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Introduction: Peyronie’s disease (PD) is a fibroproliferative disease of the penis in which 
myofibroblast differentiation has a central role. Adenosine and estrogen signalling 
mediate their effect via interaction with their respective receptors which have been 
associated with the pathophysiology of a variety of fibroproliferative diseases, but this 
has yet to be studied in PD.  
Hypothesis: Adenosine and/or estrogen receptor expression is involved in 
myofibroblast differentiation in PD and may, therefore, be novel potential targets for anti-
fibrotic therapies in this disease. 
Aim: The aim of this project was to characterise the myofibroblast differentiation process 
in human tunica albuginea-derived fibroblasts and to investigate the role of adenosine 
and estrogen receptors in this process.  
Methods: Tissue samples from non-PD TA tissue and PD plaque tissue were obtained 
and fibroblast cell lines were established from each sample. Cells were exposed to 
transforming growth factor (TGF)-β1. The mRNA levels and the protein levels of several 
targets of interest, alpha-smooth muscle actin (α-SMA), four adenosine receptors and 
two estrogen receptors (ERs), were evaluated using real-time RT-PCR (RT-qPCR), 
immunocytochemistry (ICC), immunohistochemistry (IHC), Western blot and In-Cell 
Western (ICW). The effect of compound modulators of two of the receptors on TGF-β1-
induced myofibroblast transformation was assessed. 
Results: Both RT-qPCR and ICW methods were successfully developed and/or 
validated. The α-SMA mRNA and protein levels increased in cells isolated from non-PD 
TA tissue and PD plaque tissue when exposed to TGF-β1. The two cell groups 
expressed ADORA1 and ADORA2B and there was a differential effect to TGF-β1 in 
these two receptors. An ADORA2B agonist (BAY 60-6583) significantly inhibited TGF-
β1-induced myofibroblast differentiation in the two cell types investigated. The two cell 
groups expressed ERβ but did not express ERα. Two selective estrogen receptor 
modulators (SERMs), tamoxifen and raloxifene, significantly inhibited TGF-β1-induced 
myofibroblast differentiation, suggesting that these SERMs interact with ERβ.  
Conclusions: Cells isolated from non-PD TA tissue and PD plaque tissue expressed 
ADORA1, ADORA2B and ERβ. TGF-β1 had differential effects on the receptors 
investigated depending on the cell type. An adenosine receptor agonist and two SERMs 
significantly inhibited TGF-β1-induced myofibroblast differentiation in a concentration-
dependent manner suggesting that these receptors and consequently the adenosine and 
estrogen pathways may be involved in the differentiation of myofibroblasts and may be 
potential novel therapeutic targets in PD. 
Key words: Peyronie’s disease, myofibroblast differentiation, adenosine receptors, 
estrogen receptors, transforming growth factor, anti-fibrotic therapies.   
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1 Introduction 

1.1 Fibrosis 

Fibrogenesis is becoming increasingly recognised as the main cause of morbidity 

and mortality in most chronic inflammatory diseases1. Fibrotic diseases account 

for up to 45% of deaths in the developed world, representing an unmet medical 

need for the identification of novel antifibrotic therapies.   

Fibrosis is defined as improper wound healing, characterised by the excessive 

accumulation of fibroblasts and persistent synthesis and deposition of 

extracellular matrix (ECM) in and around the damaged tissue, potentially leading 

to disrupted tissue architecture, organ failure and, eventually, death1,2. It is a 

complex, progressive and multi-stage process, which can be initiated by several 

factors either alone or in combination, such as inflammatory response; 

connective tissue repair; persistent infections; inherited genetic disorders and 

poorly controlled diabetes, triggering the physiological repair mechanism of the 

body1,3. This scarring process can affect various tissues, including the lung, skin, 

kidney, heart and liver. Although fibrotic disorders have different aetiologies and 

clinical manifestations, the cellular and biochemical mechanisms are thought to 

be similar4.  

The process that leads to fibrotic diseases is analogous to the process of normal 

wound healing, where a series of events take place once the primary tissue injury 

occurred. Those events include damage to the epithelial/endothelial barrier; 

acute inflammation where inflammatory cells are recruited; release of several 

cytokines, such as transforming growth factor (TGF)-β1, monocyte 

chemoattractant protein (MCP)-1 and plasminogen activator inhibitor (PAI)-1; 

induction of reactive oxygen species (ROS); synthesis of non-collagenous and 

collagenous ECM components; myofibroblasts differentiation and accumulation 

and tissue remodelling5,6. During normal wound healing, the remodelling of ECM 

and the regeneration of organised parenchyma occurs; however, in a fibrotic 

process, excessive production and improper remodelling of ECM results in the 
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formation of fibrotic tissue, which can lead to organ malfunction and death3,7 

(Figure 1-1). 

 

Figure 1-1: Process leading to normal wound healing or fibrosis. After tissue 
damage, inflammatory mediators are released from epithelial and/or endothelial cells, 
which will initiate an inflammation response. This initial inflammation phase is followed 
by the differentiation of fibroblasts to myofibroblasts, which are responsible for producing 
ECM components and stimulating wound contraction. In the remodelling and maturation 
phase, collagen fibres become organised, scar tissue is eliminated, and the tissue is 
regenerated. Nevertheless, in a fibrotic disorder, the normal healing process is disrupted, 
by persistent inflammation, myofibroblast activation and excessive deposition of ECM 
components, leading to the formation of a permanent fibrotic scar. Adapted from Wynn 
(2007)7. 

Furthermore, there are numerous cytokines involved in the pathogenesis of 

fibrosis, such as TGF-β18,9; granulocyte-macrophage colony-stimulating factor 

(GM-CSF)10; tumour necrosis factor (TNF)-α11; interleukin (IL)-612; IL-1β13; IL-

1014; IL-1315; connective tissue growth factor (CTGF)16,17; endothelin (ET)18; 

oncostatin M19; platelet-derived growth factor (PDGF)12 and fibroblast activation 

protein (FAP)-α20, which can result in the activation and differentiation of 

mesenchymal cells. These factors can also lead to the remodelling and 
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destruction of normal tissue architecture and deposition of connective tissue, 

which again leads to organ malfunction.  

Fibroblasts are cells of mesenchymal origin, which are responsible for producing 

a diversity of biochemical mediators (such as growth factors and proteases), 

deposition of ECM as part of the wound healing process, regulation of 

inflammation, regulation of epithelial differentiation and maintenance of tissue 

homoeostasis by regulating the turnover of ECM2,21. Fibroblasts are identified by 

their spindle-shaped morphology and are widely distributed in numerous types of 

tissues, especially in the connective tissue21,22. These cells have been reported 

to be vimentin-positive as well as desmin-negative and α-smooth muscle actin 

(α-SMA)-negative23. After tissue injury, fibroblasts are activated, leading to 

increased production of ECM and differentiation to myofibroblasts. 

Myofibroblasts are a specialised cell type heavily involved in the fibrotic process. 

These cells are morphologically between fibroblasts and smooth muscle cells 

(SMC), since they combine the cytoskeletal and contractile properties of SMC 

and the ECM-producing characteristics of fibroblasts24. The general lack of 

smooth muscle markers (e.g. desmin and smooth muscle myosin) by 

myofibroblast is how they are distinguished from smooth muscle cells25. 

Myofibroblasts are defined by their de novo expression of α-SMA in large bundles 

of actin filaments (also known as stress fibres), by secreting abundant ECM 

proteins and by their contractile force, which is responsible for wound contraction 

and closure, reducing the size of the wound24.  

The differentiation of fibroblasts to myofibroblasts is a key event in connective 

tissue wound healing. This differentiation is caused by a series of events that are 

described in Figure 1-2.  
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Figure 1-2: Differentiation of fibroblasts to myofibroblasts. Upon injury, fibroblasts 
differentiate into proto-myofibroblasts in response to mechanical stress created by the 
remodelling of ECM of damaged tissue, leading to the appearance of contractile stress 
fibres. The proto-myofibroblasts will further differentiate to myofibroblasts due to the 
expression of TGF-β and ED-A fibronectin, as well as the presence of mechanic tension. 
The differentiated myofibroblasts are characterised by the expression of α-SMA and by 
their capacity to generate more contractile forces than the proto-myofibroblasts. These 
contractile forces are responsible for contracting the edges of the wound, reducing its 
size. The conversion of proto-myofibroblasts to fibroblasts is reversible (solid line); 
however, it is not known whether the dedifferentiation from myofibroblast to fibroblast 
can occur (dotted line). Adapted from Falke et al. (2015)26. 

First, the quiescent fibroblasts acquire a migratory phenotype, migrating to the 

centre of the injured tissue, inducing the appearance of contractile bundles 

(stress fibres). This phenotypic change is due to the changes in the composition, 

mechanical tension and organisation of the ECM. These fibroblasts with a 

migratory phenotype are known as proto-myofibroblasts. The proto-

myofibroblasts further develop to myofibroblasts, which express α-SMA22,27,28. 

This differentiation is further induced by continued exposure to mechanical 

tension and also by exposure to TGF-β and ED-A splice variant of cellular 

fibronectin28,29. 

Several studies have reported that myofibroblasts can originate from a variety of 

precursor cells, depending on the type of tissue to be repaired. Locally residing 

fibroblasts are the most frequent source of myofibroblasts26. However, other cells, 

such as pericytes, mesenchymal stem cells, bone marrow-derived cells 

(fibrocytes) and cells circulating in the cardiovascular system have also been 

suggested to be the sources of myofibroblasts22,30. Endothelial to mesenchymal 
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transition and epithelial to mesenchymal transition (EMT) have also been 

described as a potential source of myofibroblast differentiation30,31.  

Both fibroblasts and myofibroblasts are metabolically highly active cells; both are 

capable of synthesising numerous ECM components, such as fibronectin, 

collagens, proteoglycans, laminin and tenascin25. Furthermore, numerous 

studies have demonstrated that myofibroblasts are responsible for producing 

several cytokines in different organs, such as PAI-1 in breast tissue as well as 

TGF-β1, MCP-1 and collagen in lung tissue25,28. Matrix metalloproteinases 

(MMPs) are also produced by fibroblasts and are part of a family of 25 zinc ion-

dependent proteolytic enzymes capable of degrading and rearranging ECM 

components32. The MMPs are regulated by a group of inhibitors known as tissue 

inhibitors of metalloproteinase (TIMP). The balance between MMPs and TIMP 

have been shown to be linked to several biological processes where the 

disruption of ECM components occurs such as in the wound healing process32,33. 

Furthermore, specific MMPs have been shown to have anti-fibrotic properties, 

whereas other MMPs are able to promote fibrosis. Both MMP-12 and MMP-19, 

for instance, have been shown to be anti-fibrotic in the lung; however, they 

present profibrotic activity in the liver34. In addition, Iwanami and colleagues 

(2009)35 have reported that myofibroblasts express mRNA and protein levels of 

MMP-12. The reduction of MMP-2 has also been shown after treatment with TGF-

β136.  

Following normal wound repair, the expression of α-SMA decreases and the 

myofibroblasts undergo apoptosis. However, in a fibrotic process, it is thought 

that the activity of these cells persists, leading to the expansion of ECM and tissue 

deformation1. 

 Apoptosis in fibrosis 

Apoptosis is a process that leads to a programmed and controlled type of cell 

death differing from necrosis which is a form of unprogrammed cell death. 

Apoptosis can occur during development and ageing, as a defence mechanism 

and for tissue homeostasis. Apoptosis can be induced by a diversity of 

extracellular and intracellular stimuli leading to two major apoptotic signalling 
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pathways: the death receptor or extrinsic pathway and the mitochondrial or 

intrinsic pathway. These two pathways have been suggested to be connected 

and the molecules from one pathway can affect the other37. The death receptor 

or extrinsic pathway involves the activation of receptors that belong to the TNF 

receptor family, which include Fas receptor (CD95 or Apo-1), TNF-receptor 1 

(TNF-R1) and TNF-related apoptosis-inducing ligand receptors 1 and 2 (TRAIL-

R1 or DR4 and TRAIL-R2 or DR5). These receptors are located on the cell 

membrane and are stimulated by extracellular ligands (Fas ligand – FasL - binds 

to Fas, TNF-α binds to TNF-R1 and TRAIL binds to TRAIL-R1 and TRAIL-R2)38. 

The mitochondrial or intrinsic pathway can also lead to the activation of caspases 

by releasing pro-apoptotic proteins in response to an apoptotic stimulus (e.g. 

DNA damage, radiation, ROS, drugs and infectious agents)37,39.  

There are several mechanisms that during the resolution of a wound healing 

event lead to fibroblast apoptosis, including reduced growth factor expression, 

nitric oxide (NO) generation and increased ECM turn-over40. However, the 

acquisition of an apoptosis-resistant phenotype by myofibroblasts has been 

associated with TGF-β1-induced myofibroblasts due to the release of endothelin-

1 triggering the Pi3K-AKT pathway41. Furthermore, IL-1β was reported to 

selectively induce apoptosis in myofibroblasts through the induction of inducible 

nitric oxide synthase (iNOS), whereas TGF-β1 was reported to stimulate 

myofibroblast differentiation and impede iNOS production. It has been 

demonstrated that TGF-β1 was capable of impeding apoptosis induced by IL-1β, 

suggesting that this cytokine enhances the myofibroblasts’ survival by inhibiting 

IL-1β-induced apoptosis42,43. 

However, there are several studies that have shown that when fibroblasts are 

stimulated with extracellular ligands, these can trigger apoptosis in fibroblasts. A 

study by Huang et al. (2013)44 demonstrated that Fas-mediated apoptosis was 

induced in vitro by the addition of anti-Fas antibody and the response could be 

increased with the addition of cycloheximide, a suppressor of protein synthesis. 

Another study also showed that lung fibroblasts and myofibroblasts are resistant 

to FasL-induced apoptosis and this could be overcome with TNF-α sensitisation, 
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suggesting that by increasing the expression of this cytokine it may decrease 

fibroblast and myofibroblast accumulation being beneficial in treating lung 

fibrosis45. 

A study by Moodley et al. (2004)46 compared the morphological and biochemical 

changes in FasL-induced apoptosis between fibroblasts isolated from lungs of 

patients with idiopathic pulmonary fibrosis (IPF) and normal human lung 

fibroblasts. These authors demonstrated that fibroblasts derived from fibrotic 

lungs were more resistant to induction of apoptosis through FasL/Fas than 

fibroblasts isolated from normal lung. According to Bühling et al. (2005)47, this 

decreased vulnerability to FasL-induced apoptosis may be due to high levels of 

apoptosis-inhibiting soluble Fas (sFas) and a lower expression of cell surface Fas 

by these cells. Moreover, another study showed that IL-6 increases expression 

of pro-apoptotic protein Bax and increases FasL-induced apoptosis in normal 

fibroblasts. However, in fibroblasts isolated from patients with IPF, IL-6 induces 

the expression of the anti-apoptotic protein Bcl-2 and inhibits apoptosis, 

suggesting that altered IL-6 signalling in IPF may increase apoptosis resistance 

of these cells leading to the progression of fibrosis48. 

Loreto and co-workers showed overexpression of DR5 and TRAIL in fibroblasts 

and myofibroblasts derived from patients with Peyronie’s disease (PD)49. These 

authors also investigated the involvement of the intrinsic pathway. They showed 

that fibroblasts isolated from PD patients expressed Bax (a pro-apoptotic protein); 

however, Bcl-2 protein (an anti-apoptotic protein) was not detected in fibrotic and 

control samples. The executioner caspase-3 was intensely detected in fibrous 

tissue and TUNEL staining was also used to detect apoptosis in fibroblasts and 

myofibroblasts suggesting that apoptosis in PD plaque could be induced by the 

intrinsic pathway50. 

In addition, a study that characterised the pattern of mRNA expression of 

apoptotic genes in both healthy tunica albuginea (TA) and PD plaque 

demonstrated that the mRNA levels of plaque tissues were not significantly 

different from normal tissues samples. Moreover, apoptotic gene expression was 

reduced in comparison to the reference genes in half of the healthy TA samples 
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and two-thirds of the plaque samples, suggesting that PD plaque samples are 

more resistant to apoptosis than healthy TA samples51. 

 Adenosine receptors in fibrosis 

Adenosine is a ubiquitous purine nucleoside generated by the dephosphorylation 

of adenine nucleotides released from cells and tissues under conditions of stress 

or injury52,53. Adenosine can be found in the extracellular compartment due to 

several biological processes, such as adenosine transport, extracellular 

adenosine production, adenosine metabolism to inosine or adenosine 

monophosphate (AMP) and adenosine production from intracellular adenosine 

sources. Extracellular adenosine can either result from the breakdown of 

extracellular nucleotides such as adenosine triphosphate (ATP) and adenosine 

diphosphate (ADP) or from the external transport of intracellularly generated 

adenosine. Upon conditions of stress and injury, including leakage from cells 

undergoing cell death and inflammatory response, ATP is released and 

converted to ADP or AMP through nucleoside triphosphate phosphohydrolase 

(CD39) and then to adenosine by ecto-5’-nucleotidase (CD73)54.  

Adenosine regulates its effects on tissue regeneration and repair via interaction 

with a family of G-protein coupled receptors: A1 (ADORA1), A2A (ADORA2A), A2B 

(ADORA2B) and A3 (ADORA3)53.  

Several studies have shown that adenosine receptors play different roles in acute 

and chronic injuries. In acute tissue injury, adenosine has been shown to be 

beneficial, as it is responsible for tissue protection and anti-inflammatory 

responses55 (e.g. promotion of barrier function and wound healing) in several 

organs, including kidney56, lung57,58, heart59 and liver60. These responses are 

regulated by ADORA2A and ADORA2B signalling55. 

Conversely to acute states, a sustained increase in adenosine levels has been 

associated with the progression of chronic tissue injuries. In these settings, 

adenosine has been suggested to promote fibrosis in several organs, such as 

heart61, skin52,62, liver63, lung64,65, penis66,67 and kidney68, which is mainly 

regulated again by ADORA2A and ADORA2B55 (Figure 1-3). 
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Figure 1-3: Adenosine production and signalling. Adenosine is generated 
intracellularly and extracellularly from adenine nucleotides, which are then 
dephosphorylated to adenosine. CD39 and CD73 are two cell surface molecules 
responsible for catalysing the dephosphorylation of adenine nucleotides to adenosine in 
the extracellular space. In acute states, adenosine is responsible for tissue protection; 
whereas, in chronic states, it can be responsible for promoting aberrant wound healing. 
Adapted from Karmouty-Quintana, Xia & Balckburn (2013)55.  

Several studies suggest that differential effects on the cyclic adenosine 

monophosphate (cAMP) synthesis can occur depending on the adenosine 

receptor. Both ADORA1 and ADORA3 bind to the G-inhibitory subunit, resulting 

in a decrease in intracellular cAMP, whereas ADORA2A and ADORA2B will 

couple with the G-stimulatory subunit leading to the increment of intracellular 

cAMP69. 

Furthermore, the adenosine receptors appear to play different roles in the 

pathogenesis of fibrosis depending on the tissue involved, i.e. the same receptor 

may cause an agonistic or antagonistic effect in different tissues.  

Wakeno et al. (2006)70 demonstrated a decrease in the progression of fibrosis 

and remodelling of the myocardium after infarction when ADORA2B was 

stimulated. Furthermore, ADORA2B agonism has also been shown to impede 

collagen synthesis by cardiac fibroblasts and promotes cardiac remodelling, 

which suggests that this receptor has a protective effect in myocardial fibrosis71. 
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Nevertheless, the activation of ADORA2B has been shown to engage with 

adenosine to induce differentiation of pulmonary fibroblasts into myofibroblasts, 

suggesting that adenosine may promote profibrotic activities in the lung65. A 

further study performed by Zhong et al. (2005)72 reported that 5’-(N-

ethylcarboxamido)-adenosine (NECA), an adenosine receptor agonist, 

possessed the capability to induce the transformation of pulmonary fibroblasts to 

myofibroblasts, which was mediated by the release of IL-6. In addition, Sun et al. 

(2006)64 used an ADORA2B antagonist to demonstrate the decrease of α-SMA 

staining and myofibroblasts in adenosine deaminase-deficient mice and the 

reduction of expression of several chemokines and cytokines, such as TGF-β. 

Furthermore, Sun and co-workers showed that ADORA1 might have anti-

inflammatory activity in the lung73. 

ADORA2B agonism has also been reported to increase the levels of adenosine 

in adenosine deaminase-deficient mice in the penis, leading to the development 

of priapism and it was also associated with fibrosis in the corpus cavernosum and 

corpus spongiosum66.  

Adenosine has an essential role in the development of dermal fibrosis. A study 

by Fernández et al. (2008)62 showed that administration of an ADORA2A 

antagonist in adenosine deaminase-deficient mice led to the decrease of the 

development of dermal fibrosis and to the decrease in the production of numerous 

growth factors and profibrotic cytokines. In addition, it was also demonstrated that 

in liver fibrosis, agonism of ADORA2A triggered the decrease of actin stress 

fibres in hepatic cells74.  

Current literature presents very limited plausible explanation for the evolution of 

the different roles and physiologic responses by the four receptors in different 

tissues. The cellular context may play a role, as different types of tissue will have 

different signalling pathways present/absent that may be affected by adenosine 

receptor modulation. Different types of tissues may have different wound healing 

responses, which is modulated by, amongst other factors, the number and types 

of immune cells present, the amount of connective tissue present, blood flow and 

physical constraints. Additionally, this difference may also probably be dependent 
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on the stimuli that induces adenosine release and modulate receptor expression 

and function. For example, as lung and heart are organs which are constantly 

exposed to several antigens, these may respond differently to adenosine than 

liver or skin75, which may explain the different effects of adenosine receptors in 

different tissues.  

The table below shows a summary of the effects caused by adenosine receptor 

agonists and antagonists in the fibrotic disorders described in this chapter. 

Table 1-1: Summary table of the effects caused by adenosine receptor agonists 
and antagonists. The effect of the agonist or antagonist on adenosine receptors in the 
fibrotic disorders described in this chapter has been summarised. Legend - green: 
impedes fibrosis, red: promotes fibrosis, black: anti-inflammatory and blank: unknown. 

Tissue Effect caused 

Adenosine receptors 

ADORA1 ADORA2A ADORA2B ADORA3 

Lung 

Agonist Adenosine73 CGS2168076 NECA72  

Antagonist   CVT-688364  

Kidney 

Agonist  CGS2168077 NECA68  

Antagonist  ZM24138577 

PSB111568 

MRS175468 

 

Liver 

Agonist  

NECA74 

CGS-2168063 

  

Antagonist  ZM24138563,74   

Heart 

Agonist   NECA78  

Antagonist   MRS175470  

Skin 

Agonist  CGS2168079   

Antagonist  ZM24138562   

Penis (corpus 

cavernosum) 

Agonist   NECA66  

Antagonist   MRS175466  
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 Estrogen receptors in fibrosis 

Estrogen is a steroid hormone, which plays an important role in the growth, 

development and maintenance of several tissues. 17 β-estradiol (E2), an 

intracellular estrogen has been conventionally connected with the female 

reproductive system; however, this hormone has also been reported in the male 

reproductive system and in other organ systems, such as the central nervous 

system, the cardiovascular system, bone tissue and the breast80. 

Estrogen mediates its physiological effects through ligand-activated transcription 

factors, known as estrogen receptors (ERs). These receptors belong to a 

superfamily of intracellular nuclear receptors, which consist of a highly conserved 

DNA-binding domain; a variable N-terminal transactivation (AF-1) domain and a 

C-terminal ligand-binding domain (LBD)81.  

Two ERs have been identified in humans, estrogen receptor-alpha (ERα) and 

estrogen receptor-beta (ERβ)82, which are encoded by distinct genes located on 

different chromosomes. The ERα is found on chromosome 6 (6q25.1 locus) while 

the ERβ is located on chromosome 14 (the boundary between 14q11.1 and 

14q11.2)82. Both ERs bind to estrogen with practically equivalent affinity and 

show an analogous binding profile for an abundant number of natural and 

synthetic ligands.  

Estrogen action may induce cellular changes, activating target genes through 

various mechanisms. In the traditional mechanism, estrogen crosses the cell 

membrane and binds to the ERs in the nucleus. This estrogen-ER complex binds 

directly or indirectly to estrogen response element sequences, leading to the 

recruitment of coregulatory proteins, decreasing or increasing the synthesis of 

target genes. A quick mechanism of action can also take place within minutes by 

non-genomic pathways, either through the ERs situated in or surrounding the 

plasma membrane or through another non-ERs plasma membrane-associated 

estrogen-binding proteins. This process leads to cellular responses, including 

activation of kinases and increased levels of NO83 (Figure 1-4).  
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Figure 1-4: Mode of action of estrogen. Estrogen receptors undergo a conformational 
change upon binding to E2 and/or selective estrogen receptor modulators (SERMs), 
which facilitates the interaction of the receptor with estrogen response elements (ERE) 
located within the target gene. Different effects on the ER’s structure can be due to 
different ligands. The interaction with ERE can act as co-regulatory factors, which will 
lead to different transcriptional effects inducing an agonistic, an antagonistic or a mixture 
of agonistic/antagonistic effects. Adapted from Deroo & Korach (2006)83.    

Several studies have reported that the expression of the two ERs varies between 

the tissue type and on the location. ERα is expressed in female reproductive 

organs (e.g. uterus, ovary, mammary gland); whereas ERβ is more broadly 

expressed and has been reported to be present in female reproductive organs, 

as well as lung, heart, bladder, kidney, thymus and skin84,85. The difference in 

expression of the two ERs suggests that these receptors have cell-specific roles, 

which may regulate the expression of other genes.  

Selective estrogen receptor modulators (SERMs) are a class of non-steroidal 

compounds, which act as ligands for ERs. In contrast to estrogen that acts as ER 

agonist, the SERMs possess the capability to selectively function as antagonists 

or agonists in a target gene and in a tissue86,87. This tissue-selective 

pharmacology is an advantage for SERMs, as they can mimic the beneficial 

actions of estrogen in target tissues (e.g. liver, bone and the cardiovascular 

system) and avoid harmful off-target effects (e.g. breast and brain)86,88.   
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This tissue-selective pharmacology depends on a diversity of factors, such as 

estrogen concentration in the environment, the cellular and promoter context and 

the SERM chemical structure. When a SERM binds to the ER, it causes a 

conformational change in the receptor. This structural change controls which 

corepressors and/or coactivators engage with the promoter, resulting in either an 

agonist or antagonist activity by the SERM. Furthermore, the ratio between the 

expression of ERα and ERβ in the tissue also affects the SERM agonist or 

antagonist activity83. 

SERMs are used in the prevention and treatment of breast cancer, maintenance 

of beneficial serum lipid profiles and prevention of osteoporosis in 

postmenopausal women. Nevertheless, it has been reported that SERMs can 

promote side effects, including thromboembolic events and occasionally 

carcinogenesis86.  

The most well-known SERMs include tamoxifen, raloxifene and toremifene. 

Tamoxifen was the first clinically relevant SERM, which is an ER antagonist in 

the breast and an ER agonist in liver, uterus and bone83. This SERM was the first 

drug to be approved by the Food and Drug Administration (FDA) and used in 

high-risk premenopausal and postmenopausal women to attenuate breast cancer 

incidence89. Raloxifene is also a SERM that has been reported to preserve bone 

density and is being used to prevent and treat osteoporosis in postmenopausal 

women, as it exhibits greater agonist activity in bone than tamoxifen90. 

Toremifene is a new SERM with similar properties and side effects to tamoxifen; 

however, FDA has restricted its use in postmenopausal women with metastatic 

breast cancer88.  

Several studies have found that estrogen impedes fibrogenesis and the activation 

of fibroblasts in various organs, such as heart91, kidneys92, lung93 and liver94.  

A study performed by Ashcroft et al. (1999)95 reported that after topical application 

of estrogen, skin wound healing improved. Their study showed significantly 

decreased wound size, increased wound stiffness and increment of collagen 

amount. Furthermore, Merlo and colleagues (2009)96 reported in an in vitro study 

that ER plays distinct roles in wound healing on human keratinocytes. This study 
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also presented increased cell proliferation associated with an increase in TGF-

β1 production by ERα agonist. In contrast, ERβ agonism increased cell 

proliferation independently of TGF-β1.  

However, estrogen has also been reported to increase the secretion of fibronectin 

and TGF-β180,97, leading to myofibroblast differentiation, contraction and collagen 

production in dermal fibroblasts. Furthermore, Novotny and colleagues (2011)98 

showed that ERs agonists induced myofibroblast differentiation and excessive 

ECM deposition in ovariectomised rats. In contrast to the above studies, Pedram 

et al. (2010)91, has reported that E2 acting at ERβ prevented myofibroblast 

differentiation and production of fibrosis-inducing proteins including collagen, 

TGF-β1 and fibronectin.  Several studies have demonstrated that tamoxifen has 

anti-myofibroblast activity. The expression of α-SMA was reduced in healing pig 

biliary tract tissue after bile duct reconstruction and treatment with tamoxifen99. 

Moreover, previous reports have shown the efficacy of tamoxifen in reversing the 

fibrotic process, by preventing the deposition of ECM, leading to the inhibition of 

collagen production100.  

Estrogen has been known to play an important role in the development of penis. 

For example, male offspring of humans and animals that are exposed to 

estrogen-like endocrine disruptors [e.g. diethylstibesterol (DES)] or 

phytoestrogens during development exhibit abnormal reproductive organs 

including stunted penises101–103. Furthermore, exposure of neonatal rats to 

tamoxifen has been reported to disrupt the development of os penis and glans 

penis104,105. These developmental effects of estrogen has been proposed to be 

mediated mainly by ERα106. 

The role of estrogen in the adult penis is relatively less understood than in the 

neonatal penis or the penile development. Estrogen has been shown to be 

produced in the adrenal gland and in the testis in quantities overall far less than 

in the female107. The two ERs have been shown to be expressed in urethral 

epithelia and vascular and neuronal structures of adult rat penis108. Dietrich, et 

al. (2004)109 observed that both receptors are expressed in human corpus 

cavernosum smooth muscle cells, endothelial cells and urethral epithelial cells in 
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adult penis. It is thought that through these two receptors, estrogen plays a role 

in regulation of blood flow and epithelial function in the adult penis109, but 

functional studies in this topic to support these assertions have been missing. 

Despite the cellular effect of estrogen on fibrosis signalling being unclear, the 

effect of estrogen receptor agonism by either estrogen or tamoxifen has 

consistently shown an anti-fibrotic effect in different tissues. The table below 

shows a summary of the effects caused by the ligands of the estrogen receptors 

in the fibrotic disorders described in this chapter. 

Table 1-2: Summary table of the effects caused by estrogen receptor ligands. The 
effect of ligands on estrogen receptors in the fibroproliferative disorders described in this 
chapter has been summarised. Legend - green: impedes fibrosis, red: promotes fibrosis, 
black: anti-inflammatory and blank: unknown. 

Tissue Estrogen receptors ligands 

Lung Estrogen110 

Kidney 
Estrogen92 

Tamoxifen100 

Liver 
Estrogen111 

Idoxifene112  

Heart Estrogen91 

Skin Estrogen80 

Penis  Estrogen113 

Several tissues can be affected by fibrosis and examples of fibrotic disorders will 

be described including pulmonary fibrosis, renal fibrosis, liver fibrosis and a more 

detailed overview of Peyronie’s disease. The role of adenosine and estrogen 

receptors in each fibrotic disease will also be discussed in further detail. 

1.2 Pulmonary fibrosis 

Pulmonary fibrosis is a complex fibroproliferative disease secondary to other 

interstitial lung diseases, including autoimmune disorders and viral infections to 

the lung114. This fibrotic disorder is characterised by the excessive accumulation 
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of ECM components within the pulmonary interstitium, resulting in the destruction 

of the air sacs (alveoli) around capillaries and lung tissues. The resulting fibrotic 

mass causes loss of elasticity and the development of rigid lung as well as 

permanent loss of function (Figure 1-5)114. TGF-β1 has been shown to induce 

myofibroblast differentiation in human lung fibroblasts, leading to increasing α-

SMA mRNA expression in a concentration-dependent manner115.This fibrotic 

disorder can be initiated by a diversity of factors, such as drugs (bleomycin, 

gentamicin, cisplatin and cyclosporine) and exposure to radiation, toxic vapours 

or inorganic dust.  

 

Figure 1-5: Pulmonary fibrosis process. Upon lung injury, a series of events occur, 
which will lead to excessive ECM accumulation and consequently to pulmonary fibrosis. 
Adapted from Chua et al. (2005)116. 

Idiopathic pulmonary fibrosis is one of the most frequent and most fatal among 

the interstitial lung diseases with an average survival time of 2-3 years following 

diagnosis117. IPF is defined by cell injury and stimulation of alveolar epithelial, 

fibroblast/myofibroblast foci development and exaggerated deposition of ECM in 
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the lung parenchyma, leading to the loss of pulmonary function14, with no known 

cause. In the USA alone, this disease affects between 150,000 and 200,000 

people and approximately 40,000 patients die per year118. Similar prevalence, 

incidence and mortality rates have been reported in Europe119. 

The treatment of IPF has been based on the current evidence-based guidelines 

published by Raghu et al. (2011)120, which includes lung transplantation, oxygen 

therapy and pulmonary rehabilitation. Medical treatment options are limited to 

pirfenidone and nintedanib which have been shown to reduce disease 

progression and functional decline in patients with mild to moderate functional 

impairment118.  

Adenosine receptors in pulmonary fibrosis 

All four adenosine receptors have been shown to be expressed in mice and 

human lungs with different roles. The activation of ADORA1 and ADORA3 by 

adenosine or an agonist results in pulmonary protection and have a pro-

inflammatory role. Whereas the activation of ADORA2B has been suggested to 

lead to the release of several inflammatory cytokines promoting the 

transformation of lung fibroblasts into myofibroblasts121.   

The transcript levels of the four adenosine receptors were investigated in human 

lung fibroblasts and it was observed that among the four receptors, ADORA2B 

had the highest mRNA levels, followed by ADORA1, ADORA2A and ADORA3, 

where lower transcript levels were detected. The mRNA levels of the adenosine 

receptors were confirmed by immunofluorescence staining. Human lung 

fibroblasts were stained with an anti-human ADORA2B antibody, showing the 

protein levels of this receptor in these cells72,122. In addition, a study characterised 

the expression of adenosine receptors in subjects with preserved lung function 

and patients with severe IPF and stage 4 chronic obstructive pulmonary disease 

(COPD) and showed that all four adenosine receptors were observed in 

preserved lung samples; whereas, only the ADORA2B transcript levels were 

significantly increased in stage 4 COPD and severe IPF patients123.  
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In the lungs of mice exposed to bleomycin (fibrosis-inducing agent), adenosine 

levels have been reported to be elevated leading to alterations of the adenosine 

metabolism and signalling with up-regulation of CD73 (responsible for adenosine 

production)124. Furthermore, in adenosine deaminase (ADA)-deficient mice, 

chronic adenosine levels have been documented and has been suggested to be 

correlated with lung fibrosis, indicating that adenosine has a profibrotic activity in 

the lung65.  

Inhibition of ADORA2B activity using a specific and selective antagonist in the 

lungs of ADA-deficient mice has been shown to interfere with the progression of 

the inflammatory and fibrotic processes121. In addition, topical application of an 

ADORA2A agonist (CGS-21680) has been reported to significantly increase 

excisional wound closure and healing in both normal and diabetic rats125.  

Estrogen receptors in pulmonary fibrosis 

The mRNA levels of ERα and ERβ were investigated in normal human lung 

fibroblast cell lines and in human lung tumour cell lines and it was demonstrated 

that both receptors were expressed in these cells. The protein levels were also 

examined for both receptors in normal lung fibroblasts and in lung tumour 

fibroblasts. Western blot analyses showed the protein expression of both ERs in 

these cells. Moreover, the ERα was localised in the cytoplasm, whereas the ERβ 

expression was mainly localised in the nucleus of human lung fibroblasts126,127.  

Morani and colleagues (2006)93 demonstrated that ERβ knockout mice have 

increased levels of collagen and abnormal clusters of collagen fibres in the 

alveolar septa of these mice, suggesting that ERβ is essential for the 

maintenance of ECM composition in the lung.  

Card and Zeldin (2009)128 showed that E2 increased the expression of TGF-β1 

and procollagen mRNA levels in fibroblasts isolated from rat fibrotic lung. A 

similar study also demonstrated that fibroblasts from bleomycin-treated rats 

showed an enhanced response to E2 treatment caused by increased procollagen 

1 and TGF-β1 transcript levels compared to untreated controls129. Conversely, a 

study by Voltz et al. (2008)110 reported that E2 played a role in decreasing lung 
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fibrosis in bleomycin-induced pulmonary fibrosis in C57BL/6 mice after bleomycin 

administration.  

The development of lung fibrosis is significantly higher in patients treated with 

tamoxifen and radiotherapy than in patients only treated with radiotherapy130. In 

addition, Bese and colleagues (2006)131 assessed the effects of tamoxifen on 

lung fibrosis in Wistar albino rats and reported that the use of tamoxifen 

concurrently with irradiation led to the progression of lung fibrosis.  

