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ABSTRACT

Reliability, risk and resilience are strongly reldtconcepts and have been widely utilised in
the context of water infrastructure performancelymis However, there are many ways in
which each measure can be formulated (dependintpemeliability of what risk to what
from what and resiliencef what to whatand the relationships will differ depending oe th
formulations used. This research has developedmaeiivork to explore the ways in which
reliability, risk and resilience may be formulatedentifying possible components and
knowledge required for calculation of each and falieing the conceptual relationships
between specified and general resilience. Thissatilthe Safe & SuRe framework, which
shows how threats to a water system can resutinseguences for society, the economy and
the environment, to enable the formulations to éeved in a logical manner and to ensure
consistency in any comparisons. The framework iedu® investigate the relationship
between levels of reliability, risk and resilienqm®vided by multiple operational control and
design strategies for an urban wastewater systesa study. The results highlight that,

although reliability, risk and resilience valuesyngxhibit correlations, designing for just one
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is insufficient: reliability, risk and resilienceeacomplementary rather than interchangeable
measures and one cannot be used as a substitiaedtrer. Furthermore, it is shown that
commonly used formulations address only a smattifsa of the possibilities and a more
comprehensive assessment of a system’s respondierelats is necessary to provide a

comprehensive understanding of risk and resilience.

Keywords. integrated urban wastewater system, reliabilitgk, resilience, Safe&SuRe,

water quality.

1 INTRODUCTION

Reliability and risk have been widely used as thengry criterion in water infrastructure
design and operation. Conventional design aimsduige a high degree of reliability (Butler
et al. 2016) and risk analysis is commonly usedddress the response to threats. However,
there are limitations to risk assessment: natigks can be quantified due to the existence of
emerging and unobserved threats (Park et al. 20b8)reseeable threats cannot be included,
and highly improbable events which have a high ele@f uncertainty are dealt with poorly.
Only threats which are known and can be assigneumtohability can be analysed, so
calculated risk depends on what is and is not kn@aplan and Garrick 1981). In recent
years, the resilience concept has evolved andgmieag to be incorporated in the design
and operation of various water systems, sometimembination with risk and reliability
(Asefa et al. 2014, Hoque et al. 2012). Howe\ves,relative importance of these three terms,
their interdependencies and their impact on sysfmrformance are currently poorly

understood.

Reliability, risk and resilience are strongly relhtconcepts (Scholz et al. 2011) and the
relationship between reliability and risk has beerll developed in the context of

infrastructure performance analysis. There haveo dleen more recent studies into
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relationships with resilience. The US DepartmeniHomeland Security (2010), for example,
comprehensively studied risk and resilience refeigps (qualitatively and quantitatively),
by generating a risk-resilience matrix and adoptrigmathematical methods to identify
influencing factors in a system. The ETH Zirich @enfor Security Studies (2011)
conceptualized the risk and resilience relationsising three different perspectives that have
been implicitly adopted in several subsequent sgidh) considering resilience ‘as a goal of
risk management’ (Ongkowwijoyo and Doloi 2018, $aand Heinzlef 2018); b) considering
it ‘as part of risk management’ (Hoque et al. 208@mmouh et al. 2017, Mitchell and Harris
2012b, Shafieezadeh and Burden 2014); and c¢) cemsgd it ‘as an
alternative/complementary to risk management’ (Ham# Security Studies & Analysis
Institute 2010, Joyce et al. 2018, Kammouh et @L72 Park et al. 2012). The latter argues
that risk and resilience are differentiable consdpit interrelated, complementary, mutually

reinforcing and could be coupled to improve adaptiapacity of engineering systems.

Whilst risk and resilience have previously been parad conceptually (e.g. Aven 2011,
Baum 2015), there are many ways in which each texmbe formulated (depending on the
reliability of what risk to what from what and resilienceof what to what and the
relationships will differ depending on the formideis used. It is recognised that resilience,
for example, can exist at different scales, timegas and systems, and there may be trade-
offs between these which are key to the assessmenihanagement of resilience (Chelleri et
al. 2015). However, the multiple different wayswhich resilience can be formulated have
not previously been formalised. Risk has previousgen decomposed using a matrix
approach to show the links between multiple ‘initig events’, intermediate states and final
damage states (Kaplan et al. 1983), but analysspetific formulations was not carried out.

The current lack of understanding of all the waysvhich reliability, risk and resilience can
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be formulated within the same framework poses adyaio a comprehensive understanding

of their relationships and comparison on a likelike basis.

Urban wastewater system studies have typically @itoereduce level of service failures
under design conditions (i.e. increase reliabil{g)g. Juznic-Zonta et al. 2012, Oliveira and
Von Sperling 2008), and there has also been rdseatc risk (e.g. Astaraie-Imani et al.
2012) and resilience (e.g. Matthews 2016, Schoah @015, Scott et al. 2012) individually.
Resilience analysis can provide additional undadstay of wastewater system performance,
provide greater scope than risk analysis and ad¢doum wider range of threats (particularly
those that are low-probability and high-impact)cdin also provide greater insight into the
failure characteristics, since it is commonly assdrto be dependent on both the magnitude
and duration of failures (Butler et al. 2016, Muguet al. 2015). There is also an increasing
interest in building resilience in practice, asdeviced, for example, by the ‘resilience duty’
imposed in the UK Water Act (HM Government 2014hdathe rapid growth in the

publication of papers relating to resilience iraage of fields.

