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Abstract 

A multi-gene genetic programming technique is proposed as a new method to predict syngas 

yield production and the lower heating value for municipal solid waste gasification in a fluidized 

bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification 

process are in good agreement with the experimental dataset and also generalize well to 

validation (untrained) data. Published experimental datasets are used for model training and 

validation purposes. The results show the effectiveness of the genetic programming technique for 

solving complex nonlinear regression problems. The multi-gene genetic programming are also 

compared with a single-gene genetic programming model to show the relative merits and 

demerits of the technique. This study demonstrates that the genetic programming based data-

driven modelling strategy can be a good candidate for developing models for other types of fuels 

as well.  
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1. Introduction 

The disposal of municipal solid waste is an ever-increasing problem in the European Union (EU) 

and other developing countries (Guerrero et al., 2013; Pires et al., 2011). Due to strict 

environmental standards, current solid waste management practices (landfills, inceneration) are 

under intense examination and innovative technologies are becoming attractive alternative 
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options (Pires et al., 2011). There are several alternatives to dispose municipal solid waste 

including thermal, biochemical and mechanical processes. Incineration has been extensively used 

in EU and other developed countries including Japan and Singapore for disposal and energy 

recovery from the wastes (Narayana, 2009). However, the flue gases from the waste incinerators 

contains high amount of particulate matter, NOx, SOx, dioxins and furans (Cheng and Hu, 2010). 

Apart from the high amount of emissions, incineration systems have high operating cost with 

relatively lower energy efficiency (Arena, 2012). One attractive thermal alternative to 

incineration is the municipal solid waste gasification. The gasification process can generate the 

electricity from the waste with an efficiency of 34% compared to incineration process, which has 

thermal efficiency around 20% (Murphy and McKeogh, 2004). It has been suggested that 

gasification is a viable technology for processing solid wastes, including municipal solid waste, 

while complying with present emission standards (Arena, 2012). This also offers an alternative 

solution to the landfilling option. Compared to other treatment processes, gasification technology 

is an attractive solution for the treatment of municipal solid waste while simultaneously 

minimizing pollution (Malkow, 2004; Xiao et al., 2007). The derived syngas from municipal 

solid waste gasification can be used to generate heat and electricity, which will help to offset the 

use of fossil fuels.  

Gasification is the thermal conversion process of any carbonaceous fuel to a gaseous product 

with useable heating value. It is commonly performed with only a third of the oxygen necessary 

for complete combustion. Gasification includes pyrolysis, partial oxidation and hydrogenation 

whereas the dominant process is partial oxidation (Higman and Van der Burgt, 2011), resulting 

in gaseous products (hydrogen, carbon monoxide, carbon dioxide, water and other gaseous 

hydrocarbons), and a small amount of char, ash and condensable compounds (tars). Air, steam or 

oxygen can be used as a gasifying agent. For solid fuel combustion, gasification reactors can be 

categorised into three distinctive types: fixed bed (updraft and downdraft), fluidized bed and 

entrained flow gasifiers (Higman and Van der Burgt, 2011).  

Biomass gasification is a complex thermochemical process (Puig-Arnavat et al., 2010). In the 

recent past, numerous researchers have tried to simulate a realistic gasification process and 

optimized the process analysis to make it more cost effective. Most of the fluidized bed (FB) 

biomass gasifier models fit reasonably well with the experiments selected for validation using 

various empirical correlations. However, there are very few measurements available for detailed 
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validation specifically for large scale gasifiers (Gómez-Barea and Leckner, 2010). Since 

conducting large scale gasification experiments are quite expensive and time consuming, 

modelling can be a viable alternative which saves both time and money. However, simulation of 

municipal solid waste processes are computationally expensive and fast meta-models are 

required to integrate these models into other systems level models which look at the whole value 

chain to conduct life cycle analysis, or other system level optimisation procedures. In general, 

mathematical models are exploited to investigate the influence of the main process parameters on 

calorific value and yield of the product gas. Irrespective of the type of reactors, several 

modelling techniques such as thermodynamic equilibrium models, kinetic rate models, Aspen 

