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The Southern Ocean is under several threats due to global human activities but also to 

local resource exploitation. The chinstrap penguin (Pygoscelis antarcticus) is a key 

species in the Antarctica marine food web. Along with other predators, it has been 

impacted, albeit mostly indirectly, by harvesting in the past. The recent overlap and 

competition with krill fisheries necessitates constant attention and a better 

understanding of how this species utilises its environment; this can be achieved partly 

by developing a model of their foraging habitat. 

In this context, birds from two different colonies in the South Orkney Islands have been 

tracked with GPS devices and TDR loggers during the breeding season. The resulting 

dataset allowed me to create a three dimensional representation of their foraging trips. 

The different methodological approaches I designed allowed me to assess how the birds 

use their environment across space and time. By studying changes in movements, I was 

able to detect when the birds were foraging. Linking these foraging locations with 

explanatory environmental variables, I was then able to develop a foraging habitat 

model for this species around the South Orkney Islands. 

The model went through a series of performance measurements and validation 

processes. The final resulting map offers a picture of where chinstrap penguins forage 

from their colonies. The range of foraging, the density of birds, the hotspot areas, the 

depths of foraging and how these parameters change with time can be used to support 

policies and management targets. I believe these results can also be useful for further 

studies. 
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Chapter I INTRODUCTION 

I.1 The context of the study: the Southern Ocean 

The Southern Ocean is the largest marine ecosystem in the world. 

Biological productivity, food web interactions and all the organisms 

living in this environment are influenced by the climate, bathymetry and 

prevailing oceanographic currents. Human activities, mainly green-

house gas emissions, historical harvesting of marine mammals and fish 

and modern day fisheries, also have an impact on the dynamic and 

equilibrium of the Southern Ocean ecological network. 

a. Abiotic factors 

Climate 

The climate around the Antarctic continent is mainly driven by strong 

westerly circumpolar winds with maximum intensity around the 

Antarctic Circumpolar Current (ACC). The air temperature over the 

ACC are between 4° and 8°C during the summer. Surface water 

temperature during the same period of the year and along the same 

latitude are between 1° and 2°C. The sea ice cover varies extensively 

between the summer and the winter with a minimal extent in February-

March and maximum extent in September-October (Knox, 2001b). 

Polar Regions are where the highest recent increases in ocean 

temperatures have been recorded; for example, the ACC has warmed 

faster than the global ocean as a whole (Gille, 2002) whilst Polar 

seasonal sea ice has diminished in many locations (Murphy et al., 1995; 

de la Mare, 1997; Stammerjohn et al., 2012). The West Antarctic 

Peninsula is one of the regions with the highest temperature warming 

rates on Earth (Ducklow et al., 2007). Observed wind increase in the 

Southern Ocean, which might be due to climate change, can influence 

temperature through heat transport (Meredith and Hogg, 2006). 

Bathymetry 

The Southern Ocean is divided by three deep-water basins between 

4,000 and 6,000 m deep: the Atlantic-Indian Basin, the Indian-Antarctic 

Basin and the Pacific-Antarctic Basin. In the Atlantic-Indian Basin, the 

Scotia ridge divides the Argentine Basin in the north and the Weddell 

Basin in the south. Shelf breaks in the Southern Ocean are usually deeper 

than in other parts of the world (Knox, 2001b). The definition of the shelf 

break used in this study corresponds to the 500 m bathymetric contour 

line (Wienecke et al., 2000).  

Currents and fronts 

Around the Antarctic continent, water circulation is complex with 

important spatial and temporal variability, especially due to the dynamic 

of sea ice cover.  The other main force driving currents and fronts is the 

westerly wind inducing an eastward relatively slow but consistent 
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current. In the Scotia Sea, the ACC compromises several fronts, from 

north to south: the Sub-Antarctic Front, the Polar Front and the Southern 

ACC Front. Another important water movement in the context of this 

study is the Weddell Gyre, extending east of the Antarctic Peninsula to 

20°W and from the continent to the Scotia ridge. This deep water sea 

flow is strongly influenced by the El Niño Southern Oscillation (Flores 

et al., 2012a). Figure I-1 represents these main water currents across the 

Scotia Sea. 

 

Figure I-1: Representation of the three eastward fronts and the Weddell Gyre across the Scotia 

Sea. 

Water circulation will transfer heat and energy across different regions, 

contributing to the melting of the Polar ice sheets. Convergence of water 

with different temperature will create vertical movement which can 

bring up nutrient (upwelling) into the euphotic zone where 

phytoplankton can bloom. In the south Atlantic, water currents are also 

responsible for transporting krill from the west Antarctic Peninsula or 

the Weddell Sea across the Scotia Sea (Hofmann et al., 1998; Fach, 

Hofmann and Murphy, 2006). Any change in water movement patterns 

will have an impact on local productivity with repercussions for the 

whole food webs (Venables et al., 2012). 

b. Biotic factors 

The biological systems of the Southern Oceans are strongly impacted 

through variability and changes in the physical environment (Mcbride et 

al., 2014). However, other changes in the Polar Regions are also 

happening, including the recovery of marine mammal populations 

following decades of poorly managed harvesting (Laws, 1977; Ballance 

et al., 2006; Mori and Butterworth, 2006; Trathan, Ratcliffe and Masden, 

2012). The “krill surplus” hypothesis (Laws, 1977) relates to the 

exploitation and removal of large quantities of krill predators in the 19th 

and early 20th centuries and the response of the ecosystem to these 
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changes. These large scale drivers of change are complex and the 

consequences are potentially difficult to disentangle from those 

associated with climate change (Trathan and Reid, 2009). 

Antarctic krill 

In the Southern Ocean, Antarctic krill (Euphausia superba) occupies a 

predominant role in marine food webs and is therefore a key prey item 

for numerous higher trophic level species. It is absent from most Sub-

Antarctic regions but is very abundant in the southwest Atlantic sector, 

including across the Scotia Sea and at Sub-Antarctic South Georgia  

(Atkinson et al., 2008). Despite being considered as a planktonic species, 

later larval stages and adults have some degree of mobility and can 

therefore migrate to favourable habitat or escape from predators (Knox, 

2001a). Another important characteristic of this species is its ability to 

aggregate at various spatial and temporal scales (Miller and Hampton, 

1989; Murphy et al., 1998; Knox, 2001a; Zhou and Dorland, 2004). 

There are many factors that influence the spatial distribution of krill: e.g. 

front and gyres (Amos, 1984), sea ice (Knox, 2001a; Flores et al., 

2012b), and shelf edges (Siegel, 2005). Despite the fact that krill is 

capable of active movements, water circulations are important factor in 

driving krill swarms distribution (Nicol, 2006). Melting sea-ice water 

release important algal biomass. These sea-ice communities are essential 

for grazers like krill; therefore the sea-ice edge (or marginal ice zone) is 

an key habitat for krill (Loeb et al., 1997; Ballard et al., 2001; Brierley 

et al., 2002). These bottom-up explanations are complemented by top-

down approaches where krill predators will influence the populations 

and distribution of krill (Zhou and Dorland, 2004; Atkinson et al., 2008). 

As well as variation in the horizontal distribution of krill, there are also 

important vertical distribution patterns. During its life cycle, all the 

different stages (eggs, larvae and adults) will occupy different parts of 

the water column. In addition, adults are known to vertically migrate 

towards the water surface during the night (Zhou and Dorland, 2004; 

Everson, 2008; Cresswell et al., 2009). This basic behaviour of 

balancing near surface foraging where the resources are and protection 

from predators in deeper water is completed by more complex 

movements. Vertical migration by individual krill can also be driven by 

food availability in the water column, individual level of satiety and 

social interactions (Gaten et al., 2008). 

Changes in the population of krill have been recorded and linked with 

changes in climate (Atkinson et al., 2004; Santora et al., 2009; Flores et 

al., 2012a). Krill habitat future projections based on an increase in sea 

temperature and a decrease in sea ice predict potential important failure 

of successful spawning (Piñones and Fedorov, 2016). 

Being such a central species in the Southern Ocean ecosystem, Antarctic 

krill requires particular attention, especially as it is also the target of a 

developing international fishery. Indeed, krill is one of the few under-

developed sources of marine protein (Grant et al., 2012) so will require 

careful management by the responsible management authority, the 
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Commission for the Conservation of Antarctic Marine Living Resources 

(CCAMLR). 

Penguins as krill predators 

There are numerous species of predator that directly or indirectly depend 

on krill. Some are purely marine species and other rely on land for part 

of their life cycles. The effects of the recovery of krill predator 

populations after the ban on commercial whaling are not fully 

understood and partially entangled with climate change (Trathan and 

Reid, 2009). 

Some penguin species are thought to have switched to krill as their main 

dietary item only recently (Emslie and Patterson, 2007). This could be a 

consequence of the krill surplus hypothesis or because of the depletion 

of alternative prey due to fisheries (Ainley et al., 2007). 

In the Scotia Sea, chinstrap penguins (Pygoscelis antarcticus) have been 

used by CCAMLR as an ecosystem monitoring species for management. 

Understanding how chinstrap populations respond to change is therefore 

critical for CCAMLR’s management approach. Chinstrap populations 

have shown considerable fluctuation during the past century 

(Trivelpiece et al., 2011; Lynch et al., 2012). It has been postulated that 

changes in numbers, including recent decreasing trends, can be 

explained by variations in Antarctic krill abundance and population 

dynamics (Volkman, Presler and Trivelpiece, 1980; Lishman and 

Croxall, 1983; Forcada et al., 2006; Hinke et al., 2007; Flores et al., 

2012a), with possible links to climate change and direct habitat 

modifications (Ducklow et al., 2007). Large scale climatic events like El 

Niño–Southern Oscillation (ENSO) and the Southern Annual Mode 

(SAM) will impact climatic and environmental conditions like air and 

sea temperatures, katabatic winds and sea-ice extend. These fluctuations 

will cascade on krill distribution and abundance and with therefore have 

significant effects on penguin foraging behaviour and breeding success 

(Forcada and Trathan, 2009; Bost et al., 2015). 

The combination of these population responses, the position of chinstrap 

penguins in the southern ocean food chain and therefore their potential 

sensibility to increasing krill fisheries make Pygoscelis species good 

candidates as key indicator species (Zamon et al., 1996; Alonzo, Switzer 

and Mangel, 2003a). However, to be reliable indicators, a much better 

understanding about their ecology is still needed, especially about how 

they utilize available food sources through both time and space. 

c. Krill fisheries 

Krill fisheries started in the early 1960s and then gradually increased to 

a peak in 1982 with 528,201 tonnes. Harvesting then declined in the 

early 1990s due to a combination of economic and political factors and 

stayed stable around 100,000 tonnes (Nicol and Endo, 1997). In recent 

years, they have again increased to between 200,000 and 300,000 tonnes 

per annum. 
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The geographical distribution of the catches shifted focus from the 

Indian to Atlantic oceans in the early 1990s. From being circumpolar, 

the fisheries are now concentrated around the Antarctic Peninsula, the 

South Orkney Islands and South Georgia. In addition, the fishing vessels 

moved from pelagic to coastal areas, moving closer to the breeding 

colonies (Murphy et al., 1997; Hill et al., 2006; Nicol, Foster and 

Kawaguchi, 2012; Silk et al., 2016). 

In the context of an observed and predicted krill decline due to reduction 

in sea-ice (Atkinson et al., 2004) and ocean acidification (Kawaguchi et 

al., 2013), the increasing spatial overlap between fisheries and natural 

predators can have serious negative ecosystem consequences. The 

amount of krill caught, the length of the fishing season and the capacity 

for harvest can have a huge impact on penguin’s reproductive success 

and parental survival (Mangel and Switzer, 1998; Reid et al., 2004). 

CCAMLR’s precautionary approach with small-scale management 

units, local allocated catch limits and trigger levels (Hewitt et al., 2004)  

is therefore welcome especially as the use of new fishing techniques, 

despite being labelled as “eco-friendly”, is too recent to show any 

evidence on potential ecosystem effects (Nicol, Foster and Kawaguchi, 

2012) 

I.2 Introduction to the research 

a. The study area 

This study focuses on the South Orkney Islands located in the southern 

Scotia Sea. The archipelago lies on the north edge of the South Orkney 

Microcontinent (Busetti, Zanolla and Marchetti, 2001), at the 

convergence between the ACC in the north and the Weddell Sea gyre in 

the south (see Figure I-1). This geographical situation, coupled with 

bathymetric features offering conditions for high productivity (vertical 

upwelling currents along the continental slope, marine canyons retaining 

nutrients and prey) and the availability of nesting sites make this 

archipelago an ideal location for breeding populations of Pygoscelis 

penguins, especially chinstrap penguins, and therefore for developing a 

foraging habitat model.  

Signy Island benefits from a long term penguin populations monitoring 

programme (e.g. Trathan, Croxall and Murphy, 1996; Dunn et al., 2016); 

also birds have been tracked from this location previously (Lynnes et al., 

2002). The area to the northwest of Signy is also an area of extensive 

krill harvesting (CCAMLR, 2016), allowing me to provide potential 

evidences to support fisheries management propositions. 

The penguin tracking data used in this study have been collected from 

two colonies located at the Gourlay Peninsula (Signy Island) and Cape 

Geddes (Laurie Island), see Figure I-2. The first colony is facing south 

while the second one faces in a northward direction. The differences 

between these two sites will be discussed in details in Chapter III, but 

the contrasting conditions at both colonies enable me to build a model 
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that can be representative of the entire environment for all the penguin 

colonies around the archipelago. 

 

Figure I-2: Location of the South Orkney Islands and the two colonies where tracking data were 

collected for this study. (A) in relation to the Scotia Sea (B). 

b. The focal species 

Distribution 

Chinstrap penguins have a circumpolar distribution with colonies in the 

Antarctic Peninsula, South Shetland Islands, South Orkney Islands, 

South Sandwich Islands, South Georgia, Bouvet Island and Balleny 

Islands. This species occupies the middle of the combined geographic 

range of species from the same genera: Adélie penguin (P. adeliae) 

reaches higher latitudes and Gentoo penguin (P. papua) reaches lower 

latitudes. Although chinstrap penguins are classified as of least concern 

(LC, BirdLife International 2016), some subpopulations are in decline 

(Forcada et al., 2006; Barbosa et al., 2012). The species is considered as 

an ecosystem indicator species whose population can indicate broad 

scale issues in the functioning of marine ecosystems (Lynnes, Reid and 

Croxall, 2004; Boersma et al., 2009). As important consumers in the 

marine ecosystem, they rely on relatively stable, oceanographic, climatic 

and sea ice conditions that will determine their prey availability. These 

environmental variables will also influence the suitability of their 

breeding and moulting habitats, which are easy to monitor (Forcada and 

Trathan, 2009). As such, it is included in CCAMLR’s Ecosystem 

Monitoring Programme (CEMP, Agnew 1997). 

In the South Orkney Islands, chinstrap penguins represent the dominant 

avian species. They often share the same breeding sites with Adélies, but 

both species show a different breeding chronology, Adélies starting their 

breeding cycle earlier (Trivelpiece, Trivelpiece and Volkman, 1987). 

Within the archipelago, long-term population trends show a decline in 

chinstrap population at Signy (Dunn et al., 2016) and Laurie Islands 

(Coria et al., 2011). 
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Breeding cycle 

Chinstrap penguins arrive at the colony after Adélie penguins early 

November (Signy data). The nest is a circular platform of small stones. 

Two weeks after arrival, two eggs are laid (91% of the time in Signy). 

The first incubation shift is carried by the female. The incubation period 

lasts approximatively 36 days. The guard period lasts 3 to 4 weeks when 

both parent will alternately attend the chick(s). The crèche period will 

then last until fledging when the chicks are approximately 50 days old. 

The adult will moult in the colony or elsewhere late February-early 

March. The mould lasts 13 days and the adults will depart the colony in 

March-April. 

c. Tracking and bio-logging 

Due to the size of the early prototypes, most bio-logging (or 

biotelemetry) devices were first used on marine mammals and turtles 

(Kooyman, 2004). The non-exhaustive review presented here focuses on 

the use of bio-logging on penguins. 

Early studies concerning penguin foraging had to rely on measuring trip 

durations from timing departures and arrivals at the colony. At-sea 

observations allowed researchers to estimate bird swimming speeds. The 

combination of both speed and trip duration gave estimates of foraging 

trip ranges (Williams and Siegfried, 1980). The development of speed 

measuring devices allowed improvement of these estimates (Wilson, 

Nagy and Obst, 1989; Wilson et al., 1996). 

The use of time-depth recorders (TDR) gave information about how 

penguins used the vertical component of their habitat over time enabling 

researchers to draw dive profiles (Lishman and Croxall, 1983; Naito, 

Asaga and Ohyama, 1990; Croll, Osmek and Bengtson, 1991; Williams 

et al., 1992).  

Apart from at-sea observations (Trathan et al., 1998), the use of radio-

tracking devices allowed researchers to measure an individual bird’s 

habitat spatial use (Trivelpiece et al., 1986; Croll, Osmek and Bengtson, 

1991). The spatial and temporal resolution of these studies were greatly 

improved by the deployment of platforms terminal transmitters (PTT, 

Wilson et al. 1997). In the 2000s, the attachment of Global Positioning 

Systems (GPS) based devices started to become more common (Ryan et 

al., 2004). The miniaturization of GPS receivers allowed to accurately 

measure the foraging range for a number of marine species, providing 

crucial information about how these species were using their habitat 

(Lynnes et al., 2002). Spatial resolution then increased, especially in the 

context of diving animals that spend little amount of time at the surface, 

with the development of GPS Fastloc techniques (Dujon, Lindstrom and 

Hays, 2014).  

The joint deployment of GPS based devices and TDR loggers allowed 

researchers to combine horizontal and vertical dimensions providing a 

three-dimensional model of movement (Kuhn et al., 2010; Bestley et al., 

2014). Parallel deployment of additional devices (accelerometer, 
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ingestion detector) allowed researchers to detect fine-scale underwater 

changes of direction and record prey ingestion events (Naito, 2004). The 

increased level of detail of the recorded information allowed researcher 

to gather information across the complete range of ecological scales, 

from punctual feeding events to macro-scale movements (Rutz and 

Hays, 2009). Some of the hypotheses that have been tested thank to the 

advance of bio-logging include hunting tactics, aerobic diving limits, 

central place foraging and oceanographic associations (Kooyman, 

2004). See Wilmers et al. (2015) for a review on how ecologists used 

bio-logging devices. 

d. Foraging theories and concepts 

The data collection devices described in the previous section allowed 

ecologists to gain fine scale information about an animal’s movements 

and physiology. One of the aims of the movement ecology discipline is 

to relate datasets collected by tracking device to bird’s activities, 

especially foraging behaviours. 

Early foraging models suggested that animal have full knowledge about 

the distribution of their prey and therefore use decision rules to optimize 

their foraging (Macarthur and Pianka, 1966; Schoener, 1971). These 

theoretical models were unsuitable for marine air breathing predators 

due to the patchiness characteristics of their prey, the difficulty to predict 

their location and the fact that they are often out of the predator’s 

perceptual range (Ford et al., 2014). Therefore, imperfect information 

and random and unpredictable resource locations were included in 

foraging models (Chimienti et al., 2014). Foraging energetics also had 

to be taken into account, especially when prey are difficult to locate 

(Chappell et al., 1993) 

There are several existing foraging theoretical models such as “optimal 

foraging theory” (Perry and Pianka, 1997) and even an “optimal diving 

theory” (Vacquié-Garcia et al., 2015). These provide conceptual 

frameworks and an array of hypotheses that can be tested through 

experimentation and data collection. Some of these hypotheses relate to 

the time spent in prey patches in relation to the quality of the patches 

(Watanabe, Ito and Takahashi, 2014) or the optimal diving depth (Mori, 

1998). The inclusion of foraging energetics (Chappell et al., 1993), body 

condition and sex (Mori, 1998) were integrated into those models. The 

methods developed allowed researchers to apply these theoretical 

concepts to data collected during tracking studies (Masello et al., 2010; 

Gallon et al., 2013; Watanabe, Ito and Takahashi, 2014). 

Penguins are considered as central-place foragers as their foraging range 

is constrained by the amount of time (and therefore distance) they can 

spend away from the nest. But, as air breathing divers, they are also 

restricted in the vertical dimension of the foraging. The surface acts as a 

central point to which they have to come return within a limited amount 

of time (Doniol-Valcroze et al., 2011). They can therefore be considered 

as central place foragers in both the horizontal and vertical dimensions 

(Ford et al., 2014). 
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I.3 Aims, challenges and approaches 

a. Aims of the study 

The over-arching aim of this study is to develop a foraging habitat model 

for chinstrap penguins in the South Orkney Islands that can represent 

how the entire population uses their available habitat and how it changes 

over time. The model will be based on the data collected from tracking 

devices and TDR loggers that will be combined with a range of 

environmental explanatory variables from various sources. Due to 

operational reasons, my data were limited to two phases of breeding, 

incubation and brood, and to two sites, Signy and Laurie Island. 

The secondary questions related to this main objective are: 

1. What changes occur during the breeding season? Is a single habitat 

foraging model sufficient for the whole breeding season? 

2. Is it possible to identify the foraging parts of the trip and reliably 

distinguish these from resting and commuting periods? 

3. Where are foraging hotspots located that are used by the tracked 

birds? 

4. Which are the main explanatory variables driving the foraging 

habitat model? 

5. Is it possible to evaluate and validate the foraging habitat model and 

transfer it to other colony sites in the South Orkney Islands? 

6. What are the characteristics of the vertical use of the habitat? 

7. What are the differences between two colony locations? 

8. What are the temporal and spatial scales relevant to characterise 

chinstrap penguin foraging? 

Questions 4 and 5 will be specifically covered by Chapter VII; 

contributions to the other questions will come from several chapters. 

b. Challenges and approaches 

Collecting ecologically relevant information from tracking devices and 

TDR loggers tends to generate a large amount of data, especially if the 

frequency of recording is high. Manipulating, managing and analysing 

these large datasets can be challenging. The amount of noise in the data 

can be significant. The data generally cover several dimensions (through 

space and time), often with autocorrelation and colinearity. The 

biological processes behind these datasets are complex, confounded and 

patterns are generally difficult to extract. The data used for the habitat 

modelling part have different spatial and temporal scales. Moreover, 

there are no standard agreed methods to process multidimensional 

tracking datasets (Gurarie, Andrews and Laidre, 2009; Womble et al., 

2013). 

For this study, I will develop my own methodology based on flexible 

tools and algorithms necessitating minimal parameterisation. The choice 
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of technique will not be tied to rigid mathematical models but will still 

enable me to take into account the complexity of the data. The results 

will be validated using different techniques to ensure that the signals and 

trends detected are confirmed where possible. I believe this approach 

will produce interesting results with some novel analytical methods. 

I.4 Overview of the study 

a. Changes at the scales of the trips and the breeding season (Chapter 

IV) 

This first analytical chapter will consider several metrics at the scale of 

the foraging trips. I will consider the changes in multidimensional 

metrics (time and space in three dimensions) over the course of the 

breeding season to detect any major differences between the incubation 

and brood stages. The influence of additional factors, such as the colony 

site, the sex of birds or individual bird characteristics will also be 

considered. 

The results suggest that foraging strategies significantly changed after 

hatching. It will therefore be necessary to develop two stage-specific 

habitat use models, one for incubation and one for brood. There is also 

some site-specific effects on foraging trip characteristics that can be 

explained by differences in the abiotic environment. I will therefore 

carefully assess how the habitat models developed in Chapter VII 

incorporate site-specific characteristics. 

b. Detection of the behaviour modes at the scale of the foraging trips 

(Chapter V) 

In this chapter, the fine scale details of bird activity, including surface 

and dive metrics, will be considered. I will use a segmentation process 

to divide foraging trips into homogeneous sections. Several behavioural 

modes will then be inferred to these segments using two different 

methods. I will then compare the different time allocations for each 

behaviour by phenological stage, colony and sex. 

The results confirm the changes occurring through time and differences 

between sites observed previously at the scale of the foraging trips. 

Moreover, this important step allows me to differentiate between 

foraging and non-foraging parts of the trip and therefore define the input 

data for the habitat model (Chapter VII). 

c. Spatial distribution of the foraging at different scales (Chapter VI) 

The previously determined foraging locations will be mapped for each 

period of breeding, incubation and brood, and for each study site. The 

spatial points will then be aggregated at different scales corresponding 

to the resolutions of the different environmental variables used in the 

foraging model to test the spatial scale effect. I will also perform some 

point density calculations to identify foraging hot spots for each colony 

and breeding stage. 
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Comparing the spatial aggregation of different point inputs (from raw 

GPS data to inferred foraging behaviour) will enable me to assess 

whether different data sources with different level of details (historical 

datasets for example) can be used and compared. The identification of 

foraging hotpots and their location in relation to both colony sites will 

confirm and support results from previous chapters. 

d. Foraging habitat modelling (Chapter VII) 

Finally, foraging habitat models will be developed using the different 

levels of data defined earlier in relation to a series of environmental 

variables aggregated at different temporal resolutions. I will create one 

model for each breeding stage (incubation and brood). The models will 

be evaluated and validated using both information about the prey field 

and a site cross-validation process. The contribution of each 

environmental variable will be discussed and the possibility of 

extrapolate the resulting model to the whole archipelago will be 

reviewed. 

My analyses show that the best foraging habitat model resulted from the 

use of a random forest algorithm with dynamic environmental variables 

aggregated at a weekly temporal scale. The evaluation of its performance 

and the validation process confirm the robustness of the model. The high 

quality habitat locations indicated by the model are realistic.  
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Chapter II METHODOLOGY FOR THE DATA COLLECTION, 

FILTERING AND PROCESSING 

This chapter describes the collection of the primary data including the 

bird sampling, the devices set up and deployment, the raw data pre-

processing and filtering and the calculation of the different derived 

metrics. All the collected and derived variables are summarised in 

section II.4b, page II-35. 

II.1 Data collection 

The methods described in this chapter focus on the 2013-14 dataset from 

Gourlay Point (Signy) which correspond to the data collected by the 

author. The procedures are considered to be the same for the other 

datasets (other seasons and/or locations); however, inevitably there were 

small differences, as the methods were implemented by different field 

operatives. After discussion with other field operatives, these differences 

were judged not to be of ecological significance; for example, 

differences included the period and duration of work, and the amount of 

tape, glue and handling time for instrumenting each bird. 

a. Colonies description and calendar 

Gourlay Point 

On the south-east tip of Signy Island, the Gourlay Peninsula 

(approximate position Lat. 60° 44′ S, Long. 45° 36′ W) is composed of 

3 finger-like capes with cliffs and smoother slopes over a predominantly 

rocky shore. Numerous studies have been carried out in the area, to the 

extent that there are two small huts that are used as shelter and as 

working space.  

The Peninsula is colonised by chinstrap and Adélie penguins in 

numerous small colonies or sub-colonies. Some of the locations are 

occupied by a mix of both species while others are occupied by just a 

single species. On the whole Signy island, chinstrap and Adélie 

population sizes were estimated at 19,530 and 18,333 pairs respectively 

(Dunn et al., 2016). The colonies where the sampling was undertaken 

were relatively small sub-colonies occupied by both species. The sub-

colonies mainly faced east lying along the top of a slope above a rocky 

bay (Figure II-1). The choice of the sub-colony was dictated by 

convenience (the colony is visible from the huts) and in order to 

minimise interference with other colonies where long term population 

dynamic studies take place. Birds were sampled from different parts of 

the colony in order to provide a representative cross section of nest sites 

and therefore probable age and experience of the parents (Ainley, 

LeResche and Sladen, 1983; Barbosa et al., 1997). 
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Figure II-1: The Gourlay Peninsula pygoscelid colonies shown in black with the targeted sub-

colonies used for this study shown in red; the huts are shown in blue; adapted from Waluda et 

al. 2014. 

Cape Geddes 

Cape Geddes (approximate position Lat. 60° 41′ S, Long. 44° 34′ W) is 

located at the eastern entrance of Browns Bay at the northern end of the 

Ferguslie Peninsula on Laurie Island in the South Orkney Islands.  

The location is colonised by chinstrap penguins in numerous small 

colonies or sub-colonies with approximately 7000 pairs. The location 

mainly faces north-west lying in a rocky bowl overlooking a rocky bay 

(see Figure II-2). Birds were sampled from different parts of the largest 

sub-colony in order to provide a representative cross section of nest sites 

and therefore probable age and experience of parents (Ainley, LeResche 

and Sladen, 1983). 
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Figure II-2: Cape Geddes and the studied chinstrap colony (adapted from Coria et al. 1996). 

Calendar constraints 

Due to the remoteness of the field locations and the logistic constraints 

(ship calls), the timing of the data collection was not optimal in relation 

to the breeding calendar. It varied between colonies and seasons. 

Although the study endeavoured to cover the incubation and the brood 

stages of the breeding stages, there were some differences in the 

coverage of these stages (early, middle or late). The sampling calendar 

is presented in section III.2 page III-43. 

b. Devices description and setting 

GPS 

The Global Positioning System (GPS) devices used for this study were 

Fastloc F2 from Sirtrack©. This technology has demonstrated an 

increase in location accuracy, especially for marine animals when the 

surface time for positioning acquisition is very short (Dujon, Lindstrom 

and Hays, 2014). Devices weighed 39 g in air and were 

hydrodynamically shaped by the manufacturer to decrease drag in water. 

The GPS devices were equipped with a wet switch and could be set to 

record a location every 4 minutes when wet; on land (dry) the device 

would save battery power by recording a location every 30 minutes only. 

Devices were switched on in the morning leaving the research station, 

enabling the GPS to stabilize reception of signals from the GPS satellite 

constellation and therefore ensuring that the accuracy would be optimal 

once deployed. 

To gain an estimation of the accuracy of the GPS data, the distances 

between the points collected while the birds were at the colony and a 

reference point (the centroid of all the points in the colony) were 

calculated (see II.2a page II-22 for a description on how GPS data were 
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split between “at the colony” and “foraging” points). During brood, these 

“static” locations were not optimal as the birds were standing and 

therefore the device’s antenna was not getting a full view of the sky. 

During incubation, birds were laying on the nests, providing a better 

position for the reception of GPS signals. In addition, they were not 

moving (Ryan et al., 2004) or were moving relatively slowly and they 

were not intermittently submerged; for example, birds might change 

their orientation depending upon wind direction. During these periods, 

65% of the points were recorded within 100 m to the reference point 

(95% within 243.1 m). These estimated inaccuracies were higher than 

those measures by Hazel (2009) who found that 95% of the distances 

were within 101 m. This might be due to the differences in the method 

(Fastloc device models and configuration) as well as distinct local 

atmospheric conditions. It is also plausible that local topography can 

influence how well devices ‘see’ the GPS satellite constellation, 

especially near the horizon. 

Overall, 95% of the points recorded at the Geddes colony were within 

289 m to the reference point (4.8% within 100 m). For Gourlay, 95% of 

the points were within 214 m and 78.1% of the points were within 100 

m to the central point. The difference in accuracy between both sites 

could be due to local topographical conditions that can impact the 

reception of GPS signals; at Cape Geddes, there is a steep hillside 

immediately behind the colony that potentially might obscure a 

proportion of the GPS satellite constellation. When comparing the data 

for each site and season, the different sampling sizes might also impact 

the spread of values (Figure II-3). This seems to indicate an operator 

effect as each seasonal deployment from each site was made by a 

different person. 
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Figure II-3: Distribution of the distances between the points recorded at both colonies and a 

central reference point for each deployed GPS devices. The blue values are the number of points 

and the red lines represent the median distance for each colony and season. 

As observed by Hazel (2009), the number of acquired satellites had an 

important impact on the device accuracy (see Figure II-4). An accuracy 

estimate based on colony static tests is conservative as the satellite 

acquisition was better at sea (78.5% of GPS points with more than 5 

satellites versus 75.4% of points with a similar number of satellites on 

land), confirming the potential impact of topography on GPS accuracy 

on land. An estimated precision of 250 m would fit more than 95% of 

the captured locations in the colonies (95% of the locations with more 

than 5 satellites are within 219 m versus 397 for less than 5 satellites). 

This precision matched the minimal temporal resolution of inferred 

behaviours (see V.2b, page V-82) and the resolution of the most accurate 

environmental variable used in the habitat model (see VI.2b, page VI-

118). 
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Figure II-4: Influence of the number of satellite in the accuracy of the location for both sites. 

Blue values represent the number of points and the red lines are the median values per site. 

TDR 

The time-depth recorder (TDR) models used in this study were Lotek© 

LAT 1810 and Cefas© G5 (CEFAS Technology Ltd, Lowestoft, UK). 

The Lotek© devices were used on all the Geddes 2011-12 deployments 

and three of the Gourlay 2013-14 deployments. The instruments 

weighed 2.7g and 6.3g for the G5 (Hays et al., 2007) and Lotek 

respectively. 

The TDR were set to record one pressure and temperature measurement 

every second during the 2011-12 deployments (Geddes and Gourlay) 

and every two seconds during the 2013-14 deployments (Gourlay only). 

Recording only occurred when the devices were in the water based on 

their wet switch. 

Timing 

Just before deployment, all devices times were synchronised with an 

online atomic clock using Greenwich Mean Time (GMT). The local 

solar time at the South Orkney was GMT+3. All times considered in this 

study were GMT. 

c. Bird sampling and devices deployment 

Choice of study individuals 

At each device deployment, a different area of the colony was targeted, 

to minimise potential impact and disturbance to surrounding nest sites. 

During incubation and early brood, the birds standing on the nests were 
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marked with blue stock marker dye (Figure II-5); the dye used is 

temporary and is regularly used for marking animals on farms, it washes 

out of the feathers after birds have been at sea for a number of days. This 

allowed for monitoring of when both parents were at the nest and were 

about to exchange parental duties. The marked birds that were not sitting 

on the nest anymore could be captured and equipped with the devices. 

This method ensured that the deployment was optimized as the selected 

birds would be ready to go foraging, minimizing unnecessary drains on 

device battery and memory use at the colony.  

 

Figure II-5: Bird marking to detect incubation role swapping. Marked standing birds are ready 

to leave the colony to forage and are therefore good candidates for device deployment. © F. 

Manco. 

During later brood, when the chicks were not on the nest anymore and 

parents were not on guard duties, the birds that were observed feeding 

the chicks were identified as breeding birds and therefore as candidates 

for study. They were captured and equipped after completing chick 

feeding. 

Capture 

The targeted individuals were caught with a net, transferred into an 

opaque bag and brought to the working hut for devices deployment and 

biometrics measurements (see II.1e, page II-20).  

Device attachment 

The GPS and TDR devices were attached together using superglue and 

a cable tie before attaching to the study animal. These device packages 

were attached to the plumage along the centreline of the back using 

methods adapted from Wilson et al. (1997). They were glued to the back 

central feathers with 2-parts Epoxy glue and secured with waterproof 

Tesa ® tape (Figure II-6). At Signy, when deploying some of the larger 

TDR instruments, both devices were attached separately along the centre 

of the back. 
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Figure II-6: GPS and TDR on a bird. © F. Manco. 

Capture and deployment generally took less than 10 minutes for an 

experienced field operative. During most of the manipulation, the bird 

was retained in the bag in order to keep it from any unnecessary visual 

disturbance, thus reducing potential stress levels. The equipped 

individual was then released in the proximity of the nest and monitored 

to record any abnormal behaviour. 

d. Devices recovery 

Timing 

During incubation, as soon as an equipped bird was observed back on 

the nest, the devices would be immediately recovered, as the GPS battery 

life was only sufficient to collect data from a single long incubation trip. 

During brood, the loggers were left on the penguins for approximately 5 

days, enabling them to collect data from several shorter foraging trips. 

Re-capture and device detachment 

If the bird was on the nest, a bag was put on its head to ensure minimal 

disturbance while the Tesa ® tape was cut and the devices recovered. 

This manipulation was generally less than 5 minutes. During the later 

brood stages, when the chicks and adults were not on the nests location 

anymore, the procedure was slightly more complex, as the bird had to be 

captured with a net and placed in a bag in order to recover the device. 

During incubation and early guard, the nest was covered to ensure the 

offspring remained warm and were not vulnerable to Sub-Antarctic skua 

(Catharacta antarctica; synonym Stercorarius antarcticus) or snowy 

sheathbills (Chionis alba). 
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Data download 

Once recovered, the devices were transported to the Signy research 

station where the data were processed. The data from the Fasloc GPS 

had to be post-processed to generate the positions. This procedure was 

undertaken using the Sirtrack software and required access to the 

almanac of the GPS satellite constellation. Each deployment would 

generate a position file. The GPS device’s memory was cleared and the 

battery was recharged overnight. At Geddes where no internet access 

was available, the almanacs were downloaded directly from the GPS 

satellites using a custom built receiver. 

The download of the TDR data was straightforward, without any 

additional step. It generated a pressure/temperature file. The filenames 

contained the identifier of the device and the date and time of the 

download.  

The links to both device files were stored in the deployment database. 

e. Potential effects of the devices 

Previous studies showed some detrimental effects from attached 

instruments: slower swimming speeds, excessive preening and pecking, 

increase in energetics expenditure and overall a decrease in nesting 

success as reported by Ballard et al. (2001). It is worth noting that these 

potential effects are difficult to measure: Ballard et al. (2001) mentioned 

that the trip duration, which is a relatively easy variable to observe on 

birds without devices, is not optimal to measure instrument effect. The 

equipped birds might stay in the same groups as other unequipped birds 

but might alter their diving behaviour as reported by Kooyman et al. 

(1992) and Ropert-Coudert et al. (2000). Watanuki, Mori and Naito 

(1992) detected a significant instrument effect using feeding efficiency 

and chick survival. 

Ballard et al. (2001) measured no differences in nest success between 

equipped and unequipped birds. Recent devices, like the ones used 

during this study, are lighter (<2% of the weight of the birds) and more 

streamlined with a smaller cross section than those used in the past. 

Although no additional data has been collected to measure any potential 

instrument effect, the very low nest failure rate (1 out of 89 deployments) 

allowed me to conclude that there was no important instrument effect on 

the bird’s reproductive success. 

f. Biometrics and other variables 

The birds were weighed before deployment using a Pesola © spring 

balance and at Geddes (2011-12), the tracked individuals were also 

weighed at the end of the deployment while recovering the devices. The 

phenology (incubation or brood) was also recorded. At Geddes (2011-

12), the number of eggs and chicks and any changes in the offspring at 

the end of the deployment was noted. 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

II-21 

The bill lengths (culmen) and depths were measured for each study bird 

to the nearest tenth of a millimetre using a Vernier calliper (Figure II-7). 

 

Figure II-7: Bill measurements: length (BL) and depth (BD); adapted from Amat et al. (1993). 

g. Sex from bill measurements 

Chinstrap penguins show very little sexual dimorphism and are therefore 

very difficult to sex. Apart from dissection, molecular techniques and 

behaviour cues (reproduction position and first individual to incubate) 

methods which are either invasive or difficult to apply, there is some 

slight morphological dimorphism that can be used to determine the sex 

of individuals (see Amat, Vinuela, & Ferrer, 1993 and Polito et al. 2012). 

In this study, the discriminant functions defined by both two studies were 

used (see Figure II-8). The functions agreed on 81.2% of the birds; all 

the remaining birds were classified as female by the expression defined 

by Amat et al. (1993). 
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Figure II-8: Distribution of the bill measurements and the discriminant functions separating 

males and females. The dashed line is derived from Amat et al. (1993) and the solid one from 

Polito et al. (2012). 

II.2 Data description and processing 

a. Global Positioning System (GPS) 

Deployment data upload and mapping 

From the deployment database, each position file for each deployment 

was opened and merged into a series of spatial locations with a time 

stamp and a deployment identifier. The default coordinates were latitude 

and longitude (WGS 1984). The locations were re-projected using an 

Universal Transverse Mercator projection centred on zone 23 south 

(EPSG 32723) leading to a set of coordinates x and y in metres. This 

projection was the default reference system used for this study. It 

facilitated minimisation of local distortion and therefore imprecision 

when calculating distances and angles. A first filter was applied by 

removing the locations with null coordinates (12% of the locations, see 

Table II-1, page II-26). 

Identification of trip start and finish points 

The position files contained some points that were not part of the 

foraging trips (acquired on the way from the research station to the 

colony and/or when the bird was at the colony). In order to filter out 

these locations, each deployment data points was plotted using GIS 

software (ArcGIS, ESRI). The points were considered as a temporal 

sequence and the last point in the colony was classified as the trip 

starting point. The first point back in the colony was classified as the trip 

ending point (Figure II-9). There was no need to use a distance threshold 

to determine which points were in or out of the colony as the very linear 

shape of the early and late sections of the trips made it very easy to 

distinguish what was part of the trip or not. Foraging trips were therefore 
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made of a single start point in the colony followed by a series of points 

at sea and a single end point back in the colony. 

 

Figure II-9: example of the visual distinction between the foraging trip points and the locations 

at the colony enabling identification of the start (red) and end (blue) trip points. The black lines 

represent the foraging trip and the grey lines represent the sequence of points not part of the trip 

(in the colony). 

For four trips (two from each colony), it was not possible to define a start 

or end point as the data acquisition from the GPS device started or ended 

outside of the colony (see Figure II-10). In order to complete these trips, 

the first point in the colony was duplicated (in case the missing point 

was the end point; otherwise the last point in the colony was duplicated). 

The time stamps of these duplicated locations were changed based on 

the time and distance with the last or previous at sea point and an average 

commuting speed of 2 m s-1 (Davis and Darby, 2012). The fact that the 

reconstructed last section of the trip crossed land on Figure II-10, which 

is possible but unlikely, illustrates some of the limitations of this method. 
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Figure II-10: Example of an incomplete trip where the first recorded location was outside the 

colony (red point). To complete the trip, the end point of the trip (blue point) was duplicated and 

its time stamp was changed based on the time and the distance to the first recorded location (red 

point) and an average commuting speed of 2 m s-1. 

Removing the locations that were not part of the foraging trips allowed 

me to discard an additional 22% of the recorded points (see Table II-1, 

page II-26). The trip nomenclature used in my database of foraging trip 

descriptors combined the deployment identification number and a 

unique trip identifier: for example, trips 34_59 and 34_60 are from the 

same bird indicated by its deployment number (34). 

Calculation of the surface metrics 

The R package ‘adehabitatlr’ (Calenge, 2006) was used to calculate a 

series of surface metrics from the filtered positions. For each position i 
(defined by coordinates 𝑥𝑖 and 𝑦𝑖 and time 𝑡𝑖), the time difference in 

seconds ∆(𝑡𝑖, 𝑡𝑖+1) and the distance in metres to the next position 

(𝐷𝑖𝑠𝑡𝑖→𝑖+1) were calculated. From these two variables, the speed to the 

next location was derived in m s-1 (Figure II-11 and Equation i).  
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Figure II-11: For each Pi position, the distance to the next point Pi+1 (𝐷𝑖𝑠𝑡𝑖→𝑖+1) is calculated 

along with the relative angle (β) which is the angle between the segment from the previous point 

(Pi-1) and the segment to the next point (Pi+1). A relative angle of 0 means that the three points 

are perfectly aligned. A positive relative angle means that the bird turned in the anticlockwise 

direction. 

𝑆𝑝𝑒𝑒𝑑 𝑎𝑡 𝑃𝑖 =
𝐷𝑖𝑠𝑡𝑖→𝑖+1

∆(𝑡𝑖, 𝑡𝑖+1)
 

Equation i: Calculation of the speed at a location based on its distance (𝐷𝑖𝑠𝑡𝑖→𝑖+1 𝑖𝑛 𝑚𝑒𝑡𝑟𝑒𝑠) 

and time difference (∆(𝑡𝑖 , 𝑡𝑖+1) 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) to the next location. 

The same package (‘adehabitatlr’) also estimated for each location the 

angle between the segment from the previous point and the segment to 

the next point (relative angle, β, see Figure II-11). These angles were 

expressed in radians ranging from 0 to +π (anticlockwise) and 0 to –π 

(clockwise). The absolute value of the relative angle was retained as an 

indication of the sinuosity of the track (0 to +π). 

Locations validation 

In addition to the removal of null coordinates, the positions were 

validated through visual control of locations with a calculated speed 

above 4 m s-1. Although some very high and unrealistic speed 

measurements (the maximum value was 1.5 km s-1) were produced from 

the automated process, all speeds close to the threshold were visually 

inspected. Moreover as the speed was derived from the distance and time 

difference between two successive locations, the point with an abnormal 

speed might not be the one that had to be discarded (Figure II-12). 
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Figure II-12: Examples of location check combining speed and visual check. The left trip has a 

very obvious location error with a speed of more than 1.5 km s-1. The right trip shows a mixture 

of locations with realistic and unrealistic speeds. In the case where two successive points have 

high speed values, only a visual check of the trajectory can help to decide which point have to 

be discarded.  

Once the locations were validated (304 points were discarded from the 

entire dataset), the surface metrics (speed and angles) could be re-

calculated on the filtered positions only. Table II-1 summarize the 

number of positions from the raw GPS data to the final filtered locations 

with a break down by seasons, colonies and breeding stages. 

Table II-1: Number of locations recorded for this study from the raw data including points in the 

colony and erroneous locations eventually discarded by filtering positions. 
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Raw data 73,031 100% 31% 14% 11% 12% 30% 2% 
Filter 1 (non-zero coordinates) 64,330 88% 33% 14% 8% 13% 30% 2% 
Trip allocation 48,370 66% 40% 14% 1% 4% 39% 2% 
Missing start/end 48,374 66% 40% 14% 1% 4% 39% 2% 
Filter 2 (speed and visual checks) 48,070 66% 40% 14% 1% 4% 39% 2% 

b. Time-Depth Recorder (TDR) 

Deployment data upload and validation 

From the deployment database, each TDR data file was loaded and the 

depths plotted against time (dive profiles) to help highlight any 

measurement issue. The foraging trip coordinates, defined by the GPS 

data (II.2a, page II-22) were merged with the dive profiles to check 

whether both datasets were temporally matching and if they were any 

anomalies in the data (Figure II-13). 
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Figure II-13: Examples of using the dive profiles as visual checks between the TDR data and the 

trip timing from the GPS data (the vertical blue lines represents GPS-derived trip temporal 

boundaries). The grey areas represent the different night periods (light grey: twilight, dark grey: 

night, see II.2d). Deployment 42 (top) shows a good match for its five foraging trips. Deployment 

20 (middle) shows a drift in the TDR measurement that has to be corrected; surface offset 

correction is sometimes required for TDR data. Deployment 88 (bottom) shows erratic 

measurements; with the exception of the second foraging trip, the other data has to be discarded. 

