selection of the 

classifier, the computational complexity was optimised. The result can be produced in 

real-time, conceptually faster than the existing works. The rapidness of the system was 

quantified in Fig. 6. 21 while re-implementing the reported articles using our dataset.   
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Chapter 7 

Conclusion and Future Work  

7.1 Introduction   

With an ambition to design and develop a computationally efficient image-based 

colourimetric system suitable to act as a standalone system on the POC platform, 

whether integrated to a server or not, this thesis demonstrated a high performing, robust 

and rapid system which can function without any additional hardware attachment and 

is suitable to be used at homes as well as within resource-limited settings.  The 

workflow of the finalised system is illustrated in Appendix E (Fig. E. 1). This chapter 

presents a synopsis of the accomplishments with regard to the research questions using 

the case studies. The chapter includes the overall performance of the proposed 

framework while describing the contributions. This chapter also includes the strengths 

and limitations of this research and potential further research into intelligent 

colourimetric tests.  

7.2 Contributions of the thesis  

 Identification of the Research Gap  

To the best of our knowledge, this is the first attempt to define each component of the 

colourimetric test using machine vision. In this research, the colourimetric tests were 

explored from the perspective of computer vision, followed by a critical inspection of 

the research gap to design and develop an intelligent image-based colourimetric system.   

 Assay Type Detection  

This thesis presented a novel approach to determine the assay type using a pre-trained 

model, whereas the literary works performed this step using time-consuming calibration 

with limited capability. The pre-trained model determined the assay type with 100% 

accuracy. More advantages of the pre-trained model over the calibration approach are 

robustness and readiness. As mentioned earlier in Chapter 4, recognising the type of 

assay can assist a novice user to begin the colourimetric test. This step can also enable 

better management of telemedicine and enhance the experience of telepathology.  
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 Colourimetric Classification by tracking the Dynamic Images  

Tracking dynamic changes of an end point assay by video-frame analysis to produce a 

colourimetric decision is a novel approach. The presented method not only provided a 

correct classification for all 31 samples but also indicated the extended capability of 

computer vision to differentiate colours beyond the human visionary system. However, 

pursuing dynamic changes of the end point assay is computationally expensive and in 

contradiction of ASSURED criteria. Therefore, the approach should be reserved for 

minimising the reaction time and analysing the kinetics, instead of a colourimetric 

classification.  

 Pseudo Control Colours 

This thesis proposed an exclusive feature-set, i.e. pseudo-control colours to be part of 

the feature-set. Exploring 440 features for the LFA dataset, the optimised feature-set 

was found to be mean, energy and pseudo-control colours. 

 ASSURED Image-based Colourimetric Test  

This section briefly summarise the contribution towards the computational components 

to achieve ASSURED image-based colourimetric test using two case studies.  

Case Study 1: TB-test 

To the best of our knowledge, this is the first attempt to use this case study to provide 

an intelligent colourimetric solution. The presented hybrid image processing 

framework demonstrated 98.65-99.95% accuracy (95% CI) to separate the ROI. Using 

the lower order colour moments in LAB colour space, 98.95-100% classification 

accuracy (95% CI) was achieved by LS-SVM to determine the presence or absence of 

TB bacteria in the liquid sample. The supervised machine learning algorithm is capable 

of processing 18 features of 348 samples within 0.029 seconds. To the best of our 

knowledge, regarding accuracy and rapidness, this is the best performance achieved by 

an intelligent system to perform a qualitative colourimetric test on a liquid sample. Due 

to the efficient design with optimised dimension, the demonstrated system is suitable 

to be deployed on mobile devices and provide the colourimetric decision using the 

cloud as well. Therefore, the system is suitable for resource-limited settings.  
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Case Study 2: pH Test 

This thesis investigated, designed and developed an immaculate image processing 

framework to separate multiple colour pads in the universal pH indicator paper with 

>98% accuracy, tested and validated by varying illumination, mobile devices, distances 

(within close proximity and clear exposure), and brand.  

This thesis managed to deliver the colourimetric decision for both case studies using 

the same classifier, i.e. LS-SVM (Suykens and Vandewalle, 1999; Suykens, 2002). For 

the stated case study, the 10-fold cross validated training and testing for 520 samples 

was conducted within 0.11seconds with 99.29-100% accuracy (95% CI). The extensive 

analysis based on the evaluation criteria suggested our system to be more compatible 

with the ASSURED criteria than existing similar works. Due to the meticulously tested 

reliability of the system on an adequate amount of appropriate data, our claim is well 

supported by the precise experimental results. 

7.3 Limitations  

Despite the effort, any scientific study is not free from certain limitations. In this thesis, 

one of the major struggles was regarding the dataset. Lack of prior research using a 

similar approach to perform colourimetric test constrained us to a limited number of 

reliable data.  

The initial assessment included the images of a quantitative test for the case study of 

drug response. The images were utilised to validate the image processing algorithm. 

Due to lack of adequate amount of data, this study excluded the regression analysis of 

the quantitative test, hence this was not presented as a case study.  

This thesis considered dynamic changes in the colourimetric reaction. Our initial 

hypothesis suggested that this method can assist in analysing the chemical kinetics. Due 

to the lack of validation instruments (gold standard), this thesis excluded the claim.  

Although we have considered diverse possible scenarios at indoor settings, the 

adaptability of the algorithm is hypothetical and validated for a defined condition.  

There is a scope for further enhancement of the image processing algorithm to induce 

more robustness and achieve a higher performance. The presented image processing 

scheme expects the user to insert the number of patients. In other words, the user would 
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have to define the number of samples present in an image of sample before initiating 

the TB-test system. 

Even though the proposed system is intended to fulfil ASSURED criteria, the 

biomaterials, biosensing components and protocol is beyond the scope of this thesis. 

Therefore, the ASSURED criteria are applicable to the intelligent or digital components 

only.  

In order to fulfil the ASSURED criteria, this work was constricted to the limited 

capacity of the mobile devices. Therefore, the empirical study was less applicable to 

the architecture of deep learning. Within this context, while deploying an intelligent 

system on the mobile platform, there is going to be trade-offs among accuracy, 

execution time and functionality based on the mobile applications targeted for native 

application suitable for specific devices, device-independent mobile web applications 

or native applications using HTML interface. 

7.4 Future Work  

In this section, some suggestions for the future work are given for the continuation of 

the work presented in this thesis.  

 Feature Optimisation Algorithm 

As compared to the existing research, this work presented more extensive feature 

exploration considering the distinct dimension of qualitative and semi-quantitative 

colourimetric tests. Future inclusion of an advanced feature optimisation algorithm on 

a larger dataset may enhance the efficiency of the system, even within a more robust 

environment.  

 Developed Model Approach  

With the aid of a larger dataset and a high performing computational system, our future 

research will include an empirical study using the developed model approach, instead 

of using pre-trained models using inductive transfer learning to evaluate the possibility 

of better performance from deep learning to produce a colourimetric decision. On the 

other hand, a real-time execution of such a system within the existing capacity of mobile 

devices, while fulfilling the ASSURED criteria, is going to a paramount challenge. 
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 Adaptability and Universality   

To the best of our knowledge, this study included a larger dataset and diverse 

applications compared to the existing research on image-based colourimetric testing. A 

further extension on samples per class and variability will increase the reliability of the 

system. Furthermore, inducing more diversity in the assay will demonstrate and evident 

our claim which can ultimately result in a universal model for image-based 

colourimetric testing. In such a situation, consideration of the universal applicability 

can verify the adaptability of the presenting system as well.  However, a large-scale 

problem of the colourimetric test, for example, a universal model, may compel us to 

reform the classifier, i.e. LS-SVM. Therefore, one may inquire more regarding the 

scope of ANN.  

 Reinforcement Learning  

Integration of reinforcement learning can update the system based on environmental 

factors (e.g. geo-location, climate) and change in the pattern of the assay. Associating 

the colourimetric tests with its context, i.e. symptom descriptions from the patient and 

health tracking, using cognitive computing can administer a polythetic approach in 

delivering a confirmatory primary diagnosis and better management of chronic 

conditions. 

 Commercialisation 

Realising the potential of the presented system, future work will aim for a further 

application using chromaticity analysis. Analysing the market for such an easy-to-use 

high performing intelligent system, the prospect of commercialisation would be another 

possible future direction of this thesis.  
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Appendix A 

Key Terminologies 
In this section, a number of key definitions are clarified to provide a better understanding for 

readers from different disciplines.  

Colourimetric test 

This provides a decisive analysis of the present elements or concentration of the chemical 

compound facilitated by a colour agent. 

Analyte 

The point of interest, which could be a substance or chemical constituent that will go through 

an analytical process, is called an analyte.  

Matrix 

In computer science, a matrix refers to the mathematical matrix that represents a rectangular 

array consisting of numbers, which can be arranged in rows and columns. In a biochemical test, 

the components apart from the analyte are known as matrix.  

Target 

Although in machine learning, targets refer to the class label, this thesis also deals with 

biological targets. A biological target signifies an entity, to which another entity is directed. 