1.3 Renal fibrosis 

A common pathological feature of progressive chronic kidney disease (CKD) is 

renal fibrosis, leading to end-stage renal failure. This fibrotic disorder is 

characterised by myofibroblast accumulation and excessive scarring, 

progressing to the destruction of renal tubules132. This condition can also be 

characterised by loss of renal parenchyma, tubulointerstitial fibrosis, 

inflammatory cell infiltration and glomerulosclerosis133. All these pathological 

features originate from a series of events typical of the fibrotic process, including 

excessive synthesis and deposition of ECM components; myofibroblast 

differentiation and accumulation and activation of profibrotic cytokines133 (Figure 

1-6). TGF-β1 induces its profibrotic effects on the kidney by producing ECM, 

transforming fibroblasts into myofibroblasts and acting on numerous renal 

resident cells, which can result in the deterioration of renal injury134. 
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Figure 1-6: Renal fibrosis process. Upon renal damage, cellular and molecular 
activation occurs, where inflammatory cells are recruited and several profibrotic 
cytokines are released, resulting in excessive accumulation of ECM. Renal fibrosis is the 
outcome of this process. Adapted from Cho (2010)133. 

CKD incidence appears to have been increasing over the past decade with an 

annual incidence of end-stage renal disease of approximately 100 patients per 

1,000,000 population135. In England, studies have reported 6 - 8.5% of adults 

present late-stage CKD and 6,000 new cases are diagnosed annually136. In the 

USA alone, chronic kidney disease affects 12% of all adults and these patients 

require renal replacement therapies, including transplantation and dialysis. The 

annual incidence of dialysis has doubled in the past decade, in developed 

countries, being highest in the USA23,133. 

Adenosine receptors in renal fibrosis 

The distribution of the four adenosine receptors in the normal kidney is not fully 

defined; however, these receptors have been detected in this organ137,138. 

Adenosine has been shown to be increased in patients with CKD68. A study 

performed by Zhang et al. (2013)139 showed that renal biopsy samples from CKD 

patients had increased levels of ADORA2B mRNA expression compared to 

patients without CKD, suggesting that ADORA2B signalling may have a role in 
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the development of renal fibrosis. The protein levels of ADORA2B showed that 

the expression of this receptor was elevated in both tubules and glomeruli of 

kidney biopsies collected from CKD patients compared to control samples. 

Furthermore, Xiao and colleagues (2013)140 observed that ADORA2A mRNA and 

protein levels were present in kidney tissue samples from mice. 

Several studies have shown that inhibition of ADORA2B attenuated the 

development of renal fibrosis in ADA-deficient mice where the mice showed 

chronically elevated levels of adenosine68. A rat model with CKD and treated with 

an ADORA2A agonist (CGS21680) was reported to attenuate the progression of 

renal fibrosis, where the reduction of TGF-β, α-SMA and collagen expression was 

observed in agonist-treated rats77.  

Estrogen receptors in renal fibrosis 

The transcript levels of both ERs have been demonstrated in human and mouse 

mesangial cells of the glomerulus, where ERα is the main receptor expressed. 

The protein levels of these two receptors were investigated in both human and 

mouse mesangial cells using Western blot analyses. The respective band for 

each receptor at the correct molecular weight was observed in both human and 

mouse mesangial cells100,141.  

A study by Dixon et al. (2007)92 showed that E2 diminished the development of 

renal fibrosis by regulating TGF-β1 and ECM expression. In addition, a rat model 

with hypertensive nephrosclerosis was treated with tamoxifen and it was reported 

that tamoxifen impeded the accumulation of ECM proteins by reducing the mRNA 

and protein expression of collagen and fibronectin. Tamoxifen also significantly 

decreased the expression of α-SMA positive cells and inhibited TGF-β1 and PAI-

1 in the renal interstitium100. 

1.4 Liver fibrosis 

Liver fibrosis is a frequent pathological characteristic of chronic liver disease 

(CLD) that occurs in response to liver damage. Similar to other fibrotic disorders, 

this results in an inflammatory response leading to hepatic stellate cell (HSC) 

activation, myofibroblast differentiation and excessive production and deposition 
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of ECM components142. Disruption of the hepatic architecture occurs, as well as, 

reduction of blood flow to hepatocytes and alteration of liver function, progressing 

to cirrhosis143,144 (Figure 1-7). Liver damage can be triggered by several factors, 

including hepatitis B virus, hepatitis C virus, alcoholism, fatty liver, metabolic 

disease, ischemia-reperfusion, alcoholic steatohepatitis (ASH) and toxins143,145.    

 

Figure 1-7: Pathogenesis of liver fibrosis. Liver fibrosis is a complex process, which 
is predisposed by a diversity of factors, including viral infections, alcohol consumption, 
non-alcoholic fatty liver disease (NAFLD) among others. This has been suggested to 
result in the activation and differentiation of hepatic stellate cells to myofibroblasts, 
leading to fibrosis. Adapted from Gressner et al. (2007)146. 

Chronic liver diseases are among the leading causes of morbidity and mortality 

worldwide. The incidence of chronic liver disease is rising in the UK and 

worldwide, where alcohol abuse and viral infections are the main causes. In the 

USA, approximately 150,000 people are diagnosed with chronic liver disease 

each year144,147.   

Currently, liver transplantation is the gold standard treatment for cirrhosis, which 

has a number of disadvantages, such as limited organ donors and the complexity 

of the procedure145. Several studies using in vivo and in vitro models have shown 

potential new approaches, targeting the underlying disease processes (e.g. viral 

infections); however, no drug has yet emerged as an anti-fibrotic treatment option 

in this disease.  
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Adenosine receptors in liver fibrosis 

A study by Hashmi et al. (2007)148 showed that an immortalised human HSCs 

expressed ADORA2A, ADORA2B and ADORA3 mRNA levels, but not ADORA1 

transcript levels. Furthermore, another study demonstrated that the ADORA2A 

mRNA expression was increased in fibrotic murine liver compared with normal 

liver, suggesting that this receptor plays a main role in liver fibrosis, as the central 

profibrotic actions of adenosine are mediated through this receptor63. In addition, 

these authors also treated mice liver sections with carbon tetrachloride (CCl4) 

and thioacetamide (TAA) to induce liver fibrosis. They reported that the ex vivo 

mice samples treated with CCI4 and TAA released more adenosine than the 

untreated samples.  

ADORA2A-deficient mice, when treated with ADORA2A antagonists, have been 

reported to halt the development of liver fibrosis, suggesting that this receptor 

play a role in the pathophysiology of this fibrotic disorder75. In addition, C57BL/6 

control [wild-type (WT)] mice and CD73 knockout mice were treated with CCl4 or 

TAA to induce hepatic fibrosis. The authors showed that WT mice released more 

adenosine than CD73 knockdown mice and there was less collagen content than 

in WT mice after treatment. Furthermore, the expression of all four adenosine 

receptors was increased after CCI4 treatment in both WT and CD73 knockout 

mice149. All these studies indicate that treatment with ADORA2A antagonist could 

in principle protect the liver from liver fibrosis150. 

Estrogen receptors in liver fibrosis 

Various studies performed in female and male rat HSCs demonstrated 

expression of mRNA and protein levels of ERα111,151. Xu et al. (2004)111 showed 

that E2 prevented the accumulation of ECM proteins in rats subjected to CCI4. 

The authors also observed that the hepatic mRNA levels of ERα were enhanced 

after treatment with E2. Furthermore, idoxifene (a tissue-specific SERM) effects 

were evaluated on liver fibrosis in rats. This SERM showed protection against 

hepatic fibrosis in rats by decreasing the protein expression of collagen in HSC 

cells112. 
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One of the studies also showed that ERβ protein was mainly found to be localised 

in the nucleus in both hepatocytes and HSCs; however, some ERβ was also 

localised in the cytoplasm of the cells151. 

1.5 Peyronie’s disease 

Peyronie’s disease was first reported in 1743 by Francois Gigot de la Peyronie, 

who was the personal physician of King Louis XV of France152. PD is a localised 

connective tissue disorder, which is characterised by the formation of fibrotic 

plaques in the TA and surrounding vascular tissue in the corpus cavernosum of 

the penis153 (Figure 1-8). The fibrotic plaque results in penile pain; penile 

deformities, such as narrowing, bending and shortening during erection and 

erectile dysfunction (ED)154.  

Even though, there are many similarities between PD and other fibrotic disorders, 

such as abnormal wound healing, excessive production of ECM proteins and 

cytokines and myofibroblast differentiation process, PD is self-limiting and very 

unlikely to cause death as observed in other fibroproliferative diseases of vital 

organs (such as pulmonary fibrosis, renal fibrosis, liver fibrosis).  

The precise cause of this is unclear but it is possible due to the anatomical 

uniqueness of the location, as, contrary to other tissues, there only a thin layer of 

fibrous tissue in the TA that has physical barriers on either side (deep fascia and 

corpus cavernosum), whereas in other tissues the capacity for growth of the 

fibrous tissue is much greater. It may also suggest that the initiating cause of the 

fibrosis in PD is a single event as opposed to continuous micro-traumas, that 

would continually lead to the transformation of new myofibroblasts and 

subsequent ECM deposition.  
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Figure 1-8: Penile bending related to Peyronie’s disease. (A) Anatomy of a normal 
erection. (B) Cross-section of a penis presenting a fibrous plaque. (C) Penile curvature. 
The fibrous plaque impedes a normal erection, leading to the bending of the penis. 
Adapted from Fitkin & Ho (1999)155.  

 Epidemiology & aetiology  

Peyronie’s disease principally affects males between 45 and 65 years of age, 

with several reports of cases in younger males. The prevalence of PD is usually 

underestimated and ranges from 0.39% to 8.9%. According to Lindsay et al. 

(1991)156, the prevalence rate of PD was 388.8 per 100,000 men (0.39%) in 

Rochester, Minnesota. However, a study performed by Sommer et al. (2002)157 

found that the prevalence of PD was 3.2%, through a validated questionnaire 

survey involving 8,000 men in the greater Cologne area, Germany. A study 

involving 534 men who presented to a prostate cancer screening centre to 

provide a physical examination and their medical history reported that 8.9% of 

those men had a palpable penile plaque158. Moreover, a study performed by Arafa 

et al. (2007)159 reported the highest prevalence of PD (20.3%) in a subsection of 

patients that also presented ED and diabetes mellitus (DM). 
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Even though studies on PD prevalence are quite inconsistent and limited, the 

disease prevalence has been suggested to increase consistently over the last 30 

years and it may be higher than the reported occurrence, due to patients’ 

hesitancy to report to their physician for diagnosis and treatment. The under-

diagnosis of PD by physicians may also contribute to this under-estimation, due 

to limited understanding of this fibrotic disorder160.  

The pathogenesis of PD is still unclear; however, its aetiology is thought to be 

multifactorial and several theories suggest that a diversity of factors may be 

involved, including ED, trauma, genetic predisposition or uncontrolled fibrosis. 

Although its aetiology is thought to be multifactorial, trauma has been postulated 

as the initiating factor, which is then followed by aberrant wound healing and scar 

formation157,160.  

ED is known to occur in 20-40% of patients with PD161,162 and is one of the risk 

factors related to the development of PD. A recent study performed by Kadioglu 

et al. (2011)163 involving 1,001 patients reported that 58.1% of patients with PD 

also presented ED. Several factors may contribute to the development of ED, 

such as penile deformity preventing intercourse; penile pain during erection; 

psychological effects or performance anxiety due to the appearance of the penis 

and impaired veno-occlusive mechanism due to extensive fibrosis164,165. 

Furthermore, a study performed by Lopez and Jarow (1993)166 using 

ultrasonography stated that 59% of 76 men with PD had veno-occlusive 

dysfunction and 36% had an arterial disease which caused ED. The presence 

and the severity of ED should be considered when weighing surgical options, as 

it remains a complication for reconstructive surgeries.  

PD has also been associated with several other conditions, including DM167, 

hypertension158, Ledderhose’s disease168, use of β-blockers157 and Knuckle 

pads168.  

Although PD has not been genetically linked to a predisposed population; several 

reports have associated PD with Dupuytren’s contracture169, Paget’s disease of 

the bone170 and specific human leukocyte antigen (HLA) subtypes171. Both 

Dupuytren’s contracture and Paget’s disease of the bone are genetic disorders, 



 

28 

which are transmitted in an autosomal dominant pattern. A study comparing the 

gene expression variations in PD and Dupuytren’s contracture patients reported 

that the pattern of variations in the gene expression is similar to both disorders, 

proposing that these two diseases share common pathophysiologic features172. 

In addition, a study involving 61 men with Paget’s disease reported that 31.4% 

had developed a deformity or bend in their erect penis, suggesting that PD may 

be associated with Paget’s disease of the bone170,173. 

According to Nachtsheim & Rearden (1996)171, there is an association between 

PD and the HLA class II antigen HLA-DQ5, suggesting HLA-DQ5 as a risk factor 

for the development of PD and also inferring an autoimmune aetiology for PD.  

An immunological component has also been proposed as one of the aetiological 

factors of PD. A study involving 66 patients investigated the immune response 

pattern of the disease and reported alterations in cell-mediated immunity in 48.5% 

of the patients, modifications of humoral immunity in 31.8% of the patients and 

changes in markers of autoimmune diseases in 37.9% of the patients174. Patients 

with PD showed higher levels of anti-tropoelastin (responsible for elastin 

synthesis) and anti-α-elastin (responsible for elastin destruction) than healthy 

patients. These findings suggest the presence of autoimmune mechanisms in the 

pathogenesis of PD175.        

 Pathophysiology of Peyronie’s disease 

In the TA of the penis, the elastic fibres form an irregularly latticed framework 

upon which the collagen rests, which is crucial to maintaining the structure of the 

collagen bundles. Both structural components are crucial to penile erection, as 

these structures allow an increment in length and girth during tumescence176. In 

the case of any flaw of the tunica collagen or elastic fibre network, it can result in 

major modifications in the hemodynamics of erection175,177. 

The histopathology of PD reveals an inflammatory process, which is 

characterised by the presence of a diversity of inflammatory cells, such as mast 

cells, neutrophils, leukocytes and macrophages in the TA and in the surrounding 

erectile tissues176,178. The cause of the initial inflammatory process that results in 
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fibrosis, calcification and plaque formation is still unclear and poorly understood, 

but it has been suggested that trauma or repetitive microtrauma might be an 

initiating factor178,179.  

Trauma might cause excessive physical forces inflicted on the penis during 

intercourse, resulting in bleeding into the subtunical spaces or tunical 

delamination178. A study involving 732 patients showed a link between penile 

trauma and both PD and ED180. Trauma is then followed by aberrant wound 

healing and formation of scar tissue in the TA. As a consequence of repetitive 

injury, fibrin deposition occurs (a normal component of wound healing), activating 

fibroblast proliferation and ECM accumulation164,181. It is suggested that the 

balance between scar tissue formation and ECM exceeds that of degradation of 

both ECM and collagen due to abnormal fibroblast activity175. 

Fibrin further stimulates an increase in collagen deposition, acting as a profibrotic 

protein due to the presence of TGF-β and PAI-1 within the TA165. PAI-1 is a 

protease responsible for inhibiting fibrin degradation182; whereas TGF-β is 

involved in several crucial processes (e.g. normal wound healing, inflammation 

and stimulation of ECM)165. Fibrin deposition has been demonstrated in PD 

plaques, but not in normal or scarred TA of control patients183. Furthermore, 

several reports showed that type III collagen is present in PD plaques, which 

contains dense collagenous connective tissue with fragmented and reduced 

elastin fibres164,175.  

In addition to trauma and inflammatory response in the TA, overexpression of 

growth factors and cytokines (e.g. TGF-β and PAI-1) by leucocytes also occurs, 

leading to the recruitment of more inflammatory cells and release of profibrotic 

factors and ROS165. El-Sakka and colleagues (1997)184 reported that TGF-β was 

upregulated in the TA of patients with PD when compared to the TA of men 

without PD.  

El-Sakka and colleagues have also proposed an animal model for PD, where the 

authors investigated histological and ultrastructural modifications in the penis of 

rats after inducing a PD-like condition by injecting a TGF-β-like substance 

(cytomodulin) and by inducing trauma of the TA185,186. The histological alterations 
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observed included diffuse and focal degeneration of elastic tissue; chronic 

inflammation, infiltration and disorganisation, thickening and clumping of the TA. 

On the other hand, the ultrastructural alterations involved separation of neuronal 

fibres by clumps of packed collagen and dense collagen bundles.  

Another animal model by Bivalacqua and colleagues was proposed to 

demonstrate the role of nuclear factor kappa B (NF-κB), which is a transcription 

factor responsible for regulating the expression of numerous genes that encode 

adhesion molecules (reviewed in Hellstrom & Bivalacqua, 2000175). The authors 

showed the immunohistochemical presence of NF-κB in rats with Peyronie’s-like 

condition after TGF-β injection and injury to the rat penis. These rat studies also 

demonstrated that TGF-β injection and surgical injury can induce symptoms 

analogous to those found in men with PD.  

Molecular basis of Peyronie’s disease 

TGF-β1 has been associated with a variety of soft tissue fibrotic disorders and it 

has a pleiotropic effect on fibroblast function. This protein induces ECM 

production; stimulates myofibroblast differentiation; increases transcription and 

synthesis of collagen, fibronectin and proteoglycans and inhibits collagenase, 

preventing connective tissue breakdown as well as increasing fibroblast 

proliferation and inducing chemotaxis178,187.  

Moreover, TGF-β1 can also induce ROS formation and inhibit NO production by 

repressing iNOS, lowering the NO/ROS ratio164,187. In normal tissues, fibrosis is 

inhibited by the expression of iNOS, which produces NO. NO can inhibit TGF-β1, 

due to its anti-fibrotic role, neutralising ROS, promoting collagen breakdown and 

decreasing myofibroblast differentiation. A rat model was used to show the role 

of NO in rats with Peyronie’s disease-like condition and cells isolated from human 

non-PD TA tissue and PD plaque tissue. The authors reported that NO appears 

to reduce myofibroblast differentiation and collagen I synthesis, suggesting that 

NO has an anti-fibrotic role188. 

In PD, the balance between anti-fibrotic and profibrotic factors is altered, due to 

the ability of TGF-β1 to induce its own production in a positive feedback loop, 
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leading to excessive scarring and unimpeded fibrosis187. Protein and mRNA 

levels of TGF-β1 have been shown to be up-regulated in several fibrotic disorders 

including PD. Several other growth factors and cytokines, such as MCP-1189 and 

PAI-1190 have also been reported to be altered in PD plaques as well as skin, 

lung, liver and kidney fibrosis. Furthermore, patients with PD have also been 

demonstrated to express PDGF-α, PDGF-β, PDGF-AA, and PDGF-BB receptors 

in the TA, which are growth factors released by platelets after trauma and capable 

of exacerbating fibroblast proliferation191. 

Gonzalez-Cadavid et al. (2002)179 applied DNA microarray technology to 

describe the gene expression profile in PD, by comparing the mRNA levels of the 

plaque and of the TA. The results obtained showed that the genes associated 

with collagen metabolism (e.g. collagen I or TGF-β1) in the plaque were up-

regulated; whereas the genes involved in pathways inhibiting TGF-β1 (e.g. 

decorin) or related to the pathways contrasting collagen synthesis (e.g. pro-

collagenase IV) were down-regulated. Moreover, the up-regulation of osteoblast-

specific factor (OSF)-1, MCP-1, heat-shock protein (HSP) 28 and α-SMA were 

also observed, suggesting fibrosis, ossification, inflammation and myofibroblast 

accumulation. 

Myofibroblasts in Peyronie’s disease 

Myofibroblasts are involved in numerous fibroproliferative diseases, including PD. 

Myofibroblast differentiation is an essential step in the wound healing process, as 

these cells are responsible for contracting the edges of the wound and 

synthesising ECM proteins to temporarily cover the wound and cytokines to 

recruit other cell types needed for normal wound resolution. The contractile 

property has been proposed to cause the contracture in the PD plaque (reviewed 

in Gonzalez-Cadavid, 2002179). 

Several gene expression studies have shown that increased myofibroblast 

accumulation in the injury is associated with collagen deposition179. As stated 

above, α-SMA is increased in the fibrotic wound when comparing with normal TA. 

The inhibition of iNOS activity can lead to an increase in α-SMA/vimentin ratio, 

suggesting either a decrease in myofibroblasts apoptosis rate and/or further 
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myofibroblast differentiation188. It has also been shown that myofibroblasts 

constitute approximately 20% of cells cultured from PD plaques192.  

Furthermore, a study reported that myostatin (also known as growth 

differentiation factor 8; GDF8) is overexpressed in the PD plaque and absent in 

normal TA, especially due to myofibroblast accumulation during tissue damage 

and repair. Myostatin is another member of the TGF-β family and the results of 

this study suggested that both TGF-β1 and myostatin act concurrently193. 

 Clinical Presentations and Evaluation 

PD can be divided into an active phase and a stable or mature phase. In the early 

stages of PD, patients complain of penile pain and/or penile deformity during 

erection as well as the presence of penile nodules or palpable plaques. Penile 

pain during erections generally resolves within 6 months, whereas the penile 

curvature stabilises by 12 months. In later stages of PD, the clinical presentations 

include stable penile deformity or curvature during erection, harder plaque and 

development of ED153,194.  

The rigid plaque present in PD patients is generally located on the dorsal aspect 

of the penis, which causes an upward deviation during erection161. Plaques 

located on the ventral and lateral surface of the penis are less common, causing 

a downward and lateral curvature, respectively, which becomes more difficult 

during intercourse, as the deviation is greater than the natural coital angle161,164. 

For the evaluation of the disease, detailed medical, sexual and family history and 

physical examination should be performed. The detailed history and symptoms 

of patients should include the presence or absence of pain; duration of the 

disease; an estimation of the degree of the penile deformity; the orientation of the 

bend and the presence of penile shortening and hourglass constriction. All these 

clinical presentations can affect treatment options164,194. However, there are 

several questions that do not bear upon treatment of PD, these questions are still 

important, such as the psychological impact of PD on the lives of the patient and 

his partner and the patient’s expectations of therapy195. The medical and sexual 

history as well as the follow-up to measure treatment efficacy, can be obtained 
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through standardised questionnaires, such as the Peyronie’s Disease Index (PDI; 

used as an objective assessment of treatment and a subjective evaluation of PD) 

and the International Index of Erectile Function (IIEF; to assess the quality 

erections)152.  

In regards to the physical examination, it should include an evaluation of the 

pubis-to-glans length, due to the shortening of the penis; an assessment of the 

location and the number of plaques; the degree of plaque calcification and the 

observation for the presence of associated conditions (Dupuytren’s disease, 

hypertension, diabetes, hyperlipidaemia)152,194. To identify the degree of plaque 

calcification and the location and the number of plaques, as well as venous 

leakage, penile vascular flow, and erectile response, the use of duplex 

ultrasonography can be very useful in this regard. Furthermore, to measure the 

curvature severity, an intracavernosal injection-induced penile erection is still the 

gold standard method165. Although blood tests are unreliable in the diagnosis, 

determination of several factors such as testosterone; prostate-specific antigen; 

glucose and lipid profile can be performed according to the clinical 

presentation152,165. 

 Treatment of Peyronie’s Disease 

A definitive treatment course for PD has not been established yet; however, in 

the early stages of PD (6 - 12 months), non-surgical treatments are attempted. 

On the other hand, in the later stages of PD, where patients present a stable PD 

plaque (>12 months), surgical treatment is recommended. 

Non-surgical treatments 

Non-surgical treatments are minimally invasive treatments that are considered 

for patients to relieve the pain as well as to reduce PD deformity or progression. 

Although several of these non-surgical treatment options appear to have some 

benefit when applied in the early phase of PD, the majority of these therapies 

have not undergone accurate evaluation in suitably designed studies (i.e. double-

blind, placebo-controlled clinical trials)196. These treatments include oral therapy, 
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intralesional injection therapy, topical treatments, iontophoresis, extracorporeal 

shock wave therapy and penile traction devices.  

Oral therapy, such as vitamin E197, potassium para-aminobenzoate198, 

tamoxifen199,200, acetyl-L-carnitine199, colchicine197,201 and phosphodiesterase 

type 5 inhibitors (PDE5i)202 have been trialled and it has been shown that these 

compounds have limited efficacy in preventing PD progression or reversing the 

fibrosis.  

Intralesional injection therapy has several advantages over oral therapy, as it 

provides a higher concentration of the drug and the pharmacologically active 

agent is injected directly into penile plaques. It has less adverse effects and it is 

a less invasive therapy than surgery. It has been demonstrated to have different 

degrees of efficacy in reducing penile pain and improving plaque size and penile 

curvature. This treatment includes steroids203, verapamil204,205 and 

interferons206,207.  

Purified clostridial collagenase is the only non-surgical treatment that is approved 

for PD. The drug works by altering collagen content of the penile plaque, showing 

important benefits when administrated in the early phase of PD. A phase III 

clinical trial has been performed, showing significant improvement in penile 

curvature in patients treated with collagenase when compared with the placebo 

group208,209.  

Furthermore, PDE5i202,210,211 have shown anti-myofibroblast activity in animal 

models. It has been suggested that the administration of these compounds inhibit 

myofibroblast transformation through the increase in NO and/or cGMP/cAMP 

(cyclic guanosine and adenosine monophosphate) levels. 

Other non-surgical treatments, such as topical treatments212, iontophoresis213, 

extracorporeal shock wave therapy214 and penile traction devices215 have shown 

some beneficial effects; however, long-term and controlled studies should be 

carried out.  
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Surgical treatments 

Surgical treatment is reserved for PD patients who have failed non-surgical 

treatment and present severe curvature or narrowing that impedes sexual 

intercourse. The aim of surgical treatment is to make the two sides of the penis 

equal in size, either by shortening the longer side (plication) or lengthening the 

shorter side (grafting). Penile implant is one option when ED is present in patients 

with PD. These surgical procedures should be performed when the disease has 

stabilised (>12 months after onset). Regardless of the treatment, the patient 

should be aware of the expected outcomes and possible side effects, such as 

failure to completely straighten the penis, decreased penile sensation and 

shortening of the penis194. There are three types of surgical treatment: tunical 

shortening procedure (plication); tunical lengthening procedure (grafting) and 

penile prosthesis implantation. 

The tunical shortening procedures are executed on the convex side of the penis, 

opposite the penile deformity194. Nesbit first described the correction of congenital 

penile deformities by excising an ellipse of TA, shortening the long side of the 

penis164. This type of procedure is ideal for men who have a good erectile 

function, adequate penile length and no narrowing or hourglass type of 

deformity194.  

Tunical lengthening procedure includes the use of reconstructive techniques to 

lengthen the concave side of the penis, which involves incision or excision of the 

plaque on the short side of the penis and restoring the defect with graft 

material164. This type of procedure should be considered for patients with 

hourglass or narrowing and severe curvature165. The ideal graft material should 

be flexible, readily available, resistant to infection, able to preserve erectile 

capacity and inexpensive. There are several autologous grafts (tunica vaginalis, 

temporalis fascia, saphenous vein and penile skin); cadaveric tissues (dermis, 

pericardium, fascia and porcine small intestine submucosa) and synthetic 

materials (polyester and polytetrafluoroethylene) that have been used with 

variable results164.  
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The use of penile prosthesis implantation is reserved for patients with severe ED 

and vascular impairment that do not respond to non-surgical treatments. The 

penile length can be restored by excising or incising the plaque during prosthesis 

placement216. In cases where modelling is ineffective or the penile defect is 

severe, the use of plaque incision with or without grafting in addition to prosthesis 

placement might be necessary175. 

The clinical presentations and evaluation should be considered when managing 

and treating PD. The following scheme presents an overview of the management 

of this disease. 
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Figure 1-9: Peyronie’s disease management. The clinical presentations and the 
evaluation of the disease should be considered when choosing the ideal treatment for 
the patient. Adapted from Pryor et al. (2004)217. 
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The benefits of non-surgical treatment are inconsistent and further controlled 

studies are required before recommending any therapy. The successful results 

of surgical treatment have been well documented; however, this treatment is 

expensive, carries adverse effects and is invasive. A better understanding of the 

mechanisms by which fibrosis occurs in the tunica albuginea and the 

myofibroblast differentiation process will offer new possibilities for future medical 

interventions in PD. 

Adenosine receptors in Peyronie’s disease 

A study performed by Mi et al. (2008)67 showed that corpus cavernosal smooth 

muscle cells expressed transcript levels of ADORA2B supporting that this 

receptor is important for adenosine-induced cAMP synthesis and vascular 

smooth muscle relaxation. A similar study observed mRNA levels of ADORA2B 

in primary corpus cavernosal fibroblast cells (CCFCs)66. Wen et al. (2010)66 

reported that primary CCFCs derived from ADA-deficient mice treated with and 

without NECA (adenosine receptor agonist) showed that NECA-treated samples 

presented enhanced transcript levels of procollagen and TGF-β1. Furthermore, 

the increase of the mRNA levels of these cytokines was attenuated when CCFCs 

were exposed to MRS1754, an ADORA2B specific antagonist.  

However, despite the above studies showing the presence and effect of 

adenosine receptor modulation in the penis, this has not been specifically 

determined in the tunica albuginea of the penis and consequently has also not 

been directly associated with Peyronie’s disease. 

Estrogen receptors in Peyronie’s disease 

Several studies have shown the expression of both ERα and ERβ in the 

penis109,218,219. The mRNA levels of ERα were mainly found in regions within and 

close to the glans penis. On the other hand, the mRNA levels of ERβ were found 

in the corpus cavernosum, corpus spongiosum, cells near to the glans penis and 

stroma of the glans penis. In regard to the protein levels, ERα protein was 

essentially localised in the corpus cavernosum, corpus spongiosum and glans 

penis; on the other hand, the protein levels of ERβ were localised in the dorsal 
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nerve of the corpus spongiosum, corpus cavernosum, blood vessels and urethral 

glands108. In addition, Jesmin et al. (2002)108 showed that the transcript levels 

and protein levels of both ERs were present and expressed in male rat penis and 

their distribution was age dependent.    

Jiang et al. (2015)220 demonstrated the effects of estrogen on TA-derived 

fibroblasts from male rats in vitro and observed that estrogen partially impeded 

myofibroblast transformation. Estrogen also reduced TGF-β1-induced collagen 

secretion as well as the contraction of myofibroblasts.  

To be best of the author’s knowledge, there are no studies investigating the effect 

of SERMs in animal models in PD. However, there are studies reporting that the 

administration of tamoxifen in the penis of male rats led to the abnormal 

development of the penis104,105. Although an early clinical study suggested some 

benefit (pain, deformity and plaque shrinkage) from tamoxifen221, a subsequent 

randomised placebo-controlled trial in patients with PD, tamoxifen did not 

significantly improve penile pain, plaque size or curvature compared to the 

placebo group222.  

1.6 Summary of adenosine and estrogen receptors in fibrosis 

The expression of adenosine and estrogen receptors differs according to the 

tissue investigated as described in this chapter. The table below summarises the 

expression of adenosine receptors in each tissue.   
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Table 1-3: Summary table of the expression of adenosine receptors in different 
tissues. Qualitative expression of adenosine receptors in the different tissues mentioned 
in this chapter. The relative mRNA expression of each receptor in each tissue is reported 
as a relative scale to the other receptors, according to in vivo, in vitro or human studies 
with +++ indicating the highest expression and + indicating the lowest expression of the 
receptors found to be present (Blank indicates no reports of expression). 

Tissues 

Adenosine receptors 

ADORA1 ADORA2A ADORA2B ADORA3 

Lung +72 ++72 +++72  

Kidney  +138 +++68  

Liver  +++63   

Heart +78 ++78 +++78  

Skin  +++62   

Penis (corpus 

cavernosum)  
  +++66  

The table below summarises the expression of estrogen receptors in each tissue. 

Table 1-4: Summary table of the expression of estrogen receptors in different 
tissues. Qualitative expression of estrogen receptors in the different tissues mentioned 
in this chapter. The relative mRNA expression of each receptor in each tissue is reported 
as a relative scale to the other receptors, according to in vivo, in vitro or human studies 
with +++ indicating the highest expression and + indicating the lowest expression of the 
receptors found to be present (Blank indicates no reports of expression). 

Tissues 

Estrogen receptors 

ERα ERβ 

Lung +126,127 +++126,127 

Kidney +++141 +141 

Liver +++111 +151 

Heart +91 +++91 

Skin +++223 +223 

Penis (corpus cavernosum)  +109,219 +++109,219 
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1.7 Rationale, aim and objectives 

Clinical relevance and fit into the larger research programme 

In Peyronie’s disease clinical management, there is not much that can be offered 

to those patients who present penile pain and nodule(s) in early stages of the 

disease. The nodule usually grows into a plaque which eventually can cause 

deformity. The starting point of this research aims to develop novel medicines 

that will help those patients in the early stages of PD. The overall aim of the 

research programme, therefore, is to gain insights into the cellular and molecular 

basis of PD and other fibrotic disorders and attempt to identify novel potential 

therapeutics for these diseases by focusing on myofibroblast differentiation. The 

idea being that by inhibiting myofibroblast transformation, it may be able to 

prevent the growth of a nodule into a plaque.  

My part of the project was to specifically characterise the expression of adenosine 

and estrogen receptors in myofibroblast differentiation and to assess the effect of 

agonism and antagonism of these pathways on myofibroblast differentiation. 

Rationale 

Briefly, this chapter has summarised the current literature in the field with the 

following main points for emphasis: 

- Fibrosis is a chronic and incurable disease with substantial morbidity and 

mortality, particularly in the Western world. 

- Adenosine and estrogen receptor signalling have been suggested to be 

involved in fibroproliferative disorders through mRNA and protein 

expression studies as well as some in vitro and in vivo studies, showing 

fibrosis modifying effects of agonists/antagonists. 

- Peyronie’s disease is a fibrotic disease affecting the tunica albuginea of 

the penis with a similar pathophysiology to other fibroproliferative 

disorders and with no viable treatment options other than intralesional 

collagenase injection or surgery. 

- Myofibroblast differentiation is known to play a key role in the 

pathophysiology of fibrosis in several tissues, including in PD. 
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- No characterisation of adenosine and estrogen receptors has been 

performed in Peyronie’s disease, despite the similarities with other fibrotic 

diseases in which these receptors are present. 

- Investigating the expression of adenosine and estrogen receptors in 

Peyronie’s disease and in myofibroblast differentiation, in particular, may 

yield novel insights into this disease and even reveal novel therapeutic 

targets. 

Hypothesis: Adenosine and/or estrogen receptor expression is involved in 

myofibroblast differentiation in PD and may, therefore, be a novel potential target 

for anti-fibrotic therapies in this disease. 

Therefore, the aim of this project was to characterise the myofibroblast 

differentiation process in human tunica albuginea-derived fibroblasts and to 

investigate the role of adenosine and estrogen receptors in this process to identify 

potential, novel targets for anti-fibrotic therapies, through the following objectives: 

1. Developing a method to investigate mRNA levels of myofibroblasts 

based on real-time RT-PCR in cells derived from non-PD TA tissue and 

PD plaque tissue; 

2. Validating a method to investigate protein expression of myofibroblasts 

based on the In-Cell Western method in cells derived from non-PD TA 

tissue and PD plaque tissue as well as to assess the effect of specific 

receptor agonist and antagonist compounds on myofibroblast 

differentiation; 

3. Investigating the expression of adenosine receptors and the effect of 

modulation of these receptors on myofibroblast transformation; 

4. Investigating the expression of estrogen receptors and the effect of 

modulation of these receptors on myofibroblast transformation. 
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2 Materials and Methods 

2.1 Search criteria 

To summarise the current understanding in the field, a thorough literature review 

was performed (Figure 2-1). Briefly, the search terms “fibrosis”, “myofibroblasts”, 

“adenosine receptors”, “estrogen/estrogen receptors” and “Peyronie’s disease” 

were used, which yielded 62420 total papers. After removal of the duplicates, 846 

papers were relevant and had the full text available. Of these, 162 papers were 

included in this thesis since they had the highest relevance to this study. The 

remainder of the references were acquired by revision from these primary 

sources. 

 

Figure 2-1: Brief flowchart of the search criteria used to produce the literature 
review. Several keywords were used to write the introduction below. During this search, 
various articles were excluded for numerous reasons, such as duplication or were not 
relevant for this study after review of the title and abstract.  

2.2 Cell biology techniques  

 Cell culture conditions and basic cell culture techniques  

2.2.1.1 Cell culture conditions 

Cells were cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12, 

GlutaMAXTM (DMEM/F-12; GIBCO, Invitrogen, UK) supplemented with 10% 
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foetal bovine serum (FBS; GIBCO, Invitrogen, UK) and 1% of 5,000 units/ml of 

penicillin and 5,000 µg/ml of streptomycin (GIBCO, Invitrogen, UK).  

Aseptic techniques were employed by using a class II biological safety cabinet 

(NuAire; Triple Red, UK) when manipulating cell populations. Cells were cultured 

in T75 flasks (NUNC; Thermo Scientific, UK) and grown at 37°C, 5% CO2 in a 

humidified atmosphere until cultures reached approximately 90% confluence, 

being fed every two to three days with fresh and warm medium. 

