

Population recovery, seasonal site fidelity and daily activity of pirarucu (Arapaima spp.) in an Amazonian floodplain mosaic

Journal:	Freshwater Biology
Manuscript ID	FWB-P-Aug-18-0401.R4
Manuscript Type:	Standard Paper
Date Submitted by the Author:	22-Feb-2019
Complete List of Authors:	Campos-silva, joao Vitor; Universidade Federal de Alagoas, DIBICT Hawes, Joseph; Anglia Ruskin University - Cambridge Campus, School of Life Sciences; Universidade do Estado do Amazonas, Biotecnologia e Recursos Naturais da Amazônia Peres, Carlos; University of East Anglia, School of Environmental Sciences
Keywords:	Conservation / biodiversity < Applied Issues, Fisheries < Applied Issues, Floodplains < Habitat, Population < Level of Organisation, Dispersal < Process / Approach / Methods, Large scale ecology < Process / Approach / Methods, Fish < Taxonomic Group / Assemblage

2		
3 ⊿	1	Population recovery, seasonal site fidelity and daily activity of pirarucu (Arapaima spp.)
5	2	in an Amazonian floodplain mosaic
6		
/ 8	3	
9	Л	Ioão Vitor Campos-Silva ¹ Ioseph F. Hawes ^{2,3} and Carlos A. Peres ⁴
10 11	-	soud vitor cumpos onva, soboph E. nawes - and curios A. Peres
12	5	
13 14	c	1. Instituto de Ciêncies Dialógicos e de Saúde Universidade Esderal de Alagons, Massió
14 15	0	1. Instituto de Ciencias Biologicas e da Saude, Oniversidade Federal do Alagoas, Macelo,
16	7	57072-900, AL, Brazil
17 18	8	2 Applied Ecology Research Group School of Life Sciences Anglia Ruskin University East
19	0	Pood Combridge CD1 1DT LIV
20 21	9	Road, Cambridge, CBT IPT, UK
22	10	3. Biotecnologia e Recursos Naturais da Amazônia, Universidade do Estado do Amazonas,
23	11	Manaus, 69065-001, AM, Brazil
24 25		
26	12	4. School of Environmental Sciences, University of East Anglia, Norwich Research Park,
27 28	13	Norwich, NR4 7TJ, UK
29		
30 31	14	Corresponding author: Joao Vitor Campos-Silva
32	15	Postal Address: Instituto de Ciências Biológicas e da Saúde, Universidade Federal do
33	16	Alagoas Maceió 57072-900 AL Brazil
34 35	10	
36	17	E-mail: jvpiedade@gmail.com
37 38	10	
39	10	
40 41	19	Running title: Arapaima seasonal migration
42	20	Korrowalda community hazad monogoment lateral migration movement coolegy neighe
43	20	Keywords: community-based management, lateral migration, movement ecology, parcne,
44 45	21	radio telemetry, sustainable fisheries
46	22	
47 48		
49		
50 51		
52		
53		
54 55		
56		
57 59		
59		

23 Summary

Pirarucu (*Arapaima* spp.) are the world's largest scaled freshwater fish, reaching three meters
in length and more than 200 kg in weight. Historical overfishing decimated populations of this
remarkable fish across Amazonian floodplains, but community-based management programs
are now stimulating the recovery of wild populations.

28 2. Pirarucu evolved a unique set of life history traits, some of which have important
29 implications for population management. Individuals exhibit lateral annual migration patterns
30 during the prolonged annual flood pulse, entering flooded forests to reproduce and forage.
31 During this period, although managed fish stocks become less monopolizable by local
32 communities responsible for managing protected lakes, pirarucu can occupy and reproduce in
33 new environments and thus potentially contribute to population recovery.

34 3. Here we show a strong pattern of pirarucu (*Arapaima* cf. *gigas*) population recovery under 35 community-based management (CBM) in an area along the Juruá River, in western Brazilian 36 Amazonia. We show evidence of population recovery even outside formal Protected Areas 37 (PAs), reinforcing the suitability of pirarucu CBM as a powerful tool for both biodiversity 38 conservation and the improvement of local livelihoods. We also show pirarucu movements 39 across a floodplain mosaic — including lakes, the main river channel, tributary streams and 40 flooded forests — during the wet season.

4. Our results support evidence of site fidelity among migrating pirarucu, justifying the high effort invested by local communities in seasonally protecting lakes from poachers and illegal fishers. Finally, restricted daily movement patterns by pirarucu support the suitability of population estimates based on day-time counts because the chance of double counting is substantially reduced during the day when these counts are conducted. We highlight the strong suitability of this species for community-based management, since they can (i) replenish new environments during the wet season, through migration and possibly also reproduction, and (ii) be efficiently harvested during the dry season, delivering social and ecological benefits at large spatial scales.

50 5. Positive examples of fisheries management, which align biodiversity conservation and social 51 development, are important for building optimism, and influencing local and international 52 stakeholders. Our study shows how engaging and empowering local communities to help 53 monitor the movement ecology of target species can be an effective strategy to support the 54 sustainable management of aquatic resources in tropical environments.

55 Introduction

The pirarucu or giant arapaima (Arapaima spp.) is the world's largest scaled freshwater fish, reaching up to three meters in length and more than 200 kg in weight (Nelson, 1994). These fish are an iconic element of Amazonian culture and yet, due to intense exploitation pressure since pre-Columbian times (Prestes-Carneiro et al., 2016), pirarucu populations have suffered dramatic declines, and they have been extirpated in many localities (Castello et al., 2015). To address this, a collaborative community-based management program was developed in several areas across Amazonia over the last 15 years, precluding overexploitation and promoting socially responsible recovery of wild populations (Castello et al., 2009; Campos-Silva & Peres, 2016; Petersen et al., 2016). Pirarucu management has grown to represent one of the most impressive examples of 'win-win' conservation in the Amazon, combining biodiversity conservation with improvements for local welfare (Campos-Silva & Peres, 2016; Campos-Silva et al., 2017).

