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The process of three-dimensional (3D) scanning uses various techniques to capture the 
shape of an object in a computer file using a 3D scanner. This current research utilises a 
new camera-based 3D scanning technology (Mephisto Extreme 3D Optical scanner) that 
can very rapidly acquire high resolution 3D object models. The aims of this work include 
the configuration, assessment and evaluation of this 3D scanner to optimise scan quality, 
improve 3D object processing techniques that integrate 3D scanning, model construction 
and computer game development and evaluation of the use of the scanner for acquisition 
of facial features and its potential use in facial expression recognition. A procedure is 
presented detailing the configuration settings that will maximise 3D scan quality. The 
successful acquisition of numerous high quality 3D models from a variety of small 
inanimate and face target sources is reported. Appropriate graphics modelling software 
that can process 3D objects from acquisition and/or creation (Mephisto Extreme, 3DS 
Max) through to game import (Unity 3D) is presented and highlights the importance of 
facilitating portability of the 3D object models in the process chain. An OBJ file format 
reader/writer is developed where proof-of-principle is established that object model data 
output from the scanner can be easily and quickly extracted and potentially processed 
prior to input into a suitable game engine. This scanning-processing technique could 
potentially reduce the game design and development time from months/weeks to a few 
days. Other results include the successful scans of 3D facial expressions, and some 
possibilities for how this work could further progress research in 2D facial expression 
recognition are explored. 
        
Keywords: 3D data, 3D scanner, OBJ loader, Facial expression recognition  
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1.1 Background 

The process of three-dimensional (3D) scanning uses a technique to capture the shape 

(3D-geometry, or mesh data) of an object in a computer file using a 3D scanner. That 

data can be viewed graphically, processed/edited, or 3D printed. In recent years this 

technology has advanced at a rapid pace in terms of modes and speed of acquisition, 

hardware portability and ease of use (Weise et al, 2007). Traditionally, such technology 

has mainly been used in surveying, medicine and engineering (Frohlich et al, 2004; Thali 

et al, 2009; Kus et al, 2009) but the complimentary reduction in cost associated with these 

new technological advances has opened up new opportunities for 3D-scanning 

applications in forensic science, archaeology (including small artefact archiving) and for 

animation including film and computer games (Kuzminsky, 2012; Lerma, 2010; Tong et 

al, 2012). In 2012 Anglia Ruskin University acquired a Mephisto Extreme (Ex-PRO) 

Optical 3D-scanner1 housed in the Department of Computing and Technology at ARU 

Cambridge. At the time of procurement this device was capable of unprecedented scan 

resolution for a fraction of the scan time duration conventionally associated with 3D-

scanning (4D Dynamics, 2012). This current research explores some new potential 

applications of small artefact scanning (typically 0.1-0.5m3) using this equipment 

especially with respect to the gaming industry and acquisition of 3D models of the face. 

 

1.2 Types of 3D-Scanning 

There are four basic types of 3D scanning, listed below; 

• Laser scanning – there a two variations of this type of scanning. Firstly, Time of 

Flight 3D-scanning (also referred to as a laser pulse) involves projecting a laser 

                                                 
1 Purchased from Inition (https://www.inition.co.uk/mephisto-3d-scanning-engine/) 
 

https://www.inition.co.uk/mephisto-3d-scanning-engine/
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beam onto a surface which is reflected back to a sensor; the time-of-flight between 

emission and reception provides geometrical information about the surface 

(Pallone et al, 2016). Secondly, Laser Triangulation projects a laser beam onto 

a surface and measures the deformation of the laser rays on that surface (Kjaer et 

al, 2015). 

• Photogrammetry – 2D images are taken at different viewpoints of the same 

scene or object and are used to compute a 3D data set using principles of 

stereoscopic vision. Remotely-sensed satellite images for example are now 

routinely used to construct landscape topography (Luhmann et al, 2014; Bemis et 

al, 2014). 

• Contact-based scanning – a probe is used to touch a number of points on a 

surface and it records the deformation (Celano et al, 2015). 

• Structured light scanning – a pattern of light is projected on to a surface and its 

deformation is used to construct the 3D shape of the surface (Garrido-Jurado et 

al, 2016). 

 

The Mephisto Extreme used in the present study is an optical (camera-based) scanner, 

combining the use of structured lighting and photogrammetry. One camera is used to 

acquire the geometrical information from a repeatedly rotated/repositioned target object 

whilst a second camera can optionally be used to simultaneously acquire textural 

information (that is, information about the colour of the surface). 

 

1.3 Aims and Objectives 

The fundamental aim of this work is to evaluate the capabilities of the Mephisto Extreme 

in enhancing the development process for a variety of applications. The chosen 
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applications are based on the current research focus of the environment the researcher is 

based, both in terms of expertise and hardware technology. The identified aims of this 

work, each utilising the Mephisto Extreme will now be explained. 

 

Aim 1:   Configure, assess and evaluate a new 3D scanning technology (Mephisto 

Extreme 3D Optical scanner) as an improved technique for acquiring 

rapid high resolution 3D object models. 

The Mephisto Extreme specification should allow the capture of objects to a 

very high level of mesh detail in time frames that are orders of magnitude faster 

than either the traditional rendering software design tools and faster than other 

conventional 3D scanning techniques. A 3D model can be produced in less 

than 5 minutes compared to the usual drawing or sculpting procedure which 

would take days or even weeks for the same model to be produced. The 

contribution to knowledge for this aim will be to evaluate a new (at the time of 

writing) 3D scanning technology from an operational point of view. 

 

Aim 2:  Improve 3D object processing techniques that integrate 3D scanning, 

model construction and game development. 

A major bottleneck in game development is the time involved to design 3D 

models for computer games (Foster et al, 2016). A game designer would 

typically construct a virtual game artefact using a modelling software package 

such as 3D-StudioMax, a process that can take weeks. The 3D model is then 

imported into a game development environment for further work. An 

alternative strategy for some game artefacts is to 3D-scan a physical object for 

game import. The contribution to knowledge for this aim will be to evaluate 
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the limitations and possibilities for this optical scanning technology for the 

game development process. 

 

Aim 3:  Evaluate the use of the optical scanner in the acquisition of facial features 

and its potential use in facial expression recognition. 

The 3D scanning of a human face provides biometric data that has many 

applications especially for medical and for security (identification) purposes 

(Smeets et al, 2010). Given the high resolution capability of the Mephisto 

Extreme this facility will be used to 3D scan some example target faces where 

various facial expressions are presented to the scanner. The contribution to 

knowledge will be to assess the potential use of such 3D data for facial 

expression recognition in conjunction with existing 2D data sets.  

 

The three aims will be achieved through the attainment of a set of specific objectives, 

listed as follows: 

 

Objective 1: Evaluate the various 3D scanning techniques, assessing the pros and cons 

of 3D optical scanning (that being the equipment used in the present study). 

Objective 2: Calibration of the Mephisto Extreme control parameters and settings to 

enable rapid, high quality 3D scans of small objects (0.1-0.5m3). 

Objective 3: Successfully scan a number of different shapes of various surface 

geometrical complexities, colour, reflectivity and transparency using the Mephisto 

Extreme 3D scanner. 
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Objective 4: Demonstrate use of a graphics modelling software package in creating 3D 

mesh models and how the techniques can be equally applied to 3D objects created by 

design and 3D objects acquired by 3D scanning. 

Objective 5: Demonstrate use of a game development software package in both creating 

3D mesh models and importing such models either acquired by other software packages 

or by 3D scanning. 

Objective 6: Develop a file format specific reader/writer for displaying, loading and 

saving 3D mesh data, where access to mesh data is demonstrated as proof-of-principle 

that such an application could be used to process geometrical data. 

Objective 7: Consider the potential applications of high resolution 3D scanning of the 

human face for facial expression recognition. 

 

These objectives approximate (but do not exactly coincide) with the chapter structure of 

this thesis. 

 

1.4 Thesis structure 

Chapter 1 (this chapter) describes the aims and objectives of this research, including a 

rationale for those aims. Chapter 2 presents a detailed review of 3D digitisation 

procedures, compares some common 3D modelling software applications and introduces 

the principal hardware tool used in this current work – the Mephisto Extreme 3D Optical 

Scanner. Chapter 3 provides a detailed description of the Mephisto Extreme 3D-scanner 

calibration, configuration and operation and how 3D object meshes are acquired and 

saved to file. Chapter 4 focusses on 3DS Max, a computer graphics modelling 

environment widely used for commercial and academic purposes to create and edit 3D 

objects, whether designed or imported. Chapter 5 follows on from the previous chapter 
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in describing the manipulation of 3D objects in Unity3D, a common computer game 

building software development environment. Chapter 6 presents the software 

development aspects of this research, specifically the development of a program for use 

between object acquisition/creation and import into a game environment through 

manipulation of a file reader/writer for the OBJ file format. Chapter 7 considers one 

specific other application of 3D scanning in its potential impact for facial expression 

recognition. Chapter 8, the conclusion, presents the main results of this work, assesses 

the extent to which the aims have been achieved, and considers some possibilities for 

future work. This is displayed on the flowchart below (Figure 1.1). 

 

 
 

 

 

 
 
 
 
 
 

Figure 1.1: Description of the thesis flowchart 
 

 
 
To conclude, this chapter has described the aims and objectives of this research, 
including a rationale for those aims as well as the thesis structure. 
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2.1     The representation of 3D objects  
In computer graphics, 3D objects of the real and the imaginary world can be expressed in 

numerical form as 3D models (Zhao et al, 2012). The computational representation of the 

model surfaces is a widely studied field (Roncat et al., 2011) and may comprise very large 

data sets which describe geometrical and appearance attributes (Finney, 2013). The 3D 

models can be produced using interactive software development packages (e.g. 3D Studio 

Max, Maya) but introduce a major bottleneck in the design and development process and 

often produce 3D models in too much detail for practical use. 

 

The surface data of an object is often initially reported in the form of irregularly spaced 

X, Y, and Z geometric coordinates stored in an appropriate data structure. This collection 

of points is referred to as a point cloud. Such point clouds can be acquired from hardware 

sensors such as stereo cameras, 3D scanners, or generated from a computer program 

synthetically (Radu and Cousins, 2011). Point cloud data can be represented by a 

collection of vertices, edges, and faces, which are used to generate complex polygonal 

meshes to represent the models in virtual space. The polygonal mesh defines the shape of 

an object. Every face of a mesh is an addition of triangles and so a face must consist of at 

least three vertices respectively (Tobler and Maierhofer, 2006). In some surface 

interpolation techniques a three dimension mesh could be compared to a Triangular 

Irregular Network (TIN) locally. 

 

There is a range of commercial and open-source 3D modelling platforms some of which 

offer 3D rendering support. Table 2.1 lists some of these at the time of writing. 
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Table 2.1:  List of some common 3D modelling software applications* 
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∗ 

                                                 
∗ URL: https://en.wikipedia.org/wiki/List_of_3D_modeling_software) accessed 12th March 
2018 

https://en.wikipedia.org/wiki/List_of_3D_modeling_software
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In addition to the listing in Table 2.1, some commercial examples offer innovative  

solutions for three dimension mesh generation, visualisation, interpretation and analysis, 

such as Leica Cyclone, 3DReshaper or Geomagic Wrap (Pucci and Marambio, 2009; 

Roncat et al., 2011). Comparable open-source solutions include MeshLab and 

CloudCompare. In particular MeshLab software◊ is a free, open-source software for mesh 

processing and editing and which generates a triangular 3D-mesh (Cignoni et al., 2008). 

This software works with the most common 3D file formats, such as OBJ, 3DS, PLY, 

STL, COLLADA,  XYZ, ASC, X3D, PTX, PTS, XYZ, ASC, X3D and VRML. MeshLab 

is a principle software application package used in the current research along with 3Ds 

Max, and has a range of algorithms which can be used to reconstruct surfaces from point 

clouds. Common to many computer graphic tools these applications can generate surface 

meshes composed of 10 - 100 M faces.  The Mephisto Extreme 3D scanner used in the 

present work typically produces very complex meshes with a high level of detail.  

