
ANGLIA RUSKIN UNIVERSITY

FACULTY OF SCIENCE AND TECHNOLOGY

A BOTNET NEEDLE IN A

VIRTUAL HAYSTACK

MARK GRAHAM

A thesis in partial fulfilment of the

requirements of Anglia Ruskin University

for the degree of Doctor of Philosophy

Submitted: June 2017

i

Acknowledgements

This dissertation was prepared in part fulfilment of the requirements of the degree of Doctor of

Philosophy under the supervision of Adrian Winckles and Dr Erika Sanchez-Velazquez at

Anglia Ruskin University.

This Ph.D. journey would not have been possible without the support that I have received from

many people. In particular, I express huge gratitude to my first supervisor Adrian Winckles for

his inspiration and support. Adrian has been a mentor to me for many years. A huge thank you

also to my second supervisor Dr. Erika Sanchez for her encouragement and motivation. I also

extend my thanks to Chris Holmes for his friendship and companionship during my years

spent at Anglia Ruskin University.

I gratefully acknowledge the funding I received for my Ph.D. from Anglia Ruskin University.

Sincere thanks goes to my head of department, Professor Marcian Cirstea for his guidance and

advice. May I express my thanks to other members of the department, especially my fellow

Ph.D. students; Mohamed Kettouch and Dr. Arooj Fatima.

This work is dedicated to Samantha who is always there to listen.

ii

ANGLIA RUSKIN UNIVERSITY

ABSTRACT

FACULTY OF SCIENCE AND TECHNOLOGY

DOCTOR OF PHILOSOPHY

Abstract

A BOTNET NEEDLE IN A VIRTUAL HAYSTACK

MARK GRAHAM

JUNE 2017

The Cloud Security Alliance’s 2015 Cloud Adoption Practices and Priorities Survey
reports that 73% of global IT professionals cite security as the top challenge holding
back cloud services adoption. Malware with the capabilities to jump between the
abstracted virtual infrastructures found within cloud service provider networks
heightens the threat from botnet attack upon a cloud infrastructure. This research
project aimed to provide a novel methodological approach for capturing communication
traffic between botnets. The originality of this study comes from the application of
standards-based IPFIX flow export protocol as a traffic capture mechanism.

The first contribution to knowledge is a critical investigation into how IPFIX
export overcomes the limitations of traditional NetFlow-based botnet communication
traffic capture in cloud provider networks. The second contribution is the BotProbe
IPFIX template, comprising eleven IANA IPFIX information elements. Field occupancy
count and Spearman’s Rank correlation on 25 million botnet flows created an IPFIX
template tailored specifically for botnet traffic capture. The third contribution is
BotStack, a modular, non-intrusive IPFIX monitoring framework, created upon Xen
hypervisor and virtual switched platforms, to incorporate IPFIX export into existing
cloud stacks. The fourth contribution is compelling empirical evidence from weighted-
factor observation across multiple network vantage points, that siting IPFIX exporters
on the host hypervisor provides maximum traffic visibility.

BotProbe performs on average 26.73%±0.03% quicker than traditional NetFlow
v5, with 14.06%±0.01% less storage requirements. BotProbe can be extended with
additional application layer attributes, for use in less privacy sensitive environments.
Both novel IPFIX templates were tested on the BotStack framework, capturing four
distinct traffic profiles in the life cycle of a Zeus botnet.

The techniques developed in this research can be repurposed to create IPFIX
traffic capture templates for most Cybersecurity threats, including DDoS and spam,
turning behavioural-based traffic capture from a big data challenge into a manageable
data solution.

Keywords: botnet detection, cloud service provider, ipfix, netflow, traffic capture

iii

Contents

Abstract ... ii

List of Figures .. v

List of Tables ... vi

List of Acronyms .. vii

List of Publications ... viii

Copyright .. ix

1. Introduction .. 1
1.1 Motivation ... 2

1.2 Research Aim ... 4

1.3 Research Hypothesis, Objectives and Boundaries ... 4

1.4 Research Methodology .. 6

1.5 Ethical Considerations ... 9

1.6 A Summary of the Contributions to Knowledge .. 10

1.7 Thesis Structure and Organisation ... 11

2. Technological Review .. 12
2.1 Introduction ... 12

2.2 Botnet Fundamentals .. 13

2.3 A Review of the Limitations of Botnet Detection Techniques 14

2.4 A Review of Botnet Mitigation Legislation and Responsibility 16

2.5 A Review of the Cloud as an Attack Platform .. 17

2.6 A Review of the Cloud as an Attack Surface .. 19

2.7 A Model for Attacking a Cloud Infrastructure ... 21

2.8 Summary .. 24

3. An Overview of Flow Export .. 25

3.1 Introduction ... 25

3.2 A Brief History of Flow ... 26

3.3 Flow Export Architecture ... 27

3.4 IPFIX Compared with NetFlow ... 28

3.5 Flow Export Compared with Packet Capture ... 36

3.6 Flow-Based Botnet Detection .. 38

3.7 Summary .. 45

4. BotProbe: A Novel IPFIX Template for Botnet Traffic Capture 47
4.1 Introduction ... 47

4.2 IPFIX Template Customisation ... 48

4.3 BotProbe IPFIX Template Creation Methodology.. 49

4.4 Information Elements Results .. 58

4.5 Enterprise Elements Results .. 63

4.6 Presenting the BotProbe IPFIX Templates ... 72

4.7 Discussion of the BotProbe IPFIX Templates ... 74

4.8 BotProbe Performance Test Methodology .. 86

4.9 BotProbe Performance Results .. 95

4.10 Discussion of BotProbe Performance .. 97

iv

4.11 Summary .. 99

5. BotStack: A Novel IPFIX Framework .. 101
5.1 Introduction ... 101

5.2 Design Considerations for IPFIX Export in a CSP Environment 101

5.3 Presenting BotStack: An IPFIX Framework for CSPs .. 113

5.4 Probe Positioning Test Methodology .. 114

5.5 Probe Positioning Results .. 118

5.6 Probe Timing Test Methodology ... 122

5.7 Probe Timing Results ... 126

5.8 Discussion .. 127

5.9 Summary .. 129

6. Concept Validation .. 131
6.1 Introduction ... 131

6.2 Botnet Life Cycle Model ... 131

6.3 Proof of Concept Validation Methodology .. 132

6.4 Proof of Concept Results ... 135

6.5 Discussion .. 137

6.6 Summary .. 139

7. Conclusions ... 141
7.1 Contributions to Knowledge .. 142

7.2 Limitations of the Study ... 146

7.3 Future Work ... 148

7.4 Concluding Remarks .. 151

References ... 152

Appendix A: Field Counts for all IEs/EEs ... 165

Appendix B: List of Botnet Samples Analysed During this Study 169

Appendix C: SuperMediator Files .. 170

Appendix D: Python Scripts ... 175

Appendix E: Server Boot Script ... 177

v

List of Figures

Figure 1. An illustration of the gap in knowledge in botnet detection. .. 4
Figure 2. The phases of the research approach. ... 8
Figure 3. A diagramatical view summarising how this thesis contributes to knowledge. 10
Figure 4. A three stage model for hypervisor exploitation. .. 22
Figure 5. The four elements of a flow monitoring architecture. .. 28
Figure 6. Flow diagram of the IPFIX template creation test. .. 53
Figure 7. Flow diagram of the IPFIX template creation data analysis. .. 57
Figure 8. IE scatter plots. ... 60
Figure 9. HTTP scatter plots. ... 66
Figure 10. DNS scatter plots. ... 66
Figure 11. SMTP scatter plots. .. 67
Figure 12. SSL scatter plots. .. 67
Figure 13. The BotProbe IPFIX template, comprising of 11 SuperMediator IEs 72
Figure 14. The extended BotProbe IPFIX template, including an additional seven EEs 73
Figure 15. A comparison of the NetFlow v5 template with the template simulated in IPFIX 87
Figure 16. Flow diagram of the processing time test.. 89
Figure 17. Flow diagram of the data volume test. .. 92
Figure 18. Flow diagram of the CPU load test. ... 94
Figure 19. CPU utilisation for each of the three templates. ... 96
Figure 20. A comparison of hypervisors. .. 103
Figure 21. A comparison of Xen toolstacks. .. 105
Figure 22. A comparison of management GUIs. ... 106
Figure 23. A comparison of data centre virtual switches. .. 107
Figure 24. A comparison of open source IPFIX flow exporters. .. 110
Figure 25. A comparison of open source IPFIX flow collectors. .. 112
Figure 26. The logical architecture of BotStack. ... 113
Figure 27. An illustration of potential probe vantage placements. .. 115
Figure 28. Flow diagram of the probe location optimisation test. ... 116
Figure 29. Network vista weightings, by importance in botnet communication detection. 117
Figure 30. Location Test #1 - ICMP ping traffic captured by a probe in each tenant VM 120
Figure 31. Location Test #2 - ICMP ping traffic captured by a probe on the LAN 120
Figure 32. Location Test #3 - ICMP ping traffic captured by a probe on a host server 121
Figure 33. Location Test #4 - ICMP ping traffic captured by a probe on each host server 121
Figure 34. Location Test #5 - ICMP ping traffic captured by a probe on each device 122
Figure 35. The logical architecture for the probe timing test environment 123
Figure 36. Flow diagram of the probe timer misalignment test. .. 125
Figure 37. The logical architecture for the proof of concept network. 132
Figure 38. Flow diagram of the Zeus botnet traffic capture test. ... 134
Figure 39. Arc diagram of the entire botnet infection. ... 135
Figure 40. Four botnet life cycle profiles visualised through IPFIX export data. 136
Figure 41. Traffic scanning and attack profile. .. 138
Figure 42. Conceptual botnet mitigation eco-system... 149

file://anglia.local/fs/StaffHome/mg54/My%20Documents/ARU/Research/A%20botnet%20needle%20in%20a%20virtual%20haystack%202017.docx%23_Toc499737598

vi

List of Tables

TABLE 1. FEATURE COMPARISON BETWEEN NETFLOW V5, NETFLOW V9 AND IPFIX PROTOCOLS 29
TABLE 2. A SUMMARY OF BOTNET DETECTION EXPERIMENTS ... 44
TABLE 3. SUPPORT FOR IANA DEFINED IES AND EE PROTOCOLS, BY IPFIX PROBE 51
TABLE 4. SUPPORT FOR EES IN BOTNET TRAFFIC PROTOCOLS, BY IPFIX PROBE .. 52
TABLE 5. FIELD COUNT AND DATA TYPE CATEGORISATION FOR THE 25 IES ... 58
TABLE 6. AGGREGATED CORRELATION MATRIX: IES .. 62
TABLE 7. 21 BOTNET SAMPLES USED IN THE CREATION OF THE IE AGGREGATED CORRELATION MATRIX 62
TABLE 8. PROTOCOL DISTRIBUTION FOR THE 33 BOTNETS SAMPLED .. 63
TABLE 9. FIELD COUNT AND DATA TYPE CATEGORISATION FOR HTTP EES .. 64
TABLE 10. FIELD COUNT AND DATA TYPE CATEGORISATION FOR DNS EES ... 64
TABLE 11. FIELD COUNT AND DATA TYPE CATEGORISATION FOR SMTP EES ... 64
TABLE 12. FIELD COUNT AND DATA TYPE CATEGORISATION FOR SSL EES ... 65
TABLE 13. FIELD COUNT AND DATA TYPE CATEGORISATION FOR IRC EES ... 65
TABLE 14. AGGREGATED CORRELATION MATRIX: HTTP .. 68
TABLE 15. BOTNET SAMPLES USED IN THE CREATION OF THE HTTP CORRELATION MATRIX 68
TABLE 16. AGGREGATED CORRELATION MATRIX: DNS .. 69
TABLE 17. BOTNET SAMPLES USED IN THE CREATION OF THE DNS CORRELATION MATRIX........................... 69
TABLE 18. AGGREGATED CORRELATION MATRIX: SMTP ... 70
TABLE 19. BOTNET SAMPLES USED IN THE CREATION OF THE SMTP CORRELATION MATRIX 70
TABLE 20. AGGREGATED CORRELATION MATRIX: SSL ... 71
TABLE 21. BOTNET SAMPLES USED IN THE CREATION OF THE SSL CORRELATION MATRIX 71
TABLE 22. A COMPARISON IN PROCESSING TIMES BETWEEN IPFIX AND NETFLOW V5................................ 95
TABLE 23. A COMPARISON IN DATA VOLUMES BETWEEN IPFIX, NETFLOW V5 AND PCAP 96
TABLE 24. BOTSTACK FRAMEWORK COMPONENTS ... 113
TABLE 25. NETWORK LINK COSTINGS ... 117
TABLE 26. WEIGHTED VALUES FOR ICMP PINGS, FOR EACH PROBE PLACEMENT TEST 118
TABLE 27. TIMING TEST #1 - BOTH SERVER CLOCKS MANUALLY SET TO GMT .. 126
TABLE 28. TIMING TEST #2 - BOTH SERVER CLOCKS ARE SYNCHRONISED TO GMT, VIA NTP 126
TABLE 29. TIMING TEST #3 - SERVER #1 SET TO GMT, SERVER #2 SET TO GMT +7, BOTH VIA NTP 127
TABLE 30. TIMING TEST #4 - BOTH SERVERS ARE SYNCHRONISED TO GMT, VIA NTP 127
TABLE 31. COMPREHENSIVE FIELD COUNT FOR EACH IE, ACROSS ALL BOT SAMPLES 165
TABLE 32. COMPREHENSIVE FIELD COUNT FOR EACH HTTP EE, ACROSS ALL BOT SAMPLES 166
TABLE 33. COMPREHENSIVE FIELD COUNT FOR EACH DNS EE, ACROSS ALL BOT SAMPLES 167
TABLE 34. DETAILED FIELD COUNT FOR EACH SMTP EE, ACROSS ALL BOT SAMPLES 167
TABLE 35. COMPREHENSIVE FIELD COUNT FOR EACH IRC EE, ACROSS ALL BOT SAMPLES............................ 167
TABLE 36. DETAILED FIELD COUNT FOR EACH SSL EE, ACROSS ALL BOT SAMPLES 168
TABLE 37. A DETAILED LIST OF BOT SAMPLES USED IN THE CREATION OF BOTH BOTPROBE TEMPLATES 169

vii

List of Acronyms

AV Anti-Virus

C&C Command and Control

CSA Cloud Security Alliance

CSP Cloud Service Provider

DDoS Distributed Denial of Service

DNS Domain Name System

EE Enterprise Element

HTTP Hypertext Transfer Protocol

IANA Internet Assigned Numbers Authority

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IE Information Element

IETF Internet Engineering Task Force

IPFIX IP Flow Information Export

IPS Intrusion Prevention System

ISP Internet Service Provider

IoT Internet of Things

IRC Internet Relay Chat

K-S Kolmogorov-Smirnov

MITM Man-In-The-Middle

P2P Peer-to-Peer

PCAP Packet CAPture

PDU Protocol Data Unit

PSAMP Packet SAMPling

SCAN Smart City Area Network

SCTP Stream Control Transmission Protocol

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SSL Secure Socket Layer

ToS Type of Service

VE Virtual Environment

VM Virtual Machine

YAF Yet Another Flowmeter

viii

List of Publications

Some of the ideas for the text and figures in this thesis have previously appeared in the

following peer reviewed publications and presentations:

Chapter 2: Technological Review

 Graham, M., Winckles, A. 2014. An Analysis of Pre-Infection Detection Techniques

for Botnets and other Malware. In: 7th International Conference on Cybercrime

Forensics Education and Training. Canterbury, UK, 10-11 May 2014. CFET.

 Graham, M., 2014. Cloud-Based Detection Techniques for Botnets and Other

Malware. In: OWASP Appsec EU 2014. Cambridge, UK, 4 July 2014. [video online]

Available at: <http://www.youtube.com/watch?v=fV5kED7nryw>.

Chapter 3: Flow Export Overview

 Graham, M., Winckles, A. and Sanchez, E., 2015b. Practical Experiences of Building

an IPFIX Based Open Source Botnet Detector. The Journal on Cybercrime & Digital

Investigations. 1(1), pp.21-28.

Chapter 4: BotProbe: A Novel IPFIX Template for Botnet Traffic Capture

 Graham, M., 2017. BotProbe: Reducing Big Data Challenges in Threat Detection. In:

CyberUK 2017. Liverpool, UK, 14 – 16 March 2017. [poster & demonstration].

 Graham, M., 2017. BotProbe: Making Network Big Data Manageable. In: CRESTCon

and IISP Congress Conference. London, UK, 19 April 2017. [poster & demonstration].

 Graham, M., 2017. Botnet Observations: What can be done to up our game against this

significant threat? In: Institute of Information Security Professionals (IISP) East

Anglia Chapter, 2017. Ipswich, UK, 25 May 2017.

Chapter 5: BotStack: A Novel IPFIX Framework

 Graham, M., Winckles, A. and Moore, A., 2014. Botnet Detection in Virtual

Environments using NetFlow. In: 7th International Conference on Cybercrime

Forensics Education and Training. Canterbury, UK, 10-11 May 2014. CFET.

 Graham, M., Winckles, A. and Sanchez, E., 2015a. Botnet Detection within Cloud

Server Provider Networks using Flow Protocols. In: IEEE 13th International

Conference on Industrial Informatics. Cambridge, UK, 22-24 July 2015. IEEE.

ix

A BOTNET NEEDLE IN A VIRTUAL HAYSTACK

MARK GRAHAM

Copyright

Attention is drawn to the fact that copyright of this thesis rests with

(i) Anglia Ruskin University for one year and thereafter with

(ii) Mark Graham

This copy of the thesis has been supplied on condition that anyone who consults it is

bound by copyright.

This work may:

(i) be made available for consultation within Anglia Ruskin University Library, or

(ii) be lent to other libraries for the purpose of consultation or may be photocopied

for such purposes;

(iii) be made available in Anglia Ruskin University’s repository and made available

on open access worldwide for non-commercial educational purposes, for an

indefinite period.

x

I think computer viruses should count as life. Maybe it says something about human

nature, that the only form of life we have created so far is purely destructive.

Stephen Hawking, 1994

1. INTRODUCTION

1

1. Introduction

The European Union Agency for Network and Information Security claims that

botnets are the main component in cybercrime consumerisation and the first

Cybercrime as a Service to reach maturity (ENISA, 2015). To entirely eliminate a

botnet the Command and Control (C&C) server must be taken off-line. Forensic

techniques like signature-based detection are widely used in anti-malware software.

This approach can disinfect a host device against a known malware strain, but does

little to aid the takedown of a botnet C&C server. Internet Service Providers are able

to facilitate takedown of botnet C&C servers across the Internet through analysis of

Internet traffic protocols such as DNS, to sink hole malicious IP address ranges. In a

networked environment, such as a Cloud Service Provider (CSP) infrastructure, such

Internet protocols may not be present. Instead, analysis of network traffic can be used

to identify malicious behaviour.

 Academics have constructed many botnet detection algorithms based upon traffic

analysis techniques. Network traffic is sampled at multiple collection points

distributed across a network. Captured traffic is then cleansed and filtered before

being fed into a botnet detection algorithm. Existing traffic capture methods have

distinct drawbacks. Traffic capture using flow export protocols, such as NetFlow, are

limited in the traffic attributes they capture, which in turn imposes limitations upon

the attributes that can be used in the detection algorithms. Where flow export

protocols are not able to capture a desired traffic attribute, traffic capture is

supplemented with packet capture (PCAP) (Sperotto, et al., 2010). In high-speed data

networks, the high data volumes captured by such methods turn threat intelligence

into a big data challenge. NetFlow export traffic can be one of the largest

heterogeneous data sources in high-speed data networks. It can grow to tens of

terabytes of data per day and is expected to grow to petabytes over the years (Santos,

2016).

1

1. INTRODUCTION

2

 This research project conceptually developed a novel methodological approach to

botnet traffic capture using IPFIX, a new generation of flow export protocols, to

address a gap in knowledge around botnet detection in CSP networks. The design,

construction and validation of this approach are described within this thesis.

 This first chapter introduces the reader to the motivation behind botnet detection

within CSPs. The boundaries of this research are defined, before outlining the overall

research approach. Finally, this chapter declares the original contributions to

knowledge from this research.

1.1 Motivation

History recalls countless technologies developed to steal or injure in order to obtain

other people’s resources, be it land, possessions or information. Today’s

technologically advanced civilisation is no different; stealthy malicious software

(malware) is a tool to steal information or disrupt information systems. In 1948, John

von Neumann predicted that computer code will one day have the ability to reproduce

itself. The essay, the Theory of Self-Reproducing Automata (von Neumann and Burks,

1966), is considered by many as the forerunner theory behind today’s computer

viruses. In 1971, Creeper became the first self-replicating program, designed as an

academic experiment to infect computers connected to ARPANET, an early version of

the Internet. Thirteen years later, Cohen coined the term virus to refer to a self-

replicating program, hypothesising that these would become a major computer

security problem. Cohen went on to suggest that since “prevention of computer

viruses may be infeasible if widespread sharing [of programs] is desired” a cure

“depends on the ability to detect a virus and overcome it.” (Cohen, 1984).

 A bot is a software application that is used to perform repetitive operations - such

as Google’s web crawler. A bot only becomes malicious when it is used as a delivery

mechanism for a nefarious payload, such as malware. A botnet is a network of

infected host machines under the control of a human operator known as a botmaster.

What makes a botnet different to other malware is the use of C&C channels which a

botmaster uses to disseminate commands to their bot armies. Chapter 2 explains how

the power of botnets comes from this critical-mass of networked machines working

together as a single platform from which to launch massive coordinated attacks such

as distributed denial-of-service (DDoS) and click-fraud.

 Anyone can pay to gain access to a cloud service. Therefore anyone with the right

motivation can attack the cloud from within. As CSPs become vital building blocks in

1. INTRODUCTION

3

the Internet of Things (IoT), as a convenient way to centrally store sensor or device

data, the attack profile upon CSPs will change. Attacks have been witnessed upon the

hypervisors that lie at the heart of CSP network infrastructures. Since 2014, attacks

using botnets hosted within unsecure IoT devices have risen. With the public release

of the Mirai bot source code in 2016 (Mansfield-Devine, 2016), copycat attacks have

started to increase.

 The CSP built environment poses challenges for botnet detection. Privacy

expectations around tenant data restrict a CSP from providing malware detection

services that require packet inspection-based forensics. Furthermore, if a CSP were to

locate a detection probe within the tenant environment, it could raise concerns over

whether data collected for malware detection is also being surveilled. Internet Service

Providers (ISPs) use DNS record analysis to takedown botnets on the Internet.

However, virtualisation methods used for tenant isolation make a CSP environment

closer to a traditional LAN rather than the Internet, thereby limiting the availability of

DNS for botnet detection. Additionally, high-performance remains a priority in multi-

tenant cloud environments from users demanding access to real-time and interactive

applications and services (Garcia-Valls, Cucinotta and Lu, 2014).

 Behaviour-based botnet detection has focused on NetFlow v5 as the primary

method of traffic capture in botnet detection. NetFlow is an old protocol and has its

drawbacks. Early flow protocols, such as NetFlow, were created to capture network

traffic statistics as a context for measurement, billing and network management

(Santos, 2016). Gates, et al., (2004) stated that the main weakness of NetFlow v5 for

threat detection is its fixed template, which captures a rigid set of data fields that are

not used in their entirety in security analysis, resulting in wasted data capture. In

2013, IP Flow Information Export (IPFIX) was created under RFC-7011 (Internet

Engineering Task Force, 2013a) as a standards-based replacement to overcome the

many shortfalls of NetFlow. Figure 1 illustrates how a gap in knowledge exists in

understanding how the functionality of IPFIX can be applied to threat detection and in

particular for botnet detection within CSPs.

 During the course of this research, informal conversations with Amazon and

Microsoft have alluded to botnet detection in privacy sensitive environments being a

problem that CSPs are currently facing. Such discussions have indicated that the

impact of this research is not limited to just CSPs. The contributions from this

research project have impact for any data network infrastructure that has potential for

botnet attack, including the IoT, Smart City Area Networks (SCANs), future home

networks and corporate networks.

1. INTRODUCTION

4

DNS Record
Analysis

Internet
Provider

NetFlow
v5

IPFIX

Knowledge
Gap

Anti-Malware
Signature
Detection

Cloud
Provider

Host
Device

STANDARDISATION

Figure 1. An illustration of the gap in knowledge in botnet detection.

Note that the gap in knowledge lies in how IPFIX can be applied to botnet detection.

1.2 Research Aim

This research has been driven by the gap in knowledge around how IPFIX can be

applied to the challenge of botnet detection. The overall aim of this research is to

address the problem of botnet detection in CSP multi-tenant virtualised networks

through the creation of a traffic capture method utilising the IPFIX protocol. In high-

speed data networks analysis of captured traffic can become a big data challenge due

to traffic volumes. The proposed capture method will use features of the IPFIX export

protocol to collect only network traffic pertaining to botnet communication to reduce

data capture volumes, whilst retaining CSP tenant isolation and tenant privacy.

1.3 Research Hypothesis, Objectives and Boundaries

Flow export protocols, such as NetFlow, are widely utilised within CSPs for network

management reporting and statistics (Collins, 2014). IPFIX was designed to improve

the known weaknesses of the NetFlow protocol, in particular NetFlow v5 (Trammell,

et al., 2007).

This research project was based upon the hypothesis that:

“As NetFlow is already a successful candidate for behaviour-based botnet

detection; the enhancements to IPFIX should offer advantages to CSPs over

NetFlow v5 for capture of botnet communications.”

1. INTRODUCTION

5

To achieve the aim of creating a novel botnet traffic capture method, the following

objectives were addressed:

Objective #1 was a critical investigation into IPFIX as an alternative flow export

protocol to NetFlow v5, for botnet communication traffic capture in cloud provider

networks;

Objective #2 was the conceptual development of an innovative IPFIX template for

botnet communication traffic capture in cloud provider networks;

Objective #3 was to define, design and construct an IPFIX export framework for

botnet communication traffic capture in cloud provider networks;

Objective #4 was to validate the effectiveness of the novel design by demonstrating

botnet communication traffic capture in a proof of concept network built upon both

the template and framework.

The boundaries of this research project will be delimited to:

 Creation of a traffic capture method, rather than a detection algorithm;

 Evaluation of IPFIX against NetFlow v5, rather than NetFlow v9. In the context

of this research NetFlow v9 will be considered a non-standardised forerunner to

IPFIX and will be primarily ignored;

 CSP operating environments where infrastructure design includes tenant

isolation and tenant privacy, for example Amazon EC2, Microsoft Azure and

emerging IOT platforms, rather than ISP operating environments which face a

different set of challenges;

 Open source technology where possible, to facilitate future code modification,

rather than using closed source technology.

1. INTRODUCTION

6

1.4 Research Methodology

All research is based on underlying philosophical assumptions about what constitutes

valid research and which research methods are appropriate for the development of

knowledge in a particular field. The following section outlines the assumptions and

design strategies underpinning this study.

1.4.1 Justification of Research Design

An investigatory strategy was adopted to approach this research study, in order to

utilise observational analysis through quantitative methods. The experimental

methodology was designed in accordance with scientific method. A hypothesis was

proposed in order to allow deductive reasoning to prove this hypothesis. Appropriate

research objectives, see above, were devised to link evidence collection to the theory

behind the hypothesis. These research objectives were defined in order to gather

primary evidence from literature, as well as to obtain empirical evidence through

experimentation, in order to justify the design elements for a proof of concept botnet

communication capture prototype. The prototype was constructed from these design

elements, and tested to compare performance against similar state of the art studies

undertaken by other authors. The analysis of empirical data from testing allowed the

hypothesis to be confirmed. A quantitative research method was adopted throughout

this study to permit collection of numerical data for interpretation through statistical

analysis. A quantitative approach allows relationships between test variables to be

expressed as relative frequencies and correlation, in order to prove the theory.

1.4.2 Rationale for the Research Approach

Extensive evidence can be seen throughout global media of the extent of the social

and economic threat from malicious botnets. The literature review provided a

considerable body of evidence to suggest that cloud environments and virtualised

infrastructures are at a risk from vulnerabilities in the underlying technologies that

form these environments. In particular, vulnerabilities in hypervisors (see Chapter 2)

make cloud environments an ideal tool for the rapid creation and deployment of

infected virtual machines, with cloud management software being incapable of

detecting such malicious behaviour. In a cloud environment all network traffic must

pass through virtual switches contained within the cloud infrastructure. Therefore it is

logical to monitor such devices for malicious behaviour. Collins, (2014) explained

1. INTRODUCTION

7

how nearly all network devices used in the creation of cloud environments support

flow technologies, such as NetFlow, which are used for network management and

collection of network performance statistics. Literature showed that many existing

botnet detection algorithms reply on packet capture or NetFlow for the collection of

data to input into their detection algorithms. Research Objective #1, was prompted by

studies from Trammell, et al., (2007) who claim that IPFIX was designed to address

the known weaknesses of the NetFlow protocol.

 From the outset, the purpose of this study was to capture botnet communication

within cloud provider environments. Review of the state of the art revealed that

multiple botnet detection algorithms exist, with varying degrees of success dependent

upon the traffic attributes collected from the network. Often these detection attributes

are arbitrarily selected with little supporting evidence of their relevance to botnet

detection. The challenge in threat detection is not just the detection engine, but also

the speed of detection. Networks, and associated business assets, are most at risk in

the between infection and detection, which is on average 191 days (IBM, 2017).

 It became evident that the drawback of most existing traffic capture techniques,

when applied to high throughput networks, is that they collect big data; large volumes

of highly varying information that requires processing for insight and decision

making. As network traffic volumes continue to increase year upon year, analyses

time is lengthened simply from increasing data volumes. Therefore this research set

out to create a more efficient method of traffic capture that can be applied to existing

botnet detection algorithms (see Chapter 3). Research Objective #2 was built upon

claims by Trammell, et al. (2007) that IPFIX overcomes weaknesses in NetFlow v5,

and took inspiration from Gates et al., (2004) who stated that the fixed template

nature of NetFlow v5 limits its suitability to security analysis. Empirical data evidence

was collected to demonstrate that IPFIX collects smaller data volumes than NetFlow

and PCAP, is faster and demonstrates no noticeable impact upon host device CPU

consumption. With Research Objective #2 demonstrating advantages of IPFIX when

applied to botnet traffic communication capture, Research Objective #3 was defined

so as to demonstrate how IPFIX collection can be incorporated into a prototype cloud

stack. The theory of IPFIX export of botnet communication traffic was proven by

testing the prototype with IPFIX templates to capture a real world botnet deployed

within a sandboxed test network. The research approach is summarised in Figure 2.

1. INTRODUCTION

8

Academic
Literature

Review

Vendor
Literature

Review

Prototype Design

Prototype Build

Test

Optimise

Proof-of-concept
Test

Phase 1

Phase 3

Objective #1

Phase 2

Objective #2 Objective #3

Phase 4

Objective #4

Analysis and
Conclusions

Web-
based

Honeypot

Signature
Matching AI

Mitigation
Module

Future

Work

Performance
Testing

NetFlow
v5

Template

IPFIX Template
Creation

Field Duplicity
Analysis

Botnet
Samples
>100,000

flows

Field Occupancy
Analysis

Theoretical
Framework

Statistical Analysis

Figure 2. The phases of the research approach.

 The approach to researching the problem of botnet detection in CSP networks was

conducted in four phases. Phase 1 was a review of technology and state of the art in

botnet detection methods. Phase 2 was the construction, justified through empirical

statistical evidence, of an IPFIX template for botnet traffic capture, which was

performance tested against NetFlow v5. Phase 3 was the evaluation of component

elements for the construction of a modular framework architecture that allows IPFIX

export to be built into cloud network stacks. Phase 4 validates the design of the

template and framework in a botnet traffic capture test.

1. INTRODUCTION

9

1.4.3 Experimental Design

Figure 2 shows three distinct experimental phases within the research approach. Phase

2 used statistical analysis to create the IPFIX template, and also to demonstrate

advantages in performance over other capture methods. Phase 3 was the design of

IPFIX export into the cloud stack. Phase 4 tested the stack and the templates against

real world malware. Thus addressing Research Objectives 2, 3 and 4.

 The methodological approach for each phase of experimentation is outlined within

the following chapters; creation of the BotProbe templates in chapter 4.3 with

performance testing in chapter 4.8, testing of the BotStack framework in chapters 5.4

and 5.6, and concept validation testing in chapter 6.3. Each methodology details the

dataset origins, equipment used, methodical procedures and justification for the

methods of analysis. Each chapter includes a critical discussion of the results together

with the implications of how the experimental findings contribute towards the

hypothesis of botnet communication traffic capture in cloud provider networks.

1.5 Ethical Considerations

All original research undertaken within Anglia Ruskin University must be performed

in accordance to the university’s guidance and mandatory training on ethical research.

Whilst this study did not involve animal or human participation, the research does

involve handling of malicious software (malware). Therefore due ethical consideration

was required to protect the researcher and the reputation of Anglia Ruskin University.

Throughout this study the following ethical considerations were adhered to:

 Malware was only executed in a sandboxed environment which was physical

air-gap from both the university network and the Internet;

 Malware was used for testing purposes only, and not used for malicious

intensions or personal gain;

 Malware was stored on appropriately labelled USB sticks, and kept in a

restricted access environment;

 Malware and PCAP were only obtained through legitimate repositories;

 Where PCAP contains personal identifiable information, confidentiality was

respected through the redaction of personal data.

1. INTRODUCTION

10

1.6 A Summary of the Contributions to Knowledge

Figure 3 outlines how this research makes several practical as well as theoretical

contributions to knowledge, indicating in which peer reviewed articles these findings

have been published:

OBJECTIVE #2: The conceptual development of an innovative IPFIX template for botnet communication
traffic capture in cloud provider networks. (Chapter 4)

A
 B

O
T

N
E

T
 N

E
E

D
LE

 I
N

 A
 V

IR
T

U
A

L
H

A
Y

S
T

A
C

K
(o

r
a

 n
o

v
e

l
IP

F
IX

 t
ra

ff
ic

 c
a

p
tu

re
 m

e
th

o
d

 f
o

r
c
lo

u
d

 s
e

rv
ic

e
 p

ro
v

id
e

r
n

e
tw

o
rk

s) Contribution #1: A critical investigation into how IPFIX export overcomes the limitations of
traditional NetFlow-based botnet communication traffic capture in cloud provider networks.

 Graham & Winckles, 2014. An Analysis of Pre-Infection Detection Techniques for Botnets and other Malware
 Graham, M., 2014. Cloud-Based Detection Techniques for Botnets and Other Malware
 Graham, Winckles & Sanchez, 2015b. Practical Experiences of Building an IPFIX Open Source Botnet Detector

Contribution #2: BotProbe: A novel IPFIX template; tailored for botnet traffic capture.

 Graham, Winckles & Sanchez, 2015b. Practical Experiences of Building an IPFIX Open Source Botnet Detector
 Graham, 2017. BotProbe: Reducing Big Data Challenges in Threat Detection
 Graham, 2017. BotProbe: Making Network Big Data Manageable
 Graham, 2017. Botnet Observations: What can be done to up our game against this significant threat?

OBJECTIVE #3: To define, design and construct an IPFIX export framework for botnet communication
traffic capture in cloud provider networks. (Chapter 5)

Contribution #3: BotStack: A novel IPFIX monitoring framework.
Contribution #4: Empirical evidence for the optimum siting of a capture probe on the hypervisor.

 Graham, Winckles & Moore, 2014. Botnet Detection in Virtual Environments using NetFlow
 Graham, Winckles & Sanchez, 2015a. Botnet Detection within CSP Networks using Flow Protocols

 Graham, 2017. BotProbe: Reducing Big Data Challenges in Threat Detection
 Graham, 2017. BotProbe: Making Network Big Data Manageable

 Graham, 2017. Botnet Observations: What can be done to up our game against this significant threat?

OBJECTIVE #4: To validate the effectiveness of the novel design by demonstrating botnet
communication traffic capture in a proof of concept network. (Chapter 6)

OBJECTIVE #1: A critical investigation into IPFIX as an alternative flow export protocol to NetFlow v5,
for botnet communication traffic capture in cloud provider networks. (Chapter 2 and Chapter 3)

Figure 3. A diagramatical view summarising how this thesis contributes to knowledge.

1. INTRODUCTION

11

1.7 Thesis Structure and Organisation

The remainder of this thesis has been structured as follows:

Chapter 2: This chapter justifies the necessity for the research within this project.

Real world examples are used to describe how new families of bots are beginning to

target cloud infrastructures. The chapter also reviews the legal responsibility for cloud

providers towards botnet takedown.

Chapter 3: Through a thorough review of academic literature, this chapter outlines

the features of IPFIX that bring advantages over NetFlow v5 to botnet traffic capture

in a cloud service provider environment. The chapter reviews the state of the art in

botnet detection using flow protocols, whilst explaining how IPFIX could be applied

to improve these studies. NetFlow v9 is discussed, although throughout this thesis

NetFlow v9 is considered to be a vendor proprietary forerunner of IPFIX and is

therefore given marginal attention.

Chapter 4: Using the understanding gained from chapters 2 and 3, this chapter

describes the process by which almost 25 million botnet traffic flows are analysed in

the creation of the novel BotProbe IPFIX templates. Empirical data is collected and

analysed for the performance impact (processing times, data volumes and CPU

loadings) of the BotProbe templates against NetFlow v5.

Chapter 5: This chapter presents BotStack, a novel IPFIX framework for botnet

traffic capture in cloud provider networks. Using this framework, a proof of concept

network is constructed to determine the optimum siting of IPFIX sensors, as well as

an understanding of how sensor clock settings impact traffic data capture.

Chapter 6: The interoperability of BotProbe with BotStack is validated by infecting a

proof of concept network with the Zeus botnet. BotProbe captures botnet traffic

communications across four distinct profile phases of a botnet life cycle.

Chapter 7: The final chapter summarises the research findings, drawing conclusions

of the impact of this study for cloud service providers. This chapter also highlights

future directions for this research.

2. TECHNOLOGICAL REVIEW

12

2. Technological Review

2.1 Introduction

The aim of this research project, as described above, is to understand how the IPFIX

protocol can form a capture mechanism for botnet traffic in CSP multi-tenant

virtualised networks. The starting point to achieving this aim is to understand what

makes a CSP infrastructure vulnerable to attack, the potential threats from malware

that specifically abuses the cloud and the limitations of current detection techniques.

 Many real world scenarios exist where cloud infrastructures have provided host to

botnet C&C servers. The Cloud Security Alliance (CSA) recognises Abuse and

Nefarious Use of Cloud Services as a top threat to cloud computing (Brook, et al.,

2016). The Internet of Things (IoT) has started to become intrinsically linked to cloud

hosted infrastructures, due to its ability to store data centrally. The International Data

Corporation (IDC) predicts that by 2020, over 90% of all IoT data will be hosted on

cloud platforms (Turner, 2015). Increasingly IoTs devices have been found hosting

botnets; 2013 had the Darlloz botnet (Hayashi, 2013), 2014 had fridges sending

SPAM (Thomas, 2014), 2015 had Lizard Stresser (Krebs, 2015) and 2016 had the

Mirai botnet (Mansfield-Devine, 2016) which sustained a record-breaking 620Gbps

DDoS attack, before the source code was publically released prompting copycat

attacks.

 The attack surface of a cloud can be extended both through infrastructure design

techniques and the hardware or software upon which it is provisioned. Tenant

separation is typically achieved through virtualisation of both physical (Input/Output,

CPU) and networking (switching, storage) functions. Real world attacks have utilised

hypervisor vulnerabilities to allow malware to jump into, across and out of virtualised

environments. In a CSP this could mean an attack on another tenant, or upon a storage

repository.

2

2. TECHNOLOGICAL REVIEW

13

2.2 Botnet Fundamentals

A bot, or robot, is nothing more than a software application that performs repetitive

operations; such as the web crawlers used by Google to index the Internet. A bot only

becomes malicious when it is used as a delivery mechanism to transport nefarious

payloads to multiple devices. Compromised devices work together to form a network

of infected machines, or botnet. Under the remote control of a human botmaster

operator, these machines lie dormant until they reach a critical mass of infected

devices and the botmaster initiates an attack. Typically, an attack takes the shape of a

mass attack of many hundreds of thousands of bots upon a single victim. The

contender for the first botnet lies with either the Sub7 trojan, or the Pretty Park worm.

Both appeared at about the same time in 1999 and both introduced the concept of

connecting to victim machines via an IRC communications channel which was used to

deliver malicious commands. Since then, botnets have evolved in threat, stealth and

danger to become one of the most significant cybersecurity threats faced by

organisations and individuals today.

 Without doubt, the power of a botnet comes from this “mass” of networked

machines working together as a single platform. A larger botnet is both more effective

at achieving its objective, as well as harder to takedown. However, more than a few

hundred thousand bots and the botnet becomes easier to detect; fewer than a hundred

thousand bots and the attack becomes less effective. It is estimated that at any one

time, globally as many as 2.5 million devices are connected to over 5000 C&C servers

(Trend Micro, 2016). With botnets-for-hire services starting from $20 an hour for a

DDoS attack, such services are a tool for non-specialised individual to perform

powerful attacks (ENISA, 2015).