2.2.1.2 Cell passage and maintenance  

Once the cells reached approximately 90% confluence, the cell populations were 

split in a 1:4 ratio by removing the medium from the T75 flask and washing the 

cells with sterile and warm phosphate-buffered saline (PBS; GIBCO, Invitrogen, 

UK). To detach cells from the flask, 2 ml of warm 0.25% trypsin/EDTA (TE; 

GIBCO, Invitrogen, UK) was used and cells were incubated at 37°C for 2 minutes, 

after which, cells were examined under the microscope to confirm their 

detachment. Once detached, 6 ml of warm medium was added to neutralise TE 

and cell suspension was split into T75 flasks containing fresh and warm medium. 

Cells were then observed under the microscope and placed in the incubator at 

37°C, 5% CO2. 

2.2.1.3 Cell freezing/storage 

For long-term storage of cells, these must be detached from the T75 surface, as 

described previously in section 2.2.1.2 (Cell passage and maintenance). The cell 

suspension was transferred to a 15 ml falcon tube (Fisher Scientific, UK) and 

centrifuged for 5 minutes at 400 g at 4°C. The supernatant was discarded and 

the cell pellet was resuspended in 1 ml of freezing medium, which contained 90% 

FBS and 10% dimethyl sulfoxide (DMSO; Fisher Scientific, UK). The contents of 

the falcon tube were transferred to a sterile 1.8 ml cryotube vial (NUNC cryotube 

vial; Thermo Scientific, UK) and placed immediately in the -80°C or in liquid 

nitrogen. 
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2.2.1.4 Cell thawing 

To prevent the DMSO present in the freezing medium from affecting cell viability, 

the thawing procedure should be performed quickly to minimise the time cells are 

at room temperature. 

The cryotube containing frozen cells was transferred from the -80°C freezer or 

from liquid nitrogen to the water bath (Fisher Scientific, UK) at 37°C. As soon as 

the last portion of ice thawed, the content of the cryotube was transferred to a 15 

ml falcon tube containing warm media. Cells were centrifuged at 400 g for 5 

minutes at 4°C and then transferred to a T75 flask containing 11 ml of warm, 

fresh medium. Cells were observed under the microscope and placed in the 

incubator at 37°C, 5% CO2. 

 Sample acquisition and establishment of primary cell cultures 

Tunica albuginea samples were acquired from patients undergoing surgery for 

PD or invasive penile cancer (control samples) at University College London 

Hospital (UCLH). Patients aged between 18 and 75, listed for surgical treatment 

of PD or penile cancer, able to understand the patient information sheet and to 

give consent were included in the study. Patients were excluded from the study 

if unable to understand the patient information sheet, to give consent or below 18 

years of age or above 75 years of age. Ethical approval was obtained and all 

patients included in this study signed a written informed consent (Appendix I).  

As aforementioned, tissues were obtained from patients undergoing surgery at 

UCLH, which included Lue, Nesbit, penile prosthesis implant surgery and 

penectomy. From these surgeries, three groups of tissue samples were acquired: 

PD plaque tissue (henceforth termed “PD”), normal TA from patients with penile 

cancer (hereafter termed “TAC”) and normal TA from patients without PD 

(hereafter termed “TAN”). 

Tissues samples were removed from the patient and placed in a 50 ml falcon 

tube containing culture media (as mentioned in section 2.2.1.1: Cell culture 

conditions). Tubes were labelled and placed in a thermos containing ice and 
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wrapped with absorbent pads to transport from UCLH to the university 

laboratories.  

Upon arrival, tissue samples were removed from the thermos and placed on a 

sterile surface, where the tissue was cut into two equal pieces. One of the pieces 

was placed in a 50 ml falcon tube containing 4% paraformaldehyde (PFA) in 

phosphate buffer (PB; recipes can be found in Appendix II) and wrapped in foil. 

Tubes were stored at room temperature and these tissues were used for 

immunohistochemistry (IHC). 

The other piece of tissue was transferred to a sterile 6 well plate (Fisher Scientific, 

UK), cut into smaller fragments and split into approximately 3 wells containing 

sufficient media to submerge the entire tissue. In each well, the tissues were 

rubbed into the surface of the 6 well plate until it was anchored. Plates were then 

incubated at 37°C, 5% CO2 in a humidified atmosphere for 5-7 days without being 

disturbed to obtain fibroblast cultures.   

Tissue was removed from the 6 well plate, once cells were observed growing out 

of the tissue, dried and stored at -80°C. Cells were washed three times with 

sterile, warm PBS and fresh, warm medium was added to each well. Cells were 

then incubated at 37°C, 5% CO2 in a humidified atmosphere until reached 50-

70% confluence.   

Once fibroblast cultures reached 50-70% confluence, old medium was removed 

and cells were washed with 2 ml of warm PBS. The cells were detached from the 

6 well plate surface by adding 1 ml of TE and incubating the plate at 37°C for 2 

minutes. TE was then neutralised by adding 2 ml of warm medium and the cell 

suspension was transferred to T75 flasks containing fresh, warm medium. Cells 

were maintained until they reached passage number 5 as previously described 

in sections 2.2.1.1 to 2.2.1.4. Throughout the study, primary cell lines were used 

between passages 3 and 9.  

2.3 Real-time RT-PCR 

The mRNA levels of several genes of interest in fibroblasts exposed to control 

conditions and TGF-β1 (Sigma-Aldrich, UK) were assessed using real-time RT-
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PCR (RT-qPCR). Initially, RNA was extracted from cultured cells and then 

converted to complementary DNA (cDNA). The gene expression was evaluated 

using real-time PCR (qPCR). An example of a detailed protocol used for real-time 

RT-PCR can be found in Appendix II.  

 RNA extraction  

RNA extraction from cultured cells 

To obtain cell pellet for RNA extraction, cells were detached from 6 well plate 

surfaces as previously described in section 2.2.1.2 (Cell passage and 

maintenance). Once detached, the cell suspension was transferred to an RNase-

free eppendorf and cell counting was determined using the ScepterTM automated 

cell counter (hereafter termed “Scepter”; Millipore, UK). Cells were centrifuged at 

300 g for 5 minutes and the supernatant was discarded. 

Total RNA was extracted from the cell pellet using RNeasy Mini Kit (QIAGEN, 

UK) according to the manufacturer’s guidelines. Briefly, the cell pellet was lysed 

using 350 µl of lysis buffer (buffer RLT with 14.3 M β-mercaptoethanol; β-ME, 

Sigma-Aldrich, UK) and then transferred to a QIAshredder spin column (QIAGEN, 

UK) for homogenisation. The cell lysate was centrifuged for 2 minutes at 13,000 

rpm at room temperature. To provide suitable binding conditions, 350 μl of 100% 

ethanol (Fisher Scientific, UK) was added to the homogenised lysate and the 

sample was then transferred to a RNeasy spin column where the contaminants 

were washed away using different washing buffers. First, 350 µl of buffer RW1 

was added twice and centrifuged for 15 seconds at 11,000 rpm at room 

temperature. Subsequently, 500 µl of buffer RPE was added twice and 

centrifuged for 15 seconds and 2 minutes at 11,000 rpm at room temperature. A 

DNAse digestion step was also included in the RNA extraction using the RNase-

free DNAse set (QIAGEN, UK) by adding 80 µl of DNAse I incubation mix (70 µl 

of buffer RDD to 10 µl of DNAse I) per sample for 15 minutes at room 

temperature. RNA was then eluted in 50 μl of RNase-free water.  
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RNA extraction from tissue samples 

RNA extraction from tissue samples was attempted using the RNeasy Mini Kit. 

However, the lysis and the homogenisation steps were performed using a 

different technique to the one described above for cultured cells.  

Briefly, the frozen tissue (maximum amount of starting material per tube of 30 

mg) was transferred from the -80°C freezer to a cold tube containing 2.8 mm 

ceramic beads (Precellys, UK) and 600 μl of lysis buffer (buffer RLT with β-ME) 

in dry ice. The disruption and homogenisation of the tissue were performed using 

the Precellys® 24-Dual (hereafter termed “Precellys”, Precellys, UK) at 6,000 rpm 

for 2 x 30 seconds (program number 2). After homogenisation, the lysate was 

centrifuged at full speed for 3 minutes and the supernatant was then transferred 

to a new RNase-free eppendorf. Ethanol was added to the cleared lysate and the 

subsequent steps were performed as described in RNA extraction from cultured 

cells section. Several optimisations were performed to the lysis and 

homogenisation steps including using two types of beads (ceramic vs glass 

beads), use of fresh tissue instead of frozen tissue, stabilisation of harvested 

tissues in RNAlater RNA Stabilization Reagent (hereafter termed “RNAlater”; 

QIAGEN, UK), use of a different homogenisation protocol (6,500 rpm for 2 x 25 

seconds) and use of liquid nitrogen instead of dry ice to keep the tissue frozen. 

 RNA Quality Control 

To ensure high-quality, free of contaminants RNA, it is essential to assess the 

quantity, purity and integrity of the RNA. 

The concentration and purity of the RNA were assessed using NanoDrop 2000c 

spectrophotometer (Thermo Scientific, UK). The concentration was determined 

by measuring the absorbance at 260 nm (A260), where 44 μg/ml of RNA 

corresponds to an absorbance of 1 unit at 260 nm. On the other hand, the purity 

was determined by the ratio of the readings at 260 nm and 280 nm (A260/A280), 

where at 260 nm corresponds to the absorbance of RNA and at 280 nm 

corresponds to the absorbance of proteins. Therefore, an A260/A280 ratio greater 

than 1.8 (acceptable cut-off value224) indicated that the extracted RNA was free 
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of proteins. In addition to the A260/A280 ratio, the peak produced by the sample 

could also provide information about the presence of impurities, such as 

chaotropic salts and residual phenol, which absorb at 230 nm; hence, a single 

peak at 260 nm indicated that the RNA was pure.  

To evaluate the RNA integrity, either the Agilent 2100 Bioanalyzer (hereafter 

termed “Bioanalyzer”; Agilent Technologies, UK) or the ExperionTM Automated 

Electrophoresis System (hereafter termed “Experion system”; Bio-Rad, UK) were 

utilised according to the manufacturer’s instructions. Both systems use a 

microfluidic technology to automate electrophoresis for RNA analysis, generating 

ribosomal RNA (rRNA) ratios, visual electropherogram data, a virtual gel image 

and an RNA integrity number (RIN). This RIN indicates the RNA quality by 

assigning a number ranging from 1 (degraded RNA) to 10 (intact RNA), 

overcoming the main disadvantage of the traditional agarose gel electrophoresis, 

where the interpretation of the data is subjective. According to Fleige & Pfaffl 

(2006)225, a RIN higher than 5 indicated a good total RNA quality, whereas a RIN 

higher than 8 indicates a perfect RNA sample for downstream applications. In 

addition to the RIN, the rRNA ratio (28S:18S) could also provide a good indication 

that the RNA was intact, where the 28S rRNA band should be approximately 

twice as intense as the 18S rRNA band. For RNA quality analysis, either the 

Agilent RNA 6000 Nano Kit (Agilent Technologies, UK) or the ExperionTM RNA 

StdSens Analysis kit (Bio-Rad, UK) were used to assess the RNA integrity. 

Briefly, the electrodes of the Bioanalyzer and the Experion system were 

decontaminated using RNAseZAP (Fisher Scientific, UK) followed by RNase-free 

water. The Gel-Dye mix was prepared by adding 65 μl of filtered gel to 1 μl of 

RNA dye concentrate and added to the RNA Nano chip. Before loading 1 μl of 

RNA samples and RNA ladder to each well of the RNA Nanochip, these were 

denatured at 70°C for 2 minutes. RNA Nano chip was placed in the adapter of 

the IKA vortex mixer and vortexed for 60 seconds at 2,400 rpm. Subsequently, 

the chip was inserted in the Bioanalyzer or Experion system to start the RNA 

quality analysis. At the end of every run, the electrodes were cleaned with RNase-

free water.  
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 cDNA synthesis by reverse transcription  

Extracted RNA was converted to cDNA by reverse transcription (RT) using the 

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, UK) 

according to the manufacturer’s instructions. Briefly, a master mix (Table 2-1) 

was prepared on ice, where 10 μl of RNA sample at 50 ng/μl was added.  

Table 2-1: Components used for the reverse transcription reactions.  

Components Volume/reaction (μl) Final concentration 

10X RT buffer 2.0 2X 

25X dNTP Mix (100 mM) 0.8 2X 

10X RT random primers 2.0 2X 

MultiScribeTM Reverse 

Transcriptase (50 U/μl) 
1.0 5 U/μl 

Nuclease-free H2O 4.2 - 

TOTAL 10.0 - 

PCR tubes containing the reaction mix (master mix and RNA sample) were 

placed in the G-STORM thermal cycler (G-STORM, UK) and incubated at the 

following conditions (Table 2-2). 

Table 2-2: Conditions used for the reverse transcription reactions.  

 Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 25 37 85 4 

Time (min) 10 120 5 ∞ 

The produced cDNA was stored for short-term storage at 4°C (up to 24 hours) or 

for long-term storage at -25°C.  

 Real-time PCR 

Real-time PCR was performed using QuantiTect® SYBR® Green PCR kit 

(QIAGEN, UK), according to the manufacturer’s guidelines. Briefly, a PCR 
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cocktail was prepared according to Table 2-3 and then cDNA template was added 

to the cocktail.  

Table 2-3: Components used for real-time PCR reactions.  

Component Volume/reaction (μl) Final concentration 

2X QuantiTect SYBR 

Green PCR master mix 
2.5 1X 

10X Primer mix 0.5 1X 

RNase-free water 0.6 - 

cDNA template 1.4 ≤ 500 ng/reaction 

TOTAL 5.0 - 

Both PCR cocktail and cDNA template were added either to individual 0.1 ml PCR 

tubes (QIAGEN, UK) or to Hard-Shell® Low-Profile Thin-Wall 96-well skirted PCR 

plate (hereafter termed “PCR plate”; Bio-Rad, UK), which was sealed with an 

optically clear heat seal (Bio-Rad, UK) using PX1TM PCR Plate Sealer (Bio-Rad, 

UK). Two negative controls: no template control (NTC; RNAse-free water instead 

of cDNA template) and no reverse transcriptase enzyme control (NRT) were 

included in every PCR run. The PCR tubes or the PCR plates were placed in a 

real-time cycler, either the Rotor-Gene Q (QIAGEN, UK) or the CFX Connect 

Real-time PCR detection system (hereafter termed “CFX cycler”; Bio-Rad, UK), 

where the PCR reactions were carried out by performing an initial activation step 

for 15 minutes at 95°C, followed by 40 cycles at 94°C for 15 seconds, 55°C for 

30 seconds and then 72°C for 30 seconds. A melting curve analysis between 

60°C and 95°C of the PCR products was also performed in every PCR run. All 

samples and negative controls were run in triplicate.  

The target genes that were investigated included α-SMA, ADORA1, ADORA2A, 

ADORA2B, ADORA3, ERα and ERβ; whereas β-actin (ACTB), 18S ribosomal 

RNA (18S), eukaryotic translation initiator factor 4A2 (EIF4A2) and DNA 

topoisomerase I (TOP1) were used as reference genes.  
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Gene-specific primer pairs for genes encoding α-SMA, β-actin and 18S were 

purchased from Sigma-Aldrich; whereas ADORA1, ADORA2A, ADORA2B and 

ADORA3 were purchased from Primerdesign. However, ERα, ERβ, EIF4A2 and 

TOP1 primer pairs were purchased from QIAGEN (Table 2-4).  

Table 2-4: Primers pair details for both target and reference genes. Information 
about the accession number from NCBI Reference Sequence (NM or NR), primer 
sequence and amplicon length are included. Legend: F – forward primer; R – reverse 
primer.  

Genes 
Detected 

transcript 
Primer Sequence 

Amplicon 

length 

α-SMA226 NM_001613 

F: 5’GACCGAATGCAGAAGGAGAT3’ 

98 bp 

R: 5’CCACCGATCCAGACAGAGTA3’ 

β-actin226 NM_001101 

F: 5’TGCTATCCAGGCTGTGCTAT3’ 

62 bp 

R: 5’AGTCCATCACGATGCCAGT3’ 

18S227 NR_003286.2 

F: 5’CTACCACATCCAAGGAAGGCA3’ 

71 bp 

R: 5’TTTTTCGTCACTACCTCCCCG3’ 

ADORA1 NM_000674.2 

F: 5’TGATGGAGAGGAGAACACTAGA3’ 

96 bp 

R: 5’CAACACTGAGTCCTTACAGACA3’ 

ADORA2A NM_000675.5 

F: 5’TCCTACTTTGGACTGAGAGAAG3’ 

93 bp 

R: 5’CATGAAACATCTGCTTCCTCAG3’ 

ADORA2B NM_000676.2 

F: 5’ACGGCTGGTTTTCATTGTGAA3’ 

117 bp 

R: 5’GCCTACTACTGACACATACATATTAG3’ 

ADORA3 NM_000677.3 

F: 5’GGCCAATGTTACCTACATCAC3’ 

139 bp 

R: 5’CAGGGCTAGAGAGACAATGAA3’ 

ERα NM_000125  Information not available 73 bp 

ERβ NM_001040275  Information not available 97 bp 

EIF4A2 NM_001967 Information not available 87 bp 

TOP1 NM_003286 Information not available 89 bp 

Several optimisations were performed to obtain efficiencies close to 100%, which 

included the use of QIAgility (QIAGEN, UK), a benchtop apparatus, which can 
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set up PCR reactions automatically and PCR reactions were performed in 

different conditions.  

Selection of reference genes 

The selection of suitable reference genes was also performed as part of the 

optimisation process, where the geNormTM Reference Gene Selection Kit 

(Primerdesign, UK) was used according to the manufacturer’s guidelines. This kit 

included a panel of 12 candidate reference genes (Table 2-5) that were tested in 

samples exposed to different experimental conditions.  

Table 2-5: List of the 12 candidate reference genes included in the geNormTM 

reference gene selection kit.  

Candidate reference genes 

Glyceraldehyde phosphate dehydrogenase (GAPDH) 

Eukaryotic translation initiator factor 4A2 (EIF4A2) 

18S Ribosomal RNA (18S) 

DNA topoisomerase I (TOP1) 

Phospholipase A2 (YWHAZ) 

Beta-actin (ACTB) 

Homo sapiens succinate dehydrogenase (SDHA) 

Ubiquitin C (UBC) 

Beta-2-microglobulin (B2M) 

Ribosomal protein L13a (RPL13A) 

Cytochrome c-1 (CYC1) 

ATP synthase (ATP5B) 

Briefly, each primer mix was resuspended in 220 µl RNAse/DNAse-free water 

and a PCR cocktail was prepared according to Table 2-6. Both PCR cocktail and 

cDNA template were added to the PCR tubes and placed in the Rotor-Gene Q. 

The PCR reactions were carried out by performing an initial activation step for 15 

minutes at 95°C, followed by 50 cycles at 95°C for 15 seconds and 60°C for 1 
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minute. A melting curve analysis between 60°C and 95°C of the PCR products 

was also performed. All samples and negative controls were run in triplicate. Data 

were analysed using the geNorm software: qbasePLUS, which ranks the candidate 

reference genes according to their expression stability.  

Table 2-6: Components used for real-time PCR reactions.  

Component Volume/reaction (μl) Final concentration 

2X QuantiTect SYBR 

Green PCR master mix 
10.0 1X 

Primer mix 1.0 300 nM 

RNase-free water 6.6 - 

cDNA template 2.4 ≤ 500 ng/reaction 

TOTAL 20.0 - 

2.4 Immunocytochemistry 

An example of a detailed protocol used for immunocytochemistry (ICC) can be 

found in Appendix II. 

Briefly, in a sterile 6 well plate, 2 ml of 100% ethanol was added and coverslips 

(Fisher Scientific, UK) were placed in the wells for 1 minute to sterilise them. 

Using sterile forceps (Fisher Scientific, UK), coverslips were placed vertically in 

empty wells and left to dry for approximately 10 minutes. Once dried, these 

coverslips were transferred to a new 6 well plate and set horizontally in each well. 

Approximately 2 ml of medium was added to each well and the bubbles 

underneath the coverslips were removed by gently pressing with a sterile pipette. 

Plates were then incubated at 37°C, 5% CO2 for 2 hours. 

Cells were detached from T75 flasks as described in section 2.2.1.2 (Cell 

passage and maintenance), and the cell suspension was transferred to a 15 ml 

falcon tube, where the number of cells was determined using the Scepter. Plates 

were removed from the incubator and any bubbles formed were removed by 

pressing the coverslip against the 6 well plate surface. The medium was 

discarded, and the cell suspension was added directly to each coverslip at 2.5 x 
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104 cells/well. Cells were observed under the light microscope and plates were 

incubated overnight at 37°C, 5% CO2. The next day, some of the cells were 

exposed to TGF-β1, by replacing the old medium with warm medium with or 

without TGF-β1 at 5 or 10 ng/ml. Plates were then incubated at 37°C, 5% CO2 

for 72 hours.  

Coverslips were removed from the 6 well plate, submerged in PBS and 

transferred to ice-cold methanol (at -25°C; Fisher Scientific, UK) for 10 seconds. 

Cells were washed twice in two beakers containing PBS and coverslips were 

placed on a glass slide (Fisher Scientific, UK) with cells facing up and left to dry. 

A contour was made around each coverslip using a hydrophobic pen (Mini Pan 

Pen; Invitrogen, UK) and block solution was added for 1 hour at room temperature 

in a humidified chamber by spreading evenly 50 μl of 10% donkey serum 

(Millipore, UK) in PBS over each coverslip. Block solution was replaced by 50 μl 

of primary antibody solution (Table 2-7) diluted in PBS and incubated at room 

temperature for 2 hours in a humidified chamber. The primary antibody solution 

was then removed by washing coverslips three times with PBS, after which, the 

secondary antibody solution (Table 2-7) diluted in PBS was added to the 

contoured area and incubated for 2 hours at room temperature in a humidified 

chamber in the dark. After the incubation period, the secondary antibody solution 

was washed three times with PBS and coverslips were mounted in a new glass 

slide (cells facing down) with VECTASHIELD® mounting medium with propidium 

iodide (PI; Vector Laboratories, UK). Cells were observed using the Zeiss 

confocal microscope (LSM 510; Carl Zeiss, UK). The fluorescence images were 

taken at three random areas in each coverslip at 200x or 400x magnification 

utilising the laser scanning microscope 510 v3.2 software (Carl Zeiss, UK). The 

number of myofibroblasts was determined by counting the number of α-SMA 

positive cells in the three areas per sample. The total number of cells was also 

determined by counting the number of nuclei stained. 

 

 

 



 

56 

Table 2-7: Primary and secondary antibody dilutions used in 
immunocytochemistry. All antibodies were diluted in PBS. 

Antibody Dilution 

Primary antibody 

Anti-ASMA antibody raised in 

mouse (Sigma-Aldrich, UK; A5228) 
1:1,000 

Anti-Estrogen receptor alpha 

antibody (abcam, UK; ab32063) 
1:200 

Anti-Estrogen receptor beta 

antibody (abcam, UK; ab3576) 
1:100 

Secondary 

antibody 

Donkey anti-mouse IgG antibody, 

FITC conjugate (Millipore, UK; 

AP192F) 

1:250 

Donkey anti-rabbit IgG antibody, 

FITC conjugate (Millipore, UK; 

AP182F) 

1:250 

2.5 Immunohistochemistry 

An example of a detailed protocol used for immunohistochemistry can be found 

in Appendix II. 

Tissue samples from non-PD TA tissue and PD plaque tissue were fixed in 4% 

PFA for 24 hours, after which, these specimens were dehydrated for 48 hours at 

4°C in a 30% sucrose solution. Specimens were then stored and frozen at -80°C 

in optimal cutting temperature compound (OCT; VWR, UK).  

Initially, the frozen tissues were sectioned in 18 µm thick slices using a cryostat 

(Model OTF, Bright Instruments Co Ltd, UK) at -20°C and placed on Superfrost 

Plus Gold slides (Fisher Scientific, UK). Tissues samples were left to dry for 3 

hours and a contour was made around each tissue sample using a hydrophobic 

pen. To each glass slide, 200 µl of blocking buffer (10% donkey serum in 0.1% 

Triton X-100 in PBS) was added ensuring that the tissues were covered and were 

not dislodged. The tissues were incubated for 90 minutes at room temperature in 

a humidified chamber, followed by application of 150 µl of primary antibody 

solution (1:100 diluted in PBS for both ADORA1 and ADORA2B) and incubated 

overnight at 4°C. On the next day, slides were washed three times with PBS and 
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150 µl of secondary antibody solution (1:250 diluted in PBS, donkey anti-rabbit 

conjugated with fluorescein dye) was added to each slide and incubated for 2 

hours at room temperature in a humidified chamber in the dark. The secondary 

antibody solution was removed and slides were washed with PBS three times 

and VECTASHIELD® mounting medium with PI was added. The coverslip was 

placed on top and cells were observed using the Zeiss confocal microscope (LSM 

510; Carl Zeiss, UK). The fluorescence images were taken at three random areas 

in each coverslip at 200x magnification utilising the laser scanning microscope 

510 v3.2 software (Carl Zeiss, UK). Negative controls sections were obtained by 

omitting the primary antibody solution. 

2.6 In-Cell Western assay 

The In-Cell Western (ICW) assay is an immunological technique that uses 

immunofluorescent staining to measure protein levels in fixed cultured cells. This 

technique was used to develop a high throughput screening (HTS) assay for anti-

myofibroblast activity in Peyronie’s disease to yield objective and quantitative 

data on the number of myofibroblasts in cell populations and to test several 

potential new anti-myofibroblast compounds. This technique was chosen as the 

target can be measured in situ to obtain quantifiable data, that is robust, sensitive 

and amenable to the HTS assays. An example of a detailed protocol used for 

ICW and buffer recipes can be found in Appendix II. 

Cell suspension was obtained from cultured cells growing in T75 flasks and 100 

µl of cell suspension was added to each well of a 96 well microplate (NUNC® 96 

well optical flat bottom black microplates; Fisher Scientific, UK) at 5.0 x 103 

cells/well and incubated at 37°C, 5% CO2 overnight. On the next day, cells were 

exposed to TGF-β1, by replacing the old medium and adding fresh medium with 

or without TGF-β1 at 5 or 10 ng/ml to the appropriate wells. Plates were then 

incubated at 37°C, 5% CO2 for 72 hours.   

After the incubation period, old medium was discarded and cells were fixed with 

150 µl of 4% PFA for 20 minutes at room temperature. Fixing solution was 

removed and cells were washed three times with 150 µl of permeabilisation buffer 

(0.1% Triton X-100 in PBS) for 5 minutes at room temperature on a plate shaker. 
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After which, 150 µl of blocking buffer (5% donkey serum in permeabilisation 

buffer) was added to each well and incubated for 90 minutes at room temperature 

on a plate shaker.  

After removing blocking buffer from the wells, 50 µl of primary antibody solution 

diluted in PBS (Table 2-8) was added and incubated for 2 hours at room 

temperature on a plate shaker. After incubation, cells were washed three times 

with 150 µl of 0.1% tween 20 in PBS (0.1% PBST) for 5 minutes on a plate shaker. 

Secondary antibody solution (Table 2-8) and DRAQ5 (1:1,000; Biostatus, UK) 

diluted in PBS were then added to each well and incubated for 1 hour at room 

temperature in the dark on a plate shaker. After which, cells were washed three 

times with 0.1% PBST and once with PBS for 5 minutes on a plate shaker.  
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Table 2-8: Primary and secondary antibody dilutions used in In-Cell Western. All 
antibodies were diluted in PBS.  

Antibody Dilution 

Primary antibody 

Anti-ASMA antibody (Sigma-

Aldrich, UK; A5228) 
1:3,000 

Anti-adenosine A1 receptor 

(abcam, UK; ab124780) 
1:500 

Anti-adenosine A2B receptor 

(abcam, UK; ab135865)  
1:500 

Adenosine A2B receptor peptide 

(abcam, UK; ab45817) 
1:100 

Anti-Estrogen receptor alpha 

antibody (abcam, UK; ab32063) 
1:500 

Anti-Estrogen receptor beta 

antibody (abcam, UK; ab3576) 
1:500 

Estrogen receptor beta peptide 

(abcam, UK; ab5018) 
1:100 

Secondary 

antibody 

800CW IRDye donkey anti-mouse 

(Li-COR, UK; 926-32212) 
1:500 

680RD IRDye donkey anti-rabbit 

(Li-COR, UK; 926-68073)  
1:500 

800CW IRDye donkey anti-rabbit 

(Li-COR, UK; 926-32213) 
1:500 

The ADORA2B peptide was bought from Abcam and the peptide sequence is 

CQADVKSGNGQ (311 amino acid to 321 amino acid). A molar ratio of 5:1 (5-

parts peptide to 1-part antibody) was utilised in the ICW and Western blot 

experiments. Regarding the ERβ peptide, no peptide sequence was available 

from the supplier (Abcam) and a molar ratio of 5:1 was also used in the ICW and 

Western blot experiments.  
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The plate was scanned using the Odyssey® CLx (Li-COR, UK) at both 700 and 

800 nm channels and data were collected and analysed using the Image StudioTM 

software v5.2.5 (Li-COR, UK). 

2.7 Western blot 

An example of a detailed protocol used for Western blot and buffer recipes can 

be found in Appendix II.  

 Protein extraction and quantification 

Cell suspension was obtained and added to each well of a 6 well plate at 1.0 x 

105 cells/well. Cells were observed under the light microscope and plates were 

incubated overnight at 37°C, 5% CO2. The next day, cells were exposed to TGF-

β1, by replacing the old medium with warm medium with or without TGF-β1 at 5 

ng/ml. Plates were then incubated at 37°C, 5% CO2 for 72 hours.  

After incubation, protein extraction was carried out by removing the cell culture 

medium and washing the cells with ice-cold PBS. Cells were scraped off from the 

bottom of the well with a pre-cooled sterile plastic cell scraper (Fisher Scientific, 

UK) and the cell suspension was transferred to an ice-cold eppendorf tube. The 

cell suspension was centrifuged at 3,000 rpm for 5 minutes at 4°C. The 

supernatant was discarded, and the cell pellet was resuspended in 300 µl of 

either ice-cold RIPA lysis buffer or Tris-Triton lysis buffer with protease inhibitor 

cocktail. Samples were left on ice for 30 minutes, after which a centrifugation step 

was performed for 5 minutes at 3,000 rpm at 4°C. The supernatant was then 

transferred to a new ice-cold eppendorf tube and cell lysate was stored at -80°C 

after quantification.  

Protein quantification was performed in a 96 well plate using the DC Protein 

Assay Kit II (Bio-Rad, UK) according to the manufacturer’s guidelines. Briefly, 25 

µl of working reagent (20 µl of reagent S to each millilitre of reagent A) was added 

to 5 µl of each sample. Reagent B was then added to all wells and the plate was 

thoroughly mixed on a plate shaker for 15 minutes. The absorbance of each 

sample was read in a plate reader (iMarkTM Microplate Absorbance Reader; Bio-

Rad, UK) at 750 nm. For the protein quantification, a standard curve was 
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constructed using a BSA protein standard (1.5 mg/ml to 0.09 mg/ml; Bio-Rad, 

UK).  

 Western blotting 

2.7.2.1 Sample preparation and SDS-PAGE  

After protein concentrations were determined, the appropriate dilutions of cell 

lysate were prepared to have the same protein concentration (20 µg of lysate per 

lane) in all samples. An equal volume of 2X laemmli sample buffer containing 1M 

DL-Dithiothreitol (DTT; Bio-Rad, UK) was added and samples were denatured by 

boiling at 95°C for 10 minutes. Samples were kept on ice to prevent protein 

clumping. In addition to the patient samples, an ADORA2B HEK293T cell 

transient overexpression lysate (Origene, UK) and an ERβ HEK293T cell 

transient overexpression lysate (Origene, UK) were also used as a positive 

control for ADORA2B and ERβ, respectively. As a negative control for both 

ADORA2B and ERβ, an HEK293 cell lysate (no transient overexpression) was 

used.  

Denatured protein samples were separated according to their molecular weight 

using SDS-PAGE (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis) 

and Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad, UK). The Hoefer 

SE300 miniVE Vertical Electrophoresis System (Hoefer, UK) was assembled 

according to manufacturer’s instructions. First, the pre-cast gel was washed with 

distilled water and the well comb and the green tape at the bottom of the gel were 

carefully removed to allow the transfer of the current. Once the gel was inserted 

in the tank, running buffer was added to completely immerse the gel and the wells 

were washed by pipetting running buffer into them. A molecular weight protein 

marker (PageRulerTM Prestained Protein Ladder, range: 10 to 180 kDa; Thermo 

Scientific, UK) and denatured samples were loaded into the gel. Both anode and 

cathode of the electrophoresis system were connected to EPS 3501 XL Power 

Supply Unit (GE Healthcare, UK) and gel electrophoresis was run at 120V for 10 

minutes and subsequently at 200V for 1 hour. 
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2.7.2.2 Transferring the protein from the gel to the membrane  

To transfer the separated proteins to a polyvinylidene fluoride (PVDF) membrane 

(Immobilon-FL transfer membrane; Fisher Scientific, UK) for antibody detection, 

a wet transfer method was employed. The PVDF membrane was cut to the 

appropriate size and soaked in 100% methanol for 1 minute; after which, the 

membrane was transferred to transfer buffer. A sandwich of sponge/filter 

paper/gel/membrane/filter paper/sponge soaked in transfer buffer was positioned 

between the negative and positive electrodes of the Hoefer SE300 miniVE 

Vertical Electrophoresis System (Hoefer, UK) containing transfer buffer. The gel 

was placed closest to the negative electrode and the membrane closest to the 

positive electrode and air bubbles in the sandwich were removed by rolling them 

out with a pipette. Electrode connections were attached to the EPS 3501 XL 

Power Supply Unit and the electrotransfer was carried out for 1 hour at 50V.  

2.7.2.3 Antibody incubation 

The PVDF membrane was washed once for 5 minutes in PBS and subsequently, 

the membrane was blocked for 1 hour at room temperature in 10% (w/v) non-fat 

dried milk (NFDM, Marvel) in PBS. 

After blocking incubation, the membrane was incubated with primary antibody 

solution diluted in 5% (w/v) NFDM at the dilution specified in Table 2-9 overnight 

at 4°C on a rocker platform. The membrane was washed four times with tris-

buffered saline (TBS) containing 0.1% tween 20 (0.1% TBST) for 5 minutes at 

room temperature on a rocker. Secondary antibody solution (Table 2-9) was then 

incubated with the membrane for 1 hour at room temperature on a rocker in the 

dark. Subsequently, the membrane was washed four times with 0.1% TBST for 

5 minutes on a rocker. In addition to the use of GAPDH or α-tubulin as a loading 

control, a lane in which the primary antibody was omitted was also included in all 

Western blots experiments as a negative control. 
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Table 2-9: Primary and secondary antibody dilutions used in Western blot. All 
antibodies were diluted in 5% (w/v) NFDM. 

Antibody Dilution 

Primary antibody 

Anti-ASMA antibody raised in 

mouse (Sigma-Aldrich, UK; A5228) 
1:3,000 

Anti-adenosine A2B receptor 

(abcam, UK; ab135865) 
1:500 

Adenosine A2B receptor peptide 

(abcam, UK; ab45817) 
1:100 

Anti-Estrogen receptor beta 

antibody (abcam, UK; ab3576) 
1:1,000 

Estrogen receptor beta peptide 

(abcam, UK; ab5018) 
1:200 

Anti-GAPDH antibody raised in 

rabbit (abcam, UK; ab128915) 
1:5,000 

Anti-alpha tubulin antibody raised 

in rabbit (abcam, UK; ab4074) 
1:5,000 

Secondary 

antibody 

800CW IRDye donkey anti-mouse 

(Li-COR, UK; 926-32212) 
1:5,000 

680RD IRDye donkey anti-rabbit 

(Li-COR, UK; 926-68073) 
1:5,000 

800CW IRDye donkey anti-rabbit 

(Li-COR, UK; 926-32213) 
1:5,000 

To detect and visualise the proteins, the Odyssey® CLx (Li-COR, UK) with 

infrared technology was utilised by scanning the membrane at both the 700 and 

800 nm channels and data were collected and analysed using the Image StudioTM 

software v5.2.5 (Li-COR, UK). 

2.8 Statistical analysis 

For this study, cell lines established from at least three PD plaque tissues and 

cell lines derived from at least three non-PD TA tissues were used in all 

experiments and performed in triplicate and repeated at least three times (N=3). 
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Data analyses and graphs were plotted using Microsoft® Excel 2013, where 

basic descriptive statistics and Student’s t-test for unpaired means (two-sided) 

were performed. P value < 0.05 was considered statistically significant. All the 

data points were expressed as mean ± standard error of the mean (SEM). 

 Real-time RT-PCR data analysis 

For relative gene expression analysis, the 2-ΔΔCq method228 was used. This 

method assumes that both target and reference genes are amplified with 

efficiencies near 100% and within 10% of each other.  