Juan-Garcia et al. (2017) conducted a compreheasderitical review of the state of the art
in resilience assessment in wastewater systems gearamt and defined future research
directions that will contribute to the operatiosalion of resilience; however, the relationship
between risk and resilience and whether, for exam@silience analysis can replace risk
assessment, is still unclear. With respect to bigiig, risk and resilience, there is a lack of
studies on wastewater systems that consider aéthretrics as separate criteria for design
and operation and explore their relationships looticeptually and quantitatively. Wang and
Blackmore (2012) calculated separate values foh;elaowever, these were for a rainwater
harvesting system and, whilst they were all usedinform the design process, the
relationships between the performance measures nwasexplored. Other publications

focusing on different water systems have also matuated all three metric and/or explored
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their relationships in a quantitative manner. Btacke and Plant (2008), for example,
discussed the differences between risk managenmehtesilience approaches, but did not
explore these in a case study and did not undedajentitative analysis. Reliability was not
discussed. In other studies that have used a tagdg and provided a quantitative analysis
(e.g. Su et al. 2018), resilience has been coreddar component of risk assessment —
separate risk and resilience values have not bemmputed and risk and resilience have not

been compared.

This paper, therefore, presents an innovative freonle to explore the relationships between
reliability, risk and resilience levels provided Inyultiple operational control and design
options for a case study integrated urban wastewststem (IUWS: sewer catchment,
wastewater treatment plant and receiving river immed as a whole). In this, the multiple
ways in which reliability, risk and resilience clae formulated are captured and formalised in
a single framework for the first time, and the moi@ advantages or disadvantages of each
formulation are investigated. The framework alscesds the prerequisite knowledge required
for calculations under each formulation, clearlystrating the differences between what can
be addressed by reliability risk and resilienceeasments. This research builds upon the Safe
& SuRe framework (Butler et al. 2016), which shdvesv threats to a water system can result
in consequences for society, the economy and thieoement, to enable the formulations to

be derived in a logical manner and to ensure ctamgiy in any comparisons.

This paper does not aim to quantify the correlaibatween reliability, risk and resilience in

a general sense (although numerical values speddcifithe case study are presented and
discussed), as the numerical values will vary ddpgnon the system evaluated. However,
formalisation of the conceptual formulations of eateasure illustrates the overlap in what is

addressed by each, as well as the differences.
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The conceptual decomposition of reliability, riskdaresilience into all their possible
formulations provided in this study, enables futarelyses to be placed within the wider
picture, ensuring that any comparisons are mada euitable basis and using compatible
formulations. The results also highlight the gapsmiany analyses of risk and resilience,
showing that commonly used formulations addresg ardmall fraction of the possibilities.
Means by which a more comprehensive assessmensystam’s response to threats can be

achieved, are also identified.

This research complements the increasing numberaects and initiatives focused on
resilience (including, for example, the ‘100 Resili Cities’ initiative (Rockefeller
Foundation 2018), the EU-funded IMPROVER (IMPROVER®18) and RESILENS
(RESILENS 2018) projects, the EPSRC-funded BRIMwoek (BRIM 2018), and the
‘Resilience Shift’ project funded by Lloyd’'s RegstFoundation (Resilience Shift 2018))
and contributes to the rapidly growing body of eesh in this field. The proposed
methodology could also be applied to other typemiafigrated systems analysis (e.g. water,

energy, food, waste, climate etc.) and contribotiiture developments in these areas.

2 MATERIALSAND METHODS

2.1 Formulatingreliability, risk and resilience in the Safe & SuRe framework

For reliability, risk and resilience to be fullyfdeed, it is necessary to specify ‘reliabilibf

what, ‘risk to what from whatand ‘resilienceof what (or ‘resilienceof what to whdj, i.e.

where the failure and causal event characteristiesmeasured. This study builds upon the
Safe & SuRe framework, as illustrated in Figurgalshow the potential failures and their
causal events. There are many options and combmnsathat can be chosen, and all are
identified before selection of a set that enablesygarable reliability, risk and resilience

values to be calculated for the case study IUWS.
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In the Safe & SuRe framework, ‘threats’ are stresseshocks which may affect the system
infrastructure (e.g. a storm event) and can beaedllby mitigation measures; ‘impacts’ are
the effects on level of service resulting from systfailures (e.g. pump failure) and may be
reduced with adaptation measures; and ‘consequemcesthe effects on society, the
economy and the environment resulting from the ictgoée.g. eutrophication) and may be
reduced with coping strategies. An ‘event’ whichymesult in a failure could be a threat, a
system failure or a change in level of service @ion (an impact). ‘Failure’ could refer to

the adverse effects of an event on the system gpaysical failure of system components),
level of service (i.e. failure to provide the remd level of service) or on the society,

economy and environment (i.e. adverse consequences)
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Figure 1: Potential components of reliability, risind resilience mapped onto the Safe &

SuRe framework

In the Safe & SuRe framework, threats, system rfaikiates, impacts and consequences are
each presented as a single component; however tes all be further categorised as
‘known’ or ‘unknown’, depending on whether or nbete is knowledge of their potential
existence prior to their occurrence. Known evemietyinclude both ‘known knowns’ and
‘known unknowns’, where known knowns are well ustieod and their characteristics

identified, and known unknowns poorly understoodl known to exist (illustrated in Figure
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2). Attempts to quantify known unknowns may be dase past experience but are subject to
uncertainty. Unknowns cannot be characterised sheie existence is not recognised. Whilst
their existence has been acknowledged, unknowrathi@nd unknown consequences have
not previously been considered explicitly or inalein the Safe & SuRe framework (Butler
et al. 2016). Including these two elements in fwlltg formulation of reliability, risk and
resilience is an important step forward as it featiés a detailed understanding of all the
elements that contribute to of reliability, riskdaresilience, and shows the interdependencies
between known and unknown threats, (known) systaharé modes, (known) impacts and
known and unknown consequences. It also cleaigtithtes the challenges in providing a

comprehensive assessment.

