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Abstract: In recent years, different non-linear regression techniques using neural 

networks and genetic programming have been applied for data-driven modelling of 

fluidized bed gasification processes. However, none of these methods explicitly take 

into account the uncertainty of the measurements and predictions. In this paper, a 

Bayesian approach based on Gaussian processes is used to address this issue. This 

method is used to predict the syngas yield production and the lower heating value 

(LHV) for municipal solid waste (MSW) gasification in a fluidized bed gasifier. The 

model parameters are calculated using the maximum a-posteriori (MAP) estimate 

and compared with the Markov Chain Monte Carlo (MCMC) method. The simulations 

demonstrate that the Bayesian methodology is a powerful technique for handling the 

uncertainties in the model and making probabilistic predictions based on 

experimental data. The method is generic in nature and can be extended to other 

types of fuels as well.   
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1. Introduction: 
 

Increasing energy demands and depleting fossil fuel reserves have attracted 

researchers to explore clean and renewable energy alternatives. On the other hand, 

the growing world population and rapid urbanization has resulted in an increase of 

wastes [1] and consequent issues with their disposal. The issues related to waste 

disposal has led to negative impacts on human health and the environment. Since 

recent European legislations are trying to enforce a sustainable development 

strategy, there are good reasons why solid wastes should be addressed by thermal 

treatment. Thermochemical conversion technologies have been used for converting 

biomass residues such as wood, rice husk, MSW and dried sewage sludge for 

energy recovery while addressing disposal issues. Gasification has emerged as an 

alternative to traditional combustion applications, offering better energy efficiency 

and lower NOx, SOx and particulate emissions. MSW is a heterogeneous fuel 

containing wide variety of wastes such as wood residues, paper, kitchen garbage, 

plastic and textiles which make it a better fuel for the gasification process [2].  

Recent advances in disposal technology of MSW gasification has been reviewed 

in [3]. It was proposed that gasification is a viable alternative for waste treatment and 

subsequent energy recovery (in the form of transportable gas and liquid fuels) [3,4]. 

An independently verified emissions test indicated that gasification can meet the 

existing emission standards and this thermal conversion process will reduce the 

volume of landfill space significantly.  

Over the years several contemporary researchers have worked on the 

experimental and modelling aspects of fluidized bed gasifiers. In the recent past, 

mathematical modelling and computer simulations have played an important role for 

conceptual design of the energy system. Often early stage research and 
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development rely on limited and incomplete information, which inevitably increased 

the uncertainties in model prediction [5]. The standard way to do uncertainty analysis 

of the model is to do a simple sensitivity analysis. Here each of the parameters is 

individually varied keeping the others fixed and the effect on the output is noted. This 

helps in identifying some of the key parameters which have maximum influence on 

the uncertainty of the output.  However, this approach is mainly suited for a linear 

model. For non-linear models, which are frequently encountered in the design of 

energy systems, the effect of joint variation of two or more uncertain parameters 

might result in a larger deviation of the output. Therefore the simple sensitivity based 

methods have severe short comings and simulations based solely on these 

techniques might be misleading, especially, in the comparative analysis of alternative 

technologies. Therefore it is imperative to have an explicit framework for handling the 

uncertainties and quantifying their effects on model prediction.  

A probabilistic method has been proposed to evaluate the uncertainties involved 

in an advanced integrated coal gasification combined cycle system for risk 

assessment, research and planning, process design and cost estimation [6]. It was 

recommended that the process designer has to consider uncertainties explicitly 

rather than ignoring it. The probabilistic model can significantly improve the research 

planning and management while incorporating the implication of uncertainty. Some 

of the most common representations of uncertainty, in the context of chemical and 

environmental engineering systems, have been reported by [7], which include 

interval mathematics, fuzzy theory and the probabilistic approach. Fuzzy set theory 

has been used to analyse uncertainty associated with process engineering [8,9]. 

However, the shortcomings of fuzzy set theory in uncertainty analysis have been 

reported by [10]. Optimization of energy system under uncertainty has been 
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extensively reviewed in [11]. This work highlighted the inevitability of uncertainty in 

real systems. Furthermore, it also advised that the use of computationally efficient 

deterministic equivalent modelling methods to handle such uncertainties in the 

system. In the experimental work carried out by [12], on a downdraft gasifier, the 

authors calculated that the total uncertainties involved in the measurement of 

process parameters such as temperatures, pressure drops, flow rates of wet gases 

and waste products, air fuel ratio, specific gasification rate and turndown ratio.  

