
Coordination in gait: Demonstration of a spectral approach 

Many important notions in Life Sciences are linked with the idea of cycles, 

periodicity, fluctuations and transitions. The aim of this paper is to use spectral 

analysis in a unique way to study and quantify whole body coordination during 

gait. A participant walked at 3 km/h and ran at 15 km/h on a treadmill for 2 

minutes. Position of the approximate center of rotation of the toe, ankle, knee, 

hip, shoulder, elbow and wrist, and heel, PSIS and head were collected at 100 Hz 

using CODAmotion analysis system. Fast Fourier Transform was performed on 

x-coordinate data of the 1) knee marker; 2) 4 markers attached to the free lower 

limb (toe, ankle, heel and knee); 3) left and right free lower limbs; 4) whole body 

(all markers). Gait is described by a largely harmonic and resonant oscillator that 

operates unilateral free limbs at the stride frequency, and axial regions at the step 

frequency. Running is described by a more harmonic and resonant oscillating 

structure than walking, with a 3 times higher Q factor and 47% lower 

Inharmonicity Index. This method is presented as a way to capture global 

dynamics of our complex multi-segment system, and presents a novel application 

of spectral analysis to study coordination in multiple oscillators. 

Keywords: gait analysis, dynamical systems theory, phase relations, coherence, 

biomechanics. 

Introduction 

Many important notions in Life Sciences are linked with the idea of cycles, periodicity, 

fluctuations and transitions; from the thermodynamic and chemical processes 

underpinning the function of a cell, to the modes of gait used for locomotion. 

Furthermore, in biological systems, the interaction of many linked oscillatory parts, and 

the redundancy afforded by their coordination underpins the functionality and health of 

that system. For example, understanding coordination between multiple moving 

segments of the body, and particularly the regularities and variations in this 

coordination, is key to understanding motor control from a dynamical systems theory 

perspective (Bernstein, 1967; Haken, Kelso, & Bunz, 1985; Kamm, Thelen, & Jensen, 
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1990; Kelso, 1995; Kugler, Kelso, & Turvey, 1980; Newell, 1989). For example, 

coordinative structure theory and the Haken, Kelso and Bunz (HKB) Model (Haken, 

Kelso, & Bunz, 1985; Kelso, 1995; Kugler, Kelso, & Turvey, 1980) originally 

examined the couplings and phase relations between two individual oscillating fingers. 

Based on observations of multi-stability in phase relations, non-linear phase transitions 

and hysteresis, the work of Haken, Kelso and Bunz (1985) provided theoretical and 

empirical evidence that coordination in a biological system is an emergent self-

organised process. However, there are still few examples of coordinative structure 

theory being applied to whole body actions such as gait. 

Bernstein's (1967) problem seeks to understand how the many degrees of freedom are 

organized to master the system redundancy. However, measures of coordination used in 

motor control and biomechanics predominantly consider phase relations between only 

two oscillators, through measures of Relative Phase, Vector Coding and Continuous 

Relative Phase (Costa, Golderberger, & Peng, 2005; van Emmerik et al., 2014; van 

Emmerik et al., 2016; von Holst, 1954; Scholz, Kelso, & Schöner, 1987). Alternative 

approaches describe the state of the entire system through phase relations in two 

biomechanically relevant global variables such as the centre of mass and centre of 

pressure (Newell et al., 2015; Segers et al., 2007; Vereijken et al., 1992). Statistical 

methods such as Principal Component Analysis have been used to capture the relations 

between multiple degrees of freedom to reduce the dimensionality of data 

(Daffertshofer et al., 2004; Lamoth et al., 2009), increasing our understanding of the 

coordination involved in whole body tasks. However, human movement research is still 

searching for ways to capture global dynamics of our complex multi-segment system. 

Gait involves multiple moving segments and is cyclic in nature. Gait modes for humans 

fall into two categories; walking and running, for which biomechanical (Alexander, 
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2004; Biewener et al., 2004; Farley & Ferris, 1998; Lee & Farley, 1998; Novacheck, 

1998; Segers et al., 2006, 2007a, b) and motor control (Bohnsack-McLagan, Cusumano, 

& Dingwell, 2016; Daffertshofer et al., 2004; Dingwell & Cusumano, 2015; Lamoth et 

al., 2009; Li et al., 1999; Li, Haddad, & Hamill, 2005; Seay et al., 2006; Schöner, Jiang, 

& Kelso, 1998) aspects have been studied over decades. Previous studies have analysed 

symmetry within a stride, and stride length in gait (Gage, 1964; Roche at al., 2013; 

Smidt et al, 1971; Wagenaar, & Van Emmerik, 1994; 2000), however previous work 

has not considered how the combination of oscillations of different segments create a 

global dynamic. 