Two deployments (9 and 20, the latter is presented on Figure II-13) 

showed important drift in the pressure measurement. This was corrected 

by splitting the measures into portions with an approximate constant 

drift slope. Each measure was then adjusted based on a linear drift 

between the start and the end of the portion. During three deployments 

(65, 70 and 82), the TDR expired before the end of the trip; the 

incomplete dive data for these datasets were discarded. For three 

deployments (89, 107, 108), the timing did not match the trips defined 

by the GPS data; some trips could be retained but others had to be 

discarded. Several TDR devices (6) showed erratic measures and had to 

be discarded (for deployment 88, one trip could be retained, see Figure 

II-13). 

Dive identification 

The R ‘diveMove’ package (Luque, 2007) was used to process the TDR 

data and identify individual dives. The depth threshold value was set to 

5 m to avoid near-surface noise in the data and minimise the effect of 

measurement drift (Bengtson, Croll and Goebel, 1993). Although 

Takahashi et al. (2003) used a lower threshold (1m). It might be possible 

that shallow foraging dives (<5m) might have been lost during this 

study, but changing the threshold for a sample of trips (N=10) to 1m 

mainly increased the number of dives without detectable bottom phase, 

which truly represent travelling dives. A series of metrics for each dive 

was calculated: the dive timing (beginning and end of the dive and total 
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dive duration), the maximum depth and the time interval to the next dive 

(post-dive interval). 

Dive phases 

The ‘diveMove’ package also derived additional metrics based on 

identifying the different phases for each dive: a descent, a bottom and an 

ascent phase. Unfortunately, the package was not always successful in 

detecting the bottom phase (more specifically, the end of the bottom 

phase, see Figure II-14, dive 30). An alternative method applied a 

nonparametric change point detection on the derivative of the dive depth 

over time to find the three dive phases (‘ecp’ R package, James & 

Matteson 2014). Figure II-14 compares the different dive phase 

identification for both methods. 

 

Figure II-14: Examples of bottom phase identification comparing the ‘diveMove’ algorithm 

(blue dashed lines) and the change point detection algorithm used in this study (solid red lines). 

Dive 102 (left) shows a perfect match between both algorithms. Dive 30 (middle) illustrates the 

issue for the ‘diveMove’ algorithm in identifying the end of the bottom phase. Dive 18 (right) is 

considered as a dive as it goes below the 5 m threshold but doesn’t have a clear bottom phase. 

For a series of dives, the change point detection algorithm couldn’t 

identify a proper bottom phase (although ‘diveMove’ did, see dive 18 

Figure II-14). The majority of these dives were short shallow dives 

(duration was less than 20 s and 98.8% were less than 10 m deep) and 

might be considered as porpoising or travelling dives. They were 

therefore discarded. Table II-2 summarizes the number of TDR 

measurements and dives identified with a break down by seasons, 

colonies and breeding phases. 
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Table II-2: Total number of raw pressure measurements before and after trip allocation. Number 

of dives detected by ‘diveMove’ and result after filtering out the dives without bottom phase. 
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Pressure measurements 36,682,598 100% 43% 29% 1% 4% 18% 5% 
Trip allocation 18,297,012 50% 41% 26% <1% 3% 29% 1% 

Dives 78,820 100% 47% 23% <1% 1% 26% 2% 
Dives with bottom phase 71,216 90% 48% 23% <1% 1% 25% 2% 

 

Once the different phases were defined, the timing (start, end and 

duration in minutes) and the vertical movements for each phase could be 

calculated (in metres). From the timing and vertical distances for the 

descent and ascent phases, the speed of descent and ascent could be 

derived (m s-1). 

Broadness index and dive efficiency 

The broadness index was calculated as the ratio between the time spent 

at the bottom and the total dive time (Scheffer, Bost and Trathan, 2012). 

The dive efficiency was defined and calculated as the ratio between the 

time spent at the bottom of the dive and the sum of the total dive time 

and post-dive duration (Kuhn et al. 2010; Cook et al. 2012, Equation ii). 

𝑑𝑖𝑣𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑡𝑖𝑚𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 + 𝑝𝑜𝑠𝑡 𝑑𝑖𝑣𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 

Equation ii: Calculation of the dive efficiency for each dive. 

c. Merging the GPS and TDR datasets 

Position interpolation 

Because of the different temporal resolutions between the GPS dataset 

(one data point every 4 minutes at best as locations could not be 

generated during dives) and the TDR dataset (one data point every 1 or 

2 seconds), an interpolation technique was used to estimate intervening 

horizontal positions during the 4 minutes recording interval and while 

diving, thus providing temporally matching datasets. Having temporally 

regular tracks with no gaps in the sequences of data improves the fine 

scale analyses of foraging trips (see Gurarie et al. 2009 and Chapter V). 

Although the simplest and most often used approach is a linear 

interpolation, which assumes that animal moved in a straight line 

(Lonergan, Fedak and McConnell, 2009), Tremblay et al. (2006) and 

Dean et al. (2012) recommended using a curvilinear interpolation 

technique to increase the temporal resolution of the GPS dataset. This 

type of interpolation will also generate smoother surface metrics 

changes, which will improve the segmentation process during the fine 

scale analysis of foraging trips (see V.2b, page V-82). There are several 

curvilinear interpolation techniques available, the Bezier curve being 
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one of them. Unfortunately, the resulting interpolated tracks with this 

technique avoid the known original locations, where the lowest 

uncertainty is. In this study, I therefore used the cubic hermite 

interpolation algorithm (Hintzen et al. 2010). Figure II-15 represents 

examples of these different interpolation techniques. 

 

Figure II-15: GPS locations (black dots) with different interpolation techniques: the blue line is 

a linear interpolation, the green curve is based on a Bezier technique and the red curve 

represents the method used in this study (cubic hermite interpolation). The small dots represent 

the one minute interpolated locations with a clear view on how their distribution along the line 

or curves varies with the interpolation technique. 

For each position, the geographic heading to the next point was 

calculated and used together with the speed as inputs for the spline 

interpolation algorithm. This technique was applied to build a one-

minute resolution track which provided a useful compromise between 

resolution, accuracy and computing time. It is also in line with the dive 

time resolution as the recorded mean dive time was 63 seconds. 

To relate the added spatial uncertainties resulting from the interpolation 

process with the uncertainties from the original GPS dataset, buffer areas 

were plotted around each GPS location. For each point, a buffer was 

created based on measured errors during the static tests corresponding to 

the number of acquired satellites during the acquisition of the location 

(see Figure II-16). In average, 94.1% of the interpolated positions fall 

within the median error estimated error range (standard deviation of 

4.9%). This confirmed that the interpolation process didn’t add more 

uncertainty in relation to the original GPS locations, as observed by 

Tremblay et al. (2006). 

Surface metrics on the interpolated positions 

The surface metrics (speed and relative angles) were calculated on each 

interpolated positions using the same method described in II.2a. A final 

check on each interpolated position, with a focus on locations with 

speeds close to 4 m s-1 forced me to discard another 49 locations. The 

interpolation process had to be re-run on the filtered positions and the 

surface metrics were re-calculated on the final interpolated positions (see 

Table II-3). 
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Distances to colony and part of the trip 

The Euclidean distance to the colony was measured in kilometres for 

each interpolated location. The point with the greatest distance from the 

colony (trip maximum range) was classified as the maximum point of 

the trip. All previous points were attributed to the outward part of the 

trip and all successive points were considered as being part of the return 

section of the trip. 

Merging the dives with the interpolated positions 

For each trip, the beginning of each dive was matched to the closest one 

minute interpolation location. In cases where there were several dives 

per minute (641 dives from the complete database), all such dives were 

retained and linked to the same location. Table II-3 presents the number 

of locations from the filtered GPS data (see Table II-2), the number of 

interpolated locations and the total interpolated position merged with the 

dives (with an increase in the number of location due to dives occurring 

during the same one minute interval). See Figure II-16 for an example 

of merged interpolated positions with dives. 

Table II-3: Number of points from the filtered GPS positions, the 1 minute interpolated locations 

and the merging results with dive data. The increased number of locations after the merge 

indicates that some 1 minute locations were matched with several dives. 
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Filtered GPS position 48,070 40% 14% 1% 4% 39% 2% 
Position interpolation 417,926 30% 19% 1% 2% 46% 2% 
Interpolated positions trip with dives 418,567 30% 19% 1% 2% 46% 2% 
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Figure II-16: Portion of a foraging trip with the original GPS fixes and the 1 minute interpolated 

positions (size of the point) and an indication of whether a dive is associated with the point 

(colour). The grey areas represent estimated GPS uncertainties based on the in colony static 

tests and the number of acquired satellites for each GPS location (see II.1b, page II-14, dark 

grey is the median location error and light grey is the 95% quartile error). 

d. Period of the day and moon phase 

Time and especially the period of the day has an important impact on  

predators foraging for krill as a result of changes in luminosity and the 

vertical migration of their prey (Zhou and Dorland, 2004; Everson, 

2008; Cresswell et al., 2009). To incorporate this parameter, the solar 

elevation angle was calculated on each interpolated position based on its 

geographic coordinates and its date and time using the Analysis of 

Oceanographic data ‘oce’ R package (Kelley and Richards, 2016). 

The civil twilight threshold (-6º below horizon) was applied on the solar 

elevation angle to attribute the period of the day (day: > 0º above the 

horizon, twilight: between 0 and -6º below horizon and night: <-6º below 

the horizon) for each location. 

The same ‘oce’ package was also used to calculate the percentage of 

moon illumination for each interpolated position. 

II.3 Trip metrics 

A series of variables could be measured and derived for each foraging 

trip. Some were based on the surface data only (the trip maximum range 

for example); others were combining the horizontal surface dataset with 

the vertical dive data in order to consider the foraging as the exploitation 

of a volume (Zamon et al., 1996; Wilson and Peters, 1999; Wilson, 

2010). 
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a. From the surface data only 

The trip duration was calculated from the time difference between the 

first and last points of the trip identified from the GPS data as previously 

described (see II.2a on page II-22). The post-trip duration (time spent at 

the colony between two successive trips) was also calculated for the 

deployments including several trips (54 trips out of 221).  

The trip direction (clockwise or anti-clockwise) was estimated visually. 

For very direct trips with nearly overlapping commuting section and a 

single limited foraging area or trips where the outward and return section 

were crossing each other several times, the trip direction couldn’t be 

clearly attributed (27 trips out of 221). 

The total surface trip length was the sum of all the distances between the 

points (see II.2a). The maximum trip range was defined as the maximum 

distance to the colony measured from each location (see II.2c). The 

Foraging Zone Coefficient (FZC) was calculated as the ratio between the 

total trip surface length and the maximum range, indicating the 

circularity of the foraging trip; low values indicating a more direct linear 

trip (see Scheffer et al. 2012). 

For each trip, the number of points classified as being part of the outward 

portion of the trip (II.2c) divided by the total number of points from the 

trip allowed to calculate the percentage of trip time the outward portion 

represented. 

Similarly, the number of points attributed to the twilight or night periods 

of the day (II.2d) divided by the total number of points from the trip 

estimated the percentage of night activity. 

b. From the dive data only 

For the trips that included complete TDR data, the total dive duration 

(II.2b) was divided by the trip duration to estimate the percentage of dive 

time. The number of dives occurring during the twilight or night periods 

of the day divided by the total number of dives indicated the percentage 

of night dive for each trip. 

c. From the merged GPS+TDR dataset 

To be able to consider the utilized foraging habitat as a volume, the 3-D 

length of the trips with TDR data was measured by summing the 

distances between each interpolated positions in a three dimensions 

volume (x, y and maximum depth). This length was then divided by the 

trip duration to approximate habitat volume exploration speed, as a 

potential indicator of resource use.  

To incorporate the diving vertical elements of the trips, the sum of the 

vertical distances (dive descent and ascent distances and vertical 

distances at the bottom of the dives, II.2b) was divided by the surface 

trip length to estimate a ratio of vertical versus horizontal habitat 

exploration per voyage. 
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II.4 Summary of the collected data 

a. The process 

The workflow from the deployment data, raw GPS and TDR data to the 

final 1 minute interpolated locations merged with the diving data is 

presented in Figure II-17. 

The GPS data allowed me to identify the start and end of the foraging 

trips. The surface metrics derived from the projected GPS data were used 

to filter out any abnormal locations. This validation process (visual 

check of each trip with the aid of directly calculated speeds) was iterated 

several times in order to fully validate the remaining positions. 

From the filtered positions and their surface metrics, a spline 

interpolation process was applied to generate a regular temporal 

succession of locations (1 minute interval). The surface metrics were 

calculated on the interpolated positions and an additional visual and 

speed check was performed. 

The trip timing from the GPS data was used to link the TDR data to 

individual foraging trips. The TDR data were then processed to identify 

individual dives and recognize the different dive phases. The timings and 

vertical metrics for each dive phase were derived. 

The different dives were then merged with the temporally matching 

interpolated positions to recreate a three-dimensional model of the 

foraging trips. 

Finally, from both the surface and dive metrics, a series of trip 

characteristics could be calculated. 
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Figure II-17: Summary of the data collection and processing. From the deployment database 

through the workflow on the data collected by both devices leading to the 1 minute interpolated 

locations linked with the dive data. Finally several trip metrics were derived. 

b. The complete dataset 

In total, the devices were deployed on 109 different birds. At Geddes in 

2011-12, 35 incubating birds and 25 brood birds were tagged. At 

Gourlay, 7 incubating and 9 brood birds were equipped in 2011-12 and 

an additional 27 incubating and 6 brood birds in 2013-14. 

Out of these 109 deployments, 5 birds didn’t have a GPS, 7 birds didn’t 

go to sea, 1 never came back and 7 had some GPS device malfunction. 

Therefore 89 deployments had usable tracking data. In 2013-14, one bird 

did a very long and atypical incubation trip (almost 20 days, see Figure 

IV-6, page IV-60), resulting in the failure of the nest). The data from this 

bird (one trip: 75_173) was therefore discarded after being confirmed as 

an outlier (see IV.2a, page IV-48). 

From the remaining 88 deployments, 8 showed unusable TDR 

measurements and 4 had incomplete dive data (the TDR devices expired 

during the trip). For an additional 4 deployments, only a subset of their 

trips had complete dive data. The GPS and TDR data were complete and 

matching for 77 deployments totalled 192 foraging trips (see Table II-4). 

One incubation deployment from Gourlay in 2013-14 (65_166) had a 

very poor location frequency (median time interval of 34 minutes). The 

GPS device was not re-deployed afterwards. Despite this, the trip was 

kept for subsequent analyses, 
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Table II-4: Total number of deployments and subsets with complete GPS and TDR data with the 

resulting number of foraging trips in total and per colony, season and breeding stage. 
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All deployments 109        

Complete GPS data 89 221 65 100 9 19 16 12 
Complete GPS and 
successful breeding 

88 220 65 100 9 19 15 12 

Complete GPS+TDR data 76 192 65 97 2 13 7 8 

c. The variables 

The deployment database (Table II-5) contained information about the 

deployment: location (colony), timing (season, device deployment and 

recovery, breeding stage) and different biometrics (bill measurements 

and birds weight). The putative sex of the bird was derived from the bill 

measurements. At Geddes (2011-12), the birds were also weighed at the 

end of the deployment and more detailed information about the offspring 

were collected. 

Table II-5: Deployment data included some temporal (green) and spatial (blue) variables. It also 

inclued some direct and derived biometric variables (yellow).   

Variables Derived variables Comments  

Deployment ID 

Season  2011-12 or 2013-14 
 

Colony Geddes or Gourlay 

Deployment timing Date and time of deployment and 
recovery 

II.1c and 
II.1d 

Breeding stage 
(incubation/brood) 

Bird offspring Number of eggs/chicks at device 
deployment and recovery – Geddes 
(2011-12) only 

II.1e 

Bill measurement (mm) Sex Based on Amat et al. 1993 and Polito 
et al. 2012 

II.1g 

Bird weight (kg)  Deployments from Geddes (2011-12) 
also included weight after device 
recovery 

II.1e 

 

The data from the GPS contained temporal (date and time) and spatial 

information (coordinates). The combination of both allowed me to 

determine the start and end of each trip. From their coordinates, the 

distances and the relative angles between points were derived. The 

distances and time between points allowed to calculate the speed of the 

bird.  

The interpolated positions dataset contained the same variables but at a 

higher frequency (1 min-1). The distance from each location to the colony 

was measured and the points were categorised as being on the outward 

or return part of the trip. From the temporal information, the points were 

classified as being part of the day, twilight or night (Table II-6). 
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Table II-6: GPS and interpolated locations based temporal (green), spatial (blue) and combined 

spatio-temporal (red) variables. 

Variables Derived variables Comments  

GPS DATA 

Deployment and trip ID 

Date and time Trip start and finish  

II.2a 

Coordinates 
(Longitude/Latitude) 

Coordinates (x/y) Using a UTM zone 23 south 
projection system 

Distances between points 
(m) 

 

Relative angles (rad, 
absolute value) 

The calculated relative angle 
varied from –π to +π; it was 
converted to positive angles 
(absolute value) as an indication 
of the sinuosity of the track 

Speed (m s-1) From the distance and time 
difference to the next point 

INTERPOLATED DATA 

Deployment and trip ID 

Date and time Period of the day 
(day/twilight/night) 

Based on the sun elevation and 
civil twilight threshold (<-6°: 
Night; -6° to 0: Twilight and >0: 
Day) 

II.2d 

Moon illumination (%) From the date, time and spatial 
coordinates 

Coordinates (x/y) Distances between points 
(m) 

 

II.2a 
Relative angles (rad, 
absolute value) 

See the comment in the GPS 
DATA section above 

Distance to the colony (km)  

II.2c 
Part of the trip (outward or 
return) 

All points before the furthest 
point to the colony are 
considered outward. 

Speed (m s-1)  II.2a 

 

The data from the TDR contained the time and depth measurements. The 

derived dive data incorporated some temporal information for each dive 

(dive start, finish and duration) and the timing of the dive phases 

(descent, bottom and ascent). It also included a one dimension spatial 

information (maximum depth and vertical distances for each dive 

phase). From the descent and ascent times and distances, the descent and 

ascent speeds were derived. The broadness index and dive efficiency 

were calculated as measures of the amount of time spent at the bottom 

of the dive (Table II-7). 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

II-38 

Table II-7: Raw TDR and derived dive variables. The measures and processes lead to a series 

of temporal (green), one dimension spatial (blue) and combined spatio-temporal (red) variables. 

Variables Derived variables Comments  

TDR DATA 

Deployment and Trip ID From the trip timing defined 
by the GPS data 

II.2b 
Date and time   

Depth (m) 

DIVE DATA 

Deployment and Trip ID 

Dive ID  Calculated by diveMove 
(Luque, 2007) 

II.2b 

Dive timing (start, end) Total dive time 

 Post-dive duration 

Maximum depth (m) 

Descent time (s) Descent speed (m s-1) Calculated using change 
point detection on depth 
derivative 

Descent vertical distance (m) 

Bottom time (s)  

Bottom vertical distances (m) 

Ascent time (s) Ascent speed (m s-1) 

Ascent vertical distance (m) 

 Broadness index Bottom time divided by the 
total dive time, Scheffer et 
al. (2012) 

Dive efficiency Bottom time divided by the 
sum of the total dive time 
and the post-dive duration, 
Kuhn et al. (2010) 

 

Finally, a series of trip aggregated metrics were defined from either the 

surface data, the dive data or the combined surface and dive dataset. 

Similarly for other datasets, the trip metrics contained a mixture of 

temporal and spatial based variables (see Table II-8).  

From the surface data, the trip start and end times allowed to derive the 

trip duration and post-trip duration. The other time-based variables were 

the percentage of outward part of the trip and the percentage of night 

activity. The spatial variables were the trip direction, surface length, 

maximum range and the derived foraging zone coefficient. 

From the dive data, two temporal variables were derived: the percentage 

of dive time and the percentage of night dives. 

Finally, from the merged surface and dive data, the ratio between the 

vertical movements during the dives and the trip surface length was 

calculated. As a spatio-temporal variable, the trip exploration speed was 

estimated as the 3 dimensional length of the trip (sum of the surface 

length and maximum depths) divided by the trip duration. 
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Table II-8: Trip variables derived from the GPS data, the dive data and the merged GPS+dive 

data leading to a series of temporal (green), spatial (blue) and spatio-temporal (red) variables. 

Variable Derived variables Comments  

Trip ID 

From the surface data 

Trip start and end Trip duration (hours)  II.2a 
II.3a  Post-trip duration (hours) 

Trip direction  Clockwise or anti-clockwise 

II.3a 

Trip surface length 
(km) 

Foraging Zone coefficient Sum of all the distances between 
points (trip surface length) 
divided by the maximum distance 
to the colony (trip maximum 
range); Scheffer et al. (2012) 

Trip maximum range 
(km) 

Percentage of outward 
time 

 Percentage of time spent on the 
outward part of the trip (before 
the point of maximum distance) 

Percentage of night 
activity 

Percentage of trip during the 
twilight or night parts of the day 

From the dive data 

Percentage of dive 
time 

 The total dive time for the trip 
divided by the trip duration – 
trips with dives only 

II.3b 
Percentage of night 
dives 

Percentage of dives during the 
twilight or night parts of the day 
– trips with dives only 

From the merged surface and dive data 

Exploration speed (m 
min-1) 

 Three dimensions length of the 
trips (surface and dive) divided 
by the trip duration – trips with 
dives only II.3c 

Vertical/horizontal 
distances 

Ratio between the sum of the 
vertical components of the dives 
and the trip surface length 

 

Each deployment and trip is described in Appendix II. 

d. Spatial and temporal resolutions 

The spatial resolution of the GPS data were estimated to be 250 m based 

on the pseudo static tests while the birds were at the colony (see page II-

16). 

The final GPS temporal resolution (mean time difference between GPS 

points of 8.7 minutes with a regular 1 second TDR measurement 

intervals), following interpolation and merging gave a regular 1 minute 

temporal resolution dataset. 

These spatio-temporal resolutions will be compared with temporal 

resolution of the inferred behaviour modes (Chapter V) and the 

environmental data inputs for the habitat model in Chapter VI and 

Chapter VII. 
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Chapter III COLONIES AND YEARS COMPARISONS 

This chapter will describe some of the main abiotic and biotic 

differences between the two colony sites. The sample sizes, the temporal 

scale of the sampling and some results about the foraging trips timings 

will be presented for both sampling seasons. Finally, differences in 

parental weights and reproductive effort will be reported. 

III.1 Main colony differences 

a. Abiotic 

Differences between environmental conditions available to birds from 

both colony sites will be presented and discussed in more details in 

Chapter VII. Here the main dissimilarities in bathymetry, surface 

currents and sea ice cover will be briefly described. 

Figure III-1 presents a general view of part of the Gourlay Peninsula 

chinstrap colony where deployments were made. The site is located on 

a raised flat area overlooking a small bay. The top of the colony 

(foreground) is occupied by Adélies and the bottom and edges are 

occupied by chinstraps, as the latter established their nests later in the 

season (Carlini et al., 2005). 

 

Figure III-1: General view of the Gourlay Peninsula colony fragment with Adélie penguins in 

the foreground. © F. Manco. 

Figure III-2 and Figure III-3 present some views of the Cape Geddes 

chinstrap colony. 
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Figure III-2: General view of the old FID hut at Cape Geddes with a small part of the chinstrap 

penguin colony. © P. Trathan. 

 

Figure III-3: Typical nesting habitat at the Cape Geddes chinstrap penguin breeding colony. © 

P. Trathan. 

The underwater landscape is an important feature potentially allowing 

marine predators to navigate. The hydrography has also a crucial role in 

driving horizontal and vertical currents. As the latter transport nutrients 

and plankton, productivity can be concentrated around some 

oceanographic features such as shelf breaks, canyons, seamounts, etc… 

The effect of bathymetry on fledging success has been reported by 

Chiaradia et al. (2007) for little penguins and several studies highlighted 

how predators use continental slope areas (Ichii et al. 1998; Trathan et 

al. 2003; Trathan et al. 2006; Atkinson et al. 2008; Siegel et al. 2013). 

Figure III-4 shows the bathymetry profiles available from both sites and 

which part of the depth range is covered by typical incubation and brood 
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trips. It is clear that although long incubation trips from the Gourlay 

Peninsula can reach the continental slope, the shorter brood trips have to 

remain over the shelf area. From Cape Geddes, birds are able to reach 

the shelf slope during the whole breeding season due to its proximity. 

 

Figure III-4: Bathymetry and foraging trips recorded from both colonies (left; black lines represent incubation trips 

and red lines represent brood trips). The right graphs represent a bathymetry profile between the colony and the 

most distant point from a typical incubation (black dot) and brood (red dot) trips.The horizontal dotted lines 

represent the locations of the 500 m isobath. 

Current regimes are also very different along both sides of the 

archipelago. On the north side, weak westerly currents are present close 

to the shore and they flow to the opposite direction and are stronger 

offshore. On the south side of the archipelago, currents are weaker and 

more variable in direction. 

Another important difference due to the orientation of the coast relates 

to the presence or absence of sea ice. On the south side of the 

archipelago, pack ice pushed by winds from the Weddell Sea or 

Antarctic Peninsula is more likely to accumulate (as seen on Figure 

III-1). The sea ice can have an impact on local conditions (sea 

temperature) and will influence Adélie and chinstrap penguins 

differently, the latter usually preferring open waters (Lynnes et al., 

2002). It is usually absent later in the breeding season. 

b. Biotic  

The main biotic differences between both sites relate to inter and intra-

specific competition. As mentioned earlier, the Gourlay Peninsula 

colony contains an assemblage of sympatric Adélie and chinstrap 

penguins. In contrast, the Cape Geddes colony only hosts chinstraps. 

Figure III-5 maps the different chinstrap and Adélie penguin colonies on 

the South Orkney Islands. Adélies colonies are mainly distributed along 

the southern coasts of the islands (with one exception on the north coast 

of Laurie Island). 
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Figure III-5: Colony sizes and distribution on the main South Orkney archipelago islands. The size of the circles 

is proportionate to the total chinstrap and Adélie population and is represented with a logarithmic scale. When 

both species are present at the same site, the black areas represent the ratio of Adélie penguins. The largest 

population estimate for each island are: 75,200 on Laurie Island (A), 300,000 on Coronation Island (B), 72,126 

on Signy Island (C) and 21,320 on Powell Island (D). Estimates are from Trahan and Lynch, 2008, unpublished. 

Despite having asynchronous life cycles, it is likely that both species 

have foraging areas that might overlap as they share the same habitat and 

resources. In years of poor krill availability, Lynnes et al. (2002) 

reported that Adélie penguins had to forage further offshore. The same 

authors mentioned that this probably competitive exclusion didn’t have 

any effect on Adélie reproductive success. In addition, chinstrap 

penguins are known for being able to dive in lower light conditions 

(Wilson and Peters, 1999). 

In terms of intraspecific competition, the chinstrap populations at the 

Gourlay Peninsula and around Signy Island are much larger than at Cape 

Geddes. Resulting competition between congeners is therefore probably 

more intense around the Gourlay Peninsula. 

III.2 Sample sizes and timing 

The distribution of the number of trips recorded from each colony site 

during both 2011-12 and 2013-14 seasons through time is presented in 

Figure III-6. A more intensive deployment campaign was carried out 

from Cape Geddes leading to a larger amount of recorded trips. But the 

site was only sampled during the 2011-12 season. The data sample from 

the Gourlay Peninsula in 2011-12, included some early incubation and 

later brood trips. In 2013-14 from the same location, the sampling had 

to stop shortly after hatching due to logistical reasons.  
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Figure III-6: Sampling calendar: number of trips recorded per week from both colony sites 

during seasons 2011-12 and 2013-14. Black bars represent incubation trips and red bars brood 

trips. 

This distribution of the sampling across sites and through time is not 

ideal. Unless specified, both seasonal data will be merged for the 

analyses. 

Figure III-7 shows the distribution of the departure and arrival times 

across sites and seasons. It clearly confirms that birds rarely initiated or 

terminated trips at night (Jansen, Boveng and Bengtson, 1998). It doesn’t 

show particular peak departure or arrival hours during the day 

contrasting with what Wilson & Peters (1999) observed with mainly 

early morning or late afternoon departures. The moon cycle does not 

seem to influence trip timings, although to properly include this factor 

in the analysis it would be necessary to take into account moon rising 

times and cloud cover. The main visible trend is probably an increase in 

late afternoon departures from Cape Geddes towards the end of the 

brood phase. The peak hatching date (6th of January), represented on the 

same figure by a vertical red line, was calculated as the average mid-trip 

day for the trips when hatching happened. It was the same across 

colonies and seasons. 
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Figure III-7: Foraging trip start and end times at the two locations during the two sampling 

years in relation to the moon phases (○ and ●) and night and twilight periods of the day (shaded 

areas, the lighter shade represents the twilight period). Black dots are incubation trips and red 

dots are brood trips. The vertical red line represents the peak hatching date (6th of January). 

III.3 Parents weights and productivity 

There was a significant difference in parental weights between the 

different combination of breeding stages, seasons and colony locations 

(Kruskal-Wallis chi-squared = 21.4, df = 5, p-value < 0.01, Figure III-8), 

but this was mainly due to the lighter birds from Cape Geddes during 

brood. If this colony and stage were omitted, the weight distributions 

were not significantly different (Kruskal-Wallis chi-squared = 4.5, df = 

4, p-value = 0.348). Only the data from Cape Geddes showed birds tend 

to gain mass during incubation and lose mass during brood as observed 

by Hart, Mann, et al. (2010) for macaroni penguins. 
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Figure III-8: Parental weight distribution for the different colony sites, breeding stages and 

seasons. 

The distribution of the number of offspring per nest is presented in Table 

III-1. This is not a measure of reproductive success as the later relates to 

the number of fledging chicks per nest at the end of the breeding season. 

In this study, we only have the number of offspring (eggs or chicks) at 

the moment of device deployment, which corresponds to an indication 

of reproductive effort. 

Table III-1: Reproductive effort as the number of offspring (eggs or chicks) per nest during 

deployment. Note: this data is absent for Gourlay 2011-12. 

Season Stage Colony Tracked 
birds 

Offspring % 2  Off./nest 
1 2 

2011-
2012 

Incubation 
Gourlay 7 - - - - 
Geddes 35 2 33 94% 1.94 

Brood 
Gourlay 9 - - - - 
Geddes 25 5 20 80% 1.80 

2013-
2014 

Incubation Gourlay 27 21 6 22% 1.22 

Brood Gourlay 6 1 5 83% 1.83 

 

At Cape Geddes, the number of offspring decreased during the breeding 

season, which is expected due to chick mortality through predation or 

other causes. During brood, a similar ratio of one or two chicks were 

recorded at both sites. But during incubation the lower ratio recorded in 

Gourlay is difficult to explain. Either the incubation or the brood count 

is not representative. Because of these differing results, probably due to 

a low sample size, I am cautious when using these data as an indication 

of reproductive effort. 
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III.4 Summary of the differences between two sites 

In terms of oceanographic conditions, the Gourley colony is further 

away from the continental shelf break than the Geddes. Only trips during 

incubation, when birds do not have the constraint of feeding their chick, 

can potentially reach the slope areas. From Geddes, birds can easily 

access these areas during the entirety of the breeding season. Currents 

are stronger on the North side of the archipelago and are more consistent 

in direction (westerly currents close to the shore and easterly currents 

further offshore). In the waters around the Gourlay Peninsula, the 

currents are weaker and more variable in direction. The amount of sea-

ice is another important difference: during incubation, there can still be 

some sea-ice along the coast of Signy as the north coast of Laurie is 

usually free throughout the breeding season. 

On Signy, both Adélie and chinstrap penguins are present within mixed 

species colonies. The colonies around Cape Geddes mainly contain 

chinstrap. In addition, penguin populations are larger around the Gourlay 

peninsula than around Cape Geddes. Both the intra and inter-specific 

competitions are potentially greater for the birds in the Signy colonies. 

Bird’s fitness, indicated by their weight, is not different across sites and 

season, with the exception of the Geddes birds during brood that showed 

lighter weights. The average number of offspring per nest observed at 

the moment of the deployment was higher in Geddes than in Gourlay. 

These observations suggest that the habitat might be more favourable on 

the north side of the archipelago thanks to the accessibility of the 

continental shelf break and stronger currents potentially bringing more 

preys. There is also less competition for resources and the birds seem to 

produce more chicks.  
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Chapter IV CHANGES AT THE SCALES OF THE FORAGING TRIPS 

AND THE BREEDING SEASON 

This chapter assesses changes in trip foraging metrics that take place 

over the breeding season at small and medium spatial and temporal 

scales and whether the colony, the sex of the bird or individual 

preferences have an impact on trip foraging characteristics. 

IV.1 Introduction and aim 

The reduction in foraging trip duration between incubation and brood is 

well documented for breeding seabirds in general  (Weimerskirch et al., 

1993) and for penguins in particular (Williams and Siegfried, 1980; 

Charrassin et al., 1998). The distinct phases of breeding have different 

constraints which determine how long individuals can be absent from 

the nest. When the clutch is complete one parent remains ashore to 

incubate the eggs while the other goes to sea to forage for a number of 

days. When the foraging individual returns, the parental roles swap. 

During the incubation period, long pelagic trips allow birds to build up 

reserves and recover from fasting (Croxall, 1984). On hatching, the 

brood phase starts with a guard period when the chicks are mostly 

brooded by one parent whilst the other is at sea foraging. Again, both 

parents alternate roles. When the chicks are thermally independent and 

can protect themselves from raptorial seabirds, both parents leave their 

chicks in crèches and forage to meet their own needs and the increasing 

demands of their growing offspring (Williams, 1995). During chick 

rearing, foraging trips are usually short and access to prey is restricted, 

primarily because foraging locations need to be in close proximity to the 

nest site.  

In this chapter, the changes in the foraging trip metrics are considered 

over the course of the breeding season, not only in the horizontal 

dimension (range and shape), but also in relation to vertical exploitation 

of the environment; that is considering the available habitat as a volume 

(Zamon et al., 1996). I will also consider the differences between day 

and night, as well as the influence of the colony location, the sex of the 

bird, individual preferences, as well as any variation throughout the 

breeding season. 

I predict that variation in trip metrics through time will reflect the 

reduction in the available habitat along with an increase in the pressure 

to forage and meet the growing requirements of the offspring (Meyer et 

al., 1997; Charrassin et al., 1998; Jansen, Russell and Meyer, 2002). 

IV.2 Method 

a. Data exploration and pre-processing 

The different trip metrics considered in this chapter were described in 

section II.3, page II-32 and summarized in Table II-8. Two metrics relate 

to the spatial horizontal exploitation of the habitat: the trip maximum 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

IV-49 

range and the foraging zone coefficient. Three variables related to the 

trip timing: the trip duration, the percentage of outward time and the 

percentage of night activity. Three other metrics containing the vertical 

component of foraging were included: the percentage of dive time; the 

percentage of night dive; and the vertical/horizontal distance ratios. 

Finally one metric linking the exploited habitat volume (horizontal and 

vertical dimensions) and the trip timing, the exploration speed, was used. 

These metrics were chosen as they represented a single value for each 

trip, which was more indicative than using average values from multiple 

dives (e.g. dive depth or bottom time). They also integrated all the 

dimensions of use of the habitat (horizontal, vertical and time). 

Variable correlations 

Some of the trip metrics showed highly significant correlations. The trip 

duration and trip maximum range had a Pearson coefficient of 0.94 

(p<0.01). The percentage of night activity and the percentage of night 

dives had a Pearson coefficient of 0.86 (p<0.01). Finally, the percentage 

of dive time and the vertical/horizontal distance ratio had a Pearson 

coefficient of 0.69 (p<0.01). Weaker but significant correlations were 

also found between several other trip metrics (Figure IV-1). However, 

as some of the metrics followed a long-tailed distribution (such as the 

trip duration, maximum range and vertical/horizontal distances ratio) 

caution is required when considering correlation coefficients. 

The percentage of outward time was the only metric that did not show 

any significant correlation with any other metric. Despite these 

significant correlations, colinearity was not considered in the analysis, 

as every trip metric was modelled separately during the main analysis 

(IV.2b, page IV-52).  
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Figure IV-1: Significant positive (blue) and negative (red) correlations between the different trip 

metrics at a 0.01 significance level; crosses “×” indicate non-significant correlations. 

Data imputation 

This process is defined as the replacement of missing values. 12.7% 

of the foraging trips did not have any valid TDR data (see II.4b, page 

II-35). Three strategies were used in order to manage the missing 

values (the percentage of dive time, the percentage of night dive, the 

exploration speed and the vertical/horizontal distances ratio) of the 

dive dependent trip variables: 

 discarding the trips with missing data 

 replacing the missing data with mean values by stages 

(incubation or brood) 

 missing data prediction 

The first option is straightforward but required discarding of incomplete 

datasets. 

For the second option, the replacement mean values per breeding stages 

for each dive derived trip metrics are presented in Table IV-1. 
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Table IV-1: Mean values per breeding stage for the four dive derived metrics used to replace the 

missing data. 

 Incubation Brood 

Percentage of dive time 23.9% 26.6% 
Percentage of night dive 19.8% 25.2% 
Exploration speed (m s-1) 57.8 66.6 
Vertical/horizontal distances 27.9 38.8 
   

For the third option (missing data prediction), the missing values were 

predicted after a random forest modelling algorithm was trained on the 

complete dataset (see IV.2b for a description of the technique). For each 

dive dependent trip metric, the model used a combination of the other 

trip measures along with the colony and the temporal variable (days to 

hatching) to predict the value. Table IV-2 presents the performance of 

the modelling (percentage of variance explained) for each variable and 

the relative contribution to the model from each co-variable (as a 

percentage of the total increase in node purity). 

Table IV-2: Results of the random forest modelling of the four dive derived metrics. The 

percentage of variance explained indicates how well the model performed. The percentage of 

the increase in node purity is a measure of the relative contribution from each co-variable to the 

model. Higher values mean that variables can be used to split the data into more homogenous 

groups (“purer” groups) and therefore has a higher importance for producing a more accurate 

model. The values have been transformed to a percentage to allow comparison between models. 

  % of the increase in node purity 
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Percentage of dive time 25.4% 18% 21% 19% 12% 10% 18% 4% 
Percentage of night dive 79.8% 22% 23% 6% 4% 36% 5% 3% 
Exploration speed (m s-1) 34.7% 18% 21% 15% 12% 11% 20% 3% 
Vertical/horizontal distances 50.6% 20% 29% 11% 10% 8% 18% 3% 
         

The model with the highest performance was predicting the percentage 

of night dives, mainly from the associated percentage of night activity 

metrics. This is logical, as higher night foraging time means a higher 

chance of night dives (also indicated by the high correlation between 

these variables). The second best model was trying to predict the 

vertical/horizontal distances ratio. For this metric, the most contributing 

variables were the trip maximum range (which was strongly linked with 

the horizontal distances), the trip duration and the time of day. Finally, 

the percentage of dive time and the exploration speed were both derived 

from the same set of co-variables: the trip maximum range, the time of 

day, the trip duration and to some extent, the foraging zone coefficient. 

The influence of these three different data imputation techniques on the 

prediction accuracy of the models was evaluated (see IV.3a, page IV-

57). 
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Outliers 

Outliers can have a strong influence on some data analysis methods such 

as a principal component analysis (PCA) or generalized regression 

modelling. A density based local outlier detection algorithm (LOF, 

Torgo 2010) was therefore used to detect which trips could be 

considered as outliers. Local outlier factors for each trip were calculated 

for the three different datasets resulting from the data imputation 

techniques.  

The very long incubation trip 75_173 was consistently ranked with the 

highest outlier factor. This trip lasted almost 20 days and resulted in the 

failure of the nest after the partner abandoned it (see Figure IV-6). This 

confirmed that this trip was a “true outlier” and should be discarded (see 

II.4b, page II-35). 

Another trip (48_117) had consistently high outlier scores (ranked twice 

second and once fourth), mainly due to its very fast exploration speed 

(92.2 m min-1 against an average of 62.8 m min-1). Finally, 12_16 

appeared twice in the top five highest scores, but its metrics didn’t show 

any extreme values. 

Apart from 75_173, no other trips had apparently valid biological or 

methodological reasons to be excluded from the analyses. 

Temporal predictive variable (days to hatching) 

Although hatching is a single specific event in time, birds are known to 

change their foraging behaviour gradually towards the end of the 

incubation (Weimerskirch, Stahl and Jouventin, 1992). After hatching, 

the offspring demands are increasing with their development. The trip 

metrics were therefore modelled using time as a continuous predictor 

variable instead of considering the breeding stages as discrete categories.  

From the peak hatching date, determined for each season and colony (see 

III.2), the temporal difference between the start of each trip and the peak 

hatching date were calculated in days. This number of “days to hatching” 

was used as the temporal predicting variable. 

b. Analytical approaches  

Principal Component Analysis (PCA) 

For the Principal Component Analysis, the failed trip 75_173 was 

discarded and the missing derived TDR values were replaced by random 

forest model imputed data. The variables were then scaled and centred 

(R Core Team, 2015).  

The trips and the metrics were projected in the first four dimensions of 

reduced space. The trip points were labelled according to the breeding 

stage and the colony to assess whether they were any relationship 

between these factors and the point distribution.  
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Linear mixed models (LMM) 

A mixed model regression allowed me to include random effects, 

therefore taking into account clusters or blocks of observations (Bolker 

et al., 2009). In the case of this study, this would be the effect of the 

colony location or the sex of the individuals or the individual itself in the 

cases where several foraging trips were recorded from the same 

individual (pseudo replicates). 

Ideally, a generalized mixed model (GMM) method would be used with 

non-normally distributed metrics (with a specific family fitting the 

distribution of the variable). Unfortunately, the interpretation of the 

results and specifically the interactions between the fixed and random 

effects can be very challenging for GMM. Therefore the chosen 

approach was to transform some of the variables, ensuring that the fitted 

residuals of the variable had a regular distribution. A linear mixed model 

(LMM) was then applied on the transformed variable; the trip duration 

and the maximum trip range had to be log transformed. The 

vertical/horizontal distance ratio was also log-transformed after adding 

the value of 1 to avoid negative transformed values. The outlier trip 

75_173 was discarded and the missing derived TDR values were 

replaced by random forest modelled ones. Diurnal trips only where 

discarded for the modelling of the percentage of night activity and the 

percentage of night dive variables. 

Each foraging trip metric was modelled using time as a predicting 

variable (days to hatching) and the colony as a random effect. The fixed 

and random effects were tested through a backward elimination of all 

effects (Kuznetsova, Bruun Brockhoff and Haubo Bojesen Christensen, 

2016). 

Random Forest (RF) 

Random forest is an ensemble of decision trees classifying the data into 

subsets and predicting the outcome either as a class mode (classification) 

or as a mean prediction (regression). Each tree is built by not only 

subsampling the data, but by randomly discarding some of the co-

variables. This “bagging” process allows for testing the prediction of 

each decision tree and also for assessing the contribution from each co-

variable. The trees with the best performance are kept for the next 

iterations in this machine learning process (Breiman, 2001). 

This algorithm required no variable transformation (Olden, Lawler and 

Poff, 2008). Similarly to the linear mixed model, the outlier trip 75_173 

was discarded, the missing derived TDR values were replaced by 

random forest modelled ones and the diurnal trips only where discarded 

for the modelling of the percentage of night activity and the percentage 

of night dive variables. Each trip metric was modelled against the time 

predictive variable (days to hatching) along with the colony. An 

additional randomly generated variable was added as a co-variable, 

enabling me to have a baseline while comparing the ranking of each co-

variable based on their relative importance in the model. Each model 
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was tested for overfitting and validated according to Murphy et al. 

(2010) and Evans et al. (2010). 

Prediction of the accuracy of the models 

To compare each method’s prediction accuracy, the linear regression 

between the observed and the predicted values for each metric was 

calculated according to Piñeiro et al. (2008). This also allowed me to 

measure the influence of the different missing data imputation 

techniques on the performance of the models. 

For the linear mixed model method, in order to avoid using the same 

dataset to train and test the model, a ten fold cross-validation process 

was applied. A stratified random method was used to create the folds, 

ensuring that the sampling was balanced across breeding stages (linked 

to the temporal predictive variable) and between colonies (random 

effect). The model was trained on 9 folds and the predicted metric values 

calculated from the unused remaining fold.  

In the case of the random forest method, the predicted values for each 

metric were automatically calculated on the trips that were not included 

in the training of the model during the bagging process, see Liaw & 

Wiener (2002). 

Workflow summary 

Table IV-3 summarizes the different analytical approaches with their 

advantages and disadvantages and Figure IV-2 presents the workflow 

from the data pre-processing leading to the different analytical methods 

and accuracy prediction. 
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Table IV-3: Comparison of the three analytical methods used in this chapter. 

 Pros Cons 

Principal 
Component 
Analysis (PCA) 

 Easy to interpret and 
plot 

 Stable 
 
 

 Variables might have to be 
transformed 

 No significance levels 

 No mathematical model 

 Only numerical variables 

Linear Mixed 
Models (LMM) 

 Relatively easy to 
interpret (linear model) 

 Stable 

 Significance levels are 
provided 

 Include random effect 
variables 

 

 Variables might have to be 
transformed 

 Relies on a chosen 
mathematical model 

 Training and test sets are 
necessary to measure 
prediction 

Random Forest 
(RF) 

 No variable 
transformation are 
necessary 

 Can include non-
numerical variables 

 Usually higher prediction 
scores 

 Prediction can be 
measured on the “out of 
the bag” dataset 

 No significance levels 

 Some level of stochasticity 

 No mathematical model 

 The prediction of a 
continuous value (RF as 
“regression”) is not as 
performant as the 
prediction of a class (RF as 
“classification”) 
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Figure IV-2: Workflow summary from the trip metrics calculated in Chapter II to the three 

analytical methods: principal component analysis (PCA), linear mixed models (LMM) and 

random forest (RF). Linear regressions were used to assess the prediction accuracy of the 

models. The modelling formula annotation is compatible with the R syntax (R Core Team, 2015) 

with the dependent variable on the left and the independent co-variables on the right of the “~” 

symbol. The co-variables are combined using the “+” symbol. The “(1|)” annotation refers to 

random effects for the LMM. 

c. Effects of sex or individuals 

To test the effect of sex as a random effect, the linear mixed model 

method was repeated but this time with the putative sex of the bird (see 

II.1g, page II-21) included as a random effect. 