Recently, two approaches namely a purely probabilistic Monte Carlo (PMC) and a 

hybrid probabilistic possibilistic Monte Carlo (HMC) method were proposed to 

estimate dioxin/furan emissions from the waste gasification plant [13]. Those models 

were used for analysing the uncertainty propagation in an environmental impact 

assessment model. This study revealed that a HMC based environmental impact 

assessment model was more effective in propagating the input uncertainties than a 

PMC model. A techno-economic assessment and uncertainty analysis with respect 

to the development of algal bio-refineries were carried out for algae based biodiesel 

production [14]. A high dimensional model representation method was used for the 

global sensitivity analysis. A Monte Carlo (MC) method was employed to perform 

uncertainty analysis. The results of an extensive MC uncertainty analysis provided a 

better understanding of how uncertainties can influence algae conversion processes 

cost of algae derived biodiesel production, as well as how it can affect economic 

viability of the algal biorefineries. A direct Monte Carlo simulation based approach 

has been presented to quantify uncertainty involved in devolatilization kinetics of coal 

gasification processes [15]. The study also identified that gasifier temperature has a 

strong effect on product gas yield and the devolatilization step was a source of high 

uncertainty.  
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Increasing interest in biomass gasification has led to the development of different 

modelling approaches based on thermodynamic equilibrium, kinetic rate, fluid-

dynamics and fast meta-models. In the recent past, fast meta-models including 

artificial neural networks and genetic programming have been presented for process 

design and optimisation of the gasification system in [16]. An artificial neural network 

approach was proposed to predict the SO2 emissions from circulating fluidised bed 

boilers [17]. A multi-gene genetic programming based model was proposed by [18] 

for the prediction of LHV and syngas yield production from MSW in a fluidised bed 

gasifier. However, most of these modelling and experimental studies do not explicitly 

take the uncertainty into account. 

The extensive literature review suggests that it is very important to explore the 

origin of uncertainties and propagate it through the model for assessing a realistic 

case. A Bayesian framework offers such flexibility for incorporating the measurement 

and other model parameter uncertainties and reflecting these in the final prediction. 

Bayesian methods have been employed in syngas combustion chemistry models for 

the quantification and propagating uncertainties into simulations as well as evidence 

based model comparison [19,20]. However, applications of the Bayesian approach 

have been rarely reported for the modelling of fluidized bed gasifiers. To the best of 

our knowledge, the optimal design of fluidzed bed gasifier under uncertainty has not 

been addressed so far. The purpose of this study is to apply Bayesian regression 

model for incorporating uncertainty in data driven models of fluidized bed 

gasification.  

Given that several mathematical models have been evolved for the prediction of 

syngas production from the gasifier, it is important to incorporate sources of 

uncertainty involved in these models. Uncertainties are broadly categories in two 
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types – aleatoric and epistemic. Aleatoric (statistical) uncertainties are due to 

unknown variables that differ in multiple runs of the same experiment. Epistemic 

(systematic) uncertainties arise due to neglecting the effects of all possible 

parameters in the model. Generally uncertainty quantification techniques are geared 

towards reducing epistemic uncertainty. The present methodology, is generic and 

can incorporate both these effects depending on how the magnitude of the noise 

variance is defined. For example, the observations can themselves be noisy due to 

measurement variability in the experiments. In such a case, the model would reflect 

the aleatoric uncertainties. However, since only 9 input parameters are included in 

the model and other extraneous variables are neglected, it is possible to add some 

more noise variance to incorporate this (over and above that due to aleatoric 

uncertainty). The model would then reflect both these types of uncertainties. 

Ultimately, from an engineering perspective, it is the uncertainty and accuracy of the 

prediction that matters most. This is appropriately handled by the present method.     

The rest of the paper is organised as follows. Section 2 provides a brief overview 

of the Bayesian approach and discusses the relative merits and de-merits of the 

same with its frequentist counterpart. It also introduces a Bayesian modelling 

approach, namely Gaussian processes, and demonstrates its applicability for 

regression problems involving uncertainty in the measurements and the predictions. 