To determine the amplification efficiencies of the target and the reference genes, 

a 10-fold serial dilution was performed in every PCR run and the quantification 

cycle (Cq) values obtained were used to generate a standard curve. The 

amplification efficiency (E) was calculated from the slope of the generated 

standard curve using the following equation (presented as a percentage). 

%E = (10−1/slope − 1) × 100% Equation (2-1) 

Serial dilutions should produce amplification curves that are evenly spaced, and 

if the perfect doubling occurs, the spacing of the fluorescence curves can be 

calculated using the following equation: 2n = dilution factor (n = number of cycles 

between curves). Therefore, with a 10-fold dilution, the Cq values of each dilution 

should be separated by 3.32 cycles, which corresponds to an ideal slope of -3.32. 

However, slopes ranging from -3.6 (90%) to -3.1 (110%) are usually considered 

acceptable224. The efficiency of a PCR reaction is the rate at which the enzyme 

Taq polymerase converts the reagents to amplicons. The ideal increase of PCR 

product per cycle is two-fold, corresponding to an amplification efficiency of 

100%. The determination of efficiency is essential, as it is indicative of problems 

with the real-time PCR reactions. Each standard curve was generated using 

calibrator samples, which corresponded to untreated cells derived from non-PD 

TA tissue. Whereas, test samples corresponded to cells established from non-

PD TA tissue treated with TGF-β1 and PD plaque tissue exposed or not exposed 

to TGF-β1.  
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The relative expression of target genes in different samples could be determined 

by following the steps below.  

First, the Cq value of the target gene (of both test samples and calibrator samples) 

needed to be normalised to the reference (ref) gene using the following equation. 

ΔCq = Cq (target) – Cq (ref) Equation (2-2) 

After normalisation of the Cq value, the ΔCq of the test sample needed to be 

normalised against the ΔCq of the calibrator sample by using the equation below.  

ΔΔCq = ΔCq (test) – ΔCq (calibrator) Equation (2-3) 

Finally, the normalised gene expression ratio was calculated utilising the 

following equation.  

2-ΔΔCq = normalised expression ratio Equation (2-4) 

The result obtained corresponded to the fold-change of the target gene in the test 

sample relative to the calibrator sample and normalised to the expression of the 

reference genes. 

 In-Cell Western data analysis 

To measure the effect of TGF-β1-induced myofibroblast differentiation, Z’ factor 

(Z’) was determined to validate the ICW method in order to investigate protein 

expression of myofibroblasts and to assess the effect of specific receptor agonist 

and antagonist compounds on myofibroblast differentiation using the following 

equation.  

Z′ = 1 −
3(σp +  σn)

|μp −  μn|
 

Equation (2-5) 

Where σn and σp correspond to the standard deviations of the negative and 

positive controls, respectively and µn and µp correspond to the averages of the 

negative and positive controls, respectively. 

The % activity of TGF-β1 was calculated using the following equation. 
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% activity = 100 ×  
(Cmpd − Min)

Max − Min
 

Equation (2-6) 

The concentration response curves (CRCs) of the tested compounds were 

performed to assess their ability to inhibit TGF-β1-induced myofibroblast 

differentiation. A custom made Microsoft Excel template based on the method 

described by Brown (2001)229, was used to plot the CRCs. This template used 

the solver add-on to determine the CRC and fitted to a 5-parameter logistic (5-

PL) curve, by solving the following formula to produce the highest possible 

correction coefficient between the CRC and the data values obtained.  

 

Equation (2-7) 

Where 𝑦 = response; 𝑥 = concentration of compound; D = estimated response at 

infinite concentration; half maximal effective concentration (EC50) = mid-range 

concentration; A = estimated response at zero concentration; 𝑒 = asymmetry 

factor and 𝑘 = slope. 
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3 Results 

3.1 Development of a real-time RT-PCR method 

To study the mRNA levels of genes of interest, a real-time RT-PCR method was 

developed using fibroblasts derived from non-PD TA tissue and PD plaque tissue. 

Initially, the quality and purity of the extracted RNA were evaluated and standard 

curves were generated using untreated non-PD TA cells as the calibrator sample 

to validate both target and reference genes. After extensive optimisations, 

standard curves of target and reference genes were performed in all non-PD TA 

cells and PD plaque-derived cells used and subsequently the relative changes of 

the target genes in different samples were determined.  

 RNA Quality Control 

Before converting the RNA to cDNA, it was necessary to ensure that the extracted 

RNA was intact and free of contaminants by measuring its concentration, purity 

and quality. A typical example of the concentration, purity and quality of the 

extracted RNA from cultured cells can be found in Appendix III (Table 7-10). A 

wide range of RNA concentrations (52.5 ± 2.88 to 141.1 ± 4.99 ng/µl) was obtained 

from different cell lines, where the A260/A280 ratio (2.01 ± 0.01 to 2.29 ± 0.02) was 

above 1.8, suggesting that the extracted RNA was pure. In addition to the A260/A280 

ratio, the peak produced by the samples was also evaluated (data not shown); 

however, RNA samples that presented impurities (such as residual alcohol, phenol 

and chaotropic salts, which are components of the reagents used in the RNA 

extraction protocol) were not used for downstream applications, as these impurities 

may lead to inhibition of RT and qPCR reactions, yielding biased data. 

Both the Experion system and the Bioanalyzer generated rRNA ratios (28S:18S), 

virtual gel images of the electropherogram data (Appendix III, Figure 7-4) and a 

RIN for all samples used. RIN values ranging from 9.7 ± 0.03 to 10.0 ± 0.00 and 

rRNA ratios ranging from 1.68 ± 0.04 to 2.00 ± 0.04 were obtained. These results 

showed that the extracted RNA was of high integrity and quality; therefore, it was 

used for downstream applications.  
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To support 28S:18S ratio data, a representative illustration of a virtual gel 

displaying the rRNA bands is shown in Figure 3-1.  

 

Figure 3-1: Representative illustration of a virtual gel generated from the 
electropherogram data. The first lane corresponds to the RNA ladder with seven RNA 
sizes ranging from 6000 nucleotides to 25 nucleotides. The other 12 lanes correspond to 
the RNA samples exposed and not exposed to TGF-β1 of TAN2A1, TAC1B1, TAC4A2, 
PD1B1, PD2A2 and PD3A1 cell lines, where the first band represents the 28S rRNA and 
the second band is the 18S rRNA. The 2:1 ratio (28S:18S) is a good indication that the 
RNA is intact, where the 28S rRNA band is approximately twice as intense as the 18S 
rRNA band. The band at 25 nucleotides that appears in both ladder and sample lanes 
correspond to the lower alignment marker.  

The figure above shows a representative gel image generated from the 

Bioanalyzer of RNA extracted from three non-PD TA cells lines and three PD 

plaque-derived cells lines exposed and not exposed to TGF-β1, where it can be 

observed that the 28S band is approximately twice as intense as the 18S band. 

RNA extraction from tissue samples 

RNA extraction from non-PD TA tissue and PD plaque tissue was also attempted. 

A typical example of the concentration and purity obtained in the different 

optimisations performed can be found in Appendix III (Table 7-11).  

Briefly, frozen tissues (used to establish cell lines) were used; however, no RNA 

was obtained from those tissues. Although several optimisations were carried out, 

RNA was still not obtained from intact tissue. Gene expression analysis of tissue 

samples was therefore abandoned, and the results shown hereafter are for 

28S  

18S  
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samples obtained from cells derived from non-PD TA tissue and PD plaque tissue 

(further information regarding RNA extraction from tissues samples can be found 

in Appendix III). 

 Optimisation of real-time PCR 

For each qPCR run, an amplification plot (log scale and linear scale in Appendix 

III, Figure 7-5) and a melting curve were provided by either the Rotor-Gene Q or 

the CFX cycler software. 

Before any optimisations, a qPCR run was carried out using the cDNA obtained 

from an untreated cell line derived from non-PD TA tissue (calibrator sample), after 

which, standard curves were generated for α-SMA, β-actin and 18S (Appendix III, 

Figure 7-6). From the standard curves, efficiencies were calculated for the genes 

tested (Table 3-1).  

Table 3-1: Representative R2, slope and efficiencies of α-SMA, β-actin and 18S 
genes obtained from the standard curves. Standard curves were generated for each 
gene for one of the untreated cell lines established from non-PD TA tissue (TAC4A2). 

Genes R2 Slope Efficiency (%) 

α-SMA 0.9909 -3.2847 101.58 

β-actin 0.9909 -2.9010 121.16 

18S 0.9973 -3.0425 113.15 

As can be observed in the table above, in all three genes, the R2 was above 0.980 

(recommended cut-off value) and the replicates did not deviate more than 0.5 Cq 

values, showing no variability between them. Although the slope for α-SMA (-

3.2847) was within the range; for β-actin and 18S, the slope was above the 

acceptable range (-2.9010 and -3.0425, respectively), corresponding to higher 

amplification efficiencies than expected. The high reactions efficiencies (>110%) 

may indicate co-amplification of non-specific products, such as primer-dimers or 

secondary structures), pipetting errors during reaction set up, error in the serial 

dilution or presence of PCR inhibitors. Furthermore, both target and reference 

genes were not within 10% of each other.  
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The use of suitable reference genes is important, as qPCR data will be normalised 

to these genes; therefore, reference genes should be stably expressed in all 

different experimental conditions. A geNormTM reference gene selection kit was 

used, which included a panel of 12 candidate reference genes, where the geNorm 

analysis was carried out on four experimental conditions (Figure 3-2).  

 

Figure 3-2: Average expression stability of reference genes. Twelve potential 
reference genes were used to test their stability under 4 experimental conditions. The 
lower the geNorm M value, the more stable the reference gene is under the tested 
experimental conditions. Each experimental condition was run in duplicate and negative 
controls were included.  

As shown in Figure 3-2, the four most stable genes were TOP1, EIF4A2, 18S and 

UBC from the 12 potential reference genes, as these genes showed the lowest 

geNorm M value.  

The optimal number of references genes used to normalise qPCR data can be 

calculated using the V value (Figure 3-3).  
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Figure 3-3: Determination of the optimal number of reference genes. The use of the 
geNorm kit demonstrated the optimal number of reference genes that should be used 
when using the tested experimental conditions.  

A V score of below 0.15 is recommended as the ideal for having good stability on 

relative quantification. When using the two top genes in this system, a V score of 

0.078 was achieved. Therefore, the optimal normalisation factor can be calculated 

as the geometric mean of EIF4A2 and TOP1 genes.  

After performing several optimisations to obtain amplification efficiencies for all 

genes near 100% and selecting appropriate reference genes, standard curves 

were constructed for gene validation (Appendix III, Figure 7-7). From the standard 

curves, efficiencies were calculated for all the genes tested (Table 3-2).  
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Table 3-2: Representative R2, slope and efficiencies of all target and reference genes 
used in this study. Standard curves were generated for each gene for one of the 
untreated cell lines established from non-PD TA tissue. 

Genes R2 Slope Efficiency (%) 

α-SMA 0.9983 -3.413 96.33 

ADORA1 09993 -3.425 95.87 

ADORA2A 0.9959 -3.410 96.45 

ADORA2B 0.9996 -3.401 96.80 

ADORA3 0.9988 -3.498 93.14 

ERα  0.9996 -3.314 100.33 

ERβ  0.9978 -3.325 99.87 

EIF4A2 0.9993 -3.379 97.67 

TOP1 0.9977 -3.351 98.80 

As can be observed in Table 3-2, the R2 was above 0.980 for all genes and no 

variability was observed between replicates (<0.5 Cq values between replicates). 

The slope of each standard curve was within the acceptable range (-3.60 to -3.1), 

corresponding to efficiencies within 90% to 110%. In addition, both target and 

reference genes were within 10% of each other. 

 Melting curve analysis 

In all qPCR runs, a melting curve analysis was carried out to ensure that the signal 

acquired from the amplification plot was, in fact, the expected PCR product 

(Appendix III, Figure 7-8). Each pair of primers used in this study showed no signs 

of non-specific products of primer-dimers, as only one peak per sample was 

observed corresponding to the temperature at which the PCR product dissociates. 

Therefore, the primer pairs used in this project were specific for the genes of 

interest.  

3.2 Validation of ICW assay 

To investigate protein expression of myofibroblasts and to assess the effect of 

specific receptor agonist and antagonist compounds on myofibroblast 

differentiation, the ICW assay was validated.  
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To select the most appropriate TGF-β1 concentration to use, a full CRC was 

performed by exposing the primary fibroblasts to varying concentrations of TGF-

β1 (0.001 to 30 ng/ml) for 72 hours on non-PD TA cells (Figure 3-4). 

 

Figure 3-4: Effect of TGF-β1 on non-PD TA cells. Cells were exposed to a range of 
concentrations of TGF-β1 between 0.001 and 30 ng/ml for 72 hours. Data points were 
plotted as mean ± SEM of the percentage of activity achieved, N=3.  

As can be observed in Figure 3-4, a classical sigmoid curve was obtained, reaching 

a maximum of 100% with an EC50 of 0.4 ng/ml, meaning that at this TGF-β1 

concentration, half of the fibroblasts would be differentiated into myofibroblasts. 

However, for the HTS, an EC90-100 would be ideal as 90-100% of the fibroblasts 

would differentiate into myofibroblasts. During the study, TGF-β1 was either used 

at concentrations of 5 or 10 ng/ml, which corresponds to EC91.4% and EC95.3% 

of activity, respectively.   

Non-PD TA cells were treated with TGF-β1 at 5 ng/ml for 72 hours and the data 

obtained was used to calculate the Z’ factor, which is used to report the variability 

within the assay (Figure 3-5). 
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Figure 3-5: Validation of the ICW method by assessing the effect of TGF-β1-induced 
myofibroblast differentiation in non-PD TA cells. Positive controls correspond to cells 
treated with 5 ng/ml TGF-β1 for 72 hours and negative controls correspond to untreated 
cells. Values for 27 positive control wells and 27 negative wells were acquired in the same 
96 well plate and were used to analyse the statistical reproducibility of the ICW assay for 
detection of α-SMA positive cells. Data presented as the fluorescence intensity of α-SMA 
expression normalised for nuclear dye (DRAQ5) intensity.  

As shown in the above figure, a 3-fold change was obtained upon stimulation with 

TGF-β1. The Z’ factor was calculated comparing α-SMA/DNA staining ratio in cells 

exposed to TGF-β1 (positive control) and in cells not exposed to TGF-β1 (negative 

control), yielding a Z’ value of 0.76 ± 0.05. This Z’ value indicated that the assay 

had low variability and it was appropriate to investigate protein expression of 

myofibroblasts and to assess the efficacy of compounds at impeding TGF-β1-

induced myofibroblast differentiation. 

Further control experiments were carried out by performing a full concentration 

response curve for DMSO (Figure 3-6), which was used as vehicle control to 

investigate its cytotoxic effect on fibroblasts and its inhibitory effect on TGF-β1-

induced myofibroblast differentiation.  
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Figure 3-6: Effect of DMSO on TGF-β1-induced myofibroblast differentiation. Cells 
derived from non-PD TA tissue were exposed to a range of concentrations of DMSO 
between 0.0001 and 5% and applied in co-incubation with 5 ng/ml TGF-β1 for 72 hours. 
Data points were plotted as average ± SEM of the percentage of maximum response of 
either the α-SMA/DNA staining ratio (800 nm normalised fluorescence intensity) or DNA 
staining (700 nm fluorescence intensity) of N=3. Z’ factor was determined using the 
average and standard deviation of the negative and positive controls to validate the 
experiment, yielding a Z’ factor of 0.91 ± 0.01. 

A range of concentrations of DMSO from 0.0001 to 5% was applied in co-

incubation with 5 ng/ml of TGF-β1 for 72 hours. As can be observed in Figure 3-6, 

DMSO significantly decreased α-SMA/DNA staining ratio at concentrations of 1% 

and above. Regarding the DNA staining, DMSO had a negative effect at 

concentrations of 0.3% and above, leading to cell death due to DMSO and not 

because of the effect caused by the tested compounds in the differentiation 

process. Therefore, in all ICW experiments, the DMSO concentration never 

exceeded 0.3%.  

To further validate the ICW assay and to ensure that it could be used to quantify 

inhibition of TGF-β1-induced myofibroblast differentiation, SB-505124 was used 

as a positive control. A full concentration response curve was performed with a 

range of concentrations of SB-505124 from 0.009 to 300 μM (0.003 to 100 μg/ml) 

applied in co-incubation with TGF-β1 for 72 hours (Figure 3-7). 
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Figure 3-7: Effect of SB-505124 on TGF-β1-induced myofibroblasts transformation. 
Cells derived from non-PD TA tissue were exposed to a range of concentrations of SB-
505124 between 0.009 and 300 μM and applied in co-incubation with 5 ng/ml TGF-β1 for 
72 hours. Data points were plotted as average ± SEM of the percentage of maximum 
response of either the α-SMA/DNA staining ratio (800 nm normalised fluorescence 
intensity) or DNA staining (700 nm fluorescence intensity) or effect of DMSO, N=3. Z’ 
factor was determined using the average and standard deviation of the negative and 
positive controls to validate the experiment, yielding a Z’ factor of 0.89 ± 0.02. 

As shown in Figure 3-7, a classical sigmoid curve was observed, with a minimum 

effect of approximately 30%. The α-SMA/DNA staining ratio was significantly 

reduced at the concentration of 0.9 μM and above, with a half maximal inhibitory 

concentration (IC50) of 1.39 μM and a minimum effective concentration (MEC) of 

0.9 μM. The DNA staining was significantly reduced at the highest concentration 

(300 μM). 

The ADORA2B antibody was validated in the ICW assay by co-incubating with a 

blocking peptide (Figure 3-8). Cells were treated with TGF-β1, after which, the cells 

were stained with the ADORA2B antibody with or without excess of free full-length 

ADORA2B (blocking peptide).  
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Figure 3-8: ADORA2B antibody in co-incubation with a blocking peptide. (A) 
Representative raw data output from Odyssey infrared imager and (B) Histographical 
representation of normalised fluorescence intensity. In-Cell Western was performed to 
validate the ADORA2B antibody by co-incubating the ADORA2B antibody at 2 μg/ml with 
or without blocking peptide at 2 μg/ml in non-PD TA cells. Green colour corresponds to 
ADORA2B protein levels, corresponding to emission at 800 nm wavelength. Red colour 
corresponds to DRAQ5, which is emitted at 700 nm wavelength. Data points were plotted 
as mean ± SEM, N=3. Legend: * indicates P<0.05 tested by Student’s t-test vs ADORA2B 
antibody. 

In both treated and untreated cells, the expression of ADORA2B was observed 

when treated with the antibody on its own; however, in the presence of ADORA2B 

peptide, it resulted in the loss of 85% of staining (Figure 3-8), meaning that only 

approximately 15% of the signal in the ICW was non-specific with the remaining 

signal being specific for expression of ADORA2B.  

The blocking peptide experiment was also attempted by Western blot in 

combination with ADORA2B HEK293T cells transient overexpression lysate as 

positive control for ADORA2B and HEK293 cell lysate (no transient 

overexpression) as negative control for ADORA2B. However, no band was 

detected at any molecular weight in neither the antibody alone nor the positive 

control cell lysate used (data not shown). 
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ERβ antibody was also assessed by co-incubating an excess full length ERβ 

(blocking peptide) with the primary antibody in both ICW and WB. Cells were 

treated with TGF-β1 for 72 hours, after which, the cells were stained with the ERβ 

antibody with or without a blocking peptide (Figure 3-9).  

 

 

Figure 3-9: ERβ antibody in co-incubation with a blocking peptide. (A) Representative 
raw data output from Odyssey infrared imager and (B) Histographical representation of 
normalised fluorescence intensity. In-Cell Western was performed to validate the ERβ 
antibody by co-incubating the ERβ antibody at 1 μg/ml with or without blocking peptide at 
1 μg/ml in non-PD TA cells. Green colour corresponds to ADORA2B protein levels, 
corresponding to emission at 800 nm wavelength. Red colour corresponds to DRAQ5, 
which is emitted at 700 nm wavelength. Data points were plotted as mean ± SEM, N=3. 
Legend: * indicates P<0.05 tested by Student’s t-test vs ERβ antibody. 

In both treated and untreated cells, the expression of ERβ was observed; however, 

the expression of ERβ was absent in the presence of the ERβ peptide and reduced 

by 84% in the ICW (Figure 3-9), meaning that only approximately 16% of the signal 

in the ICW was non-specific with the remaining signal being specific for expression 

of ERβ.  

The ERβ expression was also tested in WB in co-incubation with the blocking 

peptide (Figure 3-10). In addition, ERβ HEK293T cell transient overexpression 

lysate was also used as a positive control for ERβ alongside a negative control for 

ERβ, an HEK293 cell lysate (no transient overexpression).  
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Figure 3-10: Immunoblotting of ERβ in positive and negative control lysates. 
Western blot was performed to validate the ERβ antibody by co-incubating the ERβ 
antibody at 1 μg/ml with or without blocking peptide at 1 μg/ml in both positive and negative 
control lysate. Green colour corresponds to ADORA2B protein levels, corresponding to 
emission at 800 nm wavelength. Red colour corresponds to DRAQ5, which is emitted at 
700 nm wavelength. 

Similar to ICW data, the expression of ERβ was observed with a band at the correct 

molecular weight (55 kDa) in the positive control, which was absent in the negative 

control. Furthermore, the results obtained for the blocking peptide experiment were 

in accordance with the ICW data obtained, where no band was observed in the 

presence of the blocking peptide in both controls (Figure 3-10). It should also be 

noted that after optimisation of the Western blot, no non-specific bands were noted 

at different molecular weights with ADORA2B or ERβ antibody, further stating that 

the antibodies are specific. 

3.3 Characterisation of cells derived from non-PD TA tissue and 

PD plaque tissue 

 Expression of α-SMA  

3.3.1.1 mRNA levels of α-SMA  

The mRNA levels of α-SMA were investigated in cells derived from non-PD TA 

tissue and PD plaque tissue (Figure 3-11).  
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Figure 3-11: α-SMA mRNA levels in cells derived from non-PD TA tissue and PD 
plaque tissue. Fibroblasts were exposed to 10 ng/ml of TGF-β1 for 72 hours. The 
expression of α-SMA was determined using the 2-ΔΔCq method, where the result obtained 
corresponds to the fold-change of α-SMA in the test sample relative to the calibrator 
sample (untreated cells derived from non-PD TA tissue) and normalised to the expression 
of EIF4A2 and TOP1. Each sample was run in triplicate. Data points were plotted as mean 
± SEM, N=3. Legend: * and # indicates P<0.05 tested by Student’s t-test vs untreated cells 
or non-PD TA cells, respectively. 

As shown in Figure 3-11, a significant increase in α-SMA expression was observed 

in both cell populations when exposed to TGF-β1 for 72 hours. In addition, 

statistically significant difference was observed between non-PD TA cells and PD 

plaque-derived cells when exposed to TGF-β1 but not in untreated conditions, with 

PD plaque-derived cells decreased in comparison to non-PD TA cells. 

3.3.1.2 Immunostaining of α-SMA  

Immunocytochemistry was carried out to investigate the protein levels of α-SMA 

and ERs and to confirm results obtained in PCR experiments. Table 3-3 shows an 

overview of all the optimisations performed on the immunocytochemistry protocol. 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

- TGF-β1 + TGF-β1

Fo
ld

-c
h

an
ge

 o
f 

α
-S

M
A

 e
xp

re
ss

io
n

non-PD TA cells PD plaque-derived cells

*

* #



 

81 

Table 3-3: Summary of optimisations performed on the ICC protocol. 

Optimisations performed Results obtained 

Comparison of different seeding 

surfaces (microplate vs coverslip) 

Well-to-well fluorescence contamination 

occurred when using both 96 well microplate 

and 6 well plate (Data not shown). 

Comparison of two fixation methods 

(ice-cold methanol vs 4% 

paraformaldehyde) 

Fixation of cells with ice-cold methanol 

produced lower background than 4% PFA 

(Figure 3-12). 

Comparison of 5% vs 10% donkey 

serum in blocking buffer 

10% donkey serum yielded lower 

background levels than 5% donkey serum 

(Data not shown). 

Use of different washing techniques 

By inclining the slides and flowing washing 

buffer over the surface of the slide dislodged 

part of the cells when compared to the 

addition of the washing buffer through the 

corner of coverslip (Data not shown). 

By performing these optimisations, it was clear that immunocytochemistry would 

need to be performed in coverslip, so no crosstalk would occur from well-to-well 

when using 6 well plates or microplates. The use of 10% donkey serum in the 

blocking buffer yielded lower background levels compared to 5% donkey serum 

and the wash steps would need to be carried out by adding washing buffer through 

the corner of the coverslip. In addition, the fixation method (ice-cold methanol 

versus 4% PFA) was also assessed (Figure 3-12).  
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Figure 3-12: Representative illustrations of α-SMA staining using two fixation 
methods. (A) Non-PD TA cells treated with TGF-β1 fixed with ice-cold methanol and (B) 
PD plaque-derived cells treated with TGF-β1 fixed with 4% PFA. ICC targeting α-SMA was 
performed to observe the effect of two fixation methods. The nucleus of cells was stained 
with PI, a red nuclear counterstain (yellow arrow), whereas the α-SMA positive cells were 
stained in green, which is conferred by the FITC conjugated secondary antibody (blue 
arrow). Confocal microscope at 200x magnification. Bar in the corner of each image 
represents 50 μm. 

Figure 3-12 shows that when using 4% PFA, a high background was observed, 

whereas when cells were fixed with ice-cold methanol, the stain was neater. 

Therefore, methanol was used for subsequent experiments.  

To confirm the mRNA levels of α-SMA and the presence of myofibroblasts in cells 

derived from non-PD TA tissue and PD plaque tissue, both cell populations were 

exposed to TGF-β1 for 72 hours, after which, ICC was carried out (Figure 3-13).  
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Figure 3-13: Representative illustrations of α-SMA staining in cells established from 
non-PD TA tissue and PD plaque tissue. (A) untreated non-PD TA cells, (B) untreated 
PD plaque-derived cells, (C) non-PD TA cells treated with TGF-β1 and (D) PD plaque-
derived cells treated with TGF-β1. ICC targeting α-SMA was performed to observe the 
effect of cells exposed to TGF-β1 at 10 ng/ml for 72 hours. The nucleus of the cells was 
stained with PI, a red nuclear counterstain (yellow arrow), whereas the α-SMA positive 
cells were stained in green, which is conferred by the FITC conjugated secondary antibody 
(blue arrow). Confocal microscope at 200x magnification. Bar in the corner of each image 
represents 50 µm.   

Figure 3-13 demonstrates the ICC results targeting α-SMA with PI nuclear 

counterstain. In both cell populations, α-SMA positive cells were observed in the 

presence of TGF-β1. Nevertheless, in the absence of TGF-β1, the presence of α-

SMA positive cells was rare or non-existent in both cell populations.  

Three random areas of each sample were selected to capture images, after which, 

the number of myofibroblasts was calculated to estimate the difference in the 

number of α-SMA positive cells in samples treated and not treated with TGF-β1 

(Figure 3-14).  
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Figure 3-14: Ratio of α-SMA positive cells in cells derived from non-PD TA tissue 
and PD plaque tissue. Cells were exposed to TGF-β1 at 10 ng/ml for 72 hours, after 
which, the number of myofibroblasts was calculated by counting the number of α-SMA 
positive cells in each field and then divided by the number of total cells. Data points were 
plotted as an average of nine replicates of N=3 ± SEM. Legend: * and # indicates P<0.05 
tested by Student’s t-test vs untreated cells or non-PD TA cells, respectively. 

As shown in Figure 3-14, statistically significant difference was found in cells 

derived from non-PD TA tissue and PD plaque tissue when exposed to TGF-β1 

compared to untreated cells. Additionally, the number of myofibroblasts was 

significantly greater in the non-PD TA cells when compared to the PD plaque-

derived cells when both are treated with TGF-β1 but not in untreated conditions. 

To quantify the protein levels in an objective and higher throughput manner, the 

ICW method was used to test the effect of TGF-β1 on non-PD TA cells and PD 

plaque-derived cells (Figure 3-15).  
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Figure 3-15: α-SMA protein levels in cells derived from non-PD TA tissue and PD 
plaque tissue. ICW was performed to assess the α-SMA protein levels in fibroblasts 
exposed to TGF-β1 at 10 ng/ml for 72 hours. Data points were plotted as mean ± SEM, 
N=3. Legend: * indicates P<0.05 tested by Student’s t-test vs untreated cells. 

As can be observed in the figure above, TGF-β1 significantly increased α-SMA 

protein expression in cells established from non-PD TA tissue and PD plaque 

tissue. However, no statistically significant difference was observed between non-

PD TA cells and PD plaque-derived cells. 

The amount of α-SMA protein following treatment with TGF-β1 was also quantified 

by immunoblotting for the 42 kDa protein in both cells derived from non-PD TA 

tissue and PD plaque tissue (Figure 3-16). GAPDH antibody was used as loading 

control (35 kDa), to ensure the integrity of the protein.  
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Figure 3-16: Immunoblotting of α-SMA in cells derived from non-PD TA tissue and 
PD plaque tissue. (A) Representative Western blot bands and (B) Western blot analysis. 
Cells were exposed to TGF-β1 at 5 ng/ml for 72 hours, after which, the protein was 
extracted from both cell populations. Green colour corresponds to α-SMA protein levels, 
corresponding to emission at 800 nm wavelength. Red colour corresponds to GAPDH 
protein levels, corresponding to emission at 700 nm wavelength. Data points were plotted 
as mean ± SEM, N=3. Legend: * and # indicates P<0.05 tested by Student’s t-test vs 
untreated cells and non-PD TA cells, respectively. 

As shown in Figure 3-16, protein bands were observed at the expected molecular 

weight of 42 and 35 kDa. Similar to mRNA levels and immunostaining data, a 

significant increase of α-SMA expression was observed in cell lysates treated with 

TGF-β1 in both cell populations. Furthermore, there was significantly greater value 

in the non-PD TA derived cells exposed to TGF-β1 compared with the PD plaque-

derived cells exposed to TGF-β1.  

 Expression and modulation of adenosine receptors 

3.3.2.1 mRNA levels of adenosine receptors 

The expression of four adenosine receptors was investigated in cells isolated from 

non-PD TA tissue and PD plaque tissue (Figure 3-17).  
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Figure 3-17: Adenosine receptors mRNA levels in cells derived from non-PD TA 
tissue and PD plaque tissue. The expression of adenosine receptors was determined 
using the 2ΔCq method, where the result obtained corresponds to the fold change of each 
adenosine receptor relative to the expression of reference genes (EIF4A2 and TOP1). 
Each sample was run in triplicate. Data points were plotted as mean ± SEM, N=3. Legend: 
* indicates P<0.05 tested by Student’s t-test vs non-PD TA cells.  

As observed in Figure 3-17, ADORA2A and ADORA3 showed low levels of mRNA 

in both cell populations; whereas, ADORA2B was expressed in cells derived from 

both healthy and fibrotic tissues and ADORA1 was expressed in cells derived from 

PD plaque tissue. ADORA1 and ADORA2B were significantly higher in cells 

derived from PD plaque tissue than from non-PD TA tissue.  

ADORA1 mRNA levels were investigated in the presence of TGF-β1 in both cells 

populations (Figure 3-18).  
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Figure 3-18: ADORA1 mRNA levels in cells derived from non-PD TA tissue and PD 
plaque tissue. Fibroblasts were treated with TGF-β1 at 10 ng/ml for 72 hours. The 
expression of ADORA1 was determined using the 2-ΔΔCq method, where the result obtained 
corresponds to the fold change of ADORA1 in the test sample relative to the calibrator 
sample (untreated cells derived from non-PD TA tissue) and normalised to the expression 
of EIF4A2 and TOP1. Each sample was run in triplicate. Data points were plotted as mean 
± SEM, N=3. Legend: * indicates P<0.05 tested by Student’s t-test vs untreated cells.  

In the above figure, the mRNA levels of ADORA1 significantly decreased in cells 

treated with TGF-β1 compared to untreated cells, in cells derived from non-PD TA 

tissue and PD plaque tissue. However, no statistically significant difference was 

observed between cell populations. In addition, a discrepancy between the 

ADORA1 mRNA levels in non-PD TA cells and PD plaque-derived cells not 

exposed to TGF-β1 in Figure 3-17 and Figure 3-18 was observed. However, this 

discrepancy was observed because the analysis method employed for each set of 

data was different. In Figure 3-18, the mRNA levels were relative to the calibrator 

sample (untreated non-PD TA cells) and normalised to the expression of the 

reference gene, whereas in Figure 3-17, the mRNA levels were only normalised to 

the expression of the reference gene.   

The expression of ADORA2B in non-PD TA cells and PD plaque-derived cells 

treated with TGF-β1 was also investigated (Figure 3-19).  
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Figure 3-19: ADORA2B mRNA levels in cells derived from non-PD TA tissue and PD 
plaque tissue. Fibroblasts were exposed to TGF-β1 at 10 ng/ml for 72 hours. The 
expression of ADORA2B was determined using the 2-ΔΔCq method, where the result 
obtained corresponds to the fold change of ADORA2B in the test sample relative to the 
calibrator sample (untreated cells derived from non-PD TA tissue) and normalised to the 
expression of EIF4A2 and TOP1. Each sample was run in triplicate. Data points were 
plotted as mean ± SEM, N=3. Legend: * indicates P<0.05 tested by Student’s t-test vs 
untreated cells. 

As shown in Figure 3-19, a significant decrease of ADORA2B mRNA levels was 

observed in cells exposed to TGF-β1 when compared to cells not exposed to TGF-

β1. However, no statistically significant difference was observed between cell 

populations. 

3.3.2.2 Immunostaining of adenosine receptors 

The protein levels of ADORA1 and ADORA2B were investigated in non-PD TA 

tissue and in PD plaque tissue (Figure 3-20).  
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Figure 3-20: Representative illustrations of adenosine receptors’ immunostaining 
in non-PD TA tissue and PD plaque tissue. (A) ADORA1 staining on non-PD TA tissue, 
(B) ADORA1 staining on PD plaque tissue, (C) ADORA2B staining on non-PD TA tissue, 
(D) ADORA2B staining on PD plaque tissue, (E) No primary antibody added on non-PD 
TA tissue and (F) No primary antibody added on PD plaque tissue. IHC targeting ADORA1 
and ADORA2B was performed to observe the expression of these receptors in both 
healthy and fibrotic tissues. The nucleus of the cells was stained with PI, a red nuclear 
counterstain (yellow arrow), whereas the adenosine receptors were stained in green, 
which is conferred by the FITC conjugated secondary antibody. Confocal microscope at 
200x magnification. Bar in the corner of each image represents 50 µm.   

As shown in Figure 3-20, neither ADORA1 expression nor ADORA2B expression 

was observed in either tissue sample. Even though green fluorescence was 

observed in the sections, similar levels of fluorescence were also observed in 

negative controls (Figure 3-20E and F).   
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Figure 3-21 represents the ADORA1 protein levels in cells established from non-

PD TA tissue and PD plaque tissue.  

 

Figure 3-21: ADORA1 protein levels in cells derived from non-PD TA tissue and PD 
plaque tissue. ICW was performed to assess the ADORA1 protein levels in fibroblasts 
exposed to TGF-β1 at 10 ng/ml for 72 hours. Data points were plotted as mean ± SEM, 
N=3. Legend: * indicates P<0.05 tested by Student’s t-test vs untreated cells.  

In the above figure, a statistically significant difference was found in cells treated 

with TGF-β1 when compared to untreated cells in both cell populations. 

The protein levels of ADORA2B was also carried out in both non-PD TA cells and 

PD-plaque derived cells (Figure 3-22).  

 

Figure 3-22: ADORA2B protein levels in cells derived from non-PD TA tissue and 
PD plaque tissue. ICW was performed to assess the ADORA2B protein levels in 
fibroblasts exposed to TGF-β1 at 10 ng/ml for 72 hours. Data points were plotted as mean 
± SEM, N=3. Legend: # indicates P<0.05 tested by Student’s t-test vs non-PD TA cells.  
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Regarding the protein levels of ADORA2B in both non-PD TA cells and PD plaque-

derived cells, no statistically significant difference was observed in cells exposed 

to TGF-β1 compared to cells not exposed to TGF-β1 (Figure 3-22). However, 

significance was achieved between non-PD TA cells and PD plaque-derived cells.  

3.3.2.3 Effect of specific adenosine receptor agonist and antagonist 

compounds on myofibroblast differentiation 

To further investigate the change in expression of ADORA1 and ADORA2B and 

their ability to inhibit myofibroblast differentiation; specific, commercially available 

agonists and antagonists were used. N6-Cyclopentyladenosine (CPA) and BAY 

60-6583 were used as ADORA1 and ADORA2B agonists, respectively. On the 

other hand, SLV 320 and MRS 1754 were used as ADORA1 and ADORA2B 

antagonists, respectively. Fibroblasts derived from non-PD TA tissue and PD 

plaque tissue were treated with either agonist or antagonist compounds in co-

incubation with TGF-β1 for 72 hours (Figure 3-23).           