The target could be inside of a living organism, and this ‘other’ entity may bind or react with 

the target, which will cause a change in the behaviour or function of the target or sample being 

tested. For a colourimetric test, the change of behaviour will appear as a change of colour. The 

focus of this thesis is this colour change and how human visualisation of this colour can be 

transferred to the machine vision on the mobile platform, whereas the tristimulus colourimeter 

and spectrophotometry are prominent techniques used in clinical chemistry for colour analysis 

(Trumbo et al., 2013; ICC, 2004). 

Assay 

It is a mean to investigate the analyte. It is an analytical process in number of disciplines to 

determine the presence of a target entity or quantify the amount or functional activity of the 

analyte.  
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ELISA 

It is a type of an assay involving a solid-phase enzyme immunoassay that can determine the 

presence of a ligand in a liquid sample with the assistance of antibodies. The technique is 

primarily used in diagnosis, plant pathology and industrial quality control.   

LFA 

LFA is a type of colourimetric test scheme and is commonly used either as a qualitative or a 

semi-quantitative assay. There are few other popular names for LFAs, such as lateral flow 

immune-chromatographic assays, rapid test, test strip and dipstick.  

Colour Vision 

Based on the wavelength of light, colour vision is the capability of human, animal and machine 

to differentiate objects. Recognising an object can be an easy task for a human, but it can be 

challenging for a machine. Regarding colour, the human vision of different individual can 

perceive the same colour in different ways.  

Colour Perception 

The physiology of colour perception involves pigments in retinal cells possessing particular 

spectral sensitivities, which are known as cone cells. Regarding colour perception, two things 

should be noted: i) even people with normal colour vision can have variation in the peak 

response of cone cells and ii) colour vision degrades at an older age (National Eye Institute, 

2015).  

Colour Space 

The world is full of an infinite combination of colours. The human colour perception was 

quantified for the first time using CIE (International Commission on Illumination) 1931 XYZ 

colour space. It is the foundation of most colour spaces. According to CIE 1931, the response 

of human eyes can be portrayed as a horseshoe shape diagram. However, there are commercial 

colour spaces which were developed to improve the image quality.   

The abstract mathematical model of colours in forms of triples (or quadruples) of numbers is 

referred to the colour model. A colour space signifies a precise combination of the colour model 

and the mapping function. Therefore, denoting a colour space involuntarily specifies the colour 

model. In this thesis as well as in the literature, these two terms are often used as 

interchangeable terminologies.  

Perceptual Linearity 

It is desirable that the perceived visual sensation be linearly correlated with the original form 

of the data (Cheng and Badano, 2018). This attribute is expressed as perceptual linearity. For 
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instance, using luminance of a monochromatic display, such as X-Ray, stimulates the user to 

prompt a visual sensation of brightness.  

Perceptual Uniformity 

A two-dimensional colour wheel represents hue variables and lightness. If chroma or 

colourfulness is added to this concept, then it results in a three-dimensional (3D) representation 

of a colour model. The purpose of this added dimension is to describe colour variation. This 3D 

structure is expressed as colour solid.  

The logical expectation would be to perceive any colour difference within the colour solid 

equally. In this way, every possible ‘object colour percept’ would be arranged uniformly. This 

phenomenon is expressed as perceptual uniformity. In reality, it is not possible to develop such 

colour solid due to geometric constraints (Kuehni, 2010).  

Data Pre-processing  

This process involves converting raw data into an understandable format. In this thesis, the 

extent of data pre-processing includes image pre-processing, segmentation, post-processing, 

feature extraction and feature selection.   

Machine Learning  

“The field of Machine Learning seeks to answer the question “How can we build computer 

systems that automatically improve with experience, and what are the fundamental laws that 

govern all learning processes?” (Michalski, Carbonell and Mitchell, 1983). It is a subset of 

the wider domain of AI which concentrates on ‘teaching’ computers regarding how to ‘learn’ 

without requiring to be programmed for explicit tasks (Pal and Gulli, 2017).  

Deep Learning  

Deep learning is a subset of machine learning. Therefore, rest of the models can be thought of 

as the traditional machine learning techniques. Deep learning possesses higher power and 

greater flexibility (as compared to traditional machine learning) to perceive as well as to 

represent a problem in the form of a nested hierarchy of concepts.  
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Appendix B 

Computer-aided Colourimetric Test  
This work categorises the computer-aided colourimetric test into the following four groups: 

systems with additional hardware attachments, proof-of-concept provided as a desktop 

application, mobile-enabled systems, and server-based approach. Some of the systems 

described in this section incorporated more than one of these approaches. For example, an 

interesting research was conducted by Feng et al. (2014) involving a Google glass (Glass 

Partners, 2017) for the qualitative detection of HIV and quantitative determination PSA from 

RDTs. The system at the same time falls under the category of a hardware and a server-based 

system. The Google glass is consist of a camera, prism display, and inertia, proximity and 

ambient light sensors along with many other features. Therefore, the system can be considered 

as an alternative to the smartphone-based approach as well. Due to the advanced features 

provided by Google Glass and the server connection, it can be also be thought of as a complete 

reader. Therefore, one may argue whether the system is using any additional attachment or not.  

B.1 Hardware Based Systems  

Substantial amount of work conducted in the literature are hardware based, which are often 

presented as lab-on-chip assays (Akraa et al., 2018; Roda et al., 2016; Vashist, Schneider and 

Luong, 2014; Lin and Scott, 2012a; Coskun et al., 2013; Coskun, Ahmet F.Wong et al., 2012; 

Zhu et al., 2011). This section studies the functionality of the hardware-based colourimetric 

tests to explore the possible replacement with an intelligent system.  

The influence of optomechanical attachments on mobile-enabled microfluidic biosensor 

systems in the recent articles is clearly visible from the survey conducted by Xu et al. (2018). 

Xu et al. admitted that expense, size and ease of use are the constraints of traditional biosensor 

systems to be implemented on POC platform. While reviewing the system architecture, analysis 

procedure and sensing mechanism of the biosensors suitable for POC platforms, the study 

showed the potential and application of the image-based systems.  

The additional hardware as an optomechanical attachment has been utilised for various 

purposes in the literature. For example, Akraa et al. (2018) presented a system to eliminate 

device agnosticism to perform urinalysis for CKD. The mobile devices with various size will 

have an impact on the exposure plane while capturing an image of the sample, which can 

effectively alter the colour intensity and size of the sample. Therefore, Akraa et al. designed 
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and developed an image housing attachment with adjustable viewports and clamp controls for 

self-monitoring of CKD.   

Aymerich et al. (2018) developed an electrochemical instrument to be attached with a 

smartphone to measure alcohol in the blood. Yang et al. (2018) developed an analytic box for 

measuring Human Serum Albumin (HSA) concentration using a smartphone. The assay type 

used in the study was a quantitative one, which was validated on 36 real samples. Their assay 

benefited from built-in heating chamber and battery placed in an analytic box; these hardware 

are not the point of interest in this thesis. However, the box also contains a camera connector, 

lens and light-guide; these are the hardware attachments under scrutiny in this section.  

Xiao et al. (2018) used a colloidal gold lateral flow immunoassay and extended its utilisation 

from qualitative to quantitative using additional hardware attachments with a smartphone.  The 

optomechanical attachment includes LED, battery, resistor, switch, holes and holder to be 

attached with a mobile phone. Calabria et al. (2017) developed a mobile-enable oral fluid L-

lactate detection scheme that can provide the result taking one minute. The hardware attachment 

includes a small dark box and a smartphone adapter. Kim et al. (2017) used a small dark box of 

25mm x 12mm x 12mm dimension containing additional lens, and mirror and diffuser to guide 

the LED light to maintain a consistency in imaging and lighting condition while capturing the 

image of paper strips with a mobile phone camera to measure the alcohol concentration in 

saliva. Lee et al. (2014) used a mobile-enabled system with a small hardware attachment 

containing an LED and battery to determine vitamin-D deficiency on the POC platform. 

Considering the conventional laboratory scale detection method, the presented system by Lee 

et al. was undoubtedly a useful method.  

The reported articles (Kim et al., 2017b; Coskun, Ahmet F.Wong et al., 2012) often used 

hardware attachments that acted as the sample holder as well.  Kim et al. (2017b) developed a 

compartment to place the sample in a tube to analyse the luminescence using a smartphone.  

Coskun, Ahmet F.Wong et al. (2012) presented a system with hardware attachments for 

smartphones with 22mm x 67mm x 75mm dimension which has a platform for both sample and 

control, and the optical arrangement includes additional lenses, LEDs, light diffusers and 

aperture to control the imaging field-of-view. Their study claimed that the developed system is 

suitable for home-settings to perform allergen test. Later, Coskun et al. (2013) demonstrated a 

mobile-enabled system with an optomechanical attachment using laser technology for 

fluorescent assays to detect albumin. Earlier, Zhu et al. (2011) presented a similar system for 

fluorescent microscopy. These studies (Coskun, Ahmet F.Wong et al., 2012; Coskun et al., 

2013; Zhu et al., 2011) can be considered as an extended scope of the current context.  
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As compared to the similar recent researches mentioned above, Konnaiyan et al. (2017) utilised 

a relatively bulky attachment that can contain the assay, i.e. urine dip-stick, which can aid in 

the detection of early signs of pregnancy complications such as preeclampsia and gestational 

diabetes. The 3D-printed sample holder was utilised to improve the sensitivity of the assay and 

control the illumination condition. Previously, Ozkan and Kayhan (2016) discussed in their 

study on the development of automatic RDT platform that 3D-printed attachments can function 

as both advantageous and disadvantageous way.   

