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ABSTRACT 8 

Reliability, risk and resilience are strongly related concepts and have been widely utilised in 9 

the context of water infrastructure performance analysis. However, there are many ways in 10 

which each measure can be formulated (depending on the reliability of what, risk to what 11 

from what, and resilience of what to what) and the relationships will differ depending on the 12 

formulations used. This research has developed a framework to explore the ways in which 13 

reliability, risk and resilience may be formulated, identifying possible components and 14 

knowledge required for calculation of each and formalising the conceptual relationships 15 

between specified and general resilience. This utilises the Safe & SuRe framework, which 16 

shows how threats to a water system can result in consequences for society, the economy and 17 

the environment, to enable the formulations to be derived in a logical manner and to ensure 18 

consistency in any comparisons. The framework is used to investigate the relationship 19 

between levels of reliability, risk and resilience provided by multiple operational control and 20 

design strategies for an urban wastewater system case study. The results highlight that, 21 

although reliability, risk and resilience values may exhibit correlations, designing for just one 22 
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is insufficient: reliability, risk and resilience are complementary rather than interchangeable 23 

measures and one cannot be used as a substitute for another. Furthermore, it is shown that 24 

commonly used formulations address only a small fraction of the possibilities and a more 25 

comprehensive assessment of a system’s response to threats is necessary to provide a 26 

comprehensive understanding of risk and resilience. 27 

Keywords: integrated urban wastewater system, reliability, risk, resilience, Safe&SuRe, 28 

water quality. 29 

1 INTRODUCTION 30 

Reliability and risk have been widely used as the primary criterion in water infrastructure 31 

design and operation. Conventional design aims to provide a high degree of reliability (Butler 32 

et al. 2016) and risk analysis is commonly used to address the response to threats. However, 33 

there are limitations to risk assessment:  not all risks can be quantified due to the existence of 34 

emerging and unobserved threats (Park et al. 2013), unforeseeable threats cannot be included, 35 

and highly improbable events which have a high degree of uncertainty are dealt with poorly. 36 

Only threats which are known and can be assigned a probability can be analysed, so 37 

calculated risk depends on what is and is not known (Kaplan and Garrick 1981). In recent 38 

years, the resilience concept has evolved and is beginning to be incorporated in the design 39 

and operation of various water systems, sometimes in combination with risk and reliability 40 

(Asefa et al. 2014, Hoque et al. 2012).  However, the relative importance of these three terms, 41 

their interdependencies and their impact on system performance are currently poorly 42 

understood. 43 

Reliability, risk and resilience are strongly related concepts (Scholz et al. 2011) and the 44 

relationship between reliability and risk has been well developed in the context of 45 

infrastructure performance analysis. There have also been more recent studies into 46 
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relationships with resilience. The US Department of Homeland Security (2010), for example, 47 

comprehensively studied risk and resilience relationships (qualitatively and quantitatively), 48 

by generating a risk-resilience matrix and adopting of mathematical methods to identify 49 

influencing factors in a system. The ETH Zürich Centre for Security Studies (2011) 50 

conceptualized the risk and resilience relationship using three different perspectives that have 51 

been implicitly adopted in several subsequent studies: a) considering resilience ‘as a goal of 52 

risk management’ (Ongkowwijoyo and Doloi 2018, Serre and Heinzlef 2018); b) considering 53 

it ‘as part of risk management’ (Hoque et al. 2012, Kammouh et al. 2017, Mitchell and Harris 54 

2012b, Shafieezadeh and Burden 2014); and c) considering it ‘as an 55 

alternative/complementary to risk management’ (Homeland Security Studies & Analysis 56 

Institute 2010, Joyce et al. 2018, Kammouh et al. 2017, Park et al. 2012). The latter argues 57 

that risk and resilience are differentiable concepts but interrelated, complementary, mutually 58 

reinforcing and could be coupled to improve adaptive capacity of engineering systems.  59 

Whilst risk and resilience have previously been compared conceptually (e.g. Aven 2011, 60 

Baum 2015), there are many ways in which each term can be formulated (depending on the 61 

reliability of what, risk to what from what, and resilience of what to what) and the 62 

relationships will differ depending on the formulations used. It is recognised that resilience, 63 

for example, can exist at different scales, time periods and systems, and there may be trade-64 

offs between these which are key to the assessment and management of resilience (Chelleri et 65 

al. 2015). However, the multiple different ways in which resilience can be formulated have 66 

not previously been formalised. Risk has previously been decomposed using a matrix 67 

approach to show the links between multiple ‘initiating events’, intermediate states and final 68 

damage states (Kaplan et al. 1983), but analysis of specific formulations was not carried out. 69 

The current lack of understanding of all the ways in which reliability, risk and resilience can 70 
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be formulated within the same framework poses a barrier to a comprehensive understanding 71 

of their relationships and comparison on a like-for-like basis. 72 

Urban wastewater system studies have typically aimed to reduce level of service failures 73 

under design conditions (i.e. increase reliability) (e.g. Juznic-Zonta et al. 2012, Oliveira and 74 

Von Sperling 2008), and there has also been research into risk (e.g. Astaraie-Imani et al. 75 

2012) and resilience (e.g. Matthews 2016, Schoen et al. 2015, Scott et al. 2012) individually. 76 

Resilience analysis can provide additional understanding of wastewater system performance, 77 

provide greater scope than risk analysis and account for a wider range of threats (particularly 78 

those that are low-probability and high-impact). It can also provide greater insight into the 79 

failure characteristics, since it is commonly assumed to be dependent on both the magnitude 80 

and duration of failures (Butler et al. 2016, Mugume et al. 2015). There is also an increasing 81 

interest in building resilience in practice, as evidenced, for example, by the ‘resilience duty’ 82 

imposed in the UK Water Act (HM Government 2014), and the rapid growth in the 83 

publication of papers relating to resilience in a range of fields. 84 

Juan-García et al. (2017) conducted a comprehensive and critical review of the state of the art 85 

in resilience assessment in wastewater systems management and defined future research 86 

directions that will contribute to the operationalisation of resilience; however, the relationship 87 

between risk and resilience and whether, for example, resilience analysis can replace risk 88 

assessment, is still unclear. With respect to reliability, risk and resilience, there is a lack of 89 

studies on wastewater systems that consider all three metrics as separate criteria for design 90 

and operation and explore their relationships both conceptually and quantitatively. Wang and 91 