 The ability to perform a mass attack upon a single victim, using globally

distributed bots makes botnets suited for specific types of attack:

DDoS In 2015, it was estimated that malicious bots generate 29% of all

Internet traffic (Imperva, 2015). The first half of 2016 saw more

100Gbps+ attacks than in all of 2015 (Arbor Networks Inc., 2016),

including the first 600Gbps+ DDoS attack (Kaspersky Lab, 2016). 93%

of DDoS attacks in Q1 2016 were from DDoS as a Service (Incapsula,

2016). In 2016, the Lizard Stresser botnet used IoT Webcams to launch

a 400Gbps DDoS attack (Krebs, 2015). In 2016, a CCTV botnet was

detected generating over 50,000 HTTP requests per second during a

targeted DDoS attack (Cid, 2016).

2. TECHNOLOGICAL REVIEW

14

Identity

Theft

Botnets targeted more than 1,500 financial institutions across more than

100 countries in 2015 (Dell SecureWorks CTU Threat Intelligence,

2016). During two months in 2014, a single botnet mined $600,000 in

crypto coins (Dell SecureWorks CTU Research Team, 2014). Over 400m

identities were stolen globally in 2015 from bots such as Dridex, Simba

and Ramnit (Symantec, 2016a; Verizon, 2016).

Click

Fraud

It has been estimated that botnets could have cost the global advertising

industry in excess of $7.2 billion in 2016 (Association of National

Advertisers and White Ops, 2016).

2.3 A Review of the Limitations of Botnet Detection Techniques

Amazon’s AWS Security Best Practices (Todorov and Ozkan, 2013) recommends that

tenant protection from malware is achieved through anti-virus (AV) software, anti-

spam (AS) software and host-based Intrusion Detection System (IDS) software.

Amazon’s recommendations to protect against botnets include device patching, only

using trusted software and applying the principle of least privileges. The CSA (Cloud

Security Alliance, 2011) recommends securing the network and preventing tenant data

leakage through a combination of VLANs (Virtual LANs), IDS, IPS (Intrusion

Prevention System) and Firewalls. Modi, et al., (2013) agree, advising on deploying

IDS and/or IPS for anomaly detection within cloud architectures.

 This advice has several weaknesses. Primarily, the advice puts the responsibility

upon tenants to provide self-protection. Such an approach may protect individual

tenants, but does not prevent the nefarious use of cloud services. A CSP hosting

protection services within the tenant environment has two considerations; the privacy

implications of such systems as they are based upon packet inspection techniques, and

that a malicious user can disable these protection services. As the size of IoT networks

increases, effective endpoint security becomes more difficult. Furthermore, AV, IDS

and IPS are built upon signature-based detection engines. Signature-based detection

has three drawbacks (Graham and Winckles, 2014; Graham, 2014): (1) an inability to

cope with malware polymorphism and metamorphism, where any change to a virus

binary requires a new signature definition; (2) a lack of zero day protection until a

signature is created and deployed; and (3) it is a post-infection technique taking action

only after malware has entered a system. Heuristic detection may overcome some of

these drawbacks, but such techniques can be slow and are still subject to the same

binary obfuscation techniques that malware authors deploy against signature-based

2. TECHNOLOGICAL REVIEW

15

detection. Signature-based techniques do have established roles in the real-time

protection of individual devices against malware. However, in a botnet of 100,000

devices, inoculating one device has little impact on the overall botnet. The takedown

of a botnet requires locating and eradicating the C&C server, which is something that

signature-based AV, IDS and IPS are not capable of doing.

 Internet Service Providers can successfully takedown botnets by blackholing

appropriate IP address ranges using DNS record analysis. In practice, DNS takedown

is a slow process and can take months to successfully trace a C&C server. DNS

blacklisting is susceptible to evasion techniques such as IP fluxing and domain

fluxing, such as those used by the Conficker and Torpig botnets (Graham and

Winckles, 2014). A takedown strategy is often reliant upon accurate estimations of the

botnet size. DNS can be unreliable when used in botnet size estimation (Rajab, et al.,

2007). Blackholing techniques rely upon DNS records, which are intrinsically linked

to the Internet. Within a networked environment such as a CSP infrastructure, DNS is

not required to obtain device addressing information, so DNS may not be present in a

LAN. Thereby defeating DNS record analysis as a protection mechanism in such

environments.

 Every botnet uses a communications channel which enables communication

between each bot and their C&C server(s). The necessity for bots to communicate

with their peers throughout their life is fundamental to behaviour-based detection (Gu,

et al., 2007). First generation botnets used a traditional client-server topology. This

communication model is straightforward to set up and maintain, but fewer C&C

servers make the botnet more liable to takedown. Some first generation botnets

increased resilience by using primary/standby servers, but these more rigorous

communication models required complex code. To increase resilience to takedown,

botnets migrated to a decentralised peer-to-peer (P2P) topology where each bot node

can act as a client or a server. P2P botnets display similar behaviour to benign P2P

software making them more difficult to detect (Yen and Reiter, 2010). Out of the box

P2P protocols maintain internal models of neighbouring nodes, allowing researchers

to infiltrate a P2P botnet by becoming part of the botnet to obtain neighbour node IP

addresses. Phatbot attempted to overcome this by using WASTE, an anonymous P2P

protocol. Although WASTE does not scale for large networks (Wang, Sparks and Zou,

2010). The meshed ad-hoc nature of P2P networks, together with a lack of message

delivery guarantee, can mean P2P botnets suffer from higher command propagation

time across the network which impacts bot synchronisation (Zhao, et al., 2013). C&C

and P2P models are both still used in botnet topology. The communication channel

2. TECHNOLOGICAL REVIEW

16

protocol can also be used as an attribute in behaviour-based detection. Early bots

utilised IRC. Whilst straight forward to code, IRC is easily mitigated by blocking IRC

ports. A common method for achieving stealth is to employ HTTP as the

communication protocol. By masquerading as legitimate HTTP or encrypted HTTPS

traffic, bots cans bypass port-filtering firewalls and IDS detection (Zeidanloo and

Manaf, 2009). IRC and HTTP are both still used as botnet communication channels.

2.4 A Review of Botnet Mitigation Legislation and Responsibility

In 2010, the OECD (Organisation for Economic Cooperation and Development)

released research suggesting that global ISPs should take steps to mitigate the threat

from botnet SPAM (van Eeten, et al., 2010). The report achieved little other than to

raise an argument around where responsibilities lie for tackling botnets. In 2013, the

US Federal Communications Commission (FCC) produced a voluntary code of

conduct for ISPs (Communications Security, Reliability and Interoperability Council,

2013). The US-centric report suggested that ISPs collaborate on botnet detection and

eradication. The report highlighted two hindrances preventing collaboration. First, the

cost of implementing technical solutions; and second, that global laws and policy

discourage global collaboration. Since its release, several major US

telecommunications providers have adopted the code, including AT&T, Comcast,

Sprint and Verizon. Similar voluntary codes have followed in other countries. These

types of codes of conduct will remain voluntary until international law can resolve

collaboration issues. Demarcation points in responsibilities are also open to

interpretation. Fryer, Stalla-Bourdillon and Chown (2015) argue that the third party

companies which host website platforms should also take some responsibility toward

botnet mitigation.

 In 2014, the CSA launched an anti-bot working group to coordinate research into

botnet prevention within CSPs, however by 2017 this working group appeared to have

become inactive having released little information. In 2015, a report from the US

Federal Trade Commission (FTC) highlighted that IoT devices must implement

security by design, rather than treat security as an afterthought (Federal Trade

Commission, 2015). ISO/IEC27018:2014 is an attempt, through non-legal regulation,

to address the lack of cloud computing legislation. For European CSPs, this standard

links to the Article 17 of the European Commission Data Retention Directive (EC

Data Retention Directive 2006/24/EC, 2006) which stipulates that Data Controllers

within the European Economic Area who are responsible for the processing of data,

2. TECHNOLOGICAL REVIEW

17

must take appropriate measures to protect personal data against accidental destruction

or loss, alteration or unauthorised disclosure. This international standard covers a wide

variety of subjects, but concerns itself more with protection of personally identifiable

information. Ultimately, the requirements of ISO27018 are not a replacement for

national or international law, nor does it specifically address the risk from botnets. By

the completion of this thesis in 2017, there are no legal requirements for CSPs or ISPs

to actively mitigate against botnets.

2.5 A Review of the Cloud as an Attack Platform

2.5.1 ATTACKS FROM THE CLOUD

The CSA identifies Abuse and Nefarious Use of Cloud Services as a top threat to

cloud computing (Brook, et al., 2016). The report cites threats that are directly related

to botnets; including DDoS attacks, email SPAM and phishing, mining for digital

currency, large-scale click fraud and malicious content hosting (such as a C&C

server). The report recommends that CSP customers should be permitted to monitor

the health of their own cloud workspace. Whilst a dashboard-style overview of

bandwidth utilisation may give clues to malicious activity, it is no more than an

indicator of possible threat.

 One driver in the move away from maliciously infecting victim devices, towards

using service providers to host malicious VMs, is the technological advantages gained

from virtualised platforms. These include performance, scalability, ease of

management, lower risk of detection and stability of cloud services (Level 3, 2015).

Another driver is cost. Bryan and Anderson (2010) rented 10 virtual servers on

Amazon’s EC2 platform at a total cost of $6 to demonstrate a cloud hosted DDoS

attack. Roth (2011) demonstrated the power of distributed computing by renting

servers on Amazon’s EC2 platform at a cost of $2.10 per hr per instance. Eight

instances were clustered, each trying 50,000 passwords combinations per second,

taking 2 minutes to perform a 39 million word dictionary attack to brute force a victim

password. Ragan and Salazar (2014) demonstrated how an automated service for

registering free-trial CSP instances could create a botnet to mine bitcoins.

 Cybercriminals are businessmen, recognising the same benefits from cloud-based

services as legitimate businesses. From the point of view of a botmaster, access to

considerable distributed processing power at almost negligible prices provides two

opportunities. Firstly, the cloud removes the necessity and complexity of infecting a

victim’s device. Instead the botmaster can use a cloud provider to create a VM

2. TECHNOLOGICAL REVIEW

18

instance, remove any AV or IDS, infect this VM with their own bot and clone this VM

multiple times to rapidly create a sizeable botnet at little cost. Secondly, the cloud can

play host to the C&C servers. If an ISP blacklists the C&C server IP addresses, the

distributed architectural nature of the cloud allows for rapid re-deployment of the

C&C server in a totally new geographic IP subnet.

 Either of these reasons makes the cloud an effective platform from which to launch

botnet attacks. One of the earliest examples was in 2009, when the Amazon’s EC2

platform was used to host a Zeus C&C server as a backend alternative in case the

original domain was lost (Amazon, 2009). Again in 2009, Amazon’s EC2 platform

was used to launch a massive-scale DDoS attack on Bitbucket which took Amazon 16

hours to block (Metz, 2009). By 2014, Amazon’s AWS platform was anticipated to be

hosting 41% of the world’s malware (Heimer, 2014). In 2014, Dropbox was used to

deliver the Upatre SPAM bot (Trend Micro, 2014). Again in 2014, Dropbox was used

as a C&C server for the PlugX RAT (Pauli, 2014). In June 2015 a botnet that was

infecting Skype sessions with adware was traced back to Amazon’s AWS platform

(Osbourne, 2015).

2.5.2 IOT ATTACKS

Public infrastructure and utilities continue to remain a high profile target. In 2010,

Stuxnet was the first known worm to target the industrial SCADA (Supervisory

Control and Data Acquisition) control systems used in heavy industry, by attacking

Iranian nuclear centrifuges (Kushner, 2013). Stuxnet morphed into the industrial

worms Duqu in 2011 and Flame in 2012. At around the same time, poor device

security facilitated a shift from attacks on industry into attacks on the IoT. In 2012, a

hacker attempted a census on the entire Internet IPv4 addressing space. To perform

this the Carna botnet was created from 420,000 embedded devices that used default

passwords (Botnet, 2012). In 2013, Linux.Darlloz attacked routers, cameras and set-

top boxes that used default usernames and passwords, to create a botnet to mine

crypto coins (Hayashi, 2013). In the same year, a botnet was supposedly created using

smart fridges to perform SPAM attacks, but this has since been refuted (Thomas,

2014). In 2015, Lizard Stresser botnet was found performing 400Gpbs DDoS attacks

from home routers with default passwords (Krebs, 2015). In 2016, botnets took

advantage of cloud based Linux IoT devices by exploiting volatile memory

vulnerabilities in ELF (Executable and Linkable Format). The first was

2. TECHNOLOGICAL REVIEW

19

Linux.Routrem (Symantec, 2016b) also known as Remaiten. This was followed by

Linux.Laubot (Symantec, 2016c) which specifically targeted ARM architectures.

 However, both of these botnets were eclipsed by the Mirai botnet which made

global news headlines after sustaining a record-breaking 620Gbps DDoS attack

(Mansfield-Devine, 2016). Following this attack the Mirai botnet source code was

publically released. The end of 2016 and early 2017 saw several copycat attacks using

modified Mirai code. Whilst the IoT continues to be built on cheap devices with no

security or unchanged default passwords, the IoT will remain a source from which to

host attacks.

2.6 A Review of the Cloud as an Attack Surface

2.6.1 ATTACKS UPON THE CLOUD

Whilst the cloud provides an effective platform from which to host botnets, the cloud

infrastructure itself is not immune to attack. Since cloud computing is no more than a

combination of existing computing techniques such as virtualisation, grid computing

and service-oriented computing, security issues in the cloud differ little from

traditional IT solutions (Ouedraogo, et al., 2015). What makes the cloud different to

traditional computing is (1) co-residency means that tenants often share the same

network infrastructure and storage with other tenants, competitors, or even hackers;

and (2) in a post Snowden era, tenants are more astute in critically evaluating a

supplier’s capacity for surveillance. Privacy expectations limit a CSP’s ability to

provide tenants with the more traditional protection solutions that are associated with

packet inspection techniques, such as signature-based detection.

 Alternatively, leaving malware protection to the responsibility of the tenant may

broaden the cloud attack surface. Deployment of insufficient or outdated anti-virus

software may permit malware capable of compromising a tenant’s VM. If malware

can escape a VM onto the underlying CSP network infrastructure, it has the potential

to attack the CSP’s storage repositories or neighbouring tenants. Unsecure cloud

management interfaces are another source for malware to enter the cloud

infrastructure. Somorovsky, et al., (2011) exploited Amazon EC2 sessions through

XSS (Cross Site Scripting) in the EC2 control software interface.

2. TECHNOLOGICAL REVIEW

20

2.6.2 THE HYPERVISOR EXPOSED

A hypervisor allows emulated virtual devices to share the physical host’s resources.

CSPs use hypervisors to allow multiple VMs to each act as a stand-alone, tightly

isolated container, thereby providing tenant isolation from other tenants. Effectively, a

hypervisor is software which acts as a gatekeeper between the privileged kernel

domain and the unprivileged guest domain. Exploiting vulnerabilities in this software

could allow unauthorised entry or exit from this isolated sandboxed environment.

Govindavajhala and Appel (2003) demonstrated this by using a lightbulb to raise the

temperature on DRAM and SRAM chips to force memory errors. These errors

allowed them to exploit both Sun and IBM VMs. Chapter 2.7 describes real world

hypervisor exploits.

 A hypervisor can have multiple pointers to the same memory location to allow the

management of numerous concurrent virtual machines. Rutkowsa (2004) exploited

this through four lines of code known as the Red Pill. She was able to determine

whether the host was physical or virtual by analysing memory registers in the Store

Interrupt Descriptor Table, which in Intel processors can be accessed by non-

privileged users.

 Thirteen years later, at the time this thesis was written, malware still exploits red

pill type vulnerabilities to determine if it is being executed within a virtual or physical

machine. With the knowledge that researchers typically study malware in a sandboxed

virtual environment, malware exists that will modify its behaviour, or refuse to

execute, in virtual machines to prevent researchers from understanding its behaviour.

Botnets with the ability to do this include Stormbot, Agobot and Phatbot. The Dyre

malware determined if it was running in a virtual environment by analysing the

number of processors the environment used, under the assumption that virtual

environments are usually configured with only one processor and one core to save

resources (Raff, 2015). Rather than terminate when running on a virtual machine,

malware such as Cloudburst actively seeks out virtual environments in order to exploit

vulnerabilities that allow it to escape out of the VM onto the underlying infrastructure.

 The CSA attributes seven of its top twelve threats to the cloud to hypervisor

vulnerabilities (Brook, et al., 2016). As hypervisors become more feature rich they

start to contain more bugs in the code. Extra security features in hypervisors can make

the hypervisor more visible to attack and can often hamper bot detection (Vaquero,

Rodero-Merine and Morán, 2011) Current practices of replicating functionality at

many levels, including security features at the hypervisor and guest OS levels, create

2. TECHNOLOGICAL REVIEW

21

inertia in software management which often impairs performance of the systems

(Garcia-Valls, Cucinotta and Lu, 2014).

 Fully secure isolation is still an area of study. Rushby (1989) proposed true

isolation, where each VM has its own resources instead of sharing resources. Few

products support this, as the x86 chip set does not have a “no sharing” concept, so not

all instructions in the chip can be virtualised. The Chinese Wall concept suggests that

isolation can be achieved through hosting parties that have conflict of interest on

separated infrastructure. This usually means additional infrastructure which increases

cost whilst reducing device utilisation. Sailer, et al., (2005) proposed an isolation

method on the Xen hypervisor using Access Control Modules, which may reduce the

opportunity for inter-VM attacks on the same host machine, but it does not eliminate

vulnerabilities in hypervisor code. VM Introspection (VMI) is a technique for the

transparent real-time inspection of the operation of a VM, by directly reading the

volatile memory of the running VM from the hypervisor’s privileged domain.

Typically, VMI research is applied to malware, but Memarian, Conti and Leppänen

(2015) detected botnets in infected cloud VMs by searching for hidden processes and

DLLs. From a CSP’s point of view, VMI can be performed without the knowledge of

the guest OS, thereby providing a possibility of detecting malware without a probe in

the tenant environment. However, this makes it an invasive technique which may

breach tenant privacy expectations. Hypervisors remain a rich source of vulnerabilities

that will continue to be exploited.

2.7 A Model for Attacking a Cloud Infrastructure

Hypervisor attacks have been witnessed in the wild. When considered individually,

these attacks have successfully exploit different vulnerabilities in order to jump

between the physical and virtual network layers.

 When considered as a combined attack, it could be possible for malware to enter

the cloud infrastructure and propagate across the network. In a CSP environment,

malware could then attack the CSP infrastructure, in particular storage, or attack

tenants in other logical partitions. In an IoT environment, malware could compromise

multiple devices or sensors. Figure 4 shows a model for malware to exploit hypervisor

weaknesses using real world attacks.

2. TECHNOLOGICAL REVIEW

22

Hypervisor

Hardware
N

I

C

N

I

C

Host OS

VM#1

1

3
Internet

1. Host OS to VM (e.g. Crisis)

2. VM to VM (e.g. VMBot)

3. VM to Host OS (e.g. Venom)

1
2
3

2 VM#2

Storage

Figure 4. A three stage model for hypervisor exploitation.

The principal attack vectors, as indicated by the numbers in red circles in Figure 4, are

as follows:

(1) Host Escape (Host → VM)

A hypervisor’s management software could theoretically allow a cloud administrator

with access to a privileged domain, access to the unprivileged guest domains. This

would provide direct access to the contents of a tenant’s VM memory at runtime. A

CSP would mitigate this risk by applying the principle of least privileges, thereby

restricting access privileges so that no single person could accumulate all the

necessary privileges to do this. In August 2012, the Crisis malware was the first to

perform host escape jumping from the hardware to the guest VM (Katsuki, 2012).

(2) VM Hopping (VM → VM)

Malware can possess the functionality to recognise when it is running in a virtual

environment rather than on a physical machine. Wang and Lee, (2006) used memory

leakage to set up covert communication channels between VMs to facilitate a cached

side-channel attack on a neighbouring VM’s cryptographic library. Ristenpart, et al.,

(2009) exploited VM placement in Amazon’s EC2 platform to perform side-channel

attacks upon neighbouring VMs. Vaquero, Rodero-Merine and Morán (2011) provide

a detailed study on side-channel exploitation, categorising them into three specific

attack vectors: storage channel, timing channel and side-channel. Irazoqui, et al,

(2014) captured AES keys from neighbouring VMs on Amazon’s EC2 and Google

2. TECHNOLOGICAL REVIEW

23

Cloud using cache leakage attacks. Inci, et al, (2015) repeated Irazoqui’s work to

capture RSA keys from neighbouring VMs on Amazon’s EC2.

(3) VM Escape (VM → Host)

A larger attack surface opens up when malware can jump from the virtual

environment onto the host device, and then onto the physical network. Before 2009, it

was theorised that VM escape attacks could be perfromed through system directory

traversal. In 2009, Cloudburst exploited corrupted memory locations in VMware

shared folders to tunnel through to the underlying OS (Kortchinsky, 2009). In 2012,

vulnerability CVE-2012-0217 allowed an attacker to escape from a VM onto the

device kernel whilst achieving escalated privileges. In 2014, Google’s App Engine

was exploited to allow code on the underlying OS to be executed from a Java VM

(Constantin, 2014) and firmware bootscript vulnerabilities were found to permit guest

escalation to the host (Wojtczuk and Kallenberg, 2014). In 2015, the Venom

vulnerability (CVE-2015-2456) was discovered in the QEMU floppy disk controller

allowing VM escape on products that had spawned from QEMU; namely KVM, Xen

and VirtualBox.

 QEMU vulnerabilities are the root cause of many VM escape techniques. A Xen

VM guest with access to the PCNET controller can use a buffer overflow to execute

packets on the host (CVE-2015-3209). A Xen guest with access to an emulated

CDROM device has access to the QEMU process (CVE-2015-5154). A guest may be

able to read host-level data residing in the QEMU process (CVE-2015-5165). Issues in

unplugging an emulated block device allowed guest access to the host by unplugging

the device again (CVE-2015-5166). A vulnerability in VMware printer virtualisation,

which is installed by default, allows a guest OS to access and print documents on the

Host OS. Even without VMware tools installed, the guest can still talk to the host over

COM1 (Kortchinsky, 2015). 2015 ended in a low for QEMU with the following

vulnerabilities that allowed VM escapes: CVE-2015-5307 which also allowed the

guest to DoS the host, CVE-2015-6654, CVE-2015-7835, CVE-2015-8104 and CVE-

2015-8615. In July 2016, a bug in Xen hypervisor (CVE-2016-6258), dubbed the

bunker buster, allows a malicious admin within a para-virtualised VM guest to access

the host via fast-paths in the page table and obtain root access. More detailed

descriptions of all the CVEs mentioned above can be found at https://cve.mitre.org.

2. TECHNOLOGICAL REVIEW

24

2.8 Summary

This chapter presented evidence on the reality of botnet threats upon CSPs.

Fundamental exploits exist in hypervisors at the heart of CSPs making them

vulnerable to attack from malware such as Crisis and Venom. Should these malwares

enter a CSP environment, for example via a client’s virtual machine, these exploits

present other tenants and the cloud infrastructure itself as potential attack surfaces.

Multi-tenancy, achieved through hypervisor technology, introduces a further challenge

in creating a detector in the optimal location of a minimal number of probes to achieve

maximum network visibility. This is considered in greater detail in chapter 5.

 The ability to provision centralised storage for multiple distributed devices position

CSPs as a vital building block for the IoT. However, there remains no reliable method

for botnet detection within CSP infrastructures. AV is not the solution for botnet

detection as it is incapable of tracing the C&C servers and requires the device to be

compromised before detection can take place. Whereas botnets should be detected

before an attack commences. Furthermore, CSPs are under no legislation to tackle the

botnet threat. This differs somewhat with ISPs, who have voluntary legislation to

tackle botnets, and may go towards explaining why ISPs have various solutions for

botnet detection. ISP solutions generally rely upon DNS record analysis, which cannot

be re-engineered for CSPs as DNS is an Internet protocol and not a local area network

protocol.

 This chapter begins to address research objective #1 through understanding the

threats to CSPs from botnets and limitations of current malware detection in such an

environment. Flow protocols are widely utilised by CSPs to capture network traffic

management and reporting statistics (Steinberger, et al., 2013). The next chapter

further addresses this research objective in considering the application of flow export

within a botnet detector; focusing on the advantages of standards-based IPFIX over

earlier proprietary NetFlow protocols.

3. AN OVERVIEW OF FLOW EXPORT

25

3. An Overview of Flow Export

3.1 Introduction

Chapter 2 advocated the requirement for research into botnet detection in cloud

environments. The botnet threat, both to and from the cloud, is real, whilst hypervisor

vulnerabilities expose the cloud infrastructure to attack. AV and VM introspection

techniques have limitations in obtaining the profile of a botnet attack, where it is

essential to identify the C&C servers in order to facilitate takedown of the botnet.

 The communication systems that make botnets such a powerful attack force are

also their Achilles heel. The regular chatter between bots and their C&C servers can

be used for detection. In high-speed data networks, traffic capture methods such as

PCAP, can result in volumes of big data. This big data requires subsequent analysis in

order to locate a few botnet signature packets that could be only a few bytes in size.

Not only is analysis at this scale difficult, but packet capture also results in huge

quantities of accumulated storage data in a short period of time (Hofstede, et al.,

2014). Flow protocols, such as NetFlow, are used by over 80% of network operators

to capture network traffic management and reporting statistics (Steinberger, et al.,

2013). Many researchers have repurposed NetFlow to capture network traffic for

botnet detection. However, NetFlow was designed to be a network management

protocol and presents limitations when applied to security threat analysis. In 2013,

IPFIX (RFC-7011) was developed to overcome the weaknesses of NetFlow.

 Chapter 1 identified a gap in knowledge which formulated the hypothesis for this

research study; that the enhancements of standards-based IPFIX overcome the

weaknesses of proprietary NetFlow, when applied to in botnet communication traffic

capture. This chapter reviews the available literature to compare these two protocols,

presenting an argument that IPFIX does exhibit advantages in a CSP environment that

warrant further understanding. This chapter also reviews the literature that discusses

the state of the art in botnet traffic capture using flow protocols.

3

3. AN OVERVIEW OF FLOW EXPORT

26

3.2 A Brief History of Flow

In the 1980s SNMP (Simple Network Management Protocol) was the standard for

network management. SNMP was designed to poll a proprietary MIB (Management

Information Base) in a device every x number of minutes for basic information, such

as up/down status and common error alerts, regardless of any change in the device

state. However, the information obtainable from the MIB was limited. SNMP was not

designed to carry a large amount of data and the protocol come with overheads. If

more granular information was needed, Syslog would be used alongside SNMP,

allowing devices to push information after an event or status change, rather than

require regular polling. Syslog could be used for the efficient logging of device

information, but an unstructured data format made it slow for querying and reports.

 In 1991, the Internet Engineering Task Force (IETF) proposed aggregating packets

into flows using packet header information for Internet accounting in RFC-1272

(Internet Engineering Task Force, 1991). The working group was disbanded in 1993

due to a lack of vendor interest. In 1996 a new working group was tasked with

developing an architecture for flow measurement. A generic framework for Real-time

Traffic Flow Management (RTFM) was published in 1999 as RFC-2721 (Internet

Engineering Task Force, 1999). RTFM was a network flow metering process based on

SNMP. Meanwhile Cisco was working on a proprietary flow export technology to

speed up layer 3 packet switching called NetFlow. This precursor work became Cisco

Express Forwarding - where forwarding decisions are made on the first packet of a

flow, with subsequent packets being switched. Cisco patented NetFlow in 1996 (Kerr

and Bruins, 2001). Cisco continued to develop NetFlow for network management.

Multiple versions were developed, with the first commercial release being NetFlow v5

in 2002. In 2004 Cisco introduced NetFlow v9 (known as Flexible NetFlow, or FnF)

which provided much needed improvements over NetFlow v5; including support for

templates, VLANs, IPv6 and MPLS, amongst other features. Meanwhile, other

vendors developed their own proprietary NetFlow protocols; none of which were

interoperable.

 In 2004 the IETF recognised the need for a standardised approach. In 2008 the first

specifications of IPFIX were drawn up, based on NetFlow v9 as the underlying

building block. In 2013 IPFIX was made the standard for flow protocol export under

RFC-7011 through RFC-7015 (Internet Engineering Task Force, 2013a; 2013b;

2013c; 2013d; 2013e) and RFC-5103 (Network Working Group, 2008).

3. AN OVERVIEW OF FLOW EXPORT

27

 IPFIX was defined to provide an extensible, flexible data model that is reliable,

secure and congestion-aware (Trammell and Boschi, 2011). IPFIX is a push protocol,

where a device regularly sends IPFIX flow messages to collectors without the

collector having to specifically request the data. Flow exports a highly structured

dataset, where structured means that the data adheres to a pre-defined model that is

organised in a predetermined way (Santos, 2016). When traffic capture in high-speed

data networks produces big data, a structured dataset is an advantage not only for

reporting, but also when it comes to analysis and querying; for example, for malicious

network activity. IPFIX supports structured data as documented in RFC-6313

(Internet Engineering Task Force, 2011). As network operators are already capturing

flow data for network management purposes, it makes sense to understand if these

datasets can be re-purposed for other activities such as botnet detection.

3.3 Flow Export Architecture

Network monitoring is typically classified as either active or passive. Active

monitoring, such as ping or traceroute, injects traffic into a network to perform

measurements. Active monitoring has the potential to impact the traffic under monitor

through introduced latency. Passive monitoring, such as PCAP, observes traffic as it

passes a measurement point. Flow export falls into the passive monitoring category

(Hofstede, et al., 2014). RFC-7011 defines flow as:

“… a set of packets or frames passing an Observation Point in the network

during a certain time interval. All packets belonging to a particular flow have

a common set of properties.” (Internet Engineering Task Force, 2013a)

 Figure 5, below, describes a flow-based monitoring architecture. A flow probe (or

flow exporter), installed on the device being monitored, observes network traffic

packets. This probe either reads packets directly from a monitored link via a network

tap, or receives packets via the packet forwarding mechanism in the device being

monitored. The probe then exports the flow records using the IPFIX or NetFlow

protocols to a flow collector. The collector aggregates the flows based on a set of

common properties, thereby reducing the overall amount of traffic collected for

storage. Stored flow data is then automatically or manually analysed. Hofstede, et al,

(2014) provide an excellent overview of the flow monitoring and export process.

3. AN OVERVIEW OF FLOW EXPORT

28

Network
Packets

Probe Collector Storage Analysis

NetFlow /

IPFIX

Aggregated

Flow

DBMS

Query

Figure 5. The four elements of a flow monitoring architecture.

(Adapted from Hofstede et al., 2014)

3.4 IPFIX Compared with NetFlow

Flow export protocols have evolved over time, primarily in order to overcome

operational drawbacks. The application of NetFlow v5 in security analysis is restricted

by its fixed template (Gates et al., 2004) which limits the number of traffic attributes

that can be exported. This was overcome in NetFlow v9, which introduced

customisable templates. However, the proprietary format of NetFlow v9 presented

vendor interoperability issues, which drove the IETF to standardise flow export as

IPFIX in 2013. NetFlow v9 is considered a protocol in its own right and is considered

in the following section for purposes of clarity. However, as IPFIX was developed

from Cisco’s implementation of the NetFlow v9 protocol, throughout the remainder of

this thesis NetFlow v9 is assumed to be an early, proprietary version of IPFIX and is

generally ignored.

 In addressing research objective #1, the following section outlines a comparison of

IPFIX with NetFlow features that impact the design of a botnet traffic capture

mechanism in high throughput network environments. Table 1 summarises how IPFIX

morphed from a simple network management statistics protocol as NetFlow, into a

protocol which application to security analysis. Table 1 shows how IPFIX evolved

from NetFlow v5 to address template extensibility, the lack of security features in

NetFlow, standardisation in data structure and transport protocols, and feature support

for modern data networks such as multi-cast, VLANs and IPv6.

3. AN OVERVIEW OF FLOW EXPORT

29

TABLE 1. FEATURE COMPARISON BETWEEN NETFLOW V5, NETFLOW V9 AND IPFIX PROTOCOLS

(SUMMARISED FOR BOTNET TRAFFIC CAPTURE ATTRIBUTES)

 NetFlow v5 NetFlow v91 IPFIX2

Commercial Release 2002 2004 2013

Standards Based Proprietary Proprietary
Standardised
(RFC-7011)

Template Elements 18
79

(Cisco: 105)
386

Template Extensibility Fixed Template Yes RFC-5610

Information Elements No Single-vendor ID
Multi-vendor ID

RFC-7012, RFC-7013

Enterprise Elements No No RFC-5610

Variable Length Fields No No RFC-6313

Structured Data Yes Yes RFC-6313

Transport Protocol UDP
UDP

(Cisco: UDP, SCTP)
TCP, UDP

SCTP (RFC-6526)

Flow Security None None Encryption, Integrity

Cache Timeouts Fixed Fixed Customisable

IPv6 No Cisco only Yes

VLAN No Cisco only Yes

MPLS No Cisco only Yes

IPsec Tunnelling No Cisco only Yes

MAC Address No Cisco only Yes

Multi-cast No Cisco only Yes

Flow Direction Unidirectional
Unidirectional
(Cisco: Biflow)

Bidirectional
(RFC-5103)

1 RFC-3954 (Informational) (Network Working Group, 2004)
2 RFC-7011 to RFC 7015 (Internet Engineering Task Force, 2013a; 2013b; 2013c; 2013d; 2013e)

3. AN OVERVIEW OF FLOW EXPORT

30

3.4.1 VENDOR INTEROPERABILITY

Arguably the biggest drawback of NetFlow comes from a lack of standardisation

across vendor implementations of the protocol. Most manufacturers of network

hardware have their own proprietary version of a flow export protocol; Cisco’s

NetFlow, Juniper’s JFlow, Alcatel-Lucent’s CFlow, Huawei’s NetStream, Citrix’s

AppFlow and so on. Any moderately sized organisation is unlikely to deploy just a

single vendor’s equipment throughout their network, particularly if they desire a best-

of-breed implementation. A typical multi-tenant CSP infrastructure uses servers,

physical virtualisation, network virtualisation and LAN devices, data storage and

management requirements such as accounting and security. No one single vendor

addresses this entire hardware and software remit. Each has their own flow

implementation. This does not present such an issue for NetFlow v5, which has

relatively limited functionality. However, when NetFlow v9 proprietary features are

deployed, interoperability becomes an issue. This may explain why NetFlow v5 is still

the most common flow export protocol. In constructing a botnet traffic capture

mechanism non-interoperability presents two issues. One, the highly structured format

of flow data becomes lost as different vendors implement their own features using

various methods, thus making querying and analysis of captured data more complex.

Two, there is no guarantee that all vendors export the same traffic attributes, thus

resulting in blind spots across a distributed network. The standardisation of the flow

protocol to IPFIX addresses vendor non-interoperability issues, as is evidenced by the

features investigated below.

3.4.2 TEMPLATE EXTENSIBILITY

NetFlow v5 exports a fixed structure of 20 fields; comprising 18 data fields with two

padding fields. Figure 15, below, shows the NetFlow v5 template structure. These 20

fields are pre-defined and cannot be changed, removed or added to, regardless of

whether the information needs capturing or not. This means that each NetFlow v5

packet is always 48 bytes in length. Gates argued that only 10 fields provide useful

data when NetFlow is applied to security analysis (Gates et al., 2004). Thereby

making the fixed template structure of NetFlow v5 a drawback, as effectively 18 bytes

of each 48 byte NetFlow v5 packet is superfluous when used in security analysis.

NetFlow v9 introduced customisable templates, allowing a flow device to define the

information to be exported. A NetFlow v9 template can contain any quantity of fields

and is no longer capped at 18 fields. Each NetFlow v9 template is identifiable by its

3. AN OVERVIEW OF FLOW EXPORT

31

template ID, which corresponds to the set ID in the set header section of the dataset.

NetFlow v9 is documented in RFC-3954 (Network Working Group, 2004), which

outlines 79 different fields that are supported in NetFlow v9 templates. However,

NetFlow v9 has not been standardised, which has led to differing vendor

implementation of NetFlow v9 arising. For example, Cisco’s implementation of

NetFlow v9 offers 105 fields, with fields 106-127 reserved for future use (Santos,

2016). There is no guarantee that the 79 defined fields, or Cisco’s additional fields,

will operate between vendors implementation. Many of the NetFlow v9 fields focus

on capturing flow contextual information, such as byte or packet counters, rather than

traffic content information.

 IPFIX overcomes field interoperability by standardising the template format and

template fields in RFC-7012 (Internet Engineering Task Force, 2013b). With IPFIX,

template fields are called Information Elements (IEs). The RFC does not define the

IEs themselves. Instead, the RFC states that in order to maintain cross-vendor

interoperability, the Internet Assigned Numbers Authority (IANA) is responsible for

controlling the available IPFIX IEs. IANA defines 433 standard fields in the IPFIX

Information Element Registry3. Of these 433 IEs, 17 are now deprecated, with another

57 IEs preserved for NetFlow v9 fields so as to retain compatibility between NetFlow

v9 and IPFIX. IPFIX was designed as an extensible data model for flexibility and

customisation. IPFIX supports the creation of new template fields if they are not

defined in the 433 IANA fields. With IPFIX, new template fields are called Enterprise

Elements (EEs). The IPFIX IEs range 434 to 32767 is reserved for vendor defined

EEs. Effectively, EEs allow the addition of any Layer 2 through Layer 7 information

to the IPFIX template. This means that as new threat detection techniques are

developed, new fields can be created to be added to the IPFIX template. Trammell and

Boschi (2011) state that EEs allow IPFIX to extend flow collection beyond network

and transport layers, making it able to export information from future networks.

Whilst IPFIX template extension support is documented in RFC-5610 (Network

Working Group, 2009b), currently only a few IPFIX vendors support creation of new

EEs. Where EEs are supported, this is usually done through open source libraries such

as libpcap. A list of IPFIX probes that support EEs is outlined in Chapter 5. IPFIX

also supports Option Templates. Whilst an IPFIX template describe the capture flow,

option templates define non-flow attributes such as flow metadata, collection

infrastructure or other properties of a set of flows (Santos, 2016). NetFlow v9 does not

support vendor extensions to allow capture of new data attributes (Patterson, 2012).

3 https://www.iana.org/assignments/ipfix/ipfix.xhtml

3. AN OVERVIEW OF FLOW EXPORT

32

 NetFlow v5 lacks support to capture network information such as IPv6, VLANs,

MPLS, IPsec tunnelling, MAC addresses or multi-cast. The fixed nature of the

NetFlow v5 template structure prevents support for these features being added. As

cloud providers utilise these network functions, it is essential for a data capture

mechanism to support these. Likewise, with the IPv4 address range now exhausted,

the IoT will take advantage of the massive address space in IPv6. IPFIX supports all

of these features as IEs, whilst EEs allow the creation of new template attributes to

accommodate new technology and next-generation protocols. NetFlow v9 lacks

support for these features, apart from Cisco’s implementation. When studying

anomalous IPv6 traffic Lee, et al., (2007) chose IPFIX over NetFlow v9 because of

the ease in which new EEs could be constructed to capture IPv6 attributes. In a botnet

traffic capture mechanism, as bots evolve with new features, EEs can be created so

that new detection attributes can be included into existing IPFIX capture templates. In

particular this EE space can be used for protocol specific attributes, such as HTTP

GET information that may allow confirmation that suspect traffic is indeed malicious.

Velan (2013) argues that the lack template customisation makes both NetFlow v5 and

NetFlow v9 limited for threat detection, as they only analyse a packet’s encapsulation

protocol rather than the packet itself. Velan, Jirsik and Čeleda (2013) go on to state

that support for EEs means IPFIX will be superior to NetFlow in next-generation

network monitoring, whilst supporting higher collection performance and better use in

analysis tools.

3.4.3 VARIABLE LENGTH FIELDS

NetFlow not only lacks the functionality to create new template elements, neither does

it support variable length fields. A NetFlow v5 fixed 18 field template is always 48

bytes in length, regardless of the data captured. Whilst fields can be added and

removed to the NetFlow v9 template, attribute capture is limited to fixed length fields.

Variable length fields are required to efficiently capture variable length strings. In a

botnet traffic capture mechanism this allows the creation of EEs to capture strings

such as HTTP GET requests, SMTP Hellos, IRC messages, or any other Layer 2

through Layer 7 attributes which would help in facilitating confirmation that suspect

traffic is indeed malicious. Most Layer 7 attributes tend to be variable length strings.

