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Abstract

Objectives: Rapid popularity of Internet of Things

(IoT) and cloud computing permits neuroscientists to

collect multilevel and multichannel brain data to bet-

ter understand brain functions, diagnose diseases, and

devise treatments. To ensure secure and reliable data

communication between end-to-end (E2E) devices sup-

ported by current IoT and cloud infrastructure, trust

management is needed at the IoT and user ends.

Method: This paper introduces a Neuro-Fuzzy based

Brain-inspired trust management model (TMM) to se-

cure IoT devices and relay nodes, and to ensure data

reliability. The proposed TMM utilizes node behavioral

trust and data trust estimated using Adaptive Neuro-

Fuzzy Inference System and weighted-additive methods

respectively to assess the nodes trustworthiness.
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Results: In contrast to the existing fuzzy based TMMs,

the NS2 simulation results confirm the robustness and

accuracy of the proposed TMM in identifying malicious

nodes in the communication network.

Conclusion: With the growing usage of cloud based

IoT frameworks in Neuroscience research, integrating

the proposed TMM into the existing infrastructure will

assure secure and reliable data communication among

the E2E devices.
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1 Introduction

In recent years biological data has grown significantly,

thanks to the technological developments, now scien-

tists can acquire data simultaneously from multiple lev-

els and channels of a living system [1], and simulate

large scale brain networks [2, 3]. One of the major con-

tributors to this biological big data is Neuroscience [4].

Brain signals, e.g., Electroencephalogram (EEG), Elec-

trocorticogram (ECoG), Neuronal Spikes (AP), Local

Field Potentials (LFPs) along with brain imaging tech-

niques, e.g., Magnetoencephalography (MEG), Magnetic

Resonance Imaging (MRI), Functional MRI (fMRI),

Positron Emission Tomography (PET) have been ex-

tensively used in diagnosis of neurodegenerative dis-

eases [5, 6], neuropsychiatric disorders [7], and devel-

opmental disorders such as Autism Spectrum Disorder

[8]. Additionally, this data has been effectively utilized

in developing various data-driven disease models [9, 10].

Modern day Neuroscience research is driven by data

(see Fig. 1). Both clinical and experimental neuroscience
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research generate huge amount of data [11] and an-

alyzing those data to draw meaningful conclusions is

very challenging [12]. The extracted knowledge from

these data allow the development and refining of data-

intensive models and describe the underlying biological

phenomena which in turn facilitate experimental design

[13]. The data analytics and modeling phases are com-

putationally intensive, and advancements in artificial

intelligence [14] and cloud computing [15] allowed sci-

entists to perform these steps smoothly. The ‘cloudifica-

tion’ greatly facilitated scientists by providing ‘software

as a service’ (e.g., service oriented architecture or SOA)

instead of running the data-intensive analyses and mod-

eling locally in the computers. In other words, cloud

computing and big data paradigms converted context-

aware research into exhaustive, data-driven research.

Now, with the emergence of the Internet of Things

(IoT), various sensors can be connected to the cloud

for seamless resource sharing. Such IoT-Cyber Phys-

ical Systems (IoT-CPS) provide a platform to data-

driven research and design appropriate medical services

for patients. The IoT-CPS tailored to patient monitor-

ing and care are around for a few years now and it

allowed hospitals and healthcare processionals to seam-

lessly exchange patients’ data even from remote loca-

tions. These data may represent a wide range of health-

care parameters collected through the IoT for health-

care (IoHT) sensors. One of the main challenges of this

type of IoT-CPS is to ensure privacy and information

security. Thus, the trust management plays a vital role

for the end users which act as a first step of informa-

tion security. Despite the fact that trust management

is required for all such frameworks dealing with bio-

logical data acquirable through the IoHT devices, the

Neuroscience data stands apart from the others and

requires special attention due to their high variability

and spontaneity. While in many biosignals (e.g., Elec-

trocardiogram, Electromyogram) periodicities and sim-

ilarities have been noticed in terms of frequency con-

tent, amplitude and shape, the Neuroscience data (e.g.,

EEG, ECoG, LFPs, AP, etc.) have been known for

their variabilities [16, 17, 18] making them more prone

to misidentification, misclassification and misinterpre-

tation in cases when the signals are unsupervisedly ac-

quired without any experts. Therefore, to design robust

telemedicine systems using IoT-CPS targeting Neuro-

science applications, extra care must be taken to ensure

the trustworthiness of the IoHT nodes.