Plus based models and artificial neural networks have been implemented for gasification systems 

(Puig-Arnavat et al., 2010). The artificial intelligence techniques such as artificial neural 

networks, genetic programming etc. demands less system information compared to equilibrium 

and kinetic based modelling, hence, these techniques can be useful for modelling FB gasifiers. In 

view of the complexity involved with the gasification process, a novel artificial intelligence 

paradigm known as genetic programming has been used to model the gasification system in the 

present study. The main objective of the present study is to show the application of the genetic 

programming approach in predicting syngas yield and heating value. To the best of the author’s 

knowledge this is the first study using the multi-gene genetic programming technique to predict 

the lower heating value and yield of syngas produced from municipal solid waste. 

In the recent past, artificial neural networks techniques have been extensively used by several 

researchers in the fields of pattern recognition, signal processing, function approximation, 

weather prediction and process simulations (Guo et al., 1997). Lately it has also received 

attention as a tool in renewable energy system prediction and modelling (Kalogirou, 2001). A 

back propagation neural network using the Levenberg–Marquardt (LM) algorithm has been 

applied to a hybrid upflow anaerobic sludge blanket reactor to predict the bio-degradation and 

bio-hydrogen production using distillery wastewater (Sridevi et al., 2014). A hybrid neural 

network model was developed for predicting the product yield and gas composition in an 

atmospheric steam blown fluidized bed gasifier. The authors tested four different kinds of 

biomass on a bench scale gasifier for training the hybrid neural network model. This study 

revealed that the feed forward neural network prediction was better than the traditional 

regression models (Guo et al., 2001). A feed forward neural network model was used to predict 
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the lower heating value of municipal solid waste from its chemical composition. It was 

concluded that the neural network model has better precision over the traditional model (Dong et 

al., 2003). A combined non-stoichiometric equilibrium approach with an artificial neural 

networks regression model was developed to predict product composition in an atmospheric air 

gasification fluidized bed reactor (Brown et al., 2006). A complete set of stoichiometric 

equations were formulated to explain the non-equilibrium behaviour for gas, tar, and char 

formation by reaction temperature difference. The artificial neural networks regression related 

temperature differences to fuel composition and operational variables. This first principle 

approach, illustrated with FB data, improves the accuracy of the equilibrium based model and 

reduces the data requirement by preventing neural network to learn from atomic and heat 

balances (Brown et al., 2006). The combination of equilibrium and artificial neural networks 

models were further investigated and improved by the same authors (Brown et al., 2007). An 

attempt was made to develop an artificial neural networks model for predict to gasification 

characteristics of the municipal solid waste (Xiao et al., 2009). Two different artificial neural 

networks based models were introduced to predict gas production rate and heating value of the 

product gas in a steady state fluidized bed coal gasifier (Chavan et al., 2012). Recently, two 

artificial neural networks models were presented (Puig-Arnavat et al., 2013); one for a 

circulating fluidized bed gasifier and another for a bubbling fluidized bed gasifier for estimating 

the product gas composition (CO, CO2, H2 and CH4) and gas yield. The results show good 

agreement with the experimental data. 

Despite prediction capability of artificial intelligence based techniques, only artificial neural 

networks have been used in the modelling of FB gasifiers. Very few applications of genetic 

programming have been reported in recent literature focused on predicting syngas production 

and the lower heating value of syngas. An extensive literature review shows that so far only a 

few studies have been reported where the GP strategy has been employed for the modelling of 

fluidized bed gasifier. To the best of the author’s knowledge this is the first study using the 

multi-gene genetic programming technique to predict the lower heating value and yield of syngas 

produced from municipal solid waste.  

Recently, the multilayer perceptron neural network model and genetic programming have 

been used to predict CO+H2 generation rate, syngas production rate, carbon conversion and 

heating value of the syngas in a pilot-plant scale FB coal gasifier (Patil-Shinde et al., 2014). The 
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output prediction accuracies of the models were indicated by correlation coefficients. The 

correlation coefficients were lying between 0.92 and 0.996. The authors have claimed that the 

prediction accuracy of genetic programming model has an advantage over the multilayer 

perceptron neural network. 