The reported articles more often failed to scale-down of the POC system due to their 

involvement with various tabletop boxes. Chen et al. (2018) presented a mobile-enabled 

hardware-based image acquisition scheme for microfluidic assay at POC platform utilising two 

case studies, which are colourimetric analysis of bicinchoninic acid (BCA) based protein 

detection assay and ABO blood type determination. The hardware attachment is consist of an 

internal backlighting and magnification system placed in 37mm x 26mm x 23mm box. Purpose 

of this attachment was to convert the smartphone light source into a backlight illumination 

source, guide the light waves and magnify the image of a sample. Later, Chen et al. (2018b) 

improved the box, however, failed to make it box-free.  

Barnes et al. (2018) designed a mobile-enabled real-time diagnostic system for microbial 

infections. The assay is required to be placed in a cardboard box, probably for heat insulation. 

The 96-well assay plate requires the aid of DC powered 96 LEDs and a bandpass filter to be 

processed by the mobile application.   

Li et al. (2018) placed plastic micro-pit array chips inside of a six cm long paper box with a 

hole on top for the smartphone camera lens and an astral lamp at the bottom to provide the 

quantification of HIV p24 antigen. Kim et al. (2017c) placed a colourimetric assay for blood 

haematocrit analysis inside of an acrylic box to capture the image using a mobile phone camera 

and 1 cm poly-dimethylsiloxane light diffuser. Their system showed only a 0.1% limit of 

detection to analyse the blood. Wang et al. (2016b) presented a mobile-enable server-based 

system for rapid catechol analysis. The system was able to differentiate between thirteen 

catechols from images of a 96-well Perspex plate placed in a light-tight box containing white 

LED lights as well.  

Masawat, Harfield and Namwong (2015) used a plywood based photography light-box of 10xm 

x 16.5cm x 25cm dimension to capture the image with an iOS device and ColorCon mobile 

application. The image was captured from outside of the light-tight box using a drill hole to 

trace tetracycline in milk.  
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Vashist et al. (2015) developed a mobile-enabled colourimetric reader and tested the system for 

96 or 24 well microtitre plate of different assays such as direct and sandwich ELISA, and BCA. 

Similar to the systems above, the assay requires to be placed inside a box. The system described 

by Vashist et al. (2015) not only involved additional hardware but also necessitated a virtual 

plate to capture the image adequately. However, the study discussed the potential of more small, 

compact and cost-effective systems in the future.  

Comparing the impact of the additional hardware attachments, Soni and Jha (2017) concluded 

that the lighting condition has to be dealt with either using an algorithm or using a hardware 

attachment. Their study included three smartphones (Samsung Galaxy SIII, HTC Desire 526G 

Plus and Gionee P5 mini) and the assay was placed both inside and outside of a dark box to 

analyse saliva glucose. The conclusion was drawn from the observation of the impact of camera 

positioning and analysis of flashlight intensity on the biosensor.  

Using both flashlight and no-flashlight, and additional hardware attachment and without 

hardware attachment, Mutlu et al. (2017) showed that it is possible to provide a colourimetric 

classification with high accuracy without requiring such attachments.  

B.2 Desktop Applications 

A proof-of-concept for a computer-aided colourimetric test is often provided as a desktop 

application rather on a mobile platform or any standalone device. However, in most cases, these 

applications utilised additional hardware attachments, which are already discussed in the 

previous section. As the colourimetric test is a point of interest for many disciplines such as 

biochemistry, agriculture, nanotechnology, optoelectronics, a detailed description of the 

computational system is often not provided with the literature. Another concern to analyse these 

articles is lack of a consistent format to present the result such as regarding accuracy, 

specificity, sensitivity, error rate, convergence and computation time.   

Bu et al. (2018) captured that images of pregnancy test strips with a smartphone to determine 

the pathogenic bacteria in milk. The images were analysed on a desktop platform using ImageJ 

software (Rasband, 2016). The image was processed by separating the background after 

grayscale conversion, and the colourimetric decision was produced from the relative pixel 

intensity of the test and control band. Using a calibration curve29, the recovery rate was within 

                                                

29 In order to understand a matrix effect, the colourimetric tests often utilise a calibration curve using a standard 
sample, where the concentration of the analyte is known. 
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80.7 to 141.7%. The study precluded all the detail of the image processing, colourimetric 

decision and computation time. 

Garg et al. (2014) presented a system to analyse blood glucose from a paper-based assay. The 

assay requires to be attached with the computational device using additional hardware. In this 

way, the sample position is fixed with respect to the camera, which can aid while processing 

the image. Their study included an automatic image processing algorithm to determine the ROI 

and provided a quantification of the analytes using linear least-squares. The result achieved by 

the system can have 3-5% error.  Garg et al. claimed that the system can be deployed as a mobile 

application and can provide quantification of any analyte.  

Mutlu et al. (2017) performed colourimetric classification of pH-test strips using least-squares 

support vector machine (LS-SVM) with and without additional hardware and attained 100% 

accuracy for both cases. Although a smartphone captured the images, the proof-of-concept was 

provided on the desktop platform.  

Yu et al. (2015) also used an LFA to measure the activity of alkaline phosphatase milk by 

capturing images of the assay using a smartphone. The AuNP based ALP testing zone was 

analysed in the MATLAB platform by quantifying the optical intensity. The proposed system 

traced 0.1–150 U L-1 ALP within 10 minutes.  

The colour-based analysis is well utilised in the literature beyond colourimetric tests and 

healthcare applications such as plant identification (Yanikoglu, Aptoula and Tirkaz, 2014) and 

ripeness of fruit (Phothisonothai, Tantisatirapong and Aurasopon, 2016). In order to maintain 

the focus of the study concentrated toward the colourimetric test, such articles were not 

reviewed in this chapter. Nevertheless, conceptually, if an algorithm is efficient enough, it can 

be developed as a mobile application. Our research suggests that, in such cases, the algorithm 

would have to comply with the limited capacity of the mobile devices.  

B.3 Mobile-enabled Systems 

The mobile application market is booming and exponentially increasing every year. In 2016, 

224.8 billion mobile applications were downloaded from different platforms (Statista, 2017). 

From these application downloads, Apple Inc. reported revenue of £15.95 billion for 

developers. The mobile applications are estimated to generate £150.67 billion revenues from 

app-stores and in-app advertising in 2020. Among different studies, considering the one 

predicted lowest revenue is illustrated in Fig. B. 1.  
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Fig. B. 1: Region-based forecast of mobile applications’ annual revenue (App Annie, 2016) 

Medical application market for healthcare professionals is expected to reach £11.67 billion by 

2020; which implies, 14.47% of the revenue in mobile application will come from the 

applications designed for health professionals (Markets and Markets, 2015, 2016). The forecast 

is shown in Fig. B. 2.  

 
Fig. B. 2:  Forecast of mobile applications’ revenue for health professional in 2020. (Unit is in 

Billion GBP) 

The market for mobile health (mHealth) solutions connected with external devices (e.g. glucose 

meter, BP monitor) is estimated to reach £47.14 billion by 2020. The global immunoassay 

market, considering both product and service, is expected to reach £20.30 billion by 2021 from 

£13.69 billion in 2016 (Markets and Markets, 2016). These statistics indicate the financial 

aspect and potential of intelligent colourimetric tests.  
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However, currently, there are only a few mobile applications available in the commercial and 

public app-stores to perform colourimetric tests on a 96-well plate, e.g. Spotxel® Reader 

(Sicasys Software GmbH, 2017b), Enzo ELISA Plate Reader (Enzo Life Sciences inc., 2015) 

and AssayColor (Alidans srl, 2015). Enzo ELISA Plate Reader and AssayColor neither provide 

any automatic complete analysis nor include any decision support system to interpret the 

colourimetric results. The Spotxel® Reader (Sicasys Software GmbH, 2017b) comprising plate 

annotation and alignment, uses powerful noise processing and signal detection techniques. 

Based on our research, this is the best mobile application till date to perform wet-chemical-

based colourimetric quantification on cross-platform.  

Instead of intelligent sensing, the Spotxel® Reader (Sicasys Software GmbH, 2017b) uses a 

virtual plate which can be laid over the plate image.  The application expects the wells to be 

aligned with the virtual plate.  The user is required to match the corner and centre wells with 

the grid. The virtual plate or grid can be scaled and rotated. However, aligning the wells with 

the grid requires some image capturing skills, which reduces the ease of use. The developers 

also acknowledged the limitations in the image processing scheme (Sicasys Software GmbH, 

2017b). The application is capable of performing statistical analysis to quantify the result. The 

accuracy of such quantification is yet to be revealed.  