Blackmore (2012) calculated separate values for each; however, these were for a rainwater 92 

harvesting system and, whilst they were all used to inform the design process, the 93 

relationships between the performance measures was not explored. Other publications 94 

focusing on different water systems have also not evaluated all three metric and/or explored 95 
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their relationships in a quantitative manner. Blackmore and Plant (2008), for example, 96 

discussed the differences between risk management and resilience approaches, but did not 97 

explore these in a case study and did not undertake a quantitative analysis. Reliability was not 98 

discussed. In other studies that have used a case study and provided a quantitative analysis 99 

(e.g. Su et al. 2018), resilience has been considered a component of risk assessment – 100 

separate risk and resilience values have not been computed and risk and resilience have not 101 

been compared. 102 

This paper, therefore, presents an innovative framework to explore the relationships between 103 

reliability, risk and resilience levels provided by multiple operational control and design 104 

options for a case study integrated urban wastewater system (IUWS: sewer catchment, 105 

wastewater treatment plant and receiving river considered as a whole). In this, the multiple 106 

ways in which reliability, risk and resilience can be formulated are captured and formalised in 107 

a single framework for the first time, and the potential advantages or disadvantages of each 108 

formulation are investigated. The framework also reveals the prerequisite knowledge required 109 

for calculations under each formulation, clearly illustrating the differences between what can 110 

be addressed by reliability risk and resilience assessments. This research builds upon the Safe 111 

& SuRe framework (Butler et al. 2016), which shows how threats to a water system can result 112 

in consequences for society, the economy and the environment, to enable the formulations to 113 

be derived in a logical manner and to ensure consistency in any comparisons. 114 

This paper does not aim to quantify the correlations between reliability, risk and resilience in 115 

a general sense (although numerical values specific to the case study are presented and 116 

discussed), as the numerical values will vary depending on the system evaluated. However, 117 

formalisation of the conceptual formulations of each measure illustrates the overlap in what is 118 

addressed by each, as well as the differences. 119 
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The conceptual decomposition of reliability, risk and resilience into all their possible 120 

formulations provided in this study, enables future analyses to be placed within the wider 121 

picture, ensuring that any comparisons are made on a suitable basis and using compatible 122 

formulations. The results also highlight the gaps in many analyses of risk and resilience, 123 

showing that commonly used formulations address only a small fraction of the possibilities. 124 

Means by which a more comprehensive assessment of a system’s response to threats can be 125 

achieved, are also identified.  126 

This research complements the increasing number of projects and initiatives focused on 127 

resilience (including, for example, the ‘100 Resilient Cities’ initiative (Rockefeller 128 

Foundation 2018), the EU-funded IMPROVER (IMPROVER 2018) and RESILENS 129 

(RESILENS 2018) projects, the EPSRC-funded BRIM network (BRIM 2018), and the 130 

‘Resilience Shift’ project funded by Lloyd’s Register Foundation (Resilience Shift 2018)) 131 

and contributes to the rapidly growing body of research in this field. The proposed 132 

methodology could also be applied to other types of integrated systems analysis (e.g. water, 133 

energy, food, waste, climate etc.) and contribute to future developments in these areas. 134 

2 MATERIALS AND METHODS 135 

2.1 Formulating reliability, risk and resilience in the Safe & SuRe framework 136 

For reliability, risk and resilience to be fully defined, it is necessary to specify ‘reliability of 137 

what’, ‘risk to what from what’ and ‘resilience of what’ (or ‘resilience of what to what’), i.e. 138 

where the failure and causal event characteristics are measured. This study builds upon the 139 

Safe & SuRe framework, as illustrated in Figure 1, to show the potential failures and their 140 

causal events. There are many options and combinations that can be chosen, and all are 141 

identified before selection of a set that enables comparable reliability, risk and resilience 142 

values to be calculated for the case study IUWS. 143 
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In the Safe & SuRe framework, ‘threats’ are stresses or shocks which may affect the system 144 

infrastructure (e.g. a storm event) and can be reduced by mitigation measures; ‘impacts’ are 145 

the effects on level of service resulting from system failures (e.g. pump failure) and may be 146 

reduced with adaptation measures; and ‘consequences’ are the effects on society, the 147 

economy and the environment resulting from the impacts (e.g. eutrophication) and may be 148 

reduced with coping strategies. An ‘event’ which may result in a failure could be a threat, a 149 

system failure or a change in level of service provision (an impact). ‘Failure’ could refer to 150 

the adverse effects of an event on the system (e.g. physical failure of system components), 151 

level of service (i.e. failure to provide the required level of service) or on the society, 152 

economy and environment (i.e. adverse consequences). 153 
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 154 

Figure 1: Potential components of reliability, risk and resilience mapped onto the Safe & 155 

SuRe framework 156 

In the Safe & SuRe framework, threats, system failure states, impacts and consequences are 157 

each presented as a single component; however, these can all be further categorised as 158 

‘known’ or ‘unknown’, depending on whether or not there is knowledge of their potential 159 

existence prior to their occurrence. Known event types include both ‘known knowns’ and 160 