Mahmud et al. introduced a service-oriented archi-

tecture for web based collaborative biomedical signal

analysis [19]. As an initial platform with three main

components (i.e., users, contributors, and services), this

model assumed the inherent security of the internet and

used certificate based security as authentication scheme

for the contributors and users to deploy and utilize ser-

vices. The same architecture can be extended by del-

egating the data coming from the IoT devices to the

cloud for analysis. Additionally, a cloud-based health-

care system was proposed in [20] to provide convenient

patient-centric healthcare services. In this model, the

cloud performed the big data analytics and the au-

thors reported significant performance improvement in

the cloud-based system which too can be adapted to

suit smart healthcare applications. Also, biologically

inspired cloud resource provisioning was proposed for

optimal handling of big healthcare data [21].

While the assumption of a secure cloud is appro-

priate in the context of currently discussed commu-
nication models, discarding malicious transmission –

identified by the nodes profile information, behavior,

and data similarity – is vital to ensure the optimized

performance, reliability, and robustness of a system. In

the current scenario, profile information is validated by

the authentication services, and the nodes behavior and

data similarity are handled by a trust management sys-

tem. To make a more trustworthy system, Shabut et

al. identified the malicious nodes based on their behav-

ior and improved packets delivery through a multi-hop

relay network excluding those misbehaving nodes [22].

Another work proposed a dynamic cluster based recom-

mendation model to minimize the data sparsity or cold

start situations using nodes behavior to improve quality

of service (QoS) of end-to-end (E2E) transmission [23].

Chen et al. proposed a Fuzzy reputation-based trust

model (TRM) for IoT-CPS which estimated the nodes

trust from their behavior and showed an improved per-

formance in comparison to a communication system

without trust [24]. An ant colony based trust model
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layer (IoT site).

was presented to determine the trust value of wireless

nodes which exhibited improved accuracy [25]. Context-

aware multiservice trust management systems were pro-

posed in [26, 27] which filtered malicious nodes in the

E2E and heterogeneous IoT architectures with high ac-

curacy. Another trust management model (TMM) was

proposed to evaluate the trustworthiness of nodes in the

wireless sensor network through beta distribution. The

aggregated trust value from data and energy was used

in identifying the untrustworthy relay nodes to reduce

the internal threats [28]. Yet another trust management

system, based on an agent’s trustworthiness and confi-

dence, was proposed to evaluate the trustworthiness of

the IoT nodes [29]. Moreover, a joint social and QoS

TMM was presented to find the trust level of wireless

nodes in a mobile adhoc network [30].

However, identifying the malicious transmission us-

ing only nodes behavior isn’t enough to ensure reliable

communication. It is important to guarantee that the

data generated by the nodes are error-free – which is

a big challenge – and a TMM that takes into account

both nodes behavior and data similarity can be a solu-

tion to confirm nodes reliability.

This paper presents an Adaptive Neuro-Fuzzy based

Brain-inspired TMM targeting cloud based IoT archi-

tecture to determine data trust and behavioral trust

for all IoT devices and relay nodes to ensure reliable

data communication between E2E devices. This work

also investigates the effects of trust management on the

QoS issues of the cloud based IoT architecture suitable

for neuroscience applications.

2 Cloud based IoT Architecture

The big data and cloud are two paramount elements

for creating collaborative frameworks to analyze brain

signals (e.g., EEG, ECoG, AP, LFPs, etc.) and brain

images (e.g., MEG, MRI, fMRI, PET, etc.) and to per-

form data-driven modeling [19]. Due to the wide range

of advantages offered by such architectures, they have

become the trend in recent years [31].

Focusing on applications related to Neuroscience,

Fig. 2 illustrates a cloud based IoT framework which

consists of three main components, i.e., the IoT end

(contains the data generating devices), the cloud com-

ponent (provides the access and connectivity, and pro-

cessing and analysis of data), and the user end (provides

the analyzed and processed data to the users, e.g., doc-

tors, caregivers, and researchers). In this framework,

the data from various Neurotechnology empowered de-

vices are collected for the development of state-of-the-

art techniques pertaining to intelligent healthcare and

advancement of Neuroscience research. At the IoT end,

also known as perception layer, various data generating

devices are connected to respective transceiver devices

to forward the data to the cloud through the IoT gate-
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way either for data analytics or simply for storage. Ad-

ditionally, the brain signals generated at the IoT end

are also used in operating various medical and assistive

devices (e.g., automatic wheelchair, robotic arm, etc.)