Resultant failure
characteristics

known I
unknown-known: ! known-known:
Poorly ! Well
characterised ! characterised
e.g. heat wave, ! e.g. urbanisation,
water scarcity, public 1 rainfall increase,
discomfort : flooding, public
| health issues
_________________ :__________________
1
! known-unknown:
unknown-unknown: | Poorly
Cannot be ' characterised
characterised Loeg skills dep!et{on,
\  interdependencies,
| technology change
unknown ! Causal event
unknown known type /existence

Figure 2: Known/unknown causal event and failurearelateristic matrix; degree of
characterisation indicated refer to the causal dé{®n examples relate to the ‘known’

elements (causal events and/or resultant failures).

Both known and unknown threat3y( and Ty) and consequence<{ and Cy) exist.
However, it is (reasonably) assumed that, for d-aleracterised IUWS, all potential system

failure states3«) can be identified (i.e. there are no unknowns t@wednumber of knowns is
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finite). All types of potential impact ) are also known since these are based on preedefin
level of service requirements. The interdependenoiethese components are shown in
Figure 1: Known system failure states result froothiknown and unknown threats, known
impacts results from known system failure statdg,@nd known impacts can result in both

known and unknown consequences.

Note that ‘threat’, ‘system failure state’, ‘impaand ‘consequence’ refer only to the type of
event, each of which can encompass a range ofrelitfenagnitude and duration events of
that type. For example, population growth is onteptal threat, but this might be 10% or

100%. Although all potentialtypes of system failure and impact are known, their
characteristics are unknown if the cause is natipd: Due to the chain of events (shown in
Figure 1), all consequences, impacts and systdardastates are ultimately affected by both
known and unknown threats and hence their charsiitsrcannot be fully defined. While the

types of impact, for example, are all known, thelability, magnitude and duration of these
in a general sense cannot be determined sinceatieeyartly dependent on unknown threats;
it is only possible to determine the probabilityagnitude and duration of impacts under

specified system failures and/or specified knowedts.

A summary of potential events and failures andrtbkaracteristics, as may be considered
components of reliability, risk and resiliencegisen in Table 1. Note that knowledge of the
probability distribution function, magnitudes andrations may be incomplete even for
known threats, due to the existence of unknown ankis. Also, known probabilities cannot
reasonably cover the complete range of event sta¢sre theoretically possible since there
is likely to be very little data from which a fregpcy distribution can be derived for
particularly rare events (Wang and Blackmore 20@@)culation of joint probabilities of two
or more major events occurring simultaneously p@sesven greater challenge (Park et al.

2013).

10
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Table 1. Potential reliability, risk and resilienammponents and their characteristics in a
Safe & SuRe context. Grey shading represents unkmmwwncalculable failure or causal
event types and characteristicB. denotes probability distributionmag denotes set of

event/failure magnitudes amlir denotes set of failure or causal event durations.

Failure or causal event type Failure or causal esearacteristics

@ Known threatsT P(Tk), mag(Tk), dur(T)

c

5 £, Unknown threatsT, P(Ty), mag(Ty), dur (Tu)

= = O

% %é; § Known system failuresSg P(S«), mag(S), dur (S)

E g g Known impacts) ¢ P(l«), mag(l), dur(Ix)

% g ° Known consequence€y P(Cx), mag(Cx), dur (Ck)

- Unknown consequenceSy P(Cy), mag(Cy), dur(Cy)
Known system failures under specified thr&a{T« v P(S«|Tk.w), mag(Sk|Tkw), dur (S¢|Tkw)
Known impacts under specified threlg| T P(I«[Tkw), mag(lk | Tkw), dur (1| T w)
Known impacts under specified system failugdSc P(1]|Scx), mag(lk|Scx), dur (Ik|Scx)
Known consequences under specified thi€afT« v P(Ck|Tkw), mag(Ck|Tkw), dur (Ck|Tkw)

Known consequences under specified system failli b « P(Ck|[Scx), mag(Ck|S«x), dur (Ck|Scx)
Known consequences under specified imp@gflk y P(Ck|lk,), mag(Ck|lk,), dur(Cx|lk.y)
Unknown consequences under specified th@gly P(Cu|Tk.w), mag(Cuy|Tk.w), dur (Cy|Tk.w)

Unknown consequences under specified system fallyi&x P(CulS«x), mag(CulSkx), dur (Cu|S«x)

Failures or causal evendscurring under specifie
circumstances

Unknown consequences under specified impg@gily , P(Cullk,y), mag(Cullk,), dur(Cyllk,)

Although many possible formulations of reliabilitsisk and resilience exist, performance
metrics can only be calculated for those which dbraquire knowledge of unknown failure

or causal event types or unknown characteristiosbgbility, magnitude and duration). The

11
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following sections, therefore, investigate the comgnts and pre-requisite knowledge
required for all formulations possible within theaf® & SuRe framework, to enable
identification of those that can and cannot be wated (theoretically) and facilitate

investigation into the relationships between religh risk and resilience.

211 Rdiability

Reliability (Rel)is defined here agtie degree to which the system minimises leveargice
failure frequency over its design life when subjecitandard loadingy(Butler et al. 2017). It
is typically represented by the probability of sees, or probability of a system being in a

non-failure state (Hashimoto et al. 1982, Kjeldaad Rosbjerg 2004), as in Eq. 1.

Rel =1 — P(failure) Eqg. 1

In order to calculate reliability, it is necess#&oyspecify where the failure state is measured
(i.e. reliability of wha). Based on the definition given, this should be kel of service
(impact). However, there are further options (swsh reliability of a specific system

component) and, given their common usage, it ifulse identify these too.