IPFIX supports variable length fields as documented in RFC-6313 (Internet

Engineering Task Force, 2011). Furthermore, it achieves this whilst continuing to

maintain the data structure, allowing variable length fields to be used without any

impact upon post-capture data analysis. The method in which IPFIX supports variable

3. AN OVERVIEW OF FLOW EXPORT

33

length fields and structured data prompted Hofstede, et al., (2014) to state that IPFIX

should not only be considered as the flow export protocol of choice, but also the

generic transport protocol for structured data. It may be possible for NetFlow v9 to

support variable length fields by creating out-sized fields and using field padding.

Although this approach wastes space within captured packets. Additionally, NetFlow

v9 does not support the creation of EEs, making this argument arbitrary.

3.4.4 TRANSPORT PROTOCOL

When early NetFlow protocols were designed it was expected that flow records would

be confined to private networks, with flow exporters and flow collectors in close

proximity to each other. Both NetFlow v5 and NetFlow v9 use UDP as the transport

protocol. In a large network, using UDP as a transport layer protocol introduces two

limitations. UDP lacks any congestion awareness, which can leading to network

flooding when a device is down or undergoing a DDoS attack. UDP is an unreliable

protocol lacking data re-transmission, making it susceptible to data loss. A design

requirement of IPFIX was to address these reliability and congestion-awareness

issues, whilst remaining transport protocol independent (Trammell and Boschi, 2011).

The transport protocol for IPFIX can be selected from UDP, TCP or SCTP (Stream

Control Transmission Protocol). SCTP for IPFIX is documented in RFC-6526

(Internet Engineering Task Force, 2012). UDP is not recommended and is provided

primarily to allow migration from NetFlow to IPFIX installations. Instead, SCTP is

the recommended transport protocol for IPFIX as it addresses congestion awareness

(Santos, 2016), which allows graceful degradation through selective dropping of

exported datagrams under high load, rather than overloading buffers (Internet

Engineering Task Force, 2013a). SCTP ensures the reliable transmission of IPFIX

templates, thereby improving end-to-end delay whilst reducing dropped packet count

and packet retransmissions. Whilst NetFlow does not support transport over TCP,

Cisco’s version of NetFlow v9 does support congestion awareness through NetFlow

Reliable Export with SCTP.

3.4.5 FLOW SECURITY

An early draft of IPFIX highlighted the lack of security in NetFlow (Network Working

Group, 2004). Confidentiality, integrity and authentication were not implemented in

NetFlow as they reduced the efficiency of the protocol. This makes NetFlow

vulnerable to many forms of attack, such as man-in-the-middle (MITM) attacks,

3. AN OVERVIEW OF FLOW EXPORT

34

packet tampering, packet forgery and attacks upon the collector. Security requirements

for IPFIX are documented in RFC-7011 (Internet Engineering Task Force, 2013a).

This mandates that IPFIX transmission includes authentication to prevent MITM

attacks, integrity to prevent IPFIX flow manipulation or duplication, and obfuscation

for flow record confidentiality. RFC-7011 recommends that when TCP is used as the

transport protocol, transmission should use TLS (Transport Layer Security) v1.2 or

above and SYN cookies are used for protection against DDoS attacks. However,

SCTP can be difficult to transmit over the Internet as some devices will drop SCTP

packets due to unrecognised protocol numbers (Hofstede, et al., 2014). To overcome

this, transmission of SCTP over the Internet is recommended with TLS. A drawback

to this is that it requires bidirectional streams with one TLS connection per stream,

thereby contradicting the reasons for selecting SCTP as an IPFIX transport protocol in

the first place. Therefore, RFC-7011 recommends that when using SCTP, or UDP, as

a transport protocol, that DTLS (Datagram Transport Layer Security) is the preferred

security mechanism. When using DTLS, it is essential that IPFIX messaging is sent

over the same SCTP stream to prevent injection attacks. When using SCTP, RFC-

7011 mandates a cookie exchange mechanism. RFC-7011 recommends TLS or DTLS

is used to prevent fake IPFIX messages when transportation uses SCTP or UDP.

SCTP does not mandate encryption however several IPFIX probes implement flow

encryption by using TLS (see Chapter 5 for more information). In a botnet traffic

capture mechanism within a network where the detection system itself is at risk, such

as a CSP or IoT environment, IPFIX provides mitigation of attacks such as DDoS,

MITM and packet manipulation.

3.4.6 CONFIGURABLE CACHES TIMEOUTS

Flow exporters maintain a flow cache table in the device memory to track all known

active flows passing through the device. Flows are cached until either the timeout

settings hit a threshold, or the flow terminates; for example through a TCP FIN or

RST flag. In NetFlow the timeout setting is fixed according to the device flow cache

size, which in turn is constrained by the device hardware or software. This is usually

set to 60 seconds (Patterson, 2012). If malware can generate enough traffic, for

example via a DDoS attack, with a high flow cache timeout setting it could be

possible to exceed the maximum number of permissible flow cache entries. Thus

forcing the flow exporter to drop flows, or crash. Similarly, because the number of

flow records coming into a collector can escalate considerably during a DDoS attack,

if cache timeouts are high enough, the flow exporter can overload its collector, forcing

3. AN OVERVIEW OF FLOW EXPORT

35

the collector to error or crash (Hofstede, et al., 2014). IPFIX neither mandates a time

period after which flow entries expire, or enforces a duration after which flow records

are forced to be exported. This has two advantages for a botnet traffic capture

mechanism. It protects the flow capture infrastructure from DDoS attack. It also

allows optimisation of flow expiry and idle time so IPFIX can capture short-lived

communication bursts, such as a bot to C&C server keep-alive beacons.

3.4.7 BIDIRECTIONAL FLOWS

Most networked host-to-host communications involve packet exchanges in both

directions. For example, TCP is two directional since it relies on packet

acknowledgement. NetFlow v5 is unidirectional, hence TCP is captured as two non-

interconnected flows; namely a request and response. IPFIX provides support for

bidirectional flows (biflow) as documented in RFC-5103 (Network Working Group,

2008). Many IPFIX exporters claim to support biflow, but in reality they recognise

flow pairs through record adjacency. It is possible to pair flows together in NetFlow

v5 and NetFlow v9, but this requires the creation of an algorithm to undertaken flow

pairing during analysis (Minarik, Vykopal and Krmicek, 2009). Only Cisco’s

implementation of NetFlow v9 supports biflow. A biflow is a single record which

contains both the traffic details from A to B and B back to A (Patterson, 2012). This

allows request and responses to be individually distinguished and interconnected as a

biflow pair. Biflow pairing is becoming more important in security analysis by

associating inbound and outbound flows to application. For example, biflow pairing

determines which party initiated the conversation, particularly useful for P2P traffic

study. Yen and Reiter (2010) used biflow ratios to detect the Storm P2P botnet.

Studies in packet symmetry have shown that the ratio of inbound to outbound packets

can be useful in determining malicious traffic (Kreibich, et al., 2005; Lee and

Brownlee, 2007). For example, separating the request and reply pairs of server, client

and single flows can recognise a distributed attack against a DNS server (Minarik,

Vykopal and Krmicek, 2009). In a botnet traffic capture mechanism biflow pairs

would allow the determination of the direction of conversation between a C&C server

and a victim. Separation of unanswered from answered TCP requests may suggest a

C&C server searching for a botnet peer that is offline, or a C&C server undertaking a

scan for victims. Alternatively, rather than use Biflow, flow pairs can be distinguished

by collecting both source and destination IP addresses, which can be a more efficient

method of capture when used with data aggregation (Patterson, 2012).

3. AN OVERVIEW OF FLOW EXPORT

36

3.5 Flow Export Compared with Packet Capture

Flow export and packet capture are both passive monitoring techniques, observing

traffic as it passes a measurement point and making a copy of some or all of this

traffic. PCAP captures both packet header and payload information. This makes PCAP

capture a big data challenge in high-speed data networks as it can capture gigabytes of

data per second. Flow export captures only information in the packet header, ignoring

the payload data. Flow export therefore captures the same metadata as PCAP, but the

overall amount of traffic capture for storage is considerably less without the payload.

In network monitoring, flow export tends to be used for high level investigation

within a network, with PCAP utilised for deep dive investigation requiring payload

information.

 Volumes of exported flow data can be further reduced by real-time data

aggregation. Aggregation capability is typically a feature of the exporter/collector

pair, rather than defined by the flow protocol. IPFIX however standardises

aggregation, as detailed in RFC-7015 (Internet Engineering Task Force, 2013e). RFC-

7015 defines aggregated flows as “flows representing packets from multiple original

flows sharing some set of common properties”. Similar flows are aggregated by key

field tuples such as {source IP, destination IP, source port, protocol}. Should 10 flows

match this tuple over a fixed collection period, they are exported as one aggregated

flow. Other traffic monitoring features, such as Cisco’s SPAN, do not support

aggregation by default.

From a CSP perspective, flow export has advantages over packet capture:

 Flow export allows data storage volume savings; in the order of 1/2000th of the

original PCAP volume (Hofstede, et al., 2014);

 Flow export is less privacy sensitive (Hofstede, et al., 2014); since only the

packet headers are considered. Note: IPFIX EEs can be constructed to capture

payload data;

 Flow export data complies with European data retention laws (Hofstede, et al.,

2014) where European service providers are legally obliged to retain

connection data from between six months to two years for the purpose of

“prevention, investigation, detection and prosecution of criminal offences” (EC

Data Retention Directive 2006/24/EC, 2006);

3. AN OVERVIEW OF FLOW EXPORT

37

 Flow export is more suitable for high-speed data networks (Hofstede, et al.,

2014) as not capturing packet payloads make it more scalable and able to cope

with high-speed data network throughput over 100Gbps where packet capture

is traditionally limited or requires expensive hardware.

3.5.1 A NOTE ON SFLOW AND OPENFLOW

NetFlow and IPFIX are flow export protocols. Other protocols exist with “flow” in

their name, but these are not flow export protocols, so are beyond the scope of this

research project:

 sFlow is a packet sampling protocol, capturing every 1:X packets. Flow export,

by default, captures every packet. In large networks where export rates become

prohibitively high due to network throughput, it is more common to see

NetFlow revert to 1:X sampling to reduce data volumes and processor

overheads on NetFlow devices.

 The drawback of sampling is that only capturing every X th packet may miss

short-lived inter-botnet communications. Caching can be another drawback of

sFlow. With flow export the flow cache resides on the export device. With

sFlow it is common to see the flow cache external to the sFlow device hence

aggregation is not possible. If necessary, IPFIX supports packet sampling

(PSAMP) as defined in RFC-5476 (Network Working Group, 2009a);

 OpenFlow is a software-defined packet forwarding protocol. OpenFlow is used

to transport the routing decisions between a logically centralised controller and

the data plane of a software switch (Internet Research Task Force, 2015).

3. AN OVERVIEW OF FLOW EXPORT

38

3.6 Flow-Based Botnet Detection

Total eradication of a botnet requires the takedown of all C&C servers associated with

that bot. Signature-based techniques such as AV software can disinfect individual

machines to remove part of the botnet, but is not capable of locating and removing the

C&C servers, as outlined above in Chapter 2. Signature-based detection is also heavily

reliant upon analysing the packet payload content, which is both resource intensive

and can be evaded by payload encryption (Zhao, et al., 2013). In a CSP environment,

packet inspection also raises considerations around tenant privacy.

 Botnet behaviour-based detection exploits uniformities in both botnet

communication and behaviour, such as the communication between a recruited victim

and its C&C server (Gu, Zhang and Lee, 2008). In behaviour-based detection, network

traffic is fed into a detection engine. Typically, the detection engine comprises two

stages. First, the incoming data is filtered, such as clustering or correlation, to reduce

the data volumes requiring analysis. Second, this filtered data is then fed into a

detection algorithm, such as decision tree or a machine learning algorithm. Behaviour-

based detection has two disadvantages:

(1) Detection algorithms tend to be formulated based upon which attributes can be

captured. If the data capture mechanism is based on NetFlow v5, detection

attributes are limited to 18, increasing to 79 when NetFlow v9 is used. If the

attributes are unable to be captured in NetFlow, capture is subsidised with

PCAP. Although the additional volumes of data captured by PCAP can hinder

analysis. However, Sperotto, et al., (2010) considered packet inspection as

complementary to flow-based capture techniques, where a combination of both

NetFlow and PCAP may improve detection accuracy. This is at a cost of having

to correlate multiple data feeds of varying structures.

(2) Because a data feed is a stream of traffic, it can take time to build up a traffic

profile of the botnet. Therefore it is important that the detection algorithm is

able to detect a bot as early in the bot life cycle as possible. However, this also

provides an advantage. If a detection algorithm works at detection early in the

life cycle, before the botnet attacks, a window of time exists before mitigation

action needs to be taken. This window provides time to confirm that the suspect

traffic is indeed botnet traffic. In other words, detection only needs to happen in

near real-time.

3. AN OVERVIEW OF FLOW EXPORT

39

BOTNET DETECTION EXPERIMENTS

The remainder of this section reviews the prior art in botnet detection using flow

protocols, in chronological order. To address research objective #2 and the conceptual

development of an IPFIX capture template, traffic attributes used by previous

researchers must be understood. Therefore, this review of prior studies concentrates

on data collection methodologies and the attributes captured, rather than the detection

algorithms themselves. What was apparent from the literature review was that whilst

some traffic attributes are more popular than others (refer to Table 2), very few

authors provide evidence that their chosen attributes are empirically justified as botnet

traffic indicators. Chapter 4 addresses this by considering the frequency and duplicity

of all available IPFIX IEs and EEs. Table 2, below, provides a summary of each

NetFlow and non-NetFlow attribute collected by each researcher as data feeds into

both C&C and P2P detection algorithms. In Table 2 in can be seen how almost all

prior studies have used NetFlow v5, packet capture, or a combination of the two.

These is a core set of about ten NetFlow v5 attributes that are captured across all

studies, whilst other NetFlow v5 attributes are more rarely used. Indeed, the nextHop

NetFlow v5 field is not used by any detection algorithms. A traffic capture engine

based on NetFlow v5 captures all 18 data field regardless of their use, resulting in

redundant data that must be removed before analysis. More recent studies have begun

to use NetFlow v9 (Wijesinghe, Tupakula and Varadharajan, 2015; Haddadi, et al.,

2014). These both added flow contextual fields to the traditional NetFlow v5 template,

yet failed to take advantage of other fields available in NetFlow v9. No bot detection

studies can be found that take advantage of the power of IPFIX in data capture.

 Some of the earliest research into the use of flow protocols in network security was

performed by Gates, et al., (2004). From studies of the Korgo and Sasser worms, they

propose that eight fields in NetFlow v5 are superfluous for malware detection; namely

input interface, output interface, source AS, destination AS, source mask, destination

mask, next hop IP and type of service. However, as NetFlow v5 has a fixed template,

these fields cannot be removed so are captured regardless of their value to threat

detection. Hence, when NetFlow v5 is used in threat detection its inefficiency results

in data volume and storage wastage. Cooke, Jahanian and McPherson, (2005) found

that introducing proxy servers as a stealth layer in IRC botnets prevented detection of

distinguishing C&C server traffic characteristics. They conclude that payload

inspection is time and resource costly and subject to encryption. They instead

recommended NetFlow be used to search for non-humanlike traffic characteristics of

bot attack/propagation traffic. BLINC (Karagiannis, Papagiannaki and Faloutsos,

3. AN OVERVIEW OF FLOW EXPORT

40

2005) was created to distinguish between benign and malicious P2P traffic by

classifying traffic patterns at the transport layer. They found that P2P flows with no

payloads were indicators of port scanning or IP address scanning. As BLINC only

uses NetFlow for data capture, it was unable to characterise specific P2P protocols as

this requires data found in the payload. They decline the use of port numbers in

detection due to possibilities for port spoofing. Rishi (Goebel and Holz, 2007) use

regular expression (regex) searches on traffic connection time, source/destination IP

address, source/destination port, IRC channel and IRC nickname to extract malicious

IRC channels. They chose to use packet capture because NetFlow v5 does not support

IRC attributes. This experiment could be reproduced using IPFIX EEs to extract IRC

data. Karasaridis, Rexroad and Hoeflin (2007) captured mainly transport-layer

attributes to detect IRC botnets in tier-1 ISPs. They found that idle IRC clients

produced different traffic patterns to active IRC clients. They preferred NetFlow as it

was non-intrusive, respected privacy and generated considerably less traffic than

PCAP. However, to be able to confirm their detection engine was capturing IRC bots,

they used packet capture to extract application layer data.

 In the first of three related studies, BotHunter (Gu, et al., 2007) claimed to be the

“first distributed bot infection profile analysis tool.” BotHunter analysed payload data

from SNORT IDS running a customised malware ruleset, to look for IRC bot

scanning, infection and keep-alive communication patterns. BotSniffer (Gu, Zhang

and Lee, 2008) used the same SNORT IDS to analyse payload data, but improved the

BotHunter correlation engine to detect IRC bots, HTTP bots and look to for SPAM by

correlating DNS with SMTP traffic. Two anomaly detection algorithms looked for

high-scan rates and high failed connection rates based on the spatial-temporal

correlation of network traffic worked under the premise that bots have much stronger

and more consistent synchronisation and correlation in their responses compared to

human users. They suggested that looking for user-initiated IRC queries, such as

WHOIS, LIST and NAMES, could indicate benign traffic, as malicious traffic is

unlikely to use these commands. BotMiner (Gu, et al., 2008) again enhanced the

BotHunter platform to create an engine for high-speed, low packet loss networks, to

detect IRC, HTTP and P2P bots that does not require priori knowledge of bot

signatures. A proprietary NetFlow format is used to extract transport layer traffic,

whilst packet capture is used to capture for application layer information such as

SMTP and DNS record attributes. BotHunter’s weakness was that in looking for pre-

defined bot life cycle patterns, it could not detect a bot if its infection model changed.

 Strayer, et al., (2008) feed flow characteristics into machine learning correlation

3. AN OVERVIEW OF FLOW EXPORT

41

algorithms to pro-actively look for IRC botnet hosts. The algorithm uses

discriminatory flow attributes such as flow duration, flow direction, average bytes-

per-packet per flow, average packets-per-second per flow and average bits-per-second

flow. Unfortunately, some classification algorithms presented false positives of up to

40%, rendering this technique questionable. Also questionable is the amount of

potentially useful detection data that is filtered out at an early stage without evidence.

This includes port scanning, high bandwidth flows and short lived flows. Botlab

(John, et al., 2009) looks for spam-bots, again using a customised flow extracted from

packet capture. They create application-layer behavioural signatures in order to

attribute incoming spam to a specific bot. Botlab was successful because the bots

analysed used either hardcoded IP addresses or DNS information to locate their C&C

servers. The fluxing technique used by more recent botnets may make these signatures

more difficult to create. Wurzinger, et al., (2009) hypothesises that when a bot

receives commands from its botmaster, each bot must respond in its own specific way.

They use IDS to extract payload traffic using packet capture, to generate bot

signatures based on network traffic, command/response pairs and IRC and HTTP

application traffic. These signatures are then compared against pre-generated models

for IRC, HTTP and P2P bots. They acknowledge that a drawback to this technique is

that it requires pre-generated signature models before it can detect a particular bot.

 BotGrep (Nagaraja, et al., 2010) uses NetFlow v5 to capture traffic on high-speed

ISP networks, then applies Graph theory to detect P2P bot traces. To be able to cope

with throughput at high-speed, they use NetFlow to sample network traffic at 1:500

rates. A limitation to sampling in that it can miss the few tell-tale botnet packets, so

detection accuracy will suffer. Also, they fail to state the NetFlow attributes captured.

Perdisci, Lee and Feamster (2010) analyse the structural similarities among malicious

HTTP malware to create signatures. They focus on HTTP malware rather than bots.

However, their HTTP attributes could apply to HTTP botnet detection. They split

HTTP attributes into (1) course-grain - statistical values of HTTP request,

GET/POST, URL lengths, number of request parameters and (2) fine-grain -

clustering by HTTP structural similarity of HTTP GET/POST and URL.

 To detect P2P traffic, BotTrack (Françios, Wang and Engel, 2011) uses NetFlow to

capture only IP addresses, which are clustered into dependency graphs and analysed

using a PageRank algorithm. They prefer NetFlow to packet capture due to NetFlow’s

collection efficiency, whilst non-packet inspection characteristics address privacy

concerns. In BotCloud, Françios, et al., (2011) replace the resource-intensive

PageRank component of BotTrack with MapReduce and a mini Hadoop cluster to

3. AN OVERVIEW OF FLOW EXPORT

42

reduce computational time by a factor of seven. In order to improve capture efficiency

both BotTrack and BotCloud capture a limited set of NetFlow attributes, without any

justification for ignoring other bot attributes that may enhance the detection algorithm.

Rossow, et al., (2011) use a Sandnet environment to analyse the network behaviour of

malicious software that uses HTTP and DNS protocols. The value of their work is in

identifying common malware HTTP and DNS attributes from analysing 70 million

flows from 207GB of data. Packet capture was used to capture this data, but IPFIX

EEs could enable collection of the same attributes at a fraction of this space.

DISCLOSURE (Bilge, et al., 2012) searches for C&C servers within high-speed tier-1

ISP networks, extracting flows with different incoming/outgoing characteristics as

potential bots. They found that the size of flow from benign servers fluctuate

measurably more than from C&C servers. They selected NetFlow v5 for data capture

because it is commonly used by ISPs, but found some limitations of NetFlow. It does

not capture payload data which is required for bot detection. It is unidirectional so

only captures one side of the conversation. It struggles in aggressive sampling rates

required for DISCLOSURE to work in high-speed ISP networks. All of these issues

can be addressed by IPFIX. Zhang, et al., (2011) also had issues with data volumes in

packet capture sampling in high-speed ISP networks. They developed a sampling

mechanism for PCAP, which reassembles flows based on aggregating key fields. This

methodology essentially provides a NetFlow format that can capture packet payload

data, although this is computationally costly. IPFIX could capture the same data more

efficiently. Additionally, if network speeds become too high for IPFIX to efficiently

aggregate the traffic, IPFIX supports PSAMP for sampling. This system has since

been enhanced, using NetFlow and packet capture, to statistically fingerprint P2P

traffic to determine if it is belongs to a legitimate P2P network (Zhang, et al., 2014).

Zhao, et al., (2013) split complete flows into multiple shorter time windows to

improve overall detection speed, enabling detection of botnet behavioural patterns

early in the propagation life cycle. Packet capture was used to capture flow contextual

data to show bot P2P communication, which displays many continuous, uniform,

smaller sized packets, unlike benign P2P usage. To counter bot detection evasion

mechanisms, such as packet injection or random reconnection, they measure P2P

reconnects against total flows over time. NetFlow cannot capture this additional

contextual information, however it is possible using IPFIX.

 Yen and Reiter (2010) find that bot P2P traffic demonstrate boths lower peer churn

with more failed connections and lower traffic volumes over shorter time-periods,

than compared to human P2P file-sharing. Building upon this Narang, Reddy and

3. AN OVERVIEW OF FLOW EXPORT

43

Hota (2013) compare three machine learning techniques to improve P2P bot detection

speeds in IDS. Detection attributes are extracted from PCAP and aggregated into

custom flows, before being input into their machine learning detection algorithms.

They find that reducing the number of attributes in a flow, such as port numbers and

protocols both of which can be spoofed, increases the detection speed with only a

marginal loss of accuracy. To detect P2P botnets in their quieter period before attack

Hang, Wei and Faloutsos (2013) proposed superflows as a technique to improve the

low accuracy of Yen and Reiter’s work. Where superflows are flows with the same IP

nodes that are close in time, irrespective of protocol or port number. They claim that

superflows should be able to overcome the proprietary nature of flow export tools.

Similarly, PeerShark (Narang, et al., 2014) uses packet capture to create bespoke

conversations based on flow length and duration. They find that conversations can

detect the pre-attack stealthy, low-volume conversations between botmaster and

modern P2P bots. Again, these experiments can all be reproduced using IPFIX.

 Based upon observations that malware authors use various encoding schemes, such

as Base64, Hex or ASCII, to obfuscate HTTP-based C&C channels, CoCoSpot

(Dietrich, Rossow and Pohlmann, 2013) uses the length of the first 8 messages of a

flow, protocol and URI encoding scheme to detect HTTP botnets. Lin, Chen and

Chang (2014) use packet size and packet count from PCAP packet capture to classify

malicious P2P bots against benign P2P flows. They find that P2P bots use more

packets per session and that these packets, ranging from 63-399 bytes, are smaller

than benign P2P traffic. Haddadi, et al., (2014) capture HTTP flows using a NetFlow

v9 template, before feeding them into a machine learning algorithm. Whilst they use

NetFlow v9, the template is nothing more than NetFlow v5 with the addition of

VLAN fields and some flow contextual fields. They also collect NetFlow input/output

interfaces, AS addresses and IP masks, despite Gates et al. (2014) advice to the

contrary. They indicate that their approach is not successful. This may be because they

do not capture NetFlow fields such as IP addresses, port numbers and non-numeric

data. Wijesinghe, Tupakula and Varadharajan (2015) claim to use an IPFIX template

for traffic capture. However, their published results are from NetFlow v9, not IPFIX

as claimed. Furthermore, their NetFlow v9 template is simply NetFlow v5 with the

addition of a payload length field. As with Haddadi et al., they omit to take full

advantage of the additional fields that NetFlow v9 can bring to botnet detection. Garg,

Peddoju and Sarje (2016) found that different P2P protocols generate different failed

connection profiles, but when coupled with new peer discovery by ports, P2P bots

generate different profiles to benign P2P traffic.

3. AN OVERVIEW OF FLOW EXPORT

44

TABLE 2. A SUMMARY OF BOTNET DETECTION EXPERIMENTS

LISTING THE INPUT ATTRIBUTES INTO THEIR DETECTION ALGORITHM, SINCE GATES 2004

Year
IRC

HTTP
P2P

P=Packet
Capture
5=NFv5
9=NFv9

NFv5 Attributes Non-NFv5 Attributes

sr
cA

d
d

r
d

st
A

d
d

r
n

e
xt

H
o

p

in
p

u
t

o
u

tp
u

t
d

P
kt

s
d

O
ct

e
ts

fi

rs
t

la
st

sr

cP
o

rt

d
st

P
o

rt

tc
p

Fl
ag

s
p

ro
to

to

s
sr

cA
S

d
st

A
S

sr
cM

as
k

d
st

M
as

k
fl

o
w

sT
o

ta
l

p
ay

lo
ad

Si
ze

sr

cV
LA

N

d
st

V
LA

N

ir
cH

e
ad

e
r

ir
cC

h
an

n
e

l
h

tt
p

U
R

L

h
tt

p
U

se
rA

ge
n

t
h

tt
p

e
rv

e
r

sm
tp

d

n
s

b
gp

P
re

fi
x

Gates, et al. 2004 - 5 ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

BLINC
Karagiannis,et al.

2005 P 5 ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔

 ✔

RISHI
Goebel & Holtz

2007 I P ✔ ✔

✔ ✔ ✔ ✔

✔ ✔

BOTHUNTER
Gu, et al.

2007 I P ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

Karasaridis, et al. 2007 I 5 ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔

 ✔

✔

BOTMINER
Gu, et al.

2008 I,H,P 5, P ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔ ✔

BOTSNIFFER
Gu, et al.

2008 I, H P ✔ ✔

✔ ✔ ✔ ✔

✔

✔

✔ ✔

Strayer, et al. 2008 I P

✔ ✔ ✔ ✔

✔ ✔

BOTLAB
John, et al.

2009 H P ✔ ✔

✔ ✔

✔

✔ ✔

Wurzinger, et al. 2009 I,H,P P ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔

✔

✔ ✔ ✔ ✔

✔ ✔

Perdisci, et al. 2010 H P ✔ ✔

✔ ✔

✔

✔

✔

Yen & Reiter 2010 P 5, P ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔

✔

BOTRACK
Francios et al.

2011 P 5 ✔ ✔

✔ ✔

SANDNET
Rossow, et al.

2011 H 5,P ✔ ✔

✔

✔ ✔

✔

✔ ✔ ✔ ✔ ✔

Zhang, et al. 2011 I,H,P P ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

DISCLOSURE
Bilge, et al.

2012 H 5 ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

COCOSPOT
Dietrich, et al.

2013 H P ✔ ✔

✔ ✔

✔

 ✔ ✔

✔

ENTELECHEIA
Hang, et al.

2013 P 5 ✔ ✔

✔ ✔ ✔ ✔

✔

Narang et al. 2013 P P ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Zhao, et al. 2013 P P ✔ ✔

✔

✔ ✔ ✔ ✔

✔

 ✔ ✔

Haddadi, et al. 2014 H 9

✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔

✔ ✔

Lin et al. 2014 P P

✔

✔

PEERSHARK
Narang, et al.

2014 P P ✔ ✔

✔ ✔ ✔ ✔

✔

✔

Zhang, et al. 2014 P 5,P ✔ ✔

✔ ✔ ✔ ✔

✔ ✔

✔ ✔

Wijesinghe, et al. 2015 I,H,P 9 ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

Garg, et al. 2016 P P ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

3. AN OVERVIEW OF FLOW EXPORT

45

3.7 Summary

In high-speed data networks such as a CSP environment, PCAP packet capture

presents two drawbacks. Both of which arise because PCAP captures the packet

payload as well as the packet header. PCAP raises a privacy debate, as it captures

packet payloads which store content. This payload capture, in turn, makes PCAP a big

data challenge, capturing Gigabytes of information every second. All of this data must

be stored and later analysed.

 Flow export is a more efficient packet capture method, allowing a finer granularity

in data capture. Almost all research involving flow export protocols in botnet

detection have utilised NetFlow to capture traffic attributes to feed into botnet

detection algorithms. Where a specific bot attribute is not available for capture in the

fixed NetFlow v5 template, flow export is used in conjunction with PCAP to capture

missing attributes (Sperotto, et al., 2010). This approach has led to the development of

many successful botnet detection algorithms. However, when multiple data feeds are

used they must be correlated before analysis, as well as introducing high data storage

demands, particularly when supplemented with PCAP data.

 Chapter 1 articulated the gap in the knowledge in the understanding of how the

next-generation of flow export protocols, such as IPFIX, can be applied to efficient

botnet detection. Chapter 2 outlined failures in signature-based detection methods,

such as AV, to track the botnet C&C servers; an essential step in botnet takedown.

This chapter further contributes to addressing research objective #1 through a critical

investigation into the suitability of IPFIX for botnet traffic capture, in a CSP. By

taking a critical look at how IPFIX compares to NetFlow, evidence in presented in

agreement with the hypothesis that IPFIX is more suited to threat detection than

NetFlow. Table 1 summarises this critical review from the point of view of a botnet

traffic capture mechanism for use in CSPs. The key features in which IPFIX addresses

design weaknesses of NetFlow are through standards-based vender interoperability, a

high degree of template extensibility, inherent protocol security, and support of

modern network requirements such as IPv6 and VLANs. In particular, IPFIX template

extensibility allows not only bespoke template creation, but also supports variable

length fields which allow the creation of bespoke enterprise elements to capture data

attributes such as variable length HTTP GET strings. These features will be applied to

template construction in Chapter 4. The other key features of IPFIX will be used in

Chapter 5, in the design of a botnet capture prototype.

3. AN OVERVIEW OF FLOW EXPORT

46

 Gates, et al., (2004) opined that the main weakness of NetFlow v5 in security

analysis is it that it captures a fixed dataset that is not used in its entirety. This is

echoed in Table 2 which shows that experiments which capture network traffic using

NetFlow v5, also capture traffic data attributes that are not used by the detection

algorithm. This results in high volumes of superfluous data which must be removed

before analysis. The information in Table 2 will be used in Chapter 4 as a factor in

determining which fields should be included in the IPFIX template.

 The next chapter examines how IPFIX template extensibility, variable length fields

and support for EEs can take botnet traffic capture from a big data challenge to a

manageable data solution, by creating BotProbe, a template for botnet traffic capture.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

47

4. BotProbe: A Novel IPFIX Template for

Botnet Traffic Capture

4.1 Introduction

Chapter 3 reviewed many of the key design characteristics of IPFIX over its

proprietary predecessor NetFlow. Gates, et al. (2004) considered NetFlow v5 to be

inefficient at traffic capture for security analysis, with only 10 of the 18 fields in the

fixed template configuration of NetFlow v5 capturing attributes pertaining to network

security. Velan (2013) concurred, stating that the lack of template customisation in

NetFlow v5 and NetFlow v9, make them limited for use in threat detection.

 Until now, botnet detection algorithm design has been confined to the few traffic

attributes that can be acquired through NetFlow. When a researcher needs to capture

an attribute that is not contained within the 18 NetFlow v5 fields, PCAP can

supplement data capture (Sperotto, et al., 2010). In high-speed data networks, such as

a CSP environment, such inefficiencies from PCAP quickly translate into big data

traffic volumes that burdens both analysis and storage. Some researchers have

attempted to address the excessive traffic volumes captured by PCAP by creating

packet capture aggregation procedures (Narang, et al., 2014; Hang, Wei and

Faloutsos 2013; Narang, Reddy and Hota, 2013). Aggregation reduces the traffic

captured by duplicate flows, but still captures considerable traffic within the packet

body.

 This chapter describes how three design features of IPFIX, namely template

extensibility, enterprise elements and variable length fields, can address the

limitations of NetFlow and PCAP data capture. This opens the path for the creation of

new botnet detection algorithms, where researchers now have the ability to dictate the

attributes that require capture for their algorithms, rather than the capture mechanism

prescribing which attributes can and cannot be used in the detection algorithms.

4

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

48

4.2 IPFIX Template Customisation

The research hypothesis states that IPFIX should offer advantages over NetFlow v5

for the detection of botnet communications in CSPs environments. In order to justify

demonstrable advantages, an IPFIX template should be able to a) capture botnet traffic

characteristics that cannot be captured by NetFlow, b) capture botnet traffic more

efficiently than NetFlow or c) identify botnet traffic earlier in the botnet life cycle

than NetFlow allows.

 Of the seven features that the IPFIX protocol can offer for botnet traffic capture

over NetFlow, as outlined above in Chapter 3, Santos (2016) claims that the most

important design enhancement of IPFIX is template customisation. Customisation

means an IPFIX template is no longer confined to capturing the 18 fields that NetFlow

v5 captures, of which 8 fields are superfluous to security threat detection (Gates et al.,

2004). In a customised IPFIX template each field element can be fully utilised in the

detection of a botnet communication traffic. This allows the creation of an IPFIX flow

Protocol Data Unit (PDU) that can capture the same, or more, information than a

NetFlow flow PDU, a less than the 48 byte size of a NetFlow v5 PDU. In a high-speed

data networks such as a CSP, reducing the size of the flow PDU should in turn reduce

both device processing power requirements and data storage requirements.

Template customisation can be described as three features:

(1) Template extensibility allows the creation of customisable export templates, in

which any of the 433 IEs defined by IANA can be added or remove from the

template as required;

(2) Enterprise elements allow the creation of new template fields to export any

layer 2 to layer 7 information held within a PDU, should this information not

be supported in the 433 IANA defined fields. It is the support for EEs that

makes IPFIX superior to NetFlow in next-generation networks (Velan, Jirsik

and Čeleda, 2013);

(3) Variable length fields permit efficient capture of data that are not fixed length

strings, such as HTTP GET or SMTP Hello messages.

 Each of these features contributes to advantages over NetFlow for botnet

communication detection. Template extensibility allows the construction a template

without superfluous fields which should be smaller than a 48 byte NetFlow v5 PDU.

Template extensibility with support for EEs, permit the capture of additional

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

49

information over and above NetFlow. Variable field length elements allows capture of

application layer traffic that may be able to detect botnets earlier in their life cycle.

Many researchers, as outlined in Chapter 3, argue that application layer information is

required for the early detection of botnets. The limited subset of attributes in NetFlow

v5, predominantly IP address and protocol information, limits botnet detection to the

attack phase when a bot is producing the highest number of detectable packets.

 It should be noted that NetFlow v9 also supports template extensibility. Two

studies into NetFlow v9 for botnet traffic capture (Wijesinghe, Tupakula and

Varadharajan, 2015; Haddadi, et al., 2014) have been undertaken. However, these

studies have failed to recognise the full potential of next-generation flow protocols

because the implementation of template extensibility in NetFlow v9 is more rigid than

in IPFIX. This rigidity imposes a limitation upon the usefulness of NetFlow v9 in

threat detection, as there is less capability for packet content analysis (Velan, Jirsik

and Čeleda, 2013).

 This chapter, and subsequent chapters, makes comprehensive reference to IPFIX IE

and EE fields. IANA is responsible for maintaining the list of IPFIX IE name

descriptors. IANA does not maintain the list of EEs, as this is the responsibility of the

element creator. To ensure a consistent single naming convention throughout this

thesis, the nomenclature used for both IE and EE element names is the SuperMediator

element name descriptors. SuperMediator is an IPFIX collector chosen for this

research project, where justification for selection is detailed in Chapter 5, below.

4.3 BotProbe IPFIX Template Creation Methodology

The following section outlines the methodology for creating IPFIX templates for

botnet traffic capture. This includes justification for the selection of the botnet data

samples used in this study, as well as detailing the equipment and methods used in

data capture and analysis.

4.3.1 DATASET

The dataset used throughout this study comes from a malware repositiory maintained

by Czech Technical University (CTU), Prague4. The CTU repository holds almost 200

botnet samples, collected from 2013 onwards. The datasets have been captured and

maintained through academic funding received by CTU.

4 https://stratosphereips.org/category/dataset.html

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

50

 Other botnet repositories do exist. Shiravi et al. (2012) presented a study of

available botnet datasets and described the properties a dataset should have in order to

be used for comparison purposes. García, Uhlíř and Rehak (2014) considered

Shiravi’s work to explain the weaknesses of several publically available datasets such

as the CAIDA, DARPA and KDD datasets to justify using datasets from the CTU

repository. They found that anonymisation of payloads in public datasets has an

impact on research output. Several commercial organisations maintain their own

malware datasets. However, these tend to be proprietary and are not readily available

to academic researchers. Public repositories suffer from two drawbacks, a) they are

often maintained by individuals so tend not to be as up to date or extenive as the CTU

datasets and b) samples have often not been anoymised to respect confidentiality of

personal data, which is against the ethical considerations of this study (Chapter 1.5).

 Alternatively, it would have been possible to create our own bespoke datasets for

this study. The fundamental reason for choosing not to do this was the limited ethical

availability of legitimate bot C&C server software. C&C servers are required to

construct the bot executable software needed to create reliable, replicable botnet

samples. Only four C&C server softwares could be found through legitimate sources;

Zeus, Spybot, Spyeye and Mirai; thus reducing variablilty in generated test data.

Instead, these softwares were used in validation testing of the concept build in Chapter

6, as the C&C software allowed complete control of the malware during testing.

 The CTU repository was chosen as the dataset for this study for several reasons.

Reliability of the datasets in this repository can be considered high, as CTU provide

ground truth justification for each individual dataset, including VirusTotal analysis

outputs for each sample. Variance across dataset samples is ensured as the repository

is one of the largest and most varied collections of botnet samples held in PCAP

format. Thus maintaining generalisability of sample data from a single repository,

rather than requiring datasets from multiple repositories. The availability of these

datasets to the research community ensures replicability to researchers to confirm the

results in this study using the same datasets. Data accuracy can be assumed as the

CTU dataset has been used in other academic studies. García and Pechuocek (2016)

used CTU122_1(Geodo) and CTU162_1(Upatre) to study connectity between C&C

servers. Kirubavathi and Anitha (2016) used Kazy, Medfos, Kelihos and Sogou

datasets to study flow characteristics, although did not quote the specific dataset

reference numbers. Haddadi and Zincir-Heywood (2015) used Virut, NSIS,

ZeroAccess and Kelihos samples to study connection pattersn between HTTP bots.

Again they did not specificy dataset sample references numbers. Sangroudi and

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

51

Mirabedini (2015) used 13 different CTU datasets to study the use of fuzzy clustering

in botnet detection. García, Uhlíř and Rehak (2014) used CTU44 through to CTU54

to study C&C bots characteristics in NetFlow. Whilst these authors did not use the

exact same dataset samples as this study, CTU is considered to be a trustworthy and

reliable repository.

 The CTU repository holds almost 200 botnet samples. To simulate a random

selection process, samples were arbitarily selected from the CTU repository with no

perceived bias. The criteria for a sample was that it must comprise over 100,000 flows

over a range of communication channel protocols. In test samples of less than 100,000

flows, it was found that bot information was lost in background noise. As this criteria

reduced the number of bot samples available for testing, no restriction was placed

upon the creation date of the sample. Selected test samples are listed in Appendix B.

4.3.2 EQUIPMENT

The test samples in the CTU repository are presented in PCAP format. PCAP will be

fed into an IPFIX exporter and then the exporter will extract botnet traffic. The

predominant IPFIX exporters that support PCAP as an input stream are nProbe and

YAF (Yet Another Flowmeter). Either nProbe or YAF could have been selected as the

exporer in this test, as both support a wide range of IEs and EEs for data traffic

capture; as summarised in Table 3. nProbe supports 69 IEs compared to 43 IEs by

YAF, although many of the addition IEs supported by nProbe collect flow contextual

statistics. YAF supports a larger range of traffic contextual EEs (refer to Table 4).