Since Fourier transform is a way to study the frequency content of a signal, looking at 

the structure of the regular phenomena involved, it allows us to unravel the complexity 

and dimensionality of the combined oscillations. By understanding how the components 

within the system are interacting with each other we can further understand how the 

system works on a global level and provide a holistic view of the whole body 

movements. To provide a basic demonstration of how spectral analysis can capture 

coordination, we firstly analysed data of a bimanual coordination task (Haken, Kelso, & 

Bunz, 1985). Kinematic data (CODA, Charnwood Dynamics Ltd, UK; 100 Hz) were 

collected from 2 markers placed on the distal phalange of each index finger as a 

participant, beginning in an anti-phase mode, increased the velocity of abduction-

adduction finger oscillation with a constant acceleration. Figure 1a and 1b show the 

spectrogram of the rhythmical oscillation of the index finger on each hand. For each 

finger (Figure 1a and 1b) the base frequency (vertical axis) increased over time 

(horizontal axis) as the speed of the finger oscillation increased. Figure 1c shows the 

spectral result of adding the signals of finger 1 and finger 2.  At velocities where anti-

phase oscillations between fingers occur, the spectrum shows the effect of the 
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destructive interference between the two waveforms, cancelling the base frequency 

between 0-45 s. As the fingers transition into in-phase coordination there is first a blur 

in the spectrum that represents the out-of-phase and phase variability associated with 

phase transitions, then, as the fingers lock into an in-phase coordination from 50-60 s, 

the spectral line associated with their oscillation is enhanced, as a result of constructive 

interference. 

 

---------- INSERT FIGURE 1 HERE ------------- 

 

Using spectrograms we can obtain an individual and situation specific representation of 

coordination by examining movement of multiple markers that represent moving 

segments of the body. Measuring, for example, the displacement of each joint centre 

while walking or running, provides a series of one-dimensional oscillating waveforms. 

The collection of these waveforms, their frequencies, amplitudes, and phase-relations 

captures the coordinated movement of the whole body. The aim of this paper is to 

demonstrate the use of spectral analysis as a unique way to study coordination during 

gait through the analysis of constructive and destructive interference. 

Methods 

Data collection 

Ethical approval was gained from the Department of Life Sciences Ethics Panel at 

Anglia Ruskin University. Informed consent was gained from the participant prior to 

testing. A male participant (age 28 years, mass 75.2 kg, height 1.90 m, regular runner 

~45 mins x 4 times per week) walked and ran on a motorized treadmill at constant 

speeds of 3 and 15 km/h for 2 minutes. Five minutes rest was provided between each 
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speed to mitigate the effects of fatigue. Kinematic data were collected during all gait 

trials using an automated 3D motion capture system (CODA, Charnwood Dynamics 

Ltd, UK) sampling at 100 Hz. Three CX1 CODA scanners provided a field of view 

exceeding 2.5 m around the treadmill. CODA was aligned such that the x axis was the 

direction of travel of the participant. 22 active markers were placed bilaterally on the 

lateral aspect of the estimated centre of rotation of the shoulder, lateral epicondyle of 

the humerus, head of the ulna, estimated centre of rotation of the fifth 

metacarpophalangeal joint, temple, posterior superior iliac spine (PSIS), greater 

trochanter, femoral condyle (knee), lateral malleolus (ankle), fifth metatarsophalageal 

joint, calcaneus (heel) and the first distal phalanx of the foot (toe). 

Data processing 

Positional data of markers and combinations of markers in the direction of travel (x 

direction) were analysed using R (http://www.r-project.org) with the seewave package 

(http://rug.mnhn.fr/seewave/) to perform Fast Fourier Transform (FFT) with Hanning 

window. Spectrograms were computed using 216 point moving Hanning windows with 

no overlap for each marker and combination of markers. Through an additive approach, 

Fourier theorem provides a way to weight the contribution of each frequency 

component through their relative amplitude. Four combinations of x direction (sagittal 

plane) data were analysed using the FFT: 1) knee marker; 2) four markers attached to 

the left free lower limb (knee, ankle, heel and toe); 3) all eight markers of the left and 

right free lower limbs; 4) whole body (all 22 markers). When required, for example to 

allow comparison between running speeds, the spectra were normalized to the base 

frequency.  