To estimate the effect of individual birds (pseudo-replicates), the data 

available were restricted to the deployments including several trips. 

These were mainly brood trips and the temporal extent of the available 

data was limited (up to 30 hours). It was therefore not relevant to try to 

predict the change of the metrics over time. As an alternative method, 

the Euclidean distances between trips in the multi-dimensional space 

defined by all the trip metrics (scaled and centred as for the PCA) were 

calculated. Intra-individual distances (distances between trips from the 

same individuals) were compared with inter-individual distances 

(distances between trips from different individuals) to assess whether 

trips from the same individuals were more similar. 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

IV-57 

IV.3 Results 

a. Data input 

The different data inputs generated by the three data imputation 

techniques (see IV.2a, page IV-48) were evaluated through the 

prediction accuracy of the linear mixed model and the random forest 

model.  

 Figure IV-3 shows that replacing missing dive data due to the failure of 

the TDR devices during some deployments usually gave better results 

than discarding the trips. As a lot of these deployments related to late 

brood when the amount of data was already scarce, I decided to keep 

these trips and complement the dataset with estimated values. Using a 

random forest model to guess missing values gave higher prediction 

scores for most variables (except the exploration speed). The results 

presented in the following sections were therefore generated using this 

imputation technique.  

 
Figure IV-3: Effects of the different missing data imputation strategies on the prediction 

accuracy for the different modelling approaches and modelled variables (linear mixed model, 

LMM and random forest, RF). 

b. Trip metrics description 

The density plots for every trip metric by breeding stage (incubation 

versus brood) are presented in Figure IV-4. Figure IV-5 shows the 

breakdown of these metrics by colony (Cape Geddes or Gourlay 

Peninsula). 
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Figure IV-4: Density distribution of the different trip metrics according to the different breeding stages (black for 

incubation and red for brood). 
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Figure IV-5: Density distribution of the different trip metrics according to the different breeding stages and colony 

locations (Cape Geddes in purple and Gourlay Peninsula in orange). 

Trip range, duration and direction 

Historically, before tracking devices were small enough to be carried by 

penguins, the main estimate of trip length was the trip duration. Direct 

observations at the colony enabled field operators to record when the 

birds were leaving or returning to their nests and therefore the duration 

of foraging. At sea observations allowed observers to estimate bird’s 

travelling speed; other experiments using swim tanks provided 

additional estimates of swim speed (Clark and Bemis, 1979). From the 

trip duration and an average speed, the estimated trip range could be 

derived (Williams and Siegfried, 1980). Pre-GPS bio-logging devices 

and telemetry techniques allowed researchers to estimate more precisely 

the distance travelled and foraging trip ranges (Wilson, Nagy and Obst, 

1989; Trivelpiece et al., 1986). In addition to calculating the trip duration 

without having to continuously monitor the colony (see II.2a, page II-

22), the devices used in this study allowed me to very accurately estimate 

travel speed and trip total ranges. 
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Trip duration and trip range showed similar patterns, which was 

confirmed by their high correlation coefficient (Pearson coefficient of 

0.92). Although there was a large overlap between trip duration and 

range for both breeding stages (plenty of short incubation trips were 

observed mainly from Cape Geddes), the incubation trip values 

distribution were characterised by a long tail towards long far ranging 

trips (up to 258 km and 19 days). In contrast, the brood trips were limited 

in their length (37 km) and duration (30 hours). Incubation trips from 

Gourlay appeared to be longer while Geddes trips appeared longer 

during brood. 

When comparing both metrics, the trip range metric indicates additional 

information not directly visible in the trip duration values. Its density 

distribution for the brood stage showed a bimodal shape from both 

colonies. This could suggest separate foraging locations at different 

distances (see Figure IV-6 and see also VI.3e, page VI-126) but with 

similar trip duration. 

 

Figure IV-6: Trip maximum ranges for incubation trips (left) and brood trips (right). The very 

long south orientated incubation trip 75_173 from Gourlay (blue) was discarded as it resulted 

in the failure of the nest. The dashed line represents the 1000 m isobath. 

When several trips per bird were recorded, most of them didn’t clearly 

alternate between short chick provisioning and longer parental recovery 

trips as observed for other species (Clarke, 2001; Saraux et al., 2011). 

Figure IV-7 suggests that the main driver for long or short trips was the 

day period covered by the trip (diurnal or nocturnal). 
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Figure IV-7: Succession of trip maximum ranges when more than 2 trips per bird were recorded. 

The plot number from 35 to 107 is the deployment ID. Points are coloured according to the night 

activity (yellow for diurnal trips and black for nocturnal trips). 

The foraging trip directions showed a significant difference between 

sites (Table IV-4); birds tended to travel mainly in an anti-clockwise 

direction from Cape Geddes and mainly in a clockwise direction from 

the Gourlay Peninsula (𝒳2=6.987, N=190, p=0.008). There were no 

significant differences in the travel direction between the incubation and 

brood stages at Geddes (𝒳2=0.292, N=151, p=0.589) and Gourlay 

(𝒳2=3.732, N=42, p=0.053). 

Table IV-4: Trip directions per breeding stage and colony. 
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Clockwise 97 30 38 16 13 
Anti-clockwise 96 33 50 3 10 
Undetermined 27 2 12 5 8 

Foraging Zone coefficient 

The foraging zone coefficient varied from 2.04 (very direct trip, the 

minimal possible value being 2) to 6.17 (trips with more complex 
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shapes). Figure IV-8 shows the shape of trips with extreme FZC in 

comparison with a trip with a FZC close to the average value (2.82). The 

coefficient is positively correlated with the trip duration but not with the 

trip maximum range. The change in the distribution of the values over 

time suggested that the brood trips were more direct than the incubation 

trips (reduction in the FZC). The colony specific distributions appeared 

to indicate more direct foraging trips from Cape Geddes. 

 

Figure IV-8: Examples of two brood trips with extreme foraging zone coefficient values (one 

very direct trip from Geddes, FZC of 2.04 and one very irregular shaped trip from Gourlay, FZC 

of 6.17). The incubation trip from Geddes (black) represents a trip with a FZC value close to the 

average value. 

Percentage of outward time 

The outward section of the trips represented between 17.5 and 82.2% of 

the total trip duration with an average of 57.7% ±12.6%, indicating that 

the birds tended to spend less time on the way back with a more direct 

and faster return section of the trip. This suggests a slightly more direct 

trip back to the colony with some opportunistic feeding as reported by 

Wilson & Peters (1999). The distribution of the value did not suggest 

any patterns or differences between colonies and stages.  

Night activity 

In addition to the trips with 0% of night activity (N=74), trips starting or 

ending during the night but with mainly daylight time (N=32) were 

included as diurnal only trip. There was no significant difference in the 

number of diurnal only trips between colonies (𝒳2=1.55, N=220, 

p=0.213). But there was a significant difference between stages with 

more diurnal only trips during brood: 54.2% versus 39.3% for incubation 

(𝒳2=4.12, N=220, p=0.042). 
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When several trips were recorded from the same bird, 75.9% of the birds 

didn’t display any clear preferences between overnight or diurnal only 

trips. However, 7.4% of the birds showed an exclusive preference in 

overnight trips and 16.7% did diurnal trips only (Table IV-5). 

Table IV-5: Occurrences of overnight or diurnal only trips (or mix of both strategies) for birds 

with several foraging trips. 
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Mixed 41 14 21 1 5 
Only overnight trips 9 3 3 1 2 
Only diurnal trips 4 3 1 0 0 

 

The percentage of night activity was positively correlated with the trip 

maximum range, suggesting that far incubation and brood trips had more 

overnight time. It was also negatively correlated with the 

vertical/horizontal distances ratio, which indicated that a high ratio of 

night activity was linked with shallower diving.  

This variable showed a clear bimodal distribution. Both incubation and 

brood stages had a first peak just above 0% of night activity 

corresponding to the diurnal trips. The incubation trips then showed a 

second peak around 20%. This value was equal to the average night time 

ratio at the South Orkney Islands during that season. It was logical that 

incubation trips, most of which included overnight time, indicated a peak 

of night activity matching the night time ratio. Brood trips showed a 

second peak at around 40% of night activity indicating over-night 

foraging trips, but this could also be linked with the fact that nights were 

longer during brood. 

Percentage of dive time 

The time spent diving was strongly positively correlated with the 

vertical/horizontal distances ratio, which confirmed that these two 

metrics indicated a higher vertical exploitation of the habitat. It also 

showed weaker positive correlations with the foraging zone coefficient, 

the percentage of night dive and the exploration speed.  

This metric didn’t display any strong pattern or clear differences 

between stages and colonies, except that the brood trips included higher 

dive time values, while some incubation trips (mainly from Geddes) had 

very low dive ratios. Only one incubation trip had a percentage of dive 

time higher than 40% versus 12 brood trips (see Table IV-6). 
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Table IV-6: Trip distribution according to their percentage of dive time and phenological stages. 

% dive time Incubation Brood 

< 10%  6 6 
10 – 40%  82 113 
> 40%  1 12 

Percentage of night dives 

The percentage of night dives was highly positively correlated with the 

percentage of night activity and therefore showed similar patterns: a 

peak just above 0% for diurnal trips, a peak around 20% for incubation 

trips and a peak around higher values for brood trips. For this metric, the 

values measured on the Geddes trips appeared higher than the ones from 

the Gourlay data. 

Table IV-7: Trip distribution according to their percentage of night dives by colony and 

phenological stage. 

 Incubation Brood 

% night dives Geddes Gourlay Total Geddes Gourlay Total 

< 15% 2 13 15 7 9 16 
15 – 50% 34 9 43 23 7 30 
> 50% 3 0 3 29 1 30 

Exploration speed 

The exploration speed was negatively correlated with the trip duration 

and maximum range and positively correlated with the percentage of 

dive time and night dives. This appeared to indicate that an increase in 

the vertical exploration of the habitat was linked with an increase in the 

exploration speed. Although the metric did not show any correlation 

with the vertical/horizontal distances ratio. 

The exploration speed in both horizontal and vertical planes showed an 

increase from incubation to brood, especially for the trips recorded from 

Gourlay (see Table IV-8). 

Table IV-8: Trip distribution according to their exploration speed by colony and phenological 

stage. 

Exploration 
speed 

Incubation Brood 

Geddes Gourlay Total Geddes Gourlay Total 

< 50 m min-1 8 3 11 11 0 11 
50 – 70 m min-1 47 20 67 50 14 64 
> 70 m min-1 10 1 11 39 17 56 

Vertical and horizontal distance ratio 

The ratio between the vertical and the horizontal components of the 

foraging trips was weakly positively correlated with the foraging zone 

coefficient and strongly correlated with the percentage of dive time. It 

was negatively correlated with the trip maximum range, the percentage 

of night time and the percentage of night dives. The trip maximum range 

and the night activity and dives were linked with a more horizontal 

exploitation of the habitat and therefore a lower ratio. In contrast, the 
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percentage of dive time logically indicated a more vertical exploitation 

of the habitat and a higher ratio. 

This variable indicated that the brood trips tended to have a more vertical 

habitat use (with 5 foraging trips from 3 birds showing more vertical 

distances covered than horizontal distances with a ratio higher than 1, 

see Table IV-9). 

Table IV-9: Trip distribution according to their vertical and horizontal distance ratio by colony 

and phenological stage. 

Vert./Hor. 
Distances 

Incubation Brood 

Geddes Gourlay Total Geddes Gourlay Total 

< 0.2 10 5 15 14 9 23 
0.2 – 0.5 52 19 71 66 14 80 
0.5 - 1 3 0 3 16 7 23 
> 1 0 0 0 4 1 5 

c. Changes in the metrics over the season: pre and post-hatching 

differences 

Principal Component Analysis (PCA) 

The first two axes of the PCA (see Figure IV-9 top plots) explaining 

49.4% of the data variability showed that the data in this reduced 

dimension space was grouped into three clusters. A first group of points 

on the top-left corner of the plane (negatively correlated with both axes 

1 and 2) concentrated the long, far ranging trips which mainly occurred 

during incubation at Gourlay Peninsula (except one trip from Cape 

Geddes). This group had a low vertical/horizontal distance ratio and low 

exploration speed.  

A second group of points towards the bottom of the plane (negatively 

correlated with axis 2) represented the trips with a high percentage of 

night activity and night dives and low foraging zone coefficient and 

vertical/horizontal distances. These were mainly brood trips recorded 

from Cape Geddes. 

Finally, the last group of points were positively correlated with the first 

axis and strongly positively linked with the vertical to horizontal 

distances ratio. These were mainly diurnal, short brood trips and were 

not specific to any colony. 
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Figure IV-9: First four axes of the PCA. Axes 1 and 2 (top plots, respectively 27.1 and 22.3% of the variance). Axes 

3 and 4 (bottom plots, respectively 18.8 and 11.1 % of the data variabilitity). With labelling of the points based on 

the breeding stages (black : incubation and red : brood) and the colonies (purple: Geddes and orange: Gourlay). 

Axis 3 (18.8% of the data variability, Figure IV-9 bottom plots) was 

negatively correlated with the vertical exploitation of the habitat (with 

the percentage of dives and vertical/horizontal distances ratio metrics). 

At the extreme positions along this axis were brood trips from Gourlay 

(negative values) and incubation trips from Geddes (positive values). 

The rest of the variables or points did not show any clear pattern. The 

fourth axis (11.1% of the data variability) was mainly negatively 

correlated with the percentage of outward time, without any visible 

arrangement between stages or colonies. 

Linear mixed models (LMM) 

The scatter plots between each response variable and the fixed effect 

(days to hatching) are presented on Figure IV-10. The shaded areas 

represent the 80% confidence interval of the model prediction for each 

random effect (colony). The model’s parameters and probability values 

are presented in Table IV-10.  

All the models, except the ones applied to the foraging zone coefficient, 

the percentage of outward time and the percentage of night dives showed 

a significant contribution from the fixed effect. The trip duration and trip 

maximum ranges decreased as the breeding season progressed. The 
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percentage of night activity, the percentage of dive time, the exploration 

speed and the vertical/horizontal distances ratio all increased during the 

breeding season. 

Only two metrics showed a significant contribution from the random 

effect: the foraging zone coefficient and the percentage of night dives. 

The first one indicated that the Geddes trips were more direct than the 

Gourlay trips. The second one suggested that the Geddes trips had higher 

night dive ratios than the Gourlay trips. 
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Figure IV-10: Response variables plotted along time with the prediction and the 80% confidence interval of the 

linear mixed models for each random effect (colony). The left and right vertical dashed lines respectively represent 

the start of the first brood trip and the end of the last incubation trip. 

Table IV-10: Parameters of the LMM and significance value for the fixed and random effects for 

each response variable. 
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Trip duration (h) Log(x) 3.00 -0.048 < 0.01 0.14 0.708 
Trip maximum range (km) Log(x) 3.09 -0.042 < 0.01 0.00 1.000 
Foraging Zone Coefficient  2.97 -0.003 0.287 32.7 < 0.01 
Percentage of outward time  0.58 -0.0004 0.569 0.00 1.000 
Percentage of night activity  0.26 0.003 < 0.01 3.25 0.071 
Percentage of dive time  0.25 0.001 0.057 0.00 1.000 
Percentage of night dive  0.28 0.002 0.106 47.5 < 0.01 
Exploration speed (m min-1)  62.4 0.359 < 0.01 0.00 1.000 
Vertical/horizontal distances Log(x+1) 0.27 0.003 < 0.01 0.00 1.000 
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Random Forest (RF) 

Figure IV-11 shows the same trip metrics dispersion including the 80% 

predicted confidence interval for each colony for the random forest 

models.  

Table IV-11 summarizes the different numerical outputs for each model 

with the percentage of variance explained by each model, the 

contribution of each covariate to the model (in relative increase in node 

purity) and the p value for the significance test for each model.  

Similarly to the linear mixed models, the decreasing trip duration and 

the trip maximum range values over time was well modelled (high 

percentage of variance explained and high contribution from the 

temporal predictor). The modelling of the foraging zone coefficient 

showed a high contribution from the colony factor, as previously 

revealed by the LMM algorithm. The model based on the percentage of 

outward time was not significant with a very low portion of the variance 

explained. The percentage of night activity, the exploration speed and 

the vertical/horizontal distances ratio showed similar explained variance 

and a high contribution from the days to hatching response variable. The 

model based on the percentage of dive time, although significant, 

showed low explained variance and similar contributions between the 

temporal predictor and the colony effect. 
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Figure IV-11: Response variables plotted along time with the prediction and 80% confidence intervals of the random 

forest models for each colony. The left and right vertical dashed lines respectively represent the start of the first 

brood trip and the end of the last incubation trip. 
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Table IV-11: Parameters from the RF models with the percentage of variance explained, the 

relative increase in node purity for each co-variable and the p value for the model significance 

test. 
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Trip duration (h) 63.53 74% 14% 12% 0.002 
Trip maximum range (km) 50.43 77% 15% 8% 0.002 
Foraging Zone Coefficient 12.64 50% 29% 22% 0.002 
Percentage of outward time <0.01 48% 47% 5% 0.572 
Percentage of night activity 22.30 63% 28% 9% 0.002 
Percentage of dive time 0.58 49% 46% 5% 0.030 
Percentage of night dive 33.92 36% 27% 37% 0.002 
Exploration speed (m min-1) 13.61 62% 34% 4% 0.002 
Vertical/horizontal distances 16.38 61% 35% 4% 0.002 

d. Between sex differences 

When undertaking similar linear mixed models (each trip metric against 

days to hatching as the predictive temporal) but with the putative sex of 

the bird as the random effect, none of the models showed a significant 

effect of the sex on the differing trip metrics. This result was consistent, 

whether the sex was determined using one or other of the discriminant 

functions (see II.1g, page II-21). 

This was consistent with Lynnes et al. (2002) and Miller et al. (2010) 

who found no differences in travelled distances or time spent at the shelf 

break between sexes for chinstrap penguins. Similarly, de León et al. 

(1998) found no difference in meal size between sexes for the same 

species. In contrast for macaroni penguins, Barlow & Croxall (2002) 

found differences between male and female foraging ranges during chick 

rearing. Similarly, Watanuki et al. (2010) recorded shorter trips during 

brood for male Adélie Penguins. But Angelier et al. (2008) did not find 

any difference in foraging effort between sexes for the same species. 

e. Inter-individual differences 

The differences (distances) between trips from the same individuals 

(intra-individual distances) were significantly smaller than the 

differences between trips from different individuals (inter-individual 

distances, see Figure IV-12, t=-6.9154, df=202.06, p<0.01). This result 

suggested that there is a strong individual effect on the foraging trip 

characteristics (pseudo-replicates). 
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Figure IV-12: Distribution of the distances between the trips from the same individuals (intra-

individual) and the distances between the trips from different individuals (inter-individual). 

IV.4 Discussion of the results, implications, limitations and summary 

The different methodological approaches allowed me to draw similar 

trends and patterns, although with some differences in data processing 

and accuracy. The changes in the different trip metrics over the breeding 

season and the influence of the colony location will now be discussed. 

The limitations and uncertainties about these results and their 

implications for the next chapters will also be described. 

a. Changes in the foraging trips characteristics over time 

Trip distances, durations and exploration speeds 

Unsurprisingly, the well-known reduction in foraging trip duration and 

range was clearly represented on the PCA and confirmed in both models. 

The necessity to feed the chicks after hatching restricted the amount of 

time each parent could allocate to foraging. This reduction meant that 

the birds might not be able to extent their foraging beyond a certain 

distance (Chappell et al., 1993; Charrassin et al., 1998). A gradual 

reduction in foraging duration and range towards the end of the 

incubation was consistent with the characteristic for this species 

(Williams, 1995) and was confirmed mainly from data collected from 

Cape Geddes. The greater contrast between incubation and brood trips 

from Gourley can be explained by the fact that birds could only reach 

the continental shelf break during incubation. During brood, they did not 

have enough time to travel that far and return to feed their chicks, so they 

stayed in the vicinity of the colony.  Lishman (1985) measured ranges of 

132 km and 66 km for incubation and brood respectively from Signy, 

similar to the ones measured during this study (205 and 26 km). This 

reduction in foraging time and therefore distance lead to an 

intensification of the foraging and therefore an increase in the 

exploration speed metric, indicated by the PCA and confirmed by both 

the LMM and RF models. 
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Night and day activities 

In addition to the trip duration and range, the second most important 

change was linked with the timing of the foraging trips. Two different 

confounding trends were observed: an increase in diurnal foraging trips 

and an increase in the frequency of night dives when the trip included 

some night time. 

The first observation confirmed the predilection for daylight foraging 

during brood reported by Jansen et al. (1998) and Jansen et al. (2002), 

and the first study reported annual variations in diurnal versus nocturnal 

preferences. This might be explained for visual predators such as 

penguins as they may experience difficulty in locating and capturing 

prey in darkness (Williams, 1995). 

In addition, the contradictory increase in night foraging, especially for 

the foraging trips recorded from Cape Geddes, might be explained by 

diel krill migration (Zhou and Dorland, 2004; Everson, 2008; Cresswell 

et al., 2009). This is supported by the observed shallower dives during 

the night (see V.3b, page V-91) which has been previously reported by 

several studies (Bengtson, Croll and Goebel, 1993; Wilson and Peters, 

1999; Takahashi et al., 2003; Croll et al., 2006; Miller and Trivelpiece, 

2008), indicating shallow easier access to prey during the night. 

However, though krill swarms may be shallower at night, their density 

might be lower (Everson, 1982). In some cases, bioluminescence could 

help predators to find their prey (Grinnell et al., 1988; Bengtson, Croll 

and Goebel, 1993; Miller and Trivelpiece, 2008). Jansen et al. (1998) 

also reported a shift in prey species during night foraging where bird 

might forage more on myctophid fishes rather than krill. The absence of 

stomach content or guano content analysis unfortunately did not allow 

to test this hypothesis. 

During brood, overnight trips tended to be significantly further off shore 

than diurnal trips only (average of 21.4 and 8.6 km respectively) 

confirming what Miller et al. (2010) observed for this species. This 

might indicate two distinct foraging locations according to the timing of 

the trip (see VI.3e, page VI-126). 

Vertical exploitation of the habitat 

In parallel with the horizontal reduction of the available foraging habitat, 

two trip metrics were linked with the vertical exploitation of 

environment: the percentage of dive and the vertical/horizontal 

distances, both being highly correlated. On the PCA, these two metrics 

seemed to be negatively related to long incubation trips and to trips with 

high percentages of night activity or night dives. 

The modelling approaches both showed a significant but weak increase 

in the vertical exploitation of the habitat during the breeding season (the 

LMM coefficients for the percentage of dive time and the 

vertical/horizontal distances was respectively 0.001 and 0.003; the RF 

explained variance was respectively 0.56% and 16.4%). As mentioned 

earlier, dive depth was strongly linked with the period of the day and as 
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the percentage of night activity increased after hatching, shallow night 

dives effect might partially mask the deeper exploitation of the habitat. 

When modelling the vertical/horizontal distances ratio using a random 

forest algorithm including not only the temporal predictor variable (days 

to hatching) but also the percentage of night activity, the model 

performed better (33.1% of variance explained, the R-squared between 

the observed and the predicted values doubled to reach 0.364). The days 

to hatching scored 44% of the relative increase in node purity, the 

percentage of night activity was second with 30% and the random 

variable scored 23%. A bi-variable dependency plot (Figure IV-13) 

confirms a very strong increase in the vertical/horizontal distance ratio 

during the breeding season especially for trips with low night time 

activity. 

 

Figure IV-13: Predicted vertical/horizontal distance ratio in relation to the breeding season and 

the period of the day. 

This increase of dive depth during brood hasn’t been described 

previously for chinstrap penguins. Charrassin et al. (1998) reported 

similar observations for king penguin, while Hart, Coulson, et al. (2010) 

recorded shallower dives during incubation for macaroni penguins. 

Deeper brood dives could be explained by a number of factors. These 

include the constraints imposed by a reduction in foraging range: the 

birds may need to better exploit the available ocean volume given the 

increase in intra-specific competition as other individuals from the same 

colony must also forage within waters close to their nest sites. The 
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combination of more birds coupled with the growing needs of the chicks 

could drive birds to dive deeper to increase their energy intake. When 

comparing several krill predators, Veit et al. (1993) suggested that deep 

divers can increase their foraging efficiency by staying closer to the 

colony. Prey depletion in the proximity of the colony, as measured for 

Adélie penguins by Ainley et al. (2004), can also be the reason for this 

increase of dive depth through intra-specific competition. It is also 

possible that change in dive depth was driven by a change in prey 

distribution along the water column. Temporal shifts in krill stages along 

the Antarctic Peninsula had been observed (Siegel, 1988) and it is 

possible that juvenile present earlier in the season exploited a different 

depth range than adults present later in the breeding season. 

b. Colony differences 

Both linear mixed models and random forest modelling methods did not 

indicate a clear difference in the trip foraging timing, ranges and 

exploration speeds between the two colonies. But the observed 

maximum ranges of the foraging trips from Gourlay Peninsula were 

further than the ones from Cape Geddes (although the longest trip was 

recorded from Geddes). During incubation, frequent shorter trips were 

recorded from Geddes, as these were quite unusual from Gourlay. 

The proximity of the shelf break was an important difference between 

the two colonies (see III.1, page III-40). This oceanographic feature is 

considered to be an important krill habitat (Ichii et al., 1998; Atkinson 

et al., 2008; Santora et al., 2012) and therefore potential predator 

foraging area (Trathan et al., 2006; Miller et al., 2010). Gourlay 

incubating birds confirmed this by reaching the shelf break on almost 

every trip, without displaying typical shorter trips as hatching 

approached. This is similar to what Lynnes et al. (2002) reported from 

the same location. 

The foraging zone coefficient indicated more direct trips from Cape 

Geddes. This can be explained during brood by the fact that the birds 

tried to reach the shelf break. By targeting this location, the shape of the 

foraging trips are less circular. Contrastingly, during brood the birds 

from Gourlay could not reach the shelf break due to its distance to the 

colony, which was incompatible with their chick rearing constraints. 

There were no important oceanographic feature to orientate their 

foraging. This might have driven them to explore a larger area and 

therefore to do more circular trips, increasing the chances of 

encountering prey swarms when no particular cue was available. 

Both the linear mixed model and the random forest methods indicated 

that the percentage of night dives was influenced by the site with trips 

from Cape Geddes having more night dives than the ones from Gourlay 

Peninsula. This can again be explained by the bathymetric differences 

between both colonies. Deeper waters around Geddes meant that during 

the day, a substantial amount of potential prey migrate to deeper depths, 

beyond the dive limits of the birds. To mitigate that, birds might be 

driven to better exploit the night time vertical migration of their prey. At 
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Gourlay, over the continental shelf, the prey vertical escape space was 

more limited, meaning that perhaps there was less incentive for birds to 

forage at night. 

An additional difference between foraging trips from both locations was 

the observed trip directions (mainly anticlockwise from Geddes and 

clockwise from Gourlay). This might be linked with local differences in 

currents and will be investigated in chapter VII.3a.  

Despite several differences between the oceanographic features 

available from the two colonies, the models did not reveal an important 

“colony effect”. Which seems contradictory with Bengtson et al. (1993) 

and Miller et al. (2010) stating that local conditions have a strong 

influence on penguin foraging. These two researches were based in the 

South Shetland Islands and it might be possible that local conditions 

were even more contrasted in this archipelago than in the South Orkney 

Islands. 

c. Prediction accuracy 

Comparing both methods 

Both modelling methods showed similar trends although these were non-

linear for the random forest models and applied to the un-transformed 

variables. But the direction of the trends were matching and both 

methods agreed on the strong colony effect for the percentage of night 

dives and the foraging zone coefficient. 

When comparing the prediction accuracy in trying to guess each trip 

metrics from the fixed and random effects (LMM) or co-variables (RF), 

the top three modelled variables were the trip duration, the trip maximum 

range and the percentage of night dives for both methods. Although the 

random forest algorithm tended to underestimate the predicted values 

(see intercept values on Table IV-12), it outranked the linear mixed 

model technique for these best predicted metrics (higher coefficients of 

determination, see Table IV-12). 
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Table IV-12: Linear regression parameters between the observed and the predicted trip metrics 

from both modelling with a graphical representation of the relationship between the observed (y 

axis) and predicted (x axis) values for incubation (black) and brood (red) trips. The variables 

are ordered by decreasing model predictions averaged between the linear mixed model (LMM) 

and the random forest (RF) 

  LMM RF 

Trip duration (h) 
(transformed for LMM) 

Intercept 0.123 

 

-13.560 

 
Slope 0.955 1.493 

R squared 0.314 0.713 

Trip maximum range (km) 
(transformed for LMM) 

Intercept 0.105 

 

-11.268 

 
Slope 0.964 1.375 

R squared 0.247 0.545 

Percentage of night dive 

Intercept 0.008 

 

-0.016 

 
Slope 0.975 1.041 

R squared 0.313 0.340 

Percentage of night activity 

Intercept 0.026 

 

-0.017 

 
Slope 0.906 1.062 

R squared 0.135 0.224 

Exploration speed (m s-1) 

Intercept 4.214 

 

-12.652 

 
Slope 0.934 1.197 

R squared 0.134 0.140 

Foraging Zone Coefficient 

Intercept 0.229 

 

0.515 

 
Slope 0.919 0.817 

R squared 0.129 0.133 

Vertical/horizontal distances 
(transformed for LMM) 

Intercept 0.047 

 

-0.071 

 
Slope 0.834 1.209 

R squared 0.061 0.169 

Percentage of outward time 

Intercept 2.416 

 

0.949 

 
Slope -3.189 -0.646 

R squared 0.023 0.010 

Percentage of dive time 

Intercept 0.134 

 

0.114 

 
Slope 0.477 0.556 

R squared 0.004 0.016 

 

In summary, LMM provided an effective way to test the influence of 

random effects (colony). The RF algorithm was able to handle raw data 

and non-linear relations while still estimating the effect of the colony. 

The accuracy of RF method was generally better, although the predicted 

values tended to be lower than the observed ones. 

d. Limitations and uncertainties 

The main limitation of these analyses was related to the data: its noise 

and distribution had a potential large impact on the analyses. Matching 

learning methods such as random forests proved more robust to deal with 

data that show distributions with long tails or non-linearity (De’ath 

2007). 

Sample sizes and the unbalanced distribution of the sampling (see III.2, 

page III-43) limited the abilities of the analyses to explore random 

effects. In this study, 75% of the foraging trips were recorded from Cape 

Geddes. There were chances that this colony was strongly driving the 

results of the analyses. Similarly, the difference in sampling at Gourlay 
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Peninsula during both 2011-12 and 2013-14 seasons, not only in terms 

of sample size, but also in terms of timing (87.8% of the trips from this 

colony were recorded in 2011-12 and these were mainly late brood trips), 

made the comparison of both seasons very difficult.  

Across the Scotia Sea, krill recruitment, abundance and size distribution 

shows important inter-annual variability (Atkinson et al., 2001). 

Although these annual changes in the prey field might have an impact 

on the food chain (Charrassin et al., 1998), Croll et al. (2006) and Lynnes 

et al. (2002) suggested that chinstrap penguins don’t increase foraging 

effort in response to low prey abundance. 

In order to explain some of the observed chinstrap foraging trip 

characteristics and changes through the season, additional information 

from the other actors of the Southern Ocean food chain is required. A 

fine scale knowledge of the prey distribution and temporal changes over 

the breeding season is necessary to validate some of our observations. 

Interspecific competition and niche partitioning with sympatric Adélie 

penguins (Lishman, 1985; Lynnes et al., 2002; Lynnes, Reid and 

Croxall, 2004; Miller et al., 2010) can be very intense during brood and 

will have an impact on the distribution of the foraging realised niche. 

Similarly, predation of penguins is an important factor that should 

ideally be included in the models (Veit, Silverman and Everson, 1993; 

Ainley and Ballard, 2012). 

e. Summary 

This chapter assessed the main changes in the foraging trip metrics 

during the breeding season. The results showed clearly that there is an 

increase in foraging effort after hatching. It is hypothesised that more 

intense foraging during brood across all dimensions is mainly driven by 

more food demand from the offspring. It is also possible that changes in 

prey availability could also influence changes in foraging effort although 

the lack of data about prey field do not allow me to test this hypothesis. 

The constraints before and after hatching are very different. In the 

context of developing a habitat model, it is necessary to separate both 

breeding stages and develop one model for each. 

In addition to the temporal scale of the breeding season (weeks), there 

are important changes occurring at higher temporal resolutions. This 

chapter emphasized the influence of the prey vertical migration between 

the day and the night on predator vertical exploitation of the habitat. This 

temporal factor (hours) has to be incorporated in the foraging model. 

The sex of the birds was not detected as an important confounding 

variable, but the individual itself appears to have an impact on the trip 

characteristics. This pseudo-replicate effect is a crucial limitation for this 

study. 

Finally, despite the important biotic and abiotic differences between 

both colonies (see Chapter III), the main trip metrics and their most 

significant changes were very similar. This is a very encouraging result 

in the context of the development of an interpolated global habitat model 
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for the South Orkney Islands based on the data available from these two 

colonies. 
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Chapter V DETECTION OF THE BEHAVIOUR MODES AT THE 

SCALE OF THE FORAGING TRIPS 

This chapter considers the changes within chinstrap penguin foraging 

trips and tries to infer the bird’s behaviour while at sea. Changes during 

the season as well as the influence of the colony or sex of the bird on the 

different behaviours are assessed. The distinction between different 

behaviours is an important input for habitat modelling (Chapter VI and 

Chapter VII). 

V.1 Introduction and aims: detecting foraging and other behaviours 

Since high resolution GPS tracking devices have become available, the 

study of fine scale animal movement has become a central question for 

avian ecologists, linking foraging behaviour with community ecology. 

This topic is especially crucial for marine species whose behaviour is 

very difficult to observe directly at sea. Tracking marine species, and 

seabirds in particular, can provide a useful insight on their at-sea 

foraging. Understanding their movement patterns can help identify and 

locate different behaviours, a key step for the development of a foraging 

habitat model (Hart and Hyrenbach, 2009; Kuhn et al., 2010). For 

example, Humphries et al. (2010) linked changes in foraging strategies 

for several marine species that could be detected through the 

characteristics of their movement in response to their environment.  

Breeding penguins are central place foragers in both the horizontal and 

vertical dimensions. Their foraging range is restricted by the location of 

the colony and the necessity of either relieving their partner at the nest 

during the incubation phase or feeding the chicks during the brood and 

crèche phases (Williams and Siegfried, 1980). The vertical dimension is 

also limited as air breathing divers, like penguins, are physiologically 

limited in their foraging depth and therefore access to prey (Kooyman 

and Ponganis, 1998). As demonstrated in the previous chapter, time is 

an important factor at different scales: energy requirements change 

during the course of the breeding season and the animals respond to their 

prey’s diel migration by adapting their foraging timing and depth. In 

addition, chinstrap penguins are slow moving (non-flying) birds that 

exploit prey that is generally patchy, difficult to predict and locate from 

the surface and whose distribution varies in time. All these factors make 

penguins a difficult model to test various optimal foraging theories (Ford 

et al., 2014).  

There are challenges and limitations on the choice of analytical tools 

available, due to the nature of the data: the dataset is large, has 

multidimensionality (in space and time), has non-independent sequential 

data points (high autocorrelation) and strong stochasticity. At the 

moment, there are no standard agreed method with which to process such 

datasets and define behavioural units (Gurarie, Andrews and Laidre, 

2009; Womble et al., 2013). 

In this chapter, I will infer the bird’s at sea behaviour modes during their 

foraging trips based on fine-scale changes in the surface and dive metrics 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

V-81 

for each trip. I propose and compare two methods: one based on a semi-

automatic unsupervised classification of behaviour modes and another 

based on a trained model with some a priori expert knowledge about the 

behaviour (supervised classification). 

I predict that in addition to the trivial distinction between foraging and 

commuting, this method will allow me to detect additional behaviours, 

such as exploratory diving or surface resting. The influence of the site, 

the stage in the breeding season and the sex on the time allocation for 

the different behaviour modes will be considered and discussed. 

V.2 Method 

a. Past approaches and method used in this study 

Previous studies using similar datasets have used different techniques to 

assess animal behavioural changes across space and time from tracking 

based data acquisition. These ranged from simple thresholds in the 

movement metrics (Naito, Asaga and Ohyama, 1990; Halsey, Bost and 

Handrich, 2007) to more complex first passage time and area restricted 

search analyses (Fauchald and Tveraa, 2003; Per and Torkild, 2003; 

Sommerfeld et al., 2013), space-state models (Patterson et al., 2008; 

Bestley et al., 2014), hidden Markov models (Hart et al., 2010; 

Agarwala, Chiel and Thomas, 2012; Dean et al., 2012), or fractal 

methods (Macintosh et al., 2013). Few of them integrated the vertical 

dimension with the horizontal dimension in their analysis of behavioural 

change (Bestley et al., 2014). Some authors identified dive bouts along 

the foraging trips, which are indicative of feeding locations and allows 

to detect foraging success (Watanuki et al., 2002; Bost et al., 2015). But 

this approach requires the definition of various threshold (maximal 

surface time, minimum number of dives, see Watanabe, Ito and 

Takahashi, 2014 for example), which is not compatible with the general 

approach of this study. 

The methodological approach used in this study is based on change point 

detection of time series (Madon and Hingrat, 2014). This process, 

considered as an important step in movement analysis (Shamoun-

Baranes et al., 2012), allowed me to take into account the non-

independent sequencing of the data (Gurarie, Andrews and Laidre, 2009; 

Benson, 2016). The tools and packages chosen for this study were in 

accord with the heuristic approach of this research which tries to 

minimize parameterization during the data processing. 

Using both surface and dive metrics that were interpolated at a regular 

and relatively high temporal frequency (see II.2c, page II-29) allowed 

me to integrate multiple dimensions in the change detection. Combining 

these three dimensions enabled me to capture complex interactions 

between metrics and therefore detect more detailed behaviour than a 

simple commuting/foraging distinction (Carter et al., 2016). 
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b. Foraging trips segmentation 

This section describes the method used on the complete (GPS + TDR) 

data (74 incubation and 118 brood foraging trips) after the failed very 

long incubation trip 75_173 was removed. 

Data preparation 

The time series segmentation process required intense computing time; 

it was therefore decided to reduce the number of dimensions (variables) 

of the data series to four. Two surface metrics (speed and relative angle, 

see II.2a, page II-22) and two dive metrics (maximum depth and dive 

efficiency, see II.2b, page II-26) were retained as being independent and 

plausible a priori indicators of the different behaviour modes (Per and 

Torkild, 2003; Patterson et al., 2008; Ford et al., 2014; Hays et al., 2016).  

The interpolated positions that were not linked to any dives had missing 

data for dive related metrics. These missing data were replaced by zeros 

to ensure that these points were included in the segmentation process. 

Because of the different ranges of values between all the variables, they 

were transformed (centred and scaled) to ensure an equal contribution to 

the segmentation process from each metric (see Figure V-1). 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

V-83 

 

Figure V-1: Effect of the variable transformation on the segmentation result (red lines). This 

portion of a trip had very homogenous dive metrics (bottom plots) with some variations in the 

surface metrics (top plots). Without any variable transformation (left), the changes in the surface 

metrics are not taken into account by the segmentation process. On the right plot, the surface 

and dive metrics have been transformed (centred and scaled, although the values presented here 

are the raw data) leading to an additional segment with low speed and high sinuosity. 

Time-series segmentation 

The algorithm used for the segmentation process was the “divisive 

hierarchical estimation for multiple change point analysis” from the 

‘ecp’ R package (James and Matteson, 2014). This method allowed for 

multivariable datasets and required only few parameters. Each foraging 

trip was processed separately. 

The parameters required by the segmentation algorithm were the 

maximum number of random permutation for the permutation validity 

tests of each segment (R, Gandy 2009), the moment index which 

determined the distance between and within segments () and the 

minimum number of observations between change points (k, minimum 

segment size). A sensibility analysis was carried on a small number of 

trips (4) to measure the impact of different parameter values on the 

segmentation process and the resulting number of segments (see 

Appendix I). The R parameter had very little impact on the segmentation 

results, but a higher number of permutations lead to an important 

increase in processing time. It was therefore set to 60. The moment index 

had an impact on the number of segments; lower values lead to an 

increase in the number of segments. In order to avoid a too detailed 
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segmentation, the default value of 1 was retained. Finally, the minimal 

number of points per segment had very little effect on the result of the 

segmentation. The retained value of 5 (which meant that segments could 

not be shorter than 5 minutes) was consistent with the spatial resolution 

of the data: using the observed median speed of 0.72 m s-1, a bird could 

travel the distance of 214.8 m in 5 minutes; which is similar to the 

measured resolution of the GPS during the static test where 95% of the 

locations were within 243.1 m (see II.1b, page II-14). 

When the number of segments was less than 3, the process was repeated 

with the constraint of having 3 segments which would force the routine 

to split the trip into at least an outbound, a middle and a return to the 

colony segments. 

c. Behaviour modes 

Two different approaches were used to infer the behaviour of birds 

during each segment. A first semi-automatic unsupervised method 

(segment clustering) enabled minimal operator influence to group the 

segments into different clusters which could then be attributed to 

different behaviours. The second approach was based on an expert 

classification of each segment within a sample of all the foraging trips 

(approximately 30%). A machine learning algorithm was trained on this 

dataset to predict and infer the behaviour modes for the rest of the dataset 

(supervised classification). 

Segment data aggregation 

The different surface (speed and relative angle) and dive (maximum 

depth and dive efficiency) metrics were aggregated for each segment 

using the median value. The percentage of dives for each segment was 

also calculated and the day period for the segment was estimated using 

the mode of the day period. Twilight and night classes were aggregated 

into a single night class. Table V-1 presents the different segment 

metrics used for the clustering process. 
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Table V-1: Using the 1 minute interpolated GPS position data merged with the TDR dive data 

to identify aggregated segment metrics for the cluster analysis (method 1, top part of the table) 

and the additional variables used for the second method (expert based classification, bottom part 

of the table). The measures and processes lead to a series of temporal (green), one dimension 

spatial (blue) and combined spatio-temporal (red) variables 

INTERPOLATED GPS MERGED WITH DIVE DATA 
Table II-6 and Table II-7 

DATA AGGREGATED BY SEGMENT  

VARIABLES USED IN THE FIRST METHOD 

Speed (m s-1) Median Speed (m s-1) 

II.2a Relative angles  
(rad, absolute value) 

Median Relative angles  
(rad, absolute value) 

Maximum depth (m) Median Maximum depth (m) 
II.2b 

Dive efficiency Median Dive efficiency 

Period of the day (day/twilight/night) Mode of the period of the day per 
segment, simplified to have two classes 
(day/night) 

II.2d 

 Percentage of dive time 
(number of 1 min interpolated positions 
linked with a dive / total number of 
interpolated positions in the segment) 

V.2c 

ADDITIONAL VARIABLES FOR THE SECOND METHOD 

 Segment duration as a percentage of the 
total trip duration 

 

Mean moon illumination (%) II.2d 

Random variable  

Method 1: Semi-automatic segment clustering 

The dataset was separated according to the breeding stage (incubation 

or brood), as bird activity and recorded metrics can be different 

depending upon the time within the breeding season, as observed in 

Chapter IV.  

The dissimilarity measure between all the segments for each stage during 

the clustering process was the Gower’s distance from the ‘cluster’ R 

package (Gower, 1971; Maechler et al., 2016). This coefficient allowed 

a mixture of scalar variables (surface and dive metrics and the 

percentage of dive) and categorical variables (the simplified period of 

the day) to be included. The variables were standardized during the 

process. 

From the resulting dissimilarity matrix, a dendrogram was drawn using 

a Ward’s minimum variance clustering criterion (Murtagh and 

Legendre, 2014). The number of clusters was sequentially increased 

until it was not possible to infer a reasonable behaviour for each cluster 

from the values of the different metrics. 

For the incubation segments (Figure V-2), the first cut-off point enabled 

me to separate the day and night segments. The next cut point separated 

the day segments into a cluster with high speed, low relative angles, few 

shallow dives (4%), and low dive efficiencies. This could be interpreted 

as the commuting parts of the trips. The other cluster had low speed, high 

relative angles, frequent (41%) and deeper dives with high efficiency 

values. This could indicate the foraging parts of the trips (Kareiva and 

Odell, 1987; Per and Torkild, 2003; Patterson et al., 2008; Carter et al., 

2016; Hays et al., 2016). Adding a cluster cut the night segments into 

two groups: they both had similar speed, but one had high relative angle, 

more frequent (55%) deeper dives with higher efficiencies. This was 
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classified as night-foraging; the other with opposite characteristics, only 

12% of dives and a slightly higher speed was classified as being night-

commuting or night-resting. The next cut-off point distinguished the 

mainly surface commuting segment into commuting and resting, the 

latter having slower speeds, higher sinuosity and very low dive 

frequency (1%). An additional cluster distinguished foraging with 

another group of segments with higher travelling speed, lower turning 

angles, a high frequency (42%) of shallower dives with lower dive 

efficiencies. It was therefore considered as containing exploration dives. 

Williams et al. (1992) classified gentoo penguin shallow dives as 

searching/exploratory dives. The little amount of time spent at the 

bottom of the dive resulting in the lower dive efficiency measures for 

this cluster (see II.2b, page II-26) could indicate V-shaped dives which 

are typical of non-foraging, exploratory dives (Wilson et al., 1996; 

Wilson and Peters, 1999; Charrassin et al., 2001; Ford et al., 2014). 

Finally, the last cutting point separated the foraging segments with a 

group of segments with similar surface metrics but less frequent (34%) 

deeper dives with lower efficiencies. 

 

Figure V-2: Dendrogram for the incubation segments with the cut-off point and the resulting 

seven clusters and their inferred behaviour modes. The shaded area presents the night segments. 