Mandatory simplification procedures are often necessary to reduce the mesh size to allow 

easier management and use in other applications. A few techniques produce simplified 

meshes which are visually undesirable but offer efficient processing time (Alvarez et al, 

2007). Two very common simplification operations are the edge collapse (Zhang, 2013, 

Ma et al, 2012) and vertex collapse (Attali et al, 2013). 

 

2.2 Polygonal mesh construction 

Most graphics hardware in computer graphics and computer vison support 3D mesh 

construction as it is the most common kind of structure used for rendering and display. 

Representations other than a polygonal mesh include B-spline surfaces, quadric surfaces 

and subdivision surfaces for smoother or simpler surfaces. A graphics representation can 

                                                 
◊ http://meshlab.sourceforge.net 
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also contain colour as well as texture information which can “texture-mapped” onto the 

object which will be rendered by the graphics hardware, sometimes through use of images. 

This is important in computer vision, where there must be some kind of correspondence 

between the 3D object and the characteristics in the texture mapped image. This is 

particularly important for 3D object recognition, utilising grey-scale images, colour 

images, and range images. In addition to this, it is very common to have either grey-scale 

or colour images registered to range data, therefore providing recognition algorithms with 

richer sets of characteristics. 

 

A wire-frame model is a three dimensional (3D) object model which consists of only the 

edges and vertices of the object. The surfaces of the wire-frame representation of the 

object are assumed to be planar and that the object has only straight edges. The surface-

edge-vertex representation is a useful generalisation of the wire-frame model that has been 

used in computer vision. This representation is a data structure which contains the vertices, 

the surfaces, the edge segments of the object, as well as the topological relationships that 

specify the surfaces on both sides of an edge and the vertices on both ends of an edge 

segment. The surfaces of a polygonal object are planar and the edge segments are straight 

line segments. However, the model generalises to include curved edge segments and/or 

curved surfaces. Figure 2.1 presents a sample of a surface-edge-vertex data structure 

which was used for illustrating a database of object models in a 3D object recognition 

system. The data structure is hierarchical. It begins with the world at the top level and 

continuing down to the surfaces and arcs at the lowest level. The boxes with fields labelled 

[name, type, <entity>, transf] describe the elements of a set of class <entity>. Each 

element of the set has a name, a type, a pointer to an <entity>, and a 3D transformation 

that is applied to the <entity> to obtain a potentially rotated and translated instance. 
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Figure 2.1: The surface-edge-vertex representation (Shapiro and Stockman, 2000). 

 

For example, the world has a set called objects. In that set are named instances of various 

3D object models. Any given object model can be defined in its own coordinate system 

and the transformation allows each instance to be placed in the world independently. The 

object models each have three sets: their edges, vertices and faces. (Shapiro and Stockman, 

2000). A vertex has a 3D point it is associated with and it also has a set of edges that meet 

at that point. An edge on the other hand, has a start point, an end point, a face to its left, a 

face to its right and an arc that denes its form, if it is not a straight line. A face has a surface 

that describes its shape and a set of boundaries which are its outer boundaries and hole 

boundaries. A boundary has an associated face and a set of edges. The lowest level entities 

(arcs, surfaces, and points) are not defined. The representations for surfaces and arcs are 
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depending on the application as well as the accuracy and smoothness that is required. The 

representations might be presented with equations or broken down into surface patches 

and arc segments. The points are merely vectors of x, y, z coordinates. 

 

Figure 2.2 demonstrates a sample of 3D object with planar and cylindrical surfaces. In 

order to simplify the demonstration, a small number of visible surfaces and edges will be 

analysed. F1, F2, F3, F4, and F5 are the visible surfaces that will be discussed. As shown 

in Figure 2.2, F1, F3, F4, and F5 are planar surfaces. F2 is a cylindrical surface. F1 is has 

a single boundary composed of a single edge and it can be demonstrated by a circular arc. 

F2 is surrounded by two boundaries. F3 is enclosed by an outer boundary which is 

suppressed of four straight edges and a hole boundary suppressed of a single circular arc. 

F4, and F5 are each enveloped by a single boundary possessed of four straight edges. 

Edge E1 detaches faces F3 and F5. If vertex V1 is a start point and V2 is the end point, 

then F3 is its left face and F5 is the right face. Vertex V2 has three connected edges E1, 

E2, and E3 (Shapiro and Stockman, 2000). 

 

Figure 2.2: Sample of 3D object with planar and cylindrical surfaces (Shapiro and 

Stockman, 2000). 

 

As is implied by Figure 2.2, complex shapes can be abstracted by assembling volumetric 

primitives; some of the more common primitive models are as follows: 
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• Generalised-Cylinder Models - A generalised cylinder is a volumetric primitive 

defined by a space curve axis as well as a cross section function at each point of 

the axis. This cross section is swept along the axis creating a solid of revolution. 

A common circular cylinder is for example, a generalised cylinder whose axis is 

a straight line segment and its cross section is a circle of constant radius. A cone 

can be considered to be a generalised cylinder whose axis is a straight line 

segment and whose cross section is a circle whose radius starts out from zero at 

one end point of the axis and grows to its maximum at the other end point. A 

rectangular solid can be a generalised cylinder whose axis is a straight line 

segment and whose cross section is a constant rectangle. A torus is a generalised 

cylinder whose axis is a circle and whose cross section is a constant circle. 

• Octrees - An octree is considered to be a hierarchical 8-ary tree structure. Each 

node in the tree is associated to a cubic region of the universe. If the cube is 

completely enclosed by the three dimensional object then the label of a node is 

full (1) and it is empty (0) if the cube does not contain part of the object, or partial, 

if the cube intersects the object partly. A node with full or empty label has no 

children. A node with partial label has eight children showing the partition of the 

cube into octants. A 3D object can be represented by a 2n x 2n x 2n 3D array for 

some integer n. The elements of the array have a value of 1 (full) or 0 (empty) 

and they are called voxels. These elements are demonstrating the existence or the 

absence of the object. The octree encoding of the object is equivalent to the 3D 

array representation, but generally requires less space. 

 



 17 

• Superquadrics - these are models originally refined for computer graphics and 

recommended for use in computer vision (Barr, 1981). Superquadrics can be 

considered as pieces of clay that can be reformed and glued together into object 

models. They can also form a parameterised family of shapes. A superquadric 

surface is defined by a vector S whose x, y, and z components are specified as 

functions of the angles η and ω via the equation: 

 

for .  

The parameters a1, a2, and a3 specify the size of the superquadric in the x, y and z 

directions, respectively. The parameters ε1 and ε2 express the squareness in the 

latitude planes and longitude planes. 

 

2.3 3D Scanning technologies 

3D scanning technologies are an important aid in product development, and creating good 

digital representations of an artefact is often a crucial process during the manufacturing 

method. 3D scanners are used to digitise objects that are from microscopic to 

macroscopic in size. Devices can be hand-held or automatic, with varying acquisition 

speeds and data point resolution (Schodek et al, 2005). 

 

There are two main methods for obtaining the coordinates of an object’s geometrical 

shape. 

1. Mechanical method - the object is fixed on a table and the coordinates of the 

points are picked by a human inspector by means of touch-probes which transfer 

the points to a computer. Measurement may take hours or even days depending 
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on the details of the object and accuracy of the measurement required. Accuracy 

levels up to 1 μm can be achieved by using this method. This level of sensitivity 

depends on the experience of the inspector and type of the equipment used. 

2. Non-contacting scanning methods – these include acoustic, magnetic and optical 

methods. 

For the scanning of small objects optical technology is the generally preferred method 

because it gives a greater flexibility in the digitisation of surfaces and provides a higher 

capture resolution and accuracy at greater speeds when compared to mechanical 

technology (Blais, 2003; Li, 2002; Milroy, 1996; Sokovic, 2006; Tognola, 2003). Optical 

scanners are also more portable compared to contact systems and their sensitivity levels 

are partially independent of the inspector. However, relevant to the current research one 

advantage of contacting devices over optical scanners is that they do not depend on the 

colour and reflective characteristics of the surfaces to be scanned. 

 

Optical scanning systems for the 3D measurement and virtual reconstruction of object 

surfaces are based on techniques such as laser scanning, fringe projection, and 

photogrammetry. Fringe projection scanning systems generally work with white 

structured light, where the light pattern is projected on the object’s surface while one or 

two cameras record the reflected light. Laser scanning systems on the other hand obtain 

data by sending laser light onto the object and processing the data obtained from the 

returning light (Bernard, 1999, Varady et al, 1997, Peipe et al, 2005). The accuracy of 

laser systems varies typically from 1 - 20 μm, whereas fringe projection systems have the 

capability of 10 - 60 μm, and this accuracy is continually improving (Seokbae et al, 2002). 
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The current research utilises the Mephisto Ex-PRO Optical scanner (also referred to as 

the Mephisto Extreme). This is a variation on the fringe projection scanning technology 

and can achieve fast, accurate and high quality 3D scanning results with a minimum of 

processing time and user interaction, competitive with the highest range of alternative 

scanners on the market at the time of writing. It is suitable for a variety of scanning jobs 

from the very small to the scanning of large animated as well as static objects. 

 

The Mephisto Extreme hardware consists of: 

 

• a deep scan, turntable mode, HDTV (1920 x1080) resolution machine vision 

camera with large, high quality Kodak CCD sensor 

• a high quality Nikon mount lens with aspheric optics, high contrast ratio high 

resolution projector(2000-3000 ANSI lumens with 2000:1 contrast ratio; wide 

screen format and 1280x768 resolution). The projector is a Digital Light 

Processing (DLP) - type for use with binary and fringe pattern projection. DLP 

projectors provide an excellent base for a structured light 3D scanning system. 

 

All the scanner components are synchronised and linked together by a cable assembly 

and Mephisto software. In principle the system is portable to allow off-site scanning. 

 

The Mephisto 3D scanning engine is based on 3 core components – calibration, 

processing and the input/output interface. The scanner geometric system calibration is 

performed using a flat calibration board with a checker pattern. 5 to 6 shots snapshots of 

the calibration board at different orientation angles are taken and used to compute system 

intrinsic and extrinsic parameters. The Mephisto software is project-based and a wizard 
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helps the user to define the properties of scanning system such as camera(s), 

resolution/texture, and projection screen. Once a project is created and the system is 

calibrated, the project can be repeatedly saved and/or reloaded with the project saving 

scanned data, images and other information in an organized manner within a few seconds 

or minutes. 

 

This chapter presented a detailed review of 3D digitisation procedures, compares some 

common 3D modelling software applications and introduces the principal hardware tool 

used in this current work – the Mephisto Extreme 3D Optical Scanner. 
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3.1 Environmental and application considerations 
 

This chapter will describe the procedure of setting up the 3D Mephisto scanner for 

optimum scan quality in terms of both environmental (physical) set up and application 

(software) configuration. Some calibration results will be presented and discussed. 

 

3.2 Physical location and resolution issues  

For calibration purposes the 3D scanner requires a dedicated dark room in which the 

equipment can be arranged in a stable position. Whilst in theory the whole unit is portable 

(i.e. for use in temporary deployment outdoors), in practice for this study a stable 

environment is important to facilitate application usage, otherwise time-consuming 

environmental and recalibration activities hinder research development time. The 3D 

scanner has four important physical components as show in Figure 3.1: 

 

 

Figure 3.1: Components of the Mephisto Extreme 3D Scanner 
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Where: 

1. Projector Digital Light Processing (DLP) unit. This acts as a light source with a 

resolution of 1280x800 at 60Hz and a brightness of 2000-3000ANSI Lumens. The unit 

enables much faster acquisition than a laser scanner.  