Chapter 5 compares six IPFIX exporters, and provides further justification for the

selection of YAF as the chosen IPFIX exporter for this research. YAF exports IPFIX

as a proprietary.yaf format. An IPFIX mediator is required to convert this into a .csv

format suitable for statistical analysis packages. This study used SuperMediator.

Again, refer to Chapter 5 for justification for the selection of SuperMediator as the

IPFIX mediator software for flow collection.

TABLE 3. SUPPORT FOR IANA DEFINED IES AND EE PROTOCOLS, BY IPFIX PROBE

Probe IEs EE Protocols

nProbe
 (Deri, 2003)

69
BGP, DHCP, DNS, FTP, GTP, HTTP, IMAP, MySQL,

Oracle, POP, Radius, RTP, STP, SMTP

YAF / SuperMediator
(Inacio and Trammell, 2010)

43
DHCP, DNP, DNS, FTP, HTTP, IMAP, IRC, MySQL,

NNTP, POP, RTP, SIP, SMTP, SSH, SSL, TFTP

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

52

TABLE 4. SUPPORT FOR EES IN BOTNET TRAFFIC PROTOCOLS, BY IPFIX PROBE

Probe DNS FTP HTTP IRC SMTP TFTP

nProbe 6 4 9 - 2 -

YAF / SuperMediator 16 5 45 1 11 2

 The test environment for the template construction comprised a single host

server running a single guest VM. The host server was a Dell Latitude E5440 laptop,

with an Intel i5-4310U CPU 2.6GHz and 8GB RAM, running Windows 7 Enterprise

64-bit SP1 and VMWare Workstation 11.1.2. The guest VM was a Ubuntu 14.04 LTS

desktop configured with four 2.6GHz processors and 2.9GB RAM, into which YAF

v2.8.4 and SuperMediator v1.3.0 were installed.

4.3.3 METHOD

The aim of this test was to quantify the capability of each template element to capture

botnet characteristics within flow traffic. This would facilitate construction of an

IPFIX template where each template field has been proven to be statistically

significant in the detection of botnet communication traffic. The independent variables

in this test were the individual IEs and EEs available to the exporter template. The

dependent variables were the botnet samples from the CTU repository. Figure 6

summarises the test method.

 The configuration for exporting IEs (“ie_tester.conf”) differs slightly to the

configuration for exporting EEs (“ee_tester.conf”). With IE export, SuperMediator

requires IE IDs to be specified after the FIELDS keyword under the exporter

declaration. All flows are output to a single .csv file. With EE export, a second

exporter is declared using a DPI path. The EEs to be exported have their IDs defined

in tables within the DPI_CONFIG block. Each defined table outputs its own .txt file,

titled as per the table name.

The detailed IPFIX template creation method was:

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

53

(1) A bot sample was selected, at random, from the CTU repository;

(2) YAF was configured to convert the .pcap sample into .yaf IPFIX format:

yaf --in in_file.pcap --out out_file.yaf -v

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la

--applabel --max-payload 65535

(3) The IPFIX stream (“out_file.yaf”) was fed into SuperMediator, which

exports the fields defined in “ie_tester.conf” to a .csv file:

super_mediator --config ie_tester.conf

(4) The .csv file output from SuperMediator was analysed as per Figure 7 below.

 SuperMediator configuration files can be found in Appendix C.

2. IPFIX Exporter

(YAF)

3. IPFIX Mediator

(SuperMediator)

4. Data Analysis

.pcap

.yaf

.csv

IPFIX Template

Creation Method

End

1. Select Bot

Sample

Figure 6. Flow diagram of the IPFIX template creation test.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

54

4.3.4 ANALYSIS

IPFIX IEs capture both situational data about a flow, such as

maxFlowEndMicroseconds (IANA_ID#268) or flowSamplingTimeSpacing

(IANA_ID#399), and traffic contextual data about a packet, such as protocol

(IANA_ID#4) or source port (IANA_ID#7). The EEs defined in SuperMediator, tend

to be more traffic contextual based.

 Botnet detection through communication traffic relies more upon information

contained within traffic contextual data, rather than within flow situation data.

YAF/SuperMediator presented 75 IEs, of which 43 are recognised by IANA, and 288

EEs as test candidates for botnet traffic indicators. Each IE and EE was tested for two

factors for inclusion in the template:

 Quantity - the overall occupancy of the test element in botnet traffic;

 Quality - the content of that element field being present in botnet traffic, but

being different to other elements being captured.

 Quantity was measured through frequency analysis. A low field count meant that

the element was not present in sufficient quantities in botnet traffic to justify

collection. Visual inspection of the frequency data defined the low quantity cut-off

threshold as when < 1% of fields were either consistently empty, or contained null

values which had no meaning in the data.

 Quality was measured through correlation analysis. Correlation to other elements

determines which elements are retained within the template. Cohen’s classification

was used to interpret effect size: small (<0.10), medium (<0.30) and large (<0.50)

(Cohen, 1988), as this allowed analysis to focus on the smaller effect correlations.

Where the correlation with other elements was interpreted as large, this indicated that

the two test elements captured data that was similar, or identical; therefore one of the

duplicating elements could be discarded in order to maintain template efficiency.

Where the correlation with other elements was interpreted as smaller, this indicated

that this test element captured data that was not being captured by other elements.

 Low duplication does not, in itself, guarantee inclusion within the template. To be

included, the element must display a high quantity (as defined above) and either

academic literature could be found confirming the usefulness of the element as a

botnet traffic classifier, or visual inspection and intuition of the captured data

indicates the element may have usefulness as a botnet classifier.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

55

 Scatter plots were also used to indicate the strength of a linear, or curvilinear,

relationship between two continuous variables (Pallant, 2013). These were plotted

prior to correlation, as a general indication of variable relationship with which to

compare. Hierarchical clustering of elements could also have indicated similarity

between IEs and EEs, but was inconclusive across this dataset.

 In large sample sizes, visual inspection of frequency distribution histograms are

usually a strong enough indicator of linearity of the sample distribution (Collins,

2014; Field, 2009; Altman and Bland, 1995). The sample sizes in this study were

considered large at n > 100,000. However, this approach is not always reliable (Field,

2009). Statistical techniques are available for measuring how a distribution appears to

differ from a normal distribution; including the Shapiro-Wilk test, the D’Agostino

skewness test, and the Anscombe-Glynn kurtosis test (Ghasemi and Zahediasl, 2012).

However, in large populations, Kolmogorov-Smirnov (K-S) with 95% confidence

levels are used for distribution testing (Dancey and Reidy, 2007). K-S is sensitive to

outliers, so Lilliefors correction can be used to make this test less conservative (Peat

and Barton, 2005). In K-S testing, H0 assumes the sample demonstrates normal

distribution and H1 assumes the sample is significantly different to normal

distribution. In a one-sample K-S test, with α set to 0.05, when ρ < α, H0 is rejected.

 Correlation coefficients are used to estimate the degree of association between two

variables. Pearson’s product-moment correlation coefficient (PPMCC) estimates the

strength of a linear relationship when the test variables are either ratio or interval, and

approximate a normal distribution. Although PPMCC is not a meaningful figure if it

has been obtained from a sample which shows any curvilinear relationship (Clegg,

1995). Instead, Spearman Rank Order Correlation (Spearman’s rho) is used when one

or both variables are ordinal (Pallant, 2013), or when sample data is not normally

distributed (Greenhalgh, 1997). Spearman’s rho is able to measure both linear and

non-linear relationships, as it is unaffected by sample distribution (Gauthier, 2001).

Spearman’s rho is also less prone to outliers than PPMCC (Gauthier, 2001). With

large enough sample sizes, any violation of normality assumption does not cause

major problems (Pallant, 2013). In Spearman’s rho testing, H0 assumes there is no

correlation between variables A and B, H1 assumes either a direct (positive)

correlation or an indirect (negative) correlation.

 Spearman’s rho was used on all data in this study, as this study a) combined

discrete with ordinal data, and b) contained data that closely approximates a normal

distribution as well as data that strongly demonstrates a non-normal distribution.

Alternatively, PPMCC could have been used for normally distributed data and

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

56

Spearman’s rho for data that did not demonstrate normal distribution. However, the

use of two varying analysis methods would have made direct comparison of the

correlation coefficients less effective. Flow diagram Figure 7 summarises the data

analysis method.

4.3.5 ANALYSIS METHOD

The detailed data analysis method was:

(1) Each traffic contextual IE and EE were selected, in turn, for analysis;

(2) The field count frequency was recorded for each element in the botnet sample;

(3) Low occupancy fields, defined as <1.0% of fields containing data, were

discarded under the basis of template space optimisation, in that they do not

capture sufficient data to justify the space they require in the template;

(4) Data was categorised and cleansed before correlation takes place:

 The test element was categorised as either nominal (discrete named data, i.e.

string or URL), interval (continuous numeric variable) or ratio (continuous

numeric variable where “0” has a meaning);

 “0” values in interval data are considered as null and therefore removed;

 Nominal data was transformed to ranked numerical data.

(5) Normality distribution indicated the use of parametric or nonparametric

statistical analysis methods. With large sample sizes (n > 10,000) the normality

assessment was statistically confirmed using Lilliefors corrected K-S tests;

(6) Scatter plots confirm the normality assessment in the above step;

(7) Correlation testing was used to calculate the effect size between variables.

When all data showed normal distribution, Pearson Product-Moment Correlation

Coefficient was used. Where normality distribution showed both normally and non-

normally distributed data in a population, Spearman’s rho correlation was used to

allow direct comparison of coefficients. Two-tailed analysis was used to identify

the correlation direction;

(8) Cohen’s classification was used to interpret the effect size and the element was

either retained in the template (9) or discarded (10).

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

57

2. Field Count

Analysis

4. Variable

Categorisation

5. Assessment of

Normality

3. High Field

Occupancy?No

6. Scatter

Plot Creation

8. Significant

Correlation?

No

Yes

Yes

10. Discard
9. Add to

 Template

End

Data Analysis

Method

1. Select IE

 or EE to test

D
a

ta
 P

re
p
a

ra
ti

o
n

F
re

q
u

en
c
y

A
n
a

ly
si

s

7. Test

 Element Shows Normal

Distribution?

Spearman’s Rho

Correlation

Pearson Product-

Moment Correlation

D
u

p
li

ci
ty

 A
n
a
ly

si
s

Yes No

Figure 7. Flow diagram of the IPFIX template creation data analysis.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

58

4.4 Information Elements Results

4.4.1 FREQUENCY ANALYSIS

YAF/SuperMediator supported the capture of a total of 75 IPFIX IEs. Field occupancy

analysis of the 21 bot samples (refer to Table 7) revealed that 44 IEs consistently

captured no data at all. So these 44 IEs were removed from further analysis.

 Of the 31 remaining IEs, a further six IEs were also removed from further analysis:

 sTime and eTime - these IEs contained identical data to flow start and end

fields sTimeMS and eTimeMS respectively;

 sIP_INT and dIP_INT - these IE are simply the integer equivalent value of

IPv4 address fields sIP and dIP respectively;

 DPI and flowKeyHash - are used when capturing EEs, so are ignored until the

EEs are analysed, below.

 The total field count of the remaining 25 IEs is displayed in Table 5. A breakdown

of field count by individual bot sample can be found in Table 31 in Appendix A.

TABLE 5. FIELD COUNT AND DATA TYPE CATEGORISATION FOR THE 25 IES

ANALYSED DURING CONSTRUCTION OF THE BOTPROBE TEMPLATE

 (BOT SAMPLES = 21; FLOW RECORDS = 7,363,521)

INFORMATION
ELEMENTS

sIP dIP sPort dPort protocol application duration

SuperMediator_ID# 0 1 4 5 6 7 17

Total Field Count 7363521 7363521 7363521 7363521 7363521 4383033 7363521

Occupancy 100.0% 100.0% 100.0% 100.0% 100.0% 59.5% 100.0%

Nominal/Interval/Ratio N N R R R I R

sTimeMS eTimeMS packets rPackets bytes rBytes iFlags rIFlags uFlags

20 21 25 26 27 28 29 30 31

7363521 7363521 7363521 5620371 7363521 5620371 7363521 7363521 7363521

00.0% 100.0% 100.0% 76.3% 100.0% 76.3% 100.0% 100.0% 100.0%

R R R I R I R R R

rUFlags attributes rAttributes tcpSeq rTcpSeq endReason ToS rToS collector

32 33 34 37 38 41 75 76 80

7363521 891114 347368 7357619 7363521 7363521 19583 4 7363521

100.0% 12.1% 4.7% 99.9% 100.0% 100.0% 0.3% 0.0% 100.0%

R I I R R R I I N

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

59

4.4.2 VARIABLE CATEGORISATION

The variable categorisation of each of the 25 IEs prior to transformation are provided

in Table 5. All nominal elements were transform to numerical data for correlation:

 sIP, nominal [IP address = X.X.X.X] to ratio5;

 dIP: nominal [IP address = X.X.X.X] to ratio;

 collector: nominal [Collector name = “c1”] to ratio.

Data was cleansed to maximise potential correlations. “0” values in interval variables

were deleted, because “0” indicates blank data in the following fields:

 application;

 rPackets;

 rBytes;

 ToS;

 rToS;

 attributes;

 rAttributes.

4.4.3 ASSESSMENT OF NORMALITY

Across all the IEs tested, Lilliefors corrected K-S tests were typically <0.001;

indicating that the samples did not demonstrate normal distribution. Q-Q plots and

histograms of the elements also displayed non-normal distribution, thereby confirming

the use of Spearman’s rho for correlation analysis. This is common in large samples

(Pallant, 2013) where assessing normality becomes less important.

 These findings agree with Collins who states that finding “parametric distributions

in raw network data are rarer that the Yeti” (Collins, 2014).

5 SuperMediator also exports sIP_INT and dIP_INT IEs, which are integer values of IPv4 addresses sIP and dIP, but

do not convert MAC addresses. It was found to be more reliable to ignore sIP_INT and dIP_INT and use transformed

values of sIP and dIP.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

60

4.4.4 SCATTER PLOTS

Figure 8 shows scatter plot matrices for two bot samples selected at random,

CTU3_1(Kelihos) and CTU25_1(Zbot), where rs is Spearman’s rho correlation, ρ

indicates the probability of the correlation through chance and n is the total number of

flows correlated in that sample. The scatter plots generally varied in shape between

IEs, whilst retaining a similar structure when viewed for the same IE across different

bot samples. Chapter 4.7.1 contains a discussion on Figure 8.

Scatter Plot Matrix
CTU25_1 (n=288,419)

Scatter Plot Matrix
CTU3 (n=318,602)

29_iFlags

31_uFlags

30_rIFlags

32_rUFlags

rs= 0.775
p < 0.01

n=288,419

rs= 0.943
p < 0.01

n=288,419

rs= 0.773
p < 0.01

n=288,419

rs= 0.704
p < 0.01

n=288,419

rs= 0.690
p < 0.01

n=288,419

rs= 0.975
p < 0.01

n=288,419

0_sIP

1_dIP

4_sPort

5_dPort

rs= 0.023
p < 0.01

n=288,419

rs= -0.451
p < 0.01

n=288,419

rs= 0.155
p < 0.01

n=288,419

rs= 0.006
p < 0.01

n=288,419

rs= -0.591
p < 0.01

n=288,419

rs= -0.200
p < 0.01

n=288,419

25_packets

26_rPackets

27_bytes

28_rBytes

rs= 0.950
p < 0.01

n=216,563

rs= 0.766
p < 0.01

n=288,419

rs= 0.700
p < 0.01

n=216,563

rs= 0.765
p < 0.01

n=216,563

rs= 0.792
p < 0.01

n=216,563

rs= 0.772
p < 0.01

n=216,563

0_sIP

1_dIP

4_sPort

5_dPort

rs= -0.165
p < 0.01

n=318,602

rs= -0.216
p < 0.01

n=318,602

rs= -0.225
p < 0.01

n=318,602

rs= 0.017
p < 0.01

n=318,602

rs= 0.141
p < 0.01

n=318,602

rs= 0.001
p < 0.01

n=318,602

25_packets

26_rPackets

27_bytes

28_rBytes

rs= 0.994
p < 0.01

n=238,481

rs= 0.858
p < 0.01

n=318,602

rs= 0.719
p < 0.01

n=238,481

rs= 0.802
p < 0.01

n=238,481

rs= 0.606
p < 0.01

n=238,481

rs= 0.726
p < 0.01

n=238,481

29_iFlags

31_uFlags

30_rIFlags

32_rUFlags

rs= 0.691
p < 0.01

n=318,602

rs= 0.952
p < 0.01

n=318,602

rs= 0.688
p < 0.01

n=318,602

rs= 0.559
p < 0.01

n=318,602

rs= 0.569
p < 0.01

n=318,602

rs= 0.962
p < 0.01

n=318,602

Figure 8. IE scatter plots.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

61

4.4.5 CORRELATION TESTING

The assessment of normality analysis, above, indicated that all IEs demonstrated a

non-normal distribution and would therefore undergo comparison via Spearman Rank

Order Correlation. Each IE within a test sample was correlated with all the other IEs

in that sample. To allow comparison of relative correlation effect sizes across all 21

test samples, each correlation matrices for all 21 samples were aggregated into the

single correlation matrix in Table 6. Table 7 summarises the 21 test samples used to

create Table 6. In order to allow visual interpretation of the correlation effects across

the sample population of 21 test samples, each IE in Table 6 was colour coded

according to the overall effect size score. For example, Table 6 shows that sPort

correlated with dIP with an rs >=0.5 for 2 samples, rs >=0.3 for 11 samples, rs >=0.1

for 6 samples, and hence 2 samples had rs <0.1, giving an overall effect size score of

39, which equates to a medium correlation hence the matrix square is coloured yellow.

The score for each effect size was:

 Each correlation >= 0.500 was assigned 5 points;

 Each correlation >= 0.300 was assigned 3 points;

 Each correlation >= 0.100 was assigned 1 point;

 Each correlation < 0.100 was assigned -5 points.

 These effect score points are arbitrary, and simply provide a relative scale for

comparison. Because smaller effect sizes are of interest to this study, the points scale

was engineered to match correlation values, where larger correlations were assigned a

higher score to ensure the lower scores are visible. This provided suitable granularity

to highlight any anomalous samples that differ radically from other samples arising

due to differences in the behaviour of each bot tested. An alternative method is to

correlate all 7 million flows into a test. This was rejected because small correlation

differences were dwarfed by the much larger effects within the overall population.

 Table 6 demonstrates several areas of correlation clustering. The most obvious

cluster is amongst the TCP flags; when orange squares indicate a large correlation.

TCP flags also exhibit medium strength clusters with port/protocol/application, and

with packets/bytes. A medium cluster is shown between packets/bytes/protocols/ports;

and another medium cluster between IP/ports. This becomes important when

constructing the final IPFIX template as it suggests that some IEs need not be

exported because their behaviour is captured through other IEs. Observed IE

relationships are discussed and justified in Chapter 4.7.1.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

62

TABLE 6. AGGREGATED CORRELATION MATRIX: IES

(BOT SAMPLES =21; FLOW RECORDS =7,363,251)

TABLE 7. 21 BOTNET SAMPLES USED IN THE CREATION OF THE IE AGGREGATED CORRELATION MATRIX

Sample Sample Date Bot (VirusTotal) Flows

CTU3_1 21/07/2013 Kelihos 318,602

CTU8_1-win5 10/09/2013 Zbot 186,958

CTU8_1-win9 10/09/2013 Zbot 168,065

CTU10_1-win7 11/07/2013 Unknown 178,564

CTU10_1-win9 11/07/2013 Unknown 278,687

CTU10_1-win10 11/07/2013 Unknown 231,420

CTU16_1-win5 23/08/2013 Kelihos (Waledac) 812,996

CTU16_1-win11 23/08/2013 Kelihos (Waledac) 801,931

CTU25_1 09/09/2013 Zbot 288,419

CTU25_5 10/02/2014 Zbot 829,624

CTU110_4 09/04/2015 HTbot 284,196

CTU144_1 23/09/2015 Shifu 408,482

CTU145_1 23/09/2015 Fake uTorrent 411,928

CTU148_1 26/09/2015 Zusy 172,287

CTU149_1 05/12/2015 Kelihos 235,287

CTU149_2 09/12/2015 Kelihos 207,959

CTU160_1 29/04/2016 Tinba (Andromeda) 206,008

CTU165_1 27/05/2016 Zeus (New Variant) 230,475

CTU166_1 29/04/2016 Tinba (Andromeda) 583,368

CTU167_1 27/05/2016 Storm 197,941

CTU168_2 03/08/2016 Andromeda 330,696

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

63

4.5 Enterprise Elements Results

4.5.1 FREQUENCY ANALYSIS

YAF/SuperMediator supported the capture of a total of 288 individual EEs6. Field

occupancy analysis of the 33 bot samples (Tables 15, 17, 19 and 21) revealed that 225

EE consistently captured no data, so these 225 were removed from further analysis.

 The remaining 63 fields that exported data, fell across nine protocols: NNTP, RTP,

SIP, SSH, HTTP, DNS, SMTP, SSL and IRC. The distribution of all nine protocols,

across all botnet samples (n=17,192,796 flows) are provided in Table 8.

 Of these nine protocols, HTTP, DNS, SMTP and SSL captured 99.8% of the

overall traffic and comprised the focus of this study (Tables 9 - 12). Although IRC

exhibited a low traffic count, as IRC is still a commonly used bot communication

channel, IRC was retained within the study data. One explanation for the lower than

expected overall traffic percentage of IRC could be because the sample bots were

relatively recent, dating from 2013 to 2016. For a breakdown of field count by

individual bot sample, see Appendix A: Table 32 (HTTP), Table 33 (DNS), Table 34

(SMTP), Table 35 (IRC) and Table 36 (SSL).

 The remaining 0.2% of traffic comprised NNTP, RTP, SIP and SSH. No evidence

could be found in literature to suggest that NNTP, RTP, SIP, or SSH have been used

as bot communication channels. Rather than dedicate template space to these four

protocols, sPort and dPort IEs can be used to indicate if a flow contains any of these

protocols through their corresponding port number.

 TABLE 8. PROTOCOL DISTRIBUTION FOR THE 33 BOTNETS SAMPLED

Protocol Flows
% of overall

traffic

NNTP 4 0.0%

RTP 38,407 0.2%

SIP 32 0.0%

SSH 102 0.0%

HTTP 7,167,557 41.7%

DNS 8,655,304 50.3%

SMTP 877,827 5.1%

SSL 453,303 2.6%

IRC 260 0.0%

6 https://tools.netsa.cert.org/super_mediator/super_mediator.conf.html (see “DPI configuration Block”)

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

64

TABLE 9. FIELD COUNT AND DATA TYPE CATEGORISATION FOR HTTP EES

(BOT SAMPLES = 17; HTTP FLOW RECORDS = 7,167,557)

HTTP
Server
String

User
Agent

Get Version Referer

SuperMediator_ID# 110 111 112 114 115

Total Field Count 51044 930256 955053 977373 56619

Occupancy 0.7% 13.0% 13.3% 13.6% 0.8%
Nominal/Interval/Ratio N N N N N

Location Host
Content
Length

Age Accept
Accept

Lang
Content

Type

116 117 118 119 120 121 122

225810 672754 712180 9957 671085 141112 710588

3.2% 9.4% 9.9% 0.1% 9.4% 2.0% 9.9%
N N R R N N N

Resp. Cookie
Set

Cookie
Auth. Via

123 220 221 252 253

946977 31592 65905 5095 4157

13.2% 0.4% 0.9% 0.1% 0.1%
N N N N N

TABLE 10. FIELD COUNT AND DATA TYPE CATEGORISATION FOR DNS EES

(BOT SAMPLES = 15; DNS FLOW RECORDS = 8,655,304)

DNS
A

Record
NS

Record
CNAME
Record

SOA
Record

MX
Record

PTR
Record

TXT
Record

AAAA
Record

SM_ID# 1 2 5 6 12 15 16 28
Total 4653441 722218 60868 157665 1290 699362 494193 447267

Occupancy 53.8% 8.3% 0.7% 18.2% 0.0% 8.1% 5.7% 5.2%
N / I / R N N N N N N N N

TABLE 11. FIELD COUNT AND DATA TYPE CATEGORISATION FOR SMTP EES

(BOT SAMPLES = 4; SMTP FLOW RECORDS = 877,827)

SMTP Hello From To
Content

Type
Subject Response

Rcvd
Date

SuperMediator_ID# 162 163 164 165 166 169 251

Total Field Count 197758 122212 197732 35920 84389 197754 42062

Occupancy 22.5% 13.9% 22.5% 4.1% 9.6% 22.5% 4.8%

Nominal/Interval/Ratio N N N N N N N

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

65

TABLE 12. FIELD COUNT AND DATA TYPE CATEGORISATION FOR SSL EES

(BOT SAMPLES = 12; SSL FLOW RECORDS = 453,303)

SSL
Comm.
Name

Private
Org.

Country
Name

Locality
Name

State
Name

SuperMediator_ID# 3 5 6 7 8

Total Field Count 59651 1111 63907 17572 16846

Occupancy 13.2% 0.2% 14.1% 3.9% 3.7%
Nominal/Interval/Ratio N N N N N

Street
Address

Org.
Org.
Unit

Private
Org.

Postal
Code

Client
Version

Server
Cipher

9 10 11 15 17 186 187

943 64134 30042 879 989 11284 11284

0.2% 14.1% 6.6% 0.2% 0.2% 2.5% 2.5%
N N N N N I N

Cert
Version

Cert
Serial

NotValid
Before

NotValid
After

PublicKey
Length

Record
Version

189 244 247 248 250 288

33002 33002 33002 33002 31370 11284

7.3% 7.3% 7.3% 7.3% 6.9% 2.5%
I N N N I N

TABLE 13. FIELD COUNT AND DATA TYPE CATEGORISATION FOR IRC EES

(BOT SAMPLES = 3; IRC FLOW RECORDS = 260)

IRC TextMsg

SuperMediator_ID# 125

Total Field Count 260

Occupancy 100.0%

Nominal/Interval/Ratio N

4.5.2 VARIABLE CATEGORISATION

The variable categorisation for each of the 51 EEs prior to transformation is provided

in Tables 9 - 13. Most EEs were variable length strings and were therefore nominal

variables. All nominal elements were transformed to numerical data for correlation.

 Data was cleansed to maximise potential correlations. “0” values in interval

variables were deleted, as “0” indicates blank or null data in the following fields:

 sslClientVersion;

 sslCertificateVersion;

 sslPublicKeyLength.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

66

4.5.3 ASSESSMENT OF NORMALITY

Across all the EEs tested, Lilliefors corrected K-S tests were typically <0.001;

indicating that the samples did not demonstrate normal distribution. Q-Q plots and

histograms of the elements also displayed non-normal distribution, thereby confirming

the use of Spearman’s rho correlation.

4.5.4 SCATTER PLOTS

Scatter plot matrices for HTTP, DNS, SMTP and SSL are shown in Figures 9 -12.

Each protocol scatter plot pair were generated from two bot samples selected at

random from the test samples for that protocol (Tables 15, 17, 19 and 21) for visual

comparison of EEs across different bots. For example, Figure 9, the plot of

httpUserAgent against httpGet for CTU25_1(Zbot) shows a single agent generating

multiple GET requests, whilst the same plot for CTU145_1(uTorrent) shows several

agents generating multiple GET requests. Indicating a behavioural difference between

the two bots. Chapter 4.7.2 contains a discussion on Figures 9 - 12.

Figure 9. HTTP scatter plots.

Figure 10. DNS scatter plots.

Scatter Plot Matrix
CTU145_1 (n=464,479)

Scatter Plot Matrix
CTU25_1 (n=748,755)

111_userAgent

112_get

117_host

118_length

rs= 0.839
p < 0.01

n=63,655

rs= -0.775
p < 0.01

n=63,621

rs= -0.806
p < 0.01
n=6,386

rs= -0.500
p < 0.01

n=63,630

rs= -0.642
p < 0.01
n=6,391

rs= -0.761
p < 0.01
n=6,391

111_userAgent

112_get

117_host

118_length

rs= -0.336
p < 0.01

n=14,539

rs= 0.275
p < 0.01

n=14,539

rs= 0.069
p < 0.01

n=14,290

rs= -0.124
p < 0.01

n=14,539

rs= -0.059
p < 0.01

n=14,290

rs= -0.062
p < 0.01

n=14,290

Scatter Plot Matrix
CTU149_1 (n=542,293)

Scatter Plot Matrix
CTU3_1 (n=734,415)

1_a

5_cname

6_soa

28_aaaa

rs= 1.0
p = n/a

n=4

rs= n/a
p = n/a

n=0

rs= 0.942
p < 0.01

n=68,362

rs= 0.009
p = 0.950

n=50

n=0

rs= n/a
p = n/a

n=0

1_a

5_cname

6_soa

28_aaaa

rs= 0.640
p < 0.01
n=1,373

rs= -0.215
p < 0.01
n=4,228

rs= 0.698
p < 0.01

n=118,253

rs= 0.630
p < 0.01

n=27

rs= n/a
p = n/a
n=12

rs= 0.600
p = 0.067

n=10

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

67

Figure 11. SMTP scatter plots.

Figure 12. SSL scatter plots.

4.5.5 CORRELATION TESTING

The assessment of normality analysis, above, indicated that all EEs demonstrate non-

normal distribution and would therefore undergo comparison via Spearman Rank

Order Correlation.

 Using the same method as described in Chapter 4.4.5, aggregated correlation

matrices for each protocol were created and overall effect size score was colour coded

to permit visual comparison of protocol EEs across the test population. For aggregated

correlation matrices by protocol, refer to Tables 15, 17, 19, and 21. The bot samples

tested to create these matrices are summarised in Tables 14, 16, 18 and 20. Chapter

4.7.2 contains a discussion on Tables 14 - 21.

Scatter Plot Matrix
CTU149_1 (n=542,293)

Scatter Plot Matrix
CTU3_1 (n=734,415)

152_hello

154_to

169_response

251_received

rs= n/a
p < n/a

n=71,458

rs= n/a
p < n/a

n=71,454

rs= n/a
p < n/a

n=16,587

rs= 0.206
p < 0.01

n=71,454

rs= -0.003
p = 0.742
n=16,587

rs= -0.008
p = 0.306
n=16,587

152_hello

154_to

169_response

251_received

rs= 0.055
p < 0.01

n=35,702

rs= 0.025
p < 0.01

n=35,702

rs= 0.242
p < 0.01

n=13,515

rs= 0.226
p < 0.01

n=35,699

rs= -0.015
p < 0.01

n=13,515

rs= -0.041
p < 0.01

n=13,515

Scatter Plot Matrix
CTU140_1 (n=74,610)

Scatter Plot Matrix
CTU25_1 (n=52,239)

3_name

10_org

186_version

247_notValid

rs= 0.628
p < 0.01
n=8,695

rs= n/a
p = n/a
n=1,516

rs= -0.089
p < 0.01
n=4,026

rs= n/a
p = n/a
n=1,516

rs= n/a
p = n/a
n=4,575

rs= -0.046
p < 0.01
n=4,575

3_name

10_org

186_version

247_notValid

rs= 0.886
p < 0.01
n=2,709

rs= n/a
p = n/a
n=542

rs= -0.956
p < 0.01
n=1,091

rs= n/a
p = n/a
n=542

rs= n/a
p = n/a
n=1,628

rs= -0.495
p < 0.01
n=1,628

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

68

TABLE 14. AGGREGATED CORRELATION MATRIX: HTTP

(BOT SAMPLES =7; FLOW RECORDS = 2,733,520)

TABLE 15. BOTNET SAMPLES USED IN THE CREATION OF THE HTTP CORRELATION MATRIX

Sample Sample Date Bot (VirusTotal) HTTP Flows

CTU3_1 21/07/2013 Kelihos 136,561

CTU25_1 09/09/2013 Zbot 573,606

CTU66_1 07/04/2014 Sality 195,975

CTU110_4 09/04/2015 HTbot 201,895

CTU111_2 09/04/2015 Unknown 193,255

CTU144_1 23/09/2015 Shifu 410,220
CTU145_1 23/09/2015 Fake uTorrent 395,118

The correlation matrices, Tables 14, 16, 18 and 20, were plotted to allow visualisation

of EEs relationship strengths. For example, Table 14 shows a cluster of large and

medium effect correlations between http EEs host, length, server, ua, get and loc.

This becomes important when constructing the final IPFIX template as it suggests that

some EEs need not be exported because their behaviour is caught through other EEs.

Observed EE relationships are discussed and justified in Chapter 4.7.2.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

69

TABLE 16. AGGREGATED CORRELATION MATRIX: DNS

(BOT SAMPLES =5; FLOW RECORDS = 2,507,560)

TABLE 17. BOTNET SAMPLES USED IN THE CREATION OF THE DNS CORRELATION MATRIX

Sample Sample Date Bot (VirusTotal) DNS Flows

CTU3_1 21/07/2013 Kelihos 1,159,998

CTU66_1 07/04/2014 Sality 169,363

CTU149_1 05/12/2015 Kelihos 801,947

CTU149_2 09/12/2015 Kelihos 743,481

CTU168_2 03/08/2016 Andromeda 719,765

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

70

TABLE 18. AGGREGATED CORRELATION MATRIX: SMTP

(BOT SAMPLES =4; FLOW RECORDS =877,827)

TABLE 19. BOTNET SAMPLES USED IN THE CREATION OF THE SMTP CORRELATION MATRIX

Sample Sample Date Bot (VirusTotal) SMTP Flows

CTU3_1 21/07/2013 Kelihos 198,319

CTU110_4 09/04/2015 HTbot 96,299

CTU149_1 05/12/2015 Kelihos 304,851

CTU149_2 09/12/2015 Kelihos 278,358

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

71

TABLE 20. AGGREGATED CORRELATION MATRIX: SSL

(BOT SAMPLES =7; FLOW RECORDS = 453,303)

TABLE 21. BOTNET SAMPLES USED IN THE CREATION OF THE SSL CORRELATION MATRIX

Sample Sample Date Bot (VirusTotal) SSL Flows

CTU25_1 09/09/2013 Zbot 20,664

CTU110_4 09/04/2015 HTbot 78,966

CTU111_2 09/04/2015 Unknown 42,562

CTU140_1 23/10/2015 Bunitu 64,816

CTU140_2 23/10/2015 Bunitu 46,647

CTU141_1 28/09/2015 Bunitu 74,160

CTU141_2 23/10/2015 Bunitu 81,691

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

72

4.6 Presenting the BotProbe IPFIX Templates

4.6.1 THE BOTPROBE TEMPLATE

The BotProbe template is shown in Figure 13. The template created a 43 byte PDU

compared with the 48 byte NetFlow v5 PDU, where unlike the NetFlow template,

each IE within this IPFIX template has been justified as a potential bot traffic

attribute, with no superfluous fields. The IEs utilised within the template confine data

export to attributes contained within the packet header, so the template can be used in

environments that need to maintain payload privacy. Figure 13 forms the template

used in BotStack (Chapter 5).

 The BotProbe template flow record (Eq. 1) is the union of the static flow tuple

(Fstatic) with the dynamic botnet characteristics tuple (Fdynamic):

 Fbotprobe = Fstatic ⋃ Fdynamic (Eq. 1)

Where the tuples are defined as:

Fstatic = (sIP, dIP, sPort, dPort, protocol)

Fdynamic = (sTimeMS, eTimeMS, packets, iFlags, tcpSeq, collector)

10.0.3.4

10.0.3.4

10.0.3.4

10.0.3.4

80

10.0.3.4

10.0.3.4

10.0.3.4

10.0.3.4

10.0.3.4

192.168.0.1

10.0.3.4

10.0.3.4

10.0.3.4

10.0.3.4

80

10.0.3.4

10.0.3.4

10.0.3.4

10.0.3.4

10.0.3.4

192.168.0.1

0_sIP (8) Bytes (4)

1_dIP (12) Bytes (4)

Template ID (301) Field Count (11)

4_sPort (7) Bytes (2)

5_dPort (11) Bytes (2)

25_packets (2) Bytes (8)

21_eTimeMS (154) Bytes (8)

20_sTimeMS (153) Bytes (8)

6_protocol (4) Bytes (1)

29_iFlags (6) Bytes (1)

37_tcpSeq (184) Bytes (4)

80_collector (211) Bytes (1)

Template Records

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

Figure 13. The BotProbe IPFIX template, comprising of 11 SuperMediator IEs

with IANA ID# in brackets.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

73

4.6.2 THE EXTENDED BOTPROBE TEMPLATE

The extended BotProbe template is shown in Figure 14. The addition of EEs into the

template extends data export to application layer attributes, so the template can be

used in environments when payload privacy is less sensitive. Figure 14 forms the

template used in BotStack (Chapter 5).

 The extended BotProbe template flow record (Eq. 2) is the union of the 11 field

BotProbe template (Fbotprobe) with the botnet protocol specific traffic tuples:

 Fextended = Fbotprobe ⋃ Fidentifier ⋃ FHTTP ⋃ FDNS ⋃ FSMTP ⋃ FSSL ⋃ FIRC (Eq. 2)

Where the protocol tuples are defined as:

Fidentifer = (flowKeyHash)

FHTTP = (httpGet, httpResponse)

FDNS = (dnsARecord, dnsSOARecord)

FSMTP = (smtpHello)

FSSL = (sslName)

FIRC = (ircTextMessage)

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

6542876452

404 Not Found

192.168.0.1

srcIPv4 (8) 0 Bytes (4)

dstIPv4 (12) 1 Bytes (4)

Template ID (302) Field Count (19)

srcPort (7) 4 Bytes (2)

dstPort (11) 5 Bytes (2)

packetTotal (2) 25 Bytes (8)

flowEndMS (154) 21 Bytes (8)

flowStartMS (153) 20 Bytes (8)

proto (4) 6 Bytes (1)

initTCPFlag (6) 29 Bytes (1)

tcpSeqNos (184) 37 Bytes (4)

collectorIPv4 (211) 80 Bytes (4)

Template Records

16_flowKeyHash Bytes (1)

125_ircTextMessage variable

112_httpGet variable

123_httpResponse variable

1_dnsARecord Bytes (1)

6_dnsSOARecord Bytes (4)

162_smtpHello variable

41_sslName variable

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

6557765411

302 Found

192.168.0.1

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

2557373211

POST /?ptrxcz_FP

200 OK

0_sIP (8)

1_dIP (12)

4_sPort (7)

5_dPort (11)

25_packets (2)

21_eTimeMS (154)

20_sTimeMS (153)

6_protocol (4)

29_iFlags (6)

37_tcpSeq (184)

80_collector (211)

Figure 14. The extended BotProbe IPFIX template, including an additional seven EEs

with IANA ID# in brackets.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

74

4.7 Discussion of the BotProbe IPFIX Templates

Behavioural-based detection functions, such as botnet traffic detection, can quickly

capture a lot of traffic. Multiple distributed probes across a diverse high-speed data

network capture Gigabits of PCAP data per second per collector. Whilst this raises

concerns for data storage, a larger impact is the overload of data that requires analysis,

either manually or by machine. The challenge is in keeping the capture datasets to a

manageable size for both storage and analysis, whilst capturing sufficient attributes to

be able to identify known and as of yet unknown malware. Whilst flow export is a

more focused data collection method compared to PCAP, each element in a template

will impact both the volume of collected data as well as the time taken to process the

flow. With flow export, if an element is present in a template but the flow contains

none of this data, the field is still fully populated with null data. This is common to all

flow exporters, not just YAF; although when YAF collects EE, field sizes are 0 bytes

if the data is not present in the flow. Therefore each element within an IPFIX template

requires justification for inclusion, to ensure full utilisation of the IPFIX PDU, unlike

NetFlow.

4.7.1 A DISCUSSION OF INFORMATION ELEMENTS

A) SCATTER PLOTS

Figure 8 shows scatter plots for various IEs, from two different bot samples

CTU3_1(Kelihos) and CTU25_1(Zbot). These two bot samples were unbiasedly

selected at random from all samples being analysed (see Table 7) to demonstrate IE

behaviour similarities and contrasts in different botnets.

 When comparing TCP IEs (iFlags, uFlags, rIFlags, rUFlags), the scatter plots

look similar with all TCP IEs appearing with similar regularity. Likewise for packet

and byte scatter plots (packets, rPackets, bytes, rBytes) similar behaviour is presented

between each IE within the sample. Similar behaviour is also shown with

corresponding IEs across the two samples. First impressions of the packet and byte

scatter plots are that most plots display two branches. This suggests two different

correlation events within the IE, indicating that two different trends are occurring and

that the data should be separated for further analysis. However, zooming in closer into

the scatter plot shows that data forms a funnel shape as x-axis = 0, y-axis = 0 is

approached. Hence, these branches actually indicate the limits of the data points, with

data points only falling between the branches. The closer the branches, the closer the

linear relationship, as can be seen with CTU3_1(Kelihos) packets and rPackets

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

75

which closely resembles a linear relationship. This is confirmed by the strong

correlation rs(238,841) = +0.994, ρ<0.001, where rs is Spearman’s rho correlation, ρ

indicates the probability of the correlation through chance and n is the total number of

flows correlated in that sample.