Pirarucu are highly adapted to Amazonian floodplains, a double-phased aquatic/terrestrial landscape showing marked seasonality, high habitat heterogeneity and an impressive inundation regime, which drives the biological dynamics between alternate dry and wet seasons (Junk, Bayley & Sparks, 1989). The water level oscillation induces stark changes in the landscape, flooding extensive terrestrial habitats, modifying aquatic habitat availability, creating seasonal refuges, connecting populations and influencing the accessibility and impact of commercial fisheries (Junk et al., 1989). As a result, the flood pulse clearly affects fish behaviour and ecology in multiple ways, with subsequent effects on fisheries yields (Fernandes, 1997; Castello, Isaac & Thapa, 2015; Endo, Peres & Haugaasen, 2016). Pirarucu have been used as a model taxon to elucidate fish responses to the prolonged flood pulse phenomenon (Castello, 2008; Araripe et al., 2013). However, our understanding of the role that the annual flood pulse plays in determining fish behaviour remains limited due to practical difficulties in conducting empirical studies in seasonally-flooded forests.

The movement ecology of pirarucu and many other fish populations can be a critical issue in informing their conservation planning. Although considered a 'sedentary' species (Araripe et al., 2013; Núñez-Rodríguez et al., 2015; Watson, Stewart & Kretzer, 2016), pirarucu are known to conduct lateral migrations from lakes to the flooded forests during the wet season, for feeding and reproduction (Castello, 2008; Araripe et al., 2013). These movement patterns can play a critical role in two pathways within community-based management schemes. Firstly, migrant individuals can boost colonization rates of neighbouring lakes through source-sink

dynamics (Erickson et al., 2018), increasing the economic value of Protected Area (PA) mosaics, if neighbouring villages in unprotected landscapes also benefit from lake protection. Replenishing wider stocks and delivering important social outcomes for disenfranchised communities makes this a powerful conservation tool, particularly when applied outside PAs (Campos-Silva & Peres, 2016). Secondly, during the wet season, pirarucu stocks cannot be monopolized because migrant individuals are free to move across vast tracts of flooded forest, crossing PA boundaries and occupying a broad range of environments (Castello, 2008), increasing the vulnerability of stocks facing illegal fisheries (Cavole, Arantes & Castello, 2015). In this context, site fidelity becomes an important consideration for villages conducting lake protection, as such effort to protect stocks would clearly only be worthwhile if wide-ranging fish protected during a dry season returned to the same sites in the subsequent dry season.

At a finer scale, a better understanding of the daily movements of pirarucu would also help strengthen existing management techniques, e.g. evaluating the suitability of population census methodology. Harvesting quotas are based upon population counts conducted in the preceding year at each managed lake. This procedure involves the participation of trained fishers, who detect air-breathing pirarucu at the lake surface through both visual and acoustic signals (Castello, 2004). During systematic sampling of each lake, each fisher silently covers a non-overlapping lake area ranging from 0.2 to 2.0 ha, depending on local characteristics such as macrophyte cover and lake area, to avoid double-counts. Pirarucu detections are recorded within 20-min intervals, which are synchronized across observers. In large lakes, counts are conducted over multiple intervals, often taking the entire day to complete a full census. Daily movement patterns are therefore particularly useful to quantify daily distances traveled by each individual and evaluate the probability of double-counts during visual surveys.

Here, we assess three important issues that will help strengthen current pirarucu management. Using data collected during 11 years of pirarucu population recovery within a system of protected lakes both inside and outside formal PAs, we (i) evaluate the potential of pirarucu population replenishment outside PAs to deliver ecological and social outcomes for disenfranchised communities. Using two-years of telemetry data, we also (ii) present seasonal movement patterns across a landscape mosaic, including lakes, the main river channel, streams and the flooded forest to examine the degree of site fidelity in protected lakes; and (iii) present daily activity patterns within protected lakes to assess the suitably of current methods for conducting population counts.

1 2		
3 4	121	
5 6	122	Methods
7 8 9 10	123	Study area
	124	This study was conducted across a system of protected lakes both inside and outside two
11 12	125	sustainable-use PAs (Reserva de Desonvolvimento Sustentável Uacari and Reserva
13 14	126	Extrativista do Médio Juruá, which represents 919,882 ha of upland forest and floodplains)
15	127	along the Juruá River, a large meandering tributary of the Amazon River in western Brazilian
17	128	Amazonia (Fig. 1). The Juruá River provides a huge amount of inorganic and organic alluvial
18 19	129	deposits for the Amazon lowlands (McClain & Naiman, 2008), with its 'white waters' high in
20 21	130	suspended sediment load, turbidity and nutrients. Due to its high productivity, the Juruá River
21 22 23 24	131	is of high importance as a major fish supplier for the Amazon region (Batista & Petrere Jr.,
	132	2003).
25 26	133	The floodplain of the Juruá River experiences a characteristic Amazonian flood pulse, with a
27 28	134	typical depth up to 7.5 m for up to 230 d per year (Junk et al., 2011). In the Médio Juruá region,
29 30	135	the wet and dry seasons closely approximate periods of high (January - June) and low water
31 22	136	levels (August - November), respectively (Hawes & Peres, 2016). There are two main types
32 33	137	of lakes spread across the dynamic semi-aquatic landscape (Fig. 1): oxbow lakes - formed from
34 35	138	meanders on the main river channel (Stølum, 1996); and ria lakes - former deeply incised river
36 37	139	systems, usually adjacent to upland forest (Bertani et al., 2015). Both lake types often linked
38	140	by paranãs (small channels that connect two lakes). The average lake depth is 11.8 (±6.4) and
39 40	141	14.1 (\pm 6.5) meters during the wet season and 4.2 (\pm 3.4) and 6.7 (\pm 3.5) meters during the dry
41 42	142	season, for oxbow and ria lakes, respectively.
43 44 45	143	Fisheries along the Juruá River
45 46	144	Fisheries are spread across all types of environments in the Juruá River. The lake fisheries are

eries are spread across all types of environments in the Juruá River. The lake fisheries are 47 organized as 'Fishing Accords' among local communities at sustainable-use reserves, 145 48 49 communities outside these reserves, and the Fishermen Cooperative of Carauari (the nearest 146 50 51 town). These agreements are based on three categories of lake resource access: (1) Open-access 147 52 lakes, where commercial fisheries are permitted; (2) Subsistence-use lakes, where only local 148 53 54 communities responsible for guarding that lake can fish for their own subsistence only; and (3) 149 55 56 Protected lakes, where both commercial and subsistence fishermen are excluded. In this latter 150 57 58 category, pirarucu fisheries are however allowed in some lakes only once each year (see full 151 59 description in Campos-Silva & Peres, 2016). 152 60