 

Figure 3-23: Effect of ADORA1 and ADORA2B agonist and antagonist on TGF-β1-
induced myofibroblast differentiation. Fibroblasts derived from non-PD TA tissue and 
PD plaque tissue were incubated with 5 ng/ml TGF-β1 and the respective agonist or 
antagonist compounds of ADORA1 or ADORA2B for 72 hours (CPA at 100 µM; SLV 320 
at 100 µM; BAY 60-6583 at 100 µM and MRS 1754 at 100 nM). Data points were plotted 
as the average of three replicates ± SEM. Legend: * indicates P<0.05 tested by Student’s 
t-test vs 5 ng/ml TGF-β1. Z’ factor was determined using the average and standard 
deviation of the negative and positive controls to validate the experiment, yielding a Z’ 
factor of 0.88 ± 0.01. 

As can be observed in Figure 3-23, the ADORA1 and ADORA2B agonists 

significantly inhibited TGF-β1-induced myofibroblast differentiation at 
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concentrations of 100 μM in the two cell groups investigated. On the other hand, 

both ADORA1 and ADORA2B antagonist compounds did not inhibit TGF-β1-

induced myofibroblast differentiation at concentrations of 100 μM and 100 nM, 

respectively. 

Further analyses were carried out on the two agonists (CPA and BAY 60-6583) 

that significantly inhibited α-SMA/DNA staining. Full concentration responses 

curves of both compounds were performed in non-PD TA cells and PD plaque-

derived cells (Figure 3-24). A range of concentrations of each compound was 

assessed in their ability to impede myofibroblast transformation, from which α-

SMA/DNA staining values and the 5-PL curve-fit for those values were obtained. 

For each CRC, the shape of the 5-PL curve-fit and the effect on cell death were 

evaluated.  
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Figure 3-24: Effect of CPA on TGF-β1-induced myofibroblasts transformation. (A) 
Cells derived from non-PD TA tissue and (B) cells derived from PD plaque tissue were 
exposed to a range of concentrations of CPA between 0.03 and 100 μM and applied in 
co-incubation with 5 ng/ml TGF-β1 for 72 hours. Data points were plotted as average ± 
SEM of the percentage of maximum response of either the α-SMA/DNA staining ratio (800 
nm normalised fluorescence intensity) or DNA staining (700 nm fluorescence intensity) or 
effect of DMSO, N=3. Z’ factor was determined using the average and standard deviation 
of the negative and positive controls to validate the experiment, yielding a Z’ factor of 0.82 
± 0.02. 

Figure 3-24 illustrates the CRC performed for CPA (ADORA1 agonist) applied in 

co-incubation with TGF-β1 for 72 hours in non-PD TA cells and PD plaque-derived 

cells. The range of concentrations used failed to produce a classical sigmoid curve, 

where no lower plateau was observed in both cell populations.  

A full concentration response curve of BAY 60-6583 (ADORA2B agonist) applied 

in co-incubation with TGF-β1 for 72 hours was also performed in both cell types 

(Figure 3-25).  
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Figure 3-25: Effect of BAY 60-6583 on TGF-β1-induced myofibroblasts 
transformation. (A) Cells derived from non-PD TA tissue and (B) cells derived from PD 
plaque tissue were exposed to a range of concentrations of BAY 60-6583 between 0.03 
and 100 μM and applied in co-incubation with 5 ng/ml TGF-β1 for 72 hours. Data points 
were plotted as average ± SEM of the percentage of maximum response of either the α-
SMA/DNA staining ratio (800 nm normalised fluorescence intensity) or DNA staining (700 
nm fluorescence intensity) or effect of DMSO, N=3. Z’ factor was determined using the 
average and standard deviation of the negative and positive controls to validate the 
experiment, yielding a Z’ factor of 0.87 ± 0.01. 

When non-PD TA cells were exposed to a range of concentrations, a classical 

sigmoid curve was produced, reaching a minimum of approximately 10% with an 

IC50 value of 29.98 μM and a MEC of 30 μM. TGF-β1-induced myofibroblast 

differentiation was significantly decreased at concentrations of 30 μM and above 

without affecting cell numbers (Figure 3-25A).  

Even though the α-SMA/DNA staining ratio produced by BAY 60-6583 in PD 

plaque-derived cells did not show a complete sigmoid curve, it did significantly 

reduce the TGF-β1-induced myofibroblast differentiation at concentrations of 30 

μM and above without affecting cell number (Figure 3-25B).  
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 Expression and modulation of estrogen receptors  

Both estrogen receptors (ERα and ERβ) were assessed in cells isolated from non-

PD TA tissue and PD plaque tissue. 

3.3.3.1 mRNA levels of estrogen receptors 

Figure 3-26 represents the mRNA levels of ERα in cells derived from healthy and 

fibrotic TA tissue.  

 

Figure 3-26: ERα mRNA levels in cells derived from non-PD TA tissue and PD plaque 
tissue. Cells were exposed to 5 ng/ml of TGF-β1 for 72 hours. The expression of ERα 
was determined using the 2-ΔΔCq method, where the result obtained corresponds to the 
fold-change of ERα in the test sample relative to the calibrator sample (untreated cells 
derived from non-PD TA tissue) and normalised to the expression of EIF4A2 and TOP1. 
Each sample was run in triplicate. Data points were plotted as mean ± SEM, N=4. Legend: 
* and # indicates P<0.05 tested by Student’s t-test vs untreated cells and non-PD TA cells, 
respectively. 

As can be observed, a statistically significant difference was found between 

untreated cells and those exposed to TGF-β1 for 72 hours. Significance was also 

achieved when comparing PD plaque-derived cells to non-PD TA cells, with PD 

plaque-derived cells decreased. 

The mRNA levels of ERβ were also investigated in non-PD TA cells and in PD 

plaque-derived cells (Figure 3-27).  
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Figure 3-27: ERβ mRNA levels in cells derived from non-PD TA tissue and PD plaque 
tissue. Cells were treated with 5 ng/ml of TGF-β1 for 72 hours. The expression of ERβ 
was determined using the 2-ΔΔCq method, where the result obtained corresponds to the 
fold-change of ERβ in the test sample relative to the calibrator sample (untreated cells 
derived from non-PD TA tissue) and normalised to the expression of EIF4A2 and TOP1. 
Each sample was run in triplicate. Data points were plotted as mean ± SEM, N=4. Legend: 
* and # indicates P<0.05 tested by Student’s t-test vs untreated cells and non-PD TA cells, 
respectively.  

The transcript levels of this receptor were significantly increased in non-PD TA 

cells and in PD plaque-derived cells exposed to TGF-β1 when compared to cells 

not exposed to TGF-β1 (Figure 3-27). Conversely, a statistically significant 

decrease was observed in PD plaque-derived cells when compared to non-PD TA 

cells with or without TGF-β1. 

3.3.3.2 Immunostaining of estrogen receptors  

To confirm the mRNA levels of both ERs in cells established from non-PD TA 

tissue and PD plaque tissue, immunocytochemistry was carried out. First, ICC 

targeting both ERα and ERβ was performed in MCF-7 cell line (human breast 

adenocarcinoma cell line; Figure 3-28), as these cells have been shown to express 

both ERs and was therefore used as a positive control230.  
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Figure 3-28: Representative illustrations of both ERs in MCF-7 cell line. (A) ERα and 
(B) ERβ. The nucleus of the cells was stained with PI, a red nuclear counterstain (yellow 
arrow), whereas the ERs were stained in green (blue arrow), which is conferred by the 
FITC conjugated secondary antibody. Confocal microscope at 200x magnification. Bar in 
the corner of each image represents 50 µm. 

Figure 3-28 shows both ERs staining in MCF-7 cells. Although the expression of 

ERβ is stronger than ERα, the antibody and methods used successfully detected 

both ERs in MCF-7 cells and therefore can be used to investigate the protein levels 

in cells derived from human TA tissue.  

ICC was carried out in cells derived from non-PD TA tissue and PD plaque tissue 

that were treated with TGF-β1 at 5 ng/ml for 72 hours (Figure 3-29).   
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Figure 3-29: Representative illustrations of ERα in cells derived from non-PD TA 
tissue and PD plaque tissue. (A) untreated non-PD TA cells, (B) untreated PD plaque-
derived cells, (C) non-PD TA cells treated with TGF-β1 and (D) PD plaque-derived cells 
treated with TGF-β1. ICC targeting ERα was performed to observe ERα expression in 
cells exposed to TGF-β1 at 5 ng/ml for 72 hours. The nucleus of the cells was stained with 
PI, a red nuclear counterstain (yellow arrow), whereas the ERα was stained in green, 
which is conferred by the FITC conjugated secondary antibody. Confocal microscope at 
200x magnification. Bar in the corner of each image represents 50 µm. 

Figure 3-29 demonstrates the ICC results targeting ERα with PI nuclear 

counterstain. In both cell populations, no ERα staining was observed either in cells 

not exposed to TGF-β1 or in cells exposed to TGF-β1. 

Immunocytochemistry was also performed to target ERβ in both non-PD TA cells 

and PD plaque-derived cells (Figure 3-30). 
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Figure 3-30: Representative illustrations of ERβ in cells derived from non-PD TA 
tissue and PD plaque tissue. (A) untreated non-PD TA cells, (B) untreated PD plaque-
derived cells, (C) non-PD TA cells treated with TGF-β1 and (D) PD plaque-derived cells 
treated with TGF-β1. ICC targeting ERβ was performed to observe ERβ expression in 
cells exposed to TGF-β1 at 5 ng/ml for 72 hours. The nucleus of the cells was stained with 
PI, a red nuclear counterstain (yellow arrow), whereas the ERβ was stained in green (blue 
arrow), which is conferred by the FITC conjugated secondary antibody. Confocal 
microscope at 400x magnification. Bar in the corner of each image represents 50 µm. 

Regarding ERβ, Figure 3-30 shows the ICC results with PI nuclear counterstain. 

In both cell populations, ERβ staining in cells exposed and not exposed to TGF-β1 

was observed.  

To further investigate the protein levels of both ERs in both cell populations, ICW 

was performed (Figure 3-31).  
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Figure 3-31: ERα protein levels in cells derived from non-PD TA tissue and PD 
plaque tissue. ICW was performed to assess the ERα protein levels in fibroblasts 
exposed to TGF-β1 at 5 ng/ml for 72 hours. Data points were plotted as mean ± SEM, 
N=4. Legend: * indicates P<0.05 tested by Student’s t-test vs untreated cells. 

Figure 3-31 represents the expression of ERα in non-PD TA cells and PD plaque-

derived cells treated with TGF-β1 for 72 hours. As can be observed, only non-PD 

TA cells show a statistically significant increase in ERα when exposed to TGF-β1, 

with no difference between the two populations noted. 

Figure 3-32 denotes the expression of ERβ in both cell populations when exposed 

to TGF-β1 for 72 hours.  

 

Figure 3-32: ERβ protein levels in cells derived from non-PD TA tissue and PD 
plaque tissue. ICW was performed to assess the ERβ protein levels in cells treated with 
TGF-β1 at 5 ng/ml for 72 hours. Data points were plotted as mean ± SEM, N=4.  

As shown in the figure above, no significance was found between cells treated with 

TGF-β1 and not treated with TGF-β1 nor between the two cell groups investigated.  
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3.3.3.3 Effect of SERMs on myofibroblast differentiation  

To study the effect of SERMs on myofibroblast transformation, both tamoxifen and 

raloxifene were tested. Figure 3-33 represents the effect of a range of 

concentrations from 0.018 to 53 μM (0.01 to 30 μg/ml) of tamoxifen applied in co-

incubation with 5 ng/ml TGF-β1 for 72 hours.   

 

Figure 3-33: Effect of tamoxifen on TGF-β1-induced myofibroblasts transformation. 
Cells derived from non-PD TA tissue were exposed to a range of concentrations of 
tamoxifen between 0.018 and 53 μM in co-incubation with 5 ng/ml TGF-β1 for 72 hours. 
Data points were plotted as average ± SEM of the percentage of maximum response of 
either the α-SMA/DNA staining ratio (800 nm normalised fluorescence intensity) or DNA 
staining (700 nm fluorescence intensity) or effect of DMSO, N=3. Z’ factor was determined 
using the average and standard deviation of the negative and positive controls to validate 
the experiment, yielding a Z’ factor of 0.82 ± 0.05. 

As can be observed, a sigmoid curve was produced, reaching a minimum of 10% 

with an IC50 value of 11.98 μM and a MEC of 18 μM. Tamoxifen significantly 

inhibited TGF-β1-induced myofibroblast differentiation at concentrations of 18 μM 

and above and only significantly decreased cell numbers at 53 μM. 

As shown in the figure below, a full concentration response curve with a range of 

concentrations from 0.059 to 196 μM (0.03 to 100 μg/ml) of raloxifene applied in 

co-incubation with 5 ng/ml TGF-β1 for 72 hours was also performed.    
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Figure 3-34: Effect of raloxifene on TGF-β1-induced myofibroblasts transformation. 
Cells derived from non-PD TA tissue were exposed to a range of concentrations of 
raloxifene between 0.059 and 196 μM in co-incubation with 5 ng/ml TGF-β1 for 72 hours. 
Data points were plotted as average ± SEM of the percentage of maximum response of 
either the α-SMA/DNA staining ratio (800 nm normalised fluorescence intensity) or DNA 
staining (700 nm fluorescence intensity) or effect of DMSO, N=3. Z’ factor was determined 
using the average and standard deviation of the negative and positive controls to validate 
the experiment, yielding a Z’ factor of 0.89 ± 0.01. 

A classical sigmoid curve was produced by the range of concentrations used, 

reaching a minimum of approximately 20% with an IC50 value of 12.23 μM and a 

MEC of 19.6 μM. TGF-β1-induced myofibroblast differentiation was significantly 

reduced at concentrations of 19.6 μM and above. Nevertheless, a cytotoxic effect 

was detected only at concentrations of 59 μM and above, where a significant 

decrease of DNA staining was observed. 
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4 Discussion 

4.1 Development of a real-time RT-PCR method 

Real-time RT-PCR is a powerful technique used to quantify gene expression 

levels between different samples (healthy versus diseased tissue-derived 

samples). RT-qPCR allows the accumulation of PCR products to be detected and 

measured by a fluorescence molecule that reports an increment in the quantity 

of DNA with a proportional increase in fluorescence signal as the reaction 

progresses. This technique enables the determination of the starting copy 

number of the template with high sensitivity and accuracy over a wide range of 

quantities; however, several technical deficiencies can affect the assay 

performance (e.g. poor quality of RNA samples, poor choice of primers for both 

reverse transcription and qPCR reactions, improper or lack of validation of 

reference genes and unsuitable methods for data analyses). 

In order to generate high quality and consistent data, the minimum information 

for publication of quantitative real-time PCR experiments (MIQE) guidelines have 

been published, which consist of a checklist with all the essential and desired 

information when submitting real-time PCR data to guarantee scientific literature 

integrity and to promote consistency between laboratories231. These guidelines 

were followed during this project, where all the essential and desired information 

was reported if available by the manufacturers. 

Further information can be found in Appendix III about the methods employed in 

this project and why they were used.  

To investigate the mRNA levels of genes of interest (α-SMA, adenosine receptors 

and estrogen receptors), RNA was extracted from cultured cells, converted to 

cDNA, which was then used as a template for qPCR. 

To ensure high-quality RNA samples, the RNA extraction and purification process 

were performed in an RNase-free environment, small batches of samples were 

processed at the same time and the RNA samples were stored in suitable 

conditions (frozen at -80°C straight after the extraction procedure and until use).   
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Another potential risk for data quality resulting from PCR is the selection of 

suitable reference genes for data normalisation. According to several 

authors231,232, two or more reference genes should be used to have an accurate 

normalisation. The geNorm M value was also used, which is the average pairwise 

variation of a specific gene compared to all the other reference genes. The genes 

with the lowest geNorm M value are the most stably expressed in the tested 

experimental conditions233,234. This data also enables the calculation of the 

optimal number of reference genes that should be used to achieve the best 

normalisation strategy235. This methodology indicated that the use of the two most 

stably expressed reference genes would be adequate to accomplish the best 

normalisation strategy in the tested experimental conditions.  

For all qPCR runs, two negative controls (NTC and NRT, corresponding to no 

template control and no RT control, respectively) were included to ensure the 

efficiency of the method and the absence of PCR contaminants and gDNA. When 

amplification was observed in the negative controls, these samples were 

excluded and considered outliers only if the difference in the Cq value between 

the sample with the highest Cq value and the negative control was large enough 

(a Cq value difference above 5, which corresponds to a fold increase of about 

32)233.  

SYBR Green was used as the detection reagent in this experiment and the main 

drawback of this reagent is the lack of specificity; therefore, it was essential to 

perform a melting curve analysis in each qPCR run to check the specificity of 

PCR products. By performing this quick test at the end of the qPCR run, it enabled 

to confirm that the PCR products observed were indeed the target of interest.  

In summary, the mRNA levels of myofibroblasts could be assessed using the 

real-time RT-PCR methods developed herein in cells isolated from non-PD TA 

tissue and PD plaque tissue. All the MIQE guidelines were followed and all 

controls were performed to ensure proper evaluation of the targets of interest.   
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4.2 Validation of the ICW assay 

A high-throughput cell-based assay was developed for the identification of 

compounds with potential anti-myofibroblast activity in cells derived from non-PD 

TA tissue and PD plaque tissue.  

In regards to the ICW protocol itself, no optimisations were performed as it was 

already put through a process of extensive optimisations that included the 

establishment of the optimum concentrations of the primary and secondary 

antibody, the primary antibody incubation times (overnight vs two hours’ 

incubation), comparison of three different antibodies targeting α-SMA 

(information of antibody validation in Appendix IV), percentage of donkey serum 

in blocking buffer, optimum concentration of surfactants in wash buffers and 

comparison of transparent 96 well plates vs bottom black 96 well plates236. 

Nevertheless, several control experiments were carried out to validate the use of 

the ICW assay for this project.  

TGF-β is a cytokine implicated in the tissue differentiation and morphogenesis in 

fibrosis through enhancing inflammation, ECM deposition, cell differentiation and 

growth. There are three known isoforms of TGF-β: TGF-β1, TGF-β2 and TGF-

β3, all of which function through the same receptor pathways. However, in in vitro 

investigations, TGF-β1 is the most commonly used isoform, due to its increased 

pro-fibrotic effects237. This cytokine binds to type II TGF-β receptor, which will 

recruit and activate the type I TGF-β receptor. This receptor is then responsible 

for recruiting and phosphorylating Smad 2 and 3 (intracellular mediators of TGF-

β1), resulting in a complex with Smad 4, which is translocated to the nucleus to 

regulate the TGF-β1 target genes238. The regulation of TGF-β1 target genes can 

also occur through Smad-independent pathways, such as MAPK, RhoA, Wnt, 

Notch, Ras and PI3 kinase signalling pathways239.  

TGF-β1 was therefore selected as the inducer of myofibroblast differentiation 

process in vitro, as this cytokine is well documented in the literature as being 

profibrotic and an activator of myofibroblast transformation in PD and fibrosis in 

general178,240–243.  
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In the experiments carried out in this study, TGF-β1 was applied in co-incubation 

with the compounds to reveal if the compound could prevent the myofibroblast 

differentiation process from occurring if present at the time when the cells were 

exposed to TGF-β1. In a clinical setting, if a compound with potential anti-

myofibroblast activity is administrated in the moment when fibroblasts are 

stimulated to differentiate, that is, when TGF-β1 is present in the environment, 

then this compound might be effective in impeding this differentiation process 

from occurring.  

To validate the assay for use in assessing the effect of compounds on 

myofibroblast differentiation in a medium to high throughput format, the Z’ factor 

was used. A Z’ factor below 0.5 is considered to be highly variable therefore not 

suitable for HTS, whereas a Z’ factor between 0.5 and 1 is considered to have 

low variability and amenable to the assessment of novel potential compounds 

through HTS244,245. When comparing the negative controls (cells not exposed to 

TGF-β1) to the positive controls (cells exposed to TGF-β1), Z’ factors above 0.5 

were obtained using the ICW assay.  

The objective of the DMSO concentration response curve was to assess its 

cytotoxic effect on fibroblasts and its inhibitory effect on TGF-β1-induced 

myofibroblast differentiation. Similar to the results described herein, a study by 

Xu et al. (2013)246 demonstrated that DMSO had an effect on ear skin fibroblasts, 

leading to apoptosis of those cells. These data lead to a maximum DMSO 

concentration to be used of 0.3%.  

SB-505124 was used as a positive control for the assay as it is a selective 

inhibitor of type I TGF-β receptors that has been reported to inhibit TGF-β1-

induced myofibroblast differentiation. SB-505124 works by inhibiting the ATP 

binding site of activin receptor-like kinase (ALK) 5, which is also known as TGF-

β type I receptor that when activated is capable of phosphorylating Smad2 and 

Smad3. Byfield and colleagues (2004)247 showed that SB-505124 is a highly 

potent and selective inhibitor of TGF-β1. SB-505124 has been shown to reduce 

levels of α-SMA of rabbit subconjunctival fibroblasts that have been exposed to 

2 ng/ml TGF-β for 48 hours248. In addition, SB-505124 has been reported to 
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decrease the α-SMA immunostaining in wounds topically treated with SB-505124 

compared to control wounds249.   

The positive results observed for SB-505124 in the myofibroblasts inhibition 

assay validated this assay for use in the assessment of the effect of compounds 

on TGF-β1-induced myofibroblast differentiation. 

With regards to the ADORA2B and ERβ antibodies used in the ICW assay, these 

were validated by co-incubating with or without excess of the full-length receptor. 

As these two antibodies are both polyclonal antibodies, non-specific binding to 

proteins other than the antigen of interest may occur; therefore, this is a good 

method to detect whether the staining is specific. When the antibody is 

neutralised by incubating with an excess of peptide that is recognised as the 

epitope by the antibody, the antibody will no longer be available to bind to the 

epitope present in the cells250.  

For the ADORA2B antibody, no bands were observed in the Western blot neither 

in the antibody alone nor in the positive control cell lysate used. Antibodies may 

not work well when a protein is fully denatured which is the case of the protein 

lysates used when running SDS WB. Nevertheless, the antibody may work well 

for proteins in their native conformation with intact 3-D structure, but not when 

denatured. Therefore, when the primary protein assay (in this case, ICW) used 

contains the antigen in its native conformation, WB should not be an absolute 

standardisation for antibody validation, instead antibody validation should be 

performed in the main protein assay used250. However, the WB is suitable as a 

first validation step and is still extensively used to assess antibody’s specificity if 

the antibody recognises the denatured antigen. Further validation from the 

manufacturer for both proteins in question can be found in Appendix IV. 

Taken together, the data discussed above shows that the ICW assay was 

deemed valid to be used to assess the protein levels of α-SMA, adenosine 

receptors and estrogen receptors as well as the effect of adenosine receptor 

modulators and SERMs on TGF-β1-induced myofibroblast differentiation. 
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4.3 Characterisation of cells derived from non-PD TA tissue and 

PD plaque tissue 

Cells from non-PD TA tissue and PD plaque tissue were established and the 

expression of several targets, including adenosine and estrogen receptors, was 

assessed to understand their involvement in myofibroblast differentiation in PD.  

Establishment of primary cell cultures was carried out throughout the study. 

Tissue samples acquired from patients undergoing surgery for either treatment 

of PD or invasive penile cancer were obtained, and fibroblasts were isolated from 

these tissue samples.  

Primary cell cultures were established using the explant technique, which is a 

technique where the tissue fragments were forcefully rubbed onto the surface of 

a well of a 6-well plate. Cells migrated out of the tissue onto the surface of each 

well, after being left in culture medium for a few days at 37°C, 5% CO2. Even 

though there are other techniques available to isolate a specific cell type, this 

method successfully established fibroblasts derived from non-PD TA tissue and 

PD plaque tissue. 

Fibroblasts were identified by their spindle-shaped morphology as well as by the 

presence or absence of various markers, as no specific marker is expressed only 

by fibroblasts. The primary cell cultures established from non-PD TA tissue and 

PD plaque tissue were characterised by the analysis of the expression of 

vimentin, desmin and α-SMA. It was observed that these fibroblasts were 

vimentin-positive, desmin-negative and α-SMA-negative using 

immunostaining251, which according to several authors define the fibroblast 

phenotype192.  

Furthermore, tissue fragments were carefully excised by the surgeon and during 

the in vitro cutting procedure, caution was taken to avoid contamination of other 

cell types, mainly smooth muscle cells present in the corpus cavernosum, which 

could have led to the increment of the number of myofibroblasts in the primary 

cell cultures due to the differentiation of the smooth muscle cells28. Nevertheless, 

this was not detected, as the cells observed growing out of the tissue did not 
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present the morphology of the smooth muscle cells, and subsequent α-SMA 

staining of cells from control tissues in the absence of TGF-β1 stimulation showed 

<1% myofibroblasts. 

To investigate and characterise the myofibroblast transformation process, the 

expression of α-SMA was assessed, followed by the study of adenosine 

receptors and estrogen receptors expression in cells isolated from non-PD TA 

tissue and PD plaque tissue exposed and not exposed to TGF-β1.     

 Expression of α-SMA 

After tissue injury, fibroblasts are activated and, under stress, differentiate into 

myofibroblasts. Myofibroblasts have a crucial role not only in normal wound 

healing but also in fibrosis. These cells are responsible for contracting the edges 

of a wound together and for producing several cytokines and abundant ECM 

proteins. Myofibroblast differentiation was selected as the target as it is well 

established in the literature as being a crucial contributor in the pathophysiology 

of several fibrotic disorders including PD188,252,253 and it is also extensively used 

as a marker in this field. A key feature of myofibroblasts is their α-SMA 

expression; therefore, by targeting α-SMA, it is possible to investigate the 

myofibroblast transformation process. In addition, this marker is also well-studied 

protein and there are several specific and validated monoclonal antibodies.   

The increase in α-SMA mRNA and protein levels induced by TGF-β1 observed 

in cells derived from non-PD TA tissue and PD plaque tissue presented herein is 

supported by previously published reports that have shown that both α-SMA 

mRNA and protein levels increase in the presence of TGF-β1 in fibroblasts 

isolated from PD tissue188,192.  A differential response to TGF-β1 was observed 

between non-PD TA cells and PD plaque-derived cells, suggesting that these 

group of cells have different phenotypes, which might have been carried over 

from the tissue. The prior exposure to TGF-β1 in PD plaque tissue might have 

led the cells to partially resist TGF-β1; therefore, presenting a lower response to 

TGF-β1 in cells isolated from PD plaque tissues.         
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 Expression and modulation of adenosine receptors 

Various studies have shown that adenosine receptors play different roles in acute 

and chronic injuries. In acute injuries, it has been shown to be beneficial; 

however, when adenosine levels are increased, it has been associated with the 

progression of chronic tissue injuries, suggesting that adenosine may promote 

fibrosis55. This is not surprising given that fibrosis can be effectively thought of as 

persistent wound healing, therefore, a stimulus for wound healing can be both 

beneficial in acute states and detrimental when present for prolonged periods of 

time. 

The objective of the results reported in section 3.3.2 (Expression and modulation 

of adenosine receptors) was to investigate the expression of four adenosine 

receptors in cells derived from non-PD TA tissue and PD plaque tissue. The 

mRNA levels were assessed in all four receptors and subsequently the effect of 

TGF-β1 on mRNA levels and protein levels was only investigated in two of the 

four receptors (ADORA1 and ADORA2B) that presented detectable levels of 

mRNA. Even though the mRNA levels were significantly decreased (fold-change 

of approximately 1.6) in the presence of TGF-β1 in both receptors, it may not 

represent a biological change in the transcript levels, as according to MIQE 

guidelines to show biological changes a 2-fold (recommended cut-off value) 

increase or decrease should be observed. It was therefore considered that the 

cells expressed ADORA1 and ADORA2B mRNA, but this expression was not 

affected by TGF-β1. 

The expression levels of ADORA1 and ADORA2B was investigated in non-PD 

TA tissue and in PD plaque tissue; however, similar levels of fluorescence for 

ADORA1 and ADORA2B were observed in the negative control and in the tissue 

samples, which suggested that the fluorescence observed was autofluorescence. 

Various optimisations were attempted; however, the detection of low-level 

expression in human tissue using fluorescent techniques is a well-known and 

stubborn problem due to the phenomenon of autofluorescence254.  
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The expression of these two receptors were also investigated in cells derived 

from non-PD TA tissue and PD plaque tissue. A differential response to TGF-β1 

was observed for the protein levels of these two receptors.  

Nevertheless, the expression of these receptors has been assessed in fibroblasts 

derived from other fibrotic tissues, with contrasting results depending on the 

tissue in question. A study performed by Zhong et al. (2005)72 found that primary 

human lung fibroblasts expressed high mRNA levels of ADORA2B and the 

expression of this receptor at protein level was confirmed by 

immunofluorescence. These authors also showed that the activation of 

ADORA2B by adenosine promoted myofibroblast differentiation.  

A further study by Wen et al. (2010)66 showed that primary corpus cavernosal 

fibroblasts from mice expressed ADORA2B, which was suggested to be 

responsible for adenosine-mediated penile fibrosis. Furthermore, two other 

studies have also shown that deaminase-deficient mice had an increment of 

adenosine levels and ADORA2B activation in the penis, suggesting an essential 

mechanism for the progression of priapism in these mice66,67.  

These two studies are in accordance with the data presented in this report, as 

increased presence of both mRNA and protein in PD tissues indicates that 

ADORA2B is involved in this fibroproliferative disorder.  

Even though the ADORA2B antagonist (MRS 1754) did not inhibit TGF-β1-

induced myofibroblast transformation in this report, several authors reported that 

MRS 1754 lowered the mRNA levels of TGF-β1 and procollagen I, suggesting an 

anti-fibrotic role for this antagonist66.The ADORA1 antagonist (SLV 320) also 

failed to inhibit TGF-β1-induced myofibroblast differentiation; however, SLV 320 

has been reported to suppress cardiac fibrosis and reduce the amount of collagen 

in nephrectomised rats255. Taken together, these data may suggest that the 

antifibrotic role of adenosine receptor antagonists may be through an upstream 

process to TGF-β1, decreasing mRNA and potentially, protein levels of this 

profibrotic factor. Any compound working through such a mechanism may not be 

identified in the developed ICW assay. It is also worth noting that as agonism of 

these receptors had an inhibitory effect, it is unlikely that antagonism of these 
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same receptors would have the same effect. The results for the antagonists are, 

therefore, consistent with the data achieved for the agonists. 

As both ADORA1 and ADORA2B agonists (CPA and BAY 60-6583, respectively) 

inhibited TGF-β1-induced myofibroblast transformation, further analyses were 

performed to evaluate their ability to inhibit TGF-β1-induced myofibroblast 

differentiation in a concentration-dependent manner. These two compounds were 

co-incubated with TGF-β1 to reveal whether they could prevent myofibroblast 

transformation from occurring if present in the moment at the cells were exposed 

to TGF-β1. Even though, the ADORA1 agonist CPA failed to show inhibition of 

TGF-β1-induced myofibroblast differentiation at any concentration; BAY 60-6583 

(ADORA2B agonist) significantly inhibited TGF-β1-induced myofibroblast 

differentiation in non-PD TA cells in a concentration-dependent manner, while in 

PD plaque-derived cells an incomplete sigmoid curve was observed. 

Both CPA256,257 and BAY 60-658356,258 have been used by several authors as 

ADORA1 and ADORA2B agonists, respectively, to study the involvement of 

these adenosine receptors in different diseases.  

It has been reported that CPA improved wound healing when applied topically, 

leading to increased proliferation of both BALB/3T3 fibroblasts (mouse embryonic 

fibroblast cell line) and endothelial cells in diabetic and normal mice259. Although 

on the surface this may appear to contradict the data in this report, as CPA 

improved wound healing in the literature but did not show a CRC in this report, 

the mechanism by which this occurred is in effect fibroproliferative by increasing 

the growth rate of fibroblasts. This is not a mechanism of interest for the 

prevention/treatment of fibrotic disorders nor is it a mechanism that would be 

identified in the developed ICW assay. 

The ADORA2B agonist, BAY 60-6583, has been reported to improve renal 

function56 and attenuating infarct sizes after ischemia59. These data are 

consistent with those of this thesis as an inhibition of TGF-β1-induced 

myofibroblast differentiation would also decrease the level of scarring, leading 

potentially to both attenuated infarct sizes and improved renal function in the 

respective studies. 
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To the best of the author’s knowledge, this is the first time that the expression of 

the adenosine receptors has been investigated in cells derived from non-PD TA 

tissue and PD plaque tissue, showing expression of ADORA1 and ADORA2B. 

This is also the first time that an ADORA2B agonist have been shown to 

significantly inhibit TGF-β1-induced myofibroblast differentiation in a 

concentration-dependent manner in cells derived from human TA tissue. 

Summary of results: 

The table below is a collation of the tables shown in the Introduction section 

(pages 11 and 40) corresponding to adenosine receptor expression and effect of 

adenosine receptor modulation, with the addition of the data acquired in this 

report in order to contextualise the results. 

Table 4-1: Summary table of the expression of adenosine receptors and the effect 
of agonists and antagonist in different tissues. Qualitative expression of adenosine 
receptors in different tissues. Highlighted in grey is the new data obtained in this study 
from cells established from tunica albuginea tissues. The relative mRNA expression of 
each receptor in each tissue is reported as a relative scale to the other receptors, 
according to in vivo, in vitro or human studies with +++ indicating the highest expression 
and + indicating the lowest expression of the receptors found to be present. Legend: red 
- promote fibrosis; green - impede fibrosis, black – anti-inflammatory and black – not
detected/unknown.

Tissues 

Adenosine receptors 

ADORA1 ADORA2A ADORA2B ADORA3 

Lung 

Expression +72 ++72 +++72 

Agonist Adenosine73 CGS2168076 NECA72 

Antagonist CVT-688364 

Kidney 

Expression +138 +++68 

Agonist CGS2168077 NECA68 

Antagonist ZM24138577 

PSB111568 

MRS175468 
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Tissues 

Adenosine receptors 

ADORA1 ADORA2A ADORA2B ADORA3 

Liver 

Expression +++63 

Agonist 

NECA74 

CGS-2168063 

Antagonist ZM24138563,74 

Heart 

Expression +78 ++78 +++78 

Agonist NECA78 

Antagonist MRS1754260 

Skin 

Expression +++62 

Agonist CGS2168079 

Antagonist ZM24138562 

Penis (corpus 

cavernosum) 

Expression +++66 

Agonist NECA66 

Antagonist MRS175466 

Penis (tunica 

albuginea) 

Expression + +++ 

Agonist BAY 60-6583 

Antagonist 

Taken together, the data discussed above show that adenosine receptors, 

specifically ADORA1 and ADORA2B appear to be involved in PD with ADORA2B, 

in particular, being a potential novel target for inhibition of myofibroblast 

differentiation in PD due to the increased expression over ADORA1 and the effect 

of the specific ADORA2B receptor agonist BAY 60-6583. It is interesting to note 

that Peyronie’s disease and other fibroproliferative disorders have contradictory 

data, as ADORA2B agonism has been shown in this report to have an anti-fibrotic 

effect in PD, but not in the corpus cavernosum, kidney, and lung. This is not 

unexpected as adenosine receptors appear to play different roles in fibrosis 

depending on the tissue involved. 
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 Expression and modulation of estrogen receptors 

Estrogen mediates its physiological effects through two ERs, which have been 

suggested to be involved in the pathophysiology of several fibroproliferative 

diseases.  

The objective of the results presented in section 3.3.3 (Expression and 

modulation of estrogen receptors) was to investigate the expression of ERα and 

ERβ in cells established from non-PD TA tissue and PD plaque tissue and to 

assess the effect of modulation of these receptors on myofibroblast 

transformation.  

The expression of ERβ was observed in both cell populations and its localisation 

in non-PD TA cells and PD plaque-derived cells was principally in the cytoplasm, 

which it is in agreement with the findings reported by Pedram et al. (2010)91. The 

authors found that ERβ was predominantly in the extranuclear locations such as 

cytoplasm and plasma membrane fractions in cardiac fibroblasts. Conversely to 

the results reported herein and the study above, ERβ has also been observed 

mainly in the nucleus of human lung fibroblasts126,127 as well as in the nucleus of 

HSCs and hepatocytes with a small percentage of ERβ localised in the cytoplasm 

of these cells151. The location of these receptors in fibroblasts derived from 

different tissues is not unexpected, as there is a differential expression of these 

receptors in the tissues and such specific localisation of the receptors may be 

related to the varying effects observed by E2 in each tissue. In addition, the ability 

of a specific cell derived from a specific tissue to respond to estrogen depends 

on the presence of each estrogen receptor in that tissue261. 

Even though there was a difference between ERα and ERβ mRNA and protein 

levels, it should be noted that the detection of mRNA levels does not provide 

information on whether that mRNA will be translated into a functional protein262 

as mRNA do not directly indicate bioactivity of the protein and post-transcriptional 

events can modulate the amount of protein263,264. 