 The largest contrasts in scatter plot shapes are seen in the IP and port IEs. For

example, differences are observed between the dIP and sPort. In CTU3_1(Kelihos)

this appears as a solid block indicating a wide range of ports and IPs, suggesting a

SPAM attack or port scan. In CTU25_1(Zbot) the scatter plot suggests a more focused

attack. Likewise for sIP and dPort. When transformed values of sIP are correlated

with dIP the L-shape scatter plot suggests high correlation between lower-range IP

addresses. Closer inspection of the bot sample PCAP showed that most of the sample

data was traffic to and from IP 8.8.4.4 and 8.8.8.8 hinting at DNS requests, confirming

the suspicion of SPAM.

 Figure 8 only shows a small selection of IE correlations. All IEs demonstrated

variability in scatter plot shapes, however the IEs in Figure 8 where selected because

they showed more “interesting” correlations. Figure 8 shows comparison between

CTU3_1(Kelihos) and CTU25_1(Zbot), however similar variability in IEs was evident

in all other samples.

B) FIVE FIELD FLOW TUPLE

The seven field flow tuple for categorising a unique flow is defined by Cisco as source

IPv4, destination IPv4, input interface, source port, destination port, layer 3 protocol

and type of service (Patterson, 2012). However, in security analysis this is often

reduced to a five field tuple; dropping ‘input interface’ and ‘type of service’ (ToS)

(Santos, 2016). The sIP, dIP, sPort, dPort and protocol IEs all demonstrated 100%

template field occupancy in testing. The medium to small association of sPort and

dPort with both each other and with sIP and dIP (refer to Table 6) suggests that the

traffic captured by these four IEs is suitably different to warrant all four IEs in the

template, as these field are complementary rather than duplicating captured traffic.

Conversely, protocol and dPort demonstrated a large association indicating the

potential for duplication of traffic captured. This is expected, because in

telecommunications a packet’s destination port is usually set in accordance with the

communication protocol used. What was unexpected, was that this correlation was not

larger. A possible reason may be that bots utilise spoofing techniques as a defence

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

76

mechanism; assigning the protocol to different port numbers from those defined in the

IANA port list.

 The implication from this study that all five IEs are necessary in the BotProbe

template is in agreement with other botnet detection research. The extent of the use of

the five field tuple is evident in Table 2, above. However, several researchers have

moved away from this five field flow tuple, choosing to drop either sPort or dPort

(Haddadi et al., 2014; Narang, Reddy and Hota, 2014; Lin, Chen and Chang, 2014;

Zhang, et al., 2014; Françios, et al., 2011; Strayer, et al., 2008). A reason for

dropping dPort is port spoofing, whilst protocol gives a more accurate traffic

description (Dietrich, 2013). However, some researchers chose instead to drop

protocol from their algorithms (Narang, et al., 2014; Françios, et al., 2011; Goeble

and Holz, 2007; Gu, et al., 2008; Karasaradis, Rexroad and Hoeflin, 2007). Whilst

dropping any of the five fields from the tuple reduces template space, their research

methodologies provide no evidence that this is a benefit. Occupancy for ToS

(SuperMediator_ID#75) was 0.3%. This meant that over the 7,363,251 flows

analysed, the ToS field used 7.16M bytes to capture just 19,583 bytes of data. With

such a low occupancy and with no academic evidence as a useful botnet indicator,

ToS was uneconomical to capture. Likewise for rToS (0.0% occupancy). This is in

agreement with Gates, who suggested the type of service field is redundant in

NetFlow v5 bot traffic capture (Gates, et al., 2004).

C) FLOW CONTEXTUAL IES

Several flow contextual flags demonstrated 100% occupancy; including eTimeMS,

sTimeMS, duration and collector. Over all 21 bot samples analysed, a perfect positive

association was measured between sTimeMS and eTimeMS: rs(7,363,251) = +1.00,

ρ<0.001, where the p value indicates the probability of this correlation through chance

is < 0.1%. This large association is unexpected as each flow is assigned a start and end

time. A large correlation effect size implies that two IEs are likely to be capturing

similar data, either duplicating of reinforcing data capture. A perfect association

would suggest that all flow durations are equal length, i.e. the difference between

eTimeMS and sTimeMS was constant. Visual observation of the data showed that this

perfect correlation is misleading. In actuality, the flow durations did fluctuate, but the

duration times were small when compared to the start or end times. Therefore, during

correlation calculations these difference approached 0, resulting in a perfect

correction, when in fact the relationship is far from perfect, as is shown by the

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

77

duration IE. Both sTimeMS and eTimeMS are required to calculate the duration of a

flow and to correctly order flows, so as to map malware propagation across a network

in real time. Rather than calculate duration from two 8 byte fields, a more template

space efficient method may be to capture duration (SuperMediator_ID#17) as a 4 byte

field. The duration IE showed a large association with packets and bytes, and a

medium association with the reverse equivalent IEs rPackets and rBytes, suggesting

duplication of captured data. The duration IE also showed a small correlation with

sTimeMS and eTimeMS timing IEs. This is not unexpected, as the duration of a flow

is not anticipated to correlate with the times the flows started, unless a bot called

home for the same duration at the same time each day. Whilst it may be efficient to

replace one of the timer IEs with duration, both sTimeMS and eTimeMS timers were

included in the template, as the accuracy of duration has yet to be fully tested. This is

in agreement with Gates who retained flow timers for security analysis in NetFlow v5

(Gates et al, 2007) and most other botnet researchers (as summarised in Table 2,

above). IPFIX supports flow timers at nanosecond granularity (IANA_ID#156 and

IANA_ID#157). At present, neither YAF nor SuperMediator are able to support these

IANA_IDs. Additionally, measurement to nanoseconds requires specialist network

cards and other equipment, which may not be present in a cloud environment.

 YAF assigns each flow a collector flag indicating the device from which the flow

export originated. The data samples under test in this study were in PCAP format,

hence YAF was unable to extract collector/exporter information as it is not present in

PCAP, meaning that this IE could not be fully analysed. However, collector will be

retained in the template to provide useful information as to where a bot is captured in

the network and how it propagates. YAF uses attribute as a flow context flag, which

is set to 1 when all forward direction flow packets are of a fixed size. A low field

count for both attribute (12.1% occupancy) and rAttribute (4.7% occupancy)

suggested these two attributes have little relevance to botnet traffic. Due to low

occupancy, correlation figures could not be calculated for rAttribute. Literature

provided no evidence for the use of these two IEs in botnet detection, so both were

discarded. The endReason flag can be set to “”, active, idle, force, rsrc or eof to

indicate why a flow has terminated. As a contextual flag, endReason is unlikely to be

influenced by botnet traffic. This flag showed a large association with iFlags and a

medium association with protocol and other IEs, and therefore can be considered to be

duplicating other information captured in IEs that might be more relevant.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

78

D) PACKETS AND BYTES IES

IEs packets and bytes had 100% occupancy, whilst the occupancy of rPackets and

rBytes was slightly lower. A large association was measured between packets and

bytes. Unexpectedly, this correlation was not measured as perfect, possibly because

the samples contained a low number of small packets of only a few bytes which were

recorded as zero packet size. A perfect positive association was measured between

packets with rPackets: rs(7,363,251) = +1.00, ρ<0.001. The association between bytes

and rBytes was not quite so large, possibly for the same reason of small bytes being

recorded as zero size. As expected, packet and byte flows showed large associations

with iFlags (which holds the initial TCP flag in a flow) and medium correlation with

ports and protocol IEs. As these IEs capture similar traffic data, packets will be

retained in the template as it shows larger correlation with other IEs. Gates made no

distinction between whether packets or bytes is the best indicator (Gates, et al., 2004).

Several researchers chose to capture both bytes and packets fields. Whilst others, in

line with the results obtained during the creation of the BotProbe template, chose to

drop bytes in favour of packets (Lin, Chen and Chang, 2014; Zhao, et al., 2013;

Rossow, et al., 2011). It could be argued that bot keep-alive packets are so small, they

may not register in packets and that bytes would make a better attribute. However,

during conceptual validation in chapter 6, no evidence could be found that this was the

case and Zeus was successfully witnessed sending keep-alives captured as packets.

E) APPLICATION IES

IANA defines three IEs for capturing application information; elementID 94-

applicationDescription (string), 95-applicationID (array) and 96-applicationName

(string). YAF identifies the application description from the protocol and port

numbers, and assigns a corresponding number into the application field. Effectively,

protocol and application both capture the same data, so, as expected, protocol and

application exhibited a large correlation association. A reason for this not being a

perfect association is that application only retains a list of common applications rather

than an exhaustive list of all applications. Hence the occupancy for application was

lower at 59.5%, against 100% for protocol. A large association was measured between

application and TCP flag IEs iFlags and uFlags. However, a marginally larger

association was measured between protocol and these same TCP flag IEs. Therefore,

as the data showed application to have a lower field occupancy than protocol,

application was dropped in favour of protocol.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

79

F) TCP IES

TCP flag IEs holds discrete handshake flags (SYN, ACK, FIN, RST, et cetera)

according to TCP flow status. The IE iFlags holds flags for the initial packet in the

flow, whilst uFlags holds flags for the subsequent packets. The tcpSeq IE contains the

TCP number that is randomly assigned when the host initiates a TCP session. A large

correlation was measured across all six TCP IEs. A medium sized correlation was also

measured between protocol and packets, and protocol and bytes, suggesting that data

is being duplicated. IEs protocol and packets have both already been confirmed above

as being required in the template. Of the four TCP flags (iFlags, uFlags, rIFlags and

rUFlags), the initial flags (iFlags) showed the largest correlation with the other TCP

flags and likewise had the highest occupancy. This suggests iFlags was the most

useful of these attribute in botnet traffic capture, as the initial TCP flow contains

marginally more useful handshake information than subsequent flows. As such, only

iFlags was retained in the template.

 The low occupancy of the TCP flag IEs was expected to be because the samples

contained both TCP and UDP traffic; whilst TCP flags were only assigned to TCP

flows. Low occupancy may suggest that TCP flags add little value in botnet detection.

However the Blaster worm was detected because multiple SYN flows with fewer

ACK replies indicated port scanning activity (Dübendorfer, et al., 2005). Capture of

initial TCP flags (iFlags), and union TCP flags (uFlags) are specific to IPFIX, which

may explain why not much literature could be found for comparison studies. Rincón,

et al., (2015) suggested that both initial and union TCP flags can be utilised in the

search for incomplete TCP flows in DNS traffic, but provided no empirical evidence

to back this up. Despite a low occupancy and similar large correlation to the four

types of TCP flag IEs, tcpSeq has also been retained in the template, as it can be used

to group common flows during analysis.

G) REVERSE FLOWS

Six of the 23 IEs available in YAF/SuperMediator export reverse flow IEs. All

measured either a large or medium correlation with their forward counterpart

(excluding rAttribute for which no correlation data was generated, as explain above)

suggesting little benefit in capturing the reverse IEs. Reverse IEs are not defined by

IANA, which was another argument to exclude reverse IEs in the template, in order to

maintain a standards compliant IPFIX template.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

80

4.7.2 A DISCUSSION OF ENTERPRISE ELEMENTS

Many botnet detection algorithms utilise data at an application layer, as is evident in

Table 2 above. An example of application data often used by a detection algorithm is

HTTP GET, which can hold data specific to a botnet family type. Therefore, whilst

data from a packet header (captured by IEs) can indicate the presence of malicious

activity, application data (typically captured by EEs) can confirm traffic is of botnet

origin (Husák, Velan and Vykopal, 2015). YAF treats EE export differently to IE

export. When an EE is present in an IPFIX template, if the flow does not contain that

EE data the export field is not populated. This is unlike IEs where the export field is

fully populated with null data. This meant that the justification for inclusion of EEs in

the template based on data export volume efficiency was less of a requirement than

inclusion of IEs. However, due consideration was still applied to EEs as they typically

export data in variable length strings, which can impact PDU size if an EE is included

in an IPFIX template. There was also some expectation that EEs would impact IPFIX

software processing time, regardless of whether data was exported or not.

 The overall occupancy of the EEs tested was noticeably lower than the occupancy

values of IEs, suggesting that EEs are less reliable botnet traffic attributes and that

their export is inefficient. This argument can be countered by EEs not populating the

IPFIX PDU if they are not present in the flow (as above). Of the 17 million EE flows

analysed, two out of the 51 EEs had an occupancy >25% and 37 EEs had an

occupancy of <10%. Low occupancy resulted in fewer data points during correlation.

In some of the correlation matrices, correlation scores were not significant enough to

be used, so are marked as null data in Tables 14, 16, 18 and 20. This meant only 23

bot samples contained EEs that could be used for study. In some instances, such as for

SMTP analysis, a population of as few as four bot samples could be found in the CTU

Prague repository. With fewer samples available for study, the results obtained from

EE analysis should be considered to be less reliable than IE results, which had more

samples. However, as mentioned above, the implications of this are lessened as the

inclusion of EEs in the template has less of an impact on export data volumes.

A) SCATTER PLOTS

Figures 9 - 12 show scatter plots for key EEs across the protocols under test: HTTP,

DNS, SMTP and SSL. A scatter plot for IRC was not created as IRC only had a single

variable. As with the IE scatter plots, plots for different bot samples are shown in

these figures for comparison. The bot samples used to create these four figures vary,

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

81

as no one sample contained all protocols. The EEs in these scatter plots were chosen

as displaying the most “interesting” features, however all EEs correlated, including

those not shown, demonstrated some degree of similarity across all samples.

 In Figure 9, the length EE scatter plots show similar behaviour, as HTTP payload

length was small for the majority of HTTP packets. There are stark contrasts in the

other HTTP EEs. In CTU25_1(Zbot) get against host plots a T-shape, suggesting a lot

of variable GET requests from a specific host, indicating a network scan. Compared

with CTU145_1(uTorrent), the same EEs have clusters of data points, suggesting

more direct HTTP traffic. More differences are seen in DNS (Figure 10). For

CTU3_1(Kelihos), a against cname shows a very different plot to

CTU149_1(Kelihos) which is a similar botnet attack. This is because the

CTU149_1(Kelihos) sample contained fewer DNS CNAME-records. Similar can be

seen with DNS a against aaaa. Both plots show a definite semi-linear correlation, but

CTU149_1(Kelihos) has fewer outliers as the sample had fewer DNS AAAA-records.

If this sample was captured over a longer period, the plots would be expected to trend

towards being more similar, as the samples were from similar botnets. This might

indicate that more active samples provide more reliable analysis. Again, SMTP scatter

plots (Figure 11) show similarities and differences. CTU3_1(Kelihos) had more

variable SMTP_HELO packets compared to CTU149_1(Kelihos), which becomes

more evident when comparing to and response in the two samples. The SSL scatter

plots (Figure 11) probably show the most consistent behaviour between bot samples,

indicating that SSL has a similar functionality across all bots.

 All EE scatter plots demonstrated high variability. This is confirmed by their

correlation coefficients, which are mostly medium to small. Less linearity indicates

that EE behaviour varies between bot family. More work is needed to understand if

patterns between EEs can be used as signatures to detect specific bot families.

 When correlating EEs, bot samples with fewer flows were found to be less reliable.

Therefore, for HTTP and DNS, flows of >100,000 were analysed. For SSL and SMTP

flows >10,000 were analysed, because only smaller flow sample sizes were available

for study.

B) HYPERTEXT TRANSFER PROTOCOL EES

HTTP (TCP port 80) is the default application layer protocol for traffic transmission

over the Internet. HTTP is also a popular bot C&C channel due to the difficulty in

blocking port 80. Of the 30 bot samples that contained HTTP traffic, 17 samples were

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

82

over the 100,000 minimum flow threshold required for analysis, as outlined in the

results analysis above. Of these 17 samples, low field occupancy in 10 samples

resulted in insufficient data points to produce statistically significant correlation

scores. No evidence was found for correlation association between the available

HTTP EEs and YAF IEs.

 YAF included 17 HTTP EEs for analysis. The majority of these exhibited small

correlation effects with each other, indicating little duplication in captured data

between HTTP EEs. This suggested that whilst occupancy was low, these EE are

meaningful attributes to capture in bot traffic. Of the 17 HTTP EEs, only four EEs

exhibited an occupancy above 10%, casting into doubt the usefulness of the remaining

13 EEs with occupancy below 10%. No academic evidence could be found to support

that httpVersion, httpLocation, httpContentLength, httpAge, httpAccept,

httpContentType, httpLanguage, httpSetCookie, httpAuthorization, httpVia,

httpXForward or httpRefresh are indicative of botnet traffic attributes. Visual

inspection of the captured data provided no further evidence on retaining these EEs, as

they containing data of little use in detection. For example, httpLength captures the

length of the GET request, which can be easily calculated if required.

 Only two EEs demonstrated occupancy and valid content: httpResponse

(SuperMediator_ID#123) (n=13.2%) holds response fields parameters and httpGet

(SuperMediator_ID#112) (n=13.3%) holds GET/POST URIs. Both EEs exhibited a

medium to large correlation effect size with other EEs that have been used to botnet

detection in previous studies, such as httpUserAgent which was used to fingerprint

browser characteristics in the detection of the Storm P2P bot (Holz, et al., 2008).

Additionally httpGet holds domain or IP address, request parameters and cookies

duplicated in other EEs. This is in agreement with BotSniffer which was amongst the

first engine to feed HTTP GET/POST information into their algorithm (Gu, Zhang

and Lee, 2008). From a network security point of view, four HTTP fields are critical:

httpUserAgent, httpReferer, httpHost and httpCookie (Collins, 2014). Within this

research project, no evidence could be found to justify capture of these four EEs, but

httpGet and httpResponse exhibited a large correlation with httpUserAgent, httpHost

and httpCookie. Husák, Velan and Vykopal (2015) selected seven HTTP attributes to

identify bots, including httpUserAgent, httpReferer, httpHost, httpContentType,

httpResponse, httpPath and httpRequestMethod. Whilst httpPath and

httpRequestMethod are available as EEs in YAF, httpGet contains similar

information.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

83

C) DOMAIN NAME SYSTEM EES

DNS (TCP/UDP port 53) converts domain names to IP addresses. DNS record

attributes are commonly used by ISPs for botnet takedown, as bots use DNS to obtain

the current IP address of their C&C servers. However, it was not until 2016 that a bot

called Pisloader, was found to use DNS as a C&C channel (Chickowski, 2016). Five

of the 15 bot samples analysed produced reliable correlation scores. No samples had

occupancy sufficent to calculate correlation effect sizes for dnsMXRecord or

dnsTXTRecord. No evidence was found for correlation association between the

available DNS EEs and YAF IEs. The largest occupancies were measured in

dnsARecord (53.8%) and dnsSOARecord (18.2%). Visual inspection of the captured

data showed that these two EEs contained data that may be useful for botnet traffic

identification: dnsARecord (SuperMediator_ID#1) contained the host domain or IPv4

address giving a potential indication of the C&C server, and dnsSOARecord

(SuperMediator_ID#6) marked the start of the authority zone, which was highly

populated in the SPAM bot samples such as CTU25_5(Zbot) (although this sample

failed to produce reliable correlation figures so was excluded from analysis). Perfect

association was measured between dnsARecord and dnsAAAARecord which holds

the IPv6 equivalent to the IPv4 address held in dnsARecord. A large association was

also measured between dnsARecord and dnsSRVRecord and medium correlation with

dnsCNAMERecord, reinforcing its inclusion in the template.

D) SIMPLE MAIL TRANSFER PROTOCOL EES

SMTP (TCP ports 25/587) is an email transport protocol. Other proprietary email

protocols exist but are not supported in YAF/Supermediator. Four bot samples

provided reliable correlation scores. No evidence was found for correlation

association between the available SMTP EEs and YAF IEs. Visual inspection of the

captured data revealed only smtpHello (SuperMediator_ID#162) to contain useful

information; holding both the SMTP command (HELO, AUTH, FROM, et cetera),

and more importantly holding the sender IP address or domain which could be used to

traceback the originator. This could be more reliable than smtpFrom which can be

spoofed. IEs smtpTo and smtpRresponse exhibited a medium association, but both

contained victim data rather than originator. The smtpSubject EE has potential to

export SPAM when it contains nefarious words in the subject title. However, with a

low occupancy, no academic evidence could be found to suggest this EE was worth

retaining in the template.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

84

E) SECURE SOCKET LAYER EES

SSL (TCP port 443 for HTTPS and several other ports) provides encrypted Internet

communications. No academic evidence could be found suggsting that bots currently

use SSL as a communication channel. Even so, SSL still comprised over 2.6% of the

bot sample traffic, indicating that bots may use SSL to encrypt communication. Seven

of the 16 bot samples analysed produced reliable correlation scores. None of the SSL

EEs correlated with IEs. Overall the SSL EEs had a low occupancy with no EE above

15%, but many correlations between EEs were evident. Visual inspection revealed

that overall the SSL EEs contained little useful information. Perhaps the most useful

being sslName (SuperMediator_ID#41) which contained certificate authority details,

including some interesting Russian domains and IP addresses, which could possibly

be used to trace the originator. The sslName EE has been included in the template, but

little acadmic evidence could be found to suggest inclusion of other SSL EEs.

F) INTERNET RELAY CHAT EES

IRC (TCP ports 6600-6669 and 7000) is an application layer protocol for client/server

text chat over the Internet. IRC was the original botnet communication channel, and is

still in common use. IRC is much studied as an indicator of botnet traffic. IRC header

and IRC channel are commonly used attributes (Gu, Zhang and Lee, 2008;

Karasaradis, Rexroad and Hoeflin, 2007; Goeble and Holz, 2007; Gu, et al., 2007).

YAF only supports one IRC field, ircTextMessage (SuperMediator_ID#125), which

captures USER, JOIN, NICK, USERHOST and associated chat. The EE

ircTextMessage has been retained in the template capturing IRC header information.

IRC channel information can be captured by sPort and dPort. Retention of both of

these attributes is in agreement with previous academic studies.

4.7.3 THE BOTPROBE TEMPLATE VERSUS THE EXTENDED BOTPROBE TEMPLATE

CSP tenants have an expectation that their data is not under surveillance by the CSP,

for anomaly detection or otherwise, with privacy requirements enforced within a CSP

environment. IEs export data contained within a packet header, which can be

considered to be in the public domain, particularly in the Internet. EEs export data

which tends to be transmitted within the packet payload, which is traditionally a

private domain. Anecdotal evidence from conversations with cloud providers during

this study suggests that some CSPs are being approached by tenants who are willing to

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

85

trade a degree of access to payload data in return for a highly level of security. This

prompted the creation of the extended BotProbe template, to demonstrate that the

technology exists to support EE capture, even if privacy rules prohibit their capture.

The BotProbe template has been designed to use IEs defined by IANA to ensure

vendor interoperability. This means that the BotProbe template is not restricted to use

only with YAF, and should be reproducible on any IPFIX exporter/collector pair. EEs

are not defined by IANA, but are bespoke to a vendor. Therefore, the extended

BotProbe template is less likely to work outside of a YAF environment. At present,

the only other IPFIX exporter with support for EEs is nProbe. The extended BotProbe

template could be replicated in nProbe by replacing %HTTP_URL with httpGet,

%HTTP_RET_CODE with httpResponse, %DNS_QUERY with dnsARecord and

%SMTP_MAIL_FROM with smtpHello. NProbe does not have an equivalent for

dnsSOARecord, ircTextMessage or sslName. Whilst these nProbe EEs are similar to

YAF, there is no guarantee they will capture identical information. The extended

BotProbe template also includes FlowKeyHash (SuperMediator_ID#16) in the IE

FIELDS. SuperMediator outputs EE traffic into separate .txt files, defined in

SuperMediator DPI_CONFIG TABLES. flowKeyHash is a cross reference field between

EE flows in the .txt file and IEs exported in “flow_records.csv”. This field is not

necessary when using nProbe, as nProbe outputs both IEs and EEs to the same file.

4.7.4 IMPLICATIONS OF CAUSE AND EFFECT

It should be noted that correlation does not imply effect (Clegg, 1995). Correlation is

a measure of association between two variables, i.e. how likely two elements are to be

performing similar roles in the template. Causality of independent variables (cause)

upon a dependent variable (effect) is often difficult to prove with statistics and instead

is proven via direct experimentation. Nor does regression imply cause and effect

(Clegg, 1995). Regression is used to indicate how the relationship between a set of

independent variables can predict an outcome. In this study, field occupancy is used as

an indicator that a variable is present in sufficient quantities in botnet traffic to

warrant capture, whilst correlation is used to see if two or more elements are duplicate

data being captured. It is wrong to suggest that because a variable such as sIP occurs

in this traffic (cause) that there must be a botnet present (effect), as sIP is common to

all traffic not just botnets. Similarly, it is wrong to use regression to suggest protocol

number cannot be directly calculated from sIP addresses, even though they have a

large association. Determining cause and effect is the role of the detection algorithm,

which is beyond the scope of this study.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

86

4.8 BotProbe Performance Test Methodology

Despite Gates, et al., (2004) suggesting that NetFlow v5 comprises data fields that are

not of use in security analysis, NetFlow v5 has still continued to be used in the

academic study of botnet traffic detection. Table 2, above, summarises the attributes

used by previous botnet detection algorithms; indicating that shortfalls in the

attributes available in NetFlow v5 are supported by using PCAP.

 This research project presents the hypothesis that IPFIX offers advantages over

NetFlow v5. This chapter has already demonstrated how template extensibility allows

the creation of more focused botnet detection templates than that of NetFlow v5. The

data collection for each of the studies in Table 2 can be undertaken using either the

BotProbe template as a direct replacement for capture of the NetFlow v5 elements, or

the extended BotProbe template as a direct replacement for the capture of the NetFlow

v5 elements and the additional elements captured in PCAP (Zhang, et al., 2014;

Rossow, et al., 2011; Yen and Ritter, 2010; Gu et al., 2008). Template extensibility

has allowed the novel BotProbe templates to perform the data capture more

efficiently, as the templates are no longer fixed at 48 bytes like in NetFlow v5. For

example, the nine fields captured by Gates, et al., (2004) totalled 30 bytes, but still

uses the full 48 byte PDU to capture these nine fields. Wijesignhe, Tupakula and

Varadharajan (2015) claim to capture their attributes in a 30 byte IPFIX PDU. The

results they provide however, indicate that their study used NetFlow v9, not IPFIX, so

were unable to capture EEs.

 The remainder of this chapter provides empirical evidence of the performance of

the two BotProbe IPFIX templates against NetFlow v5. In order to further satisfy the

hypothesis that IPFIX offers advantages over NetFlow v5, performance comparisons

will be made in:

(1) Template processing times;

(2) Overall data volumes captured by the templates;

(3) The impact of each template upon the device CPU loading.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

87

4.8.1 CREATING A NETFLOW V5 TEMPLATE FOR BENCHMARKING

YAF is solely an IPFIX exporter, with no support for NetFlow v5 export. In order to

gain comparative performance measurements, the testing of IPFIX against NetFlow

needed to be undertaken on the same device. This required the creation of a NetFlow

v5 template in IPFIX, so that NetFlow v5 export can be simulated by YAF. Figure 15

provides a side-by-side comparison of an actual NetFlow v5 PDU (left) with the

IPFIX simulated PDU (right), showing the SuperMediator ID field numbers. It is not

possible to create an exact replica of NetFlow v5 in IPFIX, as the NetFlow v5 fields

do not map directly into IANA IPFIX IEs; with the exception of srcAddr, dstAddr,

srcPort, dstPort, tos and proto which do map directly. As the performance tests were

to validate the speed and volumes of capture data, rather than field content related, the

remaining twelve NetFlow fields were simulated using fields of identical size rather

than content. This meant that both the actual NetFlow template and the simulated

template were 48 bytes in length. IPFIX does have equivalent IEs to NetFlow’s dPkts,

dOctets and first and last fields, however, these cannot be directly mapped, as IPFIX

future proofs these fields with support for IPv6 at 8 bytes, versus 4 bytes in NetFlow.

srcAddr Bytes (4)

dstAddr Bytes (4)

NetFlow v5 Field Count (20)

nextHop Bytes (4)

input Bytes (2)

first Bytes (4)

dOctets Bytes (4)

dPkts Bytes (4)

output Bytes (2)

last Bytes (4)

srcPort Bytes (2)

dstPort Bytes (2)

NetFlow v5 Template

padding Bytes (1)

tcpFlags Bytes (1)

proto Bytes (1)

tos Bytes (1)

srcAS Bytes (2)

dstAS Bytes (2)

srcMask Bytes (1)

dstMask Bytes (1)

padding Bytes (2)

sIP 0 Bytes (4)

dIP 1 Bytes (4)

Template ID (303) Field Count (20)

domain 13 Bytes (4)

vlan 15 Bytes (2)

ingress 52 Bytes (4)

rTcpSeq 38 Bytes (4)

tcpSeq 37 Bytes (4)

application 7 Bytes (2)

egress 53 Bytes (4)

sPort 4 Bytes (2)

dPort 5 Bytes (2)

Simulated NetFlow v5 Template

iFlags 29 Bytes (1)

rIFlags 30 Bytes (1)

protocol 6 Bytes (1)

ToS 75 Bytes (1)

attribute 33 Bytes (2)

rAttribute 34 Bytes (2)

uFlags 31 Bytes (1)

rUFlags 32 Bytes (1)

firstNonEmpty 81 Bytes (2)

Figure 15. A comparison of the NetFlow v5 template with the template simulated in IPFIX

Actual NetFlow v5 Template (left); simulated NetFlow v5 template (right)

4.8.2 DATASET

As with the template creation tests, botnet samples used in the performance tests were

adopted from the malware repository at CTU University, Prague.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

88

4.8.3 EQUIPMENT

The test environment was identical to the environment used in the creation of the

IPFIX templates, above.

4.8.4 TEST #1 - PROCESSING TIME TESTING METHOD

The aim of this test was to quantify the differences in execution times between (1) the

BotProbe template and NetFlow v5 and (2) the extended BotProbe template and

NetFlow v5. The independent variables were the three templates; BotProbe, extended

BotProbe and NetFlow v5. The dependent variables were 10 randomly selected botnet

samples (refer to Table 22), chosen to ensure a variety of botnet families were tested.

Flow diagram Figure 16 summarises the testing method.

The detailed processing time testing method was:

(1) Before testing began, any Ubuntu system processes running in the guest

VM that were unnecessary to the data capture test were disabled;

(2) A bot sample was selected, at random, from the CTU repository;

(3) YAF was configured to convert the .pcap sample into .yaf IPFIX format:

yaf --in in_file.pcap --out out_file.yaf -v

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la

--applabel --max-payload 65535

(4) A python script was executed against the appropriate template under test:

 # python timer.py botprobe.conf

 # python timer.py extended.conf

 # python timer.py nfv5.conf

(5) The python script started a timer, twice executed SuperMediator with the

appropriate test template, stopped the timer and calculated the total time taken;

(6) The python script was executed a total of 10 times, to minimise the noise effect

from background processes;

(7) The fastest six run times were recorded to calculate a mean score;

(8) The test was repeated for all three templates.

SuperMediator templates can be found in Appendix C.

The python script can be found in Appendix D.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

89

5b. Run

SuperMediator

5d. Stop Timer

ti
m

e
r.

p
y

5a. Start Timer

5c. Run

SuperMediator

Again

1. Disable

unnecessary Ubuntu

Services

6.

Repeated 10 times

?

7. Record Fastest Six

Run Times

 5e. Calculate Time

 = timer_finish –

timer_start

8.

Repeated For

Each Template?

NO

NO

YES

YES

3. Execute YAF

End

Processing Time

Testing Method

2. Select Bot

Sample

4. Execute

Python Script

Figure 16. Flow diagram of the processing time test.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

90

4.8.5 TEST #1 - PROCESSING TIME TESTING ANALYSIS

To quantify the differences in processing times between the IPFIX templates, the

mean execution time was compared for each template. To minimise the noise effect

from background Ubuntu processes upon the CPU, each template was executed 10

times with the slowest four times rejected, as explained below. The mean of the six

fastest runs allows experimental error values to be calculated.

 The processing time of each template was measured using a python script

(Appendix D) which calculated the time taken for SuperMediator to export the .yaf

file to .csv. The python script executed SuperMediator twice and displayed the

quickest time from the two iterations. During the experiment design phase it was

found that regardless of how many times the python script consecutively executed a

batch of SuperMediator captures, in approximately 70% of cases the first

SuperMediator run was the quickest. Times of subesquent runs in the batch varied

with no apparent pattern. This was contrary to expectation as the first run of

SuperMediator in a batch creates any new output files needed, with subsequent runs

overwriting these. It would be expected that creation of new files would take longer

than overwriting existing files. The reason for this was unknown. It was anticipated

that there may be some lag due to SuperMediator terminating processes between

subsequent runs. To account for this irregularlity the python script need only run

SuperMediator twice in each test batch, with the quickest of each run recorded. There

was no advantage gained from running large batches of SuperMediator.

 It was also found during the design phase that background processes in the Ubuntu

testing VM created noise that varied the times taken to run the processing tests. It was

considered unfeasible to eliminate all background noise, as this involved stopping

processes that were required during test. In most instances, the operating system

automatically restarted these stopped processes. The following steps were taken to

minimise background noise:

 Prior to each test session, all unnecessary services were disabled in the testing

VM, after which the testing VM was given a two minute period to allow all

processes to stabilise;

 Neither the testing VM nor the host device were touched whilst a test was

running, so as not to initiate any new processes;

 Each test was run 10 times with the fastest six (found to be the optimum

number during the design phase) results used to create a mean score.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

91

4.8.6 TEST #2 - DATA VOLUME TESTING METHOD

The aim of this test was to quantify the differences in data volumes captured between:

 (1) The BotProbe template and NetFlow v5;

 (2) The extended BotProbe template and NetFlow v5;

 (3) The BotProbe template and PCAP.

 The independent variables were the three templates. The dependent variables were

10 randomly selected botnet samples (refer to Table 23), chosen to ensure a variety of

botnet families. Flow diagram Figure 17 summarises the testing method.

The detailed data volume testing method was:

(1) Before testing began, any existing .yaf or SuperMediator (.csv, .txt) created

files were deleted, so as not to cause confusion with new output files;

(2) A bot sample was selected, at random, from the CTU repository;

(3) The size of the bot sample .pcap file was recorded;

(4) YAF was configured to convert the .pcap sample into .yaf IPFIX format:

yaf --in in_file.pcap --out out_file.yaf -v

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la

--applabel --max-payload 65535

(5) The IPFIX stream (“out_file.yaf”) was fed into SuperMediator, which

exported the appropriate template under test:

 # super_mediator --config botprobe.conf

 # super_mediator --config extended.conf

 # super_mediator --config nfv5.conf

(6) The sizes of the output files were recorded.

(7) The test was repeated for all three templates.

SuperMediator templates can be found in Appendix C.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

92

4. Execute YAF

1. Delete Existing

Flow Data Files

6. Record File Sizes:
 flow_records.csv

 dns.txt

 http.txt

 smtp.txt

 ssl.txt

3. Record PCAP

File Size

7.

Repeated For

Each Template

?

NO

YES

End

Data Volume

Testing Method

2. Select Bot

Sample

5. Select Test

Template

Figure 17. Flow diagram of the data volume test.

4.8.7 TEST #2 - DATA VOLUME TESTING ANALYSIS

To quantify the differences in data volumes created by the templates, the size of the

output files were directly compared for each template. During the experiment design

phase, it was found that when a test was rerun without any changes to the dependent

or independent variables, each run gave identical data volume measurements. This

was unlike the processing time test and CPU load tests, in which background Ubuntu

system processes impacted speed measurements as undesireable noise. Therefore,

each volume test was only performed once, giving no experimental error figures from

test noise.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

93

4.8.8 TEST #3 - CPU LOAD TESTING METHOD

The aim of this test was to quantify the difference in impact upon the test device CPU

loadings from each template. The independent variables were the three templates. The

dependent variables were four randomly selected botnet samples. Flow diagram

Figure 18 summarises the testing method.

The detailed CPU load testing method was:

(1) Before testing began, unnecessary services in the guest VM were disabled;

(2) A bot sample was selected, at random, from the CTU repository;

(3) YAF was configured to convert the .pcap sample into .yaf IPFIX format:

yaf --in in_file.pcap --out out_file.yaf -v

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la

--applabel --max-payload 65535

(4) The IPFIX stream (“out_file.yaf”) was fed into SuperMediator, to export the

appropriate test template. SuperMediator was not executed at this stage:

 # super_mediator --config botprobe.conf

 # super_mediator --config extended.conf

 # super_mediator --config nfv5.conf

In a separate terminal window, a python script was executed:

 # python cpu_load.py

(5a) A wait period of 10 seconds allowed all processes to stabilise;

(5b) PSUTIL data capture commenced;

(5c) The SuperMediator command in the first terminal window was executed;

(5d) After 15 seconds (300 timer iterations) the capture was stopped;

(5e) The highest CPU utilisation over the 15 second period was recorded;

(6) The python script was executed a total of 10 times, to minimise the noise effect

from background processes;

(7) The lowest six CPU loads were recorded;

(8) The test was repeated for all three templates.

SuperMediator templates can be found in Appendix C.

The python script can be found in Appendix D.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

94

5a. Wait 10 Seconds

5c. Run

SuperMediator

5d. Stop CPU

Capture

C
P

U
_
lo

a
d

.p
y

5b. Start Capture

For 300 Iterations

5e. Record

Highest CPU

Utilisation

1. Disable

Unnecessary Ubuntu

Services

3. Execute YAF

8.

Repeated For

Each Template

?

NO

YES

6. Repeated

10 times?

7. Record Six Lowest

CPU Loads

NO

YES

End

CPU Load

Testing Method

2. Select Bot

Sample

4. Select Test

Template

Figure 18. Flow diagram of the CPU load test.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

95

The python script used the system processor attribute from the PSUTIL library to

measure the impact of YAF upon CPU in the Ubuntu testing VM.

4.8.9 TEST #3 - CPU LOAD TESTING ANALYSIS

To quantify the differences in impact upon the underlying testing CPU from each

template the mean CPU load was compared for each template. To minimise the noise

effect from background Ubuntu processes upon CPU, each template was executed 10

times with the lowest four CPU loads rejected. The standard error of the highest six

CPU loads allows experimental error values to be calculated.

 As with the processing time test, it was found during the experiment design phase

that background processes in the Ubuntu testing VM created background noise that

impacted the times taken to run the processing tests. It was considered unfeasible to

eliminate all background noise, hence the same noise reduction steps were taken as

outlined in the processing time test, above.

4.9 BotProbe Performance Results

4.9.1 TEST #1 - PROCESSING TIMES TESTING RESULTS

10 bot sample datasets were tested against each template - BotProbe, extended

BotProbe and simulated NetFlow v5. Table 22 compares the processing times for each

dataset; (1) the BotProbe IPFIX with NetFlow v5 and (2) the extended BotProbe with

NetFlow v5.

TABLE 22. A COMPARISON IN PROCESSING TIMES BETWEEN IPFIX AND NETFLOW V5

Dataset
BotProbe vs
NetFlow v5

Extended vs
NetFlow v5

CTU3 12.63% ± 0.22% -25.51% ± 0.13%

CTU8-9 29.35% ± 0.27% 10.99% ± 0.76%

CTU110-4 29.42% ± 0.42% 11.86% ± 0.54%

CTU127-2 40.85% ± 0.01% 17.85% ± 0.05%

CTU141-2 32.96% ± 0.46% 2.50% ± 0.24%

CTU142-1 32.92% ± 0.17% 3.28% ± 0.10%

CTU144-1 31.92% ± 0.13% 13.29% ± 0.06%

CTU147-1 18.92% ± 0.21% 4.54% ± 0.08%

CTU148-1 28.42% ± 0.14% 2.39% ± 0.04%

CTU149-1 9.94% ± 0.61% -15.50% ± 0.82%

MEAN 26.73% ± 0.31% 2.57% ± 0.42%

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

96

4.9.2 TEST #2 - DATA VOLUME TESTING RESULTS

The same 10 bot sample datasets were tested against each templates - BotProbe

template, extended BotProbe template and simulated NetFlow v5. Table 23 compares

the sizes of the total files output. The BotProbe template is also compared to the size

of original PCAP for each dataset.