Using the Safe & SuRe framework and componentstiftkzhin Figure 1, reliability can be

formulated in six ways, as detailed in Table 2. Blbteliability measures detailed are useful:
it is unclear what would represent a failure wigspect to the society/economy/environment,
and formulations R5 and R6 are unlikely to be usegractice. However, provided failure

limits can be defined, reliability is theoreticalbalculable using any of the formulations
listed since it addresses only performance underdsird loading (i.e. known knowns — any
event which is rare enough to be a known unknoweoanpletely unknown is not considered

standard).

12
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Table 2: Reliability formulations

Formulation Failure / non-failure state Description

assessment
R1 Specified system component  Reliability of spedisystem component
R2 All system components Reliability of system
R3 Specified impacts Reliability of specified lewélservice

provision

R4 All impacts Reliability of level of service prizion
R5 Specified (known) Reliability of specified

consequences society/economy/environment component
R6 All known consequences Reliability of societgieemy/environment

2.1.2 Reslience

The Safe & SuRe definition of resiliencehé degree to which the system minimises level of
service failure magnitude and duration over its igeslife when subject to exceptional
condition$ (Butler et al. 2017), is used in this study. Thantains two components: failure
magnitude and failure duration. It is not necessarynow what causes the failure (although
it may be specified) since the probability dimensias used in risk assessment, is not

conventionally included in resilience (Aven 2011).

Resilience can be specified or general. For gemesillence — The resilience of any and all
parts of a system to all kinds of shocks, includnoyel ones (Folke et al. 2010) — it is
necessary to specify resiliencewhat(i.e. where the failure is measured). This encaEses
the response to all future threats, including thadgch are unknown and unforeseeable.
‘Resilience of an IUWS’, for example, is a measoir¢he magnitude and duration of effects

on the IUWS resulting fromnythreat, including those that cannot be foreseenspecified

13



251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

resilience — fesilience of some particular part of a system..orte or more identified kinds
of shocks (Folke et al. 2010) — resiliencaef what to what(i.e. where the failure state is
measured and what the causal event consideredust) me specified. An example would be
‘resilience of an I[UWS to storm events’, in whidtetmagnitude and duration of the effects

of the storm events on the IUWS determine theisssé value.

Possible points in the Safe & SuRe framework whighfailure magnitude and duration may
relate to are shown in the Figure 3. In FiguretBa, cause of the failure (causal event) is
specified: these formulations, therefore, relatsgecified resilience. General resilience uses

the formulations in Figure 3b, since the failuresencan result from anything.

Resilience cannot be calculated in formulationsvinch the magnitude and duration of the
failure are unknown; however, knowledge of the pimlity of the causal event is not
required. Therefore, resilience can (theoreticalh® calculated under twelve different

formulations (S1-S2, S4 and S7-S12 in Figure 3a@a@&nd G5-G6 in Figure 3b).

Haimes (2009) argues that general resilience cammotcalculated, since it requires
knowledge of the response to any threat, but thit always the case. Resilience cannot be
calculated under formulation G3 (resilience of sbgieconomy and the environment), as this
requires knowledge of unknown consequences, andr@llG4 (resilience of system and
resilience of specified system component) are alsalculable since not all threats which
may cause system failures are known. However, thmdwork presented illustrates that
general resilience can be calculated through a lmiskdte based analysis, as in G2 and G5,
as both known and unknown threats result in theesknown, finite set of system failure
modes. Take, for example, formulation G2, resileerat level of service. This may be
modelled as ‘resilience of level of service to dimgat’, which cannot be calculated since not

all threats are known, but also as ‘resilienceedtl of service to any system failure’, which

14
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can be calculated as all the modes by which theesyshay fail are identifiable; what threat
(known or unknown) causes them is irrelevant sibgegvaluating all system failure modes,
the potential effects of all threats are captuMdltiple threats can thus be addressed with

analysis of a smaller number of system failure nsode

Traditionally, resilience has focussed on the failaf assets; however, asset failure may not
necessarily affect level of service provision anéynmbe irrelevant from a consumer
perspective (Ofwat 2010). This suggests that, athdormulation S1 may be of interest to
the asset owners, an impact or consequence bapeshap (such as G5 or G6) is of greater

benefit. Similar applies to reliability and risk.

a) b)

s1 DE s2 3 S4 G E% G2
vV - vV D}jf x %

S8 G3 G4

S5 S6
: f x % Elilj x x vy v v x % x %
59 S10 S 512 Gh G6
Vv D}:I/ V/ l%j xv % xv

|:| = Every causal event or failure type

|:| = Specified causal event or failure type
v’ v = Risk and resilience calculable

% v = Risk not calculable, resilience calculable

S7

2
5

x % = Risk and resilience not calculable

15
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Figure 3: Possible combinations of failure locatiand causal event in the Safe & SuRe
framework: a) with specified (known) cause of fa@|uas required for specified risk or
specified resilience; b) with any cause of failuas, required for general risk or general
resilience. Refer to Figure 1 for interpretation afcular framework diagrams. Detailed

descriptions are provided in the Supplementaryrimgtion.

213 Risk

Definitions and use of the term ‘risk’ are incomsig. Whilst risk is conventionally
calculated as a function of probability and consege of a given scenario (Kaplan and
Garrick 1981), often in practice the severity of tlesultant adverse effects are not accounted
for. Konstantinou et al. (2011), for example, definrisk as the conditional probability of
incurring loss or damage under certain unfavouraisteimstances, and in terms of practical
application, the Environment Agency’s flood risk pga(Environment Agency 2018) show
only the probability of flooding (with no indicatoof severity). Such an approach may be
acceptable when knowledge of the degree of the dansmnot required (e.g. if knowing
simply whether or not flooding occurs, irrespectfalepth, is sufficient). However, it is also
argued that risk should provide a measure of thhenpal losses or adverse effects (Scholz et
al. 2011) and it is generally quantified using adion of event frequency and effect

magnitude (Blackmore and Plant 2008); this is titerpretation used in this work.

