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Accessible and affordable access to the Internet is crucial for socio-economic progress in 
developing countries and reducing Digital Divide. The disparity in mobile broadband 
penetration between urban and rural areas in the Indian state of Tamil Nadu can be 
explained by per capita income disparities. However, despite the vast body of 
multidisciplinary research, there are still large gaps in understanding Tamil Nadu’s 
upstream Internet market structure and its impact on mobile broadband affordability. 
Moreover, there is a lack of research analysing the Internet market structure in developing 
countries using Network Analysis. This dissertation explores the presence of structural 
connectivity bottlenecks in the upstream Internet market for three mobile operator 
networks in Tamil Nadu. The exploration employs Complex and Statistical Network 
Analysis on primary data collected via active Internet periphery measurements through 
the Portolan application. The results obtained indicate the existence of hierarchical 
upstream Internet market structures for all operator networks. Moreover, the collected 
evidence indicates the reliance of mobile operator’s connectivity on Tier-1 Internet 
Service Providers, while also revealing new Autonomous System relationships. This 
collected evidence highlights the crucial role that the level of hierarchical structuring of 
upstream Internet market structures plays in determining affordability. We show that end-
users’ prices per Megabyte increase with the level of hierarchical structuring, indicating 
the policy relevance of assessing Complex Network metrics to understand and address 
the hierarchical structuring of the relevant markets. In conclusions, this work indicates 
the importance of studying structural bottlenecks and connectivity hubs, as our evidence 
shows that the upstream Internet market structure also defines the bargaining powers 
exerted by Internet Service Providers, resulting in reduced competition and less 
affordable price plans. These results should also nudge policymakers’ efforts to consider 
the different roles of ‘bottlenecks’ and ‘hub-like’ Internet Service Providers when aiming 
to reduce the Digital Divide.  
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GLOSSARY 

Term Description 

2G 2nd Generation of Mobile Connectivity. 

3G 3rd Generation of Mobile Connectivity. 

4G 4th Generation of Mobile Connectivity. 

Autonomous 
System (AS) 

A connected group of one or more IP prefixes run by one or more 
network operators which has a singly and clearly defined routing 
policy (Hawkinson and Bates, 1996, p.2). 

Backbone 
The backbone of the Internet refers to key data routes between large, 
strategically important networks, composing the Internet, mostly 
through participation of Tier-1 Internet Service Providers.   

Broadband Connections with a download speed >=512 Kbps (TRAI, 2016c, 
p.36). 

Crore Hindi numbering system denotation for 10,000,000 (ten million). 

Fixed 
Wireless 

A wireless connection through Wi-Fi, Wi-Max, Point-to-Point Radio 
& VSAT (see TRAI, 2016c, p.xii). 

Internet 
Service 
Provider (ISP) 

Is an organisation that provides services to access and use the 
Internet. An ISP can be an Access Provider, a Transit Provider, a 
Content Provider, a Content Distribution Network (CDN) or an 
Internet Exchange Point (IXP). 

IP(v4) address 
Unique identifier (in 32bit format) being assigned to devices (e.g. 
routers, mobile devices, computers) in a TCP/IP network (IPv4 or 
IPv6, dependent on the version adopted (in this dissertation IPv4)).  

IP (address) 
prefix 

IPv4 (Version 4) prefixes are patterns that match the first n binary 
bits of an IPv4 address. If an example IP address 128.8.0.0/16 can be 
written in 128.8/16. This means that the prefix matches 10000000 
00001000 as the first sixteen bits. This would match e.g. an IPv4 
address of 128.8.74.1, 128.8.8.8, or 128.8.0.0, but not 128.9.7.3. 
Every Autonomous System manages a multitude of these IP address 
prefixes, being able to uniquely identify a multitude of networking 
devices.   

Mobile 
Wireless 

A wireless connection through Phones or Dongles (see TRAI, 2016c, 
p.xii). 

Narrowband Connections with a download speed <512 Kbps (TRAI, 2016c, 
p.38). 
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Packet 
Switching 
Networks 

Refers to network communication, where transmitted data is 
separated into equally large packets to-be transferred from a data 
sender to a receiver using multiple connections. 

Panyachats Hindi word for a village council in India. 

Peering 

Voluntary interconnection, through Border Gateway Protocol (BGP) 
routing, amongst networks on the Internet that are governed by the 
administrative control of an Autonomous System. This 
interconnection usually refers to the mutual exchange of data under 
settlement-free (unpaid) arrangements. However, paid peering 
relationships may similarly exist.   

Ping Ping (or ping-time) refers to a computer network software to test the 
(time to) reach ‘hosts’ of an Internet Protocol (IP) network.   

Round-Trip-
Time (RTT) 

Indicates the time a data packet takes to be sent from the initial 
source IP address to the destination one, plus the time it takes for this 
to be acknowledged by the destination IP address and returned to the 
source IP address. 

Traceroute 

Refers to a network diagnostics and measurement tool using the 
Paris Traceroute (2016) version. Traceroutes are used to display and 
measure the path from a source to a destination of data packets 
across Internet Protocol networks. The measurements are recorded 
as the Round-Trip-Time (RTT) that a data packet needs to being 
acknowledged by the destination. Each traceroute contains a number 
of hops (steps) along its given path to a destination. The sum of the 
mean time in each hop (traceroute step) measures the total time spent 
to establish a connection (RTT).  

Transit 
Refers to a service that allows network traffic on the Internet that 
allows the smaller Internet Service Providers to transit other 
networks, at a given transit cost, to reach other parts of the Internet.  

Wi-Fi Technology for Wireless local area networking with devices based 
on the IEEE 802.11 standards. 

Wi-Max Technology for Worldwide Interoperability for Microwave Access 
for wireless networking based on the IEEE 802.16 standards. 

Wireless Fixed and mobile wireless connections. 
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1 INTRODUCTION 

‘I do not fear the Internet. I fear its understatement and unequal access.’ 

(Sigloch, 2017). 

The Internet is a collection of interconnecting networks operated by different types of 

network operators among which Internet Service Providers (ISPs) provide global 

connectivity access to final end-users. ISPs play a vital technical and economic role in 

shaping the global connectivity costs, underlying the Internet. Recent reports show that 

an equal and affordable access to the Internet has the power to induce substantial 

economic growth (GSMA, 2016; TRAI, 2016a), education and employment (Fennell et. 

al., 2016), inclusion (Broadband Commission, 2016), equality and social impact (WDR, 

2016). The World Economic Forum rates affordable connectivity as a key infrastructural 

element for a robust digital economy (WEF 2017, p.11), providing global economies with 

the power to lift billions of people out of poverty (ITU, 2014). These benefits arise from 

an increased access to information, markets, and innovation possibilities, gained by end-

users through their ability to connect to the Internet. Nevertheless, affordable and equal 

access to the Internet remains a key challenge to be solved (Broadband Commission, 

2014; World Bank, 2016c). Especially developing and emerging economies, where most 

of the world's offline population resides (ITU, 2016), face those challenges, partly due to 

large International connectivity costs. Moreover, mobile broadband access to the Internet 

is highly significant for the accomplishment of the Sustainable Development Goals, 

adopted by the United Nations (2017). Recent data show that India ranks world second, 

behind China, for the absolute number of Internet users (Internet Live Stats, 2016). 

Nevertheless, India still shows a low 'Internet penetration rate' (ITU, 2015c).  
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With more than a billion subscribers, according to the latest available data from February 

2016 (Gov-IN, 2017), mobile telephony is experiencing an unprecedented growth in 

India. Given the fast-track advancements of the country’s mobile broadband 

infrastructure, most Indians are accessing the Internet through wireless (narrow and 

broadband) rather than wired technologies (TRAI, 2016c). However, only about 26 per 

cent of the Indian population had access to the Internet by the end of 2015 (ITU, 2015d). 

Ericsson (2016) and Statista (2016b) expect the number of Indian mobile broadband users 

to continue to grow significantly in the upcoming years, reaching more than 1.3 billion 

mobile cellular subscribers by 2021 (Ericsson, 2016, p.2), including 0.8 billion mobile 

broadband ones. Due to such predicted growth rates, India is considered to be the next 

big frontier in the digital world (Broadband Commission, 2016, p.19), providing India 

with unprecedented opportunities for socio-economic impact, yet also potential 

infrastructure access problems and bandwidth overloads. A careful management of the 

future digital expansion is therefore essential in facilitating India’s digital development 

efforts. Besides mobile broadband providing an unparalleled opportunity for India, the 

affordability of mobile broadband price plans to access the global Internet infrastructure, 

especially in more rural areas, remain under-researched and yet present a very important 

issue to nurture access growth. By focussing on penetration at a more disaggregate, state, 

level, it is possible to capture interesting differences among the Indian states. Tamil Nadu 

is one of the states with the highest discrepancies between urban and rural mobile 

broadband subscribers (TRAI, 2016e; TRAI, 2017, p.16). Moreover, this state’s districts 

show significant per capita income disparities (Sundar, 2015; Selvabaskar et al., 2016), 

with a large fraction of the population’s income remaining below the World Bank poverty 

line (TN-GOV-IN, 2015). Hence, Tamil Nadu faces a relevant digital gap, driven by 

urban-rural income and gender disparities (TN-GOV-IN, 2015). These affordability 

disparities could be resulting from the fact that Indian mobile broadband operators have 

different structural properties in their upstream Internet access market, where these 

properties are the emerging macro-features, based on the micro, bilateral connectivity 

decisions shaped by the economic relationships between the local Internet Service 

Providers and their global, often much larger, counterparts. This abducted insight 

provides a key focus of this dissertation (see section 2.5 below).  

Given these considerations, we argue that end-users’ mobile broadband affordability is a 

critical issue for developing countries, given the underlying International connectivity 

costs for mobile broadband operators to access the global Internet infrastructure, as 
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further discussed in the literature review in Chapter 2.  

Internet transit prices in the U.S. have been dropping consistently, as e.g. Norton (2010) 

points out. However, Internet end-users located in the Asia-Pacific region interestingly 

pay higher charges for International Internet connections than their global counterparts 

(Sultana, 2016). One reason for this is, that developing countries that aim to connect to 

the Internet backbone pay the full costs of international leased lines to the country, as 

Sultana (2016, p.26) points out at an ITU workshop in New Delhi. Such costs to access 

the upstream Internet market must then be passed on to the end-users, reducing 

affordability and thereby inhibiting mobile broadband adoptions.  

India’s recent low rankings in the Web Index of the World Wide Web Foundation (2014) 

or the Affordability Drivers Index (A4AI, 2016) might be outcomes from those high 

International Internet connectivity costs. Research that addresses structural upstream 

bottlenecks is still often neglected in the field of Internet Economics. This dissertation 

aims to utilise a combination of exploratory- and quantitative approaches to study the 

upstream Internet infrastructure, which might provide insights and methodological 

advancements into these issues. Ultimately, this work aims to help to prevent the 

widening of the present Indian, and in more detail, Tamil Nadu’s Digital Divide (Sundar, 

2015; WDR, 2016).  

Local mobile broadband operators interconnect with larger regional or International 

Internet Service Providers (ISPs) through paid contracts or unpaid peering relationships 

to access the upstream Internet market. This is an essential precondition for the mobile 

broadband operators to acquire global end-to-end connectivity and service provisioning. 

Larger Internet Service Providers then route the traffic, received from the local operators, 

through the global digital supply chain, making use of registered Autonomous Systems 

to manage interoperator connectivity. The collection of relationship data between Internet 

Service Providers, underlying this internetworking process, has always been expensive 

and arduous (Newman, Barabási and Watts, 2006; Schneider and Bauer, 2016). The main 

resources and insights, about these relationships, came from the pioneering measurements 

work of the Center for Applied Internet Data Analysis (CAIDA) and the, more 

commercially oriented, reports by Telegeography. However, recent computing 

advancements are now enabling researchers to collect primary Internet connectivity data 

using crowdsourced active Internet periphery measurements (Faggiani et al., 2013), as 

used in this dissertation.  
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The structural features of the Internet, emerging from these connectivity data, are 

amenable to be studied using Complex Network Analysis, which has been, until recently, 

also an under-researched field (Gorman and Malecki, 2000). Vázquez, Pastor-Satorras 

and Vespignani (2002), for example, study the structure of the Internet by analysing the 

connectivity of 6,374 Autonomous Systems using Complex Network Analysis. Similarly, 

Barnett and Park (2012) investigate the network structure of websites on the World Wide 

Web. More closely related to this dissertation, Ruiz and Barnett (2015) study Internet 

Service Provider Networks using secondary, commercial, data on Autonomous Systems, 

from Telegeography, to identify the major global Internet Service Providers.  

In the economic literature, Choi, Galeotti and Goyal (2014) study, in a game-theoretical 

setting, the key role played by Network metrics to model market power in communication 

networks. However, there is a significant lack of research analysing structural bottlenecks 

of the upstream Internet market using Complex Network Analysis, as well as its 

application to investigate developing country's mobile broadband operator upstream 

connectivity. D’Ignazio and Giovannetti (2006; 2009) study market concentration using 

CAIDA datasets, in the upstream layers of the Internet access markets, mainly focussing 

on the role of the Betweenness Centrality Network metric, to capture the degree of 

unavoidability that each Autonomous System has in this upstream access markets.  

The only work applying Complex Network Analysis to the analysis of the upstream 

Internet market structure from an Internet periphery perspective is, as far as we are aware, 

by Giovannetti and Sigloch (2015). Their work shows the significance of a key network 

metric, the Clustering Coefficient, in defining the degree of hierarchical organisation of 

this set of internetworking relationships. Given the socio-economic relevance and impact 

of affordable access to the Internet, this work identifies an urgent need to exploit these 

initial multi-disciplinary insights further, linking the Complex Network Analysis of 

upstream connectivity data with insights from both the fields of Economics and the 

Development Studies. To date, and to the best of our knowledge, no research has studied 

the structural and bottlenecks features in the upstream Internet access market in India (or 

the state of Tamil Nadu), using Network Analysis methods based on data collected 

through active Internet periphery measurements. Hence, we indicate that our case study 

addresses a number of relevant and urgent gaps in the literature. 

By considering this under-researched niche, we embark on an exploratory journey aiming 

to understand the complexity of structural connectivity bottlenecks in the upstream access 
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layers of the Internet in a developing country and their potential effects on end-users’ 

affordability. We do so by using crowdsourced traceroute-based active Internet periphery 

measurements, collected by the author in the southernmost Indian state of Tamil Nadu. 

By using and analysing these data, we aim to explore the reliance of Tamil Nadu’s mobile 

broadband operator’s connectivity on specific Internet Service Providers, and the ensuing 

bargaining power these ISPs exert on the mobile broadband operators. Ultimately, the 

purpose of these research efforts shall result in practical policy recommendations that 

help the government of Tamil Nadu, and possibly India and other developing countries. 

This shall bridge existing levels of Digital Divide and the associated lack of mobile 

Internet access resulting from present high levels of this district's income disparities. The 

efforts of this dissertation are motivated by the aim of improving the likelihood of a future 

scenario, where every world citizen, independently of their gender, income or origin, has 

equal, affordable and educated mobile broadband access to the most valuable resources 

on the Internet. This access is key for providing freedom to seize new opportunities for 

socio-economic growth, well-being and ultimately self-fulfilment. This scenario may 

appear utopian, when considering the recent developments in the United States, where 

the Federal Communication Commission (FCC) tilted the Open Internet Order (OIO) that 

gives Internet Service Providers more control over the access and content distribution on 

the Internet (Forbes, 2017). By the end of 2017, the FCC then approved measures to 

remove the net neutrality rules (The Verge, 2017). Given the ever-increasing power gap 

between the small and larger International Internet Service Providers, we advocate the 

need for an increased policymakers’ awareness in considering the relevance of structural 

bottlenecks and hierarchical ordering in the upstream Internet market and their 

implications on providers’ connectivity and end-users’ affordability. However, it is 

beyond the scope of this dissertation to investigate the vastness of the literature in the 

three fields considered, of Economics, Computer Sciences and Development Studies. Our 

work seeks to find meaningful associations to harness the creation of an emerging, yet 

crucial, field of research. Furthermore, and given the pragmatic nature of our case study, 

we do not aim to seek the truth or generalisability of findings, but we limit ourselves to 

the indication of these findings' practical implications. Our exploratory limitations are in 

line with this approach, suggesting that further research would provide additional 

explanatory power.   

After this introduction, Chapter 2 aims to provide a more in-depth understanding of the 

research problem. More precisely, it covers relevant and insightful work in the disciplines 
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of Development Studies, Internet Economics and Network Science. Our aim is to identify 

valuable gaps by combining these disciplines’ literature, which ultimately informs our 

contribution to knowledge. Hence, the results of Chapter 2 provide meaningful abductive 

inferences (stated as Working Hypotheses) based on observations and insights from the 

Literature Review. Next, Chapter 3 sets out the methodological assumptions that define 

the nature, scope and limitations of this dissertation. Moreover, this chapter will include 

a thorough description of the data collection as well as the chosen research methods, 

building a basis for applying the powerful concepts and routines of Complex and 

Statistical Network Analysis in the following chapters. Chapter 4 aims to provide a 

general understanding of the collected data, through the exploratory analysis of the 

structural features of the Tamil Nadu mobile broadband operator networks, using 

Complex Network and Graph Visualisation Analysis. Chapter 5, then, aims to test the 

Working Hypotheses inferred in Chapter 2 and to extend the initial descriptive results 

obtained in Chapter 4, by building a set of econometric models, to derive the relevant 

parameters' inferences. Hence, Chapter 5 performs a full Statistical Network Analysis of 

the upstream connectivity network of Tamil Nadu mobile broadband operators. This shall 

ultimately provide greater confidence to form pragmatic judgements about our Working 

Hypotheses abducted Chapter 2. Lastly, Chapter 6 summarises the main findings, placing 

our contributions to knowledge into the existing research context. This will allow us to 

conclude in Chapter 7 with the most valuable implications that can be derived for policy 

and practice, also in view of helping the Indian regulatory and telecommunication 

authorities when called to assess their possible actions to bridge the present digital divide. 
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2 LITERATURE REVIEW 

‘When goods are digital, they can be replicated with perfect quality at nearly 

zero cost, and they can be delivered almost instantaneously. Welcome to the 

economics of abundance.’ (Brynjolfsson, 2013). 

Instantaneous delivery of digital goods is a challenging endeavour for mobile broadband 

operators in developing and emerging countries. End-users simultaneously access the 

Internet and their connections traverse small and large Internet Service Providers to reach 

the desired connectivity destinations. The presence of too many end-users when there is 

too little infrastructure bandwidth is problematic for the proper functioning of the Internet 

at high quality while striving for a low cost. This is especially challenging in developing 

and low-income countries like India where the end-user access to the Internet is greatly 

affected by urban-rural income and gender disparities in mobile broadband access 

affordability (see e.g. Selvabaskar et al., 2016), education and social attitudes towards 

technology. In 2016, nearly 6 billion people do not have access to high-speed Internet, 

‘making them unable to fully participate in the digital economy’ (WDR, 2016, p.xiii). 

Fair and affordable access to the world’s digital goods via the Internet can greatly 

influence economic growth (GSMA, 2016), inclusion (Broadband Commission, 2016), 

equality and social impact (WDR, 2016). A factor that strongly influences the delivery of 

such digital goods through the Internet value chain is the formation and functioning of 

the upstream Internet market structure, representing economic relationships between 

Internet Service Providers. Interestingly, national and international Internet policies focus 

more on the demand side of the Internet access (affordability, safety and openness), while 

the supply-side and even more its infrastructural aspects are often neglected (WDR, 

2016).  

This Chapter reviews the relevant literature from three separate fields of research: 

Development Studies, Network Science and Internet Economics. Our aim is to explore 

the relevant overlaps emerging from these three fields, which shall lead to the abduction 

of valuable Working Hypotheses (see section 3.2). Hence, we organise this Chapter 

thematically, the different sections start with more high-level, or historical, concepts 

before gradually moving to more specific and applicable studies bearing greater relevance 
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for the assessment of our research problem.  

In the following sections, we are going to extract key insights, derived from 

multidisciplinary research disciplines, given their relevance to explore the upstream 

Internet access market features of Tamil Nadu’s mobile broadband providers. These 

insights ultimately lead to the abduction of the relevant Working Hypotheses in section 

2.5.  

2.1 Upstream Interconnections 

2.1.1 Nascent Stages of the Internet 
The Internet as a whole can be seen as a scientific and technological paradigm shift (Dosi 

1982), brought out through research and innovations emerged in the early stages of the 

computer age. Its beginnings can be traced back to research advancements at the United 

States Defense Advanced Research Projects Agency (DARPA). The research at DARPA 

led to the development of the Advanced Research Projects Agency Network 

(ARPANET), which represented a testing network that aimed to link universities and 

research institutes in the late 1960s (Cerf and Cain, 1983). At the end of 1969, ARPANET 

had four early linked member institutions, the UC Los Angeles, the Stanford Research 

Institute, the University of Utah and the UC Santa Barbara. The advancement of the 

ARPANET led to the creation of a number of other packet switching networks (see 

Glossary) such as the MFENet from the US Department of Energy, the SPAN from 

NASA Space Physicists or CSNET, a network for the academic Computer Science 

community. CSNET heralded the start of the Internet when the US National Science 

Foundation (NSF) granted the expansion of the CSNET to establish further links to 

Supercomputing Centres and other Research Networks at no additional costs for its 

current members. Due to this funding, the CSNET was renamed NSFNET. In 1992, the 

NSFNET created an Acceptable Use Policy (AUP) to enforce that the packet switching 

network was only used for research and education purposes in the sciences and 

engineering sectors (NSFNET, 1992). During the establishment of this AUP, the first 

Internet Service Providers (ISPs) such as PSINet or CERFnet introduced the first links to 

establish commercial traffic. The packet routing of these commercial connections would 

therefore pass through the NSFNET backbone, while adhering to their Acceptable Use 

Policies. Throughout the years it became more and more apparent that the NSFNET 

model ought to be replaced with a commercially operated packet switching network, 
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where users would need to purchase access. This vision was enforced by the TCP/IP 

network protocol inventor Vint Cerf (Cerf, 1990). Finally, the NSFNET backbone (see 

Glossary) transitioned onto a new architecture and was decommissioned in 1995. This 

created the necessary freedom to carry commercial traffic, a prerequisite for the 

privatisation and unprecedented growth of the Internet until today.  

2.1.2 Internet Service Provider Relationships 
The Internet can be defined as a dynamic and self-organised network of inter-connected 

networks. The ecosystem of the Internet is said to involve agents with a diverse set of 

functional roles and objectives. Hence, the Internet is composed of thousands of Internet 

Service Providers that are operating different parts of this Information and 

Communication Technology (ICT) infrastructure, providing services to access and use 

the Internet. The services of ISPs are typically used by content providers and end-users 

(including machines or ‘bots’, which are using the largest part of the Internet 

infrastructure). The agents composing the Internet ecosystem include: 

• Access Providers: Internet Service Providers selling Internet Access to 

individuals and / or business customers (e.g. mobile broadband operators such as 

Aircel or Vodafone).  

• Transit Providers: considered as geographically distributed large backbone 

network operators, which were historically, and are still presently, paid to transfer 

traffic over large distances. A transit provider might also be an access provider 

(e.g. Level 3 Communications or Cogent Communications).  

• Content Providers: Internet Service Providers that generate the content for end-

users on the Internet. Content Providers include providers of information, video, 

e-Commerce, social networking or search results, amongst others (e.g. Google, 

Facebook or Netflix).  

• Content Distribution Networks (CDN): these are Internet Service Providers that 

store customer content locally for a quicker fulfilment of download requests from 

nearby users (e.g. Akamai). Their customers are usually access providers. 

• Internet Exchange Points (IXP): IXPs operate facilities of (paid) inter-

connection, where other Internet Service Providers may be present and inter-

connect with other ISPs (e.g. the London Internet Exchange (LINX), or the 

Amsterdam Internet Exchange (AIX)). 
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Internet Service Providers engage in a set of formal and / or informal relationships with 

each other, providing access to value added end-user services, by collectively routing 

Internet traffic. Such relationships (and especially their routing policies, see section 2.3) 

determine constraints to the respective paths through which Internet traffic might flow 

and therefore have implications on the robustness and further engineering of the Internet.  

Insight 1: Given the coexistence of formal and informal relationships amongst Internet 

Service Providers, we expect their clear identification to be quite challenging. While 

routing policies are often available (see above), ISPs are likely to maintain confidentiality 

about their business interconnection practices. Hence, we argue that available (secondary) 

data still contains many unidentified Internet Service Provider relationships, leading to 

the present difficulties, for current research, in providing a satisfactory picture of the 

Internet infrastructure.  

The carriage of traffic on the Internet is usually organised through packet switching 

networks. This method relates to the transfer of data, which is split into smaller data 

packets for simultaneous transaction purposes. The carriage of these data packets through 

a network follows approximately symmetric transactions. This means that the senders and 

receivers of a given data packet are involved in the same amount of data transactions. 

Hence, these transactions may involve symmetrical payments, where both the sender and 

the receiver pay transaction costs to their Internet Service Providers. As described in 

detail below, an ISP may then pay their partners for the transit of the data packet in the 

upstream Internet, assuming they do not have a peering relationship with them 

(Woodcock, 2003). Following this organisation, the data packets are routed through 

vertically related Autonomous Systems, belonging to one or more Internet Service 

Provider(s) along the path to the final data packet destination. Internet routing 

mechanisms facilitate this exchange of data packets through computer networks using the 

so-called TCP/IP stack, which was jointly developed by Cerf and Kahn (1974) through 

DARPA funding, representing a cornerstone of the information-based Internet. In detail, 

the Internet Protocol establishes interconnections with the aim of delivering given data 

packets from sender to receiver, while both these agents obtain a unique Internet Protocol 

(IP) address. Such IP addresses are organised in address ranges (prefix) managed by 

Autonomous Systems. Hawkinson and Bates (1996, p.2) suitably define an Autonomous 

System as 
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‘… a connected group of one or more IP prefixes run by one or more network 

operators which have a single and clearly defined routing policy’. 

Each Autonomous System is therefore a physical collection of bare-metal (gateway) 

routers, represented by a unique IP address prefix (see Glossary). These IP address 

prefixes are under one common administrative control by the Autonomous System. 

However, multiple Internet Service Providers may share the ownership, and hence the 

administrative control, over an AS. Such policy-based routing techniques between IP 

address prefixes represent interconnections that are established between a pair of 

Autonomous Systems in packet switching networks, the ‘lifeline of telecommunication 

services’ (TRAI, 2016f). The International Telecommunications Union refers to peering 

or transit as relationships between Autonomous Systems (ITU, 2007, pp.7-9). Peering 

relates to an exchange of traffic between a defined set of Internet Protocol networks 

usually at no charge, except for paid peering (Norton, 2011). This exchange of traffic 

takes place mostly when Autonomous Systems share the same traffic volume 

characteristics. In any peering relationship, both sides agree to the peering conditions, 

which might include network coverage, operations, and maintenance of the network, as 

well as the volume of traffic that can be exchanged. While the process for engaging in 

peering relationships is often undisclosed, some Internet Service Providers share the 

peering policies for their Autonomous Systems more openly, see e.g. the peering policy 

of the Swiss National Research and Education Network (SWITCH, 2016). Some efforts 

are undertaken to collect the routing policies to the Internet through the Internet Routing 

Registry (IRR), a distributed routing information database formed in 1995 (IRR, 2016). 

The distribution and organisation of IP addresses is managed at continental level through 

the Réseaux IP Européens Network Coordination Center, the regional Internet registry 

for Europe, which also collects routing information using RCC, the Remote Route 

Collector (RIPE NCC, 2016a). The Asia Pacific Network Information Center (APNIC), 

the Regional Internet Registry of Asia, also engages in the collection of routing 

information (including Indian ones) through the above-mentioned Internet Routing 

Registry (APNIC, 2016). Nevertheless, when the ASes of two Internet Service Providers 

enter into a relationship, the type of contract arrangements depends largely on the balance 

of contributions that benefit both parties (ITU, 2007). If a peering arrangement is not 

possible, the Internet Service Provider parties might engage in transit arrangements, 

which allow them to reach all remaining parts in the Internet periphery. Here, larger 

Internet Service Providers sell access to their network to their customer AS networks of 
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other ISPs. Once a transit arrangement is set, the sender pays the full costs of 

interconnection. The charges for these interconnections are usually undisclosed and 

negotiated on commercial terms. As previously shown, transit arrangements with one of 

the large Tier-1 Internet Service Providers, or those that directly connect to the Internet 

backbone, can provide a smaller Internet Service Provider with access to the rest of the 

Internet, while also introducing costs leading to potentially high global connectivity 

prices (ITU, 2007, p.9; CAIDA, 2016a). By gaining such access to the rest of the Internet, 

a smaller Internet Service Provider would be reliant on those larger Internet Service 

Providers for the purpose of global internetworking to and from the Internet periphery, 

interconnecting end-users. The small number of large upstream Internet Service 

Providers, with a strong interconnection demand from downstream ISP,s forms the higher 

hierarchical structure of the Internet, the core, holding great negotiating power over 

interconnection practices and prices with the smaller downstream ones (D’Ignazio and 

Giovannetti, 2006, pp.2-13). Peering is common amongst members of the Internet core 

who also provide global connectivity through paid transit to the other ISPs, forming the 

lower layers (Tiers) of the Internet (Woodcock, 2003). Furthermore, the oligopolistic 

structure of the Internet core guarantees the largest Internet Service Providers with 

unidirectional revenue flows arising from transit payments from smaller Internet Service 

Providers residing in the Internet periphery. This asymmetric flow of resources reinforces 

the incentives to minimize transit costs for a growing number of Internet Service 

Providers and end-users in the Internet periphery and maximises their set of peering 

relations. 

A large body of literature in Computer Science focuses on the study of the relationships 

between Autonomous Systems to explain peering and transit relationships. The 

relationships amongst ASes are considered to have a significant impact on the flow of 

traffic through the Internet (Subramanian et al., 2001). The Autonomous System roles in 

these relationships are, according to Alaettinoglu (1996) and Huston (1999), either of 

provider-to-customer, customer-to-provider or peer-to-peer nature. This definition is also 

used in the work of Gao (2001, p.734), who further states that two Autonomous Systems, 

which are operated by one Internet Service Provider, may have sibling relationships, 

where each AS provides transit services for the other. This is especially relevant when 

considering that one Internet Service Provider might operate multiple Autonomous 

Systems. Moreover, Gao and Rexford (2000) show that a pair of ASes may peer indirectly 

through a transit Autonomous System. Gao, Griffin and Rexford (2001) expand on this, 
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suggesting that a pair of Autonomous Systems may also have backup relationships to 

provide connectivity in the event of failures or downtimes.  

Nevertheless, the structuring of the Internet allows larger Tier-1 providers to obtain 

central positions on the Internet, given their transit relationships that are crucial for 

interconnecting traffic, across geographical distances, with / for other Internet Service 

Providers. According to Economides (1995, p.678), in economics, structural bottlenecks 

in the interconnections occur when an economic agent has a monopoly, and market 

power, over a link (or relationship) with other economic agents, creating essential 

facilities within a network. Structural bottlenecks, hence, cause traffic flow congestions 

in the digital supply chain, which occur when an Autonomous System receives more data 

traffic than it can cope with. This definition provides a cornerstone for our work. When 

referring to ‘structural bottlenecks’, we speak of the economical, rather than the 

technological, definition. This view of Economides (1995) is also identified by 

Subramanian et al. (2001), stating that relationships between Autonomous Systems have 

a significant impact on the flow of traffic through the Internet, while hierarchy symbolises 

business relationships between Autonomous Systems. Subramanian et al. (2001) also 

state that customers should be at a lower hierarchical layer compared to their providers, 

a concept which is best captured by using methods of directed network graphs where edge 

directions indicate the types of relationships between two Autonomous Systems. To 

better capture the types of relationships between ASes, Luckie et al. (2013) propose the 

usage of the concept of an Autonomous System’s Customer Cone based on the PhD work 

of Giotsas (2014). The following Figure 2-1 visualises this concept of a Customer Cone. 
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Figure 2-1: Internet Service Provider (ISP) Customer Cones. 

Considering Figure 2-1 above, the customer cone of ‘ISP4’ would be ‘ISP1’, ‘ISP2’, 

whereas the customer for ‘ISP5’ would be ‘ISP3’. This is especially relevant since two 

Autonomous Systems might have a peer-to-peer relationship in one location of the 

Internet and a provider-to-customer, or customer-to-provider one at another location on 

the Internet. Nevertheless, and despite this complexity, the business relationships 

amongst pairs of ASes is a theme where too little economic research has been undertaken 

to date. However, we consider these relationships as hugely important when studying the 

formation and structure of the upstream Internet market of mobile broadband operators, 

since Internet connectivity is not established on the basis of the shortest paths to the final 

destination but on their economic value.  

The fact that an Internet Service Provider may inhabit one or a multitude of Autonomous 

Systems, whereas an AS may also be shared amongst a set of Internet Service Providers, 
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adds complexity to the interconnection relationships. This is further complicated by the 

fact that there is no central authority managing the total number of connecting 

Autonomous Systems. The organisation of these Autonomous Systems is only vaguely 

defined. Internet Service Providers that manage ASes usually also provide global 

connectivity to their customer networks, but this type of connectivity comes in a variety 

of sizes and structures (MIT, 2009). The shared definition amongst Computer Science 

practitioners classifies ISPs into three different Tiers, as Figure 2-2 below illustrates. 

Here, Tier-3 Internet Service Providers are believed to provide connectivity to a low 

number of geographically local end customers while being connected to upstream Tier-2 

ISPs. These Tier 2 Internet Service Providers cover the regional connectivity scope (state, 

or region wide), while linking to Tier-1 ISPs for international connections. Hence, Tier-

1 Internet Service Providers capture a global connectivity scope, being able to reach any 

Autonomous System on the Internet (MIT, 2009). Nevertheless, there are only a handful 

of these large International Tier-1 Internet Service Providers, stated e.g. in the CAIDA 

(2016a) AS-Rank. However, the specific literature finds no consensus about the amount 

of such large Tier-1 ISPs. Importantly, Tier-1 Internet Service Providers are not reliant 

on buying connectivity transit services from other ISPs but mostly rely on settlement-free 

peering relationships with other large Internet Service Providers, reciprocally exchanging 

traffic between each other. This provides them with bargaining power and global 

connectivity criticality on the Internet. Moreover, the transit services of large Tier-1 ISPs 

would usually cover priced services that allow smaller ISPs (from Tier-2 or Tier-3) to 

access the entire Internet through routing agreements. These routing agreements may not 

be transitive since Internet Services Providers are not obliged to carry traffic to other 

ISPs. Moreover, Tier-2 Internet Services Providers are usually peering with some other 

ISPs but are still reliant on purchasing Internet Protocol (IP) transit (see Glossary) from 

Tier-1, or other regional Tier-2 ISPs, depending on the final data packet destination. An 

ISP that purchases transit would then be a customer in a customer-to-provider 

relationship, as described in their routing policy above. Such a Tier-2 ISP would most 

likely try to save IP transit costs by establishing peering relationships with as many Tier-

2 or Tier-1 Internet Service Providers as possible. Lastly, Tier 3 ISPs do not usually sell 

any transit to other ISPs but are entirely reliant on purchasing transit from other Internet 

Service Providers in order to reach the entire Internet. The following Figure 2-2 provides 

an overview of possible interactions between ISPs and an Internet Exchange Point (IXP) 

located within the three Tiers.  
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Figure 2-2: Internet Protocol (IP) Tier networks. 

Insight 2: Based on the economic nature of Internet Service Provider relationships, we 

expect to observe a hierarchical network structure where a low number of globally acting 

Tier-1 Internet Service Providers provide global connectivity to a larger number of 

regional Tier-2 and local Tier-3 Internet Service Providers, except for when a given data 

traffic remains local. While this economic nature is largely agreed upon in the literature 

(e.g. Luckie et al., 2013), little research seems to focus on the implication of such 

hierarchical structuring, characterised by strong bargaining powers of a few Tier-1 

Internet Service Providers. Our work aims to provide insights into this direction.  
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2.2 Mobile Broadband and Digital Divide in India 

2.2.1 Indian Internet Infrastructure 
Similar to other countries, the rise of the Internet infrastructure in India started with the 

launch of their Educational Research Network (ERNET) as a joint effort of the Indian 

Department of Electronics and the United Nations Development Program, in 1986 

(ERNET, 2016). The network of ERNET interconnected eight institutions including the 

Indian Department of Electronics, the five Indian Institutes of Technology (IIT) at Delhi, 

Bombay, Kanpur, Kharagpur and Madras (Chennai), the National Centre for Software 

Technology in Bombay and the Indian Institute of Science in Bangalore. Later in 1995, 

India joined the commercial Internet when Videsh Sanchar Nigam Limited (VSNL) 

formally launched their Gateway Internet Access Service (GIAS) in Bombay, Delhi, 

Kolkata and Chennai with the following message:  

‘VSNL India’s Gateway to the world welcomes you to surf the cyberspace’ 

(VSNL, 1996, p.23).  

The access to the VSNL gateway came at a cost of INR 25,000 (approx. US$ 389.18 

(XE.com, 2016)) for 250 hours of TCP/IP accounts at a speed of 9.6 kbps (kilobits per 

second). In just six months, VSNL added 10,000 Internet users to the Gateway Internet 

Access Service, while access was limited to New Delhi, Mumbai, Kolkata and Chennai 

(Fennell et. al., 2016). As of July 2016, India is estimated to have reached 46.2 crore (462 

million) Internet users, representing a penetration level of roughly 34.80% of the Indian 

population, according to the Internet and Mobile Association of India (IAMAI) report 

stated in Internet World Stats (2016). The penetration rate mentioned by Internet World 

Stats (2016) corresponds to India having 25.80% of all Asian Internet users. However, 

the available statistics on the Indian Internet access and penetration rates vary wildly in 

the academic, business and governmental sources. As of January 2016, Statista (2016a) 

reports that India has a considerably lower number of 375 million Internet users, 

compared to the 462 million in the Internet World Stats (2016). For 2015, the 

International Telecommunications Union country profile for India marks that 26.00% of 

the individuals are using the Internet (ITU, 2015d). This corresponds to approximately 

340.86 million Internet users, when combined with the World Bank (2016a) Indian 

population statistics during the same year. The World Bank (2016a) itself states that India 

had 43.99 Internet users per 100 inhabitants in 2015, which would correspond to 



Chapter 2 

18  Sebastian Sigloch - April 2018 

staggering 576.81 million Internet users. Overall, the statistics on the number of Internet 

users shows large variations depending on the source. Nevertheless, these differences are 

not surprising considering that a larger number of the Indian population accesses the 

Internet through shared access or Cyber Cafés, representing a dominant share of 37.00% 

of Internet access back in 2010 (TRAI, 2010, p.24). Another method for accessing the 

Internet is through Kiosk operators in rural panyachats, providing wireless connections 

through accessing the (incumbent) telecom provider networks from county towns 

(Jhunjhunwala, Ramachandran and Bandyopadhyay, 2004). These examples show that 

Internet access solutions for rural India are especially creative, which makes it very 

challenging to trace the number of end-users accessing the Internet. One solution to this 

measurement issue is the recently introduced ‘Aadhar’ digital identifier by the Indian 

government. Since every mobile broadband operator is obliged to make use of this 

identifier, we expect Internet access statistics to become more transparent in the 

upcoming years. 

Globally, approximately two-thirds of the 3.2 billion people that were online by the end 

of 2015 were from developing countries as estimates of the International 

Telecommunications Union state (ITU, 2015a). However, 4 billion people (two-third of 

the world’s population) remained offline in 2015 (ITU, 2015a). Moreover, most of the 

offline population resides in developing countries such as India. However, International 

Organisations have not yet reached a full consensus on whether India should still be 

considered as a developing country: while the United Nations (2016) considers India as 

a ‘developing nation’ in their Standard Country and Area Codes for Statistical Use, the 

World Bank (2016b) raised India’s ranking to a ‘lower-middle income country’ in 2015. 

Considering India’s number of Internet users compared to their total population of 1.311 

billion in 2015 reveals that also a large portion of the Indian population remains offline 

(World Bank, 2016a). The Indian population that could access the Internet were mostly 

using wireless, rather than wireline, means of narrowband and broadband connections, 

where wireline corresponds to wired broadband technologies and wireless to cordless 

ones. The Telecom Regulatory Authority of India (TRAI, 2016c) statistics provides 

reliable data on the means of Internet connectivity usage since each subscription 

corresponds to a registration. TRAI (2016c) notes in their Performance Indicator report 

that India reached a total number of 345.60 million Internet subscribers in 2016, 

representing a different statistic to the number of Internet users. However, the key 

variation in these statistics seems to be based on the differences between ‘broadband 
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subscription’ and ‘broadband user’, since a multitude of users is frequently sharing a 

single subscription with their families and peers. The actual number of Indian Internet 

users remains a mystery until the ‘Aadhar’ identifiers system is well established. Hence, 

we will use the Internet usage data given by the Telecom Regulatory Authority of India 

as illustrated in Table 2-1 below. In detail, the total number of Indian Internet subscribers 

corresponds to 21.26 million wired Internet subscribers, 0.62 million Fixed wireless 

Internet subscribers (Wi-Fi, Wi-Max, Radio or VSAT connections) and staggering 345.60 

million mobile wireless Internet subscribers in September 2016 (TRAI, 2016c, p.28). 

Moreover, the number of total Internet subscribers is divided between 247.69 million 

urban subscribers and 119.79 million rural ones. On a per 100 inhabitant basis, every 

second urban-living Indian (61.98%) have a smartphone subscription but for rural areas, 

this figure declines, where circa one in ten (13.65%) people has a smartphone subscription 

(TRAI, 2016c, ii), representing 44.19 million rural Internet subscribers. 
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Indian Internet subscriber base per segments in September 2016 

Internet subscriber segments Number of Subscribers in 
millions (TRAI, 2016c) 

Total Internet subscribers 367.48 

Wireless Internet subscribers 346.22 

Mobile Wireless (Phone + Dongle) 345.60 

Fixed Wireless (Wi-Fi, Wi-Max, Radio & VSAT) 0.62 

Wired Internet subscribers 21.26 

Broadband subscribers 192.30 

Narrowband subscribers 175.18 

Urban Internet subscribers 247.69 

Rural Internet subscribers 119.79 

Urban Broadband  148.11 

Urban Narrowband 99.58 

Rural Broadband 44.19 

Rural Narrowband 75.60 

Table 2-1: Indian broadband subscriber base per segment, Source: TRAI (2016c). 

2.2.2 Mobile Broadband in Tamil Nadu 
Mobile broadband generally refers to wireless Internet access through portable devices 

such as smartphones or dongles (TRAI, 2016c) under a given speed restriction (see 

Glossary). Mobile broadband operators such as Aircel or Vodafone are access providers 

that offer mobile broadband services at price plans that usually vary regarding data usage 

allowances (e.g. 200MB), connectivity speeds (such as 2G, 3G, 4G) and added services 

(e.g. unlimited Facebook access). Some of these service variations such as Quality of 

Service (QoS) indicators or connectivity speeds remain mostly invisible to an end-user. 

ITU (2003, p.9) early defines mobile broadband Internet access through mobile 

broadband operators as:  

‘Internet connections that are significantly faster than today’s dial-up 

technologies, but it is not a specific speed or service.’ 
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This early definition deliberately excludes connection speeds or added services. 

However, Policy practitioners from a range of countries such as the United States of 

America, Brazil, and Bangladesh often include ‘to-be-delivered’ connection speeds in 

their mobile broadband policy definitions (TRAI, 2016a, pp.4-5). A practical 

disadvantage of these definitions (with connection speeds) is that policies ought to be 

constantly revised in order to stay up-to-date with the pace of technological 

advancements. This is also the case for the definition of the Department of 

Telecommunications at the Government of India who defines ‘Broadband’ (effective 

from January 2015) in TRAI (2016a, p.2) as:  

‘a data connection that is able to support interactive services including 

Internet access and has the capability of the minimum download speed of 512 

kbps to an individual subscriber from the point of presence (POP), of the 

service provider intending to provide Broadband service’ 

while demanding an increase of the broadband speed in the definition to 2 Mbps (TRAI, 

2016a, p.5). Broadband speeds are usually divided into upload and download speeds, 

while download speeds are roughly double the defined upload speeds (TRAI, 2016a). 

However, the broadband definition of the Department of Telecommunications at the 

Government of India seems considerably different to those adopted by researchers in the 

field of Information and Communication Technology for Development (ICT4D). In their 

‘Building Broadband’ report, Kim, Kelly and Raja (2010) of the Global Information and 

Communication Technologies Department at the World Bank argue against mobile 

broadband definitions that cover network connectivity and minimum transmission 

speeds. Moreover, they propose a mobile broadband definition as an ecosystem, which 

would involve the mobile broadband networks, the services being carried through the 

networks, the applications delivered, and the end-users served. Hence, Kim, Kelly and 

Raja (2010, pp.iv-22) consider the supply and demand sides of the Internet market as well 

as the access to these networks and their services as forming a unique ecosystem. This 

perspective seems particularly suitable for our work in this dissertation as it enhances 

more traditional views on mobile broadband.  

In 1994, the Indian Department of Telecommunications introduced the formal 

organisation of Telecom Service Areas through their National Telecom Policy (GOV-IN, 

2016b). As a result of this policy, India is divided into 19 Telecom Service Areas and 4 

Metro Service Areas. These Metro Service Areas represent the cities of Delhi, Mumbai, 
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Kolkata and Chennai. Each Telecom Service Area only allows for a maximum number 

of access providers. This means that any Indian mobile broadband operator needs to 

acquire fixed-term licenses for providing their services in any of these Telecom Service 

Areas. The Telecom Service Area with the highest number of broadband Internet 

subscribers (wireline and wireless in millions) was Maharashtra with 30.62, followed by 

Tamil Nadu (incl. Chennai) with 27.46 and Andhra Pradesh with 27.46. The highest 

number of urban broadband Internet subscribers (wireline and wireless in millions) in 

September 2016 was Delhi with 22.27, followed by Tamil Nadu with 22.21, and 

Maharashtra with 20.33 (TRAI, 2016c). The Telecom Service Area with the most rural 

broadband Internet subscribers is Uttar Pradesh with 12.32, followed by Maharashtra with 

10.30, and Andhra Pradesh with 9.68 (TRAI, 2016c). Surprisingly, Tamil Nadu is more 

far off with 6.97 rural Internet subscribers. India’s top three service areas with respect to 

broadband subscriptions are Tamil Nadu (including Chennai) with 19.32 million, 

followed by Maharashtra with 18.13 million and Andhra Pradesh with 16.90 million. 

Tamil Nadu Mobile Broadband Infrastructure 
To explore this in more detail, the Internet subscriber base (wireless and wireline in 

million) in the state of Tamil Nadu (including the urban area of Chennai) reached 29.18 

(19.32 broadband, 9.86 narrowband) by September 2016. Based on a survey of 45,435 

respondents from 40 countries in May 2015, Pew Research (2016) reports that only 

17.00% of Indians own a smartphone. Moreover, 27.00% of the age group 18-34 reported 

owning a smartphone, and only 9.00% of respondents aged over 35 years. Pew Research 

(2016) also finds a correlation between the number of smartphone users and education as 

well as income.  

The evidence and data discussed in the following paragraphs are obtained from the Indian 

Telecom Services Performance Indicator Report (July – September 2016) of TRAI 

(2016c). According to TRAI (2016c), the Telecom Service Area of Tamil Nadu currently 

covers four mobile broadband operators namely Aircel, Bharti Airtel, BSNL and 

Vodafone. Icompare (2016a; 2016b) states that the same mobile broadband operators 

provide their mobile broadband services also in the Chennai Metro Service Area. These 

Internet subscribers are comprised of 22.21 million urban subscribers and 6.97 rural 

subscribers in September 2016 (TRAI, 2016c, p.30), where 13.61 million represent urban 

broadband subscribers, compared to 3.67 million rural ones. The narrowband subscribers 

correspond to 8.59 million urban and 3.31 rural ones. This relates to 51.60% of the urban 
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population having access to the Internet and only 24.68% of the urban one (TRAI, 2016c, 

p.35).  

Table 2-2 below depicts the total Indian broadband (Wireline and Wireless) subscriber 

base for each of the mobile broadband operators with a Tamil Nadu presence, providing 

an idea of their total network size and connectivity differences.  

Indian total subscriber base (wireline and wireless) 2016 for Tamil Nadu mobile 
broadband operators 

Mobile Broadband 
Operator (with Tamil 
Nadu Presence),  

Subscriber Base QE June 
2016 (total India in 
millions) 

Subscriber Base QE 
September 2016 (total 
India in millions) 

Aircel 88.93 90.14 

Bharti Airtel 255.73 259.94 

BSNL  89.54 93.77 

Vodafone  199.38 200.72 

Key 
QE: End of the quarter 

Table 2-2: Indian total subscriber base (wireline and wireless) 2016 for Tamil Nadu 

mobile broadband operators, Source: TRAI (2016c). 

All of the four Tamil Nadu mobile broadband operators except BSNL provide services in 

all Indian states, covering GSM and CDMA services. BSNL has no broadband service 

operating presence in the metro service areas of Delhi and Mumbai. The wireless 

subscriber base in Table 2-3 below shows only the wireless broadband subscriptions, 

compared to the previous Table 2-2 above, which includes the wireline broadband 

subscriptions. The differences are marginal, showing the importance of mobile broadband 

subscriptions for each of the four operators. TRAI (2016c) notes that 94.05% of all Indian 

Internet subscriptions are mobile wireless ones (5.78 wired and 0.17 fixed wireless ones). 

This is also the case for Tamil Nadu. Fennell et al. (2016) find, based on a sample of 38 

survey respondents across rural districts of Tamil Nadu (Vellore, Madurai and 

Pudukkotai), that 68% of all respondents access the Internet through Mobile devices (17% 

not using, 10% Laptop, 5% Computer).  

 



Chapter 2 

24  Sebastian Sigloch - April 2018 

Indian total wireless subscriber base 2016 for  
Tamil Nadu mobile broadband operators 

Tamil Nadu 
Broadband 
Operator  

Wireless Subscriber Base QE 
June 2016 (total India in 
millions) 

Wireless Subscriber Base QE 
September 2016 (total India in 
millions) 

Aircel  88.93 90.14 

Bharti Airtel  255.73 259.94 

BSNL 89.54 93.77 

Vodafone  199.38 200.72 

Key 
QE: End of the quarter 

Table 2-3: Indian total wireless subscriber base 2016 for Tamil Nadu mobile broadband 

operators, Source: TRAI (2016c). 

Table 2-4 below provides an overview of the rural market share (wireless subscriber base, 

GSM and CDMA) for each of the broadband operators with Tamil Nadu presence. Given 

the TRAI (2016c) data, Bharti Airtel is the rural market leader but Vodafone accounts for 

more than half of their subscribers from Indian rural areas, showing some of the strategic 

differences amongst the mobile broadband operators.   
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Indian rural market share in 2016 for Tamil Nadu mobile broadband operators 

Tamil Nadu 
Broadband 
Operator 

Rural Market Share (wireless 
subscribers) in % end of 
September 2016 

Rural subscribers in % of the total 
mobile broadband subscribers 

Aircel  6.98 34.54 

Bharti Airtel  28.40 48.72 

BSNL 6.93 32.94 

Vodafone  23.86 53.01 

Key 

GSM: Global System for Mobile Communications 

Table 2-4: Indian rural market share in 2016 for Tamil Nadu mobile broadband 

operators, Source: TRAI (2016c). 

The total number of the GSM wireless subscriber base of the four mobile broadband 

operators is reported in Table 2-5 below. Here, Aircel shows the largest subscriber base, 

followed by Bharti Airtel, Vodafone and BSNL.  

Indian GSM wireless subscriber base in 2016 for Tamil Nadu mobile broadband 
operators 

Market 
No. 

Tamil Nadu Broadband 
Operator  

GSM wireless subscriber base 
(September 2016) 

1 Aircel 21,788,965 

2 Bharti Airtel 18,028,189 

3 Vodafone 15,874,774 

4 BSNL 8,802,836 

Table 2-5: Tamil Nadu market share 2016 for Tamil Nadu mobile broadband operators, 

Source: TRAI (2016c). 

TRAI (2016c) still lacks 3G subscription data, which would have been valuable here. 

Nevertheless, we expect the number of 3G subscriptions to be much lower, potentially 

due to affordability and access reasons. 



Chapter 2 

26  Sebastian Sigloch - April 2018 

Insight 3: Given the statistics above (e.g. TRAI, 2016c), Tamil Nadu (incl. Chennai) 

represents an Indian state with a high number of urban broadband subscribers, but a low 

number of rural ones. This makes Tamil Nadu very interesting for our case study as it 

allows us to examine the apparent mobile broadband affordability disparities between 

urban and more rural districts.  

Affordability of Mobile Broadband 
Generally, the World Economic Forum considers affordable connectivity as a key 

infrastructural element for a robust digital economy (WEF 2017, p.11). Interestingly, 

Internet end-users located in the Asia-Pacific region pay higher charges for International 

Internet connections than their global counterparts (Sultana, 2016). A key reason for this 

is, that developing countries that aim to connect to the core of the Internet (where global 

connectivity takes place) pay the full costs of international leased lines to the country, as 

Sultana (2016, p.26) pointed out at an ITU workshop in New Delhi. Such costs to access 

the upstream Internet market must then be passed on by mobile broadband operators to 

their end-users, hence raising the barriers to adoption of affordable mobile broadband. 

Hence, especially developing and emerging economies, where most of the world's offline 

population resides (ITU, 2016), face these affordability challenges.  

Up to date price plans for mobile broadband operators are generally not easy to obtain 

from a centralised source. We found no single source collection for up-to-date 

subscription information. One of the most comprehensive collections of Tamil Nadu price 

plans during our data collection period was GSMOutlook, an online resource. Here, 

Aircel showed 24 different price plans (GSMOutlook, 2015a), followed by Bharti Airtel 

with 15 (GSMOutlook, 2015b), BSNL with 13 (GSMOutlook, 2015c), and Vodafone 

with 11 (GSMOutlook, 2015d), see Appendices. Hence, compared to the other access 

providers, Aircel provided the largest choice to their Tamil Nadu existing and potential 

customers at the beginning of 2015 (see section 5.4.1).  

Initial observations might suggest that these operator price plans seem affordable; 

however, a comparison of this pricing to the state income level reveals problems in 

relation to their real affordability. In 2014, Tamil Nadu accounted to 5.4 per cent of the 

total rural workers in India, while the share of rural workers to total workers in Tamil 

Nadu was at 50.70% (TN-GOV-IN, 2014). According to IBEF (2016), the gross state 

domestic product (GSDP) of Tamil Nadu grew between 2004-2005 and 2015-2016 at a 

compound annual growth rate of 12.31%, reaching US$ 140.03 billion in 2015-2016. This 
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is equal to a per capita gross state domestic product (GSDP p.c.) of US$ 1,941.14 at 

current prices. The State of Economy Chapter I in TN-GOV-IN (2014) finds that the 

Tamil Nadu Net State Domestic Product (NSDP) per capita income increased from INR 

58,360 (approx. US$ 908.27 (XE, 2016)) in 2012-2013 to INR 62,361 (approx. US$ 

970.54(XE, 2016)) in 2013-2014. These incomes are far higher than the Indian average 

per capita incomes as the following Table 2-6 below illustrates (TN-GOV-IN, 2015, 

p.20). 

Per capita income at constant prices Tamil Nadu vs. All India 

Years 

Per Capita 
Income in 
INR Tamil 
Nadu at 
constant 
prices 

Growth rate in 
per cent 

Per Capita 
Income in INR 
All India at 
constant prices 

Growth rate in 
per cent 

2004-2005 30,062 - 24,143 - 

2005-2006 34,126 13.52 26,015 7.75 

2006-2007 39,166 14.77 28,067 7.80 

2007-2008 41,314 5.48 30,332 8.07 

2008-2009 43,193 4.55 31,754 4.69 

2009-2010 47,394 9.73 33,901 6.76 

2010-2011 53,507 12.90 36,342 7.20 

2011-2012 57,093 6.70 38,037 4.66 

2012-
2013* 58,360 2.22 39,168 2.97 

2013-
2014* 62,361 6.86 39,961 2.84 

Key 
* Based on quick (2012-2013) and advanced (2013-2014) estimates 

Table 2-6: Per capita income at constant prices Tamil Nadu vs All India, Source: TN-

GOV-IN (2015). 

Nevertheless, the state of Tamil Nadu shows considerable gaps in per capita income 

depending on its different districts. TN-GOV-IN (2014) states that the district of Ariyalur, 
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for example, shows the lowest per capita income of INR 16,559 (approx. US$ 257.71 

(XE, 2016)). Such differences easily cause disparity problems between the urban and 

rural districts in the state (TN-GOV-IN, 2014). This wide inter-district disparity in per 

capita income represents a major policy concern that needs to be addressed (TN-GOV-

IN, 2014, p.2). CNN Money (2016) states that affordability of Internet-connected devices 

can be challenging in India since roughly 75.00% of the population earns less than INR 

5,000 (approx. US$ 77.82 (XE, 2016)) per month. While the state of Tamil Nadu shows 

a higher per capita income than India in total, we argue that some districts of the state 

itself, as well as the city of Chennai, still face mobile broadband affordability issues. 

While mobile broadband pricing starts at INR 8 for 25MB per one day, monthly plans 

quickly charge the end-user more than INR 110 a month, or INR 1,320 per year, 

representing a large portion of the per capita income for the less-favoured population in 

rural districts in Tamil Nadu. Based on a recent survey of 340 respondents in multiple 

Tamil Nadu districts, Selvabaskar et al. (2016) find great monthly family income 

disparities (amongst an age group of 31-40 years) between the urban and rural districts of 

Tamil Nadu. In detail, their primary data finds a monthly family income of INR 20,001-

30,000 in urban and INR 10,001 – 20,000 in rural areas (Selvabaskar et al., 2016, p.4-5). 

Although, their survey selection of respondents might have been biased, given the high 

rural income compared to TN-GOV-IN (2014). Some researchers such as Gehring and 

Kishore (2008) note, based on measurements of India’s Gini coefficient, that income 

inequalities in India are fairly small, compared to other countries. Nevertheless, there 

seem to be great income inequalities amongst the urban and rural districts of Tamil Nadu, 

as Sundar (2015), based on data by the Indian Department of Economics and Statistics at 

the Government of Tamil Nadu, points out. This dataset represents one of the most 

comprehensive collections of per capita income data for Tamil Nadu. Despite dating back 

several years, the data were only published recently. Hence, we see a lack of up-to-date 

information but notice the great income disparities as also shown by the work of 

Selvabaskar et al. (2016). Sundar (2015) shows great annual per capita income disparities 

that may be associable to the different districts’ economic sectors (Agriculture, Industry 

and Services). The lowest per capita income for the years 2010-2011 was shown by the 

districts of Ariyalur (INR 16,559, approx. US$ 258 (XE, 2016)) and Perambalur (INR 

17,922, approx. US$ 280 (XE, 2016)), whereas the Tamil Nadu districts with the highest 

per capita income were Tiruppur (INR 72,479, approx. US$ 1,131 (XE, 2016)) and 

Thiruvallur (INR 70,778, approx. US$ 1,104 (XE, 2016)), (Sundar, 2015). This, again, 
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shows the large affordability disparities between Tamil Nadu’s urban and rural districts. 

Insight 4: The affordability of mobile broadband price plans, together with Quality of 

Service, seems to be very low in Tamil Nadu, potentially leading to unequal end-user 

access to the upstream Internet market. Since mobile broadband operator costs to access 

the global Internet infrastructure are likely to be passed on to end-users (Sultana, 2016), 

we infer that affordability of mobile broadband may be linked to the interconnection 

structure among the providers in the upstream Internet market (see Insight 2 above and 

our Working Hypotheses in section 2.5 below). Here, large International Internet Service 

Providers may have built positions of strong market power that influence the economic 

terms of connectivity for their smaller national, or regional, downstream customers. 

Quality of Service (QoS) 
According to an ITU (2013b) International Telecommunications Regional Group meeting 

in Africa, Quality of Service (QoS) measurements for broadband Internet are usually 

defined at a National level. Hence, we define Quality of Service according to the TRAI 

(2016e) definition of their Quality of Service (QoS) of Broadband Service Regulations 

2014 (Second Amendment). These regulations state that the Telecom Regulatory 

Authority of India regularly assesses the compliance status of the mobile broadband 

operators for each of India’s Telecom (or Metro) Service Areas, through benchmark 

parameters. Each of these operator’s provided parameters is assessed against a benchmark 

metric set by the Telecom Regulatory Authority of India (TRAI, 2016b). Table 2-7 below 

provides an overview of Tamil Nadu’s mobile broadband operators’ evaluations for 2015. 

Interestingly, the Telecom Regulatory Authority of India might audit the mobile 

broadband operators, while the operators provide the necessary metrics themselves 

(TRAI, 2014). This creates a potential incentive for misrepresenting Quality of Service 

data, introducing an element of scepticism about the reliability of self-reported data.  
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Tamil Nadu operators Quality of Service (QoS) benchmark 

Benchmark Parameter Technology Aircel Airtel BSNL Vodafone 

Service Provisioning, 
within 4hrs with 95% 
success rate 

All (2G and 
3G) 99.41 92 100 99.69 

Successful data 
transmission download 
attempt, > 80% 

2G (GSM) 100 100 98.57 100 

3G 100 100 99.11 100 

Successful data 
transmission upload 
attempt, > 75% 

2G (GSM) 100 100 95.10 100 

3G 100 100 98.82 100 

Minimum download speed 
(Kbps), to be measured for 
each plan  

2G Plan 1 150.37 178.38 52.66 120.90 

3G Plan 1 2249.39 1357.03 1377.71 2069.41 

Average Throughput for 
Packet data (Kbps), > 75% 
of the subscribed speed 

2G Plan 1 198.77 212.98 106.11 164.01 

3G Plan 1 3925.33 2769.43 2244.28 6657.33 

Latency, Data <250ms 
2G (GSM) 77.53 228 1021.62 132 

3G 40.89 175 115.50 32 

PDP Context Activation 
Success Rate, > 95% 

2G (GSM) 98.05 99.95 99.68 99.89 

3G 98.05 100 99.83 99.61 

Drop rate, <= 5% 
2G (GSM) 0.98 0.68 0.41 3.66 

3G 0.82 0.18 0.28 0.49 

Key 

hrs: Hours 
kbps: Kilobit per second 

ms: Milliseconds 
PDP: Packet Data Protocol 

Table 2-7: Tamil Nadu mobile broadband operator Quality of Service benchmark, 

Source: TRAI (2016b). 

2.2.3 The Next Big Frontier 
India reached staggering 1.127 billion wireless subscribers (1.112 billion GSM 
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subscribers) at the time of completing this dissertation (TRAI, 2017). Anticipating the 

growth of the Indian Mobile Broadband Sector, Ericsson (2016) predicts that India will 

face 1.370 billion mobile subscriptions by the year 2021. Moreover, they anticipate 810.0 

million smartphones with mobile broadband subscriptions spread across the Indian 

population, resulting in a seventeen-fold growth of smartphone traffic until 2021. In 

contrast to Ericsson (2016), Statista (2016b) predicts a lower number of 317.1 million 

Indian smartphone users by the end of 2019. Nevertheless, both of the anticipated growth 

rates align with a statement by the Telecom Regulatory Authority of India. Here, TRAI 

(2016a) notes that most of the Indian Internet users consume data such as video content 

mostly via smartphones, while India’s strong mobile broadband usage is highlighted in 

their underdeveloped wireline infrastructures. Considering the impact of India’s billion 

mobile subscribers utilising mobile broadband services, it becomes clear that India’s 

digital leap is just about to start. The International Telecommunications Union together 

with UNESCO argue in their State of Broadband Report that India is the ‘Next Big 

Frontier’ of the digital world (Broadband Commission, 2016, p.19). To reach this 

‘Frontier’, the Ministry of Electronics & Information Technology at the Government of 

India launched the ‘Digital India’ programme described by GOV-IN (2016a), which is 

centred on three visions, where 

(i) The Digital infrastructure is a core utility to every citizen, 

(ii) The Governance and Services are available on demand and  

(iii) Citizens are digitally empowered. 

Ericsson responded to the ‘Digital India’ programme through an Economic Times (2014) 

article stating that mobile broadband is the only platform that can deliver the ‘Digital 

India’ vision, whereas:  

‘The broadband infrastructure in the country needs to be expanded to offer 

superior coverage, quality and capacity’. 

Moreover, the expansion of the broadband infrastructure includes the provisioning of new 

spectrum (Economic Times, 2014). Ericsson also states that:  
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‘India must think long term in terms of laying out its National broadband 

policy so that supply-side constraints are managed in such a manner that 600 

Million broadband subscribers can be serviced by the Year 2020.’ 

The coverage, quality and capacity of the mobile broadband infrastructure refer to the 

growing number of mobile broadband subscriptions as well as end-user’s content usage 

patterns. We consider that the management of supply-side constraints should partially 

relate to affordable access for Internet Service Providers to the upstream Internet market, 

providing mobile broadband operators with the chance to offer more affordable services 

to their customers, required for driving the Internet’s long-term socio-economic impact. 

The recent World Development Report states that 6 billion people do not have access to 

high-speed Internet, as delivering universal digital access follows investments in 

infrastructure and competition reforms to telecommunication markets (WDR, 2017). 

2.2.4 Socio-Economic Impact of Mobile Broadband 
Given its rapid development, mobile broadband and the Internet are becoming integral 

parts of our economies and their structural changes (OECD, 2008). The Broadband 

Commission for Sustainable Development states that mobile broadband is key for many 

development projects and considered an essential part for the delivery of the 17 

Sustainable Development Goals of the United Nations Development Program 

(Broadband Commission, 2016) a position shared by The Internet Society (2016). The 

broad coverage of basic mobile broadband, especially in low-income countries, allows 

for driving mobile-based services in wildly varying areas such as e-Money and m-

Banking, e-Governance, Agriculture, distance Education and m-Health. Therefore, 

mobile broadband is a strong driver for improving well-being, economic growth (GSMA, 

2016, pp.14-30; Broadband Commission, 2016), inclusion (Broadband Commission, 

2016), equality and social impact (WDR, 2016). Moreover, mobile broadband helps to 

lift millions of people out of poverty, having contributed US$ 3.1 trillion to the global 

Gross Domestic Product in 2015 alone (Broadband Commission, 2016). One reason for 

this great success is that the access prices have fallen significantly, according to the ITU 

Information Society Report 2015. This results in mobile broadband subscriptions being 

cheaper than fixed broadband ones (ITU, 2015c). Moreover, the same report states that 

prepaid mobile broadband offers are still the most affordable options for end-users, 

especially in the remote and rural areas. Recently, India ranked 131st place in the 

International Telecommunications Union’s International Development Index (IDI) 2015. 
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This report regularly assesses ICT access, ICT usage and ICT skills since 2009. 

Interestingly, India’s ranking (131st) is down six places, compared to five years earlier 

(ITU, 2015b). Unfortunately, the report provides no reasoning for that downgrade. 

However, it indicates that other countries developed quicker than India. Nevertheless, this 

report provides a valuable indication on India’s development given their objectives to 

measure the level and evolution of ICT developments over time, while also highlighting 

progress in ICT development, the digital divide and further development potential. A 

major limitation of the ITU International Development Index (IDI) is its lack of metrics 

for mobile broadband affordability, or infrastructural readiness (see ITU-D, 2017). While 

being indirectly reflected (e.g. in the number of active mobile-broadband subscriptions 

per 100 inhabitants), we believe that it would be important that such metrics should be 

added to the ICT access Index. Moreover, we argue that the ICT usage and the ICT access, 

as pre-requisite of ICT usage, do not capture the same features from an ICT development 

perspective. Another relevant report was recently commissioned Facebook’s internet.org 

unit. This represents an Internet inclusiveness report ranking India as the first country for 

having appropriate policies to ensure future connectivity in place (EIU, 2017). India 

achieves this mainly due to their July 2016 established ‘Aadhar‘ digital identifier 

programme and to the recent INR 100 billion ($1.5 billion) investment to connect some 

250,000 panyachats (village councils) by the end of 2018. Nevertheless, in the report, 

India only ranked 36th out of 75, due to their lower rankings in the other categories. India 

reaches its worst place for the Availability section (Rank 46), which examines the quality 

and breadth of available infrastructure required for access and Internet usage. Here, the 

usage (place 55) and quality (place 49) are ranked particularly low. Moreover, India also 

greatly lags behind in the Affordability category (Rank 26), which examines the access 

cost relative to income and competition in the Internet market. In detail, India ranks a 

good 22nd place in the competition section but a very low 51st rank in the price section 

(EIU, 2017), a key metric in this dissertation. This rank supports an argument by the 

International Telecommunications Union, which suggests that a 500MB mobile 

broadband price plan represents a large portion of the average income (ITU, 2015c) of 

those Indians who fall under the World Bank’s poverty income measurement of 

US$3.10/day. This also reflects the urban–rural disparities between the Tamil Nadu 

districts, as described above. 

Moreover, the 2015 Measuring the Information Society Report (ITU, 2015c) display the 

Indian mobile-cellular sub-basket (monthly cost of prepaid low-user including voice and 
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SMS services) for 2014, which shows that mobile broadband absorbs 2.14% of Gross 

National Income per capita, placing India at the 89th position in the world rankings for 

this criterion ITU (2015c, p.102). In the fixed broadband sub-basket, comparing all 

available price data of fixed broadband subscriptions, India ranks 108th with a 5.28 % of 

Gross National Income per capita necessary to afford the basket, while prices are 14 times 

less affordable in developing countries compared to developed ones. For the mobile 

broadband (post-paid at 500MB) sub-basket, India ranks 97th with 2.51% of Gross 

National Income per capita (ITU, 2015c). Hence, affordable and equal access to mobile 

broadband remains a key challenge, as the Broadband Commission (2014, p.3) states. 

Moreover, India’s income inequalities result in a decline in the country’s Affordability 

Drivers Index (ADI) from rank 30 in 2014/2015 to rank 31 in the 2015/2016 (A4AI, 2016) 

and rank 35 in 2017 (A4AI, 2017, p.10). While the methodology of this report captures 

infrastructural aspects, e.g. the extend of ICT infrastructure deployments and policies (see 

A4AI, 2017), it still lacks other infrastructural metrics such as those reflecting upstream 

Internet market structures, a crucial aspect of the supply-side of infrastructural access. 