‘known unknowns’, where known knowns are well understood and their characteristics 161 

identified, and known unknowns poorly understood but known to exist (illustrated in Figure 162 
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2). Attempts to quantify known unknowns may be based on past experience but are subject to 163 

uncertainty. Unknowns cannot be characterised since their existence is not recognised. Whilst 164 

their existence has been acknowledged, unknown threats and unknown consequences have 165 

not previously been considered explicitly or in detail in the Safe & SuRe framework (Butler 166 

et al. 2016). Including these two elements in following formulation of reliability, risk and 167 

resilience is an important step forward as it facilitates a detailed understanding of all the 168 

elements that contribute to of reliability, risk and resilience, and shows the interdependencies 169 

between known and unknown threats, (known) system failure modes, (known) impacts and 170 

known and unknown consequences. It also clearly illustrates the challenges in providing a 171 

comprehensive assessment. 172 

 173 

 174 

Figure 2: Known/unknown causal event and failure characteristic matrix; degree of 175 

characterisation indicated refer to the causal event(s), examples relate to the ‘known’ 176 

elements (causal events and/or resultant failures). 177 

Both known and unknown threats (TK and TU) and consequences (CK and CU) exist. 178 

However, it is (reasonably) assumed that, for a well-characterised IUWS, all potential system 179 

failure states (SK) can be identified (i.e. there are no unknowns and the number of knowns is 180 
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finite). All types of potential impact (IK) are also known since these are based on pre-defined 181 

level of service requirements. The interdependencies of these components are shown in 182 

Figure 1: Known system failure states result from both known and unknown threats, known 183 

impacts results from known system failure states only, and known impacts can result in both 184 

known and unknown consequences. 185 

Note that ‘threat’, ‘system failure state’, ‘impact’ and ‘consequence’ refer only to the type of 186 

event, each of which can encompass a range of different magnitude and duration events of 187 

that type. For example, population growth is one potential threat, but this might be 10% or 188 

100%. Although all potential types of system failure and impact are known, their 189 

characteristics are unknown if the cause is not specified: Due to the chain of events (shown in 190 

Figure 1), all consequences, impacts and system failure states are ultimately affected by both 191 

known and unknown threats and hence their characteristics cannot be fully defined. While the 192 

types of impact, for example, are all known, the probability, magnitude and duration of these 193 

in a general sense cannot be determined since they are partly dependent on unknown threats; 194 

it is only possible to determine the probability, magnitude and duration of impacts under 195 

specified system failures and/or specified known threats. 196 

A summary of potential events and failures and their characteristics, as may be considered 197 

components of reliability, risk and resilience, is given in Table 1. Note that knowledge of the 198 

probability distribution function, magnitudes and durations may be incomplete even for 199 

known threats, due to the existence of unknown unknowns. Also, known probabilities cannot 200 

reasonably cover the complete range of event scales that are theoretically possible since there 201 

is likely to be very little data from which a frequency distribution can be derived for 202 

particularly rare events (Wang and Blackmore 2009). Calculation of joint probabilities of two 203 

or more major events occurring simultaneously poses an even greater challenge (Park et al. 204 

2013). 205 
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 206 

 207 

Table 1: Potential reliability, risk and resilience components and their characteristics in a 208 

Safe & SuRe context. Grey shading represents unknown or incalculable failure or causal 209 

event types and characteristics. P denotes probability distribution, mag denotes set of 210 

event/failure magnitudes and dur denotes set of failure or causal event durations. 211 

Failure or causal event type Failure or causal event characteristics 
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Known threats, TK P(TK), mag(TK), dur(TK) 

Unknown threats, TU P(TU), mag(TU), dur(TU) 

Known system failures, SK P(SK), mag(SK), dur(SK) 

Known impacts, IK P(IK), mag(IK), dur(IK) 

Known consequences, CK P(CK), mag(CK), dur(CK) 

Unknown consequences, CU P(CU), mag(CU), dur(CU) 
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Known system failures under specified threat, SK|TK,w P(SK|TK,w), mag(SK|TK,w), dur(SK|TK,w) 

Known impacts under specified threat, IK|TK,w P(IK|TK,w), mag(IK|TK,w), dur(IK|TK,w) 

Known impacts under specified system failure, IK|SK,x P(IK|SK,x), mag(IK|SK,x), dur(IK|SK,x) 

Known consequences under specified threat, CK|TK,w P(CK|TK,w), mag(CK|TK,w), dur(CK|TK,w) 

Known consequences under specified system failure, CK|SK,x P(CK|SK,x), mag(CK|SK,x), dur(CK|SK,x) 

Known consequences under specified impact, CK|IK,y P(CK|IK,y), mag(CK|IK,y), dur(CK|IK,y) 

Unknown consequences under specified threat, CU|TK,w P(CU|TK,w), mag(CU|TK,w), dur(CU|TK,w) 

Unknown consequences under specified system failure, CU|SK,x P(CU|SK,x), mag(CU|SK,x), dur(CU|SK,x) 

Unknown consequences under specified impact, CU|IK,y P(CU|IK,y), mag(CU|IK,y), dur(CU|IK,y) 

 212 

Although many possible formulations of reliability, risk and resilience exist, performance 213 

metrics can only be calculated for those which do not require knowledge of unknown failure 214 

or causal event types or unknown characteristics (probability, magnitude and duration). The 215 
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following sections, therefore, investigate the components and pre-requisite knowledge 216 

required for all formulations possible within the Safe & SuRe framework, to enable 217 

identification of those that can and cannot be calculated (theoretically) and facilitate 218 

investigation into the relationships between reliability, risk and resilience. 219 

2.1.1 Reliability 220 

Reliability (Rel) is defined here as “the degree to which the system minimises level of service 221 

failure frequency over its design life when subject to standard loading” (Butler et al. 2017). It 222 

is typically represented by the probability of success, or probability of a system being in a 223 

non-failure state (Hashimoto et al. 1982, Kjeldsen and Rosbjerg 2004), as in Eq. 1.  224 

��� = 1 − �(	
���
�) Eq. 1 

In order to calculate reliability, it is necessary to specify where the failure state is measured 225 