2. A Texture Digital Canon camera 400D. 

3. A digital camera Allied Vision Technology (AVT) PIKE. 

4. Flexible tripod mount. 

A calibration board and pattern is also supplied which is fundamental to the calibration 

process (Figure 3.2): 

 

Figure 3.2: Calibration board 

 

A detailed description of the hardware set-up parameters is described in a Quick Start 

guide for the 3D scanner∗. These parameters are extrinsic (e.g. camera and projector 

position) and intrinsic (e.g. projector and camera lens properties). The inflexible 

calibration board is prepared by printing out a supplied checker pattern on non-reflective 

matte paper which is attached to the board, and positioned perpendicular to light that will 

be emitted from the projector. An important preliminary step is to ensure the scanner 

                                                 
∗ Mephisto Extreme Quick Start Guide: 4D Dynamics (www.4ddynamics.com) 
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resolution matches the resolution of the PC screen monitor (otherwise the scanner will 

not function correctly). For 3D scanner projects specific to this work (Windows XP) the 

following steps were taken: 

1. Right-click the Desktop 

2. Click on NVIDIA Control Panel 

3. Select “Change resolution” (Figure 3.3) 

4. Choose the projector 

5. Check resolution ensuring it is “Native resolution” 

6. Set resolution to 1280 x 800 and refresh rate is 60Hz 

Note use of different peripheral hardware (e.g. different graphics card, monitor) might 

require different settings to be used. 

 

Figure 3.3: Set resolution 
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3.3 Starting a new Mephisto Extreme 3D Scanner Project 

Once projector and monitor resolution have been synchronised the projector and both of 

the cameras can be switched on. The Mephisto Extreme software icon is then clicked to 

launch the application (Mephisto Extreme software version 1.6.1213). A ‘New project 

wizard’ window opens (Figure 3.4) and information is entered as shown. 

Figure 3.4: Starting a new project 

 

Project name: Enter an appropriate name for the project, e.g. inclusive of month/year. 

Base directory: Save a new Project the C:/ drive rather than the default software directory 

as this keeps data separate from the application software and enables easier file 

management at a later time if necessary. 
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Camera selection: For projects for this work the Firewire camera: AVT- Pike F210B is 

chosen unless high quality texture generation is required in which case the Canon Camera 

is chosen. 

Project settings: Ensure the ‘Projector is hooked onto the screen:’ entry specifies Screen 

2 @ 1280x800 (the same as the native resolution specified for the computer display). The 

‘Preload any radiometric data’ is not applicable in this case so the checkbox can be left 

blank. 

Calibration Checkers Patterns: Here the user can modify the number of the squares on 

the calibration pattern. For this work the default options are used, i.e. 21x15 squares for 

both the board and projector with an 18mm size.   

Clicking ‘Finish’ closes the wizard. The cameras will be activated and the main Mephisto 

interface will open in a new window. 

 

3.4 Adjusting camera settings 

The main Mephisto interface has three tabs; ‘Settings’ for modification of camera 

properties,  ‘Calibration’ for geometric and radiometric calibration and ‘Processing’ for 

the scanning of target objects.   The ‘Settings’ tab allows configuration of both the 

projector and the Firewire camera. The default settings are usually in factory default 

mode but the user has the flexibility to change them. 
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Figure 3.5: Settings Tab 

 

For projects for this work default parameters were used except for the Firewire camera 

(Online configuration Modes: HDTV resolution; Shutter speed: 823; and Parameters: 

GAIN). 

 

3.5 Calibration 

There are two kinds of scanner calibration, the first is the geometric calibration (absolute 

and relative positioning of scanner components) and the second is the radiometric 

calibration (light detection and measurement). Inadequate calibration of either type will 

markedly lower the performance of the scanner. Both calibration procedures are 

undertaken from within the Mephisto Extreme software ‘Calibration’ tab and are now 

described. 
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3.5.1 Geometric calibration 

Geometric calibration determines the physical set-up parameters of the 3D-scanner - for 

example the position of the camera and the projector relative to each other (Figure 3.6). 

  

 

Figure 3.6 Set up for the geometric calibration 

 

The steps to geometrically calibrate the system are as follows: 

Step 1: Orientate the flat calibration board with its checker pattern towards the 3D scanner 

and stabilise its position (absolute position is not critical), and then click “Grab 

calibration frames”. The system will then project the necessary patterns and grab the 

frames. Captured images appear in the calibration window (lower right of Figure 3.7) and 

each captured image is processed for suitability of use according to four metrics of 

acquisition, each of which will flag green or red according to the quality of the capture. 

Ideally only rows which are exclusively green are useful, provided the number of checker 

corners exceeds 14 as indicated by the numerical values adjacent to each flag. Rows 

which either contain red flags or low corner detection are best excluded and can be de-

selected from the calibration trial (check box adjacent to each frame number acquisition). 
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Step 2: Repeat Step 1 five times but adjust the calibration board each time to a different 

orientation angle. 

Step 3: With only the successful trials selected (ticks in check box) click ‘Calibrate 

System’ to complete the geometric calibration. 

 

 

Figure 3.7: Geometric calibration results 

 

After a time interval (may be a few minutes) the calibration results appear on a small 

table (Figure 3.7). A very successful calibration result is when the error for the cameras 

and the projector is around 0.25 Pixel RMS errors, however this level of calibration 
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quality was never achieved for projects for the current work which were more typically 

0.7-0.8 and gave medium quality acceptable scans (Table 3.1). 

 

Initial geometric calibration trials were very unsuccessful. For a poor geometric 

calibration even if the subsequent radiometric calibration was successful the acquired 

scans of objects would be of unworkable quality. A number of configuration tests were 

undertaken to identify those conditions that optimise the quality of the calibration and 

reduce the RMS values to acceptable values, with comparative results illustrated in Table 

3.1. 

 

Table 3.1 Comparison of two result sets for low quality 
versus high/medium quality geometrical 
calibration runs using; calibration pattern = 21x15 
squares, dimension = 1280x800. Numbers are 
pixel root mean square errors. 

 Low quality 
calibration 

High/medium 
quality calibration 

Cameras: 21.2677 0.695963 

3D camera: 17.8074 0.747877 

Texture camera: 23.3759 0.637064 

Projector: 12.4622 1.00464 

System: 14.8553 0.789808 

 

This work established that a lower (acceptable) geometric calibration error can be 

achieved by: 

a) Ensuring the surface of the calibration board is as flat as possible (no curvature). 
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b) Ambient light must be kept to a minimum. The early room location of the scanner 

required use of black out curtains whilst a later location was in a windowless 

room. 

c) The captured checker pattern must fill the field of view as much as possible. This 

was achieved by zooming in to the calibration board so that the checker pattern 

was exclusively visible. 

 

3.5.2 Radiometric calibration 

Radiometric calibration is the normalisation of reflected light intensities from the light 

source (projector) as detected by the camera sensor over a scale from 0 (black) to 255 

(white). This calibration must take place in a very dark room and it does not have to be 

repeated frequently (typically once per month, with the saved radiometric data being 

preloaded when starting a new project). Under blacked out conditions the procedure for 

radiometric calibration is as follows: 

Step 1: An A4 piece of clean white paper is placed on the calibration board ensuring that 

the centre of camera focus is near the centre of the paper (Figure 3.8 left). 

  

 

Figure 3.8: How to perform radiometric calibration 
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Step 2: The camera field of view will display on the computer screen; ensure the balance 

of white and black is approximately 50%. 

Step 3: Click on ‘Grab intensity frames’. Using the default settings, 52 different 

intensities will be captured and these values will be displayed as white dots on a camera 

vs projector X-Y graph on the computer screen interface. It is particularly important that 

the camera is not moved during this process otherwise the calibration will be invalidated 

(Figure 3.8 right). 

Step 4: Once the frames have been grabbed, click ‘Compute intensity compensation’. 

This will fit a polynomial to the sampled data expressed as a red curve overlaid on the 

white dots. 

Step 5: ‘Use intensity compensation’ is then clicked to finalise radiometric calibration. 

Summary statistics are produced, the most important being the response curve results for 

used intensities. Ideally this value should lie between 60-65% and indeed all the projects 

of this work conformed to this radiometric calibration constraint. Figure 3.9 shows a 

graphic of the final computer screen output window for a project whose radiometric 

calibration was 63%.    
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Figure 3.9: Radiometric calibration results 

 

 

3.6 Calibration verification and the 3D-scanning of objects 

Once the scanner calibration is achieved to a desired level of detail/accuracy, the 3D 

scanning of objects can commence. Pre-scan capture settings accessed via the 3D 

Acquisition Mode under the Settings tab (Figure 3.5) must be set as follows; 

• Vetical gray-code: 8-bits 

• Sub-pixel method: 6x60 

• Pattern quality: Standard 

The use then clicks ‘Create pattern cycle’. This may take a few minutes to complete, at 

which point the projector flickers. 
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Objects can now be scanned, i.e. 

i) The target is placed in front of the 3D Mephisto scanner 

ii) Camera focus and exposure is adjusted for optimum visibility 

iii) The ‘Scan’ button is selected from within the ‘Processing’ tab. 

 

An initial test scan is always undertaken using the calibration board itself, so in step i) 

above the target is the calibration board (Figures 3.6 and 3.10) with scanning for this 

object initiated in step iii)   (Figure 3.11). This procedure might take a few seconds to 

complete and then the calibration board appears on the screen (Figure 3.12). A 3D model 

of the scan can now be viewed by clicking on the ‘3D model’ tab at the bottom of the 

screen. A 3D image of the calibration board appears and the user can rotate it in every 

angle (Figure 3.13). 
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Figure 3.10: The calibration board while scanning 

 

 

 

Figure 3.11: The processing tab 
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Figure 3.12: Completed scan of calibration board 

 

 

Figure 3.13: 3D model of the calibration board 
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The 3D model can then be saved and exported in different file formats, and the user can 

select the details they want to have (normals, UV coordinates, faces, etc). At the ‘Color 

mode’ drop down box ‘Normals’ is probably the best way to display the data as it includes 

any irregularities of the model. 

 

This completes the scanning process. The user can now repeat steps i) – iii) of this section 

using another item as the target instead of the calibration board. Note that all the 

components of the 3D scanner must remain stable at all times, in the same position as 

during the calibration process. If the unit is moved aggressively, then the calibration 

should be repeated. 

 

3.7 3D scanning of objects 

A number of objects were scanned using the Mephisto 3D scanner. Figure 3.14 shows a 

figurine whose initial scan was of poor quality, but with appropriate (improved) 

calibration and configuration was able to generate a highly realistic 3D model of the 

figurine. 

 

  

Figure 3.14:  Figurine (left) with poor quality scan (centre) and high quality scan 
(right) 
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This work has been published by the present author in the academic refereed literature 

(Constantinou et. al; 2017). 

 

A complete inventory of scanned objects is listed in Table 3.2 

 
Table 3.2 Inventory of objects scanned by Mephisto 3D scanner 

 
Object Scans Notes 
White box 55 Basic shape 
Rubik’s cube 31 Basic shape with colour 
Box and cube 24 Object of flat surfaces 
Anti-slip sign 5 Object of flat surfaces 
White box with foil 24 Effect of reflective surface 
Rubik’s cube with shiny box 13 Colour and reflectivity effects 
Pencil case 3 Object of curved surfaces 
Bottle 6 Object of reflective curved surfaces 
Headphones 2 Object of curved and flat surfaces 
Figurine 15 Complex shape 
Heads 6 Live subjects 
Facial expressions 47 Female subject (author) 

 
 

The variety of scanned inanimate objects was intended to underpin a number of potential sub-

projects within the current research, including studies of the effects of colour and reflectivity on 

scan quality and 3D object model reconstruction, but were not followed through for reasons already 

described (logistical issues and insufficiently formulated research questions). A number of scans of 

the human head, many for the sole purpose of recording facial expressions were also undertaken 

and that work is described more extensively in chapter 7. 

 

This chapter provided a detailed description of the Mephisto Extreme 3D-scanner 

calibration, configuration and operation and how 3D object meshes are acquired and 

saved to file. 
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4.1 Object modelling versus object scanning 
Software that enables the user to design virtual objects is a standard technique in many 

aspects of engineering and design, the film industry and the game industry. It is a 

principal technique for designing character/avatar and other objects as step in developing 

a computer game.  The process can be time consuming (weeks, months) and is 

complimentary to an alternative approach by which real world objects are scanned using 

a 3D scanner for subsequent processing and import of the digitised object into a computer 

game. Unlike the design process for an object that does not yet exist, 3D scanning of 

course requires some real world object to exist as a pre-requisite for scanning. Given the 

importance and complimentary use of 3D modelling software to 3D scanning, this 

chapter reviews an application software package called 3DS Max (www.autodesk.com) 

a commonly used 3D modelling utility (formerly also known as 3D Studio and 3D Studio 

Max). Whilst 3DS Max is a professional 3D computer graphics program for making 3D 

animations, models, games and images, this section is confined to an evaluation of its use 

as a means of creating objects for subsequent import into a computer game (Bosché, 

2010; Kersten and Stallmann, 2012). 