 The remaining part of the paper is organised as follows. Section 2 gives an overview of the 

genetic programming based modelling. Section 3 illustrates the simulation results and a 

comparison with the single gene genetic programming variant. The paper ends in section 4 with 

the conclusions followed by the references.  

 

2. Method  of genetic programming modelling 

Genetic programming is an evolutionary approach which automatically evolves computer 

programs to solve the problem without specifying the structure of the solution in advance (Koza, 

1992; Poli et al., 2008). Genetic programming is a branch of evolutionary algorithms and can be 

used for development of nonlinear mathematical models based on input-output training datasets. 

Genetic programming is based on the Darwinian principle of natural selection and survival of the 

fittest. The main advantage of the genetic programming formalism is that it automatically 

evolves an empirical mathematical model from the input- output datasets. Hence, the genetic 

programming modelling process does not require the detailed information of process phenomena. 

The genetic programming technique has been used for symbolic nonlinear regression problems 

to develop mathematical expressions that provide a good fit between a given set of independent 

variables and the associated dependent variables (Pan et al., 2013).  

Over the years, several models such as thermodymic equilibrium model, kinetics rate model, 

pseudo equilibrium model, Aspen Plus based model and artificial intelligence based models have 

been developed for simulating a gasification system.  Among those models, thermodynamic 

models are the simplest and mostly used for sensitivity analysis of the process parameters. The 

equilibrium models are independent of gasifier design but their prediction accuracy is not good 

in all cases. The kinetic rate models are more accurate and computationally intensive. However, 

their applicability is limited to specific plants (Puig-Arnavat et al., 2010).  Most of the chemical 

process simulation tools like Aspen Plus which build up a model from the first principle’s 

approach have a higher computational burden. A typical Aspen Plus model which includes the 

different stages of gasification like drying, devolatilization, gasification and combustion would 
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take a simulation time of the order of a couple of minutes. However, the problem is compounded 

in a situation which requires multiple function calls to the model (e.g. incorporating an 

optimisation algorithm with the Aspen model in the loop). In such cases if say there are a 

thousand function calls for one optimisation run, then the total computational time would be in 

the order of days. The multi-gene genetic programming method circumvents this problem since it 

is an explicit mathematical expression which can be calculated within milli-seconds on a 

personal computer.   

Another advantage of the multi-gene genetic programming method over the other models is 

that it is a data-driven methodology which relies on experimental data to build models. This 

eliminates errors due to various assumptions (e.g. considering the reactors as point masses and 

neglecting their spatial effects, assuming perfect insulation and neglecting heat losses while 

modelling etc.) which are often employed while building up a differential equation based model. 

The genetic programming starts with a high-level statement of the problem and attempts to 

invent a computer program to solve the problem. The evolved solution variables are represented 

in the form of genes or trees. At the beginning of the algorithm, the genes or trees are initiated 

randomly. To accomplish the best possible fitness function, the genes or trees undergo 

reproduction, crossover and mutation processes. Crossover involves the mutual interchange of 

genetic material between the parents to form new offspring. Mutation, refer to random change 

within the gene i.e. a randomly chosen element is replaced by another element. The nodes of the 

genetic programming tree are called operator nodes and operand nodes. The operator nodes 

represent mathematical operators such as addition, subtraction, division, multiplication, etc. 

while operand nodes define the input variables ( )ix . The symbolic regression of multi-gene 

genetic programming is a weighted linear combination of several gene outputs. The multi-gene 

genetic programming methodology has been used for predicting the toxicity of chemical 

compounds (Searson et al., 2010). It was concluded that the multi-gene genetic programming 

model offers an alternative approach to currently accepted empirical modelling and data analysis 

techniques. The uniqueness of the multi-gene genetic programming based model is that it 

automatically evolves a mathematical expression in a symbolic form which can be analysed 

further to find which variables impact the final prediction and in what fashion. Figure 1 is a tree 
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representation of a multi-gene genetic programming with output ( )y  and input variables

( )1 2 3, ,x x x . The mutation and crossover operations are also shown diagrammatically in Figure 1.  