(i.e. reliability of what). Based on the definition given, this should be the level of service 226 

(impact). However, there are further options (such as reliability of a specific system 227 

component) and, given their common usage, it is useful to identify these too. 228 

Using the Safe & SuRe framework and components identified in Figure 1, reliability can be 229 

formulated in six ways, as detailed in Table 2. Not all reliability measures detailed are useful: 230 

it is unclear what would represent a failure with respect to the society/economy/environment, 231 

and formulations R5 and R6 are unlikely to be used in practice. However, provided failure 232 

limits can be defined, reliability is theoretically calculable using any of the formulations 233 

listed since it addresses only performance under standard loading (i.e. known knowns – any 234 

event which is rare enough to be a known unknown or completely unknown is not considered 235 

standard). 236 
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Table 2: Reliability formulations 237 

Formulation Failure / non-failure state 

assessment 

Description 

R1 Specified system component Reliability of specified system component 

R2 All system components Reliability of system 

R3 Specified impacts Reliability of specified level of service 

provision 

R4 All impacts Reliability of level of service provision 

R5 Specified (known) 

consequences 

Reliability of specified 

society/economy/environment component 

R6 All known consequences Reliability of society/economy/environment 

2.1.2 Resilience 238 

The Safe & SuRe definition of resilience, “the degree to which the system minimises level of 239 

service failure magnitude and duration over its design life when subject to exceptional 240 

conditions” (Butler et al. 2017), is used in this study. This contains two components: failure 241 

magnitude and failure duration. It is not necessary to know what causes the failure (although 242 

it may be specified) since the probability dimension, as used in risk assessment, is not 243 

conventionally included in resilience (Aven 2011). 244 

Resilience can be specified or general. For general resilience – “The resilience of any and all 245 

parts of a system to all kinds of shocks, including novel ones” (Folke et al. 2010) – it is 246 

necessary to specify resilience of what (i.e. where the failure is measured). This encompasses 247 

the response to all future threats, including those which are unknown and unforeseeable. 248 

‘Resilience of an IUWS’, for example, is a measure of the magnitude and duration of effects 249 

on the IUWS resulting from any threat, including those that cannot be foreseen. For specified 250 
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resilience – “resilience of some particular part of a system… to one or more identified kinds 251 

of shocks” (Folke et al. 2010) – resilience of what to what (i.e. where the failure state is 252 

measured and what the causal event considered is) must be specified. An example would be 253 

‘resilience of an IUWS to storm events’, in which the magnitude and duration of the effects 254 

of the storm events on the IUWS determine the resilience value. 255 

Possible points in the Safe & SuRe framework which the failure magnitude and duration may 256 

relate to are shown in the Figure 3. In Figure 3a, the cause of the failure (causal event) is 257 

specified: these formulations, therefore, relate to specified resilience. General resilience uses 258 

the formulations in Figure 3b, since the failures here can result from anything. 259 

Resilience cannot be calculated in formulations in which the magnitude and duration of the 260 

failure are unknown; however, knowledge of the probability of the causal event is not 261 

required. Therefore, resilience can (theoretically) be calculated under twelve different 262 

formulations (S1-S2, S4 and S7-S12 in Figure 3a and G2 and G5-G6 in Figure 3b). 263 

Haimes (2009) argues that general resilience cannot be calculated, since it requires 264 

knowledge of the response to any threat, but this is not always the case. Resilience cannot be 265 

calculated under formulation G3 (resilience of society, economy and the environment), as this 266 

requires knowledge of unknown consequences, and G1 and G4 (resilience of system and 267 

resilience of specified system component) are also incalculable since not all threats which 268 

may cause system failures are known. However, the framework presented illustrates that 269 

general resilience can be calculated through a middle state based analysis, as in G2 and G5, 270 

as both known and unknown threats result in the same known, finite set of system failure 271 

modes. Take, for example, formulation G2, resilience of level of service. This may be 272 

modelled as ‘resilience of level of service to any threat’, which cannot be calculated since not 273 

all threats are known, but also as ‘resilience of level of service to any system failure’, which 274 
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can be calculated as all the modes by which the system may fail are identifiable; what threat 275 

(known or unknown) causes them is irrelevant since, by evaluating all system failure modes, 276 

the potential effects of all threats are captured. Multiple threats can thus be addressed with 277 

analysis of a smaller number of system failure modes. 278 

Traditionally, resilience has focussed on the failure of assets; however, asset failure may not 279 

necessarily affect level of service provision and may be irrelevant from a consumer 280 

perspective (Ofwat 2010). This suggests that, although formulation S1 may be of interest to 281 

the asset owners, an impact or consequence based approach (such as G5 or G6) is of greater 282 

benefit. Similar applies to reliability and risk. 283 

 284 

 285 
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Figure 3: Possible combinations of failure location and causal event in the Safe & SuRe 286 

framework: a) with specified (known) cause of failure, as required for specified risk or 287 

specified resilience; b) with any cause of failure, as required for general risk or general 288 

resilience. Refer to Figure 1 for interpretation of circular framework diagrams. Detailed 289 

descriptions are provided in the Supplementary Information. 290 

2.1.3 Risk 291 

Definitions and use of the term ‘risk’ are inconsistent. Whilst risk is conventionally 292 

calculated as a function of probability and consequence of a given scenario (Kaplan and 293 

Garrick 1981), often in practice the severity of the resultant adverse effects are not accounted 294 

for. Konstantinou et al. (2011), for example, defined risk as the conditional probability of 295 

incurring loss or damage under certain unfavourable circumstances, and in terms of practical 296 

application, the Environment Agency’s flood risk maps (Environment Agency 2018) show 297 

only the probability of flooding (with no indication of severity). Such an approach may be 298 

acceptable when knowledge of the degree of the damage is not required (e.g. if knowing 299 

simply whether or not flooding occurs, irrespective of depth, is sufficient). However, it is also 300 

argued that risk should provide a measure of the potential losses or adverse effects (Scholz et 301 

al. 2011) and it is generally quantified using a function of event frequency and effect 302 

magnitude (Blackmore and Plant 2008); this is the interpretation used in this work. 303 