 

4.2 Architectural overview 

3DS Max has modelling capabilities and a flexible plugin architecture and can be used 

on the Microsoft Windows platform. It is frequently used by video game developers, 

many TV commercial studios and architectural visualisation studios. It is also used for 

movie effects and movie pre-visualization. For its modelling and animation tools, the 

latest version of 3ds Max also features shaders (such as ambient occlusion and subsurface 

scattering), dynamic simulation, particle systems, radiosity, normal map creation and 
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rendering, global illumination, a customizable user interface, new icons, and its own 

scripting language (Reinhart and Breton, 2009). 

 

4.3 The 3DS Max user interface 

Figure 4.1 shows the main user interface of 3DS Max with the four central ‘Viewports’ 

and the most important options: the main toolbar, the command panels, the time line, the 

animation tools, the viewport navigator, the time control and the status bar & prompt line.  

 

Figure 4.1: The interface of 3ds Max 

 

On the Create Command Panel, the user can create simple 3D shapes by selecting the 

relevant buttons and then clicking and dragging the mouse cursor in the top viewport. 

This defines the length and width of the shapes. After releasing the mouse button, drag 

up and down to adjust the height, and then click once more to set the height. Left clicking 
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on one of the Viewport descriptors for example displays a menu list for each descriptor, 

some options for these descriptors which are of interest are: 

• PERSPECTIVE, TOP, BOTTOM, LEFT, RIGHT = change view of current 

Viewport  

• SMOOTH + HIGHLIGHTS or WIREFRAME = changes type of display  

• OTHER = different ways to view the model  

• SHOW GRID = turn HOME grid on/off  

• CONFIGURE = change Viewport layout 

 

Figure 4.2: viewport manipulation 

 

By default, 3DS Max uses a ‘generic’ unit to represent any required unit e.g. cm, m, km, 

the user can define the units which are to be used by selecting the customise menu and 

then Units/ Set Up (Murdock, 2010). 
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4.4 Creating/adding object primitives 

Hover the mouse cursor over the icons immediately under the Create Command Panel 

icon. This will display the name of the icon. Some of the icons on the Create Command 

Panel icon which will initially be of interest are:  

 

• GEOMETRY:  Provides tools to create 3D primitives  

• SHAPES:  2D shapes (which can be changed into 3D shapes)  

• LIGHTS:  Provides access to various lighting effects  

• CAMERAS:  Provides access to various options which control camera 

placement and movement  

• HELPERS:  Non-renderable objects (do not appear on the final image) 

which help with defining objects, shapes and animation  

• SPACE WARPS:  Non-renderable objects which affect objects which are 

bound to them  

• SYSTEMS:  Special purpose objects Selecting each icon displays a 

different set of drop-down menus and several options 

below it.  

 

Clicking and dragging vertically on an empty space on the panel will display further 

options which may be hidden at the bottom of the panel. For example, the ‘NAME AND 

COLOUR’ parameter allows logical names to be given to the objects, whilst selecting the 

MODIFY COMMAND PANEL will show all the parameters for the object. These 

options change according to the type of primitive which is selected.  
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In order to create one object to the side of another object, the user can use the AUTO 

GRID option in the Create Command Panel.  

To do this, the steps below should be followed: 

1. Select the object which is to have the new object attached to it 

2. Select the type of object you want to attach to the surface using the CREATE 

COMMAND PANEL 

3. Tick the AUTOGRID option, below OBJECT TYPE in the command panel 

4. As the cursor is moving over the original shape, the three co-ordinate arrows 

re-align themselves to the direction of the surface they are currently over. 

5. Now click and drag to define a 3D shape as normal. 

6. Rather than the object being created on the horizontal HOME grid as usual, 

the object is created on the surface of the original shape. 

7. If the user holds down the ALT key BEFORE they click and drag to create 

the new shape, the grid which appears on the original objects surface (the 

FACE grid) will stick to the original object permanently. Any new shapes 

which are defined from now on will be orientated to this new grid. 

8. To return to the original HOME grid, select the FACE grid which is currently 

active, right click and select ACTIVATE HOME GRID. The FACE grid will 

remain, but objects will now orientate themselves to the HOME grid. The 

FACE grid can be re-activated by selecting it, right clicking and selecting 

‘ACTIVATE GRID’.  

 

4.5 Moving, rotating and scaling objects  

When using any of the tools to manipulate the position, orientation and size of a 3D 

object, a third axis icon called a GIZMO is displayed. By manipulating an axis on the 
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GIZMO the user can manipulate the selected objects as shown in figure 4.3 (Murdock, 

2010). 

 

Figure 4.3: Gizmo axis 

 

Selecting objects:   When the last icon in the set of four 

selection tools is NOT selected, items which are contained within, or which cross the 

selection area are selected. If selected, items must be completely within the selection area 

in order to be selected. Use the ‘ignore back facing’ option to avoid selecting polygons 

through the model on opposite sides of the model. The ‘H’ key displays the ‘select 

objects’ window, where objects can be selected by their name. 

Moving objects: Select an object and then click on the move tool;  then click and 

drag on a gizmo arrow head in a viewport to drag the object along that axis. Click and 

drag on the edge of ‘right angle’ box to free-drag the object within the two axes of that 

view port 

Rotating objects: Select the circular icon; the gizmo now looks like a virtual 

trackball. Circular handles represent the three axes around the trackball, and each 

viewport provides a handle for a separate axis with the perspective view providing access 
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to all three handles simultaneously. Clicking and dragging on a colour handle will allow 

rotation around a single axis. Clicking and dragging in centre of the circle will allow 

rotation in both axes of that viewport  

Scaling objects: Select the square icon; clicking and dragging in centre of gizmo 

will allow a uniform scaling in all directions.  Clicking and dragging on an axis line only 

will scale in that direction only, whilst clicking and dragging within the diagonal bar 

between two axes to scale in both those directions simultaneously. 

Snapping objects: Select the snap button on the top toolbar; this enables snapping 

of the cursor to the HOME or FACE grids. To change snap settings select the 

CUSTOMIZE menu, then GRID & SNAP SETTINGS. 

 

4.6 Editing subsections of a 3D primitive 

The ‘Editable Poly’ (short for Editable Polygon) option allows the user to ‘split’ a 3D 

primitive into subdivisions and modify each division separately.  

To achieve this, the user needs to follow these steps:  

1. Create a box and select it 

2. In the MODIFY panel, use the ‘Length Segs’ ‘Width Segs’ ‘Height Segs’ 

option boxes to define how the box is to be split up 

3. The user may need to left click on the viewport display type in the top left of 

the viewport (i.e. the words, Perspective or Smoot + Highlights) and then 

select the Edged Faces option. This will display the new segment lines. 

4. Right click on the shape and select ‘Convert to…’ then ‘Editable Poly 

5. The shape is now split into different areas. 
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6. With the object still selected, the MODIFY COMMAND PANEL icon 

displays an ‘Editable Poly’ option. Expand this by clicking the + sign next to 

the ‘Editable Poly” text. 

7. This list shows all the different elements which can be selected and 

manipulated, e.g. vertex, polygon. 

8. Select POLYGON level and click on the box surface. The user can now select 

individual subdivision of the box. 

Once an editable poly element is selected, (vertex, polygon) the user can rotate, scale and 

move that component. When using the MOVE tool on polygons, surrounding polygons 

move out with the moving polygon, and when using the EXTRUDE option on the objects 

MODIFY COMMAND PANEL, only the selected polygon moves out, expanding the 

object as it does. Polygons around the edge of the selected polygon remain stationary. 

 

4.7 Copying objects 

To copy objects, the user should go to the EDIT | CLONE menu:  

• COPY = changes to original shape do not affect new shape  

• INSTANCE = Changes to original shape do affect the new shape  

Use SHIFT and drag on GIZMO axis with ‘Select & Move’ tool to create copies. 

 

4.8 Saving files 

Object models can be saved by clicking on the relevant Max icon in the top left of the 

window and then the user select SAVE AS, which saves a copy and changes the current 

filename to that of the new copy. Clicking the ‘+’ icon saves a copy with ‘01’ appended 

to the filename, with the number incremented and a new file created every time the icon 

is clicked, thus supporting incremental backups. 
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4.9 Import/Export files on 3DS Max 

The Import and Export commands on the Application menu allow the user to share 3D 

geometry with other 3D modelling programs (McHenry and Bajcsy, 2008). 3DS Max can 

import and export a variety of file formats, as described in Table 4.1: 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Table 4.1: Import and Export file formats for 3DS Max 

 

 

 

 

4.10Example of working with 3DS Max 

Import Export 
 

3D Studio Mesh 
(3DS) 

3D Studio Project 
(PRJ) 

3D Studio Shape 
(SHP) 

Adobe Illustrator (AI) 
AutoCAD (DWG) 
AutoCAD (DXF) 
Initial Graphics 

Exchange Standard 
(IGES) 

FiLMBOX (FBX) 
Lightscape Solution 

(LS) 
Stereolithography 

(STL) 

VRML (WRL, WRZ) 

 
 

 

3D Studio (3DS) 
Adobe Illustrator (AI) 

ASC Scene Export (ASE) 
AutoCAD (DWG) 
AutoCAD (DXF) 
FiLMBOX (FBX) 

Initial Graphics Exchange Standard 
(IGES) 

Lightscape Material (ATR) 
Lightscape Blocks (BLK) 

Lightscape Parameter (DF) 
Lightscape Layers (LAY) 

Lightscape View (VW) 
Lightscape Preparation File (LP) 

Stereolithography (STL) 
VRML97 (WRL) 
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In order for the researcher to become familiar with the functionality of 3DS Max, an 

object of appropriate complexity (a jet aircraft) was designed and constructed (Figure 

4.4). 

 

Figure 4.4: Jet aircraft designed in 3DS Max by author 

 

 

This chapter focused on 3DS Max, a computer graphics modelling environment widely 

used for commercial and academic purposes to create and edit 3D objects, whether 

designed or imported.  
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5.1 Unity3D for 3D object and game development 
Unity3D∗ is a game development tool that enables the user to develop virtual 

environments and to populate that environment with objects (known as game assets). The 

software has functionality to develop 3D objects and in this sense is similar to 3DS Max. 

However, the game asset building tools are more limited.  Nonetheless, one advantage of 

the Unity game engine is that it supports the full game development process. For this 

reason it is quite common for 3D objects to be developed in 3DS Max and for those 

objects to be then imported into Unity. Not only can objects created by 3DS Max be 

exported and then imported into Unity, but also other objects acquired by other means 

(e.g. 3D scanning) can also be imported. Use of Unity3D is therefore relevant to the 

present study of game asset development, both directly from first principles using the 

functionality of the building tools, and indirectly by import of data file(s) containing 

shape information from other sources including 3D scanning. This chapter provides an 

overview of the use of Unity in developing game assets, as well as considering the import 

methods necessary to access files containing 3D shape information, whether generated 

by 3DS Max or by 3D scanning.  Whilst Unity3D is supported by the Windows and Mac 

operating systems, the focus of the following outline of use is based on using a MacBook 

with operating system macOS High Sierra version 10.13.2 (17C88) and the Unity version 

2017.3.0f3 Personal. 

 

5.2 Unity3D projects and game development   

With Unity3D installed, a user starts by creating a new project, i.e.: 

1. Select the Create new project tab 

                                                 
∗ www.unity3d.com/unity 
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2. Browse to the desktop and create a new folder where all the Unity projects will 

be saved 

 

Unity then launches and displays the main interface (Figure 5.1), which by default will 

be a basic Unity project and from which the user can organise the screen in any way 

convenient to them. 

 

 

Figure 5.1: Basic Unity project 

 

Unity is a project-based development environment structure in keeping with most other 

game engine tools and allows its users to have access to a directory where all the assets 

are stored. The better the user is in organising their assets the easier it will be for them to 

build their game. The user also has access to Unity packages that allow the user to start 

their projects with several example files and these are saved as Standard Asset Packages 

(Creighton, 2010). 
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5.3 The Unity User Interface (Unity UI) 

The Unity User Interface or Unity UI is broken into four basic components (Figure 5.1). 