Population recovery data

We assessed systematic pirarucu count data obtained at 21 protected lakes located inside two contiguous sustainable-use PAs along the Juruá River, that have been sampled at least once each year during the dry season since 2005 (Table S1). This dataset was obtained through a close partnership between government agencies and local associations. To compare the pirarucu population recovery outside formal PAs, we funded the establishment of eight additional protected lakes employing an identical community-based arrangement as that already occurring inside PAs (see Campos-Silva & Peres, 2016). To achieve this, we conducted several meetings with community leaders that were interested in starting a management program, and together selected the lakes to be protected using a participatory approach. Protected lakes exclude both commercial and subsistence fisheries, with a floating wooden house, usually built at the strategic entrance of the lake, to serve as a full-time surveillance station. Annual counts at these eight newly protected lakes commenced in the dry season of 2013 and encompassed a total of four years of protection by the dry season of 2016.

⁶ 167 *Movement ecology of pirarucu: capture and transmitter instalment*

To quantify the movement dynamics of pirarucu we used conventional radio VHF telemetry (Baras & Lagardère, 1995; Lucas & Baras, 2001). The pirarucu management currently classifies individuals as either juveniles (1-1.5 m) or adults (>1.5 m), corresponding to the minimum catch size (Castello, 2004). Together with experienced local fishermen, we successfully tagged 13 juvenile and adult individuals of *Arapaima* cf. gigas (six in 2014, seven in 2015) in four different lakes during the dry season, using 100-m wide gill-nets (4 m high, 60 mm mesh size). We focused our sampling on individuals with a maximum of 1.60 m in length, due to their relative ease of capture and presumed resilience compared to large adults. Captured individuals were carefully restrained inside a large wooden canoe using a soft and water-soaked hammock, with their heads covered by a wet towel to reduce stress. Internal tag transmitters (Lotek; 16 mm diameter x 73 mm length, 25 g weight) were implanted in the intra-peritoneal cavity, just above the cloaca, immediately after capture. We removed a few scales as necessary and used a scalpel to make a small incision to insert the transmitter. The opening was then stitched up with surgical thread, cleaned with alcohol, and a scale was stuck over the top with surgical glue to prevent any possible attention from carnivorous piranhas (Serrasalmus spp.). Due to the absence of a standard protocol for installing transmitters on pirarucu, we performed dozens of tests on the carcasses of fish killed as part of the regulated annual management harvest, in order to develop a quick, efficient method that minimised transmitter implantation

Page 7 of 28

Freshwater Biology

time and potential stress. During the procedure we recorded the standard length and weight of all individuals (Table 1). Immediately after transmitters were fitted, all fish were released in a shallow and quiet place and observed until they showed signs of complete recovery. The total handling time (from capture to release) never exceeded four minutes. In this study only one fish died during the procedures of surgery. This study was authorised by the appropriate Brazilian authorities (ICMBio, permit number 45054-2).

4 192 *Pirarucu telemetry*

Radio tracking started in August 2014 and was performed continuously for two years to map seasonal and daily movement patterns. For seasonal movements, the locations of individual pirarucu were recorded weekly by a trained local resident using a 3-element antenna and a Lotek Biotracker receiver (Lotek Wireless Inc., Newmarket, Ontario, Canada), and recorded with a GPS Garmin unit (Garmin International, Inc., Olathe, KS) with an average accuracy of ± 3 m. During the dry season, sampling consisted of a comprehensive scan of selected areas, including lakes and paranãs. The vastly expanded potential search area during the wet (highwater) season meant that, beyond lakes and paranãs, telemetry expeditions into the flooded forest were necessarily restricted to selected areas.

To understand and quantify the foraging behaviour of pirarucu over the diurnal cycle, we conducted a paired sample on the same individuals, for three continuous hours during both diurnal (07:00h - 10:00h) and nocturnal (19:00h - 22:00h) sessions. Diurnal and nocturnal movements were recorded for eight individuals on 17 days during the 2015 dry season (Table 20, when fish were restricted to lakes and paranãs where they could be easily followed. GPS locations were recorded in each three-hour session at 30-minute intervals.

43 208 Ethnoecology

We conducted 40 semi-structured interviews (Bernard, 1994) with 40 highly experienced pirarucu fishermen from 30 communities along a 500 km section of the Juruá River. During interviews, we objectively asked about their overall perception of the types of habitats used by pirarucu, the level of habitat fidelity, and any differences in movement ecology between adults and juveniles. Each interview lasted up to 30 min and was facilitated by the long-term experience of fishermen in terms of their frequent observational exposure to pirarucu populations at community lakes. All selected interviewees boasted more than 20 years of experience of pirarucu harvesting.

60 217 Data analysis To understand the potential population recovery outside formal PAs, we conducted systematic

pirarucu counts (*sensu* Castello, 2004) in protected lakes both inside and outside PAs. We then estimated the total population growth rates (G_N) and annual population growth rates (Ann. G_N) by calculating changes in pirarucu population sizes between the first to the last year (including both adults and juveniles): $G_N = \left(\frac{yn - y1}{y1}\right)$ and $Ann.G_N = (yn/y1)^{\frac{1}{Nyears}} -1$. Single-case statistical analyses with Kruskal-Wallis nonparametric tests were performed to test for differences in total growth rates between protected lakes inside and outside PAs.

We plotted all recorded fish locations in ArcGIS 10.3 (http://www.esri.com) to produce movement maps of tracked individuals and used paired t-tests to compare the average and total travel distances during day and night periods. All statistical analyses were conducted in R 3.3.2 (R Development Core Team, 2015).