The following equation, adapted from the typical ‘probability x consequence’ to fit the 304 

terminology of this study, is used here to represent risk. 305 

���� = �(�
��
�	�����) × �
�������(	
���
�) Eq. 2 

In calculation of risk, the casual event probability and failure magnitude could be measured at 306 

different locations: for example, when calculating the risk of a combined sewer overflow 307 
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(CSO) resulting from a storm event,  ‘failure’ could refer to either the occurrence of a CSO or 308 

the occurrence of deterioration in the receiving water body quality; in the case of the former, 309 

the causal event could be considered the storm event, whereas for the latter either the storm 310 

event or the CSO could be considered as the causal event. Hence, for absolute clarity, it is 311 

necessary to specify risk to what from what (i.e. where the effect is measured and the 312 

potential cause of that considered). 313 

For conventional risk calculation, both the probability of the causal event and the magnitude 314 

of its effects (the failure) need to be known and measurable. Accordingly, Figure 3 illustrates 315 

all potential combinations of ‘failure’ and ‘causal event’ within the Safe & SuRe framework 316 

and identifies those which result in a calculable risk formulation. Similarly to resilience, risk 317 

formulations in which a specific causal event is identified may be classified as ‘specified 318 

risk’, and those which address risk from any (known or unknown) event can be classified as 319 

general risk. Risk cannot be calculated in formulations which include unknown threats in the 320 

causal events (i.e. the ‘general’ formulations, G1-G6 in Figure 3b) since, by definition, these 321 

cannot be characterised; this is in contrast to resilience, where it is not necessary to know, for 322 

example, the probability of the events that may result in failures. Similarly, risk cannot be 323 

calculated in formulations that include unknown consequences in the measured failures (i.e. 324 

formulations S3-S6, S9 and S11 in Figure 3a, and G3 in Figure 3b). Furthermore, risk cannot 325 

be calculated if the required causal event probability or failure magnitude is unknown despite 326 

the existence of the causal event or failure type being known (formulations S10 and S12 in 327 

Figure 3a). This leaves five formulations (S1, S2 and S7-S9 in Figure 3a) under which risk 328 

may be calculated in the Safe & SuRe framework. Further details, including equations for 329 

each formulation, are provided in the Supplementary Information. 330 
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2.2 Conceptual relationships 331 

2.2.1 Reliability and risk 332 

There is widely assumed to be a connection between reliability and risk. However, the nature 333 

of this relationship is less clear. Some consider increasing reliability to be analogous to 334 

decreasing risk, for example, with high risk equating to low reliability (Konstantinou et al. 335 

2011). However, others consider reliability a contributor to risk, as it contributes to the 336 

probability of failure, but is not the only component (Zio 2013). This corresponds with the 337 

risk assessment approach of Kjeldsen and Rosbjerg (2004), and suggests that, although 338 

increasing reliability may contribute to a reduction in risk, other factors must also be 339 

considered. 340 

2.2.2 Reliability and resilience 341 

Reliability may be considered a prerequisite and/or a component of resilience (Butler et al. 342 

2017, Francis and Bekera 2014), or alternatively a complementary performance indicator 343 

(e.g. Kjeldsen and Rosbjerg 2004). As for risk, this suggests that increasing reliability may 344 

contribute to efforts to increase resilience but additional measures are also required. 345 

2.2.3 Risk and resilience 346 

Resilience is differentiable from but complementary to risk analysis (Park et al. 2013); 347 

however, there is often overlap and confusion in use of the two terms, and resilience analysis 348 

in practice is commonly based on the concept of risk. The Overseas Development Institute 349 

(Mitchell and Harris 2012a), for example, have published a ‘risk management approach’ to 350 

resilience, and Halcrow (Halcrow 2008) have produced a ‘Service Risk Framework’ for 351 

assessment of resilience. 352 
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Figure 3 highlights the broader scope of resilience assessment: risk can only be calculated 353 

under five of the eighteen possible formulations and cannot account for unknown threats, 354 

whereas resilience can be calculated under nine (including all for which risk can be 355 

calculated). Risk cannot be calculated under formulations S4 and S10-12 (amongst others) 356 

since these require knowledge of probabilities that cannot be determined (P(SK,x) and P(IK,y)); 357 

despite the event type being specified and known in these cases, its probability is not known 358 

as it may occur as a result of unknown threats (the probabilities of which are not known). 359 

Resilience can be calculated under formulations S4 and S10-12, however, since this does not 360 

require knowledge of the probability of the event(s) resulting in failure. 361 

Risk cannot be calculated under the formulations used for general resilience (G2, G5 or G6) 362 

since knowledge of the probability of unknown threats is required in every case. Even if the 363 

probability can be expressed as the probability of infrastructure failure or probability of level 364 

of service failure (as in G6, for example), it is still affected by unknown threats and cannot be 365 

calculated. To be calculable, risk must be specified. General resilience formulations could be 366 

considered more useful for detailed system analysis, since they include a measure of the 367 

response to any threat, including unknowns, but they are also more challenging to calculate 368 

for this very reason. 369 

2.2.4 Reliability, risk and resilience 370 

Based on the definitions and discussion in Section 2.1, the conceptual relationships between 371 

reliability, risk and resilience with respect to the probability and magnitude of events 372 

addressed are presented graphically in Figure 4. Reliability concerns performance under 373 