The following equation, adapted from the typicatolpability x consequence’ to fit the

terminology of this study, is used here to represek.

Risk = P(casual event) X magnitude(failure) Eq. 2

In calculation of risk, the casual event probapiéind failure magnitude could be measured at

different locations: for example, when calculatitng risk of a combined sewer overflow
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(CSO) resulting from a storm event, ‘failure’ cdukfer to either the occurrence of a CSO or
the occurrence of deterioration in the receivingevéody quality; in the case of the former,
the causal event could be considered the stormt,ewtyereas for the latter either the storm
event or the CSO could be considered as the causak. Hence, for absolute clarity, it is
necessary to specify risto what from what(i.e. where the effect is measured and the

potential cause of that considered).

For conventional risk calculation, both the proliggbof the causal event and the magnitude
of its effects (the failure) need to be known arehsurable. Accordingly, Figure 3 illustrates
all potential combinations of ‘failure’ and ‘causalent’ within the Safe & SuRe framework
and identifies those which result in a calculaldé& formulation. Similarly to resilience, risk
formulations in which a specific causal event ientified may be classified as ‘specified
risk’, and those which address risk frany (known or unknown) event can be classified as
general risk. Risk cannot be calculated in formarket which include unknown threats in the
causal events (i.e. the ‘general’ formulations, @3.in Figure 3b) since, by definition, these
cannot be characterised; this is in contrast tilierse, where it is not necessary to know, for
example, the probability of the events that mawlies failures. Similarly, risk cannot be
calculated in formulations that include unknown sEguences in the measured failures (i.e.
formulations S3-S6, S9 and S11 in Figure 3a, ananG3gure 3b). Furthermore, risk cannot
be calculated if the required causal event proliglaf failure magnitude is unknown despite
the existence of the causal event or failure typ@dknown (formulations S10 and S12 in
Figure 3a). This leaves five formulations (S1, 88 &7-S9 in Figure 3a) under which risk
may be calculated in the Safe & SuRe frameworktHeurdetails, including equations for

each formulation, are provided in the Supplemenitaigrmation.
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2.2 Conceptual relationships

221 Rdiability and risk

There is widely assumed to be a connection betwal&bility and risk. However, the nature
of this relationship is less clear. Some considerdasing reliability to be analogous to
decreasing risk, for example, with high risk egougtio low reliability (Konstantinou et al.

2011). However, others consider reliability a cidmttor to risk, as it contributes to the
probability of failure, but is not the only compandgZio 2013). This corresponds with the
risk assessment approach of Kjeldsen and Rosbp0§4], and suggests that, although
increasing reliability may contribute to a reduntiin risk, other factors must also be

considered.

2.2.2 Rédiability and resilience

Reliability may be considered a prerequisite and/@omponent of resilience (Butler et al.
2017, Francis and Bekera 2014), or alternativelgomplementary performance indicator
(e.g. Kjeldsen and Rosbjerg 2004). As for risks thiiggests that increasing reliability may

contribute to efforts to increase resilience buditohal measures are also required.

2.2.3 Riskandresilience

Resilience is differentiable from but complementéoyrisk analysis (Park et al. 2013);
however, there is often overlap and confusion mafsthe two terms, and resilience analysis
in practice is commonly based on the concept & e Overseas Development Institute
(Mitchell and Harris 2012a), for example, have mh#d a ‘risk management approach’ to
resilience, and Halcrow (Halcrow 2008) have produee‘Service Risk Framework’ for

assessment of resilience.
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Figure 3 highlights the broader scope of resilieassessment: risk can only be calculated
under five of the eighteen possible formulationsl @annot account for unknown threats,
whereas resilience can be calculated under ninglu@mg all for which risk can be
calculated). Risk cannot be calculated under foatmis S4 and S10-12 (amongst others)
since these require knowledge of probabilities taainot be determine®(S« x) andP(lk y));
despite the event type being specified and knowthese cases, its probability is not known
as it may occur as a result of unknown threats gtlodabilities of which are not known).
Resiliencecan be calculated under formulations S4 and S10-1&geker, since this does not

require knowledge of the probability of the eventésulting in failure.

Risk cannot be calculated under the formulatioresiudsr general resilience (G2, G5 or G6)
since knowledge of the probability of unknown thseia required in every case. Even if the
probability can be expressed as the probabilitynféstructure failure or probability of level

of service failure (as in G6, for example), it i#l affected by unknown threats and cannot be
calculated. To be calculable, risk must be speatifigeneral resilience formulations could be
considered more useful for detailed system analgsice they include a measure of the
response tany threat, including unknowns, but they are also nuirallenging to calculate

for this very reason.

2.24 Rédiability, risk and resilience

Based on the definitions and discussion in Se@idn the conceptual relationships between
reliability, risk and resilience with respect toettprobability and magnitude of events
addressed are presented graphically in Figure 4iabgy concerns performance under
‘standard loading’, which will typically cover thelatively low magnitude, high probability
events which are expected to occur within the systalesign life. Risk can address more

extreme events with a lower probability and higheagnitude, but still cannot deal with
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events that are considered too unlikely to be assiga probability with any degree of
certainty or events that cannot be foreseen. Ras#i can address the same events as risk
assessment but, as it is not necessary to knowrtebility, can also consider the system
response to and recovery from much more extremeteymcluding so called ‘black swans’)

which, although highly unlikelynayoccur.