For the genetic programming simulation, there are nine process parameters that have been 

used as model inputs i.e. carbon ( 1x ,wt%), hydrogen ( 2 ,x wt%), nitrogen ( 3 ,x wt%), sulphur ( 4 ,x

wt%), oxygen ( 5 ,x wt%), moisture content ( 6 ,x wt%), ash ( 7 ,x wt%), equivalence ratio ( 8 ,x ER) 

and the temperature of the gasifier ( 9 ,x T0C). ER is defined as the ratio of actual air to fuel ratio 

versus stoichiometric air to fuel ratio for complete combustion. The input parameters are 

represented as an input vector ɵ [ ]1 2 3 4 5 6 7 8 9, , , , , , , ,ix x x x x x x x x x= and the output variables are 

lower heating value (kJ/Nm3) ( )1y and gas yield (Nm3/kg) ( )2y .

 

 

Two different models are presented to predict the lower heating value and gas yield from the 

biomass composition and process parameters. The experimental data was obtained from 

literature for wood, paper, kitchen garbage, polyethylene plastic and textile (Xiao et al., 2009) 

and for Hongkong municipal solid waste (Choy et al., 2004). To check the accuracies and 

robustness of the model, the experimental dataset is divided for training and testing purposes. 

From the available data 70% (47 data points) is randomly selected to use for training purposes 

and the remaining 30% (20 data points) is used for model validation. The performance of the 

model is compared with experimental data reported by the authors. The input and output datasets 

are normalized. The mean value of the nine input variable ɵ( )ix  and output variables ( )1 2,y y  are 

represented by the vector xµ  and y
µ , respectively and is given in equations (1) and (2). 

 

[ ]43.815 5.11 0.685 0.17 36.53 4.21 9.55 0.4 581xµ =

  

(1) 

 

[ ]3153 2.86yµ =

  

(2)

 Similarly, their corresponding standard deviations are given by xσ  and y
σ  in equations (3) and 

(4). 

 

[ ]0.1202 0.6929 0.5868 0.1838 6.2649 5.9538 10.6773 0.2828 154.1493xσ =

 

(3)

 

 

[ ]835.8002 2.616295yσ =

  

(4) 

2.1 Parameter setting of genetic programming algorithm 



8 

 

For the genetic programming simulations, the population size and the maximum number of 

generations are set as 100 and 1000 respectively. For selecting the parent genes from the pool of 

available solutions, a tournament selection strategy is adopted. The tournament size is set to 3. 

The maximum depth of each tree in the multi-gene representation is set to 5 to allow some 

control over the complexity of the developed expressions. The set of instructions or functions 

used for symbolic regression are ( )
2

{ , , , , sin, cos, . , exp, log}+ − × ÷ . The crossover, mutation and 

direct reproduction probabilities are taken as 0.85, 0.1 and 0.05 respectively. The multi-gene 

genetic programming simulations are compared with a single-gene genetic programming 

algorithm. The details of both genetic programming variants are given in Table 1. For single- 

gene genetic programming the number of trees (T) is set to one.  

 

3. Results and Discussion  

3.1 Multi-gene genetic programming based model for lower heating value calculation 

Figure 2 shows the final population of the genetic programming run for lower heating value, 

presenting the trade-off between the precision of the fit and the complexity of the evolved multi-

gene genetic programming solutions. The optimal evolved models fall on the curve of a non-

dominated solution called the Pareto front. The blue dots represent the set of dominated solutions 

and those in green are the set of non-dominated solutions on the Pareto front. From the Pareto 

front, user can decide whether the incremental gain in performance is worth with associated 

model complexity. Three solutions A, B, and C on the Pareto front are selected based on their 

corresponding accuracies and model complexities. The solutions are indicated by arrows in the 

top right Figure 2. 