TABLE 23. A COMPARISON IN DATA VOLUMES BETWEEN IPFIX, NETFLOW V5 AND PCAP

Dataset
BotProbe vs
NetFlow v5

Extended vs
NetFlow v5

BotProbe vs
PCAP

CTU3 11.54% ± 0.00% -116.71% ± 0.00% 94.65% ± 0.00%

CTU8-9 11.94% ± 0.00% -17.44% ± 0.00% 96.01% ± 0.00%

CTU110-4 17.08% ± 0.00% -23.78% ± 0.00% 97.32% ± 0.00%

CTU127-2 13.32% ± 0.00% -153.48% ± 0.00% 94.80% ± 0.00%

CTU141-2 13.54% ± 0.00% -182.27% ± 0.00% 98.24% ± 0.00%

CTU142-1 18.35% ± 0.00% -147.02% ± 0.00% 98.76% ± 0.00%

CTU144-1 12.17% ± 0.00% -30.68% ± 0.00% 89.25% ± 0.00%

CTU147-1 10.47% ± 0.00% -4.82% ± 0.00% 93.61% ± 0.00%

CTU148-1 13.18% ± 0.00% -97.81% ± 0.00% 74.80% ± 0.00%

CTU149-1 19.04% ± 0.00% -48.60% ± 0.00% 92.09% ± 0.00%

MEAN 14.06% ± 0.01% -82.26% ± 2.05% 92.95% ± 0.22%

4.9.3 TEST #3 - CPU LOAD TESTING RESULTS

Four bot samples of various flow sizes (CTU148_1(Zusy), flows = 172287;

CTU149_1(Kelihos), flows = 235287; CTU3_1(Kelihos), flows = 318602 and

CTU145_1(uTorrent), flows = 411928) were processed with the maximum system

CPU utilisation shown in Figure 19.

Figure 19. CPU utilisation for each of the three templates.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

97

4.10 Discussion of BotProbe Performance

4.10.1 TEST #1 - PROCESSING TIMES

The BotProbe template demonstrated an average reduction in processing time of

26.73% ± 0.03% over NetFlow v5. This was higher than the anticipated reduction of

10%, from the BotProbe template being 43 bytes in size, compared to 48 bytes for

NetFlow v5. Some of this additional reduction may result from the fields chosen to

simulate the NetFlow v5 template, where some fields may be quicker to process than

others. However, experimental verification of this was not undertaken because the

method of comparing against a simulated template will only ever provide approximate

results. The extended BotProbe template demonstrated an average reduction in

processing time of 2.57% ± 0.04% over NetFlow v5. This was an unexpected result,

as the extended BotProbe template contains more fields than the NetFlow v5 template,

which implies it should take longer to process. Again, this may be due to the fields

chosen to simulate NetFlow v5. The extended BotProbe template exhibited a range in

processing times, from -25.51% ± 0.13% to 17.85% ± 0.05%. It was expected that this

variance is due to the nature of the bot samples. When a sample contains a higher

quantity of application data, the flow requires more processing, which increases

processing times. The bot samples, chosen at random for testing, contained a range of

application protocols in differing quantities. Hence, a range in processing times was

not unexpected. Furthermore, if an EE was specified for export in a template but the

protocol is not present in the flow, rather than exporting null data against this field,

YAF does not export any data for this EE, thereby improving processing times. This

suggests that any number of EEs can be included in the template without impacting

processing time if they are not present in the flow. Therefore specific IPFIX templates

could be created to target specific bot families, such as DNS bots.

4.10.2 TEST #2 - DATA VOLUMES

The BotProbe template demonstrated an average reduction in data volumes of 14.06%

± 0.01% over NetFlow v5. This was slightly higher than the 10% reduction expected,

from the BotProbe template being 43 bytes in size compared to 48 bytes for NetFlow

v5. However, this confirmed that the field sizes in the simulated NetFlow v5 template

closely resembled the actual NetFlow v5 field sizes. The BotProbe template exhibited

a range in reduction volumes from 10.47% ± 0.00% to 19.04% ± 0.00%. This was

anticipated to be due to how YAF processes flow aggregation, and the differences in

aggregation between the IEs in the BotProbe template against those in the simulated

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

98

NetFlow v5 template. The extended BotProbe template exhibited an increase in traffic

compared to NetFlow v5, from 4.82% ± 0.00% to 182.27% ± 0.00%. This increase

may be due to bot samples containing varying application protocol data, where EE

string lengths will vary by both protocol and by bot sample context. However, as

demonstrated in the processing times tests above, despite an increase in data volumes,

the templates were quicker to process. This raises the possibility of further

performance improvements by constructing EEs that export more specific variable

length fields. Comparing the BotProbe template with the original raw PCAP capture

files exhibited a reduction in data volumes ranging from 74.80% ± 0.00% to 98.76% ±

0.00%, depending on the context of the flows. Hofstede et al., (2014) indicate an

expected reduction from IPFIX in the order of 1/2000th of the original PCAP size.

However, Hofstede does not specify IPFIX elements, so their results can only be taken

as an overall order of reduction. The BotProbe template may not have achieved these

reductions as it is tailored for a specific application. Even so, for a CSP capturing TBs

of PCAP data, the order of volume reduction from the BotProbe template could result

in GB quantities of data. With European communications providers required to retain

connection data for between 6 to 24 months (EC Data Retention Directive

2006/24/EC, 2006) this is a saving in storage requirements.

4.10.3 TEST #3 - CPU LOADS

There were no measureable impact upon CPU load between the BotProbe template

and NetFlow v5. The BotProbe template averaged at 13.4% ± 0.7% impact, whilst the

NetFlow v5 averaged at 12.1% ± 0.6% impact, which was within experimental error

margins. The extended BotProbe template averaged at 17.2% ± 0.8%; a marked

increase in CPU load, possibly due to the additional software plugins required when

capturing EEs. In comparison, the CPU load benchmark with no IPFIX export was 5%

± 0.0%. These results were obtained in a Ubuntu 14.04 LTS desktop VM, with four

2.6GHz processors with 2.9GB RAM. Scaling this up to running YAF on a high end

server should expect minimal CPU impact. These minimal CPU impact results suggest

the feasibility of running IPFIX export at 1:1 capture rates on low specification, low

powered devices, such as those found in the IoTs. In high-speed data networks,

NetFlow is typically configured to sample at rates between 1:500 and 1:2000; not only

compensating for a lack of flow aggregation which produces high volumes of capture

data, but is also to conserve device power. Sampling is detrimental to anomaly

detection (Mai, et al., 2006) as it is more likely to miss small, infrequent bot keep-

alive packets.

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

99

4.11 Summary

Cisco created NetFlow as a protocol to support network management. NetFlow v5 was

the traffic capture mechanism for many botnet detection algorithms, despite

drawbacks being known when applying the protocol to security threat detection

(Santos, 2016; Trammell and Boschi, 2011; Gates et al., 2004). A primary weakness

is the rigidity of the 18 field NetFlow v5 template, of which eight fields offer little

value in botnet detection. NetFlow v9 has its own drawbacks. The protocol is

proprietary, limited to 79 IEs and lacks support for EEs, restricting it to capturing only

packet header information with no functionality to extract payload data (Patterson,

2012). This has forced many researchers to supplement traffic capture requirements

with PCAP (Sperotto, et al., 2010).

 The hypothesis of this research predicts that IPFIX offers advantages over NetFlow

in botnet detection. Chapter 3 outlined tangible benefits of IPFIX, such as security by

design and scalability through support for complex protocols such as IPv6 and MPLS,

whilst also being a ratified international standard. The contribution from this chapter

comes from empirical evidence that template extensibility, variable length fields and

enterprise elements all hold benefits over both NetFlow v5 and PCAP, addressing

research objective #2 to create an IPFIX template for botnet traffic capture.

 The challenge for any traffic capture mechanism is to move away from capturing

big data volumes, towards capturing a smaller yet manageable dataset to ease data

analysis. The BotProbe template demonstrated an improvement over NetFlow v5 of an

average of a 26.73% ± 0.03% reduction in processing time and an average of 14.06%

± 0.01% reduction in data volumes. The BotProbe template demonstrated as much as a

98.76% ± 0.00% reduction in traffic volumes over PCAP. The extended BotProbe

template expanded the capture mechanism to include application protocol information,

providing contextual botnet information upon the network layer information from the

packet header. With IPFIX as a capture mechanism, previous botnet detection

experiments should expect an improvement in both capture speed and reduction in

data volumes when run against the original capture method, without the need to

amend the variables used by the detection algorithms. A reduction in data volumes

translates as a benefit to communication providers bound by European law to retain

connection information for a period of time.

 The evidence provided in this chapter suggests that IPFIX has the potential to

advance botnet detection. The limitations of other traffic capture mechanisms have

confined the variables used in detection algorithms to the few traffic characteristics

4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE

100

that the protocols can capture. IPFIX turns this around, allowing the algorithms to

dictate the variables that are required for capture, rather than the capture mechanism

determining the available variables for the algorithms. This should permit the creation

of new botnet detection algorithms based on new traffic attributes.

 Having provided empirical evidence to demonstrate that IPFIX offers advantages

over both NetFlow and PCAP, the next chapter uses these IPFIX templates as a

foundation upon which to construct a framework to incorporate IPFIX export into a

CSP environment.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

101

5. BotStack: A Novel IPFIX Framework

5.1 Introduction

Building upon the evidence provided from the previous chapter that IPFIX provided

reductions in both data volumes and processing times over NetFlow v5, this chapter

describes an architectural framework for incorporating an IPFIX capture element into

the cloud stack. Whilst previous academic studies have suggested various cloud stack

frameworks, many of which are covered in this chapter, no literature could be found

incorporating IPFIX within the cloud stack.

 BotStack, the framework proposed within this chapter forms the foundation of a

proof of concept demonstrator platform for future work in optimising botnet traffic

capture and detection methods. The platform is constructed from open source tools

that are common to CSP environments; thereby easing the migration process from

existing cloud environments to this novel IPFIX platform. Open source tools are

selected as the building blocks for BotStack because not only are they commonly

found in CSP environments, but an open source approach permits modification to

software to overcome any interoperability issues, or enhancements.

5.2 Design Considerations for IPFIX Export in a CSP Environment

A cloud is a multi-tenanted environment with high privacy expectations. The design

requirements of a cloud provider infrastructure provide additional challenges over a

traditional network. Lenk, et al., (2009) describe three basic components of a cloud

infrastructure: (1) the physical resource, (2) the virtual resource and (3) the

management front-end API which allows automate setup and tear-down of virtual

machines, failover, demand scalability and OS provisioning. Effectively, a cloud

environment can be described as a virtualised guest-layer running on top of a physical

network-layer.

5

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

102

 In this research project, the CSP framework fundamentally follows an

Infrastructure as a Service (IaaS) model, in which guest operating systems share an

underlying infrastructure, but are partitioned from other tenant VMs. NIST, the

National Institution of Standard and Technology, defines IaaS as where “the capability

provided to the consumer is to provision processing, storage, networks, and other

fundamental computing resources where the consumer is able to deploy and run

arbitrary software, which can include operating systems and applications. The

consumer does not manage or control the underlying cloud infrastructure but has

control over operating systems, storage, and deployed applications .” (Mell and

Grance, 2011).

 Within these design constraints the following assumptions were made:

 The framework provisions the design principles of co-residency, where tenant

isolation is provided upon a shared underlying infrastructure; and data

integrity, where data privacy and integrity are provided through minimal

interaction with tenant data traversing the CSP infrastructure;

 The framework facilitates support for leading-edge technology, where the

provider recognises cost reductions and operational enhancements through the

inherit benefits from superior technologies such as IPv6 (Díaz, Martín and

Rubio, 2016);

 The framework is to be constructed from open source technology wherever

possible, thereby allowing software modification between existing and future

framework elements.

Multiple component elements are required to facilitate IPFIX export within a CSP

infrastructure. Figure 5 identifies four elements that are necessary in flow monitoring;

the probe, the collector, data storage and data analysis. The following section provides

justification for each framework element selected for traffic data capture. This

includes not only IPFIX export and collection, but consideration is given to the

elements that are necessary in the provision of a virtual infrastructure across which

IPFIX export is supported. Less consideration is given to the physical infrastructure

and data storage, as this modular framework should be capable to being overlaid on

top of the CSPs existing infrastructure, whilst data analysis is considered in more

detail within future work in chapter 7.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

103

5.2.1 HYPERVISOR

Machine virtualisation allows a single physical machine to host multiple,

heterogeneous Operating Systems upon the same hardware (Garcia-Valls, Cucinotta

and Lu, 2014). In an IaaS model it is not uncommon for VMs from several various

tenants to be co-located on the same physical hardware, where each VM requires

isolation from its neighbours. Virtualisation is provided by a Virtual Machine Monitor

(VMM), also known as a hypervisor. The hypervisor is a software component that

isolates multiple VMs whilst managing the sharing of physical host’s resources,

thereby allowing each emulated VM to act as a stand-alone, tightly isolated container.

The vulnerabilities described in chapter 2 typically occur by exploiting weaknesses in

hypervisor software code. Hypervisors can be broadly split into two categories; type-1

bare-metal hypervisors that sit directly on the host hardware, and type-2 hosted

hypervisors that sit as applications in the host OS. Examples of type-1 hypervisors

include Xen, VMware ESXi and Microsoft’s Hyper-V, whilst type-2 hypervisors

include Linux KVM (Kernal-based Virtual Machines), VMware Player and Oracle’s

VirtualBox. Figure 20 compares the benefits and disadvantages of four of the market

leading hypervisors. As type-1 hypervisors typically have a higher performance than

type-2 hypervisors, KVM, as a type-2 hypervisor, is not considered for the framework.

Of the remaining three hypervisors, Xen is open source, available under a GPL

(General Public License).

Figure 20. A comparison of hypervisors.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

104

 Xen hypervisor is available as either a standalone hypervisor (Linux Foundation,

2013), or within the XenServer project from Citrix (Citrix Systems Inc., 2015). The

XenServer project is an open source project that provides an out-of-the-box solution

bundle, including Xen hypervisor, Open vSwitch, Xen Management software and a

pre-installed CentOS operating system. This includes all the major elements for an

IPFIX framework. Initially the BotStack framework was designed with XenServer

v6.2.0 as its foundation, but during the build of the infrastructure several issues were

encountered. More detailed descriptions of the issues encountered were presented at

BotConf 2015 (Graham, Winckles and Sanchez, 2015b). In summary, XenServer

v6.2.0 ships with an older version of Open vSwitch (OVS) which does not support

IPFIX. Upgrading OVS requires an upgrading the XenServer CentOS operating

system to 64-bit. In order to keep the OS footprint as small as possible, the incumbent

CentOS 5.6 in XenServer has a reduced feature set which prevented the upgrade of the

OS. Citrix subsequently released XenServer v6.4.94, known as XenServer Creedence,

[sic] which includes CentOS v5.10 and a version of OVS that supports IPFIX.

Unfortunately in testing, OVS failed to provide any IPFIX timestamps. Also, OVS

flow aggregation did not work, which meant huge numbers of individual data flows

instead of a reduced number of aggregated flows. Due to these issues, XenServer was

rejected, necessitating a custom build framework using the standalone Xen hypervisor,

on top of a Ubuntu OS.

 As a type-1 hypervisor, Xen runs directly on the hardware, booting directly from

BIOS. With Xen, the privilege Domain-0 (Dom0) creates and destroys the emulated

VMs that run in the abstracted guest Domain-U (DomU), and controls the DomU

access to the underlying hypervisor and physical resources. Xen is a popular choice in

industry and is prominent amongst CSP. Key members of the Linux Foundation Xen

Project7 include Amazon AWS and Citrix. Xen is also more prominent in academic

research, compared with other open source hypervisors such as KVM. Xen was the

hypervisor of choice in IaaS platform research, including OpenEdge (Kunz, et al.,

2016); Apache CloudStack (Kumar, et al., 2014); OpenStack (Sefraoui, Aissaoui and

Eleuldj, 2012); Nimbus (Keahey, 2009); Eucalyptus (Nurmi, et al., 2009) and

Cumulus (Wang, et al., 2008). When Jasti, et al, (2010) analysed security in multi-

tenanted cloud environments, they built their test environment on top of a Xen

hypervisor. Garcia-Valls, Cucinotta and Lu (2014) describe two operational modes of

Xen hypervisor. Para-virtualisation mode is a higher performance mode as no

hardware platform emulation is required, making it more suitable for real-time cloud

7 https://www.xenproject.org/project-members.html

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

105

computing since it identifies the specific components of an operating system that have

to be virtualised in order to optimise performance. Para-virtualisation has challenges

such as virtualizing and sharing memory between guest operating systems. Also, a

guest OS may require modification to make it aware that it is running in a virtualised

environment, so that it can maintain direct communication with the hypervisor via

hypercalls. Full-virtualisation mode, or Hardware-assisted Virtual Machines (HVM),

allows full emulation of hardware attached devices, such as network adaptors, without

the need to modify the guest OS. As each VM has its own virtual BIOS, each VM is

un-aware it is being emulated on top of a host device. This makes it possible to run

multiple operating systems, even heterogeneous ones, on the same hardware. Whilst

HVM more closely resembles the complete isolation of a physical server, it is both

slower and more expensive. CSPs, such as Amazon AWS, tend to run the faster para-

virtualisation, particularly when running Linux. However, hypercalls direct to the

hypervisor allow malware to exploit the type of vulnerabilities outlined in chapter 2.

 The Xen hypervisor was selected upon which to base BotStack, so as to maintain

an open source infrastructure.

5.2.2 HYPERVISOR MANAGEMENT

A CSP typically uses a management API toolstack to manage hypervisor events, such

as the setup, monitoring and tear-down of individual VMs, or the provisioning of an

OS (Lenk, et al., 2009). There are two options available for Xen management through

APIs (see Figure 21). By default, Xen ships with the XL toolstack; a lightweight

minimal toolstack based on the xenlight library (libxl). XL has a limited command set

and has been designed for managing single host environments, replacing the now

deprecated XEND toolstack.

Figure 21. A comparison of Xen toolstacks.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

106

 Citrix recommends XAPI (Xen Application Programming Interface) for managing

virtual device pools. XAPI was originally created by Citrix specifically for use with

XenServer. XAPI is now open source and supports the full life cycle management that

a CSP might be expected to perform, such as managing storage repositories, VM

states, device pools and high availability.

 XAPI was selected for BotStack to manage the Xen hypervisor environment as it

provides a higher functionality toolstack than XL.

5.2.3 VIRTUAL MACHINE MANAGEMENT

The XAPI toolstack is a command line interface. Management of CSP virtual

environments can be complex, so a GUI is preferred. The Xen Project lists several

GUI packages that integrate into the toolstack API, as outlined in Figure 22. Xen

Orchestra was not able to establish a connection to the test bed. The Xen Project

suggests two other GUIs that were not considered for the framework; ConVirture was

chargeable after a 30 day trial period and Zentific was no longer available for

download. Both XenCentre and OpenXenManager, an open source copy of

XenCentre, provide identical functionality.

 XenCentre was selected for BotStack, as OpenXenManager was found to

occasionally freeze, requiring a complete system reboot.

Figure 22. A comparison of management GUIs.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

107

5.2.4 VIRTUAL SWITCH

Advantages to cloud providers of virtual networking include energy efficiency savings

(Beloglazov and Buyya, 2010), dynamic allocation of resource and bandwidth (Guo, et

al., 2010) and optimisation of VM placement and traffic flow (Fang, et al., 2013).

With type-1 hypervisors, such as Xen hypervisor, virtual machines share the resources

of their host server. In a physical network, hardware devices typically use network

interface cards to connect to hardware switches. In a virtual network, virtual devices

can be connected, via a virtual network interface to software switches, known as

virtual switches (vswitches). The performance of vswitch CPUs now match the

performance of physical switch CPUs (Pettit, et al., 2010) whilst having the

advantages of being virtual. Of the four data centre vswitches outlined in Figure 23,

only Open vSwitch (OVS) is open source, making OVS popular within academic

research. By default, OVS operates in bridging mode using the built-in bridging

functionality of the host Linux distribution. Alternatively, OVS can be configured to

operate as a fully functional switch in switching mode. In either mode, there is a

negligible difference in network throughput (Pettit, et al., 2015) or CPU impact

(Rintalan, 2011), however switching mode supports VLANs, quality of service, access

control lists and port bonding which may occur within a CSP infrastructure.

 OVS was selected for BotStack as it integrates with all major hypervisors, and

provides support for a range of monitoring protocols, including NetFlow v5, NetFlow

v9 and IPFIX (Pfaff, et al., 2015).

Figure 23. A comparison of data centre virtual switches.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

108

 Additionally, OVS has its own flow management controller which uses OpenFlow.

This would allow a CSP to interface into a Software Defined Networking architecture,

for dynamic on-the-fly network configuration to contain, or divert, a botnet.

OpenFlow can be disabled should a CSP favour an alternative third party controller.

5.2.5 FLOW EXPORTATION

Two of the essential components in flow export are the exporter probe and collector

(Figure 5). Hofstede, et al., (2014) lists a number of commercial and open source flow

exporters, each with varying degrees of support for IPFIX features. In order to take

advantage of the IPFIX benefits outlined in chapter 3, an IPFIX exporter should

support features that include: (1) IPFIX flow aggregation to reduce the overall volume

of exported data; (2) IPFIX template customisation with support for both IEs and EEs;

(3) the ability to periodically dump captured flows to a data file for analysis; and (4)

standards-based IPFIX security features including flow integrity and obfuscation.

 OVS claims to export NetFlow v5, NetFlow v9 and IPFIX. OVS is configurable to

capture packets on a physical interface (PIF) via an network interface card, and virtual

interfaces (VIF) via a network tap. These features make OVS suitable for deployment

within the framework. During the build of the infrastructure doubts were raised over

the OVS capability to support for IPFIX export. Several IPFIX collectors, including

YAF, nProbe, Plixer’s Scrutinizer, IPFIXcol and nfdump, would not recognise the

IPFIX stream format exported from OVS. In both OVS bridging mode and switching

mode, IPFIX was found to be missing timestamps and appeared not to apply flow

aggregation, resulting in an overload of traffic at the collectors. This was reported to

the OVS developers, who did not perceive this to be a priority fix. Furthermore, as

OVS did not support template customisation, OVS was retained in BotStack as the

virtual switch, but was not used to perform IPFIX export functionality.

 Of the open source IPFIX exporters in Figure 24, only two probes support both IE

and EE template customisation: nProbe (Deri, 2003) and YAF (Inacio and Trammell,

2010). The process for template configuration is equally straightforward in both YAF

and nProbe, where template fields for capture can be specified in the command line

syntax at exectution. YAF has been designed to specifically conform to IPFIX

compliance, making YAF the only exporter that supports RFC-6313 for structured

data, an advantage when querying data. The cost of IPFIX compliance means that,

unlike nProbe, YAF does not support NetFlow. NProbe has an advantage in that it is

both an exporter and collector in one. NProbe supports a greater number of IEs than

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

109

YAF, although nProbe’s IEs are predominantly flow contextual rather than traffic

contextual data, as outlined in Table 3. Both exporters support EE export through

software plug-ins, although information on how to create new EEs was lacking in both

cases. nProbe is available at no cost through an academic license, although full

functionality required a commercial license.

 Argus is a well-known network audit and traffic analyser that supports its own

version of NetFlow. Argus documentation states that it only supports a subset of

IPFIX, so was not considered in this research. Bro is also a well-known tool for IDS,

which supports IPFIX. However, Bro is primarily a SEIM solution that monitors

security event and policy violations, but is not capability of providing the level of data

correlation required by this research project.

 A review of IPFIX literature revealed that YAF and nProbe are equally the most

commonly used exporters in academic research. A trend was observed for nProbe

being the primarily exporter between 2004 and 2008, with YAF overtaking as the

preferred exporter after 2009. When Velan, Jirsik, Čeleda (2013) tested their HTTP

header parsing algorithms, the only exporters that supported HTTP IEs were nProbe

and YAF. The algorithm they designed for nProbe was marginally quicker than their

regex algorithm tested with YAF, however they failed to provide a head to head

comparison when no algorithms were present, providing no reason to favour one

exporter over the other. No reliable evidence could be found comparing the

performance of nProbe with YAF.

 When Brockhus (2015) compared a number of flow exporters, YAF exported 1229

flows against nProbe’s 924 flows over the same traffic capture. They do not explain

this difference in results. Furthermore, the reliability of this data is questionable as the

research has yet to be published in a reputable journal. The performance speed of

YAF against nProbe was not tested during this research, as the IPFIX framework

requirement is for a full-featured IPFIX exporter, rather than the fastest. When

Rincón, et al., (2015) used IPFIX to capture TCP connections they chose YAF

because it provides a MySQL mediator to their analysis software.

 Whilst either nprobe or YAF were fit for purpose as the IPFIX export element

of BotStack, YAF was selected due to its support for a larger number of EEs by

default.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

110

Figure 24. A comparison of open source IPFIX flow exporters.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

111

5.2.6 FLOW COLLECTION

The YAF IPFIX exporter is a probe that sits in a traffic stream capturing data. It then

encapsulates any captured data into the IPFIX protocol for transport. This IPFIX

stream is then sent to a collector, which converts these exported flows into formats

required for storage and analysis. The selection of a flow collector is often based upon

the desired storage format (Hofstede, et al., 2014). Again, Hofstede, et al., (2014) lists

commercial and open source flow collectors. Open source collectors are compared in

Figure 25. IPFIX collectors with noteworthy support for IE and EEs include nProbe,

IPFIXcol and the SiLK suite. When Velan, (2013) compared IPFIX collectors, nProbe

was ignored as it is an exporter by design, rather than a collector. Velan went on to

compare nfdump, SiLK and IPFIXcol; concluding that IPFIXcol was the quickest and

most flexible. However, this is subject to bias as IPFIXcol was created by Velan as a

PhD project. IPFIXcol was found to be overly complicated with little or no

documentation, restricting its application to the framework.

 YAF is part of the Network Situational Awareness (NetSA) security tool suite

developed by software engineers at CERT. By design, YAF exports IPFIX in a

proprietary .yaf format, as this allows YAF to be feature rich, whilst letting a

mediator convert the data to a human readable format. NetSA created SiLK as the

collector for the YAF proprietary format. The drawback of SiLK is that it was

designed as a network management analysis tool, so focuses heavily on flow statistics,

rather than traffic content analysis. Another disadvantage is that SiLK stores data in a

“packed” flat binary file format, which requires an additional NetSA tool called rwcut

to analyse data. Rwcut is designed for high-level flow context analysis and does not

have the functionality to perform detailed statistical tests such as frequency and

correlation. Other NetSA created mediators that support .yaf, include yafscii and

ipfixDUMP, however neither support outputting data as .xls or .csv format. The role

of an IPFIX mediator is to provide federation of IPFIX messages, allowing

anonymisation, filtering, translation and aggregation of IPFIX streams to one or more

collectors (Santos, 2016). SuperMediator is an IPFIX mediator, created by NetSA,

which imports .yaf, and outputs it to .csv.

 SuperMediator was selected for BotStack to partner YAF as the IPFIX collector.

Mediators are not designed for complex flow analysis. SuperMediator can be extended

using python plugins, allowing support for additional IEs/EEs to be added. In this

research, data analysis is performed manually, outside of the IPFIX framework

requirements.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

112

Figure 25. A comparison of open source IPFIX flow collectors.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

113

5.3 Presenting BotStack: An IPFIX Framework for CSPs

The individual component elements identified in the above analysis for selection in

the IPFIX framework for CSPs are presented in Table 24, with the logical

representation of the BotStack framework architecture in Figure 26.

TABLE 24. BOTSTACK FRAMEWORK COMPONENTS

BotStack: An IPFIX Framework

Host OS Ubuntu 14.04 LTS

Hypervisor Xen 4.4.0 (64 bit)

Hypervisor Management XAPI Toolstack

VM Management XenCentre v6.5

Virtual Switch Open vSwitch v2.0.2

Flow Exporter YAF v2.8.4

Flow Collector SuperMediator v1.3.0

DOM-U
(User Space)

DOM-0

VM #1 VM #2

YAF

HOST SERVER

vif1.0 vif2.0

xenbr0

openvswitch-mod.ko

KERNEL

ovs-vswitchd

SuperMediator

eth0

eth0 eth0

IPFIX

(UBUNTU OS)OVS

Figure 26. The logical architecture of BotStack.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

114

5.4 Probe Positioning Test Methodology

A “network as a sensor” takes advantage of the distributed nature of networks to turn

the networks themselves into proactive cyber event notification tools (Cisco, 2015).

As a traffic capture mechanisms is just as vulnerable as any other networked device,

due consideration to the siting of IPFIX export probes is necessary. RFC-7011

mandates that IPFIX transmissions include features for confidentiality, authentication

and integrity, thereby mitigating the risk to IPFIX data of stream manipulation or

interception (Internet Engineering Task Force, 2013a). Chapter 3 describes flow

security features in more detail. Whilst these security features secure the data streams

between devices, they do little to protect the probes themselves from attack. A probe

sited within the unprivileged guest domain not only has the potential to imply

surveillance rather than protection, but also presents a vulnerable attack surface to

malware. Whilst a probe placed outside of the guest domain is less visible to an

adversary, the risk profile of the probe increases should the adversary realise that the

mechanism is specifically monitoring for malware. RFC-7011 (Internet Engineering

Task Force, 2013a) makes recommendations to mitigate DDoS attacks on probes,

however, a probe may still be vulnerable to timer misalignment attacks should

malware be able to force clock changes upon the host device.

 Catchment area is another consideration in probe placement. Flow is a push

technology, exporting only data that passes through a probe. If a probe is not within a

data stream it will not export this data. A single sampling point may lack visibility of

key data streams, or create a congestion point in the network. Therefore multiple

sampling points are required across the entire infrastructure where botnet activity is

being monitored. Multiple probes not only present malware with a larger attack target

surface, but increase the complexity of data coordination during analysis. A balance

must be struck between the number of probes and their catchment area. Hofstede, et

al., (2014) state that the deployment of packet capture probes in virtual networks is

similar to deployment in wired networks. They describe two modes in which probes

can be positioned. Firstly, inline - where the probe is directly connected to the stream

by a passive network tap that captures traffic at line speed without introducing delay.

Secondly, mirrored - where packet forwarding devices, such as switches, mirror

packets from one port for capture on another port. This means that a probe with a

layer 2 vantage point on a switch, only captures traffic from mirrored (or SPAN)

ports. Whereas a probe with a layer 3 vantage point can monitor blocks of IP

addresses, thereby capturing traffic from all ports (Collins, 2014). Minarik, Vykopal

and Krmicek (2009) compared the efficiency of mirroring, such as used in NetFlow,

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

115

with direct tap connections, such as used by IPFIX. Connecting a NetFlow probe via a

SPAN port dramatically decreased the data quality compared to the network tap

connection. The tap connection captured more flows as it was able to capture both

incoming and outgoing traffic on the segment, whilst the SPAN port was limited in

which segment it could capture data from. SPAN also saw more packet duplication.

5.4.1 DATASET

The resultant dataset from this test was generated by systematically polling probes

that were strategically distributed across the CSP infrastructure (Figures 30 - 34).

5.4.2 EQUIPMENT

A test network was constructed using the BotStack components outlined in Table 24.

Two Dell PowerEdge R710 servers, each with four Intel Xenon 5160 3.0GHz CPUs

and 8GB RAM, ran Ubuntu 14.04 LTS desktop operating systems. Xen 4.4.0, the

XAPI toolstack, Open vSwitch v2.0.2 and YAF v2.8.4 were installed into Dom0. Both

servers had three Ubuntu 14.04 LTS desktop VMs. Open vSwitch was configured to

use network taps to capture traffic across all virtual ports and forward this to a capture

probe. The network was configured as a flat 192.168.0.0/24 network. Figure 27

outlines vantage points for probe placement; where probes #1 and #2 are within tenant

virtualised environments, #3 is located on the CSP LAN, #4 and #5 are on host

servers, with #6 and #7 are on networked devices. Five different tests measured the

visibility of each probe placement.

PROBE #2PROBE #1

HOST
SERVER

HOST
SERVER

.1 .2 .3 .4

.11 .12

PROBE #4 PROBE #5

PROBE #3

PROBE #6IPFIX
COLLECTOR

.101

FIREWALL

.100

PROBE #7

Figure 27. An illustration of potential probe vantage placements.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

116

5.4.3 METHOD

The aim of this test was to empirically determine the optimum siting configuration of

the IPFIX probes, to allow botnet propagation to be tracked across the CSP

infrastructure with maximum network visibility for the least number of probe

installations. The independent variables were the ICMP ping tests between devices.

The dependent variables were the various available probe locations. Flow diagram

Figure 28 summarises the systematic test method. The detailed method was:

(1) A YAF probe was installed into devices sited at the test vantage points;

(2) YAF was configured to export ALL network traffic as IPFIX:

yaf --live pcap --in xenbr0 --out probeflow.yaf

(3) Each device was systematically pinged, so the probe captured resultant echoes:

 # ping 192.168.0.x

(4) YAF was stopped;

(5) The YAF output file (.yaf) was saved for analysis.

1. Position Probe in

Test Location

2. Execute YAF

3. Perform ICMP

Ping Tests

5. Retain IPFIX

Data for Analysis

4. Stop YAF

End

Location Testing

Method

Figure 28. Flow diagram of the probe location optimisation test.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

117

5.4.4 ANALYSIS

In order to empirically determine the optimum locations of the IPFIX probes, each

probe placement point was analysed for its capability to capture systematic ICMP

pings across an IP address range. To faciliate empirical calcuation, each device was

assigned a costing weight as illustrated in Table 25, according to the importance of the

network infrastructure the probe has visibility of.

TABLE 25. NETWORK LINK COSTINGS

BY IMPORTANCE OF LINK

Network Link Cost

VE to VE 50

VE to Server 10

Server to Server 5

Device to Device 1

VM to VM 0

 These scoring metrics are graphically represented in Figure 29. The highest

weighting was allocated to intra-VM connections, representing a malcious attack from

one tenant upon another tenant. The next highest weighting was allocated between the

tenant VE and the host server indicating either a VM escape or host escape.

Monitoring server to server comminucations indicates a bot’s potential to attack a

neighbouring tenant. Monitoring device to device communication allows bot

propagation to be tracked. As the aim was to track botnet propagation across a CSP

network, no emphasis was given to VM-VM communication within a tenant’s VE.

DomU

Dom0

50 00

10 10 10 10

5

1 11 1

1

Figure 29. Network vista weightings, by importance in botnet communication detection.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

118

5.5 Probe Positioning Results

Figures 30 - 34, below, display the observed device communication for each

positioning test. Five individual positioning tests were conducted; with probes located

at the potential vantage placements identified in Figure 27, in order to measure the

network visibility across the network connection links outlined in Figure 29. Figures

30 - 34 each indicate the location of the capture probe(s) and network visibility is

represented by red or green network node links; where a green link shows a successful

ping that was detected by the probe, and a red links shows a successful ping that was

not detected by the probe. Table 26 summarises the obtained weighted values for each

test.

TABLE 26. WEIGHTED VALUES FOR ICMP PINGS, FOR EACH PROBE PLACEMENT TEST

VE to
VE

VE to
Server

Server to
Server

Server to
Device

Device to
Device

TOTAL

Test #1 0 0 0 0 0 0

Test #2 0 0 0 0 0 0

Test #3 50 2 x 10 5 2 x 1 0 77

Test #4 50 4 x 10 5 4 x 1 0 99

Test #5 50 4 x 10 5 4 x 1 1 x 1 100

 Table 26 indicates that certain probe locations are sub-optimal for botnet

communication traffic detection. Test #1 (Figure 30) was the benchmark test to

understand visibility of traffic for probes located in the tenant virtual environment.

Siting a probe in the tenant environment raises concerns around tenant privacy and

surveillance; what other data is the probe capturing about the tenant environment

besides botnet mitigation information. Furthermore, a probe in the tenant enviroment

makes the probe highly visible. A malicious tenant may chose to disable the probe to

turn the VM into an attack plane. Besides these drawbacks, Test #1 indicated that the

probe had no visibility of communication traffic, confirming probes within a tenant

environment are not a viable option. The same results were obtained from Test #2

(Figure 31) with a probe located on the CSP network. Again, this probe was unable to

capture any ping traffic, even though the pings were successful. This outcome was

expected as the role of virtual and physical switches are to restrict broadcast of traffic.

This natural switch behaviour can be overriden using SPAN ports, however traffic

mirroring provides disadvantages such as duplication of traffic and other issues

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

119

outlined in section 5.4, above. Higher traffic visibility was obtained with a probe

installed directly within the hypervisor of the server, see Test #3 (Figure 32), as the

probe collected traffic passing directly through the vswitch installed within the server

hypervisor environment. However, traffic visibility was restricted to just the server

with the probe installed, with reduced visibility of traffic passing through other

network devices. Test #5 (Figure 34) obtained the highest infrastrucuture visibility

total of 100. However, as Figure 34 shows, this test required four probes to be

positioned across the network. Restricting probes to the host server only, and

excluding probes on cloud infrastructure devices such as routers, switches and

firewalls, as in Test #4 (Figure 33), produced an almost identical infrastrucuture

visibility total of 99. Although, locating the probes within the servers did restrict the

traffic visibility across other CSP devices, which may impact the tracking of a bot as it

propagates internally, such as to attack the storage infrastructure.

 The purpose of the probe positioning tests was to empircally determine the

optimum location of the IPFIX probes, defined above as the maximum traffic

visibility for the minimal number of probes. Therefore the optimum probe positioning

was in Test #4, with probes installed alongside the virtual switch within each server

that hosts guest VMs. Whilst Test #4 does not provide complete infrastructure

coverage, this placement selection should provide sufficient coverage to detect botnet

communication between guest VMs or between tenants. If full visibility is required,

Table 26 suggests the placement of an IPFIX probe on each critical CSP network

device that requires protection. Albeit this configuration comes with two drawbacks;

a) a complexity overhead of having to correlate data from multiple probes, and b) as

the number of probes increases, so does the attack surface available to an adversary.

 The empirical evidence provided from these tests back up Johnston, et al., (2016)

who analysed ways to incorporate a NIDS within Xen. They took a theoretical look at

four potential locales to site the NIDS; (1) on the virtual network itself; (2) on the

Netback driver (incoming traffic into Dom0); (3) on the Netfront drive (incoming

traffic into DomU); and (4) on the hypervisor itself. They found that drivers could be

installed that allow packets to be copied between unprivileged guest domains,

meaning VM to VM traffic could be completely missed by a NIDS on virtual network,

on the Netback driver or on the Netfront driver. In agreement with this research they

propose the optimum location with maximum visibility for a NIDS is on the

hypervisor itself.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

120

PROBE #1

.101.100

.11 .12

.2 .3 .4.1

PROBE #2

DomU

Dom0

Figure 30. Location Test #1 - ICMP ping traffic captured by a probe in each tenant VM

where red signifies a successful ping that was not captured by the probes.

.101.100

.11 .12

.2 .3 .4.1

PROBE #3

DomU

Dom0

Figure 31. Location Test #2 - ICMP ping traffic captured by a probe on the LAN

where red signifies a successful ping that was not captured by the probe.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

121

.101.100

.11 .12

.2 .3 .4.1

PROBE #4 DomU

Dom0

Figure 32. Location Test #3 - ICMP ping traffic captured by a probe on a host server

where red signifies a successful ping that was not captured by the probe

and green signifies a successful ping that was captured by the probe.

.101.100

.11 .12

.2 .3 .4.1

PROBE #4 PROBE #5 DomU

Dom0

Figure 33. Location Test #4 - ICMP ping traffic captured by a probe on each host server

where red signifies a successful ping that was not captured by the probes

and green signifies a successful ping that was captured by the probes.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

122

.101.100

.11 .12

.2 .3 .4.1

PROBE #4 PROBE #5

PROBE #6PROBE #7

DomU

Dom0

Figure 34. Location Test #5 - ICMP ping traffic captured by a probe on each device

where green signifies a successful ping that was captured by the probes.

5.6 Probe Timing Test Methodology

In reconstructing the propagation of a bot across a network over time, the clocks of

the collection devices distributed throughout a network must be synchronised to allow

correlation of data flows by timestamps. In flow export, data packets are collected off

the wire at an Observation Point, such as a device network interface. It is at this

observation point, (i.e. the probe) that packets are pre-processed; which can include

time-stamping as well as any data manipulation such as aggregation, sampling or

filtering. One enhancement of IPFIX over NetFlow is the inclusion of security

mechanisms such as SCTP, as detailed in chapter 3. SCTP ensures that IPFIX

templates are sent reliably by improving end-to-end delay and count dropped packets;

whilst PR-SCTP (partial reliability SCTP) add a mechanism to skip packet

retransmissions (Santos, 2016). SCTP provides integrity of the flow data, mitigating

against tampering attacks and packet insertion attacks.

 If malware can impact data collection timestamps, it could successfully confuse the

reconstruction of time related events. SCTP does little to protect against these sorts of

timing attacks. Besides nefarious attacks, there may be occurrences in the cloud when

guest VM timers are out of synchronisation due to misalignment, clock drift or global

distribution across various time zones. Indeed, during testing of BotStack, it was

found that even though steps were taken during configuration to attempt the consistent

setting of clocks, some devices still had differing timers.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

123

 YAF uses the Libpcap library to timestamp each flow start and end time. Libpcap

itself is reliant on the underlying OS kernel clock. The following set of tests alter

clock timers on collection devices, to measure impact upon flow data timings across

various probes, in order to understand if NTP (Network Time Protocol) can protect

device synchronisation.