High probability events — expected
// to occur within design life

Extreme events, including
those which cannot be
Extreme events which anticipated and/or cannot
can be anticipated and be assigned a probability
assigned a probability

RELIABILITY

RISK RESILIENCE

Probability

‘Black swan’

Magnitude

Figure 4: Conceptual relationships between reliapjlrisk and resilience with respect to the

probability and magnitude of events addressed

2.3 Integrated urban wastewater system case study

2.3.1 Casestudy

The case study IUWS used (shown diagrammaticall{¥igure 5) is a semi-hypothetical
system that was originally presented by Schiitza.g2002) and has since been the subject
of many studies (e.g. Butler and Schutze 2005, tal.e2008, Zacharof et al. 2004). It
comprises a sewer system, a wastewater treatmemtt\pith an off-line pass through storage
tank at the inlet, and a river (of which 45km isdalbed). It was simulated using SIMBAG6
(IFAK 2009). It should be noted that, as the madaif a semi-hypothetical system and risk

and resilience assessments are based on the mgddllextreme events, including those that
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have not previously happened, the complete intedratodel cannot be calibrated and the

results cannot be validated using data from reahtsy

Performance evaluation is based on simulationsgh@n day rainfall event with a total depth
of 27mm. Dynamic outputs used are the dissolvedgemy (DO) and ammonium

concentrations in the river. Un-ionised ammoniumaamtration is estimated from the total
ammonium using a conversion factor of 0.0195 (based pH of 7.7 and a temperature of
20°C (Schitze et al. 2002). Further details on Ith&/S model simulation are given by

Astaraie-lImani (2012).

Wastewatertreatmentplant
Sewer system (design capacity = 27,500 mé/d)
SC 1 i
DWF, = 2492 m°d
- Tank 2 @ _
SC2 A 2012 m= @QW" Primary A;E;Et:d Secondary |
DWFz=2452med | — 7] - b | clarifier | § reactgl:lr ™ clarifier
1 [
5C 3 N i e
- i gturn
o= 1197 [| oy s : Return
2044 m® !
SC 4 ] 3 : R
DWF, = 1056 m*d - ! ——
i an il
5C 5 | T 13370 me @ = ¥
N = 1 L
DWFg= 3144 m*d | ; Sludge
i ! L
SC6 1 i
o - Storm
DWF- = 3869 m°/d ! . -
H E750 m?
SCT Tank & !
DWF,=4612 mi/d [ | 2420 me &K= ‘d:iighﬂrg& Effluent
------ -
i
T 3

River

S

Figure 5: Schematic diagram of the semi-hypothétiddV/S case study, with base case dry

weather flows (units ffd) and tank volumes indicated. SC denotes subeech

Ten operational control and design parameters i([eétan Table 3) are used as decision
variables and sampled using Latin Hypercube Sampbnproduce a set of 400 options for
evaluation in this study. These parameters incliml&@ sewer storage tank volumes,

maximum pumped outflow from each storage tank (abathich CSOs occur), maximum
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flow to the wastewater treatment plant (WWTP) amel WWTP influent threshold triggering
emptying of the storm tank. Upper and lower linfiis operational decision variables are
extended beyond those typically considered so pasowide a greater range of reliability, risk
and resilience values. It is recognised that tpigr@ach may produce many solutions with
poor performance; however, it should also yieldimm providing a high level of
performance and it is important that a wide rargyeaptured so as to gain a more complete

picture of the relationships between reliabiliigkrand resilience.
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416 Table 3: Operational control and design decisiorriables DWF denotes base case dry
417 weather flow in the corresponding subcatchment(g) BC the WWTP design capacity, as

418 indicated in Figure 5.

Decision
Description Value range
variable
Vsr2 Storage tank 2 volume increase (%) [0, 100]
c Vsra Storage tank 4 volume increase (%) [0, 100]
(@)
)
8 Vste Storage tank 6 volume increase (%) [0, 100]
Vsr7 Storage tank 7 volume increase (%) [0, 100]
Maximum outflow from tank 2 before CSO [3XDWF, 7,
QSTZ
(m3/d) 8xDWF J
Maximum outflowfrom tank 4 before CSO [3XDWFs; 4,
QST4
(m3/d) 8xDWFs 4
fs)
‘g Maximum outflow from tank 6 before CSO
o QsTs [3xDWFg , 8XDWHF)
< (m3d)
i)
g Maximum outflow from tank 7 before CSO
8‘ Qmaxout [3xDC , 8xDC]
(m%d)
Qmaxin Maximum flow to primary clarifier (#d) [0.5xDC , 5xDC]
Qurig WWTP influent threshold triggering emptying [4800 , 40800]

of the storm tank (id)

419 2.3.2 Rédiability, risk and resilience formulation

420 In order that reliability, risk and resilience cha compared, it is important that compatible

421 formulations are used for each. For risk and exsie, formulation SZigk to level of service
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444

from specified threaandresilience of level of service to specified thyeatchosen since this
requires no knowledge of unknowns and can be ckedl For reliability, the corresponding

formulation is R4 eliability of level of service provisign

All require measures of failure characteristics angst, therefore, consider the same level of
service requirements to be comparable. In all féatmns, receiving water quality represents
the level of service and level of service failusedlassified as the occurrence of a DO
concentration less than 4 mg/l (Fu et al. 2008Y@nan un-ionised ammonia concentration
greater than 0.068 mg/l (Johnson et al. 2007). Spexified threat considered for risk and
resilience is population increase, which is modelés an increase in dry weather flow
(DWF). The reliability, risk and resilience valuealculated can, therefore, be explicitly

defined as follows:

* Reliability of receiving water quality compliance
* Risk to receiving water quality from population iease by 2035

* Resilience of receiving water quality to populatinorease

Note that it is necessary to define the time fraime risk assessment since population

increase probabilities are time dependent.