The four basic components of the bulk of the UI start at the top left. By default, the Unity 

UI is laid out to have the hierarchy window at the top left corner. This is where everything 

that is related to the scene of interest is stored. On the right there is the view port 

underneath the scene tab where it represents everything that is live in the scene. In the 

scene there is only the camera and the icon that resembles the sun which is named 

‘directional light’. Everything that is live in the scene will be populated underneath the 

hierarchy (Goldenstone, 2011). 

  

The game view is a preview of how everything would look like in a game. It is important 

to note that this is a test area of looking at how everything comes together as a game 

view. When or should the user produce an application in Unity the result will be even 

better that what the game view suggests because game view is a preview as to how 

everything is being assembled from scene view.  

 

There is a tab named Asset Store where the user can search for free assets or even 

purchase content from the Unity Asset Store. 

 

On the far right there is the Inspector view where the ‘Services’ tab is based. Services 

will demonstrate all the analytics on the games the user may build and anything related 

to the performance of the game. This is a tab that allows the user to administer all of the 

parameters of the productivity of the application for anything that may be within the scene 

view or the hierarchy. 
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The fourth major area is the Assets view or the project window where the user can look 

at all of the assets and content directly related to the project.  

 

The Unity UI allows the user to customise layouts into whatever configuration the user 

wants to work. If the user arranges a layout that they are happy with then the user can 

save that layout and name it (however they want) and they will then be able to recall it as 

many times as they wish. Users also have the ability to delete layouts or revert to factory 

settings or go back to the default layout.  

 

5.4 Navigating Unity  

Unity 2017 navigates in similar way as any 3D content creation package (Blackman, 

2013). The same principles apply in regards to manipulation and navigating around the 

view port as well as manipulating objects in the scene (Figure 5.2). 

 

 

Figure 5.2: Adding a plane in the scene 
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To add a plane object for example, the user should follow the steps below: 

1. Go to the GameObject tab at the top  

2. Select 3D object 

3. Select plane 

This will create a plane in the scene and it will be also added to the hierarchy underneath 

the chapter name. Also, when the plane is selected, the inspector is visible on the right 

hand side with all the parameters. Some hotkeys are listed in Table 5.1. 

 

5.5 Game objects and asset creation 

Game objects are the most important item in the Unity development environment. Game 

objects are essential building blocks of any project. They can be found on the top menu 

Game object (Figure 5.2) and there the user can create anything for the scene: from 3D 

objects including primitives such as cube, sphere and simple plane, but also basic effects, 

lights, audio, video, user interface elements and cameras. In the given scene there are 

already the basic tools that the user will need to build their environment. When the user 

clicks on the camera the inspector will come up with all the parameters involved. The 

plane and the camera have in common a name or a label for what the object represents 

and they also have a transform tab. The best way to describe a game object is that it is a 

container to hold attributes or parameters. In Unity they are referred to as components 

that comprise the object (Watkins, 2011). 

 

To create a blank game object, the user has to follow the instructions below: 

1. Go to Game Object and click Create empty 
2. Add component 
3. Click on Rendering 
4. Click Light 
5. Go back to MyCustomLight 
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Table 5.1: Mac Unity Hotkeys∗ 

 

 

                                                 
∗ Source: https://docs.unity3d.com/uploads/Main/Unity_HotKeys_Mac.pdf) 
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In order to create an asset, the user has to name the game object and add it in components. 

By default, anything created under game object, 3D object primitives will place a 

collision around it. Thus, the game object is a container to store any number of attributes 

or parameters that the user will need. The mesh renderer component is how the scene that 

will be rendered in game view. The user has the ability to add to the object whatever they 

want, for example, effects, lights, materials etc.  

 

5.6 Importing and Exporting Unity assets 

When it comes to content creation, there is no shortage of applications to create content 

for Unity. Unity supports a vast number of 3D formats, Autodesk FBX being one of the 

more commonly used common file formats (Goldstone, 2009). 

 

When the user creates a Unity Project, they are creating a folder - named after the name 

of the project - and contained subfolders as shown in Figure 5.3. 

 

 

Figure 5.3: The basic file structure of a Unity Project 

 

The Assets folder is where the user can save or copy files that they want to use in their 

project. The contents of the Project Window in Unity shows the items in the Assets 

folder. So if the user saves or copies a file to their Assets folder, it will be imported and 

become visible in their Project Window. 

 



 5 8  

U nit y  will  a ut o m ati c all y  d et e ct  fil es  as  t h e y  ar e  a d d e d  t o  Ass ets  f ol d er,  or  if  t h e y  ar e 

m o difi e d. W h e n t h e us er p uts a n y ass et i nt o t h eir Ass ets f ol d er, t h e y  will s e e t h e ass et 

a p p e ar i n t h eir  P r oj e ct Vi e w . 

 

 
 
Fi g u r e 5. 4:   T h e P r oj e ct Wi n d o w s h o w s ass ets t h at h a v e b e e n i m p o rt e d i nt o t h e  

p r oj e ct  
 

 

If a fil e is dr a g g e d i nt o U nit y’s Pr oj e ct Wi n d o w fr o m a c o m p ut er ( e. g. fr o m t h e Fi n d er 

o n M a c, or fr o m E x pl or er o n  Wi n d o ws), it will b e  c o pi e d  i nt o t h e Ass ets f ol d er, a n d will 

a p p e ar i n t h e Pr oj e ct wi n d o w ( Fi g ur e 5. 4). 

 

T h e  it e ms  s h o w n  i n  t h e  Pr oj e ct  wi n d o w  r e pr es e nt  (i n  m ost  c as es)  a ct u al  fil es  o n  t h e 

c o m p ut er, a n d if t h e y ar e d el et e d wit hi n U nit y, t h e y ar e d el et e d fr o m t h e c o m p ut er t o o.  

Fi g ur e 5. 5  s h o ws a n e x a m pl e of a f e w fil es a n d f ol d ers i nsi d e t h e Ass ets f ol d er of a U nit y 

pr oj e ct. T h e us er c a n cr e at e as m a n y f ol d ers as t h e y li k e a n d us e t h e m t o or g a nis e t h eir 

Ass ets.  
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Figure 5.5:  The relationship between the Assets Folder in a Unity Project on a 

computer, and the Project Window within Unity 
 

 

Of particular relevance to the current work was to ensure/devise a procedure that allowed 

3D objects created and/or modified in 3DS Max to be exported as a file from that 

application and then imported into Unity.  The 3D objects created in 3DS Max can be 

saved in the same way described above directly into the Project or they can be exported 

into Unity using the Autodesk .FBX or other generic formats.  

 

Unity imports meshes from 3DS Max. Saving a Max file or exporting a generic 3D file 

type each has advantages and disadvantages. On import or export to and from Unity the 

application can transfer the following information: 

 

1. All nodes with position, rotation and scale. Pivot points and Names are also 

imported. 

2. Meshes with vertex colours, normals and one or two UV sets. 

3. Materials with diffuse texture and colour. Multiple materials per mesh. 

4. Animations. 

5. Bone based animations. 
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5.7 Examples of working with Unity 3D 

In order for this researcher to become familiar with the Unity 3D game building tools a 

virtual 3D environment was developed containing two kinds of assets (3D objects), 

namely trees and aeroplanes. The trees were located on a plain grey surface and the 

aeroplanes against a sky blue atmospheric background whose boundary represents the 

horizon (Figure 5.6). 

 

 

Figure 5.6: Screen capture of Unity 3D game scenario in development 
 

 

This chapter described the manipulation of 3D objects in Unity3D, a common computer 

game-building software development environment and to ensure a procedure that allowed 

3D objects created and/or modified in 3DS Max to be exported as a file from that 

application and then imported into Unity.  
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Chapter 6: 
 

Developing an OBJ 
file processing tool  
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6.1 3D Object data portability between applications 

Whilst 3D data for an object can be acquired directly by use of a scanning device such as 

the Mephisto Extreme, 3D data can also be constructed (i.e. virtually designed) for an 

object using software such as 3DS Max. In order to allow software such as 3DS Max to 

process 3D data acquired by the Mephisto Extreme, there is clearly a requirement to 

ensure relevant 3D data can be exported by the scanner software in a file format that can 

be read by 3DS Max. The significance of working with a file format common to both 

applications is that it can allow intermediate processing of the 3D data by other bespoke 

applications. In this section such an application is presented developed in C++ which 

generates statistical data on the 3D object in question. 

 

Initially for this work a simple 3D object was constructed in 3DS Max (a cube) and 

exported as an ASE file (a common 3DS Max file format). The ASE files are text files 

(ASCII files) and they can be read by many applications including a user-written program 

for the purpose of implementing 3D data processing algorithms. However, there is very 

little documentation on how to read and interpret ASE files, and importing the ASE files 

back into 3DS Max proved difficult. For this reason the use of ASE files was abandoned 

and instead the OBJ file type was adopted as the principal input/output file used in this 

research. Like ASE files, they are ASCII-based and are easily readable by a text editor. 

They are readily compatible with 3DS Max for input/output purposes and unlike ASE 

files there is good documentation available on the type structure and the types of data and 

its format. Figure 6.1 shows illustratively a comparison of the content of the two file 

formats, each containing the same information for a cube. 
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Figure 6.1:  Left: ASE file format for a cube; Right: OBJ file format for the same 
cube. 

 

 

6.2 Features of Wavefront OBJ files 

Wavefront OBJ (object) files store geometric objects composed of lines, polygons, and 

free-form curves and surfaces. The filenames are often given the extension ".obj" and the 

format is the principal file associated with Wavefront’s Advanced Visualizer 3D 

modelling software application.  The format allows many applications to transfer 

geometric data (3D, 2D) back and forth between various applications besides the 

Advanced Visualizer itself, such as 3DS Max, Mephisto Extreme and MatLab 

(Mathworks, 2011). Whilst Wavefront Object files can be in ASCII format (.obj) or 

binary format (.mod) the current work concentrates on the ASCII format for object files 

as described by Reddy (2007). 
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6.3 OBJ file structure 

The first character of each line in an obj file specifies the type of command (apart from 

the ‘#’ symbol indicating a comment). The first character is followed by various 

arguments and explained as follows (square brackets indicates an optional argument). 

v x y z 

The character ‘v’ indicates the vertex command specified by its three coordinates x, y 

and z. By default the first listed vertex in the file will be assigned a reference number of 

1, and all subsequent vertices sequentially numbered according to the order they are 

stored in the file (the second vertex listed in the file for example will be reference number 

2. These vertex commands only specify points in space and say nothing about the 

geometry. 

vt u v [w] 

The ‘vt’ command refers to vertex texture command, followed by its co-ordinates which 

are floating point values between 0 and 1 and say how to map the texture in 1D, 2D, or 

3D. 

vn x y z 

The ‘vn’ command is ‘vertex normal’ and specifies a normal vector of x, y and z 

coordinates. 

 

The vertex data is the most important kind of geometric element recorded in OBJ files 

describing 3D objects created for development purposes in the present work. The vertex 

data is represented by four vertex lists in an OBJ file; one for each type of vertex 

coordinates. A right-hand coordinate system is used to specify the coordinate locations. 

Table 6.1 shows a portion of an .obj file that contains the four types of vertex information. 

 



 65 

Table 6.1: Sample of obj file content listing vertex information by type 

    v      -5.000000       5.000000       0.000000 
    v      -5.000000      -5.000000       0.000000 
    v       5.000000      -5.000000       0.000000 
    v       5.000000       5.000000       0.000000 
    vt     -5.000000       5.000000       0.000000 
    vt     -5.000000      -5.000000       0.000000 
    vt      5.000000      -5.000000       0.000000 
    vt      5.000000       5.000000       0.000000 
    vn     0.000000       0.000000       1.000000 
    vn     0.000000       0.000000       1.000000 
    vn     0.000000       0.000000       1.000000 
    vn     0.000000       0.000000       1.000000 
    vp     0.210000       3.590000 
    vp     0.000000       0.000000 
    vp     1.000000       0.000000 
    vp     0.500000       0.500000 

 

 

The vertices are sequentially numbered starting with 1 and provide a reference for use in 

element statements. 