Section 3 presents the simulation results and the discussions. The paper ends in 

Section 4 with the conclusions followed by the references. 
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2. Overview of the Bayesian modelling paradigm:  
 

In a Bayesian context, the uncertainty or ‘degree of belief’ is quantified by 

probability. The Bayesian inference method allows for the quantification of prior 

knowledge that can be incorporated in the current model. The observations or 

experimental measurements can then be used to update the priors in a consistent 

fashion (using Bayes theorem) to give the posterior distribution of the beliefs. The 

Bayesian modelling paradigm considers the data to be fixed and the unknown model 

parameters to have a distribution. This is in contrast to the frequentist approach 

where the unknown parameters have a fixed point estimate. This inclusion of 

uncertainty in the model parameters results in more realistic predictions for the 

Bayesian methodology as compared to the frequentist approaches. Other 

advantages of the Bayesian method over the frequentist ones include less problems 

with over-fitting (due to the integration over the model parameters), avoiding 

problems with model identification and inclusion of informative priors.  

Bayesian methods are often criticized due to the subjective nature of the priors 

and also due to the choice of the likelihood function. Previously, researchers mainly 

used conjugate priors for modelling (i.e. using a likelihood-prior pair which results in 

a posterior with the same functional form). This was done to enable analytical 

computation of the posterior density without having to bother about the denominator 

(marginal likelihood) in the Bayes’ rule. This simplification of-course led to inferior 

quality models as they did not reflect the actual distribution of the observed data. 

However, with the advent of powerful algorithms like MCMC, this problem can now 

be averted and hitherto computationally intractable distributions can be used with 

ease.  
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Popular methods for data-driven regression modelling include neural networks 

and genetic programming. From a Bayesian standpoint, the choice of a specific 

neural network model for regression can be thought of as defining a prior probability 

distribution over non-linear functions [21]. The learning process of the neural network 

can be interpreted as the posterior probability distribution over the unknown 

functions [21].  

There are multiple toolboxes in the R language which allow for Gaussian Process 

regression like GPfit [22], GP toolkit [23] and Gaussian Process function data 

analysis package[24,25].There are also similar toolboxes in Matlab like GPML  [24] 

GPstuff [26] etc. The GPstuff toolbox is used for the analysis conducted in this 

paper. The readers can use any of the above toolboxes to extend the present work 

or apply the methodology to their own dataset.  

In this paper, Gaussian processes are used for the non-linear regression problem 

of mapping the inputs parameters of the gasification process to the outputs of 

interest (viz. LHV and yield). In the limit of very large neural networks, the prior 

distribution over non-linear functions as represented by the Bayesian interpretation 

of the neural network is a part of a larger family of probability distributions given by 

Gaussian processes [27].   

Consider the regression problem of estimating a non-linear function      

parameterised by w , for a set of input vectors  1,2, ,N i i N    and the 

corresponding set of target values  1,2, ,N i i N    . The inference of the 

function     can be expressed in the form of the posterior probability distribution 

[21] 
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where, the term   ,N NP     indicates the probability of the target values given  

the function     and the term   P    is the prior distributions of the functions 

which are assumed by the model. Any choice of a parametric model implicitly 

specifies this prior in terms of smoothness and continuity.  For any prediction 

problem involving unknown values of the target variable  , only the prior distribution 

  P    and the assumed noise model is important. The explicit parameterization of 

the function   ;w   is not required [21]. The key concept in modelling with 

Gaussian processes is to place a prior   P    on the function space without 

explicitly parameterizing the function  ;w  . The next sub-sections give a very brief 

introduction to Gaussian processes for regression problems along with a simple one 

dimensional example.  

 

2.1. Gaussian processes and their application for regression 

 

A Gaussian process is a random function  f  , where   is the d  dimensional 

input vector, which has the property that the joint distribution of any finite set of 

realizations    1 , nf f   is a multi-dimensional Gaussian [24]. The mathematical 

definitions of Gaussian processes are given in Appendix A. Gaussian processes 

offer a flexible way to do regression. In contrast to assuming a fixed structure for the 

model (say linear, quadratic), the GP places a prior on the function space without 

explicitly parameterizing the function, as discussed in Section 2. The GP approach is 

not fully non-parametric though. It expresses the nature of the latent function (e.g. 

smoothness, variability) through the mean and covariance functions. This helps in 
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giving importance to the data itself and the final model is adaptable to the given 

dataset. This is in contrast to specifying a fixed model structure at the very onset and 

trying to fit the model parameters assuming that the data can be fitted by such a 

structure (which is not always the case).  

To ensure computational tractability, the observations ( y ) are assumed to be 

conditionally independent given a latent function (  f  ), so that the likelihood (

 p y f ) factorises over the cases. In general, modelling with Gaussian processes 

can be defined using the following generic definition [29] 

  
1

Observation model:        , ~ ,
n

i i

i

y f p y f 


  (2) 

       GP prior:        ~ , ,f x m k      (3) 

    Hyper-prior:            , ~ p p     (4) 

where,  ,   are the parameters for the covariance function and the observation 

model respectively. The next section demonstrates a simple one dimensional 

regression problem with Gaussian processes, to illustrate the concept in detail.  