Results

Rates of population recovery within and outside sustainable-use protected areas

Rates of population recovery were highly positive for protected lakes, both inside and outside formal PAs (Fig. 2). A reduction in the population size of pirarucu was observed in only a single protected lake (Table S1). Protected lakes hosted an average of 505 pirarucu individuals (range = 50 - 2,878) inside PAs, compared to 389 individuals (range = 142 - 1,354) outside PAs. Over 11 years of lake protection, pirarucu populations inside PAs experienced annual growth rates ranging from -4.1 to 1129.9% (mean = 76%, n= 21, Ann.GN estimates). After four years of equivalent protection in lakes outside formal PAs, the mean population recovery was 39%, ranging from 16.5 % to 112.8 % (N = 8, Ann.G_N estimates). Considering the first and last years of management at each protected lake, population sizes increased by 425.2% on average inside PAs, ranging from -19.3 % to 2,917.5 % (mean interval = 6.3 ± 2.01 yrs, N =21) and 397.5% outside PAs, ranging from 84.4 % to 1.950 % (4 yrs, N = 8). In exceptional cases, pirarucu stocks increased up to 30- and 20-fold inside and outside PAs, respectively. There were no differences in pirarucu population growth rates between protected lakes inside sustainable-use PAs and those under strict fishing agreements outside reserves (Kruskal-Wallis test, $\chi^2 = 0.03$, 2 df, p = 0.8). All recovery estimates are available in Table S1.

247 Seasonal movements

We conducted 87 days of positional sampling, yielding a total of 522 hours of active search time and 309 GPS positional records (125 dry season; 184 wet season) from target individuals over the two years. Our results confirm that pirarucu depart from lakes where they are resident throughout the dry season, often travelling thereafter many kilometres in the flooded forest, passing through lakes, *paranãs*, streams, and the main river channel (Figure 3). We highlight an interesting case where one individual (Juliana), captured and tagged in a protected lake within a PA, travelled at least 30 km, through two PAs before eventually being killed by a fisherman outside the PA boundary (Figure 4). This movement was made during the period of rising water levels, and therefore the flooded forest was not entirely available for pirarucu movements. We identified a probable route between the recorded positional points, based on features of landscape, and local knowledge (Figure 4).

Although pirarucu potentially dispersed out of protected lakes during the wet season, 83% of our tracked individuals returned in the following year to the same protected lake, in which they had been tagged for the first time. Impressively, half of all individuals captured in the first year returned to the same lakes for two consecutive years. For those animals captured in the second year, six of seven marked individuals returned to the same lake prior to the following dry season (Table 1).

³⁴ 265 *Daily movements*

During the dry season, the movement ecology of pirarucu is restricted to protected lakes, which become discrete units in the floodplain landscape. We found that pirarucu are more active at night than during the day (Figure 5). This result was consistent in terms of both mean (night = 155.9 ± 96.6 m; day = 39.7 ± 98.1 m; t = -4.80, df = 16, p = 0.0001) and maximum travel distances moved in 3 hour periods (night = 509.2 ± 343.4 m; day = 140.01 ± 345.0 m; t = -4.25, df = 16, p = 0.0006).

47 272 Ethnoecological knowledge

Of the 40 interviewed fishermen, 22 reported that juveniles typically migrate in groups during the wet season, leaving the lakes for a broad range of environments. Of those 40 fishermen, 35 reported that pirarucu are sensitive to noise pollution (e.g. from outboard motors) and are only to be found in quiet places. All interviewees reported that adults build their nests in shallow places within flooded forests at the beginning of the rainy season, when floodwater levels first begin to rise. After the fry hatch, adult males become sedentary and are responsible for highly targeted parental care, remaining nearby for approximately three months without any major

displacements. Local fishermen also confirm our finding that pirarucu are more active during
the night, mainly between dusk (18:00h) and midnight (00:00h), when individuals show an
intense activity peak, mainly due to foraging behaviour.

9 283

284 Discussion

Population recovery

Our results reinforce the suitability of pirarucu management to be incorporated into the broad range of governance systems currently applied within Amazon floodplains. The population recovery rates recorded (e.g. Campos-Silva & Peres, 2016) suggest that pirarucu populations show high resilience to past over-exploitation and can rapidly replenish depleted environments. The astonishing population growth in community-protected lakes, both inside and outside formal PAs, can boost the conservation of this historically overexploited species, delivering important socioeconomic outcomes and aligning environmental and social aspirations. Multiple mechanism are likely responsible for the rapid recovery of pirarucu populations, but our findings provide important insights.

31 295 Seasonal migration 32

Our results support evidence for the recurrent use of flooded forest during the lateral migration of pirarucu (Castello, 2008; Araripe et al., 2013; Hermann et al. 2016). Fish movement patterns, at a local scale, can be explained by both abiotic conditions and resource availability (Winemiller & Jepsen, 1998). For pirarucu, lateral migration provides a source of high quality food, since the flooded forest supports both the main fish prey of adults, such as detritivorous and omnivorous fish species (Castello, 2008; Carvalho et al., 2018), and the insects, fish larvae, and other small organisms which constitute the bulk of the fingerling diet (Junk et al., 1989; Queiroz, 2000; Carvalho et al., 2018). Calm sheltered shallows within the flooded forests also provide the preferred nesting sites for adults to spawn.

Entering the flooded forest in search of nesting sites and food resources during the wet season plays a crucial ecological role, in terms of parental care and reproductive success. In addition, the seasonal migration behaviour displayed by pirarucu makes them a model species predisposed for sustainable harvesting. During the dry season, movements are highly restricted, and pirarucu stocks are therefore easily monopolized and guarded as a resource that can be effectively monitored and efficiently exploited according to management rules. In contrast, widely scattered pirarucu populations cannot be monopolized during the wet season, and

individuals freely move beyond the confines of protected lakes, increasing the probability of replenishing stocks in neighbouring unprotected lakes by producing young that subsequently disperse. Migration patterns during the flood pulse also show a spillover effect that extend the benefits of lake protection to people living far from protected lakes. This was exemplified by one individual, which was originally marked within a protected lake, but subsequently travelled more than 30 km, passing through boundaries of two large PAs before being harvested outside the PAs. This movement behaviour during the flood pulse enables the occurrence of pirarucu in unprotected regions, contributing to both (i) the potential establishment of new populations in surrounding aquatic environments and (ii) the food security of marginalised communities without access to a protected lake. This is especially important considering the high subsistence, cultural and commercial value of pirarucu (Veríssimo, 1895; Campos-Silva & Peres, 2016).