 

Note that vt and vn data are often grouped together in use with the 'f' face command as 

the following describes. 

 

f   v1[/vt1][/vn1]  v2[/vt2][/vn2]  v3[/vt3][/vn3] ... 

The face command ‘f’ enables a group of vertices to be specified which define a polygon. 

Each vertex may have a triplet of numbers that reference vertex data. These numbers 

(separated by a forward slash ‘/’) are the reference numbers for a vertex geometry, a 

vertex texture, and a vertex normal. There may be more than one series of geometric 

vertex, texture vertex, and vertex normal numbers on a line. For example a line describing 

a four-sided face element might be: 

f 1/1/1 2/2/2 3/3/3 4/4/4 

which describes:  
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f v/vt/vn v/vt/vn v/vt/vn v/vt/vn 

If there are only vertices and vertex normals for a face element (no texture vertices), only 

two slashes (//) are entered. For example, to specify only the vertex and vertex normal 

reference numbers, it would be displayed as follows:  

f 1//1 2//2 3//3 4//4 

 

There is also syntax related to free-form curves and surfaces, but that is of little relevance 

to the current work and will not be described further. 

 

6.4 The polygonal geometry of a cube 

The Mephisto Extreme scanner acquired a number of scans of cubes (Figure 6.2). 

  

 

Figure 6.2: Positioning of cube on pedestal in preparation for 3D scanning. 

 

The scans were initially undertaken for two purposes; 
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1. Some tests involved mirroring a selected face with tin foil to determine the 

reflectivity effects on the construction of the 3D model, with a view to 

determining what algorithmic mitigation strategies might be applied during post-

scanner acquisition processing of the mesh data. 

2. Some tests were proposed to scan the (white) cubes in red, green or blue ambient 

and source light with a view to determining what effects (if any) would occur in 

the geometry of the acquired 3D data. 

 

In both cases these research topics were abandoned due to difficulty in defining the 

research questions precisely, the time constraints involved in multiple enforced physical 

re-locations of the scanner, and difficulties in re-configuration of the scanner associated 

with the environmental changes that accompanied equipment re-location. Nevertheless 

the resultant OBJ file content illustrates use of the digitisation reporting and syntax. Table 

6.2 describes a cube that measures two units on each side. Each vertex is shared by three 

different faces. 

 

Table 6.2: Content of obj file listing vertex data for a cube (see also Figure 6.1) 

    v 0.000000 2.000000 2.000000 
    v 0.000000 0.000000 2.000000 
    v 2.000000 0.000000 2.000000 
    v 2.000000 2.000000 2.000000 
    v 0.000000 2.000000 0.000000 
    v 0.000000 0.000000 0.000000 
    v 2.000000 0.000000 0.000000 
    v 2.000000 2.000000 0.000000 
    f 1 2 3 4 
    f 8 7 6 5 
    f 4 3 7 8 
    f 5 1 4 8 
    f 5 6 2 1 
    f 2 6 7 3 

6.5 Developing a C++ OBJ reader/writer 
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Wavefront OBJ file readers and writers are readily available for download from the 

internet. As the file format specification is in the public domain, many if not most of these 

programs are open source and completely free for use. However, most readers incorporate 

rendering functionality through OpenGL, which is not the solution required for the 

present work. The aim of this aspect of the research was to develop a C++ program that 

can read an OBJ file, demonstrate access to the geometrical data by printing the vertex 

data to screen (hence demonstrating proof-of-principle that the 3D data could be 

processed in some way e.g. apply simplification algorithms) and export (save) it as a 

separate OBJ output file. Whilst the original input file data and the output file data will 

be the same, in principle a processing algorithm of choice could be implemented between 

reading and saving. 

 

One example of a basic OBJ file reader/ writer/ rendering program is given at 

http://www.kixor.net/dev/objloader/ and a download of code similar to this was taken and 

all reference to graphics capability edited out of the version for this work. All C++ 

development occurred using Microsoft Visual Studio 2015. The code listing for the 

program developed for this work is presented in Appendix II. 

 

The edited source code is divided into two files, a header file (WavefrontLoader.h) and 

the file containing their method/function implementations and main (OBJLoader.cpp) - 

as is common practice in C++ development. 

 

The header file provides information (definitions) for resources used in a multiple file 

programs including in this case C++ standard libraries <iostream>, <fstream>, <vector> 

and <string>, as well as a ‘using namespace std’ to simply standard library methods. 

http://www.kixor.net/dev/objloader/
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WavefrontLoader.h also includes three user-defined structs. (Vector, FaceElement and 

Face) and a user-defined class (WFObject). 

Note that the Face struct contains a vector of FaceElement structs, i.e: 

 
typedef struct 
{ 
    int v; 
    int vt;  
    int vn;  
} FaceElement; 
 
typedef struct 
{ 
    vector<FaceElement> elems; 
} Face; 

 

The third struct Vector defines a point in 3D space; 

typedef struct 
{ 
    float x; 
    float y;  
    float z;  
} Vector; 

 

Instances of struct Vector are stored in three containers of C++ type vector, whilst a fourth 

vector container stores instances of struct Face. These are encapsulated within a class 

called WFObject: 

class WFObject 
{ 
    private:  // Variables to store object data 
        vector<Vector> vertices; 
        vector<Vector> normals; 
        vector<Vector> textures; 
        vector<Face> faces; 
 
        void parseLine(string line); 
        void parseVertex(string line); 
        void parseNormal(string line); 
        void parseTexture(string line); 
        void parseFace(string line); 
    public: 



 70 

        WFObject(); 
        ~WFObject(); 
        void performOperations(); 
        int load(const char *filename); 
        void write(ostream &outstream); 
}; 

 

The methods of class WFObject are a mixture of private and public scope. The private 

methods have the following functionality: 

parseLine: parses the lines of the obj file imported to the program. 

parseVertex: parses the vertices (V) 

parseNormal: parses the normals to the faces (Vn) 

parseTexture: parses the texture coordinates (Vt) 

parseFace: parses the faces (f) 

The WFObject class also includes three public methods: 

 

load: imports the data from an obj file. 

write: allows writing of object data either to console using ‘cout’ as parameter or 

to a file using an ‘ostream’ method. 

performOperations: this method was developed by the author and takes the stored 

geometric data about the 3D object and displays the number of vertices, 

normals, textures and faces (i.e. 4 numbers), i.e; 

 

void WFObject::performOperations() 
{ 
    cout << endl; 
    cout << "vertices: " << vertices.size() << endl; 
    cout << "normals:  " << normals.size() << endl; 
    cout << "textures: " << textures.size() << endl; 
    cout << "faces:    " << faces.size() << endl; 
} 

 



 71 

For the program developed in this work, the C++ method main() declares a static instance 

of class WFObject called Object, and then calls its method load( filename) to parse an 

obj file and store the data in the various data structures via calls to parseLine().  In the 

version developed here there is a call to the performOperations() method from main() 

which simply  utilises the ‘size()’ method of the respective vector containers to print 

directly to screen the number of  vertices, normals, textures and faces. Whilst this is useful 

in its own right to crudely compare shape data, no actual modification of geometrical 

properties occurs in this implementation, but it does demonstrate the proof-of-principle 

that code could be written in this method to undertake geometric processing between 

reading the data from an input file and writing it back out to file through appropriate 

access to that to that geometric data. The last activity of the main() method is to export 

(write) the object data (potentially modified) to file as a an outputfile ‘my_output.obj’. 

The main method is shown below; 

int main() 
{ 
    WFObject Object; 
 
    Object.load("purple sphere.obj");               // load data from file 
    Object.write(cout);                                     // display data 
    Object.performOperations();                      // process data 
    std::ofstream ofstream("my_output.obj");  // create output stream 
    Object.write(ofstream);                              // write data to obj file 
    return 0; 
} 
 

In the current implementation the filename source obj file has to be hard coded into the 

program and recompiled, though a change to allow filename choice at runtime would be 

easy to implement. 

For testing purposes, a number of obj files were processed by the program, including 

‘pinkbox.obj’, whose output is shown in Figure 6.3 - note output from the 

performOperations() method are listed at the end of the output. 
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Figure 6.3: Screen capture of 3D data output from file ‘pinkbox.obj’. 

 

For more complicated shapes containing thousands of geometrical elements the code in 

main() which writes to cout (console output) was suppressed and the program 

recompiled. The data in Table 6.2 shows some geometrical summary data from the 

performOperations() method, purely to demonstrate the program will handle shapes of 

various complexities and size. File ‘pinkbox.obj’ loads in less than a second, whilst 

‘whitebox.obj’ took 86s to load (Toshiba Portege R930, 2.5GHz dual core, 4Gb RAM). 

All source obj files are in the Appendices (disk).  

Table 6.2: Comparative summary 3D data for various object files 

Obj file 
name 

 
Vertices 

 
Normals 

 
Textures 

 
Faces 

Size on 
disk (Kb) 
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pinkbox 8 6 4 6 1 

purplesphere 482 482 559 512 64 

model 41,731 41,731 0 76,395 5,194 

whitebox 83,327 83,327 83,327 15,5534 15,516 

   

6.6 Summary of program development 

The OBJLoader program was successfully developed in C++ that can read an OBJ file 

and export (save) it as a separate OBJ output file. Whilst the original input file data and 

the output file data are the same, in principle this will allow geometrical processing 

algorithms to be applied between reading and saving via a method ‘performOperations()’. 

The read/write ‘proof-of-principle’ aim has been very successfully achieved through use 

of a bespoke source code which was configured to display summary statistics of the 

object geometry. Objects of any complexity can be read in, the appropriate data extracted 

for processing, and that data (potentially processed) then written back to file. 

 

This chapter presented the software development aspects of this research, specifically 

the development of a program for use between object acquisition/creation and import 

into a game environment through manipulation of a file reader/writer for the OBJ file 

format.  
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Chapter 7: 

 
3D Scanning of the 

human face 
 
 
  

 

 

 

 

 

 

7.1 Facial biometrics and emotional expression 

Facial expression analysis is an interesting and challenging problem with important 

applications in many areas such as human–computer interaction and animation (Fasel and 

Luettin, 2003; Pantic and Rothkrantz, 2000; Pantic and Rothkrantz, 2003; Tian et al. 

2005; Davis L.S., 1996).   Current facial expression and emotional interpretation methods 
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are predominantly based on 2D images which classify the input into one of seven basic 

categories (happiness, sadness, fear, surprise, anger, disgust and neutral). The facial 

expression recognition occurs in three major steps: Face detection, Feature extraction and 

Expression classification. This chapter will firstly review the more important techniques 

in this process, and then introduce 3D scanning (using the Mephisto 3D scanner) as a 

means by which more effective expression recognition based on 3D geometrical features 

of the face might be achieved. 

 

An automated facial expression recognition system consists of the following steps: 

 

• Face detection - the isolation of a face location within an image using appropriate 

measures (Figure 7.1). Note this is quite distinct from Face recognition, which is 

the identification of an individual on the basis of the measured features, and is not 

the subject of the present work. 

 

 

Figure 7.1: Illustrative image of face detection (source:  http://www.divitface.com) 

• Feature extraction - analyses the facial features to eliminate the irrelevant features 

in the feature selection process. Most techniques are statistical in nature. 

• Emotional recognition - the classification step involves identification of the 

person’s emotion from the face in the image. Facial expressions can be used to 
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identify six basic human emotions; these are anger, fear, happiness, sadness, 

disgust and surprise (Figure 7.2). 

 

Figure 7.2:  Six basic emotions and their typical associated expressions (image of 
researcher) 

 

There are two common approaches taken to extract facial features: geometric feature-

based methods and appearance-based methods (Tian et. al., 2005). Geometric features 

present the shape and locations of facial components which are extracted to form a feature 

vector that represents the face geometry. Appearance-based methods are based on image 

filters such as Gabor wavelets which are applied to either the whole-face or specific face-

regions to extract the appearance changes of the face. Of the two approaches, geometric 
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feature-based methods provide similar or better performance than appearance-based 

approaches in Action Unit recognition (Valstar et al., 2005). However the geometric 

feature-based methods usually require accurate and reliable facial feature detection and 

tracking which is difficult to accommodate in many situations. 