In contrast to the data presented herein, Hattori et al. (2011)265 reported that TGF-

β1 upregulated both mRNA and protein levels of ERα. This discrepancy could be 
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attributed to the fact that the authors used human dermal fibroblasts and only 

exposed the cells to TGF-β1 for 24 hours at 2 ng/ml. According to Haczynski et 

al. (2002)266, human skin fibroblasts express both ERα and ERβ. However, these 

authors reported that ERβ was weakly detected in these cells and it was found 

predominantly in the nuclear compartment, compared to ERα. Similar to the data 

reported herein, a study by Palmieri et al. (2004)267 showed that human mammary 

fibroblasts expressed ERβ, but did not express ERα.   

These data attest to the fact that the expression of ERs is highly varied in different 

fibroblast populations originating from different tissues. This would likely translate 

to different levels of involvement of these receptors in fibroproliferative diseases 

in different tissues, as described in the introduction chapter of this thesis. 

To further probe the involvement of ERs in PD, two SERMs: tamoxifen and 

raloxifene were assessed for their effect on TGF-β1-induced myofibroblast 

differentiation.  

Tamoxifen is a SERM that has been used in the treatment of breast cancer; 

however, it has been reported to be useful in in vitro models of PD, by facilitating 

the release of TGF-β1 from fibroblasts, inhibiting the inflammatory response and 

reducing fibroblasts secretion and/or angiogenesis152. According to the presented 

results, tamoxifen significantly inhibited TGF-β1-induced myofibroblast 

differentiation in a concentration-dependent manner. Moreover, tamoxifen has 

also been shown to reduce the synthesis of TGF-β1 and TGF-β2 as well as 

fibroblast contraction and proliferation in in vitro studies268–271. 

Despite these in vitro data, the reports on the clinical efficacy of tamoxifen have 

been conflicting. One of the first studies using tamoxifen as a potential treatment 

for PD involved 36 patients with PD, which were treated with this drug over 3 

months period. This study reported an improvement in penile pain (80%), 

reduction in plaque size (34%) and reduced penile deformity (35%), especially in 

patients presenting at early stages of the disease (duration <4 months)221. A 

further placebo-controlled study involving 25 patients showed no statistically 

significant differences between tamoxifen and placebo group in regards to the 

reduction of penile deformity, decrease penile pain and decrease in plaque 
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size222. Although the authors selected patients with no calcified plaques, the 

mean duration of PD was 20 months which may explain the discrepancy between 

the results reported by these authors and the previous study where the patients 

were in the early phase of PD.  

Biagiotti & Cavallini (2001)199 compared tamoxifen and acetyl-L-carnitine in 

randomised groups of PD patients in acute (15 patients, mean duration 5 weeks) 

and in initial chronic (33 patients, mean duration 6.5 months) phase of PD. It was 

reported that acetyl-L-carnitine significantly reduced pain, plaque size and penile 

curvature compared to tamoxifen in acute and early chronic PD, as well as less 

adverse effects than tamoxifen.  

In addition, Kim et al. (2012)200 compared the progression of tamoxifen treatment 

in patients with acute and chronic PD and reported that tamoxifen did not show 

any benefit in slowing the progression of PD. However, the authors did not specify 

the duration of the PD at the start of study. 

 A study by Park et al. (2016)272 involving 109 patients who presented PD were 

treated with either potassium para-aminobenzoate daily or a combination 

therapy: tamoxifen and acetyl-L-carnitine twice daily in addition to tadalafil 

(PDE5i, once daily). The authors showed that penile pain, penile curvature and 

plaque size were improved; however, no statistical difference was observed 

between the two groups. Even though, statistically significant difference was not 

observed between groups, a better response rate was reported in patients treated 

with the combination therapy, and the number of patients who underwent surgical 

treatment was significantly higher in patients treated with potassium para-

aminobenzoate daily only. Again, the authors did not specify the duration of the 

disease at the start of the study; but one can speculate that most of their patients 

were at the late stages since they had fibrotic plaques. 

Overall, the evidence to support the efficacy of tamoxifen has been limited; 

therefore, the European Association of Urology (EAU) guidelines (2012)273 and 

the American Urological Association (AUA) guidelines (2015)274 do not 

recommend the use of tamoxifen clinically for PD.  
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Apart from the first study221, all other clinical studies on tamoxifen utilised patients 

who were in late stages of the disease (i.e. duration longer than 12 months and/or 

with fibrotic plaque). The only clinical benefit with tamoxifen was observed in the 

first study and the authors commented “patients with early disease (duration less 

than 4 months) responded better than patients  with a longer history”221. The data 

presented in this report, which assessed the effect of co-incubation of tamoxifen 

with TGF-β1 supports the notion that this compound may be beneficial only in the 

early, non-stable phase of PD, as inhibition of myofibroblast differentiation may 

halt the progression of fibrosis but may not necessarily reverse the already 

formed fibrosis. Further clinical studies would be required to test tamoxifen alone 

or in combination with PDE5 inhibitors275 in patients who present with PD at early 

stages. Further clinical studies would also be required to test other SERMs such 

as raloxifene and idoxifene in PD as explained below. 

Tamoxifen was used in this report as it is the prototypical SERM, well 

characterised and widely commercially available. The data generated in this 

thesis can be used in support of the use of other SERMs, with better efficacy and 

safety pharmacology profiles. 

Raloxifene, for instance, acts by binding to the ERs, causing a change in their 

conformation which can lead to the activation or blocking of estrogen responsive 

genes276. This SERM significantly reduced α-SMA/DNA staining showing 

cytotoxicity only at higher concentrations in this report. This data is supported by 

the literature, as raloxifene has been shown to improve liver fibrosis in 

ovariectomised mice277, as well as ameliorate diabetes-associated 

tubulointerstitial fibrosis in diabetic rats90,278. In addition, raloxifene reduced 

abnormal ECM protein turnover by pelvic fibroblasts by increasing TIMPs 

expression279. Furthermore, in skin fibroblasts, raloxifene inhibited the expression 

of MMP-9 suggesting a reduction in collagen degradation280. Another SERM, 

idoxifene has been shown to improve liver fibrosis in a rat model112. 

To the best of the author’s knowledge, this is the first report to show expression 

of ERβ in cells isolated from non-PD TA tissue and PD plaque tissue. This is also 

the first time that raloxifene has been shown to significantly inhibit TGF-β1-
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induced myofibroblast differentiation in a concentration-dependent manner in 

cells derived from human TA tissue. These data suggest that these SERMs may 

produce an anti-fibrotic effect in PD through interaction with ERβ and subsequent 

inhibition of myofibroblast differentiation.  

Summary of Results:  

The table below is a collation of the tables shown in the Introduction section 

(pages 16 and 40) corresponding to estrogen receptor expression and effect of 

estrogen receptor modulation, with the addition of the data acquired in this report 

in order to contextualise the results. 
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Table 4-2: Summary table of the expression of estrogen receptors and the effect 
of ligands in different tissues. Qualitative expression of estrogen receptors in different 
tissues. Highlighted in grey is the new data obtained in this study from cells established 
from tunica albuginea tissues. The relative mRNA expression of each receptor in each 
tissue is reported as a relative scale to the other receptors, according to in vivo, in vitro 
or human studies with +++ indicating the highest expression and + indicating the lowest 
expression of the receptors found to be present. Legend: red - promote fibrosis; green - 
impede fibrosis and black – anti-inflammatory. 

Tissues  
Estrogen receptors 

ERα ERβ 

Lung 

Expression +126,127 +++126,127 

Effect of ligands Estrogen110 

Kidney 

Expression +++141 +141 

Effect of ligands Estrogen92, tamoxifen100 

Liver 

Expression +++111 +151 

Effect of ligands Estrogen111, idoxifene112 

Heart 

Expression +91 +++91 

Effect of ligands Estrogen91 

Skin 

Expression +++223 +223 

Effect of ligands Estrogen80 

Penis 

 

Expression +109,219 +++109,219 

Effect of ligands Estrogen113 

Penis 

(tunica albuginea) 

Expression  +++ 

Effect of ligands Tamoxifen, raloxifene 

The data discussed above show that ERβ appears to be involved in PD, being a 

potential novel target for inhibition of myofibroblast differentiation in PD. It is 

interesting to note that the effect of estrogen and/or SERMs have an anti-fibrotic 

effect, not only in other fibroproliferative disorders, but also in PD.  
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4.4 Limitations of the study 

Contradiction between mRNA and protein expression  

As can be observed in the summary table below, there are some contradictory 

data within this report in terms of the mRNA and protein expression levels noted 

in non-PD TA samples and PD plaque samples with and without exposure to 

TGF-β1. α-SMA is the exception to the rule, as the effect of TGF-β1 on both 

populations is consistent in both mRNA and protein and there is a difference 

between non-PD TA cells and PD plaque-derived cells. This is to be expected as 

α-SMA is a hallmark of myofibroblast transformation and increased mRNA and 

protein levels are expected after TGF-β1 treatment. The differential response to 

TGF-β1 between the populations is likely due to the prior exposure to TGF-β1 in 

the PD plaque tissue, which may lead to partial resistance to TGF-β1.  

In terms of the remaining targets, there are substantive differences between the 

protein and mRNA levels but mRNA levels often do not translate to protein 

expression levels263 and inconsistencies between these two datasets are not 

unexpected.  

Additionally, it could also be supposed that TGF-β1 treatment would have the 

effect of transforming the non-PD TA cells to PD plaque-derived like cells. 

However, there are differences between untreated and TGF-β1 treated samples 

and between non-PD TA derived and PD plaque-derived cells. This is likely 

because TGF-β1 treatment will not account for the numerous other differences 

between these two cell populations and that TGF-β1 treatment changes virtually 

all fibroblasts into myofibroblasts, and it has been shown that myofibroblasts 

constitute only approximately 20% of cells cultured from PD plaques192. 
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Table 4-3: Summary table of mRNA and protein expression data. Protein data 
corresponds to ICW data. Legend: + present; - absent; ↓↑*different from matched 
untreated; ↓↑# significantly different from non-PD TA cells; ND Not determined. 

 mRNA Protein 

 TA PD TA+ TGF  PD+TGF TA PD TA+TGF PD+TGF 

α-SMA + + ↑* ↑* + + ↑* ↑* 

ADORA1 + ↑# ↓* ↓* + + ↑* ↑* 

ADORA2A - - ND ND ND ND ND ND 

ADORA2B + + ↓* ↓* + ↑# + ↑# 

ADORA3 - - ND ND ND ND ND ND 

ERα + ↓# ↓* ↓* ↓# - - - - 

ERβ + ↓# ↑* ↑* ↓# + + + + 

Furthermore, it should also be noted that changes in expression both at the 

mRNA and protein levels are not a proxy for the importance of the role of the 

specific receptor in the disease. For the receptor to play a role, it simply needs to 

be shown to be present, preferably at both the mRNA and protein level, preferably 

in both non-PD TA cells and PD plaque-derived cells, which is true of ADORA1, 

ADORA2B and ERβ. These receptors were therefore taken forward to be tested 

using specific compound modulators in the α-SMA ICW assay. 

The lack of tissue PCR data  

The use of RNA extracted from tissue samples is preferable to the use of RNA 

extracted from cells derived from said tissues, as the natural molecular 

physiology of the tissues is preserved whether it is a healthy or diseased sample. 

However, the stability of RNA in a tissue sample is more vulnerable than in cells 

and in some tissues, it is extremely difficult to extract RNA as the disruption of 

tissue requires aggressive sample homogenisation.  
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Translational weakness of cellular assays  

Even though the use of cell-based in vitro assays will provide a better 

understanding of the process under assessment and the effect of a compound in 

modulating said process, it is also a model of a process in a simplistic form to 

enable the adequate control of all variables. It is therefore, by its very nature, 

reductionist and cannot account for all the variables present in the human body. 

Furthermore, the use of the healthy and fibrotic tissue samples from the same 

patient would present a more accurate comparison; however, those samples 

were very difficult to obtain, due to ethical implications of removing penile tissue 

that would not otherwise be removed. 

High concentrations of agonists/antagonists  

In this study, the inhibitory effect of the adenosine receptor modulators and 

SERMs was assessed at relatively high concentrations that may not be 

physiologically relevant. For instance, tamoxifen was found to be effective in this 

report at inhibiting myofibroblast differentiation at approximately 18 µM (6.7 

µg/ml). Obviously, such high concentrations would not be possible to reach when 

these compounds are administered systemically, as systemic oral application of 

tamoxifen at 20 mg/day in humans leads to serum concentrations of 

approximately 67 nM (25 ng/ml)281. However, as described in the Introduction, 

intralesional injection therapy of SERMs may be used in the treatment of PD, 

which greatly increases compound concentration at the effective site. It should 

be noted that in a recent animal study undertaken by our research group, 

systemic (intraperitoneal) daily administration of tamoxifen (5 mg/kg/day) has 

been shown to prevent fibrosis in an animal model of Peyronie’s disease275. 

However, tissue concentrations of the drug were not measured at that study. 

Further in vivo animal studies will be needed to understand the tissue 

concentrations needed at the efficacious doses.  

Effective medical treatments for PD are currently lacking and by understanding 

the myofibroblast differentiation process and the involvement of different 

receptors will shed light on potential novel therapeutic targets. Despite the 

limitations of this study, the data in this report support the hypothesis that 
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adenosine and/or estrogen receptors expression is involved in myofibroblast 

differentiation in PD and that these may be novel potential targets for anti-fibrotic 

therapies in this disease. In particular, agonism of ADORA2B and modulation of 

ERβ appear to be promising novel avenues for anti-fibrotic therapies in PD. 
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5 Conclusion 

5.1 Establishment of primary cell cultures 

Primary cell cultures were successfully established from non-PD TA tissue and 

PD plaque tissue, which were then characterised by investigating the expression 

and role of adenosine and estrogen receptors in myofibroblast differentiation in 

PD. 

Both cell populations showed similar profiles in terms of the targets assessed and 

presented quantifiable protein and mRNA levels of ADORA1, ADORA2B and 

ERβ. TGF-β1 treatment had a variety of effects on these targets with no 

consistent effect on both mRNA and protein levels. 

5.2 Modulation of adenosine and estrogen receptors 

The ADORA2B agonist BAY 60-6583, as well as, the two SERMs tested, 

tamoxifen and raloxifene significantly inhibited TGF-β1-induced myofibroblast 

differentiation in a concentration-dependent manner in non-PD TA cells. 

The data presented in this report has made original contributions to knowledge 

by demonstrating, for the first time, that: 

- Human TA-derived cells express two of the four adenosine receptors 

(ADORA1 and ADORA2B), being a potential target for inhibition of 

myofibroblast differentiation in PD. 

- An ADORA2B agonist inhibited TGF-β1-induced myofibroblast 

differentiation in a concentration-dependent manner. 

- Human TA-derived cells express ERβ which also becomes a potential 

target for inhibition of myofibroblast differentiation in PD and possibly other 

fibrotic disorders. 

- Two SERMs, tamoxifen and raloxifene, significantly inhibited TGF-β1-

induced myofibroblast differentiation, with the results for raloxifene being 

novel.  
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- Translating to a clinical setting, the ADORA2B agonist and SERMs may 

be effective in the early, non-stable phase of PD as a non-surgical 

treatment option, particularly if applied in combination with other therapies.  

5.3 General conclusion 

In conclusion, this project achieved the stated aim and objectives by investigating 

adenosine and estrogen receptors expression in TA derived cells as well as the 

effect of modulating these receptors on TGF-β1-induced myofibroblast 

differentiation, leading to novel findings and potential novel therapeutic targets 

for Peyronie’s disease.  

These data, therefore, support the hypothesis that ADORA1, ADORA2B and ERβ 

expression is involved in myofibroblast differentiation in PD and may, therefore, 

be novel potential targets for anti-fibrotic therapies in this disease. 

5.4 Further work 

As future work, mRNA levels of the genes of interest from fresh tissues derived 

from normal TA and PD plaque should be assessed as this would yield 

physiologically relevant data on expression levels. A suggested method to 

perform this would be to snap freeze tissues using liquid nitrogen immediately 

after removing the tissue from the patient to avoid RNA degradation.  

The function of the two adenosine receptors in TA cells should also be assessed 

by measuring the levels and changes in cAMP function, as well as, their ability to 

either inhibit or stimulate adenylate cyclase activity (the enzyme responsible for 

synthesising cAMP). This method could also be used to understand the effect of 

TGF-β1 and the source tissue on receptor function. 

The screening of other adenosine receptor agonists or SERMs with improved 

structure-activity relationship (SAR) should also be investigated, which could 

provide new possibilities for the oral therapy of PD. In addition, it would also be 

interesting to measure the levels of other cytokines involved in the fibrotic process 

when cells are exposed to these receptor modulators. 
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As this thesis has described the methodology by which compounds can be 

assessed for their potential efficacy in inhibiting myofibroblast differentiation in 

the early, non-stable phase of PD, it would be interesting to test other oral 

compound treatments commonly used in PD that have not shown convincing 

evidence for their efficacy, such as vitamin E and potassium para-

aminobenzoate.  

Another interesting avenue of work would be to attempt to translate these data to 

other fibroproliferative diseases, particularly those that are poorly understood and 

show commonalities with PD, such as Dupuytren’s contracture. 

In the long term, data from this report could be used to design novel potential 

compounds with drug-like properties for the treatment of PD. This could be 

performed using a computational approach to develop SAR data on the active 

compounds and performing a hit expansion from there to find compounds with 

lower toxicity, higher activity and better drug-like characteristics.  

To facilitate the above, the ICW assay could be further developed with the use of 

automation and miniaturization to 384-well plates. These improvements would 

facilitate the screening of increased numbers of compounds in the search for 

novel therapeutic compounds for PD. 

Another interesting approach for the treatment of PD would be to test any future 

compounds that may show potential using the intralesional injection therapy, as 

this approach would minimise any side effects and higher concentrations of the 

compound would be injected directly into the penile plaque.  

These compounds can then be taken down the drug discovery route through 

safety and pharmacology testing and into animal models, with the ultimate aim of 

developing a novel medical treatment for Peyronie’s disease as well as other 

fibroproliferative disorders. 
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7 APPENDICES 

Appendix I: Ethical information 

A.1 Penile cancer patient information/consent form  

Patient Information Sheet, version 2 

Date: 23rd March 2012 

Indication: Penile Cancer 

  

Understanding how Peyronie’s disease develops 

You are being invited to take part in a research study.  Before you decide it is 

important for you to understand why the research is being done and what it will 

involve.  Please take time to read the following information carefully and discuss 

it with friends, relatives and your doctor if you wish.  Ask us if there is anything 

that is not clear or if you would like more information.  Take time to decide whether 

or not you wish to take part. 

Thank you for reading this. 

 

What is the purpose of the study? 

We are carrying out a research project in collaboration with Cranfield University.  

The aim of this research project is to understand how Peyronie’s disease 

develops. Peyronie’s disease is caused by thickening of one side of the penis 

which causes curvature, deformation and erectile dysfunction. By understanding 

the disease better, we believe that we may be able to develop new and better 

treatment approaches for this disease.  

We are taking tissue samples from patients with Peyronie’s disease to study this 

disease. We need also penile tissue samples from patients who are not affected 

by this disease such as your penile tissue which will be removed during your 

surgery.  
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Why have I been chosen? 

You are going to be operated for the treatment of penile tumour. During the 

surgery, the tumour will be removed. Much of this tissue will be examined by a 

pathologist, to gain a better understanding of your illness. The part of the tumour 

which will not be used by the pathologist is usually discarded. We are seeking 

your permission to use this tissue for the research project mentioned above. If 

you do not give your consent, this tissue will be discarded.  

The tissue obtained from you with your permission will be transferred to the 

research laboratories at Cranfield University, Bedfordshire where the cellular 

structure and protein content will be analysed.  

The tissue obtained from you will NOT be used for any genetic research that 

involves your DNA. 

 

Do I have to take part? 

It is up to you to decide whether or not to take part.  If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent 

form.  If you decide to take part, you are free to withdraw at any time and without 

giving a reason.  This will not affect the standard of care you receive.  

 

What will happen to me if I take part? 

You will undergo exactly the same surgery and receive exactly the same medical 

care as you would normally.  No additional drugs or procedures will be used.  This 

means that there are no additional risks, disadvantages or side effects. 
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What will happen to me if I do not take part? 

Your decision of not taking part in this study will not affect the care you will 

receive. You will undergo exactly the same surgery and receive exactly the same 

medical care as you would normally.   

 

What are the possible benefits of taking part? 

You will not receive any direct benefit from participating in this study, but the 

results of this study may contribute towards better understanding of Peyronie’s 

disease. You will not receive any payment for taking part in this study, now or in 

the future. 

 

Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of this research 

project will be kept strictly confidential.  Any information about you which leaves 

the hospital will have your name and address removed so that you cannot be 

recognised from it. To protect your privacy, your sample that is transferred to 

Cranfield University will be labelled only with a study subject number, not your 

name. We are not going to keep a link between the subject number and your 

hospital records meaning that the sample cannot be traced back to you. This total 

anonymisation process is to ensure that your private data is kept confidential at 

all times. Only your age, your diagnosis, stage of the disease, other diseases (if 

any) and your medication (if any) will be linked to the subject number.  

 

What happens if I withdraw my consent after the operation? 

You are free to withdraw your consent at any time, before or after the surgery. 

However, once the tissue is anonymised as explained above and transferred to 

the research laboratories, we will not be able to trace them back so it will not be 

possible to destroy the tissue.  
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What will happen to the results of the research study? 

We hope to publish the results so that as many of our findings as possible will be 

made available to the medical and scientific community.  You will not be 

personally identified in any publication.  Because of the exploratory nature of the 

work, none of the results will be provided to you or to the physicians who are 

treating you or may treat you in the future.  The timing of any publication will 

depend mostly on the speed with which we collect the data and cannot be 

predicted with certainty. 

 

Who is organising and funding the research? 

This is a joint programme of research collaboration between Dr David Ralph and 

his surgical team at University College London Hospitals and the research 

scientists headed by Dr Selim Cellek at Cranfield Health, Cranfield University.  

The doctors are not paid for including you in this study.  

 

Who has reviewed the study? 

This study has been reviewed and approved by the Cranfield University Health 

Research Ethics Committee and the Essex Research Ethics Proportionate 

Review Sub-Committee. 
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Contact details for further information: 

Dr David Ralph,  

Institute of Urology 

2A Maple House 

Rosenheim Wing 

Ground Floor 

25 Grafton Way 

London 

WC1E 6AU 

Dr Selim Cellek 

Cranfield Health 

Cranfield University 

Vincent Building 

Bedfordshire 

MK43 0AL 

Comments or concerns during the study 

If you have any comments or concerns you may discuss these with 

the investigator.   If you wish to go further and complain about any aspect of the 

way you have been approached or treated during the course of the study, you 

should write or get in touch with the Complaints Manager, UCL hospitals. 

Please quote the UCLH project number at the top this consent form. 

mailto:dralph@andrology.co.uk
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Version: 2 

Date: February 2012 

CONSENT FORM 

Title of Project: Understanding how Peyronie’s disease 

develops 

Name of Researchers: Dr David Ralph, University College London Hospitals and Dr Selim 

Cellek, Cranfield University 

         Please initial box 

1. I confirm that I have read and understand the information sheet dated January

2012 (version 1) for the above study and have had the opportunity to ask questions. 

2. I understand that my participation is voluntary and that I am free to withdraw at any

time, without giving any reason. 
3. I understand that sections of any of my medical notes may be looked at by the

surgical  team  with  respect  to  age, sex, condition and  treatment  at  admission. I

have been assured that all data relating to my person will be treated with absolute

confidentiality at all times and will not be made public.  I give permission for these

individuals to have access to my records.

4. I understand that my tissue will be totally anonymised, meaning that there will be no

link between my tissue and my medical records including my private data so that the

tissue cannot be traced back to me.

 

5. I agree to take part in the above programme of work.  

_______________________          __________________________________ 

Name of Patient   Signature & Date 

Name of Person obtaining consent    Signature & Date 

(if different from surgeon)   

_________________________          __________________________________ 

Surgeon    Signature & Date 

(1 for patient; 1 for researcher; 1 to be kept with hospital notes) 
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A.2 Peyronie’s disease patient information/consent form

Patient Information Sheet, version 2 

Date: 23rd March 2012 

Indication: Peyronie’s disase 

Understanding how Peyronie’s disease develops 

You are being invited to take part in a research study.  Before you decide it is 

important for you to understand why the research is being done and what it will 

involve.  Please take time to read the following information carefully and discuss 

it with friends, relatives and your doctor if you wish.  Ask us if there is anything 

that is not clear or if you would like more information.  Take time to decide whether 

or not you wish to take part. 

Thank you for reading this. 

What is the purpose of the study? 

We are carrying out a research project in collaboration with Cranfield University. 

The aim of this research project is to understand how Peyronie’s disease 

develops. Peyronie’s disease is caused by thickening of one side of the penis 

which causes curvature, deformation and erectile dysfunction. By understanding 

the disease better, we believe that we may be able to develop new and better 

treatment approaches for this disease.  

Why have I been chosen? 

You are going to be operated for the treatment of Peyronie’s disease. During the 

surgery, the diseased tissue called “plaque” will be removed. Much of this tissue 

will be examined by a pathologist, to gain a better understanding of your illness. 

The part of the plaque which will not be used by the pathologist is usually 

discarded. We are seeking your permission to use this tissue for the research 
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project mentioned above. If you do not give your consent, this tissue will be 

discarded. 

The tissue obtained from you with your permission will be transferred to the 

research laboratories at Cranfield University, Bedfordshire where the cellular 

structure and protein content will be analysed.  

The tissue obtained from you will NOT be used for any genetic research that 

involves your DNA.  

At the end of the research project, your tissue will be destroyed by incineration. 

There is no other reason for choosing you to take part in this study. We intend to 

study material from a number of different patients, until we are able to draw proper 

conclusions. 

Do I have to take part? 

It is up to you to decide whether or not to take part.  If you do decide to take part 

you will be given this information sheet to keep and be asked to sign a consent 

form.  If you decide to take part, you are free to withdraw at any time and without 

giving a reason.  This will not affect the standard of care you receive.  

What will happen to me if I take part? 

You will undergo exactly the same surgery and receive exactly the same medical 

care as you would normally.  No additional drugs or procedures will be used.  This 

means that there are no additional risks, disadvantages or side effects. 

What will happen to me if I do not take part? 

Your decision of not taking part in this study will not affect the care you will 

receive. You will undergo exactly the same surgery and receive exactly the same 

medical care as you would normally.   
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What are the possible benefits of taking part? 

You will not receive any direct benefit from participating in this study, but the 

results of this study may contribute towards better understanding of Peyronie’s 

disease. You will not receive any payment for taking part in this study, now or in 

the future. 

Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of this research 

project will be kept strictly confidential.  Any information about you which leaves 

the hospital will have your name and address removed so that you cannot be 

recognised from it. To protect your privacy, your sample that is transferred to 

Cranfield University will be labelled only with a study subject number, not your 

name. We are not going to keep a link between the subject number and your 

hospital records meaning that the sample cannot be traced back to you. This total 

anonymisation process is to ensure that your private data is kept confidential at 

all times. Only your age, your diagnosis, stage of the disease, other diseases (if 

any) and your medication (if any) will be linked to the subject number.  

What happens if I withdraw my consent after the operation? 

You are free to withdraw your consent at any time, before or after the surgery. 

However once the tissue is anonymised as explained above and transferred to 

the research laboratories, we will not be able to trace them back so it will not be 

possible to destroy the tissue.  

What will happen to the results of the research study? 

We hope to publish the results so that as many of our findings as possible will be 

made available to the medical and scientific community. You will not be 

personally identified in any publication. Because of the exploratory nature of the 

work, none of the results will be provided to you or to the physicians who are 
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treating you or may treat you in the future.  The timing of any publication will 

depend mostly on the speed with which we collect the data and cannot be 

predicted with certainty. 

Who is organising and funding the research? 

This is a joint programme of research collaboration between Dr David Ralph and 

his surgical team at University College London Hospitals and the research 

scientists headed by Dr Selim Cellek at Cranfield Health, Cranfield University.  

The doctors are not paid for including you in this study.  

Who has reviewed the study? 

This study has been reviewed and approved by the Cranfield University Health 

Research Ethics Committee and the Essex Research Ethics Proportionate 

Review Sub-Committee. 
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Contact details for further information: 

Dr David Ralph,  

Institute of Urology 

2A Maple House 

Rosenheim Wing 

Ground Floor 

25 Grafton Way 

London 

WC1E 6AU 

Dr Selim Cellek 

Cranfield Health 

Cranfield University 

Vincent Building 

Bedfordshire 

MK43 0AL 

Comments or concerns during the study 

If you have any comments or concerns you may discuss these with 

the investigator.   If you wish to go further and complain about any aspect of the 

way you have been approached or treated during the course of the study, you 

should write or get in touch with the Complaints Manager, UCL hospitals. 

Please quote the UCLH project number at the top this consent form. 

mailto:dralph@andrology.co.uk
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Version: 2 

Date: February 2012 

CONSENT FORM 

Title of Project: Understanding how Peyronie’s disease 

develops 

Name of Researchers: Dr David Ralph, University College London Hospitals and Dr Selim 

Cellek, Cranfield University 

         Please initial box 

1. I confirm that I have read and understand the information sheet dated January

2012 (version 1) for the above study and have had the opportunity to ask questions. 

2. I understand that my participation is voluntary and that I am free to withdraw at any

time, without giving any reason. 
3. I understand that sections of any of my medical notes may be looked at by the

surgical  team  with  respect  to  age, sex, condition and  treatment  at  admission. I

have been assured that all data relating to my person will be treated with absolute

confidentiality at all times and will not be made public.  I give permission for these

individuals to have access to my records.

4. I understand that my tissue will be totally anonymised, meaning that there will be no

link between my tissue and my medical records including my private data so that the

tissue cannot be traced back to me.

 

5. I agree to take part in the above programme of work.  

_______________________          __________________________________ 

Name of Patient   Signature & Date 

Name of Person obtaining consent    Signature & Date 

(if different from surgeon)   

_________________________          __________________________________ 

Surgeon    Signature & Date 

(1 for patient; 1 for researcher; 1 to be kept with hospital notes) 
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Figure 7-1: Copy of approval letter from local ethics board (Cranfield University 

Health Research Ethics Committee; CUHREC) 
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Figure 7-2: Copy of approval letter from national ethics board (National Research 

Ethics Service; NRES) 
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Appendix II: Supplementary data to Material and 

Methods section 

A.1 Real-time RT-PCR 

A.1.1 Example of a detailed protocol used for RT-qPCR  

The following protocols for RNA extraction, RNA quality, RT and qPCR (RT-

qPCR) were performed as instructed by the manufacturers. These protocols were 

removed from each kit manual. 

Seeding onto 6 well plates 

Materials/Reagents:  

• Cell line: TAN2A1 P4 & PD2A2 P4 

• Complete media used: DMEM F-12 + Glutamax®: (Invitrogen Gibco, 31331093) supplemented with 

10% FBS (Invitrogen Gibco, 10270106) 1% Penicillin-Streptomycin (Invitrogen Gibco, 15070063) 

• Phosphate buffered saline (PBS; Fisher Scientific, 11510546) 

• 0.25% Trypsin - EDTA (TE; Fisher Scientific, 11560626) 

• ScepterTM + 60 μm sensors (Millipore)  

• 6 well plate (NUNC, Fisher Scientific, 10469282) 

Protocol: 

1. Cells were grown under normal conditions in the T75 flask. 

2. Cells detached and neutralised as previously described (“Basic Cell culture techniques”, page 4, 

Book no. 1). 

3. Perform cell counting using Scepter. 

4. Dilute or concentrate cell suspension to the desired concentration. 

5. Using a 6 well plate, add 2 ml of cell suspension to all wells at 1.0 x 105 cells/well. 

6. On the next day, remove media from wells and add 2 ml of fresh media or 2 ml of media containing 

5 ng/ml TGF-β1 to the plate.  

7. Incubate plate at 37 °C, 5% CO2 for 72 hours. 

 

RNA extraction 

Materials/Reagents:  

• Cell line: TAN2A1 P4 & PD2A2 P4 

• Medium: DMEM/F12 GlutaMAX™ supplemented with 10% FBS; 1% Pen-Strep  

• Phosphate Buffered Saline (PBS; Fisher Scientific, 11510546) 

• 0.25% Trypsin – EDTA (TE; Fisher Scientific, 11560626) 

• ScepterTM + 60 μm sensors (Millipore)  

• RNeasy Mini Kit (QIAGEN, 74104) 

• RNase-free DNase Set (QIAGEN, 79254) 

• QIAshredder (QIAGEN, 79654) 

• β-mercaptoethanol (β-ME; Sigma- Aldrich, M6250-100) 

• Ethanol (Fisher Scientific, 10437341) 

• Nuclease-free water (Promega, P1195) 

• DNAse/ RNAse free 0.5 mL microfuge tubes (Fisher Scientific, 11916955) 
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• DNAse/ RNAse free 1.5 mL microfuge tubes (Fisher Scientific, 11926955) 

Protocol: 

1. Prepare all the reagents and materials needed for RNA extraction: 

a. Prepare lysis buffer by adding 10 µl of β-ME per 1 ml of buffer RLT in a fume hood; 

b. Warm up TE, media and PBS at 37 °C; 

c. Prepare DNase I incubation mix by adding 10 µl of DNase I to a 70 µl of buffer RDD; 

d. Prepare lysis buffer and DNase I incubation mix according to the number of samples. 

2. Remove media and wash cells with 1 ml of sterile and warm PBS. 

3. Detach cells by adding 0.5 ml of TE and incubate for 2 min at 37 °C. 

4. Neutralise TE by adding 0.75 ml of warm, fresh media and transfer the content to a DNAse/RNAse 

free eppendorf. 

5. Perform cell count using scepter. 

6. Centrifuge cell suspension at 300 g for 5 min. 

7. Completely aspirate the supernatant and loosen the cell pellet thoroughly by flicking the tube. 

8. Add 350 µl buffer RLT with β-ME and pipet to mix. 

9. Homogenise the lysate by pipetting the lysate directly into a QIAshredder spin column placed in a 2 

ml collection tube and centrifuge for 2 min at full speed. 

10. Discard QIAshredder spin column and add 350 µl of 100 % ethanol to the homogenised lysate 

(inside the collection tube) and mix well by pipetting. 

11. Transfer up to 700 µl of the sample to an RNeasy spin column placed in a 2 ml collection tube. 

Centrifuge at 11000 rpm for 15 sec. Discard collection tube. 

12. Add 350 µl buffer RW1 to the spin column. Centrifuge at 11000 rpm for 15 sec. Discard collection 

tube. 

13. Add 80 µl of DNase I incubation mix directly to the spin column membrane and place on the bench 

top (20 – 30 °C) for 15 min. 

14. Add 350 µl buffer RW1 to the spin column. Centrifuge at 11000 rpm for 15 sec. Discard collection 

tube. 

15. Add 500 µl buffer RPE to the spin column and centrifuge at 11000 rpm for 15 sec. Discard collection 

tube.  

16. Add 500 µl buffer RPE to the spin column and centrifuge at 11000 rpm for 2 min. Discard collection 

tube.  

17. Place the spin column in a new 2 ml collection tube and centrifuge at full speed for 1 min. Discard 

collection tube. 

18. Place the spin column in a new 1.5 ml collection tube and add 50 µl of RNase-free water directly to 

the spin column membrane. Centrifuge at 11000 rpm for 1 min to elute RNA. 

19. Make four 10 µl aliquots of RNA and two 3 µl aliquots for RNA integrity and for measuring RNA 

concentration and purity. Store RNA at -80 °C. 

 

RNA concentration – NanoDrop 

Materials/Reagents:  

• RNA samples: TAN2A1 P4 & PD2A2 P4  

• Distilled water 

• Lens cleaning tissues 80mm x 100mm (Fisher Scientific, 11507362) 

• NanoDrop 2000c (Thermo Scientific, UK) 

• Filter-tips (P10; Fisher Scientific, 12639591) 

Protocol: 

1. Switch on NanoDrop 2000c and software – NanoDrop 2000. 

2. Clean bottom pedestal by raising the sampling arm and pipetting 2 µl of distilled water. Lower the 

sampling arm and leave for two minutes. 

3. Raise sampling arm and wipe the distilled water from the upper and lower pedestals using a dry, 

lint-free laboratory wipe. 



 

166 

4. Select Nucleic acid application from the main menu. If the wavelength verification window appears, 

ensure that the arm is down and click OK.  

5. Select the type of sample to be measured from the Type drop-down list (RNA will appear in purple). 

6. Choose the concentration units (ng/µl) from the drop-down list adjacent to the colour coded 

concentration box.  

7. Perform a blank by pipetting 1 µl of distilled water into the bottom pedestal, lower the arm and click 

the Blank button. 

8. Wipe out the water from both upper and lower pedestals. 

9. Enter a sample ID in the appropriate field and then pipette 1 µl of RNA sample into the bottom 

pedestal. Press measure. 

10. Between each sample, wipe both pedestals and load distilled water to prevent sample carryover. 

Wipe again using a lens cleaning tissue. 

11. After measuring all samples, pipette 2 µl of distilled water into the bottom pedestal and leave it for 

10 seconds. Wipe the upper and lower pedestals using a lens cleaning tissue.  