Despite the identified potential of population spillover, we show that pirarucu exhibit a substantial degree of supra-annual site fidelity. The high proportion of individuals that return annually to the same protected lake after each flood event is beneficial to justify the high effort of lake protection and consequently sustain long-term community participation and compliance. Local fishers protect their lakes 24-hours a day as the flood waters recede (from approx. May to July) and then throughout the subsequent dry season (until approx. December). Protected lakes effectively function as high-interest savings accounts, ensuring substantial revenues per family household, and improving local welfare (Campos-Silva & Peres, 2016), but the high investment in protection, in terms of cost and effort, would not be viable if the pirarucu population dispersed randomly across the floodplain landscape during each flood pulse and failed to return in the subsequent dry season.

Studies elsewhere in Amazonia to date suggest that pirarucu populations have a high level of genetic admixture at a local scales due to lateral migration, reproductive traits and dispersal patterns of adults and juveniles (Araripe et al., 2013; Watson et al., 2016). If individuals returned randomly to multiple lakes following each flood event, this would contribute to a lower genetic diversity (Araripe et al., 2013). However, our results show that these return movements are not random in a protected and unprotected lake mosaic where individuals make choices about the suitability of different lakes. Reports from experienced local fishermen introduce an interesting untested hypothesis that after the floodwaters recede, pirarucu remain only in protected lakes, using anthropogenic noise levels as a cue to determine lake protection status. This behaviour can be associated with the so-called 'landscape of fear', where animal

movements are shaped by predation risk (Laundré, Hernández & Altendorf, 2001; Laundré *et al.*, 2010). In fact, the ecology of fear has been recognized as fundamental in understanding
predator-prey dynamics and their ecosystem-wide consequences (Estes *et al.*, 2011; Gallagher *et al.*, 2017), but rarely in the context of aquatic vertebrates.

Group migration hypothesis

Based on the testimony of local fishermen recorded through our ethnoecological approach, we suggest that groups of juvenile pirarucu likely conduct gregarious migration events during the floodwater season. While water levels are high they are able to travel through the flooded forest, exploring the wide range of food items available, but as water levels recede, the groups apparently use the soundscape of each lake to select their preferred dry season refuge, as already demonstrated for other fish species (Scholik & Yan, 2001). This behaviour would help explain the large population growth observed in protected lakes year on year, which is unlikely to be maintained by reproduction and internal recruitment alone. In our study area, for instance, the pirarucu population within protected lakes has been recorded to increase 31-fold in a single year. This poorly documented group migration phenomenon could also help explain the marked genetic homogeneity observed at such a small scale (Araripe et al., 2013).

 $\frac{32}{22}$ 361 Daily movements: reinforcing the suitability of counting methodology

The method for conducting pirarucu counts is now well established and shows a strong correlation with mark-recapture population estimates (Castello, 2004). After sunrise, fishers count juveniles and adults breaking the surface within 20-min intervals. Depending on the lake area, these counts can be repeated to cover the entire lake area. Our results provide further documented support for the feasibility of these methods, because pirarucu are relatively sedentary during the first hours after dawn, reducing the chance of those individuals being double counted. The higher movement rates during night-time also justify the frequent local preference to conduct nocturnal fishing trips during the harvest period. This is also supported by widespread reports from fishers that catch rates are higher at night than during the day, despite the consistent use of gill-nets as the only fishing method.

52 372 Implications for community-based management

Our study presents new insights on the movement ecology of pirarucu and the high suitability
of this species for a highly promising community-based management arrangement. The
preliminary data presented here are only a first step towards understanding the nuances of
pirarucu migration. It is important to quantify the movement patterns of large-bodied fish in

Page 13 of 28

Freshwater Biology

Amazonian floodplains, including home range configuration and dispersal capacity, to better inform the sustainable management of subsistence and commercial fisheries. Conventional telemetry estimates can severely underestimate distances travelled by Amazonian fish in floodplain environments due to the practical difficulties of such work in vast areas of flooded forest where accessibility and mobility are reduced for observers during the high-water period. We therefore suggest that GPS or ultrasonic telemetry options may be useful, particularly during the high-water season, to more accurately understand local and landscape-scale fish migration patterns in Amazonian floodplains. Higher-resolution pirarucu movement data during both the high- and low-water seasons would help design an effective spatially explicit demographic model that can optimize the spatial structure of protected and unprotected floodplain lakes.

3 388 Conclusions

The alignment of biodiversity conservation and social welfare aspirations is imperative, particularly in tropical developing countries. Focussing on bright spots can help identify successful strategies and build conservation optimism to influence local and international decision makers and stakeholders (Cvitanovic & Hobday, 2018). We show how empowering local communities through fishing agreements can be a powerful tool to encourage the sustainable management of aquatic resources in tropical floodplains. Our study also highlights the importance of understanding how target species move within the waterscape as daily to seasonal movement patterns may influence the colonization rates of new areas and the motivation of local communities to engage in conservation projects. Studies such as ours, that show conservation gains accompanied by strong social outcomes, provide a positive example for this promising tool to be applied more widely, even outside existing protected areas.

45 400

401 Acknowledgements

The authors declare no conflict of interest. This study was funded by a Darwin Initiative for the Survival of Species grant (DEFRA, UK; Ref. 20-001) awarded to CAP, a CAPES PhD scholarship (Ref. 1144985) and CAPES post-doctoral grant (Ref. 1666302) to JVCS, and a CAPES post-doctoral grant (Ref. 1530532) and internal funding from Anglia Ruskin University to JEH. We thank the Secretaria do Estado do Meio Ambiente e Desenvolvimento Sustentável do Amazonas (SDS - DEMUC) and Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis (IBAMA)/Instituto Chico Mendes de Conservação da