 

7.2 Method of facial expression recognition 

Many approaches can be taken when it comes to facial expression and emotional 

interpretation techniques; these include; 

 

• Principal Component Analysis (PCA) -  also known as the Eigen Face Approach. 

It is one of the most commonly used methods for facial expression interpretation 

(Sirovich and Kirby, 1987). PCA reduces the dimensionality of the features so 

that the face indices are retrieved effectively.  It uses linear projection and 

maximizes the projected sample scattering (Belhumeur et al, 1997). This method 

has only one varying factor and this is the identity of the person and it is not 

effective when other factors are varying, for example the view point or light 

conditions. It generates spatially global feature vectors. 

• Linear Discriminant Analysis (LDA) - Fisher’s Linear Discriminant (FLD) is 

more suitable when there are severe variations in the facial expressions and 

lighting conditions. FLD reduces the scattering of projected sample since it is a 

class specific method (Belhumeur et al, 1997). When compared to PCA the error 

rate is significantly reduced and it also generates spatially global feature vectors. 

• Hidden Markov models (HMM) -  these are a set of statistical models used to 

characterise properties of signals. They work well for images with variation in 

different lighting, facial expression, and orientation, and are particularly in speech 
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recognition and character recognition where the data is one dimensional (Nefian, 

1998). 

• Independent Component Analyses (ICA) - Independent Component Analysis 

(ICA) generates a statistically independent basis vector which is necessary for 

effective facial expression recognition (Draper et al, 2003). The biggest advantage 

of this method is that the average recognition rate is improved but on the other 

hand it requires more resources and it is more expensive than PCA. 

 

A range of other techniques have been used which mostly either extend the principles of 

the above and/or are a hybrid of techniques. Briefly, these are Two-Dimensional Principal 

Component Analyses (Yang et al, 2004), the Global Eigen Approach using Colour 

Images (Torres et al, 1999), the Sub-Pattern Extended 2D-Principal Component Analysis 

(Chen et al, 2009), Multilinear Image Analysis (Thomas et al, 2008), Colour Sub-Space 

Linear Discriminant Analysis (Vasilescu and Terzopoulos, 2002), the  2D Gabor Filter 

Bank (Barbu and Gabor, 2010), and finally the Local Gabor Binary Pattern (Moore and 

Bowden, 2011). The most recent techniques have focused on a refinement of the Gabor 

Filtering technique (Saurav et al, 2015), and on the use of Artificial Neural Networks 

(Deepthi et al, 2013) utilising databases containing extensive libraries of 2D face images 

to which these techniques can be evaluated (Jizheng et al, 2013a). 

 

7.3 3D scanning of human facial expressions 

One possible application of a 3D scanning facility would be to scan different facial 

expressions with a view to identifying expression-relevant 3D feature properties. Whilst 

3D datasets already exist, the sensitivity of the Mephisto 3D scanner provides a possible 

opportunity to acquire expression data at an unparalleled degree of resolution.  With that 
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objective in mind 47 3D data sets of the authors face were acquired by the Mephisto 

scanner, where facial expressions were presented conforming with six basic emotions 

(Figure 7.3). 

Figure 7.3:  3D models of facial expressions acquired by the Mephisto 3D scanner 

 

7.4  Extending 2D facial expression recognition into the 3D domain 

It is now recognised that emotion in the human face is communicated by subtle changes 

in one or a few discrete facial features, such as tightening of the lips in anger or obliquely 

lowering the lip corners in sadness (Carroll and Russell, 1997). To capture such subtlety 

of human emotion and paralinguistic communication, automated recognition of fine-

grained changes in facial expression is needed. The Facial Action Coding System 
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(FACS), (Ekman and Friesen, 1978) is a human-observer-based system designed to 

detect subtle changes in facial features. Viewing videotaped facial behaviour in slow 

motion, trained observers can manually FACS code all possible facial displays, which 

are referred to as action units and may occur individually or in combinations. FACS 

consists of 44 action units. Thirty are anatomically related to contraction of a specific set 

of facial muscles (Ekman, 1989) and the first 28 are shown in Figure 7.3. 

 

In facial expression analysis, a simplifying assumption is that expressions are singular 

and begin and end with a neutral position. In reality, a facial expression is very complex 

especially at the level of action units. Action units may occur in combination or show 

serial dependence and transitions from action units or combination of actions to another 

may involve no intervening neutral state. Figure 7.4 illustrates the effect of combining 

action units to create an expression. For example,  an additive combination is smiling 

(AU 12) with mouth open, which would be coded as AU 12+25, AU 12+26, or AU 12+27 

depending on the degree of lip parting and whether and how far the mandible was 

lowered. Further complications involve the intensity of a facial expression and the 

difference between a spontaneous as opposed to a deliberate facial expression.  
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Table 7.3: FACS action units (AU) ∗ 
Upper Face Action Units 

AU 1 AU 2 AU 4 AU 5 AU 6 AU 7 

      
Inner Brow 

Raiser 
Outer Brow 

Raiser 
Brow Lower Upper Lid 

Raiser 
Cheek 
Raiser 

Lid 
Tightener 

*AU 41 *AU 42 *AU 43 AU 44 AU 45 AU 46 

      
Lid Droop Slit Eyes closed Squint Blink Wink 

 

Lower Face Action Units 
AU 9 AU 10 AU 11 AU 12 AU 13 AU 14 

      
Nose 

Wrinkler 
Upper Lip 

Raiser 
Nasolabial 
Deepener 

Lip Corner 
Puller 

Cheek 
puffer 

Dimpler 

AU 15 AU 16 AU 17 AU 18 AU 20 AU 22 

      
Lip Corner 
Depressor 

Lower Lip 
Depressor 

Chin Raiser Lip 
Puckerer 

Lip 
Stretcher 

Lip Funneler 

AU 23 AU 24 *AU 25 *AU 26 *AU 27 AU 28 

      
Lip 

Tightener 
Lip Pressor Lips Part Jaw Drop Mouth 

Stretch 
Lip Suck 

 
 
 
Table 7.4: Examples of combination of FACS action units**  

                                                 
∗ Source:  http://www.cs.cmu.edu/~cga/behavior/FEA-Bookchapter.pdf 
** Source: http://www.cs.cmu.edu/~cga/behavior/FEA-Bookchapter.pdf 
 

http://www.cs.cmu.edu/%7Ecga/behavior/FEA-Bookchapter.pdf
http://www.cs.cmu.edu/%7Ecga/behavior/FEA-Bookchapter.pdf
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One of the largest difficulties in this 2D work is that the face orientation relative to the 

camera may significantly influence the determination of FACs. Face orientation has 

received deliberate attention in many experiments. For example, the FERET database 

(Rizvi et al, 1998) includes both frontal and oblique views and several specialised 

databases have been collected to try to develop methods of face recognition that are 

invariant to moderate change in face orientation (Vetter, 1995). However in the face 

expression literature the use of multiple perspectives is rarely used. Most researchers 

assume that face orientation is limited to in-plane variation (Bartlett et al, 1999) or that 

out-of-plane rotation is small (Lien et al, 2000, Moses et al, 1995, Rosenblum et al, 1996, 

Tian et al, 2001).  

 

3D data sets of facial expressions such as those presented in Figure 7.2 could provide a 

means of progressing techniques in facial expression recognition in two ways: 

 

1. It may be possible to derive new 3D features which are sensitive to facial 

expressions which are undetectable in 2D images and allow expression 

recognition. However, this would require the acquisition and evaluation of 

substantial 3D facial expression mesh data, whilst ignoring the huge amount of 

2D work already undertaken and with no guarantee of success at the time of 

writing. This is probably not the best approach to take. 

 

2. A better approach (in the author’s view) would be to take 3D head/expression 

mesh data and study the effects of face orientation to the camera perhaps, so that 

an oblique face orientation to the camera can be transformed to an orientation 

normal to the camera hence allowing a 2D image of the face to be derived, from 
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which existing 2D techniques for facial expression recognition can be applied. At 

the present time 2D acquisition of facial images in the community is widespread 

via CCTV security cameras, but future technology may promote 3D scanning 

more widely, in which case this work will become increasing relevant to facial 

expression recognition and its applications in security and health.       

At the time of writing the most recent research includes the following works: a)  the FG 

2017 Facial Expression Recognition and Analysis challenge (FERA 2017) proposed 

facial expression recognition systems that address three aspects largely ignored in 

existing benchmarks: head-pose, expression intensity, and video duration (Valstar et al, 

2017); b) A Convolutional Neural Networks based approach for facial expression 

recognition has been developed reporting an accuracy of 96.76% with real time 

evaluation (Lopes et al, 2017); c)  A facial expression recognition system that learns via 

deep sparse auto-encoders has provided experimental results which indicate that the 

presented framework can achieve a high recognition accuracy of 95.79% on the extended 

Cohn–Kanade (CK+) database for seven facial expressions - this outperforms the other 

three state-of-the-art methods by as much as 3.17%, 4.09% and 7.41% respectively (Zeng 

et al, 2018); d) A new face descriptor called the Local Directional Ternary Pattern 

(LDTP) for facial expression recognition has been developed that efficiently encodes 

emotion-related features based on image edge patterns (Ryu et al, 2017); e) Lastly, a 

dynamic framework based on a local Zernike moment and motion history image for facial 

expression recognition proposes a weighting strategy on a grid for achieving a high 

recognition rate (Fan and Tjahjadi, 2017). 
 

This chapter considered one specific other application of 3D scanning in its potential 

impact for improving facial expression recognition. Some facial biometric and emotional 

expression techniques were reviewed and an experiment presented for extending 2D 

facial expression recognition into the 3D domain. 
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8.1 Summary of results 

The results of this current research are; 

1. Identification and procedural description of appropriate graphics modelling 

software that can process 3D objects from acquisition and/or creation (Mephisto 

Extreme, 3DS Max), processing (author’s OBJ file reader/writer, 3DS Max) and 

game development (Unity 3D). (Objectives 1,2,3, 4, 5,6,7)  

2. Establishment of procedure to achieve successful calibration and configuration of 

the Mephisto Extreme 3D optical scanner. (Objective 2) 

3. Operational development of the scanner enabling acquisition of numerous high 

quality 3D models from a variety of inanimate target sources. (Objectives 3,4) 

4. Software development (in C++) of an OBJ file reader/writer which also 

demonstrates access to the geometrical data for potential processing purposes. 

The program provides a link between output from the 3D scanner and input into 

off-the-shelf modelling and game development software (3DS Max, Unity 3D). 

(Objective 6) 

5. Successful acquisition of a number of 3D scans of the human face presenting a 

variety of facial expressions. (Objective 7) 

6. Identification of the most important parameters in the research literature which 

focus on 2D facial expression recognition, and propose that 3D expression data 

could further progress this research. (Objective 7) 

 

8.2 Evaluation of aims 

Chapter 1 presented three principal aims to which this research has been directed. The 

extent to which these aims have been achieved will now be evaluated. 
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Aim 1 was to configure, assess and evaluate the Mephisto Extreme 3D Optical scanner 

as an improved technique for acquiring rapid high resolution 3D object models. One of 

the most difficult aspects towards achieving this aim was problems associated with the 

physical setup, calibration and configuration of the scanner. The Mephisto Extreme is 

(was) marketed as a portable scanner, delivered in a bespoke stand-alone container which 

in theory could be moved around as needed (perhaps for example, for use with forensic 

crime scene capture). However, the author found the portability of the equipment to be 

severely hampered by its bulk and the need for total blackout conditions during 

calibration. On two occasions re-location of the equipment caused severe delays in re-

establishing operational functionality. In the author’s view the Mephisto Extreme is too 

unwieldly to use for frequent location changes given the calibration/configuration 

requirements prior to scanning of target objects.  Nevertheless, with 

calibration/configuration established to a satisfactory degree, the routine operational 

scanning of objects at a high resolution is indeed rapid (a few seconds to a few minutes 

depending on degree of required detail). One other practical issue that hindered 

development concerned software updates of both the host computer operating system and 

the driver software that interfaced with the hardware; such updates were never 

straightforward with common issues of compatibility needing to be resolved. 