2.1.1. Sample 1D example 

 

Figure 1 shows a sample case of 1D regression with Gaussian processes. The 

actual measurements/observations are indicated by the red points. The mean of the 

predicted latent function is shown by a blue line and the filled area represents the 

95% confidence interval for the predictions. The details of the model building 

procedure along with the priors, covariance functions etc. are outlined in Appendix B. 
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Figure 1: 1D regression of a function with Gaussian processes considering 
measurement uncertainty 

A Gaussian likelihood function and a squared exponential covariance function are 

used for the demonstration. The actual measurements are considered to have some 

uncertainty associated with them. This is taken care by the likelihood function which 

specifies a distribution for the uncertainty (in terms of the noise variance 2 ). This is 

reflected in the prediction results as well, since the predicted mean of the latent 

functions do not pass through all the measurement points exactly. Also the 

corresponding confidence intervals are much smaller at the measurement points, but 

not exactly zero (as would have been the case with no measurement uncertainty). 

Another thing to note is that the uncertainty is much higher for the values of x near 

the centre (between -2 and 2). This is due to the fact that there are no observations 

in that region and also the property of the squared exponential covariance function 

which makes the correlations decay at points which are further away from the actual 

measurements.  Figure 2 shows the same GP based regression (with the same 

data-points) without any consideration of measurement uncertainty. Clearly, this is 

reflected in the values of the confidence intervals at the measurement points which 

are zero, due to the consideration of precise measurements.    



12 
 

 

Figure 2: 1D regression of a function with Gaussian processes without any 
measurement uncertainty 

The maximum a-posterior (MAP) estimate, as done in the present example, is 

preferred since it is computationally fast and easy to calculate. This is due to the fact 

that the objective function involving the log-marginal likelihood or its approximations 

are differentiable with respect to the parameters and therefore can be maximised 

with a gradient based optimisation algorithm in a few iterations. However, one of the 

fundamental shortcomings of the MAP estimate is that it underestimates the 

uncertainty in the model parameters ,  . This is because, the MAP algorithm 

essentially assign point values at the mode of the posterior distribution of the 

parameters.  

Improvisation over the MAP entails approximating the marginal of the latent 

function by integrating over the parameters ,   in some way. One of the ways is to 

use grid integration which entails a weighted summation over a grid of points in the 

space of  ,  . However, this method quickly becomes computationally intractable 

as the number of parameters increases. The MCMC method can be useful in such a 

case to deal with the scaling issue. One of the issues with MCMC is that there is a 
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significant autocorrelation among the samples (even after rejecting the initial 

samples to account for burn-in and ensuring that the chain has converged to the 

stationary distribution) which implies that it is difficult to make independent draws of 

the samples. A chain thinning procedure can be done which rejects some of the 

samples at regular intervals and alleviates this issue to some extent.  

2.2.  Predictive information criteria for comparing different Bayesian models 
 

There are many ways to assess different Bayesian models, for e.g., posterior 

predictive checks, prior predictive checks, Bayes factors and continuous model 

expansion. [28]. However, since the objective of such non-linear regression models 

is to accurately predict samples outside the training dataset, it is prudent to compare 

them based on their predictive accuracy. K -fold cross-validation is a useful way to 

estimate the out-of-sample prediction errors. In most cases, K is chosen as 5 or 10 if 

the dataset is large. In the extreme case when K is equal to the number of samples 

in the dataset, then the method is known as leave-one-out cross validation (LOO-

CV).      

If the LOO-CV method is employed, then the model’s fit to the new data can be 

quantified using the root mean squared error (RMSE) value. Since, for the Bayesian 

case, the output is predicted in the form of a range of values, the expected value of 

the output is taken as the model prediction, for the calculation of this metric. The 

lower the value of RMSE, the better is the model fit. The RMSE is easy to calculate 

but is not apt for models which do not follow a normal distribution [29]. 

The log of the predictive density (log-likelihood) gives a more generalized 

summary of the predictive fit. This quantity is related to the Kullback-Leibler (KL) 

information measure. For models which are constructed from a large number of 
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samples, the one with the highest value of the mean of the log predictive density 

(MLPD) is the best model with the highest posterior probability. This also implies that 

this best model has the lowest value of KL information [29]. 