Biodiversidade (ICMBio) for authorizing the research, and F. Manco and two anonymous reviewers for comments on an earlier version of the manuscript. We are grateful to ASPROC, ARBLS, AMARUand all local communities involved in pirarucu management in the Médio Juruá region, and to all interviewees for their participation. We also thank Adriano Araújo, José Araújo Medeiros 'Andrade', Manoel de Araújo Medeiros, Talles Colaço and José Roberto Silva de Souza 'Véio' for their competent assistance in the field; we would like to dedicate this publication to Véio, who sadly passed away this year. This publication is part of the Projeto 'Resource Médio Juruá series on Management in Amazonian Reserves' (www.projetomediojurua.org). References Araripe J., Rêgo P.S. do, Queiroz H., Sampaio I. & Schneider H. (2013) Dispersal capacity and genetic structure of Arapaima gigas on different geographic scales using microsatellite markers. PLoS One 8, e54470. Baras E. & Lagardère J.P. (1995) Fish telemetry in aquaculture: review and perspectives. Aquaculture International 3, 77–102. Batista V.S. & Petrere Júnior M. (2003) Characterization of the commercial fish production landed at Manaus, Amazonas State, Brazil. Acta Amazonica 33, 53-66. Bernard H. (1994) Research Methods in Anthropology: qualitative and quantitative approaches, 4th edn. Altamira Press, London. Bertani T.C., Rossetti D.F., Hayakawa E.H. & Cohen M.C.L. (2015) Understanding Amazonian fluvial rias based on a Late Pleistocene-holocene analog. Earth Surface Processes and Landforms 40, 285–292. Campos-Silva J.V. & Peres C.A. (2016) Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Scientific Reports 6, 34745. Campos-Silva J.V., Peres C.A., Antunes A.P., Valsecchi J. & Pezzuti J. (2017) Community-based population recovery of overexploited Amazonian wildlife. Perspectives in *Ecology and Conservation* **15**, 266–270. Carvalho F., Power M., Forsberg B.R., Castello L., Martins E.G. & Freitas C.E.C. (2018) Trophic ecology of Arapaima sp. in a ria lake-river-floodplain transition zone of the Amazon. Ecology of Freshwater Fish 27, 237–246.

Page 15 of 28

2		
3 4	440	Castello L. (2004) A method to count pirarucu Arapaima gigas: fishers, assessment, and
5 6	441	management. North American Journal of Fisheries Management 24, 379–389.
7	442	Castello L. (2008) Lateral migration of Arapaima gigas in floodplains of the Amazon.
8 9 10	443	Ecology of Freshwater Fish 17, 38–46.
11 12	444	Castello L., Arantes C.C., Mcgrath D.G., Stewart D.J. & Sousa F.S. de (2015) Understanding
13 14	445	fishing-induced extinctions in the Amazon. Aquatic Conservation: Marine and
14 15 16	446	Freshwater Ecosystems 25, 587–598.
17	447	Castello L., Isaac V.J. & Thapa R. (2015) Flood pulse effects on multispecies fishery yields
18 19 20	448	in the Lower Amazon. Royal Society Open Science 2, 150299.
20	449	Castello L., Viana J.P.J., Watkins G., Pinedo-Vasquez M. & Luzadis V.A. (2009) Lessons
22 23	450	from integrating fishers of Arapaima in small-scale fisheries management at the
24 25	451	Mamirauá Reserve, Amazon. Environmental Management 43, 197-209.
26 27	452	Cavole L.M., Arantes C.C. & Castello L. (2015) How illegal are tropical small-scale
28 29	453	fisheries? An estimate for arapaima in the Amazon. Fisheries Research 168, 1–5.
30 31	454	Cvitanovic, C. & Hobday, A. J. (2018) Building optimism at the environmental science-
32	455	policy-practice interface through the study of bright spots. Nature Communications, 9,
33 34 35	456	3466.
36 37	457	Endo W., Peres C.A. & Haugaasen T. (2016) Flood pulse dynamics affects exploitation of
38	458	both aquatic and terrestrial prey by Amazonian floodplain settlements. Biological
39 40	459	<i>Conservation</i> 201 , 129–136.
41	460	Erickson R.A., Diffendorfer J.E., Norris D.R., Bieri J.A., Earl J.E., Federico P.,
43 44	461	Thogmartin, W.E. (2018) Defining and classifying migratory habitats as sources and
45 46	462	sinks: the migratory pathway approach. Journal of Applied Ecology 55, 108–117.
47 48	463	Estes J.A., Terborgh J., Brashares J.S.J., Power M.E., Berger J., Bond W.J., Wardle, D.A.
49 50	464	(2011) Trophic downgrading of planet Earth. Science 333 , 301–306.
51 52	465	Fernandes C.C. (1997) Lateral migration of fishes in Amazon floodplains. Ecology of
53 54	466	Freshwater Fish 6, 36–44.
55 56	467	Gallagher A.J., Creel S., Wilson R.P., & Cooke, S.J. (2017) Energy landscapes and the
57 58	468	landscape of fear. Trends in Ecology & Evolution 32, 88-96.
59 60	469	Hawes J.E. & Peres C.A. (2016) Patterns of plant phenology in Amazonian seasonally

1 2		
2 3 4	470	flooded and unflooded forests. Biotropica 48, 465-475.
5 6	471	Hermann, T.W., Stewart, D.J., Limburg, K.E. & Castello, L. (2016) Unravelling the life
7 8	472	history of Amazonian fishes through otolith microchemistry. Royal Society Open
9 10	473	<i>Science</i> 3 , 160206.
11 12	474	Junk W.J., Bayley P.B. & Sparks R.E. (1989) The flood pulse concept in river-floodplain
13	475	systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110–127.
14 15 16	476	Junk W.J., Piedade M.T.F., Schöngart J., Cohn-Haft M., Adeney J.M. & Wittmann F. (2011)
17	477	A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands
18 19	478	31 , 623–640.
20 21	479	Laundré J.W., Hernández L. & Altendorf K.B. (2001) Wolves, elk, and bison: reestablishing
22 23	480	the "landscape of fear" in Yellowstone National Park, U.S.A. Canadian Journal of
24 25	481	Zoology 79 , 1401–1409.
26 27	482	Laundré J.W., Hernandez L., Ripple W.J., Laundre J.W., Hernandez L. & Ripple W.J. (2010)
28 29	483	The landscape of fear: ecological implications of being afraid. The Open Ecology
30 31	484	<i>Journal</i> 3 , 1–7.
32	485	Lucas M.C. & Baras E. (2001) Migration and spatial behaviour. In: Migration of Freshwater
33 34 35	486	Fishes. (Eds M.C. Lucas & E. Baras), pp. 1–13. Blackwell Science Ltd, Oxford.
36	487	McClain M.E. & Naiman R.J. (2008) Andean influences on the biogeochemistry and ecology
37 38 39	488	of the Amazon river. <i>BioScience</i> 58 , 325–338.
40 41	489	Nelson J.S. (1994) Fishes of the World. John Wiley and Sons, Inc, New York.
42 43	490	Núñez-Rodríguez J., Duponchelle F., Cotrina-Doria M., Renno J.F., Chavez-Veintimilla C.,
44	491	Rebaza C., Baras, E. (2015) Movement patterns and home range of wild and re-
45 46	492	stocked Arapaima gigas (Schinz, 1822) monitored by radio-telemetry in Lake Imiria,
47 48	493	Peru. Journal of Applied Ichthyology 31 , 10–18.
49 50	494	Petersen T.A., Brum S.M., Rossoni F., Silveira G.F.V. & Castello L. (2016) Recovery of
51 52	495	Arapaima sp. populations by community-based management in floodplains of the Purus
53 54	496	River, Amazon. Journal of Fish Biology 89, 241–248.
55 56	497	Prestes-Carneiro G., Béarez P., Bailon S., Py-Daniel A.R. & Neves E.G. (2016) Subsistence
57 58	498	fishery at Hatahara (750–1230 CE), a pre-Columbian central Amazonian village.
59 60	499	Journal of Archaeological Science: Reports 8, 454–462.