Recently, for the first time, a computer-aided, to be precise a mobile-enabled urinalysis system  

(Healthy.io, 2018) has achieved clinical approval to be commercialised in EU. Although the 

application can be downloaded from the app-store, access would require an endorsement from 

a general practitioner.  

It is not uncommon for the literary works to use a commercially available mobile applications 

to provide a proof-of-concept. By utilising a commercially available mobile application30 

(FTLapps, 2012), Wu et al. (2015) performed colourimetric analysis for Vitros® glucose and 

urea colourimetric assays using iPhone 4. The performance of the system was compared with 

the gold standard instruments and was found to be equal or more accurate than the conventional 

methods.   

Due to the parallel advancement in bio-sensing as well as handheld technology, a number of 

critical surveys are conducted in this context (Hernández-Neuta et al., 2018; Ulep and Yoon, 

2018; Roda et al., 2016; Vashist, Schneider and Luong, 2014; Yetisen, Akram and Lowe, 2013). 

While exploring paper-based microfluidic assays, Yetisen, Akram and Lowe (2013) anticipated 

                                                

30 Full list of such applications is provided in Appendix C.  
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such systems to be free from additional hardware attachment. Exploring smartphone based 

biosensors and bioelectronics, Zhang and Liu (2016) favoured for a mobile-enabled platform 

for colour analysis such as DNA imaging, serum diagnosis, and environmental monitoring. 

Zhang and Liu stressed on the issue with computational efficiency and ease of use. Hernández-

Neuta et al. (2018) anticipated these mobile-enabled systems to contemplate the cost and 

robustness factors.  

Vashist, Schneider and Luong (2014) studied mobile-enabled systems for personalised 

healthcare and discussed its capability to facilitate better management of healthcare systems to 

compensate for the imbalance between patient and health professionals. While critically 

surveying the recent biosensors, Roda et al. (2016) also favoured for the mobile-enabled POC 

systems due to its ubiquitous distribution and connectivity. The survey indicated a widespread 

research focus on colourimetry, reflectance and luminescence to utilise smartphone camera as 

a detector or instrumental interface.  Although most of these research works are just a proof-of-

concept, Roda et al. (2016) stressed on its potential of real-time self-measurement of target 

analytes. However, in literature, it is difficult to find a mobile-enabled system for the 

colourimetric test without using any additional hardware.  A list of such systems without 

hardware attachments are provided in Table B. 1.  

Table B. 1: Mobile-enabled colourimetric test in different platforms  

Reference  Android iOS Others 

Solmaz et al. (2018) Yes x x 

Alankus et al. (2018) Yes x x 

Karlsen and Dong (2017) Yes Yes Yes 

Jonas et al. (2016) x Yes x 

Wu et al. (2015) x Yes x 

Sicard et al. (2015) x Yes x 

Smith et al. (2014) Yes x x 

Yetisen et al. (2014) Yes Yes x 

Cooper et al. (2012) Yes Yes x 

Cooper (2012) Yes Yes x 

Solmaz et al. (2018) developed a mobile application named ChemTrainer to perform semi-

quantitative colourimetric test on peroxide paper strip supported in the Android platform of 

4.0.3 or higher. The application supported the facility to capture new images as well as to use 

an image stored from the gallery. The user would require to crop the image to separate the ROI 

and then mean R, G and B values were measured before sending the information to a message-
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oriented middleware service. A progress bar was included in the application to inform the user 

about the status of the analysis. The result of the test was displayed to the user after obtaining 

it from the server. The application was tested on six Android smartphones.    

Sun et al. (2018) showed the scope of a potentiometric method based colourimetric test using a 

mobile phone. The system developed by Yang et al. (2018) included a hardware attachment, 

mobile application and server integration. However, no discussion is provided in the article 

regarding the mobile application. Similarly, Konnaiyan et al. (2017) excluded the detail 

description of the mobile phone application.  

Karlsen and Dong (2017), a part of the doctoral research of Karlsen, (2018), presented a mobile-

enabled smart-diaper to detect urinary biomarkers. The system utilised a commercially 

available mobile application (Flavio Gonzalez App-Entwicklung, 2016).  The study performed 

colourimetric classification of three pH levels, i.e. 4, 7 and 10 from the colour-references of ten 

pH levels (1-10) without any optomechanical attachment and tested on Samsung Galaxy S6 

Edge, S7 Edge, ZTE Nubia V7 mini and iPhone 6. Earlier Chen, Wu and Dong (2014), in their 

work on smart-diaper, discussed the potential of a mobile application in this context. 

Another relevant doctoral research was conducted by Yetisen (2014). For quantification of the 

colourimetric test, Yetisen et al. (2014) developed a cross-platform smartphone application that 

can measure the concentration of glucose, protein and pH from a multiplex assay. The capturing 

process started with calibration at the given light conditions, i.e. colour, intensity, tone, 

followed by the user’s inputs of sensor type, target analyte, unit of concentration and number 

of data points. The image of the calibration point captured by the user was stored. The sample 

image of the corresponding test zone was processed utilising electromagnetic radiation from 

the coloured zone; the concentration of the analyte and corresponding value then was returned 

on the screen. Once the image was transformed, and the result was produced from the measured 

value versus the calibration curve, the information was required to be synchronised. The study 

asserted the scope of such system to replace the requirement of a spectrometer and microplate 

reader. The system featured interphone repeatability for urine analysis. The study claimed that 

the system could be implemented for different assays, e.g. colloidal gold, latex labels, solution 

based assay and microfluidic diagnostic device. However, the study did not provide any 

indication of how it is going to be implemented for different assays.  

Jonas et al. (2016) performed a CRD test for diagnosis and prognosis of preeclampsia. The 

system intentionally used an older version of iPhone to make it cost effective. The developed 

system was tested on 300 samples. In addition to achieving a promising result, the system 
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demonstrated that a computer-aided system can make a colourimetric detection faster. They 

minimised the wet-chemical testing time for up to 2 minutes.  

Shen, Hagen and Papautsky (2012) presented the potential of smartphone-based colourimetric 

tests, not to eradicate the conventional method, but to provide portable, transferable, immediate, 

low-cost diagnosis to a huge population with limited access to resources. They compensated 

the ambient lighting environment and formed the calibration curve of concentration from the 

chromaticity value to measure the pH. They envisioned their colour conversion analysis 

techniques to be useful to any POC diagnosis with the colourimetric response, even for 

fluorescence data.  

Cooper et al. (2012) and Cooper (2012) used mobile image ratiometry to perform cocaine and 

benzoylecgonine analysis and on-sight fungus detection, respectively. Capturing the luminosity 

by Adobe Photoshop CS3, the binary class was drawn from the relative pixel densities. 

Although the detailed analysis was performed in the server, it is worth mentioning that these 

studies were conducted using only 3.2 megapixels camera. Use of such low-resolution mobile 

phone camera can be noticed in the early stage research works on mobile-enabled colourimetric 

tests such as Lin and Scott (2012b), where the mobile application utilised MATLAB to analyse 

the ROI. The result (AUROC) attained on the mobile platform was around 4% less than the 

biosensor platform. Lin and Scott probably compensated the low resolution of the camera by 

utilising backlighting and placed the assay in a box before taking images. Hence their research 

can also be categorised under the system with optomechanical attachments.  

Smith et al. (2014) performed mobile-enabled aptamer AuNP based on-sight cocaine detection. 

The system was not free from hardware. Smith et al. (2014) explained that an LED light source 

placed beneath the assay could aid in combating the battle with ambient lighting condition, 

specifically the reflection of the ceiling light. Their assay plate should contain the known 

concentration to perform a qualitative test on an unknown sample. The colour of the known 

samples would act as the control or ground truth for the test samples. The performance was 

compared with the quantitative analysis performed by a conventional plate reader. The study 

indicated that a mobile-enabled system could perform even better than these plate readers. From 

the video of an experiment provided in the article (Smith et al., 2014), the following 

observations are made in this section: i) the system provides a flexibility to the users to correct 

the size of the image; ii) the control sample has to be provided in two specific wells, which is 

true for conventional plate readers as well and iii) user will require to manually select the sample 

to know the result, a better interface may solve this issue.  
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To monitor water quality by detecting organophosphate pesticides, Sicard et al. (2015) 

developed a geo-tagging enabled smartphone application utilising paper-based sensors. The 

images of test and control strips were captured in varying lighting condition by using a Flip-pal 

100c mobile scanner, followed by colour intensity quantification using ImageJ software. The 

Objective-C based algorithm for the iOS 6 platform provided the processed image with RGB 

components and pixel counts. The system supported users’ comments and manual editing like 

cropping feature, but the result had to be analysed from the Dose-response curve. Even with the 

inadequacy of the linear models consisting of the relative magnitude of the stressor, e.g. 

chemicals in response to the receptor called the Dose-response curve, the model is utilised well 

in water quality monitoring (Wei et al., 2014; Sicard et al., 2015). Our research suggests that, 

inclusion of an intelligent system can enhance such systems. 