The clustering of the brood segments generated the same number of 

behaviour modes, but in a slightly different order (see Figure V-3). The 

split between shallower and deeper foraging clusters happened at the 
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fourth step. The exploring dives were separated from the deep foraging 

dives at the last step. 

 

Figure V-3: Dendrogram for the brood segments with the cut-off point and the resulting seven 

clusters and their inferred behaviour modes. The shaded area presents the night segments. 

Method 2: Expert-based behaviour mode classification 

As an alternative method, a subset including approximately a third of the 

trips was visually inspected and the segments classified into different 

behaviour modes. This random sample including 22 incubation trips 

(29.7%) and 35 brood trips (respectively 24.7 and 26.7% of the total 

trips) was used as a training dataset. For each of the 887 resulting 

segments, the behaviour mode was determined based on the time of the 

day and a visual inspection of the different surface (speed and angle) and 

dive (maximum depth and dive efficiency) metrics. The horizontal shape 

of the foraging trip was also considered in the evaluation. The same 

foraging modes resulting from the previous semi-automatic method 

were identified; Table V-2 shows the number of segments that had been 

attributed for each behaviour modes on the training subset. 
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Table V-2: Behaviour attribution for the training dataset to model the behaviour modes. 

 
Behaviour mode 

Incubation 
22 trips 

Brood 
35 trips 

 Commuting 113 137 

D
ay

 Exploring 115 64 

Foraging 112 85 

Resting 88 16 
N

ig
h

t Foraging 46 52 
Commuting 27 32 

 

From this training set, a random forest was developed to try to predict 

the behaviour mode for each segment based on the same variables as 

used in the segmentation process (the surface and dive metrics, the 

period of the day and the percentage of dive time for the segment) along 

with the segment duration as a percentage of the total trip duration, the 

mean moon illumination, the phenological stage and a randomly 

generated variable (see Table V-1). 

The trained model was then applied to the remaining segments to predict 

their behaviour modes. 

Incomplete dataset (GPS only) 

For the 28 trips where TDR data were missing, I investigated whether 

behaviour modes could be predicted without the dive metrics. A random 

forest model was developed on the complete dataset (GPS and TDR) to 

predict the inferred behaviour modes from the previous methods for each 

interpolated position.  

The variables used in the model combined the surface metrics (speed and 

relative angles), positions along the trip as a percentage of the total trip 

length, the part of the trip (outward or return), the distance to the colony, 

the phenology, the period of the day (day, twilight or night), the 

percentage of moon illumination and the phenology (Table V-3). The 

putative sex and the colony site were not included, as they were not 

improving the performance of the models. 

Table V-3: Variables used to predict the behaviour modes for each 1 minute interpolation 

location without using dive metrics. Temporal only variables are in green, spatial only variables 

are in blue and spatio-temporal variables are in red. 

INTERPOLATED GPS MERGED WITH DIVE DATA 
Table II-6 and Table II-7 

 

Breeding stage (Incubation/Brood) II.1e 

Speed (m s-1) 

II.2a Relative angles  
(rad, absolute value) 

Part of the trip (Outward, Return) II.2c 

Distance to the colony II.2c 

Period of the day (day/twilight/night) II.2d 

Moon illumination II.2d 

Position along the trip as a percentage of the 
total trip duration 

 

Random variable  
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d. Summary of the process 

Figure V-4 summarizes the workflow for this chapter from the 

interpolated one minute location merged with dives to the attribution of 

the behaviour modes using trip segmentation and two different methods 

for behaviour mode classification. The estimation of the behaviour 

modes for the trips without TDR data is also included. 

 

Figure V-4: Workflow summary from the one minute interpolated positions merged with the dive data to the trip 

segmentation and the two methods for behaviour mode attribution: the first method was a semi-automatic cluster 

analysis of the segments; the second was an expert-based modelling of a sample of all the trips which was then 

applied to the remaining trips. 

V.3 Results 

a. Results of the segmentation process 

The segmentation process on the complete dataset (GPS+TDR, 192 

trips, 267,762 one minute interpolated positions) found 3,161 segments 

with averages of 25.2 and 10.9 segments per incubation and brood trips 

respectively. The number of segments was strongly correlated with the 

trip duration (Pearson coefficient of 0.894, p<0.01). Segments lasted 

between 5 minutes and 14.3 hours with a median duration just above an 

hour (63 minutes). Segment lengths ranged between 71 m to 93.9 km 

and less than 1% of the segments (29) were shorter than the estimated 

spatial resolution of the GPS locations (250 m, see II.1b, page II-14). 

The distribution of the number of segments per trip for the different parts 

of the breeding season and by site (Figure V-5) confirmed what have 

been observed previously about trip duration and ranges. Incubation 

trips have more segments than brood trips especially from Gourlay. 

Geddes brood trips showed a bimodal distribution with trips with few 

segments (less than 10) and longer trips with more segments, confirming 

the potential existence of two main foraging locations from this colony 

as discussed in the previous chapter. 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

V-90 

 

Figure V-5: Distribution of the number of segments per trip by site and breeding stage. 

For trips with some nocturnal activity, a large number of change points 

occurred at, or near to, the day period change (sunset or sunrise, see 

II.2d, page II-32) as seen on Figure V-6. The median time difference 

between a segment change point and sunset was 30 minutes 

(interquartile range of 44.8 min) and 27.5 minutes for the sunrise 

(interquartile range of 37.3 min). This confirmed that 1) certain 

important changes took place at these key moments; 2) the chosen 

metrics were reasonable proxies for these changes and 3) the 

segmentation process was able to detect these changes. 
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Figure V-6: Temporal distribution of the closest segment boundaries to the sunset (left) and 

sunrise (right) times. 

b. Behaviour modes 

Method 1: Semi-automatic segment clustering 

The cluster analysis separated the day and night (twilight and night) 

activities. Then, diving activities allowed me to distinguish foraging and 

non-foraging parts of the trips. In addition to this basic distinction for 

both day and night periods, the clustering process allowed me to detect 

some additional behaviour modes. Day segments without dives were 

divided between commuting and resting based on the surface speed and 

sinuosity. And diurnal segments with dives were divided into foraging 

and exploring based on the dive depth and dive efficiency. For both 

phenological stages, the day foraging activities were split based on the 

maximum depth: a shallower and a deeper foraging. This was clearly 

visible on the bimodal distribution of the maximum depth during the day 

(see Figure V-7A for brood). When plotting the frequency distribution 

of the three foraging behaviour modes (foraging, deep foraging and night 

foraging) along the hour of the day (Figure V-7B), it was clear that these 

differences in depth reflected the diel migration of the krill (see IV.4a, 

page IV-72). The deep foraging modes happened mainly around midday 

and replaced shallower foraging that occurred in the early or late hours 

of the day. For simplification, both foraging modes were therefore 

merged. 
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Figure V-7: A. Density distribution of the recorded maximum depth during the day and night 

time periods showing a bimodal shape for the daylight dives. B. Frequency distribution of the 

different foraging activities along the day. 

The time allocations for each behaviour mode by phenological stages are 

presented in Table V-4. As expected, foraging was the most represented 

behaviour (22%), followed by exploring (21%). Resting was the third 

activity with the highest allocation (18%). Commuting (16%), night 

foraging (10%) and other night activities (13%) accounted for the rest of 

the time allocation. 

Table V-4: Percentage of time at sea spent on each activity detected by the cluster analysis for 

both phenological stages. 

  Semi-automatic method 

 Behaviour mode Incubation Brood 

 Commuting 13% 19% 

D
ay

 Exploring 27% 14% 

Foraging 18% 26% 

Resting 21% 15% 

N
ig

h
t Foraging 10% 11% 

Resting/Commuting 10% 16% 

During incubation, the birds spent more than a quarter of the time 

exploring.  They spent more time resting than foraging and commuting. 

The nights were equally split between foraging and non-foraging 

activities. During brood, slightly more than a quarter of the time was 

spent foraging, followed by commuting, resting and exploring. During 

night, the birds allocated more time to non-foraging activities. 

While investigating the unexpected very high time allocation in resting 

activities, I realised that the majority of the trips (67.2%) started with a 

resting segment and more than a quarter (26.6%) also ended with the 

same behaviour. This was an effect of the interpolation process (see 

II.2c, page II-29), as the starting and ending point had speeds of 0. As 

the birds were moving quite fast away and back to the colony, the 

number of GPS locations was low and therefore the point interpolation 

process created a series of artificial locations with regular speed 

variations (Figure V-8). The cluster analysis used the resulting low 
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median speed and absence of dives for these segments to classify them 

as resting. 

Figure V-8: Example of the influence of the interpolation process on the speed surface metric at the start and end of 

a foraging trip. The black dots represent the true GPS locations in the time series. The red dashed lines represent 

the result of the segmentation process. The light and dark grey areas represent respectively the twilight and night 

periods of the day 

Figure V-9 presents the distribution of the different surface and dive 

metrics for all the 268,909 interpolated locations by behaviour mode and 

breeding stage. These values confirmed some of the changes along the 

season observed at the scale of the foraging trips in Chapter IV. The dive 

depths tended to be deeper during brood for most of the dive related 

behaviour modes. Day commuting had the highest speed and lowest 

changes in direction while resting had the lowest velocities. Foraging 

(day and night) showed the highest relative angles and dive efficiencies. 

Exploring behaviour was characterised by relatively fast and straight 

tracks, medium to deep (especially during brood) dives and lower dive 

efficiencies than during foraging. 
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Figure V-9: Distribution of the different surface and dive metrics for the behaviour modes 

generated by the segment clustering. 

An example of a Geddes incubation trip segmentation is presented in 

Figure V-10, showing both surface and dive metrics as time series, the 

result of the behaviour classification and a spatial representation of the 

trip with the location of the different behaviour modes. The first (not 

visible) and last segments were classified as resting, illustrating the issue 

with segments with a high number of interpolated positions. This trip 

included some overnight time and the depth curve clearly shows the 

regular shift in dive depth as the bird followed the vertical migration of 

its prey during the dark hours.  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

V-95 

 

 

Figure V-10: Example of a trip segmentation with the result of the semi-automated behaviour classification from 

the segments clustering. The graph on the top show the surface and dive metrics. The red vertical dashed lines 

represent the segments limits and the shaded areas indicate the twilight and night periods. The regular bell-shaped 

curve for the speed at the end of the foraging trip (classified here as resting) is an artefact due to the interpolation 

process (see .Figure V-8). The bottom map shows the spatial distribution of the different segments and behaviour 

modes along the foraging trips. 

Method 2: Expert-based behaviour mode classification 

While training the models, the ‘out-of-the-bag’ (this is a method of 

measuring the prediction error of random forests, boosted decision trees, 

and other machine learning models utilizing bootstrap aggregating to 

sub-sample data into training and test sets) error rate was 18.02%, 
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indicating a reasonable modelling accuracy. Table V-5 reports the break-

down of the classification error by behaviour mode. Foraging and 

commuting behaviour (for day and night) had the lowest error rates. 

Resting behaviour had a slightly higher error rate and the behaviour with 

the highest misclassification rate was exploring, confirming the 

difficulty to distinguish this behaviour from foraging and commuting. 

Table V-5: Classification error when training the random forest on the incubation and brood 

trip samples. 

 Behaviour mode Classification error 

 Commuting 15% 

D
ay

 Exploring 34% 

Foraging 13% 

Resting 19% 

N
ig

h
t Foraging 7% 

Resting/Commuting 16% 

The ranking of the most contributing variables to the model is presented 

in Figure V-11. All the variables but one had higher importance scores 

than the random variable. The period of the day showed high scores, 

which is reasonable, as it easily allowed to identify a third of the classes 

(2 out of 6). The percentage of dives was similarly ranked, as it allowed 

to distinguish between surface (commuting and resting) and dive related 

behaviours (foraging and exploring). The dive metrics were ranked 

between the speed and the relative angle, all having comparable 

contribution to the model. Finally, the position along the trip (as a 

percentage) had a contribution just above the baseline from the random 

variable. The moon illumination and the breeding stage had similar or 

lower contribution to the random variable. This result for the last 

variable confirmed that the choice of a a single model for both incubation 

and brood stages was correct. 
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Figure V-11: Importance plots for the variables involved in predicting the segment behaviour 

modes through the random forest algorithms. The Gini index indicates changes in node purity 

when the variable is discarded when building each individual tree. Variables with high decrease 

in this index are important contributor to the model. 

The percentage of time at sea spent on each behaviour mode is presented 

in Table V-6. Similarly to the behaviour modes estimated with the 

cluster analysis, the two behaviours with the highest time allocations 

were foraging (27%) and exploring (22%). By decreasing importance, 

the next activities were commuting (19%), night foraging (14%), resting 

(9%) and other night activities (9%). The differences between both 

methods are developed later, but a lower attribution to resting behaviour 

for this method indicated that it was more performant in distinguishing 

between resting and commuting. Only 3.1% of the trips had their first or 

last segments classified as resting which is more realistic. 

Table V-6: Percentage of time at sea spent on each activity predicted by the model based on 

expert behaviour mode classification for each phenological stage. 

  Expert based 

 
Behaviour mode Incubation Brood 

 Commuting 11% 26% 

D
ay

 Exploring 27% 17% 

Foraging 26% 29% 

Resting 15% 2% 

N
ig

h
t Foraging 13% 16% 

Resting/Commuting 8% 11% 

Figure V-12 presents the same trip example as Figure V-10, but with the 

expert based behaviour mode classification (the results for each trip are 

presented in Appendix II). The first and last segments were correctly 

classified as commuting. It also appeared that only segments with very 
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intense diving activity were classified as foraging (approximatively 

more than 25 dives per hour). 

 

 

Figure V-12: Example of a trip segmentation with the result of the expert-based behaviour classification. The graph 

on the top show the surface and dive metrics. The red vertical dashed lines represent the segments limits and the 

shaded areas indicate the twilight and night periods. The bottom map shows the spatial distribution of the different 

segments and behaviour modes along the foraging trips. 

Comparing both methods 

When comparing the behaviour modes for each segment between both 

methods, there was a global matching rate of 66% of the segments (Table 

V-7). The behaviour modes with highest matching scores were night and 
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day foraging. The night non-foraging and day commuting activities were 

close to the global matching score of 66%. Finally, the exploring and 

resting modes had the lower match with approximately half of the 

segments misclassified as commuting or foraging. 

Table V-7: Confusion matrix between the behaviour modes from the semi-automatic cluster 

analysis (rows) and the expert based modelling (columns). 

  Expert based 
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Commuting 401 213 12 3 0 0 64% 
Exploring 34 320 205 19 0 0 55% 
Foraging 1 57 509 0 0 0 90% 
Resting 391 48 3 315 0 0 42% 
Night Foraging 0 0 0 0 285 2 99% 
Night resting/Commuting 0 0 0 0 95 248 72% 

% of matching classification 48% 50% 70% 93% 75% 99% 66% 

 

When comparing the percentage of activity per trip inferred from both 

methods (Figure V-13), the night activities showed the highest 

correlation scores (R2 of 0.875 for foraging and 0.81 for non-foraging 

behaviours). Day foraging activities also showed a good match for both 

methods (46.9% of the trips had the same foraging activity budget); 

although for 11 trips, the expert based method was able to detect some 

foraging activity that were not perceived by the first method. On the 

resting scatterplot, the misclassification of the starting and ending 

segments of the trips by the first method are clearly visible (48.4% of the 

trips had some resting activity detected by the first method and none 

detected by the second method). There was no apparent differences 

between incubation and brood trips. 

In summary, both methods agreed on the classification of the key 

foraging (day and night) behaviours. The expert based classification was 

more subjective (although the choice of the number of clusters and their 

attribution for the first method was also strongly influenced by the 

operator) but seemed to lead to a more accurate classification of resting 

and in some cases of foraging behaviours. 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

V-100 

 

Figure V-13: Relationships between the percentage of time allocated for each behaviour modes 

detected using both methods. Method 1 is the semi-cutomatic cluster classification of segments 

as method 2 is the expert-based segments classification. The points are coloured according to 

the stage of the birds at the start of the trip (black: incubation trips, red: brood trips). 

Incomplete dataset (GPS only) 

When training individual interpolated position behaviour based on GPS 

only data, the model inferred from the results of the cluster analysis 

performed slightly better than the model based on the second method 

(out of the bag error rate of 3.37% versus 3.58%). The misclassification 

scores per behaviour were very similar except when predicting the day 

resting behaviour based on the expert classification method (Table V-8). 

Table V-8: Missclassification scores for each behaviour while training the model to predict 

behavior modes using GPS based data only. Method 1 refers to the activities inferred from the 

cluster analysis of the different segments. Method 2 is based on the expert classification of a 

subsample of segments. 

 % classification error in prediction 

Observed Method 1 Method 2 

Commuting 4% 3% 
Exploring 3% 4% 
Foraging 3% 4% 
Resting 4% 6% 
Night Foraging 3% 2% 
Night resting/Commuting 2% 2% 

The ranking of the contribution of the variables to the models based on 

the behaviour modes inferred from both methods were very similar 

(Figure V-14). Two thirds of the variables showed higher scores than the 

random variable. The part of the trip and the phenology had similar or 

lower contribution to the random variable. The absence of influence of 

the breeding stage on the inferred behaviour based on surface only data 

is consistent with the modelling of the expert based method (Figure 

V-11, page V-97). The surface metrics were ranked in the same order 

(speed was slightly more important than relative angle). The period of 

the day showed different rankings as it was the most contributing 
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variable with the percentage of dives for the second method. On the 

surface only data, it was ranked similarly to the speed. The most 

surprising difference was the contribution of the moon illumination, 

ranked as the second strongest variable. In contrast, during the expert 

based classification, it showed a very weak contribution. 

 

Figure V-14: Importance plot for the variables involved in predicting the behaviour modes for 

each interpolation locations for the trips without TDR data through the random forest algorithm. 

The hollowed dots represent the model trained with the behaviour modes from the first method; 

the solid dots represent the model trained using the results from the second method. 

The partial dependency plots on Figure V-15 (the curves presented here 

are based on the inferred behaviours from the second method) show the 

likelihood curves for the different behaviour modes in response to the 

six most contributing variables. With increasing distances to the colony, 

especially from 30 km, the probability of classification of both day and 

night foraging augmented as the probability of commuting decreased. 

Day resting and night non-foraging activities showed a similar pattern 

with a drop close to the colonies and then an increase to reach a plateau 

just before 100 km to the nests. Exploring behaviours didn’t show any 

strong variations with this variable.  

The moon illumination didn’t affect most of the day behaviours 

(foraging, exploring or resting), which was logical. Just after the new 

moon phase, the probability of classification of night non foraging 

behaviours increased until the first quarter when it slowly declined. The 

night foraging activity showed a reverse trend. Day commuting showed 

higher probabilities at new moon, half and full moon. 

Along the trips, the probability of night behaviour modes was high at the 

beginning of the trips, which was consistent with the 12% of the trips 

that started at night or twilight periods (III.2, page III-43). The night 

foraging probability was high at the start of the trips and then was 

gradually replaced by non-foraging activities with a peak between 20 
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and 40% of the trips duration. The final steep likelihood increase in night 

non-foraging activities reflected the small amount of trips (2%) that 

ended with a night commute. Day foraging and exploring showed similar 

patterns with a peak around mid-trip. The commuting curve showed an 

inverse trend. The trends for these three daylight behaviour modes fitted 

the pattern of short brood foraging trips with some intense foraging 

preceded and followed by the commute from and to the colony. 

Along the speed gradient, the likelihood of commuting and exploring 

behaviour showed similar trends with an increase until the velocity of 

the birds was higher than 2 m s-1. Day and night foraging had also similar 

pattern with an increase in likelihood from very low speeds to around 1 

m s-1 for day foraging and 2 m s-1 for night foraging. Then the 

classification probability for these behaviour modes decreased. The 

likelihood of resting behaviour decreased with increasing speed to then 

reach a plateau above 2 m s-1. The night non-foraging activity likelihood 

curve showed high scores in both low and high speeds, indicating a 

mixture of resting and commuting behaviours. 

As expected, the day light period excluded night activities and showed 

high likelihood of day foraging and exploring modes. As the twilight and 

night periods of the day seemed to mostly reject commuting and resting 

activities. 

The likelihood curves along the surface relative angles showed most of 

the variations for very low values, with a strong dichotomy for straight 

(angle of 0) and non-straight (angle > 0) portions of the trips. The former 

indicated a high change of commuting and night non foraging activities. 

And the latter were linked with day and night foraging, resting and 

exploring behaviours. 
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Figure V-15: Partial dependency plots showing the marginal effect of the 6 most contributing 

variables included in the random forest model to the probability of each behaviour mode (based 

on the expert based classification). The Y axes represent the logit contribution of each variable 

to the probablity of the behaviour mode. 

Table V-9 compares the global distribution of the percentage of time 

spent on the different inferred activities on the complete and incomplete 

dataset. The results from the surface only based model tended to 

underestimate commuting and day and night foraging activities and 

overestimate exploring, resting and night non foraging classes. 

Table V-9: Comparison of the time allocated to the different behaviour modes between the 

complete dataset (GPS+TDR, both methods) and the predicted modes on the incomplete dataset 

(GPS only) using the results from both classfication methods while training the model. 

 
Complete dataset 

Incomplete dataset 
(surface only) based 

on 

Activity Method 1 Method 2 Method 1 Method 2 

Commuting 15% 16% 7% 7% 
Exploring 23% 24% 36% 32% 
Foraging 21% 27% 12% 19% 
Resting 19% 11% 24% 20% 
Night Foraging 10% 14% 7% 9% 
Night resting/Commuting 12% 9% 14% 13% 

 

c. Changes in the behaviour modes over the season and comparison 

between sites and putative sexes 

The summary data presented here only cover the trips with complete 

dataset (GPS and TDR), as the inferred behaviour modes from surface 

only metrics should be considered with caution. Figure V-16 shows the 

percentage of time the birds spent doing each behaviour activity with a 
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break down by phenological stages and sites. It also compares the results 

from both methods. 

 

Figure V-16: Percentage of time spent for each behaviour modes with a comparison between 

breeding stages, sites and between the results from both methods (automatic clustering versus 

expert-based classification). 

Figure V-17 maps the different inferred behaviour modes from the 

expert based classification method along incubation and brood trips. 

Changes along the season and differences between sites are discussed 

below. The spatial distribution of foraging is studied in Chapter VI. 

 

Figure V-17: Maps showing the spatial distribution of the different behaviour modes (expert based method only) for 

incubation (left) and brood (right) trips. 

Comparison between stages including the site effect 

The changes in time spent on each behaviour mode along the breeding 

season were tested through a linear mixed effect model. The colony site 

was incorporated as a random effect. Table V-10 summarises the 

coefficients and probability values for the fixed (phenology) and random 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

V-105 

(site) effects for the results from both methods. Figure V-18 graphically 

represents the changes of the inferred activities from the expert based 

classification only between incubation and brood with the modelled 

trend per colony site. 

The amount of commuting activity did not change significantly along 

the season with no significant site effect. The amount of time spent 

exploring decreased from incubation to brood, although this trend was 

not significant for the first method. The amount of foraging activity 

significantly increased during brood similarly across both sites. Resting 

activity significantly decreased during brood, especially for trips from 

the Gourlay Peninsula for the second method classification. All night 

activities significantly increased after hatching. The intensification of 

night foraging was more pronounced on the trips from Cape Geddes. 

And the increase of non-foraging night activities was more important for 

the trips from the Gourlay Peninsula. 

Table V-10: Coefficients and p values for the linear mixed models assessing the changes between 

incubation and brood (fixed term) by colony sites (random term) for the different behaviour 

modes results from both classification methods. 

  Method 1 (cluster) Method 2 (expert based) 

  
Fixed  
term 

Random 
term 

Fixed  
term 

Random 
term 

 Behaviour mode Coefficient p value p value Coefficient p value p value 

 Commuting -0.034 0.060 1.000 0.033 0.154 0.401 

D
ay

 Exploring -0.008 0.734 1.000 -0.077 <0.001 1.000 

Foraging 0.076 0.009 1.000 0.056 0.039 1.000 

Resting -0.084 <0.001 1.000 -0.066 <0.001 <0.001 

N
ig

h
t Foraging 0.038 0.056 - 0.066 0.002 <0.001 

Resting/Commuting 0.105 <0.001 0.024 0.077 0.001 0.012 
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Figure V-18: Distribution of the time allocation for the different behaviour modes between 

incubation (black) and brood (red) with the trend by colony site (orange: Gourlay, violet: 

Geddes) estimated by the linear mixed model. 

Comparison between putative sexes 

When using a similar method to assess any differences in behaviour 

modes allocation between males and females, none of the activities 

showed any significant differences between putative sexes inferred from 

both methods used in this research (II.1g, page II-21). 

V.4 Discussion of the results, limitations and implications for the habitat 

modelling 

The results of the segmentation process and both behaviour mode 

classifications will be discussed, compared and assessed through other 

results from other similar studies. Temporal changes and differences 

between sites and putative sexes in the different activities budgets will 

be commented and compared with the results from Chapter IV. Finally, 

I will describe the difficulty in validating the results from this chapter 

and what are the implications for the next chapters leading to the final 

foraging habitat model. 

a. Segmentation and behaviour modes 

Methodological choice 

Numerous studies tried to detect changes in behaviour based on data 

acquired through bio-logging devices, especially for diving marine 

predators. Differences in the metrics recorded by the devices (surface 

only, dive only or a combination of both), the complexity of the dataset 

and the various experiences of the practitioners lead to different 

approaches. This absence of consensus on a methodological framework 

resulted in the use of a variety of tools and techniques focusing either on 

spatial metrics, temporal changes or mechanistic models (Gurarie et al., 

2016). 
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When using methods only focusing on surface trajectories, like the area 

restricted search, it is difficult to discern resting and foraging behaviours 

because of their horizontal characteristics (low speed and high sinuosity, 

as mentioned by Sommerfeld et al., 2013, for Masked Boobies, Sula 

dactylatra; see also Carter et al., 2016). Mechanistic models are more 

complex and necessitate high parameterisation, assumptions or 

additional devices to actively detect feeding. Ultimately, Gurarie et al. 

(2016) stressed that the choice of the method should be driven by the 

research question(s). In this chapter, I intended to detect changes in 

behaviours along the foraging trips, in order to identify foraging 

activities whose locations will be used in the final habitat model 

(Chapter VII).  

The method chosen in this study was a time series data segmentation 

which is recognised as an important step in animal movement analysis 

(Shamoun-Baranes et al., 2012). One of the main advantage of this 

method was to explicitly include autocorrelation, which is a key issue 

for modern high resolution tracking data (Gurarie et al., 2016). 

Furthermore, this technique allowed me to integrate both horizontal 

(surface metrics) and vertical (dive metrics) dimensions to detect 

changes in behaviour (Dragon et al., 2012). Vacquié-Garcia et al. (2015) 

demonstrated that in elephant seals, dive parameters are 4 times more 

performant in predicting prey capture than surface parameters only. 

Parameterisation and validation 

The parameters required by the time-series segmentation process were 

validated through a sensitivity analysis of the different options required 

by the method. The results were visually checked and the fact that the 

segments matched diel changes which are key biological moments 

(changes in prey distribution and therefore foraging patterns, see Wilson, 

1993; Jansen et al., 1998 and Watanuki et al., 2010) was very 

encouraging. Furthermore, the cluster analysis (method 1) allowed to 

split the multimodal distribution of dive depths. In addition to the night 

dives, shallow dives during the early or late parts of the day were 

differentiated from deep midday dives; although they were all associated 

with foraging activities. The identification of the different foraging 

depths matching the hourly variations in prey vertical distribution 

represented an important validation of the process. It also confirmed that 

changes in small temporal scales which are biologically relevant were 

detected. 

Using two different methodologies to identify behaviour modes (an 

unsupervised cluster analysis and a supervised expert based 

classification) allowed to cross validate the inferred behaviours. The 

cluster analysis was performed separately for incubation and brood trip 

segments, as Chapter IV underlined important changes after hatching. 

But the convergence in the behaviour modes detected for both breeding 

stages (5 daylight and 2 night activities) confirmed similar patterns in 

the clustering of surface and dive metrics. The high matching scores, 

especially when distinguishing foraging and non-foraging behaviours 

(88% of segments matched between both methods) which will represent 
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a crucial input for the habitat models (Chapter VI and Chapter VII), 

allowed to validate the process.  

Behaviour modes 

Apart from the classical foraging/commuting distinction, my method 

allowed to identify additional behaviour modes (day exploring and 

resting). Surface resting segments can have very similar track metrics to 

foraging bouts (low speed and relatively high sinuosity) but 

incorporating dive data allowed me to separate these two modes. The 

distinction between exploratory dives and proper feeding dives was 

more difficult. Several studies on different diving predators used dive 

shapes (V shape versus U shape, Williams et al. 1992; Wilson 1993; 

Wilson et al. 1996; Takahashi et al. 2003; Watanuki et al. 2010; Mattern 

2001; Ainley & Ballard 2012; Cook et al. 2012; Gallon et al. 2013; 

Sommerfeld et al. 2013; Ford et al. 2014; Carter et al. 2016). In this 

study, exploratory modes were detected through a combination of 

surface (higher speed and lower angles than foraging) and dive 

(shallower dives and lower dive efficiencies) metrics. For Southern 

Seals, Dragon et al. (2012) characterised exploratory dives by having 

lower descent speeds. From my results, both the descent and ascent 

median speeds from foraging dives were approximately twice as fast as 

from exploratory dives (1.58 m s-1 versus 0.85 m s-1 for descent speeds 

and 1.36 m s-1 versus 0.66 m s-1 for ascent speeds, both from the expert 

based classification). 

There are very few studies trying to quantify different activities at sea 

for penguins. Using radiotelemetry to study at sea daylight foraging 

behaviour of chick rearing chinstrap penguins, Trivelpiece et al. (1986) 

found that the birds spent 38% of the foraging trip travelling (porpoising 

and underwater travelling), which is very similar to my findings (35%). 

They classified 14% of the trips as “horizontal diving”, which combined 

long and short dives with important travel distances. This mode was 

hypothesised as a prey searching mode and had slightly lower time 

allocation than my exploring mode (23%). The feeding dives accounted 

for 45% of the foraging trips, slightly higher than the 37% measured in 

this study. And finally, the surface resting represented 3% of the trip 

duration for both studies (all activity ratio reported here were extracted 

from the expert mode classification and diurnal only trips). Despite a 

very different method based on data acquired through different 

technologies, the time budget allocation were surprisingly similar. On 

King George Island, Wilson & Peters (1999) recorded 18% of V shaped 

dives, which is slightly lower than the 26% and 33% of dives within 

exploratory segments classified by this study for methods 1 and 2 

respectively. But the same authors didn’t find any difference in depths 

or vertical and horizontal speeds between V and U shaped dives. 

Although both behaviour classification methods showed similar results 

(except the over-estimation of resting behaviour for the clustering 

classification) and some metrics and allocation budgets corresponded to 

the results from previous studies, there were unfortunately no solution 
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to “ground truth” this behaviour mode classification and fully validate 

the results from one or the other method (see V.4d below).  

b. Temporal changes of the foraging 

The increase of the day and night foraging activities and decrease of 

surface resting behaviour after hatching confirmed the results from 

Chapter IV showing an intensification of foraging both during the day 

and during the night to feed the chicks. 

The absence of a clear change in commuting allocation between 

incubation and brood was counter-intuitive, as birds had to cover larger 

areas during the long incubation trips. It is possible that incubation 

exploring mode could be a mixture between commuting and some 

opportunistic feeding. This could indicate a more or less continuous 

foraging as observed by Ford et al. (2014) for Adélie penguins in the 

Ross Sea. This loose continuous foraging, which is different than the 

intense diving activities classified as foraging mode, showed a 

significant decrease after hatching. It confirms that brood foraging is 

more intense and during that period, the birds probably try to locate and 

feed on dense krill swarms. 

c. Differences between sites 

There were no significant site effects in the time allocation of the 

commuting, exploring and foraging between incubation and brood. 

Geddes showed a higher night foraging activity baseline, which was 

similar to the results from Chapter IV discussed previously (see IV.4b, 

page IV-75). The higher non-foraging activity baseline in Gourlay is just 

the reverse of the previous statement. 

More surface resting activity in Gourlay during incubation could be due 

to the higher probability of having important sea ice-cover south of the 

archipelago at that time of the year. Adélie penguins showed differences 

in foraging behaviour between colonies in relation to sea-ice cover 

(Watanuki et al., 1997). Although chinstrap penguins tend to avoid sea-

ice (Lynnes, Reid and Croxall, 2004), icebergs and growlers can 

represent a good place to rest and a refuge from predators as observed 

for Emperor penguins (Watanabe, Sato and Ponganis, 2012).  

The absence of a clear difference on foraging effort between sites again 

confirmed the results from Chapter IV and represented an encouraging 

step towards the interpolation of the habitat model from these two sites 

to the whole South Orkney archipelago. 

d. Limitations and uncertainties 

Scales 

The segmentation process was in line with the spatial and temporal 

uncertainties of the location data (see V.2b, page V-82). The median 

segment duration was just above an hour with a long tail in the 

distribution of the values towards few very long segments (up to 14.3 
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hours). Apart from some extremely long segments, this temporal scale 

was compatible with changes along the day, especially in regards to the 

vertical distribution of the prey as discussed earlier.  

The spatial scale of inferred behaviour will be discussed in the next 

chapter, but was significantly higher than the location uncertainties 

(99% of the segments were above the 250 m threshold). This will allow 

an accurate positioning of the foraging behaviour (Bestley et al., 2014). 

Missing TDR 

Trying to infer behaviour modes for the trips with surface only data 

added a layer of uncertainties (Benson, 2016; Carter et al., 2016). The 

predictive models showed good performances and most of the 

contribution from the variables were meaningful and compatible with 

previous results. The surprising important contribution from the moon 

illumination conditions (second most contributing variable), with more 

night foraging likelihood from half-moon, indicated that penguins as 

visual predators rely on some light levels to locate preys (Cannell and 

Cullen, 1998; Bost et al., 2002). However, as this variable was not 

contributing to the expert-based classification of the complete 

GPS+TDR dataset, this result and interpretation should be considered 

with caution. 

When comparing the time allocation for all behaviours between the 

complete trips and the GPS only trips; the behaviour based on the first 

method showed no significant differences for all day activities as the 

modes based on the second method showed differences in exploring and 

both day and night foraging. This could be due to the imbalance between 

phenological stages between both datasets: they were more incubation 

trips with missing TDR (16.8% versus 9.9% of the brood trips) as the 

training model included more brood trips (61.5% versus 38.5% of 

incubation trips). 

As there are no solutions to validate the behaviour modes for the 

incomplete dataset, the use of the resulting identified foraging locations 

for the habitat model will tested separately in Chapter VII. 

Behaviour modes validation 

Inferring behaviour modes and foraging activities in particular without 

additional proof of prey handling and/or capture didn’t allow me to 

assess the performances of the different methods and to properly validate 

my findings (Viviant, Monestiez and Guinet, 2014; Wilmers et al., 2015; 

Carter et al., 2016). Several studies used various additional “ground 

truthing” devices to detect prey capture as accelerometers (Yoda et al., 

1999; Kokubun et al., 2011; Gallon et al., 2013; Viviant, Monestiez and 

Guinet, 2014) sometimes in combination with video cameras (Watanabe 

and Takahashi, 2013; Watanabe, Ito and Takahashi, 2014) or ingestion 

sensors (Wilson and Peters, 1999; Ropert-Coudert et al., 2000; 

Charrassin et al., 2001; Bost et al., 2007; Hanuise et al., 2010) or devices 

recording beak openings (Takahashi et al., 2004). For Charrassin et al. 

(2001), changes in oesophageal temperature confirmed that dives with 
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little time at the bottom as being non feeding dives (see also Gallon et 

al. 2013). Takahashi et al. (2004) reported similar trends using beak 

opening rates. My results showed that bottom times were marginally 

shorter during dives from exploring segments against dives from 

foraging segments. Hanuise et al. (2010) found a good correlation 

between wiggles at the bottom of the dives and prey ingestion, but stated 

that vertical undulations only were not a good enough proxy. The 

vertical distances at the bottom of the dives were slightly higher for dives 

included in the foraging segments than dives included in the exploratory 

segments. 

Although the absence of a validation process did not allow me to confirm 

the behaviour modes classification or to compare to performance of both 

methods, some observed trends were similar to the findings of previous 

studies about diving predators. Even if some uncertainties remain in the 

attribution of behaviour modes, especially for the exploring segments, I 

feel confident about using the locations of the foraging modes detected 

by both methods as inputs for the spatial analyses (Chapter VI) and 

habitat models (Chapter VII). 

e. Summary 

The segmentation process allowed me to use a combination of surface 

and dive metrics to detect change points along the foraging trips. Two 

classification methods were used to infer different foraging and non-

foraging activities both during the day and night segments. Although the 

first method only required minimal operator inputs, which is in line with 

the heuristic approach for this study, the second method based on a 

manual classification of a sample of foraging segments seemed to 

perform better.  

The inferred behaviour for the 192 foraging trips with complete (GPS 

and TDR) data were used to train a model to predict the behaviour 

changes for the 28 foraging trips with no TDR data based on surface 

metrics only. 

While the results from this chapter were in agreement with previous 

chapters and results from other similar studies, there were unfortunately 

no additional data collected to validate the results. Therefore, four 

different sets of results (method 1 and 2, with or without incomplete 

trips) will be used in the following two chapters leading respectively to 

a spatial analysis of the foraging location and the final habitat model. 
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Chapter VI SPATIAL DISTRIBUTION OF THE FORAGING AT 

DIFFERENT SCALES 

This chapter maps the different data input generated from the previous 

chapters in order to identify the main locations targeted by the birds. 

Changes through the course of the breeding season and differences 

between both colonies are considered. The vertical dimension is also 

included. Identifying the spatial distribution and temporal changes of 

foraging hot spots provides important information as a preparation for 

the final habitat modelling (Chapter VII). 

VI.1 Introduction and aims 

In the previous chapters, the raw data were processed to generate several 

types of potential input for the final chapter on foraging habitat models 

(Chapter VII). In Chapter II, the raw GPS data were filtered to remove 

probable position errors. In the same chapter, the foraging trips were 

temporally and spatially interpolated to build 1 minute resolution tracks 

allowing me to link and therefore locate the dive events recorded by the 

TDR devices. In Chapter V, two methods were used to infer the bird’s 

behaviour and separate foraging and none-foraging dives and their 

locations. All these different data inputs are characterised by varying 

spatial and temporal resolutions. 

Several changes over the course of the breeding season were reported in 

Chapter IV; some of them (trip duration and range) will have a direct 

impact on the spatial location of foraging. Chapter IV and Chapter V 

also identified fluctuations in diving behaviour and changes between day 

and night. 

This chapter will now study how these variations across different time 

scales (breeding season and day/night) might impact the spatial 

distribution of foraging and habitat use. As with the previous chapters, 

any temporal and spatial changes in foraging will be compared between 

colony sites to estimate how trends might be site specific (Miller et al., 

2010), or transposable to other colonies.  

Several methods exist to process location data and aggregate them to 

identify core foraging areas. Each method has its limitations, strengths 

and weaknesses. In this chapter, I will use a range of methods to 1) 

compare different data inputs and their aggregation at different scales, 

2) calculate the time spent per area, 3) locate and measure the core 

foraging areas, and finally 4) include dive depths to consider the foraging 

zones as volumes. 

Aggregation at different spatial scales 

Marine predator foraging is influenced by spatial and temporal scales 

(Hunt et al., 1999; Wakefield, Phillips and Matthiopoulos, 2009). Macro 

scales (> 100 km) can be relevant during incubation when birds try to 

reach fronts (Bost et al., 2009; Scheffer, Bost and Trathan, 2012) but are 

less relevant during brood when they are constrained by the proximity 
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to their nest (Ichii et al., 2007; Blanchet et al., 2013). Meso-scales (10 to 

100 km) are important as the birds will use oceanographic features (shelf 

slopes, canyons or seamounts) and variations in environmental variables 

to determine areas where prey availability can be predicted (Davoren, 

Montevecchi and Anderson, 2003; Pinaud and Weimerskirch, 2005; 

Trathan et al., 2008; Kokubun et al., 2015). At these scales, currents, 

fronts and eddies will concentrate nutrients and/or prey, enhancing 

productivity (Hunt et al., 1999). At finer scales (< 10 km) changes in 

foraging patterns can reflect encounters with patchy prey swarms whose 

locations are more difficult to predict at small scales (Becker and 

Beissinger, 2003; Wakefield, Phillips and Matthiopoulos, 2009; Dragon 

et al., 2012; Ford et al., 2014). The average Antarctic krill swarm sizes 

recorded by Macaulay et al. (1984) are within this fine spatial scale. 

The spatial distribution of the different levels of data will be compared 

and aggregated at different spatial scales. This will allow me to estimate 

how comparable the resulting estimated areas from different datasets 

might be. As technologies develop (additional devices collecting more 

variables or dimensions, higher resolution), it is important to evaluate 

whether comparison with historical data with coarser resolutions and/or 

incomplete data is possible (Ratcliffe and Trathan, 2012; Warwick-

Evans et al., 2015). It will also allow me to assess how varying spatial 

resolutions impact the representation of foraging areas which will 

provide important insights for the final habitat modelling as 

environmental variables have different spatial resolutions.  

Time in areas 

The time spent in fixed areas of one square kilometre is an easy to 

calculate metric (Page et al., 2006; Soanes et al., 2013) and provides 

useful information about habitat use and how it varies between 

incubation and brood for each colony site. Although in marine 

environment, angular units are usually used (e.g. Lynnes et al. 2002 used 

0.1º x 0.1º grids), I am using projected metric units to make sure the grid 

square have equal areas over the whole study site. One square kilometre 

is a convenient measure and the size of the grid is not that crucial, as I 

am more interested in relative values rather than absolute values to 

compare breeding stages and colony sites. 

Foraging areas 

Identifying core foraging areas or “hot spots” where resources and 

predators are aggregated is a key issue for conservation in general and 

marine spatial planning in particular (Nur et al., 2011; Tancell et al., 

2013; Boyd et al., 2015). From the different data input, I will use two 

methods (minimal convex polygons and kernel analysis) to delineate the 

core areas used by birds from both colonies. The size and shape of these 

areas will be described and compared across sites and between 

incubation and brood. 
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Foraging volumes 

Finally, incorporating dive depths will allow me to consider foraging 

habitat as a volume. Considering how predators exploit their habitats 

through the vertical dimension is very important, especially for diving 

species (Lescroël et al., 2010; Wilson, 2010; Carter et al., 2016). The 

previous chapters (Chapter IV and Chapter V) highlighted some 

differences in the way that tracked individuals exploited the water 

column through various temporal scales (differences between day and 

night and between incubation and brood) and also between colonies. A 

model will be developed to assess how dive depths vary with different 

variables including the horizontal use of the habitat and the distance to 

the colony. 

I predict that the spatial distribution of the different data inputs will 

reveal some pattern in the way birds exploit their potential habitats. 

These results will confirm some findings from the previous chapters and 

prepare inputs for an extrapolated foraging habitat model for the whole 

archipelago. 

VI.2 Method 

a. Different levels of input 

GPS points (1) 

The filtered GPS locations (see II.2a) represent the common starting 

point for most similar studies based on tracking devices. This dataset 

was therefore considered as the reference data input. It contained 45,780 

points from 192 trips with complete datasets (GPS+TDR) and 28 trips 

with only GPS data. Figure VI-1 maps all the GPS locations from both 

sites during incubation and brood with an indication of the locations 

recorded at night (18.2% of points for incubation and 26.9% for brood). 
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Figure VI-1: Spatial distribution of the GPS location (data input 1) recorded from the Gourlay Peninsula and Cape 

Geddes during incubation (left) and brood (right) with an indication of the period of the day. 

Dives locations (2) 

The TDR data available for 192 trips were temporally matched with the 

one minute interpolated foraging tracks (see II.2c) allowed me to locate 

dive events (with dives deeper than 5 m, see II.2b). Figure VI-2 maps 

the 66,045 dives from the complete foraging trips from both sites during 

incubation and brood with a distinction between diurnal and nocturnal 

dives (24.8% of all dives for incubation and 38.9% for brood were 

nocturnal). 

 

Figure VI-2: Spatial distribution of the dives deeper than 5 m (data input 2) recorded from the Gourlay Peninsula 

and Cape Geddes during incubation (left) and brood (right) with an indication of the period of the day. 

Foraging modes: method 1, only complete data (3a) 

The segmentation process and the different subsequent behavioural 

mode classifications used in Chapter V allowed me to identify the 

potential foraging parts of the trips. Figure VI-3 maps the 83,740 1 

minute interpolation locations that were classified as foraging using the 
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semi-automatic clustering (Method 1, see V.2c, page V-84) for the 192 

complete trips (GPS+TDR) from both sites during incubation and brood 

with a distinction between diurnal and nocturnal locations (32.5% of all 

points for incubation and 30.5% for brood). 

 

Figure VI-3: Spatial distribution of the inferred foraging modes based on the semi-automatic clustering (Method 1) 

from complete trips only (data input 3a) acquired from the Gourlay Peninsula and Cape Geddes during incubation 

(left) and brood (right) with an indication of the period of the day. 

Foraging modes: Method 1, including trips with missing TDR (3b) 

Figure VI-4 maps the same data input as the previous section (3a) but 

including the 28 trips without TDR data. The behavioural modes for 

these trips were inferred from a mix of surface only variables and 

different temporal variables (see V.2c) using the behaviour modes from 

the semi-automatic clustering (Method 1) as a training set. The 106,976 

inferred foraging locations from both sites during incubation and brood 

are mapped with a distinction between diurnal and nocturnal locations 

(34.2% of all points for incubation and 29.2% for brood). 
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Figure VI-4 Spatial distribution of the inferred foraging modes based on the semi-automatic clustering (Method 1) 

from complete and trips with missing TDR data (data input 3b) acquired from the Gourlay Peninsula and Cape 

Geddes during incubation (left) and brood (right) with an indication of the period of the day. 