Nevertheless, the downward trend of India’s ranking in the ADI is also apparent in The 

Web Index of the World Wide Web Foundation (2014). Here, India reaches a low 58th 

rank for Access and Affordability (Rank 48 for the cost of mobile broadband per capita 

income) in 2014 and 2017, while also stating that India has no effective law and 

regulations for Net Neutrality in place. Furthermore, they state that India shows evidence 

of discriminating practices in practical violation of Net Neutrality criteria (World Wide 

Web Foundation, 2017). However, the latest Global Information Technology Report’s 

Network Readiness Index (NRI) by the World Economic Forum conflicts with the other 

indications (WEF, 2017a). Here, India reaches rank 8 out of 139 in terms of affordability 

(WEF, 2017, p.110; 2017b). This rank has to be considered with great caution since it 

does not include mobile broadband in the affordability section. As already shown by 

Ericsson (2016), improving affordability is expected to lift the Indian mobile broadband 

penetration rate to 68% by the end of 2020, which represents a staggering increase of 330 

million new mobile broadband subscribers (GSMA, 2016). These users are most likely 

upgrading from their existing non-broadband cellular subscriptions. Nevertheless, Onno 

Ruhl, the World Bank Country Director India states that: 

‘However, to reap the full benefits will require affordable and wider access 

to the internet and skills that enable all workers to leverage the digital 

economy.’ (The World Bank, 2016c). 
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Moreover, affordable subscriptions would help to increase India’s rank in the ICT 

Development Index (IDI), especially after the country’s recent drop by 3 places compared 

to 2015 (Rank 138 in 2016). More affordable price plans would also directly affect the 

ICT Development Access and Use sub-indexes of the International Development Index 

(ITU-IDI, 2017). The Access sub-index captures the ICT readiness of a country and 

therefore includes five infrastructure indicators (fixed telephone subscriptions, mobile-

cellular subscriptions, international Internet bandwidth per Internet user, households with 

a computer and households with an Internet access). The Use sub-index captures the 

intensity of ICT, covered by three indicators (individuals using the Internet, fixed 

broadband subscriptions and mobile broadband subscriptions). India could furthermore 

increase their position in some of the metrics of the Network Readiness Index (91st rank 

out of 139 nations) by the WEF (2017a). Moreover, affordable price plans for end-users 

could increase access to the mobile Internet for the poorest strata of the population, 

helping to drive the Sustainable Development Goals (SDG) of the United Nations (2017).  

Unsurprisingly, studies on mobile broadband are of particular relevance, according to the 

World Bank Digital Dividends Background Paper. Minges (2016) states that mobile 

broadband is especially important given its rapid diffusion in developing countries. 

Estimating a panel data model for a sample of developed countries covering the period 

2005-2009, Thompson and Garbacz (2011) show that a 10% increase in the 3G 

penetration rate raises the annual GDP growth rate by 0.15%. The doubling of mobile 

data consumption across the 14 countries studied is considered to have raised GDP by 

0.5% (Thompson and Garbacz, 2011). Hence, mobile broadband penetration and its usage 

are found to boost economic growth. To exploit these opportunities for economic growth 

through mobile broadband, the Government of India is currently embarking on the 

implementation of ‘Digital India’ (Broadband Commission, 2016), a rural programme to 

connect 2.5 million panchayats, or village councils, as indicated above. Moreover, the 

mobile broadband operators are greatly investing in strengthening their 3G and 4G 

network coverage.  

Besides the economic impact on GDP, the strengthening and diffusion of the mobile 

technologies have additional social impacts. Unfortunately, the measurement of social 

impacts of Information and Communication Technologies tends to attract less attention 

than that of the economic ones (OECD, 2008). The International Telecommunications 

Union considers broadband as a tool for poverty reduction and consumer welfare (ITU, 
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2014, pp.2-35). Moreover, they argue that mobile broadband is the primary platform for 

emerging markets. In a classification among constrained, emerging, transitional and 

advanced stages of development, India has been ranked as being in the emerging 

category. This represents a stage where mobile broadband is considered to be a strong 

enabler for positive social impact (Katz, Koutroumpis and Callorda, 2013). Interestingly, 

these authors also state that broadband has been found to increase monthly income, which 

should usually be the reverse, for a sample in Ecuador (Katz, Koutroumpis and Callorda, 

2013, p.34), the overall effect seems greater for men than for the woman, therefore 

widening the gender gap. This issue is also considered by the United Nations (UN, 2014) 

and Fennell and Arnot (2007), who ascribe it to the gender differences in education, lack 

of income, and social attitudes (towards technology). According to Katz, Koutroumpis 

and Callorda (2013), this gap arguably disappears when the broadband users were 

previously Internet users, compared to those who use the Internet the first time through 

mobile broadband. However, the affordability issue related to gender disparities in 

income remains. In an Australian survey, Siddhartha De (2007) reveals that Information 

and Communication Technologies (ICT) impact many facets of people’s everyday life. 

These are mostly related to the accessing of, and interaction with, information as well as 

communicative relationships with family and community members. The OECD (2008) 

also supports this evidence, stating that mobile broadband brings social benefits such as 

social connection amongst consumers, connections to businesses and governments. 

According to Van Dijk (2006), the term ‘digital divide’ causes more confusion than 

clarification but refers to, amongst other effects, the uneven development of the Internet 

throughout the world. Selvabaskar et al. (2016) refer to the ‘digital divide’ as an obstacle 

to use ICT and propose a separation to tele-density, mobile and Internet divide as 

introduced by Parvathamma (2003). Furthermore, they note that the unequal development 

arises due to rising population, inadequate funds, affordability issues and policy 

implementations thereof (Selvabaskar et al., 2016, p.2). Moreover, the Mosaic Group 

(1998) developed the Internet Diffusion Framework as used by researchers such as 

Castells (2001) or Rogers (2001). This Framework serves as a methodology for analysing 

the state of a country’s Internet diffusion. Guillén and Suárez (2005) find that the number 

of Internet users is a widely used indicator of the level of a country’s development. 

Considering that the number of Internet users is often not reliable, as shown before, its 

utilisation as a development index seems rather surprising to us. A number of researchers 

such as Bagchi (2005) and Deichmann et al. (2007) find that the numbers of computers 
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per 100 people are correlated with GDP per capita, a metric that seems more pragmatic. 

On the other hand, Shea, Ariguzo and White (2006) argue that often even in the presence 

of access, only a small number of the global population benefits from using the Internet. 

Paul (2002) states that the gaps as well as the development in Information and 

Communication Technologies are not static but that the digital divide refers to an unequal 

and disproportionate pace of development in access to digital infrastructures and services 

(Paul, 2002, p.13). In a study on the diffusion of the Internet in India, using the Global 

Diffusion of the Internet (GDI) framework, Wolcott et al. (2001, p.17-33; 2001) state the 

importance of connectivity and organisational infrastructure, which shows a lack of a 

user-centric approach towards collecting reliable information on connectivity 

infrastructure measurements. Wolcott (2005) relies on the number of Indian Internet 

Service Provider license holders and their points of presence, amongst other indicators, 

to study the Indian policy landscape. However, we argue that the sheer presence of an 

Internet Service Provider in a region does not necessarily imply their connectivity quality 

or the underlying market pricing for both the Internet Service Providers and the 

affordability of Internet subscriptions for end-users. Selvabaskar et al. (2016) point out 

that the diffusion of mobile technologies is not uniform across Tamil Nadu. Other 

researchers consider additional factors for the ‘digital divide’ such as public and private 

initiatives towards Information Technology education, science and technology 

investments, the cost and regulations of Internet Service Provider services (Bennett and 

Norris, 2001), or the Internet and broadband (Kagami, Tsuji and Giovannetti, 2004). The 

latest World Bank World Development Report (WDR, 2016, p.4) defines the ‘digital 

divide’ more appropriately as making the Internet more accessible, affordable, open and 

safe. Hence, closing the ‘digital divide’ would result in spreading benefits and reducing 

risks of the so-called ‘digital dividends’. The benefits include reaching new services, 

increased efficiency for accessing affordable activities and services, and innovation due 

to lowering transaction costs. Making the Internet more accessible, open and safe for 

Indians must be a vital priority to close the ‘digital divide’, while strengthening 

regulations that ensure competition among businesses and accountability of governmental 

oversight (WDR, 2016). The risks of the ‘digital dividends refer to governments and 

corporations controlling citizens, inequality due to labour markets and a harmful 

concentration of economic sectors. The ‘digital divide’ on the openness of the Internet 

often refers to ‘Net Neutrality’, which the WDR (2016) itself considers as a confounding 

issue. ‘Net Neutrality’ refers to a fair treatment of all data that is travelling through the 
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networks of Internet Service Providers, without discriminating in favour of particular 

websites or services, according to the Electronic Frontier Foundation (2016). Therefore, 

a network is considered neutral when Internet Service Providers manage all types of data 

packets equally. The EFF states that ISPs should not become gatekeepers for special 

deals, which would inhibit competition, innovation and freedom of expression (Electronic 

Frontier Foundation, 2016). However, the discussion ranges around the management and 

prioritisation of scarce bandwidth resources, mainly driven by content providers. 

According to Choi, Galeotti and Goyal (2014, p.3), policymakers aim to quantify network 

market power within the ‘Net Neutrality’ debate. While standard metrics fall short, they 

argue that sophisticated metrics based on the structure of the Internet are currently in need 

of development (Choi, Galeotti and Goyal, 2014). This agrees with the WDR (2016), 

which states that ‘Net Neutrality’ might refer to discussing resources or free speech. 

Moreover, the report refers to freedom of expression and access to information and 

therefore human rights issues. Facebook’s Internet.org ‘Free Basics’, ‘Wikipedia Zero’ 

and Free access to Facebook and WhatsApp by Aircel, free access to Google by Bharti 

Airtel, and free access to Twitter by Reliance provide examples of recent violations of 

the ‘Net Neutrality’ principles in the mobile broadband markets in India. Such examples 

forced the Telecom Regulatory Authority of India to set preliminary ‘Net Neutrality’ rules 

in their Prohibition of Discriminatory Tariffs for Data Services Regulations in February 

2016 (TRAI, 2016e). Prior to that, as of August 2015, the Indian government had released 

no policy statements on ‘Net Neutrality’ (The Editorial Board, 2015). Nevertheless, an 

open and free Internet is considered as a key factor for innovation and inclusion in digital 

economies, where users should have equal and affordable access to the Internet, its 

content and services. However, traffic management on the Internet is legitimate and 

should not reduce the fundamental rights and freedoms of end-users (WDR, 2016). 

Moreover, the United Nation argues that the balance between a free traffic routing choice 

of Internet Service Providers and the accessibility and freedom of end-users should be 

properly balanced to continuously incentivise improvements in networks. The recent 

developments from the Federal Communication Commission (FCC) in the United States 

tilted the Open Internet Order (OIO) rectifying Internet Service Providers with the power 

to control access and content distribution (Forbes, 2017). More recently, the FCC, under 

the direction of US president Donald Trump, repealed the Net Neutrality law in the United 

States. This gives large access providers more power and control without regulatory 

oversight, while risking worsening affordability of the Internet access.  
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Finally, to explore the access of end-users to affordable price plans and the power of 

Internet Service Providers on the upstream Internet market, we embark, in the next 

section, in the review of these issues from a Network Science perspective. We consider 

this approach as particularly relevant since it provides the power to capture key 

underlying economic relationships among the different interacting providers on the 

Internet.  

2.3 Internet Market Structuring  
The use of Network Science provides additional measurements of valuable relationships 

among interacting economic providers (Schneider and Bauer, 2016, p. 73), particularly 

when embedded in real-world systems (Albert and Barabási, 2002). The fields where 

Network Science methods have been applied are extremely diverse, including the analysis 

of movie actor networks (Watts and Strogatz, 1998), Computer Networks (Wasserman 

and Galaskiewicz, 1994), Social Networks (Wasserman and Faust, 1994; Scott, 

Carrington and Weihua, 2011), and Bioengineering (Schuster et al., 2002), amongst many 

others.  

The interactions amongst economic providers to transfer digital goods and services 

through data and communication flows over the Internet can also be studied using 

Network Science. Early approaches such as Alvarez-Hamelin et al. (2008) applied 

Network Science for studying upstream Internet connectivity but they do not focus on the 

economic side of this network infrastructure. The collection of transaction data among 

economic agents on the Internet was previously considered as expensive and arduous 

(Newman, Barabási and Watts, 2006; Schneider and Bauer, 2016). However, this is true 

only when considering traditional and non-creative solutions to this problem, as 

collecting and analysing such data, as it is done in this dissertation, is becoming 

increasingly easier through data collection via active and passive Internet measurements. 

While Schneider and Bauer, (2016) refer to the rising affordability of storage and 

computing power, we see new data collection methods, such as crowdsourcing, as a key 

benefit. However, the emerging research area at the interface between Network Science 

and Internet Economics is still in an early stage of development (Schneider and Bauer, 

2016). This shows the lack of valuable interdisciplinary research where we aim to engage 

in. Traditionally, the literature on the economics of networks focuses on the functioning, 

formation and structuring of networks (Vega-Redondo, 2003; Jackson, 2008; Goyal, 
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2009), mainly from physics, mathematics or economics standpoints. The following 

sections will explore the collection of Internet connectivity data before looking at various 

areas that study the relevant network formation and structuring approaches required to 

explore this dissertation’s research questions. 

2.3.1 Collection of Network Data 
Due to its heterogeneity and increasing complexity, the Internet as a whole system is 

considered immeasurable (Murray and Claffy, 2001). Nevertheless, measuring some key 

structural properties of the Internet may be done by following active or passive 

measurement approaches. The most common methods to date are passive measurements 

usually built into routers or switches that track Internet traffic as it is routed through them. 

On the contrary, active measurements inject test data packets into the networks to ‘sniff 

out’ responding information from devices such as routers (SLAC, 2001).  

Most of both active and passive measurement techniques utilise crowdsourcing 

approaches. Single measurements for specific Internet problems such as structural 

bottlenecks analysis rather than complete Internet mapping efforts is considered 

especially valuable (Murray and Claffy, 2001). However, we feel that their value lies not 

only in the identification but also in the rerouting of traffic around the discovered  

bottlenecks.  

The Internet community and applications saw great examples of crowdsourcing efforts 

such as the collection of crisis information by Ushahidi (2016) or the 2001 launch of 

Wikipedia (Wikimedia Foundation, 2016). The term ‘crowdsourcing’ was first coined by 

Jeff Howe in a Wired (2006) magazine article and refers to a  

‘participative online activity in which an …institution, …or company 

proposes to a group of individuals of varying knowledge, heterogeneity, and 

number, …the voluntary undertaking of a task.’  

Comparing 175 research articles, Estellés-Arolas and Gonzáles-Ladrón-de-Guevara 

(2012, p.11) generate a conclusive crowdsourcing definition, which mostly agrees with 

the one proposed by Jeff Howe. Numerous efforts aim to measure and characterize the 

structural properties of the Internet in using crowdsourcing measurements. A crucial work 

can be found in the research of the DIMES project, studying the Internet structure with 

the help of a voluntary community (DIMES, 2012). The software agents that DIMES 
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distribute, which autonomously run software programs installed on privately owned 

machines, measure connection traceroutes and their ping (see Glossary) times for 

diagnosis purposes. Traceroutes refer to a network diagnostics and measurement tool, 

using the Paris Traceroute (2016) version, to display and measure the paths of data 

packets across Internet Protocol networks. The last activities of DIMES (2012) seem to 

date back to the year 2012. Nevertheless, through their crowdsourcing of agents, DIMES 

demonstrate the ability to discover hidden parts of the Internet structure, as Shavitt and 

Weinsberg (2011) valuably show. Nevertheless, the DIMES project did not link their data 

findings to end-user affordability of access from the Internet periphery. Another research 

project that is making use of crowdsourced agents is the 2007 launched CAIDA 

Archipelago, or CAIDA-Ark (2016), building upon their previously 2008 retired 

Macroscopic Topology Project ‘Skitter’ (see CAIDA, 2016c)) and the DIMES project, 

where networks can participate by hosting so-called ‘Ark monitors’ to collaborate 

specifically towards active network measurements of the Internet structure. While the 

CAIDA-Ark (2016) aims to focus on Internet Topology Discovery and Congestion, key 

economics questions and incentives are also left out. The still-active RIPE NCC Atlas 

project follows a slightly different crowdsourcing approach than DIMES since it provides 

a testing infrastructure for community members, mostly network providers like in the 

CAIDA Archipelago, being interested in performing Internet connectivity and 

reachability measurements through a hardware probe (RIPE NCC, 2016). Therefore, the 

RIPE NCC Atlas follows the CAIDA-Ark (2016) best practices. Just like DIMES, the 

Atlas also makes use of traceroutes, amongst other technologies. The RIPE NCC Atlas 

represents a successful crowdsourcing project with a large number of 9,334 connected 

probing devices as of October 2016 (RIPE NCC, 2016b). Here, again, RIPE focusses on 

real-time Internet usage measurements rather than on the key economic dimensions of 

the Internet structure.  

When it comes to Internet crowdsourcing projects that involve end-users rather than 

network providers, there are currently four notable projects in the research environment, 

Netalyzr, Netradar, OpenSignal and Portolan. First, the UC Berkeley originating ICSI 

Netalyzr is primarily a debugging tool for testing network connection issues on Google 

Android devices (ICSI, 2016). The Berkeley International Computer Science Institute 

(ICSI) uses the Netalyzr tool for network diagnostics, measuring the health of the 

Internet’s edges, rather than the structural properties of it. Both Netradar (2016) and 

OpenSignal (2016) are providing Android and iOS applications for measuring the signal 
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coverage and performance of mobile broadband operator networks that can be embedded 

in Google Maps. While Netradar (2016) comes from Aalto University’s School of 

Engineering, OpenSignal (2016) is provided by a London-based venture-backed 

company. Lastly, the Portolan represents a joint research effort of the Istituto di 

Informatica e Telematica of the Italian National Research Council CNR (IIT) and the 

University of Pisa (Portolan, 2015). Portolan is an active Internet measurement project 

and tool that aims to discover the structure of the Internet as well as signal coverage maps 

similar to Netradar and OpenSignal. The Portolan Project also relies on crowdsourcing 

of data collection through an application for Android end-user devices. The Portolan 

Project is a unique approach to measure the Internet structure from an active Internet 

periphery perspective, as indicated by Faggiani et al. (2012; 2013; 2014a; 2014b) and 

Gregori et al. (2013). This allows the study of mobile broadband operators’ Autonomous 

Systems from a unique end-user perspective, as shown in a pilot case study on a 

Bhutanese incumbent mobile broadband operator by Giovannetti and Sigloch (2015). 

Some researchers from the computer science field (e.g. Vázequz, Pastor-Satorras and 

Vespignani, (2002)) argue that traceroutes analysis at Internet Protocol level from one 

location in the network are unreliable when constructing complete Internet mapping 

projects, due to cross-links and other technical issues. Knight et al. (2011) mention that 

traceroutes are commonly used but also point towards the deficiencies of such 

measurements, mainly supporting the work of Willinger, Alderson and Doyle (2009). 

However, Knight et al. (2011) also point towards the possibility of analysing networks at 

Autonomous System granularity. Other researchers such as Feldman and Shavitt (2008), 

Siganos et al. (2003), Alvarez-Hamelin et al. (2008) and Giovannetti and Sigloch (2015) 

transform IP addresses to the AS granularity in order to reveal a greater understanding of 

the upstream Internet market structure. Such transformations, however, are highly 

dependent on the reliability of secondary fusion datasets, a major downturn. In her early 

work, Gao (2001) considers the Autonomous System level as especially valuable for 

analysing commercial contract relationships amongst Internet Service Providers. 

Dimitropoulos et al. (2013) agree on this and consider the AS granularity especially 

valuable when merged with a secondary CAIDA (2016b) AS-relationship dataset. 

Unfortunately, we believe that those commercial contract relationships are not entirely 

discoverable in practice, given more informal business relationships between 

Autonomous Systems.  
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Insight 5: Due to its applicability to measure the upstream Internet market structure, from 

an Internet periphery perspective, the Portolan (2015) application seems more appropriate 

compared to the alternatives Netalyzr, Netradar and OpenSignal that focus on different 

infrastructural specificities. By additionally using, filtering and integrating secondary 

data, obtained from Maxmind (2015), we are able to analyse IP and AS granularities to 

understand the upstream Internet market structure in our case studies. In doing so, we 

follow best practices of the Computer Science researchers such as Alvarez-Hamelin et al. 

(2008). However, in additional to these researchers’ contributions, we also add a critically 

relevant end-user perspective, focussing on the conditions of accessing the Internet 

infrastructure from these networks’ periphery.  

2.3.2 Network Formation 

Network Models 
Network Science generally studies the forces that shape developments of networks and 

their structuring. Networks are composed of vertices (representing network’s agents) and 

their edges, linking them, representing relationships between these network vertices. 

According to Schneider and Bauer (2016), empirical networks on the Internet are 

considered to be neither regular nor random. Regular networks refer to network graphs 

where each vertex has the same number of neighbouring vertices and every vertex has 

the same number of In- and Out-Degrees, representing incoming and outgoing 

relationships between vertices. Networks may be studied based on their edges being of a 

directed or undirected nature. Directed networks refer to relationships amongst edges that 

are directed (e.g. vertex A links to vertex B but vertex B not to vertex A). Undirected 

networks merely acknowledge if there is a linkage (and possibly its number of 

occurrences) between vertices, or not. The literature covers a number of network 

formation models that follow specific structural properties. Random Networks employ 

probability distributions (Bollobás, 2001) and were first defined by Erdős and Rényi 

(1959) and independently by Gilbert (1959). Watts and Strogatz (1998) and Watts (1999) 

propose a Small-World Network model where the vertices in so-called sub-graphs 

(subsections of network graphs) are densely interconnected amongst each other. Watts 

and Strogatz (1998) are credited for this model but base their work on earlier models of 

Simon (1962). Albert and Barabási (2002) introduce the preferential attachment (‘rich-

get-richer’) effect of vertices and edges in so-called Scale-Free Network models. These 

preferential attachment models allow researchers to simulate the emergence of growth in 
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networks, which are discussed as network effects and network externalities in economics, 

where Katz and Shapiro (1985) and Economides (1995) amongst others, discuss the 

implications of network externalities on the telecommunications market structures. 

Power-law Degree Distributions 
By looking at the aggregate properties of the resulting distributions, the preferential 

attachment modality of establishing connections between vertices in a network leads to 

the presence of power-law degree distributions (Albert and Barabási, 2002; Barabási 

Labs, 2013). These power-law degree distributions are typical indicators of the presence 

of a hierarchical network structuring since a few vertices have many edges directly 

linking them with other vertices, whereas many vertices only have a few edges. This 

feature is typically captured in distributions of edges, following power-law degree 

distributions (Pareto, 1906) which have also proven useful in modelling income 

distributions (Reed, 2001). Faloutsos, Faloutsos and Faloutsos (1999) find that the 

Internet structure follows power-law degree distributions at the Autonomous System 

level. The work of Dall’Asta et al. (2005) supports this finding. When comparing different 

tools for generating network structures, Medina, Matta and Byers (2000) argue that 

power-laws can only be found in dynamical growth models such as the one of Barabási 

and Albert (1999), which adds new vertices and edges to a network. Hence, Medina, 

Matta and Byers (2000) provide sufficient proof that outgoing connectivity of a vertex 

(see section 3.4.2 below) and rank exponents (preferential attachment of edges and vertex 

growth (Barabási and Albert, 1999)), provide ‘useful means’ for testing the structure of 

the Internet. Before that, Crovella and Bestavros (1996) find that the Internet at the World 

Wide Web level also displays power-law degree distributions. This is supported by the 

findings of Albert, Jeong and Barabási (1999), Huberman and Adamic (1999) as well as 

Kumar et al. (1999). Caldarelli, Marchetti and Pietronero (2000) then find, on the basis 

of Internet mapping efforts by Cheswick, Burch and Branigan (2000), that an analysis at 

Router-Level (Internet Protocol granularity) from an end-user perspective, also shows 

power-law degree distributions as well as Scale-Free Network properties. While Pastor-

Satorras, Vázquez and Vespignani (2001) and subsequently Vega-Redondo (2003) 

support these findings, Knight et al. (2011) argue that power-law degree distributions 

seem convincing but lack accurate data, since the data used was not published in line with 

the usual articles. Lakhina et al. (2003) also argue against Faloutsos, Faloutsos and 

Faloutsos (1999), saying that power-law functions are an illusion of biased data. More 

recently, Willinger and Roughan (2013) also challenge the power-law analysis saying 
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that traceroutes detections at Internet Protocol (IP) Level are representing network 

specifics (opaque layer 2 cloud networks) and add that traceroutes are unable to reveal 

the actual vertex degree of any routers. They conclude that the absence or presence of 

power-law degree distributions cannot be justified with reasonable statistical confidence. 

While taking a pragmatic stance on this issue, we recognise the importance to choose the 

most appropriate granularity of analysis. 

Insight 6: Based on the research findings stated in the above literature, we expect our 

case study networks to display power-law degree distributions for primary collected 

active Internet periphery measurements. Given the economic nature of the upstream 

Internet market, these power-law degree distributions are signalling the presence of a 

Tier-Model of Internet Service Provider relationships (see e.g. Luckie et al., 2013), and 

can be used to explore the presence of hierarchical structuring in the upstream Internet 

access market.  

Levels, or Granularities of Analysis 
Research in the Computer Sciences does not seem to be reaching a consensus on the most 

appropriate level of granularity for the analysis of Internet networks. Faloutsos, Faloutsos 

and Faloutsos (1999) mention two possible levels of analysis, namely the Router level 

(Internet Protocol) and the Inter-Domain Level (Autonomous Systems). Vega-Redondo 

(2003) agrees on these two levels of analysis. Others such as Huffaker, Fomenkov and 

Claffy (2016) from CAIDA define six possible granularities of analysis, namely the Fiber, 

IP address, Router, Points-of-Presence, Autonomous System and Internet Service 

Provider. Just like Faloutsos, Faloutsos and Faloutsos (1999), Willinger and Roughan 

(2013) mentioned the Router level but elaborated further on the Switch granularity (IP 

Links between hubs and switches), the Physical level (including all Layer 1 devices), the 

Point-of-Presence Level, the Application Layer such as HTTP and HTML and finally the 

Autonomous System Level. When analysing the economics of Internet routes, Kagami, 

Tsuji and Giovannetti (2004) differentiate between three layers of analysis: the end-user 

level, the Internet Service Provider level and the major Internet backbone providers. 

These layers can be divided into the traditional supply and demand sides in economics. 

This represents a valuable departure from the more technical approaches of Computer 

Science. Given all these levels of granularities, a thorough structural analysis becomes 

impossible, since one might study links and flows between physical objects as well as 

information (Willinger and Roughan, 2013). By analysing the difficulties of simulating 
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the Internet, Floyd and Paxson (2001) also reveal the great heterogeneity for studying the 

individual links of network traffic or the information flow through protocols on top and 

argue that the structure of the Internet is difficult to characterise due to its ever-changing 

dynamics. Nevertheless, the study of the Internet structure at different granularities, 

especially the Router and Autonomous System granularities, is considered to be of equal 

and fruitful importance (Faloutsos, Faloutsos and Faloutsos, 1999). Moreover, the results 

may represent a Complex Network architecture composed of many vertices and few 

relationships amongst the vertices (Vega-Redondo, 2003). Gorman and Malecki (2000) 

argue, that a combination of Network Analysis for studying the Internet structure is a 

surprisingly under-researched field. However, one has to choose the most appropriate 

granularity of analysis, given the research problem at hand.  

Insight 7: Discussing the different granularity assures us that our exploration should be 

most valuable using the Internet Protocol and Autonomous System granularities, 

following best practices of the early Computer Science literature such as Faloutsos, 

Faloutsos and Faloutsos, (1999). Moreover, we believe that the Autonomous System 

granularity allows us to shed light on economic relationships amongst Internet Service 

Providers.  

Detailed research that relates to our case study is very limited and mainly attributes to the 

following research papers. In using four different datasets, Barnett and Park (2012) 

investigate the structure of the World Wide Web (WWW) using Network Analysis. Their 

findings indicate that the Internet consists of a series of Small-World Networks, which 

only seems applicable for WWW networks. However, fully interconnected sub-graphs at 

IP or Autonomous System granularity appear counter-intuitive, given the connectivity 

role played by Tier-1 Internet Service Providers as described in section 2.1.2 above. More 

recently, and most related to this dissertation, is the work of UC Davis researchers Ruiz 

and Barnett (2015), who study the International Internet Service Provider (ISP) 

ownership network at company and national levels. Their approach relies on secondary 

Telegeography Autonomous Systems data for 113 companies and captures the number of 

Internet Service Provider relationships, their vertex degrees as well as the Eigenvector 

and Betweenness Centralities. The findings of Ruiz and Barnett (2015) show that Level 

3 Communications, Century Link, Telia Sonera, AT&T and Cogent Communications are 

the most central companies in their limited dataset. This finding was to be expected, given 

the role of the Tier-1 Internet Service Providers that their study finds as well as the 
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CAIDA (2016a) AS-Rank data. However, their study fails to employ additional relevant 

network metrics and therefore lacks an in-depth analysis of structural network 

phenomena. Moreover, Ruiz and Barnett (2015)’s work is based on secondary data rather 

than primary collected active Internet periphery measurements, representing an end-user 

access to the upstream Internet market. Also, closely related to this work is the pilot case 

experiment by Giovannetti and Sigloch (2015) who study the incumbent Bhutanese 

Mobile Broadband operator network at IP and AS granularity using active Internet 

periphery measurements. Their analysis of primary active Internet periphery 

measurements using the Clustering Coefficient metric reveals the structural properties of 

the upstream Internet market, while also indicating previously hidden upstream 

Autonomous System relationships. While this pilot work opens up an entirely new field 

of research, they also lack to link it to end-user affordability. 

Insight 8: Giovannetti and Sigloch (2015) find previously hidden Autonomous System 

relationships that were not visible in the CAIDA (2016b) dataset. These hidden 

relationships were identified using the traceroute analysis at IP and AS granularity for a 

Bhutanese mobile broadband operator. We infer that an extension of the employed 

analytical approaches should also reveal hidden AS-relationships for the mobile 

broadband operators in this case study (see below).  

2.3.3 Network Structuring 
Once appropriate granularities of analysis are identified, Network Science provides useful 

metrics to study relevant structural network properties to unravel economically 

interesting connections amongst Internet Service Providers. Such metrics focus on 

capturing network features such as densities, centralities and clustering to explain 

network formation and structuring. Ever since the introduction of Social Network 

Analysis, researchers applied a multitude of centrality metrics for studying the 

importance of specific network agents and relating them to structural positioning 

(Wasserman and Faust, 1994). The Clustering Coefficient in a directed graph provides a 

ratio between existing edges, amongst all other vertices being connected to the same 

vertex, over the number of possible interconnections (Boccaletti et al., 2016). This metric 

is useful to explore the bargaining power of central agents as Vázquez, Pastor-Satorras 

and Vespignani (2002) point out from a more technical perspective. Moreover, this metric 

is used by Giovannetti and Sigloch (2015) to study the upstream Internet market structure 

for a Bhutanese incumbent mobile broadband provider. Sociological research such as 
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Cook et al. (1983) consider structural network centrality as one of the most relevant 

properties to study. Early work by Freeman (1979) identifies metrics to study 

communication activity between network vertices, namely Degree Centrality, 

Betweenness Centrality and Closeness Centrality. Freeman (1977; 1978) assumes that the 

Betweenness Centrality of a vertex is suitable to measure the resource control of a vertex 

over other network vertices. Hence, vertices with a high Betweenness Centrality should 

govern, according to Freeman (1978), a strong influence on the transfer of goods in a 

given network. Nevertheless, the Betweenness Centrality encapsulates the assumption 

that the transfer of goods follows the shortest paths in a network (shortest distance 

between vertices), while we refer to the transfer of digital goods as a commodity service 

in the digital supply chain. This does not necessarily apply for connectivity on the global 

Internet infrastructure. Moreover, Cook et al. (1983) note that vertices with a high 

Betweenness Centrality should exert a strong control on the network. Bonacich (1987) 

from the UC Los Angeles states that more central vertices have greater power on the 

connectivity to other vertices, determined by the number of central vertices it is connected 

to, and therefore a strong network influence. Stephenson and Zelen (1989) additionally 

note that more central vertices also receive more information. Contrary to the Social 

Science researchers, Network Science researchers from Physics and Mathematics 

including Mintz and Schwartz (1985), Monge and Contractor (2003), and Knoke and 

Yang (2008) argue that a vertex’ power does not equal to its centrality in a network. 

Additionally, Stephenson and Zelen (1989) also argue against the Betweenness Centrality 

of Freeman (1977) and suggest that communications between people does not necessarily 

follow shortest paths. Again, we expand here and assume that internetworking 

connectivity on the Internet also does not necessarily follow shortest paths, given the 

underlying business relationships between Internet Service Providers. Freeman, Borgatti 

and White (1991) incorporate this feedback by proposing the Flow Betweenness 

Centrality, a measurement that takes the weights of relationships into consideration. Due 

to the Betweenness Centrality’s issue of requiring long calculation times, Brandes (2001) 

finds a more efficient calculation algorithm, which is used in the work of D’Ignazio and 

Giovannetti (2006). Again, given the issue of shortest paths, Noh and Rieger (2004) find 

that the Betweenness Centrality is only appropriate when the global connectivity of each 

vertex is known and propose the Random-Walk Centrality, a metric for which only local 

vertex connectivity is known. Nevertheless, none of these Betweenness-based metrics 

necessarily represents real-world networks. Newman (2005) incorporates the idea of the 
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Random Walk Centrality and the Betweenness Centrality into the Random Walk 

Betweenness Centrality, while providing some examples of scientist networks and sexual 

contacts. However, no variation of the Betweenness Centrality sufficiently solved its 

shortcomings to date, except for adding great complexity. More simple vertex metrics are 

Freeman (1979)’s Degree- and Closeness Centrality. Here, the Degree Centrality simply 

measures a vertex importance given its number of connections, as Newman (2006) also 

points out. However, the Degree Centrality does not take the direction of an edge into 

consideration and poses restrictions on directed graphs. This means, that the applicability 

to study connectivity flows on the upstream Internet market is fairly limited. Moreover, 

this results in the separation of the metric to In-Degree Centrality for incoming 

connections and Out-Degree Centrality for outgoing ones. The third metric of Freeman 

(1979), Closeness Centrality, simply defines the theoretical distance of a vertex from all 

other network vertices. From another perspective, Bonacich (1972) proposes the 

Eigenvector Centrality as an alternative metric. The Eigenvector Centrality assigns 

relative scores to vertices, under the assumptions that vertex connections to high-scoring 

vertices in the network contribute more to its score than equal connections to low-scoring 

vertices, and as such, it measures the overall influence of a vertex in a network (Bonacich, 

1987).  

Therefore, the Eigenvector Centrality is not only suitable for graphs with strictly binary 

vertex relationships, such as Degree Centrality, Closeness Centrality or Betweenness 

Centrality, but also to those with less trivial relationships (Bonacich, 2007). Hence, the 

Eigenvector Centrality is particularly suitable for networks that employ vertices with high 

degree positions connected to many low degree vertices, and vice versa. The metric could, 

therefore, capture power-law degree distribution structures as well as situations with less 

connected network peripheries. Moreover, this metric could be particularly useful when 

considering the real-world nature of recurring business relationships. Ruiz and Barnett 

(2015) use, amongst other metrics, the Eigenvector Centrality to identify ‘central’ 

companies using commercial Telegeography data. Another important, but less widely 

adopted centrality metric, is given by the Katz Centrality, which measures a vertex 

influence given its total number of walks between a pair of vertices. According to 

Newman (2010), the Katz Centrality is better suited to analysing so-called directed 

acyclic graphs than the Eigenvector Centrality, where connections between vertices can 

only take one direction, from the periphery to the network core. These situations seem to 

be apparent in citation networks or the World Wide Web but do not fit to traceroutes, 
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where destinations may be situated closer to the Internet edge (Newman, 2010), while 

still passing by the core of the Internet, where necessary.  

Insight 9: Linking the theoretical understanding of traceroute data to the above centrality 

metrics discussion indicates that the greatest value for an economic analysis should be 

found in using the Clustering Coefficient (see Vázquez, Pastor-Satorras and Vespignani, 

2002 and Giovannetti and Sigloch, 2015) and the Eigenvector Centrality. Especially the 

latter metric has been highly neglected and was not used before to capture hierarchical 

structuring of upstream Internet markets. Only the work of Ruiz and Barnett (2015) uses 

this metric albeit in a different setting. All other (centrality) metrics seem to suffer from 

shortcomings such as being limited to only certain network types or assuming 

prespecified features of connection amongst vertices, e.g. following shortest paths or 

specific walks in a given network.  

The literature that studies criticality of network agents using Network Analysis, including 

the metrics discussed above, reveals some additional insights. By studying strategic 

interaction games over networks, Bramoullé, Kranton and D’Amours (2014) solve Nash 

equilibria showing that all equilibrium solutions are characterised by a players’ 

Bonachich’ Eigenvector Centrality. Ballester, Calvó-Armengol, and Zenou (2006) find 

that network centrality relates to games with linear externalities of the network structure 

when studying investment levels. Other economists such as Galeotti and Goyal (2010) 

study access of information through network influencers establishing the law of the few, 

where a majority of individuals get information from the few influencing ones. Golub and 

Jackson (2010) explain the structure of diffusion of information on the Internet using a 

network of 10,000 nodes by Liben-Nowell and Kleinberg (2008). Elliot and Golub (2013) 

study the problem of key network agents’ outcomes in public goods cooperation using 

Eigenvector Centrality measures. Others, such as Fershtman and Gandal (2011), focus on 

the vertex centrality in relation to the diffusion of knowledge spillovers. Banerjee, 

Chandrasekhar, Duflo, and Jackson (2013) utilise centrality metrics for assessing the 

diffusion of information as a success element for microfinance loan programmes in 43 

Indian villages. In terms of network structuring, Bramoullé, Kranton and D’Amours 

(2014) introduce the use of the lowest eigenvalue, a graph spectral analysis metric that is 

seldom used in Network analytical settings. Moreover, they relate this metric to the bi-

partitioning of a network graph, meaning that economic agents are divided into two 

distinct sets of relationships where an agent’s actions possibly rebound between the 
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different relationship sets in the network graph. More closely related to the study of 

Internet market structures, D’Ignazio and Giovannetti (2006; 2009) study Internet Service 

Provider market concentration in the upstream Internet layers, using secondary peering 

data from Internet Exchange Points (IXP) while linking them with CAIDA’s Customer 

Cone data. Based on the efficient Betweenness Centrality algorithm of Brandes (2001) 

and early structural parameter calculations of Shimbel (1953), D’Ignazio and Giovannetti 

(2006; 2009) show that the Betweenness Centrality of an Internet Service Provider can 

be used to calculate the traditional Lerner Index, an index capturing an organisation’s 

degree of market power. The work of D’Ignazio and Giovannetti (2006; 2009) not only 

influenced the Computer Scientists Luckie et al. (2013) at CAIDA but also informed 

further economic studies of networks. Here, Choi, Galeotti and Goyal (2014) use 

D’Ignazio and Giovannetti (2006; 2009)’s Betweenness Centrality based market power 

to provide evidence for game-theoretical equilibrium pricing and division of agent 

surplus, and hence the functioning of intermediated networks. The findings of Choi, 

Galeotti and Goyal (2014) also show that an agent’s criticality is relevant in defining its 

underlying market power while affecting distribution, pricing and the efficiency of 

economic activities in networked markets.  

Closely related to our work are the studies of Pastor-Satorras, Vázquez and Vespignani 

(2001) and Vázquez, Pastor-Satorras and Vespignani (2002, p.5-11). From a structural 

metrics perspective, by analysing 6,374 Autonomous System connectivity maps for the 

years between 1997 and 1999, they argue that the (hierarchical) structure of the Internet 

can be studied by estimating the empirical relationship between the Clustering Coefficient 

and connectivity. Their findings show that when the Clustering Coefficient scales as a 

negative power-law function of the connectivity, then the underlying network is 

characterised by a hierarchical organisation. While these indications are often neglected 

in economic research, other research fields tend to explore these relationships. Rubinov 

and Sporns (2010) provide a metric toolkit for exploring neurological brain connectivity 

through Complex Network Analysis and point towards the connectivity importance of the 

Clustering Coefficient. D’Ignazio and Giovannetti (2014) and Giovannetti and Sigloch 

(2015) study the empirical relationship between the Clustering Coefficient and Degree 

connectivity. D’Ignazio and Giovannetti (2014) focus their work on global supply chain 

networks that are interconnected to local ones through Internet Exchange Points (IXPs). 

Giovannetti and Sigloch (2015) also argue, on the basis of significant negative regression 

coefficients, that the Clustering Coefficient differs in their relationship with In- and Out-
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Degree connectivity within their given network but neglected to further explore the 

structural importance of certain Autonomous Systems.  

Insight 10: Given the structuring of Autonomous Systems on the Internet, we logically 

infer that the emergence of a hierarchical upstream network structuring, resulting from 

the relation between the Clustering Coefficient and Degree connectivity (as introduced 

by Vázquez, Pastor-Satorras and Vespignani, 2002) could also be apparent for the 

networks of the Tamil Nadu mobile broadband operators. Giovannetti and Sigloch (2015) 

showed this for B-Mobile, the Bhutanese incumbent mobile broadband  operator. Such a 

hierarchical upstream Internet market structure (following power-law degree 

distribution) indicates that a few large Autonomous Systems provide key connectivity to 

the many smaller ones, displaying the presence of significant market powers. We abduct, 

that the features of Tamil Nadu mobile broadband price plans, as described when 

introducing Insight 4 above, should be affected by some of the hierarchical structuring 

features, derived from the above-discussed metrics, characterising the upstream Internet 

market. This could be due to the pervasive presence of Autonomous Systems from larger 

Tier-1 and Tier-2 Internet Service Providers. As these ISPs are likely to establish more 

peering relationships among themselves and transit ones with their customers, the 

resulting market power will be reflected in higher price-costs margins and, consequently 

by lower affordability (see section 2.5).  

Nevertheless, Giovannetti and Sigloch (2015) provide the only work that studies 

upstream Internet market structure while relating it to Degree connectivity and its 

resulting effects on Internet market positions in a developing country. To the best of our 

knowledge, no other researcher in the field of Internet Economics has merged Network 

Analysis and Development Studies to explore the hierarchical organisation of the 

upstream Internet market structure (at different analytical granularities) using active 

Internet periphery measurements. This reveals a relevant gap in this literature.  

Moreover, the potential effect of hierarchical upstream Internet market structures on the 

affordability of mobile broadband for end-users in developing and emerging countries is 

likewise under-researched. Therefore, this dissertation focuses on methodologically 

extending and building on the preliminary work of Giovannetti and Sigloch (2015).  
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2.3.4 Graph Visualisations and Layouts 

Graph visualisations 
Due to its sheer size, mapping the Internet often relates to difficult abstractions of the 

real-world (Danesh et al., 2001). The first graph visualisation of the Internet might have 

been the backbone drawing of the early ARPANET from 1969 as Figure 2-3 on the next 

page illustrates. This graph visualisation includes the first four institutions of the 

ARPANET (see section 2.1.1 above) as well as their respective connections.  

 

Figure 2-3: ARPANET 1969 graph visualisation, Source: The Ocp (2016). 

With the increasing structural complexity of the Internet, Burch and Cheswick (1999) 

attempted to map the Internet by studying 88,000 Internet Protocol (IP) addresses and 

their associated routers and found critical indications for hop distances between their local 

Carnegie Mellon University and Lycos, an important search engine at that time. By using 

paths from a local test host containing 90,000 networks towards another host on a 

destination network, Cheswick, Burch and Branigan (2000) visualise network vertices 

using a force-directed graph visualisation layout (see below). Their visualisation reveals 

a number of interesting Internet Service Providers. However, their work also mentions 

the high complexity of the graph visualisation, which makes it hard for them to conclude 

their findings with great confidence (Cheswick, Burch and Branigan, 2000). Moreover, 

there is a relevant group of authors that aim to map the Internet infrastructure from a  
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geographical perspective. Important examples include Lakhina et al. (2003) who use the 

CAIDA dataset from 20 ‘Skitter’ monitors (see project description above) with the 

CAIDA NetGeo IxMapper. Another example is the work of Shavitt and Zilberman 

(2012), who utilise the DIMES database to map Point-of-Presence connectivity (vertices 

between networks) with the Arc GIS (2016) mapping software. Roberts et al. (2011) 

elaborate on one of the only approaches to map the Indian Autonomous System 

landscape. However, their study covers 100 countries using the CAIDA (2016b) AS-

Relationship data and does not explicitly focus on the Indian landscape. Dimitropoulos et 

al. (2007) reveal country-level Autonomous Systems with the greatest network control. 

Their work presents the resulting graph visualisations in a Circular Layout using the Flare 

Toolkit (2010) for China, Russia, The Republic of Korea, The Islamic Republic of Iran, 

Egypt, Sweden, Ukraine, Angola and India, as well as a comparison between those 

graphs. Their work identifies four Autonomous Systems with a great control for the 17,98 

million analysed Indian IP addresses but does not mention the names of these 

Autonomous Systems, while also neglecting the structural properties of their 

composition. However, Dimitropoulos et al. (2007) indicate that the number of Indian 

Autonomous Systems with great network control is fairly low compared to the other 

countries in their study. Their work also neglects an end-user perspective and only builds 

on secondary data. Notably, there are hardly any research efforts mapping upstream 

Autonomous System relationships and especially upstream connectivity structuring, 

originating from an Internet Periphery perspective. Caldarelli, Marchetti and Pietronero 

(2000) analyse, on the basis of the data obtained from Cheswick, Burch and Branigan 

(2000), some network indicators from an end-user perspective at IP granularity where 

they find signs of hierarchical structural ordering between end-users and providers. 

Tangmunarunkit et al. (2002) independently of Caldarelli, Marchetti and Pietronero 

(2000) or Cheswick, Burch and Branigan (2000) show that while the Internet embodies a 

hierarchical structuring, graphs are better modelled without explicitly constructing 

hierarchies. This refers to network visualisations using the Directed Acyclic Graph 

layout, amongst others. While Giovannetti and Sigloch (2015) explore the upstream 

network connectivity structure of the incumbent Bhutanese mobile broadband provider, 

B-Mobile, from an Internet Periphery Analysis introduced by Faggiani et al. (2012), their 

generated graph visualisation only covers rudimentary analysis.  
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Graph Layouts 
Graph visualisations are considered to be well suited to display agents and their 

relationship information in networks (Eick, 1996). Moreover, the visualisation of network 

graphs helps, according to Bastian, Heymann and Jacomy (2009), to understand network 

structures and their data, while the process of graph visualisation analyses is best suited 

to follow exploratory strategies (Perer and Shneiderman, 2006). Graph visualisations are 

done using graph layouts that represent the spatial foundation of a visualisation, including 

the positioning of vertices and the edges among them. Therefore, graph layouts are used 

for highlighting specific but highly relevant graph characteristics (Brath and Jonker, 

2015). In Figure 2-4 below we generated a random network graph visualisation of an 

example network consisting of 200 vertices and 1,333 edges linking those vertices using 

a Random Layout. The graph visualisation using the Random Layout fails, as expected 

given the Random Layout, to display specific network characteristics. 

 

Figure 2-4: Random Layout graph visualisation with 200 vertices and 1333 edges, 

elaborated using Gephi (2016). 

Nevertheless, the choice of a specific graph layout depends on the research questions 

addressed. While the literature shows a large set of possible graph visualisations, only a 

few are valuable for the exploratory analysis of Internet network structures. Among the 

visualisations considered in this work is the Layered Layout by Kuchar (2012), which 

places vertices in different layers depending on specifically chosen attributes. According 
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to Kuchar (2012), this layout is particularly appropriate for studying Small-World 

Network phenomena, representing (completely dense) connections between any vertices 

in a network. This layout, therefore, helps in testing whether or not any of our mobile 

broadband operators displays Small-World Networks characteristics. Given the 

importance of large Tier-1 Internet Service Providers, we would expect to see no Small-

World Network effects. Nevertheless, this analysis helps to obtain indicators of the 

interconnection efficiency of a network. If every Autonomous System were connected to 

any other Autonomous System in the network, then the networks wouldn’t display 

hierarchical structural features, which is highly unlikely considering the aforementioned 

tier-ordering of the Internet. Figure 2-5 below illustrates the same random example 

network graph visualisation as above using a Layered Layout. 

 

Figure 2-5: Layered Layout graph visualisation with 200 vertices and 1333 edges, 

elaborated using Gephi (2016). 

A different graph visualisation is the Fruchterman – Reingold Layout, which focuses on 

visualisation aesthetics, meaning that edges are more or less having the same visualisation 

lengths while not crossing each other in the visualisation. This is arranged by applying 

forces to the edges and vertices based on their relative position in the network 

(Fruchterman and Reingold, 1991). These forces are applied using spring-like attractions 

using the Hooke’s law of Physics. This graph layout, therefore, helps when analysing the 

importance of specific edges in a network. Chan et al. (2003) use the Fruchterman-
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Reingold, rather than other layouts, to visualise the structure of a Border Gateway 

Protocol routing networks, while proposing a new layout. Moreover, they consider the 

Fruchterman-Reingold Layout as particularly useful to capture and visualise the presence 

of power-law degree distributions in networks. Figure 2-6 below depicts the same 

example network graph visualisation as above using a Fruchterman-Reingold Layout. 

 

Figure 2-6: Fruchterman-Reingold Layout graph visualisation with 200 vertices and 

1333 edges, elaborated using Gephi (2016). 

To increase the intuitive usage of general layouts, Jacomy et al. (2014) introduce the 

Force Atlas 2 layout. This layout is considered to be useful in helping an intuitive spatial 

visualisation of networks. Compared to the Fruchterman Reingold layout, the Force Atlas 

2 layout shows better performance and usability with strongly clustered networks. This 

is important since performance ultimately adds to the readability of the graph 

visualisation. Moreover, the Force Atlas 2 layout employs avoidances of vertex overlap, 

which is particularly interesting when trying to identify vertex clusters or white spaces of 

unconnected vertices in the network structure. In terms of its application, Hasani and 

Mehdipour (2015) use the Force Atlas 2 layout for visualising traffic in an Internet 

Protocol (IP) address network. Figure 2-7 below illustrates the same random example 

network graph visualisation as above (200 vertices and 1333 edges) using a Force Atlas 

2 Layout. 
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Figure 2-7: Force Atlas 2 Layout graph visualisation with 200 vertices and 1333 edges, 

elaborated using Gephi (2016). 

More closely related to the analysis of Autonomous System networks, Alvarez-Hamelin 

et al. (2005b) introduce and use a k-core decomposition for the World Wide Web and 

Internet analysis. Carmi et al. (2005) and Alvarez-Hamelin et al. (2008) use the k-core 

decomposition in communication networks such as the Internet at Autonomous System 

granularity. The k-core decomposition separates the network vertices into so-called k-

cores (see coloured k-cores in Figure 2-8 below), or sub-graphs, based on the given 

connection densities amongst vertices. This means that the most densely connected 

vertices would be situated in the highest k-core of the network visualisation, whereas less 

dense connected vertices are situated increasingly in the periphery of the visualisation. 

Hence, the k-core decomposition indicates the most important hierarchical vertices of a 

given network. Figure 2-8 below depicts the same random example network graph 

visualisation as above (200 vertices and 1333 edges) using the k-core decomposition.  



Chapter 2 

Sebastian Sigloch - April 2018  59

 

Figure 2-8: k-core decomposition graph visualisation with 200 vertices and 1333 edges, 

elaborated using R (2016).

Insight 11: Given its distinct applicability to study the structure of the Internet (see 

Alvarez-Hamelin et al., 2005b), we consider the k-core decomposition and its resulting 

graph visualisation as the best algorithm to discover influential Autonomous System 

vertices in our networks. Given the economic nature, we expect that the most densely 

connected Autonomous Systems being Tier-1 Internet Service Providers. Moreover, we 

expect that other graph layout visualisations, such as Force Atlas 2, provide valuable 

exploratory insights on structural features. These indications will be useful to explain and 

compare the three mobile broadband operator graph visualisations and their general 

structural features. Our work is the first to apply such a broad spectrum to the exploratory 

analysis of active Internet periphery data. 
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2.4 Key Gaps in the Literature 
Based on the Literature Review above, our dissertation embarks on a journey to explore 

two identified key gaps in the literature. To date, and to the best of our knowledge, no 

research studied in-depth the following two themes, while linking them to the necessary 

research disciplines:  

• The study of hierarchical structuring of mobile broadband operator networks and 

the resulting structural Internet Service Provider bottlenecks in the upstream 

Internet market in India (or the state of Tamil Nadu) using Network Analytical 

methods upon data obtained from active Internet periphery measurements.  

• The econometric analysis of the potential effect of those hierarchical upstream 

Internet market structures on the affordability of mobile broadband for end-users 

in developing and emerging countries.  

These key gaps are exploratory and will be studied, in the remaining chapters, making 

use of Working Hypotheses being derived from the insights gathered from an abductive 

approach to research (see section 3.2). 

2.5 Abduction 
Abductive inferences are logical inferences for the purpose of finding the most likely 

explanations of surprising facts. The starting point of an abductive inference is provided 

by observational insights that flashed like ‘mental heat-lightning’ (Peirce, 1974). We 

extracted 11 insights highlighted throughout the Literature Review above. These insights 

conveyed valuable methodological information to be used in our iterative research 

process (see section 3.2). Moreover, these insights informed our abductive inferences.  

Hence, we start our inquiry process with the surprising key insights that we extracted 

from the Literature Review above. The two insights extracted from the Literature Review 

informed our thought process on the abductive inference. Therefore, we abduct that: 

• If the Bhutanese mobile broadband operator displays features of a hierarchical 

upstream Internet market structure, the Tamil Nadu mobile broadband operators 

may also display features of a hierarchical upstream Internet market structure.  

• These hierarchical upstream Internet market features may have a relation to the 

indicated low affordability and Quality of Service of mobile broadband in Tamil 

Nadu.  
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Next, we specify the following Working Hypotheses to explore and pragmatically 

understand our abductive inferences. The specified Working Hypotheses are then 

analysed in the upcoming analytical steps of our dissertation (Chapter 4 and Chapter 5).  

WH1: ‘The Tamil Nadu mobile broadband operators’ upstream Internet market structure 

displays features of a hierarchical ordering’. 

WH1.1: ‘The Tamil Nadu mobile broadband operators rely on an identified set of specific 

Internet Service Providers for their upstream connectivity’. 

WH1.2: ‘Studying the Tamil Nadu mobile broadband operators from an Internet-

Periphery perspective indicates previously hidden upstream AS relationships’.  

WH2: ‘Tamil Nadu mobile broadband operators that show signs of a hierarchical 

upstream Internet market structure offer less affordable mobile broadband price plans to 

an end-user’. 

WH3: ‘Those Tamil Nadu mobile broadband operators that show signs of a hierarchical 

upstream Internet market structure provide a lower quality of service to an end-user’. 

2.6 Conceptual Framework 
The following conceptual framework organises the 11 identified key insights derived 

from the literature review and the key gaps in this literature. Moreover, the conceptual 

framework, represented in Figure 2-9 below,  relates and provides the relevant conceptual 

structure for exploring the identified Working Hypotheses derived in section 2.5 (black 

arrows). Figure 2-9 below, hence, provides both a valuable overview of this dissertation 

and a mapping of how our anticipated findings relate to each other (green arrows). 
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Figure 2-9: Conceptual Framework. 

2.7 Research Aims and Objectives 
The following Research Aims and Objectives are derived from our abductive inferences 

and the specified Working Hypotheses, discussed in section 2.5 above. Again, these 

Working Hypotheses were extracted from insights emerging from the key gaps in the 

Literature Review rooted in the literature of our three relevant disciplines: Network 

Analysis, Development Studies and Computer Sciences, as depicted in the Conceptual 

Framework in Figure 2-9. Here, we first state our Research Aims in section 2.7.1 below 

before listing our Research Objectives in section 2.7.2. 

2.7.1 Research Aims 
Emerging from the identified gaps in the key literature, see section 2.4, our two main 

research aims are: 

• To discover the hidden hierarchical structuring of the upstream Internet market 

for the Tamil Nadu mobile broadband operators using active Internet periphery 
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measurements.  

• To reveal that this structuring is a key determinant for Tamil Nadu’s mobile 

broadband affordability and Quality of Service for end-users. 

The first one of these research aims is expected to shed light on the structuring of the 

upstream Internet market, a feature that is greatly hidden for conventional analysis 

methods but clearly visible using active Internet periphery measurements using 

smartphones, as Giovannetti and Sigloch (2015) showed. The second one of these 

research aims is grounded on the belief that the economic nature in the Tier-organised 

upstream Internet market is intrinsically asymmetric, meaning that large Internet Service 

Providers display stronger bargaining powers towards their downstream partners.   

2.7.2 Research Objectives 
Given our abducted Working Hypotheses and the above Research Aims, we propose the 

following set of research objectives. Each objective serves as a milestone for gaining the 

necessary information to assess our Working Hypotheses.  

Objective 1: To collect traceroute-based upstream connectivity data for the Tamil Nadu 

mobile broadband operators using the active Internet periphery measurement tool 

Portolan (2015). This shall uncover hidden features of the upstream Internet market as 

such features are usually not visible using measurements from the Internet core (see 

literature discussed in section 2.3.1).   

Objective 2: To describe, explore, analyse and understand the collected traceroute 

upstream connectivity data at Internet Protocol and Autonomous System granularity. This 

follows best practices on data collection granularities as discussed in the literature review 

(see section 2.3.2) and in particular by Faloutsos, Faloutsos and Faloutsos, (1999). 

Objective 3: To prove the existence of power-law degree distributions at Internet 

Protocol and Autonomous System granularity for our collected data in the Tamil Nadu 

case studies. These distributions would be a clear indicator for hierarchical structuring in 

the upstream Internet market as Faloutsos, Faloutsos and Faloutsos, (1999) and Dall’Asta 

et al. (2005) show. The identification follows best practices employed in the Computer 

Sciences realm (see section 2.3.2). 

Objective 4: To generate, explore, analyse and compare the hierarchical features of 
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mobile broadband operator networks using the most relevant Complex Network Analysis 

metrics at Internet Protocol and Autonomous System granularity. In detail, our objectives 

are to  

(i) identify markers of hierarchical upstream Internet market structure and 

(ii) uncover the most relevant business relationships between Internet Service 

Providers by fusing the generated networks data with the additional secondary 

CAIDA (2016b) Autonomous System relationship data.  

This objective relates to the methodological approach used in Giovannetti and Sigloch 

(2015). Using new markers for the identification of hierarchical upstream Internet market 

structures, namely the Eigenvector Centrality, our objective is to additionally relate to the 

work of Vázquez, Pastor-Satorras and Vespignani (2002), who neglected this centrality 

metrics while focussing on the Clustering Coefficient. 

Objective 5: To generate graph visualisations based on the collected traceroute upstream 

connectivity data using the Open Source Network Exploration Tool Gephi (2016) and the 

Statistical Computing Software R (2016). These visualisations will help to identify the 

underlying structures of the present upstream Internet markets. Using these analysis tools, 

we add to the work of graph visualisation analysis using algorithms such as Barabási and 

Albert (2002) as discussed in section 2.3.4. 

Objective 6: To compare the identified upstream Internet market properties and the 

identified business relationships of the Tamil Nadu mobile broadband operators. This 

helps us to identify the hidden features of the upstream Internet markets, representing 

novel insights on their business relationships, a topic analysed in section 4.4. 

Objective 7: To further explore and display the identified upstream connectivity 

properties and business relationships by using Graph Visualisation Analysis techniques, 

as discussed in the literature reviewed in section 2.3.4. 

Objective 8: To develop a set of econometric models for testing our Working Hypotheses 

about the insights and obtained evidence and to explore the effects of the upstream 

Internet market structure on the affordability of Tamil Nadu price plans, as discussed in 

the vast body of multidisciplinary literature reviewed above. 

Objective 9: To propose additional hypotheses to further test our findings for causality 
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through future, explanatory research. This closes the loop of our abductive approach to 

research. The new hypotheses generated are stated in section 7.1. 
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3 METHODOLOGY 

‘To a pragmatist, the mandate of science is not to find truth or reality, the 

existence of which are perpetually in dispute, but to facilitate human 

problem-solving’, (Powell, 2001, p.884). 

In this Chapter, we aim to set out the philosophical assumptions that reinforce the nature, 

scope and limitations of this dissertation. Based on the Working Hypotheses from the 

Literature Review (see section 2.5), we start by stating the pragmatist epistemological 

and ontological stance assumed towards reality and the nature of knowledge. Next, 

follows an explanation of this dissertation’s abductive approach to research, which 

ultimately informed our choice of the case study research design and the multimethod 

research. This section then covers details on the selection of time horizon and the 

crowdsourced collection of cross-sectional upstream traceroute data and follows up with 

its necessary materials and preparation tasks. Finally, we discuss the different Complex, 

Graph Visualisation and Statistical Network Analysis that were used to explore the set of 

Working Hypotheses and end by stating considerations on Ethics, Biases, Reliability, 

Validity and Generalisability. 

3.1 Pragmatism 
In the following, we discuss our epistemological and ontological choices, before defining 

the research design, adopted to inquire this dissertation’s research problem.  

Paradigms are traditionally shared beliefs within certain communities of researchers such 

as post-positivists or constructivists. As a pragmatist, my focus lies on the characteristics 

of fruitful approaches to inquiry. Here, Pragmatism is a radical departure from traditional 

philosophical arguments about the nature of reality and the possibility to experience truth 

(Morgan, 2014). Hall (2013, p. 19) finds that pragmatism offers ‘an alternative 

epistemological paradigm’, a new worldview where knowledge consists of assertions as 

results from actions and the experience of outcomes (see also Dewey, 1941).  

The following discussion sheds light on the relevance of the Pragmatism paradigm to 

study the economic effects of hierarchical upstream Internet market structures, from both 

a Social Science and Computer Science induced perspective.  
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‘Fortunately, nobody owns the Internet, there is no centralized control, and 

nobody can turn it off. Its evolution depends on rough consensus about 

technical proposals, and on running code.’ (Carpenter, 1996). 

The Internet is considered to be a system, or network, of interconnected networks, 

consisting of ‘bare-metal’ machines whose ports are linked between each other using 

physical transmission links and the software-based Internet Protocol (IP) Suite. The 

structure of the Internet can be studied at different levels of abstraction or granularities 

(see section 2.3.2). Unlike some researchers, we set the granularities for this dissertation 

at Internet Protocol granularity (Machine A talks to Machine B) and the Autonomous 

System granularity (Network Organisation A talks to Network Organisation B). The 

connections between machines (mostly routers), or networks of machines, are usually 

studied and visualised through different types of Network Analysis where networks are 

visualised in graphs. Therefore, each of these network graph visualisations represents a 

modelled copy of the real world. Such modelled realities are usually incomplete as 

different data and methodologies are yielding divergent views on the Internet 

(Mahadevan et al., 2006). An in-depth analysis of these modelled realities involves a lot 

of detailed inquiry since visualising and analysing these networks broadens a researcher’s 

awareness towards the entities involved, their relationships and their respective roles 

under given circumstances. This is also a valid notion in the Pragmatism paradigm. By 

linking abduction to computation and philosophy, Josephsen and Josephsen (1996) 

compare the approach of abductive reasoning to ‘detective work’, where researchers 

collect related ‘facts’ about entities in some given circumstances. Therefore, Pragmatism 

seems especially suitable for an exploratory analysis of the hierarchical upstream Internet 

market structure, where we explore traceroute data under the light of abductive reasoning 

until a plausible story for the data and hence an econometric model suitable for the given 

reality emerges.  

According to Powell (2001), a true proposition facilitates paths of discovery to come 

about a realisation of ‘pragmatic truth’, or follows the scientific discovery as introduced 

by Peirce (1878). By following a pragmatist approach to research, our ontological 

considerations refer to the ways in which we may or may not justify what we assert about 

the ontological consideration being that ‘truth’ may not be all-embracing. Cotton, 

Tashakkori and Teddlie (1999) argue that pragmatism creates the need to triangulate 

findings. We distanced our research from this argument by saying that our choice for 
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pragmatist approach to research, following an exploratory research design, aimed to 

generate feasible hypotheses in a case study setting. Therefore, these hypotheses ought to 

be re-tested for causality in future explanatory research. Hence, triangulation is not 

considered an issue in this research since the construct of real truth was not to be argued 

here. However, the creation of knowledge induced an active process of inquiry, which 

was created using a continual back-and-forth movement between our beliefs and 

corresponding actions. 

3.2 Abductive Approach to Research 
The chosen research approach aimed to determine a systematic thread for quantitatively 

exploring the identified research problems. According to Peirce (1878), abductive 

approaches to research are divided into the following three stages: 

1. Logical Inference (abduction) that ought to be explained as a search for a 

meaningful rule.  

2. Definition of plausible Working Hypotheses (see section 2.5). 

3. Testing and hence either pragmatically verifying or falsifying the defined 

Working Hypotheses by means and choice of research methods.  

Both the logical inferences and our abducted Working Hypotheses are stated in the 

Literature Review. The testing and pragmatic verification or falsification follows in the 

upcoming Chapter 4 and Chapter 5. In theory, to establish ‘all-embracing truth’, one may 

repeat these exploratory stages ad infinitum (Dewey, 1941). However, to come about 

‘pragmatic truth’, the Working Hypotheses of our research are gradually expanded 

throughout Chapter 4 and then statistically tested in Chapter 5. Linked with our 

ontological considerations, it was not possible to achieve certainty as to our abducted 

Working Hypotheses’ validity. Nevertheless, a strategic choice upon a single case study 

strategy allowed us to gain pragmatic validity. By an interpretation of collected data, 

abduction consists of assembling and discovering features. Abduction is a result of an 

intellectual process that flashes like ‘mental heat-lightning’, where rule hampers the 

thought process (Peirce, 1974). Therefore, in following this mental effort, one first has to 

discover or invent a process of reflection, while utilising general thinking patterns as 

Figure 3-3 in section 3.4 illustrates. 
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3.3 Exploratory Research based on a Single Case Study Strategy 
Exploration seemed to be the most plausible research design when searching for a 

meaningful rule. This section first covers our reasoning for choosing an exploratory-

quantitative research design. Secondly, it discusses the suitability of a single hypothesis-

generating case study strategy. 

3.3.1 Exploratory-Quantitative Research Design 
Research always begins with curiosity, representing a seed of creativity. Following this 

curiosity, most research types in the Social Sciences face steps of best-guessing inquiry, 

stumbling around information, searching and examining gaps in knowledge, or 

investigating hunches of rather loosely found insights to categorise and report what one 

has learned. While all of these steps can be related to exploratory research, Stebbins 

(2001, p.vii) notes that exploration is falsely regarded as an ‘outmoded process’ and 

suggests each research in the Social Sciences is somewhat exploratory. Exploratory 

research is highly applicable where the field of interest shows a lack of preliminary 

research and the research problems cannot be clearly defined (Stebbins, 2001), while the 

nature of exploratory research is informed by theory, rather than driven by theory 

(Waters, 2007). Moreover, the exploration of data, the findings of patterns, and the 

suggestion of hypotheses relates to the nature of knowledge and reality in the Peircean 

logical system of Pragmatism (Yu, 2006) whereas quantitative researchers employing 

exploratory processes relate to exploratory-quantitative research (Stebbins, 2001, p. 8). 

The ultimate objective of exploratory research is the investigation of key issues and key 

variables as distinct phenomena for the purpose of suggesting hypotheses that can be 

feasibly tested for causality by following explanatory research (Streb, 2016).  

Hence, as a pragmatist, our choice of a quantitative exploratory research design was 

grounded in the following reasoning. Two of our three literature disciplines showed a 

clear lack of detailed preliminary research and therefore valuable gaps in existing 

knowledge. The concepts that applied to our research disciplines seemed clear from one 

level of abstraction but rather unclear from another level of abstraction (Internet structure 

granularities as stated in section 2.3.2). Furthermore, none of our Working Hypotheses 

were sufficiently covered in preliminary research in all of the three literature disciplines, 

but could be studied in a natural, real-world case study setting. Therefore, it was assumed 

that an exploratory research design based on a hypothesis-generating case study was the 

most appropriate research design for seeking pragmatic answers for both the 
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understanding of our logically inferred Working Hypotheses and the solving of the 

research problem. In doing so, we aimed to generate results that ought to be further tested 

for causality in future explanatory studies. 

Following the nature of quantitative exploratory research, this Research Design should 

bring about well-informed insights. According to Peirce (1878), knowledge is fallible in 

nature. However, pragmatists are satisfied with stable beliefs. By exploring our research 

topic at varying levels of depth, the exploratory research under the light of pragmatism 

helped us to explore the Working Hypotheses at hand (section 2.5). Suitable for our 

pragmatist nature and the rather low coverage of our research problem in the literature, 

Brown and Saunders (2006, p.43) note that exploratory research ‘tends to tackle new 

problems on which little or no previous research has been done’. Saunders et al. (2009) 

further state that exploratory researchers need to be willing to change their directions 

based on the occurrence of new data or insight. Nargundkar (2003, p.41) mentions that 

exploratory researchers may, therefore, work as ‘methodologically’ as possible. This 

issue was taken into further consideration when choosing the most suitable research 

methods for this case study. Hence, our stated research methods were a result of repeated 

changes of directions in this thought process. Notably, exploratory research ‘simply’ 

explores the stated research questions. In considering the differences to conclusive 

studies, Sandhusen (2001) says that exploratory research will result in a range of causes 

and alternative options to find solutions to a particular problem, whereas conclusive 

research further aims to identify the final causality to an existing problem. However, 

finding causality is considered pragmatic, while not referring to it as final or generalisable 

causality. Hence, exploratory research forms the basis of more conclusive research and 

might even help to determine suitable research designs, sampling methodologies, or data 

collection techniques (Singh, 2007, p.64).  