The measured failure characteristics will be défdrin each case as each must consider
different causal event scenarios: reliability retatto failures under ‘standard’ loading
whereas risk relates to failures under foreseeatelitions and resilience relates to failures

under exceptional conditions.

It is acknowledged that use of a resilience forroila which incorporates response to
unknowns (e.g. G2) would be preferable; howeves, would not allow risk to be calculated

and compared on a like-for-like basis.
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2.3.3 Rdiabhility, risk and resilience assessment

A brief description of the assessment methodologgeprovided here; further detail is

available in the Supporting Information.

IUWS reliability assessment

Reliability is assessed under standard conditiaes 1fo population increase) using Eq. 1,

where the probability of failure is based on thedelted level of service failure duration.

IUWS risk assessment

Risk is evaluated for population increases of @366 at 1.5% intervals, using Eg. 2. In each
case, the probability of population growth equallior exceeding the given value is
calculated based on 95% prediction intervals regblty the United Nations (Raftery et al.
2012, United Nations 2012) for the UK population2d35, assuming a normal distribution.
The greater of the normalised DO deficit and noiseal un-ionised ammonia exceedance
represents the failure magnitude. This yields ¥k walues for each IUWS operational

control and design option, the highest of whichgsd in the following analysis.

IUWS resilience assessment

Assessment of resilience is based on the conceptiswfg a response curve (system
performance as a function of disturbance magnitémegomparison of solutions (Diao et al.
2016, Mugume et al. 2015), where the area undecuhg provides a measure of resilience.
To capture both the magnitude and duration compsnairesilience, failure characteristics
are measured using two metri€esicii (based on mean performance deficit) 8@ation mean
(based on mean failure duration), each of whichcateulated for population changes in the

range 0 to 150%. This yields two resilience indicatfor each optiorRyesicii aNARyuration mean
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3 RESULTSAND DISCUSSION

3.1 Rédiability, risk and resiliencereationships

Figure 6 shows the relationships between religbilisk and resilience for the 400 IUWS

operational control and design options evaluatadheircle represents a different option, the
colour of the circle represents its reliability wa] and its x and y coordinates show its risk
and resilience values respectively. Figure 6asadlithe resilience indicator based on mean

performance deficit and Figure 6b the resilienckdator based on mean failure duration.

Figure 6 shows that an increase in reliability ¢gtly corresponds with reduced risk and
increased resilience in this system, for the rdltgp risk and resilience formulations
considered (r = -0.91 for reliability and risk, 097 for reliability andRyefici, and r = 0.95 for
reliability andRyyrationmea)- HOWever, most levels of reliability can be acl@é with a range
of different risk and resilience values, showing tmportance of considering performance
under extreme conditions as well as standard Igadikudditionally, risk and resilience values
shown in Figure 6 reveal a correlation (r = -0.92 fisk andRyesici, I = -0.83 for risk and
Ryurationmeas DUt they are not directly proportional — hendgk rassessment cannot be
considered a substitute for resilience assessnith respect to the system design and
operational control, it is desirable that the sapton provides the highest reliability, lowest
risk and highest resilience: This section expldhesfeasibility of this goal and the observed

relationships between reliability, risk and resite.
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Figure 6: Relationships between reliability, riskdaresilience (Ricii and Ruration meap N the

case study IUWS; arrows indicate direction of imo performance

3.1.1 High reliability options

In Figure 6b, reliability greater than 0.999 candwohieved with 30 operational control and
design options, yet the resiliendByationmeap Values of these options range from 0.85 to
0.92. This is attributed to variation in the DOldag characteristics resulting from the
different design and operational control optionshiMt the DO failures are observed with a
15% population increase in the lower resiliencaamptDO failures in the higher resilience
option are not recorded until population increas@ches 45%, and are then of significantly

shorter magnitude and duration.

3.1.2 High reliability, low risk options

In Figure 6b, resilienceRyraionmeap Values range from 0.87 to 0.92 for options with
reliability greater than 0.999 and risk below 0.0This indicates that there is significant

variation in the resilience of options providingMaisk and high reliability (particularly

27



501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

noticeable with th&qurationmeant€Silience indicator). Therefore, these resultaalestrate that,
when selecting design and operational control ogtior an IUWS, high reliability and low
risk are necessary criteria but not sufficientagh resilience; resilience must be considered

as a third and separate objective.

If, in this case study, no benefit of considerihg three performance measures as separate
objectives had been found, this would not provigiicent evidence to conclude that (in the
wider sense) reliability, risk and resilience dd alh need to be considered in the design and
operation of IUWSs. However, the observation heat they cannot be used interchangeably
is sufficient to demonstrate that the highest belitg and lowest risk options do not

necessarily provide the highest resilience.

3.1.3 High resilience options

Figure 6a and Figure 6b also show that there casidpgficant variation in the risk and
reliability values for options providing a givenvéd of resilience. For example, in Figure 5b,
options providing a resilienc&{yraion mea) Value of 0.85 have reliability values in the rang
0.910 to 1.000 and risk values in the range 0.028176. This suggests that consideration of
greatest resilience alone is insufficient and belily and/or risk must also be evaluated to
ensure that the chosen option performs well undende range of conditions, including
standard loading. This observation is particularportant when it is not possible to
implement the option providing the greatest resdes (e.g. due to cost restraints), as there is

greater range in risk and reliability for lowerifiesice options.