Discrete variables; base frequency, Q Factor and Inharmonicity Index were calculated 

from the Fourier spectra. Base frequency was calculated from the position of the 
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fundamental frequency peak in the spectrum. The Q Factor is the resonance quality 

factor of a frequency spectrum and was determined using the Q function in seewave 

which estimates the frequency pureness of a time wave by returning the resonant quality 

factor at a specific dB level (-3 dB). The Inharmonicity Index is a quantitative 

description of how a certain spectrum was deviating from a perfectly harmonic one; 

calculated based as the average of the exponential of the deviation of a peak from a 

perfectly harmonic spectrum (Equation 1). By definition it is always greater or equal to 

0, where 0 is a purely harmonic spectrum as the overtones are integer multiples of a 

fundamental frequency; the larger the value the more inharmonic the spectrum. 

Equation 1:  

 𝐼 = ∑ 𝑒|𝑓𝑖/𝑓1−𝑖|𝑖
𝑁 − 1 (1) 

 

Where: I is the Inharmonicity Index, N is the number of spectral components, fi is the 

frequency of the i-th peak in the spectrum, f1 is the fundamental frequency. For 

example, for an almost perfectly harmonic spectrum with four spectral peaks at: 100, 

202, 299, 402, the Inharmonicity Index would be:  

𝐼 = 𝑒|100/100−1| + 𝑒|202/100−2| + 𝑒|299/100−3| + 𝑒|402/100−4|
4 − 1 = 0.0076 

On the other hand, if the peak frequencies are further apart from the harmonic sequence, 

for example: 100, 215, 312, 422, the Inharmonicity Index would be more than 17 times 

higher:  

𝐼 = 𝑒|100/100−1| + 𝑒|215/100−2| + 𝑒|312/100−3| + 𝑒|422/100−4|
4 − 1 = 0.134 
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Results 

Figures 2 and 3 represent the spectrograms of the four different marker combinations 

for both walking at 3 km/h and running at 15 km/h. The spectrogram offers an easily 

interpretable map of how the spectrum evolves, thus revealing the stability of the 

frequency relations. Amplitude related to each frequency component (vertical axis) is 

represented by colours which change over time (horizontal axis). Figure 2 and 3 

qualitatively express phase cancellations and enhancements as a result of combining 

markers. 

 

---------- INSERT FIGURE 2 HERE ------------- 

 

Walking 

Figure 2a is the spectrogram of the waveform of the knee marker in the x direction 

(sagittal plane) as the participant walks at 3 km/h. Due to the cyclical nature of the 

oscillation, the spectrum is clearly structured, fundamentally harmonic with clear 

spectral lines appearing at frequencies corresponding to integer multiples of the base 

frequency. The base frequency, where most of the energy is concentrated, is 0.78 Hz, 

which is 9.3% higher than the stride frequency (0.71 Hz ± 0.02) seen as a red (high 

amplitude) spectral line in Figure 2a. There is an overall background noise due to 

unstructured characteristics of the signal. The consistency of the spectral lines in the 

horizontal axis demonstrates that this is a stable action occurring over time.   

 

By adding the toe, ankle and heel markers to the knee marker (Figure 2b) the 

Inharmonicity index decreases (Table 1), showing a fundamentally harmonic spectrum 

with most of the energy concentrated around the stride frequency. Compared to Figure 
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2a, the amplitude of the harmonics are reduced due to the phase oppositions that exist 

between movements of the leg markers.   

 

Figure 2c is the spectrum of the waveform created by combing the left and right legs 

(Leg-Leg). The spectrum is made of two key contributions, the first at the step 

frequency concentrated at 1.37 Hz, which is 1.93 times the stride frequency and the 

second at the first harmonic of the step frequency at 2.73 Hz. Interestingly, the 

fundamental frequency for the leg-leg spectrum has become the step frequency, rather 

than the lower stride frequency for the knee (Figure 2a) and the individual leg (Figure 

2b). The stride frequency has been cancelled due to the anti-phase movements of the 

legs. Inharmonicity Index of this combination is 0.102, representing a further tendency 

towards inharmonic as a result of the additional phase delays and path differences 

between opposing limbs in walking. Q factor of the resonance increases compared to 

single leg analysis (Table 1).  