By following an abductive approach to research, our exploratory research design 

commenced with the abductive inferences of key issues that emerged from the three 

reviewed literature disciplines (section 2.4). This was followed by a definition of research 

aims and objectives, which included these key issues that ought to be explored (section 

2.6). On that basis, the next step was to choose the most appropriate research strategy for 

exploring the Working Hypotheses. The strategic choice fell to a hypotheses-generating 

single case study strategy as the next section introduces.  
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3.3.2 Hypotheses-Generating Single Case Study Strategy 
For the purpose of this dissertation, we analysed thirteen key characteristics stated by 

Stake (1995), Yin (2003), Flyvbjerg (2006) and Bryman (2012), that ought to be given 

when choosing a case study strategy (see Table 9-5 in Appendices). According to this 

analysis, case study methodologies are useful when the subjects of interest can be 

analysed in a natural setting, a strong theoretical base does not support the research 

phenomena and the phase of research covers hypothesis generation by utilising 

exploratory research designs (Yin, 2003). Based on this dissertation’s Research aims and 

objectives (section 2.6), the subject of inquiry was the focus of interest while Exploratory-

Quantitative Research Methods were used. The phenomena to be studied were best 

explored in a natural setting while the upstream traceroute data was collected using a 

cross-sectional crowdsourced data collection method from an Internet periphery or end-

user perspective (see section 3.3.4 below). According to Flyvbjerg (2006), typical case 

studies are best when the objective relates to achieving a considerable amount of 

information on a given problem or phenomenon. Our case study strategy examined 

different subjects that were studied intensively from varying perspectives, while also 

fusing the collected traceroute dataset with various secondary data sets (in Chapter 4 and 

5). As pragmatists, we had a healthy attitude towards exploring the given phenomena. 

Neither dependent, nor independent variables (covariates) were specified upfront but 

were results of the inquiry process. Moreover, we used our interpretive and integrative 

abilities when reporting evidence. Changes in the case study strategy and the inquiry 

process occurred naturally and led to deeper and more valuable insights of the 

exploration. 

Single Case Study Selection 
Case studies may cover an  

‘...analysis of ... institutions, or other systems that are studied holistically by 

one or more methods. The case that is the ‘subject’ of the inquiry will be an 

instance of a class of phenomena that provides an analytical frame – an 

object – within which the study is conducted and which the case illuminates 

and explicates.’ (Thomas, 2010).  

Following this definition, we set the strategic choice of a case study description to bring 

about insights for exploring our abducted Working Hypotheses as follows: The case, or 

object of interest, were the structural properties of the upstream Internet market structures, 
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originating from three distinct Tamil Nadui mobile broadband operator SIM cards 

(Aircel, Bharti Airtel and Vodafone, see section 3.3.4 below). This interest was strongly 

influenced by our observed insights in the Literature Review, the abducted Working 

Hypotheses (see section 2.5), our research aims and objectives (see section 2.6), and the 

evidence from the pilot experiment by Giovannetti and Sigloch (2015) for the incumbent 

mobile broadband provider, B-Mobile, in Bhutan.  

Moreover, our case study was informed by the theory for structural properties of the 

Internet, but not controlled by it. This theory provided a valuable analytical frameset to 

explore our three mobile broadband operator subjects of interest, which set the lens that 

limited our view on both knowledge generation and problem solving. The upstream 

Internet access market structure may be of vital importance for understanding mobile 

broadband affordability and the Quality of Service of the access from the Internet 

periphery. Moreover, these structural features may be of special relevance for the state of 

Tamil Nadu in the low-middle income country, India, which lags behind regarding 

Internet access and also faces great urban-rural per capita income and gender disparities. 

Therefore, the strategic choice to explore three Tamil Nadu mobile broadband operators 

allowed for a valuable assessment of these hidden structural features of the upstream 

Internet market. Hence, this case study followed a multimethod research design for 

assessing the described structural features in the most conducive way. The following 

section elaborates on the study design for our selected single case study. 

3.3.3 Cross-Sectional Study Design 
Time is an important element in research (Trochim, 2006). A cross-sectional design refers 

to both qualitative and quantitative research where phenomena of many subjects are 

studied at a specific point in time and in great detail. We chose a cross-sectional study 

design for exploring the upstream Internet market structure of the three mobile broadband 

operators in Tamil Nadu. Hence, our collected data referred to network connectivity 

information from Aircel, Bharti Airtel and Vodafone at one point in time using a single 

measurement campaign. This measurement campaign was chosen to cover a relatively 

short data collection period to avoid computational problems of large datasets at a later 

stage, while still collecting enough traceroute data to elaborate a pragmatic and 

meaningful insight. The following sections describe the data collection technique while 

further elaborating on the necessary materials and equipment, the data collection 

preparation and the specific timing of the measurement campaign. 
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3.3.4 Mobile Crowdsourced Primary Data Collection 
Crowdsourcing refers to the strategy to solve large-scale problems by utilising existing 

resources from the masses. Crowdsourcing approaches are considered to be a very 

effective when a solution relies on performing tasks on a larger scale (Faggiani et al., 

2013). There are currently three notable mobile active Internet periphery measurement 

applications to capture Internet structural data from an Internet periphery perspective (see 

section 2.3.1):  

• NetRadar (2015), focusing on the mobile broadband operator coverage and the 

comparison of accessing devices. 

• OpenSignal (2015), which aims to capture signal strengths of mobile broadband 

operators. 

• Portolan (2015), which aims to discover the topology and structure of the Internet 

through utilising Paris traceroutes.  

While traditional Internet Topology mapping efforts often rely on a top-down and passive 

data collection approach, the data collection using the Portolan (2015)  provides Internet 

measurements using a unique bottom-up, or active Internet periphery (end-user) 

perspective (Faggiani et al., 2012). We chose the Portolan (2015) application over its 

competitors’, due to its focus on capturing traceroutes, allowing us to measure the 

upstream Internet market structure through utilising Network Analytical Methods, which 

represents the main interest of this dissertation (Portolan (2015) selects, for every 

traceroute, randomly-chosen destinations). Moreover, the applicability is already tested 

in a preliminary pilot experiment by Giovannetti and Sigloch (2015). The necessary 

preparatory steps taken for collecting the traceroute data using Portolan (2015) are 

described in the section after the next below. Figure 3-1 below illustrates the flow of the 

data collection in detail. Here, the data collector (researcher) first arranged the data 

collection campaign with the Portolan (2015) Network Tools Administrator (step (i) in 

Figure 3-1). This is followed by an event storing of the data collection campaign in the 

software of the Portolan (2015) server by the Network Tools Administrator. The server 

orchestrated the measurement campaigns (Faggiani et al., 2012), assigning so-called 

measurement campaigns to the specified Android smartphones that automatically 

collected the traceroute data on the set campaign dates. The traceroute data was then 

automatically collected by the Portolan (2015) Server, fused together and stored on a 

database where the respective Network Tools Administrator was able to obtain the 
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collected traceroute data (step (vi) in Figure 3-1). Next the collected traceroute data were 

sent to the data collector by the Network Tools Administrator (step (vii) in Figure 3-1), 

including information on how to classify the obtained files (see section 4.1, Figure 4-1).  

 

Key  

 

Figure 3-1: Overview of data collection. 

Materials and Equipment  
For the purpose of collecting the upstream connectivity traceroute raw data using a 

mobile crowdsourced data collection approach, the data collector (researcher) had to 

organise three Android smartphones since the Portolan (2015) application was (at the 

time) solely available for devices operating the Google Android Software > Version 4.0. 

These smartphones were of varying prices, and with decreasing cost order the brands 

were Sony, Micromax, Lava and Karbon. Unfortunately, only the former two were able 

to maintain a stable configuration of Portolan (2015). Furthermore, to collect the 

traceroute data for the purpose of exploring the stated Working Hypotheses, the data 

collector (researcher) had to organise Tamil Nadu mobile broadband operator SIM cards. 

As mentioned in the Literature Review above (section 2.2.2), the Mobile Service Area of 

Tamil Nadu is separated into two Mobile Service Areas covered by four Indian mobile 
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broadband operators (Aircel, Bharti Airtel, BSNL, and Vodafone), three of which the data 

collector was able to obtain local SIM cards for, namely Aircel, Bharti Airtel, and 

Vodafone. A SIM-card for the fourth mobile broadband operator BSNL (Bharat Sanchar 

Nigam Ltd.) could not be obtained due to local regulations for the issuing of SIM cards 

to locals and foreigners. This choice of materials and equipment may result in a selection 

bias and has therefore been taken into consideration when reporting the results (see 

section 3.6.1 below). Some of the chosen low-end smartphones in particular did not seem 

to properly collect the traceroute observations at times, which potentially indicates real-

world connectivity situations. 

Data collection preparations  
Once the Android smartphones and SIM cards of the local Tamil Nadu mobile broadband 

operators were obtained, the next preparation tasks for the researcher were: 

• To collaboratively organise the study plan for 01st March – 05th March 2015 with 

the Network Tools Administrator at the Instituto di Informatica e Telematica (IIT) 

at the University of Pisa in Italy by email. This organisation included the setting 

of the measurement campaign given the anticipated planning. Moreover, the 

organisation included the transmission of necessary information for the Portolan 

Server to trace the correct smartphones. Lastly, we organised the data 

transmission of the collected traceroute data from the Portolan Server from the 

Network Tools Administrator to the data collector.  

• To organise travel and accommodation from Cambridge, UK to the Indian 

Institute of Technology Madras (IITM) campus in Chennai, Tamil Nadu, India.  

• To collect the respective Android smartphones and SIM cards before being on-

site in Chennai, Tamil Nadu.  

• To organise a local driver for the purpose of travel assistance for each day of the 

chosen data collection period. 

• To download and install the Portolan (2015) from the Google Play Store. 

• To prepare the settings of the Portolan (2015) Network Sensing Architecture 

Android application for our chosen traceroute data collection purposes. 

Location and Data collection times  

The data collection took place in the period of 01st March 2015 – 05th March 2015, while 

travelling between the Indian Institute of Technology Madras campus in the urban area 
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of Chennai, through the rural areas of Tamil Nadu, 45 miles to the distant historical city 

of Kanchipuram (see Figure 3-2). The researcher, hence, collected traceroutes from both 

urban and more rural areas in Tamil Nadu, India. Before each of the planned daily 

commutes by car and foot, the researcher made sure that the batteries of the three Android 

smartphones were charged during night-time hours. This represented a normal end-user 

behaviour and prevented unforeseen smartphone shutdowns due to flat batteries. During 

the data collection commutes, it was important to mimic an end-user’s usual smartphone 

usage behaviour. Hence, our case study covered the following use-cases of locals or 

tourists that are commuting or travelling to Chennai, the urban outskirts or the city of 

Kanchipuram (for religious events or ritual traditions such as the holy pilgrimage).  

 

Figure 3-2: Traceroute hop observations as obtained through Portolan (2015) plotted on 

a Google Maps. 

While carrying the smartphones during the travel commutes, the Portolan (2015) 

application automatically collected 57,122 unique traceroute observations. These 

traceroute observations contained a total number of 731,200 Internet Protocol (IP) 

address hop observations since each traceroute observation contains a multitude of 

Internet Protocol (IP) addresses that are traversed from any connection measurement 

source to a random-assigned destination. Table 3-1 below lists the distribution of 

collected traceroute hop observations per data collection day.  
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Observations per data collection day 

Date of data collection 
(YYYY, MM, DD) 

Number of collected 
traceroute IP address hop 
observations 

In percentage of total 
collected IP address 
hop observations 

2015-03-01 236,805 32.39% 

2015-03-02 113,431 15.51% 

2015-03-03 119,373 16.33% 

2015-03-04 134,621 18.41% 

2015-03-05 126,970 17.36% 

Total 731,200 100% 

Key 

IP: Internet Protocol. 
YYYY, MM, DD: Year, Month, Day. 

Table 3-1: Observations per data collection day. 

3.4 Network Analytical Multimethod Research  
This section introduces the Network Analytical multimethod research that were used to 

analyse the collected 57,122 unique traceroute observations, containing a total number 

of 731,200 IP address hop observations, as described above. 

Given the adopted pragmatic approach, we granted ourselves the freedom to choose any 

exploratory-quantitative research method that fruitfully helped to explore the set Working 

Hypotheses. In following Dewey’s model of inquiry, or process for the production of 

knowledge, our aim was to generate ‘warranted assertions’, where warrants are outcomes 

of inquiry, or outcomes of using our belief in practice (Dewey, 1941). Thus, we were not 

separating knowledge from our practice of doing (e.g. analysing). Figure 3-3 below 

illustrates this process.  
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Figure 3-3: Warranted assertions process to inquiry, Source: Dewey (1941). 

Our four utilised research methods, namely Descriptive Statistics, Complex Network 

Analysis, Graph Visualisation Analysis and Statistical Network Analysis (further 

discussed in this and the following sections) were a result of following Dewey’s model 

of inquiry repeatedly until we found conducive methods to obtain a clearer picture for 

understanding and exploring the abducted Working Hypotheses. This means that every 

choice of subsequent research method was informed by reflecting on our undertaken 

actions to recognise questions, patterns and problems. 

In the following sections, we discuss the choice of using the defined research methods. 

First, we present the Descriptive Statistics in section 3.4.1, followed by the Complex 

Network Analysis (containing our chosen Complex Network metrics) in section 3.4.2. 

Then we discuss the selection of the most appropriate Graph Visualisation Analysis 

(including their respective visualisation and simulation algorithms) in section 3.4.3, and 

lastly the Statistical Network Analysis in the later section 3.5.7.  
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3.4.1 Descriptive Statistics 
Since our data collection revealed a significant amount of traceroute hop observations, 

our first problem was to arrange the analysis towards a more manageable form. Hence, 

we described, summarised and indicated the data in a meaningful way. By describing the 

essential features of the upstream traceroute data using Descriptive Statistics, we were 

not only able to get a basic understanding of the collected traceroute observations and 

what the mapped reality revealed, but also to narrow down the number of observations 

on a per mobile broadband operator basis, which were of real interest for our single case 

study strategy.  

The observations of interest were associated with the connections originating from the 

utilised Aircel, Bharti Airtel and Vodafone SIM cards as defined above. We obtained 

these per operator observations by utilising filtering mechanisms on our collected 

traceroute dataset (see section 3.3.4 below). Finally, we only described those insights that 

were feasible to analyse using the exploratory steps of analysis stated in section 3.5 below. 

This set the groundwork for further exploratory analysis by using Complex Network, 

Graph Visualisation and Statistical Network Analysis. Finally, only descriptions that were 

grounded in the collected raw data were reported. 

3.4.2 Complex Network Analysis 
Building on the findings of the Descriptive Statistics for the relevant observations from 

the collected traceroute dataset revealed the need to better understand the modelled 

reality of the upstream Internet market structure for the three Tamil Nadu mobile 

broadband operators. 

Given the non-trivial nature of the upstream Internet market structure, we chose to study 

Complex Network metrics of the three Tamil Nadu mobile broadband operator networks. 

These metrics are frequently used to examine complex systems, which usually involve a 

large number of highly interconnected units of interest. Examples include works on 

Neural Networks, Biological Systems, Statistical Physics, the World Wide Web, or the 

Internet structure, amongst others (see e.g. Faloutsos, Faloutsos and Faloutsos, 1999; 

Strogatz, 2001; Boccaletti et al., 2006).  

Therefore, Complex Network Analysis relates to a branch of Network Theory that aims to 

study non-trivial structural properties. The Internet periphery structure itself can thereby 

be explored at different levels of granularity, while the research landscape provides no 
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agreement on best practices of these granularities (see section 2.3.2). Huffaker, 

Fomenkov and Claffy (2016) provide one of the most comprehensive definitions. They 

argue that the Internet may be studied at (Glass) Fiber, IP address, Router, Points-of-

Presence (artificial interface between connecting entities), Autonomous System and 

Internet Service Provider granularities. Here, based on the obtained traceroute data, the 

upstream Internet access market structure was analysed at two of these granularities, the 

Internet Protocol (IP) address and the Autonomous System (AS) granularity. This choice 

made particular sense considering that these granularities provide valuable insights into 

more economic and policy needs of the largely unregulated peering ecosystem amongst 

Autonomous Systems on the Internet rather than purely technical ones (Huffaker, 

Fomenkov and Claffy, 2016). Moreover, the Internet Service Provider granularity would 

have been of additional value but it is almost impossible to obtain data that relates 

Autonomous Systems (ASes) to Internet Service Providers, since any Internet Service 

Provider may manage or co-manage a multitude of Autonomous Systems. Furthermore, 

an Autonomous System may also represent a company that is associated with an Internet 

Service Provider as a single legal entity. Therefore, we consider the Autonomous System 

granularity as most valuable for effectively studying the upstream Internet market 

structure, while sometimes referring to their likely associated Internet Service Providers. 

Nevertheless, the Autonomous System granularity, or AS granularity, is only obtainable 

through first analysing the Internet Protocol (IP) granularity. The metrics to analyse the 

different granularities are Complex Network metrics, which usually relate to Sociology, 

Physics or Mathematics, more specifically to Graph Theory. The following section 

explains the chosen Complex Network metrics that were used to explore the upstream 

Internet market structure in the upcoming Chapters 4 and 5. 

Choice of Complex Network Metrics  
Here, we explain the relevant Complex Network metrics that were used for the Complex 

Network Analysis, the Graph Visualisation Analysis and the Statistical Network Analysis 

in this dissertation. Moreover, since these metrics are usually described through Physics 

or Sociology perspectives, it is vital to describe the specific applications of the chosen 

metrics for studying the upstream Internet structure. For this purpose, we expand on the 

usage of Network Analysis as introduced in the Literature Review (section 2.3). 

Therefore, this section aims to provide a shared understanding of applying the Complex 

Network metrics for the analysis of our collected traceroute data at both Internet Protocol 

and Autonomous System granularity.  
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First, we explain the general network metrics, followed by further relevant edge and 

vertex metrics used in the Descriptive and Complex Network Analysis in Chapter 4 

(sections 4.1, 4.2 and 4.3). This section concludes by stating the Complex Network 

Models being employed through utilising graph visualisations, simulations and 

computations using Graph Visualisation Analysis. 

General Metrics 

Graphs Definition 
For simplicity, let graph 𝐺𝐺  of a network be defined as a collection of vertices V , 

representing either IP addresses or Autonomous System Numbers. These vertices connect 

to one another through edges 𝐸𝐸, whereas each edge represents a directed connectivity 

relationship between any pair of IP addresses or Autonomous System Numbers. Figure 

3-4 below illustrates an example network graph 𝐺𝐺$  (see explanation of graph denotations 

on the following page), where vertex 1 is connected to vertex 2 through a directed edge 

and vertex 2 to vertex 3 through another directed edge. Hence, we see a one-sided directed 

connectivity (as applicable for traceroute observations).  

Graph visualisation of a fictive network 𝑮𝑮𝑪𝑪 

 

Key 

Vertex without label. 
Directed edge, linking a pair of vertices.  

Figure 3-4: Example vertices and edges. 

Each vertex represents an object in a network graph, whereas each edge accounts for a 

joint between a pair of two distinct vertices. More formally, graph G denotes as: 

𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) 
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Our following network analysis also incorporates loops that represent vertices linking to 

themselves. We learned that this behaviour is especially common when analysing the 

networks at Autonomous System granularity where different IP addresses of the same IP 

address prefix connect to each other, representing internal routings between IP addresses 

in Autonomous Systems. All network graphs in this case study are considered as directed 

graphs, due to the directed nature of traceroutes. Again, this means that each edge 

represents a directed edge from one vertex to another one, except for where otherwise 

stated. 

Degree 
The Degree, 𝑑𝑑𝑑𝑑𝑑𝑑	(𝑣𝑣2)  of a vertex v4  represents the total number of IP addresses or 

Autonomous Systems that are adjacent (joint by an edge, or relationship) to one IP 

address or Autonomous System represented by: 

𝑑𝑑𝑑𝑑𝑑𝑑	(𝑣𝑣2) 

where the maximum Degree of a network is denoted by ∆(G) and the minimum by δ(G). 
Vertices with a Degree of zero are isolated, while vertices with a Degree of ‘1’ are leaf 

or end vertices. 𝑛𝑛 represents the total number of vertices. Vertices with a Degree of 𝑛𝑛 −
1 are dominating vertices. Therefore, in our Figure 3-4 above, vertex 1 would have a 

Degree of 1, vertex 2 a Degree of 2 and vertex 3 a Degree of 1. Consequently, ∆(G) is 

given by the Degree of vertex 2, while δ(G) is jointly given by the Degree of vertices 1 

and 3.  

Network Diameter 
The Network Diameter represents the longest possible distance (longest shortest path), 

𝑚𝑚𝑚𝑚𝑚𝑚=>,=?,	𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣2, 𝑣𝑣C) for any calculated shortest paths of two vertices , 𝑣𝑣2	and	𝑣𝑣C  in a 

general graph 𝐺𝐺 (Harary, 1994, p.14), where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣2, 𝑣𝑣C) represents the general graph	𝐺𝐺′s 
distance, and therefore represents the largest maximum number of hops from a 

traceroute’s source to its priori randomly-assigned destination. This represents the given 

data packet traversal, and hence IP address connectivity, through the Internet. While a 

disconnected network graph would have an infinite Network Diameter (Bliss and West, 

2007), a shorter Network Diameter represents higher connectedness under lower longest 

possible distances. Therefore, longer Network Diameters are likely to have a negative 

impact on a mobile broadband operator’s Quality of Service (QoS) that is delivered to 

their end-users in the Internet periphery. Similarly, a shorter Network Diameter may 
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indicate a positive impact on a mobile broadband operator’s Quality of Service (QoS).  

Network Density 
The Network Density 𝐷𝐷 in a general graph 𝐺𝐺 is the ratio of the number of a networks’ 

edges 𝐸𝐸 over the total number of possible edges given by the binominal coefficient JKLM, 

where Network Density 𝐷𝐷 is calculated as: 

𝐷𝐷 = 2𝐸𝐸
𝑁𝑁(𝑁𝑁 − 1) 

The Network Density D for the network graphs of this case study describes the portion of 

existing connections over all the potential connections, meaning that a potential 

connection could exist between any two vertices 𝑣𝑣2	and	𝑣𝑣C	regardless of whether or not 

the connection actually exists. A network, where any vertices are directly connected, can 

be denoted as being perfectly dense. Hence, the example Network graph visualisation 𝐺𝐺𝐴𝐴 

in Figure 3-5 on the next page still employs a higher network density than the example 

network graph visualisation 𝐺𝐺𝐵𝐵, while not being perfectly dense connected.   
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Graph visualisation of fictive networks 𝑮𝑮𝑨𝑨(left) and 𝑮𝑮𝑩𝑩(right) 

 

Key
Vertex without label. 

Undirected edge, linking a pair of vertices.
Figure 3-5: Example network displaying Network Density. 

Network Modularity 
The Network Modularity, which measures strengths of a network division into clusters of 

associated IP address or Autonomous System vertices, captures the overall network 

structure. Figure 3-7 and Figure 3-8 on the following pages visualise such clusters in a 

given example network. Hence, networks with a high Network Modularity have more 

dense connections between vertices within clusters but rather sparse connections between 

vertices in different clusters. Analysing the Network Modularity helps to detect structures 

of community organisation, which might be an important measurement for the analysis 

of Autonomous System relationships under peering agreements or other business 

relationships.  

After having discussed the general network metrics, next we introduce metrics that 

capture specific characteristics of the individual network’s edges.  

Edge-Metrics 

Adjacency Matrices, In-Degree and Out-Degree 
One may start to capture the elementary properties of the connectivity for each traceroute 

𝑑𝑑 by stating its Adjacency Matrix 𝐴𝐴U = V𝑚𝑚2CU W, where 

𝑚𝑚2CU = 	 X		1, 𝑑𝑑𝑖𝑖	{𝑑𝑑, 𝑗𝑗} ∈ 𝐸𝐸,
0, 𝑜𝑜𝑑𝑑ℎ𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑  

U
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So that 𝑚𝑚2CU  is non-zero for those entries whose row-columns indices correspond to 

vertices joined by a direct edge in the network 𝐺𝐺 generated by the observed traceroute 

observations, and zeros for those that are not. Table 3-2 below represents a simple 

example Adjacency Matrix for a fictive network 𝐺𝐺𝐶𝐶  with 9 vertices (A – I) and their 

respective undirected binary edges (1 for edge exists, zero for otherwise), linking the pairs 

of these vertices as stated in Table 3-2 below. Additionally, Figure 3-6 on the next page 

visualises this network graph of 𝐺𝐺𝐶𝐶. 

Example Adjacency Matrix 

𝐺𝐺 A B C D E F G H I 

A 0 1 1 0 0 1 0 1 1 

B 1 0 0 0 0 1 1 0 1 

C 1 0 0 0 1 0 1 0 0 

D 0 0 0 0 1 0 1 1 0 

E 0 0 1 1 0 0 0 0 1 

F 1 1 0 0 0 0 0 0 0 

G 0 1 1 1 0 0 0 0 0 

H 1 0 0 1 0 0 0 0 0 

I 1 1 0 0 1 0 0 0 0 

Table 3-2: Example Adjacency Matrix 
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Graph visualisation of a fictive network 𝑮𝑮𝑪𝑪 

 

Key
Vertex with label.

Undirected edge, linking a pair of vertices.  
Figure 3-6: Example network displaying an Adjacency Matrix. 

Due to the directed nature of the collected traceroute observations, one may differentiate 

between the number of edges pointing towards a certain vertex, the vertex In-Degree 

𝑑𝑑=2def , and the number of edges pointing away from a vertex towards the next or final 

one, the vertex Out-Degree 𝑑𝑑=ghUe . The denotation of the Adjacency Matrix therefore 

allows us to express the In-Degree, 𝑑𝑑22def , and Out-Degree, 𝑑𝑑2ghUe, as being the directed 

connectivity of each vertex in a given traceroute 𝑑𝑑 from the total number of observed 

traceroutes 𝑇𝑇 originating from the three mobile broadband operators, where 𝑑𝑑 ∈ 𝑇𝑇 (total 

number of traceroutes) as: 

𝑑𝑑2jhUe = 	k𝑚𝑚2CU 			and			
C

𝑑𝑑C2def = 	k𝑚𝑚2CU 	 	
2

 

In Figure 3-4 above, vertex 1 would have an In-Degree of zero, 𝑑𝑑C2def = 	0, but an Out-

Degree of ‘1’, 𝑑𝑑2ghUe = 1. Vertex 2 would have a 𝑑𝑑C2def = 	1 and a 𝑑𝑑2ghUe = 1. This is of 

particular relevance since the traceroutes of this case study represent directed connections 

between IP address vertices. Hence, our metrics profit greatly from taking the weights of 

such edges into consideration, revealing strongly connecting vertices. Given the example 

U
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Adjacency Matrix of the fictive network 𝐺𝐺𝐶𝐶 , an Adjacency Matrix for our traceroute 

observations would indicate connections with varying weights between IP addresses. 

Therefore, an often-traversed connection or edge might, for example, obtain an In-

Degree, 𝑑𝑑C2def = 	12  and an Out-Degree, 𝑑𝑑2ghUef = 12 . Again, our collected dataset 

covers 57,122 unique traceroutes, whereas each traceroute itself can be denoted by an 

Adjacency Matrix, 𝐴𝐴U. The sum of all traceroutes’ Adjacency Matrices, one per observed 

traceroute, 𝑑𝑑 , for all 𝑑𝑑 ∈ 𝑇𝑇  is a weighted network, or final matrix 𝐴𝐴 , whereas 𝐴𝐴 =
	∑ 𝐴𝐴UU∈m . The elements 𝐴𝐴2C	of the matrix 𝐴𝐴 are non-negative numbers, showing how many 

times a given directed connection was observed between two IP addresses or Autonomous 

Systems in the set of all traceroutes, 𝑇𝑇,	equivalent to the sum of binary observations 𝐴𝐴2C
U  

for all possible traceroutes being 𝑑𝑑 ∈ 𝑇𝑇. From the final matrix =	∑ 𝐴𝐴UU∈m , one may derive 

the corresponding Weighted In- and Out-Degrees of the observed networks, a key element 

in the Statistical Network Analysis in Chapter 5 since it accounts for the above described 

weights of connectivity relationships, being: 

𝑑𝑑2oghUe = 	k k𝑚𝑚2CU 			and		𝑑𝑑Co2def 	= 	k k𝑚𝑚4CU 	
2U∈m	CU∈m	

 

where the Weighted Degree of any vertex is given by the sum of the vertex’s Weighted 

In- and Weighted Out-Degrees, as: 

𝑑𝑑	2oe = 	𝑑𝑑2o2def + 𝑑𝑑2oghUe	 

Path Lengths 
The Path Length 𝐿𝐿r of a traceroute path	𝑝𝑝 helps to quantify the structural properties of 

any graph 𝐺𝐺 by measuring typical separations between two vertices as global property. 

Assuming an undirected graph 𝐺𝐺,	one can suggest the Path Length is a sequence of 

vertices such as: 

𝐿𝐿r = 	 (𝑣𝑣t, 𝑣𝑣L, … , 𝑣𝑣d) 	∈ 𝑉𝑉 

where 𝑣𝑣r is adjacent to 𝑣𝑣rvtfor 1 ≤ 𝑝𝑝 < 𝑛𝑛. Therefore, the Path Length 𝐿𝐿r, ranging from 

𝑣𝑣t to 𝑣𝑣d	has the length of 𝑛𝑛.	Shorter Path Lengths, being used as connectivity metric, may 

be considered to facilitate a quicker transfer of information. Therefore, shorter Path 

Lengths might theoretically be valuable for reducing upstream connectivity costs while 

also improving an end-user’s perceived Quality of Service (QoS).  
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Average Path Length 
The Average Path Length, 𝐿𝐿𝑚𝑚𝑣𝑣𝑑𝑑y , can be obtained for an unweighted graph 𝐺𝐺  by 

denoting the shortest distance between two vertices, 𝑣𝑣2	and	𝑣𝑣C  as 𝑑𝑑	J𝑣𝑣2, 𝑣𝑣CM , where 

𝑣𝑣2 and 𝑣𝑣C ∈ 𝑉𝑉. Assuming that the vertex 𝑣𝑣C cannot be reached from vertex 𝑣𝑣2 , our 

Average Path Length, 𝐿𝐿𝑚𝑚𝑣𝑣𝑑𝑑y can be denoted as: 

𝐿𝐿𝑚𝑚𝑣𝑣𝑑𝑑y	 = 	 1
𝑉𝑉 ∙ (𝑉𝑉 − 1)	 ∙ 		k𝑑𝑑	J𝑣𝑣2, 𝑣𝑣CM

2{C
 

Edge Betweenness 
The Edge Betweenness is roughly defined by the number of shortest paths	𝑑𝑑𝑝𝑝2C	going 

through an edge, e, linking a pair of vertices 𝑣𝑣2	and	𝑣𝑣C 	 ∈ 𝑉𝑉. The Edge Betweenness is 

related to the amount of traffic that any edge carries between a pair of Internet Protocol 

or Autonomous System vertices in a connection.  

Graph visualisation of a fictive network 𝑮𝑮𝑫𝑫 

 

Key
Vertex with label 

Undirected edge, linking a pair of vertices. 
Figure 3-7: Example network displaying Edge Betweenness. 

 

 

U
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Considering the graph visualisation of an example network 𝐺𝐺}	in Figure 3-7, the Edge 

Betweenness for 𝑣𝑣t	and	𝑣𝑣L would be ‘1’, similar to a multitude of other vertices in this 

network. The Edge Betweenness for 𝑣𝑣L	and	𝑣𝑣~ would also be ‘1’ but providing a total 

amount of flow it carries would be ‘33’ (linked to 𝑣𝑣L	)  x ‘11’  (linked to 𝑣𝑣~ ) = ‘33’. This 

provides structural implications. The graph visualisation of the fictive network 𝐺𝐺}	in 

Figure 3-7 is bi-partitioned, meaning that there are two almost separate sub-graphs ‘C’

and ‘F’ of the Network (visualised in Figure 3-8 below). Those vertices with a high Edge 

Betweenness carry the biggest load and occupy structural gatekeeping or congestion roles 

in a network. The vertices 𝑣𝑣~ and 𝑣𝑣� linking the bi-partioned sub-graphs are therefore of 

strong importance for this example network. Here, vertex 𝑣𝑣~ not only connects the vertex 

clusters ‘A’ and ‘B’ but also provides access to the vertex clusters ‘D’,‘E’ and ‘F’.  

Graph visualisation of a fictive network 𝑮𝑮𝑫𝑫

 

Key 

Vertex with label. 
Undirected edge, linking a pair of vertices. 

Figure 3-8: Example network displaying Neighbourhood Overlap. 
U
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Neighbourhood Overlap 
The Neighbourhood Overlap of an edge 𝑑𝑑 connecting 𝑣𝑣2	and	𝑣𝑣C  covers the number of 

vertices that are neighbours of 𝑣𝑣2	and	𝑣𝑣C over the number of vertices that are neighbours 

of at least one of both adjacent vertices, 𝑣𝑣2	or	𝑣𝑣C. Hence, the Neighbourhood Overlap 

represents the intersection of the union of the neighbours. The key feature of the 

Neighbourhood Overlap is that the ratio is zero when the numerator is zero, meaning that 

the edge 𝑑𝑑 is a local bridge (Easley and Kleinberg, 2010, p.47). Edges, and therefore any 

hops of a traceroute with a very small Neighbourhood Overlap have almost no other 

vertex in common. Therefore, the smaller the Neighbourhood Overlap, the more unique 

the connection. Similarly, the larger the Neighbourhood Overlap, the more frequent or 

common the connection. This is especially interesting when looking at the relationships 

between a set of Autonomous Systems vertices.  

Embeddedness 
The Embeddedness of an edge 𝑑𝑑 in a given network is the number of common neighbours 

the two endpoints have (Easley and Kleinberg, 2010). By assuming a graph visualisation 

of the fictive network 𝐺𝐺Ç	with four vertices, 𝑣𝑣t ,𝑣𝑣L, 𝑣𝑣É ,𝑣𝑣Ñ in the following Figure 3-9, 

Vertex 𝑣𝑣t has an edge to the three vertices 𝑣𝑣L , 𝑣𝑣É and	𝑣𝑣Ñ	while Vertex 𝑣𝑣L has edges to 

vertices	𝑣𝑣t and 𝑣𝑣Ñ. The edge between vertex 𝑣𝑣t	and vertex 𝑣𝑣L shows an Embeddedness 

of ‘1’ since vertex 𝑣𝑣t and vertex 𝑣𝑣L have one common neighbour, 𝑣𝑣Ñ.  
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Graph visualisation of a fictive network 𝑮𝑮𝑬𝑬 

 

Key 
Vertex with label. 

Undirected edge, linking a pair of vertices.
Figure 3-9: Example network displaying Embeddedness. 

Embeddedness is a social network theory metric frequently used in the analysis of 

sociological problems and can be seen as a property of structure (Kogut et al., 1992), in 

which vertices (such as social actors) behave and act as being embedded in concrete and

ongoing systems of social relationships, relating to macro-level interests of markets and 

hierarchies (Granovetter, 1985, p.507). The Embeddedness is therefore an interesting 

measurement for the analysis of potential cooperation among Internet Protocol addresses

or Autonomous Systems since those are most likely manually added to the routing tables

for connectivity purposes.  

Vertex-Metrics

Clustering Coefficient  
The Clustering Coefficient, ℂ	2	, or network transitivity, of each vertex, 𝑣𝑣2 in a directed 

graph is the ratio between the existing edges, 𝐸𝐸, amongst all other vertices, 𝑉𝑉 , being 

connected to this same vertex 𝑣𝑣2  (in our application either an IP address or an 

Autonomous System vertex, depending on the level of granularity adopted) over the 

maximum number of potential interconnections (Boccaletti et al., 2006, p.10). Therefore, 

the measure of Clustering Coefficient captures mutual interconnections of direct 

neighbour-vertices 𝑘𝑘2, of any vertex 𝑣𝑣2, whereas 𝑣𝑣2 ∈ 𝑉𝑉 measures the probability that any 

peers (neighbours) of a vertex are connected between themselves, referring to a Small-

U
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World Network phenomenon (Watts & Strogatz, 1998). This metric is of particular 

importance for Autonomous System vertices and the internetworking of the set of 

Autonomous System vertices, including their neighbours and therefore helps to measure 

interconnection and network structuring (Vázquez, Pastor-Satorras and Vespignani, 

2002, p.3). We set the Clustering Coefficient, ℂ	2	as: 

ℂ	2	 =
2|{𝑑𝑑âä: 𝑣𝑣â, 𝑣𝑣ä ∈ 𝑁𝑁2, 𝑑𝑑âä ∈ 𝐸𝐸}|

𝑘𝑘2(𝑘𝑘2 − 1)  

where 𝑁𝑁2 is the set of vertexes directly connected to vertex 𝑣𝑣2 (or 𝑣𝑣2’s neighbours). The 

Average Clustering Coefficient is the mean value of the individual Clustering Coefficients 

ℂ	2	. 

Weighted Clustering Coefficient 
When studying Complex Networks, Barrat et al. (2004) have shown that the Weighted 

Clustering Coefficient, ℂ	2o, is needed to explore structural organisation and structural 

network information in non-trivial systems such as the Internet. Therefore, the Weighted 

Clustering Coefficient gives a measure of local cohesiveness, which takes the amount of 

vertex interaction intensity, and this Internet traffic for each local triplet, into 

consideration. The Weighted Clustering Coefficient can be denoted as:  

ℂ	2o = 1
𝑑𝑑2(𝑘𝑘2 − 1)k

(𝑒𝑒2,C + 𝑒𝑒2,å)
2

C,å
𝑚𝑚2,C𝑚𝑚2,å𝑚𝑚C,å 

where 𝑚𝑚2,C  is the element of an Adjacency Matrix; in row i and column j,  𝑘𝑘2 is the degree 

of vertex 𝑑𝑑; 𝑑𝑑2(𝑘𝑘2 − 1) represents the normalisation factor that accounts for the weight of 

each edges multiplied to the maximum number of possible edge triangles that participate. 

This ensures that 0	 ≤ ℂ	2o2
o ≤ 1 . Moreover, ℂ	2o  recovers the topological Clustering 

Coefficient as long as 𝑒𝑒2,C = 𝑐𝑐𝑜𝑜𝑛𝑛𝑑𝑑𝑑𝑑. 

Centrality-Metrics 

Degree Centrality 
This metric simply refers to the number of edges that a vertex, 𝑣𝑣2, has. Moreover, it 

assumes linearity, meaning that if vertex 𝑣𝑣2 has twice as many connected vertices than 

vertex 𝑣𝑣C, then vertex 𝑣𝑣2 is twice as important.  
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𝑐𝑐	2e =k 𝑣𝑣2,C
C:C{2

 

In a directed graph, Degree Centrality is usually measured through In-Degree Centrality 

for incoming connections to a vertex: 

𝑐𝑐	22def = k 𝑣𝑣C,2
C:C{2

 

and Out-Degree Centrality for a vertex’ outgoing connection.  

𝑐𝑐	2ghUef = k 𝑣𝑣2,C
C:C{2

 

In relation to an Autonomous System network, vertices with a lower Degree Centrality 

would be more peripheral in the network, whereas Autonomous Systems with a higher 

Degree Centrality would be more central. 

Betweenness Centrality 
The Betweenness Centrality is used to capture a degree of unavoidability of a given 

vertex, showing the proportion of times that a vertex appears on the shortest paths 

between any other two vertices, or how many pairs of vertices would have to go through 

a certain vertex in order to reach one another in a minimum number of hops (Freeman, 

1977). When stating statistical theory of Internet exploration, Dall’Asta et al. (2005) note 

that the Betweenness Centrality of a vertex 𝑣𝑣2,	  𝐶𝐶é	(𝑣𝑣2) , covers many topological 

properties very well. According to Kolaczyk (2009), Betweenness Centrality summarises 

the extent to which a vertex is located between other pairs of vertices. One can therefore 

denote Betweenness Centrality by:  

𝐶𝐶é	(𝑣𝑣2) = 	k𝑑𝑑𝑝𝑝2C	(𝑣𝑣2)/	𝑑𝑑𝑝𝑝2C	
2{C

 

where 𝑑𝑑𝑝𝑝2C	(𝑣𝑣)  represents the number of shortest paths connecting 𝑑𝑑  and 𝑗𝑗 , passing 

through 𝑣𝑣 and 	𝑑𝑑𝑝𝑝2C	, the total number of shortest paths. Here, the Betweenness Centrality 

assumes that communication between Autonomous System vertices always follow the 

shortest paths. This aspect is unlikely to be applicable in real-world networks just as those 

mobile broadband ones in this dissertation. Based on this logic, we therefore take a 

different perspective given a statement of Dall’Asta et al. (2005). Nevertheless, the metric 

will still be analysed due to its interesting vertex location properties.  
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Closeness Centrality 
Closeness Centrality quantifies the importance of a vertex based on the inverse of the 

average distance between a vertex and all the other vertices of a network (Freeman, 1978; 

Wassermann and Faust, 1995). The classic Closeness Centrality is proposed by Bavelas 

(1950), Beauchamp (1965) and Sabidussi (1966) as:  

𝐶𝐶$	(𝑗𝑗) =k 1
𝑑𝑑𝑝𝑝2C	(𝑣𝑣)	2

 

where 𝑑𝑑𝑝𝑝2C	(𝑣𝑣)	represents the shortest path connecting the vertices 𝑑𝑑  and 𝑗𝑗	in a given 

Network. Closeness Centrality shows how close a vertex is to the other network vertices 

(Kolaczyk, 2009). Just like above, the Closeness Centrality assumes the existence of 

shortest paths between Autonomous Systems, which does not represent real-world 

network functioning of our mobile broadband operator networks. 

Eigenvector Centrality 
The Eigenvector Centrality is a measurement of vertex influence in a given network. 

Therefore, the metric assigns scores for given vertices. The score is higher for those 

vertices that connect to high-scoring ones rather than low-scoring vertices in the overall 

network. Hence, high-scoring vertices contribute more to a scoring than low-scoring 

ones. Let us assume a given graph 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) with |V| vertices and 𝐴𝐴U = V𝑚𝑚2CU W being the 

graph	𝐺𝐺′𝑑𝑑 Adjacency Matrix again where  

𝑚𝑚2CU = 	 X		1, 𝑑𝑑𝑖𝑖	{𝑑𝑑, 𝑗𝑗} ∈ 𝐸𝐸,
0, 𝑜𝑜𝑑𝑑ℎ𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑  

then the relative Eigenvector Centrality score 𝑐𝑐	2f	can be defined as  

𝑐𝑐	2f =
1
𝜆𝜆 k 𝑐𝑐	Cf
C∈ë(2)

 

where 𝑀𝑀(𝑑𝑑)	represents the neighbors of the vertex i	and where the eigenvalues 𝜆𝜆  are 

constant. This can be denoted as the eigenvector equation in vector notation as: 

𝐴𝐴𝑐𝑐f = 	𝜆𝜆𝑐𝑐f 

However, this might reveal a multitude of eigenvalues 𝜆𝜆 for which a non-zero eigenvector 

solution exists. Hence, we set the requirement that all entries in the eigenvector are non-

zero (Perron-Frobenius Theoreom), meaning that only the greatest eigenvalue results in 
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a desired measure. Next, the 𝑑𝑑Uåcomponent of the related eigenvector provides the scoring 

to vertex i. The eigenvector can only be defined up to a certain factor. Hence, vertices can 

only obtain a ratio of the centralities. Defining the absolute score comes after normalising 

the eigenvector that the sum of all vertices is ‘1’. Here, an Autonomous System vertex 𝑑𝑑 
with a larger Eigenvector Centrality 𝑐𝑐	2f would therefore show the strongest influence in 

a given network.  

Complex Network Models 
Complex Network models refer to non-trivial structural network properties that occur in 

the modelling and simulation of real-world network graph structures. In the following 

paragraphs, we aim to explain the general differences between a number of such Complex 

Network models using the specific algorithms employed.  

Barabási-Albert Model 
The Barabási-Albert Model is a random network model to simulate ‘rich-get-richer’ 

effects, called preferential attachments. Here, we explain the Barabási-Albert dynamic 

network procedures that simulate alternative scenarios of network growth emergence. A 

vertex 𝑣𝑣2 is therefore more likely to attach to vertices that have higher Degrees. Vertices 

with a Degree of ‘0’ remain disconnected from the rest of the network whereas the initial 

network begins with a number of vertices, 𝑚𝑚g. If 𝑚𝑚g ≥ 2 then the Degree of each vertex 

should be ‘1’. The BA Model therefore constantly adds new vertices under the rule 

mentioned above. The probability 𝑝𝑝=> that vertices are connected to a vertex 𝑑𝑑 is denoted 

as: 

𝑝𝑝=> =
𝑑𝑑𝑑𝑑𝑑𝑑	(𝑣𝑣2)	

∑ 𝑑𝑑𝑑𝑑𝑑𝑑	(𝑣𝑣C)=? ) 

where 𝑑𝑑𝑑𝑑𝑑𝑑	(𝑣𝑣2) represents the Degree of the vertex 𝑣𝑣2  (shown above) and the sum is 

made over all pre-existing vertices 𝑣𝑣C . Therefore, strongly-linked vertices, here 

connectivity-important Autonomous Systems, accumulate quickly into hubs since they 

have a stronger preference attached to them. The underlying Degree distribution is Scale-

Free and can be denoted as a power-law degree distribution: 

	𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑)~𝑑𝑑𝑑𝑑𝑑𝑑	óÉ 

Section 2.3.2 in the Literature Review revealed, that the Internet shows, at different levels 

of granularities, these power-law degree distributions. Hence, we consider the Barabási-
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Albert Model for network growth as very valuable to simulate network growth emergence 

in mobile broadband operator networks (Barabási and Albert, 2002). This might be 

valuable to study connectivity simulations. 

3.4.3 Graph Visualisation Analysis 
The Graph Visualisation Analysis uses graph-drawing techniques to visualise network 

diagrams consisting of their vertices and edges linking these vertices in two-dimensional 

Euclidean spaces. Graph Visualisation Analysis is closely related to Graph and Network 

Theory. Moreover, there is a great research interest in visualising the structure of the 

Internet. The La Jolla, CA – based Center for Applied Internet Data Analysis has engaged 

in Internet visualisation efforts since the year 2000 (CAIDA, 2015). A great number of 

possible network graph visualisations are covered as the ‘Internet Topology Zoo’ at the 

University of Adelaide (2016). A common framework for visualising and analysing the 

structure of the Internet graphs are the different granularities that can be adopted, as stated 

in section 2.3.4 above. Given the visualisation efforts, it is important to have a clear 

understanding of the graph visualisations that are worth analysing to gain a structural 

understanding. We consider the Graph Visualisation Analysis as an important step in 

further exploring our findings from the Descriptive and Complex Network Analysis in 

Chapter 4. Visualising the mobile broadband operator network graphs might yield 

additional insights for understanding key structural properties. The following section 

below discusses the reasoning for choosing certain graph visualisation and simulation 

algorithms and our choice of distinctive visualisation layouts over others.  

Graph Visualisation Algorithms  

Kleinberg Small-World Network Model 
A Small-World Network model refers to a mathematical representation where most 

vertices in a given network graph are not neighbours of one another but instead, the 

neighbours of given network vertices are likely to be neighbours of each other so that 

most network vertices are reachable from every other vertex given a small number of 

hops (or steps). This means that relatively short paths exist between any two vertices in a 

given network (Watts and Strogatz, 1998, p.440). Moreover, the typical distance between 

randomly chosen vertices in a Small-World Network grows proportionally to the 

logarithm of the number of all vertices in a given network, while Clustering Coefficients 

in Small-World Networks are naturally, given the above explained effect, large (Watts 

and Strogatz, 1998, p.442).  
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A suitable algorithm to study the Small-World Network effect is Kleinberg’s Small-World 

Network model (Kleinberg, 2000). This model uses so-called greedy routing algorithms. 

This means, in our context, that an IP address vertex in a given traceroute path could 

choose the next vertex it believes to be closest to the chosen destination, based on the 

Small-World Network effects (Kleinberg, 2000). This effect in the Kleinberg Model is 

achieved by adding long-range edges to the network, which tend to favour vertices that 

are closer in distance (not geo-distance), rather than farther. The Small-World Network 

phenomena are well visualised in using graph visualisation algorithms such as the 

Layered Layout by Kuchar (2012), which visualises vertices in different layers, 

depending on the values of a chosen vertex property. 
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Small-World Network graph visualisation 

 

Key
Vertex without label. 

Undirected edge, linking a pair of vertices. 
Figure 3-10: Small-World Network graph visualisation. 

Barabási-Albert (BA) Scale-Free Model
Scale-Free Network models are those whose Degree distribution follows Pareto or  

power-law degree distributions. Albert, Jeong and Barabási (1999) find that the World 

Wide Web follows such a power-law degree distribution and hence Scale-Free Network 

properties. The Barabási-Albert dynamic network algorithm simulates alternative 

scenarios of network growth emergence (Barabási and Albert, 2002). These growth 

features are achieved through preferential attachment, referred to as ‘rich-get-richer’ 

effects given the power-law degree distribution. Barabási Labs (2013) refer to three 

distinct Barabási-Albert Scale-Free Network models: 

• Standard Model with vertex growth and preferential attachment to edges. 

• Model A with vertex growth and uniform attachment of edges. 

• Model B without vertex growth but preferential attachment to edges.  

While Onnela et al. (2007) use the Barabási-Albert Scale-Free Network models to 

uncover the structure and tie strength in mobile communication networks, Faloutsos, 

U
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Faloutsos and Faloutsos (1999) believe that the Internet has a power-law degree 

distribution, which is criticised by a number of researchers including Willinger, Alderson 

and Doyle (2009) and Willinger and Roughan (2013). Nevertheless, we believe that the 

Barabási-Albert Scale-Free Network models are a good simulator choice to explore 

scenarios of network growth emergence for traceroute-based connectivity. Hence, each 

of the three Barabási-Albert Scale-Free Network models were utilised to study the three 

mobile broadband operator network graph visualisations.  

Scale-Free Network graph visualisation 

 

Key 

Vertex without label. 
Undirected edge, linking a pair of vertices. 

Figure 3-11: Scale-Free Network graph visualisation. 

Scale-Free Network models are often visualised in using so-called force-directed 

Layouts. We chose two of these Layouts given their specific properties (a more 

comprehensive description of these Layouts is provided in the Literature Review, see 

section 2.3.4). Here, the Force Atlas 2 Layout is considered suitable for visualising Scale-

Free Networks with between 10 and 10,000 vertices, which well suited to our traceroute

observations (Jacomy et al., 2014). The Force Atlas 2 Layout incorporates a force-

directed algorithm, which allows to place vertices in a two-dimensional space without 

crossing edges too much between the pairs of vertices, capturing structural properties of 

U
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a given network. Second, the Fruchterman-Reingold (1991) graph visualisation Layout 

is, just like the Force Atlas 2 Layout, a force-directed layout algorithm.  

k-core decomposition  
The k-core decomposition algorithm helps to study hierarchical properties of large scale 

networks through identifying particular subsets of a given network (Alvarez-Hamelin et 

al., 2005a, p.22), while being usually employed in biological settings to analyse and 

predict protein interactions (Seidmann, 1983; Alvarez-Hamelin et al., 2005b). The 

algorithm divides networks into different subsets, called k-cores. Therefore, the k-core 

decomposition focuses on the network regions with increasing centrality and 

connectedness. More central k-cores are, therefore, inhabiting more densely 

interconnected network vertices as Figure 3-12 below illustrates (through k-cores 1 – 3).  

k-core decomposition graph visualisation

 

Key

Vertex without label. 
Undirected edge, linking a pair of vertices. 

Figure 3-12: k-core decomposition graph visualisation. 

According to Alvarez-Hamelin et al. (2005b; 2008), the k-core decomposition allows the 

finding of connectivity paths with specific Quality of Service (QoS), especially when 

studying models of the Internet at Autonomous System granularity. Hence, the k-core 

decomposition seemed to be a very applicable modelling approach to analyse the key IP 

U
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address and Autonomous System vertices and hence connectedness regions of potential 

bottlenecks in the upstream Internet market structure, originating from the three Tamil 

Nadu mobile broadband operators of interest. 

3.5 Exploratory Steps of Analysis 
This section covers all exploratory iterations that we used in following the Dewey (1941) 

‘warranted assertions’ inquiry process as explained in the sections 3.2 above (see also 

Boyles, 2006). Our choice of inquiry iteration steps incorporated our reflections on 

previous actions and beliefs while always keeping in mind the research aims and 

objectives and our abducted Working Hypotheses (see section 2.5) as end goals. For each 

subsequent inquiry iteration, we reconsidered the nature of the problem whereas our 

analytical steps were pragmatically suggested solutions, followed by taking and reporting 

analytical actions. The following inquiry iterations were employed throughout Chapter 4 

and Chapter 5. In detail, Chapter 4 covered the Iterations 1 to 6, whereas Chapter 5 

thoroughly covered Iteration 7. We start explaining these iteration steps by mentioning 

the underlying reasoning at the beginning of each section.  

• Iteration 1: Descriptive Network Analysis (section 4.1). 

• Iteration 2: Complex Network Analysis (IP granularity), (section 4.2). 

• Iteration 3: Graph Visualisation Analysis (IP granularity), (section 4.2.6). 

• Iteration 4: Complex Network Analysis (AS granularity), (section 4.3). 

• Iteration 5: Graph Visualisation Analysis (AS granularity), (section 4.3.7). 

• Iteration 6: Autonomous System Relationships (AS granularity), (section 4.4). 

• Iteration 7: Statistical Network Analysis (AS granularity), (Chapter 5). 

3.5.1 Iteration 1: Descriptive Analysis 
The aim of the Descriptive Analysis of the Iteration 1 was to first gain a feeling and 

understanding of the collected 731,200 traceroute observations from our active Internet 

periphery measurements, originating from the three Tamil Nadu mobile broadband 

operators of interest. This step was necessary in order to determine the upcoming 

iterations. The outcomes of Iteration 1 were reported in section 4.1. 

Hence, as a first step for quantitatively exploring the features of the collected traceroute 

observations, we had to get the *.txt traceroute’s raw data as well as the readme files 

from the Portolan (2015) Network Tools administrators (see section 3.3.4 above). Next, 
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we opened the traceroute raw data file into the spreadsheet analysis tool Excel. For 

further usage, we added a header row, where the columns were named according to the 

information provided by the Portolan (2015) Network Tools Administrator and saved the 

respective file as ‘india_traceroute_2015_03.xlsx’. The header descriptions provided a 

clearer view of the obtained traceroute raw dataset. Next, we counted the total number of 

observations per data collection days by filtering the days containing the ‘YYYY-MM-

DD’ days of interest in the timestamp column (see Figure 4-1). To get a better sense of 

the amount of traceroutes, we counted the number of observed traceroutes by copying 

the traceroute identifier column and reported them into a new sheet named ‘Number of 

Traceroutes’ and removed existing duplicates. This allowed us to calculate the average 

number of IP observations per traceroute. Next, we estimated the number of IP source 

addresses and IP hop addresses by copying the column of IP source addresses and pasting 

them into a new sheet called ‘Number IP source’ and again, removed existing duplicates. 

We followed the same approach for the number of IP hop addresses and denoted this 

sheet ‘Number IP hop’. Then we copied both the number of unique IP source addresses 

and the unique IP hop addresses into a new column in a new sheet called ‘unique IP 

addresses’. This allowed us to get a sense for all IP addresses involved in the 731,200 

traceroute hop observations. By filtering the campaign identifier by Autonomous System 

Numbers, we obtained the number of traceroute observations that originated from each 

Autonomous System as well as the percentage of observations compared to the total 

observations. This was a crucial step since only those hop observations that were 

originating from this case studies’ three Tamil Nadu mobile broadband operators were of 

interest. To find out which of the campaign identifiers were of relevance, we utilised the 

Autonomous System Number lookup feature in the Hurricane Electric (2016) BGP-

Toolkit and double-checked the results with UltraTools (2016) and Team Cymru (2016). 

This allowed us to obtain the AS Numbers and for the relevant campaign identifiers of 

the three mobile broadband operators of interest. To measure if these observations were 

enough narrowed-down, we further filtered the operating system of the device, only 

focusing on those observations that originated from the utilised Android smartphones (see 

section 3.3.4). The obtained traceroute hop observations represented those per operator 

observations of interest. Based on these observations, we calculated the average number 

of unique traceroute hop and source observations per total traceroute observation 

originating from a specific Autonomous System. Furthermore, by obtaining the range for 

the lowest and highest number of the Round-Trip-Time (RTT) column, we were able to 
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shape an initial view of the Quality of Service (QoS) that an end-user might experience. 

This range was subsequently applied to all observations originating from our specific 

mobile broadband operators and added by a calculation of the variance between the 

lowest and highest Round-Trip-Times. Finally, we analysed and reported those 

traceroute observations originating from a particular Autonomous System Number that 

contained skips in the traceroute, an indicator for packet loss, again a potential indicator 

an end-user’s perceived Quality of Service (QoS).   

3.5.2 Iteration 2: Complex Network Analysis (IP) 
Given the general understanding of the obtained traceroute observations from Iteration 1 

above, Iteration 2 aimed to gain an initial understanding of upstream Internet market 

structure of the three Tamil Nadu mobile broadband operator networks using Complex 

Network Analysis of the data at Internet Protocol (IP) granularity. The outcomes of 

Iteration 2 were reported in Chapter 4. 

To explore the collected traceroute hop observations at IP granularity, we utilised the 

Open Source Network Exploration Tool Gephi (2016). First, we opened our 

‘india_traceroute_2015_03.xlsx’ raw data file in Excel, containing the collected 

traceroute hop observations from our active Internet periphery measurements using 

Portolan (2015). Unlike before, we deleted all columns except the source IP and hop IP 

address ones. Next, we added a header row and named the source IP address column 

‘Source’ and the hop IP address column ‘Target’, a prerequisite for importing edge-tables 

into Gephi (2016). The file was then saved twice, once as 

‘complete_IP_import_for_gephi.xlsx’ and then as ‘complete_IP_import_for_gephi.csv’ 

for the following import into Gephi (2016).  

Once saved, we started Gephi (2016), created a new project and imported the elaborated 

*.csv file. Since our traceroute raw data comprised of connections between IP addresses, 

we imported the file as an edges-table, rather than a vertex-table, resulting in a directed 

graph where IP addresses were linked to their neighbouring IP addresses. Once the file 

was imported, we were able to calculate the relevant Complex Network metrics by using 

Gephi (2016)’s statistics functions. Next, we saved the file with the calculated metrics as 

‘complete_IP.gephi’. To calculate the Weighted Clustering Coefficient, we first had to 

download and install the Complex Generators plugin, generated by Bartosiak (2012), 

which was available on the Gephi Marketplace. Once the relevant Complex Network 
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metrics were calculated, we exported the resulting data table (including the calculated 

metrics) as ‘complete_IP_after_gephi.csv’. Next, we separated the traceroute hop 

observations of interest (starting from the three relevant mobile broadband operators) 

from the total number of observations. For this purpose, we again opened the raw data 

file in Excel and saved it as ‘Raw_Data_IP_Separation.xlsx’. Instead of deleting the same 

columns as before, we kept the source IP address, the hop IP address and additionally the 

campaign identifier columns. This allowed us to separate those traceroute hop 

observations that originated from the three mobile broadband providers of interest. 

Therefore, we filtered the campaign identifier column by ‘WORLDin55831’ for Aircel, 

‘WORLDin45609’ for Bharti Airtel and ‘WORLDin38266’ for Vodafone. The 

numbering represented their respective Autonomous System Numbers, identified through 

Hurricane Electric (2016) and filtered by the data collection times and locations, as further 

described in Chapter 4. Each of the filtered source and hop IP addresses were then saved 

in separate sheets, named with the respective Autonomous System Number and operator 

name. Next, we added a header row again while naming the source IP address column 

‘Source’ and the hop IP address column ‘Target’. The obtained files were then exported 

as a *.csv file, while the AS Number in the naming referred to one of the three mobile 

broadband providers of interest, namely ‘AS55831’ for Aircel, ‘AS45609’ for Bharti 

Airtel and ‘AS38266’ for Vodafone. Our analysis file was saved as 

‘Raw_Data_IP_Separation.xlsx’. One at a time, each of the three generated *.csv files 

were then imported as an edge-table into Gephi (2016). Once imported, we followed the 

previous steps to calculate the relevant Complex Network metrics (see above) and 

reported our findings in Chapter 4. To obtain the vertex strength distributions of the three 

operator networks (utilised to capture the power-law degree distributions), we first 

exported the Degree column from Gephi (2016) and named the file as 

‘operatorname_degree_distribution.csv’. To generate the respective Degree distribution 

plots, we used the Statistical Computing Tool R (2016). Here, the obtained *.csv files 

were transformed to *.txt ones by simply renaming them. Once saved, we opened R 

(2016) and computed the plot as the following script example for Aircel, see Appendices. 

The generated power-law degree distribution plots (see script in Appendices) were then 

reported at the appropriate place in Chapter 4 (section 4.2.4). To further explore the 

obtained results, the following inquiry Iteration 3 looked at the Graph Visualisation 

Analysis of our three Tamil Nadu mobile broadband operator networks.  
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3.5.3 Iteration 3: Graph Visualisation Analysis (IP) 
The above Iteration 2 provided us with initial structural insights for the three mobile 

broadband operator networks at IP granularity, while also indicating, based on the 

general, edge and vertex metrics, that the structuring likely followed a Scale-Free 

Network model. As a result of this learning, we wanted to know more about the structural 

properties of the three operator networks, while also gaining insight into connectivity 

importance of certain vertices that might indicate structural bottlenecks (given the 

apparent Scale-Free Network nature) for providing upstream internetworking features of 

the three mobile broadband operator networks. Therefore, exploring the first two network 

models (Small-World and Scale-Free) of the Graph Visualisation Analysis (and 

simulation of Scale-Free Network models) at IP granularity in this Iteration 3 aimed to 

better understand the structural properties of the three mobile broadband operator 

networks. The Small-World Network features were therefore analysed using the 

Kleinberg (2000) algorithm (see section 3.4.3 above), while the Barabási-Albert Models 

(Standard Model, Model A and Model B, see Barabásilabs (2013)) were used to simulate 

the Scale-Free Network nature of the operator networks. Computing the k-core 

decomposition algorithm and graph visualisation using R (2016) upon the work of 

Alvarez-Hamelin et al. (2006) was then chosen to reveal those vertices, indicating 

potential structural internetworking bottlenecks. Hence, this section starts by describing 

the steps to generate the Small-World Network Model below, followed by the Barabási-

Albert Scale-Free Network Models and lastly the k-core decomposition. The outcomes of 

Iteration 3 were reported in section 4.2.6. 

Small-World Network Model 
To generate the Small-World graph visualisations, we first re-opened Gephi (2016), 

activated the Complex Generators plugin and created a new project. Next, we imported 

our previously generated raw data *.csv files as edge tables (e.g. ‘ 

AS38266_for_gephi.csv’ for Vodafone) and started the Kleinberg algorithm by following 

‘File > Generate > Kleinberg Small World Model’ in Gephi (2016). The graph 

visualisation layout was set at the Layered Layout by Kuchar (2012), which we had to 

download (from the Gephi Marketplace) and install prior to usage. Before visualising the 

graph, we computed the Weighted Average Clustering Coefficient measurements in the 

statistics section of Gephi (2016). Next, we chose the Weighted Average Clustering 

Coefficient as distance parameter in the Layered Layout graph visualisation. Once the 

graph visualisation was generated, we coloured the visualisation background ‘white’ and 
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the edges ‘blue’ and exported the resulting visualisations as *.png files while saving the 

models (e.g. as ‘AS38266_Kleinberg_blue.gephi’ for Vodafone). Lastly, we reported our 

findings alongside the utilised graph visualisation parameters. These were set in the Open 

Source Network Exploration Tool Gephi (2016) as: 

• The calculated Weighted Clustering Coefficient. 

• Layer Distance of 1250.  

• Edge-thickness of 0.5, whereas due to readability purposes, we visualised the  

Gòjôöõjúù with a smaller edge-thickness of 0.25.  

• Size of lattice: 10. 

• Lattice distance to local contacts: 2. 

• Long range contacts: 2 

• Clustering exponent: 0. 

•  ‘Black’ vertex colouring. 

•  ‘Light blue’ edge colouring.  

Scale-Free Network Model 
Obtaining the Barabási-Albert Scale-Free graph visualisations followed a somewhat 

similar approach. Here, we opened Gephi (2016) again and activated the Complex 

Generators plugin. Next, we started and saved a new project as *.gephi file (e.g. 

‘AS55831_BAModel.gephi’ for Aircel) and imported the  raw data *.csv file (e.g. 

‘AS38266_for_gephi.csv’ for Vodafone) as edge table. We started the BA Standard 

Model algorithm by following ‘File > Generate > Barabási Albert Scale-Free Model’. 

Prior to this generation, we had to obtain the number of unique vertices for the graph. 

This information is found by opening ‘Window > Context’. The number of unique 

vertices was then included as ‘N Number of nodes in generated network’ (nodes is a 

synonym for vertices) in the settings of the Barabási-Albert Scale-Free Network 

algorithm. ‘M, the number of edges coming with every new node’ and ‘m0, number of 

nodes at the start time’ remained at ‘1’. Furthermore, we ticked the box to consider the 

existing vertices, representing the existing IP addresses or Autonomous Systems in the 

given three mobile broadband operator networks. Once the algorithm event finished the 

calculations, we generated the graph visualisations using the Force Atlas 2 Layout. To 

make the visualisation more readable, we made use of a specific set of graph layout 

parameters. Moreover, we changed the visualisation background colour again to ‘white’ 

and the colour of the edges to ‘blue’. Once the graph visualisations were generated, we 
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explored its components by setting a ‘k-core parameter’ as ‘topology query’. The 

respective graph visualisations were then exported as *.png files (e.g. 

‘AS55831_BAModel_blue.png’ for Aircel). Next, we followed similar steps to generate 

the graph visualisations of the Barabási-Albert Model A and the Barabási-Albert Model 

B. Hence, we created and saved two new projects as *.gephi files (e.g. 

‘AS45609_BAModel_nogrowth_blue.gephi’ and ‘AS45609_BAModel_uniformattach 

ment_blue.gephi’ for Bharti Airtel).  

We then launched the BA-model algorithm without growth by following ‘File > Generate 

> Barabási Albert Scale-Free Model B (no growth)’ and the BA-model algorithm without 

preferential attachment by following ‘File > Generate > Barabási Albert Scale-Free 

Model A (uniform attachment)’. For both models, we chose the number of unique vertices 

for ‘N Number of nodes in generated network’, obtained as stated above. Once the 

networks were generated, we again utilised the Force Atlas 2 Layout to visualise the 

generated graphs and exported the files in the *.png formats (e.g. 

‘AS45609_BAModel_nogrowth_blue.png’ and ‘AS45609_BAModel_uniformattachme 

nt_blue.png’ for Bharti Airtel). Alongside their respective descriptions, the graph 

visualisations were then reported in section 4.2.6 of Chapter 4, where we also stated the 

following visualisation parameters to ensure comparability between the mobile 

broadband operator graph visualisations: 

• Edge weight of 1 represents a normal edge influence.  

• Fixed visualisation scale of 20 provides the graph visualisation with less 

repulsion.  

• Normal gravity attraction of 1 assures that vertices are not leaving the two-

dimensional Euclidean space. 

• ‘Black’ vertex colouring.  

• ‘Light-blue’ edge colouring.  

k-core decomposition 
Due to a lack of a suitable Gephi (2016) plugins, we modelled the computation and 

visualisation of the k-core decomposition as proposed by Alvarez-Hamelin et al. (2008) 

by using the Statistical Computing Tool R (2016). Hence, we installed the Network 

Analysis and Visualisation package ‘igraph’ by entering ‘>install.packages(“igraph“)’ in 

the R (2016) console. Once this package was installed, we wrote a R-script (see script in 
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Appendices), on the basis of Casas-Roma (2015), for computing and visualising the three 

mobile broadband operator networks’ k-core decompositions. For readability purposes, 

we included comments (marked with a hashtag) in the script (see script in Appendices) 

below. However, this script only functions once the imported *.csv is cleaned from any 

header rows and identifier columns. These files were saved e.g. as 

‘AS45609_Bharti_for_R.csv’ for Bharti Airtel. Having imported the respective *.csv 

files, R (2016) then calculated the k-core decomposition utilising the elaborated script, a 

task which needed significant computing resources. The resulting graph visualisations for 

the three Tamil Nadu mobile broadband operator networks were then exported and saved 

(e.g. as ‘BhartiAirtel_kcore_decomposition.png’ for Bharti Airtel). The exploration of 

the findings, alongside a comparison with the previous graph visualisations, was then also 

reported in section 4.2.6 of Chapter 4. 

3.5.4 Iteration 4: Complex Network Analysis (AS)  
The previous Iterations 1, 2 and 3 at Internet Protocol granularity above indicated that a 

Complex Network Analysis at Autonomous System (AS) granularity would bring 

additional value to reveal the structural importance of certain internetworking 

Autonomous Systems (rather than their lower granularity Internet Protocol addresses) in 

the upstream Internet market structure. Hence, after transforming our collected traceroute 

observations from Internet Protocol to Autonomous System granularity, this Iteration 4 

aimed to re-calculate the general, edge and vertex metrics as calculated in Iteration 2.  

Preparing the collected traceroute hop observations dataset for the analysis at 

Autonomous System required a transformation of the Internet Protocol (IP) addresses 

observations to their associated Autonomous System Numbers. Hence, we first 

downloaded the Maxmind (2015) Geo IP2 database for this purpose. This database is one 

of the most comprehensive collections of IP address ranges that any Autonomous System 

incorporates. Once the Maxmind (2015) Geo IP2 database was downloaded, we opened 

the ‘complete_IP_import_for_gephi.xlsx’ file and created a new sheet in the above-

mentioned file named ‘MaxMindGeoIP2’. We imported the downloaded *.csv file of the 

Maxmind (2015) Geo IP2 database, which provided us with the served IP address ranges 

for each Autonomous System in a four-octet format. For the purposes of transforming the 

IP addresses to their Autonomous System Numbers, we first determined the dotted String 

values (e.g. ‘217’.‘225’.‘240’.‘18’) of all IP addresses (including destination IP address, 

source IP address and hop IP address) and transformed them into their respective four-
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octet values (Ot, OL, OÉ, and	OÑ). Next, we calculated as follows: 

𝑂𝑂t ∗ 256É + 𝑂𝑂L ∗ 256L +	𝑂𝑂É ∗ 256 + 𝑂𝑂Ñ 

Once the IP addresses were transformed to their four-octet values, we saved them in a 

new column. Next, we fused the Maxmind (2015) GeoIP2 database from the second sheet 

to the first sheet in using Excel’s VLOOKUP function, which searched for each 

transformed four-octet IP address value for the corresponding Autonomous System 

Number and Autonomous System Name in the ‘MaxMindGeoIP2’ sheet. The 

corresponding file was then saved as ‘IP_to_ASN.xlsx’, replacing the 

‘complete_IP_import_for_gephi.xlsx’ one. To obtain the Autonomous System Numbers 

for each IP address of the three mobile broadband operators, we simply filtered the 

generated dataset by using our campaign identifiers.  