‘standard loading’, which will typically cover the relatively low magnitude, high probability 374 

events which are expected to occur within the system’s design life. Risk can address more 375 

extreme events with a lower probability and higher magnitude, but still cannot deal with 376 
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events that are considered too unlikely to be assigned a probability with any degree of 377 

certainty or events that cannot be foreseen. Resilience can address the same events as risk 378 

assessment but, as it is not necessary to know the probability, can also consider the system 379 

response to and recovery from much more extreme events (including so called ‘black swans’) 380 

which, although highly unlikely, may occur. 381 

 382 

Figure 4: Conceptual relationships between reliability, risk and resilience with respect to the 383 

probability and magnitude of events addressed 384 

2.3 Integrated urban wastewater system case study 385 

2.3.1 Case study  386 

The case study IUWS used (shown diagrammatically in Figure 5) is a semi-hypothetical 387 

system that was originally presented by Schütze et al. (2002) and has since been the subject 388 

of many studies (e.g. Butler and Schutze 2005, Fu et al. 2008, Zacharof et al. 2004). It 389 

comprises a sewer system, a wastewater treatment plant with an off-line pass through storage 390 

tank at the inlet, and a river (of which 45km is modelled). It was simulated using SIMBA6 391 

(IFAK 2009). It should be noted that, as the model is of a semi-hypothetical system and risk 392 

and resilience assessments are based on the modelling of extreme events, including those that 393 
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have not previously happened, the complete integrated model cannot be calibrated and the 394 

results cannot be validated using data from real events. 395 

Performance evaluation is based on simulation of a seven day rainfall event with a total depth 396 

of 27mm. Dynamic outputs used are the dissolved oxygen (DO) and ammonium 397 

concentrations in the river. Un-ionised ammonium concentration is estimated from the total 398 

ammonium using a conversion factor of 0.0195 (based on a pH of 7.7 and a temperature of 399 

20°C (Schütze et al. 2002). Further details on the IUWS model simulation are given by 400 

Astaraie-Imani (2012). 401 

 402 

Figure 5: Schematic diagram of the semi-hypothetical IUWS case study, with base case dry 403 

weather flows (units m3/d) and tank volumes indicated. SC denotes subcatchment. 404 

Ten operational control and design parameters (detailed in Table 3) are used as decision 405 

variables and sampled using Latin Hypercube Sampling to produce a set of 400 options for 406 

evaluation in this study. These parameters include four sewer storage tank volumes, 407 

maximum pumped outflow from each storage tank (above which CSOs occur), maximum 408 
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flow to the wastewater treatment plant (WWTP) and the WWTP influent threshold triggering 409 

emptying of the storm tank. Upper and lower limits for operational decision variables are 410 

extended beyond those typically considered so as to provide a greater range of reliability, risk 411 

and resilience values. It is recognised that this approach may produce many solutions with 412 

poor performance; however, it should also yield options providing a high level of 413 

performance and it is important that a wide range is captured so as to gain a more complete 414 

picture of the relationships between reliability, risk and resilience. 415 
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Table 3: Operational control and design decision variables DWF denotes base case dry 416 

weather flow in the corresponding subcatchment(s) and DC the WWTP design capacity, as 417 

indicated in Figure 5. 418 

 Decision 

variable 
Description Value range 

D
es

ig
n 

VST2 Storage tank 2 volume increase (%) [0 , 100] 

VST4 Storage tank 4 volume increase (%) [0 , 100] 

VST6 Storage tank 6 volume increase (%) [0 , 100] 

VST7 Storage tank 7 volume increase (%) [0 , 100] 

O
pe

ra
tio

na
l c

on
tr

ol
  

QST2 
Maximum outflow from tank 2 before CSO 

(m3/d) 

[3×DWF1,2
 , 

8×DWF1,2] 

QST4 
Maximum outflowfrom tank 4 before CSO 

(m3/d) 

[3×DWF3,4 , 

8×DWF3,4] 

QST6 
Maximum outflow from tank 6 before CSO 

(m3/d) 
[3×DWF6 , 8×DWF6] 

Qmaxout 
Maximum outflow from tank 7 before CSO 

(m3/d) 
[3×DC , 8×DC] 

Qmaxin Maximum flow to primary clarifier (m3/d) [0.5×DC , 5×DC] 

Qtrig WWTP influent threshold triggering emptying 

of the storm tank (m3/d) 

[4800 , 40800] 

 

2.3.2 Reliability, risk and resilience formulation 419 

In order that reliability, risk and resilience can be compared, it is important that compatible 420 

formulations are used for each. For risk and resilience, formulation S2 (risk to level of service 421 
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from specified threat and resilience of level of service to specified threat) is chosen since this 422 

requires no knowledge of unknowns and can be calculated. For reliability, the corresponding 423 

formulation is R4 (reliability of level of service provision). 424 

All require measures of failure characteristics and must, therefore, consider the same level of 425 

service requirements to be comparable. In all formulations, receiving water quality represents 426 

the level of service and level of service failure is classified as the occurrence of a DO 427 

concentration less than 4 mg/l (Fu et al. 2008) and/or an un-ionised ammonia concentration 428 

greater than 0.068 mg/l (Johnson et al. 2007). The specified threat considered for risk and 429 

resilience is population increase, which is modelled as an increase in dry weather flow 430 

(DWF). The reliability, risk and resilience values calculated can, therefore, be explicitly 431 

defined as follows: 432 

• Reliability of receiving water quality compliance 433 

• Risk to receiving water quality from population increase by 2035 434 

• Resilience of receiving water quality to population increase 435 

Note that it is necessary to define the time frame for risk assessment since population 436 

increase probabilities are time dependent. 437 

The measured failure characteristics will be different in each case as each must consider 438 

different causal event scenarios: reliability relates to failures under ‘standard’ loading 439 

whereas risk relates to failures under foreseeable conditions and resilience relates to failures 440 

under exceptional conditions.  441 

It is acknowledged that use of a resilience formulation which incorporates response to 442 

unknowns (e.g. G2) would be preferable; however, this would not allow risk to be calculated 443 

and compared on a like-for-like basis. 444 
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2.3.3 Reliability, risk and resilience assessment 445 