5.6.1 DATASET

As with the previous test, the dataset from this test was generated by systematically

polling probe devices using ICMP ping traffic. After which, the clock settings were

manually adjusted on either the servers or in the VMs, before repeating the test.

5.6.2 EQUIPMENT

The same test network, used in the previous probe placement tests, was used to test

probe timings. VM#1, on Server #1, was assigned 192.168.0.1. VM#2, on Server #2,

was assigned 192.168.0.4. VM#1 pinged VM#2 so that traffic must travel over two

separate servers with probes attached, as indicated by the green path in Figure 35.

192.168.0.1

PROBE #1 PROBE #2

Tenant

CSP

192.168.0.4

SUPERMEDIATOR

SERVER
#1

SERVER
#2

VM#1 VM#2

.101

.12.11

Figure 35. The logical architecture for the probe timing test environment

where green indicates the path taken by the ICMP ping traffic.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

124

Four clock alignment scenarios were tested:

 Server #1 and server #2 were both manually set to GMT, but not synchronised

to NTP;

 Server #1 and server #2 were both set to GMT and synchronised to NTP;

 Server #1 is set to GMT, Server #2 was set to GMT +7. Both synchronised via

NTP;

 Server #1 and server #2 were synchronised to GMT via NTP, whilst VM#1

and VM#2 were both manually allocated varying clock settings.

5.6.3 METHOD

The aim of this test was to understand how differences in device clock times impact

the ability to coherently understand device data output from a holistic view. The

independent variables were ICMP ping tests between devices. The dependent

variables were the varying clock settings under test. Flow diagram Figure 36

summarises the testing method.

The detailed probe timer testing method for all four test scenarios was:

(1) The clock timers on devices were set as per the test requirement. Where NTP

was required, clocks were synchronised to: ntp.anglia.ac.uk

(2) YAF was configured on the servers:

 Server #1: # yaf --live pcap --in xenbr0 --out timer_1.yaf

 Server #2: # yaf --live pcap --in xenbr0 --out timer_2.yaf

(3) Four ICMP pings were sent from VM #1 to VM #2

VM #1: # ping 192.168.0.4 -n 4

(4) & (5) Step 3 was repeated 5 times in total, every 60 seconds

(6) YAF was stopped;

(7) The resulting .yaf files were saved for later analysis.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

125

1. Set

Clock Timers

2. Start YAF

 on Probe #1

and Probe #2

3. Send

Four ICMP Pings

7. Retain IPFIX Data

for Analysis

6. Stop YAF

on Probe #1

and Probe #2

4.

Ping

Test Repeated

 5 times

?

NO

YES

5. Wait

60 Seconds

End

Probe Timer

Testing Method

Figure 36. Flow diagram of the probe timer misalignment test.

5.6.4 ANALYSIS

To understand the impact of clock time misalignment, the timestamps of the flow start

times were manually compared between probes on server #1 and server #2 during

each timing test.

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

126

5.7 Probe Timing Results

The results of the ping tests results for the four scenarios are provided in Tables 27 -

30. These tables showed ICMP ping traffic only, with all other network traffic

removed. In each of the four tests, four pings were sent five times, every 60 seconds.

For clarity of result presentation, sufficient ping traffic is detailed in order to show the

difference in timing, with other subsequent pings being removed. Additionally, flow

start times have been converted to EPOCH times for ease of readability.

 During the four tests, ICMP pings were manually issued via the command line. It

was not always possible to precisely time 60 seconds between each ping, hence not

every batch of pings occurs exactly 60 seconds after the previous batch. Results in

Table 30 offer an example of this, with 1 minute and 2 seconds between manual pings.

Minimal inconsistencies in ping timing initiation is not anticipated to impact test

results.

TABLE 27. TIMING TEST #1 - BOTH SERVER CLOCKS MANUALLY SET TO GMT

Note how ping #3 impacts ping #2 due to timestamp inconsistencies.

TABLE 28. TIMING TEST #2 - BOTH SERVER CLOCKS ARE SYNCHRONISED TO GMT, VIA NTP

Note how the ICMP pings are now synchronised and aggregated.

collector sIP dIP packets protocol sTime ping

Probe #1 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:41:19 1

Probe #2 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:41:19 1

Probe #2 192.168.0.1 192.168.0.4 4 icmp 08/19/2015 14:42:18 2

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/19/2015 14:42:18 2

Probe #1 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:42:19 2

Probe #1 192.168.0.4 192.168.0.1 2 icmp 08/19/2015 14:42:19 2

Probe #1 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:43:10 3

Probe #1 192.168.0.4 192.168.0.1 2 icmp 08/19/2015 14:43:10 3

collector sIP dIP packets protocol sTime ping

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 12:38:19 1

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 12:38:19 1

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 12:39:19 2

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 12:39:19 2

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

127

TABLE 29. TIMING TEST #3 - SERVER #1 SET TO GMT, SERVER #2 SET TO GMT +7, BOTH VIA NTP

Note that whilst server #2 is set 7 hours in front of server #1, the time zone difference

is not transferred to the ICMP timestamps.

TABLE 30. TIMING TEST #4 - BOTH SERVERS ARE SYNCHRONISED TO GMT, VIA NTP

BOTH VMS ARE MANUALLY ALLOCATED DIFFERENT TIMES

collector sIP dIP packets protocol sTime ping

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 14:23:59 1

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 14:23:59 1

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 14:25:01 2

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 14:25:01 2

Note how the different VM clock settings are not transferred to the ICMP timestamps.

5.8 Discussion

The IPFIX framework proposed in Table 24 comprised of individual open source

technology elements. The justification for the selection of each framework element is

detailed above. BotStack was designed to be modular, in that each element can be

replaced by another element where necessary. For example, a CSP may have an

existing relationship with a flow collection partner such as Plixer, who provide closed

source incident response forensics analysis software which integrates with IPFIX.

SuperMediator could be replaced with Plixer’s Scrutinizer software because IPFIX is

a ratified standard. It was discussed above, that the only open source IPFIX collectors

and exporters that are truly customisable are YAF and nProbe. A limitation of YAF is

that it is only supported on Linux. Again, a standards based approach to IPFIX allows

YAF to be replaced with nProbe, although not all YAF EE’s are available in the

nProbe template. Another limitation of YAF is the lack of documentation around how

to create customised EEs. This is also true of nProbe. It should be noted if an element

in BotStack is replaced, interoperability cannot be confirmed, as neither Scrutinizer

nor nProbe were tested with the framework elements. There is scope for creation of an

open source IPFIX exporter/collector pair that fully support the construction of new

EEs into an IPFIX template

collector sIP dIP packets protocol sTime ping

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 13:55:44 1

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 13:55:44 1

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 12:56:46 2

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 12:56:46 2

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

128

 The open source nature of BotStack makes it a practical test bed for academic

research. BotStack was constructed upon the premise of allowing IPFIX export to be

incorporated into CSP environments built upon an IaaS model. The flexibility

provided by the ability to replace framework elements allows BotStack to be ported to

other cloud service models that are built upon virtualised infrastructure, such as

Platform as a Service (PaaS) or Storage as a Service (SaaS).

 Evidence is provided in Chapter 5.5 that siting IPFIX probes upon virtual switches

within servers hosting guest VMs, provides optimal probe location in detecting botnet

propagation between tenanted environments. In a Xen environment, such as BotStack,

which utilises para-virtualisation, this means an IPFIX probe should be installed

within the hypervisor domain. Where full CSP infrastructure protection is required, an

IPFIX probe should be installed in each critical network device that requires

protection. Further work is needed to understand probe positioning in non-Xen

hypervisors that do not support para-virtualisation.

 Security mandates within RFC-7011 (Internet Engineering Task Force, 2013a)

should mitigate most of the known techniques by which malware can influence IPFIX

collection. IPFIX flows can be obfuscated via TLS encryption, mitigating packet

inspection and tampering, whilst SCTP mitigates against replay attacks and DDoS.

Note that whilst YAF supports both TLS and SCTP, testing these features is beyond

the scope of this thesis, as it is the manufacturer’s responsibility to provide

functionality against the IPFIX standard. However, malware continues to evolve to

take advantage of new attack vectors. One potential technique for future malware to

evade detection is to tamper with the timestamps of collected data.

 Tables 27-30 provide evidence that BotStack should be immune to malware

attempting timer misalignment attacks. This is primarily because the tenanted

environments take their clock timings from the host servers. If guest VM clocks are

manually set so as to be different to the host server clocks, the timestamps on traffic

captured by the probe is not impacted because probe packet timestamps are also taken

from the server (Table 30). Hence, an attacker could not attempt to mis-align probe

capture timings by amending clocks in a guest VM. Likewise, the probes are not

impacted by time zone variations. When server clocks are set to different time zones,

the difference between clocks in different zone are not transferred to the packet

timestamp (Table 29). This means that probes can be distributed across a global

network and export into a single data collection point without need to normalize

clocks before data analysis. However, server clocks should be synchronized via NTP

in order to ensure probe timing consistency. When clocks across multiple servers are

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

129

manually configured to be synchronization as close as possible, a small discrepancy in

clock times can impact the perceived probe capture timings. Table 27 shows how

ICMP ping traffic timestamps can be mis-interpreted by IPFIX aggregation engines

when server clocks are set manually, but this is rectified when server clocks are set via

NTP (Table 28). The impact of an attack on the NTP protocol itself was not tested. A

method for future malware to perform a timing attack would be to physically disable

NTP on the host device and force desynchronisation upon the host clocks. This could

be an additional device that periodically checks probe hosts for clock synchronisation.

A limitation of NTP is it only timestamps to millisecond precision. Precision Time

Protocol (PTP) is accurate to 100 nanoseconds. Whilst IPFIX supports capture at

nanosecond granularity (IANA_ID#156 and IANA_ID#157) no literature could be

found evaluating IPFIX nanosecond time-stamping. The expense of PTP enabled

hardware placed the testing of PTP beyond the scope of this study.

5.9 Summary

Chapter 1 identified the gap in the knowledge in the understanding of how the next-

generation of flow protocols, such as IPFIX, can be applied to botnet detection.

Having created two IPFIX templates for botnet capture in chapter 4, this chapter made

several contributions by addressing research objective #3; the construction of an

IPFIX export framework that enables the capture of botnet communication traffic

across cloud provider networks.

 The first contribution from this chapter was BotStack, a novel IPFIX framework

for CSPs. Each BotStack element is open source, with justification for inclusion

provided. However, the flexibility of BotStack permits each element to be replaced

with an alternative element should a CSP have a preferred vendor relationship, hence

easing the migration process from the CSP’s current environment to one that supports

IPFIX. Whilst BotStack was constructed for an IaaS model, the framework is flexible

enough to be incorporated into PaaS, SaaS or IoT type models.

 The second contribution was empirical evidence that the optimal siting of the

IPFIX probes is within the hypervisor of tenant hosting servers. This presents many

advantages. Removing the probe from the tenant environment not only negates any

tenant surveillance concerns and respects tenant privacy, but also reduces the probe

attack surfaces to malware housed within the tenant environment. A cost advantage is

presented as this requires fewer probes for maximum traffic visibility. Additionally, a

5. BOTSTACK: A NOVEL IPFIX FRAMEWORK

130

management advantages arises as fewer probes reduces complexities in correlating

multiple device data streams.

 The third contribution was evidence that locating the IPFIX probe within the

hypervisor reduces the risk of malware timing attacks. Whilst IPFIX security features

mitigate risks to the IPFIX data stream, they do little to protect the probe itself from

attack. Evidence shows that for as long as probes are synchronised via NTP, the

ability for malware to influence the timestamp on the data flows is minimised.

 The next chapter validates the interoperation of the BotStack framework created

within this chapter, with the BotProbe templates constructed in chapter 4. This is

achieved by deploying a real world botnet into a proof of concept network based on

the IPFIX framework, and analysing the results of traffic captured via the IPFIX

templates.

6. CONCEPT VALIDATION

131

6. Concept Validation

6.1 Introduction

Chapter 4 described the creation of two novel IPFIX templates for capturing botnet

communication traffic. Chapter 5 described the construction of an IPFIX framework

which introduces IPFIX traffic capture into a cloud architecture. This chapter

validates the interoperation of the BotProbe templates with the BotStack framework.

A proof of concept test network, constructed from the BotStack framework, is infected

with the Zeus botnet. BotProbe is used to capture botnet communication traffic, which

is presented both as a visualisation of the overall attack process, and as four distinct

profiles of a bot life cycle.

6.2 Botnet Life Cycle Model

Several scholars have defined the notion of a botnet’s life cycle (Feily, Shahrestani

and Ramadass, 2009; Liu, et al., 2009; Govil, 2007; Gu, et al., 2007). These models

primarily describe early life cycle processes, such as victim infection and C&C server

registration. However, a botnet generates collectable traffic throughout its entire life

cycle. The defining moment in a botnet life cycle is the attack phase, before which

detection and takedown should happen. As the most relevant model to this study,

BotHunter (Gu, et al., 2007) is extended to include latter life cycle elements, thereby

creating a four phase botnet life cycle model where each phase displays a distinct

traffic profile:

 Scanning, where the bot scans for propagation options (Gu, et al., 2007);

 Infection, when the victim downloads the bot, which then registers with the

C&C server (Gu, et al., 2007);

 Maintenance, including bot keep-alive beacons, software updates;

 Attack, includes the bot attack, such as DDoS, and post attack actions, such as

transfer of stolen data back to the C&C server.

6

6. CONCEPT VALIDATION

132

6.3 Proof of Concept Validation Methodology

6.3.1 DATASET

The experiment used the Zeus Crime-wave Toolkit v2.0.8.9. The toolkit includes the

Zeus C&C panel software, allowing the researcher to retain full control of the bot

across its entire life cycle. Zeus was first discovered in 2007 stealing banking

information via a man-in-the-browser attack. Despite its age, new active Zeus C&C

servers are still being discovered, making this a suitable target botnet as a test subject.

6.3.2 EQUIPMENT

A proof of concept test network was constructed using the BotStack components

outlined in Table 24. The logical architecture for this network is described in Figure

37. Two Dell PowerEdge R710 servers, each with four Intel Xenon 5160 3.0GHz

CPUs and 8GB RAM, ran Ubuntu 14.04 LTS desktop operating systems. Xen 4.4.0,

the XAPI toolstack, Open vSwitch v2.0.2 and YAF v2.8.4 were installed into Dom0.

Each server was configured with five VMs. Server #1 held IP addresses 192.168.0.11x

and server #2 held 192.168.0.12x. Server #1 had a Windows XP Pro SP3 VM acting

as the botmaster C&C server. This VM had Zeus Toolkit v2.0.8.9 installed, by which

a bot.exe binary was created and configured to call back to the C&C server every 60

seconds. The remaining nine VMs were Windows 7 Pro SP1. XenCentre v6.5 was

installed on an additional PC to manage the VMs. The network was configured as a

flat 192.168.0.0/24 network.

XenCentre

DOM-U

DOM-0
YAF: C1

HOST SERVER

OVS
xenbr0

.111 .112 .113 .114 .115

.110

DOM-U

DOM-0
YAF: C2

HOST SERVER

OVS
xenbr0

.121 .122 .123 .124 .125

.120

.119

C&C

Figure 37. The logical architecture for the proof of concept network.

6. CONCEPT VALIDATION

133

6.3.3 METHOD

The aim of this test was to provide demonstrable evidence of the inter-workings of the

IPFIX framework and IPFIX template in capturing the four phases of a botnet life

cycle. The dependent variables in this test were the test network and capture methods.

The independent variables, which are the source codes of the bots, were constrained to

a single bot (Zeus v2.0.8.9). The test could have been performed with a range of

various bot C&C server types to compare traffic profile signatures. Figure 38

summarises the testing method. The detailed proof of concept testing method was:

(1) Each server was configured using a bash script

 # bash startup.sh

The bash script (Appendix E) configured Open vSwitch with the appropriate VIF

settings and synchronised the server clocks with an NTP clock on the Internet;

(2) Each of the 10 VMs were launched. ICMP ping tests confirmed connectivity;

(3) YAF was configured to export IPFIX to the local server:

yaf --live pcap --in xenbr0 --out pocflow.yaf --rotate 60

-v --plugin-name=/usr/loca/lib/yaf/dpacketplugin.la

--applabel --max-payload 65535 --tls

 --applabel and --max-payload are both required for dpacketplugin.la;

 --rotate 60 = saves pocflow.yaf every 60 seconds;

 --tls = encrypts IPFIX traffic using TLS

(4) The scanning phase is simulated by the C&C VM using nmap in stealth mode:

 # nmap -sS 192.168.0.112-115

(5) The infection phase is simulated by three VMs (192.168.0.113, 192.168.0.121,

192.168.0.122) downloading the bot.exe binary from the XP VM (192.168.0.111);

(6) The maintenance phase is simulated by leaving the network to run for a period

of 10-20 minutes in order to generate bot keep-alive traffic;

(7) The attack phase simulated a DDoS attack from infected VMs upon a victim:

ping -n 5000 -l 1500 192.168.0.125

(8) YAF was terminated to stop traffic capture;

(9) IPFIX templates (Appendix C) were applied to create data for analysis:

 # super_mediator --config botprobe.conf

 # super_mediator --config extended.conf

6. CONCEPT VALIDATION

134

2. Launch VMs

4. Botmaster

Executes NMAP

5. Bot Binary

Download

3. Start Traffic

Capture

#1 Scanning

BOT LIFECYCLE
PHASE

#2 infection

#3 Maintenance

#4 Attack

6. Bots Generate

Keep-alives

7. Bots DoS

Victim

8. Stop Traffic

Capture

9. Create Analysis

Data

1. Boot Test

Network

End

Proof Of Concept

Testing Method

Figure 38. Flow diagram of the Zeus botnet traffic capture test.

 Traffic capture in a live network meant that it was anticipated that background

noise from Windows VMs and other networked devices may obfuscate bot traffic. To

maintain a realistic scenario, no attempt was made to reduce or eliminate this

background noise, as the background noise anticipated in this test will also be present

in a CSP network. Zhao, et al., (2013) suggested a realistic test environment can be

created by introducing HTTP web browsing traffic, online gaming packets, bit torrent

clients and email traffic. This was considered overkill for this proof of concept test.

 The Zeus bot was under the control of the researcher throughout the test, via the

Zeus C&C panel. This control over each bot activity meant that the bot’s behaviour

6. CONCEPT VALIDATION

135

was predictable and consistent each time a test was performed. Therefore, the proof of

concept test method was only performed once.

6.3.4 ANALYSIS

To confirm the interoperability between the IPFIX framework and IPFIX template, the

exported IPFIX traffic was manually interpreted to identify the four phases of Zeus

bot life cycle over time; scanning, infection, maintenance and attack. The overall life

cycle timeline was visually displayed as an arc diagram. Each of the four life cycle

model profiles were visually displayed as individual property graphs of each phase.

6.4 Proof of Concept Results

The exported IPFIX data was passed through SuperMediator using both the BotProbe

and extended BotProbe templates. When the entire captured IPFIX dataset is plotted

over time, see Figure 39, the phases of the life cycle are visible. The arc diagram

displays the C&C server (.111) scanning the network via TCP SYN, the HTTP traffic

between the three VMs (.113, .121 and .122) and the C&C server (.111) in the

infection phase, followed by considerable ICMP ping traffic between the three VMs

and a victim (.125) during the attack. The behaviour displayed in this diagram

indicates that the VMs downloaded a botnet binary from the C&C server which was

then used to attack the victim. The BotProbe template yields an identical arc diagram

as the extended BotProbe template, as both templates feed from same captured IPFIX

dataset. The extended BotProbe template providing more application layer detail,

which the BotProbe template uses port numbers to identify the application.

.111 .112 .113 .114 .115 .121 .122 .123 .124 .125

KEY
TCPSYN
HTTP
ICMP

Figure 39. Arc diagram of the entire botnet infection.

6. CONCEPT VALIDATION

136

 The property graphs in Figure 40 were created through manual interpretation of the

exported IPFIX data, in order to visually display the traffic profiles across each bot

life cycle phase. Figures 39 and 40 are discussed in Chapter 6.5 below.

Scanning - timeframe 15:00:01 - 15:10:30.

Infection - timeframe 15:15:01 - 15:16:03.

Maintenance - timeframe 15:31:00 - 15:41:00.

Attack - timeframe: 15:45:01 - 15:47:03.

Figure 40. Four botnet life cycle profiles visualised through IPFIX export data.

KEY
PROTOCOL: flows

.113

.114

.115

.112

.111

HTTP: 1

HTTP: 5

HTTP: 1

.111 .113

.113.111
HTTP: 10

6. CONCEPT VALIDATION

137

6.5 Discussion

Bot authors generally concentrate their efforts on development of the bot at a code

level; getting a bot to perform a new task, to employ better obfuscation methods, or to

utilize a new communications channel protocol. However, fundamental botnet

communication characteristics have remained unchanged.

 BLINC, (Karagianis, Papagiannaki and Faloutsos, 2005) generated a library of

traffic profile signatures using visual representation of traffic profiles, by plotting

srcIPv4 and dstIPv4 for various applications. This library describes many network

applications, but unfortunately omits botnets profile signatures.

 The property graphs in Figure 40 were created using a similar method to BLINC,

by manually plotting the nodal communications from the exported IPFIX capture of

botnet traffic. Each node represents an IP address on the network, with the edges

representing the size and direction of traffic communication, typically by protocol.

When considering the nodal and edge distribution over time it is possible to observe

the four distinct traffic profiles of a botnet attack lifecycle, as describes in Chapter 6.2

above.

 The scanning phase (Figure 40, top) is clearly depicted via short bursts of TCP

SYN traffic from a single node (the C&C server in VM .111) to multiple IP addresses.

This matches the expected traffic profiles as expected from the NMAP command

issued during the tests. The infection phase (Figure 40, upper middle) depicts the

C&C server infecting a victim VM .113, with the victim reporting back to the C&C

once the botnet .exe has been installed. Likewise, with the maintenance phase (Figure

40, lower middle), short HTTP update packets were seen from the victim to the server

once a minute over the 10 minute testing phase. The attack phase (Figure 40, bottom)

shows, over a period of two minutes, the C&C issuing attack commands to three bots

which perform an ICMP denial of service on a victim. This compares well with the

attack signature created by BLINC (Karagianis, Papagiannaki and Faloutsos, 2005),

as shown in Figure 41 below. BLINC shows a single host scanning an address space

to identify vulnerabilities, followed by an attack on a single destination port. The

difference between Figure 41 and Figure 40, is that the volume of ICMP DOS traffic

in Figure 40 is represented by the thickness of the edge between the nodes.

6. CONCEPT VALIDATION

138

 The arc diagram in Figure 39 is an alternative interpretation of the IPFIX export

data collected from the botnet attack. Compared with Figure 40 which shows the four

attack phases as independent events over time, Figure 39 displays the entire timeline

of the infection in one diagram. A cursory glance at the traffic profiles in Figure 39

shows what could be “normal” peer-to-peer network traffic between a server (node

.111) and clients. It is only when protocol information captured from the packet

header using the BotProbe template, is overlaid onto the arc diagram, that strong

evidence of anomalous traffic becomes apparent. Protocol information in the arc

diagram suggests that one VM (.111), which is not a server, contacts another three

VMs (.113, .121 and .122) via HTTP. After which, these three VMs send high

volumes of ICMP data to a fifth VM (.125). This traffic could be a legitimate file

transfer over HTTP, although the ICMP ping traffic to the victim VM suggests

suspicious activity. This activity can be confirmed as malicious when more detailed

HTTP information, captured via the extended BotProbe template, is applied. Analysis

of the HTTP requests show the victim requesting the configuration files and bot

executable from the C&C server:

 GET /cfg1.bin HTTP/1.1

 POST /index.php HTTP/1.1

 GET /bot.exe HTTP/1.1

 This GET/POST conversation is as is expected from the basic set up of Zeus bot in

the proof of concept test. This corroborates with the findings of Binsalleeh et al,

(2010) and Falliere and Chien, (2009) in their dissection of the HTTP Zeus botnet.

 The full opportunity for applying IPFIX data as a feeder mechanism into botnet

detection using graph theory has not yet been explored. Collins and Reiter (2007)

Figure 41. Traffic scanning and attack profile.

(Karagiannis, Papagiannaki and Faloutsos, 2005)

6. CONCEPT VALIDATION

139

demonstrated how a bot impacts a graph’s structure by connecting otherwise

unconnected components. Françios, et al., (2011) feed weightings based on nodal

neighbours into a PageRank algorithm to detect botnets. Their work is based on

number of neighbours, as opposed to any specific traffic attributes. Botyacc,

(Nagaraja, 2014) used separated spatial and temporal metrics in property graphs to

separate benign from malicious P2P traffic. IPFIX provides several mechanisms to

extend the study of graph-based botnet detection. IPFIX is able to capture of any

number of yet unstudied traffic attributes and characteristics, of which some may be

malicious activity indicators.

 IPFIX exports data in a highly structured format, meaning IPFIX can be easily

applied to two new avenues of botnet research. Structured data makes it easier to feed

IPFIX export data directly into graph database systems for visualisation and data

querying of botnet propagation. Work is underway to channel the feeds from multiple

IPFIX probes distributed across a network into graph analysis software such as neo4j8,

with which it should be possible to visualise the bot life cycle as the bot propagates

across a network in real-time. Additionally, as IPFIX data is highly structured, it

makes it more suited, than unstructured packet capture traffic, to feed into detection

engines. This provides possibilities for new machine AI engines that can be trained to

recognise patterns. One such challenge in botnet detection is the issue of application

beaconing. Beaconing impacts the number of false-positive events in botnet detection

as a legitimate application behaves in a similar way to a botnet C&C, with regular

keep-alive traffic between the server and client. The combination of IPFIX with graph

theory may open up new areas of research for AI to distinguish legitimate application

beaconing to malicious botnet updates, particularly when post-beaconing events are

included in the analysis. Whilst an AI can be trained to recognise patterns, in security

data analysis a human mind is still required to interpret the patterns found within

(Collins, 2014). These are discussed in more detail in Chapter 7 - Future Work.

6.6 Summary

Chapter 1 identified a gap in the knowledge in the understanding of how the IPFIX

protocol can be applied to botnet detection within CSP infrastructures. The

contribution from this chapter came in addressing research objective #4 in validating

the effectiveness of BotProbe and BotStack as a botnet traffic capture mechanism that

can be deployed within a typical CSP environment. The results of data analysis in

8 https://neo4j.com/

6. CONCEPT VALIDATION

140

Figure 40 confirmed that botnet traffic was captured across each phase of a four phase

bot life cycle: scanning, infection, maintenance and attack. The traffic profile results

achieved by the BotProbe template were comparable with the NetFlow v5 findings of

BLINC (Karagiannis, Papagiannaki and Faloutsos, 2005). The key difference being

that each NetFlow v5 flow captured by BLINC was 48 bytes in length, compared with

the BotProbe template which was 43 bytes and contains considerably more

information. This chapter has also demonstrated how suspect traffic can be more

rigorously interrogated at the application layer using the extended BotProbe template.

Whilst data from the BotProbe template is sufficient to insinuate the presence of a

botnet in one of more of the four life cycle phases, capture of HTTP GET statements

in the extended BotProbe template provide further confirmation that this traffic is

indeed of bot origin. This provides evidence to the argument that CSPs could provide

a higher level of threat detection should tenants be willing to disclose a minimal

amount of application/payload data.

 The test undertaken in this chapter was performed as a proof of concept, in a cloud

environment. Whilst the IPFIX framework was constructed from open source

technologies that are common in a cloud infrastructure, the framework does not cover

all technology possibilities. The framework is modular, providing flexibility to replace

certain aspects, thus providing a platform to test IPFIX in various environments; such

as different hypervisors, vswitches or IPFIX exporter/collector pairs. Furthermore,

EEs bring flexibility to IPFIX template construction allowing the testing of new

attributes that may assist in botnet detection.

 The final chapter draws conclusions from all the evidence collated within this

thesis, indicating areas for further development.

7. CONCLUSIONS

141

7. Conclusions

The first chapter in this thesis outlined a gap in the understanding of how IPFIX

export can be applied to botnet traffic capture. The IPFIX protocol, ratified as RFC-

7011 through RFC-7015 in 2013, is the present standard for flow export. As IPFIX

was specifically designed to overcome weaknesses in the much older NetFlow export

protocol, a hypothesis was presented that IPFIX should offer clear advantages over

NetFlow. The originality of this work came from investigating how IPFIX is superior

to NetFlow in the construction of a botnet capture mechanism. Evidence of similar

investigation by other researchers prior to this study could not be found.

 The motivation to move this study into a cloud service provider environment arose

as more organisations and individuals opt to outsource some, or all, of their IT

requirements to the cloud; be that for storage, on-demand processing power or for

cloud-hosted software services. These three factors are all contributors toward the

cloud becoming an important element of the Internet of Things and smart city area

networks. Traditional signature-based malware detection systems do little to protect

these areas from botnet attack.

 This final chapters states how the evidence collated throughout this research project

demonstrates real advantages of the IPFIX protocol over NetFlow for a novel

methodological approach to botnet traffic capture in cloud service providers. This is

presented through four original contributions to knowledge. Limitations of the study

are then considered, along with various areas for future study in the application of

IPFIX to botnet detection. This thesis closes with concluding remarks on the impact

and importance of this work.

7

7. CONCLUSIONS

142

7.1 Contributions to Knowledge

This study set four research objectives to answer the hypothesis that IPFIX offers

advantages over NetFlow v5 for botnet communication traffic capture in a CSP

environment. Through evidence provided in earlier chapters towards validating this

hypothesis, four original contributions to knowledge are made, as detailed below.

Contribution #1 - Evidence from a critical investigation into IPFIX state of the

art, to suggest that the design of the IPFIX export protocol has advantages over

NetFlow v5, when applied to botnet communication traffic capture in cloud

provider networks.

Addressing research objective #1, chapter 2 investigated the risk of botnet attacks on

cloud service providers, arguing that internal cloud infrastructure is vulnerable to

attack; in particular storage or co-resident tenants. This attack vector occurs mainly

due to software vulnerabilities in hypervisors. The Crisis malware (Katsuki, 2012) and

Venom (CVE-2015-2456) being two such examples. Dillion and Winters (2014)

considered how trends to offload network edge-device intelligence to the cloud will

allow devices and sensors to be built that require lower CPU capability and thereby

reducing power consumption. In 2016, the Mirai botnet demonstrated the potential of

damage from IoT hosted botnets (Mansfield-Devine, 2016). The impact of bot attacks

is not just limited to CSPs. As home networks increase, TVs, thermostats, smoke

alarms, and Internet connected white goods such as toasters and fridges, all become an

attack surface for botnets. The future will see cloud centralised data storage as an

essential building block in the IoTs. This will increase the likelihood of attacks upon

CSPs. Much of this analysis in Chapter 2 has been presented at CFET 2014 (Graham

and Winckles, 2014; Graham, Winckles and Moore, 2014) and OWASP 2014

(Graham, 2014).

 Scholars have known that NetFlow is limited in its application to threat detection

(Velan, 2013; Gates, et al., 2004), proposing that IPFIX will become a superior in

next-generation networking (Velan, Jirsik and Čeleda, 2013). With cloud provider

attack vectors mapped to chapter 2, chapter 3 compared the design enhancements of

IPFIX with NetFlow v5 and NetFlow v9. This critical investigation revealed seven

areas where IPFIX offers direct advantage over NetFlow. When these advantages are

applied to the creation of a botnet traffic capture mechanism for a cloud provider, the

standards-based approach of IPFIX becomes important to ensure vendor

interoperability. The impact of a standards-based approach is highlighted in Chapter 4,

7. CONCLUSIONS

143

where the BotProbe template is constructed to work with the YAF IPFIX exporter, but

standardisation allows this template to be ported to the nProbe IPFIX exporter.

 Another key advantage of IPFIX is template customisation. Chapter 3 argues that

template customisation overcomes the rigidity of the fixed NetFlow v5 template.

Support in IPFIX for enterprise element creation and variable length fields should

allow the efficient capture of botnet application layer traffic attributes, such as HTTP

GET statements. A condensed version of the comparison between IPFIX and NetFlow

was presented at BotConf 2015 (Graham, Winckles and Sanchez, 2015b).

 During the course of this research, it became evident that IPFIX can be applied to

multiple threat detection scenarios. Work is underway to create IPFIX templates to

capture spam traffic and malicious HTTP traffic. This granularity for defining and

controlling attribute capture opens up IPFIX traffic to analysis through machine

learning, which ultimately leads to automation of more repetitive, menial Security

Operation Centre (SOC) work.

Contribution #2 - BotProbe, a novel IPFIX template for botnet communication

traffic capture in cloud provider networks.

Chapter 4 addressed research objective #2 through the construction of the BotProbe

templates. These templates are a clear advance in technology as demonstrated by the

performance test results. Evidence is provided to suggest that the algorithm attributes

captured in all previous botnet detection research can be captured more efficiently

with IPFIX, whilst still maintaining the original integrity of the detection algorithms.

Efficiencies come not only in reduced data volumes, but also from improvements in

data capture processing times. The BotProbe template exhibited an average reduction

in data volumes of 14.06% ± 0.01%, with a processing time reduction of 26.73% ±

0.03% against NetFlow v5. Against PCAP, the BotProbe template measured an

average reduction in data volumes of 92.95% ± 0.22%. These empirical results were

measured from publically available datasets, permitting high repeatability of these

results.

 A high-speed data network requires multiple traffic capture devices to be

distributed across the infrastructure. Multiple probes can capture TBs of data during

the course of a day, making threat detection in network traffic a big data challenge.

The evidence presented in Chapter 4 would indicate that BotProbe not only reduces

data storage for CSPs, but has the potential to turn big data analysis into manageable

data analysis.

7. CONCLUSIONS

144

 IPFIX has the potential to change the dynamics of botnet detection. Up until now,

botnet detection algorithms have been constructed based upon the attributes available

through the traffic capture techniques. Where PCAP is used, all attributes in an entire

network packet are available to the detection algorithm, although at a cost of high data

volumes. With NetFlow v5, data volumes captured are considerably reduced, although

at the cost a fixed subset of 18 attributes available to the detection algorithm. IPFIX

offers the best of both solutions, allowing more granular capture of any of the

attributes in a network packet, through IEs and EEs. Thus resulting in reductions in

capture data volumes. This means that detection algorithm creation is no longer

limited to the attributes available in the capture mechanism. This study demonstrates

how detection algorithms can now dictate which attributes to capture; opening the

opportunity for creation of more accurate detection algorithms that utilise data from

multiple layers of the OSI (Open Systems Interconnection) model. As new application

layer EEs are created for threat detection, there is scope for IANA to consider the

standardisation of some of these EEs to ensure IPFIX template portability. Versions of

the BotProbe templates were presented at BotConf 2015 (Graham, Winckles and

Sanchez, 2015b).

Contribution #3 - BotStack, a novel, modular IPFIX export framework for

botnet communication traffic capture in cloud provider networks.

Chapter 5 addressed research objective #3 through the construction of the BotStack

IPFIX framework. This modular framework architecture is built upon open source

components commonly found in CSPs, to allow IPFIX to be built into existing cloud

stacks. Steinberger, et al. (2013) claim that flow protocols, such as NetFlow, are used

by over 80% of network operators to capture network traffic management and

reporting statistics. This familiarity makes the migration shift from NetFlow to IPFIX

a small step for CSPs, rather than a huge uplift of the entire network to a new

unfamiliar technology.

 The concept of constructing a traffic capture mechanism for CSPs came from

conversations with several cloud providers, who articulated that a current challenge is

the detection of botnets in a multi-tenant environment with data privacy sensitivities.

More recently, cloud providers have been approach by customers offering some

degree of access to payload data in return for enhanced security protection; tempered

by the proviso that payload access is for legitimate detection purposes and this

information does not leak out of the trusted CSP domain or erode civil liberties. In

7. CONCLUSIONS

145

September 2016, the Anti-botnet Working Group of the CSA, undertook a survey to

understand the views of over 300+ cloud customers on such trade-offs. At the time of

the completion of this thesis, the results of this survey have yet to be published.

Whilst the BotProbe template was constructed for use in privacy sensitive

environments, the extended BotProbe template demonstrates the potential of IPFIX to

capture detailed application layer information on botnets.

 A comprehensive security strategy is built upon defence in depth, with multiple

security solutions working together. BotStack is built to complement other security

solutions that CSPs may choose to deploy such as AV, IPS or IDS. The BotStack

framework was presented at IEEE INDIN 2015 (Graham, Winckles and Sanchez,

2015a).

Contribution #4 - Empirical evidence for siting IPFIX exporters on the host

device hypervisor for maximum traffic visibility.

Chapter 5 also addressed research objective #4. Key traffic visibility profiles in a

network were assigned a weighted factor. With IPFIX exporters at various locations

across a network infrastructure, empirical data was gathered to understand the capture

probes visibility of network traffic. Evidence gathered indicates that maximum traffic

visibility is obtained with an IPFIX exporter on each network device. However, the

optimum siting of the exporters in a multi-tenant CSP network, for maximum traffic

visibility for the least number of exporters, comes from siting IPFIX exporters on the

host device hypervisor connected to a vswitch tap port. In a large network, an increase

in distributed exporters not only means higher data volumes captured, but data

requires more co-ordinated prior to analysis as probe numbers increase. Traffic

capture through fewer exporters further addresses the big data challenge in traffic

capture. Placing an exporter within a tenant VM not only raises both privacy and

surveillance concerns, but makes the exporter highly visible to attack. A distinct

advantage of siting an exporter outside the virtualised environment is it lowers this

attack visibility. Additionally, siting an exporter on a CSP infrastructure host device

further reduces a probes visible attack surface to network-based malware. Exporter

location optimisation was performed on a flat network, with no broadcast domain

restrictions or VLANs, which may impact traffic visibility.

 Chapter 5 also demonstrated that exporters sited on a host device are less

susceptible to timer tampering attacks. Malware that specifically attacks flow export

devices is as of yet unknown. However, as the concept of network as a sensor gains

7. CONCLUSIONS

146

traction, attacks against flow export should be anticipated. Although contribution #1

highlighted the security features that IPFIX offers over NetFlow, work is required to

understand possible flow export attack vectors, particularly on public infrastructures

such as smart cities. Work is also necessary to understand the impact upon flow traffic

visibility should one of a distributed set of exporters be compromised, possibly

suggesting a device to monitor all exporters against attack. Exporter siting location

findings were presented at IEEE INDIN 2015 (Graham, Winckles and Sanchez,

2015a).

7.2 Limitations of the Study

The statistical analysis results used towards the BotProbe template creation were

reliant upon the datasets that are analysed. This study chose to use datasets provided

by CTU University, Prague, for reasons outlined in chapter 4. The reliability of the

datasets are not in question; the source was reliable and these datasets have been used

in other academic studies, including García and Pechuocek (2016); Kirubavathi and

Anitha (2016); Haddadi and Zincir-Heywood (2015). Using a dataset that is available

to other academics ensures high repeatability of the results in this study by other

researchers.

 One consideration of the dataset was that, although CTU University captured this

data from real botnets in the wild, capture was performed in a laboratory environment.

This makes the datasets cleaner than datasets captured in a live network, where the

number of background processes in the laboratory network would be less than

expected in a real world network. In a real world network, more background noise

may be represent from applications, such as beaconing (see the following section on

Future Work). Background noise was not deemed to impact the results of this study,

as the high number of botnet flows analysed should minimise the influence from non-

bot traffic. VirusTotal confirmed that each sample in the study does indeed contain

botnet malware. Appendix B lists the suspected bot variants for the bot samples

analysed during template creation. CTU continue to issue new datasets on a regular

basis and work should continue to correlate these new datasets to further enhance the

capture features of the BotProbe templates. The Zeus bot that formed the dataset in

Chapter 6 was from the older Zeus C&C bot, as opposed to the more recent P2P

GameOver Zeus bot. There are few bot C&C servers available for academic research,

Zeus C&C server was one such readily available malware. Acquisition methods of

more recent C&C server software is ethically questionable.

7. CONCLUSIONS

147

 The templates constructed in chapter 4 and the framework constructed in chapter 5

were both presented with limitations by the IPFIX tools that are available through

open source. The scope of the framework confined the study to open source tools to

allow code modification as required. The number of open source tools that support

IPFIX in any real capacity, such as a wide range of traffic contextual IEs and support

for EE creation, was limited to nProbe or YAF. Commercial IPFIX tools provided no

advantage in this study. YAF was chosen for this study for reasons outlined in Chapter

5. The study could have been undertaken with nProbe, although with a lower number

of IEs and EEs available for study. Even with the tools available, this research only

studied a proportion of the 433 IEs defined by IANA, and the almost limitless number

of EEs available for construction. Overall, the number of IEs and EEs available to

study was sufficient to construct an effective template. Work continues to create new

EEs to extend this study.