After the transformation from IP address to AS Number, we replaced the destination IP 

address, source IP address and hop IP address columns in the 

‘Traceroute_Raw_Data_Analysis.xlsx’ file by the corresponding mapped Autonomous 

System Numbers and changed the headers to ‘ASNdestination’, ‘sourceASN’ and 

‘hopASN’ and saved the file. We then separated the traceroute hop observations of 

interest using the campaign identifier as described above. Next, we copied the 

‘sourceASN’ and ‘hopAS’ into new sheets and added their ‘Source’ and ‘Target’ header 

rows, respectively. The sheets were then saved as *.xlsx and *.csv files again (e.g. as 

‘ASN_55831_for_gephi.xlsx’ and ‘ ASN_55831_for_gephi.csv’ for Aircel). Next, we 

imported the *.csv files as directed edges tables, one after another, into Gephi (2016) and 

calculated the relevant Complex Network metrics using the Gephi (2016) Statistics 

settings. After saving the elaborated file (e.g. as ‘AS45609_after_gephi.gephi’ for Bharti 

Airtel), we reported our obtained findings in section 4.3 in Chapter 4. 
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3.5.5 Iteration 5: Graph Visualisation Analysis (AS)  
Just like Iteration 3 at IP granularity, this Iteration 5 at Autonomous System granularity 

aimed, based on the obtained understanding from Iteration 4, to approve the previous 

findings that the three Tamil Nadu mobile broadband operator networks really followed 

Scale-Free Network properties. Moreover, similar to Iteration 3, we aimed to generate 

insight into the connectivity importance of certain vertices that might indicate structural 

bottlenecks (given the apparent Scale-Free Network nature) for providing upstream 

internetworking features of the three mobile broadband operator networks, here at 

Autonomous System granularity. In addition to Iteration 3, we also generated graph 

visualisations of the different Centrality metrics (as introduced in section 3.4.2 above). 

Doing so also aimed to gain a deeper understanding of the three mobile broadband 

operator networks. Hence, this section starts by describing the steps to generate the Small-

World Network Model and the Barabási-Albert Scale-Free Network Models followed by 

the Centrality Metrics and lastly the k-core decomposition. The outcomes of Iteration 5 

were reported in the section 4.3.7 of Chapter 4. 

Small-World and Scale-Free Models 
The Graph Visualisation Analysis at Autonomous System granularity followed the same 

approach to the previous Iteration 3 at IP granularity, including the layout parameters, 

(see section 3.5.3) while utilising the AS mapped *.csv files from Iteration 4. Here, the 

Gephi (2016) files for the Small-World Network Model were saved as 

‘AS55831_Kleinberg_blue.gephi’, while the corresponding graph visualisation *.png 

files were saved as ‘AS55831_Kleinberg_blue.png’ for Aircel in the respective sub-

folder. Similarly, the Scale-Free Network Model files were generated in using Gephi 

(2016) and saved as ‘AS38266_BAModel_blue.gephi’ and ‘AS38266_BAModel_ 

blue.png’ for the Barabási-Albert Standard Model.  

Centrality Metrics 
In addition to Iteration 3, the Graph Visualisation Analysis at Iteration 5 (AS granularity) 

generated further Centrality metrics. For this purpose, we again imported the mapped 

*.csv files from Iteration 4 as directed edge-table into Gephi (2016) for each of the four 

utilised Centrality metrics (Degree Centrality, Closeness Centrality, Betweenness 

Centrality and Eigenvector Centrality). Hence, the next step after the import covered the 

consecutive calculation of the respective Centrality metrics. Once calculated, we set the 

graph visualisation layout to the force-directed Fruchterman-Reingold (1991) Layout. 
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We then set the vertex colouring ‘red’ for those vertices with low centrality values and 

‘blue’ for those with high centrality values. This is achieved by first selecting the 

corresponding Centrality metric by following ‘Appearance >  Nodes > Attributes’. Next, 

we set the respective colouring by using the colour slider and applied the settings. Next, 

we provided the graph visualisation with the layout properties as mentioned in Chapter 

4, saved the Gephi (2016) files as ‘AS38266_Eigenvector_Centrality.gephi’ for example 

for the Eigenvector Centrality of Vodafone and exported the corresponding graph 

visualisations as *.png files, here ‘AS38266_Eigenvector_Centrality.png’. Lastly, we 

reported the graph visualisations alongside the findings for each mobile broadband 

operator in section 4.3.7. 

k-core decomposition 
The k-core decomposition at AS granularity followed the same approach to the previous 

Iteration 3 at IP granularity, while again utilising the AS mapped *.csv files from Iteration 

4. This file was again cleaned from the header rows and identifier columns and saved as 

‘AS38266_Vodafone_for_R.csv’ for Vodafone, before importing it in the Statistical 

Computing Tool R (2016). Here, the Network Analysis and Visualisation package 

‘igraph’ was now already installed, meaning we could straightaway adjust the R-script 

from Iteration 3 for the one at Iteration 5, replacing the utilised file as well as some of the 

graph visualisation settings. After computing the elaborated R-script in R (2016), we 

saved the resulting graph visualisations (e.g. as ‘AS38266_Vodafone_k_core_ 

decomposition.png’ for Vodafone) and reported our findings from the R (2016) console 

in Chapter 4. 

3.5.6 Iteration 6: Autonomous System Relationships 
The k-core decomposition of the Graph Visualisation Analysis in Iteration 5 indicated an 

important set of densely connecting Autonomous Systems for each of the three Tamil 

Nadu mobile broadband operators. Merely identifying these structural bottlenecks was 

not satisfactory. Hence, Iteration 6 aimed to reveal the economic nature of the most 

important mobile broadband operator networks’ relationships between the influential 

Autonomous Systems. The outcomes of Iteration 6 are reported in section 4.4 of Chapter 

4. 
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Secondary Datasets 
To reveal the economic nature of the Autonomous System relationships, we first opened 

the CAIDA (2016a) AS-Rank website and filtered the visualised AS-Rank dataset to fit 

the data-collection time of this dissertation’s time horizon (see section 3.3.4). The 

filtering was therefore set as ‘Dataset: 2015-02-01 IPv4’. Once the table view updated, it 

revealed 49,874 Autonomous Systems containing information on the Customer Cone Size 

(Number of Autonomous Systems and IPv4 prefixes), the percentage of the AS of all 

Autonomous Systems, IPv4 prefixes and the AS Transit Degree. Next, we sorted the table 

view by ‘number of ASes in customer cone’, resulting in another reload of the table view. 

We then downloaded the *.html table contents and placed them in an Excel file with the 

following steps:  

• Right-click on the CAIDA (2016a) AS-Rank website > view page source 

• Copying all the content in the cache.  

• Pasting the copied content in a new text document with ‘Ctrl+v’  

• Saving the file as ‘as-rank.html’, 

• Converting the ‘as-rank.html’ file into a *.csv file by using Conversiontools 

(2012). 

• Saving the file as ‘CAIDA_AS_Rank_Data_01-02-2015.csv’ and ‘CAIDA_AS_ 

Rank_Data_01-02-2015.xlsx’. 

Once downloaded, we manually searched the resulting file according to the most 

important information (Customer Cone Size, Number of IPv4 prefixes and Transit 

Degree) for those Autonomous Systems that the k-core decomposition in Iteration 5 

revealed as most interesting to our case study. Additionally, we referred to the Border 

Gateway Protocol (BGP) Routing Tables of Hurricane Electric (2016). This helped us to 

provide a more thorough understanding of our operator networks, where applicable. Some 

of these tables are stated in the Appendices. Next, we downloaded the secondary 

CAIDA(2016b) AS-Relationship dataset by filling out the prompted user info request on 

the CAIDA website. This secondary dataset helped us to test our three Tamil Nadu mobile 

broadband operator networks through the economic nature of Autonomous System 

relationships, where a relationship could either be of peer-to-peer, customer-to-provider, 

or provider-to-customer nature. The downloaded file was saved as 

‘CAIDA_AS_Relationship_Data.txt’. 
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Once obtained, we opened the operator’s Autonomous System edge tables that resulted 

through the Gephi (2016) export (containing the source and hop Autonomous System 

Numbers) in Iteration 4 and saved the file as ‘Aircel_ASRank_ASRel_mapping.xlsx’ and 

‘Aircel_ASRank_ASRel_mapping.csv’, respectively. The data itself is stored in a sheet 

named e.g. ‘Bharti_Airtel_edges_after_Gephi’ for Bharti Airtel. We then added two new 

sheets to the file, named ‘AS_rel’ and ‘Transit_Table’. The first sheet, ‘AS_rel’, 

contained the AS-Relationship data from the ‘CAIDA_AS_ Relationship_Data.txt’, 

filtered by those Autonomous Systems of the respective mobile broadband operators. 

This data resulted from the secondary CAIDA (2016b) AS-Relationship dataset. The 

second sheet, ‘Transit_Table’, contained the Transit Degree obtained from the 

‘CAIDA_AS_Rank_Data_01-02-2015.xlsx’ file from the secondary CAIDA (2016a) 

AS-Rank dataset.  

Next, using Excel’s INDEX algorithm (see algorithm in Excel file), we fused the source 

and hop Autonomous System Numbers in the first sheet (e.g. 

‘Bharti_Airtel_edges_after_Gephi’) with their associated Transit Degree from the 

elaborated ‘Transit_Table’ sheets, into two new columns in the first sheet, named 

‘Source_Transit’ and ‘Target_Transit’. We then fused the source and hop Autonomous 

System Numbers, together with their corresponding ‘Source_Transit’ and 

‘Target_Transit’, which resulted in two new columns containing the ‘SourceASN: 

TransitDegree’ and the ‘HopASN: TransitDegree’, respectively. To prepare for the later 

Gephi (2016) import, we named these new columns ‘Source’ and ‘Target’ and saved the 

file as ‘AS_Rank_Analysis.xlsx’. 

Since the goal of this analysis is to explore the economic relationships of the Autonomous 

Systems in the operator networks, we next fused the file with the secondary CAIDA 

(2016b) AS-Relationships dataset. For this purpose, we first imported the downloaded 

‘CAIDA_AS_Relationship_Data.txt’ into Excel, saved the sheet as ‘AS_rel’ and the file 

as ‘AS_Rel_Analysis.xlsx’ in the ‘../Step6/Secondary_CAIDA(2016b)_AS_Relationship 

/’ folder. The AS-Relationships in the ‘AS_rel’ sheet are represented by three columns, 

named ‘AS1’, ‘AS2’ and ‘rel’, indicating the relationship between two Autonomous 

Systems. Next, we created three sheets named ‘Aircel’, ‘Bharti Airtel’ and ‘Vodafone’ 

and imported the respective operator edge-tables from Iteration 4. Each of these three 

sheets contained only a ‘Source‘ and a ‘Target’ column. To uniquely match the 

relationships for the three operator networks, we first combined the ‘AS1’ and ‘AS2’ 
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columns in the ‘AS_rel’ sheet into a new column, named ‘AS1AS2’. This column was 

useful for unique referencing purposes. Similarly, we fused the ‘Source’ and ‘Target’ 

columns for each of the three mobile broadband operator sheets (see above) into a column 

named ‘SourceTarge’ column. We then added a new column named ‘INDEXMATCH’ 

to each operator sheet, where we used a combination of Excel’s MATCH and INDEX 

algorithms, linking the ‘AS1AS2’ column of the ‘AS_rel’ sheet with the ‘SourceTarget’ 

columns of the operator sheets to reveal the corresponding ‘rel’ column of the ‘AS_rel’ 

sheet for each of the given operator sheets. The result represented the AS-Relationships 

(‘peer-to-peer’, ‘customer-to-provider’ and ‘provider-to-customer’) for the Autonomous 

Systems in our three operator networks, represented by a ‘0’ for a peer-to-peer 

relationship, a ‘-1’ for a provider-to-customer relationship and a ‘1’ for a customer-to-

provider relationship.  

Next, looking at a combination of both, the ‘AS_Rel_Analysis.xlsx’ and the 

‘AS_Rank_Analysis.xlsx’, we reported some preliminary findings in section 4.4 for each 

of the three mobile broadband operators. Next, we created a new file for each of our case 

studies’ three operator networks named e.g. ‘Aircel_ASRank_ASRel_ 

mapping_(Edges).xlsx’ for Aircel. In this file, we copied the ‘Source_Transit’ and 

‘Target_Transit’ columns from the ‘AS_Rank_Analysis.xlsx’ file as well as the 

corresponding ‘rel’ column from the ‘AS_Rel_Analysis.xlsx’. This allowed us to 

measure the economic relationships per mobile broadband operator. For this purpose, we 

created a sheet named ‘analysis’ for each of the three operator files and counted the 

number of edge observations, the number of edge-weights and the percentage of edge 

weights of all edges per AS-Relationships, as stated above. Our findings were again 

reported for each mobile broadband operator. Moreover, to visualise the economic 

relationships between the Autonomous Systems in the three operator networks, we 

visualised the three networks again in a two-dimensional Euclidean space. For this 

purpose, we generated a *.csv file (named e.g. ‘Aircel_ASRank_ASRel_ 

mapping_(Edges).csv’ for Aircel) from the respective Excel files (named 

‘Aircel_ASRank_ASRel__mapping_(Edges).xlsx’ for Aircel, for example) and imported 

the *.csv files again as edge table into Gephi (2016) and saved them (named 

‘Vodafone_ASRank_ASRel_mapping.gephi’ for Vodafone, for example). The key here 

was to set the ‘rel’ column as relationship label when importing the dataset into Gephi 

(2016). This allowed us to colour the relationships, or edges, between each set of 

Autonomous Systems. Here, we coloured a peer-to-peer relationship between a set of 
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Autonomous Systems ‘green’, provider-to-customer relationships ‘red’, ‘customer-to-

provider’ ones ‘blue’ and ‘yellow’ for undetected ones. The resulting graph visualisations 

were then saved, using weighted and non-weighted edges, as *.png files (named, for 

example, as ‘Aircel_Relationships_w.png’ for the Aircel graph visualisation). Next, we 

again reported our findings, for each of the three operator networks. 

3.5.7 Iteration 7: Statistical Network Analysis 
Of our findings from the previous Iterations 1-6 above, Iteration 7 aimed to provide more 

confidence towards the applicability of the exploratorily derived indications. Moreover, 

we aimed to link the apparent hierarchical upstream Internet market structuring of the 

three Tamil Nadu mobile broadband operators.  We aimed to reveal the potential effects 

on the affordability of the respective mobile broadband operator price plans, as measured 

in price per Megabyte. This was a crucial step to provide further explanatory evidence 

and applicability of our findings. The following sections are separated given the 

employed two-stage process (described in Chapter 5). The section below covers the data 

preparation steps for two econometric in the first stage of the process, namely Model 1 

and Model 2, followed by the econometric models of stage 2, namely Model 3.1, Model 

3.2 and Model 4. Further information and outcomes of this last iteration were reported in 

the sections 5.3 and 5.4 in Chapter 5. 

Model 1 and Model 2 
The first two Econometric Models connected the network structural markers of the 

operator networks to the derived metrics for the upstream connectivity. First we prepared 

the data for the anticipated analysis. Here, we exported the vertex tables as *.csv files for 

each operator network at Autonomous System granularity from Gephi (2016) by using 

the Gephi (2016) operator network files obtained in Step 4. Next, we generated a new 

Excel file named ‘Model1_for_Stata.xlsx’. Here, we pasted the exported operator *.csv 

files into new sheets called ‘Aircel’, ‘Bharti Airtel’, and ‘Vodafone’. We then generated 

a new sheet named ‘merged’, where we successively pasted the data from the three 

provider sheets while providing them with a new column named ‘prov’. This column 

represents the operator of interest, where ‘1’ refers to Aircel, ‘2’ for Bharti Airtel and ‘3’ 

for Vodafone. This column allowed us to filter the statistics per operator later. We then 

opened the Data Analysis and Statistics Software Stata (2016), imported the 

‘Model1_for_Stata.xlsx’ file and saved the resulting Stata (2016) data file as 

‘Model1_2_data.dta’. The elaboration of the econometric models in Chapter 5 were then 
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stored in a Stata do-file called ‘Model1_2.do’. The script of this Stata do-file, including 

their line-by-line description, is enclosed in the Appendices, while the results of the 

Model 1 and Model 2 were reported in section 5.3 and discussed in  section 6.1. 

Model 3.1 and Model 3.2 
The third econometric model in the second stage links the coefficients obtained in Model 

1 and Model 2 (capturing the relationship between network structural markers of the 

operator networks with their Weighted Out-Degree and Weighted In-Degree upstream 

connectivity) to the price plans of our three mobile broadband operators. In detail, we 

generated a new Excel file, named‘Model3.csv’ . Next, we stored the price plan 

information (columns: ‘datainmb’ for data allowance in Megabyte, ‘vin’ for validity in 

days, ‘Price’ and ‘pricepermb’ for price per Megabyte) obtained from GSMOutlook 

(2015a, 2015b, 2015c) and marked each observation with an identifier in the ‘id’ column. 

Additionally, we added the coefficients obtained from Model 1 into the columns labelled 

‘lclus_hat’ and ‘leige_hat’ and marked them with their corresponding mobile broadband 

operator in the ‘prov’ column. Similar to the previous steps, ‘1’ corresponded to the in 

Model 1 estimated coefficients of Aircel, ‘2’ for the coefficients of Bharti Airtel and ‘3’ 

for the Vodafone ones. We then opened Stata (2016) and imported the generated 

‘Model3.csv’ file. The specification of the econometric model was then stored in a Stata 

do-file called ‘model3.do’, containing Model 3.1 and Model 3.2. The script of this Stata 

do-file is enclosed in the Appendices, while the results of the Model 3.1 and Model 3.2 

were reported in section 5.4 and discussed in section 6.2.  

Model 4 
The fourth econometric Model in the second stage associates the coefficients obtained in 

Model 2 (the relationship between network structural markers of the operator networks 

with their Weighted In-Degree upstream connectivity) with the price plans of our three 

mobile broadband operators. For that purpose, we copied the Model 3 generated 

‘Model3.csv’ file and replaced the values of the ‘lclus_hat’ and ‘leige_hat’ columns with 

the coefficients that we obtained in Model 2. The price plan observations remained 

unchanged. Next, and in a similar way to Model 3, we then opened Stata (2016) and 

imported the changed ‘Model4.csv’ file. The steps of the econometric model’s 

elaboration were then stored in a Stata do-file named ‘Model4.do’. The script of this Stata 

do-file, including their detailed description was again enclosed in the Appendices, while 

the results were reported and discussed in section 5.4. 
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Correlation Table 
The correlation table associates the coefficients obtained from Model 1 and Model 2 with 

Quality of Service data of TRAI. The do-file was enclosed in the Appendices. 

3.6 Ethics, Biases, Reliability, Validity & Generalisability 
This section states the potential biases that the work in this dissertation might have 

confronted. Additionally, we attached our statement on Ethical considerations, reliability 

and generalisability in the Appendices.  

3.6.1 Biases 
Here, we critically examine any potential research biases with which our case study may 

have been confronted. Alongside the research process, we took great caution to avoid any 

presence, behaviour or attitudes affecting the traceroute data collection, their inherent 

measurements or the following exploratory Network Analysis. Hence, this section 

includes our statements on Selection Bias, Inclusive Bias, Measurement Bias and 

Reporting Bias. 

Sample Selection Bias 
In any form of research, it would be ideal, but inherently too costly, time-consuming and 

often impractical, to study the entire population. The traceroute data collection presented 

in this dissertation followed a mobile crowdsourcing approach from an active Internet 

periphery perspective where three Android smartphones were used for the primary data 

collection. Even though our single case study was chosen strategically, the three Android 

smartphones and their SIM cards may still have unconsciously been selected for 

convenience purposes. This choice included i) easy access to the chosen devices and ii) 

easy access to the chosen SIM cards. Hence, we assume a sample selection bias due to 

convenience sampling, where the results can neither be extrapolated to other smartphone 

producers, nor for the entire population of mobile broadband operators (SIM cards) in 

Tamil Nadu, India, or elsewhere. An ideal sample would have included a local population 

of available smartphones as well as the full amount of available SIM cards from all given 

local providers in Tamil Nadu, India. The mitigation of this sample selection bias could 

not have been overcome using statistical analysis. Scott and Carrington (2011) refer to 

one lone example where the sample selection bias for Network Analysis was mitigated 

using a Heckman Selection model. Despite this indication, we were not utilising the 

Heckman Selection model. Hence, we accounted for this sample selection bias when 
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reporting our analytical results.   

Measurement Bias  
Measurement bias is a result of poorly measuring the case study object of interest. Since 

we chose to follow a mobile crowdsourcing traceroute data collection technique, using 

the Portolan (2015) , we delineate ourselves from any form of measurement biases. At 

times during the data collection period (measurement campaign), the Portolan (2015) 

Android application was not revealing any measurements. However, these data collection 

failures represent vital measurement steps that are not associated with poorly measuring 

the object of interest, but instead thoroughly measuring the actual mobile broadband 

operator situation in Tamil Nadu, potentially employing poor mobile broadband 

coverages or certain smartphone issues. 

Reporting Bias 
The Reporting bias refers to the underreporting of unexpected or undesirable results in 

this case study. In the course of our abductive inquiry process, it was crucial to gain an 

understanding of the nature of the three Tamil Nadu mobile broadband operator networks 

through our collected traceroute measurements. Hence, we were cautiously reporting all 

analytical results equally, independent of their given characteristics, properties or values. 

Hence, we assume that our research does encounter very minor reporting biases, although 

the probability of under-reporting findings and evidence may still exist, since the 

collected traceroute data covers a wide complexity and applicability. Furthermore, and 

given the due course of our Working Hypotheses, we were not able to study all possible 

Network Analysis metrics but covered those that aimed to reveal the greatest 

understanding for our given research problem.  

3.7 Summary  
This Chapter started by laying out our philosophical assumptions that determined the 

scope and limitations of this dissertation. We justified our choice of a pragmatist 

paradigm to research philosophy, followed by an explanation of our abductive approach 

to research. Based on these underlying assumptions, we then reasoned our strategic choice 

for a single case study strategy that incorporates an exploratory-quantitative multimethod 

design based on Descriptive, Complex Network, Graph Visualisation, and Statistical 

Network Analysis methods. All of these previous steps informed our choice of time 

horizon followed by our crowdsourced primary traceroute data collection technique 
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using active Internet periphery measurements. We closed this chapter by stating the 

employed analytical procedures as inquiry iterations in detail. Summarising, this chapter 

aimed to help the reader to replicate our case study findings. It also provided a 

methodological frameset for use in a future analysis of similarly strategically relevant 

cases that aim to advance the field of studying the upstream Internet structures and the 

importance of structural bottlenecks in developing and low-middle income countries.  



Chapter 4 

120  Sebastian Sigloch - April 2018 

4 COMPLEX NETWORK ANALYSIS 

‘The Web is now philosophical engineering. Physics and the Web are both 

about the relationships between the small and the large’ (Berners-Lee, 2015). 

The Internet as a network of networks represents a complex system of interacting social, 

economic and technical infrastructures. Its sheer complexity makes it a non-trivial task to 

gain a holistic understanding of structural phenomena, the single importance of economic 

relationships between interacting agents such as Internet Service Providers and the 

underlying economic relationships of these relationships for creating global 

internetworking connectivity. Network Sciences provides us with helpful mathematics-, 

physics-, and computer science-based methods for exploring these structural relationships 

between interacting agents. Computer Sciences, in particular, grant us deeper insights into 

how communication networks might be analysed. Our aim is to understand the operator 

networks and their structuring as a whole as well as the importance of distinct and 

influential agents as bottleneck parts that compose these networks.  

Therefore, this chapter starts by describing the obtained data from the active Internet 

periphery measurements before exploring them in their natural state at Internet Protocol 

granularity. This granularity represents the network reality in the form of connections 

amongst machines, identified through their unique IP addresses. Here, we aim to reveal 

the general structural properties of the operator networks. Next, this chapter associates 

the IP addresses with their operating entities, called Autonomous Systems. Through this 

granularity, we aim to understand the changes in structural properties from Internet 

Protocol to Autonomous System granularity as well as the general structural organisation 

in the operator networks, revealing Autonomous Systems with key structural properties. 

Moreover, we aim to expose distinct internetworking relationships between the major 

Internet Service Providers. This is a crucial precondition for understanding the 

underlying economics governing our three operator networks. Next, linking the operator 

networks with a secondary dataset, we aim to expose the economic nature of the most 

relevant relationships amongst Autonomous Systems. Lastly, we summarise the findings 

of this chapter to provide a holistic view on the Tamil Nadu mobile broadband operator 

networks.  
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4.1 Descriptive Network Analysis  
The exploration commences by analysing the essential features of the traceroute data 

collected using our active Internet periphery measurements through the Portolan (2015) 

(see section 3.3.4). Figure 4-1 below provides a look and feel for our collected 731,200 

individual traceroute hop observations.  

 

Figure 4-1: Example of collected Paris traceroute observations. 

As the different columns in Figure 4-1 above indicate, each traceroute hop (consist of a 

source IP address linking to a destination IP address) observation contains the following 

information: 

• Traceroute identifier. 

• The randomly-chosen destination of a given traceroute. 

• Campaign identifier consisting of an identifier for the associated country of 

initial connection (‘WORLDin’ indicates India) and an identifier for the 

Autonomous System Number (e.g. ‘24560’) of the initial connection. 

• Timestamp, comprised of YYYY-MM-DD and the exact record time.  

• Geo-location (Latitude, Longitude) of the data-collecting device. 

• The operating system of the data-collecting device (e.g. ‘android’). 

• Associated hop number of a traceroute (e.g. third hop / step of a given 

traceroute) to which the row refers (primary observation unit used in the 

following Complex and Statistical Network Analysis in the rest of the 

dissertation). 

• Source IP address (starting point of the hop within a traceroute).   
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• Target IP address (arrival point of the hop within a traceroute).  

• Round Trip Time (RTT) of a given hop. 

• Binary indication whether or not a traceroute hop observation contains a skip 

(e.g. ‘1’ representing a failure when the connection between a source IP 

address and a destination IP address in the hop is not reachable or terminates, 

‘0’ otherwise). 

The complete dataset indicated the presence of traceroutes starting from both mobile 

broadband and Wi-Fi connections covering different locations. Here, only those 

measurements of the three Tamil Nadu mobile broadband operators were of interest. 

Hence, we separated the traceroute observations originating from Wi-Fi, from those 

traceroutes originating from the mobile broadband operators that will be used to compare 

our three operators of interest thoroughly. Given the nature of a traceroute, each collected 

observation incorporates a multitude of traceroute hops (or steps along a connection). 

Filtering the data by the identifier revealed that the total traceroute hop observations 

consisted of 57,121 unique traceroutes (each containing multiple hops), including those 

originating from Wi-Fi connections. The randomly-chosen destinations further exposed 

that the Portolan (2015) application randomly assigned 32,068 unique destinations for 

these 57,121 traceroute observations. Here, the random selection is used to replicate, in 

a possibly unbiased way, the behavioural patterns of end-users. Moreover, the campaign 

identifiers revealed that the recorded traceroute hop observations were commencing from 

twelve distinct Autonomous Systems Numbers (see Table 9-9 in the Appendices). By 

using the Hurricane Electric (2016) BGP-Toolkit, these campaign identifiers were 

associated with their organisational name. Revealing these names allowed us to choose 

only those non-Wi-Fi originating observations that are of fundamental interest for our 

analysis of the mobile operators’ upstream connectivity. Hence, this step was crucial in 

selecting and filtering the relevant dataset that will be used in the following analysis. We 

implemented this step by verifying the campaign identifiers using the Maxmind (2015) 

GeoIP2 database, together with UltraTools (2016), Team Cymru (2016) and the 

Hurricane Electric (2016) BGP Toolkit. Linking the Autonomous System Numbers to the 

collected traceroute hop dataset revealed that most of these collected hop observations 

belonged to traceroutes originating from the Wi-Fi based Spectranet (AS10029) and C48 

Okhla Industrial Estate (AS55410), see Appendices. 
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After filtering out the set of observations originating from Wi-Fi connections we were 

left with only 36,388 total traceroute hop observations being relevant to our case study. 

Those represent the only connections originating from the Tamil Nadu mobile broadband 

operators. More specifically, Vodafone indicated 30,633 mobile broadband observations, 

followed by Aircel with 4,749 ones and Bharti Airtel with 956 observations. The filtered 

out 649,812 traceroute hop observations resulted, as the time stamps confirm, from Wi-

Fi connections mainly captured during off and night-time hours by the Android 

smartphones, also containing observations from other locations. 

Table 4-1 below indicates the total number of traceroutes (column 2 in Table 4-1) and 

the total number of traceroute hop observations (column 3 in Table 4-1) that were 

obtained for each of the three Tamil Nadu mobile broadband operators. Here, the average 

number of hops per traceroute observation is interesting since it indicates that Vodafone 

needed, on average, considerably more hops to complete a given traceroute than the other 

two operators.  

Traceroute hop observations by operator 

Mobile 
broadband 
operator 

Number of traceroute 
observations per 
mobile broadband 
operator	

Number of 
traceroute hop 
observations 
contained in all the 
mobile broadband 
operator-originated 
traceroutes	

Average Number of 
traceroute hop 
observations per 
traceroute 
observation	

Aircel 622	 4,749	 7.63	

Bharti Airtel 148 956 6.46 

Vodafone 2,678 30,633 11.44 

Table 4-1: Traceroute hop observations by mobile broadband operator. 

The associated number of hops describes the actual number of steps that a traceroute 

needed to take in order to reach its randomly-assigned final destination, through the 

routers, identified via their unique IP addresses, forming the basic steps of the observed 

internetworking through the Internet. Interestingly, we discovered that the path length of 

the Aircel traceroute observations ranged between 5-40 hops, the Bharti Airtel one 

ranged between 4-36, and the Vodafone one between 5-51 hops.  

The Round-Trip-Time (RTT) indicates the time a data packet takes to be sent from the 
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initial source IP address to the destination one, plus the time it takes for this to be 

acknowledged by the destination IP address and returned to the source IP address. An 

analysis of the RTT indicated, as the following Table 4-2 illustrates, that the lowest 

Round-Trip-Time of a completed traceroute was reached by Vodafone (0,042ms). These 

results are, in contradiction with the previous ones on the average hops per traceroute 

observation of each mobile broadband operator. This might indicate that there is a large 

amount of potential connections between IP addresses belonging to the same 

Autonomous System, as we will explain later in more detail. Furthermore, the Bharti 

Airtel observations revealed the largest range between the lowest and highest Round-

Trip-Times, indicating that end-users might experience fluctuations in their perceived 

Quality of Service (QoS). 

Round-Trip-Time (RTT) by mobile broadband operator 

Mobile broadband 
operator RTT Low in ms 	 RTT High in ms	 Range 	

Aircel 0,042384	 1006,07	 1006.028	

Bharti Airtel 0,106708	 2019,58	 2019.473	

Vodafone 0,044219	 1243,9	 1243.856	

Key 
ms: milliseconds. 

RTT: Round-Trip-Time. 

Table 4-2: Round-Trip-Time by mobile broadband operator. 

Table 4-3 below displays the skip-distributions for each of the three operators, i.e. the 

frequency distribution of traceroutes, depending on the specific step (hop) along the 

traceroute, where the connection fails (skips). Comparing the mobile broadband operator 

traceroute skip-distributions potentially revealed another indicator for perceived Quality 

of Service.  
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Skip distribution by mobile broadband operator 

Mobile 
broadband 
operator 

Skip   
0  

Skip 
1  

Skip 
2 

Skip 
3 

Skip 
4 

Skip 
5 

Skip 
6 

Skip 
7 

Skip 
8 

Skip 
9 

Vodafone 30,240 197 96 36 26 11 6 7 6 8 

Bharti Airtel 884 58 13 1 0 0 0 0 0 0 

Aircel 4,670 60 11 3 4 1 0 0 0 0	
Table 4-3: Skip distribution by mobile broadband operator. 

Summarising, the above Descriptive Network Analysis provides initial insights about 

some aspects of the internetworking features of the three mobile broadband operators, 

eventually affecting Quality of Service from an Internet periphery perspective. We 

showed that 36,388 of the 731,200 traceroute hop observations were relevant for this case 

study and compared the general properties of the observations per mobile broadband 

operator of interest. The following section aims to further uncover the distinct 

connectivity features in the upstream Internet access market of the three mobile 

broadband operator networks using Complex Network Analysis.  

4.2 Complex Network Analysis at IP granularity 
This section focuses on the three mobile broadband operator networks at Internet Protocol 

granularity. This granularity represents connections between IP addresses, indicating the 

unique identifiers of machines on the Internet. We start this section with an exploratory 

analysis of the general network metrics per mobile broadband operator. Next, we study 

the relevant edge and vertex metrics, followed by a Graph Visualisation Analysis before 

concluding on the Complex Network properties of these networks. 

4.2.1 General Network Metric Analysis (IP) 
General network metrics are used to describe some key structural properties of the 

network generated by the set of internetworking connections originating from each of the 

three mobile broadband operators. After describing the set of traceroute hop 

observations, we look at the Average (Weighted) Degree, the Network Diameter, the 

Network Density and the randomized Modularity for each of the three generated 

networks. 

By utilising the ‘source IP address’ and the ‘target IP address’ of the identified 36,388 
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traceroute hop observations (after filtering out the Wi-Fi originating ones), the three 

mobile broadband operator networks may each be denoted as a directed graph, 

𝐺𝐺£rf§•Ug§ = 𝐺𝐺(𝑉𝑉, 𝐸𝐸). Here, 𝑉𝑉£rf§•Ug§ represents the total number of IPv4 address vertices 

being traversed by the data packets along the entire set of traceroutes, originating from 

the specific mobile broadband operator. While 𝐸𝐸£rf§•Ug§	represents the total number of 

edges connecting distinct pairs of the above vertices 𝑉𝑉£rf§•Ug§ , where 𝐸𝐸£rf§•Ug§ = 

{{𝑢𝑢, 𝑣𝑣}	𝑢𝑢, 𝑣𝑣	𝜖𝜖	𝑉𝑉£rf§•Ug§}. Hence, three resulting directed networks, generated for the three 

mobile broadband operators, are denoted as: 𝐺𝐺®2§©fâ, 𝐺𝐺éå•§U2	®2§Ufâ	and 𝐺𝐺™ge•´gdf . Each of 

these three networks represents a sub-network of the overall network 𝐺𝐺£rf§•Ug§ , 

comprising the entire set of traceroute hop observations at IP granularity from each 

mobile broadband operator, 𝐺𝐺®2§©fâ, 𝐺𝐺éå•§U2	®2§Ufâ	, 𝐺𝐺™ge•´gdf	𝜖𝜖	𝐺𝐺£rf§•Ug§. 

Exploring the general metrics for these three directed networks, 𝐺𝐺®2§©fâ, 𝐺𝐺éå•§U2	®2§Ufâ and 

𝐺𝐺™ge•´gdf  shows that 𝐺𝐺®2§©fâ  consisted of 2,259 unique IP address vertices and 2,879 

edges (with repetition) connecting those vertices. Therefore, we denote this network as 

𝐺𝐺®2§©fâ	(2259, 2879) . Hence, the other two directed networks are denoted as 

𝐺𝐺éå•§U2	®2§Ufâ	(600,803) and 𝐺𝐺™ge•´gdf	(7509,10390), respectively. All edges stated above 

included repetitions, which means that many connections between a pair of vertices are 

potentially traversed multiple times. These often-used edges are crucial when calculating 

the edge weightings in a given network graph, representing recurring internetworking 

connections at IP granularity. An important note is that the IPv4 address ‘0.0.0.0’ was 

consistently reached once a traceroute terminated. This IP address is, therefore, expected 

to show a large number of incoming connections, assuming that the traceroutes are 

reaching their destinations. 

The first metric we analyse is the Average Degree, given by the ratio of the total number 

of edges 𝐸𝐸£rf§•Ug§ over the total number of vertices 𝑉𝑉£rf§•Ug§ , ∞™. This metric provides a 

first indication on the edge density in the mobile broadband operators’ networks. This 

metric revealed minor density differences among the operators. Here, 𝐺𝐺®2§©fâ indicated 

1.274 edges per vertex, followed by 𝐺𝐺éå•§U2	®2§Ufâ  with 1.338 and 𝐺𝐺™ge•´gdf  with 1.384 

ones. These differences indicate that Aircel required, on average, fewer connections per 

IP address vertex than the other two networks, indicating the regular usage of certain IP 

address vertices. 

The Average Weighted Degree, as being the average of an IP address vertex connectivity 
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in a given operator network, provides further interesting differences among the three 

operators. While 𝐺𝐺éå•§U2	®2§Ufâ   showed the smallest Average Weighted Degree of 1.593, 

𝐺𝐺®2§©fâ indicated an Average Weighted Degree of 2.102 and 𝐺𝐺™ge•´gdf  showed the highest 

value of 4.080 average number of connections for IP address vertices belonging to 

𝐺𝐺™ge•´gdf .  

Next, we report the values for the mobile broadband operator graphs’ Network Diameter 

(directed), a metric that indicates the longest possible shortest distance paths between any 

two IP address vertices (see section 3.4.2). The implication of a longer Network Diameter 

could affect the Quality of Service of a given mobile broadband operator as this 

negatively affects longer path lengths.  

The overall small values of the mobile broadband operators’ Graph Density (directed), 

see Table 4-4 below, indicate that IP address vertices are not densely connecting between 

each other. This would come as no surprise given the nature of a traceroute. However, 

we expect that a small number of IP addresses are more densely connected.  

The Randomised Modularity is an additional metric capturing the structure and dynamics 

of a network (Newman, 2006). Our data revealed the existence of 168 vertex clusters in 

𝐺𝐺®2§©fâ , 147 in 𝐺𝐺™ge•´gdf  and only 61 in 𝐺𝐺éå•§U2	®2§Ufâ. This indicates that 𝐺𝐺®2§©fâ has the 

densest connections between vertices in clusters but sparse connections between vertices 

linking those clusters, representing stronger structuring. The Modularity metric itself is 

stated in Table 4-4 below.  
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General Metrics by mobile broadband operator at IP granularity 

Mobile broadband 
operator graph 

Average 
Degree 

Average 
Weighted 
Degree 

Diameter 
(Directed) 

Density 
(Directed) 

Randomised 
Modularity 

𝐺𝐺®2§©fâ 1.274 2.102 17 .001 .691 

𝐺𝐺éå•±≤4	®2§Ufâ  1.338 1.593 14 .002 .627 

𝐺𝐺™ge•´gdf  1.384 4.080 25 .000 .669	

Key 

IP: Internet Protocol. 

Table 4-4: General metrics by mobile broadband operator at IP granularity. 

In the next section, we will analyse additional edge metrics with the objective of 

uncovering more structural features for our three mobile broadband operator networks. 

4.2.2 Edge Metric Analysis (IP) 
The edge metrics discussed in this section focus on the connections between any given 

set of vertices in an operator network. We analyse the Average Path Length, the Average 

Neighbourhood Overlap and the Average Embeddedness edge metrics. 

First, the Average Path Length (see Chapter 3) was, with a value of 6.404, considerably 

higher for 𝐺𝐺™ge•´gdf  than for the other two networks. Table 4-5 below illustrates these 

findings. These differences might indicate two distinct situations. First, that Bharti Airtel 

routes connections more efficiently, or second that Vodafone and Aircel more heavily 

rely on AS-internal routings.  

The second analysed edge metric was the Average Neighbourhood Overlap. This edge 

metric represents the intersection of the union between neighbouring vertices in a given 

network (see edge metrics in section 3.4.2). Moreover, the findings for the Average 

Embeddedness support those of the Average Neighbourhood Overlap. This edge metric, 

only reflecting the numerator of the Average Neighbourhood Overlap, captures the 

absolute number of shared IP address vertex neighbours between any pair of such 

vertices. Hence, 𝐺𝐺éå•§U2	®2§Ufâ  seems to have more strongly embedded pairs of 

neighbouring IP address vertices than	𝐺𝐺𝐴𝐴𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑𝐴𝐴  and 𝐺𝐺™ge•´gdf.  
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Edge metrics by mobile broadband operator at IP granularity 

Mobile 
broadband 
operator 
graph 

Average Path Length 
Average 
Neighbourhood 
Overlap 

 
Average 
Embeddedness 

 

𝐺𝐺®2§©fâ 	 5.169	 .007	 .139	

𝐺𝐺éå•§U2	®2§Ufâ  4.090 .012 .235 

𝐺𝐺™ge•´gdf  6.404 .006 .138 

Key 
IP: Internet Protocol. 

Table 4-5: Edge metrics by mobile broadband operator at IP granularity. 

Having discussed the edge metrics, the next section aims to analyse additional vertex 

metrics for the three mobile broadband operator networks before examining their 

Complex Network properties. 

4.2.3 Vertex Metric Analysis (IP) 
The vertex metrics discussed in this section focus on the properties of IP address vertices 

in the three mobile broadband operator networks. In detail, we analyse the Clustering 

Coefficient metrics and the Average Vertex Strength.  
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Vertex metrics by mobile broadband operator at IP granularity 

Mobile 
broadband 
operator 
graph 

Clustering 
Coefficient 
(Directed) 

Average Clustering 
Coefficient 

Average Weighted 
Clustering 
Coefficient 

𝐺𝐺®2§©fâ .009 .009 .009 

𝐺𝐺éå•§U2	®2§Ufâ  .016 .016 .017 

𝐺𝐺™ge•´gdf  .011 .011 .011	

Key 

IP: Internet Protocol. 

Table 4-6: Vertex metrics by mobile broadband operator at IP granularity. 

The small Average Weighted Clustering Coefficients of the vertices indicate overall weak 

interaction intensities between the different network IP address vertices.  

The plots in Figure 4-2 below illustrate the Average Vertex Strength distributions for the 

three mobile broadband operator networks. Here, 𝐺𝐺™ge•´gdf  shows considerably stronger 

weights attaching to edges that links to individual IP address vertices, compared to 𝐺𝐺®2§©fâ 
and 𝐺𝐺éå•§U2	®2§Ufâ . However, each one of these three networks are showing a uniform 

distribution of vertex strengths as Figure 4-2 below illustrates. 

This evidence shows that the three mobile broadband operator networks display features 

resembling Scale-Free Network models that will be further analysed below (see also 

section 3.4). Hence, the following section tests the three operator networks against 

Complex Network properties.  
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Vertex Strength Distributions at IP granularity 

𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑮𝑮𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝐢𝐢𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨 

  

𝐆𝐆𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨  

 

 

Figure 4-2: Vertex strength distributions by mobile broadband operator at IP 

granularity. 

4.2.4 Complex Network Properties (IP) 
The exploration of the networks’ edge and vertex metrics shows early evidence of some 

differences in the internetworking characteristics for the three mobile broadband operator 

networks. This section tests whether the three operator networks are showing signs of 

Complex Networks properties as indicated by Boccaletti et al. (2006). Complex Networks 

refer to non-trivial systems that are usually composed of a vast number of interacting 

elements with no centralised authority and inherently hard to understand (Strogatz, 2001; 

Wang, Latapy and Soria, 2012). Such complex systems may be self-organised as their 

properties emerge from features of vertex interactions (here routing agreements). Self-

organisation refers to a complex system where order arises from interactions between 

previously unordered parts of the system (Bak and Chen, 1991; Wiener, 2014). Complex 

Networks may come in varying forms such as Small-World, Scale-Free, Random, or 

Real-World Network models. Small-World Network models usually show short path 

lengths as well as high clustering metrics. Similarly, Scale-Free Network models also 
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show short path lengths but would indicate power-law degree distributions and little or 

no clustering (Nefedov, 2013). Agliardi and Giovannetti (1998) study the self-organising 

criticality and power-law degree distributions. Short path lengths may also characterise 

Random Networks but usually incorporate no clustering while following Poisson degree 

distributions (Vázquez, Pastor-Satorras, and Vespignani, 2002; Nefedov, 2013). Finally, 

Real-World Networks would inhabit short path lengths but also high clustering as well as 

broad power-law degree distributions. Based on Table 4-7 below, we note that the three 

operator networks indicate relatively small Average Path Lengths (below 6.5 hops) and 

Clustering Coefficients (below .017). Figure 4-3 below illustrates the plotted degree 

distributions indicating linear heavy left-tailed, non-gaussian, power-law degree 

distributions. This suggests evidence for homogeneous network characteristics, rather 

than heterogeneous ones (Wang, Latapy and Soria, 2012, p.152). We observed, based on 

the empirical network properties, that the three mobile broadband operator networks 

display typical signs of Scale-Free Network models. 

Complex network indicators by operator at IP granularity 

Mobile 
broadband 
operator 
graph 

Average Path Length 
Clustering 
Coefficient 
(Directed) 

Degree Distribution 

𝐺𝐺®2§√fâ 	 5.169	 .009	 Power-law	

𝐺𝐺éå•§U2	®2§Ufâ 	 4.090	 .016	 Power-law	

𝐺𝐺™ge•´gdf 	 6.404	 .011	 Power-law	

Key 
IP: Internet Protocol. 

Table 4-7: Complex network indicators by mobile broadband operator at IP granularity. 

  



Chapter 4 

Sebastian Sigloch - April 2018  133

Power-law Degree Distributions at IP granularity 

𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑮𝑮𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝐢𝐢𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨 

	 	
G™ge•´gdf   

 

 

Figure 4-3: Degree distributions by mobile broadband operator at IP granularity. 

4.2.5 Summary Network Metric Analysis (IP) 
This section analysed the general, edge and vertex metrics of the three Tamil Nadu mobile 

broadband operator networks. Given the Average Weighted Degree, our exploration first 

implied that Vodafone traceroutes traversed recurrent IP addresses far more often than 

the other two operators, Aircel and Bharti Airtel. Next, the traversed patterns indicated 

that Vodafone potentially offers a lower end-user's perceived Quality of Service (QoS). 

Looking next at the Network Modularity showed that both Aircel and Vodafone likely 

have more IP address clusters than Bharti Airtel. Overall, the three mobile operators 

showed low Clustering Coefficients and Average Weighted Clustering Coefficients. 

These metrics revealed weak interaction intensities between different IP addresses in the 
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upstream Internet market structure. Finally, testing for Complex Network properties 

showed heavy-tailed power-law degree distributions, a characterisation for 

homogeneous, Scale-Free Networks.  

Given these findings, the following section aims to test the three mobile broadband 

operator network’s Scale-Free Network properties using Graph Visualisation Analysis. 

This should provide us deeper insights into the operators’ upstream Internet market 

structures.  

4.2.6 Graph Visualisation Analysis (IP) 
For the purpose of exploring the structural operator network properties, we first project 

the three networks as a graph onto a two-dimensional Euclidean space. Wang, Latapy and 

Soria, (2012 p.11) note that a first step in Graph Visualisation Analysis represents a 

description of the network structure following by a description of its dynamic evolution. 

Hence, we look at the resulting network graph visualisations from two different angles. 

First by using the Small-World Network model of Kleinberg (2000), and second by using 

the Scale-Free Network models by Barabási and Albert (2002). Based on these results, 

we then elaborate a k-core decomposition using the algorithm of Alvarez-Hamelin et al. 

(2005b).  

Small-World Network Model (IP) 
The Small-World Network model by Kleinberg (2000) was used in conjunction with the 

Layered Layout by Kuchar (2012), which is considered to be suitable for Small-World 

Network graph visualisations (see section 2.3.4). To obtain the structural differences of 

the three operator networks, we consistently chose the same layout properties (see section 

3.5.3). The analysis of the edge-distributions in the plotted graph visualisations in Figure 

4-4 below indicates that none of the connectivity graphs of the mobile broadband operator 

networks followed Small-World Network properties. However, some IP address vertices 

are displaying strong relationships to other IP addresses within the circle in the centre of 

the graph visualisation. Therefore, it seems that the operator networks are showing a core 

of densely connected IP addresses. This is an indicator for hierarchical upstream Internet 

market structuring with large Internet Service Providers (ISPs) at the core. However, the 

graph visualisation of Bharti Airtel shows less active connections among a particular set 

of IP address vertices. This is interesting since it potentially indicates a less hierarchical 

upstream Internet market structure than the graph visualisations for Aircel and Vodafone. 
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Moreover, the strongest connected edges are clearly visible on the left-hand side of the 

graph visualisations (see Figure 4-4 below). From this vertex, the edges seem to leave the 

visualised Small-World Network circle and reach towards other IP address vertices in the 

network periphery. Moreover, none of the operators’ graph visualisations show perfectly 

interconnected Small-World Network effects in the centre of their visualised circles. All 

graph visualisations seem to build new layers around the centred one, which is most 

clearly visible for the graph visualisation of 𝐺𝐺™ge•´gdf .		This indicates that the networks 

follow Scale-Free Network properties.  

Given the findings of the operator’s graph visualisations using the Small-World Network 

model with a Layered Layout, the next section covers a more detailed analysis and 

comparison of these networks using the Scale-Free Barabási-Albert algorithm in a Force 

Atlas 2 Layout. This algorithm aims to analyse the existence of Scale-Free Network 

properties. 
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𝐺𝐺®2§©fâ  
edge-thickness: 0.50.	
n – size of lattice: 10.	
p – lattice distance to local contacts: 2.	
q – long range contacts: 2.	
r – clustering exponent: 0.	

	

𝐺𝐺éå•§U2	®2§Ufâ  
edge-thickness: 0.50. 
n – size of lattice: 10. 

p – lattice distance to local contacts: 2. 
q – long range contacts: 2. 

r – clustering exponent: 0. 

 

𝐺𝐺™ge•´gdf  

edge-thickness: 0.25. 
n – size of lattice: 10. 

p – lattice distance to local contacts: 2. 
q – long range contacts: 2. 

r – clustering exponent: 0. 

	
Figure 4-4: Small-World Network graph visualisations in Layered Layout by mobile 

broadband operator at IP granularity. 
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Scale-Free Network Model (IP) 
Given the findings above, none of the three operator networks seem to display Small-

World Network properties. Therefore, this section tests the three operator networks by 

applying Scale-Free Network properties using the Barabási and Albert (2002) algorithms. 

Based on the observed set of IP addresses for each of the three mobile broadband operator 

networks, we follow these dynamic network procedures to simulate alternative scenarios 

of network growth emergence. The associated network features will be visualised in 

comparing the possible evolution of the mobile broadband operator networks below. The 

utilised algorithms are derived from the work of Barabási and Albert (2002) as stated in 

Barabási Labs (2013): 

• Standard Model with vertex growth and preferential attachment to edges. 

• Model A with vertex growth and uniform attachment of edges. 

• Model B without vertex growth but preferential attachment to edges.  

The mobile broadband operator network graphs were visualised using the Force Atlas 2 

Layout in the Open Source graph visualisation platform Gephi (2016). This layout is 

suitable for exploring Scale-Free Network properties of networks with up to 10,000 

vertices (Jacomy et al., 2014), which none of the three Tamil Nadu mobile broadband 

operator networks exceeded. The visualisation parameters are stated in section 3.5.3 

above. We first simulate and compare the alternative scenarios of network growth 

emergence of the three mobile broadband operator networks using the Barabási Standard 

Model (vertex growth and preferential attachment), followed by the Model A with 

uniform attachment (and retained growth of vertices) and the Model B with preferential 

attachment (‘rich-get-richer’ effect) to edges (but no vertex growth).  

Barabási-Albert Standard Model 
First, comparing the three mobile broadband operator networks’ graph visualisations at 

IP granularity using the Barabási-Albert Standard Model indicates structural differences 

between our three operators of interest. The network simulation considers half of all the 

networks IP address vertices, being 8,647 simulated vertices in 𝐺𝐺®2§©fâ , 600 for 

𝐺𝐺éå•§U2	®2§Ufâ  and 7,509 for 𝐺𝐺™ge•´gdf . To assure comparability, these vertices are chosen 

based on the total number of vertices in the given operator networks. The Barabási-Albert 

Standard Model simulation shows that IP address vertices in 𝐺𝐺®2§©fâ and 𝐺𝐺™ge•´gdf	are 

more strongly organised in vertex clusters (groupings of IP address vertices) than the 

vertices in the graph visualisation of 𝐺𝐺éå•§U2	®2§Ufâ 	(see Figure 4-5 below). Moreover, the 
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operator networks’ graph visualisations of 𝐺𝐺®2§©fâ and 𝐺𝐺™ge•´gdf  show cores of specific 

IP addresses that seem densely internetworked. Especially Vodafone seems to make 

strong use of the same IP address vertices, as indicated by the large blue area in the core 

of the network. This suggests their potential upstream connectivity reliance on these IP 

address vertices. On the contrary, the IP address vertices core of 𝐺𝐺éå•§U2	®2§Ufâ seems not 

strongly internetworked. This is interesting since it indicates an overall fairer distribution 

of upstream connectivity among the IP address vertices and hence, less internetworking 

reliance on certain IP address vertices. Moreover, each of the three operator network 

graph visualisation shows IP address vertices being situated at the edge of the visualised 

spaces, likely representing IP addresses in the Internet periphery. However, we consider 

the simulation of network growth emergence using the Barabási-Albert Standard Model 

to be somewhat fictive, since the IP address vertices, elaborated based on our Paris 

traceroute dataset, represent the unique IP addresses of upstream infrastructure devices 

(e.g. routers) for the purpose of establishing internetworking connections. Hence, we 

would not expect a strong vertex growth in a Real-World Network growth situation.  
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G𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 
N Number of vertices in network: 8647. 

 

 

𝑮𝑮𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝑨𝑨𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨 

N Number of vertices in network: 600. 
 

 

𝑮𝑮𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨 

N Number of nodes in network: 7509.	
 

 
Figure 4-5: Barabási-Albert Standard Model graph visualisations per mobile broadband 

operator at IP granularity. 
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Barabási-Albert Model A 
Next, we compare the three Tamil Nadu mobile broadband operator networks’ graph 

visualisations at IP granularity using the Barabási-Albert Model A. The network growth 

simulation of this model considers the growth of vertices in the network but no 

preferential attachment or ‘rich-get-richer’ effects. Again, the network simulation of the 

Barabási-Albert Model A considers 8,647 vertices for 𝐺𝐺®2§©fâ, 600 for 𝐺𝐺éå•§U2	®2§Ufâ  and 

7,509 for 𝐺𝐺™ge•´gdf  in the simulation. Interestingly, the three generated network graph 

visualisations with simulated vertex growth indicate somewhat similar cores of strongly 

connected IP address vertices. Like at the Barabási-Albert Standard Model above, the 

graph visualisations of 𝐺𝐺®2§©fâ  and 𝐺𝐺™ge•´gdf  seems to have densely internetworked 

cores of specific IP addresses. Again, as indicated by the large blue area in the core of the 

network in Figure 4-6 on the next page, Vodafone seems to make strong use of the same 

IP address vertices, showing again their potential upstream connectivity reliance on these 

IP address vertices. On the contrary, the IP address vertices core of  𝐺𝐺éå•§U2	®2§Ufâ  seems 

again not strongly internetworked. Interestingly, compared to the network growth 

simulation using the Barabási-Albert Standard Model, the simulation of the Barabási-

Albert Model A does not indicate the existence of strong IP address vertex clusters. The 

lack of these vertex clusters may be attributed to the missing preferential attachment of 

edges. Above, we indicated the somewhat fictive nature of the network growth emergence 

simulation (given the nature of IP addresses for internetworking and hence upstream 

Internet connectivity purposes). Adding to this, we indicate the value of the network 

growth emergence simulation using the preferential attachment of edges, representing 

connectivity recurrence in a somewhat fix set of upstream IP address vertices. Hence, we 

consider the following simulation using the Barabási-Albert Model B to be most suitable 

to understand and graphically analyse the network growth emergence in mobile 

broadband operator networks.  
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𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 

N Number of vertices in network: 8647. 

 

𝑮𝑮𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝑨𝑨𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨 

N Number of vertices in network: 600. 

 

𝑮𝑮𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨 

N Number of nodes in network: 7509. 
 

 
Figure 4-6: Barabási-Albert Model A graph visualisations per mobile broadband 

operator at IP granularity. 
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Barabási-Albert Model B 
Given the findings above, we indicated that the Barabási-Albert Model B is the most 

valuable simulation to analyse and understand network growth emergence and structural 

network properties. Hence, this simulation best represents the connectivity nature of the 

upstream Internet market, containing a fix set of internetworking-providing agents 

(Autonomous Systems managing the IP address ranges) but re-establishments of 

connections amongst the different upstream IP addresses.   

Here, the simulated Barabási-Albert Model B again considers the same number of 

vertices and edges as above, under preferential attachment. The three-generated operator 

network graph visualisations with simulated vertex growth again indicate somewhat 

similar cores of strongly connected IP address vertices. In detail, the graph visualisations 

of 𝐺𝐺®2§©fâ  and 𝐺𝐺™ge•´gdf  have cores of specific IP addresses that are densely 

internetworked, which is again indicated by the large blue area representing edges 

between IP address vertices in the following Figure 4-7. Compared to those of 𝐺𝐺®2§©fâ and 

𝐺𝐺™ge•´gdf , the IP address vertices core of 𝐺𝐺éå•§U2	®2§Ufâ  are again not strongly 

internetworked. Interestingly, each of the three operator network graph visualisations 

using the Barabási-Albert Model B reveals a bi-partitioning of the graph visualisations. 

This indicates the importance of some IP address vertices that ‘bridge’ connections 

between the bi-partite parts of the operator networks for internetworking purposes 

towards the Internet periphery. Here, especially the graph visualisation of 𝐺𝐺éå•§U2	®2§Ufâ  
indicates the existence of very few of these important vertices. The other two Tamil Nadu 

mobile broadband operator networks, 𝐺𝐺®2§©fâ  and 𝐺𝐺™ge•´gdf  bridge the apparent bi-

partionioning with a multitude of IP addresses, preventing connectivity issues. Moreover, 

this structuring also indicates a structuring where a few IP address vertices (potentially 

belonging to larger Internet Service Providers) would receive most of the upstream 

internetworking connectivity, representing connectivity-crucial structural bottlenecks.  
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𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 

N Number of vertices in network: 8647. 
M Number of edges in network: 11411. 

 

𝑮𝑮𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝑨𝑨𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨 
N Number of vertices in network: 600. 

M Number of edges in network: 803. 

 

𝑮𝑮𝑽𝑽𝑽𝑽𝐝𝐝𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨 

N Number of nodes in network: 7509.	
M Number of edges in network: 10390. 

 
Figure 4-7: Barabási-Albert Model B graph visualisations per mobile broadband 

operator at IP granularity. 

 



Chapter 4 

144  Sebastian Sigloch - April 2018 

Summarising, this section showed that the Barabási-Albert Model B represents the most 

valuable simulation to study and understand network growth emergence for traceroute-

based mobile broadband operator networks, given the nature of the upstream Internet 

infrastructure. The three respective graph simulations using the Barabási-Albert Model B 

then revealed a bi-partitioning of the network graphs. This exposed the structural 

bottlenecks of certain IP address vertices with an internetworking importance for the three 

mobile broadband operators, forming a densely-connected core of the operator networks.  

Given the findings above, the following section aims to reveal the nature and identity of 

these influential IP addresses, using the k-core decomposition used by Alvarez-Hamelin 

et al. (2005b) and Busch, Béiro and Alvarez-Hamelin (2011). This will demonstrate the 

mobile broadband operator’s hierarchical upstream Internet market structure.  

k-core decomposition (IP) 
In this section, we will use the k-core decomposition spectral analysis to identify the set 

of the most densely connected IP address vertices for each of the graphs generated for the 

three Tamil Nadu mobile broadband operator’ networks. Referring to the work of 

Alvarez-Hamelin et al. (2005b), this k-core decomposition reveals the specific roles and 

relevance of the vertices located in the periphery and core of a network. This method is 

frequently used for the analysis of Internet structures, such as work of CAIDA shows. 

Using a k-core decomposition algorithm, as introduced by Seidmann (1983), allows for 

the division of graph visualisation into densely connected network subsets, called k-cores. 

Hence, these k-cores represent connectedness properties for the IP address vertices in a 

given network, where a higher k-core indicates a set of more densely connected IP address 

vertices (see section 2.3.4). The most densely-connected IP address vertices in the 

network core provide both internetworking connectivity features amongst themselves and 

between this central core and those IP addresses located in the overall network periphery. 

Given the identified k-cores, this method allows for a clear identification and visualisation 

of some key hierarchical network properties. Below we start with the k-core 

decomposition for Aircel, followed by the k-core decomposition for Bharti Airtel and 

lastly for Vodafone.  

Aircel 
When looking at the k-core decomposition for the Aircel graph 𝐺𝐺®2§©fâ  in Figure 4-8 

below, we observed 179 k-cores. The highest k-core is inhabited by three IP address 

vertices located in the centre of the graph visualisation, indicating the densest connections 
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amongst these IP address vertices. Using the Maxmind (2015) Geo IP2 database and 

associating these IP addresses with their Autonomous System Number in Table 4-8

below, we show that all of these three central core IP addresses are associated with Tata 

Communications (America) Inc. (AS6453), revealing that this Autonomous System plays 

a key role in providing internetworking connectivity to Aircel to reach the IP address 

vertices located in the network periphery of the graph generated by the Aircel 

observations. This supports the previous results that emerged above from exploring the 

Network metrics. Moreover, we can also identify some vertices that while inhabiting a 

lower hierarchical k-core position, are still providing key connectivity to the periphery.  

 

𝑮𝑮𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 
Highest core IP address vertices, 
visualised as red vertices in the centre 
(grey edges): 
179 cores: ‘180.87.39.25’	
179 cores: ‘80.231.154.17’	
179 cores: ‘80.231.217.17’	

	
Figure 4-8: Aircel graph visualisation k-core decomposition at IP granularity. 

Bharti Airtel 
Next, when looking at the k-core decomposition for the Bharti Airtel graph 𝐺𝐺éå•§U2	®2§Ufâ
in the following Figure 4-9, we observed 40 k-cores. The highest k-core is inhabited by 

two IP address vertices located in the centre of the graph visualisation. This shows the 

densest connections amongst these IP address vertices, followed by one IP address vertex 

in the 39th k-core. Using the Maxmind (2015) Geo IP2 database and associating these IP 

addresses with their Autonomous System Number in using the Maxmind (2015) Geo IP2 

database and associating these IP addresses with their Autonomous System Number in 

Table 4-8 below, we show that all of these three central core IP addresses are associated 

with Bharti Airtel Ltd. (AS45609), Level 3 Communications Inc. (AS3356) and Bharti 

Airtel Ltd. (AS9498). These Autonomous Systems are playing a key role in providing 
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Bharti Airtel’s internetworking connectivity to reach the IP address vertices located in 

the network periphery of the graph, generated by the Bharti Airtel observations. This 

again supports the previous results that emerged above from exploring the Network 

metrics. Additionally, we can also identify vertices that, while inhabiting a lower 

hierarchical k-core position, are still providing key connectivity to the periphery.  

 

𝑮𝑮𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝑨𝑨𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨 
Highest core IP address vertices, 
visualised as red vertices in the centre 
(grey edges):	
40 cores: ‘223.224.40.92’ 
40 cores: ‘10.155.84.218’ 
39 cores: ‘59.144.180.69”’ 

Figure 4-9: Bharti Airtel graph visualisation k-core decomposition at IP granularity.

Vodafone 
Last, when looking at the k-core decomposition for the Vodafone graph 𝐺𝐺™ge•´gdf , as 

visualised in Figure 4-10 below, we identified 1973 k-cores .  The highest k-core is 

inhabited by three IP address vertices located in the centre of the graph visualisation, 

indicating the densest connections amongst these IP address vertices, followed by some 

IP address vertices in the slightly lower k-cores. Using the Maxmind (2015) Geo IP2 

database and associating these IP addresses with their Autonomous System Number in 

using the Maxmind (2015) Geo IP2 database and associating these IP addresses with their 

Autonomous System Number again in Table 4-8, we show that all of these three central 

core IP addresses are associated with Vodafone India Ltd. (AS55410). The IP address 

vertices in the slightly lower central core are associated with the China Education and 

Research Network Center (AS4538) and Cable and Wireless Worldwide Plc. (AS1273). 

Similarly, compared to the previous k-core decompositions, this again supports the 

indicated results that emerged above from exploring the Network metrics. Additionally, 

we can also identify vertices that, while inhabiting a lower hierarchical k-core position, 
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are still providing key connectivity to the periphery.  

  

𝑮𝑮𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨 

Highest core IP address vertices, 
visualised as red, magenta and purple 
vertices in the centre (grey edges).  
1973 cores: ‘182.19.115.70’	

1973 cores: ‘182.19.114.87’	
1973 cores: ‘182.19.105.88’	
1882 cores: ‘182.19.115.233’	
1622 cores: ‘100.64.0.149’ 

1458 cores: ‘166.63.217.41’	
	

Figure 4-10: Vodafone graph visualisation k-core decomposition at IP granularity. 
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Highest k-core IP addresses by operator at AS granularity	

Mobile 
broadband 
operator graph 

k-cores IP address	
Organisational Name 
(Autonomous System Number) 
(Maxmind, 2015)	

𝐺𝐺®2§©fâ_®∆ 	

179	 180.87.39.25	 Tata Communications (America) 
Inc. (AS6453)	

179 80.231.154.17 Tata Communications (America) 
Inc. (AS6453) 

179 80.231.217.17 Tata Communications (America) 
Inc. (AS6453) 

𝐺𝐺éå•§U2	®2§Ufâ_®∆ 

40	 223.224.40.92	 Bharti Airtel Ltd. (AS45609)	

40 10.155.84.218 Level 3 Communications Inc. 
(AS3356) 

39 59.144.180.69 Bharti Airtel Ltd. (AS9498) 

𝐺𝐺™ge•´gdf_®∆ 

1,973	 182.19.115.70	 Vodafone India Ltd. (AS55410)	

1,973 182.19.114.87 Vodafone India Ltd. (AS55410) 

1,973 182.19.105.88 Vodafone India Ltd. (AS55410) 

1,882 182.19.115.233 Vodafone India Ltd. (AS55410) 

1,622 100.64.0.149 China Education and Research 
Network Center (AS4538) 

1,458 166.63.217.41 Cable and Wireless Worldwide 
Plc. (AS1273) 

Key 
AS: Autonomous System. 

IP: Internet Protocol. 

Table 4-8: Highest k-core vertices by mobile broadband operator at IP granularity. 
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Summary Graph Visualisation Analysis (IP) 
The visualisation analysis allowed us to show that none of the three mobile broadband 

operator networks displayed Small-World Network properties. The Scale-Free Network 

graph simulations provided initial structural insights about the dynamics of network 

growth emergence based on the existing connectivity. We note that the Barabási-Albert 

Model B is the most suitable graph algorithm for simulating the emergent network 

dynamics driven by the possible new connectivity between IP address vertices in the 

established network based on the principles of the ‘rich-get-richer’ effect. Next, the 

evidence from the k-core decomposition uncovered the most densely connected IP 

addresses for each of our three Tamil Nadu mobile broadband operator networks. These 

IP addresses represent structural bottlenecks. Moreover, the mapping of these network 

core IP address vertices to their associated Autonomous System Numbers revealed 

structural differences and reliance on different International Internet Service Providers 

between the three mobile broadband operators. 

4.2.7 Summary Complex Network Analysis (IP) 
The first part of the Complex Network Analysis included the Descriptive Analysis of the 

complete operator networks, covering all traceroute hop observations at Internet Protocol 

granularity. We indicated the relevant observations in this case study and analysed their 

general, edge and vertex metrics. Moreover, we found that Vodafone had IP addresses 

that are considerably more often traversed than those of Aircel and Bharti Airtel. Based 

on the Clustering Coefficient analysis, all three mobile broadband operator networks 

indicated low vertex interaction intensities but also power-law degree distributions and 

likely Scale-Free network features. This evidence was further tested in the graph 

visualisation simulations, where the BA-Model B showed the existence of densely 

connecting cores for each operator network. The apparent cores of the Scale-Free 

Network graph visualisations were then explored by using the k-core decomposition, 

which revealed the most important IP address vertices that each operator network relied 

upon for internetworking connectivity to the network periphery. More precisely, Aircel 

showed a reliance on Tata Communications (America) Inc. Bharti Airtel showed a strong 

reliance on its own Autonomous Systems as well as Level 3 Communications Inc. Lastly, 

Vodafone also strongly relied on of their own Autonomous Systems, including their 

Cable and Wireless Worldwide plc. subsidiary, but also on the Chinese Research and 

Education Network. Although these findings are very interesting, we assume that the 
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Complex Network Analysis at IP granularity hides crucial upstream internetworking 

connectivity between Internet Service Providers. One could assume that the same 

analysis at AS granularity illustrates additional upstream Internet market structural 

properties, where the identified IP addresses belong to the same set of Autonomous 

Systems. Hence, the following section covers our analysis at AS granularity. This 

granularity is not only closer to an organisational level but also represents the level on 

which Internet Service Providers arrange economic connectivity relationships between 

Autonomous Systems.  

4.3 Complex Network Analysis at AS granularity 

4.3.1 Data Preparations 
Here we describe the necessary preparations to further explore the previously identified 

structural features of the three operator networks from a higher level of perspective, the 

Autonomous System granularity. Hence, the key step performed in this section was to 

transform every IP address vertex observation into their Autonomous System Number. 