However, the LOO-CV is computationally intensive and might have issues with 

sparse data. To circumvent this issue, other measures like Akaike’s Information 

Criterion (AIC), Deviance Information Criterion (DIC) and Watanabe Information 

Criterion (WAIC) can be used. These are essentially some sort of approximation to 

different versions of cross-validation. These criteria also incorporate some penalty 

term for the effective number of model parameters. This is important when 

comparing different types of models and selecting the appropriate one. Models with 

larger number of parameters would inherently be more flexible than one with fewer 

parameters. Therefore, they would be able to fit the data-set more accurately (with 

lower value of RMSE) than the simpler model. However, the added complexity of the 

model due to many parameters makes it less transparent. These information criteria 

can be used to assess whether it is worthwhile to use a model that better fits the 

data, at the cost of higher complexity.   

The AIC [30] uses the maximum likelihood estimate (MLE) of the model 

parameters to compute the log-likelihood and adjusts it with a bias correction factor 

depending on the number of parameters of the model.  This measure is useful for 

linear models with flat priors, but is not adequate for informative priors and 

hierarchical model structures [29]. The DIC [31] is to some extent a Bayesian version 

of AIC which uses the posterior mean instead of the MLE estimate as in AIC. It also 

uses a data based bias correction factor unlike the one based on model parameters 

as in the case of AIC.  The WAIC [32]  is a further improvement over the AIC and the 

DIC and is a more fully Bayesian approach to calculating the out-of-sample expected 
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log predictive density for a whole data set. The advantage of the WAIC over DIC and 

AIC is that it averages over the posterior distribution instead of conditioning on a 

point estimate like the MLE. This is consequently a better measure of predictive 

accuracy in the Bayesian context. There are two slightly different versions of the 

Watanabe Information Criterion, viz. VWAIC and GWAIC . The VWAIC uses the 

functional variance along with the number of training inputs and the Bayesian 

training utility. The GWAIC  is computed using the Bayesian training utility along with 

the Gibbs training utility. A lower value of WAIC implies a better model.  

3. Results and discussions:  
 

The input and validated datasets were obtained from the lab-scale fluidised bed 

gasifier. Experiments were performed in a lab-scale fluidised bed gasifier (560 mm 

high and an internal diameter of 31 mm) operating at an atmospheric pressure. The 

gasifier temperature was maintained externally by an electric heater. Silica sand was 

used as a bed material (particle size 0.250–0.355 mm). The gasifier consists with 

electric heater, screw feeder to supply the feed, filter for collecting elutriated char 

and ash and gas-bag for off-line sampling of produced gas. The details of the gasifier 

can be found elsewhere [33]. Hongkong MSW has been gasified in a small scale 

gasifier to assess the feasibility of installing MSW gasifier in Hong Kong University of 

Science and Technology [34]. Experiments were performed at different temperatures 

(400≤Temperature<800 0C) and equivalence ratios (0.2≤ER≤0.6). 

The total number of data-points used in this study is 67. Out of this, 57 

experimental data points were obtained from [33] and another 10 data points from 

the Hongkong MSW [34]. The difference in the two types of feed stocks and 

gasification procedures are reflected in the 9 input variables. The data-set of the 
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experimental measurements consists of nine input variables viz. % by weight of 

carbon, hydrogen, nitrogen, sulphur, oxygen, moisture content and ash, along with 

equivalence ratio (ER) and temperature of gasifier (in °C).  The definition of ER as 

considered in this paper is the ratio of actual air to fuel ratio to that of the 

stoichiometric air to fuel ratio required for complete combustion. The data-set has 

two output variables viz., LHV (kJ/Nm3) and gas yield (Nm3/kg). Each of the inputs 

and outputs are normalized within a range of [0, 1]. The mean value of the input and 

output variables are  43.81  5.11  0.68  0.17  36.53  4.21  9.55  0.4  581   and  3153  2.86  

respectively. Similarly, their corresponding standard deviations are 

 0.12  0.69  0.59  0.18  6.26  5.95  10.67  0.28  154.14   and   835.80  2.62 . 

The Gaussian Process approach fits a generic model, leveraging on both the 

datasets, so that it can predict LHV and yield for other types of gasification 

processes as well, where these 9 input parameters are known.  

The LOO-CV scheme is used for the present study. The data is partitioned into 

two sets, with the training set having all the data points except one and the validation 

set having only one data point. The model is trained on the training dataset (66 data 

points in this case) and the MSE of the prediction is tested on the remaining data 

point. This is repeated by partitioning the data in all similar possible combinations 

resulting in 67 such repetitions.  The average of these 67 runs is taken as the MSE.    