[32, 31] to provide the better monitoring and improve

the quality of life. The cloud is used for defining the

access and the network and perform data storage and

analytics. Extending the work of Mahmud et al. [19],

in our framework, we consider the cloud to be secure

through existing certification and authentication mod-

els (see Fig. 3). Finally, at the user end, the service

consumers can access and visualize the processed data

based on granted rights and privileges.
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Trust 
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Fig. 4 Block diagram showing various steps of a trust evalu-
ation process.

In the cloud based IoT architectures, the IoT de-

vices or nodes generate data owing to various Neuro-

science applications. Like human relationships, these

nodes collaborate with each other through certain pre-

defined social properties, and these properties are the

‘Trust Compositions’ (see section 3). The values of these

social properties are propagated on the IoT and user

ends (known as ‘Trust Propagation’). During direct or
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Fig. 5 The trust management model. Data trust and behav-
ioral trust values are aggregated to find the trust level of the
sensor and relay nodes.

indirect interactions, the trust metrics of each node are

aggregated through static weighted sum, neuro-fuzzy

method, and Bayesian inference (known as ‘Trust Ag-

gregation’). The trust value of each node is then up-

dated when an interaction is completed (known as ‘Trust

Update’). This update can also be done periodically for

energy efficiency. The block diagram of the trust man-

agement steps is illustrated in Fig. 4.

3 Trust Management Model

The proposed TMM is illustrated in Fig. 5, where the

IoT nodes directly or via local/global relay nodes (such

as smartphones, routers, etc.) interact with the sensor

hubs (see Fig. 2) to establish successful communication

links. The individual trust levels of the IoT devices and

relay nodes are required to be evaluated to discard the

malicious nodes [33].

As the data communication in the access and cloud

layer is secured, the IoT and user ends are the main fo-

cus of our TMM for ensuring the E2E trust among IoT

devices and users for cloud based Neuroscience applica-

tions. Mimicking the social relation of people, the IoT

devices and relay nodes are assumed to have social rela-

tionships among themselves. Thus, the interactions and

collaborations among these nodes are employed to eval-

uate the trust level of each node. In deducing E2E trust

level, certain relationship among the nodes are consid-

ered which include– node profile information, node be-

havioral trust, and data trust [34].

The profile information is assured by the authen-

tication service, whereas, the latter two are estimated
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using adaptive neuro-fuzzy inference system (ANFIS)

and weighted-additive method, respectively. The node

behavioral evidence is assessed through direct and indi-

rect interactions among the nodes. For each node, the

assessment of the behavioral trust is performed con-

sidering three factors related to that node– relative fre-

quency of interaction (RFI), intimacy, and honesty. The

data trust is assessed by estimating the deviation of a

node’s instantaneous data from the historical data of

that node. Both direct and indirect methods can be

employed to evaluate data trust of a node.

Mathematically, the trust level of a given node (j)

denoted by Tj is estimated by summing up the behav-

ioral and data trust as Equation 1.

Tj(t) = T nb
j (t) + T d

j (t), (1)

where, T nb
j (t) is the evaluated behavioral trust and

T d
j (t) is the evaluated data trust.

3.1 Evaluating Behavioral Trust

3.1.1 Behavioral Trust Metrics

The trust properties for the behavioral trust of a nodes

are discussed below.

Relative Frequency of Interaction (RFI). Zhang et al.

studied the interaction frequency among nodes [35].

The interaction frequency refers to the number of in-

teractions, between the assessor and assessee, that take

place within a given unit of observation time. The higher

the successful interaction rate, the higher the degree of

closeness. It means the assessee node is a trustworthy

node. It has also been reported that the closeness in a

relationship (e.g., friendship) can be predicted from the

past interaction and it confound the future interaction

[36, 37]. Therefore, the RFI-aware trust, T RFI
j , can be

calculated by Equation 2.

T RFI
j =

nj
N
, (2)

where nj is the number of interactions between the as-

sessee node j and the assessor node in an observation

period t, whereas, N is total number of interactions

between node j with other k nodes during t.

Intimacy. In any social context, the intimacy or rela-

tionship duration of interaction is an important factor

in calculating the trust level. The higher is the time of

interaction between an assessee node and an assessor or

guarantor node, the higher is the intimacy. Considering

the total time spend of an assessor node i with the as-

sessee node j as tij and the cumulative time spend of j

with other k guarantor nodes as tkj , the intimacy (T I
j )

can be calculated by Equation 3 [38].