Foraging modes: Method 2, only complete data (4a) 

Figure VI-5 maps the 1 minute interpolated locations that were part of 

segments classified as foraging by the expert based classification 

technique (Method 2) for the 192 trips with complete dataset 

(GPS+TDR). The 108,102 inferred foraging locations from both sites 

during incubation and brood are mapped with a distinction between 

diurnal and nocturnal locations (31.0% of all points for incubation and 

36.0% for brood). 

 

Figure VI-5 Spatial distribution of the inferred foraging modes based on the expert based classification (Method 2) 

from complete trips only (data input 4a) acquired from the Gourlay Peninsula and Cape Geddes during incubation 

(left) and brood (right) with an indication of the period of the day. 

Foraging modes: Method 2, including trips with missing TDR (4b) 

Finally, Figure VI-6 represents the same locations as the previous data 

inputs (Method 2 to identify foraging segments for the 192 trips with 

complete data). In addition, this dataset also includes the 28 incomplete 
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foraging trips (missing TDR) where the foraging behaviour modes 

where inferred based on various surface and temporal variables using the 

behaviour modes identified from Method 2 as a training set. The 142,727 

inferred foraging locations from both sites during incubation and brood 

are mapped with a distinction between diurnal and nocturnal locations 

(31.3% of all points for incubation and 35.9% for brood). 

 

Figure VI-6 Spatial distribution of the inferred foraging modes based on the expert based classification (Method 2) 

from complete and trips with missing TDR data (data input 3b) acquired from the Gourlay Peninsula and Cape 

Geddes during incubation (left) and brood (right) with an indication of the period of the day. 

Table VI-1 contains the sample sizes in the different data inputs with a 

breakdown by phenological stages and colony sites. 

Table VI-1: Number of locations in the different input levels with an indication whether the 

dataset contains trips with missing TDR data. 

  Incubation Brood 

Input 
Include 
missing 

TDR G
o

u
rl

ay
 

G
ed

d
e

s 

G
o

u
rl

ay
 

G
ed

d
e

s 

1. GPS locations Yes 16988 19221 2722 6849 
2. Dives No 12839 34306 2373 16527 
3a. Foraging modes (Method 1) No 6079 45374 4599 27688 
3b. Foraging modes (Method 1) Yes 26329 45374 6365 28908 
4a. Foraging modes (Method 2) No 13337 55978 4268 34519 
4b. Foraging modes (Method 2) Yes 45111 55978 5915 35723 

b. Grid aggregation at various spatial resolutions 

The six data inputs described in the previous section were aggregated 

using different spatial resolutions. These were based on the cell sizes of 

the different environmental variables that will be used for the habitat 

modelling in Chapter VII (see Table VI-2 and section VII.2a, page VII-

143, for a complete description of these variables). The conservative 

spatial resolution of the GPS data (250 m, see II.1b, page II-14) and cell 

sizes of 600 m (brood only), 1000 m and 2000 m were also included. For 

brood data, as trips during this stage covered a much smaller areas, the 
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highest aggregation scale was limited to the resolution of the Net 

Primary Productivity (NPP, 8260 m). 

Table VI-2: Spatial resolution (cell sizes) used for the different spatial locations aggregations 

for incubation and brood data. The different environmental variables included in the foraging 

habitat model are described in VII.2a, page VII-143. 

Cell size (m) Description 
Used for Incubation (I) 

and/or Brood (B) 

250 Conservative GPS accuracy I+B 
344 Bathymetry I+B 
600 - B 
1000 Resolution of the time-in-area (VI.2c) I+B 
2000 - I+B 
4130 Sea Surface Temperature (SST) I+B 
8260 Net Primary Productivity (NPP) I+B 
12400 Mean Sea Level Anomalies (MSLA) I 
17700 Sea Ice Cover I 
19150 Surface Currents (Longitude) I 
34645 Surface Currents (Latitude) I 

 

The point datasets were transformed into grids with increasing cell sizes 

(decreasing resolution). The number of points for each cell was totalled. 

The correlation between the number of points per grid square for the 

reference data set (1, GPS, as this input represents a common feature 

from most tracking studies, Warwick-Evans et al., 2015) and the other 

data input for each spatial resolution was calculated using Pearson’s 

correlation coefficient. 

c. Time-in-area changes during the breeding season 

In order to measure spatio-temporal activity or time-in-area (Soanes et 

al., 2015), the total number of 1 minute interpolated positions (see II.2c, 

page II-29) was summed for each cell of a one kilometre square grid. 

The resulting amount of time was divided by the number of tracked birds 

(deployments) for each site and breeding phase to avoid sampling bias 

and then multiplied by each colony population estimates (for Gourlay, 

the total Signy population estimate was used: 19530, Dunn et al., 2016, 

and 7116 for Geddes, Coria et al. 2011). The change in distribution of 

this weighted time-in-area between incubation and brood was assessed 

using a generalized linear mixed-effects model with a poisson 

distribution (‘lme4’ R package, Bates et al. 2015) including the colony 

site as a random effect. 

d. Potential foraging areas 

As a first approximate estimation of the foraging areas, I used the 

minimum convex polygon (MCP) method to delineate simple potential 

foraging areas from the GPS locations (data input 1). These zones (one 

per colony site and phenological stage) included all the recorded GPS 

locations and were therefore within range from the nesting sites. 
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Although this techniques has been used in many studies to define species 

spatial distribution ranges, it is known to be strongly biased by outlier 

locations (Burgman and Fox, 2003; Nilsen, Pedersen and Linnell, 2008).  

e. Utilisation distribution 

The simple grid aggregation described in sections b and c is a 

straightforward method to estimate spatial aggregation with the 

advantage of an optimal control of the aggregation scale. The control of 

the grid size is very convenient in the context of Marine Spatial Planning 

(Warwick-Evans et al., 2015). Unfortunately, the results from this 

method can be biased as the positioning of the grid will influence 

whether a point might fall in a given cell or not and therefore the results. 

A more robust method to estimate spatial utilisation from a series of 

points based on a kernel density estimator was therefore used (Seaman 

and Powell, 1996; Keating and Cherry, 2009; Benoit-Bird et al., 2013; 

Tancell et al., 2013; Kokubun et al., 2015). 

This method used the different data inputs to generate kernel density 

estimators along the horizontal plane (R package ‘adehabitatHR’, 

Calenge 2006). The smoothing parameter or search radius was 

calculated from the “ad hoc” reference method (Worton, 1995). From 

these density estimators, the percentage volume contour (Silverman, 

1986) was used to delineate the zones where the highest density 

estimators were located defining the utilisation distribution (Hazel, 

2009; Soanes et al., 2015). The areas, perimeters and area-perimeter 

ratios as a measure of compactness of these zones (Area/Perimeter2, 

Bogaert et al. 2000) and distances from the centroids of the resulting 

polygons to the colony were calculated. The overlap between the 

different data inputs, between incubation and brood and between diurnal 

and nocturnal locations were also computed. 

f. Foraging volumes 

As an exploratory tool, a three-dimensional kernel density estimator was 

calculated for the 1 minute interpolated tracks merged with the dive data 

(data input 2). In addition to the two horizontal coordinates (X and Y), 

dive depth was entered as the vertical coordinate (Z). The 3 dimensions 

density estimator was calculated and plotted using R ‘sm’ package 

(Bowman and Azzalini, 2014). 

To analyse the vertical use of the foraging areas in relation to the 

potential intensity of use of these areas, a model was created to predict 

the mean dive depth in each one kilometre square cell from proxies of 

foraging intensities. The later were the distance to the colony for each 

cell (closer areas will be more intensively used) and the total observed 

time spent in each cell. Other measure of central tendency was tested 

(median) but the mean depth contributed to the best predictive model. 

To limit the bias due to the temporal migration of the preys, only the 

diurnal dives were used and the shallower night dives were discarded.  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

VI-121 

Different data inputs were considered for the model (all dives, foraging 

dives inferred from method 1 and foraging dives inferred from method 

2). The colony site and the phenological stage were added as covariates. 

A random noise variable was also added into the model. A random forest 

analysis was ran to predict the mean dive depth for each one kilometre 

square grid. 

g. Summary of the process 

The processes from the previous chapters leading to the different data 

inputs are illustrated in Figure VI-7. The different methodological 

approaches for this chapter are also indicated. 

 

Figure VI-7: Workflow summary from the filtered GPS locations and interpolated locations 

merged with dives (Chapter II) and the locations of the inferred foraging modes (Chapter V) to 

the different ways of measuring total spatial use. 

VI.3 Results 

a. Spatial and temporal scales of the data inputs 

Table VI-3 summarizes the spatial and temporal resolutions of the data 

inputs. For the GPS and the dive locations (1 and 2), the time resolution 

was the average time difference between two successive locations and 

the space resolution was the mean distance between the two points. For 

the foraging modes data inputs (3a, 3b, 4a and 4b), the temporal 

resolution represented the average foraging segment duration and the 

spatial value was based on the average segment surface length. 
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Table VI-3: Spatial and temporal resolutions of the different data inputs. See the main text for a 

description of the different values. The variability is represented by the half interquartile range. 

Input 
Include 

missing TDR 
Time Space 

1. GPS locations Yes 5±1 min 234±153 m 
2. Dives No 2±1 min 85±53 m 
3a. Foraging modes (Method 1) No 76±85 min 5.46±3.55 km 
3b. Foraging modes (Method 1) Yes 4±17 min 0.45±1.24 km 
4a. Foraging modes (Method 2) No 76±41 min 5.28±3.27 km 
4b. Foraging modes (Method 2) Yes 3±8.5 min 0.19±0.73 km 

 

The important resolution differences between the foraging modes based 

only on complete data (GPS+TDR: 3a and 4a) and the foraging modes 

including missing TDR (3b and 4b) was a consequence of the prediction 

of the behaviour mode. For trips without a TDR, the bird activity was 

inferred for each individual 1 minute interpolated position (see V.2c, 

page V-84) instead of having the interpolated positions aggregated by 

segments and having one single behaviour mode for the whole segment 

for the complete trips. 

b. Grid aggregation at various spatial resolutions 

The gridded maps for the different data inputs across all resolutions are 

presented in Appendix III; Figure VI-8 shows an example for the GPS 

points collected during brood. It is quite clear that at small cell sizes 

(high resolution), most grids only contained few points (58.3% of the 

GPS locations aggregated on 250 m grid cells contained one single 

point). On the opposite end of the range, at large cell size (low 

resolution), the area was covered by only a few cells and fine details 

were lost. At intermediate resolutions (cell size of 2000 m on Figure 

VI-8), there was a better contrast between zones with a low number of 

points and zones with higher activity, allowing me to identify different 

foraging hotspots. The distribution of the counts per cell at the 2000 m 

scale shows the best separation between cells with low counts and cells 

with high counts. This bimodal distribution is less clear for other scales. 
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Figure VI-8: Example of location counts aggregated at different grid cell sizes (GPS, data input 1, during brood). 

Note that the 600 m resolution is not included in this figure. 

Comparison between the different levels of input with the reference 

(GPS points) across different resolutions 

When correlating the point counts per cell between the GPS points and 

the other data inputs across varying cell sizes, Spearman’s coefficients 

were high (Figure VI-9). They varied from a minimum value of 0.71 

(dives during brood at a cell size of 1000 m) to a maximum value of 0.97 

(incubation foraging identified through method 2 including missing 

TDR data at the coarser resolution).  

At high resolution (small cell sizes), all data inputs, except the dive 

locations had similar correlation coefficients with the GPS locations. 

The coefficients tended to increase with cell sizes as lower resolution 

(large cell sizes) led to higher point aggregation which attenuated spatial 

differences between the data inputs. 
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Figure VI-9: Spearman correlation coefficients between the GPS location counts and the other data inputs 

aggregated on different spatial resolutions. 

The grid sizes with the lowest coefficient variation between data inputs 

were 4130 m (resolution of the Sea Surface Temperature variable) for 

incubation and 1000 m for brood. The latter being also the resolution 

with the lowest correlation with the GPS location counts. 

c. Time-in-area changes during the breeding season 

The distributions of the time spent per square kilometre weighted by the 

colonies population sizes along the breeding season are presented in 

Figure VI-10 (values are log transformed for better visibility). 
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Figure VI-10: Distributions of the number of hours spent per square kilometre number weighted 

by the population size for each colony (Geddes in purple and Gourlay in orange) and evolution 

during the breeding season. 

The distribution of the amount of time spent significantly increased after 

hatching (z value=832.5, p<0.01) with a steeper slope from the Geddes 

colony (1.42 versus 1.24 for Gourlay; the model with the random effect 

based on a random slope was better than without random effect or with 

a fixed slope: Chi Square=3007.5, df=2, p<0.01). This indicated an 

intensification of habitat use after hatching, especially for the Cape 

Geddes colony. 

d. Potential foraging areas 

The potential foraging areas defined using minimal convex polygons 

based on the GPS locations are presented on Figure VI-11. Although the 

result included large areas that were not used by studied birds, these 

areas could potentially be reached by other non-tracked individuals as 

they laid within observed ranges and directions. These extended towards 

the north-north-east from Cape Geddes and towards the west-south-west 

from the Gourlay Peninsula. Saturation curves show that for most colony 

and breeding stage, the number of trips is sufficient to reach a plateau 

for the potential foraging areas, even for the incubation trips from 

Gourlay where the sampling is quite low. For the brood trips from the 
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same location, the plateau on the saturation curve is not as clear as for 

the other site and breeding stages. 

 

Figure VI-11: Potential foraging areas from both colony sites during incubation and brood 

estimated as minimal convex polygon drawn from the GPS locations. 

The areas of the different potential foraging polygons are reported in 

Table VI-4. When divided by the sample size (number of tracked birds), 

the resulting weighted areas measured from Cape Geddes were 

approximately half of the ones from the Gourlay Peninsula. This ratio 

was similar for both phenological stages. 

Table VI-4: Minimal Convex Polygons (MCP) areas from both colony sites and across 

phenological stages with the ratio of area per measured tracked bird. 

Stage Site MCP Area (km2) No birds Area per bird (km2) 

Incubation 
Gourlay 18493 20 924.6 
Geddes 20637 35 589.6 

Brood 
Gourlay 645 9 71.6 
Geddes 1097 25 43.9 

e. Utilisation distribution 

Localisation and bandwidths 

The kernel densities for all the data inputs are stacked in Figure VI-12 

using transparency. It shows that during incubation although birds from 

Cape Geddes had long-range trips, most of the activity was concentrated 

near the colony. In contrast, the birds from the Gourlay Peninsula 
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covered a larger area with high concentration of locations well beyond 

the continental slope. During brood, two foraging zones off Laurie 

Island are clearly visible (towards the east over the shelf or the north off 

the shelf) 

 

Figure VI-12: Kernel density estimators overlapping for all data inputs during incubation and brood. The darker 

areas combine higher density estimators and high consistency between the different data inputs. 

The calculated kernel bandwidth smoothing parameters for the kernel 

density estimators for each site, phenology and data input are presented 

in Table VI-5. The bandwidths or search radius were larger for the 

incubation data than for the brood data as the area covered by the points 

was larger. There was no significant difference between sites for 

incubation (t = 0.67618, df = 9.9916, p-value = 0.514) or for brood (t = 

1.4093, df = 9.9762, p-value = 0.189). 

Table VI-5: Calculated kernel bandwidth smoothing parameters for the different data input per 

phenology and colony. 

  Incubation (m) Brood (m) 

Input 
Include 
missing 

TDR G
o

u
rl

ay
 

G
ed

d
e

s 

G
o

u
rl

ay
 

G
ed

d
e

s 

1. GPS locations Yes 7983.1 8550.2 1515.6 1791.1 

2. Dives No 7300.1 7610.0 1594.5 1543.7 

3a. Foraging modes (Method 1) No 7265.2 6807.6 1305.9 1471.9 

3b. Foraging modes (Method 1) Yes 6802.8 6807.6 1284.1 1484.0 

4a. Foraging modes (Method 2) No 6735.6 6948.9 1314.3 1423.2 

4b. Foraging modes (Method 2) Yes 5990.5 6948.9 1478.6 1433.9 

AVERAGE  7012.9 7278.9 1415.5 1524.6 

Delineation 

Figure VI-13 presents the percentage volume contours with different 

thresholds extracted from the kernel density estimators on the GPS 

dataset (1) for incubation and brood. As expected, the areas increased 

with the density probability. For the area overlap calculations, the chosen 

threshold for the density contour was 75% to focus on the core areas and 
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discard areas that might be only visited by a single outlier trip. This 

threshold also allowed me to mitigate the known overestimation of home 

ranges through the kernel density estimator (Seaman and Powell, 1996).  

 

Figure VI-13: GPS locations (data input 1) overlaid with the kernel density estimators (colour scale from grey – low 

to green – high) and the delineation using different percentage contour thresholds. 

Areas, localisation and shape 

The metrics for the 75% utilisation distribution areas are presented in 

Table VI-6. The weighted areas calculated from Gourlay showed 

important variation between the different data inputs due to the large 

number of trips with missing TDR data from that colony (15 during 

incubation and 10 during brood). 

Table VI-6: Metrics for the 75% probability contour of the kernel estimators per data inputs, sites and breeding 

stages.  

 Weighted areas (km2 per trip) Area-perimeter ratio (10-8) Centroid dist. to colony (km) 

 Incubation Brood Incubation Brood Incubation Brood 

Input 

G
o

u
rl

ay
 

G
ed

d
es

 

G
o

u
rl

ay
 

G
ed

d
es

 

G
o

u
rl

ay
 

G
ed

d
es

 

G
o

u
rl

ay
 

G
ed

d
es

 

G
o

u
rl

ay
 

G
ed

d
es

 

G
o

u
rl

ay
 

G
ed

d
es

 

1 494.2 233.2 19.2 18.5 3.3 3.2 3.5 3.6 102.7 79.7 9.2 14.3 
2 807.5 240.5 23.4 18.5 1.9 3.2 1.9 3.2 104.4 80.4 10.1 14.6 
3a 520.9 168.4 14.8 18.0 2.3 1.9 1.8 2.7 114.9 64.7 10.4 14.7 
3b 377.1 168.4 16.8 17.7 2.5 1.9 3.1 2.8 107.8 64.7 9.6 15.4 
4a 628.6 199.8 12.1 18.2 1.5 1.9 2.6 2.5 101.2 78.4 8.8 14.6 
4b 393.4 199.8 20.6 18.0 1.6 1.9 2.7 2.6 104.5 78.4 10.7 15.2 

AVERAGE 537.0 201.7 17.8 18.1 2.2 2.3 2.6 2.9 105.9 74.4 9.8 14.8 

± SD ±161 ±30.7 ±4.1 ±0.3 ±0.6 ±0.6 ±0.6 ±0.4 ±4.9 ±7.6 ±0.7 ±0.4 

 

Similar to the potential foraging areas defined by the MCP, the average 

surface covered per bird from Gourlay was much higher than the one 

covered by birds from Geddes during incubation. After hatching, both 

weighted areas from the two colonies were very similar. 

The area-perimeter ratios, as a measure of compactness, indicated that 

brood utilisation distribution had slightly higher ratios (more circular) 
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than during incubation, although the difference was not significant (W = 

106, p-value = 0.053). The shape of the areas was not significantly 

different between the sites (W = 86, p-value = 0.436). 

The centroid of the 75% utilisation distribution areas was more distant 

from the Gourlay Peninsula than Cape Geddes during incubation; whilst 

after hatching, it was the reverse. 

Overlap 

Figure VI-14 maps the 75% contours of the kernel density estimators for 

the different data inputs. The overlap ratios are presented in Table VI-7. 

The perfect overlap between the foraging behaviour inputs with and 

without the trips with missing TDR (3a and 3b; 4a and 4b) for incubation 

trips from Geddes was probably due to the fact that all the trips recorded 

from that location before hatching were complete datasets (GPS+TDR). 

Similarly, the very high overlap between the same data inputs (3a and 

3b; 4a and 4b) for brood foraging locations from Geddes was also due 

to the very low number of trips with missing TDR (only 3 trips). 

 

Figure VI-14: Overlap of the 75% probability contours from the kernel density estimators for the different data 

inputs, sites and phenological stages. 

The 75% utilisation distribution based on dive locations showed a high 

overlap with the one based on GPS locations, especially for Geddes. The 

weaker overlap from the Gourlay data could be explained again by the 

high number of trips with missing TDR data but also by more resting 

behaviour during trips recorded from this colony (see V.3c page V-103). 

Indeed, resting behaviours were associated with a high rate of GPS 

locations but very few dives. 

The foraging modes inferred from the two different methods generally 

showed some of the highest overlaps: 80% for both 3a-4a and 3b-4b for 

incubation trips from Geddes; 91% for both 3a-4a and 3b-4b for brood 

trips from the same location; only 52% for 3a-4a for incubation trips 

from Gourlay but 71% for 3b-4b from the same colony and breeding 
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period; and finally 79% and 76% for respectively 3a-4a and 3b-4b for 

brood trips from Gourlay. 

The overlap ratios were generally better from Cape Geddes (average of 

81%) than from the Gourlay Peninsula (average of 57%). This was still 

true when excluding the incomplete dataset (3 trips from Geddes and 25 

trips from Gourlay) which raised the average of overlap from Gourlay 

Peninsula to 62%. 

Table VI-7: Overlap between the different areas defined by the 75% kernel density estimator for 

the different data input, colony sites and phenological stages (incubation in black and brood in 

red). 

Data Inputs 1
. G
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Geddes 

1. GPS locations  85% 65% 65% 77% 77% 
2. Dives 75%  63% 63% 75% 75% 
3a. Foraging modes (Meth. 1) 75% 87%  100% 80% 80% 
3b. Foraging modes (Meth. 1) 77% 87% 94%  80% 80% 
4a. Foraging modes (Meth. 2) 74% 87% 91% 90%  100% 
4b. Foraging modes (Meth. 2) 76% 87% 89% 91% 94%  

Gourlay  

1. GPS locations  49% 40% 68% 37% 69% 
2. Dives 60%  54% 45% 74% 50% 
3a. Foraging modes (Meth. 1) 55% 62%  46% 52% 47% 
3b. Foraging modes (Meth. 1) 69% 63% 61%  37% 71% 
4a. Foraging modes (Meth. 2) 49% 51% 79% 55%  47% 
4b. Foraging modes (Meth. 2) 61% 61% 56% 76% 51%  

 

Comparison between pre and post-hatching 

Figure VI-15 represents the overlap of the utilisation distributions based 

on the different data inputs shown on a single map per phenological 

stage. The average overlap between the different datasets was higher 

during brood then during incubation from both colonies (Geddes brood: 

85%, Geddes incubation: 78%, Gourlay brood: 61%, Gourlay 

incubation: 53%). 

From Geddes, the totality of the brood foraging area defined by the 75% 

utilisation distribution was included in the incubation foraging area. By 

contrast, in Gourlay only 62% of the brood foraging area overlapped 

with the area targeted before hatching. 
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Figure VI-15: Spatial overlap of the 75% kernel density estimator for the different data inputs for incubation and 

brood. 

Comparison between day and night foraging areas 

When computing the intersection of the 75% utilisation distribution for 

day and night (twilight + night) periods, the percentage of overlap was 

greater during incubation (48 and 59%) than during brood (17 and 18% 

for Gourlay and Geddes respectively). This was due to the fact that most 

incubation trips included overnight time, while during brood, trips were 

either diurnal or nocturnal (see IV.4a, page IV-72). Figure VI-16 

presents the day and night areas overlaps for all the data inputs. 

 

Figure VI-16: Spatial overlap of the 75% kernel density estimator for the different data inputs between day and night 

(night and twilight) periods. Day data are represented in yellow and night data (night and twilight) are represented 

in blue. 

The figure suggests that the two different foraging zones for chick 

rearing birds from Geddes presented earlier (over the shelf and off the 

shelf) were linked with diurnal and nocturnal activities. From that 

location, 52 trips went north reaching the oceanographic slope and 48 

trips went east and stayed over the shelf. There was a clear distinction 
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between diurnal and nocturnal trips: 93.8% of the diurnal only trips 

stayed over the shelf and 94.2% of the trips with some night activity 

reached the oceanographic slope (Figure VI-17a). 

 

Figure VI-17: Spatial (a) and temporal (b) distribution of the exploitation of the two foraging 

zones for brood trips from Geddes: over the shelf or off the shelf. On the map (a), the points 

represent the maximum distance from the colony for each trip. In addition, the trip lines are 

colour coded based on the period of the day (diurnal or nocturnal trips). 

The temporal distribution of the exploitation of these two different 

foraging areas showed that these areas were stable through time and 

therefore did not result from a temporary krill swarm with opportunistic 

feeding (Figure VI-17b). 

The birds did not show any individual preferences. Out of the 25 

brooding birds tracked from Geddes, 2 stayed exclusively over the shelf 

and 2 only went off the shelf; 6 had the same number of trips to both 

zones, whilst 7 had more trips over the shelf and 8 showed a preference 

for nocturnal off the shelf trips. The temporal sequence between diurnal 

and nocturnal trips did not show any specific pattern among birds 

(individuals alternating between short diurnal and long nocturnal trips 

for example, see also Figure IV-7 page IV-61). Birds targeting the off 

shelf area were leaving the colony later in the afternoon than the birds 

that stayed over the shelf, illustrating how birds foraging north really 

aimed for overnight trips. 

From Gourlay during brood, nocturnal foraging seemed to be more 

distant from the colony, suggesting a similar pattern but without the 

close presence of the oceanographic slope. Unfortunately, due to the 

small sample size (31 trips from 9 birds), it was not possible to get a 

clear picture from that colony. 

f. Foraging volumes 

Kernel density estimator volumes are represented in Figure VI-18 where 

deeper dives closer to the colonies are clearly visible except from the 

Gourlay colony during incubation. 
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Figure VI-18: kernel density estimator volumes per colony and phenological stage. 

The best model predicting the mean depth per square kilometre in 

relation to distance to the colony and time-in-area was based on foraging 

dives only inferred from the method 2 (expert-based). It managed to 

explain 33.3% of the variability of the response variable. The predicted 

out-of-the-bag dive depths showed a weak but significant correlation 

with the observed mean depths (R2 of 0.348, F1,2185, p<0.01). The 

average performances of the model suggested that other aspects in 

addition to the ones included in the model might influence dive depths. 

Nevertheless, when looking at the variable importance ranking (Table 

VI-8), the main contributor to the model was the distance to the colony. 

The time-in-area showed a weaker contribution, just above the 

phenological stage. The site location variable importance was just above 

the one for the random noise variable suggesting no important 

differences between colonies. 

Table VI-8: Variables importance when modelling the average dive depth per square kilometre. 

Variable Increase in node purity 

Distance to the colony 158268  
Time-in-area 66648  
Phenological stage 49341  
Site 35740  
Random noise 30809  

Figure VI-19 shows the predicted mean dive depth by the model in 

relation to the distance to the colony, the time-in-area, the colony site 

and the phenological stage. Dives were deeper closer to the colony 

except in areas with low temporal use. The longer time spent in areas 

close to the colony where deeper dives occurred could be linked with 

birds recovering at the surface after deeper dives. The model “slope” was 
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steeper during incubation, but this was due to the range of distances been 

much wider during that stage. The predicted dive depths started to 

plateau after a similar approximate threshold of 25 kilometres from the 

colony across both sites and during both temporal stages. Mean dive 

depths were deeper after hatching. 

 

Figure VI-19: Predicted mean dive depth (vertical axis) in relation to the distance to the colony 

and the time-in-area for each colony site and phenological stage. The vertical red line represents 

the 25 km distance from the colony where most of the predicted shallower dives started (outside 

the plot for Brood - Gourlay). 

VI.4 Discussion of the results, limitations and implications 

In this section, the main results from the various approaches to the spatial 

distribution of the different data inputs will be summarized and 

discussed in relation to the results from previous chapters and other 

studies. The limitations due to the quantity and quality of the available 

data and the methodology will also be discussed. Finally the implications 

of the main findings on the final habitat modelling (Chapter VII) will be 

considered. 

a. Comparing the different data inputs 

During the spatial aggregation process, the different data inputs showed 

strong correlations with the baseline GPS data across increasing 

resolutions (average of 0.875 and 0.795 for incubation and brood 

respectively). This confirmed that GPS was a good indicator of foraging. 
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In fact, during commuting, accuracy and point acquisition were usually 

limited (Ryan et al., 2004), as demonstrated by the fact that the segments 

classified as day or night foraging had the highest rate of GPS locations 

(day and night foraging had between 12 and 19% of GPS locations 

contrasting with ratios between 3 and 10% for commuting modes, see 

Table VI-9). 

Table VI-9: Percentage of true GPS locations in the segments attributed to different behaviour 

modes depending on the method used and the phenological stage (see V.2c, page V-84). 

  
Semi-automatic 

clustering (Method 1) 
Expert-based 

classification (Method 2) 

 Behaviour mode Incubation Brood Incubation Brood 

 Commuting 10% 5% 5% 3% 

D
ay

 Exploring 17% 10% 16% 10% 

Foraging 19% 15% 19% 15% 

Resting 9% 5% 10% 12% 

N
ig

h
t Foraging 18% 13% 18% 12% 

Resting/Commuting 9% 8% 7% 6% 

The convergence between the different data inputs was optimal at 

medium scale (4130 m for incubation and 1000 m for brood) where small 

differences in the details were lost and foraging hotspots patterns could 

be identified.  

The overlap of the 75% utilisation distribution between the different data 

inputs was higher from Geddes and during brood from both sites. This 

could be due to the lower number of trips with missing TDR recorded 

from that location (less discarded points between the different data 

inputs). Birds from this colony also foraged in a smaller area (including 

during incubation), decreasing the chances of point dispersion (see also 

time-in-area below). In general, the average overlap was strongly 

correlated with the sample size (Figure VI-20); the higher overlap of 

utilisation distribution areas could therefore also be explained by the 

higher sample size from Geddes. 
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Figure VI-20: Relationship between the percentage of overlap of the different utilisation 

distribution areas and the sample size for the different colonies and phenological stages (black 

for incubation and red for brood). The points represent the mean values from the different data 

input overlaps and the error bars are based on the standard deviations. 

b. Time-in-areas 

The reduction in the available foraging habitat space after hatching led 

to an increase in point density as measured by the weighted time-in-area. 

From lower values during incubation, the rise in time per square 

kilometre from Cape Geddes was steeper. Higher time-in-area during 

incubation from Gourlay Peninsula could be explained by the fact that 

the birds used a narrower “commuting corridor” to reach the 

oceanographic slope. The angles between the colonies and the most 

extreme trip maximum points (see II.2c, page II-29) along the latitude 

for Gourlay and longitude for Geddes were 39.0 degrees and 91.9 

degrees for Gourlay and Geddes respectively. The steeper increase in 

time-in-areas for Geddes can be explained by a smaller potential 

foraging area measured by the minimum convex polygon method, 

although the areas defined by the utilisation distribution were similar for 

both sites. Another explanation could be a linked with prey availability. 

The continental slope is usually a favourable habitat (Ichii et al. 1998; 

Trathan et al. 2003; Trathan et al. 2006; Atkinson et al. 2008; Siegel et 

al. 2013; although Hunt et al., 1992 reported that macaroni penguins 

didn't target shelf break areas in South Georgia) which could lead to a 

more intense exploitation of a limited area. 
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c. Foraging areas 

The minimal convex polygon and the delineation of the utilisation 

distribution unsurprisingly indicated similar directions for the foraging 

areas. Birds were travelling towards the north from Cape Geddes and the 

west-south-west and south for incubation and brood respectively from 

Gourlay Point. The finer approach using the utilisation distribution 

highlighted that although some very long foraging trips were recorded 

during incubation from Cape Geddes, most of the activity was 

concentrated very close to the colony. The kernel density approach also 

allowed me to differentiate two foraging destinations from Cape Geddes 

during brood: one towards the north off the shelf and one towards the 

west over the shelf. 

The weighted sizes of the foraging areas were consistently larger for 

Gourlay Peninsula during incubation for both methods, although the 

minimal convex polygon method gave larger estimates as mentioned in 

the methods (VI.2d, page VI-119). During brood, the weighted areas 

covered from both colonies were similar using the utilisation distribution 

method, as the minimum convex polygon method indicated a larger 

foraging zone for Gourlay. 

The centroids of the 75% utilisation distribution areas confirmed that 

during incubation, birds tended to stay closer to the shore from Cape 

Geddes. This was in line with the presence of short incubation trips from 

this colony described previously (see IV.3b, page IV-57). This could be 

explained by the shorter distance to the shelf break but also by less 

competition due to Geddes being a smaller colony, as foraging ranges 

can be related to colony size (Ainley et al., 2004). From the Gourlay 

Peninsula, the areas close to land appeared as an obligatory commuting 

corridor in and out of the colony. This could be explained by greater 

resource depletion (or slower replenishment above the shelf) or by inter-

specific competition with chick-rearing Adélies from Gourlay (Lynnes 

et al., 2002; Wilson, 2010). During brood, the areas from Geddes were 

further off shore, especially when the birds decided to opt for overnight 

trips reaching the continental shelf slope. These more distant foraging 

grounds could be associated with high productivity areas, which are 

worth the travel effort. Similar patterns have been observed by Boersma 

et al. (2009) in Magellanic penguins foraging along the Argentinian 

coast and reaching offshore mixing fronts. 

The shape of the areas defined by the 75% utilisation distribution 

supported these results: more compact and circular zones from Cape 

Geddes where areas were closer to the shore and larger and more 

elongated zones from Gourlay Peninsula where birds had to travel 

further to reach off shelf waters during incubation and therefore have 

less time for a circular path (especially for the dive and foraging data 

defined by method 2). The measured circularity of the foraging zones 

indicating a narrowed path from Gourlay does not match the recorded 

shapes of the foraging trips as the Foraging Zone Coefficient indicated 

more direct trips from Geddes (see IV.3b, page IV-57). This suggests 
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that trip-based descriptions might differ from results based on pooled 

data. 

d. Foraging volumes 

The modelling of the diurnal dive depths revealed deeper dives in the 

vicinity of the colonies, especially where time-in-areas was important. 

This particularly impacted chick-rearing birds, as foraging range 

decreased and point density increased. This finding also confirms the 

results of Chapter IV showing an increase of the vertical/horizontal 

distances ratio. Lescroël et al. (2010) also measured an increase in dive 

depth for Adélie penguins as the season was progressing. They also 

demonstrated that better breeders were able to perform deeper dives 

towards the end of the season. Staniland and Boyd (2003) observed 

differences in depths between shelf, oceanic and far oceanic with more 

shallower dives offshore in Antarctic fur seals (Arctocephalus gazella). 

The necessity to dive deeper when closer to the shore could be due to 

different krill swarms characteristics over the shelf (krill maturity: Ichii 

et al., 1998 and Atkinson et al., 2008; swarm sizes: Cox et al., 2010; or 

swarm densities: Cresswell et al., 2009) which might drive penguins to 

dive deeper to find more rewarding prey patches. This is particularly 

important as deeper dives represent higher energy expenditure (Wilson, 

1993; Blanchet et al., 2013) and imply reduced bottom time (Wilson et 

al., 1996) and increased post-dive durations for recovery (Lescroël et al., 

2010; Bestley et al., 2014). Another possible explanation for deeper 

dives closer to shore relates to prey depletion due to higher predator 

densities (Birt et al., 1987; Murphy, 1995) affecting primarily shallower 

water. Finally, a third factor could be krill predator avoidance behaviour.  

Zhou & Dorland (2004) reported that krill responded to the presence of 

predators by forming denser swarms and staying at deeper depths. 

e. Spatial and temporal scales 

Different techniques used to represent spatial resolution of foraging 

The various techniques used in this chapter have different advantages. 

From the easy and straightforward minimal convex polygon to represent 

potential foraging areas to the more complex and informative kernel 

density to represent utilisation distribution, all these techniques have 

limitations. The first one is not very accurate and might include areas 

not targeted by birds. The second one requires choices to define the 

smoothing parameters and the delineation threshold. The grid 

aggregation technique stands between those two extremes, providing a 

good representation of the distribution of foraging but it is strongly 

influenced by the choice of a grid size. 

Despite its more complex use, the kernel density area is probably the 

most accurate technique as it allows to incorporate all the points while 

smoothing outliers. Combined with a delineation threshold, it is able to 

define and quantify areas of high foraging concentration. 
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Spatial resolution 

The different data inputs showed varying spatial resolutions from less 

than a hundred of metres (dive locations) to a few kilometres (foraging 

modes from method 2). During the spatial aggregation of the different 

data inputs, convergence with the reference GPS locations happened at 

scales of a few kilometres. It means that at these scales, the different data 

inputs showed roughly the same information than the GPS data. 

These scales of a few kilometres were comparable to the estimated 

bandwidth for the kernel density estimators (around 7000 m for 

incubation and 1500 m for brood). At these scales, the fine noise of the 

location data was lost and the smoothened hot spot foraging areas were 

revealed. These spatial resolutions corresponded to fine scale 

oceanographic biophysical phenomena (Becker and Beissinger, 2003). 

Between day and night 

During brood, birds from Cape Geddes targeted two distinct locations 

with either diurnal or overnight trips. According to Ichii et al. (2007), 

these two areas potentially provide different prey characteristics: the 

shelf area exploited during diurnal trips has more abundant immature 

krill but with lower energy content. In addition, in these locations, 

according to the same authors, krill do important diurnal migrations as 

they stay nearer to the surface over the slope. Shallower dives, as the 

ones occurring over the shelf-break, indicate higher prey encounter rates 

and are therefore linked with better foraging habitats (Bestley et al., 

2014). Although chinstrap penguins are considered to be time-

minimizers and therefore prefer areas closer to their nests (Blanchet et 

al., 2013) this study shows that they tended to alternate between both 

energy-maximizer (longer foraging trips to target better quality prey 

patches) and time-minimizer strategies. There were no individual 

preferences with some birds consistently foraging in the same areas but 

the majority of the individuals alternated between the two locations. This 

contrasts  what Boersma et al. (2009) observed for Magellanic penguins 

where the majority of the tracked individuals repeatedly targeted the 

same area. It is worth noting that the birds targeting different areas did 

not show any significant differences in body weights or mass gains after 

deployment. It might be possible that birds try to maximise their chances 

to find prey patches by varying locations and not relying on a single good 

potential area. Some habitat are predictable and birds will return 

consistently to these coarse-scale often associated with shelf-edges 

(Weimerskirch, 2007). It could also be a consequences of the timing 

required to reach both areas: after an afternoon start and a long overnight 

trip to the shelf break area, a bird might decide to do a shorter trip over 

the shelf in the morning. Another explanation could be just the 

opportunity for a bird to join a group of congeners aiming for a certain 

location without any real choice of the direction of travel. 

The small sample size from Gourlay Peninsula does not allow me to 

determine whether birds from that colony follow the same pattern. 

Takahashi et al. (2003) observed shorter diurnal trips and longer 
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overnight trips from that location, suggesting that this might be the case. 

However, the longer distance to the shelf-break reduces options for birds 

from this colony; long overnight trips might simply enable birds to avoid 

depleted areas or areas with more intense competition and might not 

offer a different quality of prey field, as I hypothesize for Cape Geddes. 

Between incubation and brood 

At the scale of the breeding season, the main driver of change is the 

constraint of feeding the chicks after hatching. The subsequent reduction 

in foraging range has a cascade effect on the accessibility of the foraging 

areas: smaller fishing grounds will have to be shared by more birds. This 

higher bird density leads to an increase in predatory pressure and 

competition, resulting to deeper dives. 

The prey patches might be depleted, especially in the shallower strata of 

the water column or might react and dive deeper to avoid predators. They 

might also use oceanographic features like continental shelf-break to 

escape predators. Birds might then target shallower areas where the prey 

cannot escape: see Takahashi et al. (2003) who observed benthic feeding 

in chinstrap penguins from Signy Island. 

The combination of increased food demand from the offspring, higher 

intra-specific competition due to a reduction of available habitat and 

potential prey depletion or avoidance creates an increase in foraging 

pressure for breeding birds after hatching. Additional human-related 

impacts on the birds, their ability to forage or their prey distribution and 

abundance can have important negative effects on their breeding 

success. 

f. Limitations and implications for the habitat modelling 

Limitations 

Due to the different sample sizes between colonies and phenological 

stages, it is difficult to gain a comprehensive comparison between sites 

across the breeding season. The number of recorded trips showed a 

strong influence on the convergence of the spatial distribution of the data 

and therefore on the delineation of the foraging hot spots. 

In terms of data quality, the mix of spatio-temporal scales from the 

different data input, especially the ones that are influenced by trips with 

missing TDR data (foraging modes), increases the difficulty in getting a 

clear picture of the spatial distribution. Comparison of the different data 

inputs is also more difficult. As a lot of the trips with missing TDR were 

recorded from Gourlay Point, it contributes to the difficulty in 

comparing both sites. 

The key spatial and temporal scales for the distribution of the bird 

locations are too coarse in comparison with the scales driving prey 

swarms distribution (hundreds of metres horizontally, tens of metres 

vertically and few hours in terms of temporal scales, Macaulay et al., 

1984). Pooling foraging tracks by breeding stages allows me to increase 

sampling size and cover higher areas, but this reduces the spatio-
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temporal resolution of the data, masking fine-scale phenomena that 

might alias or match krill swarms dynamics. 

Implications 

Although the previous chapters did not show strong differences between 

both colonies in terms of trip characteristics (Chapter IV) and inferred 

behaviour modes (Chapter V), the spatial distribution of the core 

foraging areas identified by this chapter showed some important local 

effect. The oceanographic features influencing prey distribution and the 

available habitat are quite different from both colonies. This limitation 

will have to be considered carefully during my habitat modelling 

chapter, especially with respect to considerations of scale during the 

evaluation of whether a single model is transferable to different colonies. 

The previous chapters generated several data inputs which showed some 

degree of convergence, but also some differences. At this point, it is not 

possible to assess their contribution and validate one or another as being 

a more accurate representation of the foraging. All these data inputs will 

therefore be used in my habitat modelling (Chapter VII). 

Some results from this chapter confirmed the importance of integrating 

the vertical dimension of foraging as well as different finer temporal 

scales (diurnal versus nocturnal). Keating & Cherry (2009) suggest it is 

necessary to develop utilisation distribution models based on four 

dimensions (3 spatial dimensions and time) to include more detailed 

spatio-temporal interactions. This has the potential to detect changes and 

hot spots at a finer scale. 

Finally, information about the prey field increasingly stand out as the 

missing piece of the puzzle. Any fine scale temporal and/or spatial 

changes are potentially linked with prey distribution and variation. 

Without any evidence from the distribution of krill and its spatio-

temporal variability, it is difficult to validate any finding or conclusion 

about predator distribution and dynamics. 
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Chapter VII FORAGING HABITAT MODELLING 

This chapter will combine the different data inputs from the previous 

chapters with environmental covariables to derive foraging habitat 

predictions for the whole South Orkney archipelago. The different 

models will be compared, evaluated and validated to select the strongest 

final habitat model. 

VII.1 Introduction and aims 

In conservation, marine spatial planning and fisheries management, 

knowing how key species use their environment is a crucial aspect of 

objective, evidence-based evaluation. It can support the definition and 

delineation of protected areas or other important areas (Key Biodiversity 

Areas, Important Bird Areas), it can also drive policies or mitigation 

procedures (Pichegru et al., 2012). Data generated by tracking studies 

can help defining the most used areas (Tancell et al., 2013; Soanes et al., 

2015). 

The concept of habitat has been used by many authors and has different 

definitions and underlying aims depending upon context. It is organism-

specific and contributes to the definition of their ecological niche, 

different species will use different habitats which fluctuates with time 

and space over different scales (Hall et al., 1997). For chinstrap 

penguins, their habitat will change between the austral winter and 

summer seasons. During the breeding period, there is the reproductive 

land-based habitat and, centred on the colony, their at-sea foraging 

habitat. In the previous chapters, several changes in their foraging 

behaviour have been highlighted within the breeding season before and 

after hatching. And in Chapter V, some behavioural changes at the scale 

of the foraging trip have been described. The standard definition of 

habitat proposed by Hall et al. (1997) includes “the resources and 

conditions present in an area that produce occupancy”.  

For marine predators, obtaining information about the spatial 

distribution of their food resources is difficult as it is patchy, invisible 

from the surface and varies with time. Therefore the identification of 

their foraging habitat has to rely on the “conditions” where the animals 

are as an indication of the availability of their food resources. To define 

and model these foraging habitats and their variability through time, I 

will use the location data identified in the previous chapters indicating 

probable foraging behaviour. I will also use maps of oceanographic 

features that can indicate krill hot spots (Santora et al., 2012) and 

covariables from remote sensing as proxies for prey distribution (Boyd 

et al., 2015). 

The relationship between the location data from both study sites and the 

different variables will be processed by several different algorithms to 

produce predictions of foraging habitat interpolated for all the chinstrap 

colonies of the South Orkney Islands. Different methods will be used to 

evaluate and validate the models and identify the method, data input and 

variables providing the best foraging habitat model. This model should 
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integrate habitat preference, accessibility and competition (Wakefield, 

Phillips and Matthiopoulos, 2009). 

VII.2 Method 

The habitat models were developed from the various data inputs 

generated in the previous chapters. Four different modelling algorithms 

were used to contrast the environmental conditions between locations 

where the birds were considered to be foraging and locations where they 

were not. Two different modelling rounds were computed to compare 

the influence of the temporal resolution at which environmental 

variables were averaged. 

a. Environmental variables 

The environmental variables (also called explanatory variables) used for 

the habitat modelling were either static in time (constant at the temporal 

scale of this study: bathymetry and derived variables, benthic 

morphology and geometric variables) or dynamic (sea surface 

temperature, net primary productivity, mean sea level anomalies, sea ice 

cover and surface currents). 

Bathymetry and benthic geomorphic classes 

The shape and depth of the seabed have an influence on vertical water 

movement and structure and therefore productivity. They can also be 

used as landmarks by diving predators (Mattern et al., 2007). Some 

studies have found evidence of benthic feeding in chinstrap penguins 

which is obviously dependent on bathymetry (Takahashi et al., 2003; 

Kokubun et al., 2010). 

A high resolution bathymetry model for the South Orkney Islands was 

obtained from Dickens et al. (2014). The slope and aspect (orientation 

of the sea floor) maps were derived from the bathymetry data using the 

R “raster” package (Hijmans, 2016). A geomorphic classification of the 

benthic zone was also provided by Dickens et al. (2014, supplementary 

materials). All these variables had a resolution of approximately 300 m. 