Figure 2 also depicts the convergence characteristics of the genetic programming algorithm. It 

is evident that the mean fitness of the curve becomes smoother after 500 generations and that the 

change in objective function is not significant near the end of the genetic programming run. It 

indicates that running the genetic programming for more generations does not result in a more 

favourable outcome.  However, as the best fitness is reported at 971 in this particular case, it 

suggests that the genetic programming algorithm should have to run for at least 1000 

generations. 

Figure 3 show twelve subplots (a1-c2) which indicates the correlation coefficient (R2) and 

root mean squared error (RMSE) on the training and testing datasets. The subplots are 
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representing the number of data points used in this study for predicting the output variables

1 2( )y y− . Solution A in Figure 3 (a1) shows the best fit for the lower heating value calculations 

amongst the other solutions on the Pareto front, but it also involves the highest model complexity 

as compared to the other solutions B and C. The evolved regression equation for Solution A is 

given by (5). 

 

( )( )( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( )9 8

5

2 1/4 2 2

1 4 4 9 5 4

4 8 4 4 8 2 8 6 25 6

2

0.4047 cos 3.937cos cos cos

0.2127 e 0.289 cos 0.1625 cos 2.7 7 1
x x

y x x x x x x

x x x x x x x x x x xe

= − −

+ − + + − + +
 

  

(5) 

The regression equation of Solution B (slightly less complex) as evolved by the genetic 

programming algorithm is given by (6). 

 

( ) ( )( )( ) ( )( )

( )( ) ( ) ( )

9

9

1 5 8 4 5 4 6

2

4 4 4 2 8 4 5 2 6

2

2 2

0.1565 e 4.149cos cos cos 0.2079log sin

0.2297 e cos 0.1259 2.459

x

x

y x x x x x x

x x x x x x x x x

= − − −

+ − + − + +
  

(6)

 

On the other hand, the models of solution B and solution C are less complex but at the same 

time their prediction capability is poorer as compared to solution A. Nevertheless, the prediction 

capability of model B is more than 95% and 57% on the training and testing datasets 

respectively. However, the prediction accuracy of model C is over 80% on the training dataset 

and just over 33% on the validation set suggesting that solution C has been over simplified. This 

clearly indicates that the decrease in model complexity not only deteriorates the model prediction 

capability on the training data but also the model does not fit well to unseen data. 

The regression equation for Solution C (the simplest expression) as evolved by the genetic 

programming algorithm is given by (7). 

 

( ) ( )( ) ( ) ( )( )( )2 22

1 2 8 6 5 2 6 5 40.1862 cos 6.472cos cos cos 4.723y x x x x x x x x= − + − +

  

(7) 

The prediction accuracies and generalised performance of each model is tested between the 

experimental data and model predicted values. The model that performed the best on training and 

testing data is selected on the basis of R2 and RMSE. Figure 4 (a1-c1) show the multi-gene 

genetic programming model predicted versus actual data and their R2 values on the training and 

testing data sets for the three solutions A, B and C respectively. It can be observed that Solution 

A has less than 3% error in prediction of training dataset. Also, the evolved model shows good 

agreement with the testing data. The correlation coefficient and root mean squared error of the 
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multi-gene genetic programming based model for lower heating value prediction are listed in 

Table 2. 

As a summary, solution A has the best fitness over solution B and C but is more complex as 

well. The prediction accuracy of solution A and B for the performance variable ( )1y shows good 

agreement with their experimental counterparts on the training data set. It demonstrates that 

multi-gene genetic programming can be exploited to simulate the complex thermochemical 

processes such as FB gasifiers. 

3.2 Multi-gene genetic programming based model for Syngas yield production 

In this model, the same strategy is used as explained in the previous case.  Based on the 

complexity and fitness three different solutions are selected as shown in Figure 2 (bottom). As 

explained in section 4.1, it can be seen from the Figure 2 (bottom) that the mean fitness of the 

convergence curve is not changing significantly after 600 generations. On the other hand the best 

fitness of the genetic programming algorithm is reported at 991 generations.  