T I
j =

tij
tij − tkj

. (3)

Honesty. Honesty is one of the main factors for estab-

lishing social trust between two given nodes. It can be

determined using the successful and unsuccessful inter-

actions of those nodes. Usually, the value of honesty lies

between [0,1], i.e., T H
j ∈ [0, 1]. In other words, T H

j = 0

means no successful interaction, and T H
j (t)→ 1 means

the assessee node j is a trustworthy node. While aj and

bj denote successful and unsuccessful interactions re-

spectively, their values are estimated using the Beta dis-

tribution [39, 40], where the distribution f(p|aj , bj) is

expressed by the Gamma function Γ (·) with 0 ≤ p ≤ 1,

aj > 0, bj > 0; and p 6= 0 if aj < 1 and p 6= 1 if

bj < 1 [41]. Finally, the honesty aware trust value can

be calculated by Equation 4.

T H
j (t) =

aj
aj + bj

. (4)

3.1.2 Node Behavioral Trust

The node behavioral trust is calculated from both di-

rect and indirect interactions between nodes. At a given

time t, an assessor node directly interacts with the as-

sessed node and evaluates the direct trust level (i.e.,

T d,nb
j (t)) from the previous direct interactions. Based

on the guarantee provided by the adjacent nodes the

indirect trust level (i.e., T ind,nb
kj (t)) can be evaluated.

The guarantor nodes (k number of nodes) provide guar-

antee based on the previous interactions with the as-

sessed node. The behavioral trust of j-th node is given

by Equation 5.

T nb
j (t) = T d,nb

j (t) +
∑
k

1

Hk
T ind,nb
kj (t), (5)

where Hk is the hop count for the k-th guarantor node.

3.1.3 ANFIS based Node Behavioral Trust Model

Fuzzy inference system (FIS) is a rule based expert sys-

tem which can mimic Brain’s logical inference to rep-

resent a system. In ANFIS, a fuzzy inference system

is employed to represent a nonlinear system with any

complexity. The parameters of the input and output

membership functions can be tuned by the backprop-

agation or hybrid backpropagation-least squares algo-

rithm [42, 43]. Due to its adaptive nature, the ANFIS

is more powerful in comparison to FIS.

The node behavior is evaluated by the ANFIS model

as illustrated in Fig. 6. The system consists of three

inputs –relative frequency of interactions (RFI), Inti-

macy, and Honesty. Each input has three linguistic terms
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or membership functions (MFs), i.e., Low, Medium, and

High. Therefore, there are nineteen possible IF-THEN

rules in the rule based system (see Fig. 6) and one out-

put called node behavioral trust level.

There are five layers– Fuzzification, Rule, Normal-

ization, Defuzzification and Output. Detailed descrip-

tion of each of these layer is described in [42, 43, 32].

The outputs of the layers are expressed by:

Fuzzification: O1
ij = µij(Ii),

Rule: O2
k =

∏
O1

ij =
∏

µik(Ii),

Normalization: O3
k =

O2
k∑

k O
2
k

,

Defuzzification: O4
k = O3

kyk, yk =
∑
i

wkiIi + bk,

Output: O5
k = T nb

j (t) =
∑
k

O4
k,

where, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, ..., 19; µij is j-th

MF for input Ii, wki and bk are consequent parameters;

and T nb
j (t) is the behavioral trust level of j-th node.

The ANFIS model is trained with the input-output

datasets generated from the NS2 simulator [44]. This

dataset is generated for the placement of 50 nodes where

a percentage of the nodes are configured as misbehaving

nodes. Beta distribution calculated the failure and suc-

cess of the interactions. For the predefined rule-based,

the ANFIS model has changed the MFs, and premise/

consequent parameters for finding the node-behavior

trust value. Fig. 7 shows the output surface plots of
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Fig. 7 The output surface plots of ANFIS where node behav-
ioral trust is plotted against the trust properties (a) Honesty
and RFI, and (b) Honesty and Intimacy.

ANFIS model where node behavioral trust is plotted

against the trust properties (a) Honesty and RFI, and

(b) Honesty and Intimacy.

3.2 Evaluation of Data Trust

The data trust of a node consists of direct and indirect

trust based on the historical data of the node(s).