The LOO-CV is computationally demanding but is better than a hold-out cross 

validation strategy (with some % of data for training and the remaining for validation), 

since it reduces variability due to averaging and gives a better estimate of the 

model’s predictive performance. 



17 
 

For fitting the data-set with the Gaussian processes,  two different cases are 

considered – Case A, where the experimental observations are assumed to be 

perfect with negligible measurement uncertainty, Case B, where the experimental 

observations have an appreciable level of uncertainty associated with them.  

For the simulations, the observation model in Eqn. (2) is considered to be 

Gaussian with a standard deviation of 0.01 and 0.1 in Cases A and B respectively. 

The mean function (  m  ), in Eqn. (3) is considered to be zero and a squared 

exponential covariance function is constructed for  ,k     in  Eqn. (3), with length-

scale and variance parameters of 0.01 and 0.012 respectively for Case A and 0.1 

and 0.12 respectively for Case B.  The observation model in Eqn. (2) is given a log 

uniform hyper-prior (i.e. the parameter ) and the hyper-priors for the length scale 

and the variance parameters ( ) are set to uniform distributions (i.e. non-

informative). Table 1 shows the LOO cross-validation results for the two cases (A 

and B) with the different inference methods. 

Table 1: Fitness measures of the LOO-CV results with different inference methods 
for different cases 

  

Fitness 
Measures 

LHV prediction Yield prediction 

Methods Methods 

MAP MCMC MAP MCMC 

C
as

e 
A

 RMSELOO 0.1389 0.1108 0.018 0.019 

MLPDLOO 0.3325 0.7893 2.8006 2.6893 

WAICG 5.3115 0.9661 3.0584 3.0253 

WAICV 5.1171 0.8723 2.9567 2.9109 

C
as

e 
B

 RMSELOO 0.1026 0.1668 0.018 0.0191 

MLPDLOO 0.9091 0.2544 2.8002 2.6905 

WAICG 1.068 0.9117 3.0599 3.029 

WAICV 0.9837 0.603 2.9576 2.9142 
 

From Table 1, it can be observed that the different fitness measures for the yield 

prediction is almost same for both the MAP and the MCMC based approach. 
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However, for the LHV predictions there is a significant difference between the MAP 

and the MCMC methods. In case A, the MCMC method clearly outperforms the MAP 

method as it shows a lower value of the RMSELOO, and WAIC and higher value of 

MLPDLOO as compared to the MAP method. This implies that the predictive accuracy 

for out-of-sample cases is better with the MCMC method. For Case B, a lower value 

of RMSELOO and a higher value of MLPDLOO for the MAP case than the MCMC case 

indicates that the former method is better. However, as discussed in Section 2.2, 

these alone might not be a good indicator of better models as they do not use a bias 

correction factor and penalize the model complexity. The WAIC values which look at 

both the predictive fits and the model complexity are lower for the MCMC case as 

compared to the MAP method. Therefore the MCMC method turns out to be better 

using this criterion.  

Figure 3 shows the output of the Gaussian process based Bayesian model with 

respect to the actual measurements. The model parameters are obtained by the 

maximum a-posterori (MAP) inference method. It can be observed in Case A, that 

there is almost no uncertainty in the measurements and the corresponding model 

predictions are very accurate (i.e. they lie on the blue line) and precise (the error 

bars on the predictions are very small). For case B, the measurement uncertainty is 

indicated by the blue horizontal bars, for each of the data points marked in red. This 

is fed into the model and the corresponding model output can be read off the 

ordinate. The associated uncertainty in the model predictions is given by the vertical 

orange bars. It can be observed that all of the model predictions in Case B do not fall 

on the blue line, unlike that in Case A. This is expected since there is significant 

uncertainty associated with the measurements themselves.   
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Figure 3 also shows the simulation results for the yield prediction. In Figure 3, it 

can be observed that, unlike the LHV case, the MAP estimate gives lower values of 

uncertainty in the yield prediction for case B (even though there is appreciable 

uncertainty in the measurements). The yield prediction outputs for Case A have a 

slightly higher level of uncertainty than the corresponding MAP predictions for LHV in 

Case A.   