12. Switch off software and NanoDrop. 

 

RNA quality control using Agilent Bioanalyzer  

Materials/Reagents:  

• RNA samples: TAN2A1 P4 & PD2A2 P4 

• Agilent 2100 Bioanalyzer (Agilent Technologies, UK) 

• Agilent RNA 6000 Nano Kit (Agilent Technologies, 5067-1511) 

• Nuclease-free water (Promega, P1195) 

• RNaseZAP (Fisher Scientific, 10708345) 

• Heating block  

• DNAse/ RNAse free 1.5 mL microfuge tubes (Fisher Scientific, 11926955) 

• DNAse/ RNAse free 0.5 mL microfuge tubes (Fisher Scientific, 11916955) 

Protocol: 

1. Preparing the RNA ladder after arrival: 

a. After reagent kit arrival, pipette the ladder in RNase-free vial; 

b. Heat denature it for 2 min at 70 °C in a hot block; 

c. Immediately cool down the vial on ice for at least 5 minutes; 

d. Prepare aliquots in RNase-free vials with the required amount for a typical daily use; 

e. Store aliquots at -80 °C; 

f. Before use, thaw ladder aliquots and keep them on ice (avoid extensive warming upon 

thawing process). 

2. Before beginning the chip preparation protocol, ensure that the chip priming station and the 

bioanalyzer are set up and ready to use: 

a. Replace the syringe at the chip priming station with each new kit: 

i. Unscrew the old syringe from the lid of the chip priming station; 

ii. Release the old syringe from the clip. Discard the old syringe; 

iii. Remove the plastic cap of the new syringe and insert it into the clip; 

iv. Slide it into the hole of the luer lock adapter and screw it tightly to the chip priming 

station. 

b. Adjust the base plate of the chip priming station: 

i. Open the chip priming station by pulling the latch; 

ii. Using the screwdriver, open the screw on the underside of the base plate; 

iii. Lift the base plate and insert it again in position. Retighten the screw. 

c. Adjust the syringe clip at the chip priming station: 

i. Release the level of the clip and slide it up to the top position. 

d. Adjust the bioanalyzer’s chip selector: 
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i. Open the lid of the bioanalyzer and make sure that the electrode cartridge is 

inserted in the instrument. If not, open the latch, remove the pressure cartridge 

and insert the electrode cartridge; 

ii. Remove any remaining chip and adjust the chip selector to the position. 

e. Set up the vortex mixer by adjusting the speed knob to 2400 rpm; 

f. Start the software (2100 Expert) before the chip is loaded.  

3. Decontaminating the electrodes: 

a. Slowly fill one of the wells of an electrode cleaner with 350 µl RNaseZAP; 

b. Open the lid and place electrode cleaner in the Agilent 2100 bioanalyzer; 

c. Close the lid and leave it closed for about 1 minute; 

d. Open the lid and remove the electrode cleaner. Label the electrode cleaner and keep it 

for future use. You can reuse the electrode cleaner for all 25 chips in the kit; 

e. Slowly fill one of the wells of another electrode cleaner with 350 µl RNase-free water; 

f. Place electrode cleaner in the Agilent 2100 bioanalyzer; 

g. Close the lid and leave it closed for about 10 seconds; 

h. Open the lid and remove the electrode cleaner. Label it and keep it for further use; 

i. Wait another 10 seconds for the water on the electrodes to evaporate before closing the 

lid. 

4. Preparing the gel: 

a. Allow the reagents to equilibrate to room temperature for 30 minutes before use; 

b. Place 550 µl of Agilent RNA 6000 Nano gel matrix into the top receptacle of a spin filter; 

c. Place the spin filter in a microcentrifuge and spin for 10 minutes at 1500 g ± 20% at room 

temperature (for eppendorf microcentrifuge, this corresponds to 4000 rpm); 

d. Aliquot 65 µl filtered gel into 0.5 ml RNase-free microfuge tubes that are included in the 

kit. Store the aliquots at 4 °C and use them within one month of preparation. 

5. Preparing the Gel-Dye Mix: 

a. Vortex RNA 6000 Nano dye concentrate for 10 seconds and spin down; 

b. Add 1 µl of RNA 6000 Nano dye concentrate to a 65 µl aliquot of filtered gel; 

c. Cap the tube, vortex thoroughly and visually inspect proper mixing of the gel and dye; 

d. Store the dye concentrate at 4 °C in the dark again; 

e. Spin tube for 10 minutes at room temperature at 13000 g (for eppendorf microcentrifuge 

corresponds to 14000 rpm). Use prepared gel-dye mix within one day. 

6. Loading the Gel-Dye Mix: 

a. Before loading the gel-dye mix, make sure that the base plate of the chip priming station 

is in position (C) and the adjustable chip is set to the top position; 

b. Take a new RNA Nano chip out of its sealed bag; 

c. Place the chip on the chip priming station; 

d. Pipette 9 µl of the gel-dye mix at the bottom of the well-marked “G” and dispense the gel-

dye mix; 

e. Set the timer to 30 seconds, make sure that the plunger is positioned at 1 ml and then 

close the chip priming station. The lock of the latch will click when the priming station is 

closed correctly; 

f. Press the plunger of the syringe down until it is held by the clip; 

g. Wait for exactly 30 seconds and then release the plunger with the clip release mechanism; 

h. Visually inspect that the plunger moves back at least to the 0.3 ml mark; 

i. Wait for 5 seconds, then slowly pull back the plunger to the 1 ml position; 

j. Open the chip priming station; 

k. Pipette 9 µl of the gel-dye mix in each of the wells marked “G”. 

7. Loading the RNA 6000 Nano marker: 

a. Pipette 5 µl of the RNA 6000 Nano marker into the well-marker with the ladder symbol 

and each of the 12 samples wells. 

8. Loading the ladder and samples: 

a. Before use, thaw ladder aliquots and keep them on ice (avoid extensive warming upon 

thawing process); 

b. To minimise secondary structure, heat denature (70 °C for 2 minutes) the samples before 

loading on the chip in a hot block; 
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c. Pipette 1 µl of each sample into each of the 12 samples wells; 

d. Pipette 1 µl of the RNA ladder into the well marked with the ladder symbol; 

e. Set the timer for 60 seconds; 

f. Place the chip horizontally in the adapter of the IKA vortex mixer and make sure not to 

damage the buldge that fixes the chip during vortexing. If there is liquid spill at the top of 

the chip, carefully remove it with a tissue; 

g. Vortex for 60 seconds at 2400 rpm (place between 2000 rpm and 2400 rpm). 

9. Inserting a chip in the Agilent 2100 bioanalyzer: 

a. Open the lid of the Agilent 2100 bioanalyzer; 

b. Check that the electrodes cartridge is inserted properly and the chip selector is in position 

(1); 

c. Place the chip carefully into the receptacle. The chip fits only one way; 

d. Carefully close the lid. The electrodes in the cartridge fit into the wells of the chip; 

e. The 2100 expert software screen shows that the chip is inserted. Close the lid by 

displaying the chip icon at the top left of the Instrument context. Make sure that the run 

starts within 5 minutes.  

10. Starting the chip run: 

a. Make sure that the Bioanalyzer is connected to line power and connected to the PC; 

b. Turn on the line switch at the rear of the instrument. The status LED at the front of the 

bioanalyzer should light up; 

c. To start the 2100 expert software on the connected PC, go to desktop and click the 2100 

expert icon; 

d. Make sure that the Bioanalyzer has been detected before continuing; 

e. In the Instrument context, select the appropriate assay from the Assay menu (Eukaryote 

RNA Nano Series II for the use of RNA 6000 Nano Chips); 

f. The chip should be detected if this is not the case open lid and repeat; 

g. When the chip is detected, the image on the instrument tab changes to a chip; 

h. Accept the current File Prefix or modify it; 

i. Click the Start button in the upper right of the window to start the chip run. 

11. After the chip run is finished, remove the chip from the receptacle of the bioanalyzer and dispose of 

it according to good laboratory practices. Save run and export the data.  

12. Cleaning up after an RNA 6000 Nano Chip run: 

a. Slowly fill one of the wells of the electrode cleaner with 350 µl RNase-free water; 

b. Open the lid and place the electrode cleaner in the Agilent 2100 bioanalyzer; 

c. Close the lid and leave it closed for about 10 seconds; 

d. Open the lid and remove the electrode cleaner; 

e. Wait another 10 seconds to allow the water on the electrode to evaporate before closing 

the lid. 

 

 

cDNA synthesis 

Materials/Reagents:  

• RNA template: TAN2A1 P4 & PD2A2 P4 

• High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 4368814) 

• Thermal cycler: G-STORM  

• Low-Profile 0.2 ml 8-Tube Strips without Caps (Bio-Rad, TLS-0801) 

• RNaseZAP (Fisher Scientific, 10708345) 

• Optical Flat 8-Cap Strips (Bio-Rad, TCS-0803) 

• Nuclease-free water (Promega, P1195) 

• DNAse/ RNAse free 0.5 mL microfuge tubes (Fisher Scientific, 11916955) 

• DNAse/ RNAse free 1.5 mL microfuge tubes (Fisher Scientific, 11926955) 
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Protocol: 

1. Clean hood with 70% IPA followed by RNaseZAP and place all the reagents/material necessary for 

the procedure inside the hood. 

2. Leave for 30 minutes under UV light.  

3. Allow kit components and RNA samples to thaw on ice. 

4. Prepare the RNA samples according to the following table. 

a. TAN2A1 P4 

Sample 

no. 
Sample 

Concentration 

(ng/μl) 

No. tubes 

used 

No. 

reactions 

Volume 

of RNA 

(μl) 

Volume of 

water (μl) 

2 - TGF-β1 58.7 1 1 8.5 1.5 

3 - TGF-β1 66.5 1 1 7.5 2.5 

4 + TGF-β1 83.9 1 1 6.0 4.0 

5 + TGF-β1 93.1 1 1 5.4 4.6 

b. PD2A2 P4 

Sample 

no. 
Sample 

Concentration 

(ng/μl) 

No. tubes 

used 

No. 

reactions 

Volume 

of RNA 

(μl) 

Volume of 

water (μl) 

1 - TGF-β1 79.6 1 1 6.3 3.7 

3 - TGF-β1 69.8 1 1 7.2 2.8 

4 + TGF-β1 93.0 1 1 5.4 4.6 

5 + TGF-β1 113.6 1 2 4.4 5.6 

 

5. Prepare RT master mix on ice.  

Components 

Volume (μl) 

Per reaction 
 Samples (9 

reactions + 2 
extra) 

10X RT buffer 2.0 22.0 

25X dNTP Mix (100 mM) 0.8 8.8 

10X RT random primers 2.0 22.0 

MultiScribeTM Reverse Transcriptase 1.0 11.0 

Nuclease-free H2O 4.2 46.2 

TOTAL 10.0 110.0 

 

6. Prepare the cDNA RT reactions by pipetting 10 µl 2X RT master mix into individual PCR tubes and 

by pipetting 10 µl of RNA samples (at 50 ng/µl) into each tube and mix gently. Add 30 µl of RNase-

free water to all tubes to make a total volume of 50 µl.  

7. Briefly, centrifuge the tubes to spin down the contents and to eliminate any air bubbles. 

8. Place the tubes on ice until you are ready to load the thermal cycler. 

9. Open the program named as “cDNA AB Marta” in the thermal cycler and confirm that the conditions 

are the same as described in the following table.   
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 Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 25 37 85 4 

Time (min) 10 120 5 ∞ 

 

10. Load the reactions into the thermal cycler. 

11. Start the reverse transcription run. 

12. After the run, the cDNA can be stored at 4 °C for short-term storage (up to 24 hours) or at -20 °C for 

long-term storage (in 25 μl aliquots). 

 

Real-time PCR 

Materials/Reagents:  

• cDNA samples: TAN2A1 P4 & PD2A2 P4 & MCF-7 P5 

• Nuclease-free water (Promega, P1195) 

• DNAse/ RNAse free 0.5 mL microfuge tubes (Fisher Scientific, 11916955) 

• DNAse/ RNAse free 1.5 mL microfuge tubes (Fisher Scientific, 11926955) 

• QuantiTect® SYBR® Green PCR Kit (QIAGEN, 204143) 

• DNA Away (Fisher Scientific, 10223471) 

• QuantiTect® Primer Assay for human ESR1 (ER-α; QIAGEN, QT00044492) 

• QuantiTect® Primer Assay for EIF4A2 (QIAGEN, QT00079226) 

• QuantiTect® Primer Assay for TOP1 (QIAGEN, QT00068915) 

• CFX Connect Real-time PCR detection system (Bio-Rad, UK) 

• Hard-Shell® Low-Profile Thin-Wall 96-Well Skirted PCR Plates (Bio-Rad, HSP9645) 

• Optically Clear Heat Seal (Bio-Rad, 1814030) 

• PX1TM PCR Plate Sealer (Bio-Rad, UK) 

Protocol: 

1. Clean hood with 70 % IPA followed by DNA Away and place all the reagents/materials necessary 

for the procedure inside the hood. Leave for 30 minutes under UV light. 

2. Thaw 2X QuantiTect SYBR Green PCR master mix, 10X QuantiTect Primer Assay, cDNA template 

and RNase-free water on ice. Mix the individual solutions. 

3. Prepare reaction mix for each gene (ERα, EIF4A2 and TOP1) and place it on the ice. 

 

Component 

Volume (μl) 

Final 
Concentration 

Per reaction 
30 reactions 

+  5 extras 

2X QuantiTect SYBR Green 
PCR master mix 

2.5 87.5 1X 

Primer Mix 0.5 17.5 1X 

cDNA template 0.6 - 
≤ 500 

ng/reaction 

RNase-free water 1.4 49.0 - 

TOTAL 5.0 154.0 - 
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4. Prepare four standard dilutions (from neat to 1/1000), by adding 10 μl of nuclease-free water to each 

tube (except on neat sample). Add 1 μl of neat sample to 1/10 dilution, homogenise and spin down. 

Perform the same step for the other dilutions.  

a. Prepare the standard dilutions for the ERα by using the cDNA from MCF7 cells, as 

described above.  

5. Add 15 μl of reaction mix and 2.25 μl of cDNA sample/standard dilution to each labelled tube. Briefly, 

mix each sample and spin down.  

6. Add 5 μl of reaction mix with the sample to the 96 well plate. 

7. Seal PCR plate using the PX1TM PCR Plate Sealer (180 °C) for 3 seconds.  

8. Spin down 96-well plate for 2 min at 2000 rpm. 

9. Program the CFX Connect real-timer cycler and start qPCR run. 

10. Perform a melting curve analysis of the PCR products (from 60 °C to 95 °C). 

 

 

 

 

 

 

 

 

 

Representative 96-well plate layout: 

Plate Layout used for qPCR: Estrogen receptor 

 1 2 3 4 5 6 7 8 9 10 11 12 

A Std neat 
Std 

1/100 
TA + NTC Std neat 

Std 
1/100 

TA + NTC Std neat Std 1/100 TA + NTC 

B Std neat 
Std 

1/1000 
TA + NTC Std neat 

Std 
1/1000 

TA + NTC Std neat 
Std 

1/1000 
TA + NTC 

C Std neat 
Std 

1/1000 
PD - NTC Std neat 

Std 
1/1000 

PD - NTC Std neat 
Std 

1/1000 
PD - NTC 

D Std 1/10 
Std 

1/1000 
PD - - RT Std 1/10 

Std 
1/1000 

PD - - RT Std 1/10 
Std 

1/1000 
PD - - RT 

E Std 1/10 TA - PD - -RT Std 1/10 TA - PD - -RT Std 1/10 TA - PD - -RT 

F Std 1/10 TA - PD + -RT Std 1/10 TA - PD + -RT Std 1/10 TA - PD + -RT 

G Std 1/100 TA - PD +  
Std 

1/100 
TA - PD +  Std 1/100 TA - PD +  

H Std 1/100 TA + PD +  
Std 

1/100 
TA + PD +  Std 1/100 TA + PD +  

 ERα  EIF4A2 TOP1 

 

 

Step Time Temperature 

Enzyme activation 15 min 95 °C 

Denaturation 15 s 94 °C 

Annealing 30 s 55 °C  

Extension 30 s 72 °C 

Number of cycles 40 
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A.2 Immunocytochemistry 

A.2.1 Example of a detailed protocol used for ICC 

Seeding into 6 well plates 

Materials/Reagents:  

• Cell line: TAN2A1 P5 & PD3B1 P4 

• Complete media used: DMEM F-12 + Glutamax®: (Invitrogen Gibco, 31331093) supplemented 

with 10% FBS (Invitrogen Gibco, 10270106) 1% Penicillin-Streptomycin (Invitrogen Gibco, 

15070063) 

• Phosphate buffered saline (PBS; Fisher Scientific, 11510546) 

• 0.25% Trypsin - EDTA (TE; Fisher Scientific, 11560626) 

• Transforming growth factor-β1 human (TGF-β1; Sigma-Aldrich, T7039-2UG) – 5 ng/ml 

• ScepterTM + 60 μm sensors (Millipore)  

• 2 x 6 well plate (NUNC, Fisher Scientific, 10469282) 

• Ethanol (Fisher Scientific, 10437341) 

• Coverslips (Fisher Scientific, 12312128) 

• Forceps (Fisher Scientific, 12740926) 

Protocol: 

1. In a sterile 6 well plate, add 2 ml of 100% ethanol and place coverslips inside the well that contains 

100% ethanol for 1 min.  

2. Transfer the sterile coverslips to the empty wells and place them vertically and left to dry (10-15 

min). 

3. Once dried, transfer the coverslip to the new 6 well plate and add 2 ml of media to each well. Make 

sure there is no remain ethanol.  

4. Remove bubbles present on the underside of the coverslip by pushing the coverslip with a pipette 

into the surface. 

5. Incubate plates at 37 °C for 2 hours. 

6. Cells were grown under normal conditions in the T75 flask.  

7. Cells detached and neutralised as previously described (“Basic Cell culture techniques”, page 4, 

Book no. 1). 

8. Perform cell counting using Scepter. 

9. Dilute or concentrate cell suspension to the desired concentration. 

10. Remove plates from the incubator and remove bubbles underneath the coverslip with a pipette.  

11. Remove media from wells and gently add 2 ml of cell suspension at 2.5 x 104 cells/well. 

12. Incubate plates at 37 °C, 5% CO2 overnight. 

13. On the next day, remove media from wells and add 2 ml of fresh media or 2 ml of media containing 

5 ng/ml TGF-β1 to both plates, as indicated in the plate layout below.  

14. Incubate plate at 37 °C, 5% CO2 for 72 hours. 

 

 1 2 3 

Control A 2.5 x 104 2.5 x 104 2.5 x 104 

TGF-β1 (5 ng/ml) B 2.5 x 104 2.5 x 104 2.5 x 104 
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ICC: α-SMA staining 

Materials/Reagents:  

• Phosphate buffered saline (PBS; Fisher Scientific, 11510546) 

• Methanol (at -25 °C; Fisher Scientific, 10284580)  

• Hydrophobic pen (Invitrogen, 008877) 

• Primary antibody: Monoclonal anti-ASMA produced in mouse - diluted to 1:1,000 in PBS (Sigma-

Aldrich, A5228) 

• Secondary antibody: Donkey anti-mouse IgG Ab, FITC conjugate – Diluted to 1:250 in PBS 

(Millipore, AP192F) 

• Mounting medium containing PI (Vectorlabs, VECTASHIELD, H-1200) 

• Glass slides (Fisher Scientific, 12352108) 

• Blocking solution: 10% donkey serum (Millipore, S30-100ML) in PBS  

• Zeiss LSM 510 confocal microscope 

• Humidified chamber 

• Forceps (Fisher Scientific, 12740926) 

Protocol: 

1. Wash coverslip removed from the well in a beaker containing PBS. 

2. Fix cells on 6 well plate containing ice-cold methanol (-25 °C) for 10 seconds.  

3. Wash coverslip in a beaker containing PBS and repeat this step again in a second beaker containing 

PBS. Remove excess of PBS with an absorbent paper. 

4. Place coverslip in a glass slide facing (side containing cells) up and left to dry.  

5. Make a contour with a hydrophobic pen around each coverslip. 

6. Add 50 µl of blocking solution by spreading evenly over the coverslip and incubate 60 min at room 

temperature in a humidified chamber. 

7. Add 50 µl of primary antibody (1:1,000 diluted in PBS) by spreading evenly over the coverslip and 

incubate 2 hours at room temperature in a humidified chamber. 

8. Wash coverslip three times with PBS by adding 1 ml over on one of the corners of the coverslip. 

9. Add 50 µl of secondary antibody (1:250 diluted in PBS) by spreading evenly over the coverslip and 

incubate 2 hours at room temperature in a humidified chamber in the dark. 

10. Wash coverslip three times with PBS by adding 1 ml over on one of the corners of the coverslip. 

11. Add a small drop of mounting medium with PI in a new glass slide and place the coverslip facing 

(side containing cells) down.  

12. Observed glass slides under the confocal microscope in the dark. Take images of three random 

areas in each coverslip.  

13. Keep glass slides at 4 °C wrapped in foil. 
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A.3 Immunohistochemistry 

A.3.1 Example of a detailed protocol used for IHC 

Materials:  

• Samples (dehydrated and stored at -80 ˚C) 

o 2 slides (serial sectioning) from: 

▪ PD10/PD5/PD7 

▪ TAC3a 

• OCT Compound (tissue freezing medium; VWR, 361603E) 

• Superfrost Plus Gold slides (Fisher Scientific, 11847732) 

• Scalpel (Fisher Scientific, 12397999) 

• Specimen freezing moulds (Fisher Scientific, 6401015) 

• Marigold Insulator KTI Gloves (Buck & Hickman, 321804) 

• C35 cryostat blades (VWR, FEAT207500003) 

• Cutting heads, blade holder, brushes 

• Cover slips (Fisher Scientific,  MNJ-350-070P)                    

• Hydrophobic pen (Invitrogen, 008877) 

• Phosphate buffered saline (PBS; Fisher Scientific, 11510546) 

• Wash Buffer – PBS 

• Blocking Buffer – 10% donkey serum (Millipore, S30-100ML) in PBS + 0.1% Triton X 100 

• Anti-adenosine A2B receptor antibody rabbit polyclonal (Abcam, ab188796) – 1:100 

• Anti-adenosine A1 receptor antibody rabbit monoclonal (Abcam, ab124780) – 1:100 

• Donkey anti-rabbit IgG Ab, FITC conjugate (Millipore, UK; AP182F) - 1:250  

• Mounting medium containing PI (Vectorlabs, VECTASHIELD, H-1200) 

• Humidified incubation chamber 

• Zeiss LSM 510 confocal Microscope 

• Cryostat (Bright, Model OTF) 

Protocol: 

• Sectioning: 

1. Turn on cryostat [on ; off ; off ; off ; on]. 

2. Turn demist and light on, until end of the protocol. 

3. Place blade holder centrally in chamber and blade within the holder, lock in place. Allow cooling. 

4. Turn thickness adjuster to 15-20 µm. 

5. Turn outside dial to the lowest point and retract sectioning arm by turning the dial clockwise. 

6. Place sample in the chamber (minimising time exposed to RT). Push sample out. 

7. Place OCT compound in the middle of cutting head, stick sample on top, allow to freeze. 

8. Place OCT compound on side of the sample to ensure firm attachment of sample to mould. 

9. Allow freezing. 

10. Place cutting head on arm and tighten, ensuring the sample is square to blade (also ensure bottom 

side of the frozen block has at least some OCT between edge and sample). 

11. Adjust cutting bed towards the sample, ensuring they do not come into contact. 

12. Turn outside dial clockwise until the first full flat cut. 

13. Adjust anti-roll guide plate so that it is square to the blade, with both sides of the plate in contact 

with the blade and the edge of the plate, when viewed from above, is on or just before blade end 

(use blue lines as guides). 

14. Start cutting procedure. 

15. Use a smooth and moderate circular motion when cutting, when a section is cut which is deemed 

satisfactory, roll over anti-roll plate onto the blade. 

16. Test whether the section is attached to plate, if not, heat plate with a finger and turn plate back. 

17. Place glass slide, face down onto tissue, hovering over until attached. 
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18. Repeat until glass slide is full, brushing away residual sample and OCT from the blade, sample and 

anti-roll plate. 

19. During cutting, if cutting is not functioning properly, the most common problems are: 

a. Dull blade – move blade along or, if necessary, replace with new blade; 

b. Anti-roll plate is misaligned – realign; 

c. Chamber or specifics are not cool – wait 2-3 minutes; 

d. Chamber arm requires retracting – retract as detailed previously. 

20. When finished, remove the blade, unscrew and remove blade holder. 

21. With a scalpel, carefully cut off OCT attaching the sample to cutting head. 

22. Put sample back in the mould, ensuring the sample is not heated and store at -80 °C. 

23. Place cutting heads on top of the left shelf. 

24. Turn of demist and light. 

25. Leave samples to dry, protected from dust deposition, for 3 hours. 

 

• Staining: 

1. Once dried, mark the border of the slide with hydrophobic pen and add 200 μl of blocking buffer 

(10% donkey serum in 0.1% Triton X 100 in PBS), ensuring entire slide is covered and tissues are 

not dislodged. Incubate for 90 minutes at RT in a humidified chamber. 

2. Make primary antibody dilutions as described in the materials section in PBS and add 150 μl to each 

slide ensuring entire slide is covered and tissues are not dislodged. Incubate overnight at 4 °C. 

3. Remove antibody solution and wash slides 3 times with PBS by adding 600 μl of PBS to slide and 

discarding – tip-off solution from slides onto paper towels and dry edges of slides, ensuring entire 

slide is covered and tissues are not dislodged. 

4. Make secondary antibody dilution at 1:250 in PBS and add 150 μl to each slide ensuring entire slide 

is covered and tissues are not dislodged. N.B. – Ensure correct type of antibody (mouse or rabbit) 

is used. Incubate for 2 hours at RT in the dark. 

5. Remove antibody solution and wash slides 3 times with PBS by adding 600 μl of PBS to slide and 

discarding, ensuring entire slide is covered and tissues are not dislodged. 

6. Add one drop of mounting media with PI and place coverslips on carefully. 

7. Slides can be stored in the dark at 4°C or viewed immediately. 

 

• Confocal microscopy: 

1. Uncover microscope and switch remote on and lamp power on, turn on pc if necessary. 

2. Open LSM510 – Scan new images/start expert mode. 

3. Open menus laser, micro, configuration and scan and switch lasers on. 

4. Set scan control mode to 2048/1024, 12 bit and fw/rw. 

5. Select Vis to manually select an area to capture. Once selected, turn off reflected light and start Fast 

XY and adjust channel settings for the best image. 

6. Select Z-stack in the Scan control menu and select Mark First/last. 

7. Adjust image focus to the point where target fluorescence is beginning to decrease and select mark 

first. 

8. Then focus the image (reverse) all the way through the optimum image until the fluorescence is 

beginning to decrease and mark last. 

9. Ensure the number of stacks to be taken is not exaggerated as this will not massively improve the 

quality of the image and will take longer. Ensure transparency is at maximum and X:Y:Z is set to 

1:1:1. 

10. View image by selecting 3D projection and save file(s) as required with scale overlay. 

11. Shut down microscope by performing start-up procedure in reverse. 
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A.4 In-Cell Western  

A.4.1 Example of a detailed protocol used for ICW  

Materials:  

• Cell line used: TAN2A2 P4 – SD = 5x104 cells/ml 

• Nunc® 96 well optical flat bottom black microplates (Fisher Scientific, 10281092) 

• Complete media used: DMEM F-12 + Glutamax®: (Invitrogen Gibco, 31331093) supplemented with 

10% FBS (Invitrogen Gibco, 10270106) 1% Penicillin-Streptomycin (Invitrogen Gibco, 15070063) 

• 0.25% Trypsin - EDTA (TE; Fisher Scientific, 11560626) 

• DRAQ5 (Biostatus, DR50200) – 1:1,000 

• Anti-ASMA antibody raised in mouse (Sigma-Aldrich, A5228) –1:3,000 

• 800nm IRdye donkey anti-mouse (Li-COR, 926-32212) –1:500 

• Transforming growth factor-β1 human (TGF-β1; Sigma-Aldrich, T7039-2UG) – 5 ng/ml 

• Fixing media – 4% paraformaldehyde in PB 

• PBS (Fisher Scientific, 11510546) 

• Permeabilisation buffer – 0.1% Triton X 100 (Sigma-Aldrich, T8787-100ml) in PBS 

• Blocking buffer – 5% donkey serum (Millipore, S30-100ML) in permeabilisation buffer  

• Wash buffer – 0.1% tween 20 (Sigma-Aldrich, P1379-250ML) in PBS 

Protocol: 

1. Cells were grown under normal conditions in T75 Flasks. 

2. Cells detached and neutralised as previously described (“Basic Cell culture techniques”, Book 1 pp 

1-4). 

3. Perform cell counting using Scepter® and dilute to a concentration of 5x104 cells/ml. 

4. Add 200 µl of sterile 1X PBS to indicated wells and 100 µl of cell suspension to the indicated wells. 

5. Incubate plates at 37°C, 5% CO2 overnight. 

6. Remove media and replace with 200 µl complete media or 200 µl complete media with TGF-β1 at 5 

ng/ml and incubate plates at 37°C, 5% CO2 for 72 hours. 

7. Remove media and add 150 µl of fixing solution and incubate for 20 minutes at room temperature. 

8. Remove fixing solution and wash three times with 0.1% Triton X 100 in PBS by adding 150 µl to 

each well and incubating at room temperature for 5 minutes on a plate shaker per wash. 

9. Remove wash buffer and 150 µl of blocking buffer and incubate for 90 minutes at RT. 

10. Remove blocking buffer, add 50 µl of 1:3,000 primary antibody solution, diluted in PBS to indicated 

wells and incubate for 2 hours at RT. 

11. Wash three times with 0.1% tween 20 in PBS, adding 150 µl to each well and incubating at room 

temperature for 5 minutes per wash. 

12. Add 50 µl secondary antibody solution to all wells at 1:500 with 1:1,000 DRAQ5 in PBS. 

13. Incubate for 60 minutes at RT, protect plate from light. 

14. Wash three times with 0.1% tween 20 in PBS and once with PBS, as previously described and 

remove wash solution completely from wells, turn the plate upside down and tap on paper towels. 

15. Clean underside of plate and scanner with paper and scan immediately at both the 700 and 800nm 

channels; Settings: Resolution = 169 µm; Quality = medium; Focus offset = 3 mm; Intensity = 5. 

16. Analysis, including z-factor calculation, was performed using Microsoft® Excel® 2013. 
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Representative 96-well plate layout: 

 

96 well plate layout 

 1 2 3 4 5 6 7 8 9 10 11 12 

A             

B             

C             

D             

E             

F             

G             

H             

             

 Legend  No Primary  Negative Control     

    PBS  Positive Control     
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A.4.2 Buffer recipes used in ICW 

Table 7-1: Recipe for fixing solution (4% paraformaldehyde). 

Chemical Location Volume/Mass 

8% Paraformaldehyde Chemical cupboard 100 ml 

0.2M Phosphate buffer Chemical cupboard 100 ml 

 

Table 7-2: Recipe for permeabilisation buffer (0.1% Triton X-100 in PBS). 

Chemical 
Supplier & Catalogue 

number 
Location Final 

concentration 
Volume/Mass  

1X PBS Fisher Scientific, 11510546 
Chemical 
cupboard 

1X 2 tablets 

Triton X-100 
Sigma-Aldrich; T8787-

100ML 
Chemical 
cupboard 

0.1%  1 ml 

Distilled water - Prep room - 1L 

 

Table 7-3: Recipe for blocking buffer (5% donkey serum in permeabilisation 

buffer). 

Chemical 
Supplier & Catalogue 

number 
Location Final 

concentration 
Volume/Mass  

Permeabilisation 
buffer (0.1% Triton 

X-100 in PBS) 
See Table 7-2 

See Table   
7-2 

See Table 7-2 19 ml 

Donkey serum  Millipore, S30-100ML 
Freezer FZ-

01 
5%  1 ml 

 

Table 7-4: Recipe for wash buffer. 

Chemical 
Supplier & Catalogue 

number 
Location Final 

concentration 
Volume/Mass  

1X PBS Fisher Scientific, 11510546 
Chemical 
cupboard 

1X 2 tablets 

Tween 20 
Sigma-Aldrich; P1379-

250ML 
Chemical 
cupboard 

0.1%  1 ml 

Distilled water - Prep room - 1L 
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A.4.3 Preparation of Phosphate Buffer and Paraformaldehyde 

Materials/Reagents:  

• For 8% paraformaldehyde: 

▪ Open neck 3-5L container 

▪ Heater/Mixer base 

▪ Filter 

▪ 2M Sodium hydroxide (NaOH; Sigma-Aldrich, S5881-500G) 

▪ Paraformaldehyde (VWR; 28794.295) 

▪ Distilled water 

• For phosphate buffer (PB): 

▪ Open neck 3-5L containers 

▪ Potentiometer 

▪ Sodium phosphate monobasic monohydrate (NaH2PO4H2O; Fisher Scientific, 10754534) 

▪ Di-sodium hydrogen orthophosphate dodecahydrate (Na2HPO4.12H2O; Fisher Scientific, 

10656462) 

▪ Distilled water 

Protocol: 

1. For 8% paraformaldehyde: 

a. Measure 2L in a suitable (3-5L) container and mark level with a pen. 

b. Remove approximately 500 ml into a sterile bottle. 

c. Warm remainder of water to 70 ˚C, stirring with a magnet, within a fume hood. 

d. Add 160 g of paraformaldehyde, ensuring no spillage and minimise the risk of inhalation, 

wear a mask. 

e. Slowly add sodium hydroxide with a Pasteur pipette until solution clarifies. 

f. Add water to the marker. 

g. Pour into bottles using paper filters and funnels. 

2. For phosphate buffer (PB): 

a. Solution A – Mosodium phosphate 

i. Measure 1L in 1L bottle and mark level with a pen; 

ii. Remove approximately 200 ml into another bottle; 

iii. Add 27.58 g of monosodium phosphate (NaH2PO4H2O) into initial bottle and add 

water to marked line, mix well; 

iv. If required, make 2L. 

b. Solution B – Disodium phosphate 

i. Measure 2L in suitable container and mark level with a pen; 

ii. Remove approximately 500 ml into another bottle; 

iii. Add 143.26 g of disodium phosphate (Na2HPO4.12H2O) into the initial bottle and 

add water to the marked line, mix well. 

c. Mix solutions 

i. Calibrate potentiometer to pH 7; 

ii. Place container with solution B on mixer with magnet, and place electrode in 

solution; 

iii. Add Solution A slowly to pH 7.4; 

iv. Pour into 1L bottles and label 0.2M PB with the date. 
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A.5 Western blot  

A.5.1 Example of a detailed protocol used for Western blot 

Seeding onto 6 well plates 

Materials/Reagents:  

• Cell line: TAN1B1 P5, PD1B2 P4 

• Complete media used: DMEM F-12 + Glutamax®: (Invitrogen Gibco, 31331093) supplemented with 

10% FBS (Invitrogen Gibco, 10270106) 1% Penicillin-Streptomycin (Invitrogen Gibco, 15070063) 

• Phosphate buffered saline (PBS; Fisher Scientific, 11510546) 

• 0.25% Trypsin - EDTA (TE; Fisher Scientific, 11560626) 

• ScepterTM + 60 μm sensors (Millipore, UK)  

• 4 x 6 well plate (NUNC, Fisher Scientific, 10469282) 

• Transforming growth factor-β1 human (TGF-β1; Sigma-Aldrich, T7039-2UG) – 5 ng/ml 

Protocol: 

1. Cells were grown under normal conditions in the T75 flask. 

2. Cells detached and neutralised as previously described (“Basic Cell culture techniques”, page 4, 

Book no. 1). 

3. Perform cell counting using Scepter. 

4. Dilute or concentrate cell suspension to the desired concentration. 

5. Using a 6 well plate, add 2 ml of cell suspension to all wells at 1.0 x 105 cells/well. 

6. Incubate plates at 37 °C, 5% CO2 overnight. 

7. On the next day, remove media from wells and add 2 ml of fresh media to indicated wells or 2 ml of 

media with TGF-β1 at 5 ng/ml, as indicated in the plate layout below.  