 

Figure 2d is the spectral result of the combination of all 24 markers.  The spectrum is 

fundamentally harmonic, with the main contribution coming from 1.367 Hz, which is 

1.93 times the stride frequency (Table 1). The value of the Inharmonicity Index is 0.063 

and the Q factor is 3.83, due to the more coherent phase relations and constructive 

interference resulting from the combination of whole body markers. Pairing of inertial 

components in the contralateral limbs has led to the strongest cancellation of all other 

spectral lines. 

 

---------- INSERT FIGURE 3 HERE ------------- 
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Running 

Figures 3a-3d are the spectrograms of the same marker combinations (knee, leg, Leg-

Leg and whole body) for the participant running at 15 km/h. The knee and the leg 

spectra (Figure 3a, b) show a fundamentally harmonic spectrum with most of the energy 

concentrated around 1.37 Hz (5.5% less than the stride frequency). The main difference 

between the two is the second harmonic disappearing and the fourth appearing in Figure 

3b, as a result of specific phase relation between the segments of the leg. The 

Inharmonicity Index is 0.007, close to a perfectly harmonic one. Q factors are 5.11 for 

the knee and 5.12 for the leg, higher than those related to the knee oscillation during 

walking. 

 

Figure 3c is the spectrum of the waveform created by combing the left and right legs 

while running. Stride frequency characteristics are cancelled between the two legs due 

to anti-phase movements, leaving the step frequency as dominant. A Q factor of 10.31 

suggests a high resonance for this combination, 3.39 times higher than the one in 

walking, where the spectrum is also more harmonic.  

 

Finally, Figure 3d is the spectrogram of the combination of all body marker oscillations 

in the x direction as the participant runs at 15 km/h. The spectrum is the most harmonic, 

47% lower than that of walking. Most of the energy at the base frequency of 2.93 Hz, 

which is the step frequency. Q factor is 2.93 times higher than the whole body Q factor 

in walking showing an overall increase in stability compared to walking. Interestingly, 

compared to the leg-leg combination, the sub-harmonic (the stride frequency) has been 

strengthened by the addition of the whole body markers, which is due to the head and 
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trunk (as represented by the temple, estimated centre of rotation of the shoulder, PSIS 

and greater trochanter) oscillating at the stride frequency. 

 

---------- INSERT TABLE 1 HERE ------------- 

 

 

---------- INSERT FIGURE 4 HERE ------------- 

 

Figure 4 is the spectrum of the whole body marker combination having been normalized 

to the base frequency for both walking (3 km/h) and running (15 km/h). This figure 

emphasizes the amplitude of the frequencies having been enhanced or cancelled, and the 

harmonic structure of the spectra presented as how the peaks lay according to integer 

multiples of 1. Walking at 3 km/h has a drift from a perfectly harmonic behaviour 

(0.063), whereas running at 15 km/h is strongly harmonic (0.001).  

 

---------- INSERT FIGURE 5 HERE ------------- 

 

Figure 5 shows the frequency distribution of the spectrum in 2 Hz bands. There is a 

maximum difference of 0.4 % between the walking and running spectrum in band 0-2 

Hz, demonstrating that this method does not clearly distinguish between the spectrum 

for walking and running. 

Discussion 

This paper presents spectrograms and spectral analysis as a way to study whole body 

coordination in walking and running gaits. Specifically, the spectral result of combined 

marker oscillations that describe whole body movements was used to further understand 
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the collective behaviour, or global dynamic, of our biomechanical system.  The final 

result of the interaction of all markers is a globally simpler dynamical system, described 

by a smaller number of frequencies (Figure 2 and 3). Therefore, this approach initially 

moves in the opposite direction to that of standard spectral analysis; allowing the global 

variable to emerge through the determining the frequency of the emergent global 

variable rather than decomposing signals into its frequency content, then decomposes 

the frequency content of the resulting signal.  The frequencies themselves, their spread 

and relations provide information about the coordinated nature of the system during 

walking and running gaits.  