Autonomous Systems (ASs) are managed by either one, or a cooperating multitude of, 

Internet Service Providers. Moreover, each Autonomous System obtains a unique 

identifier, its Autonomous System Number (ASN), which are allocated and administered 

by the Internet Assigned Numbers Authority (IANA, 2016). Here an ISP registers the 

respective AS Number for the purpose of Border Gateway Protocol (BGP) routing. IANA 

then assigns the AS Number to the responsible Regional Internet Registry (RIR), which 

subsequently assigns the registered ASN to the applying Internet Service Provider. Once 

obtained, the AS Number then represents a collection of one, or a multitude of, IP address 

prefixes following the Class Inter-Domain Routing (CIDR) notation. This means that an 

AS Number manages a range of IP addresses. Hence, an ISP not only obtains the 

registered AS Number, but also the (single) administrative control over the Autonomous 

System and its associated IP addresses. This process generates the entire Internet address 

space that is required to establish Inter-domain routing policies. An Autonomous System 

may find these routing policies in an operators’ routing tables being stored on its own 

routers and providing the key routing data for BGP connectivity instructions. Hence, 

different Internet Service Providers usually publish and share these routing tables for 

(bilateral) connection purposes.  
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To obtain the Autonomous System Numbers of the 33,388 collected unique IP addresses-

based traceroute hop observations, we fused these IP addresses with the secondary 

Maxmind (2015) Geo IP2 dataset. This transformation from IP address to ASN represents 

a crucial part of the upcoming Complex and Statistical Network Analysis at AS 

granularity. In this way, we were able to associate to every IP address the corresponding 

Autonomous System Number (e.g. ‘AS174’) and name and headquarter location of the 

Internet Service Provider managing the ASN (e.g. ‘Cogent Communications’, ‘USA’). 

The obtained AS granularity is of particular importance when looking at the economic 

relationships between the upstream Autonomous Systems in the three mobile broadband 

operator networks. Our mapping results were, given their importance for the analysis in 

the upcoming chapters, verified by using other credible sources, including UltraTools 

(2015), Hurricane Electric (2016) and Team Cymru (2016). The overall correct mapping 

justified the suitability of the secondary Maxmind (2015) dataset. After transforming the 

IP address set of relationships of each mobile broadband operator networks into a set of 

Autonomous System Number relationships, we imported the set of these AS relationships 

as directed edge-table into Gephi (2015). This procedure allowed us to generate the three 

Tamil Nadu mobile broadband operator networks at AS granularity. The following Table 

4-9 below compares the number of vertices and edges at both granularities. This indicates 

the effects of the mapping described above. Unsurprisingly, the mapping resulted in a 

much smaller number of unique Autonomous System vertices and edges linking those AS 

vertices. This reflects the nature of Autonomous Systems operating IP address prefix 

range(s). 

Comparison between vertices and edges at IP and AS granularity per mobile 
broadband operator 

Mobile broadband 
operator Vertices (IP) Vertices (AS)  Edges (IP) Edges (AS) 

Aircel 2,259 522 2,879 1,144 

Bharti Airtel 600 180 803 388 

Vodafone 7,509 1,513 10,390 3,627 

Key 
AS: Autonomous System. 

IP: Internet Protocol. 

Table 4-9: Vertices and edges at IP and AS granularity per mobile broadband operator. 
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The graph for Aircel was now denoted as 𝐺𝐺®2§©fâ_®∆	(522,1144), the one of Bharti Airtel 

as 𝐺𝐺éå•§U2	®2§Ufâ_®∆	(180, 388) and the Vodafone one as 𝐺𝐺™ge•´gdf_®∆	(1513, 3627). Here, 

we added a ‘_AS’ suffix, which helps to differentiate between the two granularities of 

analysis.  

4.3.2 General Network Metric Analysis (AS) 
Just like at IP granularity, we analysed the Average (Weighted) Degree, the Network 

Diameter, the Network Density and the randomized Modularity.  

Next, Table 4-10 below indicates that 𝐺𝐺™ge•´gdf_®∆ showed a higher Average Weighted 

Degree of 20.247 than the other two operators. Following, we report the calculated values 

for the three mobile broadband operator graphs’ Network Diameter (directed), a metric 

that indicates the longest possible shortest distance paths between any two Autonomous 

System vertices in the graph (see section 3.4.2). Table 4-10 below lists that the graph of 

the Vodafone observations, 𝐺𝐺™ge•´gdf_®∆ showed, again, the greatest Network Diameter 

(12). Given these values, we add to our previous statement at IP granularity (see section 

4.2.1 above) that the larger Network Diameter of 𝐺𝐺™ge•´gdf_®∆  shows longer possible 

shortest internetworking distance paths in the upstream Internet connectivity.  

General metrics by mobile broadband operator at AS granularity 

Mobile broadband 
operator graph 

Average 
Degree 

Average 
Weighted 
Degree 

Diameter 
(Directed) 

Density 
(Directed) 

Modularity 
(randomized) 

𝐺𝐺®2§©fâ_®∆ 2.192 9.098 6 .004 .271 

𝐺𝐺éå•§U2	®2§Ufâ_®∆ 2.156 5.331 8 .012 .337 

𝐺𝐺™ge•´gdf_®∆ 2.397 20.247 12 .002 .293 

Key 
AS: Autonomous System. 

Table 4-10: General metrics by mobile broadband operator at AS granularity. 

The overall small values of the mobile broadband operators’ Graph Density (directed) 

might indicate that Autonomous System vertices are not densely connecting between each 

other, giving a potential indicator for power-law degree distributions and a Scale-Free 

Network model as shown in section 4.2.4 above. Hence, we expect that a small number 
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of Autonomous Systems would show many connections to other Autonomous Systems 

in the network. Table 4-10 above states the Graph Densities. We assume that the overall 

increase in the Graph Densities, compared to the ones at IP granularity, results from 

mapping the IP addresses to Autonomous Systems.  

Lastly, the Randomised Modularity, a relevant metric to capture structure and dynamics 

of a network (Newman, 2006), revealed sparser connections compared to those at IP 

granularity. Our data showed the existence of 117 vertex clusters in 𝐺𝐺™ge•´gdf_®∆  , 96 in 

𝐺𝐺®2§©fâ_®∆ and only 35 in 𝐺𝐺éå•§U2	®2§Ufâ_®∆. Hence, we assume that, at Autonomous System 

granularity, 𝐺𝐺™ge•´gdf_®∆ and G»4±√ù…_»  are more likely to organise in dense connections 

between vertices in clusters but sparse connections between vertices linking those 

clusters. The transformation of our three Tamil Nadu mobile broadband operator 

networks from IP to AS granularity, therefore, resulted in a loss of community structure 

properties. This shows that IP addresses that previously tended to be organised in IP 

address clusters are now subsumed in Autonomous Systems. Moreover, these values 

indicate the potential reliance on different Autonomous Systems involved in 

internetworking amongst other Autonomous Systems in the operator networks. 

In the next section, we will analyse additional edge metrics with the objective of 

uncovering more structural features for our three mobile broadband operator networks at 

Autonomous System granularity, while comparing the evidence to those at Internet 

Protocol granularity. 

4.3.3 Edge Metric Analysis (AS) 
The edge metrics discussed in this section focus on the connections between any given 

set of Autonomous System vertices in our three mobile broadband operator networks. 

Here, we analyse the Average Path Length, the Edge Betweenness, the Average 

Neighbourhood Overlap and the Average Embeddedness edge metrics, as reported in 

Table 4-11 below. 
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Edge metrics by mobile broadband operator at AS granularity 

Mobile 
broadband 
operator graph 

Average Path 
Length 

Edge 
Betweenness 

Average 
Neighbourhood 
Overlap	

Average 
Embeddedness	
 

𝐺𝐺®2§©fâ_®∆ 2.423 8,782 .227 1.353 

𝐺𝐺éå•§U2	®2§Ufâ_®∆ 2.192 2,142 .232 1.387 

𝐺𝐺™je•´gdf_®∆ 4.563 305,742 .208 1.772 

Key 

AS: Autonomous System. 

Table 4-11: Edge metrics by mobile broadband operator at AS granularity. 

Compared to the edge metrics at IP granularity, the Average Path Length shortened for 

all three mobile broadband operator networks at AS granularity, representing a data 

fusion effect (see Table 4-11 above and section 3.4.2). These differences still indicate that 

Bharti Airtel routes connections more efficiently, or that Vodafone and Aircel more 

heavily rely on Autonomous Systems’ internal routings.  

The second analysed edge metric at Autonomous System granularity was the Average 

Neighbourhood Overlap (see Table 4-11 above), where the highest value was again 

shown by 𝐺𝐺éå•§U2	®2§Ufâ_®∆ . This suggests that the average connections of any pair of 

neighbouring Autonomous System vertices in 𝐺𝐺éå•§U2	®2§Ufâ_®∆  are not well connected 

among themselves. On the contrary, the average connections of any pair of neighbouring 

Autonomous System vertices in 𝐺𝐺™ge•´gdf_®∆  are well connected among themselves. 

Furthermore, these findings are, again, supported by those of the Average Embeddedness, 

where the highest Average Embeddedness value was shown by 𝐺𝐺™ge•´gdf_®∆. Therefore, 

𝐺𝐺™ge•´gdf_®∆	seems to have more strongly embedded pairs of neighbouring Autonomous 

System vertices than the other two mobile broadband operator networks. 

The Edge Betweenness, which looks at the number of shortest paths going through certain 

Autonomous System vertices, through an edge, in a given network provides some 

interesting structural insights. Here, the highest Edge Betweenness value was shown by  

𝐺𝐺™ge•´gdf_®∆ . Hence, we assume the existence of some very strong and constantly 

traversed edges in 𝐺𝐺™ge•´gdf_®∆ , likely to be Vodafone’s own Autonomous Systems. 

Moreover, this points towards the existence of structural bottlenecks in the upstream 
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Internet market for 𝐺𝐺™ge•´gdf_®∆ and 𝐺𝐺®2§©fâ_®∆. 

Having discussed the edge metrics of the three mobile broadband operator networks at 

Autonomous System granularity, the next section aims to analyse additional vertex 

metrics for the operator networks before examining their Complex Network properties. 

4.3.4 Vertex Metrics (AS) 
Following the analysis of edge metrics above, we analyse the Clustering Coefficient, the 

Average Clustering Coefficient, the Average Weighted Clustering Coefficient and the 

Average Vertex Strength, as indicated in the following Table 4-12. 

Again, these (Average) Clustering Coefficient are of particular interest since they indicate 

whether the neighbours of Autonomous System vertices in the given mobile broadband 

operator networks are actively connecting between themselves. The (Average) Clustering 

Coefficient revealed some differences between the three operator networks. These three 

Clustering Coefficient values in Table 4-12 below indicate the existence of mutual 

internetworking connectivity between Autonomous Systems and their given 

neighbouring vertices. 

High Clustering Coefficient values indicate dense connections, likely to show Small-

World Network properties. Given the somewhat low Clustering Coefficients of the three 

mobile broadband operator networks, we again assume the presence of Scale-Free 

Network models. This feature is analysed by looking at the Complex Network properties 

and the Graph Visualisation Analysis in the following sections. 

Vertex metrics by mobile broadband operator at AS granularity 

Mobile 
broadband 
operator graph 

Clustering 
Coefficient 
(Directed) 

Average Clustering 
Coefficient 

Average Weighted 
Clustering 
Coefficient 

𝐺𝐺®2§©fâ_®∆ .105 .167 .099 

𝐺𝐺éå•§U2	®2§Ufâ_®∆ .085 .155 .081 

𝐺𝐺™ge•´gdf_®∆ .170 .257 .165 

Key 

AS: Autonomous System. 

Table 4-12: Vertex metrics by mobile broadband operator at AS granularity. 
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The three plots in the following Figure 4-11 illustrate the Average Vertex Strength 

distributions for the three mobile broadband operator networks at AS granularity. This 

distribution represents the average sum of weights being attached to edges (incoming and 

outgoing connections) belonging to an Autonomous System vertex (Barrat et al., 2004). 

The visualised the Average Vertex Strength distributions, using R (2016) as indicated in 

see section 3.4.2, support the previous findings at IP granularity. In detail, 𝐺𝐺™ge•´gdf_®∆  

and 𝐺𝐺®2§©fâ_®∆  are showing stronger vertex strengths of a few Autonomous Systems 

(bottom-right of the distribution plots) that seem to links to the many with considerably 

less strong vertex strengths, compared to 𝐺𝐺éå•§U2 ®2§Ufâ_®∆. In detail, 𝐺𝐺™ge•´gdf_®∆ reveals 

a Average Vertex Strength of 40.493 compared to 𝐺𝐺®2§©fâ_®∆  with 19.141 and 

𝐺𝐺éå•§U2	®2§Ufâ_®∆ with an Average Vertex Strength of 10.622.  

Vertex Strength Distributions at AS granularity 

𝐺𝐺®2§©fâ_»∆ 𝐺𝐺éå•§U2	®2§Ufâ_®∆

  

𝐺𝐺™ge•´gdf_®∆  

 

 

Figure 4-11: Vertex strength distribution by mobile broadband operator at AS 

granularity. 

This section analysed the general, edge and vertex metrics of the three Tamil Nadu mobile 

broadband operator networks at Autonomous System granularity. Given the Average 

Weighted Degree, our exploration implied that Vodafone traceroutes traversed recurrent 
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Autonomous Systems far more often than the other two mobile broadband operators. 

Looking next at the Network Modularity showed that both Vodafone and Aircel were 

more likely to organise in Autonomous System clusters than Bharti Airtel. The Edge 

Betweenness showed that Vodafone had edges that were constantly traversed, indicating 

the structural importance of a few Autonomous Systems. The Average Neighbourhood 

Overlap indicated that Vodafone had AS vertices being well connected among 

themselves. Overall, the three mobile operators exposed a potentially low (Average) 

Clustering Coefficients, indicating weak interaction intensities between different 

Autonomous Systems in the upstream Internet market structure and potentially pointing 

towards a Scale-Free Network nature and hierarchical structuring.  

4.3.5 Complex Network Properties (AS) 
The results of the operator network metrics seen above reveal some properties of 

structural relevance of some Autonomous System vertices. These Autonomous Systems 

would, therefore, inhabit positions that are likely to indicate Scale-Free Network 

properties, rather than Small-World Network ones. This section summarises a number of 

metrics and assesses the networks against their Complex Network properties. The next 

section generates the respective graph visualisations at AS granularity, while comparing 

their properties to those at IP granularity. Expanding on the previous analysis, Table 4-13 

below reports the obtained values.  

Complex Network Indicators by mobile broadband operator at AS granularity 

Mobile 
broadband 
operator graph 

Average Path Length 
Clustering 
Coefficient 
(Directed) 

Degree Distribution 

𝐺𝐺®2§√fâ_®∆ 	 2.423	 .105	 Power-law	

𝐺𝐺éå•§U2	®2§Ufâ_®∆ 	 2.192	 .085	 Power-law	

𝐺𝐺™ge•´gdf_®∆ 	 4.563	 .170	 Power-law	

Key 
AS: Autonomous System. 

Table 4-13: Complex network indicators by mobile broadband operator at AS 

granularity. 

 



Chapter 4 

158  Sebastian Sigloch - April 2018 

While all of the possible network models (Random, Real-World, Small-World and Scale-

Free) imply, the existence of short Path Lengths the first differences emerge when 

looking at the Clustering Coefficients. While Random Networks usually show no 

Clustering Coefficient, following the notion of Watts and Strogatz (1998), Real- and 

Small-World Networks indicate a somewhat high, or higher, Clustering Coefficient, as 

Table 4-14 indicates. Scale-Free Network models on the other hand show either no, or 

very little clustering (Nefedov, 2013). Random Networks represent the only network 

model that follows a Poisson distribution, whereas Small-World Networks show overall 

constant Degrees, considering that every vertex in the network should be very well 

connected to all the other vertices. Moreover, Real-World Networks usually indicate 

heavy tails in their Degree distributions. Lastly, Scale-Free Networks are showing also 

heavy tailed, but power-law degree distributions. 

Comparison of complex network model properties 

Network Model Path Lengths	 Clustering Coefficient	 Degree distribution	

Random 	 short	 no	
Poisson 	
distribution	

Real-World 	 short	 high 
Heavy tails,  	
often power-laws 	

Small-World short high (nearly) constant 	

Scale-Free* short little or noon Heavy tails, power-
laws 

Key 
* suitable network properties. 

Table 4-14: Comparison of complex network model properties, Source: Nefedov (2013). 

Remembering that the Average Path Length for each of the graphs considerably dropped 

after the mapping from IP to Autonomous System granularity, we can still classify the 

Path Lengths as short (below 4.6). Next, we note that the three operator networks are still 

indicating small Clustering Coefficients (below .180). Figure 4-12 below represents the 

plot of the Degree distributions and exposed linear, heavy-tailed, non-Gaussian power-

law degree distributions. The nature of these Degrees could either be strongly incoming 

connections, strongly outgoing ones, or a combination of the two. Of special interest is 

the number of vertices with a fairly small Degree on the left-hand side of the plots in the 



Chapter 4 

Sebastian Sigloch - April 2018  159

following Figure 4-12. This means that most Autonomous Systems in the operator 

networks have low connectivity Degrees and hence a small number of incoming or 

outgoing internetworking connections. Moreover, those Autonomous System vertices 

with a higher Degree (k) on the right-hand side of the illustrated plots indicate the 

structural importance of certain Autonomous Systems, or their Internet Service 

Providers, for the connectivity of the three mobile broadband operator networks.  

Power-law Degree Distributions at AS granularity 

𝐺𝐺®2§©f…_®∆ 𝐺𝐺éå•§U2	®2§≤fâ_®∆ 

 	
𝐺𝐺™ge•´gdf_®∆  

 

 

Figure 4-12: Degree distributions by mobile broadband operator at AS granularity. 

Based on the obtained indicators, we observed that the three Tamil Nadu mobile 

broadband operator networks are displaying Scale-Free Network properties.  

These features are further analysed in drawing the respective graph visualisations using 
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both Small-World Network and Scale-Free Network visualisation, and simulation, 

algorithms in the following section, after summarising the Complex Network Analysis at 

Autonomous System granularity.  

4.3.6 Summary Network Metric Analysis (AS) 
The general network metrics indicated that the Vodafone network incorporates ASes that 

are more often traversed than those in the other two operator networks. Analysing the 

edge metrics led to the discovery that the Vodafone network is either less efficiently 

organised than the other two mobile broadband operators, or that they are constantly 

making use of their own Autonomous Systems for upstream internetworking connectivity 

purposes. While displaying that individual ASes are traversed more often than others, the 

edge metrics also inferred that the operator networks incorporate systematic organisation 

of relationships between Autonomous Systems. This points towards a hierarchical 

upstream Internet market structuring, rather than a random one. Unsurprisingly then, the 

vertex metrics revealed higher interaction intensities as well as stronger Autonomous 

System vertex strengths in the respective operator network graphs. The metrics also 

showed that Vodafone makes use of their own Autonomous Systems, while Bharti Airtel 

had a strong reliance on other Autonomous Systems, both of which are indicators for 

potential presence of upstream connectivity bottlenecks. Moreover, by looking at the 

Complex Network properties, we suggest that the mobile broadband operator networks 

are following Scale-Free Network models. These features are analysed using Graph 

Visualisation Analysis and simulations of the emerging features of network evolution, 

parameterised on current connectivity evidence, in the next section. 

4.3.7 Graph Visualisation analysis (AS) 

Small-World Model (AS) 
The Network metrics above indicate that the three Tamil Nadu mobile broadband operator 

networks are following Scale-Free Network properties. Therefore, this section aims to 

challenge this indication by testing the three operator networks, again, against their Small-

World and Scale-Free Network properties. 

Here, the three mobile broadband operator networks were, again, placed into a two-

dimensional Euclidean Space, following the Layered Layout by Kuchar (2012), while the 

visualisation parameters are stated in the sections 3.5.3 and 3.5.5 above. Figure 4-13 

below shows that none of the three mobile broadband operator graph visualisations 
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signals Small-World Network properties. However, some Autonomous System are 

showing a core of densely connected Autonomous Systems, an indicator for hierarchical 

upstream Internet market structuring with large Internet Service Providers. Again, the 

graph visualisation of Bharti Airtel shows less active connections among a particular set 

of Autonomous System vertices (similarly to IP granularity). This is interesting since it 

indicates a less hierarchical upstream Internet market structure than the graph 

visualisations for Aircel and Vodafone. Moreover, the strongest connected edges are, 

again, clearly visible on the left-hand side of the graph visualisations, which becomes 

most apparent for the network graph visualisation of Vodafone. From the highly 

connected vertices displayed in the following Figure 4-13, the edges leave the Small-

World Network circle and reach towards other vertices in the upstream Internet periphery. 

Additionally, none of the operators’ graph visualisations shows perfectly interconnected 

Small-World Network effects in their visualised graph circles. All graph visualisations 

seem, hence, to build new layers around the centred one, which is again most clearly 

visible for the graph visualisation of 𝐺𝐺™ge•´gdf_®∆.		This indicates, as anticipated, that the 

mobile broadband operator networks follow Scale-Free Network properties.  
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n – size of lattice: 10.	
p – lattice distance to local contacts: 2.	
q – long range contacts: 2.	
r – clustering exponent: 0.	
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n – size of lattice: 10.	
p – lattice distance to local contacts: 2.	
q – long range contacts: 2.
r – clustering exponent: 0.	

	

𝑮𝑮𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨_𝑨𝑨𝑨𝑨 

edge-thickness: 0.2 
n – size of lattice: 10	
p – lattice distance to local contacts: 2	
q – long range contacts: 2	
r – clustering exponent: 0	
 

	
Figure 4-13: Small-World Network graph visualisations in Layered Layout by mobile 

broadband operator at AS granularity. 
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Scale-Free Barabási-Albert Model B (AS) 
Next, we assess the fit of the three mobile broadband operator networks to the Scale-Free 

Network. Following the indications as IP granularity we visualise, our three mobile 

broadband operator network graphs only using the Barabási-Albert Model B, since the 

other two simulations were less useful for simulating and interpreting network growth 

emergence for upstream Internet connectivity between IP addresses.  

Our analysis at Autonomous System granularity captures again a visual analysis of the 

generated network graph simulations and compares the differences first amongst the 

mobile broadband operators and second, to the simulated graph visualisations at Internet 

Protocol granularity. We used again the same visualisation and simulation properties for 

the network growth emergence (see section 3.5.3). For readability purposes, we set the 

edge-thicknesses independently, where the graph visualisation of 𝐺𝐺™ge•´gdf_®∆	needed a 

very low edge-thickness to avoid edges occupying the complete visualisation space.  

Our dynamic network procedures simulate the graph visualisation for network growth 

using the preferential attachment of edges, meaning that the more connected Autonomous 

System vertices were more likely to receive new edges in the growth model. Additionally, 

vertices with a higher Degree would have a stronger ability to grab preferentially attached 

links, creating a scenario of mobile broadband operator network evolution. This 

preferential attachment seemed to suit the nature of traceroutes since it represents new 

connectivity patterns that emerge given the more or less fix number of 49,874 

Autonomous System vertices during the data collection campaign, see CAIDA (2016a). 

The latest CAIDA (2016a) AS-Rank dataset (May 2016) shows 54,722 Autonomous 

Systems, meaning that some vertex growth in the network simulation would be justified, 

but we did not have the ability to change vertex growth settings in the employed Gephi 

(2016) simulation algorithm. Nevertheless, the generated graph visualisations using the 

Barbási-Albert Model B represent a valuable approach to expose important parts of the 

network structure, given its edge evolution under preferential attachment. 

Here, the Barabási-Albert Model B simulation considers 522 Autonomous System 

vertices (without growth) for 𝐺𝐺®2§©fâ_®∆ , 180 for 𝐺𝐺éå•§U2	®2§Ufâ_®∆  and 1,513 for 

𝐺𝐺™ge•´gdf_®∆ , covering the full set of AS vertices as Table 4-9 before lists. The three-

generated operator network graph visualisations with simulated Autonomous System 

vertex growth indicate densely connected AS vertex cores for each of the three mobile 
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broadband operators, as shown by the large blue area representing edges between vertices 

in Figure 4-7 on the next page. This structuring indicates that a few Autonomous System 

vertices (potentially belonging to larger ISPs) likely receive most of the upstream 

internetworking connectivity, representing connectivity-crucial structural bottlenecks. 

This was already indicated at IP granularity. Especially 𝐺𝐺™ge•´gdf_®∆ shows only very 

few Autonomous Systems that are highly internetworking with each other, indicated by 

the ‘fat’ blue edges in Figure 4-7 (using layout parameters, see sections 3.5.3 and 3.5.5). 

Moreover, each of the three operator network graph visualisations reveals a stronger bi-

partitioning of the visualised operator network graphs, compared to those at IP 

granularity. The number of connectivity- ‘bridging’ vertices between the bi-partite parts 

of the operator networks, potentially connecting the Internet periphery, became even 

more apparent than at IP granularity. Here,  𝐺𝐺®2§©fâ_®∆ indicates a very small number of 

these bridging AS vertices, whereas 𝐺𝐺éå•§U2	®2§Ufâ_®∆  looses them, in this simulation, 

almost entirely. Also 𝐺𝐺™ge•´gdf_®∆, considering the larger number of observations, only 

shows very few of these structurally important Autonomous Systems. Overall, 

𝐺𝐺™ge•´gdf_®∆ seems to have more Autonomous Systems in the Internet periphery that are 

less well connected to the core than those in 𝐺𝐺®2§©fâ_®∆ or 𝐺𝐺éå•§U2	®2§Ufâ_®∆, indicated by 

the thinner edges between the AS vertices. 
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𝐺𝐺®2§©fâ_®∆ 

N Number of nodes in network: 522. 
Edge-thickness: 0.25.	
 

 

G𝑩𝑩𝑩𝑩𝑩𝑩𝑨𝑨𝑩𝑩𝑨𝑨	𝑨𝑨𝑨𝑨𝑨𝑨𝑩𝑩𝑨𝑨𝑨𝑨_𝑨𝑨𝑨𝑨 

N Number of nodes in network: 180.	
Edge-thickness: 1.	

	

𝑮𝑮𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨_𝑨𝑨𝑨𝑨 

N Number of nodes in network: 1,513.	
Edge-thickness: 0.05.

	
Figure 4-14: Barabási-Albert Model B graph visualisations per mobile broadband 

operator at AS granularity. 
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The BA-Model Model B visualisations in Figure 4-14 perfectly indicate the effect of the 

transformation from IP to AS granularity. While the strong cores are still visible in the 

centre of the graph visualisations, the vertex hubs and structural gaps become even more 

apparent. Interestingly, the single cores in the graph visualisations of 𝐺𝐺™ge•´gdf_®∆ and 

𝐺𝐺®2§©fâ_®∆ indicate a particularly strong connection to very few Autonomous Systems. On 

the other hand, 𝐺𝐺éå•§U2	®2§Ufâ_®∆  shows a number of somewhat stronger connections 

among a multitude of Autonomous Systems. The preferential attachment algorithm of the 

BA-Model increases the structural indicators but might generally blur the importance of 

single vertices, or their respective relationships. Nevertheless, we consider these graph 

visualisations as a very important analytical step towards the identification of market 

structural properties, as it provides some indicators for certain structures in the respective 

operator networks. 

To further uncover the properties of upstream Internet market structures, next we will 

look at the operator network’s centrality measurements. These measurements should 

reveal Autonomous Systems with particularly interesting network structuring properties. 

Centrality Metrics (AS) 
In this section, we focus on exploring the centrality measurements for each of the three 

operator networks, to gain a better understanding of their structural network properties.  

First, the Degree Centrality estimates the importance of a vertex based on its obtained 

Degrees (In- and Out-Degree), following a linear interpretation of the relevant 

connections. Second, the Closeness Centrality represents the sum of the lengths of the 

shortest paths between a certain Autonomous System vertex and all other vertices in a 

network. More central Autonomous Systems are therefore closer (not in geo-distance) to 

all other operator network vertices. Thirdly, the Betweenness Centrality explains the 

centrality of an Autonomous System vertex based on the number of shortest paths passing 

through a certain vertex. Lastly, the Eigenvector Centrality measures vertex influence 

within the operator network, calculated based on the concept that edges to high-scoring 

vertices contribute more to a given vertex influence than edges to low-scoring ones. The 

most central vertices in a network are therefore those of highest influence, representing 

the most valuable Autonomous Systems to connect to.  

Moreover, we extend each Autonomous System with its associated Transit Degree from 

the secondary CAIDA (2016a) AS-Rank dataset. This Transit Degree measurement 
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represents the number of Autonomous Systems for which a certain Autonomous System 

was observed to receive transit paths in the list of all Autonomous Systems in the CAIDA 

(2016a) AS-Rank dataset. An Autonomous System received transit path also indicates 

those downstream ones that pay transit fees to the receiving AS. Transit itself means that 

an Autonomous System provides connectivity to the publicly available Internet routing 

tables, whereas payments are made upon traffic volume-based fees. This is considerably 

different to peering, where traffic is bilateral between a pair of peering Autonomous 

Systems (staying within their advertised IP address boundaries) and exchanged upon a 

settlement-free basis (Ahmed, 2016). Adding the Transit Degree allowed us to gain a 

better understanding of the general upstream market importance of certain Autonomous 

Systems. Therefore, an Autonomous System in this section is labelled by reporting both 

the AS Number and its Transit Degree value derived from the CAIDA (2016a) AS-Rank 

dataset (ASN: Transit Degree).  

For the purpose of exploring the centrality measurements in this section, we again placed 

the three Tamil Nadu mobile broadband operator networks into a two-dimensional 

Euclidean space to obtain the necessary graph visualisations. Here, we made use of the 

force-directed Fruchterman-Reingold Layout. We considered this layout valuable for the 

analysis since it does not apply any specific lengths to edge visualisations, resulting in 

vertices showing the seemingly same distances between each other. This allowed us to 

clearly identify those Autonomous System vertices of key interest (inhabiting certain 

centrality values). Moreover, colouring the key vertices of interest helped for 

identification purposes. We coloured vertices with low centrality value ‘red’ and vertices 

with high centrality ones ‘blue’. For comparability purposes of our obtained results, we 

set the following standards for the graph visualisation layout properties: 

• Area of visualisation: 10000.0. 

• Gravity attraction: 10.0.  

• Edge thickness: 𝐺𝐺®2§©fâ_®∆ : 0.25, 𝐺𝐺éå•§U2	®2§Ufâ_®∆ : 0.5 and 𝐺𝐺™ge•´gdf_®∆ : 0.05.  

• Graph structuring by Degree Centrality. 

In the next paragraphs, we first visualise and compare the centrality metrics for 𝐺𝐺®2§©fâ_®∆, 

followed by 𝐺𝐺éå•§U2	®2§Ufâ_®∆ and lastly 𝐺𝐺™ge•´gdf_®∆. 
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Aircel 
Looking at the Degree Centrality for 𝐺𝐺®2§©fâ_®∆  revealed seven Autonomous Systems, 

labelled as (ASN: Transit Degree), with a high Degree Centrality. The identified 

Autonomous Systems were, ordered-by their values, first an entry named #N/A, 

representing traceroute terminations that will be neglected, then Tata Communications 

(America) Inc. (AS6453:643), Level 3 Communications Inc. (AS3356:4160), PJSC 

Rostelcom (AS12389:632), Cogent Communications (AS174:4541), and NTT America 

Inc. (AS2914:1187). These vertices provide interesting insights. Based on our empirical 

evidence, merged with the information on AS names derived from Hurricane Electric 

(2016), we can see that 𝐺𝐺®2§©fâ_®∆ has a strong Out-Degree connectivity reliance on Tata 

Communications (America) Inc. (AS6453:643) as well as on Level 3 Communications 

Inc. (AS3356:4160). Information on the In-Degrees connectivity does not provide 

additional insights. Moreover, the Degree Centrality for 𝐺𝐺®2§©fâ_®∆ showed the presence 

of Autonomous Systems with a very high Transit Degrees. These high ranked 

Autonomous Systems in the CAIDA (2016a) dataset were Level 3 Communications Inc. 

(AS3356:4160) and Cogent Communications (AS174:4541).  

The Closeness Centrality, showing how close a vertex is to the entire graph for 𝐺𝐺®2§©fâ_®∆, 

identified the role of additional Autonomous Systems. In detail, the exploration revealed, 

ordered by the Closeness Centrality value, the following Autonomous Systems: Taiwan 

Fixed Network (AS9924:48), Nextweb Inc. (AS7829:21), Hong Kong Broadband 

Network Ltd. (AS9269:19), Singapore Telecommunications Ltd. (AS7473:261) and Tata 

Communications (formerly VSNL), (AS4755:400) as the centrally closest Autonomous 

Systems to the Aircel network. This is interesting since it shows that these Autonomous 

Systems are very well connected amongst the other Autonomous Systems in the network 

generated by the connectivity data of 𝐺𝐺®2§©fâ_®∆. Moreover, none of them has very high 

Transit Degrees in the CAIDA (2016a) database, which potentially indicates possible 

presence of peering relationships between Autonomous Systems with a high Transit 

Degree.  

The analysis of the Betweenness Centrality reveals the identity of those Autonomous 

System vertices that were key in ‘building bridges’ between other Autonomous Systems 

within the graph generated by the set of traceroutes for the Aircel network. These vertices 

are of key importance for the analysis of emerging structural internetworking bottlenecks 
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in the three mobile broadband operator networks. In descending order, the vertices with 

the highest Betweenness Centralities in 𝐺𝐺®2§©fâ_®∆ were Tata Communications (America) 

Inc. (AS6453:643), #N/A, Level 3 Communications Inc. (AS3356:4160), and PJSC 

Rostelcom (AS12389:632). This evidence confirms the previous findings about 

𝐺𝐺®2§©fâ_®∆	relying on both Tata Communications (America) Inc. (AS6453:643) and Level 

3 Communications Inc. (AS3356:4160) for its internetworking connectivity. 

Interestingly, PJSC Rostelcom (AS12389:632) is a Russian Internet Service Provider, 

which peers with both Tata Communications (America) Inc. (AS6453:643) and Level 3 

Communications Inc. (AS3356:4160), see Hurricane Electric (2016). 

Lastly, the analysis of the Eigenvector Centrality in 𝐺𝐺®2§©fâ_®∆	  revealed Tata 

Communications (America) Inc. (AS6453:643), followed by Cogent Communications 

(AS174:4541), Level 3 Communications Inc. (AS3356:4160) NTT America Inc. 

(AS2914:1187) above an Eigenvector Centrality threshold of 0.01. These Autonomous 

Systems hence show a strong internetworking influence within Aircel, representing the 

most valuable vertices to connect to, since high-scoring vertices contribute more to the 

influence than low-scoring ones. This indicates a structural reliance of 𝐺𝐺®2§©fâ_®∆ on these 

large Tier1 Internet Service Providers. 
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𝐺𝐺®2§©fâ_®∆  

Degree Centrality  
small = blue, high = red. 

𝐺𝐺®2§©fâ_®∆ 

Closeness Centrality  
small = blue, high = red. 

 

𝐺𝐺®2§©fâ_®∆  

Betweenness Centrality  
small = blue, high = red.	

 

𝐺𝐺®2§©fâ_®∆ 

Eigenvector Centrality  
small = blue, high = red. 
 

Figure 4-15: Aircel graph visualisations centrality metrics using the Fruchterman-

Reingold Layout at AS granularity. 

Bharti Airtel 
Starting again with the Degree Centrality for 𝐺𝐺éå•§U2	®2§Ufâ_®∆ , indicated three 

Autonomous Systems with the highest number of connections. Similar to 𝐺𝐺®2§©fâ_®∆ , 
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Level 3 Communications Inc. (AS3356:4160) incorporated a strong Degree Centrality. 

Moreover, 𝐺𝐺éå•§U2	®2§Ufâ_®∆  also showed Cogent Communications (AS174:4541) and 

Bharti Airtel Ltd. (AS9498:537) with the strongest Out-Degree Centrality. These three 

Autonomous System vertices again show mostly high Out-Degree Centralities, rather 

than In-Degree Centralities. The previous findings that 𝐺𝐺éå•§U2	®2§Ufâ_®∆  strongly 

connects to itself is, therefore, supported. 

The Closeness Centrality for 𝐺𝐺éå•§U2	®2§Ufâ_®∆  exposed five vertices with the highest 

closeness to the entire Bharti Airtel network. These vertices were, in descending order: 

Telemar Norte Lesta S.A (AS7738:182), IP-Only Networks AB (AS12552:191), Brasil 

Telecom S/A (AS8167:202), Intelsat Global Service Corp. (AS22351:19) and finally 

COLT Technology Services Group Ltd (AS8820:655). Their importance represents 

properties of the most number of shortest paths between themselves and other 

Autonomous Systems in 𝐺𝐺éå•§U2	®2§Ufâ_®∆. An Autonomous System could theoretically 

choose these vertices for establishing efficient connections.  

By calculating the Betweenness Centrality for 𝐺𝐺éå•§U2	®2§Ufâ_®∆ , we detected Cogent 

Communications (AS174:4541), True International Gateway Co. (AS38082:115) and 

Bharti Airtel Ltd. (AS9498:537) had the highest Betweenness Centralities. Hence, these 

Autonomous Systems have the greatest number of shortest paths passing through them. 

Of great interest is the emerging evidence showing that 𝐺𝐺éå•§U2	®2§Ufâ_®∆ relies on Cogent 

Communications (AS174:4541), an Autonomous System with a very well ranking in the 

CAIDA (2016a) AS-Rank.  

Lastly, those vertices that showed the highest Eigenvector Centrality for 𝐺𝐺éå•§U2	®2§Ufâ_®∆, 

representing vertices with greatest connectivity influence within Bharti Airtel’s network 

were, in descending order, Bharti Airtel Ltd. (AS9498:537), Level 3 Communications 

Inc. (AS3356:4160), Breeze Network (AS34661:5), Cogent Communications 

(AS174:4541), NTT America Inc. (AS2914:1187) , the  Amsterdam Internet Exchange 

(AS1200:0), Hurricane Electric Inc. (AS6939:3703) and Transtelecom (AS20485:1598). 

These reported Autonomous System vertices showed an Eigenvector Centrality over the 

threshold of a 0.15 value. These vertices, therefore, are those with highest influence, 

representing the most valuable Autonomous Systems to connect to for internetworking 

purposes (see the following Figure 4-16). 
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Figure 4-16: Bharti Airtel graph visualisations centrality metrics using the Fruchterman-

Reingold Layout at AS granularity. 
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Vodafone 
The Degree Centrality for 𝐺𝐺™ge•´gdf_®∆ indicated four Autonomous System vertices with 

strong Degree Centralities. In descending order, these vertices were Cogent 

Communications (AS174:4541), Telia Company AB (AS1299:1010), Cable and Wireless 

Worldwide plc. (AS1273:355) and Tinet SpA (AS3257:1085). Moreover, the graph 

visualisation revealed some other Autonomous System vertices also with a relatively high 

Degree Centrality. These vertices included Internet Service Providers such as Level 3 

Communications Inc. (AS3356:4160) and NTT America Inc. (AS2914:1187). 

The Autonomous Systems vertices with the highest Closeness Centrality in 𝐺𝐺™ge•´gdf_®∆ 

were Blix Solutions AS (AS50304:563), Etisalat (AS8966:140), Tecnocratica Centro de 

Datos (AS15954:7), and the Belarusian Cloud Technologies JLLC (AS60330:11). Again, 

the network showed numerous other Autonomous Systems with a strong Closeness 

Centrality.  

Moreover, 𝐺𝐺™ge•´gdf_®∆  revealed mainly two vertices with a strong Betweenness 

Centrality and hence the greatest number of shortest paths passing between them. These 

Autonomous Systems were Telecom Italia Sparkle SpA (AS6762:351) and Level 3 

Communications Inc. (AS3356:4160). This indicates the important role played by these 

two ASes in establishing connections to the periphery of 𝐺𝐺™ge•´gdf_®∆ . Due to their 

unavoidability, under given interconnection policies, both of these Autonomous Systems 

show the potential for exerting a strong bargaining position and hence market power 

towards 𝐺𝐺™ge•´gdf_®∆ . Again, Level 3 Communications Inc. (AS3356:4160) also shows 

a very high Transit Degree compared to Telecom Italia Sparkle SpA (AS6762:351). This 

shows that Telecom Italia Sparkle SpA (AS6762:351) is likely to align with more peering 

relationships, rather than transit ones. It seems that 𝐺𝐺™ge•´gdf_®∆  connects with these 

Autonomous Systems independent of the given traceroute destinations. Those vertices 

that showed the highest Eigenvector Centrality for 𝐺𝐺™ge•´gdf_®∆, representing vertices 

with greatest connectivity influence within Vodafone’s network, were, again in 

descending order, Vodafone India Ltd. (AS55410:157) with the maximum Eigenvector 

Centrality 1.0, followed by Bharti Airtel Ltd. (AS9498:537), Telstra Global 

(AS4637:226) and Vodafone’s Cable and Wireless Worldwide plc. (AS1273:355) 

subsidiary, all ranging above an Eigenvector Centrality threshold of 0.0010. These 

valuable Autonomous System vertices represent again those with the highest 

internetworking influence in the network (see Figure 4-17 on the next page). 
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Figure 4-17: Vodafone graph visualisations centrality measurements using the 

Fruchterman-Reingold Layout at AS granularity. 
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Summarising, the Centrality Analysis for the three providers indicated structurally 

important Autonomous Systems. However, we note that it’s hard to obtain the right 

vertices by choosing them manually based on the graph visualisation. While our findings 

seem convincing, we provide them with the following limitations. Given the metric’s 

theoretical grounding, we indicate that most metrics are unable to capture the properties 

of interest. The Degree Centrality does not take, for example, vertex importance as well 

as edge directions into consideration. Hence, this metric does not suit our directed 

network but it shows those vertices being important in the power-law degree distribution. 

Moreover, the Closeness Centrality and Betweenness Centrality both assume that 

communication within a network always follows the shortest paths. This is unlikely to be 

the case in a real-world network. Here, connectivity of traceroutes would not always 

follow the shortest paths to reach a destination. Based on these metrics alone, it seems 

difficult to indicate those Autonomous Systems with central properties regarding their 

connectivity importance. To find those Autonomous Systems, the following section 

covers the respective k-core decomposition algorithm of Alvarez-Hamelin et al. (2005b; 

2008). We aim to detect those Autonomous Systems that were building very dense 

connections in the core of the operator networks, a critical indicator for the hierarchical 

organisation of the operators. 

k-core decomposition (AS) 
In this section, we will use the k-core decomposition spectral analysis to identify the most 

densely connected Autonomous System vertices for each of the graphs generated for the 

three Tamil Nadu mobile broadband operator’ networks at AS granularity. Alvarez-

Hamelin et al. (2008, p.390) argue that the k-core decomposition can be used to compare 

different granularities of the Internet structure for the purpose of revealing structural 

properties, as present in our work. Referring to the work of Alvarez-Hamelin et al. 

(2005b), this k-core decomposition reveals the specific roles and relevance of the vertices 

located in both, the network periphery and the network core. This method is frequently 

used for the analysis of Internet structures and employed by researchers at CAIDA (2015). 

Using a k-core decomposition algorithm allows for the division of graph visualisation 

into densely connected network subsets, called k-cores. These k-cores represent 

connectedness properties for the Autonomous System vertices in a given network, where 

a higher k-core indicates a set of more densely connected Autonomous Systems. These 

most densely-connected Autonomous System vertices in the mobile broadband operator 

network core provide both connectivity features amongst themselves and between this 
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central core and those Autonomous Systems located in the overall network periphery. 

Given our identified k-cores, this method allows for a clear identification and 

visualisation of some key hierarchical network properties.   

Aircel 
The k-core decomposition for 𝐺𝐺®2§©fâ_®∆ indicated 16 Autonomous Systems with the same 

high k-core value of ‘5’ as Table 4-15 below indicates. Besides being densely connected 

amongst each other, these Autonomous Systems also connect to the less-connected 

Autonomous Systems in the network periphery. Hence, the densest sub-graph represents 

the set of most influential Autonomous Systems for 𝐺𝐺®2§©fâ_®∆ . Therefore, these 

Autonomous Systems present the most robust routing capabilities. Moreover, this 

uncovers hierarchical properties of 𝐺𝐺®2§©fâ_®∆.  Interestingly, some of the Autonomous 

Systems in the densest sub-graph were previously revealed as being relevant regarding 

their Out-Degree features. These ASes were Tata Communications (America) Inc. 

(AS6453:643), Level 3 Communications Inc. (AS3356:4160), NTT America Inc. 

(AS2914:1187) and Cogent Communications (AS174:4541). Moreover, they all show a 

very high Transit Degree as well. 
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Aircel k-core vertices at AS granularity	

k-cores ASN:Transitdegree 
(CAIDA, 2016a)	 AS- Name (Hurricane Electric, 2016)	

5 AS6453:643 Tata Communications (America) Inc.	

5 AS4755:400 Tata Communications, formerly VSNL 

5 AS174:4541 Cogent Communications 

5 AS2914:1187 NTT America Inc. 

5 AS3356:4160 Level 3 Communications Inc. 

5 AS1299:1010 Telia Company AB 

5 AS1239:667 Sprint 

5 AS12552:191 IP-Only Networks AB 

5 AS9002:1549 RETN Ltd. 

5 AS1273:355 Cable and Wireless Worldwide plc 

5 AS4323:2006 TW Telecom Holdings Inc. 

5 AS3491:540 PCCW Global  

5 AS4766:449 Korea Telecom 

5 AS20485:1598 Closed Joint Stock Company TransTeleCom 

5 AS3741:143 IS 

5 AS7029:483 Windstream Communications Inc. 

Key 
AS: Autonomous System. 

ASN: Autonomous System Number. 
#N/A: Drop or termination of a traceroute. 

Table 4-15: Aircel highest k-core vertices at AS granularity. 

Additionally, none of the other Autonomous Systems in Table 4-15 above were 

previously indicated as relevant Autonomous Systems in the 𝐺𝐺®2§©fâ_®∆  network. We 

show that the k-core decomposition is a valuable addition to an in-depth analysis of 

operator networks at Autonomous System granularity. In comparison to the findings of 

𝐺𝐺®2§©fâ’s k-core decomposition at IP granularity, the analysis at AS granularity uncovered 
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a considerably more detailed picture. Moreover, this analysis showed that 𝐺𝐺®2§©fâ seems 

to rely on a number of AS vertices with incredible high transit degrees. Figure 4-18 below 

visualises the k-core decomposition of 𝐺𝐺®2§©fâ_®∆.

 

𝐺𝐺®2±©fâ_®∆ 

Highest k-core : 5. 
Highest Autonomous System vertices, 
visualised in magenta in the centre of 
the graph visualisation (grey edges), see 
Table 4-15 above. 
 

 

 
Figure 4-18: Aircel graph visualisation k-core decomposition at AS granularity. 

Bharti Airtel 
The k-core decomposition for 𝐺𝐺éå•§U2	®2§UfâÃÕ  indicated 5 Autonomous Systems that 

inhabited the same highest k-core value of 5, see Table 4-16 and Figure 4-19. 

Compared to the previous centrality measurement analysis, the k-core decomposition 

of	𝐺𝐺éå•§U2	®2§Ufâ_®∆  also revealed additional Autonomous System vertices that were of 

hierarchical importance to the network. While the Degree Centrality indicated the Out-

Degree relevance of three Autonomous Systems, namely Level 3 Communications Inc 

(AS3356:4160), Cogent Communications (AS174:4541) and Bharti Airtel Ltd. 

(AS45609:3), the densest hierarchical layer of the k-core decomposition exposed 

𝐺𝐺éå•§U2	®2§Ufâ_®∆ 's reliance on NTT America Inc. (AS2914:1187), Telia Company AB 

(AS1299:1010), and another Bharti Airtel Ltd. Autonomous System (AS9498:537). 
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Bharti Airtel k-core vertices at AS granularity	

k-cores ASN:Transitdegree 
(CAIDA, 2016a)	 AS- Name (Hurricane Electric, 2016)	

5 AS9498:537 Bharti Airtel Ltd.	

5 AS45609:3 Bharti Airtel Ltd. 

5 AS174:4541 Cogent Communications 

5 AS3356:4160 Level 3 Communications Inc. 

5 AS2914:1187 NTT America Inc. 

5 AS1299:1010 Telia Company AB 

Key 
AS: Autonomous System. 

ASN: Autonomous System Number. 

Table 4-16: Bharti Airtel highest k-core vertices at AS granularity. 

Interestingly, the k-core decomposition for 𝐺𝐺éå•§U2	®2§Ufâ at IP granularity also revealed the 

presence of the two Bharti Airtel Ltd. (AS45609:3 and AS9498:537) Autonomous 

Systems and Level 3 Communications Inc. (AS336:4160) but failed to identify the other 

three Autonomous Systems shown at IP granularity. Since no other graph visualisation 

revealed these Autonomous Systems as being important hierarchical vertices, we show 

the importance of utilising different methods of analysis.   

Furthermore, 𝐺𝐺éå•§U2	®2§Ufâ_®∆ seem to also strongly rely on those Autonomous System 

vertices with high Transit Degrees. Hence, these vertices are of strong importance to any 

AS for reaching the periphery of the Internet, given their high appointing of transit 

relationships.   
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Figure 4-19: Bharti Airtel graph visualisation k-core decomposition at AS granularity. 

Vodafone 
Lastly the k-core decomposition of 𝐺𝐺™ge•´gdf_®∆ shows one Autonomous System in the 

densest k-core 10 being #N/A, followed by 8 Autonomous Systems in the second highest 

k-core of 8. These Autonomous Systems are visible in the following Table 4-17.  

We have already identified some of these AS vertices in the previous analysis of 

𝐺𝐺™ge•´gdf_®∆ . This was namely Level 3 Communications Inc. (AS3356:4160) in the 

analysis of the Betweenness Centrality, and Cogent Communications (AS174:4541) as 

well as Cable and Wireless Worldwide plc. (AS1273:355) when studying the network’s 

Degree Centrality. However, the Degree Centrality for 𝐺𝐺™ge•´gdf_®∆ also identified other 

Autonomous System vertices that were not present in the k-core decomposition’s densest 

k-core sub-graph, Telia Company AB (AS1299:1010) and Tinet SpA (AS3257:1085). 

This indicates that Telia Company AB and Tinet SpA, while showing high Out-Degrees, 

are not necessarily of strong hierarchical relevance to 𝐺𝐺™ge•´gdf_®∆.  
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Vodafone k-core vertices – AS granularity	

k-cores ASN:Transitdegree 
(CAIDA, 2016a)	 AS- Name (Hurricane Electric, 2016)	

10 #N/A #N/A	

8 AS55410:157 Vodafone India Ltd. 

8 AS1273:355 Cable and Wireless Worldwide plc. 

8 AS4538:21 China Education and Research Network Center 

8 AS174:4541 Cogent Communications 

8 AS3356:4160 Level 3 Communications Inc. 

8 AS2914:1187 NTT America Inc. 

8 AS3491:540 PCCW Global 

8 AS7018:2320 AT&T Services Inc. 

Key 
AS: Autonomous System. 

ASN: Autonomous System Number. 
#N/A: Drop or termination of a traceroute. 

Table 4-17: Vodafone highest k-core vertices at AS granularity. 

Moreover, this analysis detected more Autonomous System vertices than the k-core 

decomposition at IP granularity. At IP granularity, the k-core decomposition indicated a 

hierarchical reliance on Vodafone India Ltd. (AS55410:157), the China Education and 

Research Network Center (AS4538:21) and Cable and Wireless Worldwide plc. 

(AS1273:355). Therefore, the k-core decomposition at AS granularity enhanced the 

overall understanding of the role played by some of the most important Autonomous 

Systems. Interestingly, 𝐺𝐺™ge•´gdf_®∆  also shows two Autonomous Systems with very 

high Transit Degrees, namely Cogent Communications (AS174:4541) and Level 3 

Communications Inc. (AS3356:4160). However, all of the Autonomous Systems in k-

core 8 strongly participate in the Internet traffic transmission originated from the issued 

Vodafone’s SIM card. 
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𝐺𝐺™ge•´gdf_®∆ 

Highest k-core: 10.	
Highest Autonomous System vertices, 
visualised in red and dark blue in the 
centre of the graph visualisation (grey 
edges), see Table 4-17 above. 
 

	
Figure 4-20: Vodafone graph visualisation k-core decomposition at AS granularity. 

Summarising, the k-core decomposition at AS granularity revealed the most strongly 

hierarchical Autonomous System vertices for each of the three operator networks. 

Moreover, the detection of these key vertices was more apparent than when using the k-

core decomposition at IP granularity. Overall, the k-core decomposition can be 

considered a very useful method for detecting the densely connected Autonomous System 

vertices and therefore important hierarchical markers.  

Summary Graph Visualisation Analysis (AS) 
Overall, we value the exploratory approach of utilising different graph visualisation 

analysis. Firstly, this section showed that none of the three operator networks employed 

Small-World Network properties. This was not surprising given the same indication at IP 

granularity. Next, we showed that the three operator networks are very well modelled 

using the Scale-Free Barabási-Albert Model B. The analysis of Centrality Metrics then 

revealed a number of Autonomous Systems with varying importance to the three operator 

networks. However, we also identified the limits of these measurements to study 

traceroute hop observations. Given these limitations, e.g. that the Closeness- and 

Betweenness Centralities both assume that connections are following the shortest paths, 

we indicate that the Eigenvector Centrality might be an interesting new metric for 

studying Autonomous System influence and hence hierarchical upstream Internet market 

structures (see also section 2.3.3). We then analysed the most densely connected 

Autonomous Systems in the core of the operator networks by using the k-core 

decomposition. Here, those Autonomous System vertices with the highest k-core indicate 
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signs of hierarchical organisation and were most clearly visible in the graph visualisations 

of Aircel and Vodafone. These vertices were considered as the emerging key players in 

determining the network’s hierarchical structure, based on their connectivity importance.   

4.3.8 Summary Complex Network Analysis (AS)  
Summarising the Complex Network Analysis at AS granularity, we indicated the main 

differences from the mapping of the previous IP granularity. Firstly, the General Network 

metric analysis provided us with indications of influential Autonomous Systems that were 

more often traversed than other Autonomous Systems in the operator networks. 

Moreover, we indicated great Clustering Coefficient differences in the three operator 

networks, pointing towards different hierarchical upstream Internet market structures. 

Next, we suggested that the three operator networks are likely to follow Scale-Free 

Network models and tested this by using the Graph Visualisation Analysis. Moreover, 

this Graph Visualisation Analysis exposed some interesting Autonomous Systems. We 

showed that only the Eigenvector Centrality might be valuable for analysing active 

Internet periphery measurements of traceroutes. Moreover, the k-core decomposition in 

particular helped us to gain a deeper understanding of the most densely connected 

Autonomous Systems within the operator networks. These ASes seems to play a crucial 

role in the upstream connectivity given their great linkages to other influential 

Autonomous Systems. Hence, we consider those Autonomous Systems as key players for 

determining the operators’ upstream Internet market structures.  

Hence, the following section aims to better understand the economic relationships 

between the identified key Autonomous Systems for the three Tamil Nadu operators. This 

should provide an in-depth understanding of the underlying economics of network 

interactions, both within the densest sub-graph, as well as to the less-densely connected 

Network periphery.  
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4.4 Autonomous System Relationships 
In this section, we will elaborate a first economic intuition of the internetworking 

relationships between Autonomous System. To achieve this, we will integrate additional 

information on the key relationships between the Autonomous Systems of relevance for 

the three Tamil Nadu mobile broadband operator networks. Following, we are fusing our 

primary dataset with three additional secondary ones:  

i. The CAIDA (2016a) AS-Rank dataset, derived from CAIDA’s Archipelago 

Measurement Infrastructure. 

ii. The CAIDA (2016b) AS-Relationship dataset, which covers the inferred 

Customer Cones from publicly available Border Gateway Protocol (BGP) data. 

iii. The Hurricane Electric (2016) BGP Routing Tables, covering the IPv4 Route 

Propagation graphs for Autonomous System Numbers.  

For each of the three Tamil Nadu mobile broadband operator networks, we perform an 

analysis of the AS relationships based on the consideration of two distinct Autonomous 

System properties. First, whether an Autonomous Systems belongs to the central network 

core, as calculated using the k-core decomposition explained above. Second, for any pair 

of directly connected Autonomous Systems, we will consider the nature of their business 

relationship, as inferred from the CAIDA (2016b) AS-Relationship dataset.  

Here, the CAIDA (2016a) AS-Rank data includes information on the Customer Cone (see 

also section 2.1.2) of a particular Autonomous System. According to Luckie et al. (2013), 

the Customer Cone represents the set of Autonomous Systems that one AS may reach by 

recursively following its customer links.  

Next, we analyse the strongest relationships between all Autonomous Systems in the three 

networks, as derived from the k-core decomposition above. We merge these key 

relationships with the CAIDA (2016b) AS-Relationship dataset to explore their inferred 

economic nature. Given the evidence, we then visualise the mobile broadband operator 

network graphs focussing on the identified economic relationships amongst the 

Autonomous Systems. This reveals some interesting economic differences between our 

three Tamil Nadu mobile broadband operator networks.  

4.4.1 Aircel Autonomous System Relationships 
Table 4-18 below lists the Autonomous Systems belonging to the highest k-core of 
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𝐺𝐺®2§©fâ_®∆, as derived from the k-core decomposition at AS granularity, alongside their 

associated Customer Cone Sizes (CCS) from the CAIDA (2016a) AS-Rank. These 

findings indicate that the highest k-core in the k-core decomposition of 𝐺𝐺®2§©fâ_®∆ includes 

a multitude of Autonomous Systems with a high Customer Cone Size. Interestingly, and 

in descending order, these ASes represent the top 4 Autonomous Systems in the CAIDA 

(2016a) Customer Cone ranking.  

The large number of Autonomous Systems in the highest k-core of 𝐺𝐺®2§©fâ_®∆ shows that 

Aircel makes use of multiple AS relationships, highly Customer Cones ranked, for its 

complete internetworking activities.  

However, the following Table 4-18 does not show the entire picture of the complex 

routing situation. To discover more information, we utilise the BGP Route Propagations 

graphs for Aircel using Hurricane Electric (2016). These route propagation graphs 

revealed that 𝐺𝐺®2§©fâ_®∆  only shows two direct links to other Autonomous Systems, 

namely Bharti Airtel Ltd. (AS9498:537) and Dishnet Wireless Ltd. (AS55713:4), (see 

Appendices). Bharti Airtel Ltd. has, as seen from the secondary CAIDA (2016b) AS-

Relationship dataset and Hurricane Electric (2016), only one direct link to Tata 

Communications (formerly VSNL), (AS4755:400) among the ASes mentioned above. 

Looking at the BGP Route Propagation graphs for the Autonomous System of Aircel in 

Hurricane Electric (2016), one can see that its upstream connectivity is not only reliant 

on Bharti Airtel Ltd. (AS9498:537) but also on Tata Communications (formerly VSNL), 

(AS4755:400). Once a connection reaches this vertex, it links to Tata Communications 

(America) Inc. (AS6453:643). Here, it finally reaches some of the other large 

Autonomous Systems mentioned in Table 4-18, (see Appendices). Furthermore, 

according to the CAIDA (2016b) AS relationship dataset, it is worth to notice that only 

one of the Aircel Autonomous System relationships between those Autonomous Systems 

identified in the highest k-core, is of a peering nature. This relationship is the one existing 

between Tata Communications (America) Inc. (AS6453:643) and Level 3 

Communications Inc. (AS3356:4160), see column 4 row 8 in Table 4-19. 
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Aircel highest k-core Autonomous Systems ranked by Customer Cone Size  

ASN: Transit Degree 
(CAIDA, 2016a) 

AS- Name (Hurricane Electric, 
2016) 

CCS (CAIDA, 
2016a)  

AS3356:4160 Level 3 Communications Inc. 29,494 

AS174:4541 Cogent Communications 23,299 

AS3356:4160 Level 3 Communications Inc. 29,494 

AS1299:1010 Telia Company AB 21,954 

AS2914:1187 NTT America Inc. 18,991 

AS6453:643 Tata Communications (America) 
Inc. 12,300 

AS1273:355 Cable and Wireless Worldwide 
plc 5,878 

AS9002:1549 RETN Ltd. 3,820 

AS3491:540 PCCW Global  3,572 

AS20485:1598 Closed Joint Stock Company 
TransTeleCom 3,447 

AS1239:667 Sprint 3,439 

AS4323:2006 TW Telecom Holdings Inc. 2,184 

AS4766:449 Korea Telecom 959 

AS4755:400 Tata Communications, formerly 
VSNL 732 

AS12552:191 IP-Only Networks AB 219 

AS3741:143 IS 148 

Key 
AS: Autonomous System. 

ASN: Autonomous System Number. 
CCS: Customer Cone Size. 

Table 4-18: Aircel customer cones. 
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The analysis of the merged datasets, considering the  

i. Autonomous Systems belonging to the highest core calculated through the k-core 

decomposition and the edge weights (both obtained from the primary collected 

data using Portolan (2016)) and further elaborated by the author 

ii. CAIDA (2016a) Customer Cone rank  

iii.  inferred business relationships of the CAIDA (2016b) AS – Relationships dataset 

, shows interesting relevant features for 𝐺𝐺®2§©fâ_®∆	‘s upstream Internet market structure. 

This reveals new AS relationships from an actively measured Internet periphery 

perspective that do not appear as direct business relationships in the CAIDA (2016b) AS 

– Relationships dataset.  

Aircel AS Relationships using CAIDA (2016a) 

SourceASN :	
Transit Degree, 	

(AS Rank)	

TargetASN :	
Transit Degree,	

(AS Rank)	

Edge 
Weight	

CAIDA AS	
Relationship 
(CAIDA, 
2016b)	

AS6453:643, (6)	 AS6453:643, (6)	 1,367	 #N/A	

AS4755:400, (61)	 AS6453:643, (6)	 212	 #N/A	

AS174:4541, (2)	 AS174:4541, (2)	 194	 #N/A	

AS2914:1187, (4) AS2914:1187, (4)	 107	 #N/A	

AS4755:400, (61)	 #N/A	 105	 #N/A	

AS6461:1381, (16)	 AS6461:1381, (16)	 82	 #N/A	

AS7922:172, (27)	 AS7922:172, (27)	 77	 #N/A	

AS6453:643, (6)	 AS3356:4160, (1)	 76	 p2p	

AS3356:4160, (1)	 AS3356:4150, (1)	 64	 #N/A	

AS1299:1010, (3)	 AS1299:1010, (3) 58 #N/A 

Key 
AS: Autonomous System. 
ASN: Autonomous System Number. 

CCS: Customer Cone Size. 

Table 4-19: Aircel AS Relationships. 
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Merging the CAIDA (2016b) AS relationship dataset with the collected Aircel 

internetworking data, we can see that 2.17% of the collected AS relationships were of 

customer-to-provider nature. Additionally, 3.33% of the Autonomous System 

relationships represented peer-to-peer relationships and 3.94% provider-to-customer 

ones. Moreover, 61.09% of all AS relationships represented AS-internal connections 

(traceroute hops from the dataset generated from the Aircel operator directly linking a 

source with a target IP addresses, both belonging to the same Autonomous System), and 

13.18% of all AS relationships resulted from traceroute terminations. Finally, 16.30% of 

all observed Autonomous System relationships do not appear as business relationships in 

the CAIDA (2016b) AS-Relationship dataset (see Table 4-20). 

Aircel AS Relationships Overview using CAIDA (2016b)  

Type of AS 
Relationship 
(CAIDA, 
2016b) 

Description 
Number of 
Edge 
observations 

Edge Weights 
(Traversals) 

In percentage 
of total edge 
weights 

-1 c2p relationship 12 103 2.17% 

0 p2p relationship 19 158 3.33% 

1 p2c relationship 83 187 3.94% 

#N/A CAIDA (2016b) 
undetected 428 774 16.30% 

#N/A AS-internal 
edge 237 2,901 61.09% 

#N/A Traceroute 
Termination 362 626 13.18% 

Key 
AS: Autonomous System. 

c2p: Customer-to-provider relationship. 
p2c: Provider-to-customer relationship. 

p2p: Peer-to-peer Relationship. 
#N/A: No relationship in CAIDA (2016b) available. 

Table 4-20: Aircel AS Relationships overview. 

Plotting the merged data into a two-dimensional Euclidean Space in Figure 4-21 below 

reveals some interesting features. Based on these graph visualisations, we note that Aircel 
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is seemingly making more use of provider-to-customer (p2c) relationships than both 

peer-to-peer (p2p), or customer-to-provider (c2p) ones. Moreover, we clearly reveal 

those AS relationships with the highest edge weights given their different edge 

colourings. These visualisations are of particular interest and value as it indicates the 

economic nature of the key relationships within the network of 𝐺𝐺®2§©fâ_®∆. 

  

𝐺𝐺®2§©fâ_®∆ 

Edge thickness: 0.5 

Red edges: p2c link.	
Green edges: p2p link.	

Blue edges: c2p link.
Yellow edges: #N/A  

(link not available)	

	
Figure 4-21: Aircel graph visualisation with relationship colouring. 

Summarising, 𝐺𝐺®2§©fâ_®∆ shows a reliance on the Indian ASes of Bharti Airtel Ltd. and 

Tata Communications (formerly VSNL), providing additional indicators of a hierarchical 

ordering. None of the crucial relationships (highest edge weights) in 𝐺𝐺®2§©fâ_®∆ were peer-

to-peer ones. This indicates the presence of higher upstream connectivity costs. 

Considering routing and structuring, our analysis revealed some hidden features of 

Aircel’s operator network. These features were not observable through the previously 

available datasets. 

4.4.2 Bharti Airtel Autonomous System Relationships 
By following the same approach as above, Table 4-21 below lists the Autonomous 

Systems belonging to the highest k-core of 𝐺𝐺éå•§U2 ®2§Ufâ_®∆ , derived from the k-core 

decomposition at AS granularity, alongside their associated Customer Cone Sizes (CCS). 
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Interestingly, 𝐺𝐺éå•§U2	®2§Ufâ_®∆  shows the same four Tier-1 Internet Service Providers 

(with a high Customer Cone Size) than 𝐺𝐺®2§©fâ_®∆ . The ASes in the highest k-core of  

𝐺𝐺éå•§U2	®2§Ufâ_®∆  indicates that Bharti Airtel makes use of a few Autonomous System 

relationships with a high Customer Cones ranking for its complete internetworking 

activities.  

Bharti Airtel highest k-core Autonomous Systems ranked by Customer Cone 
Size 

ASN : Transit Degree 
(CAIDA, 2016a) 

AS- Name (Hurricane Electric, 
2016) 

CCS (CAIDA, 
2016a) 

AS3356:4160 Level 3 Communications Inc. 29,494 

AS174:4541 Cogent Communications 23,299 

AS1299:1010 Telia Company AB 21,954 

AS2914:1187 NTT America Inc. 18,991 

AS9498:537 Bharti Airtel Ltd. 1,475 

AS45609:3 Bharti Airtel Ltd. 1 

Key 

AS: Autonomous System. 
ASN: Autonomous System Number. 

CCS: Customer Cone Size. 

Table 4-21: Bharti Airtel customer cone. 

Looking at the BGP Route Propagation graphs for Bharti Airtel in Hurricane Electric 

(2016), one can see that its upstream connectivity is reliant on their own directly reachable 

Autonomous Systems (AS9498 and AS45609). Once a connection reaches this vertex, it 

links to some of the large Tier-1 Autonomous Systems mentioned in Table 4-21 above, 

(see Appendices in Chapter 9).  

Moreover, according to the CAIDA (2016b) AS relationship dataset, it is worth to notice 

that none one of the Bharti Airtel Autonomous System relationships with the strongest 

edge weight was identified (see Table 4-22 below). Additionally, the strong relationship 

between Bharti Airtel Ltd. (AS45609:3) and Level 3 Communications Inc. 

(AS3356:4160) in row 4 of Table 4-22, as measured through the edge weight, is not 

mentioned in the BGP Route Propagation graph of Hurricane Electric (2016), (see 



Chapter 4 

Sebastian Sigloch - April 2018   191 

Appendices). 

Bharti Airtel AS Relationships using CAIDA (2016a) 

SourceASN :	

Transit Degree, 	
(AS Rank)	

TargetASN :	

Transit Degree,	
(AS Rank)	

Edge 
Weight	

AS	
Relationship 
(CAIDA, 
2016b)	

AS174:4541, (2)	 AS174:4541, (2)	 69	 #N/A	

AS9498:537, (33)	 AS9498:537, (33)	 61	 #N/A 

AS45609:3, (7469) AS9498:537, (33) 55 #N/A 

AS45609:3, (7469) AS3356:4160, (1) 40 #N/A 

AS9498:537, (33) AS3356:4160, (1) 30 #N/A 

AS3356:4160, (1) AS3356:4160, (1) 30 #N/A 

AS6939:3703 AS6939:3703, (8) 26 #N/A 

AS2914:1187, (4) AS2914:1187, (4) 23 #N/A 

AS9498:537, (33) AS34661:5, (3327) 17 #N/A 

AS9498:537, (33) AS174:4541, (2) 16 #N/A 

Key 

AS: Autonomous System. 
ASN: Autonomous System Number. 

CCS: Customer Cone Size. 

Table 4-22: Bharti Airtel AS Relationships. 

Merging the collected Bharti Airtel internetworking data with the CAIDA (2016b) AS 

relationship dataset, we can see that 0.42% of the collected AS relationships were of 

customer-to-provider nature. Additionally, 2.51% of the AS relationships represented 

peer-to-peer relationships and 2.30% provider-to-customer ones. Moreover, 36.19% of 

all AS relationships represented AS-internal connections (traceroute hops from the 

dataset generated from the Aircel operator directly linking a source with a target IP 

addresses, both belonging to the same Autonomous System), and 15.69% of all AS 

relationships resulted from traceroute terminations. Finally, a high 36.19% of all 

observed Autonomous System relationships do not appear as business relationships in the 
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CAIDA (2016b) AS Relationship dataset (see Table 4-23 below).  

Bharti Airtel AS Relationships Overview using CAIDA (2016b) 

Type of AS 
Relationship 
(CAIDA, 
2016b) 

Description 
Number of 
Edge 
observations 

Edge Weights 
(Traversals) 

In percentage 
of total edge 
weights 

-1 cp2 relationship 4 4 0.42% 

0 p2p relationship 15 24 2.51% 

1 p2c relationship 19 22 2.30% 

#N/A CAIDA (2016b) 
undetected 151 346 36.19% 

#N/A AS-internal 
edge 82 410 42.89% 

#N/A Traceroute 
Termination 116 150 15.69% 

Key 
AS: Autonomous System. 

c2p: Customer-to-provider relationship. 
p2c: Provider-to-customer relationship. 

p2p: Peer-to-peer Relationship. 
#N/A: No relationship in CAIDA (2016b) available. 