8. Incubate plate at 37 °C, 5% CO2 for 72 hours. 

 

 

 

 

Preparation of lysate from cell culture  

Materials:  

• Tris base (Fisher Scientific, 10376743) 

• Glycerol (Fisher Scientific, 10579570) 

• Sodium dodecyl sulfate (SDS; Fisher Scientific, 10552785) 

• Sodium deoxycholate (Sigma-Aldrich, D6750-10G) 

• NP-40 Surfact-Amps detergent solution (Fisher Scientific, 13434269) 

• EDTA (Fisher Scientific, 10335460) 

• Sodium fluoride (NaF; Fisher Scientific, 10742222) 

• Sodium pyrophosphate tetrabasic (Na4P2O7; Sigma-Aldrich, P8010-500G) 

• Sodium orthovanadate (Na3VO4; Sigma-Aldrich, S6508-10G) 

• Ethylene glycol-bis(2-aminoethylether)-N, N, N’, N’-tetraacetic acid (EGTA; Sigma-Aldrich, E4378-

10G) 

• Sodium chloride (NaCl; Fisher Scientific, 10428420) 

• DC Protein Assay kit II (Bio-Rad, 500-0112) 

• Triton X-100 (Sigma-Aldrich, T8787-100ML) 

• Phosphate buffered saline (Fisher Scientific, 11510546) 

TA and PD cells 1 2 3 

Control A 1.0 x 105 1.0 x 105 1.0 x 105 

TGF-β1 at 5 ng/ml B 1.0 x 105 1.0 x 105 1.0 x 105 
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• Distilled water 

• iMark™ Microplate Absorbance Reader (Bio-Rad, UK) 

• Nunclon 0.2mL flat bottom 96 well microplates (Fisher, 10212811) 

• Cell scraper (Fisher Scientific, 11597692) 

• Aprotinin (Fisher Scientific, 11854101) 

• PMSF (Fisher Scientific, 10485015) 

• Leupeptin (Fisher Scientific, 10736392) 

• Pepstatin A (Fisher Scientific, 10786834) 

Protocol: 

1. Keep PBS chilled on ice before starting the protocol. 

2. Prepare 10 ml of lysis buffer and keep on ice until use. 

a. RIPA buffer 

Chemical Location Final concentration Volume/Mass 

10% NP-40 Chemical cupboard 1% 1 ml 

1 M Tris-HCl, pH 7.4 Fridge FR-01 10 mM 100 µl 

1 M NaCl Chemical cupboard 0.15 M 1.5 ml 

0.1 M EGTA Fridge FR-01 1 mM 100 µl 

100 mM EDTA Fridge FR-01 10 mM 1 ml 

100 mM PMSF Freezer FZ-01 1 mM 100 µl 

1 mg/ml Aprotinin Freezer FZ-01 2 µg/ml 20 µl 

10 mg/ml Leupeptin Freezer FZ-01 2 µg/ml 2 µl 

10 mg/ml Pepstatin A Freezer FZ-01 2 µg/ml 2 µl 

0.5 M NaF Freezer FZ-01 50 mM 1 ml 

0.1 M Na4P2O7 Freezer FZ-01 20 mM 2 ml 

100 mM Na3VO4 Freezer FZ-01 100 µM 10 µl 

Distilled water Prep room - Adjust to 10 ml  

*After 12 hours these reagents become inactive.  
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b. Tris-Triton buffer 

Chemical Location Final concentration Volume/Mass 

1 M Tris, pH 7.4 Fridge FR-01 10 mM 100 µl 

1 M NaCl Chemical cupboard 100 mM 1 ml 

100 mM EGTA Fridge FR-01 1 mM 100 µl 

Triton X-100 Chemical cupboard 1% 100 µl 

Glycerol Chemical cupboard 10% 1 ml 

10% SDS Chemical cupboard 0.1% 100 µl 

10% Sodium deoxycholate Chemical cupboard 0.5% 500 µl 

100 mM EDTA Fridge FR-01 10 mM 1 ml 

100 mM PMSF Freezer FZ-01 1 mM 100 µl 

1 mg/ml Aprotinin Freezer FZ-01 2 µg/ml 20 µl 

10 mg/ml Leupeptin Freezer FZ-01 2 µg/ml 2 µl 

10 mg/ml Pepstatin A Freezer FZ-01 2 µg/ml 2 µl 

0.5M NaF Freezer FZ-01 1 mM 20 µl 

0.1 M Na4P2O7 Freezer FZ-01 20 mM 2 ml 

100 mM Na3VO4 Freezer FZ-01 2 mM 200 µl 

Distilled water Prep room - Adjust to 10 ml 

*After 12 hours these reagents become inactive.  

3. Preparation of lysate from the cell culture: 

a. Switch on the refrigerated centrifuge. Make sure that the centrifuge is at 4 °C. 

b. Inspect cells under the light microscope before starting the protocol.  

c. During cell lysis, work quickly and keep the cells/cell lysates on ice.  

d. Remove medium from wells and wash cells with 1 ml of cold PBS. Keep 6 well- plate on ice 

throughout.  

e. Scrape cells from the bottom of the well with a plastic cell scraper. 

f. Transfer the cell suspension (from wells exposed to the same conditions) to an eppendorf. 

g. Spin down at 3,000 rpm for 5 minutes at 4 °C to pellet the cells. Discard the supernatant.  

h. Add 300 µl of ice-cold lysis buffer with protease inhibitor cocktail to the cell pellet and leave on ice 

for 30 minutes. Every 10 minutes briefly vortex samples.  

i. Centrifuge cells at 3,000 rpm for 5 minutes at 4 °C. 

j. Transfer supernatant to a fresh ice-cold eppendorf. 

k. Remove 5 µl of protein for assay. Place the tube on ice. 

l. Aliquot cell lysates (50-100 µl) to avoid repeat freeze/thaw cycles. Store cell lysate at -80 °C. 

m. Store lysis buffer at 4 °C and if reused (after 12 hours) make sure that the four reagents* are added 

again.   

4. Determination of protein concentration: 

a. Prepare working reagent by adding 20 µl of reagent S to each ml of reagent A that will be needed 

for the run. This working reagent (S + A) is stable for one week even though a precipitate will form 

after 1 day. If precipitate forms, warm the solution and vortex. Do not pipet the undissolved 

precipitate, as this will likely plug the tip of the pipet, thereby altering the volume of reagent that is 



 

183 

added to the sample. If samples do not contain detergent, this step can be omitted and simply use 

reagent A as supplied.  

b. Prepare 5 dilutions of a protein standard containing from 1.5 mg/ml to 0.09 mg/ml (1.5 – 0.75 – 

0.375 – 0.18 – 0.09 mg/ml). Prepare a standard curve each time the assay is performed. Prepare 

the standards in the same buffer as the sample. Store the rehydrated protein solution at -20 °C for 

6 months in aliquots.   

c. Pipet 5 µl of standards and samples (diluted 1 in 3) in duplicate into a clean, dry 96 well plate. 

d. Add 25 µl of reagent A (with reagent S) into each well. 

e. Add 200 µl reagent B into each well. Gently agitate the plate to mix the reagents. If bubbles form, 

pop them with a clean, dry pipette tip. Be careful to avoid cross-contamination of sample wells.  

f. After 15 minutes, read absorbance at 750 nm using the plate reader. The absorbance will be stable 

for about 1 hour. 

i. Switch on the microplate reader and switch on software (MPM 6 – desktop). 

ii. Enter the password 00000 to enter the main menu on the screen of the plate reader.  

iii. Open the reading chamber door and insert 96-well plate without a lid. Close the chamber door.  

iv. If using the microplate reader press: MAIN – MEMORY RECALL – PROTOCOL – ENTER – 

END POINT – FILTER 03-490 nm – FILTER 05-655 nm – ENTER – START. The read-out will 

be sent to and automatically printed out. 

v. If using the software, make sure that iMark is selected by pressing the button with a green 

arrow (the third one from the left). 

vi. To prepare the protocol, select the button with a green arrow (the first button from the left). 

Select endpoint and if two wavelengths are needed select dual and write down the wavelength. 

If only one wavelength is needed, select single and add the appropriate wavelength.  

vii. Press start read and export data to an excel file.  

viii. Turn off microplate reader (by pressing on/off button for a few seconds) and switch off software.  

  

g. Calculate on excel sheet protein concentrations. 

h. If protein concentration is not high enough at the end, it is advised to repeat the procedure with a 

higher proportion of protease inhibitor cocktail. 

 

 

Mini gel preparation, SDS-PAGE & Western Blotting 

Materials:  

• Distilled water 

• DL-Dithiothreitol solution (DTT; Sigma-Aldrich, 43816-50ML) 

• Electrode with MultiPhor paper (Fisher Scientific, 10586555) 

• Any kD™ Mini-PROTEAN® TGX™ Precast Protein Gels (Bio-Rad, 456-9034) 

• Heating block  

• Hoefer Mini VE Vertical Electrophoresis System 

• Lysis buffer inactive: Tris-Triton and RIPA buffer 

• Marvel dried skimmed milk powder (Tesco) 

• Membrane filter Immobilon-FL transfer membranes 0.45 µm pore size (Fisher Scientific, 10452792) 

• Methanol (Fisher Scientific, 10675112) 

• Precision Plus Protein™ Dual Color Standards (Bio-Rad, 161-0374) 

• Tris-buffered saline, 10X (TBS; Fisher Scientific, BP2471-1) 

• 2X laemmli sample buffer (Bio-Rad, 161-0737)  

• Primary antibodies 

• 10X Running buffer: Tris-Glycine-SDS buffer (Bio-Rad, 161-0732) 

• Secondary antibodies 

• Sodium dodecyl sulfate (SDS; Fisher Scientific, 10552785) 

• 10X Transfer buffer: Tris-Glycine buffer (Bio-Rad, 161-0734) 

• Tris base (Fisher Scientific, 10376743) 

• Tween 20 (Sigma-Aldrich, P1379-250ML) 
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• Plastic Bio-Rad trays, plastic tweezers 

• Odyssey CLx (Li-COR, UK) 

Protocol: 

1. Set up the electrophoresis system. Make sure that all items are clean as this interfere with the 

electrophoresis. 

2. Make 2 L of 1X running buffer from the 10X stock, by adding 200 ml of running buffer 10X to 1800 

ml of distilled water. 

3. Remove gel from the fridge and washed it with distilled water. 

4. Remove green comb carefully to avoid breaking the legs of the wells. Remove green tape at the 

bottom of the gel. 

5. Place gel in the modules and lower each module into the tank, seating it in the locating slots. 

6. Fill the tank with 1X running buffer. Make sure the buffer covers the gel completely and that the wells 

are also filled. Rinse wells with running buffer.  

7. Defrost tubes containing cell lysate on ice.  

8. Using the chilled protein sample derived from lysed cells, make the appropriate dilutions in lysis 

buffer (inactive). Make sure all cell lysates have the same concentration before adding to the gel. 

Add the same amount (20 μl) of 2X sample buffer with DTT to each sample.  

9. Boil (95 °C) 40 µl prepared samples for 10 minutes. 

10. Load 5 µl of the protein ladder and 20 µl of each sample into the gel wells slowly. 

11. Connect the leads to the electrophoresis power supply EPS 3501 XL (do not forget to add the 

adapters) and turn on. Choose the correct program and press Set Enter.  

12. Run gels at 120V for 10 minutes and subsequently at 200V for 50 minutes. 

13. Stop the run when the dye from reaches the bottom of the glass plates (check on both sides if 

running 2 gels). 

14. Turn off the power supply and disconnect the leads.  

15. Make 1L of 1X transfer buffer (20% methanol) from the 10X stock solution. Make a fresh solution 

each time. 

16. Refill tank with transfer buffer. 

17. Fill one plastic Bio-Rad tray with methanol (Tray 1) and three with transfer buffer (Trays 2-4). 

18. Cut the Immobilon-FL Transfer Membrane to a size that overlaps the SDS-PAGE gel (handle with 

care). 

19. Carefully remove the membrane from the blue paper and soak in methanol (Tray 1) for 2 minutes, 

handling with plastic tweezers. 

20. Wash the membrane in transfer buffer (Tray 2). 

21. Cut the filter paper to overlap the membrane and soak in transfer buffer (Tray 3) – 1 piece of filter 

paper per side. 

22. Remove the gel from the tank. Gently loosen and then slide away both spacers. Slip an extra spacer 

into the bottom edge to prevent breaking the “ears” of the notched plates and separate the plates. 

Cut away and discard the stacking gel. 

23. Transfer the gel into transfer buffer (Tray 4) using the gel spacer. 

24. Add more transfer buffer into the blotting apparatus then place the filter paper in. 

25. Use tweezers to place the membrane on the filter paper. Cut the membrane in the opposite bottom 

corner of the protein marker. Make sure that the membrane is always wet. 

26. Lay the gel on top of the membrane then add more transfer buffer before placing the second piece 

of soaked filter paper on top of the gel. 

27. Use a cropped serological pipette to roll out bubbles by applying medium pressure whilst holding 

down one side and rolling away in the opposite direction. 

28. Apply the lid followed by a weight then plug in and turn on. 

29. Run at 50V for 1 hour. 

30. Turn off the power supply and disassemble the sandwich. Rinse the cathode and anode with distilled 

water and leave to dry. 

31. Make 10% and 5% (w/v) Marvel in 0.1% TBST solution. 

32. Block the membrane in 10% (w/v) Marvel in 0.1% TBST solution for 1 hour at room temperature. 

33. Make 1L of TBS with 0.1% tween 20 (0.1% TBST), by adding 100 ml 10X TBS to 900 ml of distilled 

water. Add 1 ml of tween 20. 
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34. Add primary antibody solution diluted in blocking buffer (5% Marvel in 0.1% TBST) overnight at 4°C.  

35. On the next day, wash membrane four times with 0.1% TBST for 5 minutes each, rocking. 

36. Add secondary antibody solution in a 1:5,000 diluted in blocking buffer (5% Marvel in 0.1% TBST) 

and incubate for 1 hour at room temperature.  

37. Wash membrane four times with 0.1% TBST for 5 minutes each, rocking. 

38. Scan membrane using the Odyssey CLx at both 700 and 800 nm channels. 

39. Analyse data using the Image StudioTM software. 
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A.5.2 Sample preparation  

Table 7-5: Ingredients of RIPA (Radioimmunoprecipitation assay) lysis buffer used 
to extract protein from cultured cells. Lysis buffer can be stored at 4 °C for several 
weeks. Protease inhibitors were added fresh to the lysis buffer. 

Chemical 
Supplier & Catalogue 

number 
Location 

Final 

concentration 
Volume/Mass 

10% NP-40 
Fisher Scientific; 

13434269 

Chemical 

cupboard 
1% 1 ml 

1 M Tris-HCl, pH 

7.4 

Fisher Scientific; 

10376743 
Fridge FR-01 10 mM 100 µl 

1 M NaCl 
Fisher Scientific; 

10428420 

Chemical 

cupboard 
0.15 M 1.5 ml 

0.1 M EGTA 
Sigma-Aldrich; E4378-

10G 
Fridge FR-01 1 mM 100 µl 

100 mM EDTA 
Fisher Scientific; 

10335460 
Fridge FR-01 10 mM 1 ml 

100 mM PMSF 
Fisher Scientific; 

10485015 
Freezer FZ-01 1 mM 100 µl 

1 mg/ml Aprotinin 
Fisher Scientific; 

11854101 
Freezer FZ-01 2 µg/ml 20 µl 

10 mg/ml 

Leupeptin 

Fisher Scientific; 

10736392 
Freezer FZ-01 2 µg/ml 2 µl 

10 mg/ml 

Pepstatin A 

Fisher Scientific; 

10786834 
Freezer FZ-01 2 µg/ml 2 µl 

0.5 M NaF 
Fisher Scientific; 

10742222 
Freezer FZ-01 50 mM 1 ml 

0.1 M Na4P2O7 
Sigma-Aldrich; P8010-

500G 
Freezer FZ-01 20 mM 2 ml 

100 mM Na3VO4 
Sigma-Aldrich; S6508-

10G 
Freezer FZ-01 100 µM 10 µl 

Distilled water - Prep room - Adjust to 10 ml  
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Table 7-6: Ingredients of Tris-Triton lysis buffer used to extract proteins from 
cultured cells. Lysis buffer can be stored at 4 °C for several weeks. Protease inhibitors 
were added fresh to the lysis buffer. 

Chemical 
Supplier & 

Catalogue number 
Location 

Final 

concentration 
Volume/Mass 

1 M Tris, pH 7.4 
Fisher Scientific; 

10376743 
Fridge FR-01 10 mM 100 µl 

1 M NaCl 
Fisher Scientific; 

10428420 

Chemical 

cupboard 
100 mM 1 ml 

100 mM EGTA 
Sigma-Aldrich; E4378-

10G 
Fridge FR-01 1 mM 100 µl 

Triton X-100 
Sigma-Aldrich; T8787-

100ML 

Chemical 

cupboard 
1% 100 µl 

Glycerol 
Fisher Scientific; 

10579570 

Chemical 

cupboard 
10% 1 ml 

10% SDS 
Fisher Scientific; 

10552785 

Chemical 

cupboard 
0.1% 100 µl 

10% Sodium 

deoxycholate 

Sigma-Aldrich; D6750-

10G 

Chemical 

cupboard 
0.5% 500 µl 

100 mM EDTA 
Fisher Scientific; 

10335460 
Fridge FR-01 10 mM 1 ml 

100 mM PMSF 
Fisher Scientific; 

10485015 
Freezer FZ-01 1 mM 100 µl 

1 mg/ml Aprotinin 
Fisher Scientific; 

11854101 
Freezer FZ-01 2 µg/ml 20 µl 

10 mg/ml Leupeptin 
Fisher Scientific; 

10736392 
Freezer FZ-01 2 µg/ml 2 µl 

10 mg/ml Pepstatin 

A 

Fisher Scientific; 

10786834 
Freezer FZ-01 2 µg/ml 2 µl 

0.5M NaF 
Fisher Scientific; 

10742222 
Freezer FZ-01 1 mM 20 µl 

0.1 M Na4P2O7 
Sigma-Aldrich; P8010-

500G 
Freezer FZ-01 20 mM 2 ml 

100 mM Na3VO4 
Sigma-Aldrich; S6508-

10G 
Freezer FZ-01 2 mM 200 µl 

Distilled water - Prep room - Adjust to 10 ml 
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A.5.3 SDS-PAGE 

Table 7-7: Recipe for 10X running buffer (pH 8.3) used for SDS-PAGE. 

Chemical Supplier & Catalogue number Location Volume  

Tris Base Fisher Scientific; 10376743 Chemical cupboard 30.3 g 

Glycine Fisher Scientific; 10070150 Chemical cupboard 144 g 

10% SDS Fisher Scientific; 10552785 Chemical cupboard 10 ml 

Distilled water - Prep room Make up to 1L 

 

A.5.4 Western blotting 

Table 7-8: Recipe for 10X transfer buffer used for Western blotting.  

Chemical Supplier & Catalogue number Location Volume/Mass  

Tris Base Fisher Scientific; 10376743 Chemical cupboard 30.3 g 

Glycine Fisher Scientific; 10070150 Chemical cupboard 144 g 

Distilled water - Prep room Make up to 1L 

 

Table 7-9: Recipe for 0.1% Tween 20 in 1X TBS (0.1% TBST). 

Chemical 
Supplier & Catalogue 

number 

Location Final 

concentration 
Volume/Mass  

10X TBS Fisher Scientific, BP2471-1 
Chemical 

cupboard 
1X  100 ml 

Tween 20 
Sigma-Aldrich; P1379-

250ML 

Chemical 

cupboard 
0.1%  1 ml 

Distilled water - Prep room - Make up to 1L 
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Appendix III: RT-qPCR method development rationale 

A.1 Development of real-time RT-PCR method 

The amplicons can be detected using DNA-binding dyes (such as SYBR Green) 

or fluorescently labelled sequence-specific probes (such as TaqMan). In this 

project, SYBR Green was chosen as the detection method due to its capability of 

testing numerous genes quickly without designing multiple probes, simple and 

easy assay design, ability to perform a melting curve analysis to check the 

specificity of the amplification reaction and the greater cost-effectiveness.  

However, one of the main disadvantages of SYBR Green is the lack of specificity, 

as this dye binds non-specifically to any double-stranded DNA (dsDNA), such as 

non-specific products or primer-dimers, which can contribute to the overall 

fluorescence and affect the accuracy of the PCR. Hence, it is essential to perform 

a melting curve analysis in each qPCR run to check the specificity of PCR 

products.  

There are two different methods to report data from real-time PCR: absolute and 

relative quantification. Absolute quantification determines the amount of target 

(expressed as concentration or copy number) and should be used in situations 

where the absolute transcript copy number is necessary, whereas relative 

quantification determines the ratio between the amount of target and the amount 

of reference gene and it is normally used to compare changes in gene expression 

of different samples282. Therefore, to investigate the gene expression of genes of 

interest in different samples with different treatments, relative quantification was 

sufficed.  

Numerous methods have been developed to report relative gene expression, 

such as sigmoidal curve fitting method, efficiency correction method and 2-ΔΔCq 

method. The latter was used, as it is capable of reporting qPCR data as “fold-

change” in expression, its ease of use and it is one of the most used methods in 

the literature to analyse and report relative gene expression data.  
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A.2 RNA Quality Control 

The RNA extraction and purification must fulfil the following criteria225: 

- Free of nucleases during storage; 

- Free of protein; 

- Free of genomic DNA (gDNA); 

- High quality; 

- Free of enzymatic inhibitors for downstream applications. 

The quantification of RNA is essential as similar amounts of RNA should be used 

when comparing different samples. There are several methods to quantify RNA, 

including spectrophotometry, capillary gel electrophoresis, microfluidic analysis 

and fluorescence dye detection231. However, different results are obtained with 

these methods, which makes it unwise to try to compare data; therefore, only one 

single method (spectrophotometry) was used to report this information.  

A typical example of the concentration, purity and quality of the extracted RNA 

from cultured cells is shown in the table below. 
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Table 7-10: Quality control of RNA extracted from cells derived from non-PD TA 
tissue and PD plaque tissue. Data correspond to the average of three replicates ± 
SEM. 

Samples 
Concentration 

 (ng/µl) 

Purity  

(A260/A280 ratio) 

Quality  

(RIN) 

rRNA ratio 

 (28S:18S) 

TAN2A1 
-TGF-β1  111.8 ± 5.68 2.25 ± 0.02 10.0 ± 0.00 1.83 ± 0.06 

+TGF-β1 109.8 ± 5.94 2.25 ± 0.02 9.9 ± 0.05 1.68 ± 0.04 

TAC1B1 
-TGF-β1  92.9 ± 6.19 2.17 ± 0.04 9.9 ± 0.04 1.88 ± 0.03 

+TGF-β1 113.3 ± 3.82 2.26 ± 0.02 9.9 ± 0.05 1.87 ± 0.01 

TAC4A2 
-TGF-β1  115.6 ± 11.43 2.27 ± 0.01 9.9 ± 0±.00 1.69 ± 0.02 

+TGF-β1 141.1 ± 4.99 2.29 ± 0.02 9.8 ± 0.07 1.79 ± 0.05 

TAC4B2 
-TGF-β1  96.8 ± 1.54 2.04 ± 0.02 9.7 ± 0.02 2.00 ± 0.04 

+TGF-β1 95.7 ± 5.12 2.01 ± 0.01 10.0 ± 0.00 1.83 ± 0.02 

PD1B1 
-TGF-β1  62.3 ± 1.57 2.27 ± 0.01 10.0 ± 0.00 1.87 ± 0.03 

+TGF-β1 67.2 ± 1.32 2.18 ± 0.01 9.8 ± 0.10 1.70 ± 0.01 

PD2A2 
-TGF-β1  104.7 ± 4.60 2.24 ± 0.04 10.0 ± 0.00 1.87 ± 0.00 

+TGF-β1 115.4 ± 5.02 2.18 ± 0.02 9.8 ± 0.07 1.87 ± 0.02 

PD3A1 
-TGF-β1  114.8 ± 6.64 2.16 ± 0.01 9.9 ± 0.07  1.90 ± 0.06 

+TGF-β1 94.6 ± 7.12 2.16 ± 0.04 9.7 ± 0.03 1.80 ± 0.03 

PD3A2 
-TGF-β1  52.5 ± 2.88 2.06 ± 0.01 9.9 ± 0.02 1.97 ± 0.06 

+TGF-β1 67.3 ± 1.89 2.03 ± 0.00 10.0 ± 0.00 1.93 ± 0.06 

The figures below show a representative electropherogram of the RNA ladder 

(Figure 7-3) and of an RNA sample (Figure 7-4) obtained using the Bioanalyzer. 
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Figure 7-3: Electropherogram data of the RNA ladder. At the end of a run, the 
software shows an electropherogram of the RNA ladder, displaying seven peaks 
generated by the separation of the RNA ladder. The first peak corresponds to the lower 
alignment marker (25 nucleotides), which is a component of the loading buffer and the 
ladder, and it should always appear in the ladder and in the samples electropherogram. 
If the separation is successful, six more RNA peaks (6000 nt to 200 nt) in the ladder well 
will appear which should be well resolved. In the x-axis is shown the time in seconds and 
in the y-axis is represented the fluorescence.   

   

 

Figure 7-4: Representative electropherogram of an RNA sample. When RNA is 
separated, it will display two peaks corresponding to the 18S rRNA and 28S rRNA. The 
first peak corresponds to the lower alignment marker. Both 18S and 28S should exhibit 
sharp and narrow peaks, which indicates that the RNA is not degraded. In the x-axis is 
shown the time in seconds and in the y-axis is represented the fluorescence.   

RNA extraction from tissue samples 

RNA extraction was also attempted in human non-PD TA tissue and PD plaque 

tissue. Several optimisations were performed in the protocol; however, RNA was 
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not obtained from these tissues (Table 7-11). Initially, RNA was extracted from 

tissues used to establish cell lines and subsequently frozen. These tissues were 

rubbed into the surface of a 6 well plate and incubated at 37°C for at least 5 days, 

during cell line establishment, leading to the degradation of RNA. The RNA in 

harvested tissue is not protected until the tissue is entirely submerged in a 

solution to stabilise the RNA. Therefore, fresh tissue was placed inside RNAlater 

straight after being removed from the patient to protect the RNA and avoid 

changes in the gene expression pattern. Other alterations to the protocol were 

also performed, including the use of liquid nitrogen to freeze the tissue prior to 

potential disruptions (which can lead to the degradation of RNA); however, RNA 

was still not obtained. It was evident that the degradation of RNA happened 

straight after removal of the tissue from the patient; thus, to ensure extraction of 

RNA, the tissue should be placed in liquid nitrogen straight after being removed 

to avoid degradation of RNA. In the author’s opinion, this is the best way to 

guarantee extraction of RNA from tissue samples as reported by several 

authors51,283. As the tissue samples were collected from UCLH and transported 

to the university laboratories, freezing in liquid nitrogen was not carried out due 

to health and safety issues during transportation.   

The table below shows the different optimisations performed and the 

concentration and purity obtained.  
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Table 7-11: RNA extraction from tissues of patients with and without PD.  

Optimisations 
Tissue 

samples 

Concentration 

(ng/μl) 

Purity 

(A260/A280 ratio) 

Use of frozen tissue 

at -80 °C (used to 

establish cell lines) 

TAP3A1   -1.1 0.99 

PD8B1 1.8 -18.88 

Ceramic vs glass 

beads for 

homogenisation step 

TAP4B1   -6.4 2.06 

PD3B2 0.6 1.66 

Use of RNAlater 

RNA Stabilisation 

Reagent 

TAC3a 0.2 0.23 

Use of liquid nitrogen TAC4 1.0 1.04 

Use of fresh tissue TAP14 -0.1 1.00 

Use of a different 

homogenisation 

program (6000 rpm, 

2 x 30 seconds) 

TAC3b 0.1 -0.31 

A.3 cDNA synthesis by reverse transcription 

Several methods are available to convert RNA into stable cDNA by performing 

RT reactions: one-step RT (RT and real-time PCR are carried out in the same 

tube) or a two-step RT (RT and real-time PCR are performed in separate tubes). 

In this study, two-step RT method was chosen as enables long-term storage of 

cDNA, multiple PCR reactions can be carried out from a single RT reaction and 

it is flexible with the RT primer choice. For the RT reaction, random primers were 

chosen over oligo(dT) primers and gene-specific primers, as several different 

transcripts can be analysed from a single RT reaction and it also enables RT 

reactions from the entire RNA population. 

A.4 Real-time PCR 

The amplification curve is a plot of cycle number versus fluorescence signal which 

correlates with the start amount of target nucleic acid during the exponential 
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phase. The figures below show representative amplification plot in log scale and 

linear scale (Figure 7-5A and 7-5B). 

 

 

Figure 7-5: Representative amplification plots of 18S gene. (A) In log scale. (B) In 
linear scale. A real-time PCR was performed on 10-fold serial dilutions of the cDNA 
template in triplicate and the Cq values were determined for each dilution. The red bar 
(black arrows) corresponds to the threshold, which is used to determine the Cq values. 
Samples with higher concentrations (10-2) cross the threshold at lower cycle number 
and, therefore are positioned towards the left of the plot, whereas diluted samples (10-
7) cross the threshold at higher cycle number (situated towards the right of the graph). 
In the x-axis is shown the number of cycles and in the y-axis is represented the 
normalised fluorescence (SYBR Green intensity divided by the intensity of ROX, a 
passive reference dye incorporated in the SYBR Green master mix). Blue arrow 
represents negative controls included in the real-time PCR run. 

From this plot, the quantification cycle, which corresponds to the cycle number at 

which the fluorescence generated within a reaction crosses the threshold can be 

determined. By plotting the Cq value acquired during amplification of each dilution 

A 

B 
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against the log starting amount of template, it was possible to generate standard 

curves for the target and reference genes. 

A qPCR run was carried out using the cDNA obtained from an untreated cell line 

derived from non-PD TA tissue (calibrator sample), after which, standard curves 

were generated for α-SMA, β-actin and 18S before any optimisations (Figure 7-

6) and after optimisations for α-SMA, EIF4A2 and TOP1 (Figure 7-7). 
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Figure 7-6: Representative standard curves for α-SMA, β-actin and 18S before 
optimisations. Six dilutions of TAC4A2 cDNA (calibrator sample) for α-SMA and β-actin 
were used: neat; 10-1; 10-2; 10-3; 10-4 and 10-5, whereas for 18S five dilutions were 
prepared: 10-2; 10-3; 10-4; 10-5 and 10-6. To construct standard curves, the Cq value and 
the log starting amount of template were used. Through the slope of each standard 
curve, it was possible to calculate the amplification efficiency of each gene. Data points 
were plotted as mean ± SEM.  
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Figure 7-7: Representative standard curves for α-SMA, EIF4A2 and TOP1 after 
optimisations. Dilutions ranging from neat to 10-4 were used to generate standard 
curves for all three genes by using the Cq value and the log starting amount of template. 
Through the slope of each standard curve, it was possible to determine the amplification 
efficiency of each gene. Data points were plotted as mean ± SEM.  

Melting curve corresponds to the denaturation of each double-stranded species 

present in the sample, which results in an increment in fluorescence as these 

double-stranded species dissociate, displaying one single sharp peak. A specific 

peak at the PCR product melting temperature (the temperature at which 50% of 

the base pairs of dsDNA are separated) can discriminate the amplicons from non-

specific products, which melt at different temperatures284,285. The melting 
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temperatures are determined by several factors including nucleotide composition, 

the length of the molecule and salt concentration284. Primer-dimers, non-specific 

products generally have a lower melting temperature than the amplicons, which 

can also be analysed by performing a post-PCR analysis by running, at least, one 

sample per primer pair on an agarose gel.  

The figure below shows representative melting curve of all target and reference 

genes used. 
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Figure 7-8: Representative melting curve of all target and reference genes used. 
(A) α-SMA, (B) β-actin, (C) 18S, (D) EIF4A2, (E) TOP1, (F) ADORA1, (G) ADORA2A, 

I 
J 

C D 

E 

B A 

F 

G 
H 

K 



 

201 

(H) ADORA2B, (I) ADORA3, (J) ERα and (K) ERβ. Only one peak per sample was 
observed in the melting curve plot, corresponding to the denaturation of the PCR 
products obtained by the real-time PCR. Black arrow corresponds to the negative 
controls (NTC and NRT) included in the run, where no amplification was detected. 
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Appendix IV: Antibody validation 

A.1 Alpha-smooth muscle actin (α-SMA) antibody 

The α-SMA antibody was purchased from Sigma-Aldrich, UK (catalogue number 

A5228). This antibody has been validated by the manufacturer showing a single 

band at the known molecular weight. Furthermore, this antibody was also 

validated by its use in 206 published peer-reviewed papers. 

• Elliott CG et al. Periostin modulates myofibroblast differentiation during full-

thickness cutaneous wound repair. J Cell Sci. 125, 121-132 (2012). 

• Didangelos A et al. Extracellular matrix composition and remodeling in human 

abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics 

10(8):M111 (2011). 

This antibody was also extensively validated within our research team: Stebbeds, 

W. In vitro studies of Peyronie’s disease-derived myofibroblasts: disease 

association and identification of novel therapeutic compounds. Cranfield 

University PhD Thesis, 1–283 (2015). 

A.2 Adenosine receptor A1 (ADORA1) antibody 

The anti-adenosine A1 receptor antibody was purchased from Abcam, UK 

(catalogue number ab124780). This antibody has been validated by the 

manufacturer showing a single band at the correct molecular weight in different 

cell lysates (Saos 2 cell lysate, SH SY5Y cell lysate, Caco 2 cell lysate, A549 cell 

lysate and 293T cell lysate). 

A.3 Adenosine receptor A2B (ADORA2B) antibody 

The anti-adenosine A2B receptor antibody was purchased from Abcam, UK 

(catalogue number ab135865). This antibody has been validated by the 

manufacturer showing a single band at the correct molecular weight in HT29 cells 

(colon epithelial cells). The ADORA2B antibody was also used to confirm 

ADORA2B expression in the following peer-reviewed paper: 
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• Corciulo C et al. Endogenous adenosine maintains cartilage homeostasis and 

exogenous adenosine inhibits osteoarthritis progression. Nat Commun 

8:15019 (2017). 

A.4 Estrogen receptor α (ERα) antibody 

The anti-estrogen receptor alpha antibody was purchased from Abcam, UK 

(catalogue number ab32063). This antibody has been validated by the 

manufacturer showing a single band at the correct molecular weight in MCF-7 

cells and in tissue lysate from human ovary cancer. In addition, it was also 

validated by its use in 37 published peer-reviewed papers. 

• Guo L et al. 17ß-estradiol regulates the malignancy of cancer stem-like cells 

derived from the MCF7 cell line partially through Sox2. Oncol Lett 15:3790-

3795 (2018). 

• Zhang W et al. The correlation between DNMT1 and ERα expression and the 

methylation status of ERα, and its clinical significance in breast cancer. Oncol 

Lett 11:1995-2000 (2016). 

A.5 Estrogen receptor β (ERβ) antibody  

The anti-estrogen receptor beta antibody was purchased from Abcam, UK 

(catalogue number ab3576). This antibody has been validated by the 

manufacturer and it was also validated by its use in 28 published peer-reviewed 

papers. 

• Li P et al. 17beta-estradiol Attenuates TNF-a-Induced Premature Senescence 

of Nucleus Pulposus Cells through Regulating the ROS/NF-κB Pathway. Int J 

Biol Sci 13,145-156 (2017). 

• Ma Y et al. Estrogen replacement therapy-induced neuroprotection against 

brain ischemia-reperfusion injury involves the activation of astrocytes via 

estrogen receptor ß. Sci Rep 6:21467 (2016). 

The use of these antibodies in published, peer-reviewed journals combined with 

the use of proper negative controls enabled their validation in the ICW technique. 
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Appendix V: List of publications 

During this research project, several national and international conferences were 

attended where some of the results reported herein were presented. A complete 

list of publications is shown below. 

• Mateus, M., Stebbeds, W., Raheem, A., Muneer, A., Christopher, N., Ralph, 

D.J. & Cellek, S. Investigation of the role of myofibroblast differentiation in 

Peyronie’s disease. BAUS Abstracts. Br J Surg 101, 56–68 (2014).  

• Mateus, M., Stebbeds, W., Raheem, A., Muneer, A., Christopher, N., Ralph, 

D.J. & Cellek, S. Investigation of the role of myofibroblast differentiation in 

Peyronie’s disease. J Sex Med 11(S1), 1–108 (2014).  

• Mateus, M., Stebbeds, W., Raheem, A., Spilotros, M., Garaffa, G., Muneer, A., 

Christopher, N., Cellek, S., & Ralph, D.J. The expression of adenosine 

receptors in Peyronie’s disease. J Sex Med 12(S3), 187–271 (2015).  

• Mateus, M., Stebbeds, W., Bright, A., Raheem, A., Spilotros, M., Garaffa, G., 

Muneer, A., Christopher, N., Cellek, S., & Ralph, D.J. Development of a high-

throughput, cell-based assay for anti-myofibroblast activity in Peyronie’s 

disease. J Sex Med 13(S1), S8 (2016). 

• Mateus, M., Stebbeds, W., Bright, A., Raheem, A., Spilotros, M., Garaffa, G., 

Muneer, A., Christopher, N., Cellek, S., & Ralph, D.J. First results from a novel 

cell-based assay for anti-myofibroblast activity in Peyronie’s disease. J Sex 

Med 13(S2), S89 (2016). 

• Mateus, M., Ilg, MM., Stebbeds, WJ., Christopher, N., Muneer, A., Ralph, D.J. 

& Cellek, S. Understanding the role of adenosine receptors in the 

myofibroblast transformation in Peyronie’s disease. J Sex Med 15(7), 947-957 

(2018).   

• Ilg, MM., Mateus, M., Stebbeds, WJ., Milenkovic, U., Christopher, N., Muneer, 

A., Albersen, M., Ralph, D.J. & Cellek, S. Antifibrotic Synergy Between 

Phosphodiesterase Type 5 Inhibitors and Selective Oestrogen Receptor 

Modulators in Peyronie's Disease Models. European Urology (2018).   