Previous studies have analysed harmonic theory in human movement science, for 

example to examine the symmetry within a stride by exploiting the periodicity of the 

signal (Gage, 1964; Roche at al., 2013; Smidt et al, 1971). Building on this work, the 

current technique examines phase relations between the oscillating degrees of freedom 

of the body segments. Adding to the analysis of asymmetry and coordination analysis 

using PCA (Daffertshofer et al., 2004; Lamoth et al., 2009), the current technique 

embraces the expression of the mechanical phase relations that have evolved to 

underpin gait through relative inertias, delays, frequency enhancement and cancellation; 

i.e. the body’s mechanical solution over steps and time. For example, in running, 

comparing the whole body marker combination (Figure 3d) and the left and right leg 

combination (Figure 3c), the first harmonic has been cancelled due to leg-arm 

coordination. The contribution at the base frequency has reduced due to the destructive 

interference of anti-phase components capturing the whole body mechanical solution to 

running. The tightness of the anti-phase coupling is related to the purity of the 

cancellation of the base frequency, which is represented by the Q factor.  
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Furthermore, from a quantitative perspective, the measures of Q factor and 

Inharmonicity Index provide a description of the profile of the spectrum rather than a 

statistical breakdown of its content.  For example, Figure 5 shows the frequency 

distribution of the spectrum in 2 Hz bands, a technique which is often used in motor 

control research to distinguish data. It is clear that with a maximum difference of 0.4 %, 

this representation of the spectrum does not provide enough information about the 

quality of the coordination that is conveyed through the spectrum in Figure 4. 

Furthermore, through quantitative analysis of the spectrum, the quality of the 

coordination is related to the shape of the peaks in the spectrum (the height and width: 

Q factor) and the position (Inharmonicity Index). Therefore, summarizing the spectrum 

or the spectrogram using bands masks the important information that characterizes 

coordination. 

Through the analysis of spectrograms it is clear that gait is described by a largely 

harmonic and resonant oscillator that operates unilateral free limbs at the stride 

frequency, and axial regions at the step frequency. Running is described by a more 

harmonic combination of oscillations which has a stronger resonance than walking. In 

fact, this is true for the whole system, as well as limbs and cross limb pairs. 

The Q factor measures frequency dispersion around a central frequency, in this case a 

peak in the amplitude, and is a measure of the resonance quality in the combination of 

oscillations. Q factor was 2.94 times higher in running compared to walking, showing a 

lower dispersion of frequencies around the central peak values. Therefore, the overall 

coordination of the system during running is more phase coherent, efficient, stable, and 

less susceptible to perturbations when running. While these inferences are based on the 

mechanics of oscillators, they are of relevance to motor control where stability of the 

global dynamic has been defined based on phase coherence, reduced variability (phase 
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dispersion) that result in a more stable attractor (van Emmerik et al., 2016; Haken et al., 

1985). This finding is in line with those of Lamoth et al. (2009), who used a PCA to 

demonstrate that phase relations changed and coupling strengthened from walking to 

running; with the most prominent movements becoming more tightly coupled. 

From a biomechanical perspective efficiency (Cavagna and Kaneko, 1977) and stability 

are key if the gait speed is near the maximum limit due to the high level of constraints 

placed on the degrees of freedom. The Q factor and the Inharmonicity Index are directly 

related to the efficiency of the system (Feynman et al., 1989); the Q factor is also 

related to its stability. This is demonstrated here as running has a higher Q and a lower 

Inharmonicity Index, suggesting it is a more efficient mechanical action, with more 

energy required to perturb it. On the other hand, while running is less prone to 

perturbations than walking, if any change to the pattern of coordination is required, to 

change direction for example, the mechanical system needs to expend more energy 

compared to walking to enable this.  

Inharmonicity Index, based on its calculation, is independent of Q factor since it takes 

into account the position of the peaks not their width and amplitude. Inharmonicity is a 

measure of the deviation from a perfectly harmonic spectrum, which contains only 

integer multiples of a fundamental frequency. All natural oscillating phenomenon 

deviate from perfectly harmonic (Feynman at al., 1989a). Inharmonic frequencies are 

caused by combining anthropometrically different oscillating structures. From a motor 

control perspective, Inharmonicity can be considered a measure of complexity; the 

closer to 0 the Inharmonicity, the more harmonic, hence simpler is the global dynamic. 

Deviating from 0 means that independent oscillators contribute to the coordination, 

increasing the number of active dynamic degrees of freedom needed to recreate the 

movement pattern.  Based on this proposition, increasing constraints from walking to 
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running induces the simpler collective description of the coordination from the spectral 

point of view (Figure 2 and 3; Table 1), where the Inharmonicity Index of the whole 

body is 47% lower in running compared to walking. Therefore it suggests that the 

pattern of movement in running is easier to control and maintain since it occurs after the 

critical point in the control parameter; gait velocity (Schöner & Kelso, 1988). From a 

basic and applied science perspective, future work will explore how Inharmonicity 

changes with pathology, age and injury in line with the loss of complexity hypothesis 

and interruptions to neural networks and pattern generators (Guertin, 2012; Lipsitz, 

2002; Lipsitz and Goldberger, 1992; Schöner, Jiang and Kelso, 1990; Schöner and 

Kelso, 1988).  