A brief description of the assessment methodologies is provided here; further detail is 446 

available in the Supporting Information. 447 

IUWS reliability assessment 448 

Reliability is assessed under standard conditions (i.e. no population increase) using Eq. 1, 449 

where the probability of failure is based on the modelled level of service failure duration. 450 

IUWS risk assessment 451 

Risk is evaluated for population increases of 0 to 15% at 1.5% intervals, using Eq. 2. In each 452 

case, the probability of population growth equalling or exceeding the given value is 453 

calculated based on 95% prediction intervals reported by the United Nations (Raftery et al. 454 

2012, United Nations 2012) for the UK population in 2035, assuming a normal distribution. 455 

The greater of the normalised DO deficit and normalised un-ionised ammonia exceedance 456 

represents the failure magnitude. This yields 16 risk values for each IUWS operational 457 

control and design option, the highest of which is used in the following analysis. 458 

IUWS resilience assessment 459 

Assessment of resilience is based on the concept of using a response curve (system 460 

performance as a function of disturbance magnitude) for comparison of solutions (Diao et al. 461 

2016, Mugume et al. 2015), where the area under the curve provides a measure of resilience. 462 

To capture both the magnitude and duration components of resilience, failure characteristics 463 

are measured using two metrics, Pdeficit (based on mean performance deficit) and Pduration,mean 464 

(based on mean failure duration), each of which are calculated for population changes in the 465 

range 0 to 150%. This yields two resilience indicators for each option, Rdeficit and Rduration,mean. 466 
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3 RESULTS AND DISCUSSION 467 

3.1 Reliability, risk and resilience relationships 468 

Figure 6 shows the relationships between reliability, risk and resilience for the 400 IUWS 469 

operational control and design options evaluated: each circle represents a different option, the 470 

colour of the circle represents its reliability value, and its x and y coordinates show its risk 471 

and resilience values respectively. Figure 6a utilises the resilience indicator based on mean 472 

performance deficit and Figure 6b the resilience indicator based on mean failure duration.  473 

Figure 6 shows that an increase in reliability typically corresponds with reduced risk and 474 

increased resilience in this system, for the reliability, risk and resilience formulations 475 

considered (r = -0.91 for reliability and risk, r = 0.97 for reliability and Rdeficit, and r = 0.95 for 476 

reliability and Rduration,mean). However, most levels of reliability can be achieved with a range 477 

of different risk and resilience values, showing the importance of considering performance 478 

under extreme conditions as well as standard loading.  Additionally, risk and resilience values 479 

shown in Figure 6 reveal a correlation (r = -0.92 for risk and Rdeficit, r = -0.83 for risk and 480 

Rduration,mean), but they are not directly proportional – hence risk assessment cannot be 481 

considered a substitute for resilience assessment. With respect to the system design and 482 

operational control, it is desirable that the same option provides the highest reliability, lowest 483 

risk and highest resilience: This section explores the feasibility of this goal and the observed 484 

relationships between reliability, risk and resilience.  485 
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 486 

Figure 6: Relationships between reliability, risk and resilience (Rdeficit and Rduration,mean) in the 487 

case study IUWS; arrows indicate direction of improved performance 488 

3.1.1 High reliability options 489 

In Figure 6b, reliability greater than 0.999 can be achieved with 30 operational control and 490 

design options, yet the resilience (Rduration,mean) values of these options range from 0.85 to 491 

0.92. This is attributed to variation in the DO failure characteristics resulting from the 492 

different design and operational control options: Whilst the DO failures are observed with a 493 

15% population increase in the lower resilience option, DO failures in the higher resilience 494 

option are not recorded until population increase reaches 45%, and are then of significantly 495 

shorter magnitude and duration.   496 

3.1.2 High reliability, low risk options 497 

In Figure 6b, resilience (Rduration,mean) values range from 0.87 to 0.92 for options with 498 

reliability greater than 0.999 and risk below 0.001. This indicates that there is significant 499 

variation in the resilience of options providing low risk and high reliability (particularly 500 

a) b) 
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noticeable with the Rduration,mean resilience indicator). Therefore, these results demonstrate that, 501 

when selecting design and operational control options for an IUWS, high reliability and low 502 

risk are necessary criteria but not sufficient for high resilience; resilience must be considered 503 

as a third and separate objective.  504 

If, in this case study, no benefit of considering the three performance measures as separate 505 

objectives had been found, this would not provide sufficient evidence to conclude that (in the 506 

wider sense) reliability, risk and resilience do not all need to be considered in the design and 507 

operation of IUWSs. However, the observation here that they cannot be used interchangeably 508 

is sufficient to demonstrate that the highest reliability and lowest risk options do not 509 

necessarily provide the highest resilience. 510 

3.1.3 High resilience options 511 

Figure 6a and Figure 6b also show that there can be significant variation in the risk and 512 

reliability values for options providing a given level of resilience. For example, in Figure 5b, 513 

options providing a resilience (Rduration,mean) value of 0.85 have reliability values in the range 514 

0.910 to 1.000 and risk values in the range 0.023 to 0.176. This suggests that consideration of 515 

greatest resilience alone is insufficient and reliability and/or risk must also be evaluated to 516 

ensure that the chosen option performs well under a wide range of conditions, including 517 

standard loading. This observation is particularly important when it is not possible to 518 

implement the option providing the greatest resilience (e.g. due to cost restraints), as there is 519 

greater range in risk and reliability for lower resilience options. 520 

The different levels of resilience, risk and reliability provided by each option are attributed to 521 

adjustment in the decision variables presented in Table 3. When analysing the options 522 

providing a resilience (Rduration,mean) value of 0.85 (as above), the option providing highest 523 

reliability and lowest risk has larger values for Qmaxin, QST2, QST4 and QST6. This will result in 524 
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a smaller volume of CSOs from subcatchments 1-4 and 7, as well as a greater volume of 525 

wastewater being treated, thereby resulting in higher receiving water quality under standard 526 

conditions. However, it only provides the same level of resilience as that provided by a less 527 

reliable option with greater CSOs and less wastewater treated, whereas it would intuitively be 528 

expected to provide higher resilience than a less reliable option. This may be attributed to it 529 

resulting in a greater impact on level of service under extreme population increase as the 530 

surcharged WWTP performs poorly and low quality discharge is concentrated at the WWTP 531 

outlet instead of distributed along the river by CSOs.  532 

3.2 Reliability-, risk- and resilience-based design 533 

Most operational control and design options shown in Figure 6 do not represent realistic 534 

solutions, given their poor performance even under standard loading / design conditions. 535 