Geometric variables 

A series of “geometric variables” were used to incorporate the 

constraints related to the colony locations for central-placed foragers 

such as chinstrap penguins. They also included an estimation of bird at-

sea densities to integrate intraspecific competition. Finally this group of 

variables also incorporated the distances to the continental slope which 

is agreed to be a favourable habitat (Ichii et al. 1998; Trathan et al. 2003; 

Trathan et al. 2006; Atkinson et al. 2008; Siegel et al. 2013). 

To map the distance to the closest chinstrap colony, a cost distance 

analysis was performed using the “gdistance” R package (van Etten, 

2015). This allowed me to incorporate the land as a barrier in the 

calculation of the distances by attributing a very high friction value to 

the land pixels (999999) in contrast to a low value for the sea pixels (1). 
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A similar process was performed but with the 500 m isobaths lines as 

starting points to generate the distance to the 500 m isobaths map. 

The bird at-sea density map was generated as a function of distances to 

the closest colony and population size at the colony. For all chinstrap 

known nesting site on the South Orkney Islands, a density estimate was 

calculated for each pixel of the study area using Equation iii (Wakefield 

et al., 2011): 

𝐷𝑒𝑛𝑠𝑐 =
𝑃𝑜𝑝𝑐

𝐷𝑖𝑠𝑡𝑐
2 

Equation iii: Calculation of the at sea bird density raster for a focal colony c as a function of the 

population of the colony (Popc) and cost distance (Distc) from each pixel to the focal colony. 

The resulting density maps for each focal colony were then summed to 

obtain the final bird density raster. The resolution of these geometric 

variables matched the grid size of the bathymetry variable 

(approximately 300 m). 

Dynamic environmental variables 

A series of physical and oceanographic dynamic variables recorded from 

various remote sensing sources were included to map local changes in 

the environment. These variables might indicate upwelling and high 

productivity and therefore prey availability (Becker and Beissinger, 

2003; Pinaud and Weimerskirch, 2005; Bost et al., 2011). 

Sea surface temperature (SST) is one of the main driver of nutrient 

availability and therefore biological processes (Lima, Olson and Doney, 

2002). This was measured from the MODIS instrument (Werdell et al., 

2013; Ocean Biology Processing Group, 2015) at a spatial resolution of 

approximately 4 km and aggregated over the phenological stage (round 

1) or over 7 days (round 2). 

Net primary productivity (NPP) was used as an indication of local 

marine productivity (Kokubun et al., 2015). It was derived from 

chlorophyll and temperature data measured by MODIS using the 

Vertically Generalized Production Model (Behrenfeld and Falkowski, 

1997; Ocean Productivity, 2015). The resolution of this dataset was 

approximately 8 km. The original daily data were averaged to generate 

a weekly temporal resolution dataset. 

Sea level anomaly was derived from altimeter satellites provided by 

COPERNICUS, the European Earth Observation Programme 

(Copernicus - Marine environment monitoring service, 2015). The 

spatial resolution was approximately 12 km. As the original data were 

available at the daily resolution (sea level anomaly, SLA), its values 

were averaged over 7 days to produce the mean sea level anomaly 

(MSLA).  

Sea ice concentration was measured using several passive microwave 

instruments and was processed using the algorithm developed by the 

NASA team (Cavalieri et al., 1992, 2015). The spatial resolution was 

approximately 18 km and the original daily data were averaged over 7 
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days to produce weekly sea ice concentration. The presence of fast ice 

(sea ice that is attached to land) can have a positive effect on 

phytoplankton communities with a positive cascade on higher trophic 

levels, but also a negative impact on ice-avoiding species like chinstrap 

penguins (Fraser et al., 1992). Long trend series of fast-ice extend in the 

South Orkney Islands showed a decline in fast-ice and important annual 

variation, which can be linked with larger scale atmospheric events like 

El Niño–Southern Oscillation (Murphy et al., 1995). Despite being a 

potentially key environmental variable, it is difficult to use remote 

sensing technologies to distinguish fast-ice with sea-ice that has been 

pushed along coastal regions. 

Finally, surface currents play an important role in the distribution of 

nutrients and prey transport and replenishment (Murphy et al., 1998; 

Hunt Jr et al., 2016). Current data used in this study were generated by 

the Earth & Space Research (ESR, 2009) from multiple sensors and 

satellites (Bonjean and Lagerloef, 2002). From the surface current 

vectors, the speeds and directions were extracted. The temporal 

resolution was 5 days and the spatial resolution was approximately 19 

km along parallels and 34 km along meridians. 

All the spatial and temporal resolutions for these variables are 

summarized in Table VII-1. 

Variable processing and resolutions 

The environmental variables were cropped based on the maximum range 

measured by incubation trips, rounded at the nearest 100 km (300 km). 

The resulting extent of the studied area was between latitude 63.5° S and 

57.9° S and longitude 52.1° W and 39.0° W. All the environmental 

variables were re-projected using the coordinate reference system used 

for this project (Universal Transverse Mercator projection centred on 

zone 23 south, EPSG 32723).  

Figure VII-1 presents the resolutions of the different environmental 

variables in relation to the spatial extent of the brood foraging trip; from 

the very high resolution bathymetry (343m) to the coarse current data 

resolution (34.6 km along lines of latitude). For modelling, all the 

environmental variables were resampled to match the resolution of the 

finest spatial grid (bathymetry). The gridded values for the new 

environmental rasters with higher spatial resolution were generated 

using a bilinear interpolation method (Hijmans, 2016). 
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Figure VII-1: Original grid sizes of the different environmental variables in relation to the extent 

of the brood foraging from Cape Geddes. 

In terms of temporal resolutions, the varying environmental variables 

were averaged at the scale of the breeding season for modelling round 1 

(see VII.2c). For round 2, a weekly resolution (or 5 days for the currents, 

see Table VII-1) was used. 

Table VII-1: Spatial and temporal resolutions for the different environmental variables. 

Description Spatial (km) Temporal 

Bathymetry 0.344 - 
Slope 0.344 - 
Aspect 0.344 - 
Geomorphic classes 0.344 - 
Distance to colonies 0.344 - 
Distance to 500m isobaths 0.344 - 
Bird at sea density 0.344 - 
Sea Surface Temperature (SST) 4.130 7 days 
Net Primary Productivity (NPP) 8.260 7 days 
Mean Sea Level Anomalies (MSLA) 12.400 7 days 
Sea Ice Cover 17.700 7 days 

Surface Currents 
19.150 (Long.) 5 days 
34.645 (Lat.) 5 days 
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b. Foraging versus non-foraging 

All the different modelling approaches contrasted the environmental 

variables for the locations that could be considered as foraging 

(presence) with non-foraging locations (pseudo-absences, Aarts et al. 

2008). These foraging and non-foraging locations had different 

definitions for each data inputs. 

For each GPS point (data input 1), one pseudo absence location within 

the corresponding minimal convex polygon for the colony and breeding 

stage (see VI.2d, page VI-119) was randomly generated. For the dive 

locations data input (2), each one-minute interpolated location 

associated with a dive deeper than 5 m was attributed as a foraging 

location (true presence). Locations without dives (or dives shallower 

than 5 m) were considered as pseudo-absences. For the inferred foraging 

modes (data inputs 3a, 3b, 4a and 4b), each one-minute interpolated 

location within an inferred day or night foraging segment was considered 

as foraging (true presence). The locations from segments attributed to 

other inferred behaviours (resting, commuting and exploring) were 

classified as pseudo-absences. See Table VII-2 for a summary of the 

classification of the different data input as presence or pseudo-absence 

points. 

For each data input true presence (foraging) or pseudo-absence (non-

foraging) location, the explanatory variables were extracted according to 

both modelling temporal resolutions (breeding stage or week) and the 

time stamp of the location. 

Table VII-2: Methods for the classification of the different data input as presences or pseudo-

absences for the modelling 

Input 
Include 

missing TDR Presence Pseudo-absence 

1 GPS locations Yes GPS filtered 
location 

Random location 
within MCP 

2 Dives No 1 minute 
interpolated 
location with dive 
>5 m 

1 minute 
interpolated 
location without 
dive or < 5 m 

3a Foraging modes 
(Method 1) 

No 
1 minute 
interpolated 
location within an 
inferred day or 
night foraging 
segment 

1 minute 
interpolated 
location outside an 
inferred day or 
night foraging 
segment 

3b Foraging modes 
(Method 1) 

Yes 

4a Foraging modes 
(Method 2) 

No 

4b Foraging modes 
(Method 2) 

Yes 

Out-of-range points. 

In order to account for accessibility and to force the model to discard 

areas that were beyond the maximum recorded foraging distance from 

the colonies, random out-of-range points were generated. For 

incubation, 1000 random points were produced outside a 205.5 km 

buffer zone from land. For brood, 1700 random points were generated 
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outside a 37.2 km buffer zone from land to have a similar random point 

density for both breeding stages. Figure VII-2 shows the distribution of 

these random out-of-range points for incubation and brood. 

 

Figure VII-2: Out of range random locations for incubation (black dots) and brood (red dots). 

The black and red lines represent buffer areas of respectively 205.5 and 37.2 km from land. 

Because these out-of-range random locations didn’t have a time stamp, 

the associated dynamic explanatory variables were extracted from the 

averaged values by breeding stage for both modelling rounds (see 

VII.2c). 

c. Modelling approaches 

The modelling techniques used in this study included the maximum 

entropy approach (MaxEnt, Phillips et al. 2004), the Generalised 

Boosting Models (GBM also called boosting regression trees, BRT, 

Friedman 2001), the Generalised Additive Models (GAM, Hastie & 

Tibshirani 1990) and the random forest (RF, Breiman 2001). Incubation 

and brood data were modelled separately to generate one foraging 

habitat model for each breeding stage. 

Two rounds of modelling were run in order to compare the influence of 

the temporal resolution while aggregating environmental variables that 

varied in time. The first round was based on the temporal resolution of 

each breeding season stage (incubation and brood). The explanatory 

variables were extracted to each data input according to the whether they 

would belong to an incubation or a brood trip. For the second round, the 

environmental variables were aggregated on a weekly temporal scale. 

The values for each data input were extracted based on the time stamp 

of the data location (year and week number). The second round approach 
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allowed to include a seasonality effect, as the locations along trips 

recorded in 2013-14 would match the conditions of that year instead of 

an average between both 2011-12 and 2013-14 seasons. 

d. Model evaluations and validations 

In order to compare the different modelling techniques, temporal 

resolutions and data inputs, the model performances were evaluated. In 

addition, the outcomes of each model (habitat probability map) were 

validated using two different techniques. 

Model evaluation 

To assess the model’s performances, the receiver-operating 

characteristics (ROC) and the derived areas under the curves (AUC) 

were calculated using the “pROC” R package (Robin et al., 2011). This 

method was suitable for “presence/absence” binary data and was 

comparable across the difference modelling techniques. 

Validation using krill survey 

A key validation process in foraging modelling is to try to integrate the 

distribution of prey (Boyd et al., 2015). In this chapter, I will use the data 

obtained from a ship-based krill survey carried out in 2011-12 around 

the South Orkney Islands. Due to instrument calibration issues, the data 

from this survey could not be used as absolute values to generate 

individual krill abundance. Nevertheless, I believe the data are still 

useful as relative values, allowing me to compare areas with relatively 

high and low krill abundances. 

For each ship location, the krill backscatter signal was summed 

throughout the water column. Then the locations were aggregated by 

hour for the validation of the incubation models and by 30 minutes for 

the validation of the brood models. The median was used to aggregate 

the krill values. By comparing these values with the habitat modelling, I 

was able to evaluate the correlation between the relative krill values and 

the probability of foraging from the models. 

Site cross-validation 

Another way of validating the model which also helped to assess how 

the model results might be suitable for the other surveyed colonies in the 

archipelago was to use a site cross-validation process. A separate model 

was run for each colony data. The correlation between both results was 

computed using a pixel by pixel comparison (Levine et al., 2009). It was 

also possible to compare the predicted probability of foraging generated 

by one of the colonies model with the observed activity of birds from the 

other colony. This enabled me to generate another set of area under the 

curves values (AUC). 

Final foraging habitat 

By ranking the scores evaluating the different modelling approaches 

(model performance, krill validation and site cross-validation), it was 
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possible to determine which modelling technique, which temporal 

resolution and which data input was providing the best model for 

chinstrap penguins foraging habitat around the South Orkney Islands. 

Seasonality 

To assess the effect of the season, independent models based on the 

2011-12 and 2013-14 data were created with the dynamic variables 

matching the season. Predications were then modelled with the observed 

seasonal conditions and compared using a similar pixel-by-pixel 

comparison as used during the site cross-validation. 

e. Summary of the process 

Figure VII-3 summarizes the process from the different data location 

inputs, the matching static and dynamic environmental variables and the 

two modelling rounds with the different algorithms. From the habitat 

prediction modelling outputs, the validation step allowed me to identify 

the best combination of data input, modelling technique and temporal 

scale to generate the final habitat foraging model. 

 

Figure VII-3: Worflow summary showing the different data inputs, environmental variables, 

modelling round and the final validation process. 

VII.3 Results 

a. Environmental maps and envelopes 

In this section, the different environmental variables included in the 

habitat model are summarized on maps and figures. The later show the 

distributions of the values within the potential foraging zones (minimum 

convex polygons based on the GPS locations, see VI.2d, page VI-119) 

and at the different data input locations. The average values within the 
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potential foraging zones per phenological stage and for each colony are 

presented in Table VII-3. The values for the dynamic environmental 

variables presented here were aggregated by phenological stage and 

therefore used during modelling round 1. 

Table VII-3: Average values for each environmental variable within the minimal convex polygon 

associated with each colony and each breeding site; *: for these categorical variables, the reported 

value is the mode. 

 Incubation Brood 

Variable Gourlay Geddes Gourlay Geddes 

Bathymetry (m) -1577 -3585 -237 -1015 
Slope (%) 3.22 7.23 1.89 11.96 
Aspect * SW SE SW N 

Geomorphic classes * 
Shallow 

flat 
ocean 

Shallow 
flat 

ocean 

Cross 
shelf 
valley 

Steep 
shelf 
slope 

Distance to colonies (km) 80.9 111.8 13.1 18.8 
Distance to 500m isobaths (km) 39.0 89.2 48.6 8.3 
Bird at sea density 0.0004 0.0002 0.0017 0.0013 
Sea Surface Temperature (SST, °C) -1.16 -0.66 -0.34 -0.41 
Net Primary Productivity (NPP, mg C m-2 day-1) 269.9 257.4 487.5 229.7 
Mean Sea Level Anomalies (MSLA, m) 0.057 0.055 0.053 0.044 
Sea Ice Cover (%) 5.2 1.3 0.0 0.0 
Current speed (m s-1) 0.048 0.101 0.053 0.061 
Current direction * E E SE W 

 

Benthos variables 

The bathymetry, its derived variables (slope and aspect) and the benthic 

morphology maps are presented in Figure VII-4 with the minimal 

convex polygons. Figure VII-5 presents the proportion of the different 

values available within the minimal convex polygons and “used” by the 

birds (values extracted from the locations of the different data input). 
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Figure VII-4: Maps showing the spatial variation of the bathymetry and derived metrics (slope and aspect) and the 

diversity of benthic geomorphic categories. The polygons represent the potential foraging areas during incubation 

(black) and brood (red) defined using the minimal convex polygon method from the GPS dataset. 
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Figure VII-5: Proportion of the different bathymetry and derived variables and benthos categories within the 

potential foraging areas from Gourlay Peninsula (orange) and Cape Geddes (violet) during incubation (top graphs) 

and brood (bottom graphs). The grey shading represents the variability of the values extracted at the foraging 

locations corresponding to the different data inputs. 

The birds from Cape Geddes had access to deeper waters during the 

whole breeding season (see also the availability of the “Deep flat ocean” 

benthic category). But during incubation, they mostly stayed in 

shallower waters, which confirmed the shorter incubation trips 

previously mentioned for this colony. The slopes available were also 

steeper from Cape Geddes and the “Steep shelf slope” benthic category 

was available before and after hatching. In terms of aspect, the birds 

from Geddes stayed mainly over north facing slopes during both stages, 

although they had access to a wider range of orientation bathymetry 

during incubation. Birds from the Gourlay Peninsula mainly used all the 

range of available conditions, except for the aspect: they mainly stayed 

over south-west facing slopes during incubation and east facing slopes 

during brood. 

Geometry variables 

The maps on Figure VII-6 show the spatial distribution of the different 

geometric variables in relation to the potential foraging areas indicated 

by the minimal convex polygon for each colony and breeding stage. 

Figure VII-7 reports the proportion of the different geometric variables 

available to and used by the birds for each colony and breeding stage. 
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Figure VII-6: Maps showing the spatial variation of the geometry variables (distances to the colonies, distances to 

the 500 m isobaths and bird at-sea density). The random noise variable is also reported. The polygons represent the 

potential foraging areas during incubation (black) and brood (red) defined using the minimal convex polygon 

method from the GPS dataset. 
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Figure VII-7: Proportion of the different geometry variables within the potential foraging areas from Gourlay 

Peninsula (orange) and Cape Geddes (violet) during incubation (top graphs) and brood (bottom graphs). The grey 

shading represents the variability of the values extracted at the foraging locations corresponding to the different 

data inputs. 

Although the potential foraging areas from Cape Geddes covered a wider 

range of distances from the colony, the birds spent most of their time 

closer to their nests, especially during incubation. During brood, the 

bimodal shape of the distances from Geddes corresponded to the two 

distinct foraging areas discussed in the previous chapter (over the shelf 

and off the shelf, see VI.3e, page VI-126). From the Gourlay Peninsula, 

the brooding birds seemed to stay closer to the colony. 

The access to the shelf break, illustrated by the distance to the 500 m 

isobaths, was one of the most distinctive features between both colonies, 

especially during brood when the birds from the Gourlay Peninsula did 

not access the oceanographic slope. During incubation, although the 

potential foraging area from Cape Geddes expended beyond the shelf 

break, most of the birds stayed in the vicinity of the slope. 

The bird at-sea density within the potential foraging areas was slightly 

higher from the Gourlay Peninsula than from Cape Geddes. The 

distribution of the data points in relation to the density did not 

demonstrate a clear avoidance of the most used areas. On the contrary, 

the birds seemed to prefer to forage in areas of higher densities 

(especially birds from Cape Geddes during incubation and to a lesser 

extent, birds from the Gourlay Peninsula during brood). The general 

increase in density after hatching described in the previous chapter was 

also visible in Figure VII-7. 
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Environmental variables 

Figure VII-8 maps the sea surface temperature and the net primary 

productivity in relation to the potential foraging areas for each colony 

and breeding stage. On Figure VII-9, the spatial distribution of the mean 

sea level anomalies and the sea ice concentration are mapped. And 

Figure VII-11 maps the surface current vector fields aggregated by 

breeding stages. Figure VII-10 and Figure VII-12 represent the 

proportion of the values from these environmental variables available 

and used by the birds. 
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Figure VII-8: Maps showing the spatial variations of the sea surface temperature (SST) and net primary productivity 

(NPP) averaged by phenological stage (incubation to the left and brood to the right). The polygons represent the 

potential foraging areas during incubation (black) and brood (red) defined using the minimal convex polygon 

method from the GPS dataset. 
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Figure VII-9: Maps showing the spatial variations of the mean sea level anomalies (MSLA) and sea ice cover 

averaged by phenological stage (incubation to the left and brood to the right). The polygons represent the potential 

foraging areas during incubation (black) and brood (red) defined using the minimal convex polygon method from 

the GPS dataset. 
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Figure VII-10: Proportion of the sea surface temperature (SST), net primary productivity (NPP) and mean sea level 

anomaly (MSLA) averaged within the potential foraging areas from Gourlay Peninsula (orange) and Cape Geddes 

(violet) during incubation (top graphs) and brood (bottom graphs). The grey shading represents the variability of 

the values extracted at the foraging locations corresponding to the different data inputs. 

The average sea surface temperature within the potential foraging areas 

increased during the austral summer as expected. The temperatures were 

colder around the Gourlay Peninsula during incubation (average of -

1.16°C versus -0.66°C from Cape Geddes) due to the presence of sea ice 

south of the archipelago. During brood, the difference was reversed and 

the waters around the Gourlay Peninsula were slightly warmer (average 

of -0.34°C versus -0.41°C for Cape Geddes). This could be due to 

shallower water, weaker currents and a weaker influence from vertical 

currents due to the distance from the closest bathymetric slopes. These 

factors potentially reduced water mixing and increased warming. The 

bird utilisation matched the range of available temperatures, except 

during brood when birds from the Gourlay Peninsula tended to stay in 

warmer waters as the birds from Cape Geddes showed a secondary peak 

in colder water. This could match the over the shelf foraging hot spot, as 

temperature appeared to be colder in that specific area (see Figure 

VII-8). 

The range of values for the net primary productivity within the potential 

foraging areas from the Gourlay Peninsula was wider than within the 

area from Cape Geddes. Productivity was also much higher during brood 

along the south coast of the archipelago and this was particularly true 

during the 2013-14 season (see Figure VII-13). This could be explained 

by higher sea-ice concentrations earlier in the year that might have 

increased the algal bloom after melting (see Appendix IV). The birds 
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exploited the available range of productivity values and did not show 

any clear preference towards areas with high productivity. 

The distribution of the mean sea level anomaly values was very similar 

for both colonies, although the potential foraging areas from Cape 

Geddes included a secondary peak with lower values. Interestingly, 

these lower values were not targeted by the birds. During brood, the 

range of available values was very different between both sites, with a 

reduction of measured anomalies in the vicinity of Cape Geddes. 

 

Figure VII-11: Maps showing the current fields averaged by phenological stage (incubation to the left and brood to 

the right). The polygons represent the potential foraging areas during incubation (black) and brood (red) defined 

using the minimal convex polygon method from the GPS dataset. 
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Figure VII-12: Proportion of the sea ice cover, current speed and current direction averaged within the potential 

foraging areas from Gourlay Peninsula (orange) and Cape Geddes (violet) during incubation (top graphs) and 

brood (bottom graphs). The grey shading represents the variability of the values extracted at the foraging locations 

corresponding to the different data inputs. 

During incubation, sea ice cover was more important within the potential 

foraging areas for Gourlay Peninsula as discussed previously (III.1a, 

page III-40). After hatching, the sea ice disappeared from the waters 

surrounding the archipelago. It is worth noting that the presence and 

amount of ice was very different between seasons 2011-12 and 2013-14 

(see Appendix IV). 

The currents were stronger within the potential foraging areas for Cape 

Geddes, especially off shore in the zones that could be reached by longer 

incubation trips. During that stage, most of the birds stayed closer to the 

shore where the currents were weaker. During brood, the birds from 

Gourlay Peninsula avoided the stronger currents. From Cape Geddes, 

the bimodal distribution of the current speed corresponded to the two 

foraging hot spots: over the shelf in weaker currents and off the shelf in 

stronger currents. During incubation, the birds from Gourlay Peninsula 

exploited the wide range of current directions, as from Cape Geddes, the 

birds that stayed in the vicinity of the colony were mainly in westerly 

currents and the birds that travelled further off shore were in north-

easterly currents. During brood, the main current directions from both 

colonies were opposite and the birds didn’t seem to target any specific 

direction. 

The weekly variations for the different environmental variables are 

presented in Appendix IV; Figure VII-13 shows the example of the NPP, 
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stressing the importance of seasonality in the range of available 

conditions. 

 

 

Figure VII-13: Weekly variability of the NPP variable with the matching sampled trips from both colonies during 

seasons 2011-12 and 2013-14. The other variables are presented in Appendix IV. 

b. Model evaluations 

All the model prediction output maps are presented in Appendix V. 

Figure VII-14 shows the distribution of the area under the curves values 

for the different modelling rounds, breeding stages and modelling 

techniques. Most of the AUC values were in the “useful application” 

threshold (0.7-0.9) defined by Swets (1988). MaxEnt, GBM and GAM 
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algorithms showed similar accuracies, but the random forest method 

provided much higher performances (above 0.9). 

 

Figure VII-14: Distribution of the area under the curves (AUC) values for both modelling 

rounds, phenological stages and modelling algorithms. 

In terms of temporal resolution, the second round of modelling with the 

dynamic variables aggregated on a weekly scale mostly showed an 

increase in performance, especially for the random forest algorithm. 

Despite relatively good performances during the first modelling round, 

the output foraging probability maps for the random forest algorithm 

showed some signs of over-fitting (Figure VII-15 for an example based 

on data input 4b). 
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Figure VII-15: Foraging habitat probability maps built from data input 4b with the dynamic variables aggregated 

by phenological stage (round 1) and a random forest algorithm. The orange and violet polygons represent the 75% 

utilisation distribution of the data input for Gourlay and Geddes locations respectively. 

c. Model validations 

Krill survey 

Figure VII-16 shows the krill relative measures aggregated every 30 

minutes overlaying the foraging model for incubation (model produced 

by round 2, data input 4b and random forest algorithm). 

The Pearson correlation coefficients between the measured krill values 

and the habitat modelling probabilities were very low. For incubation, 

only 18% of the correlation were statistically significant, but most of 

them showed a positive correlation. For brood, 85% of the correlation 

were statistically significant and all of them were positive. The best score 

for incubation was attributed to data input 1a (GPS points) based on the 

GBM algorithm and the dynamic variables aggregated by phenological 

stages (round 1), but it indicated a negative correlation. For brood, the 

highest score was given by data input 4a (behaviour mode inferred by 

method 2 without missing TDR data) based on the GBM algorithm and 

the dynamic environmental variables aggregated by weeks (round 2). 
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Figure VII-16: Krill transects and relative measures aggregated every 30 minutes overlaying 

the foraging habitat model for incubation. Model generated by round 2, data input 4b and 

random forest algorithm. 

Site cross-validation 

Figure VII-17 shows an example of the overlap between habitat model 

predictions based on Geddes only and Gourlay only data (model issued 

by round 2, data input 4b and random forest algorithm). The map 

indicates that the model generated by the Gourlay Peninsula data was 

able to identify most areas with high probability of foraging generated 

from the Cape Geddes data. The reverse did not seem to be true, as the 

model created from the Cape Geddes colony failed to identify foraging 

areas south of the archipelago. 
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Figure VII-17: Site cross-validation of the habitat model. The orange shading represents predictions identified using 

the Gourlay Peninsula dataset while the violet shading is inferred from the Cape Geddes dataset. Model generated 

by round 2, data input 4b and random forest algorithm. The orange and violet polygons represent the 75% utilisation 

distribution of the data input from Gourlay and Geddes locations respectively. 

The AUC values from the cross-validation process were in the low 

accuracy range (Swets, 1988): between 0.49 and 0.66 for incubation and 

0.45 and 0.79 for brood. The highest scores for both phenological stages 

were given by the GPS dataset (1a) and the random forest algorithm 

during the first round of modelling (dynamic variable aggregated at the 

scale of the breeding stages). The pixel-by-pixel correlations were all 

significant and two-thirds of them were positive, although the Pearson 

coefficient were quite low (ranging from -0.57 and 0.62 for incubation 

and -0.30 and 0.81 for brood). The highest scores were obtained for data 

input 3a (foraging behaviour inferred from method 1 without missing 

TDR) and data input 1a (GPS points) for incubation and brood 

respectively. Both generated using the random forest algorithm and 

using the dynamic variables aggregated by phenological stages (round 

1). 

d. Final foraging habitats 

Input selection 

All the different model combinations (except the MaxEnt results, as 

these were excluded from the cross-validation process due to poor model 

performance) were ranked based on the AUC score, the correlation 

coefficient with the krill data, the AUC score and the correlation 

coefficient from the cross-validation process. All the ranks were 

summed to provide a final rank score. Table VII-4 presents the 10 best 

models for both phenological stages; all the results are reported in 

Appendix VI. 
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Table VII-4: The 10 best ranking models defined by the model performance (AUC), the validation 

with the krill data (Spearman correlation coefficient), the site cross-validation performance (AUC) 

and spearman correlation coefficient. “+” and “-“ indicate positive and negative correlation. 

Greyed coefficient are statistically non-significant. Bold rows indicate the final best model1. 

Round-
Input- 
Model 

 
Model performance Krill validation Site cross-validation Final 

Rank AUC Rank Correlation Rank AUC Rank Correlation Rank 

INCUBATION 

2-4a- RF 0.9996 2 0.27 + 4 0.6241 2 0.30 + 9 17 
2-4b-RF 0.9989 4 0.29 + 2 0.5701 7 0.22 + 10 23 
1-1a-RF 0.9949 5 0.11 - 19 0.6647 1 0.53 + 4 29 
2-2b-RF 0.9227 10 0.21 + 9 0.5571 16 0.45 + 8 43 
2-3b-RF 0.9991 3 0.27 + 3 0.5261 28 0.20 + 11 45 
2-4b-GBM 0.8020 16 0.19 + 11 0.5855 4 0.11 + 16 47 
1-1a-GBM 0.7910 19 0.30 - 1 0.5661 9 0.02 + 20 49 
2-3a-RF 0.9997 1 0.21 + 10 0.5276 27 0.12 + 14 52 
2-4a-GBM 0.8180 14 0.22 + 7 0.5528 20 0.17 + 12 53 
1-3a-RF 0.9716 7 0.02 + 28 0.5536 18 0.62 + 1 54 

BROOD 

2-4b-RF 0.9996 3 0.36 + 3 0.6425 3 0.60 + 2 11 
2-3a-RF 0.9997 2 0.31 + 7 0.6470 2 0.42 + 9 20 
1-1a-RF 0.9639 5 0.28 + 17 0.7914 1 0.81 + 1 24 
2-4a-RF 0.9997 1 0.34 + 4 0.6197 8 0.36 + 12 25 
2-3b-RF 0.9994 4 0.31 + 9 0.6162 9 0.46 + 7 29 
2-2b-RF 0.9190 10 0.32 + 6 0.6017 11 0.51 + 4 31 
2-4b-GBM 0.8430 12 0.36 + 2 0.6141 10 0.01 + 21 45 
1-4a-RF 0.9244 7 0.27 + 18 0.5891 16 0.48 + 5 46 
2-4a-GBM 0.8470 11 0.36 + 1 0.5760 20 0.14 + 17 49 
1-2b-RF 0.7444 29 0.29 + 14 0.6216 7 0.48 + 6 56 

 

The random forest algorithm generated 70% and 80% of the 10 best 

overall scores for incubation and brood respectively. The models based 

on the weekly aggregation of the dynamic variables (round 2) 

represented 70% of the 10 best overall scores for both incubation and 

brood.  

In terms of data input, data 4a (behaviour modes inferred from method 

2 without missing TDR data) had the highest overall score for incubation 

and data 4b (behaviour modes inferred from method 2 with missing TDR 

data) had the highest score for brood. 

The later data input (4b) had the best combined overall score and was 

therefore chosen as the final habitat model. 

Habitat map 

The final habitat prediction map based on data input 4b using the random 

forest algorithm and the dynamic variables aggregated on a weekly basis 

is shown in Figure VII-18. The black and red insets detail a trough along 

the northern shelf break which is believed to be an important krill 

retention area (PN Trathan pers. comm.). The blue inset on the brood 

                                                 
1 The round corresponds to the temporal aggregation of dynamic environmental 

variables (1: scale of the phenological stages, 2: weekly scale). The data inputs are: 1 

GPS locations, 2 dive locations, 3 foraging modes inferred from method 1, 4 foraging 

modes inferred from method 2, a indicate the use of complete trips only, b corresponds 

the whole data set with and without missing TDR measurements. The models are: 

GBM Generalised Boosting Models, GAM Generalised Additive Models, RF random 

forest.   
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foraging prediction shows how the eastward foraging zone used by the 

birds during diurnal only trips was integrated in the prediction. 

 

Figure VII-18 : Final habitat map for incubation (left) and brood (right). The orange and violet polygons represent 

the 75% utilisation distribution of the data input for Gourlay and Geddes locations respectively. The black dots show 

the location of the known chinstrap colonies. The balck inset represents the Monroe and Coronation troughs, the 

red inset represents the Powell trough. The blue inset details the brood foraging habitat from Cape Geddes with 

both over the shelf and off the shelf foraging zones. 

Variable importance plots 

The variable importance scores for modelling round 2 and the random 

forest algorithm are presented in Figure VII-19. Most of the variables, 

except the sea ice, were above the random variable. The main driving 

variable for both phenological stages was the distance to the colonies, 

which was expected for a central place forager. The bird at-sea density 

came second for both stages. The ranking of the variables was very 

similar for both stages, the main differences being a higher importance 

for the mean sea level anomalies before hatching and a higher 

importance for current direction after hatching. 
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Figure VII-19: Variable importance plots for incubation and brood for round 2 models with the 

random forest algorithm. The blue stars represent the scores for data input 4b. 

Partial dependence plots 

The partial dependence plots for the eight most contributing variables 

for the models are presented on Figure VII-20 for the incubation model 

and Figure VII-21 for the brood model. 
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Figure VII-20: Partial dependence plots for the eight most contributing variables for incubation for the different 

data inputs. Higher values reflect higher foraging probabilities. 

 

Figure VII-21: Partial dependence plots for the eight most contributing variables for brood for the different data 

inputs. Higher values reflect higher foraging probabilities. 

These partial dependency plots show that favourable foraging habitat 

was in the vicinity of the colonies (less than 50 km during incubation 

and less than 15 km during brood). The model also predicted that good 

foraging habitat was also in areas with lower bird at-sea densities, 

especially during brood, which is contradictory with the environmental 

envelopes showing no clear avoidance of high bird at sea densities by 

the tracked individuals (see VII.3a). Although areas with very low 

densities were also unfavourable; which could indicate areas too far from 

the colonies and inaccessible by birds. Favourable foraging habitats 

were also in the vicinity of the 500 m isobaths (less than 75 km during 

incubation and less than 50 km during brood). Very shallow waters and 

waters deeper than approximately 1500 m were slightly less favourable. 

During incubation, high mean sea level anomalies were indicating 

favourable habitat. Cold waters were indicating better habitats but not 

under -1.8°C and -1.5°C for incubation and brood respectively. Water 
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with strong surface currents were unsuitable habitats, especially during 

brood. After hatching, south-east and south-west currents indicated 

better habitats, but these might just reflect the local condition 

encountered by the birds at both sites. Finally, the net primary 

productivity didn’t show a clear pattern for the incubation habitat model 

(habitat seemed more favourable in higher productivity areas). During 

brood, better habitat seemed to have lower net primary productivity (less 

than 700 mg C m-2 day-1) but still above 200 mg C m-2 day-1. 

Weekly foraging habitats 

Finally, Figure VII-22 illustrate how the final foraging habitat model 

generated weekly foraging habitat maps from the corresponding weekly 

values of the dynamic environmental variables. The time series showed 

that although some areas were quite stable and offered some 

predictability, other patches of predicted favourable habitat seemed to 

vary in location and size. 
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Figure VII-22: Weekly foraging habitat model predictions covering incubation and brood for the seasons 2011-12 

and 2013-14. The foraging trips sampled during each week are also represented. 

The Pearson correlation coefficients between paired incubation and 

brood weekly predictions are presented in Table VII-5. The coefficients 

averaged 0.80 for incubation and 0.75 for brood. The weeks belonging 

to the same surveyed season had higher correlations than cross-season 

comparisons (0.87 versus 0.74 for incubation and 0.86 versus 0.54 for 

brood). This was particularly true for brood, but season 2013-14 had 

only one week (12 recorded foraging trips during that week). 
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Table VII-5: Pairwise correlations between weekly foraging habitat predictions. The top-right 

part of the table contains Pearson correlations for incubation and the bottom-left part of the 

table contains the coefficients for brood. Cells shaded in green indicate comparisons between 

weeks from the same season as red shaded cells are cross-season comparisons. 

  2011 2012 2013 2014  Year 
  52 00 01 48 49 50 51 52 00 Week  

  0.9 0.78 0.77 0.75 0.74 0.74 0.74 0.73 0.73 51 
2011 

   0.84 0.79 0.74 0.73 0.74 0.72 0.72 0.72 52 

    0.87 0.73 0.72 0.76 0.72 0.71 0.74 00 
2012 

     0.74 0.73 0.77 0.75 0.73 0.75 01 

2012 

03 0.89    0.94 0.89 0.89 0.89 0.84 48 

2013 

04 0.89 0.88    0.9 0.89 0.87 0.81 49 

06 0.83 0.8 0.87    0.94 0.91 0.84 50 

07 0.82 0.84 0.86 0.88    0.98 0.87 51 

2014 01 0.53 0.53 0.55 0.54 0.56    0.88 52 

 Week 02 03 04 06 07       
Year  2012       

 

Seasonality 

The seasonal model predictions are presented in Figure VII-23. The 

pixel by pixel correlations were weak for incubation (Pearson coefficient 

of 0.38) and very weak for brood (0.13). But the figure also shows the 

bias due to the sampling effort. Only a few trips were recorded from the 

Gourlay Peninsula in 2011-12 (9 short incubation trips and 19 brood 

trips) and no deployments were carried out in 2013-14 from Cape 

Geddes. 
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Figure VII-23: Seasonal foraging habitat prediction with the 75% utilisation distribution of the data input for 

Gourlay (orange polygons) and Geddes (violet polygons) locations. 

VII.4 Discussion of the results, summary and limitations 

The results from the modelling and the validation process will be 

summarized and discussed in this section. The limitations due to the data 

available and the methodology will be highlighted as will the other 

confounding variables not included in the models. This is important as 

these limitations contribute to the interpretation of the final foraging 

habitat model. 

a. Results from the models 

Model selection 

In most of the scoring, the models generated from the random forest 

algorithm outranked the ones generated by all other algorithms. This 

confirms the popularity of this technique for generating foraging habitat 

models for seabirds (Bost et al., 2011; Oppel et al., 2012; Scales et al., 

2016). 
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There was a clear increase in model performance when using the 

dynamic environmental variables at a higher temporal resolution (round 

2). This suggests the importance of matching as closely as possible the 

observations with the environment. This approach also allowed me to 

incorporate seasonal differences in environmental conditions into the 

model. 

Incubation and brood models showed similar performance. During the 

validation process, the incubation models showed higher correlation 

coefficients with krill data. This could be due to a better match between 

the spatial extent of the krill survey and the larger foraging ranges before 

hatching. During the site cross-validation process, the brood AUC values 

were higher as well as the correlations between the predicted habitats 

from both colonies. It is probable that during brood, the main constraint 

of staying in the proximity of the colony to feed the chicks might reduce 

opportunities and attenuate local differences in conditions and therefore 

create similar predictions between sites. 

Finally, the validation process allowed me to compare the different level 

of data inputs. The type of data with the highest ranking was the inferred 

foraging behaviour based on the expert method including missing TDR 

data. The inputs generated simply using GPS or dive locations did not 

produce the best models. The former could not be used in the round 2 

due to the random nature of the pseudo-absences and the difficulty of 

attributing dynamic environmental variables to random locations 

without time stamps. In addition, the round 1 predictions generated by 

the GPS locations, despite being ranked 3rd during the validation 

process, were clearly over fitted (see Appendix V). The dive locations 

were ranked 5th overall in the validation process and their predicted 

habitat had correlation coefficients of 0.69 and 0.88 with the best model 

for incubation and brood respectively. The data input based on the other 

inferred foraging behaviour modes (method 1, with or without missing 

TDR data – 3b and 3a) showed lower ranking (6th and 4th) but higher 

correlation coefficients with the best model (0.71 and 0.91 for 3b and 

0.60 and 0.92 for 3a for incubation and brood respectively). When the 

trips with missing TDR were discarded (4a), the overall model ranking 

was 2nd and it prediction maps were strongly correlated with the 

reference final prediction (0.88 and 0.97 for incubation and brood). This 

suggests that although the model evaluation scores and the predicted 

habitat maps were quite similar, the process of detecting foraging 

behaviour is an important step and provides more information than 

inputs based on just GPS locations or combined GPS and dive data. 

Habitat prediction 

The main driver for both the incubation and brood habitat predictions 

was the distance to the colony which is expected from central place 

foragers. The prediction habitat maps show less favourable foraging 

grounds in close proximity to colonies, which can be explained by prey 

depletion. This Ashmole effect is also illustrated by the strong influence 

of the bird at-sea density on the models. When foraging, the birds have 

to balance the necessity of reducing the energy consuming commuting 
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part of the trip with trying to avoid competition with their congeners and 

other krill predators. The models seemed to capture the trade-off and the 

lower habitat quality near the shore, which is wider during incubation 

when birds have less time constraints and can forage further off shore. 

However, it is difficult to distinguish between intraspecific competition 

and attraction which can be an important factor to help prey detection in 

social foragers (Boyd et al., 2015).  

The oceanic features and the important contribution of the oceanic slope 

to favourable foraging habitats in particular (Ichii et al. 1998; Trathan et 

al. 2003; Trathan et al. 2006; Atkinson et al. 2008; Siegel et al. 2013). 

were also captured by the model. The most important foraging zones on 

the prediction maps were located along the 500 m isobaths, especially 

on the north side of the archipelago where it is easily accessible from the 

penguin colonies. In contrast, its influence seems less important on the 

south side of the South Orkney Islands. On the south side the oceanic 

slope is further offshore and less accessible, especially during brood. The 

prediction model shows that birds tended to avoid very shallow areas. 

This suggests that tracked penguins during this study were not relying 

on benthic feeding as observed by Takahashi et al. (2003) and Kokubun 

et al. (2010). 

Chlorophyll and primary productivity are usually considered as good 

predictors of favourable foraging habitat (Boersma et al., 2009; Jaud et 

al., 2012). Sea surface temperature (Trathan et al., 2008; Scheffer, Bost 

and Trathan, 2012) and surface currents (Cotté et al., 2007) are also 

acknowledged to be good proxies for high quality habitat models. 

Regrettably these variables only provide limited contributions to the 

model and/or the direction of influence were in contradiction to results 

from some previous studies. Grémillet et al. (2008) and Boyd et al. 

(2015) suggest that environmental variables from remote sensing 

sources might not always be adequate to predict prey distribution and 

therefore foraging habitat. The former authors showed some mismatch 

between chlorophyll a distribution recorded via remote sensing and 

some trophic levels. This can be explained by the impossibility to detect 

chlorophyll in deeper layers of water and by the temporal lag between 

the development of phytoplankton and the appearance of grazer. The 

second authors reported that SST is not a good predictor of prey 

distribution and that mechanical models should be used instead. 

Similarly Santora et al. (2012) suggest that chlorophyll might not be 

suitable to predict krill habitat. It is also possible that these variables are 

not useful to support predictions at the very fine scale considered in this 

study (both spatial and temporal dimensions). The spatial resolution of 

these variables is very coarse in regards to the resolution of the data input 

and behaviour modes classification. There is a significant negative 

correlation between the spatial resolution and the variable importance in 

the round 2 random forest model (r2=0.258, F1,118=41.06, p<0.01). 

Similarly, the temporal scale (one week) is also very coarse, but better 

than the aggregation at the scale of the foraging stages as suggested by 

the better performances during modelling round 2. 
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When comparing the foraging prediction with the actual observations 

(Figure VII-18), the habitat model matches the foraging locations 

recorded from Cape Geddes. However, at the Gourlay Peninsula, it 

seems that the birds did not target the most favourable habitats. Instead 

of heading south-west toward the oceanic slope, they could reach a zone 

predicted as good habitat south of Powel and Laurie islands. They could 

also swim around the west tip of Coronation Island to reach more 

favourable predicted habitats. One explanation for this sub-optimal 

exploitation of the habitat could be the competition with other penguins 

from colonies located south of Laurie or on Monroe islands. This is 

confirmed by Trathan et al. (2006) and Masello et al. (2010) who 

observed spatial segregation between adjacent colonies. 

At very local scales, the model seemed to predict the a priori favourable 

habitats provided by canyons located along the north side of the 

continental shelf. The prediction maps showed some unrealistic abrupt 

linear changes (see for example the brood prediction on Figure VII-18). 

This could be due to a combination of model artefacts and/or coarse 

resolution of the environmental variables. 

b. Limitations 

Sample size and variables resolutions 

One of the main limitations of this foraging habitat model is linked with 

the sample size (Aarts et al., 2008; Carter et al., 2016). This study only 

included two colonies and the number of tracked birds is unbalanced 

between both sites. Furthermore, the sampling covered two breeding 

seasons from the Gourlay Peninsula and only one from Cape Geddes. 

The oceanographic conditions in the vicinity of both colonies were very 

different and the dynamic variables changed between both breeding 

seasons, as probably did prey availability (Murphy et al., 1998; Saunders 

et al., 2007; Rombolá, Marschoff and Coria, 2009). Although Jansen et 

al. (2002) didn’t observe annual changes in krill abundance and Santora 

et al. (2012) suggests that years with lower krill recruitment are buffered 

by the longevity of krill and its reproduction over several years. Despite 

these limitations, the different validation procedures allowed me to 

check the utility of the models. The cross-validation in particular showed 

how good a model from one colony is to predict foraging habitat in the 

vicinity of the other colony. That step showed that the model based on 

the Gourlay data was better at predicting the habitat along the north coast 

of the archipelago than the reverse. The performance of the cross-

validation was quite average. Using the weekly temporal resolution also 

allowed me to make sure that seasonal variations were included in the 

models. 

The other main limitation is related to the spatial and temporal resolution 

of the dynamic environmental variables. The important difference 

between the accuracy and frequency of the birds’ locations and the grid 

size and temporal scale of the predictor variables creates a mismatch 

between the real conditions and the values included in the model (Aarts 

et al., 2008). Remote sensing data are also prone to different biases 
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(cloud cover and sea ice preventing the collection of data) that would 

generate missing data and/or inaccurate measurements. To alleviate 

these issues, some ground truthing procedures would allow me to 

estimate the inaccuracies and discrepancies for the different variables. 

Methodology 

Limitations when modelling habitats from tracking data are related to 

the positive spatial and temporal autocorrelation of the data points and 

colinearity between explanatory variables (Aarts et al., 2008; Dormann 

et al., 2013). For example, the bird at-sea density was built in relation to 

the distance to the colonies. Net primary productivity is also partially 

dependent on sea surface temperature. The random forest algorithm 

partially mitigates these issues through sub sampling of the data and the 

variables during the building of trees (Breiman, 2001). 