Figure 3 (a2-c2) show the R2 and RMSE on training and testing dataset for solution A, B and 

C respectively. It can be observed that solution A shows an excellent predictive ability in the 

training data; however, the prediction capability is poorer over the unseen data (validation). It 

indicates that model A is suffering from the over-fitting problem of the training data set. On the 

other hand, solution B and C have very good prediction accuracies on both the training and 

validation data sets. The regression equation of Solution A as evolved by the genetic 

programming algorithm for the Syngas yield prediction is given by (8). 

 

( )
( )

( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 8
2 1 3 4 8 4 5 2

4

2
8 7 8 9 8

4 5

2

9 4
3 4 4 7 4 8

3 8

0.8001 0.1986 0.001104 0.799 0.2354sin 0.2354cos

0.2732 log 0.05691 0.2266 0.2266 4.382

0.05691 log 0.001104 0.1986

2 4.375

x x
y x x x x x x

x

x
x x x x x

x x

x x x x x x x x

x x

 +
= + + + + − + + 

 
 

 
+ − − + − 

− 

− − − −
− −

+

( )( )

( )

8

8 9

2

3 4

4.3

0.001104 0.1765 0.1765
0.01526

x

x x

x x

−
+

+ +
−

−

 

(8)
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The regression equation of Solution B as evolved by the genetic programming algorithm for 

gas yield prediction is given by(9). 

 

( )
( )

( ) ( )( )

( )
( ) ( )( ) ( )( )

1 8
2 1 3 8 4 5 2

4

2
8 7 8 9 8

4 5

2

9 4
4 7 4 82

8 7

8 3

0.7994 0.1956 0.7994 0.2352sin 0.2352cos

0.266 log 0.06401 0.2266 0.2266 4.382

0.06401 log 0.1956
0.008318 log

2 4.375

x x
y x x x x x

x

x
x x x x x

x x

x x x x x xx
x x

x x

 +
= + + + − +  

 
 

 
+ + − − + − 

− 

− − − 
− − − 

+  8

0.01241
4.3x

−
+

  

(9)

 

 

The regression equation of Solution C as evolved by the genetic programming algorithm for 

gas yield prediction is given by(10). 

 

( )
( )

( )
( ) ( )( )

1 8
2 1 3 8 4 5 2

4

2 4 8 4 7 4 82
8 7

4 5 8 8

0.7784 0.1748 0.7784 0.229sin 0.229cos

0.02553 0.2003
0.277 log 0.004875

4.3 4.3

x x
y x x x x x

x

x x x x x x xx
x x

x x x x

 +
= + + + − +  

 
 

− − − 
+ + + − − 

− + + 
 

(10)

 

Concisely, the multi-gene genetic programming paradigm evolves multiple models which 

provide more number of choices to the designer. A single model can be selected based on the 

application requirements.  It is evident that solution A (Figure 3 a2) suffers from the over-fitting 

problem. Hence, the selection of the model must be carried out on the basis of the application. In 

cases where the model is used for predicting the data which is already present in the training data 

set, using model A is advisable, as it gives a better prediction on the training datasets. On the 

other hand, if the model is used to predict the syngas yield for untrained datasets then solution B 

or C may be used, since they show a better prediction capability on unseen (test) or untrained 

datasets. Figure 4 (a2-c2) shows the prediction accuracy of the multi-gene genetic programming 

model for syngas yield production. It is noticed that the multi-gene genetic programming based 

model for syngas yield production shows slightly better accuracy to that possessed by the multi-

gene genetic programming model for lower heating value prediction.   

3.3 Multi-gene genetic programming algorithm and comparison with single-gene genetic 

programming Model 
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This section focuses on comparing the results obtained using multi-gene genetic 

programming algorithm with single-gene genetic programming. It is well known that the back 

propagation artificial neural networks techniques often get stuck in local minima without having 

learned the entire dataset (Gori and Tesi, 1992). However, the genetic programming technique 

uses an evolutionary approach in which the model exchanges their information through mutation 

and crossover. This characteristic helps genetic programming to converge at global minima and 

get out of local minima.  