Further analysis, therefore, focuses on those which provide good performance under the base 536 

case population (i.e. have high reliability). 537 

Example response curves for three options which provide a reliability of at least 0.999 are 538 

shown in Figure 7. The first (grey line) provides a high degree of reliability only. The second 539 

(black line) is also low risk (risk ≤ 0.001), and the third (bold, dashed line) is the option that 540 

provides the highest level of resilience whilst also providing high reliability and low risk.  541 

These show that a high degree of reliability does not guarantee good performance under 542 

disturbances; consideration of risk improves the response but resilience assessment is 543 

required to ensure the chosen option performs well with respect to alternatives when water 544 

quality failures do occur. The difference between reliability-, risk- and resilience-based 545 

IUWS design is most marked in Figure 7b, where the control and design option resulting in 546 

the greatest DO deficit (minimum DO concentration) under any level of population increase 547 
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has high reliability but not low risk, and the most resilient solution maintains the highest DO 548 

concentration (minimises the failure magnitude) under any population increase. 549 

 550 

Figure 7: DO response to population increase for high reliability, low risk and high 551 

resilience options 552 

To illustrate the potential differences between reliability-, risk- and resilience-based design, 553 

the decision variable values of the three different options are shown in Figure 8. The high 554 

reliability option provides a receiving water quality compliance reliability of 1.000, risk to 555 

receiving water quality from population increase of 0.023 and a receiving water quality 556 

resilience to population increase (Rduration,mean) of 0.853. The high reliability and low risk 557 

option has reliability, risk and resilience values of 1.000, 0.000 and 0.868 respectively, and in 558 

the high resilience option the resilience (Rduration,mean) is increased to 0.922. It is shown that, 559 

whilst there are similarities between the three options (most notably in Qmaxin and VST7), the 560 

characteristics of the operational control and design option providing high resilience differ 561 

from those providing just high reliability. For example, high reliability can be achieved with 562 

an increase in storage volume of 23-31% (VST2, VST4, VST6 and VST7); however, significantly 563 

greater increase in storage volume is required to provide the highest level of resilience. 564 
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This suggests that identification of preferable design and operational control options, taking 565 

into account reliability, risk and resilience, requires an understanding of the mechanism of 566 

failure minimisation (i.e. how the different options reduce the frequency, magnitude and 567 

duration of failure), and that there may be cost implications of increasing resilience (e.g. due 568 

to extra storage required). 569 

 570 

Figure 8: Decision variable values for options providing: a) high reliability, b) high 571 

reliability and low risk, and c) high reliability, low risk and high resilience 572 

Note that observations on the relationships between reliability, risk and resilience in the 573 

IUWS case study are based on a formulation of resilience that addresses only one known 574 

threat. The capability of a middle-state based resilience assessment to address multiple 575 

threats, including unknowns (as in formulation G2, for example), has not been exploited. The 576 

benefits of a ‘high resilience’ approach over a ‘low risk’ approach are expected to be greater 577 

if resilience is calculated using a formulation under which risk is incalculable (e.g. S4, S10 or 578 

G2), but demonstrating the benefits is challenging if they are not observable until the 579 

occurrence of a previously unknown threat. Even under risk and resilience formulation S2, 580 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

is
ed

 d
ec

is
io

n 
va

ria
bl

e 
va

lu
e

High reliability option

High reliability and low risk option

High reliability, low risk and high
resilience option



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

32 

however, it is shown that failure magnitude and duration under a specified threat can be 581 

significantly reduced by considering resilience in addition to risk. 582 

4 CONCLUSIONS 583 

This research has explored the ways in which reliability, risk and resilience may be 584 

formulated, identifying possible components and knowledge required for calculation of each 585 

and formalising the conceptual relationships between specified and general resilience. A set 586 

of corresponding formulations has also been implemented in a case study IUWS to enable 587 

investigation into the relationships between reliability, risk and resilience for this system. The 588 

following conclusions are drawn: 589 

• Many formulations of both general and specified risk and resilience exist, but not all can 590 

be calculated due to the existence of unknown threats and unknown consequences. 591 

• General resilience can theoretically be calculated (under some formulations) whereas 592 

general risk cannot. Resilience can, therefore, address responses to a wider range of 593 

threats. 594 

• All threats, including both known and unknown, can be addressed with a middle-state 595 

based resilience analysis which focusses on the level of service response to system 596 

failures. Risk cannot be calculated on the same basis since the probability of system 597 

failure is affected by the probability of unknown threats. 598 

• Consideration of resilience in addition to risk can be beneficial even when only 599 

considering specified threats, as demonstrated in the case study. Lowest risk solutions do 600 

not necessarily provide the highest specified resilience. 601 

• Although reliability, risk and resilience values may exhibit correlations, designing for just 602 

one is insufficient: reliability, risk and resilience are complementary measures. 603 
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HIGHLIGHTS 

• Framework developed to explore components of reliability, risk and resilience 

• Shortcomings of commonly used formulations illustrated 

• Reliability, risk and resilience-based design and operation of wastewater systems 

explored 

• Lowest risk solutions do not necessarily provide the highest specified resilience 

• Reliability, risk and resilience shown to be complementary measures 