Table 4-23: Bharti Airtel AS Relationships overview. 

Just like before, plotting the merged data into a two-dimensional Euclidean Space in 

Figure 4-22 below reveals that Bharti Airtel is making most use of peer-to-peer 

relationships. Again, we clearly reveal those AS relationships with the highest edge 

weights given their different edge colourings. Compared to 𝐺𝐺®2§©fâ_®∆ , the graph 

visualisation of 𝐺𝐺éå•§U2	®2§Ufâ_®∆ seems more balanced while showing a greater presence 

of (settlement-free) peer-to-peer relationships, indicating a potential connectivity 

advantage over 𝐺𝐺®2§©fâ_®∆. 
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Edge thickness: 1.0 
Red edges: p2c link.

Green edges: p2p link.	
Blue edges: c2p link.

Yellow edges: #N/A  
(link not available).	

	
Figure 4-22: Bharti Airtel graph visualisation with relationship colouring. 

Summarising, the evidence showed that the upstream connectivity in 𝐺𝐺éå•§U2	®2§Ufâ_®∆ is 

strongly reliant on their Bharti Airtel Ltd. (AS9498:537) Autonomous System. Unlike the 

BGP Route Propagation graphs in Hurricane Electric (2016), the analysis exposed a direct 

connection to Level 3 Communications Inc. (AS3356:4160). This is particularly 

interesting since Level 3 Communications Inc. (AS3356:4160) represents a major Tier-1 

Internet Service Provider. Just like before, this analysis revealed some hidden routing and 

structuring features of Bharti Airtel’s operator network. These features were not 

observable through the previously available datasets. 

4.4.3 Vodafone Autonomous System Relationships 
By following the same approach as for Aircel and Bharti Airtel above, Table 4-24 below 

lists the Autonomous Systems belonging to the highest k-core of 𝐺𝐺™ge•´gdf_®∆, as derived 

from the k-core decomposition at AS granularity, alongside their associated Customer 

Cone Sizes (CCS). Interestingly, 𝐺𝐺™ge•´gdf_®∆  only shows two of the four large 

International Internet Service Providers (with a high Customer Cone Size) that Aircel and 

Bharti Airtel indicated, namely Level 3 Communications Inc. (AS3356:4160) and Cogent 

Communications (AS174:4541). Our evidence indicates that 𝐺𝐺™ge•´gdf_®∆ only makes 

use of a few Autonomous Systems with a high Customer Cones ranking for its complete 
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internetworking activities. 

Looking at the BGP Route Propagation graphs for the Autonomous System of Vodafone 

in Hurricane Electric (2016), one can see that its upstream connectivity is reliant on only 

one connection to Vodafone India Ltd. (AS55410:157). From here, it usually connects to 

Bharti Airtel Ltd. (AS9498:537), Tata Communications Ltd. (formerly VSNL), (AS4755) 

and Cable and Wireless Worldwide plc. (AS1273:355), where it finally reaches some of 

the other large Autonomous Systems mentioned in Table 4-24 below. 

Vodafone highest k-core Autonomous Systems ranked by Customer Cone Size 

ASN : Transit Degree 
(CAIDA, 2016a) 

AS- Name (Hurricane Electric, 
2016) 

CCS (CAIDA, 
2016a) 

AS3356:4160 Level 3 Communications Inc. 29,494 

AS174:4541 Cogent Communications 23,299 

AS2914:1187 NTT America Inc. 18,991 

AS1273:355 Cable and Wireless Worldwide 
plc. 5,878 

AS3491:540 PCCW Global 3,572 

AS7018:2320 AT&T Services Inc. 3,292 

AS55410:157 Vodafone India Ltd. 293 

AS4538:21 China Education and Research 
Network Center 18 

Key 
AS: Autonomous System. 

ASN: Autonomous System Number. 
CCS: Customer Cone Size. 

Table 4-24: Vodafone customer cones. 

Furthermore, according to the CAIDA (2016b) AS relationship dataset, it is worth to 

notice that only one of the Vodafone AS relationships between those Autonomous 

Systems identified in the highest k-core, is of a peering nature. This relationship is the 

one existing between Cable and Wireless Worldwide plc. (AS1273:355) and Cogent 

Communications (AS174:4541), see column 4 last row in Table 4-25 below. The analysis 

of the merged datasets shows additional interesting relevant features for 𝐺𝐺™ge•´gdf_®∆	‘s 
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upstream Internet market structure. We reveal new Autonomous System relationships 

from an actively measured Internet periphery perspective that do not appear as direct 

business relationships in the CAIDA (2016b) AS Relationships dataset.  

Vodafone AS Relationships using CAIDA (2016a) 

SourceASN:	

Transit Degree, 	
(AS Rank)	

TargetASN:	
Transit Degree,	
(AS Rank)	

Edge 
Weight	

CAIDA AS	
Relationship 
(CAIDA, 
2016b)	

AS55410:157, (139)	 AS55410:157, (139)	 8,909	 #N/A	

AS1273:355, (12) AS1273:355, (12) 3,360 #N/A 

AS4538:21, (1151) AS55410:157, (139) 1,772 #N/A 

AS174:4541, (2) AS174:4541, (2) 1,654 #N/A 

AS55410:157, (139) AS1273:355, (12) 1,576 #N/A 

AS1299:1010, (3) AS1299:1010, (3) 888 #N/A 

AS3356:4160, (1) AS3356:4160, (1) 420 #N/A 

AS55410:157, (139) AS3356:4160, (1) 353 #N/A 

AS55410:157, (139) #N/A 336 #N/A 

AS1273:355, (12) AS174:4541, (2) 309 p2p 

Key 
AS: Autonomous System. 

ASN: Autonomous System Number. 
CCS: Customer Cone Size. 

Table 4-25: Vodafone AS Relationships. 

Again, merging the CAIDA (2016b) AS relationship dataset with the collected Vodafone 

internetworking data, we can see that 1.48% of the collected AS relationships were of 

customer-to-provider nature. Additionally, 2.45% of the AS relationships represented 

peer-to-peer relationships and only 1.17% provider-to-customer ones. Moreover, 64.85% 

of all AS relationships represented AS-internal connections (traceroute hops from the 

dataset generated from the Aircel operator directly linking a source with a target IP 

addresses, both belonging to the same Autonomous System), and 8.73% of all AS 

relationships resulted from traceroute terminations. Finally, 21.43% of all observed 
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business relationships do not appear in the CAIDA (2016b) AS-Relationship dataset, see 

Table 4-26 below. 

Vodafone AS Relationships Overview using CAIDA (2016b) 

Type of AS 
Relationship 
(CAIDA, 
2016b) 

Description 
Number of 
Edge 
observations 

Edge Weights 
(Traversals) 

In percentage 
of total edge 
weights 

-1 cp2 relationship 20 453 1.48% 

0 p2p relationship 47 719 2.35% 

1 p2c relationship 186 358 1.17% 

#N/A CAIDA (2016b) 
undetected 1493 6,564 21.43% 

#N/A AS-internal 
edge 676 19,865 64.85% 

#N/A Traceroute 
Termination 1197 2,674 8.73% 

Key 
AS: Autonomous System. 

c2p: Customer-to-provider relationship. 
p2c: Provider-to-customer relationship. 

p2p: Peer-to-peer Relationship. 
#N/A: No relationship in CAIDA (2016b) available. 

Table 4-26: Vodafone AS Relationships overview. 

Just like before, plotting the merged data into a two-dimensional Euclidean Space in 

Figure 4-23 below reveals that Vodafone is seemingly making more use of peer-to-peer 

and customer-to-provider relationships than both provider-to-customer ones. Compared 

to 𝐺𝐺®2§©fâ_®∆ and 𝐺𝐺éå•§U2	®2§Ufâ_®∆ , the graph visualisation of 𝐺𝐺™ge•´gdf_®∆	indicates two 

AS relationships with a strong edge weight, whose economic nature remains hidden. 

These connections are clearly established between China Education and Research 

Network Center (AS4538:21) and Vodafone India Ltd. (AS55410:157), and between 

Vodafone India Ltd. (AS55410:157) and Cable and Wireless Worldwide plc. 

(AS1273:355). 



Chapter 4 

Sebastian Sigloch - April 2018  197

  

𝑮𝑮𝑽𝑽𝑽𝑽𝑽𝑽𝑩𝑩𝑽𝑽𝑽𝑽𝑽𝑽𝑨𝑨_𝑨𝑨𝑨𝑨 

Edge thickness: 0.05 

Red edges: 1 (p2c link)	
Green edges: 0  (p2p link)	

Blue edges: -1 (c2p link)
Yellow edges: #N/A  
(link not available)	

	
Figure 4-23: Vodafone graph visualisation with relationship colouring. 

Summarising, the evidence showed that the upstream connectivity in 𝐺𝐺™ge•´gdf_®∆  is 

strongly reliant on three ASes, namely Vodafone India Ltd. (AS55410:157), their Cable 

and Wireless Worldwide plc. (AS1273:355) subsidiary and Level 3 Communications 

(AS3356:4160).  

Unlike the BGP Route Propagation graphs in Hurricane Electric (2016), the analysis 

exposed a direct connection to Level 3 Communications Inc. (AS3356:4160). This is 

particularly interesting since this AS represents a major Tier-1 Internet Service Provider. 

Just like before, this analysis revealed some hidden routing and structuring features of 

Vodafone’s operator network. These features were not observable through the previously 

available datasets.  
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4.4.4 Summary Autonomous System Relationships 
This section has revealed the most relevant AS vertices, the key upstream relationships 

as well as the hierarchical features for the three Tamil Nadu Mobile mobile broadband 

operators. Aircel seems to be strongly reliant on Bharti Airtel Ltd. as well as Tata 

Communications (formerly VSNL), both national operators. Bharti Airtel indicates a 

reliance on another AS of Bharti Airtel Ltd. and shows a direct connection to Level 3 

Communications Inc. Finally, Vodafone shows reliance on another Vodafone India Ltd. 

AS but also on their International Cable and Wireless Worldwide plc. subsidiary. While 

this case study notes that both the IPv4 Route Propagation graphs of Hurricane Electric 

(2016) and the CAIDA (2016b) AS relationship data highlight gaps, it also points towards 

the importance of studying mobile broadband networks by utilising traceroute 

observations from active Internet periphery measurements. Moreover, we detected that 

Vodafone is making stronger use of peer-to-peer relationships than the other two sub-

networks.  

4.5 Summary Complex Network Analysis 
The first part of this chapter covered the Descriptive and Complex Network Analysis 

followed by a Graph Visualisation Analysis at Internet Protocol granularity. Based on the 

observed Clustering Coefficients of all three mobile broadband operator networks, our 

analysis showed low vertex interaction intensities but power-law degree distributions 

indicating features typical of Scale-Free Networks. We then tested this property using 

graph visualisation analysis. Next, we decomposed the networks into different subsets, 

the k-cores, based on the k-core decomposition, which revealed the most important IP 

address vertices that the operator networks relied upon for upstream internetworking 

connectivity towards the network periphery.  

The second part of this chapter covered the Complex Network, the Graph Visualisation 

analysis and Centrality metrics at Autonomous System granularity. Here, again we 

observed the Clustering Coefficient for the three operator networks, the previous finding 

that the three operator networks follow Scale-Free Network models. We also explored 

the Eigenvector Centrality, of the relevant networks, finding that it represents a key 

additional Centrality metric for the analysis of traceroute measurements. Just like at IP 

granularity, the k-core decomposition algorithm revealed the most important 

Autonomous Systems that the three Tamil Nadu mobile broadband operator networks 

relied upon for their respective upstream internetworking connectivity.  
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In the last part of this chapter, these Autonomous Systems were further analysed by 

merging our primary data with secondary CAIDA datasets detailing their inferred 

bilateral economic relationships.  

4.6 Key Findings Complex Network Analysis 
This chapter provides some significant findings, highlighting parts of our contribution to 

knowledge. First, we showed the value of analysing upstream active Internet periphery 

measurements data from two levels of granularity. In particular, the analysis at AS 

granularity showed interesting hidden features for the three Tamil Nadu mobile 

broadband operator networks. Next, this dissertation provides a pioneering case study 

linking primary upstream connectivity data using active Internet periphery measurements 

with secondary CAIDA (2016b) AS-relationship data. This connection of two datasets 

revealed some previously undiscovered AS relationships. Furthermore, we indicated that 

the three mobile broadband operators are reliant upon a number of densely connected 

upstream Autonomous Systems of large, mostly Tier-1, Internet Service Providers. Our 

exploratory approach to research, using a Descriptive Analysis, Complex Network 

Analysis, Graph Visualisation Analysis, and dataset fusion and filtering provided a 

fruitful combination of research methods to understand the key role played by the 

different agents composing the upstream Internet infrastructure, and to improve our 

understanding of the complex nature of the Tamil Nadu mobile broadband operator 

networks.  
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5 STATISTICAL NETWORK ANALYSIS 

This chapter covers the Statistical Network Analysis of the three Tamil Nadu mobile 

broadband operator networks discussed from a Descriptive and Graph Visualisation 

Analysis perspective in the previous Chapter 4. This chapter will introduce four different 

econometric models to test the elaborated Working Hypotheses, abducted through the 

Literature Review in section 2.5. Hence, we commence this chapter with a review of our 

Working Hypotheses, alongside a general overview of our two-stage econometric 

estimation process used to study the relationship between upstream hierarchical upstream 

Internet market structuring and mobile broadband affordability (measured in price per 

Megabyte).  

We argue that this relationship is of economic importance, e.g. when assessing the supply-

side of mobile broadband connectivity and the resulting affordability of infrastructural 

access from an end-user perspective (smartphone users). Stronger hierarchical upstream 

Internet market structures indicate that a few large Internet Service Providers act as 

connectivity bottlenecks with strong downstream price and bargaining powers. Hence, 

we anticipate that a stronger hierarchical upstream Internet market structure of a mobile 

broadband operator would lead to higher price per Megabytes of price plans, an indicator 

for mobile broadband affordability for (especially data sensitive) end-users. This is of 

particular importance for end-users in more rural areas of Tamil Nadu, given the large 

present income inequalities identified by TN-GOV-IN (2014), Sundar (2015) and 

Selvabaskar et al. (2016). 

In the first stage of our two-stage estimation process, we specify two econometric models 

(Model 1 and Model 2) to estimate the relationship between the network structuring 

markers (Clustering Coefficient and Eigenvector Centrality) and the upstream 

connectivity (Weighted Out- and In-Degree) for each one of the three Tamil Nadu mobile 

broadband operator networks. We will then use these associations’ estimated coefficients 

as proxies, representing each mobile broadband operator networks’ levels of hierarchical 

structuring.  

In the second stage, we use these proxies (estimated in the first stage), as an additional 

explanatory variable, to estimate the effects of each mobile broadband operator networks’ 
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hierarchical structuring on our key dependent variable of interest – the price per 

Megabyte. This metric shall represent end-user affordability of each mobile broadband 

operators’ advertised price plans. These price plans were derived from a secondary 

dataset (see section 5.4). This chapter concludes by presenting a correlation between the 

obtained levels of hierarchical structuring for the three Tamil Nadu mobile broadband 

operator networks and Quality of Service (QoS) metrics obtained from the Telecom 

Regulatory Authority of India. 

5.1 Review of Working Hypotheses 
The Working Hypotheses, abducted in the Literature Review (see section 2.5), provide a 

useful guideline for this chapter. Here, the identification of hierarchical structuring for 

WH1, WH1.1 and WH1.2 will be covered in Model 1 and Model 2, the first stage of our 

two-stage econometric estimation process. WH2 is then analysed in Model 3 and Model 

4 in the second stage. WH3 itself is solely analysed using a correlation analysis in the 

second stage. Figure 5-1 below provides an overview of all econometric models 

employed in this chapter.  

 

Figure 5-1: Overview of econometric models. 
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5.2 Background  
The theoretical background for our econometric models is given by the choice of 

Complex Network metrics discussed in Chapter 4. Complex Networks are non-trivial 

systems that often display power-law degree distributions. As such, only certain vertex 

metrics may help in explaining the Internet market access structure for the three Tamil 

Nadu mobile broadband operators’ connectivity networks of this case study. 

The connectivity of a network graph is, according to Kolaczyk (2009), associated with 

the flow of information within it. Every vertex in a directed graph plays two roles. First, 

the broadcaster and second, the receiver of information between a set of interconnected 

Autonomous Systems (Benzi, 2014, p.62). These roles, and hence a measurement for 

connectivity, are provided by the Out-Degree and In-Degree values of a vertex, which 

suits well to the nature of our directed graphs. Measuring the structure of connectivity in 

a network may be covered by many different centrality measures that correspond to 

different notions of interest. However, and given their theoretical grounding, most of 

these metrics, alone, are unable to capture the properties of interest in this case study. 

Degree Centrality e.g. does not take vertex importance as well as edge directions (as 

employed by traceroutes) into consideration. The often-used Closeness and Betweenness 

Centralities assume that communication in a network always follows the shortest paths, 

which is unlikely to be the case for the upstream Internet market. Here, the connectivity 

of traceroutes would not necessarily follow the shortest connectivity paths.  

The spectral measure of the Bonacich (1987) Eigenvector Centrality will be the key 

centrality metric used in the following analysis of the mobile broadband operator 

networks.  This metric takes the influence of a vertex in a given network graph into 

consideration (Newman, 2006). Additionally, the Eigenvector Centrality is sensitive to 

situations where vertices with a low degree are connected to those with higher degrees, 

or vice versa (Bonacich, 2007, p.561). This seems apparent in our networks, as previously 

indicated in Chapter 4. Moreover, the Eigenvector Centrality considers both, direct 

connections between any pair of vertices and indirect connections to other network 

vertices. According to Bonacich (2007, p. 564), the Eigenvector Centrality is distinctively 

appropriate where vertex centrality is given by Degree differences. Utilising this metric 

for studying upstream connectivity networks may, therefore, reveal a positive effect of 

the Eigenvector Centrality on connectivity. This inference is backed by the specific 

network characteristics of the three mobile broadband operators discussed in the 
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Descriptive and Graph Visualisation Analysis in Chapter 4. We assume that certain 

Autonomous Systems have a strong influence on other Autonomous Systems (captured 

by the Eigenvector Centrality), resulting in a more hierarchical level of the mobile 

broadband operator networks. Moreover, Borgatti (2005, p.56) notes that the Eigenvector 

Centrality is appropriate for studying information flows in networks.  

The Clustering Coefficient provides another network metric, essential to understand 

relevant features of connectivity in a given network. This metric is used to study Internet 

structures (Barrat et al., 2004). Moreover, scholars of Internet structuring argue that the 

hierarchical organisation of a network may be captured by estimating the parameters that 

represent the effect of the Clustering Coefficient on the Degree connectivity in a given 

network (Vázquez, Pastor-Satorras, and Vespignani, 2002). These authors also found that 

the Clustering Coefficient scales, with a negative exponent, as a power-law function of 

the networks’ level of connectivity. This indicates that those Autonomous Systems that 

connect to a few, but larger, Autonomous Systems, are not well connected amongst each 

other. This, in itself, indicates a hierarchical structuring and therefore potential structural 

bottlenecks of the upstream Internet access layers. Moreover, as far as we are aware, there 

is a gap in the literature in using the Eigenvector Centrality alone, or in combination with 

the Clustering Coefficient, to explain hierarchical structuring of upstream connectivity in 

mobile broadband networks (see section 2.3.3). 

5.3 Hierarchical Structuring 
Given the structural indicators discussed in Chapter 4, this section looks at the possible 

effects of the hierarchical structuring markers on connectivity. In detail, Model 1 first 

analyses the effect of these hierarchical structuring markers on the Weighted Out-Degree 

connectivity, whereas Model 2 similarly analyses the effect of the hierarchical structuring 

markers (Clustering Coefficient and Eigenvector Centrality) on the Weighted In-Degree 

connectivity (see section 5.3.2).  
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The combination of these relationships studied in Model 1 and Model 2 are used to 

explore the following Working Hypotheses derived from the Literature Review (see 

section 5.1 above): 

WH1: ‘The Tamil Nadu mobile broadband operators’ upstream Internet market structure 

displays features of a hierarchical ordering’. 

WH1.1: ‘The Tamil Nadu mobile broadband operators rely on an identified set of specific 

Internet Service Providers for their upstream connectivity’. 

5.3.1 Descriptive Statistics  
The Autonomous System observations, from the primary active Internet periphery 

measurements using the Portolan (2015) Android application, were chosen as the unit of 

analysis. This choice was grounded in the belief that vertex observations at Autonomous 

System granularity, compared to edge observations, were more useful in capturing those 

structural properties of interest in this case study. Intrinsically, however, these vertex 

observations embody metrics being calculated using the directed edge metrics in Chapter 

4. The dataset, therefore, covered 2,215 unique vertex observations. While 68.30% of 

these observations captured Autonomous Systems being collected through the Vodafone 

SIM card, only 23.57% of the observations were collected from the Aircel SIM card, and 

only 8.13% from the Bharti Airtel one, respectively. Considering this fragmentation, the 

following analysis, when covering the total dataset, would have revealed results being 

highly influenced by Vodafone. We, therefore, focused on per-operator separated datasets 

to obtain the necessary insights. Moreover, the relevant variables were chosen, by 

considering the emerging insights discussed on various occasions in the Literature 

Review. 

In the following, the operator vertex observations from Chapter 4 are filtered per operator 

so that the following econometric models will be performed separately, for each of the 

mobile broadband operators, based on the primary data collected from their specific SIM 

cards. This allows to later compare the operator-based differences emerging from the 

econometric models. After importing the initial primary dataset into Stata (2016), Table 

5-1 below reports the ranges for the variables that will be used (after suitable logarithmic 

transformation) in the econometric models below. 
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Descriptive statistics 

Variable Obs. Mean Std. Dev. Min. Max. 

woutd 2215 16.40542 275.2919 0 11,394 

winde 2215 16.40542 264.3536 0 10,686 

clus 2215 .2827968 .1998676 0 .6666667 

eige 2215 .0027941 .0401714 0 1 

Key 

clus = Clustering Coefficient. 
eige = Eigenvector Centrality. 

woutd = Weighted Out-Degree. 
winde = Weighted In-Degree. 

Table 5-1: Descriptive statistics. 

An analysis using the Stata (2016) Data Browser revealed that the observations covered 

a few Autonomous Systems with relatively large Weighted In-Degrees (winde) and 

Weighted Out-Degrees (woutd), while most of the Autonomous Systems showed lower 

values, representing the nature of power-law degree distributions (see Figure 4-12). 

Given the features of traceroutes generated from the Internet periphery (smartphones 

used in the data collection (see section 3.3.4)), an Autonomous System located along this 

traceroute’s path, is likely to have a large Weighted Out-Degree (woutd). This represents 

a large set of different outgoing next hop destinations when it has a large Weighted In-

Degree (winde), when it is reached from a large set of different incoming connections 

originating potentially from many different Autonomous Systems. Figure 5-2 below 

illustrates this concept.  



Chapter 5 

206  Sebastian Sigloch - April 2018 

 

Key
Vertex without label. 

Directed edge, linking a pair of vertices. 
Figure 5-2: In-Degree and Out-Degree flow through a vertex. 

Table 5-2 below provides the key Descriptive Statistics for the variables of interest, 

Weighted Out-Degree, Weighted In-Degree, Clustering Coefficient and Eigenvector 

Centrality, for the three mobile broadband operators (1 = Aircel, 2 = Bharti Airtel, 3 = 

Vodafone). 
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Descriptive statistics by mobile broadband operator 

Operator Variable Obs. Mean Std. Dev. Min. Max. 

1 Woutd 522 9.097701 83.35425 0 1847 

1 Winde 522 9.097701 75.67523 0 1581 

1 Clus 522 .2375005 .1961916 0 .5833333 

1 Eige 522 .0026668    .0438957        0 1 

2 Woutd 180 5.311111 18.40916 0 195 

2 Winde 180 5.311111 17.31802 0 148 

2 Clus 180 .2242081 .1988603 0 .5 

2 Eige 180 .0184107   .0893504 0 1 

3 Woutd 1513 20.24653     329.3778           0 11394 

3 Winde 1513 20.24653     316.6572           1 10686 

3 Clus 1513 .3053947  .1972844        0 .6666667 

3 Eige 1513 .0009801   .0268621 1.12e-06           1 

Key  
clus = Clustering Coefficient. 

eige = Eigenvector Centrality. 
operator (mobile broadband operator): 1 = Aircel, 2 = Bharti Airtel, 3 = Vodafone. 

woutd = Weighted Out-Degree. 
winde = Weighted In-Degree. 

Table 5-2: Descriptive statistics by mobile broadband operator. 

Looking at those Autonomous Systems that are showing an especially large or low 

Weighted Out-Degree (woutd) or Weighted In-Degree (winde) revealed an interesting 

pattern regarding outlier observations in the dataset (covering all three operators). 

According to the analysis of Table 5-3 on the next page, the mobile broadband operator 

networks indicate only two data points with a large Weighted Out-Degree and Weighted 

In-Degree simultaneously.   
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Weighted In-Degree and Weighted Out-Degree Matrix 

 
Autonomous System with 
a small Weighted In-
Degree, (operator) 

Autonomous System with 
a large Weighted In-
Degree, (operator) 

Autonomous System with 
a small Weighted Out-
Degree, (operator) 

Most observations. 
N/A (1)* 
N/A (2)* 

N/A (3)* 

Autonomous System with 
a large Weighted Out-
Degree, (operator) 

AS4538 (3) 

AS4755 (1) 

AS55410 (3) 

AS1273 (3) 
AS174 (3) 

AS6453 (1) 
AS1299 (3) 

AS3356 (3) 
AS4755 (1) 

AS4538 (3) 
AS45609 (2) 

Key 
* normal terminations or drops of a given traceroute measurement. 

operator (mobile broadband operator) 1 = Aircel, 2 = Bharti Airtel, 3 = Vodafone. 
Note: Inside the parenthesis, we report the number referring to the mobile broadband 
operator, from which SIM-card we generated the respective measurements.  

Table 5-3: Highest and lowest Weighted In-Degree and Weighted Out-Degree matrix. 
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This is furthermore visualised in the following Figure 5-3, where plotting the Weighted 

In-Degree (winde) against the Weighted Out-Degree (woutd) for all mobile broadband 

operators revealed the identified outliers, and the overall high correlation coefficient 

valued at 0.9636. Looking at the Aircel outliers in Figure 5-4 below indicated one outlier 

with a large woutd and a low winde. A manual analysis using the Stata (2016) Data 

Browser identified this vertex as Tata Communications (formerly VSNL), (AS4755), one 

of the outliers indicated in Figure 5-3 below. The correlation coefficient was set at 0.9184. 

Plotting the two-way scatter plot for the winde against woutd for the Bharti Airtel 

observations in Figure 5-5 below revealed none of the outlier observations from Figure 

5-3 below, while the correlation coefficient was lower with 0.6542. Nevertheless, Figure 

5-5 shows a number of outliers for the Bharti Airtel observations that only emerge in this 

figure, given their relative smaller deviations from the norm than those observed for all 

observations as depicted in Figure 5-3.  

 

 

Figure 5-3: Total observations scatter plot Weighted In-Degree against Weighted Out-

Degree. 
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Figure 5-4: Aircel scatter plot Weighted In-Degree against Weighted Out-Degree. 

 

 

Figure 5-5: Bharti Airtel scatter plot Weighted In-Degree against Weighted Out-Degree. 
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Figure 5-6: Vodafone scatter plot Weighted In-Degree against Weighted Out-Degree. 

Finally, in plotting winde against woutd for the Vodafone observations in Figure 5-6

above indicated another outlier from Figure 5-3 (China Education and Research Network 

(AS4538)) and a high correlation coefficient of 0.9647.  

Interestingly, both of the identified vertices, Tata Communications (formerly VSNL), 

(AS4755) and the China Education and Research Network (AS4538) were already 

identified as structurally important Autonomous Systems in section 4.3 above. This 

indicates that these two Autonomous Systems are potentially used by the respective 

mobile broadband operators for linking to other Autonomous Systems, probably to those 

ones for which they lack a direct connection themselves. Looking more closely at those 

Autonomous Systems that incorporated a high woutd and winde in Table 5-3 above, 

revealed those Autonomous Systems that apparently featured as the core of the network. 

Hence, these Autonomous Systems are potentially the first hop of a given traceroute

observation for each of the three operators. A visual analysis with the Stata (2016) Data 

Browser showed that the most notable Autonomous System for Aircel observations was 

Tata Communications (America) Inc. (AS6453). Bharti Airtel only showed one strong 

Autonomous System being their own Bharti Airtel Ltd. (AS45609), while Vodafone 

showed several ones, namely Vodafone India Ltd. (AS55410), Cable and Wireless 

Worldwide plc. (AS1273), Cogent Communications (AS174), Telia Company AB 
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(AS1299) and Level 3 Communications (AS3356). These descriptive results came as no 

surprise, given the previous findings in Chapter 4. 

Therefore, those Autonomous Systems indicating high woutd and high winde seem to be 

primarily responsible for parts of the network structural organisation, and hence, amongst 

others, structural bottlenecks, for the network originating from each mobile broadband 

operator SIM card. Similarly, those Autonomous Systems with a high Weighted Out-

Degree (woutd) and a low Weighted In-Degree (winde) are potentially additional drivers 

for structural bottlenecks. Based on these findings, the following econometric models in 

this chapter should reveal diverging levels of hierarchical structuring for the three mobile 

broadband operators. Given the identified outlier Autonomous Systems, hierarchical 

organisations and hence structural bottlenecks should be more apparent for Aircel and 

Vodafone than for Bharti Airtel. 

Looking, in more detail, at the Descriptive Statistics for the covariates revealed additional 

insights (see Table 5-1). Plotting the histogram of the clus distribution in Figure 5-7 below 

indicated that a large number of observations incorporated either no clus, or fairly large 

values. 
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Figure 5-7: Clustering Coefficient distribution with fit line. 

Looking at the Autonomous Systems with the largest clus values in the following Table 

5-4 revealed additional insights. The data originated from Aircel showed BIGLOBE Inc. 

(AS55394) having the highest Clustering Coefficient (.5834), followed by a multitude of 

other ASes with a Clustering Coefficient of .5.  

Bharti Airtel showed also a multitude of Autonomous Systems with a Clustering 

Coefficient of .5, including e.g. General Telecommunication Organization (AS8529).  

The data originated from Vodafone showed the United States Federal Reserve Board 

(AS10754) as the Autonomous System with the largest Clustering Coefficient (.6667), 

followed by a number of other Autonomous Systems with a Clustering Coefficient of .5, 

including e.g. West Call LLC (AS25408).  
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Table of highest Clustering Coefficients (clus) 

Aircel Autonomous 
System observation, (clus) 

Bharti Airtel Autonomous 
System, (clus) 

Vodafone Autonomous 
System, (clus) 

AS55394, (.5834) 

AS29470, (.5) 
AS38393, (.5) 

AS16300, (.5) 
AS8271, (.5) 

AS15682, (.5) 
. 

. 

AS8529, (.5) 

AS11096, (.5) 
AS6128, (.5) 

AS12831, (.5) 
AS6210, (.5) 

AS6181, (.5) 
. 

. 

AS10754, (.6667) 

AS25408, (.5) 
AS20446, (.5) 

AS197451, (.5) 
AS48237, (.5) 

AS33871, (.5) 
. 

. 

Key 

clus = Clustering Coefficient.	
Table 5-4: Highest Clustering Coefficient observations. 

Interestingly, those Autonomous Systems with the highest Eigenvector Centrality (eige) 

in Table 5-5 below, and hence with a strong network influence were, amongst others, 

Tata Communications (America) Inc. (AS6453), Level 3 Communications (AS3356) and 

Cogent Communications (AS174) for Aircel, Cogent Communications (AS174), Bharti 

Airtel Ltd. (AS9498) and Level 3 Communications (AS3356) for Bharti Airtel and finally 

Vodafone India Ltd. (AS55410), Cable and Wireless Worldwide plc. (AS1273) and Level 

3 Communications for Vodafone (AS3356).  
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Table of highest Eigenvector Centralities (eige) 

Aircel Autonomous 
System observation, (eige) 

Bharti Airtel Autonomous 
System, (eige) 

Vodafone Autonomous 
System, (eige) 

AS6453 (1) 

AS3356, (.05886702) 
AS174, (.03417846) 

#N/A, (.02765014) 
A2914, (.01933738) 

AS12389, (.01657356) 
. 

. 

AS174, (1) 

AS9498, (.44281486) 
AS3356, (.41974529) 

N/A, (.23068346) 
AS2914, (.14945413) 

AS34661, (.12144484) 
. 

. 

AS55410 (1) 

AS1273 (.29650135) 
#N/A (.04423916) 

AS3356 (.04212998) 
AS174 (.01871963) 

AS3491 (.01577914) 
. 

. 

Key 

eige = Eigenvector Centrality.	
Table 5-5: Highest Eigenvector Centrality observations. 

Table 5-6 below displays additional Descriptive Statistics. The values revealed a higher 

Skewness for woutd, winde and eige, which suggested a non-normal distribution and 

therefore an indication that the variables ought to be transformed.  

Detailed descriptive statistics 

Variable Variance Skewness Kurtosis 

woutd 75,785.63 34.98263 1,368.114 

winde 69,882.84 33.40939 1,260.274 

clus .0399471 -.3849493 1.614403 

eige .0016137 22.13861 528.4257	

Key 
clus = Clustering Coefficient. 

eige = Eigenvector Centrality. 
woutd = Weighted Out-Degree. 

winde = Weighted In-Degree. 

Table 5-6: Detailed descriptive statistics. 
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The difference in Kurtosis revealed the heavy tail effect as already shown in the plots of 

the variable distributions. Since a normal distribution would display a Kurtosis of 3, the 

data indicated again that only clus showed a somewhat normal distribution. The 

distributions for the other variables were of non-normal nature. Especially the eige 

distribution might follow a power-law function. To address the problem of non-normal 

distributions, the variables were transformed to their natural logarithmic base, leading to 

distributions of the transformed variables being closer to normal distributions (Table 5-7 

below).  

Ln-transformed descriptive statistics 

Variable	 Obs.	 Mean	 Std. Dev.	 Min.	 Max.	

lwoutd 2212 .7412221 1.080887 0 9.340842 

lwinde 2207 .742654 1.082643 0 9.27669 

lclus 1589 -.9811632 .3521673 -3.516868 -.4054651 

leige 2207 -11.49549 2.476857 -13.70155 0 

Key 

lclus = Ln(Clustering Coefficient). 
leige = Ln(Eigenvector Centrality). 

lwoutd = Ln(Weighted Out-Degree). 
lwinde = Ln(Weighted In-Degree). 

Table 5-7: Ln-transformed descriptive statistics. 

Table 5-8 captures the detailed Descriptive Statistics for the ln-transformed variables, 

which appeared to be closer to a normal distribution, having a lower level of Skewness 

compared to before. 
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Ln-transformed detailed descriptive statistics 

Variable	 Variance	 Skewness	 Kurtosis	

lwoutd 1.168317 2.379546 11.38487 

lwinde 1.172116 2.39158 11.4741 

lclus .1240218 -2.200099 12.23697 

leige 6.13482 1.599541 5.326937 

Key 

lclus = Ln(Clustering Coefficient). 
leige = Ln(Eigenvector Centrality). 

lwoutd = Ln(Weighted Out-Degree).
lwinde = Ln(Weighted In-Degree). 

Table 5-8: Ln-transformed detailed descriptive statistics. 

The following Figure 5-8 - Figure 5-11 plot the distributions for lwoutd, lwinde, lclus and 

leige, respectively. The distributions still indicated some left-sided Skewness for lwoutd

and lwinde, while lclus indicated a slightly right-sided, negative Skewness. 

 

Figure 5-8: Ln(Weighted Out-Degree) distribution with fit line. 
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Figure 5-9: Ln(Weighted In-Degree) distribution with fit line. 

 

Figure 5-10: Ln(Clustering Coefficient) distribution with fit line. 
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Figure 5-11: Ln(Eigenvector Centrality) distribution with fit line. 

The Descriptive Statistics for the ln-transformed variables suggest that the functional 

form specification might be best modelled using a log-log model. Table 5-9 below 

captures the correlation coefficients of the Ln-transformed variables. Interestingly, lclus

is negatively correlated with lwoutd.  

Ln-transformed variable correlation coefficients  

- lclus leige 

lwoutd -0.6271 0.5475 

lwinde 0.6363 0.5629 

Key 

lclus: Ln(Clustering Coefficient). 
leige: Ln(Eigenvector Centrality). 

lwinde: Ln(Weighted In-Degree). 
lwoutd: Ln(Weighted Out-Degree). 

Table 5-9: Ln-transformed variable correlation coefficients. 
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Given the great differences in observations per operator, the following plots scrutinise the 

data, to be later used in our econometric models, after these have been filtered according 

to the mobile broadband network operator of origin. In detail, we start by plotting the two 

variables lclus and leige, separately, by operator against lwoutd and against lwinde.  

Figure 5-12: Two-way scatter plots Ln(Clustering Coefficient) against Ln(Weighted Out-

Degree) per operator with linear fit line. 
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Figure 5-13: Two-way scatter plots Ln(Eigenvector Centrality) against Ln(Weighted

Out-Degree) per operator with linear fit line. 

 

Figure 5-14: Two-way scatter plots Ln(Clustering Coefficient) against Ln(Weighted In-

Degree) per operator with linear fit line. 



Chapter 5 

222  Sebastian Sigloch - April 2018 

 

Figure 5-15: Two-way scatter plots Ln(Eigenvector Centrality) against Ln(Weighted In-

Degree) per operator with linear fit line. 

Based on the above plots, it seems that Vodafone shows considerably more outlier values. 

These could represent ASes being more responsible for hierarchical ordering than in the 

networks for Aircel and especially Bharti Airtel. Moreover, Vodafone also showed larger 

lwoutd or lwinde values. The same seemed to apply for the plot of the leige values against 

the lwoutd and lwinde ones. Here, the leige values of Vodafone were covered by much 

lower values than for both Aircel and Bharti Airtel. 

Table 5-10 - Table 5-12 on the following pages capture the Descriptive Statistics for the 

ln-transformed variables per mobile broadband operator (Aircel, Bharti Airtel and 

Vodafone, respectively).  
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Aircel Ln-transformed descriptive statistics 

Variable Obs. Mean Std. Dev. Min. Max. 

lwoutd 521 .750414 1.057799 0 7.521318 

lwinde 517 .7526602   1.059848   0 7.365813 

lclus 337 -1.051558   .3484488 -3.516868 -.5389965 

leige 517 -10.19112 1.998187   -11.82764 0 

Key 

lclus = Ln(Clustering Coefficient). 
leige = Ln(Eigenvector Centrality). 

lwoutd = Ln(Weighted Out-Degree). 
lwinde = Ln(Weighted In-Degree). 

Table 5-10: Aircel Ln-transformed descriptive statistics. 

Bharti Airtel Ln-transformed descriptive statistics 

Variable Obs. Mean Std. Dev. Min. Max. 

lwoutd 179 .6897406 .9915971 0 5.273 

lwinde 177 .6939203 1.000111 0 4.997212 

lclus 111 -1.087415 .4595142 -3.484855 -.6931472 

leige 177 -6.338549 1.98078 -8.963168 0 

Key 

lclus = Ln(Clustering Coefficient). 
leige = Ln(Eigenvector Centrality). 

lwoutd = Ln(Weighted Out-Degree). 
lwinde = Ln(Weighted In-Degree).	

Table 5-11: Bharti Airtel Ln-transformed descriptive statistics. 
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Vodafone Ln-transformed descriptive statistics 

Variable Obs. Mean Std. Dev. Min. Max. 

lwoutd 1512 .7441494 1.099229 0 9.340842 

lwinde 1513 .744936 1.100011 0 9.27669 

lclus 1141 -.9500353 .3362528 -3.401197 -.4054651 

leige 1513 -12.54449 1.528162 -13.70155 0 

Key 

lclus = Ln(Clustering Coefficient). 
leige = Ln(Eigenvector Centrality). 

lwoutd = Ln(Weighted Out-Degree). 
lwinde = Ln(Weighted In-Degree).	

Table 5-12: Vodafone Ln-transformed descriptive statistics. 

Based on the differences of the Descriptive Statistics between the three operator 

networks, one would expect that the level of hierarchical network structuring would differ 

for each mobile broadband operator network. Especially the Eigenvector Centrality, 

which covers vertex influences in a network, is considerably higher for the Bharti Airtel 

observations (see Table 5-8 above). It therefore seems, that the hierarchical organisation 

of the three networks should be more apparent for Aircel and Vodafone, compared to 

Bharti Airtel. To summarize, the separation of the complete dataset into operator-based 

models seems to be the most fruitful and pragmatic way for exploring the network 

structural differences between the three Tamil Nadu mobile broadband operators. This 

furthermore allows us to compare the underlying differences between the three upstream 

connectivity networks in this case study.  

5.3.2 Econometric Models 
This section introduces four different econometric models to test the Working Hypotheses 

discussed in the Literature Review in section 2.5. We start by comparing four alternative 

functional form specifications (linear-linear, log-linear, linear-log and log-log), for two 

separate models. The first one tests the relationship between Out-Degree connectivity, 

and level of hierarchical structuring (represented by the Clustering Coefficient and the 

Eigenvector Centrality). The second focusses on the relation between In-Degree 

connectivity and the level of hierarchical structuring (Clustering Coefficient and 
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Eigenvector Centrality). The initial estimations are conducted on the full dataset, 

unfiltered by mobile broadband operator of origin, exclusively to explore and compare 

the alternative functional forms. Next, in the following sections the full analysis will be 

done separately for each mobile broadband operator of origin. The four functional form 

specifications for the Out-Degree connectivity and level of hierarchical structuring 

(Clustering Coefficient and Eigenvector Centrality) relationship are: 

Linear-linear: 

𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑®ââ	grf§•Ug§Œ =	 

	𝛽𝛽– 	+ 	𝛽𝛽tJ𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽LJ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 

Log-linear: 

𝐴𝐴𝑛𝑛(𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑)®ââ	grf§•Ug§Œ =	 

	𝛽𝛽– 	+ 	𝛽𝛽tJ𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽LJ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 

Linear-log: 

𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑®ââ	grf§•Ug§Œ = 

		𝛽𝛽– 	+ 	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 

Log-log: 

𝐴𝐴𝑛𝑛J𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM =	 

	𝛽𝛽– 	+ 	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 
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The four functional form specifications for the In-Degree connectivity and Clustering 

(Clustering Coefficient and Eigenvector Centrality) relationships are given by: 

Linear-linear: 

𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑®ââ	grf§•Ug§Œ =		 

𝛽𝛽– 	+	𝛽𝛽tJ𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽LJ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 

Log-linear: 

𝐴𝐴𝑛𝑛(𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑)®ââ	grf±•Ug§Œ =	 

	𝛽𝛽– 	+ 	𝛽𝛽tJ𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽LJ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 

Linear-log: 

𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑®ââ	grf§•Ug§Œ =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 

Log-log: 

𝐴𝐴𝑛𝑛J𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®ââ	grf§•Ug§ŒM + 𝛽𝛽L𝐴𝐴𝑛𝑛Je𝑑𝑑𝑑𝑑𝑑𝑑®ââ	grf§•Ug§ŒM + 	𝜀𝜀 
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Estimation results for alternative functional form specification (Out-Degree 
connectivity and Hierarchical Structuring (Clustering Coefficient and 

Eigenvector Centrality)) 

Linear-Linear  

Dependent variable: woutd 
Covariates: clus, eige 

F(2, 2212) = 657.41 
Prob > F = 0.000 

R-Squared = 0.3728 
Root MSE = 218.12 

Log-Linear  

Dependent variable: lwoutd 
Covariates: clus, eige 

F(2, 2209) = 112.62 
Prob > F = 0.000 

R-Squared = 0.0933 
Root MSE = 1.0297 

Linear-Log  
Dependent variable: woutd 

Covariates: lclus, leig 
F(2, 1585) = 42.04 

Prof > F = 0.000 
R-Squared = 0.0504 

Root MSE = 316.86 

Log-Log * 
Dependent variable: lwoutd 

Covariates: lclus, leige 
F(2, 1582) = 847.43 

Prob > F = 0.000 
R-Squared = 0.5172 

Root MSE = .80506 

Key 

* chosen functional form. 
clus = Clustering Coefficient. 

eige = Eigenvector Centrality. 
woutd = Weighted Out-Degree. 

winde = Weighted In-Degree. 
lclus = Ln(Clustering Coefficient). 

leige = Ln(Eigenvector Centrality). 
lwoutd = Ln(Weighted Out-Degree). 

lwinde = Ln(Weighted In-Degree). 

Table 5-13: Functional form specification Model 1. 
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Estimation results for alternative functional form specification (In-Degree 
connectivity and Hierarchical Structuring (Clustering Coefficient and 

Eigenvector Centrality)) 

Linear-Linear  

Dependent variable: winde 
Covariates: clus, eige 

F(2, 2212) = 624.70 
Prob > F = 0.000 

R-Squared = 0.3610 
Root MSE = 211.42 

Log-Linear  

Dependent variable: lwinde 
Covariates: clus, eige 

F(2, 2204) = 119.52 
Prob > F = 0.000 

R-Squared = 0.0978 
Root MSE = 1.0288 

Linear-Log  
Dependent variable: winde 

Covariates: lclus, leige 
F(2, 1585) = 52.25 

Prob > F = 0.000 
R-Squared = 0.0619 

Root MSE = 302.42 

Log-Log * 
Dependent variable: lwinde 

Covariates: lclus, leige 
F(2, 1585) = 902.88 

Prob > F = 0.0000 
R-Squared = 0.5326 

Root MSE = .79525 

Key 

* chosen functional form. 
clus = Clustering Coefficient. 

eige = Eigenvector Centrality. 
woutd = Weighted Out-Degree. 

winde = Weighted In-Degree. 
lclus = Ln(Clustering Coefficient). 

leige = Ln(Eigenvector Centrality). 
lwoutd = Ln(Weighted Out-Degree). 

lwinde = Ln(Weighted In-Degree). 

Table 5-14: Functional form specification Model 2. 
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Based on these preliminary estimations using the full operator dataset (comprising the 

full observations of all mobile broadband operators) and by considering the Degrees of 

Freedom and the (Adjusted) R-Squares, we decide to proceed with the log-log 

specification in the following Statistical Network Analysis for the three-separate mobile 

broadband operators. The parameters of the variable coefficients for the given estimations 

above were not reported here, as they will be discussed for the operator-specific models 

below. Given the preliminary functional form estimation, in this section we develop 

several econometric models using the mobile broadband operator-based subsets of the 

collected dataset.  

In the first stage of the estimation we consider two different models, Model 1 with the 

Network Structural Markers (Clustering Coefficient and Eigenvector Centrality) as 

covariates and the outgoing upstream connectivity (Weighted Out-Degree) as dependent 

variable. 

Model 1: 

𝐴𝐴𝑛𝑛J𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑rf§	grf§•Ug§M =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑rf§	grf§•Ug§M + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑rf§	grf§•Ug§M + 	𝜀𝜀 

Next, Model 2 is estimated using again the Network Structural Markers (Clustering 

Coefficient and Eigenvector Centrality) as covariates but here the incoming upstream 

connectivity (Weighted In-Degree) as dependent variable. 

Model 2: 

𝐴𝐴𝑛𝑛J𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑rf§	grf§•Ug§M =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑rf§	grf§•Ug§M + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑erf§	grf§•Ug§M + 	𝜀𝜀 

In the following section, we start with the specification and the estimation of Model 1, 

followed by Model 2 in section 5.3.4.  
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5.3.3 Model 1 (Weighted Out-Degree connectivity) 
Following the Network Analysis at Autonomous System granularity in Chapter 4, the 

elaboration of the first stage, of the two-stage econometric model, is separately 

performed, first based on the Aircel observations only, then on the Bharti Airtel 

observations, and lastly on the Vodafone ones. As described in section 5.3.2, our first 

econometric model (Model 1) in stage one is estimated using a log-log functional form 

specification for the Weighted Out-Degree connectivity and Clustering (Clustering 

Coefficient and Eigenvector Centrality) relationships. The estimations for each mobile 

broadband operator are given by: 

Aircel Model 1: 

𝐴𝐴𝑛𝑛(𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑®2§©fâ) =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛(𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®2§©fâ) + 𝛽𝛽L𝐴𝐴𝑛𝑛(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®2§©fâ) + 	𝜀𝜀 

Bharti Airtel Model 1: 

𝐴𝐴𝑛𝑛(𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑éå•§U2	®2§Ufâ) =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛(𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑éå•§U2	®2§Ufâ) + 𝛽𝛽L𝐴𝐴𝑛𝑛(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑éå•§U2	®2§Ufâ) + 	𝜀𝜀 

Vodafone Model 1: 

𝐴𝐴𝑛𝑛J𝑒𝑒𝑜𝑜𝑢𝑢𝑑𝑑𝑑𝑑™ge•´gdfM =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴nJ𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑™ge•´gdfM + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑™ge•´gdfM + 	𝜀𝜀 

Below we start with the specification and estimation of Model 1 for the Aircel 

observations, followed by the Bharti Airtel and the Vodafone observations before 

summarising the key findings. 

Aircel Model 1 
The dependent variable, lwoutd, and the covariates of interest lclus and leige, are 

continuous. Table 5-15 below reports the estimates for Aircel Model 1 based on a robust 

estimation method (Huber / White / Sandwich Std. Errors) for the adopted log-log 

specification (see section 5.3.3 above), using 336 vertex observations, obtained from the 

Aircel graph, 𝐺𝐺®2§©fâ_®∆, as elaborated in Chapter 4.  
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The robust estimation techniques were required given the presence of heteroskedasticity 

that was observed in a preliminary OLS estimation not reported here. From Table 5-15 

below, we can see that the overall model is significant (p-value of 0.0000 for F(2, 333) = 

114.05) and explains 66.36% (R-Squared equals 0.6636) of the total variation of the 

Ln(Weighted Out-Degree).  

Model 1 
Multiple Linear regression – Aircel 	

Huber / White / Sandwich Std. Errors 

 

Variable abbreviations 
lclus: Ln(Clustering Coefficient) 

leige: Ln(Eigenvector Centrality) 
lwoutd: Ln(Weighted Out-Degree) 

Number of obs = 336 

F(2, 333) = 114.05 
Prob > F = 0.0000 

R-squared = 0.6636 
Root MSE = .65508 

lwoutd Coef. Std. Error t p > | t | [95% Conf. Interval] 

lclus -
1.182964*** .2442479 -4.84 0.000 -1.663427 -.7025002 

leige .3212572*** .0344788 9.32 0.000 .2534335 .389081 

_cons 2.98095*** .5150569 5.79 0.000 1.967775 3.994126 

Key 
*  p < .05; ** p < .01; *** p < .001 

Table 5-15: Aircel multiple robust log-log regression Model 1. 

The t-tests showed that the two key covariates were statistically significant at 99% level. 

The coefficients for the main covariates indicate that lclus	had a negative effect on the 

lwoutd (-1.182964***), whereas leige showed a positive effect on lwoutd (.3212572***).  

Hence, from these estimates, we can see that a 1% increase of lclus represents a decrease 

in Weighted Out-Degree connectivity (lwoutd) by 1.18%.  Similarly, a 1% increase of 

leige represents an increase in Weighted Out-Degree connectivity (lwoutd) by 0.32%.  
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The Ramsey RESET test for F(3, 330) = 3.41, a p-value of 0.0178, revealed an Omitted 

Variable Bias, at 95%. However, having carried additional estimations for more 

functional form specifications including higher power of the explanatory variables up to 

the fourth order (not reported here), we saw no improvement in this test, hence we 

retained the original log-log specification. The estimated Variance Inflation Factor (VIF) 

was below the thresholds that would indicate the presence of multicollinearity. The plot 

of the predicted residual distributions, see Figure 5-16 below, shows an approximately 

normal distribution ranging closely around the mean of zero.  

 

Figure 5-16: Aircel predicted error term residual distribution Model 1. 

Bharti Airtel Model 1 
Again, the dependent variable, lwoutd, and the covariates of interest lclus and leige, are 

continuous. Table 5-16 below reports the estimates for Bharti Airtel Model 1 based on a  

robust estimation method (Huber / White / Sandwich Std. Errors) for the adopted log-log 

specification (see section 5.3.3 above), using 109 vertex observations, obtained from the 

Bharti Airtel graph, 𝐺𝐺éå•§U2	®2§Ufâ_®∆, as elaborated in Chapter 4.  

The robust estimation techniques were required given the presence of heteroskedasticity

that was observed in a preliminary OLS estimation not reported here. From Table 5-16 

below, we can see that the overall model is significant (p-value of 0.0000 for F(2, 106) = 
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15.22) and explains 48.43% (R-Squared equals 0.4843) of the total variation of the 

Ln(Weighted Out-Degree). 

The t-tests showed that the two key covariates were statistically significant at 95% level 

for lclus and the 99% level for leige. The coefficients for the main covariates indicate that 

lclus	had a negative effect on the lwoutd (-.9986846**), whereas leige showed a positive 

effect on lwoutd (.277029***).  

Model 1 
Multiple Linear regression – Bharti Airtel	

Huber / White / Sandwich Std. Errors 

 
Variable abbreviations 

lclus: Ln(Clustering Coefficient) 
leige: Ln(Eigenvector Centrality) 

lwoutd: Ln(Weighted Out-Degree) 

Number of obs = 109 

F(2, 106) = 15.22 
Prob > F = 0.0000 

R-squared = 0.4843 
Root MSE = .72944 

lwoutd Coef. Std. Error t p > | t | [95% Conf. Interval] 

lclus -.9986846** .3569365 -2.80 0.006 -1.706346 -.2910233 

leige .277029*** .0631923 4.38 0.000 .151744 .4023139 

_cons 1.561349** .5604904 2.79 0.006 .4501226 2.672576 

Key  
*  p < .05; ** p < .01; *** p < .001 

Table 5-16: Bharti Airtel multiple robust log-log regression Model 1. 

Hence, from these estimates, we can see that a 1% increase of lclus represents a decrease 

in Weighted Out-Degree connectivity (lwoutd) by 0.99%. Similarly, a 1% increase of 

leige represents an increase in Weighted Out-Degree connectivity (lwoutd) by 0.28%. 

The Ramsey RESET test for F(3, 103) = 16.94, a p-value of 0.0000, revealed an Omitted 

Variable Bias, at 99%. However, having carried additional estimations for more 

functional form specifications including higher power of the explanatory variables up to 

the fourth order (not reported here), we saw no improvement in this test, hence we again 

retained the original log-log specification. The estimated Variance Inflation Factor (VIF) 

was below the thresholds that would indicate the presence of multicollinearity. The plot 
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of the predicted residual distributions, see Figure 5-16 below, shows an approximately 

normal distribution ranging closely around the mean of zero.  

 

Figure 5-17: Bharti Airtel predicted error term residual distribution Model 1. 

Vodafone Model 1 
Like previously, the dependent variable, lwoutd, and the covariates of interest lclus and 

leige, are continuous. Table 5-17 below reports the estimates for Vodafone Model 1 based 

on a robust estimation method (Huber / White / Sandwich Std. Errors) for the adopted 

log-log specification (see section 5.3.3 above), using 1140 vertex observations, obtained 

from the Vodafone graph, 𝐺𝐺™ge•´gdf_®∆, as elaborated in Chapter 4.  

Again, the robust estimation techniques were required given the presence of 

heteroskedasticity that was observed in a preliminary OLS estimation not reported here. 

From Table 5-17 below, we can see that the overall model is significant (p-value of 

0.0000 for F(2, 1137) = 751.76) and explains 79.15% (R-Squared equals 0. 7915) of the 

total variation of the Ln(Weighted Out-Degree). 
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Model 1	
Multiple Linear regression – Vodafone	
Huber / White / Sandwich Std. Errors 

 
Variable abbreviations 

lclus: Ln(Clustering Coefficient) 
leige: Ln(Eigenvector Centrality) 

lwoutd: Ln(Weighted Out-Degree) 

Number of obs = 1140 

F(2, 1137) = 751.76 
Prob > F = 0.0000 

R-squared = 0.7915 
Root MSE = .53825 

lwoutd Coef. Std. Error t p > | t | [95% Conf. Interval] 

lclus -
.8647558*** .1388745 -6.23 0.000 -1.137235 -.5922768 

leige .5424204*** .0236467 22.94 0.000 .4960243 .5888165 

_cons 6.794033*** .3973645 17.10 0.000 6.014383 7.573683 

Key 

*  p < .05; ** p < .01; *** p < .001 

Table 5-17: Vodafone multiple robust log-log regression Model 1. 

The t-tests showed that the two key covariates were statistically significant at 99% level. 

The coefficients for the main covariates indicate that lclus	had a negative effect on the 

lwoutd (-.8647558**), whereas leige showed a positive effect on lwoutd (.5424204***). 

Hence, from these estimates, we can see that a 1% increase of lclus represents a decrease 

in Weighted Out-Degree connectivity (lwoutd) by 0.86%. Similarly, a 1% increase of 

leige represents an increase in Weighted Out-Degree connectivity (lwoutd) by 0.54%. 

The Ramsey RESET test for F(3, 103) = 1.25, a p-value of 0.2921, revealed no Omitted 

Variable Bias. Hence, we retained the original log-log specification. Interestingly, 

dropping the China Education and Research Network (AS4538) outlier observation (with 

the highest Weighted Out-Degree) from the dataset would lead to a lower Omitted 

Variable Bias at 90% level. The estimated Variance Inflation Factor (VIF) was below the 

thresholds that would indicate the presence of multicollinearity. The plot of the predicted 

residual distributions, see Figure 5-18 below, shows an approximately normal distribution 

ranging closely around the mean of zero. 
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Figure 5-18: Vodafone predicted error term residual distribution Model 1. 

Summary Model 1 
Given the slope of the log-log regression between the Weighted Out-Degree and the 

Clustering Coefficient, we can see that an increase in Ln(Clustering Coefficient) is 

associated with a decrease in outgoing connectivity (here represented by the variable of 

the Ln(Weighted Out-Degree).  

 

Figure 5-19: Predicted effects of an increase in Ln(Clustering Coefficient) in 

Ln(Weighted Out-Degree) - Model 1. 
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Second, given the slope of the log-log regression between the Weighted Out-Degree and 

the Eigenvector, we indicate that an increase in Ln(Eigenvector Centrality) is associated 

with an increase in outgoing connectivity (again captured by the Ln(Weighted Out-

Degree)).  

 

Figure 5-20: Predicted effects of an increase in Ln(Eigenvector Centrality) in 

Ln(Weighted Out-Degree) - Model 1. 

5.3.4 Model 2 (Weighted In-Degree) 
Similarly to the estimations of Model 1 above, we assume that studying the Weighted In-

Degree connectivity, in this Model 2, should also reveal statistically significant negative 

lclus and positive leige coefficients, when robustly being regressed against lwinde. Again, 

following the Network Analysis at Autonomous System granularity in Chapter 4, the 

specification and estimation of the econometric models is separately performed. Again, 

as described in section 5.3.2 above, our second econometric model (Model 2) in stage 

one is estimated using a log-log functional form specification for the Weighted In-Degree 

connectivity and hierarchical structuring (Clustering Coefficient and Eigenvector 

Centrality) relationships. The estimations for each mobile broadband operator are given 

by: 
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Aircel Model 2: 

𝐴𝐴𝑛𝑛(𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑®2§©fâ) =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛(𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑®2§©fâ) + 𝛽𝛽L𝐴𝐴𝑛𝑛(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑®4±©fâ) + 	𝜀𝜀 

 

Bharti Airtel Model 2: 

𝐴𝐴𝑛𝑛(𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑éå•§U2	®2§Ufâ) =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛(𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑éå•§U2	®2§Ufâ) + 𝛽𝛽L𝐴𝐴𝑛𝑛(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑éå•§U2	®2§Ufâ) + 	𝜀𝜀 

 

Vodafone Model 2: 

𝐴𝐴𝑛𝑛J𝑒𝑒𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑™ge•´gdfM =		 

𝛽𝛽– 	+	𝛽𝛽t𝐴𝐴𝑛𝑛J𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑™ge•´gdfM + 𝛽𝛽L𝐴𝐴𝑛𝑛J𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑™ge•´gdfM + 	𝜀𝜀 

In the section below, we start with the specification and estimation of Model 2 for the 

Aircel observations, followed by the Bharti Airtel observations and the Vodafone ones 

before again summarising the key findings. 

Aircel Model 2 
The dependent variable, lwinde, and the covariates of interest lclus and leige, are 

continuous. Table 5-18 below reports the estimates for Aircel Model 2 based on a robust 

estimation method (Huber / White / Sandwich Std. Errors) for the adopted log-log 

specification (see section 5.3.3 above), using 337 vertex observations, obtained from the 

Aircel graph, 𝐺𝐺®2§©fâ_®∆, as elaborated in Chapter 4.  

Again, the robust estimation techniques were required given the presence of 

heteroskedasticity that was observed in a preliminary OLS estimation not reported here. 

From Table 5-18, we can see that the overall model is significant (p-value of 0.0000 for 

F(2, 334) = 145.25) and explains 72.18% (R-Squared equals 0. 7218) of the total variation 

of the Ln(Weighted In-Degree). 

The t-tests showed that the two key covariates were statistically significant at 99% level. 
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The coefficients for the main covariates indicate that lclus	had a negative effect on the 

lwinde (-1.104983***), whereas leige showed a positive effect on lwinde (.334886***).  

Model 2 
Multiple Linear regression – Aircel  

Huber / White / Sandwich Std. Errors 

 

Variable abbreviations 
lclus: Ln(Clustering Coefficient) 

leige: Ln(Eigenvector Centrality) 
lwinde: Ln(Weighted In-Degree) 

Number of obs = 337 

F(2, 334) = 145.25 
Prob > F = 0.0000 

R-squared = 0.7218 
Root MSE = .59678 

lwinde Coef. Std. Error t p > | t | [95% Conf. Interval] 

lclus -
1.104983*** .1919853 -5.76 0.000 -1.482636 -.7273301 

leige .334886*** .0306652 10.92 0.000 .2745648 .3952073 

_cons 3.169333*** .4391155 7.22 0.000 2.305552 4.033114 

Key 
*  p < .05; ** p < .01; *** p < .001 

Table 5-18: Aircel multiple robust log-log regression Model 2. 

Hence, from these estimates, we can see that a 1% increase of lclus represents a decrease 

in Weighted In-Degree connectivity (lwinde) by 1.10%.  Similarly, a 1% increase of leige 

represents an increase in Weighted In-Degree connectivity (lwinde) by 0.33%. The 

Ramsey RESET test for F(3, 331) = 6.04, a p-value of 0. 0005, revealed an Omitted 

Variable Bias, at 99%. However, having carried additional estimations for more 

functional form specifications including higher power of the explanatory variables up to 

the fourth order (not reported here), we saw no improvement in this test, hence we 

retained the original log-log specification. The estimated Variance Inflation Factor (VIF) 

was below the thresholds that would indicate the presence of multicollinearity. The plot 

of the predicted residual distributions, see Figure 5-21 below, shows an approximately 

normal distribution ranging closely around the mean of zero.  
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Figure 5-21: Aircel predicted error term residual distribution Model 2. 

Bharti Airtel Model 2 
Again, the dependent variable, lwinde, and the covariates of interest lclus and leige, are 

continuous. Table 5-19 below reports the estimates for Bharti Airtel Model 2 based on a  

robust estimation method (Huber / White / Sandwich Std. Errors) for the adopted log-log 

specification (see section 5.3.3 above), using 110 vertex observations, obtained from the 

Bharti Airtel graph, 𝐺𝐺éå•§U2	®2§Ufâ_®∆, as elaborated in Chapter 4.  

The robust estimation techniques were required given the presence of heteroskedasticity 

that was observed in a preliminary OLS estimation not reported here. From Table 5-19 

below, we can see that the overall model is significant (p-value of 0.0000 for F(2, 107) = 

23.04) and explains 54.35% (R-Squared equals 0.5435) of the total variation of the 

Ln(Weighted In-Degree). 

The t-tests showed that the two key covariates were statistically significant at 99% level. 

The coefficients for the main covariates indicate that lclus	had a negative effect on the 

lwinde (-1.032788***), whereas leige showed a positive effect on lwinde (.2765935***). 
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Model 2	
Multiple Linear regression – Bharti Airtel 	

Huber / White / Sandwich Std. Errors 

 
Variable abbreviations 

lclus: Ln(Clustering Coefficient) 
leige: Ln(Eigenvector Centrality) 

lwinde: Ln(Weighted In-Degree) 

Number of obs = 110 

F(2, 107) = 23.04 
Prob > F = 0.0000 

R-squared = 0.5435 
Root MSE = .72773 

lwinde Coef. Std. Error t p > | t | [95% Conf. Interval] 

lclus -
1.032788*** .2813437 -3.67 0.000 -1.590519 -.4750567 

leige .2765935*** .0612059 4.52 0.000 .15526 .397927 

_cons 1.51585** .5292865 2.86 0.005 .4666014 2.565099 

Key 

*  p < .05; ** p < .01; *** p < .001 

Table 5-19: Bharti Airtel multiple robust log-log regression Model 2. 

Hence, from these estimates, we can see that a 1% increase of lclus represents a decrease 

in Weighted In-Degree connectivity (lwinde) by 1.03%. Similarly, a 1% increase of leige 

represents an increase in Weighted In-Degree connectivity (lwinde)  by 0.28%. 

The Ramsey RESET test for F(3, 104) = 8.75, a p-value of 0.0000, revealed an Omitted 

Variable Bias, at 99%. However, having carried additional estimations for more 

functional form specifications including higher power of the explanatory variables up to 

the fourth order (not reported here), we saw no improvement in this test, hence we again 

retained the original log-log specification. The estimated Variance Inflation Factor (VIF) 

was below the thresholds that would indicate the presence of multicollinearity. The plot 

of the predicted residual distributions, see Figure 5-22 below, shows an approximately 

normal distribution ranging closely around the mean of zero.  
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Figure 5-22: Bharti Airtel predicted error term residual distribution Model 2. 

Vodafone Model 2 
Like previously, the dependent variable, lwinde, and the covariates of interest lclus and 

leige, are continuous. Table 5-20 below reports the estimates for Vodafone Model 2 based 

on a  robust estimation method (Huber / White / Sandwich Std. Errors) for the adopted 

log-log specification (see section 5.3.3 above), using 1141 vertex observations, obtained 

from the Vodafone graph, 𝐺𝐺™ge•´gdf_®∆, as elaborated in Chapter 4.  

Again, the robust estimation techniques were required given the presence of 

heteroskedasticity that was observed in a preliminary OLS estimation not reported here. 

From Table 5-20 below, we can see that the overall model is significant (p-value of 

0.0000 for F(2, 1138) = 859.71) and explains 80.88% (R-Squared equals 0.8088) of the 

total variation of the Ln(Weighted In-Degree). 

The t-tests showed that the two key covariates were statistically significant at 99% level. 

The coefficients for the main covariates indicate that lclus	had a negative effect on the 

lwinde (-.7859873***), whereas leige showed a positive effect on lwinde (.5514546***). 
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Model 2 
Multiple Linear regression – Vodafone 

Huber / White / Sandwich Std. Errors 

 

Variable abbreviations 
lclus: Ln(Clustering Coefficient) 

leige: Ln(Eigenvector Centrality) 
lwinde: Ln(Weighted In-Degree) 

Number of obs = 1141 

F(2, 1138) = 859.71 
Prob > F = 0.0000 

R-squared = 0.8088 
Root MSE = .51578 

lwinde Coef. Std. Error t p > | t | [95% Conf. Interval] 

lclus -
.7859873*** .10973 -7.16 0.000 -1.001283 -.5706915 

leige .5514546*** .0218291 25.26 0.000 .5086248 .5942843 

_cons 6.974716*** .3532901 19.74 0.000 6.281543 7.667889 

Key 
*  p < .05; ** p < .01; *** p < .001 

Table 5-20: Vodafone multiple robust log-log regression Model 2. 

Hence, from these estimates, we can see that a 1% increase of lclus represents a decrease 

in Weighted In-Degree connectivity (lwinde) by 0.78%. Similarly, a 1% increase of leige 

represents an increase in Weighted In-Degree connectivity (lwinde) by 0.55%. 

The Ramsey RESET test for F(3, 1135) = 2.62, a p-value of 0.0497, revealed an Omitted 

Variable Bias, at 90%. However, having carried additional estimations for more 

functional form specifications including higher power of the explanatory variables up to 

the fourth order (not reported here), we saw no improvement in this test, hence we again 

retained the original log-log specification.  

The estimated Variance Inflation Factor (VIF) was below the thresholds that would 

indicate the presence of multicollinearity. The plot of the predicted residual distributions, 

see Figure 5-23 below, shows an approximately normal distribution ranging closely 

around the mean of zero. 
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Figure 5-23: Vodafone predicted error term residual distribution Model 2. 

Summary Model 2 
Given the slope of the log-log regression between the Weighted In-Degree and the 

Clustering Coefficient, see Figure 5-24 below, we can see that an increase in 

Ln(Clustering Coefficient), is associated with a decrease in incoming connectivity (here 

represented by the variable of the Ln(Weighted In-Degree)).

 

Figure 5-24: Predicted effects of an increase in Ln(Clustering Coefficient) on 

Ln(Weighted In-Degree) - Model 2. 
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Second, given the slope of the log-log regression between the Weighted In-Degree and 

the Eigenvector Centrality, see Figure 5-25 below, we also indicate that an increase in 

Ln(Eigenvector Centrality) is associated with an increase in incoming connectivity 

(again captured by the Ln(Weighted In-Degree)).  

 

Figure 5-25: Predicted effects of an increase in Ln(Eigenvector Centrality) on 

Ln(Weighted In-Degree) - Model 2. 

The findings of Model 2 (based on the Weighted In-Degree connectivity) support the 

estimations of Model 1 (based on the Weighted Out-Degree connectivity). Therefore, we 

conclude that the Clustering Coefficient and the Eigenvector Centrality relate to mobile 

broadband operator connectivity and hierarchical structuring (measured through either 

the Weighted Out-Degree, representing outgoing connections from a vertex or the 

Weighted In-Degree, representing incoming connections to a vertex). 