A methodological issue is related to the different random locations 

generated for the models (pseudo absences for the GPS dataset and 

points out-of range for all models). Because these random locations do 

not have a timestamp, they can’t have accurate associated dynamic 

environmental variables. There are no ways to mitigate this, except by 

attributing a random date and time to these locations, which might 

increase uncertainties. 

In the previous chapters, I reported how important the vertical 

exploitation of the habitat is. Birds closer to land had deeper dives and 

the dive depth also varied with the period of the day. This vertical 

component is absent from the modelling. It would be quite difficult to 

integrate it, mainly because the environmental variables acquired from 

remote sensing only relate to the superficial surface layer of water. The 

actual model only considers surface conditions, but it is known that the 

prey distribution and therefore the foraging habitat is influenced by 

changes throughout the water column that cannot be measured remotely 

(Santora et al., 2012). 

Model validation 

Most of the model validation and evaluations were based on the area 

under the curve (AUC) metric, which compares the rates of true positive 

(the model prediction matches a positive presence) and the rates of false 

positive (the model misclassified a presence or an absence). But this 

measure is not completely bias-free. Indeed, the AUC is strongly 

influenced by large number of absences and is not reliable in predicting 

rare events (Manel, Williams and Ormerod, 2001).. It is also influenced 

by the spatial extend to which the models are carried (Lobo, Jiménez-

valverde and Real, 2008). Other ways of validating the models should 

be explored. 

Finally, the models were partially validated using some information 

describing the prey field. In addition to being sure that the instruments 

used are correctly calibrated and that the measures are useful, the 

temporally reduced overlap between the tracking of birds and the prey 

survey introduces other limitation in this important validation process. 
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In addition, it is known that birds might not forage where their prey is 

most abundant (Boyd et al., 2015). It could be because the location of 

high prey density are out of reach. Or maybe because of competition 

with other krill predators (Hunt, Heinemann and Everson, 1992). It has 

also been suggested that penguins might not target the most dense krill 

swarms and prefer lower krill densities (Cox et al., 2010). 

c. Conclusion 

Despite the numerous limitations linked with the data quality (accuracy, 

resolution, sample size, etc…) and those in relation to the validation 

process, the various predictions showed some convergence and the 

predicted foraging habitat maps seemed to generate a realistic picture of 

chinstrap foraging hotspots around the South Orkney Islands. The 

models fulfilled the aims of integrating habitat preferences and 

accessibility. In order to evaluate how the competition (intra- and 

interspecific) is covered by the foraging habitat model, more tracking 

data from adjacent colonies and/or other sympatric species is required. 

The method highlighted the importance in identifying the inferred 

foraging parts of the tracking data. It also emphasized the importance of 

temporal variations (over the course of the breeding season, between 

years) and the necessity of matching as closely as possible the 

observations with real local and dynamic conditions. As the accuracy, 

frequency and resolution of tracking devices increase, it will be possible 

to identify fine scale foraging patterns. To match this level of details, it 

is now important to obtain finer and more accurate covariables that can 

be used for the models. Matching information about the prey distribution 

in terms of spatial and temporal resolution is also important for 

validating marine predator foraging habitats. 
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Chapter VIII GENERAL DISCUSSION 

In this final part, the results from the previous chapters will be 

summarized. The use of the habitat model by individual birds will be 

related to their fitness and reproductive effort. The main limitations of 

the whole study will also be discussed. Finally, the potential overlap 

between fisheries and foraging habitat will be commented upon and 

some proposal for management will be made. 

VIII.1 Summary of the different results 

Chapter IV compares characteristics at the scale of the foraging trips 

between colonies and how the different metrics varied over time. Most 

of the trip metrics changed during the breeding season, indicating an 

increase in foraging pressure with a reduction of available habitat after 

hatching. This intensification of foraging activity was illustrated by an 

increase in exploration speed, deeper dives and more nocturnal activity. 

These trends were comparable between both colony sites, providing 

encouraging evidence to support a model that could be extrapolated to 

other colonies. This chapter also highlighted the importance of temporal 

scales, not only over the breeding season, but also between day and night 

activities. 

In Chapter V, two different methodologies were developed to infer 

changes in behaviour throughout foraging trips. The trips were 

segmented based on the temporal variations in surface metrics (speed 

and changes in direction) and dive metrics (depth and dive efficiency). 

The allocation of a behaviour mode for each segment was based on two 

different approaches: a semi-automatic (data clustering and manual 

behaviour mode identification for each cluster) and an expert-based 

method (behavioural allocation through visual inspection of a data 

subset followed by a supervised classification of the whole dataset). 

Two-thirds of the segments had matching modes from both methods, 

reaching 84% for the foraging modes. Behavioural modes were also 

attributed to incomplete trips (trips without dive data) using a supervised 

classification process. 

The investment in foraging activities showed a significant increase after 

hatching and was consistent for both colonies (although the increase in 

night foraging activity was more important for birds from Cape Geddes). 

Despite the facts that these behaviour modes cannot be validated by 

other observation data, the results from this chapter are confirmed by 

previous findings from this study and other related investigations. 

The next chapter (Chapter VI) used different techniques to spatially 

represent the range of potential data inputs for the final foraging habitat 

modelling. Indeed, the previous chapters generated six possible data 

inputs: the basic filtered GPS locations, the interpolated 1 minute 

resolution locations merged with dive data (Chapter II) and the two sets 

of foraging modes inferred from the two methods used in Chapter V), 

each with or without trips with missing TDR data. The effect of spatial 

scales, matching the resolutions of the environmental variables used in 
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the final modelling chapter was also assessed through a grid aggregation 

process. The other two techniques, minimum convex polygon defining 

potential foraging areas and kernel density estimator delineating 

utilisation distributions, allowed the identification, measurement and 

spatial representation of feeding “hotspots”.  

The different data inputs showed good overlap and similarities between 

sites and breeding seasons. When assessing the influence of the spatial 

resolution, optimal convergence was reached at medium scales (between 

1 and 10 km). The main factor limiting the overlap between the 

utilisation distributions defined by the different data inputs was related 

to the sample size. The Geddes colony showed less variation between 

the different utilisation distributions due to the higher number of 

foraging trips recorded from that location. After hatching, the reduction 

in available habitat lead to an increase in the time spent per unit area. 

The later was also related to the depths of the dive, providing a potential 

explanation for deeper dives during brood and suggesting a vertical 

resource depletion near the colonies.  

This chapter (Chapter VI) contrasted with the previous ones as the 

spatial distribution of foraging showed some differences between sites, 

which might be explained by bathymetric and oceanographic features. 

Birds stayed closer to the Cape Geddes colony during incubation, as the 

continental shelf slope was easily accessible. During brood, the birds 

from the same colony showed two different strategies: either a longer 

nocturnal trip northward reaching the continental slope or a shorter 

diurnal trip eastward over the shelf. The birds from the Gourlay 

Peninsula did not show the same patterns during brood; they tended to 

stay closer to the colony, probably due to the inaccessibility of the shelf 

slope. 

The last chapter (Chapter VII) used several modelling techniques to 

contrast geometric and environmental variables between foraging and 

non-foraging locations from the different data inputs to generate habitat 

models. The same 6 data inputs used in the previous chapter were 

compared. The explanatory variables combined bathymetry and derived 

variables including benthic geomorphic classes, geometric variables 

representing constraints related to the colony locations and remotely-

sensed physical and oceanographic parameters. Due to the dynamic 

nature of the later set of variables, they were temporally aggregated 

along two scales (breeding stages and weeks) during two modelling 

rounds. In each round, four algorithms (MaxEnt, GAM, GBM and 

random forest) were used on the 6 different data inputs. Each model was 

evaluated based on a measure of their performance. They were also 

validated using information about prey distribution and through a cross-

site corroboration process. 

By combining the evaluation and validation phases, it was possible to 

identify the best modelling technique, data input and temporal scale 

aggregation for the dynamic variables. The random forest algorithm 

generated the best models. The weekly temporal scale for the variables 

created better models than the aggregation by breeding stages, the later 
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showing signs of over-fitting. Finally, the inferred foraging modes based 

on the second method of behaviour mode inference (Chapter V) with the 

inclusion of data from incomplete trips provided the best input for the 

modelling. 

The final habitat model was mainly driven by geometric variables 

(distance to the colony and bird at-sea density) and bathymetry-derived 

variables (mainly the distance to the continental shelf slope). The other 

environmental variables, despite showing weaker contributions to the 

model, were also important as emphasized by the importance of having 

a good temporal match between the data collection and the measured 

conditions. The derived foraging habitat probability map showed good 

local predictions for zones known for high prey aggregations. It also 

included accessibility and how it varied between breeding stages. 

Finally, areas of low habitat quality identified in the vicinity of the 

colonies indicate that the model accounted for competition and prey 

depletion. 

a. Answers to the secondary questions 

The answers to the secondary research questions listed in I.3a (page I-9) 

are presented in Table VIII-1.
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Table VIII-1: Answers to the secondary questions from each chapter. 

  Chapter IV  Chapter V Chapter VI Chapter VII 

1 What changes occur 

during the breeding 

season? Is a single 

habitat foraging model 

sufficient for the whole 

breeding season? 

Reduction in foraging range 

after hatching. Trip metrics 

indicate an increase in 

pressure after hatching. 

Increase in foraging 

activities after hatching. 

Reduction in foraging range 

after hatching. Higher time 

spent in area unit during 

brood. 

Two different foraging 

habitat models due to the 

different ranges. 

2 Is it possible to identify 

the foraging parts of the 

trip and reliably 

distinguish these from 

resting and commuting 

periods? 

 Yes, but they cannot be 

validated (although both 

methods offer some 

similarities). 

 In the foraging habitat 

model, the inferred 

behavioural modes based on 

method 2 showed better 

performance. 

3 Where are foraging 

hotspots located that are 

used by the tracked 

birds? 

  During brood, Geddes birds 

target two different areas 

depending of the period of 

the day. 

The model showed prey 

depletion near the coast. 

North side of the 

continental shelf. 

4 Which are the main 

explanatory variables 

driving the foraging 

habitat model? 

   Distance to the colony, bird 

at-sea density, distance to 

the oceanographic slope,  

5 Is it possible to evaluate 

and validate the foraging 

habitat model and 

transfer it to other colony 

sites in the South Orkney 

Islands? 

   The cross-validation 

process show that the data 

from Gourlay was more 

skilful.  

6 What are the 

characteristics of the 

vertical use of the 

habitat? 

Increase in foraging depth 

after hatching, especially 

during day trips. 

Different dive depths for 

exploratory and foraging 

dives. Shallower dives 

during night foraging. 

Deeper dives in the vicinity 

of the colony, especially in 

areas with high utilisation 

time 

The 25 km threshold where 

dives are deeper (Chapter 

VI) cover most of the 

favourable brood habitat 

(see Figure VIII-4, page 

VIII-196) 
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7 What are the differences 

between two colony 

locations? 

Differences in night 

activity. Longer ranges 

from Gourlay. Geddes trips 

were less circular. 

Differences in night 

activity. 

Better convergence from 

different data inputs at 

Geddes due to sample size. 

Higher time per area unit in 

Gourlay during incubation 

and Geddes during brood. 

In Geddes birds stayed 

closer to shore. 

Foraging habitat from the 

model seems more 

favourable from the Geddes 

colony. 

8 What are the temporal 

and spatial scales 

relevant to characterise 

chinstrap foraging? 

Differences between 

incubation and brood and 

day/night activities. 

Differences between 

incubation and brood and 

day/night activities. 

Resolution of behaviour 

mode is one hour. 

Different data inputs 

converged between 1 and 

10 km. During brood, 

Geddes birds targeted two 

different areas during the 

day and night. 

Week resolution for 

explanatory variables 

increased the model 

performance. 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

VIII-185 

VIII.2 Foraging habitat effect on bird fitness and population sizes 

a. Bird fitness and reproductive effort 

This section will relate the foraging habitat generated in the previous 

chapter with data collected at the individual bird level. This will enable 

me to relate bird fitness and reproductive effort with the results from the 

habitat model. The bird’s weight measured during the attachment of the 

device will be considered as an indication of body condition (Watanuki, 

Takahashi and Sato, 2010) and therefore fitness. 

In order to a link birds’ individual measurements to their ability or need 

to use good quality foraging habitat, as defined by the result of the 

foraging habitat model generated in the previous chapter: a good quality 

habitat is represented by cells with a high probability of foraging 

generation by the model. The values extracted from the habitat model 

for each 1 minute interpolated location along each foraging trip were 

summed and divided by the trip duration. This trip weighted habitat use 

was then averaged for each deployment (results by trip are included in 

the trip summary data presented in Appendix II) and a random forest 

model was built to predict values from the bird’s trips characteristics 

(trip range, see II.3 and percentage of behavioural modes, see V.3c) and 

biometrics (weight, mass gain/loss and reproductive effort – number of 

eggs or chicks, see II.1e). The inferred sex, site, season and a randomly 

generated variable were also added to the model. The model was run 10 

times with a different subset of training and testing sample for cross-

validation. 

The 10 models explained on average 60.3% of the variability of the data. 

The predicted weighted habitat use was significantly correlated with the 

observed values (R2 of 0.65, F1,68=124.6, p value<0.01). The maximum 

trip range, percentage of foraging activity, both the weight and mass 

gain/loss and the phenology had a higher contribution to the model than 

the random variable (Figure VIII-1 A). The inferred sex, the colony site, 

the season and the number of offspring had very weak contributions to 

the model. The partial dependency plots (Figure VIII-1 B to F) show that 

longer trips allowed the birds to reach more favourable habitats as 

observed in Procellariiform parents by Chaurand & Weimerskirch 

(1994) and Weimerskirch et al. (1997). A high percentage of time spent 

in inferred foraging behaviour was also linked with a higher habitat 

quality, which was expected as foraging locations were used to generate 

the foraging model. Lighter birds are known to undertake longer trips 

(Clarke, 2001; Watanuki et al., 2002) and my results show that they 

targeted locations with better habitats as observed by Saraux et al. 

(2011). Brood trips targeted better quality habitats, despite the foraging 

trips being shorter and therefore contradicting the effect of foraging 

range. This again emphasizes the increased constraints after hatching 

and the necessity to improve foraging efficiency as the size of the 

available habitat decreases. Finally, birds that increased their body mass 

at the end of the deployment also targeted higher habitat quality 
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locations. Dragon et al. (2012) correlated mass gains with forging 

intensity in southern elephant seal. 

 

Figure VIII-1: Results from modelling the weighted habitat use from aggregated trip metrics and biometrics. A: 

variable importance plot, B to F: partial dependency plots for each variable with a higher contribution to a random 

variable. 

The inferred sex (sexes from both discriminant functions, see II.1g page 

II-21 showed similar results) did not strongly contribute to the model. 

This confirms the results from Chapter IV (see page IV-71) showing that 

foraging trips and strategy does not differ between sexes. Saraux et al. 

(2011) found no differences in little penguin foraging between sexes. In 

contrast, Barlow & Croxall (2002) and Hart, Mann, et al. (2010) found 

differences in foraging between males and females for macaroni 

penguins. Angelier et al. (2008) reported no differences in body 

conditions between male and female Adélies penguins. Due to the 

absence of a strong sexual dimorphism, it is usually assumed that there 

are little differences in foraging bejaviour between sexes. Some studies 

recorded small but significant differences that sometimes only happen at 

a particular stage of the breeding cycle (Clarke et al., 1998). Foraging 

differences between sexes can be due to different energetic investment 

in the reproduction (Chappell et al., 1993). They can also reduce inter-

specific competition for resources. This might only be visible in year of 

poor resource availability, which might increase segregation in foraging 

between sexes. Maybe the amount of resources in the years covered by 

this study and others that did not allow to clearly show any difference 

between sexes. 

Despite Cape Geddes birds having access to a potentially better foraging 

habitat, the colony location did not contribute to the model. Birds from 

the Gourlay Peninsula were slightly heavier than the birds from Cape 

Geddes (3.8 versus 3.6 kg) but the difference was not significant (t=1.99, 
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df=29.6, p=0.06). The difference in sample size and the fact that some 

variables were missing from some Gourlay deployments (mass 

loss/gain, number of offspring) mean that the model was probably 

mainly driven by the data from Cape Geddes and therefore did not enable 

me to accurately identify any site differences. 

The model did not show any seasonality effect despite the fact that the 

environmental conditions fluctuated between years and the seasonal 

foraging habitat models were different (see VII.3d, page VII-166). Also 

prey abundance and distribution probably differed between seasons 

(Murphy et al., 1998). For the final habitat model, both seasons were 

merged and this might explain the absence of seasonal differences. It 

could also be due to sampling differences (no deployments in 2013-14 

from Cape Geddes), therefore this result has to be taken with caution.  

Croll et al. (2006) reported that chinstrap penguins don’t vary their 

foraging efforts with prey seasonal fluctuations, which would confirm 

the low representation of year as factor in the model. The same authors 

suggested that the reproductive success of the breeding pairs would vary 

with prey availability. Lescroël et al. (2010) linked Adélie foraging 

efficiency with breeding success and Jansen et al. (2002) highlighted the 

higher demand and therefore more frequent and longer foraging trips for 

chinstraps rearing two chicks. The tracked birds from Cape Geddes had 

more offspring per nest than the birds from the Gourlay Peninsula which 

might confirm the higher habitat quality available from the Laurie Island 

colony (although the offspring counts from the Gourlay Peninsula have 

to be considered with caution, see III.3, page III-45). But the low 

contribution from the number of offspring in the prediction of the 

weighted habitat use didn’t confirm that parents with more offspring 

targeted higher foraging habitat areas. For Adélie penguins, Chappell et 

al. (1993) suggested that reproductive effort is not linked with increased 

foraging effort. 

Despite the limitations due to the data sampling, the links between trip 

characteristics, bird biometrics as indicators of bird’s fitness and the 

values extracted from the foraging habitat model provide an additional 

important validation of the final habitat model results. 

b. Colony population sizes 

To assess whether the quality of the foraging habitat has an influence on 

the colony population sizes, the relationship between the number of 

breeding birds and the probability of good foraging habitat in the vicinity 

of each site was assessed. The latter was defined for each phenological 

stage as the average habitat probability within a 90° sector perpendicular 

to the shore reaching the average maximum range recorded for the stage 

(incubation and brood). The results showed no significant relationship 

between the estimated colony population size and the average 

probability of the foraging habitat model available from each colony (R2 

of 0.029, F1,90=2.66, p value=0.11 for incubation and R2 of 0.014, 

F1,90=1.29, p value=0.26). However, this approach is limited by the 

sector definition of the area available from each colony. Although the 
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birds from Cape Geddes followed that rule by foraging towards the 

north, the birds from the Gourlay Peninsula travelled towards the South 

West during incubation. Chinstrap penguins tracked from the southern 

tip of Powell Island, swum northward to reach the northern continental 

shelf break (PN Trathan pers. comm.). 

Despite having access to less favourable habitat, the birds from the 

different colonies at Signy have larger population sizes than the colony 

from Cape Geddes. Maybe the land topography allows better nesting 

sites or snow cover and sea ice at the start of the breeding season might 

affect access to the site. Other krill predators (Adélie penguins and seals) 

can also influence the colony size through competition for resources; 

unfortunately, inter-specific competition was not included in the models. 

Another explanation is linked with the nature of the foraging habitat 

model: as it includes competition through the bird at-sea density 

variable, it might give higher scores to locations that are nearer smaller 

colonies. Finally, the population estimates might not be reliable for all 

the colonies as some are more accessible and might have more frequent 

and up-to-date censuses. 

VIII.3 Limitations and confounding factors 

a. Sample size, annual variations and interspecific competition 

Sample size 

The main limitation for this study relates to the number of tracked 

individuals and, more specifically to the unbalanced sampling between 

both colony sites and both seasons. In total, tracking data were obtained 

from 109 birds, 60 birds from Cape Geddes, 16 birds from the Gourlay 

Peninsula in 2011-12 and 33 birds from the same location in 2013-14. 

This sample size accounted for less than 0.0001% of the total chinstrap 

penguins population for the South Orkney Islands estimated at 600,000 

pairs (Poncet and Poncet, 1985). This limited sample size in most 

tracking studies has been discussed by Aarts et al. (2008) and Carter et 

al. (2016). Moreover, the sampling only included breeding individuals. 

Non-breeders are often discarded in population estimates and tracking 

studies as they often have different foraging patterns and don’t 

necessarily act as central-place foragers (Davoren, Montevecchi and 

Anderson, 2003). As unconstrained birds, they tend to expand their 

foraging range and therefore potentially do not compete with breeders 

for resources (Page et al., 2006; Bost et al., 2015). The discarded bird 

from Gourlay showed a very different foraging track (see Figure IV-6, 

page IV-60): heading South instead of South-West and very long. 

Although it reached areas not targeted by other tracked birds, it could 

still be potentially competing with other birds, as it was feeding on the 

way to this foraging ground. It might have fed upstream and therefore 

affected the downstream prey field used by other breeding birds. The 

effect of these non-breeders are very difficult to integrate in the models 

and the absence of reliable estimate of non-breeders with the different 

colonies did not allow me to try to quantify their impact. 
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Although having two colonies with contrasting local conditions allowed 

me to build a stronger, transferable habitat model, data from more colony 

sites would be preferable. Including east and/or west facing colonies and 

locations where birds can choose between different directions (as on 

Powell Island) would complement this model based on a north and a 

south-facing colony. 

Annual variations 

My foraging habitat modelling suggests some potential annual 

fluctuations in the intensity and spatial location of the high quality 

foraging hotspots. Climate variations, either gradual as climate change 

or cyclic as the El Niño-Southern Oscillation, have an effect on krill 

reproduction and transport across the Scotia Sea inducing seasonal 

variability in prey availability (Murphy et al., 1998; Saunders et al., 

2007; Forcada and Trathan, 2009; Rombolá, Marschoff and Coria, 2009; 

Fielding et al., 2014). 

Several studies measured annual variations in penguin foraging (Jansen, 

Boveng and Bengtson, 1998; Jansen, Russell and Meyer, 2002; Miller 

and Trivelpiece, 2008), although it is not always possible to relate those 

changes to prey availability, as they can be driven by other factors 

(Jansen, Russell and Meyer, 2002). According to these authors, the main 

factor is internal as foraging effort is strongly driven by the number of 

offspring. The spatial distribution of krill in relation to the coast will vary 

and influence foraging effort. The adult body conditions, which could be 

a consequence of over-wintering conditions, will have an impact on 

chick provisioning. According to Croll et al. (2006), chinstrap penguins 

might adjust reproductive success instead of foraging effort in response 

to prey availability. 

In order to develop a model with an optimal integration of spatial 

(colonies) and temporal (seasons) variations, it is important to have a 

balanced sampling regime between sites and years. This would allow a 

similar contribution from each sampling population and the ability to 

independently test both seasonality and colony location factors. 

Interspecific competition 

Including intraspecific competition in a model when individuals have to 

compete for resources but may also engage in some level of social 

foraging (Ford et al., 2014; Boyd et al., 2015) can be challenging. My 

habitat model appeared to include at least the competition aspect as 

demonstrated by the Ashmole prey depletion effect. It would have been 

interesting to include data from neighbouring colonies to assess how 

much competition exists between colonies. The direction of travel from 

the Gourlay Peninsula seems to suggest that they were excluded from 

more favourable habitats by birds from other colonies as an example of 

spatial segregation reported by Trathan et al. (2006) and Masello et al. 

(2010). From the same authors, birds will predominantly feed in 

locations that will allow them to avoid competition from other land-

based predators based in nearby colonies. The fact that there is little 

niche partitioning between chinstrap and Adélie penguins will increase 
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intra-specific competition between these species. Finally, as colonies are 

closer than the average foraging range, a large overlap is expected. 

Interspecific competition, especially with sympatric Adélie penguins 

and Gentoo penguins, was not included in the model, as only chinstrap 

tracking data were involved. Although competition between all 

Pygoscelid species is mitigated to some extent by a shift in phenology 

(Black, 2016), in cases of low krill availability, competition can increase 

segregation in foraging areas (Lynnes et al., 2002). The same authors 

reported that chinstraps appear to outcompete Adélies. Wilson & Peters 

(1999) reported a similar competitive exclusion but in the vertical 

dimension where chinstrap were able to dive deeper and exploit lower 

levels of luminosity. 

Penguin predators can also have an important role in habitat use as they 

can contribute to spatial segregation (Masello et al., 2010). Including 

tracking data from several species, including other krill predators (seals, 

cetaceans…), enables the development of models that can take into 

account multispecies interactions to predict movements and habitat use 

(Benson, 2016; Hays et al., 2016). 

b. Methodological uncertainties 

Data complexity and analytical approaches 

The development of tracking devices lead to the development of a new 

discipline with its own paradigms: movement ecology (Ran, 2008; 

Benson, 2016; Hays et al., 2016). The complexity of high resolution data 

generated from these studies can create difficult methodological issues. 

The analytical tools have to take into account the high level of temporal 

and spatial autocorrelations typical of these datasets. They also have to 

deal with non-linear relationships and multiple explanatory variables 

(Redfern et al., 2006). In addition, some authors suggest that data-

centred disciplines such as movement ecology might replace traditional 

hypothesis-testing approaches with pattern-identification (Benson, 

2016). The same author recommend moving tracking studies towards 

real-scale experimentation studies. 

In this research, I have tried to use analytical approaches that are not 

restricted to rigid mathematical models tied with prerequisites and 

limitations. Machine learning methods bring several advantages, as they 

are very flexible and can deal with complex problems with interacting 

parameters (Olden, Lawler and Poff, 2008). The downside is that the 

results can be more difficult to interpret and the absence of significance 

levels make them appear suspicious to the eyes of numerous traditional 

ecologists. It was therefore important to compare the predictions of these 

techniques with more traditional methods and to use validation processes 

when possible. 

The tools and the models used in this research can certainly be improved 

and optimized, but I think the main trends and results have been 

identified and validated by a range of available complimentary data. 
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Locations uncertainties (GPS and interpolated locations) 

Most of this study relies on a single source of data: the GPS coordinates 

provided by the tracking devices. The uncertainties linked with this 

source had to be estimated (see II.1b, page II-14), especially in the case 

of marine animal (Ryan et al., 2004). The different filtering methods 

were useful to discard abnormal GPS fixes. The issue related to missing 

points (long periods with no fixes) is more difficult to solve. Thankfully, 

it only happened for one foraging trip 74-172, see Appendix II). 

Linking the GPS and TDR datasets was done by artificially increasing 

the resolution of the tracking locations through positions interpolating 

on a one minute resolution. Generating such a large amount of artificial 

locations can increase uncertainty, but thanks to the already high 

resolution of the original GPS dataset (one point every 4 minutes) and 

the meticulous filtering of irregular locations, the interpolated track 

stayed within the range of uncertainties of the GPS dataset. 

Inferred behaviour modes 

Combining surface and dive metrics to infer behaviour modes proved to 

be a key step towards an appropriate level of information for the final 

habitat model. Additional variables can be added in the time series 

segmentation process, if enough computing power is available. Some 

studies have suggested that the incorporation of environmental variables 

in the detection of foraging behaviour (Carter et al. 2016), can be 

important. This is particularly relevant in the case of surface currents, as 

an individual might appear stationary and therefore resting while it is 

swimming against the current or can appear to be commuting while it is 

actually resting at the surface drifting with the flow. 

The main limitation in the behavioural mode identification process was 

due to the absence of any information to validate my results. Additional 

devices such as cameras, accelerometers or ingestion detection devices 

can be very useful in reducing uncertainties in the identification of 

foraging activities (Watanabe and Takahashi, 2013). In the case of this 

study, the behaviour modes inferred from the two different techniques 

could not be differentiated until the validation phase for the derived 

foraging habitat model. 

In complement to more bio-logging, diet data either through stomach 

flushing or stable isotopes analysis would have provided more evidence 

about potential differences in prey choices between individuals, 

locations, seasons, etc. Hunting techniques may vary for different prey, 

which could be detected through fine scale changes in movement data. 

In addition, targeted prey can be an important niche segregation 

parameter and should be included in any foraging habitat model. 

Spatial and temporal scales 

A major difficulty I had to overcome whilst using different sources of 

data was related to varying spatio-temporal scales. Figure VIII-2 

summarizes the extent in time and space for the different datasets used 

in this study: from the data input, foraging trips and explanatory 
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variables for the habitat model. The ranges corresponding to different 

prey aggregations are also represented.  

 

Figure VIII-2: Spatio-temporal scales of the different dataset used in this study. The points 

represent the different data locations2. The black and red boxes represent the data aggregated 

by incubation and brood foraging trips. The coloured dotted lines show the different explanatory 

variables used in the habitat model3. Finally, the pink boxes delineate different krill aggregation 

states(as described by Murphy et al. 1998). 

It is quite obvious that there is very little overlap between the different 

dataset. The high resolution bathymetry data and to some extent, the sea 

surface temperature (SST) have spatial resolutions matching those of the 

data inputs. Although most of the dynamic environmental variables 

could be available at a daily temporal resolution, they were averaged 

over a week (5 days for the currents) due to missing data, which is 

probably too coarse for this kind of study. An improvement for a similar 

study would be to use higher resolution data from remote sensing when 

available, in both time and space. 

The different data input where generally within the spatial ranges of the 

smallest krill aggregation structure (swarms). Direct feeding 

                                                 
2 Data location inputs: 1: GPS, 2: 1 minute interpolated position with dive deeper than 

5 m, 3a, 3b, 4a and 4b: interpolated locations within foraging segments based on two 

methods – 3 and 4 – and with or without missing TDR data – b and a.   
3 Explanatory variables acronyms: sea surface temperature (SST), net primary 

productivity (NPP), mean sea level anomaly (MSLA).   
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observations though camera devices could help demonstrate which prey 

aggregation scales are important for penguins. 

In addition to the temporal mismatch between data input and the 

explanatory variables, acquired data from remote sensing only relate to 

the superficial layers of the ocean. They don’t match the depth of prey 

distribution (Santora et al., 2012). Unfortunately, getting synchronous 

data and measurement throughout the water column is expensive as it 

requires a vessel and dedicated complex measuring tools. An additional 

temporal mismatch can happen along the trophic chain where high 

chlorophyll a concentrations can indicate areas of high productivity but 

low concentrations can also indicate high zooplankton grazing. 

c. Prey distribution 

As previously discussed, assessing the strength of inferred behaviour 

modes and foraging habitat model would require information about prey 

distribution and dynamics. The influence of prey abundance and 

availability on predators have been reported by several studies (Hunt, 

Heinemann and Everson, 1992; Boyd and Murray, 2001; Alonzo, 

Switzer and Mangel, 2003b; Croll et al., 2006; Benoit-Bird et al., 2013; 

Boyd et al., 2015). Krill abundance changes are subject to annual 

patterns in productivity and recruitment (Loeb et al., 1997) and transport 

through large oceanic scales (Siegel, 1991). Local scale spatial 

distribution will be more important than global abundance, especially 

for central-place foragers (Croll et al., 2006). Many studies inferring 

foraging behaviours based on tracking data lack direct information on 

prey distribution  (Dragon et al., 2012), and some authors, such as Boyd 

et al. (2015), recommend contemporaneous recording between prey and 

predators. 

Despite not having optimal accurate and synchronous information about 

prey distribution, the foraging habitat modelled in this study managed to 

include shelf break areas where krill is mostly expected (Silk et al., 

2016). Some information on krill distribution were included in the model 

validation process and contributed to assessment of the strength of the 

results. It is also worth noting that using prey distribution information to 

support foraging habitat models is not always adequate as predators 

might not target areas where preys are the most abundant (Hunt, 

Heinemann and Everson, 1992; Zamon et al., 1996; Cox et al., 2010; 

Boyd et al., 2015). 

The development of unmanned surface vehicles that could follow a 

tracked animal would allow me to get synchronous information about 

prey field and provide supporting data to validate foraging behavioural 

modes. It might also allow for the collection of additional explanatory 

variables at very high spatio-temporal resolution, providing ground-

truthing information for remote sensed data. This would lead to a more 

robust foraging habitat model. 
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d. Interpolation for the whole archipelago 

The cross-site validation process I followed is the only option that 

allowed me to assess whether the model could be extrapolated to other 

colonies. It demonstrated that the model based on the Gourlay Peninsula 

dataset was more skilful in predicting foraging areas from Cape Geddes 

than the reverse. This emphasises the importance of including data from 

locations with contrasting conditions to cover a large extent of the range 

of local variation. It would be optimal to collect data from other colonies 

to further validate this model. Nevertheless, as it has been built with data 

from two very different colonies, I predict that the final habitat model 

has a good chance of representing foraging from other colonies around 

the South Orkney Islands archipelago. 

e. Suitability in other predator studies 

Despite the numerous limitations mentioned in the previous sections, the 

method used in this study, from tracking data to a foraging habitat model, 

appears to suit the focus species and seems to be transposable to other 

colonies across the South Orkney Islands archipelago. In order to 

progress towards multispecies modelling and include other krill (or 

higher trophic level) predators, I would like to assess how suitable this 

method might be for other air breathing predators (Murphy et al., 2012). 

Energetic expenses whilst foraging, dive depths and durations can be 

very different between penguins, flying seabirds and pinnipeds. The way 

these taxonomic groups deliver resources to their offspring is also very 

different (regurgitation versus maternal milk) and will influence their 

foraging strategies and timing. Species also fall on the continuum of 

income and capital breeder. Travelling speed and dive duration will have 

an impact on the tracking sampling frequency. As a result the tracking 

interpolation technique will need to be adapted to the different species, 

leading to potentially different temporal and spatial resolutions for each 

taxonomic group. Variation in surface movement linked with differences 

in diving physiologies also mean that the behaviour modes inference 

method will have to be adapted for each species in order to incorporate 

how they use their three-dimensional habitat at a fine scale.  

The last part of the method, the habitat modelling, can probably be 

transposable to other species if they have similar constraints related to 

prey distribution (Benoit-Bird et al., 2013; Hays et al., 2016) as long as 

they classify as central-place foragers. 

VIII.4 Proposition for fisheries management 

Prey exploitation either by natural predators or by fisheries is not 

homogeneous; it is concentrated in space and time where the prey are 

predictable (Santora et al., 2012). In the Scotia Sea, krill fishing moved 

from pelagic areas to shelf breaks and submarine valleys (Murphy et al., 

1997; Trathan et al., 1998; Hill et al., 2006; Silk et al., 2016). Reid et al. 

(2004) reported an important spatial overlap between krill fisheries and 

natural predators. Krill fisheries can have an impact on krill availability 
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to predators even in the absence of spatial overlap. Indeed, fishing 

upstream can affect prey replenishment in areas of intense foraging such 

as in the vicinity of colonies. Ainley et al. (2007) has previously reported 

krill depletion due to fisheries. 

The direct mortality due to by-catch of seabirds is low in krill fisheries 

(9 birds in 2016 in subareas 48, CCAMLR 2016). The impact of krill 

fisheries on penguin populations is more difficult to assess but Mangel 

& Switzer (1998) reported a reduction in Adélie penguins reproductive 

success and parental survival due to krill fisheries. This is mainly linked 

with the length of the harvesting season and the amount of krill caught. 

Alonzo et al. (2003a) mentioned changes in foraging behaviour for the 

same penguin species due to harvesting. The diminution of sea-ice cover 

enables fisheries to shift their operation towards the south and in coastal 

waters which can significantly increase their overlap with natural krill 

predators. The impact of krill fisheries could potentially be important, 

especially during key parts of the breeding cycle when birds are under 

huge pressure to feed their chicks and compete with congeners and other 

predators. During seasons when conditions are not optimal, any 

increased pressure from krill harvesting can have huge impact on 

reproductive success. 

The reported annual catch of krill in Subarea 48.2 is presented in Figure 

VIII-3 (CCAMLR 2016). CCAMLR set a precautionary trigger level of 

279,000 tonnes for this subarea which represents 45% of the total krill 

catch limit. The catch stayed well below this level between 2005 and 

2015 (ranging from 21.3 to 69.1% of the trigger level with an average of 

33.4%). Nevertheless, the potential expansion of krill fisheries in the 

future could increase catches and impacts (Hill et al., 2006). An increase 

in fisheries in addition to the negative impacts of climate change on krill 

recruitment (Flores et al., 2012a) would have a potentially significant 

impact on krill predator populations, especially if the exploitation is 

concentrated near breeding sites. The catch data indicate that fisheries 

mainly operate on the western part of the South Orkney Islands, more 

specifically along the northern shelf break (PN Trathan, pers. comm.) 

which is an area highlighted by the foraging habitat model (Figure 

VIII-4). 
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Figure VIII-3: Reported krill annual catch from small-scale management units (SSMUs) in Subarea 48.2: Pelagic 

area (SOPA), Northeast (SONE), Southeast (SOSE), West (SOW). Source of data: CCAMLR Statistical Bulletin V29. 

Penguin species are potentially impacted by many cumulative human or 

human-induced activities. It is therefore justifiable to establish marine-

protected areas (MPAs) to protect these species, especially in coastal 

breeding areas (Trathan et al., 2015). Incorporating scientific evidence 

to demonstrate and evaluate the size of the required protected area is 

difficult. Pichegru et al. (2012) assessed the impact of a 20 km no-take 

zone around the world’s largest African penguin colony and determined 

that it was too small to mitigate population decline. 

Figure VIII-4 presents how a 25 km area from the coast would mostly 

cover the favourable foraging habitat during brood, which is a critical 

period of the breeding cycle. During incubation, constrains are not as 

strong as birds can forage further offshore and escape highly depleted 

areas near the coast as indicated by the model. As mentioned earlier, it 

is important to take into account upstream fishing activity to ensure 

sufficient krill replenishment in the coastal zones. 

 

Figure VIII-4: Foraging habitat map for incubation (left) and brood (right) with the 75% utilisation distribution 

from both colonies (Gourlay in orange, Geddes in violet). The black areas represent CCAMLR small-scale 

management units (SSMUs). The red area delineates a proposed restricted area 25 km from the coast. 

This distance of 25 km also corresponds to the threshold indicating 

where modelled dive depths change (see IV.3e, page IV-71). Deeper 
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dive within this 25 km limit indicate intense foraging activities with 

higher risks of prey depletion. I therefore believe that this proposed area 

gives a good indication of a three-dimensional foraging hotspot where 

constraints on bird foraging are high (competition, high energy 

expenditure due to deep dives) and therefore human activities and 

fisheries in particular should be restricted. 
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APPENDIX I 

This first table presents the difference due to the scaling process on the segmentation 

results for a sample of 4 foraging trips. 

Trip ID Scaling Trip 
duration 

(h) 

Random 
permutation 

R 

Moment 

index () 

Processing 
time (min) 

Resulting 
number of 
segments 

14_20 FALSE 59.6 60 0.1 5.52 38 

14_20 TRUE 59.6 60 0.1 8.52 76 

24_36 FALSE 25.1 60 0.1 0.72 19 

24_36 TRUE 25.1 60 0.1 0.97 35 

33_56 FALSE 10.4 60 0.1 0.09 14 

33_56 TRUE 10.4 60 0.1 0.12 27 

39_76 FALSE 19.9 60 0.1 0.34 18 

39_76 TRUE 19.9 60 0.1 0.56 41 

 

The next table indicates the effect of the number of random permutation (R) and the 

moment index () on the number of segments for the same sample of trips. 

Trip ID Trip 
duration 

(h) 

Random 
permutation 

R 

Moment 

index () 

Processing 
time (min) 

Resulting 
number of 
segments 

14_20 59.6 30 1 3.74 40 

14_20 59.6 60 1 8.72 42 

14_20 59.6 120 1 18.03 42 

14_20 59.6 30 0.7 4.10 50 

14_20 59.6 60 0.7 7.90 50 

14_20 59.6 120 0.7 15.48 50 

14_20 59.6 30 0.3 5.02 58 

14_20 59.6 60 0.3 10.57 59 

14_20 59.6 120 0.3 18.12 68 

24_36 25.1 30 1 0.43 12 

24_36 25.1 30 0.7 0.56 23 

24_36 25.1 60 1 1.09 23 

24_36 25.1 120 1 2.70 23 

24_36 25.1 120 0.7 2.21 25 

24_36 25.1 60 0.7 1.16 26 

24_36 25.1 30 0.3 0.63 31 
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24_36 25.1 60 0.3 1.56 34 

24_36 25.1 120 0.3 2.70 36 

33_56 10.4 30 1 0.04 7 

33_56 10.4 30 0.7 0.05 11 

33_56 10.4 60 1 0.10 12 

33_56 10.4 120 1 0.25 12 

33_56 10.4 60 0.7 0.11 13 

33_56 10.4 120 0.7 0.23 15 

33_56 10.4 30 0.3 0.07 17 

33_56 10.4 60 0.3 0.17 20 

33_56 10.4 120 0.3 0.29 21 

39_76 19.9 30 1 0.24 21 

39_76 19.9 60 0.7 0.53 23 

39_76 19.9 60 1 0.52 23 

39_76 19.9 120 1 1.25 23 

39_76 19.9 30 0.7 0.28 24 

39_76 19.9 120 0.7 1.06 24 

39_76 19.9 30 0.3 0.35 28 

39_76 19.9 60 0.3 0.77 30 

39_76 19.9 120 0.3 1.39 34 

 

Finally, the last table presents the effect of the minimal segment size on the 

segmentation results for the same sample of trips. 