2		
3 ⊿	500	Queiroz H. (2000) Natural history and conservation of pirarucu, Arapaima gigas, at the
- 5 6	501	Amazonian Várzea: red giants in muddy waters. PhD thesis, University of St. Andrews.
7	502	R Development Core Team (2015) R: A Language and Environment for Statistical
8 9 10	503	Computing. R Foundation for Statistical Computing, Vienna.
11 12	504	Scholik A.R. & Yan H.Y. (2001) Effects of underwater noise on auditory sensitivity of a
13 14	505	cyprinid fish. <i>Hearing Research</i> 152 , 17–24.
15 16	506	Stølum HH. (1996) River meandering as a self-organization process. Science 271, 1710-
17 18	507	1713.
19 20	508	Veríssimo J. (1895) <i>A Pesca na Amazônia</i> . Livraria Clássica Francisco Alves, Rio de Janeiro.
21 22	509	Watson L.C., Stewart D.J. & Kretzer A.M. (2016) Genetic diversity and population structure
23	510	of the threatened giant Arapaima in southwestern Guyana: implications for their
24 25 26	511	conservation. Copeia 104, 864–872.
27	512	Winemiller K.O. & Jepsen D.B (1998) Effects of seasonality and fish movement on tropical
28 29 20	513	river food webs. Journal of Fish Biology 53, 267–296.
30 31	514	
32 33		
34		
35 36		
30 37		
38		
39 40		
40 41		
42		
43		
44 45		
45 46		
47		
48		
49		
50		
51		
52 53		
55 54		
55		
56		
57		
58		
59		
60		

Figure legends

Figure 1. Study area along the Juruá River, showing examples of relevant aquatic landscape features within the harvesting mosaic. In A, the yellow polygon shows the study reserve (RDS Uacari) with its neighbouring extractive reserve (RESEX Médio Juruá, orange) and an indigenous territory (TI Deni, purple). Small black and white circles indicate protected lakes inside and outside formal PAs, respectively; red circles represent human settlements. In B, yellow and blue circles indicate capture locations of individual pirarucu in 2014 and 2015, respectively; red circles represent human settlements. This map was generated in ArcGIS 10.3 (http://www.esri.com).

Figure 2. Total pirarucu population growth rates (G_N) in protected lakes inside (blue) and outside (red) formal PAs. Growth estimates did not differ between lakes inside and outside PAs (growth over 11 and 4 years, respectively).

Figure 3. Landscape features used by pirarucu during the dry and wet seasons. Coloured circles indicate each tracked pirarucu individual.

Figure 4. Example of a track from one pirarucu individual (Juliana), which was captured in a protected lake (1). This fish travelled about 30 km across the flooded forest, crossing the boundaries of a sustainable use reserve (RDS Uacari) and an indigenous territory (TI Dení), and was opportunistically caught by a fisherman in the main channel of the Juruá River, in front of a community located outside any PA (2). Yellow circles represent confirmed radio-tracked locations; yellow line is a hypothesised approximate most plausible route created using suitable landscape features; black dashed lines represent PA boundaries.

Figure 5. Effect of the diurnal cycle on pirarucu behavior in terms of total distance travelled (m) by individual pirarucu (N=13) during a three-hour observation session; boxplots and connected points show the paired design, comparing day (yellow) and night (purple) activity samples from the same individuals.

541 Tables

Table 1. Identity, measurements (TL = Total Length) and site fidelity each dry season (2014-2016) of the 13 *Arapaima* cf. *gigas* individuals tagged and radio tracked in the Médio Juruá,
Amazonas, Brazil. Symbols (ł and łł) represent one and two years of detection at the same lake
where initially tagged; NA = Not Applicable, ND = Not Detected.

ID	Name	Lake	TL (cm)	Weight (kg)	2014	2015	2016
1	Juliana	Marari Grande	122	18	Tagged	Harvested	NA
2	Macedoni H	Marari Grande	160	35	Tagged	Detected	Detected
3	Micaele H	Macaco	125	22	Tagged	Detected	Detected
4	Vernior	Macaco	136	29	Tagged	ND	ND
5	Roana II	Veado	126	25	Tagged	Detected	Detected
6	Valdir ł	Veado	134	25	Tagged	Detected	Harvested
7	Juliana 2 ł	Marari Grande	151	32	NA	Tagged	Detected
8	Tio Chico ł	Marari	147	28	NA	Tagged	Detected
9	Preto 1	Camponesa	128	22	NA	Tagged	Detected
10	Dona Graca ł	Camponesa	168	41	NA	Tagged	Detected
11	Pracuuba ł	Camponesa	157	39	NA	Tagged	Detected
12	Eder 1	Macaco	134	28	NA	Tagged	Detected
13	Gracia	Macao	159	39	NA	Tagged	ND

Table 2. Eight pirarucu individuals monitored for daily movement activity and sample size
per individual (total = 19 days). Each monitoring sample lasted for three consecutive hours
during both the day (07:00h - 10:00h) and night (19:00h - 22:00h), recording GPS locations
at 30-minute intervals.