5.3.5 Key Findings Hierarchical Structuring 
First, the Descriptive Statistics in section 5.3.1 revealed a number of interesting outlier 

observations. Plotting the Weighted Out-Degree against the Weighted In-Degree showed 

the structural importance of the China Education and Research Network (AS4538) and 

Tata Communications (formerly VSNL), (AS4755) for Vodafone and Aircel, 

respectively. The analysis of the Clustering Coefficient suggested the presence of a few 
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Autonomous Systems with strong mutual interconnections, an indicator of hierarchical 

structuring, as already the k-core decomposition in Chapter 4 showed. An analysis of 

those Autonomous Systems with the largest Eigenvector Centrality exposed those 

Autonomous Systems with the strongest influence on the mobile broadband operator 

networks. The estimated coefficients of the first stage (covering the econometrics models 

in Model 1 and Model 2) robustly indicate the relationships between Clustering 

Coefficient and Eigenvector Centrality and connectivity (given by the Weighted Out-

Degree in Model 1 and the Weighted In-Degree in Model 2). These relationships, hence, 

strongly indicate the hierarchical structuring of the upstream Internet market.  

5.4 Affordability and Quality of Service  
Lack of affordability of mobile broadband Internet is considered a key issue underlying 

the low adoption rates in developing countries. Understanding and addressing the drivers 

of low affordability (e.g. for mobile broadband), and high relative prices, is of crucial 

relevance for helping in bridging existing digital divides and leveraging socio-economic 

opportunities in these countries (see sections 2.2.2 and 2.2.4). Hence in this section, we 

will consider whether the evidence we discussed in the previous section 5.3, might have 

an impact on the affordability of the mobile broadband price plans (defined as price per 

Megabyte) and on the price plan’s Quality of Service (QoS). The following model, 

focussing on these relationships, is used to explore the last two Working Hypothesis as 

abducted in the Literature Review (section 2.5): 

WH2: ‘Tamil Nadu mobile broadband operators that show signs of a hierarchical 

upstream Internet market structure offer less affordable mobile broadband price plans to 

an end-user’. 

WH3: ‘Those Tamil Nadu mobile broadband operators that show signs of a hierarchical 

upstream Internet market structure provide a lower quality of service to an end-user’. 

We start again by providing a Descriptive Analysis of the observations on price plans that 

we obtained from GSMOutlook (2015a, 2015b, 2015c). This is followed by the 

econometric Model 3, which will utilise the coefficients obtained in the previous 

estimation stage from Model 1 (dependent variable Weighted Out-Degree). In particular, 

the estimated coefficients, 	𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  from the covariates for 

Ln(Clustering Coefficient) and Ln(Eigenvector Centrality)) are used as proxies for the 
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level of hierarchical network structuring. These proxies are then related to the 

affordability.  

With the Clustering Coefficient, we refer to an established tradition in the Computer 

Science literature (Vázquez, Pastor-Satorras and Vespignani, 2002, p.5) that identifies the 

estimated negative slope of the log-log relations between Clustering Coefficient and 

connectivity, as a marker for the level of hierarchical structuring in the analysed networks. 

Similarly, Choi, Barnett and Chon (2006, p.87-89) consider that the Eigenvector 

Centrality metric indicates hierarchical structuring, since this metric captured the vertex 

influence, obtained through stronger connections to other influential vertices (see also 

sections 2.3.3 and 3.4.2). However, in the following Models 3.2 and Model 4, we extend 

their work by splitting total connectivity into incoming and outgoing connectivity, as they 

clearly capture very different aspects of the original traceroutes’ network connections. 

Hence, the incoming and outgoing connectivity metrics may play completely different 

roles in terms of the level of hierarchical network structuring, when considered in their 

relation with the Eigenvector Centrality. The following analysis will focus on these 

critical differences.  

Our Working Hypothesis is that the price per Megabyte, as calculated upon GSMOutlook 

(2015a, 2015b, 2015c) data, is affected by the operator networks’ levels of hierarchical 

structuring. In the following, these levels will be captured by the estimated coefficients 

representing the slopes of the log-log relations between Clustering Coefficient and 

connectivity, 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ , and of the log-log relations between Eigenvector Centrality 

and connectivity,		𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ . These relations were estimated in the first stage and are 

used as key proxies for capturing the levels of hierarchical structuring. In detail, Model 3 

is using the coefficients estimated in Model 1 (based on Weighted Out-Degree), 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ . These are considered as proxies indicating the levels of 

hierarchical structuring. Model 4 is also using as proxy variables, the coefficients 

estimated in Model 2 (based on Weighted In-Degree), 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ . 

Similary, these are considered as proxies indicating the levels of hierarchical structuring. 

Lastly, this section concludes by focussing on the correlation between the level of 

hierarchical structuring, proxied by the estimated variables in Model 1 (𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  and 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ )	and Model 2 (𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ ), and the mobile broadband 

operator networks’ Quality of Service (QoS). This metric is derived from the Telecom 
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Regulatory Authority of India. The correlation covers the Working Hypotheses WH3 

stated above. 

5.4.1 Descriptive Statistics 
Given the available secondary data, the price plans of the three Tamil Nadu mobile 

broadband operators (Aircel, Bharti Airtel and Vodafone) were chosen as our dependent 

variable and unit of analysis. These data on price plans were collected to match the geo-

location and dates of our data collection as described in the Methodology (section 3.3). 

A price plan, expressed in Indian Rupees (INR), includes information on:  

• its duration (counted in days),  

• the maximum data allowance (measured in Megabytes),  

• a maximum connection speed (represented in 2G or 3G mobile technology) and  

• the inclusion of added services (such as unlimited usage of Facebook or 

WhatsApp).  

Table 5-21 below depicts the structure and examples of a typical price plan observation. 

Price plan examples 

Operator Price in 
INR 

Validity 
in days 

Price Plan description, examples given by 
GSMOutlook (2015a, 2015b, 2015c) 

1 25 5 200MB 2G data  

2 254 28 1 GB 3G + 150 MB Facebook + 200 MB 
Whatsapp 

3 148 28 1GB 2G free mobile internet 

Key	
GB = Gigabyte (=1024 MB). 
INR = Indian Rupees. 

MB = Megabyte (=1024 Byte). 
Operator (mobile broadband operator): 1 = Aircel, 2 = Bharti Airtel, 3 = Vodafone.	

Table 5-21: Price plan examples. 

The Descriptive Statistics of the price plan observations in Table 5-22 below showed that 

the mean price per Megabyte of Tamil Nadu mobile broadband price plans (based on the 

three mobile broadband operators) was equal to INR 0.190523. 
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Descriptive Statistics, - Model 3 and Model 4 

Variable Obs. Mean Std. Dev. Min. Max. 

datainmb 46 2745.109 3669.781 25 15000 

vin 46 21.19565 16.38918 1 90 

price 46 381.8043 481.3748 8 2251 

pricepermb 46 .190523 .0892192 .0509 .5183333 

Key 

datainmb = Data of price plan in Megabyte. 
price = Price in INR as stated in price plan. 
pricepermb = Price in INR as stated in price plan / Data of price plan in MB 
(Megabyte). 

vin = Validity of price plan in days. 

Table 5-22: Descriptive statistics Model 3 and Model 4. 

The following Table 5-23 - Table 5-25 illustrate the Descriptive Statistics for our three 

mobile broadband operators. Bharti Airtel provided, with a mean of 27.4 days, the highest 

duration in days for their price plans, followed by Aircel with 20.5 days and lastly 

Vodafone with 14 days. Moreover, Bharti Airtel showed a mean price plan price of INR 

566.73, followed by Aircel with INR 402.6, and lastly Vodafone with INR 91.82, 

indicating their end-user focus. This indication is very interesting since Fennell et al. 

(2016) find, based on a survey in rural Tamil Nadu districts, that 39% of respondents 

were willing to spend between INR 27 to INR 400 per month (for 40MB – 750MB), while 

21% were willing to spend between INR 100 to INR 225 per month (for a 1GB data 

allowance). 
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Aircel Descriptive Statistics - Price Plan 

Variable Obs. Mean Std. Dev. Min. Max. 

datainmb 20 4250 4389.251 100 15000 

vin 20 20.5 11.82549 1 28 

price 20 402.6 373.7165 25 1397 

pricepermb 20 .1297294 .0591533 .0509 .2866667 

Key 

datainmb = Data of price plan in Megabyte. 
price = Price in INR as stated in price plan. 
pricepermb = Price in INR as stated in price plan / Data of price plan in MB 
(Megabyte). 

vin = Validity of price plan in days. 

Table 5-23: Aircel descriptive statistics Model 3 and Model 4. 

Bharti Airtel Descriptive Statistics - Price Plan  

Variable Obs. Mean Std. Dev. Min. Max. 

datainmb 15 2338.333 3121.482 25 12000 

vin 15 27.4 22.57938 1 90 

price 15 566.7333 669.7353 8 2251 

Pricepermb 15 .2599468 .0853216 .1804 .5183333 

Key 

datainmb = Data of price plan in MB (Megabyte). 
price = Price in INR as stated in price plan. 
pricepermb = Price in INR as stated in price plan / Data of price plan in MB 
(Megabyte).  

vin = Validity of price plan in days. 

Table 5-24: Bharti Airtel descriptive statistics Model 3 and Model 4. 
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Vodafone Descriptive Statistics - Price Plan  

Variable Obs. Mean Std. Dev. Min. Max. 

datainmb 11 563.6364 587.2993 25 2000 

vin 11 14 10.65833 1 28 

price 11 91.81818 68.97944 8 199 

pricepermb 11 .2063881 .0638925 .0995 .32 

Key 

datainmb = Data of price plan in MB (Megabyte). 
price = Price in INR as stated in price plan. 
pricepermb = Price in INR as stated in price plan / Data of price plan in MB 
(Megabyte).

vin = Validity of price plan in days. 

Table 5-25: Vodafone descriptive statistics Model 3 and Model 4. 

Looking at the price plots by provider in Figure 5-26 indicates that each operator showed 

an approximately normal distribution. Furthermore, the price plans covered a higher mean 

of data in Megabyte, see Figure 5-27, while Vodafone shows a higher density of shorter 

ranging price plans (measured in validity in days) as depicted in Figure 5-28. 

 

Figure 5-26: Price distribution by mobile broadband operator. 
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Figure 5-27: Data in Megabyte distribution by mobile broadband operator. 

 

 

Figure 5-28: Validity in days distribution by mobile broadband operator. 
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Figure 5-29 below plots the price against data in Megabyte. We can see that the price 

distribution for Bharti Airtel, in comparison to both Aircel and Vodafone, shows a steeper 

value line. Interestingly, Vodafone offered no price plans with a large data allowance. 

Moreover, while Bharti Airtel showed a large service gap between 6GB of data and 12GB 

of data, Aircel seemed to provide the overall most-balanced price plan portfolio. Both 

Bharti Airtel and Aircel offered price plans, where the same amount of data in Megabytes 

was offered at different prices. Looking at the data as well as the detailed price plans 

revealed that their differences were given by the validity in days or added services such 

as unlimited access to services such as Facebook or WhatsApp. 

Moreover, Bharti Airtel showed the highest mean in price per Megabyte (pricepermb), 

being price per Data in Megabyte for each operator-based price plan observations. 

Moreover, as shown in Figure 5-30, there were a number of Bharti Airtel observations 

with a large pricepermb. Nevertheless, Figure 5-30 on the next page reports the 

approximately normal distribution for price per Megabyte (pricepermb). 

 

Figure 5-29: Two-way scatter plots data in Megabyte against price per mobile 

broadband operator with linear fit line. 
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Table 5-26 below reports, for each mobile broadband operator, the variables derived from 

the estimated coefficients from Model 1 and Model 2 (see sections 5.3.3 and 5.3.4 above), 

used as proxies for the operators’ levels of hierarchical structuring.  

 

Figure 5-30: Price per Megabyte distribution by mobile broadband operator. 
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Categorical covariates derived from Model 1 and Model 2 

Categorical covariates 
derived from Model 1 and 
Model 2 

Proxy estimated in Model 
1 (Weighted Out-Degree 
based) per operator 

Proxy estimated in Model 
2 (Weighted In-Degree 
based) per operator 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑»÷§©fâ‘  -1.182964 -1.104983 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑»÷§©fâ‘  .3212572 .334886 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑◊ÿö±≤Ÿ	»Ÿ±≤ù…‘  -.9986846 -1.032788 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑◊ÿö±≤Ÿ	»Ÿ±≤ù…‘  .277029 .2765935 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑òjôöõjúù‘  -.8647558 -.7859873 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑òjôöõjúù‘  .5424204 .5514546 

Key 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑⁄€ù±ö≤j±‘ 	: proxy, representing the estimated coefficient in Model 1 and 2 
(Clustering Coefficient on Weighted Out-Degree), per operator. 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑⁄€ù±ö≤j±‘ : proxy, representing the estimated coefficient in Model 1 and 2 
(Eigenvector Centrality on Weighted Out-Degree), per  operator. 

Table 5-26: Categorical covariates derived from Model 1 and Model 2, used as proxies 

for hierarchical structuring per mobile broadband operator. 

In order to capture the effect of level of hierarchical network structuring of the mobile 

broadband operators on their price per Megabyte (pricepermb), the proxies (estimated in 

the first stage of the two-stage econometric estimation) were used in this second stage as 

the covariates for the Model 3.1, Model 3.2 and Model 4 described below. In more detail, 

the following Model 3.1 and Model 3.2 include the proxies estimated in Model 1 

(covering all three Tamil Nadu mobile broadband operators) above. 

Model 3.1: 

𝐴𝐴𝑛𝑛J𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝»……	grf§•Ug§ŒM =	 

	𝛽𝛽– 	+ 	𝛽𝛽t(𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑ëgefâ	t	(€ù±	j€ù±ö≤j±)‘ ) + 	𝜀𝜀 
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Model 3.2: 

𝐴𝐴𝑛𝑛J𝑝𝑝𝑒𝑒𝑑𝑑c𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝®ââ	grf§•Ug§ŒM =		 

𝛽𝛽– 	+ 𝛽𝛽t(𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑ëgefâ	t	(€ù±	j€ù±ö≤j±))	‘ 	+ 	𝜀𝜀 

whereas, Model 4 includes those proxies estimated in Model 2 (again covering all three 

mobile broadband operators): 

Model 4: 

𝐴𝐴𝑛𝑛J𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝»……	grf§•Ug§ŒM =		 

𝛽𝛽– 	+	𝛽𝛽t(𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑ëgefâ	L	(€ù±	j€ù±ö≤j±)‘ )	+ 𝛽𝛽L(𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑ëgefâ	L	(€ù±	j€ù±ö≤j±))	‘

+𝛽𝛽É(𝑣𝑣𝑑𝑑𝑛𝑛®ââ	grf§•Ug§Œ) + 	𝜀𝜀 

Hence, Model 3.1 captures the impact on price per Megabyte of the different level of 

hierarchical structuring of the three mobile broadband operators as proxied by the 

estimated coefficients of the relevant log-log model estimated in Model 1 in the first 

stage. Similarly, Model 3.2 captures the impact on price per Megabyte of the different 

level of hierarchical structuring of the three mobile broadband operators as proxied by 

the estimated coefficients of the relevant log-log model estimated in Model 2, also in the 

first stage.  

Model 4 captures the impact on price per Megabyte of the different level of hierarchical 

structuring (Clustering Coefficient and Eigenvector Centrality) of the three mobile 

broadband operators as proxied by the estimated coefficients of the relevant log-log 

model estimated in Model 1 and Model 2 in the first stage, including the validity in days 

of a price plan as control variable.  

As discussed above, 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑ëgefâ	t‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑ëgefâ	t	‘ represent the estimates obtained 

during the first estimation stage in Model 1 (see Table 5-26 above). Similarly, 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L	‘ represent the estimates obtained during the first estimation 

stage in Model 2.  In the following section we continue with the specification and the 

estimation of the Model 3.1 and Model 3.2 followed by Model 4 in section 5.4.3. 
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5.4.2 Model 3 
Due to a perfect correlation and multicollinearity between the two obtained proxies, as 

discussed above, Model 3 is further split into Model 3.1 and Model 3.2. Model 3.1 

considers the 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  as covariate of interest, whereas Model 3.2 focusses on the 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ . 

Model 3.1 

The dependent variable, ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±) is continuous, whereas 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  

, derived as discussed above, from the estimated parameters of Model 1, is the categorical 

proxy of interest. This covariate expresses the values of the coefficient of the log-log 

relation between the Clustering Coefficient and the Weighted Out-Degree connectivity, 

as estimated in the stage one (Model 1), separately for each one of our mobile broadband 

operators (Aircel, Bharti Airtel and Vodafone).  

Here, Model 3.1 is estimated using an OLS log-log specification based on 46 price plan 

observations (see Table 5-27 below). The overall model is significant at 90% level (p-

value of 0.0273 for F (1, 44) = 5.21). The model explains 8.56% of the total variation of 

the ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±) with a low Adjusted R-Squared equals to 0.0856. 

The t-test showed that the categorical covariate, 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ , capturing the level of 

hierarchical structuring of a mobile broadband operator network, estimated in the first 

stage of the process (Model 1), is statistically significant at 90%. Moreover, the 

coefficient for this covariate indicates that 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ 	had a positive effect on the 

lnJ𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±M. 
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Model 3.1 
Multiple Log-Log regression – Price plan Ordinary Least Squares (OLS) 

 
 

Number of obs = 46 

F(1, 44) = 5.21 
Prob > F = 0.0273 

R-squared = 0.1059 
Adj R-squared = 0.0856 
Root MSE = .46763 

lnpricepermb Coef. Std.Error t p > | t | [95% Conf. Interval] 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ 	 1.241779* .543921
5 2.28 0.027 .1455769 2.33798 

_cons -.5195505 .551058
3 -0.94 0.351 -1.630135 .5910345 

Key 
*  p < .05; ** p < .01; *** p < .001 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ 	: proxy, representing the estimated coefficient in Model 1 (Clustering 
Coefficient on Weighted Out-Degree). 

lpricepermb: Ln-transformed price per Megabyte, ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±). 
Table 5-27: OLS log-log regression Model 3.1. 

From our estimates in Table 5-27 above, we see that a 1% increase in this proxy, 

representing an increase (blue arrow for lclus in Figure 5-31 below) in the level of 

hierarchical structuring (flattening of the steepness of the red-dotted negative slope in 

Figure 5-31 below, captured by the log-log regression between Weighted Out-Degree and 

Clustering Coefficient in Model 1) increases the price per Megabyte by 1.24%. This 

increase in price per Megabyte is interpreted as a reduction in affordability. 
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Figure 5-31: Increase in the lclus_Model1_hat proxy. 

The Breusch-Pagan / Cook-Weisberg test for the estimated Model 3.1, showed a chi2(1) 

= 1.43 with a p-value of 0.2326 at normal significance levels. The Ramsey RESET test 

revealed, for F(1, 43) = 29.61, a p-value of 0.000. However, having carried additional 

estimations for more functional form specifications including higher power of the 

explanatory variables up to the fourth order (not reported here), we saw no improvement 

in this test, hence we again retained the original OLS log-log specification.  

The estimated Variance Inflation Factor (VIF) was below the thresholds that would 

indicate the presence of multicollinearity. The plot of the predicted residual distributions, 

see Figure 5-32 below, shows an approximately normal distribution ranging closely 

around the mean of zero.  
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Figure 5-32: Predicted error term residual distribution Model 3.1. 

Model 3.2 

Here, the dependent variable, ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±)  is continuous, whereas 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  , derived covering all mobile broadband operators as discussed above, from 

the estimated parameters of Model 1, is the categorical covariate of interest. This 

covariate takes the values expressing the estimated coefficient of the log-log effect of the 

Eigenvector Centrality, on the Weighted Out-Degree connectivity, per operator.  

Here, Model 3.2 is again, like Model 3.1 above, estimated using an OLS log-log 

specification based on 46 price plan observations (see Table 5-27 below). The overall 

model is significant at 90% level (p-value of 0.0327 for F (1, 44) = 4.86). The model 

explains 7.90% of the total variation of the ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±)  with a low 

Adjusted R-Squared equals to 0.0790. 

The t-test showed that the categorical covariate, 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ , capturing the level of the 

hierarchical structuring of a mobile broadband operator network, estimated in the first 

stage of the process (Model 1), is statistically significant at 90%. Moreover, the 

coefficient for this covariate indicates that 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ had a positive effect on the 

lnJ𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±M.  
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Model 3.2 
Multiple Log-Log regression – Price plan  

Ordinary Least Squares (OLS) 

 
 

Number of obs = 46 

F(1, 44) = 4.86 
Prob > F = 0.0327 

R-squared = 0.0995 
Adj R-squared = 0.0790 

Root MSE = .4693 

lpriceperm
b Coef. Std.Erro

r t p > | t | [95% Conf. Interval] 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  1.393724* .632058
8 2.21 0.033 .1198933 2.667555 

_cons -2.271297*** .238619
2 -9.52 0.000 -2.752202 -1.790391 

Key 
*  p < .05; ** p < .01; *** p < .001 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ 	: proxy, representing the estimated coefficient in Model 1 (Eigenvector 
Centrality on Weighted Out-Degree). 

lpricepermb: Ln-transformed price per Megabyte, ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±). 
Table 5-28: OLS log-log regression Model 3.2. 

We interpret an increase in the slope of the log-log relation between the Eigenvector 

Centrality and Weighted Out-Degree in Model 1 as an increase in the level of hierarchical 

structuring since a steeper slope implies that more influential vertices (higher Eigenvector 

Centrality value) transport data packets, in one step, to more adjacent vertices, given the 

larger number of outgoing connections. A steeper slope in this interpretation implies that 

for a given value of Eigenvector Centrality there is a higher value of outgoing 

connectivity. Hence, these vertices can be seen as very central connectivity bottleneck 

that allow other vertices to spread many (one step) outgoing connections needed to reach 

the Internet Periphery.  

Hence, from our estimates in Table 5-28 above, we see that a 1% increase in this proxy, 

representing an increase in the level of hierarchical structuring (sharpening of the 

steepness of the positive slope), captured by the log-log regression between Weighted 
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Out-Degree and Eigenvector Centrality in Model 1) increases the price per Megabyte by 

1.39%, hence a reduction affordability.  

The Breusch-Pagan / Cook-Weisberg test for the estimated Model 3.2, showed a chi2(1) 

= 1.52 with a p-value of 0.2171 at normal significance levels. The Ramsey RESET test 

revealed, F(1, 43) = 30.13, a p-value of 0.000. However, having carried additional 

estimations for more functional form specifications including higher power of the 

explanatory variables up to the fourth order (not reported here), we saw no improvement 

in this test, hence we again retained the original OLS log-log specification. The plot of 

the predicted residual distributions, see Figure 5-33 below, shows an approximately 

normal distribution ranging closely around the mean of zero. 

Figure 5-33: Predicted error term residual distribution Model 3.2.

Summary Model 3.1 and Model 3.2 

The coefficient of the proxy covariate for the Clustering Coefficient ( 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ , 

derived from the estimated parameters of Model 1) in the estimated Model 3.1 above 

showed, that an increase in the level of hierarchical structuring (flattening of the 

steepness of the negative slope, captured by the log-log regression between Weighted 

Out-Degree and Clustering Coefficient in Model 1) results in an increase of price per 

Megabyte.  
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Interestingly, the coefficient of the proxy covariate for the Eigenvector Centrality 

(𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ , derived from the estimated parameters of Model 1) in the estimated Model 

3.2 above showed, that an increase in the level of hierarchical structuring (sharpening of 

the steepness of the positive slope, captured by the log-log regression between Weighted 

Out-Degree and Eigenvector Centrality in Model 1) results in an increase of price per 

Megabyte.  

This mismatch between the two proxy covariates (based on Model 1: level of hierarchical 

structuring on outgoing connectivity) is further explored in Model 4 (based on Model 2: 

level of hierarchical structuring on incoming connectivity) below.  

5.4.3 Model 4 
The dependent variable, ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±) is continuous, whereas 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  

and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ , derived covering all mobile broadband operators as discussed above, 

from the estimated parameters of Model 2, are the categorical covariates of interest. These 

covariates take the values expressing the estimated coefficient of the log-log effect of the 

Clustering Coefficient and the Eigenvector Centrality, on the Weighted In-Degree 

connectivity, per operator. Moreover, 𝑣𝑣𝑑𝑑𝑛𝑛€ù±	j€ù±ö≤j±, the validity in days of a given price 

plan observation, is introduced as control variable.  

Model 4 is estimated using an OLS log-log specification also based on 46 price plan 

observations (see Table 5-29 below). The overall model is significant (p-value of 0.0000 

for F (3, 42) = 12.93). The model explains 44.30% of the total variation of the 

ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±) with an Adjusted R-Squared equals to 0.4430. 

The t-test showed that the categorical covariates,	𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ , capturing 

the effects of hierarchical structuring of a mobile broadband operator, estimated in the 

first stage of the process (Model 2), is statistically significant at 99%. 

The coefficient for these covariates indicates that 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  had a positive effect on the 

lnJ𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±M,wheras  𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘  had a negative effect on the 

lnJ𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±M. From our estimates in Table 5-29 above, we see that a 1% 

increase in the 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  proxy, representing an increase in the level of hierarchical 

structuring (flattening of the steepness of the negative slope, captured by the log-log 

regression between Weighted In-Degree and Clustering Coefficient in Model 2) increases 
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the price per Megabyte, lnJ𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±M, by 5.68%.  

Model 4 

Multiple Log-Log regression – Price plan  
Ordinary Least Squares (OLS) 

 
 

Number of obs = 46 
F(3, 42) = 12.93 

Prob > F = 0.0000 
R-squared = 0.4801 

Adj R-squared = 0.4430 
Root MSE = .36497 

lpriceperm
b Coef. Std.Erro

r t p > | t | [95% Conf. Interval] 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑‘  5.68335*** .912652 6.23 0.000 3.841544 7.525156 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑‘  -6.114105*** 1.11599
3 -5,48 0.000 -8.366269 -3.86194 

vin -.0030792 .003490
8 -0.88 0.383 -.010124 .0039656 

_cons 6.25813*** 1.30871
8 4.78 0.000 3.617051 8.899249 

Key 
*  p < .05; ** p < .01; *** p < .001 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘ 	: proxy, representing the estimated coefficient in Model 2 (Clustering 
Coefficient on Weighted In-Degree), covering all three operators. 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ 	: proxy, representing the estimated coefficient in Model 2 (Eigenvector 
Centrality on Weighted In-Degree), covering all three operators. 

lpricepermb: Ln-transformed price per Megabyte, ln(𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±) 
vin: validity of price plan in days. 

Table 5-29: Multiple OLS log-log regression Model 4. 

We interpret an increase in the slope of the log-log relation between the Eigenvector 

Centrality and Weighted In-Degree and in Model 2 as a decrease in the level of 

hierarchical structuring, because a steeper slope implies that influential vertices (higher 

Eigenvector Centrality value) receive data packets, from more adjacent vertices, because 

of a larger number of incoming connections. Hence, these vertices can be seen as 
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important hub-vertices that receive many incoming connections providing them with 

central access to the rest of the network. 

Hence, we can see from the estimates in in Table 5-29 that a 1% increase in the 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘  proxy, representing an decrease in the level of hierarchical structuring 

(sharpening of the steepness of the positive), captured by the log-log regression between 

Weighted In-Degree and Eigenvector Centrality in Model 2) decreases the price per 

Megabyte, lnJ𝑝𝑝𝑒𝑒𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑒𝑒𝑚𝑚𝑝𝑝€ù±	j€ù±ö≤j±M,  by 6.11%. Hence, both coefficients for our 

proxies from Model 2 show that a higher hierarchical structuring of a mobile broadband 

operator network (from a Weighted In-Degree perspective derived in Model 2) result in 

an increase of the price per Megabyte, hence in a decreased affordability. 

The Breusch-Pagan / Cook-Weisberg test for the estimated Model 4, showed a chi2(1) = 

3.51 with a p-value of 0.0611 at normal significance levels. The Ramsey RESET test 

revealed, for F(3, 39) = 1.26, a p-value of 0.3031. Hence, we again retained the original 

OLS log-log specification. The estimated Variance Inflation Factor (VIF) was again 

below the thresholds that would indicate the presence of multicollinearity. The plot of the 

predicted residual distributions, see Figure 5-34 below, shows an approximately normal 

distribution ranging closely around the mean of zero.  

 

Figure 5-34: Predicted error term residual distribution Model 4. 
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Summarising, the coefficients of the two proxy covariates (from the estimated parameters 

of Model 2 (capturing the effect of the markers for the level of hierarchical structuring on 

Weighted In-Degree connectivity) in the estimated Model 4 consistently showed that a 

higher hierarchical structuring of a mobile broadband operator network (from a Weighted 

In-Degree perspective derived from Model 2) result in an increase of the price per 

Megabyte, hence in a decreased affordability. 

5.4.4 Correlation with Quality of Service 
Table 5-30 on the next page shows a correlation table between Quality of Service data, 

derived from the Telecom Regulatory Authority of India TRAI (2016a), for our three 

mobile broadband operators, and the categorical proxies estimated in Model 1 (see section 

5.3.3) and Model 2 (see section 5.3.4) above.  

Those proxies generated in Model 1 above are again referred to as 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  and 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ , incorporating all three mobile broadband operators. Similarly, those proxies 

generated in Model 2 above are again referred to as 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ , while 

also incorporating all three mobile broadband operators.  

Here, the download speed (speed_d) was highly negatively correlated with the positive 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ . Second, the throughput, being defined as Average 

Throughput for Packet data (in Kbps), was also negatively correlated with both 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ 	and 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘ . Third, the pdp as being the PDP Context 

activation success rate, >95% was positively correlated with 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ . Lastly, the 

drop_rate, as being the package drop rate, <= 5%, was positively correlated with 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘  , 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ , 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘  and 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ . 
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Quality of Service (QoS) Correlation Table 

 𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ 	 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘ 	 𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘  

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ 	 1.0000	    

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘  0.7173	 1.0000	   

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘ 	 0.9222*	 0.9310*	 1.0000	  

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘  0.9163*	 0.9363*	 0.9999*	 1.0000	

sprov	 -0.0590	 0.6532	 0.3318	 0.3457 

speed_d	 -0.4324	 -0.9384**	 -0.7475	 -0.7573**	

throughput	 -0,6211	 -0,9916**	 -0.8759**	 -0.8830**	

latency	 0.4410	 -0.3090	 0.0595	 0.0447	

pdp	 0.8959*	 0.3332	 0.6544	 0.6431	

drop_rate	 0.7608*	 0.9989*	 0.9526*	 0.9570*	

Key 
* high positive correlation (>.75),  

** high negative correlation (<-.75) 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	t‘ 	: proxy, representing the estimated coefficient in Model 1 (Clustering 
Coefficient on Weighted Out-Degree), covering all three operators. 

𝐴𝐴𝑐𝑐𝐴𝐴𝑢𝑢𝑑𝑑”jôù…	L‘ 	: proxy, representing the estimated coefficient in Model 2 (Clustering 
Coefficient on Weighted In-Degree), covering all three operators. 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	t‘ : proxy, representing the estimated coefficient in Model 1 (Eigenvector 
Centrality on Weighted Out-Degree), covering all three operators. 

𝐴𝐴𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑”jôù…	L‘ : proxy, representing the estimated coefficient in Model 2 (Eigenvector 
Centrality on Weighted In-Degree), covering all three operators. 

Table 5-30: Quality of Service (QoS) correlation table. 

5.4.5 Key Findings Affordability and Quality of Service 
The coefficients of the estimated Model 3.1, Model 3.2 Model 4 indicate the relationships 

between the hierarchical structuring of the upstream Internet access market and the 

affordability (described in price per Megabyte). Model 3.1 showed that an increase in the 

hierarchical structuring (based on the effect of the Clustering Coefficient on Weighted 

Out-Degree connectivity) results in an increase of price per Megabyte of the price plans. 

Model 3.2 confirmed this insight for the higher hierarchical structuring (based on the 
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effect of the Eigenvector Centrality on Weighted Out-Degree connectivity). Model 4 also 

confirmed this insight for connectivity based on the Weighted In-Degree. Lastly, the 

correlation indicated that the hierarchical structuring markers are also correlated with a 

number of Quality of Service (QoS) metrics.  

5.5 Key Findings Statistical Network Analysis 
Based on Model 1 and Model 2 in the first stage, the analysis of the hierarchical 

structuring revealed that a stronger hierarchical structuring of the upstream Internet 

access market of our three Tamil Nadu mobile broadband operators results in a stronger 

connectivity (measured based on Weighted Out- and In-Degree connectivity). Moreover, 

Model 3.1, Model 3.2 and Model 4 in the second stage indicated that the estimated 

relationship between hierarchical structuring and connectivity from the first stage has an 

effect on the affordability of mobile broadband (as measured in price per Megabyte). 

Here, an increase in hierarchical structuring was indicated to increase the price per 

Megabyte. Similarly, a reduction in hierarchical structuring would decrease the price per 

Megabyte. Therefore, we assume that a more hierarchical upstream Internet access 

market results in less affordable mobile broadband price plans available for end-users in 

the Internet periphery. 

5.6 Summary Statistical Network Analysis 
The first part of this chapter provided a number of necessary theoretical background 

information and descriptive statistics, followed by the specification of our econometric 

models. Next, this chapter provided the statistical network analysis of the hierarchical 

network structuring in section 5.3. Here, we explained Model 1 (based on Weighted Out-

Degree connectivity) and Model 2 (based on Weighted In-Degree connectivity) of our 

two-stage econometric estimation process. Next, this chapter covered the relation 

between the identified hierarchical network structuring and affordability in section 5.4. 

Here, we elaborated the Model 3 (3.1 and 3.2) and Model 4, again separated between 

incoming and outgoing connectivity. Additionally, we elaborated a correlation table 

between the structural indicators and Quality of Service. In the last part of this Chapter, 

we restated the key findings of our two-staged econometric estimation process. Our 

elaborated findings will be critically discussed with the existing relevant literature in the 

following Chapter 6, while Chapter 7 will state our identified key contributions to 

knowledge and its related limitations.  
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6 DISCUSSION 

‘I do not fear the Internet. I fear its understatement and unequal access.’ 

(Sigloch, 2017). 

The analysis presented in the previous chapters evidenced key features indicating a 

hierarchical nature of the three Tamil Nadu mobile broadband operator networks, Aircel, 

Bharti Airtel and Vodafone. These features also shed light on these operators’ upstream 

internetworking reliance on certain Internet Service Providers, some of whose 

Autonomous System relationships were previously unknown. This indicated the presence 

of a positive association between price per Megabyte and the degree of hierarchical 

structuring for these mobile broadband operator networks (measured through the two 

Eigenvector Centrality and Clustering Coefficient proxies). The following discussion 

aspires to support the dissertation’s main aim, by placing our findings into the relevant 

research context, to evidence our main contributions to knowledge while providing 

recommendations to policy and practice in Chapter 7. 

The sections below revisit the Working Hypotheses that were derived from the Literature 

Review (section 2.5). We start, in section 6.1, to relate our case study’s key evidence, 

indicating the presence of hierarchical structuring in the three Tamil Nadu mobile 

broadband operator networks, to Working Hypotheses WH1, WH1.1 and WH1.2, discussed 

in section 2.5. Next, section 6.2 discusses the effects of the hierarchical structuring of the 

mobile broadband operator networks on the affordability of end-user price plans, as 

hypothesised in Working Hypothesis WH2. This is followed by a discussion of 

correlations with metrics capturing elements of Quality of Service addressing our  

Working Hypothesis WH3 in section 6.3. Lastly, in section 6.4, we discuss the 

implications to policy and practice before stating, in Chapter 7, our key contributions to 

knowledge, our case study limitations, ending with the conclusions and recommendations 

for future research endeavours. 

6.1 Hierarchical Structuring 
Based on our insights from the Literature Review in Chapter 2, we abducted the first 

Working Hypothesis WH1 by inferring that ‘The Tamil Nadu mobile broadband 
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operators’ upstream Internet market structure displays features of a hierarchical ordering’. 

Next, we inferred that such hierarchical Internet market structuring could mean that ‘The 

Tamil Nadu mobile broadband operators rely on an identified set of specific Internet 

Service Providers for their upstream connectivity’ (WH1.1). Moreover, we hypothesised 

in WH1.2 that ‘Studying the Tamil Nadu mobile broadband operators from an Internet-

Periphery perspective indicates previously hidden upstream AS relationships’. Our 

evidence from Chapters 4 and 5 provides a multitude of findings related to these 

hypotheses featuring novel properties and a range of implications for policy and practice. 

The following paragraphs report our key findings and discuss the evidence in light of the 

relevant literature and recent advancements. In detail, section 6.1.1 below looks at the 

apparent hierarchical structuring of the three Tamil Nadu mobile broadband operator 

networks.  This is followed by a discussion of the upstream connectivity reliance upon 

certain Autonomous Systems and by the identification of previously hidden upstream 

Internet connectivity Autonomous System relationships. Finally, we summarise the key 

evidence of our case study. 

6.1.1 Hierarchical Upstream Internet Access Market  
The structure of internetworking amongst providers operating in the upstream Internet 

market is determined by the collection of their bilateral business relationships. These 

relationships detail the rules for the acceptance and re-routing of data traffic to reach 

destinations residing in the global Internet. 

Among the Network metrics discussed in Chapter 4, we have seen that the Clustering 

Coefficient captures the existence of mutual interconnectivity among neighbours of an 

Autonomous System, i.e. the probability that any two of them are connected between 

themselves (Watts & Strogatz, 1998). Interestingly, we found that Vodafone’s network 

displays a considerably higher average Clustering Coefficient than those of Aircel or 

Bharti Airtel. The highest individual Clustering Coefficient was displayed by GREE Inc., 

an Autonomous System belonging to the Aircel’s network, followed by a number of other 

Autonomous Systems with slightly lower Clustering Coefficient values. Bharti Airtel’s 

network has a set of different individual Autonomous Systems, which share the highest 

Clustering Coefficients, including the Academic Computer Center TASK at the Technical 

University of Gdansk in Poland and Verizon Business (UUnet). Lastly, the Autonomous 

Systems with the highest Clustering Coefficient in Vodafone’s network is the U.S. 
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Federal Reserve Board, followed by other Autonomous Systems including Norlisk 

Telecom JSC in Russia and Bayanat Al-Oula in Saudi Arabia. Nevertheless, all three 

mobile broadband operators still incorporate only a low number of Autonomous Systems 

with high Clustering Coefficients. This means that most of the identified Autonomous 

Systems do not strongly interconnect with their neighbours, reinforcing the relevance of 

certain connectivity paths with frequently occurring relationships between a few of them. 

This indicates the presence of hierarchical structuring, as discussed in relation to the 

literature reviewed for the development of WH1 in Chapter 2. 

As a consequence, our evidence, in accordance with WH1, shows that a few existing 

business partnerships between Autonomous Systems are frequently visited and are 

therefore very important in reaching global connectivity. A practical implication of this 

is that mobile broadband operator efforts to increase routing efficiencies might be 

hampered due to the existence of strong bilateral business relationships as revealed by the 

data discussed in Chapter 4.  

Moreover, the evidence on the Network metrics discussed in Chapter 4 shows the 

relevance of using the Eigenvector Centrality metric for undertaking structural analysis 

when assessing the influence of certain Autonomous Systems within a network of 

interconnections generated by a mobile broadband operator network. This Eigenvector 

Centrality is calculated based on the concept that relationships to high-scoring 

Autonomous Systems contribute more to a given vertex influence than relationships to 

low-scoring ones.  

The analysis in Chapter 4 also shows that the Autonomous Systems with the largest 

Eigenvector Centralities in the Aircel’s network are Tata Communications (America) 

Inc., Level 3 Communications Inc., Cogent Communications, and NTT America Inc., 

most of which are large Tier-1 Internet Service Providers. The Autonomous Systems with 

the largest Eigenvector Centrality values in the Bharti Airtel’s network are Bharti Airtel 

Ltd. Itself. This is followed by Level 3 Communications Inc., Breeze Network, Cogent 

Communications, NTT America Inc., the Amsterdam Internet Exchange (AIX), 

Hurricane Electric Inc. and Transtelecom. It is relevant to note that Bharti Airtel is the 

only mobile broadband operator that is strongly influenced by an Internet Exchange Point 

(IXP). Lastly, the Autonomous Systems with the largest Eigenvector Centrality values in 

the Vodafone network are Vodafone India Ltd., followed by Bharti Airtel Ltd., Telstra 

Global and Vodafone’s Cable and Wireless Worldwide plc. subsidiary. The structural 
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importance of a few Tier-1 Internet Service Providers comes as no surprise given the high 

ranking they reach in the CAIDA (2016a) AS-Rank Database. These Autonomous 

Systems occupy influential internetworking positions for our three Tamil Nadu mobile 

broadband operator networks. Our findings point to the relevance of exploring upstream 

Internet structures using the Eigenvector Centrality as a proxy for hierarchical 

structuring. While Ruiz and Barnett (2015) utilise this metric, they fail to indicate its 

usefulness to study the hierarchical of the upstream Internet market. Unsurprisingly, the 

k-core decomposition discussed in Chapter 4 shows that most of these Autonomous 

Systems are also densely connected vertices in the three mobile broadband operator 

networks, while also discovering the presence of additional influential Autonomous 

Systems (discussed below). The similarity of results obtained through the analysis of 

Eigenvector Centrality and k-core decomposition provides additional robustness and 

value to our empirical findings. Moreover, our econometric models developed in stage 

one of Chapter 5 show that the relationship of  Clustering Coefficient and Eigenvector 

Centrality to the upstream internetworking connectivity of Autonomous Systems (for 

both incoming and outgoing connections as measured by the Weighted In- and Out-

Degree connectivity) indicates previously undiscovered features of the hierarchical 

structuring of the Tamil Nadu’s mobile broadband operators’ upstream markets. Our 

novel application of combining these two Network metrics to study these networks’ 

hierarchical structuring in Model 1 and Model 2 adds to the existing body of knowledge 

(see Vázquez, Pastor-Satorras and Vespignani (2002), Dall’Asta et al. (2005) and 

Alvarez-Hamelin et al. (2008)). Our findings are in agreement with the work of Vázquez, 

Pastor-Satorras and Vespignani (2002, p.11), confirming the role of the Clustering 

Coefficient and scaling with a negative exponent of the connectivity as an indicator of the 

hierarchical organisation of the upstream Internet market structure. This shows that the 

many Autonomous Systems that connect to a few large International Internet Service 

Providers are not well connected amongst themselves. Moreover, given our econometric 

results obtained in Model 1 and Model 2 in Chapter 5, we show that the Eigenvector 

Centrality scales with a positive exponent in a log-log specification with connectivity 

(Weighted In- and Out-Degree), a key and novel empirical finding of our dissertation. 

Hence, we consider the relationship between Eigenvector Centrality and connectivity as 

a powerful additional indicator for understanding the hierarchical organisation of the 

upstream Internet market structure. It represents the market and bargaining powers of key 

influential Autonomous Systems for global connectivity. Moreover, our econometric 



Chapter 6 

Sebastian Sigloch - April 2018   273 

models add to the preliminary use of the Clustering Coefficient by Giovannetti and 

Sigloch (2015), who discover a hierarchical upstream Internet market structure of the B-

Mobile mobile broadband operator in Bhutan. Adding to our analysis from Chapter 4, 

this evidence points towards the presence of hierarchical upstream Internet market 

structures for each one of the three Tamil Nadu mobile broadband operator networks. The 

hierarchical structuring of the upstream Internet market refers to situations where large 

Tier-1 Internet Service Providers benefit from economies of scale while securing superior 

market and bargaining powers, compared to smaller Tier-2 or Tier-3 Internet Service 

Providers (Frieden, 2001, p.362-368). As explained in section 5.3, our specified Model 1 

indicates that an increase in the negative slope of the Clustering Coefficient results in a 

decrease of Weighted Out-Degree connectivity, as indicated by Vázquez, Pastor-Satorras 

and Vespignani (2002). However, an increase in the positive slope of the Eigenvector 

Centrality results in an increase of the Weighted Out-Degree connectivity (see section 

5.3.3).  

Moreover, we acknowledge that the relevance of the Eigenvector Centrality lies in its 

contribution towards the overall representation of the network structure due to the 

relevance it attributes to the total relationships in a given network (Tranos, 2013, p.93). 

Choi, Barnett and Chon (2006, p.87-89) already consider the Eigenvector Centrality as a 

metric that indicates hierarchical structuring. We agree with this view and consider the 

Eigenvector Centrality metric to be valuable since it considers certain relationships as 

more important, due to their frequency of occurrence. Hence, the Eigenvector Centrality 

does not attribute great value to relationships between Autonomous Systems that are not 

frequently visited. Such relationships could still be of structural importance (Borgatti and 

Li, 2009, p.10), e.g. bridging loosely-connected parts of the upstream operator networks. 

Those Autonomous Systems would clearly represent connectivity bottlenecks that should 

be carefully examined an understood by the network operational strategies.  Given the 

statistical significances of the six models introduced in Chapter 5, to the best of our 

knowledge, we find a neglected and under-researched application of these metrics in both 

the Internet Economics and Computer Sciences.  
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6.1.2 Structural Bottlenecks 
Structural bottlenecks of mobile broadband operator networks refer to the importance of 

certain Internet Service Providers (represented by their Autonomous Systems) for 

upstream internetworking and when providing connectivity to the global Internet. We can 

see how structural bottlenecks may cause traffic flow congestions, which would occur 

when an Autonomous System (or network node) receives more data traffic than it can 

cope with, similar to a motorway at rush hour. We refer to structural bottlenecks as being 

those Autonomous Systems that provide connectivity to the most densely connected core 

of large Tier-1 Internet Service Providers as well as among themselves (referring to 

Economides, 1995). In turn, these structural bottlenecks also interconnect traffic to the 

Internet periphery, as captured by the observed values of their Eigenvector Centrality in 

the analysed networks studied in Chapter 5.  

The Complex Network Analysis performed in Chapter 4 provided the first clues about the 

existence of hierarchical structuring of the upstream Internet market for each Tamil Nadu 

mobile broadband operator. Meanwhile, the Statistical Network Analysis performed in 

Chapter 5 strengthened these initial evidences. By using the k-core decomposition, which 

focuses on properties such as network regions of increasing centrality and connectedness 

that represent network hierarchy (Alvarez-Hamelin et al. 2008, p.391), Chapter 4 also 

identified those Autonomous Systems that were distinctively and densely connected 

amongst each other. This represents key upstream Autonomous Systems for providing 

global connectivity to the Internet periphery. Moreover, these Autonomous Systems 

might have a strong market and downstream bargaining power over smaller (Tier-2 or 

Tier-3) Autonomous Systems, which appear in the networks generated by our three-

studied mobile broadband operators.  

The routing policies and properties of these key Autonomous Systems would potentially 

allow our mobile broadband operators to find beneficial upstream internetworking 

connectivity paths that employ specific Quality of Service properties, as Alvarez-Hamelin 

et al., (2005b; 2008) already indicate. Kang and Gligor (2014, p.10) argue that most BGP 

routings of Autonomous Systems would favour minimum-cost links over a uniform 

distribution of routes across several edges, covering a multitude of upstream Autonomous 

Systems. The power-law degree distributions identified in Chapter 4, where a few 

Autonomous Systems obtain the most connectivity (as measured in Degrees), support this 

claim by Kang and Gligor (2014). This evidence shows that our empirical findings 



Chapter 6 

Sebastian Sigloch - April 2018   275 

emerge from networks characterised by a few Autonomous Systems with high 

connectivity. Hence, our identified hierarchical structure of the three upstream mobile 

broadband operator networks relates to minimum-cost links, where routing is centralised 

at the network core, as identified through the k-core decomposition at Autonomous 

System granularity. Nevertheless, we note that this could be due to the randomisation 

process of the Portolan (2015) application. Real-world end-user, browsing patterns would 

provide stronger evidence regarding local connectivity, which would not necessarily 

target connections needing transit through the core Autonomous Systems of the Internet.  

Unsurprisingly, the most densely connected Autonomous Systems (highest k-core) in the 

Aircel network are Tata Communications (America) Inc., Cogent Communications, NTT 

America Inc., Level 3 Communications, Telia Company AB, Cable and Wireless 

Worldwide plc and PCCW Global. The Bharti Airtel network shows Bharti Airtel Ltd., 

Cogent Communications, Level 3 Communications Inc., NTT America Inc. and Telia 

Company AB as most densely connecting Autonomous Systems. Lastly, the Autonomous 

Systems in the highest k-cores for the Vodafone network are Vodafone India Ltd., Cable 

and Wireless Worldwide Plc. (Vodafone subsidiary), the China Education and Research 

Network, Cogent Communications, Level 3 Communications Inc., NTT America Inc., 

PCCW Global and lastly AT&T Services Inc. Our three studied Tamil Nadu mobile 

broadband operators rely on those Autonomous Systems for their global internetworking 

connectivity purposes. Most of these Autonomous Systems are very highly ranked in the 

CAIDA (2016a) AS-Rank and most of them are identifiable by using the Eigenvector 

Centrality as described above. 

Our evidence adds to Alvarez-Hamelin et al. (2005b; 2008), who relate the hierarchical 

structuring to the role that vertices play in terms of centrality and connectivity patterns, 

where connectivity relates to robustness (against faults and cyber-attacks) and routing 

(Quality of Service and efficiency). We show that a low number of Autonomous Systems 

(belonging to large Internet Service Providers) are extremely densely interconnected 

between themselves, while also providing crucial links to more peripheral and less well-

connected Autonomous Systems residing in the Internet periphery. Therefore, our three 

Tamil Nadu mobile broadband operators seem reliant on the National (Tier-2) and 

International (Tier-1) Internet Service Providers identified above. The k-core 

decomposition to study Internet structures at AS granularity is introduced by Gaertler and 

Patrignani (2004), Alvarez-Hamelin et al. (2005b; 2008) and Dorogovtsev, Goltsev and 



Chapter 6 

276  Sebastian Sigloch - April 2018 

Mendes (2006). Additional examples include Fay et al. (2010), Alvarez-Hamelin, Beiró 

and Busch (2011) and Gregori, Lenzini and Orsini (2013). Interestingly, there is very 

little attempt to analyse the hierarchically-structured economic situations of such key 

Autonomous System interconnections using the k-core decomposition (except for 

CAIDA’s regular application). One reason for this lack of research could be accounted 

for by the usual application of the k-core decomposition in biological settings to analyse 

and predict protein interactions (Alvarez-Hamelin et al. 2008). Only Garas et al. (2010) 

use the k-core decomposition to analyse situations of economic crisis. Hence, our work 

provides a valuable step in an emerging direction, while also uniquely indicating the key 

players for the upstream connectivity of our three operator networks. 

To the best of our knowledge, no other research effort uses a methodological combination 

of Complex Network Analysis, Graph Visualisation Analysis (including the k-core 

decomposition) and Statistical Network Analysis to study the upstream Internet market 

structure based on active Internet periphery measurements at both IP and AS granularity, 

while linking the obtained results to study economic affordability in a lower-middle 

income country such as India.  

This work introduces a strong and novel methodological approach to exploring the 

hierarchical structuring and structural bottlenecks in the upstream Internet market. 

However, the underlying economic relationships between the key Autonomous Systems 

remain hidden when only using the k-core decomposition, since this method does not 

account for connectivity directions of relationships (see also Alvarez-Hamelin et al. 2008, 

p.373). Our additional evidence, discussed below, aims to both detect the connectivity 

bottlenecks as well as considering the economic implications for these key relationships. 

This is achieved by fusing our primary traceroute data from the active Internet periphery 

measurements with the secondary CAIDA (2016b) AS-relationship dataset.  

Given the evidence from Chapter 4 and Chapter 5, we do not reject Working Hypothesis 

WH1: ‘The Tamil Nadu mobile broadband operators’ upstream Internet market structure 

displays features of a hierarchical ordering’. Moreover, we also do not reject Working 

Hypothesis WH1.1: ‘The Tamil Nadu mobile broadband operators rely on an identified 

set of specific Internet Service Providers for their upstream connectivity’.  

6.1.3 Hidden Autonomous System Relationships 
The joint consideration of the above findings (k-core decomposition at AS granularity) 
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with the secondary CAIDA (2016b) AS-Relationship dataset provided an initial picture 

of the economic nature of the upstream Internet market while indicating key structural 

bottleneck relationships. The following paragraphs describe and discuss these findings. 

Firstly, most of Aircel’s fused Autonomous System relationships are of a provider-to-

customer nature (3.94% of the total relationships), followed by peer-to-peer relationships 

(3.33%), and lastly customer-to-provider ones (2.17%). These findings indicate that the 

Aircel upstream Internet market incorporates a considerable amount of paid transit 

connections (including paid peer-to-peer relationships). Plotting an edge-weighted graph 

visualisation (see Figure 4-21) into a two-dimensional Euclidean space exposes that the 

Aircel’s upstream Internet market highlights a strong peer-to-peer relationship between 

Tata Communications (America) Inc. and the Tier-1 Autonomous System Level 3 

Communications Inc. Moreover, our exploration finds two sets of frequently used 

customer-to-provider connections. The first between Tata Communications (America) 

Inc. and the Tier-1 Cogent Communications, and the second between Tata 

Communications (America) Inc. and NTT America Inc., another Tier-1 Internet Service 

Provider. This indicates that Aircel faces substantial upstream connectivity reliance on 

Tata Communications (America) Inc. This reliance could potentially force Aircel to cover 

the downstream costs that their upstream partner pays when forwarding data packets 

through the two upstream Internet Service Providers for global connectivity purposes, 

indicating the bottleneck position of Tata Communications (America) Inc. 

Secondly, most of the fused Autonomous System relationships are of peer-to-peer nature 

(2.51% of the total relationships), followed by provider-to-customer (2.30%), and lastly 

by customer-to-provider (0.42%) relationships. The edge-weighted graph visualisation 

(Figure 4-22) illustrates strong outgoing provider-to-customer relationships starting at 

Level 3 Communications Inc. Additional strong relationships seemed to be established 

between Bharti Airtel Ltd. and Level 3 Communications Inc. and between a set of 

Autonomous Systems of Bharti Airtel Ltd. These findings demonstrate that Bharti Airtel 

shows a bottleneck reliance on Bharti Airtel, their own Internet Service Provider over 

which they have BGP routing control, while also benefiting from additional upstream 

(possibly paid) peer-to-peer relationships. 

Interestingly, Vodafone shows that most of the fused Autonomous System relationships 

are of peer-to-peer nature (2.35% of the total relationships), followed by customer-to-

provider relationships (1.48%) and provider-to-customer (1.17%) ones. Moreover, the 
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edge-weighted graph visualisation illustrates that the strongest linkages were established 

between the China Education and Research Network and Vodafone India Ltd. (customer-

to-provider). Vodafone also displays a number of undiscovered relationships between 

Vodafone India Ltd. and Vodafone’s Cable and Wireless Worldwide Plc. subsidiary. 

Other fairly strong relationships were a peer-to-peer relationship between Cogent 

Communications and Cable and Wireless Worldwide Plc. and a customer-to-provider 

relationship between Wireless Worldwide Plc. and Telia Company AB. These findings 

indicate that Cable and Wireless Worldwide Plc. represents a bottleneck Internet Service 

Provider for the Vodafone network. However, Vodafone recently acquired their upstream 

Cable and Wireless Worldwide Plc. partner for approximately US$ 1.9 bn, which makes 

them a subsidiary of the Vodafone corporation (Indian Express, 2012), potentially 

indicating sibling relationships (see Gao, 2001, p. 734). This means that Vodafone 

eliminated part of their reliance on this structural bottleneck, creating a favourable 

position compared to the upstream Internet markets of Aircel and Bharti Airtel. 

Nevertheless, Vodafone still seems structurally reliant Telia Company AB. The insights 

also indicate that the China Education and Research Network is reliant on Vodafone India 

Ltd. as a structural bottleneck for global connectivity purposes, given the customer-to-

provider relationship.  

As a result of these findings, we claim that Bharti Airtel and Vodafone have a competitive 

advantage over Aircel, given the ‘elimination’ of their structural upstream bottlenecks. 

However, these Autonomous System relationships might still create certain upstream 

internetworking dependencies for reaching the Internet periphery.  

Moreover, being structurally reliant on some influential Autonomous Systems for 

upstream connectivity purposes along the global digital supply chain displays the 

presence of asymmetries in the centrality of our three analysed Tamil Nadu mobile 

broadband operator networks. By studying Internet Exchange Point (IXP) routing 

decisions, D’Ignazio and Giovannetti (2006) indicate the existence of such asymmetries. 

Our evidence shows that Bharti Airtel and Vodafone are dependent on their very own 

Autonomous Systems for routing purposes to the network cores, which is a beneficial 

situation. Notably, a large number of Autonomous System relationships remain 

uncovered from the CAIDA (2016b) AS-relationship dataset (see section 4.4 for details), 

displaying the benefit of using active Internet periphery measurements, as Faggiani et al. 

(2012) indicate. Moreover, we acknowledge that only small parts of the economic 
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relationships actually emerged. Most connectivity connections are still missing (see 

above). This prohibits us to provide a clear economic picture of all Autonomous System 

relationships in the three mobile broadband operator networks and leads us to state our 

findings cautiously. However, we can indicate that our exploratory approach to research 

using active Internet periphery measurements discovers some key upstream relationships 

amongst key Autonomous Systems with structural bottlenecks or network core features.  

Due to our exploratory and elaborated findings, we do not reject Working Hypothesis 

WH1.2: ‘Studying the Tamil Nadu mobile broadband operators from an Internet-

Periphery perspective indicates previously hidden upstream AS relationships’.  

6.1.4 Summary Hierarchical Structuring 
This dissertation found evidence that the three studied Tamil Nadu mobile broadband 

operators display features of a hierarchical upstream Internet market structure. These 

features seemed more apparent for those mobile broadband operators that employed 

stronger upstream peer-to-peer relationships for internetworking purposes than customer-

to-provider or provider-to-customer relationships. Moreover, we indicated a new set of 

metrics for studying hierarchical Internet market structuring, based on the Eigenvector 

Centrality and the Clustering Coefficient. By using the k-core decomposition in Chapter 

4 and the Descriptive Statistics in Chapter 5, we also identified a set of specific upstream 

Autonomous Systems that are key for the global connectivity of the three Tamil Nadu 

mobile broadband operators. Furthermore, by combining the Complex Network Analysis 

with the secondary CAIDA (2016b) AS-Relationship dataset in Chapter 4, we indicated 

previously hidden upstream Autonomous System relationships. However, our analysis 

will benefit from additional business relationships data.  

6.2 Hierarchical Structuring and Affordability 
Based on insights from the Literature Review (see section 2.5), it was hypothesised in 

Working Hypothesis WH2 that the ‘Tamil Nadu mobile broadband operators that show 

signs of a hierarchical upstream Internet market structure offer less affordable mobile 

broadband price plans to an end-user’. This hypothesis was explored through the 

Statistical Network Analysis developed in Chapter 5. This analysis discovered interesting 

relationships between the level of hierarchical structuring of our mobile broadband 

operator networks and affordability as measured in price per Megabyte for each given 

price plan. In detail, Model 3.1 showed that an increase in the level of hierarchical 
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structuring resulted in an increase in price per Megabyte. The price per Megabyte itself 

is calculated as a price in Indian Rupees (INR) divided by the promised data allowance 

(e.g. 1GB in a given price plan), obtained from GSMOutlook (2015a, 2015b, 2015c). 

Interestingly, Model 3.2 shows that an increase in the level of hierarchical structuring 

resulted in an increase in the price per Megabyte. Model 4, which was based on the 

Weighted In-Degree connectivity, showed that an increase in the level of hierarchical 

structuring, based on Clustering Coefficient, results in an increase in price per Megabyte. 

Notably, based on the analysis of the role of Eigenvector Centrality, Model 4 also showed 

that a decrease in the level of hierarchical structuring results in a decrease in price per 

Megabyte.  

Hence, all findings point towards the fact that, a more hierarchically structured upstream 

Internet market of the three Tamil Nadu mobile broadband operator networks results in 

less ‘affordable’ end-user price plans (measured in price per Megabyte). However, such 

influences of the level of hierarchical network structuring on prices emerge from different 

perspectives, hence increasing the robustness of our results. In detail, we note that the 

level of hierarchical structuring, as captured by the Clustering Coefficient, reflects the 

influence of the bargaining power of highly connected Autonomous Systems on their 

neighbouring ones, which increases their costs and the final price for end-users. 

Moreover, the Eigenvector Centrality captures different aspects of hierarchical 

structuring, depending on whether it relates to incoming or outgoing connectivity. In 

detail, a steeper relationship between the Eigenvector Centrality and outgoing 

connectivity captures an increase in the level of hierarchical structuring. This is due to 

the strengthened bottleneck role played by central Autonomous Systems to reach many 

other Autonomous Systems in the upstream Internet. On the contrary, a steeper 

relationship between Eigenvector Centrality and incoming connectivity captures a lower 

level of hierarchical structuring. This is because it indicates that central, influential 

Autonomous Systems receive many direct incoming connections from neighbouring 

Autonomous System, providing them with central access to the rest of the Internet. 

This differentiation concerning the effects on the hierarchical structuring of the two 

separate relationships between incoming or outgoing connectivity and Eigenvector 

Centrality represents a novel approach and provides new findings which, to the best of 

our knowledge, have not been explored in the research domain yet. Here, based on the 

internetworking hierarchical structuring, a mobile broadband operator’s upstream 
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interconnection costs clearly influence the price per Megabyte and hence the affordability 

of mobile broadband for end-users in the Internet periphery. Moreover, affordability of 

mobile broadband price plans by definition is one of the key determinants of mobile 

broadband adoption rates. Addressing hierarchical bottlenecks and their effects on 

affordability will help to address some of the key issues underlying the present levels of 

digital divide, both in our explored Tamil Nadu case studies and more generally in the 

Internet periphery. 

Given this novel insight, we do not reject Working Hypothesis WH2: ‘Tamil Nadu mobile 

broadband operators that show signs of a hierarchical upstream Internet market structure 

offer less affordable mobile broadband price plans to an end-user’.  

6.3 Hierarchical Structuring and Quality of Service 
Alongside the identified effects of the hierarchical upstream Internet market structure of 

the three mobile broadband operators on affordability, we also infer through Working 

Hypothesis 3, WH3, that ‘Those Tamil Nadu mobile broadband operators that show signs 

of a hierarchical upstream Internet market structure provide a lower Quality of Service to 

an end-user’ 

This hypothesis was empirically explored in Chapter 5 through a standard correlation 

table where the results revealed a number of interesting Quality of Service implications. 

Both the download speed and the throughput show a highly negative correlation with the 

hierarchical structuring covariates. Interestingly, the drop rate of a data packet (<=5%) 

positively correlates with all the covariates from Model 1 and Model 2, indicating the 

importance of certain Autonomous Systems to the operator networks. Our correlations 

reveal potential effects between a hierarchical structuring of the upstream Internet market 

(for each of our mobile broadband operator networks) and the Quality of Service 

delivered to end-users residing in the Internet periphery. A deeper analysis going beyond 

these correlations would require further research to add explanatory power to these initial 

indications, going beyond the scope of our dissertation.  

Our results lead us to preliminarily reject Working Hypothesis 3 (WH3) that ‘Those Tamil 

Nadu mobile broadband operators that show signs of a hierarchical upstream Internet 

market structure provide a lower quality of service to an end-user’. Based on the 

elaborated indications, it seems that a higher hierarchical clustering of the mobile 

broadband operator networks neither lowers nor increases Quality-of-Service to an end-



Chapter 6 

282  Sebastian Sigloch - April 2018 

user. Instead, it might have an impact on specific Quality of Service metrics demanded 

by the Telecom Regulatory Authority of India (TRAI). Further research should shed light 

on these indications. 

6.4 Implications to Practice and Policy 

6.4.1 Implications to Practice  
Our evidence indicates the Tamil Nadu mobile broadband operators’ reliance on 

Autonomous Systems belonging to large upstream Internet Service Providers (Tier-1 or 

Tier-2). These Autonomous Systems are identified as forming some structural upstream 

connectivity bottlenecks due to their traffic routing roles in the digital supply chain of the 

Internet. Depending on their bilateral routing relationships, such bottlenecks might 

become relevant whenever an operator’s upstream partner uses the identified key 

upstream Autonomous Systems for global connectivity purposes. Given the strong 

presence of such business relationships, we assume that the established Autonomous 

System relationships represent key barriers to entering into the Tamil Nadu upstream 

Internet market. These barriers potentially resulting in downstream value-driven 

strategies informed by important connectivity relationships. However, due to the general 

organisation of a fixed set of mobile broadband providers per Indian Telecom Service 

Areas (GOV-IN, 2016b), the Tamil Nadu mobile broadband operators potentially do not 

face threats of new market entrants when considering only the set of existing 

relationships. Moreover, the value of beneficial upstream connectivity relationships 

might not be forwarded to end-users. On the contrary, end-users seem to pay for the 

mobile broadband operators’ cost for international connectivity. Nevertheless, new 

market entrants into the analysed upstream Internet market do indeed face barriers of 

entry given the minimum-cost link rule that Kang and Gligor (2014, p.10) indicate. This 

seems to apply to the relevance of the set of interconnectivity business relationships for 

our three upstream operator networks. New entrants could, therefore, only differentiate 

themselves either through the price (such as Reliance Jio) or through added values such 

as added cybersecurity and / or analytics services, introducing quality differentiation into 

an otherwise commoditised market. 

These indications are of particular relevance since these key Autonomous Systems 

seemed to be frequently traversed when reaching the destination ASes of our collected 

traceroute measurements. Moreover, the identified asymmetry of Autonomous System 
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centralities would make settlement-free upstream peering less likely. This is because 

those Internet Service Providers at the core of the operator networks naturally aim for 

paid downstream relationships while potentially arranging settlement-free peer-to-peer 

connections amongst themselves. Therefore, connectivity asymmetries might result in 

‘unfair’ competition conditions and stronger bargaining powers of large Internet Service 

Providers towards downstream Autonomous Systems that are situated closer to the 

Internet periphery (Tier-2 and Tier-3). Moreover, one could consider that upstream paid 

transit relationships might result in a lower bargaining power for Tier-1 and Tier-2 

Internet Service Providers due to their strategic competitor differentiation choices. 

However, this could lead to situations where the Tier-1 Internet Service Providers are the 

only ones that can offer end-to-end supply of digital services at the ‘best price’ because 

of their economies of scale, even though they seem to clearly profit from their powerful 

hierarchical positions.  

On the other hand, choosing settlement-free upstream peer-to-peer relationships might 

result in more affordable price plans for the end-users. This is assuming that the 

connectivity quality is the same and the mobile broadband operator passes upstream 

connectivity savings onto them. However, if an upstream Autonomous System peers with 

a multitude of downstream operators, then the upstream AS of a given operator might 

become a connectivity bottleneck itself because the Autonomous System would have to 

increasingly exchange traffic with a multitude of downstream operators. Moreover, if all 

of these key relationships were of peer-to-peer nature, then the situation would force 

Internet Service Providers to search for alternative Business Models, including those 

profiting from the analytics and sales of end-user data.  

Nevertheless, a mobile broadband operator might still aim to add new upstream routes. 

This would allow operators to either profit from a cheaper transit or settlement-free 

peering relationships, or to circumvent bottleneck Autonomous Systems or the bargaining 

powers of large Internet Service Providers. Adding upstream routes still might not be the 

most beneficial way to reach favourable conditions for all parties involved. This view is 

supported by the Braess paradox which describes a similar problem with car traffic-flows 

in a game-theoretic setting (Braess, 1969).  

Additionally, the hierarchical structuring of our Tamil Nadu mobile broadband operator 

networks shows their structural dependency on directly connected (first and / or second 

hop) upstream partners, representing the structural bottlenecks. This dependency on 
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upstream Autonomous Systems also refers to situations such as: cybersecurity risks and 

attacks; infrastructure changes and maintenance; infrastructure fallouts triggered by 

natural incidents such as the recent Tamil Nadu Internet service fallouts (e.g. at Tata 

Communications) caused by Cyclone Vardah in 2016 (India Times, 2016); non-natural 

incidents; or policy- or business-driven anti Net-Neutrality efforts. Since February 2016, 

the Telecom Regulatory Authority of India prohibits Internet Service Providers to charge 

discriminatory prices for data services based on content (TRAI, 2016e, p.2).  

On the other hand, an upstream reliance on structural bottleneck Autonomous Systems 

might also result in sustainable bilateral business partnerships (or acquisitions in the case 

of Vodafone indicates). This could allow mobile broadband operators to negotiate more 

beneficial connectivity contracts or pricing in the future (see for example the Netflix Net 

Neutrality disputes with telecommunications conglomerate Comcast (CNET, 2014; 

Wired, 2016b)). While such partnerships for discriminatory prices are also prohibited by 

TRAI (2016e), they are very hard to identify in the hidden upstream Internet market. 

Nevertheless, such a bottom-up negotiating power seems valuable for Internet Service 

Providers since upstream price per Megabyte on the digital supply chain should 

constantly decrease, creating necessary recurring contract and partnership re-

negotiations. Well-structured upstream connectivity could result in beneficial traffic-

shaping mechanisms. This would allow the Tamil Nadu mobile broadband operators to 

offer more efficient connections to end-users and provide a potential competitive 

advantage in the fight for Tamil Nadu market share. This seems to be the case for 

Vodafone who owns their first directly-linked upstream Autonomous Systems in the 

upstream Internet market through which Vodafone strongly connects to Tier-1 operators 

for global connectivity to the Internet periphery. This indicates that Vodafone is able to 

route local traffic almost completely through their own Autonomous Systems. Future 

studies have to shed light on this situation, while also being able to profit from fewer 

dependencies on other partners.  