 

 

 

Figure 3: Plot of model predictions versus experimental measurements for LHV and 
yield prediction in both cases (A & B) with MAP estimate of the model parameters  

For the MCMC method, the sample chains of the model parameters are generated 

for 10,000 iterations. The first 500 samples are rejected to take into account the 

effects due to burn-in. This helps to give the algorithm some iterations to reach the 

equilibrium distribution and overcome the issue of starting from a point with a very 

low probability under the equilibrium distribution. The sample chains of length scale 

and magnitude of the GP covariance function (i.e. the model parameters) are shown 

in the upper row in Figure 4. Also shown in Figure 4 is the predictions made by the 

MCMC method vis-à-vis the measured output. It can be observed that this is similar 

to the case with the MAP estimate of LHV for Case B in Figure 3.  
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The lower row of Figure 4 shows the sample chains from the MCMC algorithm, along 

with the corresponding MCMC yield predictions for case B. The sample chains do 

not deviate significantly from their mean values, unlike the case for LHV prediction. 

This can also be observed in the lower row of Figure 5, where the distributions do 

not have fat tails.  Figure 5 is essentially a histogram plot of the sample chains of the 

model parameters as obtained by the MCMC method in Figure 4. It also shows the 

superimposed MAP estimate on the histograms.   

 

Figure 4: Sample chains from the MCMC algorithm for the length-scale and the 
magnitude parameter in the Gaussian process model along with the LHV and yield 
model predictions for Case B  

The MAP estimate works almost as good as the MCMC estimate for the case of yield 

predictions while it does not perform that well for the LHV predictions. The reason for 

this can be deduced from Figure 5. The model parameters for the LHV predictions in 

Figure 5 has a long tailed distribution and therefore approximating the distribution by 

its mode (as done in the MAP case) is not very representative of the overall 

distribution. However, in the case of yield predictions as in the lower row of Figure 5, 

the distributions tend to be closer to Gaussians and therefore the MAP method 

works better.  
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Figure 5: A comparison of the MAP estimate versus the MCMC samples for the 
different LHV and yield model parameters in Case B  

 

Figures 6 and 7 show the conditional predictions for each of the nine individual co-

variates, when all the others are fixed to their mean values. Comparing Figures 6 

and 7, it is clear that the uncertainty in the predictions for LHV is much greater than 

that of the yield. This is also supported by the quantitative error metrics in Table 1.  

It is possible to improve the predictions of the model by understanding how each 

of the covariates behave and identifying  what are the ranges of the important 

covariates for which the experiments should be designed and the data needs to be 

collected. 
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Figure 6: Conditional predictions for LHV for Case A 

 

Figure 7: Conditional predictions for Yield for Case A 

 

As shown in Figure 7, most of the data-points for moisture content or ash content 

are very closely clustered, i.e., they do not uniformly cover the whole range of the 

abscissa. Therefore the uncertainties in the conditional predictions are smaller near 

the data-points, but have much higher variance at points where there is no data 

available. This is not the case for gasifier temperature, for example. It covers the 

whole range of the abscissa uniformly and therefore has similar levels of uncertainty 
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predictions throughout. So from Figure 7, it is clear that to improve the predictions, it 

is important to conduct more experiments with fuels having higher values of moisture 

and ash content. Even though the equivalence ratio does not have a very uniform 

distribution of the data points over the whole range of the abscissa, the uncertainties 

in the conditional predictions are lesser. This implies that in the experimental design, 

the equivalence ratio does not need to be varied much in order to get more confident 

predictions. Therefore, it is more apt to identify the different experimental designs for 

which the gasification experiments can be conducted and the data points can be 

used to significantly improve the predictive power of the models. 

One issue with using conditional predictions is that it keeps all the other covariates 

fixed at their mean values. This might not show the true effect of the covariate. To 

investigate the effect of each parameter on the model, ideally the parameter must be 

excluded and all possible model combinations must be done with the remaining eight 

covariates and then compared with similar models using all the nine covariates. 

However, this would result in a huge number of model combinations which is 

realistically infeasible to evaluate.  

Traditional regression analyses have been additionally done using the same 

dataset. Table 2 showing the comparison of these methods with the Gaussian 

Process approach and with other research works employing ANN. The comparison 

can only be done for the case without uncertainty as none of the previous literatures 

have explicitly considered uncertainty in their data modelling techniques.  

The results from Table 2 indicate that the traditional regression methods have 

higher relative errors of prediction. This might be due to outliers, in which case 
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robust variants of regressions might be more effective. The accuracy is also 

dependent on the structure of the regression model which is assumed a-priori.  