Alankus et al. (2018) analysed water quality using a custom-made Android application. The 

detection accuracy for chromium, phosphate, nitrite, and phenol were 100, 98.7, 100, and 76%, 

respectively. In order to make the system rapid on the mobile platform, the system calculated 

the result from the colour difference (∆E), instead using any heavy algorithm. Undoubtedly the 

technique showed good performance; our observation suggests that the dependency on the user-

interactions might not be suitable for non-technical personnel and could induce human-error.  

In order to reduce the dependency on hardware and to produce the result of a colourimetric test 

using the limited capacity of the mobile phones, server-based approaches are often utilised. 

Therefore, our next section will provide an overview of server-based approaches for the 

colourimetric test.  

B.4 Server-based Approach  

The reported articles often utilise a server to process a colourimetric test result and send the 

result to others. Feng et al. (2014) used server-connected Google Glass to perform HIV and 

PSA test using RDTs. Google Glass envisions to bring ubiquitous computing into our daily life 

(Glass Partners, 2017). It has a built-in camera, wireless networking and voice-command 

facility. Using the system proposed by Feng et al. (2014), the user would require to define the 

test in the website, produce a QR code to identify the test and mark this QR code with the 

corresponding test before capturing an image of the RDT. The image was enhanced within the 

native device, i.e. Google Glass, however, required to be processed in the server due to the 

limited capacity of this personalised device. If there were no wireless connection available in 

time of the image capturing, the information could be preserved in the Glass, which would be 

uploaded to the server whenever any connection was available. In order to maintain a 

consistency in the camera to assay position to ensure the quality of the image and to instruct 
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the user to hold the assay in the correct orientation, a virtual guideline or overlay was utilised 

in the system. Once the result was processed in the server, it was sent back to the Google Glass. 

Each test took 8 seconds to produce and display the result. The test result was also obtainable 

via an internet browser. Geo-tagging was another added feature of the system.  

Geo-tagging can aid in preventing and managing an epidemic, assist in health tracking among 

different demographics and provide environmental assessments. Sicard et al. (2015) used geo-

tagging to monitor water quality by testing the pesticides level using a paper-based 

colourimetric test.   

Wang et al. (2016b) used a remote server to measure catechols utilising LED and a light-tight 

box. The result was provided on a mobile platform. The connection between the server and a 

smartphone was established using a user datagram protocol. The server was comprised of 

database, processing and communication modules. The processing module utilised MATLAB 

whereas the communication module utilised Eclipse Integrated Development Environment, 

which served the purpose to receive the colour related features and sent the result to a 

smartphone after processing the result using machine learning algorithms. The study claimed 

that the result could be produced in real-time.  

Similar to Wang et al. (2016b), Akraa et al. (2018) used additional hardware as well as a server, 

to perform a urinalysis. The purpose of the server was to reduce the computational burden from 

the mobile devices.  The web-based system would require access to the smartphone camera of 

the user. Therefore, the mobile client was required to be developed separately using the 

Xamarin platform (Visual Studio, 2018). The system discussed the potential of such tests for 

telemedicine facilities. However, the system did not include any arrangement to connect with 

the health professionals; future researchers may explore such opportunities.  

Recently, Solmaz et al. (2018) demonstrated a server-connected mobile application to provide 

a colourimetric classification of peroxide test strips. When a user provides a cropped image of 

the test strip, the mobile device client sends this information as well as a temporary unique 

queue identifier to  RabbitMQ using cloud-based advanced message queuing protocol. Solmaz 

et al. (2018) used a desktop computer to act as a server and to perform the computation in 

MATLAB and presented the result in Android operated mobile devices. The system could 

handle multiple users, however the study lack in quantifying the computation time for a single 

as well as multiple users. The result obtained on mobile platform was only 90.3% to classify 

six classes of test strips possessing single object per sample. The accuracy obtained in the 

desktop environment was 95%. Our observation suggests that, as the image was cropped, 

instead using any advanced segmentation algorithm, the performance might have improved by 
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utilising a better classifier or fine-tuning the feature-set. One also needs to investigate if the test 

image by the users resulted in an improper cropping of the ROI. Moreover, the performance of 

the system described in Solmaz et al. degraded when the number of classes was extended to 11. 

No detailed explanation is provided in the article regarding the performance degradation for the 

change of platform and the extention of the classes.  
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Appendix C 

Relevant Mobile Applications 

C.1 Colourimeters in the App-store  

There are number of colourimeters on the web (TinEye, 2017; Color Thesaurus, 2017) and 

often integrated to a mobile-enabled platform to match live colours as well as from previously 

stored images. Using word search ‘colorimeter’ in Google Play 58 mobile phone applications 

was found on January 9, 2017. The list is provided in Table C. 1.  
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Table C. 1: Colourimeters on android platform 
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- Censorship Risk Meter 

 

Email, 

Cloud, text 

message 

and various 

messengers 

(SMH17, 2016) 

x 

Not required  x   

≥ 
4.

1 x -Colour referencing (RGB, hex code) 

-No colour matching facility is included 

x (VRprod, 2016) 

St
or

ed
 I

m
ag

e Samsung Galaxy, Nexus, 

HTC One, Moto X, LG, 

Xiaomi 

x   

≥ 
4.

0.
3 x -Checks the displayed colour quality of 

the mobile device  

- Not a colorimeter in the conventional 

sense. Suitable for photography 

x (X-Rite, 2015) 
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L
iv

e 

Versatile x   

≥ 
4.

0 USB On The 

Go (OTG) 

capable 

Android 

tablet or 

phone.       

Bluetooth. 

-Colour metering (XYZ, LAB, CCT) 

-Colour names 

-Spot reflectance  

x (Computer 

Graphics 

Technology P.L., 

2015; P.L., 2015) 

L
iv

e 

Limited versatility  x   

≥ 
2.

1 colorStriker 

colorimeter 

Bluetooth 

-Colour metering including delta E 

Z
er

oc
on

f,
 

B
on

jo
ur

 (Fheldt, 2014) 

St
or

ed
 I

m
ag

e 

Versatile x   

≥ 
4.

0.
3 x -Colour metering including delta E 

- Movable colour aiming cursor 

- User has to manually click on image and 

name the colour 

 

x (Nicksdroid, 2016) 

n/
m

 

n/m x   

≥ 
3.

1 RS232 to 

USB Gender 

(FTDI Chip 

Only), OTG 

Cable 

Colour metering  x (CM-H505 App, 

2015) 
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n/
m

 

Limited versatility x   

≥ 
4.

0.
3 Open CV 

manager  

-Colour metering 

-Suitable for field of chemistry 

x (Lab4U, 2016) 

St
or

ed
 

Im
ag

e 

Versatile x   

≥ 
3.

0 Spyder4™ 

colorimeter 

-Colour correction 

-Suitable for field of photograph 

x (Datacolor, 2014) 

St
or

ed
 

Im
ag

e 

Versatile x   

≥ 
1.

5 x -Colour comparison for teeth  

-Has lot of features. Suitable for field of 

dentistry 

x (TheDrApps, 2014) 

St
or

ed
 I

m
ag

e 

Versatile x  x 

≥ 
4.

0 /x - Colour metering (RGB value, Hex 

code) 

-Suitable for the field of analytical 

chemistry, biochemical assays, chemical 

assays, medical analyses, pharmaceutical 

, analyses 

Food, analyses 

diagnostic tests 

Email, 

Cloud, text 

message 

and various 

messengers 

(Alidans srl, 2015) 

L
iv

e 

Versatile x  x 

≥ 
2.

2 White paper 

to place as 

background 

-Colour metering (Red, yellow, Blue) 

-Based on colour subtraction 

x (Folkstedt, 2013) 
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St
or

ed
 I

m
ag

e Versatile x  x 

≥ 
4.

1  -Colour palate 

-Colour recommendation  

- Suitable for field of Lifestyle e.g. 

clothes, accessories, hair colour 

Email (Torres, 2016) 

St
or

ed
 I

m
ag

e Versatile x  x 

≥ 
4.

0.
3 Colorcatch 

Nano (not 

mandatory)  

-Colour metering  

-Colour palate 

-Colour recommendation 

- Suitable for field of interior design 

Email (Colorix, 2016) 

L
iv

e 

Limited versatility x   

≥ 
4.

0 x -Colour metering (RGB, HSV, hex code) 

- Colour palate  

- Does not work properly 

Social 

media  

(Chromaflo 

Technologies, 

2015) 

L
iv

e,
 S

to
re

d 
Im

ag
e 

Versatile   x 
≥ 

4.
0 x - Colour metering (RGB) 

- TV colour fidelity checker 

-Requires calibration.  

-Also available in iOS platform 

x (Falcon Solutions 

Co, 2016) 

N/m: Not mentioned. Some of the applications have in-app purchase facility (/x). EXIF= Exchangeable Image File Format. The table excluded the 

following applications: used only for service or promotional service, without any other functionality; not available in English; mobile game etc.  
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In Auralisoft (Camera Colorimeter, 2016), two cameras are needed for colour calibration and 

calibrated colour viewing. Although it can work with a wide range of cameras, it takes 20 

minutes to warm up after connecting both devices via Bluetooth. There are free applications 

with ‘in-app purchase’ facility to enable more features (vistech.projects, 2014). Many 

applications do not even require the image to be saved to analyse the colours and provide the 

result such as RGB value, colour histogram, hexadecimal code and the name of the colour.  
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C.2 TB Related Mobile Applications in the App-store  

There are commercial and endorsed mobile applications for TB in the popular application 

stores, e.g. Google Play (Table C. 2, searched on 21-09-2017) and Apple app store.  