Furthermore, reflecting on the technology available at the start of this project (2014) with 

that now available (2018) there have been huge advances in 3D scanning technology – 

the Microsoft Kinect system for example (widely available on the market in 2014) is 

capable of acquiring 3D scans which, whilst not of the quality of that yet achievable by 

the Mephisto Extreme, is just as fast, has an easier calibration/configuration procedure 

and whose cost is much lower. In short the aim has been met in that this work concludes 

that the Mephisto Extreme does improve the technique for acquiring rapid, high 
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resolution 3D scans of objects, but this situation is unlikely to persist for much longer 

unless there are major improvements in the ease of calibration/configuration 

accompanying any new advances in high resolution optical scanning technology. 

 

Aim 2 was to improve 3D object processing techniques that integrate 3D scanning, 

model construction and game development. This work shows how use of the Mephisto 

Extreme scanning software, 3D graphics modelling software (3DS Max) and game 

development software (Unity3D) can link together 3D object development through use 

of a modified OBJ file reader/writer developed in C++ by the present author. Whilst the 

reader/writer does not actually modify geometric values, proof of principle is established 

in that the software accesses the appropriate data structures, storing the data and reports 

some statistics to screen. Through use of the modelling techniques described, object data 

remains accessible from scanning acquisition, to design/modification through to game 

import. The aim to integrate 3D scanning, model construction and game development has 

been met, but the degree of improvement over current procedures in that chain has not 

been quantified. 

 

Aim 3, the final aim, was to evaluate the use of the optical scanner in the acquisition of 

facial features and its potential use in facial expression recognition. This aim is partly 

achieved in that a number of scans of human facial expressions were successfully 

undertaken using the Mephisto Extreme. However, work towards a focus on using the 

3D data for expression analysis has not been developed. There is substantial existing 

literature and open source 2D image data sets on this subject and the current work 

presents a thorough review of that material. Whilst some general ideas as to how the 2D 
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expression work might be utilised in conjunction with 3D data are outlined, no specific 

proposal is presented. 

 

8.3 Future work  

A number of areas of possible research are referred to in this work but were not 

developed. However this in turn provides some directions for future research; 

1. Development of the OBJ file reader/writer software to modify geometric data. 

This would provide a relatively simple means of implementing a particular 

technique on a surface mesh (e.g. the application of local or global simplification 

algorithms). 

2. Evaluate at what point the reflectivity of a surface renders the output mesh 

unrecognisable from the original optically scanned object and propose strategies 

that may correct or mitigate these effects. Related to this is the difficulty that the 

optical scanning of reflective surfaces produce spurious unrepresentative 3D 

mesh surfaces, so typically the user would avoid scanning objects with reflective 

surfaces. Some future work could study this effect with a view to developing 

strategies to correct for such effects. 

3. Perform experiments to identify the relative importance of red, green and blue 

(RGB) light in determining the quality of the optically scanned object and present 

results that may allow recommendations for scanner light source configuration in 

terms of an optimum mix of RGB components. 

4. Explore the potential uses of combining the high quality 3D objects acquired from 

the scanner with 3D printing. For example an object could be scanned, then 

printed, and the printed object then re-scanned so providing two meshes of the 

object whose difference could be a measure of quality control. 
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5. Explore how high resolution 3D scans of facial expressions can be used in facial 

expression recognition, perhaps through utilising the existing literature and data 

sets on 2D facial expression recognition. 

 

8.4 Evolving technology 

At the start of this current research project the Mephisto Extreme 3D-optical scanner was 

new state-of-the-art technology for acquiring 3D scans of physical objects. However 

externally this technology has progressed enormously just within the period over which 

this current research was undertaken, and new applications are emerging all the time 

(Droeschel et al, 2017). This is especially seen in medical/biological fields, for example 

recent new applications include the 3D modelling of joint surface degradation (Gui et al, 

2017), white-light 3D body volume and composition scanning (Medina-Inojosa et al, 

2017), the aesthetic reconstruction of the congenital condition known as microtia (Ross 

et al, 2018), and a new method for the recovery and evidential comparison of footwear 

impressions using a 3D structured light scanning (Thompson and Norris, 2018). 

 

This last chapter presented the main results of this research project, assessed the extent 

to which the aims have been achieved, and has considered some possibilities for future 

work. 
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Appendix II 
 

Source code: 
OBJLoader.cpp 

WavefrontLoader.h 
 
  

 

 

 

 

OBJLoader.cpp 
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#include "WavefrontLoader.h" 
#include <sstream> 
#include <fstream> 
#include <cassert> 
 
WFObject::WFObject() {} 
WFObject::~WFObject() {} 
 
// Wrapper Function- Load 
int WFObject::load(const char *filename) 
{ 
    ifstream objFile(filename); 
    for (string line; getline(objFile, line); ) { 
        parseLine(line); 
    } 
    return 0; 
} 
 
void WFObject::parseLine(string line) 
{ 
    stringstream stringStream(line); 
    // read in a line as a string , and assign the first string 
    // to lineType which is also a string 
    string lineType; 
    stringStream >> lineType; 
 
    if(lineType == "v")   // Vetrex 
    { 
        parseVertex(line); 
    } 
    else if(lineType == "vn")  //Normal 
    { 
        parseNormal(line); 
    } 
    else if(lineType == "vt")  // Texture 
    { 
        parseTexture(line); 
    } 
    else if(lineType == "f")  // Face 
    { 
        parseFace(line); 
    } 
    else { // line that is neither a Vertex, nor Normal 
           //nor Face. 
           // do nothing 
    } 
} 
 
void WFObject::parseVertex(string line) 
{ 
    stringstream stringStream(line); 
    string lineType; 
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    stringStream >> lineType; 
 
    assert(!lineType.compare("v")); 
 
    Vector v; 
    stringStream >> v.x; 
    stringStream >> v.y; 
    stringStream >> v.z; 
 
    vertices.push_back(v); 
} 
 
void WFObject::parseNormal(string line) 
{ 
    stringstream stringStream(line); 
    string lineType; 
 
    stringStream >> lineType; 
 
    assert(!lineType.compare("vn")); 
 
    Vector vn; 
    stringStream >> vn.x; 
    stringStream >> vn.y; 
    stringStream >> vn.z; 
 
    normals.push_back(vn); 
} 
 
void WFObject::parseTexture(string line) 
{ 
    stringstream stringStream(line); 
    string lineType; 
 
    stringStream >> lineType; 
 
    assert(!lineType.compare("vt")); 
 
    Vector vt; 
    stringStream >> vt.x; 
    stringStream >> vt.y; 
    stringStream >> vt.z; 
 
    textures.push_back(vt); 
} 
 
void WFObject::parseFace(string line) 
{ 
    stringstream stringStream(line); 
    string lineType; 
 
    stringStream >> lineType; 
 
    assert(!lineType.compare("f")); 
 
    Face f; 
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    for (string element; getline(stringStream, element, ' '); ) 
    { 
        if (element.empty() || 
            element.find_first_not_of("\r\n ") == 
            string::npos) 
        { 
            continue; // don't process whitespace tokens 
        } 
        // creating a FaceElement object and assigning 
        // each member by parsing the '/' separator 
        FaceElement faceElement; 
        string item; 
        stringstream ss(element); 
        getline(ss, item, '/'); 
        faceElement.v = stoi(item); 
        getline(ss, item, '/'); 
        faceElement.vt = stoi(item); 
        getline(ss, item, '/'); 
        faceElement.vn = stoi(item); 
 
        // Add this element to our Face elemts 
        f.elems.push_back(faceElement); 
    } 
 
    // Add the Face object to the faces member of the WFObject 
    faces.push_back(f); 
} 
 
void WFObject::write(ostream &outstream) 
{ 
    outstream << "# Vertices:" << endl; 
    for (auto &v : vertices) 
    { 
        outstream << "v " << v.x << " " << v.y << " " << v.z << 
        endl; 
    } 
    outstream << "# Normals:" << endl; 
    for (auto &v : normals) 
    { 
        outstream << "vn " << v.x << " " << v.y << " " << v.z << 
        endl; 
    } 
    outstream << "# Textures:" << endl; 
    for (auto &v : textures) 
    { 
        outstream << "vt " << v.x << " " << v.y << " " << v.z << 
        endl; 
    } 
    outstream << "# Faces:" << endl; 
    for (auto &f : faces) 
    { 
        outstream << "f "; 
        for (auto &e : f.elems) { 
            outstream << e.v << "/" << e.vt << "/" << 
            e.vn << " "; 
        } 



 116 

        outstream << endl; 
    } 
} 
 
void WFObject::performOperations() 
{ 
    // Do some stuff on vertices, normals, textures... 
} 
 
int main() 
{ 
    WFObject Object; 
 
    Object.load("purple sphere.obj"); 
    Object.performOperations(); 
 
    // Write to standard output (console): 
    Object.write(cout); 
 
    // Write the object into a file: 
    std::ofstream ofstream("my_output.obj"); 
    Object.write(ofstream); 
    return 0; 
} 
 
 
 
WavefrontLoader.h 
 

#ifndef _WAVEFRONTLOADER_H_ 
#define _WAVEFRONTLOADER_H_ 
 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <cstring> 
 
using namespace std; 
 
//#include <glut.h> 
 
typedef struct 
{ 
    float x; 
    float y; 
    float z; 
} Vector; 
 
typedef struct 
{ 
    int v; 
    int vt; 
    int vn; 
} FaceElement; 
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typedef struct 
{ 
    vector<FaceElement> elems; 
} Face; 
 
class WFObject 
{ 
    private:  // Dynamic Variables to keep our object data in 
        vector<Vector> vertices; 
        vector<Vector> normals; 
        vector<Vector> textures; 
        vector<Face> faces; 
 
        void parseLine(string line); 
        void parseVertex(string line); 
        void parseNormal(string line); 
        void parseTexture(string line); 
        void parseFace(string line); 
 
 
    public: 
        WFObject(); 
        ~WFObject(); 
 
        void performOperations(); 
        int load(const char *filename); 
        void draw(); 
        void write(ostream &outstream); 
}; 
 
#endif 
 
 
 
 
 
 
 
 

 

 

  



 118 

 
Appendix III 

 
Electronic files 

(on disk) 
 


	At the time of writing the most recent research includes the following works: a)  the FG 2017 Facial Expression Recognition and Analysis challenge (FERA 2017) proposed facial expression recognition systems that address three aspects largely ignored in...
	At the start of this current research project the Mephisto Extreme 3D-optical scanner was new state-of-the-art technology for acquiring 3D scans of physical objects. However externally this technology has progressed enormously just within the period o...
	Blackman, S. (2013) “Beginning 3D Game Development with Unity 4: All-in-one,
	multi-platform game development” TIA
	Lopes, A. T., De Aguiar, E, De Souza, A.F., Oliviera-Santos T. (2017) Facial
	expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order. Pattern Recognition

	Medina-Inojosa, J., Somers, V, Jenkins, S., Zundel, J., Johnson, L. Grimes, C, Lopez-
	Jimenez, F. (2017) Validation of a White-light 3D Body Volume Scanner to Assess Body Composition Obes Open Access. 2017; 3(1): 10.16966/2380-5528.127.
	Ross, M.T., Cruz, R., Hutchinson, C., Arnott, W.A., Woodruff, M.A., Powell, S.K. (2018) Aesthetic reconstruction of microtia: a review of current techniques and new 3D printing approaches. Journal of Virtual and Physical Prototyping Volume 13, 2018 Is...
	Ruy, B., Ramirez Rivera, A., Kim, J., Chae, O. (2017) Local Directional Ternary
	Pattern for Facial Expression Recognition IEEE Transactions on Image Processing. Volume: 26 Issue: 12
	Valstar, M., F., Sanchez-Lozano, E., Cohn, J. (2017) FERA 2017 - Addressing Head
	Pose in the Third Facial Expression Recognition and Analysis Challenge. 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)
	Watkins, A. (2011) “Creating Games with Unity and Maya: How to Develop Fun and
	Marketable 3D Games”. Focal Press.
	Zeng, N., Zhang, H, Song, B., Liu W., Li Y. (2018) Facial expression recognition via
	learning deep sparse autoencoders. Neurocomputing Volume 273, 17 January 2018, Pages 643-649