The global result of oscillations is more harmonic and phase coherent than that of the 

individual elements, suggesting there is evidence supporting an overall pattern generator 

based on one single oscillator (Q and Inharmonicity; Guertin, 2012; Schöner, Jiang, & 

Kelso, 1990; Schöner & Kelso, 1988). From a dynamical system perspective, the global 

dynamic created by the combination of all of the oscillators could be a candidate 

collective variable for gait (Newell & Vaillancourt, 2001; Zanone & Kelso, 1997).  

Therefore, this will open the field to further theoretical investigation of this 

phenomenon in line with the tenants of self-organization. In addition, spectrograms can 

provide practitioners with non-numerical tools for investigating coordination and 

stability over time. 

Conclusions 

This paper presents spectrograms and spectral methods to study whole body 

coordination in walking and running gaits through the analysis of constructive and 

destructive interference. The final result of the interaction of all markers is a globally 
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simpler dynamical system, described by a fewer number of frequencies. It is clear, that 

based on Inharmonicity Index, gait is naturally described by a harmonic oscillator with 

high resonance based on the Q factor. Free limbs are operated at the stride frequency 

and axial regions at the step frequency. Running is described by a highly harmonic 

spectrum that has a stronger resonance than walking, therefore the overall coordination 

is more phase coherent, tightly coupled, efficient, stable, and less complex than 

walking. The global result of oscillations could provide evidence for central pattern 

generators based on one oscillator, and that could provide a candidate collective 

variable for gait.  

Future work will examine to what extent the current approach is sensitive to 

perturbations of the biomechanical and neurological systems, highlighting how 

redundancy afforded within our motor control can facilitate adaptations. Specific 

investigations will include the effect of age, injury, and different environmental 

constraints on gait patterns, in order to increase both theoretical and applied knowledge 

for human movement science. 
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Table 1. Discrete variables quantifying the spectrograms for walking (3 km/h, Figure 2) 

and running (15 km/h, Figure 3). Q is the resonance quality factor, where a larger 

number reflects a stronger resonance. Inharmonicity Index is a measurement of 

deviation of the spectral peaks from a perfectly harmonic spectrum (Equation 1), where 

a number closer to zero reflect a more harmonic spectrum.  

 

Figure 1. Sonogram of the oscillation of the left (a) and right (b) finger as the velocity 

of wagging is increased over time (x axis). The combination of the left and right fingers 

is shown in (c). Blue spectral lines represent the highest amplitude oscillation, red 

regions are related to medium amplitude oscillations and yellow represents the lower 

energy contribution to the spectrum.  

Figure 2. Spectrograms of horizontal components: 2a Top left, left knee marker; 2b top 

right, left leg (combined left knee, ankle, heel and toe markers); 2c bottom left,  left leg 

combined with right leg; 2d bottom right, whole body (combined left leg, right leg, left 

arm, right arm, hips, PSIS, shoulder and head markers), when walking at 3 km/h. 

Figure 3. Spectrograms of horizontal components of: 2a Top left, left knee marker; 2b 

top right, left leg (combined left knee, ankle, heel and toe markers); 2c bottom left, left 

leg combined with right leg; 2d bottom right, whole body (combined left leg, right leg, 

left arm, right arm, hips, PSIS, shoulder and head markers), when running at 15 km/h. 

Figure 4. Spectra of the whole body marker combination at 3 km/h (grey) and 15 km/h 

(black) having been normalised to step frequency. 

Figure 5. Frequency distribution of the spectra of the whole body marker combination at 

3 km/h (grey) and 15 km/h (black) in 2 Hz bands between 0 Hz and 12 Hz . 
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Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Markers 
Gait velocity 

(km/h) 
Base Frequency 

(Hz) Q 
Inharmonicity 

Index 
Knee 3 0.78 2.93 0.036 
  15 1.37 5.11 0.007 
Leg 3 0.78 2.95 0.026 
  15 1.37 5.12 0.007 
Leg Leg 3 1.37 3.04 0.102 
  15 2.93 10.31 0.086 
Whole 
body 3 1.37 3.83 0.063 
  15 2.93 11.24 0.001 
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