Table C. 2: TB related mobile applications on the Android platform 

User Region Aspect 

Q
ue

st
io

nn
ai

re
  

In
te

ll
ig

en
t 

S
ys

te
m

s 

Ref.  

Department 
of Health 

South Africa Management;  TB and 
HIV 
diagnostic data 

 X (Interactive 
Health 
Solutions, 
2016a) 

Specific 
Users 

Bangladesh Management  X (Interactive 
Health 
Solutions, 
2017) 

Mine 
community  

South Africa TB screening   X (Interactive 
Health 
Solutions, 
2016b) 

Patients Pakistan Control TB and drug-
resistance 

 X (Interactive 
Health 
Solutions, 
2016c) 

Clinicians Global Decision on rapid 
diagnosis of TB and 
resistance 

X X (Open 
Medicine 
Project, 
2014) 

Clinicians 
and Patients 

Cambodia Track lab test result X X (Operation 
Asha, 2017) 

When it comes to diagnosis, the applications are for screening purpose only (Interactive Health 

Solutions, 2016b; c, 2017). These applications store the screening data via the OpenMRS 

server. Either the user needs to insert the answers to a series of questions, or the lab test results 

have to be manually inserted by the user or clinician. The available applications can ensure the 

data portability (Table C. 2), and in some cases diagnostic decision (Open Medicine Project, 

2014), however, they lack automation to produce a diagnostic result from the specimen. Thus, 
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there is a need for a system that does not require any additional hardware, e.g. a plate reader 

and can produce laboratory scale test results. 
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Appendix D 

Instrumentations, Materials and 

Datasets 

D.1 Choice of Platforms    

This work has been simultaneously conducted using three computers with Windows 10. Two 

of them possess the same specification with Intel® Core™ i7-4470 CPU at 3.40GHz, 16GB 

and 64-bit OS; the other one possesses Intel® Core™ i7-7700HQ CPU at 2.80GHz.  

This work explored a number of platforms to perform image processing and classification 

including MATLAB (MathWorks, 2017), ImageJ (Rasband, 2016), Weka (University of 

Waikato, 2017) and TensorFlow (Google Brain Team, 2018). Regarding software, this work is 

performed on the MATLAB31 platform due to the convenience in research and convenience in 

analysing and presenting the research. Most of the relevant research work in the literature 

utilised MATLAB as well (Mutlu et al., 2017; Kim et al., 2017a; Solmaz et al., 2018). In the 

literature, among the other software, this research found widespread use of ImageJ (Yu et al., 

2015; Tsai et al., 2013; Soares et al., 2017), OpenCV (Savardi, Ferrari and Signoroni, 2018; 

Oliveira, Pereira and Tavares, 2017; Lopez-Ruiz et al., 2014) and Weka (Oliveira, Pereira and 

Tavares, 2017; Tracey et al., 2011).  

D.2 Sample Preparation of TB-test   

D.2.1 Materials Preparation 

The experiments on plasmonic ELISA were mainly conducted in Universiti Putra Malaysia. 

However, the TB patient sputum samples were provided by School of Medical Sciences, 

Universiti Sains Malaysia, Kubang Kerian, Malaysia through their University's hospital. The 

                                                

31 This research has been carried out for three years. Within this timeframe, all relevant software have been updated 
several times. In order to maintain a consistency, the result is presented in Windows 10 machines. In case of 
MATLAB, most of the result is obtained using MATLAB 2017a. In order to benefit from newly added advanced 
features in MATLAB platform for Deep learning such as data augmentation, visualisation of deep layers, this work 
utilises MATLAB 2018a.  



 

223 

 

fresh sputum sample was delivered to their lab, and smear microscope analysis was carried out 

before culture method. The ELISA analysis was carried out simultaneously in the same lab. 

For the detection of CFP-10, a ten kDa secreted antigen from Mycobacterium tuberculosis, we 

first coated the ELISA plate with 100 μL of CFP-10 in carbonate buffer and then incubated for 

1.5 h. Following the period, the plate was washed three times with PBS pH 7.6 and 0.05% 

Tween-20 (PBST) by tapping it against a clean paper towel. Now the plate was blocked with 

370 μL of PBS containing BSA (PBSA) (1 mg/mL) for 1.5 h. All the antibodies and enzyme 

conjugates were diluted in diluent antibody containing PBST and 1% BSA. The plate was 

washed with PBST three times and kept the plate (invert) at 4°C for two hours. Now, 100 μL 

of the monoclonal anti-CFP-10 antibody as a primary antibody was added to the plate at 4°C 

for 1.5 h. After 1.5 h, the plate was washed with PBST for three times and the plate was added 

with 100 μL of biotinylated polyclonal secondary antibody and incubated for another 1.5 h at 

4°C. The plate then washed three times, and 100 μL of the catalase-streptavidin conjugate (v/v 

1:20) was pipetted into the plates and left for 1.5 h at 4°C. After the period, the wells in the 

plate were washed three times with PBST, two times with PBS, one time with deionized water 

and then dried. Now, 100 μL of hydrogen peroxide (in 1 mM MES, pH 6.5) buffer was pipetted 

into the wells. Immediately, 100 μL of gold ion solution freshly prepared in 1 mM MES buffer 

was added to the wells prepared in 1 mM MES buffer was added to the wells at room 

temperature. At this stage, the GNPs formation in the form of a coloured solution can be seen, 

and this can be read with a microplate reader at an absorbance of 550 nm. For the analysis of 

real samples, the sputum from positive and negative TB patients was diluted in 4% sodium 

hydroxide first and then proceeded to the same coating process as mentioned above. 

The plasmonic ELISA links the colour of plasmonic nanoparticles to the presence or absence 

of the analyte (target protein). Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-

10) was used as a target protein biomarker for the TB detection Plasmonic is accomplished by 

linking the growth of gold nanoparticles with the biocatalytic cycle of the enzyme label. The 

protocol adapts a conventional ELISA procedure with catalase-labelled antibodies. The enzyme 

consumes hydrogen peroxide (H2O2), and then gold (III) ions are added to generate gold 

nanoparticles. The concentration of hydrogen peroxide dictates the state of aggregation of gold 

nanoparticles. This allows for the naked-eye detection of analytes by observing the generation 

of blue- or red-coloured gold nanoparticle solution. 

D.2.2 Data Collection  

The dataset, generated as stated above and in Section 5.4.1, contains 252 images; 106 of them, 

captured with an iPhone 8-megapixel camera without mobile phone holder, were initially 
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considered for our preliminary study (Abuhassan et al., 2017). The dataset also contains few 

images taken from the video frame (Section 5.3.1), from a phase where it can be considered as 

an end point assay.  

Blurry images, images with inadequate camera exposure, observations intended for biosensor 

optimisation and the initial experiments where the colour widely varied from the final 

representative colours were removed. Finally, 27 images were selected from 22 independent 

observations. Among these images, 13, 3 and 2 images were captured by Samsung Galaxy J5 

Prime (13-MP), iPhone 7 plus (12-MP) and iPhone 6 (8-MP) cameras respectively. The 

remaining images were captured with an iPhone 4S (8-MP camera). A mobile phone holder 

(NJS Telescopic Music Record Mobile Phone iPad iPhone Stand Inc G Clamp Mount 68G) was 

used while capturing the images. However, the images varied regarding 35mm focal length, 

which means the physical distance between camera to sample were same, varying the effective 

camera exposure and size of the wells.  

D.3 Dataset and Control Colours of the LFA  

D.3.1 Preparation of Dataset 

It was discussed in Chapter 6 (Section 6.2.1), that some of the test strips were allowed to dry 

on tissue paper, while some of them were purposefully not allowed to dry the residue on tissue 

paper. The impact of such preference is shown in Fig. D. 1 . 

  

(a) (b) 

Fig. D. 1: Universal pH indicator paper showing pH level 9. (a) Sample dried on tissue paper 
and (b) sample not dried 
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When the sample in Fig. D. 1(a) were allowed to be dried on a tissue paper, there is no 

microfluid on the surface of the pH test strip. On the other hand, the microfluid in Fig. D. 1(b) 

suffered from slight light reflection problem. The purpose of the undried test strips was to create 

a robust dataset which contains such a noise.  

D.3.2 Control Colours 

The colour chart provided by the manufacturers are shown in Fig. D. 2. This chart can be used 

as the reference colours for the naked-eye measurement of the pH levels using the universal pH 

indicator paper. This is one of the conventional methods.  