These implications also seem relevant considering the sheer amount of information 

generated by end-users’ smartphone usage. New mobile services such as social 

networking or streaming of music or video content, which are especially sought after in 

Tamil Nadu (Fennell et. al., 2016), are expected to result in considerable growth of the 

Indian mobile data usage in upcoming years (Ericsson, 2016). This rise might worsen the 

position of structural bottleneck Autonomous Systems, potentially resulting in routing 
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and bandwidth issues to reach the Internet periphery, assuming that bandwidth resources 

and their routing are not sufficiently increased or managed. Given the identified price per 

Megabye effects, we argue that it is crucial for (the Tamil Nadu) mobile broadband 

operators to understand their complex upstream internetworking dependencies. It allows 

operatos to decide upon those strategic directions that add the most value to increasingly 

demanding shareholders and end-users in the Internet periphery. However, it is not only 

the Tamil Nadu mobile broadband operators and their upstream partnering Autonomous 

Systems who need to be prepared for this expected rise in mobile broadband usage, 

national government authorities such as the Telecom Regulatory Authority of India 

should also be prepared. The following section discusses the implications of our evidence 

on policy.  

6.4.2 Implications to Policy 
Despite the upstream Internet market structure usually being overlooked by competition 

regulatory authorities, we argue that setting the right political discussion and agenda on 

these issues is crucial. These can be set from three perspectives. Firstly, to establish a 

sustainable, efficient and fair connectivity environment for Internet Service Providers in 

the upstream Internet market from a mobile broadband provider perspective. Secondly, 

to bring an affordable, non-discriminatory, efficient and secure connectivity to the 

Internet periphery from an end-user perspective. Lastly, to set rules to ensure a fair 

competition within the upstream Internet market for existing players and new entrants.  

For this purpose, it would be important for policymakers to consider our indicated 

competition regulation trade-off between end-user price plan affordability (as measured 

in price per Megabyte) and the hierarchical structuring of the upstream Internet market. 

This includes their bottlenecks and results in connectivity asymmetries, and market and 

bargaining powers of large agents and critical small providers connecting to the core of 

the operator networks. This is especially relevant given a recent consultation paper by the 

Telecom Regulatory Authority of India, asking for options to ensure ‘fair, reasonable and 

non-discriminatory terms and conditions of interconnection agreements’ between Internet 

Service Providers (TRAI, 2016f, p.27). Alongside our identified effects of mobile 

broadband connectivity on supply-side policies, these themes are also relevant to the 

current policy focus on demand-side policies to regulate open and safer use of the Internet 

as stated in the WDR (2016). Our work adds to two demand-side issues. First, the 

openness of the Internet relates to equality and fair competition of the upstream Internet 
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market, where supply-side connectivity plays a crucial role. Second, we feel 

cybersecurity is as high on the agenda as Autonomous Systems since connectivity 

bottleneck positions might be at a greater risk of being targeted for cyber-attacks, while 

being critical in connecting end-users to the Internet.  

Most importantly, our findings are of particular importance to the policy because of Tamil 

Nadu’s rural and gender-based mobile broadband access and affordability disparities, as 

indicated in the Literature Review (section 2.2). A recent study on Internet inclusiveness 

by the Economist Intelligence Unit (EIU, 2017) commissioned by Facebook’s 

internet.org unit ranked India as the highest rated country which had appropriate policies 

in place for ensuring future connectivity. However, India ranked fairly low in the 

Affordability category (Rank 26). This category looks at the access cost being relative to 

income and competition in the Internet market. India ranks 22nd in terms of competition 

and at a low 51st place in terms of Internet inclusiveness due to prices. This is especially 

interesting considering our evidence from Chapter 5 (described in section 6.2. above). 

For those Indians that fall under the World Bank’s poverty income measurement of 

US$3.10/day, a 500MB mobile broadband price plan represents a very large portion of 

their average income (2.51% of GNI p.c., see ITU, 2015, p.136). Moreover, this reflects 

the issue of urban-rural per capita income disparities between Tamil Nadu districts (see 

section 2.2 and e.g. Selvabaskar et al., 2016). India also shows large gender disparities 

between men and women in terms of education, lack of income, and social attitudes 

towards technology (UN, 2014; WDR, 2016). Affordable and equal access to mobile 

broadband remains a key challenge for India (Broadband Commission, 2014). These 

income inequalities might result in a further drop in India’s Affordability Drivers Index 

(ADI), where it ranked 31st in 2015 / 2016 (A4AI, 2016). A similar trend is also apparent 

in The Web Index of the World Wide Web Foundation (2014) where India ranked a low 

58th place for Access and Affordability (ranked 48th for the cost of mobile broadband per 

capita income). Interestingly, India ranks 8th out of 140 countries in terms of affordability 

in the most recent Global Information Technology 2016 Report’s Network Readiness 

Index (NRI) by the WEF (2017a, p.110; 2017b). However as discussed in Chapter 2, one 

reason for this surprisingly favourable and high ranking is the fact that the World 

Economic Forum does not include (prepaid) mobile broadband in the affordability metric 

(see WEF, 2017a, p.35). This shortcoming is clearly surprising given the importance of 

mobile broadband in both the developing and the developed nations. Improving 

affordability is considered to be helping to lift the Indian mobile broadband penetration 
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rate to 68% by the end of 2020, representing 330 million new subscribers (GSMA, 2016). 

Improving affordability would undoubtedly help India to increase their ranking in a 

number of the following development indexes while stopping the current negative trends 

in some of them.   

First, more affordable price plans could help to increase India’s ICT Development Index 

(IDI), especially after their recent drop to 138th ranking in 2016 (from 135th in 2015), 

while directly affecting the ICT Development Access and Use sub-indices, as described 

in the Literature Review (see section 2.2.4). These sub-indices metrics include: 

• Mobile-cellular telephone subscriptions per 100 inhabitants 

• Percentage of households with Internet access 

• Percentage of individuals using the Internet 

• Active mobile broadband subscriptions per 100 inhabitants. 

Second, India could potentially increase their position in some metrics of the Network 

Readiness Index (WEF, 2017a): 

• Accessibility of digital content (currently rank 93) 

• Impact of ICT on access to basic services (currently rank 42) 

• Internet users (currently rank 118) 

Third, a more affordable access to mobile broadband Internet might help to achieve three 

of the ‘Digital India’ project visions of GOV-IN (2016): 

• Digital infrastructure as a core utility to every citizen 

• Governance and Services on demand 

• Digital empowerment of citizens 

Lastly, more affordable Tamil Nadu mobile broadband price plans would increase access 

to the mobile Internet by the less-favoured population, overcoming some factors of the 

digital divide, especially in the rural districts of Tamil Nadu. It would also help to drive 

the agenda for Sustainable Development Goals of the United Nations (United Nations, 

2017). Goal 9, ‘Industry, Innovation and Infrastructure’, in particular is directly affected 

by the affordability of mobile broadband price plans. This goal includes the importance 

of Information and Communication Technology (ICT) infrastructure and the resulting 

service capabilities. The specific targets (measurable outcomes) of this goal include: 
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• ‘Develop quality, reliable, sustainable and resilient infrastructure, including 

regional and trans-border infrastructure, to support economic development and 

human well-being, with a focus on affordable and equitable access for all’ 

• ‘Significantly increase access to information and communications technology and 

strive to provide universal and affordable access to the Internet in the least 

developed countries by 2020’ 

Furthermore, significantly more affordable access to the information and communication 

infrastructure might also result in individuals having greater access to information and 

enhancing human capital. This is a strong driver for improving well-being, economic 

growth (GSMA, 2016), education and employment (Fennell et. al., 2016), inclusion 

(Broadband Commission, 2016), equality and social impact (WDR, 2016). The 

Broadband Commission for Sustainable Development states that affordable access to 

mobile broadband would lift millions of people out of poverty while contributing greatly 

to India’s Gross Domestic Product (Broadband Commission, 2016). Affordable access to 

mobile broadband Internet is necessary for the development of life-changing and 

innovative mobile solutions such as applications and services in the areas of Money and 

Banking, Governance, Agriculture, Education, and Health (Fennell et al., 2016).  

Ultimately and despite all these promising outlooks, our insights indicate that reducing 

the affordability through competition regulations in the upstream Internet market might 

come at a cost. Our evidence shows that there is a competition regulation trade-off 

between affordable mobile broadband price plans (as measured in price per Megabyte) 

and a hierarchical structure of the upstream Internet market. This trade-off results in 

greater market and bargaining powers of Autonomous Systems belonging to large Tier-2 

and Tier-1 Internet Service Providers that capture and secure barriers of entry.  

Our case study evidence indicates that a more hierarchical upstream Internet market 

structure results in reduced affordability due to a higher price per Megabyte. Moreover, 

a more hierarchical upstream Internet market structure would allocate even more power 

to these Autonomous Systems, resulting in potentially ‘unfair’ connectivity asymmetries 

as identified by D’Ignazio and Giovannetti (2006). Additionally, a more hierarchical 

structuring could result in increasing Net Neutrality and price-bargaining issues as well 

as in stronger structural connectivity bottlenecks. This would pose a risk to the efficiency 

(given its anticipated growth in bandwidth needs) and affordability of the critical digital 

supply chain in India, which could ultimately end up widening the existing level of digital 
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divide. Such structural bottlenecks may also affect the demand side of the digital supply 

chain. They could endanger central agents who risk being targeted by cyber-attacks 

aiming to disrupt bandwidth and Quality of Service, as shown in a recent Distributed 

Denial of Service (DDoS) attack on Dyn, a company controlling Domain Name Systems 

(DNS) on the Internet. This attack resulted in services such as Twitter or Netflix being 

offline (The Guardian, 2016).  

Our findings and results should be considered by both Indian and International 

policymakers as the presence and role played by larger Internet Service Providers with 

crucial bargaining and market power negatively correlates with the affordability of 

mobile broadband. Moreover, bypassing connectivity traffic of bottleneck Internet 

Service Providers whenever possible, especially when routing local traffic, would allow 

for more affordable mobile broadband price plans for end-users. As usual, nothing worth 

having comes easy. 
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7 CONTRIBUTIONS, LIMITATIONS, GENERALISABILITY 
AND RECOMMENDATIONS 

7.1 Contributions to Knowledge 
By using Complex and Statistical Network Analysis, based on active Internet periphery 

measurements, our exploratory case study concludes with a number of novel findings that 

offer distinctive evidence for the following contributions to knowledge: 

• Our combination of Descriptive, Complex Network, Graph Visualisation and 

Statistical Network Analysis using active Internet periphery measurements and 

secondary data proved to be an extremely valuable methodological combination 

to explore non-trivial upstream Internet market structures and structural 

bottlenecks of mobile broadband operators. Given the lack of preliminary work in 

this multidisciplinary field of research, we add Giovannetti and Sigloch’s (2015) 

pilot experiment by proposing a novel approach to study the mostly hidden nature 

of upstream Internet market structures from an Internet periphery perspective. 

 

• Our Graph Visualisation Analysis showed that the Barabási-Albert Model B is a 

very suitable model to visually study network growth emergence of the upstream 

Internet access market for each of our case study’s three mobile broadband 

operators. This adds to the work of Albert, Jeong and Barabási (1999) and 

Barabási and Albert (1999, 2002). Barabási and Albert (1999, p.7) show that 

preferential attachment mechanisms are useful for Business, Social and 

Transportation networks. The algorithm is also clearly useful to study network 

growth emergence of connectivity networks from an upstream Internet 

perspective. Moreover, our research showed that the applied k-core 

decomposition revealed the key operator network market agents at both levels of 

analysis (IP and Autonomous System Number granularity). Therefore, we add to 

the large-scale network studies of Alvarez-Hamelin et al. (2005a, 2005b, 2008). 

While Alvarez-Hamelin et al. (2005b) showed the general applicability to study 

natural hierarchical structures using Autonomous Systems, we can clearly 

indicate that this approach is useful from an Internet periphery perspective, using 
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crowdsourced end-user data.  

 

• We provide the first case study to fuse primary upstream connectivity data from 

active Internet periphery measurements using Portolan (2015) with secondary 

CAIDA (2016a) AS-Rank and CAIDA (2016b) Autonomous System relationship 

data. This fusion revealed a number of previously undiscovered Autonomous 

System relationships in the upstream Internet markets of our three studied Tamil 

Nadu mobile broadband operators. These data fusions are very important and 

might help researchers at CAIDA to extend their Internet mapping efforts, 

including an Internet periphery perspective into existing data collection and 

analysis methods.  

 

• Our specified Statistical Network Analysis provided robust confidence towards 

the existence of hierarchical upstream connectivity structures for all three of the 

studied Tamil Nadu mobile broadband operators. These contributions build on the 

findings of hierarchical upstream connectivity structures for B-Mobile in Bhutan 

by Giovannetti and Sigloch (2015). Hence, we indicate a possibility that other 

mobile broadband operator networks from varying countries are similarly 

structured.  

 

• We show that connectivity scales not only on a negative exponent of the 

Clustering Coefficient as Vázquez, Pastor-Satorras and Vespignani (2002) 

indicate, but also in combination with a positive exponent of the Eigenvector 

Centrality, a metric that covers vertex influence in a network. Our research is the 

first to utilise this metric to study the presence of hierarchical upstream Internet 

market structures. Moreover, our research provides the first steps into an original 

exploration of the opposite roles (and interpretation) of the relations between 

Eigenvector Centrality and incoming and/or outgoing connectivity as indicators 

of the degree of hierarchical structuring and to identify the potential presence of 

bottlenecks in the analysed networks. 

 

• By using these originally-devised metrics on originally collected data, we 

indicated that the three Tamil Nadu Mobile broadband operators are reliant on 

large (Tier-1 and Tier-2) Internet Service Providers for their global connectivity. 
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No other research of which we are aware indicated this reliance for the three Tamil 

Nadu mobile broadband operators, nor used similar data or our originally-

developed methods elsewhere.  

 

• Most importantly, we have exposed the relevant effect that a more hierarchical 

upstream Internet market structure is associated with higher prices (measured in 

price per Megabyte), leading to less affordable mobile broadband price plans for 

end-users in the Internet periphery. This critical new contribution should help 

interdisciplinary researchers as well as policymakers to measure and compare the 

global upstream Internet market structures and the end-user affordability as 

metrics for infrastructural access development.  

7.2 Assessment of Working Hypotheses 
Given the above stated contributions to knowledge, we conclude with a final assessment 

of our abducted Working Hypotheses while generating, through the best explanation of 

our evidence, one new Hypothesis (see Methodology section 3.3.2):  

WH1: ‘The Tamil Nadu mobile broadband operators’ upstream Internet market structure 

displays features of a hierarchical ordering’. 

Assessment: WH1 is not rejected.  

WH1.1: ‘The Tamil Nadu mobile broadband operators rely on an identified set of specific 

Internet Service Providers for their upstream connectivity’. 

Assessment: WH1.1 is not rejected.  

WH1.2: ‘Studying the Tamil Nadu mobile broadband operators from an Internet-

Periphery perspective indicates previously hidden upstream AS relationships’.  

Assessment: WH1.2 is not rejected. 

WH2: ‘Tamil Nadu mobile broadband operators that show signs of a hierarchical 

upstream Internet market structure offer less affordable mobile broadband price plans to 

an end-user’. 

Assessment: WH2 is not rejected.  
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WH3: ‘Those Tamil Nadu mobile broadband operators that show signs of a hierarchical 

upstream Internet market structure provide a lower Quality of Service to an end-user’. 

Assessment: WH3 is temporarily not rejected. 

In conclusion, we note that further research should be performed to provide additional 

explanatory power for an understanding of the above-stated Working Hypotheses. 

Additionally, we are prompted to develop two new Hypotheses when considering the 

opposing effects of the relationships between Eigenvector Centrality and incoming and/or 

outgoing connectivity as indicators of the degree of hierarchical structuring and the 

potential presence of bottlenecks in the analysed networks studied in Chapter 5 and its 

detailed insights (see section 5.4.5).  These Hypotheses represent a potential starting point 

for future research. 

The first of such Hypotheses reflects on the role of incoming connectivity and when 

matched to high Eigenvector Centrality clearly indicates the presence of a Hub-like 

Autonomous Systems. This redirects incoming traffic originating from many different 

downstream Autonomous Systems and could be stated as: 

H1: increased ‘Hub-like Autonomous System influence’ on incoming connectivity in the 

upstream Internet market results in more affordable price plans to end-users.’ 

The second new Hypothesis will instead focus on the role played by the relation between 

outgoing connectivity and Eigenvector Centrality. It reflects the bottleneck nature of 

certain Autonomous Systems that are critically central and relevant and are nearly an 

unavoidable bottleneck for the upstream routing of Internet traffic, originating from the 

Internet periphery. This would lead us to formulate the following Hypothesis for future 

work: 

H2: increased ‘Bottleneck-like Autonomous System influence’ on outgoing connectivity 

in the upstream Internet market results in less affordable price plans to end-users. 

7.3 Case Study Limitations 
Our previous analysis provided interesting and novel results on the nature of the 

relationships between affordability and hierarchical structuring. Nevertheless, we 

acknowledge that our collected evidence faces a number of major limitations that impose 

caution about the impact and interpretation of our findings.  
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The first, and greatest, limitation of this case study’s potential impact is the geographical 

and temporal nature and the resulting girth of our traceroute data, collected during our 

data collection campaign in Tamil Nadu, India. Thanks to UKIERI funding, we were able 

to organise a short 5-day data collection campaign in Tamil Nadu, India, while being 

hosted at the Indian Institute of Technology, Madras (IITM). Unfortunately, the available 

resources prevented us to conduct any long term, state-wide or cross-state studies. Such 

information would have provided us with a clearer overview of the state’s present 

upstream Internet market structures. Instead, we reduced the impact of this limitation by 

focussing on a more specific case. In detail, we collected data for a culturally important 

(the holy pilgrimage route between Chennai and Kancheepuram) and very diverse (urban 

and more rural) part of Tamil Nadu. This was an important focus when looking at 

affordability differences in relation to the local upstream Internet access market structure.  

Additionally, local issuing regulations prevented us from obtaining fully functional SIM 

cards for all four Tamil Nadu mobile broadband operators active at the time. This was 

because applicants were required to provide proof of residency and citizenship to the 

relevant authorities prior to being able to activate SIM cards. However, we were able to 

obtain three functioning local SIM cards, one for each of the three major mobile 

broadband operators at the time (Aircel, Bharti Airtel and Vodafone). These 

geographical, organisational, regulatory and temporal limitations clearly affected the 

overall generalisability of our research findings and contributions. Nevertheless, a 

number of valuable aspects of our research are transferable and will be able to sustain 

research efforts of other researchers in all related disciplines. 

Another important limitation of our results stems from the transformation of the collected 

Paris traceroute data, obtained through the Portolan (2015) based active Internet 

Periphery measurements, to their associated Autonomous System Numbers using the 

secondary Maxmind (2015) GeoIP2 dataset. The fusion of these datasets have clear 

implications on our findings, which is discussed in depth in Chapters 4 and 5. To address 

this limitation, and to minimise the risk of ill data-transformations, the Maxmind (2015) 

GeoIP2 database was thoughtfully chosen as the main fusion source since it represents 

one of the most comprehensive collections of IP address ranges that any Autonomous 

System may incorporate. Moreover, these risks were further mitigated by drawing sample 

tests while comparing them with the fusion results of other credible sources, including 

Hurricane Electric (2016), UltraTools (2016) and Team Cymru (2016). 
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Another technical limitation of our collection campaign was the limited amount of Paris 

traceroute observations collected from the smartphone issued with a Bharti Airtel SIM 

card. Also, while being connected to the mobile broadband operator network, we 

experienced that the lower-end smartphones (Lava and Karbon) were unable to maintain 

a stable configuration of Portolan (2015). While this most likely reflects hardware issues, 

a more thorough preparation of the smartphones might have avoided such lack of data. 

We minimised the risk associated with a low number of observations by thoroughly 

preparing the smartphones, their issued SIM cards, as well as the Portolan (2015) Android 

application.  

Lastly, a final limitation can be found in the automated, and hence not necessarily 

realistic, data collection of traceroute observation using the Portolan (2015) Android 

application. End-users most often access subjectively relevant, often local language 

content, rather than a randomly chosen set of target IP addresses, as set within the adopted 

version of the Portolan application. Additionally, large parts of traffic consumption on 

the Internet stems from troll activities, automated bots or Artificial Intelligences. All of 

these aspects are currently not accounted for in the Portolan (2015) Android application. 

We minimised this limitation by stating that our case study represents the actual usage of 

a tourist or commuter visiting the Chennai and Kancheepuram districts in Tamil Nadu 

(see section 3.3.4). In doing so, we mimicked the touristic or commuting behaviour while 

driving from the city of Chennai to the district of Kancheepuram to visit different 

historical temple sites.  

7.4 Generalisability and Transferability 
The limitations, especially concerning the geographical and temporal nature of our case 

study as described above, clearly show that this research is not entirely generalisable. 

Moreover, the population of our mobile broadband operator networks sample was rather 

small and did not cover all operators in the studied state of Tamil Nadu, India. Our 

strategic choice of this case study was to achieve a greater understanding of the upstream 

Internet market structures that are present in a critically important lower-middle income 

country such as India (see also Chapter 2). While our evidence clearly fulfilled this desire, 

we identify the main value is in our gained ability to test the Working Hypotheses 

abducted in section 2.5. Beyond that, our cross-sectional case study design, and especially 

the choice of mobile broadband operators, the short data collection duration as well as the 

restricted geographical coverage, distinctively limit the generalisability of our evidence. 
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Hence, our findings should be reflected upon with caution. Besides the limited 

generalisability, numerous findings and contributions that mainly stem from our applied 

methodology are transferable to research in related disciplines: 

Our Graph Visualisation Analysis revealed that the Barabási-Albert Model B is 

the most suitable model to visually study network growth emergence of the 

upstream Internet access market. Moreover, it showed that the applied k-core 

decomposition indicated the key operator network market agents at both levels of 

analysis (IP and Autonomous System Number granularity). The k-core 

decomposition in particular reduces the need for intensive descriptive statistics in 

future research since it incorporates key structural aspects in the algorithm.  

• By using statistical methods and graph plots, we showed that the three operator 

networks in this case study followed Scale-Free Network models.  

• We revealed that connectivity not only scales on a negative exponent of the 

Clustering Coefficient (see Vázquez, Pastor-Satorras and Vespignani, 2002), but 

also in combination with a positive exponent of the Eigenvector Centrality, a 

metric that covers vertex influence in a network.  

• By merging our collected upstream connectivity data with secondary CAIDA 

(2016a, 2016b) AS-Rank and AS-Relationship data, we provided an overview of 

the general econometric nature of the upstream Internet market structures for each 

of the three studied Tamil Nadu mobile broadband operator networks.     

• Our two-stage econometric estimation process showed that a more hierarchical 

upstream Internet market structure leads to lower affordability (as measured in 

price per Megabyte. This finding provides a relevant antecedent for further testing 

in different geo-temporal contexts. 

7.5 Recommendations for Future Research 
Given the limitation of the potential impact of this dissertation, future research may 

incorporate the following measures to compensate for our identified shortcomings: 

• The geographical and temporal limitations of our case study may be compensated 

by covering larger geographical areas (or even entire countries) during long-term 

case studies. Such efforts could be organised with wide research collaboration. 

Nevertheless, those efforts require sufficient organisation, resources and research 

funding. To overcome some of these costs, future research could further harness 
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the crowdsourcing approach by including a large number of actual end-users (with 

incentives) into the data collection process. Such an approach would also reduce 

the difficulties in obtaining and issuing local SIM cards. One could even partner 

with Internet Service Providers (e.g. mobile broadband operators), who could 

include Internet periphery measurements into their general connectivity 

provisioning.  

• The high dependency on the secondary Maxmind (2015) Geo IP2 dataset could 

be reduced by a wider sharing and opening of data between data generators and 

collectors. An endeavour to collect which IP address ranges are allocated to which 

Autonomous Systems could be valuable. This would need collaboration between 

the five Regional Internet Registries (RIPE NCC for Europe, ARIN for America, 

APNIC for Asia-Pacific, LACNIC for Latin America and AfriNIC for Africa). 

Moreover, we encourage researchers to openly share obtained raw data of future 

studies. This Open Science approach would advocate comparability efforts while 

harnessing routes towards fruitful and sustainable Internet policies on a national 

and international level. Our collected traceroute dataset is openly available 

through the following link: 

https://www.doi.org/10.6084/m9.figshare.6839666.v4  

• Our case study experienced that lower-end smartphones faced difficulties to 

maintain a stable connection with Portolan (2015). Nevertheless, we still believe 

that future researchers should include lower-end smartphones into their 

measurements. These measurements should replicate actual end-user usage 

limitations, such as low signal antennas, advanced and reliable GPS facilities, and 

shorter battery life, wherever possible. The relevance of these lower-end 

smartphones is also obvious because the cost of a smartphone constitutes an 

additional element in defining affordability, which provides key access 

opportunities to the relevant socio-demographic end-user in any given country. 

• To address the need for a clearer real-world picture of the upstream Internet 

market structure, Portolan (2015) or related applications could include 

connectivity measurements for local end-users’ usage, bots and Artificial 

Intelligences into their Internet periphery measurement applications. One 

suggestion may include that end-users can browse the web while collecting 
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traceroute observations, although such an approach would most likely cause a 

number of ethical considerations given the tracking of actual usage data. 

Similarly, future measurement campaigns should be accompanied by concomitant 

end-user surveys. These are necessary to identify the average end-user 

behavioural patterns which would then be accurately replicated through the choice 

of final IP address destination by the Portolan application. This would provide a 

valuable approximation of the real-world upstream internetworking situation from 

an Internet periphery perspective, where both ‘bots’ and ‘humans’ create traffic 

and hence all the content-embodied value delivered through the digital supply 

chain.  This is an increasingly sought-after demand of the end-user, given the 

increasing usage of contents requiring large-volume data, such as video or music 

streaming. Moreover, future researchers should cautiously prepare suitable 

smartphones for their data collection purposes. The data collection instructions in 

the Appendices may support this task. 

Finally, we believe that measuring the structure of the (upstream) Internet (market) is a 

collective effort. Researchers in those domains should enhance collaborations to reveal 

the economic nature of the Internet. In particular, the sharing and fusion of collected 

datasets (e.g. from CAIDA, Telegeography and Internet periphery measurements) could 

provide a fruitful approach to increase the generation of knowledge in this discipline. 

Finally, we hope that this dissertation might contribute to initiating a policy debate on the 

requirements for equal access to the Internet.  

7.6 Conclusions 
The upstream Internet market structure is often a hidden component, particularly when 

observed from an Internet Periphery perspective. Yet it is still possible to explore some 

of its essential features that are necessary to gain a better understanding of the presence 

of elements that shape the market power potentially held by key Internet Service 

Providers, and its implications for the end-user affordability of mobile broadband price 

plans. Low affordability prevents the potentially desired diffusion of mobile broadband 

adoption and hence might hamper access to markets and information. These obstacles 

may limit the possibility of achieving substantial economic growth (GSMA, 2016), 

education and employment (Fennell et. al., 2016), inclusion (Broadband Commission, 

2016), equality, and social impact (WDR, 2016) through wider access to mobile 

broadband Internet. Given the vast income disparities among the different Tamil Nadu 
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districts, this exploratory research covered a particularly sensitive topic for 

telecommunication authorities in emerging and developing countries. Based on a primary 

crowdsourced collection of traceroute connectivity data using active Internet Periphery 

measurement through the Portolan (2015), this case study synthesised an exploratory 

approach to research. The novel methodological integration of Complex, Graph 

Visualisation and Statistical Network Analysis provided a fruitful approach for 

holistically exploring the upstream Internet market structuring of three Tamil Nadu 

mobile broadband operator networks. Our results uncovered valuable evidence of 

hierarchical upstream Internet market structures for each of the three studied Tamil Nadu 

mobile broadband operators. Furthermore, we exposed the central internetworking 

importance of large Tier-1 Internet Service Providers, possibly having a substantial 

market and bargaining power in the global digital supply chain. Moreover, we discovered 

previously hidden Autonomous System relationships, indicating the value of collecting 

primary traceroute data using active Internet Periphery measurements. The most relevant 

findings of this dissertation were only achievable through the exploratory identification 

and novel application of often-neglected Complex Network metrics: the Clustering 

Coefficient and the Eigenvector Centrality and their relation to both incoming and out-

going connectivity. Lastly, our Statistical Network Analysis demonstrated that a more 

hierarchical upstream Internet market structure of mobile broadband operator networks 

decreases affordability (captured by the prices per Megabyte of the relevant mobile 

broadband operators’ price plans). The implications of this evidence should lead 

policymakers to carefully consider the role played by larger Internet Service Providers 

with crucial bargaining and market powers. Their presence may negatively correlate with 

the affordability of mobile broadband if upstream network access conditions are only left 

to the unregulated game and are shaped by the relative strength and bargaining power 

among operators. Moreover, the increased possibility of bypassing Internet Service 

Providers that act as connectivity bottlenecks (e.g. through a successful establishment of 

more sustainable viable, local or periphery-based key infrastructure such as Internet 

Exchange Points or dedicated Research and Education Networks) appears to be a relevant 

policy tool in reducing the barriers of achieving Sustainable Development Goals in the 

Internet periphery. 
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Upstream Internet Market Structures and Mobile Broadband Affordability, 

 A competition regulation trade-off in Tamil Nadu 
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Tamil Nadu faces a substantial digital divide. A recent Economist Intelligence Unit study on 
Internet inclusiveness ranked India as number one country regarding having appropriate 
policies for ensuring connectivity in place. This rank is achieved mostly due to the 
establishment of a digital identification, as well as a recent $1.5 billion investment to bring 
some 250,000 villages to the Internet by 2018. Overall, however, India is only ranked 36th 
out of 75 due to the lower ranking in other category scores. Here, India ranked fairly low in 
the affordability category, which looks at the access cost about income and competition in 
the Internet market. While India ranked place 22 / 75 regarding competition, their price rank 
achieved a very low 51st rank amongst the studied countries. Moreover, India ranks eight / 
139 fo affordability in the most recent Global Information Technology Report Network 
Readiness Index (NRI) of the World Economic Forum (2016), a report that however does 
not include the importance of mobile broadband affordability.   

For those Indians that fall below the World Bank’s poverty line, pegged at income 
US$3.10/day, a 500MB mobile broadband price plan represents a staggering 12% of their 
average income (ITU, 2015). This reflects the issue of urban – rural disparities. The South-
East Indian state of Tamil Nadu is a special showcase at hand. While the state shows an 
above average per capita income, it displays a great digital divide between urban and rural 
districts. The rural district of Ariyalur e.g. fell, with a low US$258 annual per capita income, 
far below the poverty line in 2013, see TN-GOV-IN (2015). Moreover, India faces great 
gender disparities between men and women about education, lack of income generation 
opportunities, and social attitudes towards technology (UN, 2014). Affordable and equal 
access to mobile broadband remains, therefore, a key challenge (Broadband Commission, 
2014). A more affordable access to mobile broadband Internet might help to achieve the 
following three goals of the ‘Digital India’ visions as stated in GOV-IN (2016): i) Digital 
infrastructure as a core utility to every citizen, ii) Governance and Services on demand and 
iii) Digital empowerment of citizens. However, mobile broadband operators are reliant on
their upstream partnering Internet Service Providers (ISPs) for reaching connectivity
destinations and affordability targets. These upstream partners are linked either through
settlement-fee based transit, or free peering, relationships. Hence, we infer the following
research question: ‘Does a more hierarchical upstream Internet structure, whose agents are
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This study analyses the emergent network features of the upstream connectivity 
structure, as being the data connection structure from an end-user’s device to a 
predefined destination, for three mobile Internet Service Providers (ISPs) in the 
area included between the city of Kancheepuram and Chennai in Tamil Nadu, 
India, from an original end-users perspective. This perspective is based on 
capturing a large primary Paris Traceroute dataset, as being the most precise 
tool for following data packets along their route from source to destination. The 
data has been collected in February 2015, using the crowdsourcing-based 
Portolan Project Network Sensing Architecture, a mobile application being 
installed on three Android smart phones.  

Internet Service Providers traditionally rely on Border Gateway Protocols (BGPs) 
for (paid) interconnection purposes between themselves and other ISPs, 
whereas BGPs represent the available connections, network policies and a set 
of rules for managing the exchange of information on the Internet. Those 
protocols are organised in so-called BGP routing tables that manage default 
interconnections. Adding this study’s end-user perspective to the existing BGP 
routing tables reveals a more complete picture of the underlying network 
topology / structure and therefore co-operations among ISPs. The data were 
then used to conduct an Internet Periphery Analysis, pointing towards the roles 
of existing Internet traffic peering (exchange) agreements among the studied 
ISPs, and focusing on the role played by International Exchange Points (IXPs), a 
key electronic infrastructure for achieving efficient worldwide connections. 

The analysis identifies the emergence of structural bottlenecks, the effectiveness 
of upstream ISP competition and the role of IXPs in providing a more widely 
distributed network access structure and proposes to further study the usage of 
settlement free peering in fair competition, the preconditions for an increase in 
Quality of Service to the respective end-users and fair service pricing in the 
Regional Mobile Broadband Market.  

Key words: Mobile Broadband, Internet Topology, Network Analysis, ICT4D. 
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Tamil Nadu Mobile Broadband Operator Price Plans 

Aircel price plans 24th January 2015 

# Price in 
INR 

Validity 
in days Description as per GSMOutlook (2015a) 

1 25 5 200MB 2G data -5Days 

2 29 3 100 MB 3G & 2G Data 

3 43 7 150 MB 3G & 2G Data 

4 47 10 300MB 2G data-10Days 

5 67 28 400 MB 3G & 2G Data + EXTRA USAGE Charges 
25p/MB 

6 98 14 500MB 2G Data 

7 101 5 1 GB 3G & 2G Data 

8 128 28 750 MB 3G & 2G Data + EXTRA USAGE Charges 
25p/MB 

9 148 28 1GB Data 

10 193 28 1.8 GB Data 

11 195 28 Unlimited 2G Data (2GB Highspeed). Thereafter 
Speed Throttled to 64 kbps 

12 198 28 1.5 GB 3G & 2G Data 

13 209 1 Unlimited (3 GB FUP) 3G&2G Data 

14 255 28 Unlimited (1.5 GB FUP) 3G&2G Data 

15 298 28 Unlimited (2 GB FUP) 3G&2G Data 

16 309 1 Unlimited (5 GB FUP) 3G&2G Data 

17 393 28 Unlimited (3.6 GB FUP) 

18 399 28 Unlimited (3 GB FUP) 3G&2G Data 

19 509 1 Unlimited (10 GB FUP) 3G&2G Data 

20 693 28 Unlimited (7.2 GB FUP) 

21 697 28 Unlimited (6 GB FUP) 3G&2G Data 
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22 993 28 Unlimited 12 GB FUP 

23 997 28 Unlimited Data (10GB Highspeed). Thereafter 
Speed Throttled to 64 kbps 

24 1397 28 Unlimited Data (15GB Highspeed). Thereafter 
Speed Throttled to 64 kbps 

Key 

GB: Gigabyte 
INR: Indian Rupees 

MB: Megabyte 

Table 9-1: Aircel price plans 24th January 2015, Source: GSMOutlook (2015a). 

Bharti Airtel price plans 24th January 2015 

# Price in 
INR 

Validity 
in days Description as per GSMOutlook (2015b) 

1 8 1 25 MB 3G 

2 28 3 100 MB 3G 

3 45 5 150 MB 3G 

4 101 14 400 MB 3G 

5 127 14 650 MB 3G 

6 197 28 1GB MB 3G 

7 225 28 1 GB 3G + 150 MB Facebook 

8 254 28 1 GB 3G + 150 MB Facebook + 200 MB WhatsApp 

9 255 28 1.25 GB 3G 

10 451 28 2.5 GB 3G 

11 751 28 3G Unlimited, FUP 5 GB 

12 955 28 3G Unlimited, FUP 7 GB 

13 1298 60 6 GB 3G 

14 1555 28 3G Unlimited, FUP 12 GB 

15 2251 90 12 GB 3G 

Key 
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GB: Gigabyte 
INR: Indian Rupees 

MB: Megabyte 

Table 9-2: Bharti Airtel price plans 24th January 2015, Source: GSMOutlook (2015b). 

BSNL price plans 19th January 2015 

# Price in 
INR 

Validity 
in days Description as per GSMOutlook (2015c) 

1 14 2 90 MB 2G / 3G Data 

2 35 7 200 MB 2G / 3G Data 

3 78 14 450 MB 2G / 3G Data 

4 96 19 650 MB 2G / 3G Data 

5 139 20 1 GB 2G / 3G Data 

6 155 28 
1 GB 2G / 3G Data usages Free with no speed 
restriction for Data, After free usages data will be 
charged at 2p / 10kb. 

7 176 30 1 GB 2G / 3G Data 

8 231 30 1.2 GB 2G / 3G Data (Offer valid up to 27 Dec 
2014) 

9 253 30 2GB 2G / 3G Data 

10 561 30 5GB 2G / 3G Data 

11 821 60 7GB 2G / 3G Data 

12 1011 30 10GB 2G / 3G Data 

13 1949 69 20GB 2G / 3G Data 

Key 
GB: Gigabyte 

INR: Indian Rupees 
MB: Megabyte 

Table 9-3: BSNL price plans 19th January 2015, Source: GSMOutlook (2015c). 
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Vodafone price plans 25th January 2015. 

# Price in 
INR 

Validity 
in days Description as per GSMOutlook (2015d) 

1 8 1 

Enjoy 25 MB Free 3G Internet usage on your 
Mobile or PC. Post Free usage 4P/10KB on 
Vodafone Live & 4P/10KB on Vodafone Mobile 
Connect 

2 17 3 100 MB 2G data browsing 

3 25 5 Enjoy 125 MB free 2G mobile internet 

4 45 7 
Enjoy 150 MB Free 3G Internet usage on your 
Mobile or PC. Post Free usage 4P/10KB on 
Vodafone Live & 4P/10KB on Vodafone Mobile 
Connect 

5 49 7 Enjoy 250 MB free 2G mobile internet 

6 98 14 Enjoy 500 MB free 2G mobile internet 

7 102 14 400 MB 3G data browsing – Mobile Internet 

8 124 21 Enjoy 650 MB free 2G mobile internet 

9 148 28 Enjoy 1GB 2G free mobile internet 

10 195 28 Enjoy 1GB 3G free mobile internet 

11 199 28 Enjoy unlimited mobile internet (2GB Fair usage 
policy) 

Key 

GB: Gigabyte 
INR: Indian Rupees 

MB: Megabyte 

Table 9-4: Vodafone price plans 25th January 2015, Source: GSMOutlook (2015d). 
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Key Characteristics of Case Studies 

Key characteristics of case studies 

# Characteristic 

1 Case studies are useful, where the ‘case’ is the focus of interest.  

2 Case studies may be utilised in both qualitative and quantitative research. 

3 The phenomenon to be studied ought to be examined in a natural setting. 

4 Data may be collected by multiple means.  

5 A case study should limit the examination to one or few actors.  

6 These actors are studied intensively in-depth from different perspectives. 
This includes the linkage to existing theory.  

6 
Case studies are more suitable for explorations, classifications and hypothesis 
generation and testing. Therefore, the researcher should have an attitude 
towards exploring phenomena. 

8 No manipulation or experiment controls are involved.  

9 Dependent and Independent Variables shall not be specified upfront. 

10 Case study results rely on the interpretive and integrative abilities of the 
researcher and might leave room for a researcher’s interpretation.  

11 Changes in the case study research methods could take place to develop new 
hypothesis. 

12 Case studies seem most useful in analysing ‘Why?’ and ‘How?’ questions. 

13 The results of case studies are not easily generalisable but good science is 
problem driven not methodology driven. 

Table 9-5: Key characteristics of case studies, Source: Stake (1995), Yin (2003), 

Flyvbjerg (2006) and Bryman (2012). 
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Data Collection Instructions 

Device Name SIM / Cell Number 

Instructions for the Traceroute Data Collection 
Using the Portolan Network Sensing Architecture Android Application 

Step Nr. Description Checkbox 

Step 1 1. Make sure your device is fully charged
before beginning the data collection.

2. Note the device name and SIM / cell nr.
into the upper section of this instruction.

3. Shut-down your device.
4. Insert the given / acquired SIM-card.
5. Reboot / Restart your device.

Step 2 1. Enter the Google Play Store
2. Download Advanced Task Killer* App
3. Download Portolan Network Tools** App

* requires >= Android 1.6

**requires >= Android 4.1

Step 3 1. Stop the Wi-Fi and Bluetooth connections
in the settings of your Android device.

2. Open the Advanced Task Killer App and
stop / pause all running applications except
the ones being named “Google…”.

Step 4 1. Open the Portolan Network Tools App.
2. Read and Agree to the upcoming

Disclaimer (see Figure 1 below).
3. Open the Side-Menu (see Figure 2 below)

and select / start the “RSSI – Tracker”.
4. The Portolan Network tools App is now

automatically measuring a) the data packet
traceroutes and b) the received signal
strength of your device.

5. Carry the device with you and note-down
your data collection journey.
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Figure 1: Disclaimer Figure 2: Side-Menu 

Notes on the data collection journey: 

Please contact your data collection supervisor or Sebastian Sigloch (PhD Student ARU) via 
sebsigloch@icloud.com or +41799276112 for any question related to this data collection.  
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Ethical Considerations, Reliability, Validity and Generalisability 

Ethical Considerations 
The Ethical approval for this dissertation is obtained from the Research Ethics Sub-

Committee at Anglia Ruskin University. The primary traceroute data collection took 

place outside the European Economic Area (EEA) and complied with the laws of India. 

The collected traceroute data, obtained in Tamil Nadu, India, was transferred back to 

Italy in the European Economic Area (EEA), where it was cached and subsequently 

transferred via email to the data collector in the United Kingdom. The collected primary 

data neither incorporated any personal information, nor specifically traceable end-user 

data, since all traceroute measurements were collecting randomly chosen (from the 

Portolan (2015) server) network connection destinations. This data collection complies 

with both the rules of the European Economic Area (EEA) and the UK Data Protection 

Act from 1998.  

Reliability 
The different steps of our warranted assertation inquiry always tested the collected 

traceroute hop observations from the same upstream Internet market structural 

perspective, representing the primary interest in our single case study design. Hence, our 

strategy showed a consistent internal reliability. Furthermore, all steps of the Complex 

and Statistical Network Analysis were double-checked, demonstrating test-retest 

reliability. Since our network measurements assessed the construct that we intended to 

study, our research shows face validity. By evaluating the outcomes of our case study, we 

provided in-depth information on how well individual Complex Network measurements 

performed when studying the upstream Internet market structures of the three Tamil Nadu 

mobile broadband operators. Therefore, our research also shows formative validity. 

Finally, since all steps of our warranted assertation inquiry can also be repeated by other 

researchers at any time as long as the same datasets and analytical steps as described are 

used, we consider our research to be reliable. 

Pragmatic Validity 
By following a pragmatic paradigm rather than any traditional (post-) positivists or 

constructivist’s philosophy, we encountered pragmatic validity (Worren, Moore and 

Elliott, 2002). When explanatory scientists drive experiments in controlled laboratories, 

variables can be minimalized and evaluated against internal validity. When looking at 
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exploratory and pragmatic research, some researchers such as Collins, Joseph and 

Bielaczuc (2004) refer to the ‘messy situations’ of real-life, where independent variables 

(covariates) can neither be minimised, nor entirely accounted for. Since our case study 

represents the modelled realities of real-world Internet structures at different levels of 

granularity (Internet Protocol and Autonomous System granularity), the complex nature 

of real-life intervention means that the effect of some interventions of our abducted 

Working Hypotheses is conclusively linkable to the cause itself. However, as pragmatist 

researchers, we are looking at causal effects through a different perspective based on 

Working Hypotheses. Therefore, our research aims to bring about real-world problem-

solving and valuable research artefacts to be used in practice and policy. According to 

Nowotny (2003), knowledge is considered socially robust when validated by a 

multidisciplinary community of practice. Parts of this dissertation's methodology 

followed the peer-reviewed pilot experiment by Giovannetti and Sigloch (2015), 

resulting, at least partially, in socially robust knowledge. 

Generalisability 
Case study designs are often referred to as having a low generalisability, especially when 

working with a single case strategy. However, according to Ragin (1992) and Flyvbjerg 

(2006), it greatly depends upon the strategic choice of the case one is speaking of. Our 

research aims and objectives clarified the need for a deeper understanding of the given 

problems and the importance of understanding their consequences in a real-life context. 

Therefore, our strategic choice of case study design and the careful selection of the case 

study object and its subjects were chosen in order to better understand the upstream 

Internet market structures present in a lower-middle income country such as India. The 

political scientist Eckstein (2000) asserted that case studies are ‘valuable at all stages of 

the theory-building process, but most valuable at that stage of theory building where least 

value is generally attached to them: the stage at which candidate theories are tested’. 

Therefore, considering our aim to achieve an in-depth insight into the given phenomena 

of structural bottlenecks in the upstream Internet market structure, our pragmatic validity 

and our strategic choice for a single case selection with three subjects and different 

exploratory-quantitative research methods, provides a great transferability but no 

generalisability to the wider population, see also section 7.4. 
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Number of observations by originating Autonomous System 

Number of observations by originating AS 

# 

Organisational Name, 
Source: Hurricane Electric 
(2016), (Autonomous 
System Number) 

Number of 
observations in the 
primary collected 
traceroute hop 
observations	

Percentage of 
observations 
commencing from 
originating Autonomous 
System.  	

1 Citycom Networks Pvt. 
Ltd., (AS10029)	 556,043 76.04% 

2 
C48 Okhla Industrial 
Estate, Vodafone India Ltd., 
(AS55410) 

51,985 7.11% 

3 
Vodafone Essar Ltd. 
Telecommunication, 
(38266) 

30,633 4.19% 

4 Tata Communications 
(formely VSNL), (AS4755) 27,781 3.80% 

5 
Bharti Airtel Ltd. 
Telemedia Services, 
(AS24560) 

21,707 2.97% 

6 BSNL (Bharat Sanchar 
Nigam Ltd.), (AS9829) 20,037 2.74% 

7 Broadband Pacenet Pvt. 
Ltd. (AS23682) 10,567 1.45% 

8 Aircel Ltd., (AS55831) 4,749 0.65% 

9 Idea Cellular Ltd., 
(AS45271) 3,862 0.53% 

10 PT Quasar Jaringan 
Mandiri, (AS56247) 2,521 0.34% 

11 Bharti Airtel Ltd., 
(AS45609) 956 0.13% 

12 Reliance Communications 
Ltd., (AS18101) 359 0.05% 

Total 731,200 100% 

Key 
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AS: Autonomous System. 

Table 9-6: Number of observations by originating Autonomous System. 
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Power-law degree distributions using R 

Aircel power-law degree distribution using R (2016) 

#Assign library 
library("poweRlaw") 

#read distribution from text file 
data<-read.table(file="Dissertation/Aircel_degree_distribution.txt", header=(TRUE) 

head(data) 
#define plaw variable 

plaw <- conpl$new(data$Degree) 
#define est variable 

est <- estimate_xmin (plaw) 
#generate power-law distribution 

plaw$setXmin(est) 
#plot power-law distribution 

plot(plaw, sub="Strength Distribution", xlab="k", ylab="P(k)") 
legend (x=35, y=0.5, c("degree observations"), col=c("black", "red"), pch=c(1,3)) 

lines (plaw, col=2, lwd=3) 
lines (plaw, col="red", lwd=2) 

#copy distribution as png file and exit 
dev.copy(png, “Aircel_degree_distribution.png”) 

dev.off() 

Table 9-7: Aircel degree distribution using R (2016). 
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k-core decomposition using R 

Aircel k-core decomposition using R (2016) 

#Assign igraph librabry 
library(igraph) 

#Read csv file without headers, (note: file-path of the *.csv file might vary) 
data=read.csv(file="/Dissertation/Step3/Aircel/k-core 
decomposition/AS55831_Aircel_for_R.csv",header=FALSE) 
#generate matrix from data  

matrix=as.matrix(data) 
#assign the edgelist to the variable network.  

network=graph.edgelist(matrix, directed = TRUE) 
#define coreness variable  

coreness(network, mode = c("all", "out", "in")) 
#define coreness layout and run algorithm 

CorenessLayout <- function(g) { 
coreness <- graph.coreness(g); 

xy <- array(NA, dim=c(length(coreness), 2)); 
shells <- sort(unique(coreness)); 

for(shell in shells) { 
v <- 1 - ((shell-1) / max(shells)); 

nodes_in_shell <- sum(coreness==shell); 
angles <- seq(0,360,(360/nodes_in_shell)); 

angles <- angles[-length(angles)]; # remove last element 
xy[coreness==shell, 1] <- sin(angles) * v; 

xy[coreness==shell, 2] <- cos(angles) * v; 
} 

return(xy); 
} 

#assign the coreness variable with the coreness of the imported network  
coreness <- graph.coreness(network); 

#assign colouring scheme 
colbar <- rainbow(max(coreness)); 

#define kcoredecomposition to be the network layout 
kcoredecomposition <- CorenessLayout(network); 

#plot the graph, (note: file-path of the plot might vary) 
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plot(network,layout=kcoredecomposition,vertex.size=5,vertex.color=colbar[coreness]
, vertex.label = ifelse(coreness > 10, V(network)$name, NA)) 

dev.copy(png, “Aircel_kcore_decomposition.png”) 
dev.off() 

Table 9-8: Aircel k-core decomposition using R (2016). 
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AS Numbers and Organisational Names 

AS Numbers and Organisational Names for originating Autonomous System 
Numbers (including Wi-Fi originating connections) 

# Autonomous System 
Number 	

Organisational Name of the Autonomous System 
(Maxmind, 2015) 	

1 AS10029	 Citycom Networks Pvt. Ltd.	

2 AS18101	 Reliance Communications Ltd.	

3 AS23682	 Broadband Pacenet Pvt. Ltd.	

4 AS24560	 Bharti Airtel Ltd. Telemedia Services	

5 AS38266	 Vodafone Essar Ltd. Telecommunication	

6 AS45271	 Idea Cellular Ltd.	

7 AS45609	 Bharti Airtel Ltd. AS for GPRS Service	

8 AS4755	 TATA Communications formerly VSNL	

9 AS55410	 C48 Okhla Industrial Estate, Vodafone India Ltd.	

10 AS55831	 Aircel Ltd.	

11 AS56247	 PT Quasar Jaringan Mandiri 

12 AS9829 BSNL National Internet Backbone 

Key 

AS: Autonomous System 

Table 9-9: Autonomous System Numbers and Organisational Names, Source: Maxmind 

(2015). 
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Autonomous System Route Propagations 

Figure 9-1: Aircel AS55831 Route Propagation, Source: Hurricane Electric (2016). 

Figure 9-2: Bharti Airtel AS45609 Route Propagation, Source: Hurricane Electric 

(2016). 
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Figure 9-3: Vodafone AS38266 Route Propagation, Source: Hurricane Electric (2016). 

 
Figure 9-4: Bharti Airtel AS9498 Route Propagation, Source: Hurricane Electric (2016). 
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Figure 9-5: China Education and Research Network Center AS4538 Route Propagation, 

Source: Hurricane Electric (2016). 

 
Figure 9-6: Cable and Wireless Worldwide plc. AS1273 Route Propagation, Source: 

Hurricane Electric (2016). 
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Figure 9-7: Tata Communications (formerly VSNL) AS4755 Route Propagation, Source: 

Hurricane Electric (2016).  
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Stata Do-Files 

Stata do-file Model 1 and Model 2 

Stata do-file Model 1 and Model 2 

*Load Dataset (file location might change)
use "/Users/sigloch/Thesis_Files/Inquiry Iteration 8 - Statistical Testing of Working 
Hypotheses/base_data/data.dta" 

/* START DESCRIPTIVE STATISTICS */ 
*Descriptive statistics for the variables

summarize woutd winde clus eige

*Detailed descriptive statistics for the variables
summarize woutd winde clus eige, detail

* => Data shows skew and non-normal distributions for woutd and eige.

*generate histograms for dependent and independent variables
histogram woutd, frequency normal title (Weighted Out-Degree distribution)

histogram winde, frequency normal title (Weighted In-Degree distribution)

*Two-way scatter-plot and correlation Weighted Out-Degree and Weighted In-
Degree

scatter winde woutd, title(Scatter plot winde woutd) subtitle(Total observations) 
corr winde woutd 

*Operator based two-way scatter-plots Weighted Out-Degree and Weighted In-
Degree
scatter winde woutd if prov==1, title(Scatter plot winde woutd) subtitle(Aircel) 

corr winde woutd if prov==1 
scatter winde woutd if prov==2, title(Scatter plot winde woutd) subtitle(Bharti Airtel) 

corr winde woutd if prov==2 
scatter winde woutd if prov==3, title(Scatter plot winde woutd) subtitle(Vodafone) 

corr winde woutd if prov==3 

*Histogram of Clustering Coefficient and Eigenvector Centrality.
histogram clus, frequency normal title (Clustering Coefficient distribution)
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histogram eige, frequency normal title (Eigenvector Centrality distribution) 
 

*generate ln-transformed variables 
gen lwoutd = ln(woutd) 

gen lwinde = ln(winde) 
gen leige = ln(eige) 

gen lclus = ln(clus) 
 

*Descriptive statistics for the ln-transformed variables 
summarize lwoutd lwinde lclus leige 

 
*Detailed descriptive statistics for the ln-transformed variables 

summarize lwoutd lwinde lclus leige, detail 
 

*Descriptive statistics Aircel 
summarize lwoutd lwinde lclus leige if prov == 1 

 
*Descriptive statistics Bharti Airtel 

summarize lwoutd lwinde lclus leige if prov == 2 
 

*Descriptive statistics Vodafone 
summarize lwoutd lwinde lclus leige if prov == 3 

 
*Operator based two-way scatter-plots Ln(Weighted Out-Degree )and Ln(Weighted 
In-Degree) 
twoway (scatter lwinde lwoutd) (lfit lwinde lwoutd), title (Twoway lwinde lwoutd 
with lfit) 
corr lwinde lwoutd 
twoway (scatter lwinde lwoutd if prov==1) (lfit lwinde lwoutd), title (Aircel Twoway 
lwinde lwoutd with lfit) 

corr lwinde lwoutd if prov==1 
twoway (scatter lwinde lwoutd if prov==2) (lfit lwinde lwoutd), title (Bharti Airtel 
Twoway lwinde lwoutd with lfit) 
corr lwinde lwoutd if prov==2 
twoway (scatter lwinde lwoutd if prov==3) (lfit lwinde lwoutd), title (Vodafone 
Twoway lwinde lwoutd with lfit)  

corr lwinde lwoutd if prov==3 
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*generate histograms for ln-transformed dependent and independent variables 

histogram lwoutd, frequency normal title (Ln(Weighted Out-Degree) distribution) 
histogram lwinde, frequency normal title (Ln(Weighted In-Degree) distribution)  

histogram lclus, frequency normal title (Ln(Clustering Coefficient) distribution) 
histogram leige, frequency normal title (Ln(Eigenvector Centrality) distribution)  

 
/* START FUNCTIONAL FORM SPECIFICATION CHECK MODEL 1 */ 

 
*Lin-Lin Regression without displaying results 

regress woutd clus eige 
 

*Lin-Log Regression 
regress woutd lclus leige 

 
*Log-Lin Regression 

regress lwoutd clus eige 
 

*Log-Log Regression 
regress lwoutd lclus leige 

 
*Test Linear Variable Relationships Model 1 

twoway (scatter lclus lwoutd) (lfit lclus lwoutd), title (Twoway lclus lwoutd with lfit) 
corr lclus lwoutd 

twoway (scatter leige lwoutd) (lfit leige lwoutd), title (Twoway leige lwoutd with lfit) 
corr leige lwoutd 

 
twoway (scatter lclus lwoutd) (lfit lclus lwoutd), by(prov) title (Twoway lclus lwoutd 
with lfit by prov) 
twoway (scatter leige lwoutd) (lfit leige lwoutd), by(prov) title (Twoway leige lwoutd 
with lfit by prov) 
 

/* START FUNCTIONAL FORM SPECIFICATION CHECK MODEL 2 */ 
 

*Lin-Lin Regression without displaying results 
regress winde clus eige 
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*Lin-Log Regression 

regress winde lclus leige 
 

*Log-Lin Regression 
regress lwinde clus eige 

 
*Log-Log Regression 

regress lwinde lclus leige 
 

*Test Linear Variable Relationships Model 2 
twoway (scatter lclus lwinde) (lfit lclus lwinde), title (Twoway lclus lwinde with lfit) 

corr lclus lwinde 
 

twoway (scatter leige lwinde) (lfit leige lwinde), title (Twoway leige lwinde with lfit) 
corr leige lwinde 

 
twoway (scatter lclus lwinde) (lfit lclus lwinde), by(prov) title (Twoway lclus lwinde 
with lfit by prov) 
twoway (scatter leige lwinde) (lfit leige lwinde), by(prov) title (Twoway leige lwinde 
with lfit by prov) 
 

/* ECONOMETRIC MODEL 1 Ln(Weighted Out-Degree) BY PROVIDER */ 
 

/* AIRCEL */ 
*Normal Regression for Aircel 

regress lwoutd lclus leige if prov == 1 
 

*Heteroskedasticity test 
hettest 

 
*Robust Regression for Aircel 

regress lwoutd lclus leige if prov == 1, vce(robust) 
 

*Ramsey RESET test 
ovtest 
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*Testing Variables due to omitted variable bias 

regress lclus leige if prov == 1 
regress lwoutd lclus if prov == 1 

regress lwoutd leige if prov == 1 
 

*Generate independent variables at 2nd power to check omitted variables 
gen lclus2 = lclus^2 

gen leige2 = leige^2 
 

*Test Model at 2nd power 
regress lwoutd lclus leige lclus2 leige2 if prov == 1, vce(robust) 

 
*Ramsey RESET test 

ovtest 
 

*Generate independent variables at 3rd power to check omitted variables 
gen lclus3 = lclus^3 

gen leige3 = leige^3 
 

*Test Model at 3rd power 
regress lwoutd lclus leige lclus2 leige2 lclus3 leige3 if prov == 1, vce(robust) 

 
*Ramsey RESET test 

ovtest 
 

*Drop generated variables of 2nd and 3rd power.  
drop lclus2 

drop leige2 
drop lclus3 

drop leige3 
 

*Quietly rerun initial regression 
quietly regress lwoutd lclus leige if prov == 1, vce(robust) 

 
*Variance Inflation Factors Test 
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vif 
 

*Calculate the error term for the residual 
predict saircel, residual 

*Generate Histogram for the residual distribution  
histogram saircel, frequency normal title (Aircel residual distribution Model 1) note 
("Source: Elaborated by the author of this dissertation in using Stata (2016).") 
 

/* BHARTI AIRTEL */ 
*Normal Regression for Bharti Airtel 

regress lwoutd lclus leige if prov == 2 
 

*Heteroskedasticity test 
hettest 

 
*Robust Regression for Bharti Airtel 

regress lwoutd lclus leige if prov == 2, vce(robust) 
 

*Ramsey RESET test 
ovtest 

 
*Testing Variables due to omitted variable bias 

regress lclus leige if prov == 2 
regress lwoutd lclus if prov == 2 

regress lwoutd leige if prov == 2 
 

*Generate independent variables at 2nd power to check omitted variables 
gen lclus2 = lclus^2 

gen leige2 = leige^2 
 

*Test Model at 2nd power 
regress lwoutd lclus leige lclus2 leige2 if prov == 2, vce(robust) 

 
*Ramsey RESET test 

ovtest 
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*Generate independent variables at 3rd power to check omitted variables 
gen lclus3 = lclus^3 

gen leige3 = leige^3 
 

*Test Model at 3rd power 
regress lwoutd lclus leige lclus2 leige2 lclus3 leige3 if prov == 2, vce(robust) 

 
*Ramsey RESET test 

ovtest 
 

*Drop generated variables of 2nd and 3rd power.  
drop lclus2 

drop leige2 
drop lclus3 

drop leige3 
 

*Quietly rerun initial regression 
quietly regress lwoutd lclus leige if prov == 2, vce(robust) 

 
*Variance Inflation Factors Test 

vif 
 

*Calculate the error term for the residual 
predict sbhartiairtel, residual 

*Generate Histogram for the residual distribution  
histogram sbhartiairtel, frequency normal title (Bharti Airtel residual distribution 
Model 1) note ("Source: Elaborated by the author of this dissertation in using Stata 
(2016).") 

 
/* Vodafone */ 

*Normal Regression for Bharti Airtel 
regress lwoutd lclus leige if prov == 3 

 
*Heteroskedasticity test 

hettest 
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*Robust Regression for Bharti Airtel 
regress lwoutd lclus leige if prov == 3, vce(robust) 

 
*Ramsey RESET test 

ovtest 
 

*Variance Inflation Factors Test 
vif 

 
*Calculate the error term for the residual 

predict svodafone, residual 
*Generate Histogram for the residual distribution  
histogram svodafone, frequency normal title (Vodafone residual distribution Model 1) 
note ("Source: Elaborated by the author of this dissertation in using Stata (2016).") 

 
*Drop generated variables for residual distribution 

drop saircel 
drop sbhartiairtel 

drop svodafone 
 

/* ECONOMETRIC MODEL 2 (Weighted In-Degree) BY PROVIDER */ 
 

/* AIRCEL */ 
*Normal Regression for Aircel 

regress lwinde lclus leige if prov == 1 
 

*Heteroskedasticity test 
hettest 

 
*Robust Regression for Aircel 

regress lwinde lclus leige if prov == 1, vce(robust) 
 

*Ramsey RESET test 
ovtest 

 
*Testing Variables due to omitted variable bias 
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regress lclus leige if prov == 1 
regress lwinde lclus if prov == 1 

regress lwinde leige if prov == 1 
 

*Independent variables at 2nd power to check omitted variables already created 
gen lclus2 = lclus^2 

gen leige2 = leige^2 
 

*Test Model at 2nd power 
regress lwinde lclus leige lclus2 leige2 if prov == 1, vce(robust) 

 
*Ramsey RESET test 

ovtest 
 

*Generate independent variables at 3rd power to check omitted variables 
gen lclus3 = lclus^3 

gen leige3 = leige^3 
 

*Test Model at 3rd power 
regress lwinde lclus leige lclus2 leige2 lclus3 leige3 if prov == 1, vce(robust) 

 
*Ramsey RESET test 

ovtest 
 

*Drop generated variables of 2nd and 3rd power.  
drop lclus2 

drop leige2 
drop lclus3 

drop leige3 
 

*Quietly rerun initial regression 
quietly regress lwinde lclus leige if prov == 1, vce(robust) 

 
*Variance Inflation Factors Test 

vif 
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*Calculate the error term for the residual 
predict saircel, residual 

*Generate Histogram for the residual distribution  
histogram saircel, frequency normal title (Aircel residual distribution Model 2) note 
("Source: Elaborated by the author of this dissertation in using Stata (2016).") 
 

/* BHARTI AIRTEL */ 
*Normal Regression for Bharti Airtel 

regress lwinde lclus leige if prov == 2 
 

*Heteroskedasticity test 
hettest 

 
*Robust Regression for Bharti Airtel 

regress lwinde lclus leige if prov == 2, vce(robust) 
 

*Ramsey RESET test 
ovtest 

* => omitted variable bias 
 

*Testing Variables due to omitted variable bias 
regress lclus leige if prov == 2 

regress lwinde lclus if prov == 2 
regress lwinde leige if prov == 2 

 
*Generate independent variables at 2nd power to check omitted variables 

gen lclus2 = lclus^2 
gen leige2 = leige^2 

 
*Test Model at 2nd power 

regress lwinde lclus leige lclus2 leige2 if prov == 2, vce(robust) 
 

*Ramsey RESET test 
ovtest 

 
*Generate independent variables at 3rd power to check omitted variables 
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gen lclus3 = lclus^3 
gen leige3 = leige^3 

 
*Test Model at 3rd power 

regress lwinde lclus leige lclus2 leige2 lclus3 leige3 if prov == 2, vce(robust) 
 

*Ramsey RESET test 
ovtest 

 
*Drop generated variables of 2nd and 3rd power.  

drop lclus2 
drop leige2 

drop lclus3 
drop leige3 

 
*Quietly rerun initial regression 

quietly regress lwinde lclus leige if prov == 2, vce(robust) 
 

*Variance Inflation Factors Test 
vif 

 
*Calculate the error term for the residual 

predict sbhartiairtel, residual 
*Generate Histogram for the residual distribution  
histogram sbhartiairtel, frequency normal title (Bharti Airtel residual distribution 
Model 2) note ("Source: Elaborated by the author of this dissertation in using Stata 
(2016).") 
 

/* Vodafone */ 
*Normal Regression for Bharti Airtel 

regress lwoutd lclus leige if prov == 3 
 

*Heteroskedasticity test 
hettest 

 
*Robust Regression for Bharti Airtel 
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regress lwinde lclus leige if prov == 3, vce(robust) 
 

*Ramsey RESET test 
ovtest 

 
*Testing Variables due to omitted variable bias 

regress lclus leige if prov == 3 
regress lwinde lclus if prov == 3 

regress lwinde leige if prov == 3 
 

*Variance Inflation Factors Test 
vif 

 
*Calculate the error term for the residual 

predict svodafone, residual 
*Generate Histogram for the residual distribution  
histogram svodafone, frequency normal title (Vodafone residual distribution Model 2) 
note ("Source: Elaborated by the author of this dissertation in using Stata (2016).") 

 
*Drop generated variables for residual distribution 

drop saircel 
drop sbhartiairtel 

drop svodafone 
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Stata do-file Model 3.1 and Model 3.2 

Stata do-file Model 3.1 and Model 3.2 

*Import Data Model 3 

import delimited /Users/sigloch/Desktop/Model3.csv 
 

*DESCRIPTIVE STATISTICS* 
 

*Descriptive statistics for the variables 
summarize 

 
*Descriptive statistics Aircel 

summarize if prov == 1 
 

*Descriptive statistics Bharti Airtel 
summarize if prov == 2 

 
*Descriptive statistics Vodafone 

summarize if prov == 3 
 

*Scatter Diagram Price Datainmb 
twoway (scatter price datainmb) (lfit price datainmb), by(prov) title (Twoway price 
datainmb with lfit by prov) 
*Scatter Diagram d_lclus priceper 
twoway (scatter lclus_hat pricepermb) (lfit lclus_hat pricepermb), by(prov) title 
(Twoway lclus_hat pricepermb with linear fit by prov) 

*Scatter Diagram d_leige priceper 
twoway (scatter leige_hat pricepermb) (lfit leige_hat pricepermb), by(prov) title 
(Twoway leige_hat pricepermb with linear fit by prov) 
 

*Histogram Price Distribution 
histogram price, by(prov) normal title (Price distribution) 

 
*Histogram Data in MB Distribution 

histogram datainmb, by(prov) normal title (Data in MB distribution) 
 

*Histogram Price-Performance Distribution 
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histogram pricepermb, by(prov) normal title (Price per MB distribution per provider) 
 

*Histogram Validity in Days Distribution 
histogram vin, by(prov) normal title (Validity in Days distribution per provider) 

 
*SPECIFICATION OF MODEL 3* 

 
*SPECIFICATION OF MODEL 3.1* 

*generate ln-transformed pricepermb 
gen lpricepermb = ln(pricepermb) 

 
*Histogram Price-Performance Distribution 
histogram lpricepermb, by(prov) normal title (LN(Price per MB distribution per 
provider)) 

 
*Regression Lclus 

regress lpricepermb lclus_hat  
*Heteroskedasticity test 

hettest 
 

*Ramsey RESET test 
ovtest 

 
*Calculate the error term for the residual 

predict sprice, residual 
*Generate Histogram for the residual distribution  

histogram sprice, frequency normal title (Residual distribution Model 3.1) 
*Drop error term of the residual 

drop sprice 
 

*SPECIFICATION OF MODEL 3.2* 
*Regression 

regress lpricepermb leige_hat  
*Heteroskedasticity test 

hettest 
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*Ramsey RESET test 
ovtest 

 
*Calculate the error term for the residual 

predict sprice, residual 
*Generate Histogram for the residual distribution  

histogram sprice, frequency normal title (Residual distribution Model 3.2) 
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Stata do-file Model 4 

Stata do-file Model 4 

 

*Import Data Model 4 
import delimited /Users/sigloch/Desktop/Model4.csv 

 
*Descriptive statistics for the variables 

summarize 
 

*Descriptive statistics Aircel 
summarize if prov == 1 

 
*Descriptive statistics Bharti Airtel 

summarize if prov == 2 
 

*Descriptive statistics Vodafone 
summarize if prov == 3 

 
*Scatter Diagram Price Datainmb 
twoway (scatter price datainmb) (lfit price datainmb), by(prov) title (Twoway price 
datainmb with lfit by prov) 

*Scatter Diagram d_lclus priceper 
twoway (scatter c_lclus pricepermb) (lfit c_lclus pricepermb), by(prov) title (Twoway 
c_lclus pricepermb with lfit by prov) 
*Scatter Diagram d_leige priceper 
twoway (scatter c_leige pricepermb) (lfit c_leige pricepermb), by(prov) title 
(Twoway c_leige pricepermb with lfit by prov) 

 
*Histogram Price Distribution 

histogram price, by(prov) normal title (Price distribution) 
 

*Histogram Data in MB Distribution 
histogram datainmb, by(prov) normal title (Data in MB distribution) 

 
*Histogram Price-Performance Distribution 

histogram pricepermb, by(prov) normal title (Price per MB distribution per provider) 
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*Histogram Validity in Days Distribution 

histogram vin, by(prov) normal title (Validity in Days distribution per provider) 
 

gen lpricepermb = ln(pricepermb) 
 

*Regression 
regress lpricepermb lclus_hat leige_hat vin 

*Heteroskedasticity test 
hettest 

 
*Ramsey RESET test 

ovtest 
* => omitted variables bias 

 
*Multicollinearity 

vif 
 

*Calculate the error term for the residual 
predict sprice, residual 

*Generate Histogram for the residual distribution  
histogram sprice, frequency normal title (Residual distribution Model 4) 
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Stata do-file Quality of Service Correlation 

Correlation do-file 

import delimited "/Users/sigloch/Thesis_Files/Inquiry Iteration 8 - Statistical Testing 
of Working Hypotheses/data/Model6/Model6.csv", delimiter(comma) varnames(1) 
case(preserve)  

*summarize the findings
summarize

*corr variables
corr c_lclus_m1 c_leige_m1 c_lclus_m2 c_leige_m2 c_loweige sprov trans_d trans_u 
speed_d throughput latency pdp drop_rate 
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Additional Graph Visualisations 

Figure 9-8: 'The Eye' - Total 731,200 observations at IP granularity using the Barábasi-

Albert Standard Model with thick edges, elaborated using Gephi (2016). 
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