ID	Name	Lake	Lat.	Long.	N (days)
10	Dona Graça	Camponesa	- 5.93763	- 67.7535	2
11	Pracuuba	Camponesa			2
9	Preto	Camponesa			2
2	Macedoni	Marari Grande	-5.94104	-67.7664	2
8	Tio Chico	Marari Grande			2
3	Micaele	Macaco	-5.9775	-67.7673	2
5	Roana	Veado	-5.8269	-67.7987	2
4	Valdir	Veado			3
			P.C.I.C.	2	

Figure 1. Study area along the Juruá River, showing examples of relevant aquatic landscape features within the harvesting mosaic. In A, the yellow polygon shows the study reserve (RDS Uacari) with its neighbouring extractive reserve (RESEX Médio Juruá, orange) and an indigenous territory (TI Deni, purple). Small black and white circles indicate protected lakes inside and outside formal PAs, respectively; red circles represent human settlements. In B, yellow and blue circles indicate capture locations of individual pirarucu in 2014 and 2015, respectively; red circles represent human settlements. This map was generated in ArcGIS 10.3 (http://www.esri.com).

272x191mm (150 x 150 DPI)

118x138mm (300 x 300 DPI)

Figure 3. Landscape features used by pirarucu during the dry and wet seasons. Coloured circles indicate each tracked pirarucu individual.

338x190mm (150 x 150 DPI)

Figure 4. Example of a track from one pirarucu individual (Juliana), which was captured in a protected lake (1). This fish travelled about 30 km across the flooded forest, crossing the boundaries of a sustainable use reserve (RDS Uacari) and an indigenous territory (TI Dení), and was opportunistically caught by a fisherman in the main channel of the Juruá River, in front of a community located outside any PA (2). Yellow circles represent confirmed radio-tracked locations; yellow line is a hypothesised approximate most plausible route created using suitable landscape features; black dashed lines represent PA boundaries.

136x196mm (150 x 150 DPI)

Supporting Information

Population recovery, seasonal site fidelity and daily activity of pirarucu (*Arapaima* spp.) in an Amazonian floodplain mosaic

João Vitor Campos-Silva, Joseph E. Hawes and Carlos A. Peres

Contor porte

Table 1. Population census and recovery estimates for pirarucu (*Arapaima* spp.) in 29 protected lakes along the Juruá River, Amazonas, Brazil. Protected Area (PA) status gives the location of each lake inside or outside a formal PA (RDS Uacari/RESEX Médio Juruá); Current population size is from the last census in 2016, including adults and juveniles; Population in Year 1 represents the first population census in each lake; Density was calculated for both 2016 and Year 1 by dividing the respective population size by lake area; Years of protection gives the number of years of protection prior to 2016; Population increase (fold) was calculated by dividing the population in 2016 by the population in Year 1; Total (G_N) and Annual population growth rates (Ann. G_N) were calculated following the equations provided in the Methods.

Lake name	PA	Lake	Pirarucu	Density	Pirarucu	Density in	Years of	Population	Total	Annual
	status	area	population	in 2016	population	Year 1	protection	increase	population	population
		(ha)	in 2016		in Year 1			(fold)	growth rate	growth rate
									(\mathbf{G}_N)	(Ann. G _N)
Anaxiqui	PA	173	624	3.61	198	1.14	7	3.15	2.15	0.18
Aruanã	PA	16	135	8.44	70	4.38	3	1.93	0.93	0.24
Bom Fim	PA	220	436	1.98	310	1.41	7	1.41	0.41	0.05
Boto	PA	92	346	3.76	146	1.59	6	2.37	1.37	0.15
Braga	Outside	25	359	14.36	176	7.04	4	2.04	1.04	0.20
Branco I	PA	15	148	9.87	30	2.00	7	4.93	3.93	0.26
Branco II	Outside	255	142	0.56	77	0.30	4	1.84	0.84	0.17
Camponesa	PA	13	111	8.54	35	2.69	5	3.17	2.17	0.26
Cumprido	Outside	12	146	12.17	64	5.33	4	2.28	1.28	0.23
Dona Maria	PA	101	50	0.50	62	0.61	5	0.81	-0.19	-0.04

Grande I	Outside	88	1354	15.39	473	5.38	4	2.86	1.86	0.30
Grande II	Outside	294	289	0.98	84	0.29	4	3.44	2.44	0.36
Jaraqui	Outside	38.2	205	5.37	10	0.26	4	20.50	19.50	1.13
Macaco	PA	53	427	8.06	86	1.62	7	4.97	3.97	0.26
Manariã	PA	293	2878	9.82	234	0.80	1	12.30	11.30	11.30
Mandioca	PA	200	414	2.07	197	0.99	7	2.10	1.10	0.11
Marari Grande	PA	269	1376	5.12	777	2.89	7	1.77	0.77	0.09
Mutum	Outside	22	272	12.36	85	3.86	4	3.20	2.20	0.34
Onças	PA	11	114	10.36	17	1.55	4	6.71	5.71	0.61
Pirapitinga	Outside	6	342	57.00	94	15.67	4	3.64	2.64	0.38
Preto	PA	54	285	5.28	92	1.70	9	3.10	2.10	0.13
Rato	PA	335	516	1.54	250	0.75	7	2.06	1.06	0.11
Recreio	PA	86	236	2.74	32	0.37	4	7.38	6.38	0.65
Sacado do	PA	412	1026	2.49	34	0.08	7	30.18	29.18	0.63
Jaburi										
Sacado do	PA	282	230	0.82	42	0.15	5	5.48	4.48	0.41
Mari-mari										
Samauma	PA	105	586	5.58	49	0.47	7	11.96	10.96	0.43
Torcate	PA	108	116	1.07	100	0.93	7	1.16	0.16	0.02
Tracajá	PA	14	53	3.79	53	3.79	5	1.00	0.00	0.00
Veado	PA	183	496	2.71	208	1.14	4	2.38	1.38	0.24