Direct Data Trust. The value of direct data trust de-

pends on the deviation of a node’s instantaneous data

from its historical data. The historical data are the av-

erage value of the node’s data for a recent period (T ).

Mathematically, the direct data trust, T dd
j (t), of the j-

th node with the i-th relay can be expressed by equation

6

T dd
j (t) =

{
Tmax for Ddd

j (t) = Dhis

1
|Ddd

j (t)−Dhis| for Ddd
j (t) 6= Dhis, (6)

where, Ddd
j is the instantaneous data of j-th node dur-

ing direct interaction whereasDhis is the historical data.

Indirect Data Trust. The indirect data trust, T di
kj is the

average value of the deviation of a node’s instantaneous

data from the historical data of k nodes with j-th relay
under the assumption that the included nodes are all

trusted. Mathematically, T di
j (t) can be expressed by the

equation 7

T di
j (t) =


Tmax for

∑
k Dind

kj (t)

k = Dhis

1

|
∑

k Dind
kj

(t)

k −Dhis
j |

for
∑

k Dind
kj (t)

k 6= Dhis
j ,

(7)

where, Dind
kj is the instantaneous data of j-th node dur-

ing indirect interaction with k nodes.

Having obtained the direct and indirect trust values,

data trust of the j-th node is calculated by Equation 8

T d
j (t) = T dd

j (t) +
∑
k

1

Hk
T di
kj (t− tm), (8)

where tm is the m-th time.

4 Performance Metrics

The proposed Brain-inspired TMM, suitable for cloud

based IoT frameworks targeting Neuroscience applica-
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tions, has been evaluated using Packet Forwarding Ra-

tio (PFR) [45]; Network Throughput (NetT) [46, 47,

48, 49]; Average Energy Consumption Ratio (AECR)

[29]; Accuracy [32]; and F-measure [50].

PFR. The PFR is the ratio between a number of pack-

ets received by the IoT CPS and the number of pack-

ets transmitted by the source node. The PFR decreases

when the forwarded packets are dropped due to reasons

like– buffer overflow, blocking, route failure. Mathemat-

ically, the E2E PFR is calculated by Equation 9.

PFR =

∑
k PKTrec∑
n PKTsend

, (9)

where, PKTrec and PKTsend are the number of pack-

ets received by the destination node and packets send

by the source node. The source node sends n number

of packets and destination node receives k number of

packets, and k < n.

NetT. The NetT can be defined as the rate at which

the source transmissions are delivered successfully to

the destination over the link(s) between the source-

destination pair. The value of the throughput declines

with the appearance of misbehaving nodes in the net-

work. Mathematically, the NetT is calculated by equa-

tion 10.

NetT =
Nsuccess

ttrans
, (10)

where, Nsuccess is the number of successful transmission

delivered to the destination and ttrans is the considered

transmission interval.

AECR. The AECR is an another performance metric
which is the ratio between the energy consumption for

evaluating a trust metric (Ete) and the energy con-

sumption for the data transmission (for sending (Esend)

and for receiving (Erec)) of a node. The AECR of a ma-

licious node is lower than that of a legitimate node as

a malicious node does not participate in the packet for-

warding or route discovery. Mathematically, AECR is

calculated by Equation 11.

AECR =

∑
nEte∑

n(Erec + Esend)
. (11)

Accuracy. Accuracy is the ratio between the numbers

of total successful interactions and total interactions.

Mathematically, accuracy A is expressed by Equation

12 [51].

A =
TP + TN

TP + FP + TN + FN
, (12)

where, TP is the number of successful interactions cat-

egorized as successful, TN is the number of success-

ful interactions categorized as unsuccessful, FP is the

number of unsuccessful interactions categorized as suc-

cessful, and FN is the number of unsuccessful interac-

tions categorized as unsuccessful.

F-measure. The Precision (=TP/(TP+FP )) as well as

recall (=TP/(TP + TN)) are two important measures

considered in evaluating a classification outcome [50].

It is calculated by the harmonic mean of both recall

and precision, and mathematically it is expressed by

Equation 13.