The different levels of resilience, risk and reiidp provided by each option are attributed to
adjustment in the decision variables presented ablel' 3. When analysing the options
providing a resilienceRjurationmeap Value of 0.85 (as above), the option providinghleist

reliability and lowest risk has larger values fag Qst2, Qsta and Qe This will result in
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a smaller volume of CSOs from subcatchments 1-47gras well as a greater volume of
wastewater being treated, thereby resulting in dnigkceiving water quality under standard
conditions. However, it only provides the same leferesilience as that provided by a less
reliable option with greater CSOs and less wastewegated, whereas it would intuitively be
expected to provide higher resilience than a leBalie option. This may be attributed to it
resulting in a greater impact on level of serviceler extreme population increase as the
surcharged WWTP performs poorly and low qualitycdarge is concentrated at the WWTP

outlet instead of distributed along the river byd3S

3.2 Rédiability-, risk- and resilience-based design

Most operational control and design options showrfigure 6 do not represent realistic
solutions, given their poor performance even urgtandard loading / design conditions.
Further analysis, therefore, focuses on those whioliide good performance under the base

case population (i.e. have high reliability).

Example response curves for three options whiclvigeoa reliability of at least 0.999 are
shown in Figure 7. The first (grey line) providekigh degree of reliability only. The second
(black line) is also low risk (risk 0.001), and the third (bold, dashed line) is thaom that
provides the highest level of resilience whilstoafgoviding high reliability and low risk.
These show that a high degree of reliability doet guarantee good performance under
disturbances; consideration of risk improves thspoase but resilience assessment is
required to ensure the chosen option performs wigl respect to alternatives when water
qguality failures do occur. The difference betweetiability-, risk- and resilience-based
IUWS design is most marked in Figure 7b, whereattrol and design option resulting in

the greatest DO deficit (minimum DO concentratianyler any level of population increase
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has high reliability but not low risk, and the meossilient solution maintains the highest DO

concentration (minimises the failure magnitude)amahy population increase.
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Figure 7: DO response to population increase foghhireliability, low risk and high

resilience options

To illustrate the potential differences betweemat®slity-, risk- and resilience-based design,
the decision variable values of the three differgptions are shown in Figure 8. The high
reliability option provides a receiving water quralcompliance reliability of 1.000, risk to
receiving water quality from population increase @023 and a receiving water quality
resilience to population increasByfrationmea) Of 0.853. The high reliability and low risk
option has reliability, risk and resilience valw#sl.000, 0.000 and 0.868 respectively, and in
the high resilience option the resiliend&ationmeap 1S iNCreased to 0.922. It is shown that,
whilst there are similarities between the threaams (most notably in Rwin and \st7), the
characteristics of the operational control and glesiption providing high resilience differ
from those providing just high reliability. For erale, high reliability can be achieved with
an increase in storage volume of 23-31%16/Vst4 Vste and Vst7); however, significantly

greater increase in storage volume is requiredduvige the highest level of resilience.
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This suggests that identification of preferableigiesaand operational control options, taking
into account reliability, risk and resilience, rags an understanding of the mechanism of
failure minimisation (i.e. how the different opt®meduce the frequency, magnitude and
duration of failure), and that there may be cogtlications of increasing resilience (e.g. due

to extra storage required).
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Figure 8: Decision variable values for options piding: a) high reliability, b) high

reliability and low risk, and c) high reliabilityow risk and high resilience

Note that observations on the relationships betwediability, risk and resilience in the

IUWS case study are based on a formulation ofieesié that addresses only one known
threat. The capability of a middle-state basedliesgie assessment to address multiple
threats, including unknowns (as in formulation &2,example), has not been exploited. The
benefits of a ‘high resilience’ approach over avlosk’ approach are expected to be greater
if resilience is calculated using a formulation end/hich risk is incalculable (e.g. S4, S10 or
G2), but demonstrating the benefits is challenginghey are not observable until the

occurrence of a previously unknown threat. Eveneunitsk and resilience formulation S2,
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however, it is shown that failure magnitude andation under a specified threat can be

significantly reduced by considering resilienceaddition to risk.

4 CONCLUSIONS

This research has explored the ways in which rdilygbrisk and resilience may be

formulated, identifying possible components andvkiedge required for calculation of each
and formalising the conceptual relationships betwsgecified and general resilience. A set
of corresponding formulations has also been impigatein a case study IUWS to enable
investigation into the relationships between religh risk and resilience for this system. The

following conclusions are drawn:

* Many formulations of both general and specifiett asd resilience exist, but not all can
be calculated due to the existence of unknown ter@ad unknown consequences.

* General resilience can theoretically be calculaignder some formulations) whereas
general risk cannot. Resilience can, thereforeremddresponses to a wider range of
threats.

* All threats, including both known and unknown, dag addressed with a middle-state
based resilience analysis which focusses on thel lel service response to system
failures. Risk cannot be calculated on the saméslmsce the probability of system
failure is affected by the probability of unknowréats.

» Consideration of resilience in addition to risk che beneficial even when only
considering specified threats, as demonstratedarcase study. Lowest risk solutions do
not necessarily provide the highest specified isrssk.

» Although reliability, risk and resilience values yrexhibit correlations, designing for just

one is insufficient: reliability, risk and resiliea are complementary measures.
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HIGHLIGHTS

» Framework developed to explore components of reliability, risk and resilience

»  Shortcomings of commonly used formulationsillustrated

» Rdiahility, risk and resilience-based design and operation of wastewater systems
explored

» Lowest risk solutions do not necessarily provide the highest specified resilience

» Rdiahility, risk and resilience shown to be complementary measures