3.3.1 Comparison of multi-gene genetic programming and single-gene genetic 

programming model for lower heating value 

Figure 5 shows the Pareto plot of single-gene genetic programming depicting the trade-off 

between fitness vs. complexity. The convergence characteristic of single-gene genetic 

programming algorithm is shown in Figure 5 (top) for predicting the lower heating value of the 

syngas. The actual vs predicted value of lower heating value and Syngas yield production from 

the best single-gene genetic programming based solution on training and testing data are reported 

in Figure 6 (top). In the case of lower heating value prediction, single-gene genetic programming 

algorithm is fitting over 83% and 34% on training and testing datasets. The best single-gene 

genetic programming based regression equation (as indicated by the red circle in Figure 5 (top)) 

for lower heating value prediction is (11). 

 

2 8

5 6

2

4
1 9 6 7 8

3

0.1925 0.1925 0.1925 0.1925e 0.1925 0.6675

x x

x xx
y x x x x

x

− 
= − + + − − 

 
  

(11) 

The RMSE and R2 of the multi-gene genetic programming and the single-gene genetic 

programming solutions are reported in Table 2. The RMSE and R2 values reported in Table 2 are 

useful while selecting the model. For predicting the lower heating value, the mean fitness and 

model complexity of the single-gene genetic programming algorithm reported in Figure 5 (top) 

are poor compared to the multi-gene genetic programming algorithm in Figure 2 (top) for the 

best case. It is evident that the percentage fit of the single-gene genetic programming based 

solution is not better than multi-gene genetic programming based solutions A and B. However, it 

is worth mentioning that the best single-gene genetic programming algorithm shows better 

prediction capability over solution C. This shows that decreasing the model complexity lessens 

the model prediction capability. 
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Apart from the statistics of the two genetic programming variants, the mean and standard 

deviation of the best solution for 30 independent runs are reported in Table 3. The mean and 

standard deviation of the best solutions clearly show that the multi-gene genetic programming 

algorithm consistently converges to a better fit than the single-gene genetic programming.  

3.3.2 Comparison of multi-gene genetic programming and single-gene genetic 

programming model for Syngas yield production 

As explained in the section 4.3.1, a similar trend is observed in the case of yield prediction as 

well. The Pareto front of the evolved single-gene genetic programming solution showing the 

fitness and accuracy of the model is given in Figure 5 (bottom). Figure 6 (bottom) shows that the 

single-gene genetic programming model is in good agreement with training and validation data. 

The percentage fit of single-gene genetic programming prediction for training and testing data is 

close to 98% and 95% respectively. However, the comparison clearly shows that the multi-gene 

genetic programming evolved solutions are more accurate and can be applied more generally 

over the single-gene genetic programming solutions. Similarly, the mean fitness of the 

convergence curve single-gene genetic programming algorithm in Figure 5 (bottom) is not better 

than the mean fitness reported in Figure 2 (bottom). The single-gene genetic programming based 

regression equation for gas yield prediction is (12), 

 

( ) ( ) ( )1

2 2 8 2 8 4 1 4 80.1638 0.1638 0.1638sin 0.1638log 0.1638e 0.06335
x

y x x x x x x x x= + + + + + + + −

 

  

(12) 

The comparative analysis of three different multi gene genetic programming solutions with 

single-gene genetic programming is reported in Table 2. It can be seen from the Table 2 that 

multi-gene genetic programming based algorithms show better fitness over single-gene genetic 

programming based formalism on both training and testing datasets. It is reported that the R2 

value of single-gene genetic programming model on the testing data is over 94% compared to 

Solution A. This indicates that the Solution A is over-fitted in the training phase. However, 

multi-gene genetic programming based Solutions B and C show improved fitness on the both 

training and validation dataset compared to single-gene genetic programming algorithm. Hence, 

R2 and RMSE of the training and validation (testing) dataset will be helpful while choosing the 

best model for the prediction.   
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 The mean and standard deviation of the best solution of single-gene genetic programming 

and multi-gene genetic programming algorithm for 30 independent runs are reported in Table 3. 