F-measure =
2

1/recall + 1/precision
. (13)

5 Results

To verify the efficacy of the proposed TMM, simulation

was performed in the NS-2 platform [44]. The parame-

ters and setting employed in this platform are listed in

Table 1. The results were obtained by running the sim-

ulation for twenty times and then taking the average

values of these twenty runs. It was assumed that the

nodes had wireless capabilities and were communicat-

ing either directly or through multihop relay nodes to

the IoT-CPS. The Adhoc On-demand Distance Vector

(AODV) routing protocol [52] was employed to simu-

late the communication scenario. The IoT devices or

relay nodes were categorized in two types– legitimate

node and malicious node. The legitimate nodes took

part in the route discovery and packet forwarding pro-

cess, whereas the malicious nodes in neither took part

in packet forwarding nor in route discovery.

The ANFIS based TMM was incorporated in the

IoT-CPS network and all the nodes were initialized with

random trust values. After a certain number of interac-

tions the node behavior trust, and direct and indirect

data trust were evaluated by the model.

Table 1 Parameters and settings used in simulation.

Parameters Numerical Value

Simulator NS-2
Routing AODV
Node distribution Random
Traffic CBR
Nodes 50
MAC 802.11
Speed 3 m/s
Packet size 512 bytes
Range 250 m
Max. Connection 12
Reply delay 60 ms

The PFR dropped significantly when the malicious

nodes arose in the IoT or user end. A node was termed
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malicious if it hid (H) in the route discovery phase or

dropped (D) packets intentionally. Fig. 8 depicts the

effect of malicious nodes on the PFR. The PFR de-

creased as the percentage of malicious nodes increased

from 10% to 50%. In both cases of malicious behavior,

the proposed TMM outperformed TRM [24]. In addi-

tion, in terms of PFR, both TMM and TRM achieved

better performance compared to AODV with no trust

management framework (indicated as ‘AODV’).
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AODV TMM (H)

Fig. 8 The effect of malicious nodes on PFR.

The malicious nodes changed the overall network

throughput as illustrated in Fig. 9. When the number

of malicious nodes were increased (10% to 50%) and

the remaining nodes showed legitimate behavior, the

throughput of the network decreased. The performance

drop was due to the fact that the appearance of the ma-

licious nodes dropped the packet forwarding in the net-

work. The performance of the proposed TMM (AODV-

TMM in Fig. 9) was compared with the trusted AODV

(TAODV in Fig. 9) and AODV without trust (AODV

in Fig. 9). The results showed that the proposed TMM

outperforms the TAODV and AODV.

Additionally, the proposed TMM is more energy ef-

ficient (see Fig. 10). In comparison to the TRM, with

the increasing number of malicious nodes (10% to 50%)

present in the communication network, the proposed

TMM consumes less energy during the data transmis-

sion process. The reduced AECR value, compared to

the TRM, indicates that the proposed TMM is capable

of identifying more malicious nodes in the communica-

tion network.

Table 2 shows that the proposed TMM has higher

accuracy (0.967 in case 1, when 5 linguistic terms were

used: Very Low, Low, Medium, High, and Very High;

and 0.957 in case 2, when 3 linguistic terms were used:
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Fig. 9 The effect of malicious nodes on overall network per-
formance.
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Fig. 10 The effect of malicious nodes on AECR.

Table 2 Performance comparison of three types of Trust
management techniques

Technique Accuracy f-measure

ANFIS (Case 1) 0.967 0.97
ANFIS (Case 2) 0.957 0.96
FIS 0.89 0.90

Low, Medium, and High) in comparison to a Fuzzy In-

ference System (FIS) which has an accuracy of 0.89. In

addition, the F-measure of the proposed TMM (case 1:

0.97 and case 2: 0.96) also obtained higher values than

FIS (0.90).
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6 Conclusion and Future Work

With the unprecedented growth of Brain data and IoT,

cloud based data analytics solutions are gaining pop-

ularity and now security is a big concern. This pa-

per proposed a Brain-inspired TMM to secure data

transmission and ensure data reliability for the cloud-

based IoT architecture targeting Neuroscience applica-

tions. The TMM evaluates jointly node behavioral trust

and data trust using an ANFIS based node behavioral

model and a weighted-additive method, respectively.

Based on the evaluated trust levels, the model con-

structs a list of trustworthy nodes. The performance

of the proposed TMM was evaluated regarding PFR,

throughput, AECR and accuracy. The NS2 simulation

results show that the model performs better than FIS,

NFTM and other TM algorithms. In the future, sophis-

ticated optimization techniques along with Bayesian

statistics, Deep Learning, and Reinforcement Learning

based TMM will be used in ensuring security, reliability

and accuracy of the ever growing cloud based IoT and

Block Chain architectures.
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