 

Fig. D. 2: Colour chart of the pH indicator paper 

Alternatively, there are analysers for colour measurements. An example is shown for urinalysis 

(Fig. D. 3).  
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(a) (b) 

Fig. D. 3: Colour chart and analyser for urinalysis. (a) Colour chart provided by the 

manufacturer, (b) CLINITEK Status® + Analyzer 

The colour chart can be thought of as the ground truth colours or the controls.  
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Appendix E 

Major Steps of the Algorithm    

E.1 Reaction Phase and Time-dependent Approach 

Out first approach was to analyse the dynamic changes in the images of an end-point assay. 

This is part of the first specific objective. Major steps of the algorithms is given below.  

Algorithmic Steps 1: Image Segmentation for Reaction phase and time dependent approach  

Input: 1. I= initial image at start point;  

       2. F= final image at end point  

Output: Mask 

Steps:  

5.1 READ Input 1  

   READ Input 2 

5.2 RESIZE  INPUT 1 AND  INPUT 2 WITH SAME SCALING FACTOR  

\\ LP distance; 1 ≤ p ≤ ∞ 

5.3 Z= |Input 1 - Input 2| 

\\ Z in green and blue channel  

5.4 Zg = I(:,:,2) 

   Zb = I(:,:,3) 

\\ Make the wells more prominent  

5.5 ADD  Zg and Zb 

\\ Smooth the image to clear the empty  

5.6 GAUSSIAN 2D FILTERING  

5.7 GB → Grey 

5.8 Grey → Binary 

MORPHOLOGICAL OPERATION 

E.2 Reaction Phase and Time-independent Approach 

The system architecture of the end point assay considering the final static stage of the reaction 

was described in the Chapter 3. After experimentation and trial and error the framework was 

finalised. Before describing the key components of the algorithm, the workflow of the finalised 

system is outlined in Fig. E. 1.  
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Start

Input Image

Assay 
Type

Pre-trained model

ELISA LFA

Dynamic Resizing
Contrast 

Adjustment

CLAHE

Green 
Channel

Blue Channel

Global Thresholding

Addition

Binary Conversion

Invert

Number of 
samples

Morphological 
Operation #1

Morphological 
Operation #2

Number of objects= 
Number of samples

No

Yes

Convert to 
LAB

k-medoids

Find right 
cluster

Morphological 
Operation #3

AND gate operation with the 
resized colour image

Feature Extraction

LS-SVM

Prediction

mean, standard deviation,
mode, skew, energy, entropy

mean, energy, 
pseudo control colours 

Rule-based object 
detection

 

Fig. E. 1: Flowchart of the overall system 
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E.2.1 Dynamic Scaling 

The dynamic scaling on Android platform is conducted by Android Developers (2018). In this 

work, the scaling mechanism is provided below.  

Algorithmic Steps 2: Dynamic Scaling  

Input: I= final image at end point;  

Output: Scaled image 

Steps:  

2.1 READ I 

\\ Dimension= length x width  

2.2 ESTIMATE the dimension of I  

      L=length of Input 1 

      W=Width of Input 1 

      Ch= number of colour channels  

5.9 Dynamically SCALE the image  

      Scale=300/ maximum (L,W) 

\\ B< Input  

2.3 B= Resize (Input, Scale) 

E.2.2 Image processing of Case Study 1  

The major steps to process TB-test images are provided below. The steps include pre-

processing, segmentation and post-processing methods used in Chapter 5.  

Algorithmic Steps 3: Image processing for TB-test  

Input: 1. I= final image at end point;  

          2. NS= number of samples; 

Output: Segmented wells 

Steps:  

3.1 READ I 

3.2 Algorithmic Steps 2 

3.3 CONTRAST ENHANCEMENT of B 

3.4 SMOOTHENING 

3.5 ENHANCEMENT of smoothened image 

3.6   𝒙𝒓  = 8-bit unsigned integer array of filtered image in red channel= B(:, :, 1) 

        𝒙𝒈  = 8-bit unsigned integer array of filtered image in green channel= B(:, :, 2) 

        𝒙𝒃  = 8-bit unsigned integer array of filtered image in blue channel= B(:, :, 3) 

3.7 XBG = 𝒙𝒈 + 𝒙𝒃   
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\\ Binary conversion by Global Thresholding  

3.8 BW= Binary image of XBG by Otsu (1979) 

\\ Inverse the binary image  

3.9 I= BW’ 

3.10 Morphological Operation #2 (Appendix E3) 

3.11 IF Number of objects = NS 

3.12 Morphological Operation #3 (Appendix E3) 

3.13 𝑰𝒄= 8-bit unsigned integer array from logical array containing correct number of objects  

\\ Segmented image  

3.14 𝒀 = ቐ

𝒙𝒓 ×  𝑰𝒄

𝒙𝒈 ×  𝑰𝒄

𝒙𝒃 × 𝑰𝒄

 

3.15 ELSE Conversion of the processed image into the CIELAB colour space  

3.16 Use colours in the ab space to measure the Euclidean distance for clustering. Select k seeds 

by implementing the k-means++ algorithm (Arthur & Vassilvitskii, 2007) for cluster medoid 

initialization. k=2.  

3.17 Dynamically repeat step to avoid local minima  

\\ k images  
3.18 For clusters 1 to k, separate the objects using the index clustering 

3.19 Convert k images to binary images 

3.20 FILTERING 

\\ Find the right cluster  

3.21 WHILE cluster ≠ empty 

3.22 IF Number of objects = NS,  

3.23 Repeat Step 3.12 to 3.14 

3.24 ELSE Calculate the distance among the objects in the cluster  

3.25 IF distribution of distance ≈ threshold 

3.26 Repeat Step 3.12 to 3.14 

3.27 ELSE ESTIMATE average sizes of the objects in the cluster 

3.28 IF object to object size ≈ average size 

3.29 Repeat Step 3.12 to 3.14 

3.30 ELSE COUNT objects in Cluster 1 and Cluster 2 

3.31 IF objects in Cluster 1 + Cluster 2=NS 

3.32 Repeat Step 3.12 to 3.14 

As described in Section 5.5 (Chapter 5), the image processing started with the pre-processing 

steps. To summarise the outcome of the image processing framework, once again for the 

convenience of the readers, a brief discussion is provided in this section.  
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After the pre-processing stage, the enhanced image was taken into the green and blue channel. 

The global thresholding by Otsu’s method was applied on the collective image of the green and 

blue channel. The resultant image was transformed into a binary form to reverse the 0 and 1 

values. Due to extensive pre-processing and colour channel manipulation before global 

thresholding, most (~78%) of the images can be corrected segmented within this stage as shown 

in Example A (Fig. E. 2).  

Example A B 

Steps:  

Input  

  

Addition of Green and 
Blue channel 

  
Binarisation after 
global thresholding 

  
Inverse of binary 
image 

  

k-medoids No Yes 
. 
. 
. 

 
Output image  after 
post-processing 

  

 Fig. E. 2: Key output steps of the Hybrid algorithm  

In order to present a robust and reliable image processing scheme that provides more autonomy 

to the user, k-medoids clustering followed by rules-based best cluster selection were integrated 

to the algorithm to separate the colours of background and foreground using only two clusters 

as suggested by the silhouette method. A demonstration is provided using Example B (Fig. E. 

2). The observations from Section 5.4.2 governed the image processing framework to select 
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appropriate clustering techniques. The output image for both examples (A and B) were attained 

by post-processing using morphological operation 

E.2.3 Feature Extraction Process of Case Study 1  

After separating the ROI, the features can be extracted as the following.   

Algorithmic Steps 4: Feature Extraction of TB-test 

Input: Segmented Image  

Output: Extracted Features  

Steps: 

4.1 Convert the data into the desired colour spaces 

   RGB → LAB 

4.2 Use a counter to record the features 

\\ For each colour channel record the colour moments. The features are extracted for individual objects 

4.3 Calculate mean of the elements of 4.1 along the first array dimension whose size is not equal to 

1. 

𝒈 = ෍ 𝒈

𝑳ି𝟏

𝒈ୀ𝟎

𝑷(𝒈) =  ෍ ෍
𝑰(𝒓, 𝒄)

𝑴𝒄𝒓
 

4.4 Calculate the sample standard variation using Bessel’s correction  

𝒈 = ඩ
𝟏

𝟏 − 𝒏
෍(𝒈 − 𝒈

𝑳ି𝟏

𝒈ୀ𝟎

)𝟐𝑷(𝒈) 

4.5 Find the most frequently occurring value in the colour histogram  

𝒎𝒐𝒅𝒆 

4.6 Calculate skewness using 1st skewness co-efficient i.e. Pearson mode skewness 

𝑺𝑲𝑬𝑾 =
 𝒈 − 𝒎𝒐𝒅𝒆

𝒈

 

4.7 Calculate the amplitude using the mean in Step 4.3 

𝑬 = ෍[

𝑳ି𝟏

𝒈ୀ𝟎

𝑷(𝒈)]𝟐 

4.8 Calculate the entropy, which is a statistical measure of randomness that can be used to 

characterize the texture of the input image 

𝑬𝑵𝑻𝑹𝑶𝑷𝒀 = − ෍ 𝑷(𝒈) 𝒍𝒐𝒈𝟐

𝑳ି𝟏

𝒈ୀ𝟎

[𝑷(𝒈)] 

 



 

233 

 

E.2.4 Image Processing and Feature Extraction Algorithm of Case 

Study 2  

The image processing algorithm followed by the feature extraction algorithm performed for the 

Case Study 2 is provided below. The following algorithm is presented with the help of the 

algorithmic steps mentioned above to highlight the similarities for both of the case studies.  