The mean and standard deviation of the best solutions clearly show that the multi-gene genetic 

programming algorithm consistently converges to a better fit than the single-gene genetic 

programming.  

4. Conclusion 

In this study, a multi-gene genetic programming based mathematical model is developed to 

predict the gas yield and lower heating value of the syngas produced from the wastes during FB 

gasification using their physio-chemical characteristics and a few process parameters. The multi-

gene genetic programming models shows better performance (R2 > 97% for lower heating value
 

and 99.8% for Syngas yield production) over the single-gene genetic programming model (R2 ≈ 

83% for lower heating value and 97.9% for Syngas yield production). The accuracies of the 

predicted values using the multi-gene genetic programming approach are in good agreement with 

experimental data. The results of this work are encouraging and will be used to model other 

similar gasification processes. 
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List of figures 

 

Figure 1. Schematic diagram of the tree structure of a multi-gene genetic programming model 
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Figure 2. The Pareto front and convergence of the multi-gene genetic programming solutions for 

lower heating value calculation (top row) and Syngas yield production (bottom row). 

 

Figure 3. Prediction results of the multi-gene genetic programming solutions with R2 and RMSE 

on the training and the testing datasets: lower heating value prediction Solution A (a1), Solution 

B (b1), Solution C (c1) and Syngas yield production Solution A (a2), Solution B (b2), Solution C 

(c2) 
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Figure 4. Prediction results of the multi-gene genetic programming solutions with R2 on the 

training and the testing datasets: lower heating value prediction Solution A (a1), Solution B (b1), 

Solution C (c1) and Syngas yield production Solution A (a2), Solution B (b2), Solution C (c2) 

 

Figure 5. The Pareto front and convergence of the best single-gene genetic programming solution 

for lower heating value calculation (top row) and Syngas yield production (bottom row). 
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Figure 6. Prediction results of the best single-gene genetic programming solution with R2 and 

RMSE on the training and the testing datasets: for the lower heating value (top) and Syngas yield 

production (bottom). 
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List of tables: 

Table 1: Parameter settings for the multi-gene genetic programming and single-gene genetic 

programming variants. 

GP Algorithm parameters Parameter settings 

Population size 100 

Number of generation 1000 

Selection method Plain lexicographic tournament selection 

Tournament size 3 

Termination criteria 1000 generation or fitness value less than 

0.00001 whichever is earlier 

Maximum depth of tree 5 

Maximum number of trees in an individual 

(for MGGP only) 

15 

Mathematical operations ( ){ }2
, , , ,sin,cos, . , exp, log+ − × ÷  

 

Table 2. Statistics of the best solutions of two genetic programming variants for lower heating 

value prediction and Syngas yield production. 

Goodness 

of Fit 

MGGP SGGP 

Solution A Solution B Solution C Best solution 

Training Testing Training Testing Training Testing Training Testing 

GP variants for LHV prediction 

RMSE  0.03191 0.14595 0.04211 0.1655 0.83785 0.20707 0.07605 0.21324 

R2 (%) 97.1826 66.7885 95.0938 57.2921 80.5783 33.1438 83.3435 34.1499 

GP variant for Syngas yield production 

RMSE 0.00652 0.1045 0.01256 0.03285 0.02045 0.04520 0.03585 0.04956 

R2 (%) 99.8805 88.3532 99.5565 98.8488 98.8247 97.8201 97.9018 94.7117 
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Table 3. Statistics of the best solution for 30 independent runs of two genetic programming 

variants for lower heating value prediction and Syngas yield production. 

Algorithm Mean (µ) Standard deviation (σ) Minimum 

GP variants for LHV prediction 

MGGP 0.050605   0.010224 0.031911 

SGGP 0.116638 0.025553 0.076058 

GP variants for Syngas yield production 

MGGP 0.013192 0.00331 0.006521 

SGGP 0.041831 0.015197 0.020957 

 

 

 

 

 

 

 

 