Trip ID Trip 
duration 

(h) 

Random 
permutation 

R 

Moment 

index () 

Minimal 
segment 

size 
(min) 

Processing 
time (min) 

Resulting 
number 

of 
segments 

14_20 59.6 60 1 2 6.31 41 

14_20 59.6 60 1 5 6.20 40 

14_20 59.6 60 1 10 6.14 39 

24_36 25.1 60 1 2 0.83 23 

24_36 25.1 60 1 5 0.82 23 

24_36 25.1 60 1 10 0.82 22 

33_56 10.4 60 1 2 0.06 11 

33_56 10.4 60 1 5 0.05 7 

33_56 10.4 60 1 10 0.07 12 
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39_76 19.9 60 1 2 0.40 23 

39_76 19.9 60 1 5 0.42 23 

39_76 19.9 60 1 10 0.39 23 
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APPENDIX II 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 
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1_1 20-12  (15) 25-12  (20) 124.4 NA C 142.0 22% 28% 0.25 44% 0.29 
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Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 
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2_2 24-12  (11) 24-12  (13) 2.5 17.0 C 4.4 0% 0% 0.01 0% 0.02 

2_3 25-12  (06) 25-12  (12) 5.8 NA C 9.7 0% 0% 0.02 0% 0.04 
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Deployment 

Site 
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Stage 
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3 

Geddes 

2011-12 

Incubation 

47x16.2 

female 

3.4 (-0.8) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax
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u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 
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ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d
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n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

3_4 22-12  (09) 22-12  (15) 5.6 39.0 C 9.2 0% 0% 0.01 0% 0.05 

3_5 24-12  (06) 24-12  (10) 4.7 NA C 8.6 0% 0% 0.03 9% 0.03 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-228 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

4 

Geddes 

2011-12 

Incubation 

50.2x19.75 

male 

3.75 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 
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ti

vi
ty

 

P
er
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n

ta
ge

 o
f 

n
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t 
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h

o
ri

zo
n

t

al
 d
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n
ce

s 

P
er
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n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

4_6 22-12  (05) 22-12  (18) 13.5 16.9 C 13.5 1% 0% 0.39 37% 0.10 

4_7 23-12  (11) 28-12  (01) 109.2 NA C 115.8 21% 23% 0.33 61% 0.32 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-229 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

5 

Geddes 

2011-12 

Incubation 

51.2x19 

unsure 

3.9 (0.2) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 
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ti

vi
ty

 

P
er
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n

ta
ge

 o
f 

n
ig
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d
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h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

5_8 22-12  (13) 27-12  (19) 126.3 NA C 85.4 21% 28% 0.30 56% 0.37 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-230 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

6 

Geddes 

2011-12 

Incubation 

48x17.6 

female 

3.4 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir
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ti

o
n

 

M
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m

) 
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f 
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 d

is
ta

n
ce

s 
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er
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n

ta
ge

 o
f 
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ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

6_9 22-12  (03) 26-12  (07) 99.6 NA C 95.1 24% 34% 0.20 39% 0.29 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-231 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

7 

Geddes 

2011-12 

Incubation 

45.1x16 

female 

3.3 (1.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
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n
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m

) 
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f 
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 d
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s 
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n
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 o
f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

7_10 22-12  (03) 29-12  (19) 183.4 NA AC 258.7 23% 27% 0.22 36% 0.24 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-232 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

8 

Geddes 

2011-12 

Incubation 

49.4x18.4 

female 

3.8 (0.2) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u
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ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u
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n

 (
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) 
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n
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) 
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f 
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 d
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f 
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n

g 

W
ei

gh
te

d
 

h
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at

 u
se

 

8_11 23-12  (08) 27-12  (12) 100.8 NA C 140.9 22% 34% 0.20 31% 0.30 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-233 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

9 

Geddes 

2011-12 

Incubation 

47.9x18.2 

female 

3.4 (0.7) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u
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ti
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n

 (
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) 
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n

 

M
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m

) 
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n
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f 
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 d

is
ta

n
ce

s 

P
er
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n

ta
ge

 o
f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

9_12 24-12  (04) 28-12  (20) 112.1 NA C 129.8 21% 29% 0.26 47% 0.31 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-234 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

10 

Geddes 

2011-12 

Incubation 

50x17.5 

female 

3.6 (0.6) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u
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ti

o
n

 (
h

) 

P
o

st
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ri
p

 

d
u

ra
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n

 (
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) 
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n
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 d
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f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

10_13 24-12  (06) 28-12  (10) 100.1 NA  99.8 22% 27% 0.36 43% 0.30 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-235 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

11 

Geddes 

2011-12 

Incubation 

45.9x17.9 

female 

3.2 (1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
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ri
p

 

d
u

ra
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n

 (
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) 
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 d
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f 
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n

g 

W
ei
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te

d
 

h
ab

it
at

 u
se

 

11_14 27-12  (13) 28-12  (15) 26.3 21.4 AC 12.4 20% 9% 0.33 24% 0.05 

11_15 29-12  (12) 30-12  (11) 22.9 NA AC 11.1 24% 11% 0.34 15% 0.04 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-236 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

12 

Geddes 

2011-12 

Incubation 

50.2x17.7 

female 

3.6 (0.5) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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 (
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) 
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P
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 d

is
ta

n
ce

s 
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n
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f 

fo
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

12_16 26-12  (16) 27-12  (18) 25.2 NA AC 22.0 21% 18% 0.31 29% 0.10 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-237 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

13 

Geddes 

2011-12 

Incubation 

50.9x19 

unsure 

3.7 (1.3) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
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ip

 d
u
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ti

o
n

 (
h

) 

P
o
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ri
p

 

d
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ra
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 d
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f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

13_17 29-12  (15) 30-12  (16) 25.6 NA  25.3 21% 38% 0.38 45% 0.14 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-238 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

14 

Geddes 

2011-12 

Incubation 

46.6x17.25 

female 

3 (1.2) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u
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 (
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) 

D
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 d
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P
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n
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f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

14_18 28-12  (02) 28-12  (17) 14.1 15.0 AC 10.8 20% 0% 0.26 20% 0.05 

14_19 29-12  (08) 29-12  (18) 10.4 62.4 AC 9.8 0% 0% 0.22 35% 0.03 

14_20 01-01  (08) 03-01  (20) 59.5 NA AC 68.4 19% 30% 0.27 44% 0.28 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-239 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-240 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

15 

Geddes 

2011-12 

Incubation 

46.3x16.7 

female 

3.7 (0.5) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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 (
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) 

D
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n
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f 
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P
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h
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n
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al
 d
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s 

P
er
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n

ta
ge

 o
f 
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ra
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

15_21 29-12  (15) 30-12  (12) 20.6 NA AC 29.2 27% 48% 0.26 52% 0.13 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-241 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

16 

Geddes 

2011-12 

Incubation 

52.75x18.9 

unsure 

2.9 (1.8) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
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ra
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 (
h

) 

D
ir

ec
ti

o
n
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P
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 d
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n

ta
ge
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f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

16_22 27-12  (16) 30-12  (12) 67.7 NA AC 54.1 24% 32% 0.38 65% 0.30 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-242 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

17 

Geddes 

2011-12 

Incubation 

46.5x18.7 

female 

3.5 (0.7) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
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st
 t

ri
p

 

d
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ra
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 (
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P
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 d
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s 
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ce
n

ta
ge

 o
f 
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ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

17_23 30-12  (13) 01-01  (09) 43.7 NA AC 30.3 25% 41% 0.26 44% 0.17 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-243 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

18 

Geddes 

2011-12 

Incubation 

52.1x17.7 

female 

3.7 (0.7) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
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 d
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ti
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n

 (
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ra
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 d
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n
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W
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d
 

h
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18_24 30-12  (05) 30-12  (19) 14.2 43.0 C 12.6 1% 0% 0.24 34% 0.09 

18_25 01-01  (14) 03-01  (13) 46.6 NA AC 39.2 24% 34% 0.38 55% 0.24 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-244 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

19 

Geddes 

2011-12 

Incubation 

48.7x18.9 

unsure 

3.9 (0.4) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir
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ti

o
n
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m

) 

P
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n
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ge

 o
f 
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t 
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n

ta
ge

 o
f 

n
ig
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t 

d
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es
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h
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al
 d
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ce

s 
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n
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ge

 o
f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

19_26 29-12  (19) 30-12  (20) 25.4 37.0 AC 27.2 22% 43% 0.30 55% 0.17 

19_27 01-01  (09) 01-01  (17) 8.2 NA AC 10.3 0% 0% 0.32 54% 0.06 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-245 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

20 

Geddes 

2011-12 

Incubation 

44.9x16.5 

female 

3.6 (0.5) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax
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u

m
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an
ge

 

(k
m

) 

P
er
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n

ta
ge

 o
f 

n
ig

h
t 
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vi
ty
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n

ta
ge

 o
f 

n
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t 

d
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h
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n
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al
 d

is
ta

n
ce

s 
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n
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f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

20_28 29-12  (19) 30-12  (12) 17.8 22.2 AC 20.6 30% 40% 0.19 29% 0.09 

20_29 31-12  (11) 01-01  (09) 22.6 19.0 AC 38.0 24% 47% 0.27 47% 0.23 

20_30 02-01  (04) 02-01  (11) 6.7 NA C 8.6 17% 29% 0.27 37% 0.04 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-246 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-247 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

21 

Geddes 

2011-12 

Incubation 

48.9x17.9 

female 

4.2 (0.3) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
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n
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f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d
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n

g 

W
ei
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te

d
 

h
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 u
se

 

21_31 01-01  (10) 04-01  (12) 73.9 NA AC 89.8 23% 22% 0.36 55% 0.32 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-248 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

22 

Geddes 

2011-12 

Incubation 

49.9x17.6 

female 

4 (-0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
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) 

D
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o
n
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m

) 
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f 
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t 
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f 
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 d
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n
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 o
f 
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n
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W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

22_32 31-12  (12) 02-01  (19) 54.6 15.0 AC 59.1 20% 24% 0.35 46% 0.24 

22_33 03-01  (10) 04-01  (14) 28.3 NA C 31.5 20% 40% 0.35 58% 0.16 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-249 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

23 

Geddes 

2011-12 

Incubation 

48.9x14.5 

female 

4.3 (0.2) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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o
n

 (
h

) 

D
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n
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) 
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f 
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 d
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W
ei

gh
te

d
 

h
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it
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 u
se

 

23_34 01-01  (06) 01-01  (20) 14.8 34.5 AC 12.0 0% 0% 0.43 53% 0.08 

23_35 03-01  (07) 04-01  (09) 25.9 NA C 20.8 22% 40% 0.51 60% 0.08 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-250 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

24 

Geddes 

2011-12 

Incubation 

58.3x18.85 

male 

4.6 (-0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
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ri
p
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u

ra
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 (
h
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f 
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 d
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n
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W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

24_36 31-12  (17) 01-01  (18) 25.1 38.2 AC 30.2 22% 38% 0.31 47% 0.14 

24_37 03-01  (08) 04-01  (11) 27.0 NA C 28.0 21% 34% 0.41 75% 0.13 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-251 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

25 

Geddes 

2011-12 

Incubation 

46.1x18.8 

female 

4.6 (-0.6) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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 (
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D
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 d
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n
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W
ei

gh
te

d
 

h
ab

it
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 u
se

 

25_38 03-01  (16) 04-01  (08) 15.5 27.0 C 21.5 36% 68% 0.26 39% 0.10 

25_39 05-01  (11) 05-01  (20) 9.2 NA AC 11.6 0% 0% 0.59 40% 0.09 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-252 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

26 

Geddes 

2011-12 

Incubation 

45.5x17.2 

female 

3.9 (-0.7) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
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f 
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 d
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n
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ge
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f 
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n

g 

W
ei

gh
te

d
 

h
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it
at

 u
se

 

26_40 05-01  (08) 05-01  (20) 11.5 NA AC 9.6 0% 0% 0.40 28% 0.07 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-253 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

27 

Geddes 

2011-12 

Incubation 

48.8x19.5 

male 

5 (-0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
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ri
p
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u
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 (
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n
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ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
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 d
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n
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f 
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g 

W
ei

gh
te

d
 

h
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at

 u
se

 

27_41 03-01  (06) 03-01  (13) 7.4 26.9 C 9.6 0% 0% 0.26 43% 0.05 

27_42 04-01  (16) 05-01  (07) 14.6 23.0 C 21.3 39% 68% 0.38 50% 0.09 

27_43 06-01  (06) 06-01  (14) 7.9 NA C 11.8 0% 0% 0.34 40% 0.04 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-254 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-255 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

28 

Geddes 

2011-12 

Incubation 

48.9x19.6 

male 

3.8 (0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h
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P
o

st
 t

ri
p
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ra
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 (
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P
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 d
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n
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W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

28_44 03-01  (15) 04-01  (14) 22.1 39.0 AC 17.0 25% 28% 0.18 33% 0.11 

28_45 06-01  (05) 06-01  (13) 8.8 NA C 10.3 10% 0% 0.25 27% 0.03 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-256 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

29 

Geddes 

2011-12 

Incubation 

50.7x16.9 

female 

4.2 (-0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r
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P
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 d
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n
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W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

29_46 04-01  (05) 04-01  (14) 8.3 23.0 AC 9.7 1% 0% 0.39 68% 0.07 

29_47 05-01  (13) 06-01  (15) 26.3 NA C 34.9 22% 40% 0.42 46% 0.17 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-257 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

30 

Geddes 

2011-12 

Brood 

48.8x17.9 

female 

4.7 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
ir

ec
ti

o
n
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m

) 

P
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n

ta
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f 

n
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h
t 
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vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
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h
t 

d
iv

es
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h
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n

t

al
 d
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ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

30_48 04-01  (12) 04-01  (20) 7.5 19.0 C 11.6 0% 0% 0.12 17% 0.23 

30_49 05-01  (15) 06-01  (08) 16.7 NA AC 24.2 34% 72% 0.33 56% 0.31 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-258 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

31 

Geddes 

2011-12 

Incubation 

53.3x17.3 

female 

4.2 (-0.5) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
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n
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) 

P
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ta
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f 
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ty
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n

ta
ge

 o
f 

n
ig

h
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d
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es
 

V
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ti
ca
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h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

31_50 06-01  (12) 07-01  (08) 20.1 27.0 AC 22.4 29% 46% 0.35 64% 0.10 

31_51 08-01  (11) 09-01  (09) 22.2 19.0 C 23.6 26% 42% 0.39 61% 0.10 

31_52 10-01  (04) 10-01  (16) 12.0 NA AC 15.0 12% 0% 0.40 37% 0.10 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-259 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-260 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

32 

Geddes 

2011-12 

Incubation 

52.1x18.4 

unsure 

4.4 (-0.6) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
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ti
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n

 (
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ra
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P
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al
 d
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n

ta
ge
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f 
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ra
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

32_53 09-01  (18) 10-01  (16) 21.9 NA AC 13.6 27% 24% 0.18 17% 0.13 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-261 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

33 

Geddes 

2011-12 

Incubation 

44.5x18.3 

female 

3.6 (-0.4) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

33_54 06-01  (12) 07-01  (18) 29.8 25.2 C 38.7 19% 26% 0.24 40% 0.25 

33_55 08-01  (19) 09-01  (12) 17.3 17.0 C 25.3 34% 46% 0.38 48% 0.13 

33_56 10-01  (05) 10-01  (16) 10.4 15.0 AC 11.9 3% 0% 0.22 32% 0.04 

33_57 11-01  (07) 11-01  (22) 15.3 17.3 AC 25.2 0% 0% 0.17 29% 0.11 

33_58 12-01  (15) 13-01  (10) 18.7 NA AC 22.3 33% 46% 0.34 49% 0.11 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-262 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-263 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

34 

Geddes 

2011-12 

Incubation 

51.7x18.3 

unsure 

4.35 (-1.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

34_59 07-01  (06) 07-01  (20) 13.9 17.0 C 13.4 0% 0% 0.33 51% 0.11 

34_60 08-01  (13) 09-01  (10) 21.2 25.0 AC 25.1 28% 38% 0.43 52% 0.11 

34_61 10-01  (11) 10-01  (17) 5.5 40.5 C 7.8 0% 0% 0.23 39% 0.04 

34_62 12-01  (09) 12-01  (16) 6.5 17.0 C 12.9 0% 0% 0.29 21% 0.07 

34_63 13-01  (09) 13-01  (17) 8.8 NA AC 8.4 0% 0% 0.56 47% 0.03 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-264 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-265 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

35 

Geddes 

2011-12 

Brood 

47.6x17.8 

female 

3.85 (-

0.6) 

2  

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

35_64 08-01  (06) 08-01  (14) 8.2 21.0 C 12.7 0% 0% 0.22 22% 0.21 

35_65 09-01  (11) 09-01  (17) 5.9 19.0 AC 6.9 0% 0% 0.36 57% 0.14 

35_66 10-01  (12) 10-01  (18) 6.2 NA C 6.6 0% 0% 0.34 42% 0.14 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-266 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-267 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

36 

Geddes 

2011-12 

Brood 

51.6x17.6 

female 

4.4 (-0.7) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

36_67 07-01  (17) 08-01  (07) 14.3 22.9 AC 19.4 40% 69% 0.22 23% 0.24 

36_68 09-01  (06) 09-01  (16) 9.9 19.0 AC 12.2 0% 0% 0.53 32% 0.23 

36_69 10-01  (11) 10-01  (19) 8.0 35.0  7.5 0% 0% 0.42 52% 0.15 

36_70 12-01  (06) 12-01  (16) 10.5 15.0 AC 13.4 0% 0% 0.24 26% 0.21 

36_71 13-01  (07) 14-01  (07) 23.6 NA AC 24.1 26% 28% 0.26 32% 0.27 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-268 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-269 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

37 

Geddes 

2011-12 

Incubation 

53.3x15 

female 

3.8 (-0.6) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

37_72 11-01  (00) 11-01  (17) 16.9 25.0 C 8.5 35% 0% 0.22 11% 0.04 

37_73 12-01  (18) 13-01  (09) 15.6 NA AC 22.2 39% 62% 0.25 63% 0.10 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-270 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

38 

Geddes 

2011-12 

Incubation 

46.4x16.4 

female 

3.4 (-0.5) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

38_74 10-01  (07) 10-01  (16) 8.9 39.4 C 7.9 0% 0% 0.02 0% 0.04 

38_75 12-01  (07) 12-01  (19) 11.6 NA AC 18.4 0% 0% 0.01 0% 0.12 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-271 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

39 

Geddes 

2011-12 

Brood 

47.2x17.3 

female 

3.9 (0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

39_76 07-01  (17) 08-01  (12) 19.7 20.1 AC 24.4 30% 50% 0.26 29% 0.27 

39_77 09-01  (08) 09-01  (16) 7.9 23.0 C 10.0 0% 0% 0.47 59% 0.15 

39_78 10-01  (15) 11-01  (09) 18.1 27.6 AC 24.5 33% 27% 0.10 26% 0.25 

39_79 12-01  (13) 13-01  (07) 17.5 NA AC 27.0 35% 38% 0.35 61% 0.33 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-272 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-273 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

40 

Geddes 

2011-12 

Brood 

50.8x17.5 

female 

3.4 (-0.4) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

40_80 07-01  (16) 08-01  (08) 15.5 21.0 AC 21.7 38% 48% 0.19 40% 0.30 

40_81 09-01  (05) 09-01  (16) 10.9 18.9 AC 15.3 8% 0% 0.33 44% 0.25 

40_82 10-01  (10) 10-01  (17) 6.7 36.6 AC 6.6 0% 0% 0.36 34% 0.14 

40_83 12-01  (06) 12-01  (16) 10.6 NA C 14.9 0% 0% 0.37 22% 0.23 

 

 
 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-274 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-275 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

41 

Geddes 

2011-12 

Brood 

46.2x17.5 

female 

3.2 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

41_84 13-01  (11) 14-01  (07) 19.7 8.9 AC 21.4 31% 44% 0.25 55% 0.33 

41_85 14-01  (16) 15-01  (09) 16.7 19.0 AC 23.7 37% 77% 0.28 46% 0.28 

41_86 16-01  (04) 16-01  (14) 10.9 19.0 C 17.6 20% 4% 0.26 36% 0.26 

41_87 17-01  (09) 18-01  (07) 21.6 NA AC 31.3 30% 29% 0.34 52% 0.42 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-277 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

42 

Geddes 

2011-12 

Brood 

52x19 

unsure 

3.7 (-0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

42_88 13-01  (12) 13-01  (21) 8.8 19.7 AC 13.3 0% 0% 0.38 35% 0.17 

42_89 14-01  (17) 15-01  (08) 15.1 11.0 AC 28.0 41% 67% 0.29 57% 0.33 

42_90 15-01  (19) 16-01  (09) 14.4 11.0 AC 24.2 44% 76% 0.31 53% 0.31 

42_91 16-01  (20) 17-01  (10) 13.5 11.0 C 17.6 47% 79% 0.33 47% 0.25 

42_92 17-01  (21) 18-01  (12) 15.4 NA C 24.1 42% 39% 0.34 33% 0.25 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-279 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

43 

Geddes 

2011-12 

Brood 

48.6x18.6 

female 

3.2 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

43_93 13-01  (12) 13-01  (21) 8.5 13.3 C 8.3 0% 0% 0.34 45% 0.16 

43_94 14-01  (10) 15-01  (01) 14.7 8.0 AC 8.9 7% 0% 0.42 36% 0.15 

43_95 15-01  (09) 15-01  (19) 10.7 13.0 C 10.8 0% 0% 0.44 45% 0.20 

43_96 16-01  (08) 16-01  (20) 11.5 15.2 C 16.9 0% 0% 0.33 38% 0.26 

43_97 17-01  (11) 17-01  (22) 11.2 NA AC 20.6 0% 0% 0.24 24% 0.27 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-281 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

44 

Geddes 

2011-12 

Brood 

48.3x15 

female 

2.8 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

44_98 13-01  (18) 14-01  (11) 17.0 21.0 C 29.3 37% 47% 0.20 51% 0.36 

44_99 15-01  (08) 15-01  (18) 9.7 15.0 C 12.4 0% 0% 0.44 54% 0.26 

44_100 16-01  (09) 16-01  (19) 10.3 17.4 AC 15.7 0% 0% 0.39 29% 0.22 

44_101 17-01  (12) 18-01  (10) 21.4 NA AC 33.3 30% 45% 0.25 41% 0.41 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-283 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

45 

Geddes 

2011-12 

Brood 

48.5x18.9 
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45_102 14-01  (13) 15-01  (00) 10.1 14.4 C 10.5 0% 0% 0.36 34% 0.18 

45_103 15-01  (14) 16-01  (08) 18.5 19.0 AC 21.1 34% 60% 0.31 45% 0.27 

45_104 17-01  (03) 18-01  (04) 24.7 13.2 AC 32.8 29% 13% 0.34 49% 0.37 

45_105 18-01  (17) 18-01  (21) 3.8 NA AC 3.4 0% 0% 0.89 74% 0.12 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-285 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

46 

Geddes 

2011-12 

Brood 
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46_106 14-01  (12) 15-01  (10) 21.4 21.0 AC 27.7 29% 43% 0.31 61% 0.38 

46_107 16-01  (07) 16-01  (14) 7.7 17.0 AC 8.9 0% 0% 0.36 52% 0.15 

46_108 17-01  (07) 18-01  (10) 27.1 19.1 AC 36.3 24% 32% 0.29 53% 0.41 

46_109 19-01  (05) 19-01  (10) 5.0 NA AC 3.5 9% 1% 0.99 62% 0.10 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-287 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

47 

Geddes 

2011-12 

Brood 
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47_110 14-01  (18) 15-01  (08) 14.5 19.0 AC 21.3 43% 33% 0.03 14% 0.30 

47_111 16-01  (03) 16-01  (16) 13.0 19.9 C 14.9 22% 0% 0.12 30% 0.19 

47_112 17-01  (12) 18-01  (09) 20.8 21.0 AC 26.8 31% 22% 0.09 35% 0.37 

47_113 19-01  (06) 19-01  (11) 5.5 NA AC 4.2 5% 0% 0.15 40% 0.14 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-289 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

48 

Geddes 

2011-12 

Brood 
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48_114 14-01  (13) 15-01  (09) 19.4 9.0 C 29.1 32% 52% 0.27 48% 0.39 

48_115 15-01  (18) 16-01  (09) 15.8 11.0 AC 30.9 40% 80% 0.18 35% 0.35 

48_116 16-01  (20) 17-01  (12) 15.6 20.2 C 17.7 41% 53% 0.51 53% 0.24 

48_117 18-01  (08) 18-01  (20) 11.6 NA AC 23.8 0% 0% 0.31 39% 0.32 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-291 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

49 

Geddes 

2011-12 

Brood 

45.9x17.1 
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49_118 15-01  (22) 16-01  (10) 12.0 29.0 C 16.3 53% 74% 0.19 26% 0.24 

49_119 17-01  (15) 18-01  (10) 18.9 25.0 AC 27.8 34% 49% 0.23 53% 0.38 

49_120 19-01  (11) 19-01  (17) 5.8 NA C 5.5 0% 0% 0.89 59% 0.13 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-293 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

50 

Geddes 

2011-12 

Brood 

48x17.65 
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50_121 15-01  (18) 16-01  (13) 18.5 21.7 C 30.9 34% 49% 0.32 55% 0.41 

50_122 17-01  (10) 17-01  (21) 10.2 15.0 AC 19.7 0% 0% 0.16 44% 0.27 

50_123 18-01  (12) 19-01  (09) 21.5 7.4 AC 27.4 30% 52% 0.37 48% 0.38 

50_124 19-01  (16) 20-01  (10) 17.4 NA C 26.8 38% 71% 0.18 32% 0.38 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-295 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

51 

Geddes 

2011-12 

Brood 
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51_125 19-01  (12) 19-01  (16) 4.0 19.7 AC 2.3 0% 0% 1.12 73% 0.08 

51_126 20-01  (11) 20-01  (18) 6.7 11.0  5.4 0% 0% 1.06 46% 0.11 

51_127 21-01  (05) 21-01  (11) 6.1 9.0 C 5.1 17% 1% 1.19 65% 0.12 

51_128 21-01  (20) 22-01  (10) 13.7 9.9 AC 25.0 49% 72% 0.37 54% 0.32 

51_129 22-01  (20) 23-01  (11) 15.6 NA C 9.5 44% 27% 0.48 30% 0.15 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-297 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

52 

Geddes 

2011-12 
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52_130 18-01  (15) 19-01  (11) 19.6 19.0  27.3 33% 58% 0.32 51% 0.35 

52_131 20-01  (06) 20-01  (19) 12.6 17.0 C 14.3 0% 0% 0.46 48% 0.23 

52_132 21-01  (12) 21-01  (18) 6.5 21.0  5.6 0% 0% 0.55 53% 0.10 

52_133 22-01  (15) 23-01  (09) 17.7 NA C 26.6 39% 55% 0.28 39% 0.35 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-299 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

53 

Geddes 

2011-12 

Brood 
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53_134 19-01  (12) 19-01  (19) 7.4 19.0 AC 3.1 0% 0% 1.06 68% 0.09 

53_135 20-01  (14) 21-01  (09) 18.8 9.0 AC 26.4 35% 42% 0.35 55% 0.33 

53_136 21-01  (18) 22-01  (09) 15.5 9.0 AC 26.0 43% 69% 0.29 45% 0.34 

53_137 22-01  (18) 23-01  (11) 16.8 9.0 C 28.6 40% 65% 0.33 44% 0.35 

53_138 23-01  (20) 24-01  (10) 14.5 NA C 32.3 47% 61% 0.22 56% 0.38 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-301 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

54 
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54_139 19-01  (11) 19-01  (18) 7.4 21.0  3.8 0% NA NA 57% 0.10 

54_140 20-01  (15) 20-01  (21) 5.7 13.0  6.1 0% NA NA 26% 0.10 

54_141 21-01  (10) 22-01  (10) 24.4 NA AC 37.2 28% NA NA 59% 0.33 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-303 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

55 

Geddes 

2011-12 

Brood 
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55_142 19-01  (22) 20-01  (09) 11.1 11.0 AC 14.1 59% 26% 0.04 7% 0.16 

55_143 20-01  (20) 21-01  (10) 13.6 19.0 C 21.0 49% 34% 0.06 19% 0.21 

55_144 22-01  (05) 22-01  (16) 11.7 NA  14.0 11% 0% 0.20 57% 0.24 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-305 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

56 
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Brood 

43.1x17.2 
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2.65 (0.1) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

56_145 19-01  (16) 19-01  (20) 4.5 15.0  4.4 0% 0% 0.85 67% 0.13 

56_146 20-01  (11) 20-01  (18) 7.0 15.0 C 5.3 0% 0% 0.83 63% 0.08 

56_147 21-01  (09) 21-01  (18) 8.4 15.0  5.6 0% 0% 0.71 53% 0.10 

56_148 22-01  (09) 22-01  (18) 9.5 17.0 C 9.9 0% 0% 0.66 55% 0.15 

56_149 23-01  (11) 23-01  (20) 8.6 NA  9.4 0% 0% 0.73 50% 0.17 
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Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-307 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 
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 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax
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u

m
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an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 
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ti

vi
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P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
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es
 

V
er
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h
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ri
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n
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al
 d
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ce

s 

P
er

ce
n
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ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

57_150 19-01  (18) 20-01  (09) 15.4 19.0  29.1 43% 81% 0.19 39% 0.36 

57_151 21-01  (04) 21-01  (11) 6.5 7.9 C 5.0 29% 3% 0.82 46% 0.11 

57_152 21-01  (18) 22-01  (09) 14.6 9.1 AC 24.5 46% 75% 0.31 51% 0.32 

57_153 22-01  (18) 23-01  (12) 17.7 9.0 C 25.5 38% 55% 0.32 38% 0.33 

57_154 23-01  (21) 24-01  (11) 13.7 NA AC 10.6 50% 20% 0.39 31% 0.21 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-308 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-309 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

58 

Geddes 

2011-12 

Brood 

45.5x19.6 

unsure 

3.2 (0) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir
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ti

o
n

 

M
ax
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ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 
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ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
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l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

58_155 20-01  (16) 21-01  (09) 17.4 9.0  26.9 38% 60% 0.31 55% 0.32 

58_156 21-01  (18) 22-01  (09) 15.0 8.1 AC 26.9 45% 77% 0.26 50% 0.32 

58_157 22-01  (17) 23-01  (10) 17.0 9.0 C 28.5 40% 60% 0.28 46% 0.35 

58_158 23-01  (19) 24-01  (10) 15.1 NA C 27.0 45% 56% 0.28 51% 0.31 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-310 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-311 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

59 

Geddes 

2011-12 

Brood 

49.2x18.7 

female 

3 (0.6) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
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ge
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m

) 

P
er

ce
n

ta
ge

 o
f 

n
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h
t 
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P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
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es
 

V
er
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ca
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h

o
ri
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n

t

al
 d
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n
ce

s 

P
er
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n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

59_159 20-01  (14) 20-01  (19) 4.8 17.0 AC 4.8 0% 0% 0.73 46% 0.13 

59_160 21-01  (12) 21-01  (20) 8.2 21.1 C 10.3 0% 0% 0.51 52% 0.19 

59_161 22-01  (17) 23-01  (13) 19.7 NA C 34.3 35% 49% 0.39 64% 0.35 

 

 
 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-312 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-313 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

60 

Geddes 

2011-12 

Brood 

49.9x19.3 

male 

3.2 (0.2) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir
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ti

o
n

 

M
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ge
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m

) 
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n

ta
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 o
f 
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t 
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P
er
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n
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f 
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h
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n
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 d
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s 
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n

ta
ge

 o
f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

60_162 20-01  (19) 21-01  (09) 14.2 11.0 AC 26.5 47% 84% 0.25 59% 0.37 

60_163 21-01  (20) 22-01  (09) 12.7 12.9 AC 22.7 53% 82% 0.33 59% 0.30 

60_164 22-01  (22) 23-01  (13) 14.7 15.0 C 27.6 46% 55% 0.35 71% 0.31 

60_165 24-01  (04) 24-01  (17) 13.2 NA C 14.5 20% 0% 0.48 48% 0.26 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-314 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-315 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

65 

Gourlay 

2013-14 

Incubation 

59.6x19.4 

male 

3.7 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
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st
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ri
p
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ra
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 d
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f 
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

65_166 05-12  (12) 16-12  (14) 266.2 NA C 177.4 22% NA NA 20% 0.19 

 

 
  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-316 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

69 

Gourlay 

2013-14 

Incubation 

51.7x18.8 

unsure 

3.75 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
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n
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m

) 
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n
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f 
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 d
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n
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ge

 o
f 
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ra
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n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

69_167 10-12  (11) 20-12  (13) 242.2 NA C 157.8 21% NA NA 32% 0.19 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-317 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

70 

Gourlay 

2013-14 

Incubation 

51.4x18.1 

female 

3.7 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
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n
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f 
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V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d
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n
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ge

 o
f 
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ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

70_168 12-12  (02) 22-12  (01) 239.8 NA C 181.2 21% NA NA 21% 0.17 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-318 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

71 

Gourlay 

2013-14 

Incubation 

48.6x18.1 

female 

3.15 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti
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n

 (
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) 

D
ir
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n
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m

) 
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n
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f 
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t 
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f 

n
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h

o
ri
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al
 d
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ce

s 

P
er

ce
n
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ge
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f 
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gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

71_169 20-12  (15) 31-12  (14) 263.3 NA C 165.8 21% NA NA 28% 0.21 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-319 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

72 

Gourlay 

2013-14 

Incubation 

52.5x20.3 

male 

3.15 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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o
n

 (
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) 

D
ir
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o
n
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m

) 
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n

ta
ge
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f 

n
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t 
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n

ta
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f 

n
ig
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d
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es
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er
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l/
h

o
ri

zo
n

t

al
 d
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ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

72_170 22-12  (15) 31-12  (20) 221.1 NA C 137.5 21% NA NA 30% 0.22 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-320 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

73 

Gourlay 

2013-14 

Incubation 

48.5x20.3 

male 

4.1 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
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al
 d
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ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

73_171 21-12  (15) 31-12  (10) 234.9 NA C 158.8 22% NA NA 43% 0.19 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-321 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

74 

Gourlay 

2013-14 

Incubation 

47.8x17.5 

female 

3.1 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
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n

 (
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) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
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 d
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ce

s 
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ce
n

ta
ge

 o
f 
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ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

74_172 21-12  (20) 31-12  (15) 234.9 NA C 131.6 22% 14% 0.21 23% 0.24 

 

 
  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-322 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

76 

Gourlay 

2013-14 

Incubation 

45.1x18.6 

female 

3.35 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
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) 

D
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n
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m
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n
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ge

 o
f 
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ti
ca

l/
h
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n
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al
 d
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n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

76_174 21-12  (20) 28-12  (18) 165.8 NA C 185.9 21% 16% 0.29 20% 0.19 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-323 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

78 

Gourlay 

2013-14 

Incubation 

54x18.3 

unsure 

3.65 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
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ra
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 (
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D
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h
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n
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al
 d
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ta
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ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

78_175 27-12  (14) 03-01  (07) 160.2 NA AC 152.8 23% 12% 0.15 29% 0.19 

 

 
  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-324 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

82 

Gourlay 

2013-14 

Incubation 

43.47x17.2 

female 

3.15 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
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ri
p

 

d
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ra
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al
 d
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ce

s 
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er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

82_176 31-12  (17) 09-01  (20) 219.0 NA  205.5 22% NA NA 20% 0.18 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-325 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

83 

Gourlay 

2013-14 

Incubation 

48.1x18 

female 

3.95 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
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ri
p
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ra
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 d
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ce
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ce
n

ta
ge
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f 
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ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

83_177 01-01  (16) 07-01  (15) 142.7 NA C 159.0 23% NA NA 34% 0.20 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-326 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

84 

Gourlay 

2013-14 

Incubation 

52x19.5 

male 

3.8 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

84_178 01-01  (19) 05-01  (00) 76.2 NA C 74.5 21% 5% 0.12 29% 0.09 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-327 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

85 

Gourlay 

2013-14 

Incubation 

46.6x17.6 

female 

3.2 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

85_179 01-01  (18) 06-01  (22) 124.4 NA  150.7 22% 12% 0.14 31% 0.16 

 

 
  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-328 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

86 

Gourlay 

2013-14 

Incubation 

51.4x19.2 

male 

3.7 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

86_180 05-01  (14) 09-01  (11) 92.6 NA C 86.3 24% 16% 0.14 20% 0.10 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-329 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

87 

Gourlay 

2013-14 

Incubation 

52.9x19.9 

male 

4.65 (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

87_181 06-01  (05) 07-01  (15) 34.2 NA C 40.2 19% 8% 0.13 18% 0.06 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-330 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

88 

Gourlay 

2013-14 

Brood 

45.1x17.6 

female 

4.15 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

88_182 08-01  (06) 08-01  (10) 4.2 31.0  4.8 0% NA NA 2% 0.15 

88_183 09-01  (17) 09-01  (23) 5.8 8.5 C 10.0 0% 0% 0.09 0% 0.18 

88_184 10-01  (08) 10-01  (14) 6.6 NA C 8.8 0% NA NA 34% 0.21 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-331 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-332 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

89 

Gourlay 

2013-14 

Brood 

54.4x19 

male 

4.05 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

89_185 09-01  (04) 09-01  (14) 10.0 24.2 C 11.6 18% NA NA 32% 0.17 

89_186 10-01  (14) 11-01  (10) 20.2 NA C 26.5 29% NA NA 24% 0.24 

 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-333 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

90 

Gourlay 

2013-14 

Brood 

NAxNA 

NA 

NA (NA) 

1 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

90_187 07-01  (18) 08-01  (07) 13.5 26.5 C 8.7 43% 63% 0.59 65% 0.21 

90_188 09-01  (10) 09-01  (20) 10.6 16.7 C 11.9 0% 0% 0.54 38% 0.18 

90_189 10-01  (13) 10-01  (21) 8.3 NA C 8.8 0% 0% 0.52 43% 0.20 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-334 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-335 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

91 

Gourlay 

2013-14 

Brood 

48x17 

female 

3.65 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

91_190 10-01  (16) 11-01  (09) 17.1 NA AC 21.8 34% 19% 0.13 19% 0.17 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-336 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

92 

Gourlay 

2013-14 

Brood 

47x18.9 

female 

3.65 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

92_191 10-01  (20) 11-01  (10) 14.5 NA AC 18.7 40% 24% 0.23 30% 0.19 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-337 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

93 

Gourlay 

2013-14 

Brood 

46x18.6 

female 

4 (NA) 

2 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

93_192 09-01  (04) 09-01  (13) 9.4 28.8 C 11.6 19% 0% 0.37 34% 0.17 

93_193 10-01  (18) 11-01  (10) 16.2 NA C 26.5 36% 28% 0.16 36% 0.24 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-338 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

97 

Gourlay 

2011-12 

Incubation 

54.6xNA 

NA 

4.1 (0.1) 

NA 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

97_194 01-01  (09) 01-01  (13) 4.2 NA C 3.9 0% 0% 0.41 26% 0.05 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-339 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

98 

Gourlay 

2011-12 

Incubation 

46.5xNA 

NA 

4.15 (0) 

NA 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

98_195 31-12  (10) 01-01  (09) 23.1 27.8 AC 31.5 23% NA NA 28% 0.11 

98_196 02-01  (13) 02-01  (17) 3.9 NA AC 5.6 0% NA NA 2% 0.05 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-340 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

99 

Gourlay 

2011-12 

Incubation 

47.3xNA 

NA 

3.2 (NA) 

NA 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

99_197 31-12  (04) 31-12  (14) 10.1 14.4  11.2 15% NA NA 18% 0.10 

99_198 01-01  (04) 01-01  (11) 7.0 15.8  5.2 15% NA NA 3% 0.05 

99_199 02-01  (03) 02-01  (13) 10.4 14.7 C 5.2 23% NA NA 17% 0.04 

99_200 03-01  (04) 03-01  (11) 7.1 17.2 C 7.5 18% NA NA 48% 0.08 

99_201 04-01  (04) 04-01  (13) 8.9 NA C 6.7 11% NA NA 31% 0.08 

 

 

 



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-341 

 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-342 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

100 

Gourlay 

2011-12 

Incubation 

51.4xNA 

NA 

4.8 (-0.1) 

NA 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

100_202 07-01  (16) 07-01  (21) 4.5 NA  6.9 0% 0% 0.30 42% 0.06 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix II-343 

Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

101 

Gourlay 

2011-12 

Brood 

45.5x17.8 

female 

3.6 (0.1) 

NA 

 

Tr
ip

 ID
 

St
ar

t 
d

at
e 

(h
o

u
r)

 

En
d

 d
at

e 
(h

o
u

r)
 

Tr
ip

 d
u

ra
ti

o
n

 (
h

) 

P
o

st
 t

ri
p

 

d
u

ra
ti

o
n

 (
h

) 

D
ir

ec
ti

o
n

 

M
ax

im
u

m
 r

an
ge

 

(k
m

) 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

ac
ti

vi
ty

 

P
er

ce
n

ta
ge

 o
f 

n
ig

h
t 

d
iv

es
 

V
er

ti
ca

l/
h

o
ri

zo
n

t

al
 d

is
ta

n
ce

s 

P
er

ce
n

ta
ge

 o
f 

fo
ra

gi
n

g 

W
ei

gh
te

d
 

h
ab

it
at

 u
se

 

101_203 23-01  (18) 24-01  (08) 13.9 11.4 C 23.0 49% 32% 0.06 10% 0.19 

101_204 24-01  (20) 24-01  (23) 3.6 14.4  6.3 2% 0% 0.17 22% 0.18 

101_205 25-01  (14) 25-01  (17) 3.7 11.5  2.9 0% 0% 0.46 39% 0.12 

101_206 26-01  (05) 26-01  (10) 4.8 8.1  7.0 28% 2% 0.30 30% 0.19 

101_207 26-01  (18) 26-01  (20) 1.8 9.8  2.9 0% 0% 0.16 11% 0.13 

101_208 27-01  (05) 27-01  (08) 2.3 10.6 C 3.6 35% 17% 0.07 15% 0.16 

101_209 27-01  (18) 27-01  (20) 1.9 NA  3.2 0% 0% 0.02 0% 0.13 
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Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

102 

Gourlay 

2011-12 

Brood 

48.2x18.6 

female 

4.5 (0.1) 
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102_210 24-01  (10) 24-01  (18) 8.3 14.7 C 5.9 0% 0% 0.64 78% 0.18 

102_211 25-01  (09) 25-01  (17) 7.8 22.3  4.7 0% 0% 0.94 80% 0.15 

102_212 26-01  (15) 26-01  (20) 5.4 14.3 AC 4.8 0% 0% 0.71 76% 0.16 

102_213 27-01  (11) 27-01  (18) 7.4 12.7 C 5.1 0% 0% 0.84 78% 0.16 

102_214 28-01  (07) 28-01  (14) 6.9 NA  5.1 0% 0% 1.03 80% 0.16 
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Deployment 

Site 

Season 

Stage 

Bill (mm) 

Sex 

Weight (kg) 

Offspring 

107 

Gourlay 

2011-12 

Brood 

47.2x17.6 

female 

3.9 (-0.4) 

NA 
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107_215 11-02  (05) 11-02  (13) 7.8 2.9 AC 10.3 21% NA NA 25% 0.24 

107_216 11-02  (16) 11-02  (20) 4.0 10.6 AC 6.7 0% NA NA 31% 0.18 

107_217 12-02  (07) 12-02  (14) 7.1 3.3 AC 7.1 7% NA NA 35% 0.21 

107_218 12-02  (17) 12-02  (20) 3.4 10.1 AC 3.9 0% NA NA 0% 0.13 

107_219 13-02  (06) 14-02  (13) 30.2 2.4 AC 24.1 31% NA NA 38% 0.21 

107_220 14-02  (15) 14-02  (18) 2.7 12.2 AC 4.0 0% NA NA 0% 0.13 

107_221 15-02  (06) 15-02  (17) 11.1 NA AC 13.6 10% 0% 0.18 39% 0.20 
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Weekly variations in net primary productivity (NPP) 
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Weekly variations in sea ice cover 

 

  



Chinstrap penguin foraging habitat model  Fabrizio Manco 

for the South Orkney Islands. 

Appendix IV-361 
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APPENDIX VI 

Round-
Input- 
Model 

 
Model performance Krill validation Site cross-validation Final 

Rank AUC Rank Correlation Rank AUC Rank Correlation Rank 

INCUBATION 

2-4a- RF 0.9996 2 0.27 + 4 0.6241 2 0.30 + 9 17 
2-4b-RF 0.9989 4 0.29 + 2 0.5701 7 0.22 + 10 23 
1-1a-RF 0.9949 5 0.11 - 19 0.6647 1 0.53 + 4 29 
2-2b-RF 0.9227 10 0.21 + 9 0.5571 16 0.45 + 8 43 
2-3b-RF 0.9991 3 0.27 + 3 0.5261 28 0.20 + 11 45 
2-4b-GBM 0.8020 16 0.19 + 11 0.5855 4 0.11 + 16 47 
1-1a-GBM 0.7910 19 0.30 - 1 0.5661 9 0.02 + 20 49 
2-3a-RF 0.9997 1 0.21 + 10 0.5276 27 0.12 + 14 52 
2-4a-GBM 0.8180 14 0.22 + 7 0.5528 20 0.17 + 12 53 
1-3a-RF 0.9716 7 0.02 + 28 0.5536 18 0.62 + 1 54 
1-4a-RF 0.9727 6 0.01 - 31 0.5574 15 0.61 + 2 54 
2-2b-GBM 0.6870 30 0.24 + 6 0.5605 13 0.48 + 7 56 
1-3b-RF 0.9659 8 0.00 - 33 0.5640 11 0.52 + 5 57 
1-4b-RF 0.9637 9 0.05 - 23 0.5529 19 0.52 + 6 57 
2-3a-GAM 0.8100 15 0.18 + 12 0.5548 17 0.10 + 17 61 
2-3a-GBM 0.8380 11 0.04 - 24 0.5777 6 0.02 - 23 64 
1-3b-GBM 0.7800 22 0.17 + 13 0.6068 3 0.50 - 31 69 
1-3a-GAM 0.7880 20 0.06 + 22 0.5841 5 0.04 - 24 71 
1-2b-RF 0.8275 13 0.02 - 29 0.5367 26 0.55 + 3 71 
1-3a-GBM 0.8000 17 0.24 + 5 0.5482 23 0.23 - 29 74 
2-4a-GAM 0.7850 21 0.15 + 17 0.5602 14 0.11 - 25 77 
2-4b-GAM 0.7790 23 0.09 - 21 0.5660 10 0.15 - 28 82 
2-2b-GAM 0.6730 31 0.10 - 20 0.5606 12 0.02 + 22 85 
1-4a-GBM 0.7710 24 0.15 + 18 0.5261 29 0.12 + 15 86 
1-4b-GAM 0.7410 29 0.00 + 32 0.5697 8 0.06 + 18 87 
1-2b-GBM 0.6600 32 0.22 + 8 0.5493 21 0.14 - 27 88 
2-3b-GAM 0.7990 18 0.16 - 15 0.4869 33 0.14 - 26 92 
2-3b-GBM 0.8310 12 0.02 - 30 0.5170 30 0.02 + 21 93 
1-1a-GAM 0.7680 25 0.17 - 14 0.5427 24 0.28 - 30 93 
1-4a-GAM 0.7580 27 0.16 + 16 0.4933 32 0.03 + 19 94 
1-3b-GAM 0.7650 26 0.03 + 25 0.5099 31 0.12 + 13 95 
1-4b-GBM 0.7530 28 0.03 - 26 0.5416 25 0.57 - 33 112 
1-2b-GAM 0.6510 33 0.03 + 27 0.5489 22 0.52 - 32 114 
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Round-
Input- 
Model 

 
Model performance Krill validation Site cross-validation Final 

Rank AUC Rank Correlation Rank AUC Rank Correlation Rank 

BROOD 

2-4b-RF 0.9996 3 0.36 + 3 0.6425 3 0.60 + 2 11 
2-3a-RF 0.9997 2 0.31 + 7 0.6470 2 0.42 + 9 20 
1-1a-RF 0.9639 5 0.28 + 17 0.7914 1 0.81 + 1 24 
2-4a-RF 0.9997 1 0.34 + 4 0.6197 8 0.36 + 12 25 
2-3b-RF 0.9994 4 0.31 + 9 0.6162 9 0.46 + 7 29 
2-2b-RF 0.9190 10 0.32 + 6 0.6017 11 0.51 + 4 31 
2-4b-GBM 0.8430 12 0.36 + 2 0.6141 10 0.01 + 21 45 
1-4a-RF 0.9244 7 0.27 + 18 0.5891 16 0.48 + 5 46 
2-4a-GBM 0.8470 11 0.36 + 1 0.5760 20 0.14 + 17 49 
1-2b-RF 0.7444 29 0.29 + 14 0.6216 7 0.48 + 6 56 
1-3a-RF 0.9225 8 0.24 + 24 0.5919 14 0.37 + 11 57 
1-1a-GBM 0.8240 15 0.32 + 5 0.5941 13 0.14 - 28 61 
2-4b-GAM 0.8340 14 0.24 + 22 0.6387 4 0.07 - 25 65 
1-4b-RF 0.9252 6 0.23 + 25 0.5540 24 0.41 + 10 65 
1-3b-RF 0.9210 9 0.20 + 27 0.5846 18 0.29 + 13 67 
1-4a-GBM 0.8160 17 0.29 + 12 0.6268 6 0.30 - 33 68 
1-2b-GBM 0.7150 31 0.21 + 26 0.5912 15 0.52 + 3 75 
1-4b-GAM 0.8140 19 0.29 + 11 0.5000 32 0.18 + 15 77 
1-4b-GBM 0.8220 16 0.29 + 13 0.5859 17 0.25 - 31 77 
2-3b-GBM 0.8150 18 0.26 + 20 0.5647 21 0.03 + 19 78 
1-3a-GBM 0.7960 23 0.13 + 29 0.5953 12 0.23 + 14 78 
2-3a-GBM 0.8120 20 0.30 + 10 0.5844 19 0.30 - 32 81 
2-2b-GBM 0.7180 30 0.31 + 8 0.5622 22 0.02 - 23 83 
2-4a-GAM 0.8370 13 0.03 - 32 0.5541 23 0.18 + 16 84 
1-3b-GBM 0.7830 26 0.11 + 30 0.6300 5 0.09 - 26 87 
1-4a-GAM 0.8060 22 0.29 + 15 0.5067 29 0.00 + 22 88 
1-2b-GAM 0.7110 33 0.25 + 21 0.5000 31 0.45 + 8 93 
2-3b-GAM 0.7940 25 0.28 + 16 0.5356 27 0.15 - 29 97 
2-3a-GAM 0.7940 24 0.26 + 19 0.5417 25 0.24 - 30 98 
1-1a-GAM 0.8080 21 0.04 + 31 0.5000 30 0.02 + 20 102 
2-2b-GAM 0.7150 32 0.24 + 23 0.5386 26 0.02 - 24 105 
1-3b-GAM 0.7700 28 0.19 + 28 0.4523 33 0.05 + 18 107 
1-3a-GAM 0.7810 27 0.02 - 33 0.5078 28 0.11 - 27 115 

 

 