Algorithmic Steps 5: Image processing and Feature Extraction Algorithm for Case Study 2 

Input: 1. Image of pH test strips in RGB;  

Output: Extracted features of the segmented ROI in LAB 

Steps: 

\\ Image Processing   

5.1 READ Input 1  

5.2 Algorithmic Steps 2 

5.3 Perform Step 3.6 

\\ Eliminate Red and Green channel 

5.4  𝒙𝒃 = B(:, :, 3) 

\\ Take only Blue channel of filtered image  

\\ Binary conversion by Global Thresholding (Step 3.8) 

5.5 BW= Binary image of 𝒙𝒃  by Otsu (1979) 

5.6 Perform Step 3.9 

5.7 Morphological Operation #1 (Appendix E3) 

      C = Detected objects 

\\ Noise filtering 

5.8 Pc = Pixels in C 

IF Pc < 50 

ELIMINATE Pc 

5.9 COUNT C 

5.10 IF C= number of colour blocks in sample 

5.11 Perform Step 3.13 to 3.14 

\\ Feature Extraction  

5.12 Perform Step 4.1 to 4.3 

5.13 Perform Step 4.7 

\\ Pseudo-control Colour   

5.14 ∆𝑬𝒃𝒑

∗ =  √{(𝒎𝒆𝒂𝒏 𝑳𝒃𝒑

∗ − 𝒎𝒆𝒂𝒏 𝑳𝒃𝒑ష𝟏

∗ )𝟐 + (𝒎𝒆𝒂𝒏 𝒂𝒃𝒑

∗ − 𝒎𝒆𝒂𝒏 𝒂𝒃𝒑ష𝟏

∗ )𝟐 + (𝒎𝒆𝒂𝒏 𝒃𝒃𝒑

∗ −

𝒎𝒆𝒂𝒏 𝒃𝒃𝒑ష𝟏

∗ )𝟐} 

5.15      REARRANGE the matrix 
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E.3 Morphological Operation     

Key post-processing techniques utilised in this work are listed in below. These operations are 

conducted on the binary image.  

Area opening 

This technique is used to remove all connected objects lower than a threshold pixel value. In 

several cases, this operation is performed by specifying the value for the connectivity as well.   

Skeleton  

While performing the morphological operation, with n = ∞, removes pixels on the boundaries 

of objects but does not allow objects to break apart. The pixels remaining convert the image 

into a skeleton of the image. This option preserves the Euler number. Then, additionally, the 

endpoints of the skeleton are outlined.  

Dilatation 

In this case, dilation is mainly translation-invariant operator, mathematically equivalent to 

Minkowski addition. This work utilises the dilation presented in Gonzalez, Woods and Eddins 

(2009).  

Morphological reconstruction 

As part of morphological reconstruction sometimes it is required to fill the holes in the image, 

where a hole is a set of background pixels that cannot be reached by filling in the background 

from the edge of the image (Soille, 2004).  

Sometimes, it is also required to suppress the light structures connected to image border as part 

of the reconstruction. The input of this step is taken as the mask image.  The marker image is 

considered to be zero everywhere except along the border, where it equals the mask image. The 

connectivity is also specified. 

Erosion 

Erosion is one of the major elements of morphology. This work mainly uses erosion by 

specifying the structural element neighbourhood. This work utilises the erosion as presented in 

Gonzalez, Woods and Eddins (2009). 

Boundary tracing 

Using Moore-Neighbor tracing algorithm, modified by Jacob's stopping criteria, the boundary 

of the objects are traced by searching for parent and child, i.e. object boundaries (Gonzalez, 
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Woods and Eddins, 2009). The outermost objects are called parents and objects entirely 

enclosed by the parents are called children. 

The morphological operations of Fig. E. 1 is sequentially listed below. The Morphological 

operation #1 was part of the Case Study 2.  

Algorithmic Steps 6: Morphological operation #1 

Input: Inverted binary image of TB-test after Global thresholding   

Output: Segmented, separated and clean ROI  

Steps: 

1. Perform AREA OPENING 

2. Take the END POINTS of the SKELETON of step 1.  

3. DILATION 

4. MORPHOLOGICAL RECONSTRUCTION 

5. EROSION 

6. EROSION of the image of step 5 

7. Perform AREA OPENING  

8. BOUNDARY TRACING  

The Morphological operation #2 was part of the Case Study 1.  

Algorithmic Steps 7: Morphological operation #2 

Input: Inverted binary image of LFA after Global thresholding   

Output: Segmented, separated and clean ROI  

Steps: 

1. SEARCH Euler Number Property =1 

2. FILTER input using step 1 \\ Output= Regions of original image without holes 

3. Perform AREA OPENING  

The Morphological operation #3 was also part of the Case Study 2.  

Algorithmic Steps 8: Morphological operation #3 

Input: Right cluster of TB-test    

Output: Segmented, separated and clean ROI  

Steps: 

1. RGB → GRAY 

2. Global thresholding   

3. CONVERT to binary image  

4. Perform AREA OPENING  
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5. Take the END POINTS of the SKELETON of step 4.  

6. DILATION 

7. MORPHOLOGICAL RECONSTRUCTION 

8. EROSION 

9. EROSION of the image of step 8 

10. Perform AREA OPENING  

E.4 Computation Time 

The key definitions related to computational time is provided below.  

Elapse time 

It is the amount of time that passes from the start of an event to its finish. 

Epoch  

The presentation of the set of training, which could be input and/or target vectors, to a network 

and the calculation of new weights and biases. In the case of batch training in deep learning, all 

of the training samples pass through the learning algorithm simultaneously in one epoch before 

weights are updated. 

Epochs can stop the training in case the solution of the training algorithm does not converge, to 

prevent infinitely running the training.  

  



 

237 

 

Appendix F 

Statistical Analysis Method 
The output of an effectively designed system should be reproducible. Despite the use of random 

number generator, shuffled as well as uniformly distributed random numbers, there can be 

minor variation in the output of the system due to random initial seed selection and random 

partitioning during cross-validation. Therefore, each of the performance or execution should be 

repeated several times and statistically validated. In this thesis, the statistical analysis is 

conducted in SPSS.  

F.1 T-test 

In this research, we compare the performance of the best performing classifiers by using 

Student’s t-test (Walpole et al., 2011). Due to the bi-directional nature of the assessment, this 

work considers two-tailed t-test.  The analysis method is depicted from Lwin (2015) and Hatem 

Al-jamal (2017). The z-tests are more commonly used in the case of a higher number of 

observations (samples>30). However, for the most computer packages t-test results are 

equivalent (Scott and Mazhindu, 2014). On this occasion, it should also be noted that the 

number of observations refers to the number of execution of the algorithm.  

F.1.1 Consideration of Bias  

This work carefully considers the issue of a continuous variable, normal distribution and equal 

variance. In order to perform a t-test, care should be provided to prevent bias, which can be 

induced through outliers or violation of assumptions.  

Outliers 

This can be thought of as an anomaly in the result. Ideally, the output of the classifiers used in 

this study, obtained in MATLAB, should not contain outliers. Otherwise, the outliers can be 

identified using the descriptive statistics option in SPSS.  

Assumptions  

i) Independence  

The algorithms are not dependent on each other; hence independence can be assumed.  
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ii) Normality 

The t-test assumes a normal distribution of the samples. The assumptions for t-test include: the 

parent population has to be normally distributed, and the samples possess the t-distribution. If 

the same size is ‘large enough’, then the central limit theorem can be considered, which adopt 

normality regardless of the shape of the data (Lumley et al., 2002). It is a common practice to 

consider 30 observations as the ‘large enough’ sample size to exercise the central limit theorem 

and to assume the normality (Field, 2013). In this thesis, both of the case studies include 30 

observations for the statistical analysis to be performed. Therefore, the central limit theorem 

will be applicable, and normality test is not necessary.  

iii) Homogeneity of variance  

For the same set of input, if a system always provides the same output, then the method is 

deterministic. For the same set of input, if a system provides a different result at different 

execution, then the algorithm is non-deterministic. Due to initial seed selection, splitting and 

randomisation, an algorithm may show non-determinism, e.g. Random Forrest.  

While comparing the accuracy of different algorithms, this work assumes the variance in one 

sample, i.e. the accuracy of the algorithm is not larger than twice of the size of the other. This 

work utilises Levene’s test (Levene, 1960) to determine the homogeneity of variance. If the list 

of top performing classifiers includes both deterministic and non-deterministic algorithms, then 

clearly this assumption is going to be violated. In such cases, the violation of the assumption 

for equal variance needs to be compensated by utilising Welch-Satterthwaite method (Welch, 

1947; Satterthwaite, 1946).  

 

 

 