Table 2 Comparison of regression models and corresponding relative errors 

Modelling  
technique 

LHV Relative Error 
(%) 

 

Yield Relative Error 
(%) 

 

ANN [21] 20.5 -20.5 12.9 -12.9 

GP (no 

uncertainty, 

MAP solution) 

0.04 -0.03 17.53 -18.34 

Traditional regression models 

Linear 476.00 -228.12 97.00 1009.60 

Interactions 181.84 -302.98 135.31 -32.45 

Purequadratic 406.94 -233.96 93.81 -1110.40 

Quadratic 184.36 -299.16 107.62 -28.04 

 

where,  

 
exp

100%
exp

predicting value erimental value
relativeerror

erimental value

 
  
 

 (5) 

The mathematical structures for the traditional regression models are shown below: 
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It is imperative to stress that even though the GP gives good predictive accuracy 

for this case, the whole purpose of the Bayesian philosophy is to make predictions 
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incorporating uncertainty. Even though this is important for comparison purposes 

with other contemporary works, judging the utility of the approach just based on 

results presented in Table 2 would miss out the whole purpose of using GP in the 

first place. 

4. Conclusions:  
 
This paper applied a Bayesian methodology for non-linear regression, to predict the 

LHV and the syngas yield production, for the MSW gasification in a fluidized bed 

gasifier. The methodology is demonstrated to incorporate the uncertainties in the 

experimental measurements and reflect it in the probabilistic nature of the 

predictions. A cross-validation approach is used to estimate the model parameters 

which ensures that the model does not over-fit the training data-set and can give 

good predictions on untrained data-sets as well. Comparison among different models 

can also be done using this technique as shown in the simulation results. Having 

confidence intervals instead of point estimates for the model predictions is important, 

especially in cases where the output of the gasifier model is a part of a more 

complex system level model. This method also helps to improve the predictions of 

the model by understanding how each of the covariates behave and identifying  what 

are the ranges of the important covariates for which the experiments should be 

designed and the data needs to be collected. This uncertainty quantification method 

can also be useful for estimating the feasibility of different alternate energy pathways 

and making policy decisions based on the probabilistic outputs. Future work can look 

at application of these data-driven Bayesian methods to other areas in bio-resource 

technologies.   
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Appendix A: Mathematical definition of Gaussian processes 
 

A Gaussian process can be mathematically defined in the form of the mean 

function (  m  ) and the covariance function (  ,k    ) as follows: 

  

    m f       (1) 

 

            ,k f m f m              (2) 

The joint distribution of the finite set of realizations    1 , nf f   can then be 

expressed in terms of the mean and covariance functions as follows:  
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      

 (3) 

Appendix B: Mathematical underpinnings of Gaussian process regression 
 
For building the model in Figure 1, the measurements are considered to satisfy 

  y f     (4) 

where,  f   is the latent function and   is the error term which is distributed with a 

zero mean and standard deviation  , i.e.,  2~ 0,N  .  A zero mean Gaussian 

process prior is placed on  f  . In other words, at the measured points meas , the 

latent variables have the prior 

    ,~ 0,meas n np f N K  (5) 
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where, n  is the number of data points, ,n nK  is the covariance matrix and its 

elements ( ,n n ij
K   ) are expressed in terms of its co-variance function ( k ) and its 

corresponding hyper-parameters   as follows:  

  ,ij i jK k     (6) 

A commonly used covariance function is the stationary squared exponential given by  

  
 

2 2
, ,

12,

D

i d j d d

d

l

se i j sek e
 

   

 
  
 
 


  (7) 

where, se  is the scaling parameter, D  is the total number of dimensions and  dl  is 

the length scale which dictates the decay in correlation along the direction d . 

Therefore the hyper-parameters denoted by   in Eqn. ( consists of 2 2

1, , , ,se Dl l  . 

As both the likelihood and the prior are Gaussian, the marginal likelihood is also 

Gaussian and can be expressed as 

    2

,, 0,meas n np y N K I     (8) 

A prior  p   is placed on the hyper-parameters   and the maximum a-posterior 

(MAP) estimate ̂  is obtained by maximizing the following objective function 

    1

, ,

1 1ˆ arg max log log
2 2

T

y y y yp K y K y


   
   

 
 (9) 

where 2

, ,y y n nK K I  . Instead of the above MAP method of hyper-parameter 

estimations, approximations of the posterior of the parameters can also be obtained 

using computationally suitable methods like MCMC or other integration 

approximations like grid integration. The hyper-parameter values obtained by any of 
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the other methods can then be used with the data to make predictions  f  
at any 

new value    using the following equation 

    1 1

, , , , , ,, , ,n y y n y y np f y N K K y K K K K   

         (10) 
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