 Another limitation in the operation of BotProbe is a challenge faced by all botnet

researchers; that of botnet detection evasion techniques. Signature detection and

traffic capture detection are usually subverted through payload encryption. As

BotProbe has been designed to capture traffic on a local area network infrastructure,

the likelihood of traffic being encrypted is lower. However, payload encryption is

primarily a limitation to the extended BotProbe template that uses application layer

protocols from the payload, rather than just packet header information that is unlikely

to be encrypted. If packet header data is encrypted, both templates will be impacted. A

typical scenario could be a bot using a Virtual Private Networks (VPNs) or a Tor style

network, to conceal IP addresses (Casenove and Miraglia, 2014). Most of the

detection experiments listed in Table 2 also suffer from this limitation. Bots may

employ HTTPS to evade detection, however techniques such as TLS inspection have

been used to decrypt HTTPS traffic on some devices. The impact of encryption on

data capture was out of scope for this work, but does require further study. A method

of limiting the impact of encryption would be to limit the template to packet header

data only, as in the BotProbe template, although this opens up an argument about how

restricting botnet capture to layer 3 traffic attributes could impact the performance of

detection algorithms. Other probe evasion techniques may exist through flow integrity

tampering, such as introducing deliberate delay, insertion of fake packets or timing

attacks. These should be mitigated by built-in security features of IPFIX such as

SCTP, as documented in RFC-6526 (Internet Engineering Task Force, 2012).

7. CONCLUSIONS

148

7.3 Future Work

The contributions to knowledge established from this research project open up several

further avenues for research.

7.3.1 CLOUD NEUTRALISATION ECO-SYSTEM

A research project is underway at Anglia Ruskin University to construct a conceptual

eco-system to protect CSPs from botnets, as described in Figure 42. The research

presented in this thesis forms the traffic capture element of this eco-system. An

advantage of IPFIX over both NetFlow and PCAP, as described in Chapters 3 and 4,

is that the highly structured format of exported IPFIX data presents itself favourably

for analysis. Work is in progress to interface exported IPFIX data with deep learning

neural network algorithms. There are two distinct areas where machine learning is

applicable to the construction of the eco-system.

 The BotProbe template constructed within this study has been constructed from a

snapshot of previous botnets. But, bots are adaptive adversaries. As bot technology

evolves to evade detection techniques, new attributes will become available that

indicate new characteristics of these botnets. Work is underway to understand how

machine learning can be applied to adaptive capture templates. A machine learning

algorithm will monitor both traffic field occupancy and field variable duplicity

correlation to adapt the capture template in real-time to ensure the most relevant

traffic attributes are captured for feed into a botnet detection algorithm. This will

involve the construction and study of new protocol specific IPFIX EEs, in particular

for HTTP and SMTP.

 Secondly, work is underway to apply machine learning to botnet detection. An

algorithm takes threat intelligence information from honeypots, networks and other

open source threat intelligence feeds to determine the most efficient and effective

botnet characteristics and signature profiles. This algorithm will feedback into the

adaptive capture engine to ensure optimum attributes feature in the IPFIX template,

and feedforward into a neutralisation engine that uses Software Define Networking to

dynamically reconfigure the network to contain the threat or forward the threat onto a

honey-net for further analysis.

7. CONCLUSIONS

149

Traffic Capture
(BotProbe & BotStack)

Threat Intelligence
(Network-as-a-Sensor,

Honeypots)

Machine Learning

(Bot Detection AI)

Neutralisation
(SDN, Honeynets,
VM Placement)

Figure 42. Conceptual botnet mitigation eco-system.

 BotProbe has potential application to the field of network forensic investigations.

PCAP is often used in legal interception, such as ISP lawful data interception.

However, huge data volumes are a drawback as the data requires both storage and

analysis. Data reduction achievable through BotProbe positions IPFIX templates as

either a replacement for PCAP as a more targeted data interception approach, or as a

complimentary tool in packet capture for PCAP indexing; to support the retrieval of

data in PCAP data mines. Similarly, reduced data volumes from targeted data capture

through BotProbe open up new applications in pre-attack forensics. The data volumes

involved in PCAP prohibit the use of packet capture to capture network forensics

before an attack. As BotProbe is able to reduce data volumes by the quantities shown

in this study, IPFIX could be left to continually export network parameters for use in

attack post-mortems to understand how the threat was able to infiltrate the network. In

particular, this study demonstrated in Chapter 5 how IPFIX export can be incorporated

into the hypervisor.

7. CONCLUSIONS

150

7.3.2 BOTNET DETECTION

The flexibility in IPFIX template construction will allow new botnet traffic

characteristics to be captured that have as yet been unavailable for detailed study due

to difficulty of capture in NetFlow v5. This, in itself, opens up several avenues for

further work:

 Benign application beaconing, such as keep-alives, can impact botnet detection

algorithms that rely on network traffic attributes. The capability of IPFIX to

query traffic at the application layer could improve detection algorithms by

reducing false positives associated with application beaconing;

 A botnet takedown strategy is dependent upon the botnet population size. In

turn, bot population measurement depends on the accuracy of the detection

technique (Koo, Chang and Liao, 2012). IPFIX accommodates capture of IPv6

attributes that may go to addressing some of the shortfalls in botnet population

estimates that occur from IPv4 techniques such as NAT, DHCP and dynamic

DNS;

 Graph databases are particularly suited to the data structures and queries in

security threat analysis (Collins, 2014), as evidenced in Chapter 6. If IPFIX

can automate the study of the less understood traffic attributes, it may lead to

advances in understanding of graph theoretic structures as a method to model

and detect botnets. Developing a graph theory-based algorithm for detecting

bot clusters in a network represented as a digraph or adjacency table lends

itself to rigorous analysis by complex queries;

 Software-based IPFIX exporters have application beyond botnet detection. A

software approach to IPFIX probes make them cheaper to deploy than the

“thick” probes currently used to collect PCAP. The small footprint of the core

IPFIX export software means it can be deployed on low power devices, such as

Internet of Things sensors. Likewise, small footprint, low CPU requirement

IPFIX export software could be applied to Industrial Control System

infrastructure to monitor key characteristics against attack. Work is underway

to study the suitability of IPFIX EEs to capture SCADA and Modbus traffic

for threat detection in vulnerable critical infrastructure systems.

7. CONCLUSIONS

151

7.4 Concluding Remarks

Security models change to adapt to new adversaries. Security is no longer about

simply securing endpoints; the number of networked and interconnected devices is

rising and technologies such as IPv6 and the IoTs means there will soon become too

many end devices to reliably protect. Security is no longer about securing the network

perimeter; AV software, IDS and firewalls become more difficult to implement as the

demarcation of the network perimeter become blurred. Malicious attack profiles are

changing. New technologies and poor security practices introduce new vulnerabilities

on top of existing unpatched vulnerabilities. The Mirai botnet was one such example

of exploiting poor security implementations, with the impact felt worldwide. Reliance

upon CSP and IoT services is only going to increase. Signature-based anti-virus,

provide some level of protection to end devices, but contributes little towards botnet

eradication. In an ever changing threat landscape, new techniques are needed to

complement existing security methods.

 The impact from the contributions to knowledge of research project are far

reaching. Botnets are a threat at an economic level for business and organisations, as

well a societal level threat for an increasing amount of users that reply on services

outsourced to the cloud. Internet Service Providers have a voluntary code of conduct

to tackle the botnet threat. Whilst no such code exists for Cloud Service Providers, the

advanced made through this research project are the cornerstone for a CSP botnet

mitigation platform. The results from this study demonstrate opportunities for new and

more accurate botnet detection algorithms using botnet characteristic attributes that

have up to now been difficult to capture. In January 2017, the outputs from this

research study were contributory towards obtaining funding from the UK government

Department of Culture Media and Sport (DCMS) and Innovate UK, to benchmark the

viability of commercialising this research. Security threat analysis in high-speed data

networks tends towards a big data challenge. Commercial interest in overcoming this

challenge was high enough to secure a second funding phase, available later in 2017,

to continue the development of BotProbe.

 The original contributions derived from evidence presented from this research

project have established that: IPFIX offers clear advantages over NetFlow when

applied to botnet communication traffic capture in cloud service providers networks.

REFERENCES

152

References

Altman, D.G. and Bland, J.M., 1995. Statistics Notes: The normal distribution. British Medical Journal,

310(6975), p.298.

Amazon, 2009. Zeus Botnet Controller. [online] Available at:

<http://aws.amazon.com/security/security-bulletins/zeus-botnet-controller/> [Accessed 20 October

2014].

Arbor Networks Inc., 2016. Arbour Networks Releases Global DDoS Attack Data for 1H 2016.

[online] Available at: <https://www.arbornetworks.com/arbor-networks-releases-global-ddos-attack-

data-for-1h-2016> [Accessed 15 August 2016].

Association of National Advertisers and White Ops, 2016. The Bot Baseline: Fraud in Digital

Advertising. [pdf] Available at: <https://www.ana.net/getfile/23332> [Accessed 12 June 2016].

Beloglazov, A. and Buyya, R., 2010. Energy efficient allocation of virtual machines in cloud data

centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

(CCGrid). Melbourne, Australia, 17-20 May 2010. IEEE.

Bilge, L., Balzarotti, D., Robertson, W., Kirda, E. and Kruegel, C., 2012. Disclosure: Detecting botnet

command and control servers through large-scale netflow analysis. In: Proceedings of the 28th Annual

Conference on Computer Security Applications. Orlando, USA, 3-7 December 2012. New York: ACM.

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M. and Wang, L., 2010.

On the analysis of the zeus botnet crimewave toolkit. In: Eighth Annual International Conference on

Privacy Security and Trust (PST). Ottawa, Canada, 17-19 August 2010. IEEE.

Botnet, C., 2012. Internet Census 2012. [online] Available at:

<http://internetcensus2012.bitbucket.org/paper.html> [Accessed 23 November 2015].

Brockhus, T., 2015. Quality of measurement data on vendor-independent flow exporters.

Brook, J-M., Field, S., ShackleFord, D., Hargrave, V., Jameson, L. and Roza, M., 2016. The

Treacherous Twelve: Cloud Computing Top Threats in 2016. [pdf] USA: Cloud Security Alliance.

Available at: <https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-

12_Cloud-Computing_Top-Threats.pdf> [Accessed 13 August 2016]

Bryan. D. and Anderson M., 2010. Cloud Computing – A Weapon of Mass Destruction? [pdf] USA:

DEFCON. Available at: <www.defcon.org/images/defcon-18/dc-18-presentations/Bryan-

Anderson/DEFCON-18-Bryan-Anderson-Cloud-Computing.pdf> [Accessed 7 December 2015].

Casenove, M. and Miraglia, A., 2014. Botnet Over Tor: The illusion of hiding. In: 6th International

Conference on Cyber Conflict (CyCon). Tallinn, Estonia, 3-6 June 2014. IEEE.

Chickowski, E., 2016. Wekby ‘Pisloader’Abuses DNS. [online]. Available at:

<http://www.darkreading.com/threat-intelligence/wekby-pisloader-abuses-dns/d/d-id/1325729>

[Accessed 2 December 2016].

Cid, D., 2016. Large CCTV Botnet Leveraged in DDoS Attacks. Sucuri.net Sucuri Blog, [blog] 27

June, Available at: <https://blog.sucuri.net/2016/06/large-cctv-botnet-leveraged-ddos-attacks.html>

[Accessed 1 July 2016].

REFERENCES

153

Cisco, 2015. Cisco Network as a Sensor. [pdf] USA: Cisco. Available at:

<https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-

security/at-a-glance-c45-734476.pdf> [Accessed 15 December 2016].

Citrix Systems, Inc., 2015. XenServer. [computer program] XenServer. Available at:

<http://xenserver.org/open-source-virtualization-download.html> [Accessed 16 May 2014].

Clegg, F., 1995. Simple statistics: A course book for the social sciences. 13th ed. Cambridge:

Cambridge University Press.

Cloud Security Alliance, 2011. Security Guidance for Critical Areas of Focus in Cloud Computing

V3.0. [pdf] USA: CSA. Available at:

<https://downloads.cloudsecurityalliance.org/initiatives/guidance/csaguide.v3.0.pdf> [Accessed 11

November 2016].

Cloud Security Alliance, 2015. Cloud Adoption Practices and Priorities Survey Report. [pdf] USA:

CSA. Available at:

<https://downloads.cloudsecurityalliance.org/initiatives/surveys/capp/Cloud_Adoption_Practices_Prior

ities_Survey_Final.pdf> > [Accessed 11 November 2016].

Cohen, F., 1987. Computer Viruses: Theory and experiments. Computers & Security, 6(1), pp.22-35.

Cohen, J., 1988. Statistical power analysis for the behavioural sciences. 2nd ed. Hillsdale: Lawrence

Earlbaum Associates.

Collins, M., 2014. Network security through data analysis: Building situational awareness . California:

O’Reilly Media, Inc.

Collins, M.P. and Reiter, M.K., 2007. Hit-list worm detection and bot identification in large networks

using protocol graphs. In: International Workshop on Recent Advances in Intrusion Detection (RAID).

Gold Coast, Australia, 5-7 September 2007. Springer.

Communications Security, Reliability and Interoperability Council, 2013. U.S. Anti-Bot Code of

Conduct (ABC) for Internet Service Providers (ISPs). [pdf] Available at:

<https://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRIC_III_WG7_Report_March_%202013.pd

f> [Accessed 17 May 2015].

Constantin, L., 2014. Over 30 Vulnerabilities Found in Google App Engine. [online] Available at:

<http://www.infoworld.com/article/2857515/cloud-computing/over-30-vulnerabilities-found-in-

google-app-engine.html> [Accessed 11 November 2016].

Cooke, E., Jahanian, F. and McPherson, D., 2005. The Zombie Roundup: Understanding, detecting and

disrupting botnets. In: Steps to Reducing Unwanted Traffic on Internet (SRUTI) Workshop. Cambridge,

USA, 7 July 2005. California, USA: USENIX.

Dagon, D., Feamster, N., Lee, W., Edmonds, R., Lipton, R. and Ramachandran, A., Georgia Tech

Research Corporation, 2016. Methods and systems for detecting compromised computers. U.S. Pat.

20,160,156,660.

Dancey, C.P. and Reidy, J., 2007. Statistics without maths for psychology. 4th ed. Essex: Pearson

Education Ltd.

Dell SecureWorks Counter Threat Unit Research Team, 2014. Hacker Hijacks Synology NAS Boxes for

Dogecoin Mining Operation, Reaping Half Million Dollars in Two Months. [online] Available at:

<https://www.secureworks.com/blog/hacker-hijacks-synology-nas-boxes-for-dogecoin-mining-operation-

reaping-half-million-dollars-in-two-months> [Accessed 12 June 2016].

REFERENCES

154

Dell SecureWorks Counter Threat Unit Threat Intelligence, 2016. Banking Botnets: The Battle

Continues. [online] Available at: <https://www.secureworks.com/research/banking-botnets-the-battle-

continues> [Accessed 12 June 2016].

Deri, L., 2003. nProbe: An open source netflow probe for gigabit networks. In: Proceedings of the

TERENA Network Conference. Zagreb, Croatia, 19-22 May 2003. Zagreb, Croatia: CARNet.

Díaz, M., Martín, C. and Rubio, B., 2016. State-of-the-art, challenges and open issues in the integration of

Internet of things and cloud computing. Journal of Network and Computer Applications, vol. 67, pp.99-

117.

Dietrich, C.J., Rossow, C. and Pohlmann, N., 2013. CoCoSpot: Clustering and recognizing botnet

command and control channels using traffic analysis. Computer Networks, 57(2), pp.475-48.

Dillon, M. and Winters, T., 2014. Virtualization of home network gateways. Computer, 47(11), pp.62-

65.

Dübendorfer, T., Wagner, A., Hossmann, T. and Plattner, B., 2005. Flow-level traffic Analysis of the

Blaster and Sobig Worm outbreaks in an internet backbone. In: International Conference on Detection

of Intrusions and Malware and Vulnerability Assessment. Vienna, Austria, 7-8 July 2005. Berlin,

Germany: Springer.

ENISA, 2016. ENISA Threat Landscape 2015. [pdf] Greece: ENISA. Available at:

<https://www.enisa.europa.eu/publications/etl2015/at_download/fullReport> [Accessed 18 December

2016].

EC Data Retention Directive 2006/24/EC of 15 March 2006 on the retention of data generated or

processed in connection with the provision of publicly available electronic communications services or

of public communications networks and amending Directive 2002/58/EC [2006] OJ L105/54.

Falliere, N. and Chien, E., 2009. Zeus: king of the bots. Symantec Security Response. [pdf] USA:

Symantec Corporation. Available at:

<http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeus_king_

of_bots.pdf> [Accessed 27 February 2015]

Fang, W., Liang, X., Li, S., Chiaraviglio, L. and Xiong, N., 2013. VMPlanner: Optimizing virtual

machine placement and traffic flow routing to reduce network power costs in cloud data centers.

Computer Networks, 57(1), pp.179-196.

Federal Trade Commission, 2015. Internet of Things Privacy and Security in a Connected World. [pdf]

Available at: < https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-

report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf> [Accessed 1

March 2015].

Feily, M., Shahrestani, A. and Ramadass, S., 2009. A survey of botnet and botnet detection. In: Third

International Conference on Emerging Security Information, Systems and Technologies2009. Athens,

Greece, 18-23 June 2009. IEEE.

Field, A., 2009. Discovering statistics using SPSS. 3rd ed. London: SAGE Publications Ltd.

François, J., Wang, S. and Engel, T., 2011. BotTrack: Tracking botnets using NetFlow and PageRank.

In: 10th International Conference on Research in Networking. Valencia, Spain, 9-13 May 2011. Berlin,

Germany: Springer.

François, J., Wang, S., Bronzi, W., State, R. and Engel, T., 2011. BotCloud: Detecting botnets using

mapreduce. In: 2011 IEEE International Workshop on Information Forensics and Security (WIFS). 29

November-2 December, 2011. IEEE.

https://www.secureworks.com/research/banking-botnets-the-battle-continues
https://www.secureworks.com/research/banking-botnets-the-battle-continues

REFERENCES

155

Fryer, H., Stalla-Bourdillon, S. and Chown, T., 2015. Malicious Web Pages: What if hosting providers

could actually do something… Computer Law and Security Review, 31(4), pp.490-505.

García, S. and Pechoucek, M., 2016. Detecting the behavioral relationships of malware connections. In:

Proceedings of the First International Workshop on AI for Privacy and Security. The Hague,

Netherlands, 29-30 August 2016. New York: ACM.

García, S., Uhlíř, V. and Rehak, M., 2014. Identifying and modeling botnet C&C behaviors. In:

Proceedings of the First International Workshop on Agents and CyberSecurity. Paris, France, 6 May

2014. New York: ACM.

García-Valls, M., Cucinotta, T. and Lu, C., 2014. Challenges in real-time virtualization and predictable

cloud computing. Journal of Systems Architecture, 60(9), pp.726-740.

Garg, S., Peddoju, S.K. and Sarje, A.K., 2016. Scalable P2P bot detection system based on network

data stream. Peer-to-Peer Networking and Applications, 9(6), pp.1209-1225.

Gates, C., Collins, M.P., Duggan, M., Kompanek, A. and Thomas, M., 2004. More netflow tools for

performance and security. In: Proceedings of Large Installation Systems Administration (LISA)

Conference. 14 November 2004. California, USA: USENIX.

Gautheir, T.D., 2001. Detecting trends using Spearman's rank correlation coefficient. Environmental

Forensics, 2(4), pp.359-362.

Ghasemi, A. and Zahediasl, S., 2012. Normality Tests for Statistical Analysis: A guide for non-

statisticians. International Journal of Endocrinology and Metabolism, 10(2), pp.486-489.

Goebel, J. and Holz, T., 2007. Rishi: Identify bot contaminated hosts by IRC nickname evaluation.

First Workshop on Hot Topics in Understanding Botnets (HotBots). Cambridge, USA, 10 April 2007.

California, USA: USENIX.

Govil, J., 2007. Examining the criminology of bot zoo. In: 6th International Conference on

Information, Communications and Signal Processing. 10-13 December 2007. IEEE.

Govindavajhala, S. and Appel, A. W., 2003. Using memory errors to attack a virtual machine. In:

Proceeding of 2003 Symposium on Security and Privacy. 11-14 May 2003. IEEE.

Graham, M., 2014. Cloud-based detection techniques for botnets and other malware. In: OWASP

Appsec EU 2014. Cambridge, UK, 4 July 2014. [video online] Available at:

<http://www.youtube.com/watch?v=fV5kED7nryw>.

Graham, M., Winckles, A. 2014. An analysis of pre-infection detection techniques for botnets and

other malware. In: 7th International Conference on Cybercrime Forensics Education and Training.

Canterbury, UK, 10-11 May 2014. CFET.

Graham, M., Winckles, A. and Moore, A., 2014. Botnet detection in virtual environments using

NetFlow. In: 7th International Conference on Cybercrime Forensics Education and Training.

Canterbury, UK, 10-11 May 2014. CFET.

Graham, M., Winckles, A. and Sanchez, E., 2015a. Botnet detection within cloud server provider

networks using flow protocols. In: IEEE 13th International Conference on Industrial Informatics.

Cambridge, UK, 22-24 July 2015. IEEE.

Graham, M., Winckles, A. and Sanchez, E., 2015b. Practical experiences of building an IPFIX based

open source botnet detector. The Journal on Cybercrime & Digital Investigations. 1(1), pp.21-28.

REFERENCES

156

Graham, M., Winckles, A. and Sanchez, E., 2017. An IPFIX template for botnet detection. (Submitted

to IEEE Transactions on Information Security and Forensics.)

Greenhalgh, T., 1997. How to read a paper. Statistics for the Non-Statistician. II:"Significant" relations

and their pitfalls. British Medical Journal, 315(7105), p.422.

Gu. G., Perdisci, R., Zhang, J and Lee, W., 2008. BotMiner: Clustering analysis of network traffic for

protocol and structure independent botnet detection. In: Proceedings of the 17th USENIX Security

Symposium. San Jose, USA, 28 July-1 August 2008. California, USA: USENIX.

Gu, G., Porras, P. Yegneswaran, V., Fong, M. and Lee, W., 2007. BotHunter: Detecting malware

infection through IDS-driven dialog correlation. In: Proceedings of the 16th USENIX Security

Symposium. Boston, USA, 6-10 August 2007. California, USA: USENIX.

Gu, G., Zhang, J. and Lee, W., 2008. BotSniffer: Detecting botnet command and control channels in

network traffic. In: Proceedings of the 15th Annual Network and Distributed Systems Security

Symposium. San Diego, USA, 8-11 February 2008. California, USA: USENIX.

Guo, C., Lu, G., Wang, H.J., Yang, S., Kong, C., Sun, P., Wu, W. and Zhang, Y., 2010. Secondnet: A

data center network virtualization architecture with bandwidth guarantees. In: Proceedings of the 6th

International Conference on Networking Experiments and Technologies (CoNEXT). Philadelphia,

USA, 30 November-3 December 2010. ACM.

Haddadi, F. and Zincir-Heywood, A.N., 2015. A closer look at the http and P2P based botnets from a

detector’s perspective. International Symposium on Foundations and Practice of Security, vol. 9482,

pp.212-228.

Haddadi, F., Morgan, J., Gomes Filho, E. and Zincir-Heywood, A.N., 2014. Botnet behaviour analysis

using ip flows: with http filters using classifiers. In: IEEE 28th International Conference on Advanced

Information Networking and Applications Workshops. Victoria, Canada, 13-16 May 2014. IEEE.

Hang, H., Wei, X., Faloutsos, M. and Eliassi-Rad, T., 2013. Entelecheia: Detecting P2P botnets in their

waiting stage. In: Proceedings of the International Federation for Information Processing (IFIP)

Networking Conference. New York, USA, 22-24 May 2013. IEEE.

Hawking, S., 1994. Life in the universe. [online] Available at: <http://www.hawking.org.uk/life-in-the-

universe.html> [Accessed 20 October 2014]

Hayashi K., 2013. Linux Worm Targeting Hidden Devices. Symantec Official Blog, [blog] 27

November, Available at: <http://www.symantec.com/connect/blogs/linux-worm-targeting-hidden-

devices> [Accessed 11 November 2016].

Heimer, J-L., 2014. The SERT Q2 Quarterly Threat Intelligence Report. [online] Available at:

<http://www.solutionary.com/resource-center/blog/2014/07/sert-q2-quarterly-threat-intelligence-report/>

[Accessed 29 November 2014].

Hofstede, R., Celeda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A. and Pras, A., 2014. Flow

Monitoring Explained: From packet capture to data analysis with NetFlow and IPFIX. IEEE

Communications Surveys and Tutorials, 16(4), pp.2037-2064.

Holz, T., Steiner, M., Dahl, F., Biersack, E. and Freiling, F.C., 2008. Measurements and Mitigation of

Peer-to-Peer-based Botnets: A case study on Storm Worm. In: First USENIX Workshop on Large-Scale

Exploits and Emergent Threats (LEET). San Francisco, USA, 15 April 2008. California, USA:

USENIX.

Husák, M., Velan, P. and Vykopal, J., 2015. Security monitoring of http traffic using extended flows.

In: 10th International Conference on Availability, Reliability and Security. Toulouse, France, 24-28

August 2015. IEEE.

REFERENCES

157

IANA, 2016. IP Flow Information Export (IPFIX) Entities. [online] Available at:

<https://www.iana.org/assignments/ipfix/ipfix.xhtml> [Accessed 15 July 2015].

IBM, 2017. 2017 Cost of Data Breach Study: Global Overview. [pdf] Available at:

<http://info.resilientsystems.com/hubfs/IBM_Resilient_Branded_Content/White_Papers/2017_Global_

CODB_Report_Final.pdf> [Accessed 12 June 2017].

Iliofotou, M., Kim, H.C., Faloutsos, M., Mitzenmacher, M., Pappu, P. and Varghese, G., 2011.

Graption: A graph-based P2P traffic classification framework for the internet backbone. Computer

Networks, 55(8), pp.1909-1920.

Imperva, 2015. 2015 Bot Traffic Report. [online] Available at: <https://www.incapsula.com/blog/bot-

traffic-report-2015.html> [Accessed 7 December 2016].

Inacio, C.M. and Trammell, B., 2010. YAF: Yet another flowmeter. In: Proceedings of the 24th Large

Installation System Administration (LISA) Conference. Berkeley, USA, 7 Nov 2010. California, USA:

USENIX.

Incapsula, 2016. 2015-16 Annual DDoS Threat Landscape Report. [online] Available at:

<https://www.incapsula.com/blog/2015-16-ddos-threat-landscape-report.html> [Accessed 18 December

2016].

Inci, M.S., Gülmezoglu, B., Irazoqui, G., Eisenbarth, T. and Sunar, B., 2015. Seriously, get off my

cloud! Cross-VM RSA Key Recovery in a Public Cloud. Cryptology ePrint Archive, Report 2015/898,

2015.

Internet Engineering Task Force, 1991. RFC-1272 Internet Accounting: background. IETF [online]

Available at: <https://tools.ietf.org/html/rfc1272> [Accessed 7 August 2014].

Internet Engineering Task Force, 1999. RFC-2721 RTFM: applicability statement. IETF [online]

Available at: <https://tools.ietf.org/html/rfc2721> [Accessed 7 August 2014].

Internet Engineering Task Force, 2011. RFC-6313 Export of Structure Data in IP Flow Information

Export (IPFIX). IETF [online] Available at: <https://tools.ietf.org/html/rfc6313> [Accessed 7 August

2014].

Internet Engineering Task Force, 2012. RFC-6526 IP Flow Information Export (IPFIX) Per Stream

Control Transmission Protocol. IETF [online] Available at: <https://tools.ietf.org/html/rfc6526>

[Accessed 16 October 2014].

Internet Engineering Task Force, 2013a. RFC-7011 Specification of the IP Flow Information Export

(IPFIX) Protocol for the Exchange of Flow Information. IETF [online] Available at:

<https://tools.ietf.org/html/rfc7011> [Accessed 7 August 2014].

Internet Engineering Task Force, 2013b. RFC-7012 Information Model for IP Flow Information Export

(IPFIX). IETF [online] Available at: <https://tools.ietf.org/html/rfc7012> [Accessed 7 August 2014].

Internet Engineering Task Force, 2013c. RFC-7013 Guidelines for Authors and Reviews of IP Flow

Information Export (IPFIX) Information Elements. IETF [online] Available at:

<https://tools.ietf.org/html/rfc7013> [Accessed 7 August 2014].

Internet Engineering Task Force, 2013d. RFC-7014 Flow Selection Techniques. IETF [online]

Available at: <https://tools.ietf.org/html/rfc7014> [Accessed 7 August 2014].

Internet Engineering Task Force, 2013e. RFC-7015 Flow Aggregation for the IP Flow Information

Export (IPFIX) Protocol. IETF [online] Available at: <https://tools.ietf.org/html/rfc7015> [Accessed 7

August 2014].

REFERENCES

158

Internet Research Task Force, 2015. RFC-7426 Software-Defined Networking (SDN): Layers and

Architecture Terminology. IRTF [online] Available at: <https://tools.ietf.org/html/rfc7426> [Accessed

11 April 2016].

Irazoqui, G., Inci, M.S., Eisenbarth, T. and Sunar, B., 2014. Fine grain Cross-VM attacks on Xen and

VMware. In: IEEE Fourth International Conference on Big Data and Cloud Computing. Sydney,

Australia, 3-4 December 2014. IEEE.

Jasti, A., Shah, P., Nagaraj, R. and Pendse, R., 2010. Security in multi-tenancy cloud. In: IEEE

International Carnahan Conference on Security Technology. California, USA, 5-8 October 2010.

IEEE.

John, J.P., Moshchuk, A., Gribble, S.D. and Krishnamurthy, A., 2009. Studying spamming botnets

Using Botlab. In: 6th USENIX Symposium on Networked Systems Design and Implementation. Boston,

USA, 22-24 April 2009. California, USA: USENIX.

Johnston, R., Kim, S.I., Coe, D., Etzkorn, L., Kulick, J. and Milenkovic, A., 2016. Xen network flow

analysis for intrusion detection. In: Proceedings of the 11th Annual Cyber and Information Security

Research Conference. Oak Ridge, USA, 5-7 April 2016. New York: ACM.

Karagiannis, T., Papagiannaki, K. and Faloutsos, M., 2005. BLINC: Multilevel traffic classification in

the dark. In: Proceedings of SIGCOMM ’05 Applications, Technologies, Architectures and Protocols

for Computer Communications. Philadelphia, USA, 22-26 August 2005. New York: ACM.

Karasaridis, A., Rexroad, B. and Hoeflin, D.A., 2007. Wide-scale botnet detection and

characterization. In: First Workshop on Hot Topics in Understanding Botnets (HotBots). Cambridge,

USA, 10 April 2007. California, USA: USENIX.

Kaspersky Lab, 2016. Kaspersky DDoS Intelligence Report for Q1 2016. [online] Available at:

<https://securelist.com/analysis/quarterly-malware-reports/74550/kaspersky-ddos-intelligence-report-

for-q1-2016/> [Accessed 15 May 2016].

Katsuki, T, 2012. Crisis: The advanced malware. [pdf] USA: Symantec Corporation. Available at:

<https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/crisis_the_

advanced_malware.pdf> [Accessed 12 June 2016].

Keahey, K., 2009. Nimbus: Open source Infrastructure as a Service cloud computing software. In:

Workshop on Adapting Applications and Computing Services to Multi-core and Virtualization. CERN,

Switzerland, June 2009.

Kerr, D.R. and Bruins, B.L., Cisco Systems, Inc., 2001. Network flow switching and flow data export.

U.S. Pat. 6,243,667.

Kirubavathi, G. and Anitha, R., 2016. Botnet detection via mining of traffic flow characteristics.

Computers & Electrical Engineering, vol. 50, pp.91-101.

Koo, T.M., Chang, H.C. and Liao, W.C., 2012. Estimating the size of P2P botnets. International

Journal of Advancements in Computing Technology, 4(12), pp.386-295.

Kortchinsky, K., 2015. Escaping VMware Workstation through COM1. [pdf] USA: Google. Available

at: <https://www.exploit-db.com/docs/37276.pdf> [Accessed 17 August 2016].

Kortchinsky, K., 2009. Cloudburst: A VMware Guest to Host Escape Story. [pdf] USA: Black Hat.

Available at: <http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-

Kortchinsky-Cloudburst-PAPER.pdf> [Accessed 27 February 2015].

REFERENCES

159

Kotrlik, J.W. and Williams, H.A., 2003. The incorporation of effect size in information technology,

learning and performance research. Information Technology, Learning and Performance Journal,

21(1), pp.1-7.

Krebs, B., 2015. Lizard Stresser Runs on Hacked Home Routers. [online] Available at:

<http://krebsonsecurity.com/2015/01/lizard-stresser-runs-on-hacked-home-routers/> [Accessed 11

November 2016].

Kreibich, C., Warfield, A., Crowcroft, J., Hand, S. and Pratt, I., 2005. Using packet symmetry to curtail

malicious traffic. In: Fourth Workshop on Hot Topics in Networks. Maryland, USA, 14-15 November

2005. ACM SIGCOMM.

Kumar, R., Jain, K., Maharwal, H., Jain, N. and Dadhich, A., 2014. Apache CloudStack: Open source

infrastructure as a service cloud computing platform. International Journal of Advancement in

Engineering technology, Management and Applied Science, 1(2), pp.111-116.

Kunz, J., Becker, C., Jamshidy, M., Kasera, S., Ricci, R. and Van der Merwe, J., 2016. OpenEdge: A

dynamic and secure open service edge network. In: Network Operations and Management Symposium.

Istanbul, Turkey, 25-29 April 2016. IEEE.

Kushner, D., 2013. The real story of Stuxnet. IEEE Spectrum, 50(3), pp.48-53.

Lee, D. and Brownlee, N., 2007. Passive measurement of one-way and two-way flow lifetimes. ACM

SIGCOMM Computer Communication Review, 37(3), pp.17-28.

Lee, Y., Shin, S., Choi, S. and Son, H.G., 2007. IPv6 anomaly traffic monitoring with IPFIX. In:

Second International Conference on Internet Monitoring and Protection. San Jose, USA, 1-5 July

2007. IEEE Computer Society.

Lenk, A., Klems, M., Nimis, J., Tai, S. and Sandholm, T., 2009. What's Inside the Cloud? An

architectural map of the cloud landscape. In: Proceedings of the Workshop on Software Engineering

Challenges of Cloud Computing. Vancouver, Canada, 16-24 May 2009. IEEE Computer Society.

Level 3, 2015. Safeguarding the Internet: botnet research report 2015 [pdf] USA: Level 3

Communications. Available at: <http://www.level3.com/~/media/files/white-

paper/en_secur_wp_botnetresearchreport.pdf> [Accessed 18 December 2016].

Lin, S.C., Chen, P.S. and Chang, C.C., 2014. A novel method of mining network flow to detect P2P

botnets. Peer-to-Peer Networking and Applications, Springer, 7(4), pp.645-654.

Linux Foundation, 2013. Xen Project 4.4.0. [computer program] Xen Project. Available at:

<https://xenproject.org/downloads/xen-archives/xen-44-series/xen-440.html> [Accessed 15 May 2014].

Liu, J., Xiao, Y., Ghaboosi, K., Deng, H. and Zhang, J., 2009. Botnet: Classification, attacks, detection,

tracing and preventive measures. Journal on Wireless Communications and Networking - Special Issue,

IEEE Computer Society. 2009 Issue, pp.1184-1187.

Mai, J., Chuah, C.N., Sridharan, A., Ye, T. and Zang, H., 2006. Is sampled data sufficient for anomaly

detection? In: Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement. Rio,

Brazil, 25-27 October 2006. New York: ACM.

Mansfield-Devine, S., 2016. DDoS Goes Mainstream: How headline-grabbing attacks could make this

threat an organisation's biggest nightmare. Network Security, vol. 11, pp.7-13.

Mell, P. and Grance, T., 2011. The NIST definition of cloud computing. NIST Special Publication 800-

145.

REFERENCES

160

Memarian, M.R., Conti, M. and Leppänen, V., 2015. EyeCloud: A botcloud detection system. In: 13th

IEEE International Symposium on Parallel and Distributed Processing with Applications. Helsinki,

Finland, 20-22 August 2015. IEEE Computer Society.

Metz, C., 2009. BitBucket’s Amazon DDoS - What went wrong. [online] Available at:

<http://www.theregister.co.uk/2009/10/09/amazon_cloud_bitbucket_ddos_aftermath/> [Accessed 2

December 2014].

Minarik, P., Vykopal, J. and Krmicek, V., 2009. Improving host profiling with bidirectional flows. In:

International Conference on Computational Science and Engineering. Vancouver, Canada, 29-31

August 2009. IEEE Computer Society.

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A. and Rajarajan, M., 2013. A survey of intrusion

detection techniques in cloud. Journal of Network and Computer Applications, 36(1), pp.42-57.

Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M. and Borisov, N., 2010. BotGrep: Finding P2P bots

with structured graph analysis. In: 19th USENIX Security Symposium. Washington, USA, 11-13

August 2011. California, USA: USENIX.

Nagaraja, S., 2014. Botyacc: Unified P2P botnet detection using behavioural analysis and graph

analysis. Computer Security, Springer, vol. 8713, pp.439-456.

Narang, P., Ray, S., Hota, C. and Venkatakrishnan, V., 2014. Peershark: Detecting peer-to-peer botnets

by tracking conversations. In: Proceedings of Security and Privacy Workshops. San Jose, USA, 17-18

May 2014. IEEE.

Narang, P., Reddy, J.M. and Hota, C., 2013. Feature selection for detection of peer-to-peer botnet

traffic. In: Proceedings of the 6th India Computing Convention. Tamil Nadu, India, 22-25 August

2013. New York: ACM.

Nazario, J. and Holz, T., 2008. As the Net Churns: Fast-flux botnet observations. In: Third

International Conference on Malicious and Unwanted Software. 7-8 October 2008. IEEE.

Network Working Group, 2004. RFC-3954 Cisco Systems NetFlow Services Export Version 9

(Informational). NWG [online] Available at: <https://tools.ietf.org/html/rfc3954> [Accessed 20 August

2014].

Network Working Group, 2008. RFC-5103 Bidirectional Flow Export Using IP Flow Information

Export (IPFIX). NWG [online] Available at: <https://tools.ietf.org/html/rfc5103> [Accessed 7 August

2014].

Network Working Group, 2009a. RFC-5476 Packet Sampling (PSAMP) Protocol Specifications. NWG

[online] Available at: <https://tools.ietf.org/html/rfc5476> [Accessed 11 April 2016].

Network Working Group, 2009b. RFC-5610 Exporting Type Information for IP Flow Information

Export (IPFIX) Information Elements. NWG [online] Available at:

<https://tools.ietf.org/html/rfc5610> [Accessed 10 November 2016].

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L. and Zagorodnov, D.,

2009. The Eucalyptus Open source Cloud-computing System. In: 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid. Shanghai, China, 18-21 May 2009. IEEE Computer

Society.

Osborne, C., 2015. Adware-serving Skype Botnet Disrupted. [online] Available at:

<http://www.zdnet.com/article/adware-serving-skype-botnet-disrupted/> [Accessed 11 November

2016].

REFERENCES

161

Ouedraogo, M., Mignon, S., Cholez, H., Furnell, S. and Dubois, E, 2015. Security Transparency: The

next frontier for security research in the cloud. Journal of Cloud Computing, 4(1), pp.1-14.

Pallant, J., 2013. SPSS survival manual. 5th ed. Berkshire: Open University Press.

Patterson, M.A., 2012. Unleashing the Power of NetFlow and IPFIX. Maine: Plixer International, Inc.

Pauli, D., 2014. Dropbox Used as Command and Control for Taiwan Time Bomb. [online] Available

at:<http://www.theregister.co.uk/2014/06/30/dropbox_used_as_command_and_control_in_taiwanese_

govt_attack> [Accessed 29 November 2014].

Peat, J. and Barton, B., 2005. Medical statistics: A guide to data analysis and critical appraisal. 1st ed.

Malden: Blackwell Publishing Ltd.

Perdisci, R., Lee, W. and Feamster, N., 2010. Behavioral clustering of http-based malware and

signature generation using malicious network traces. In: 7th USENIX Symposium on Networked

Systems Design and Implementation. San Jose, USA, 28-30 April 2010. California, USA: USENIX.

Pettit, J., Pfaff, B., Wright, C. and Venugpola, M., 2015. Accelerating Open vSwitch to Ludicrous

Speed. [online] Available at: <http://networkheresy.com/2014/11/13/accelerating-open-vswitch-to-

ludicrous-speed/> [Accessed 24 August 2015].

Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer, J.,

Shelar, P. and Amidon, K., 2015. The design and implementation of Open vSwitch. In: 12th USENIX

Symposium on Networked Systems Design and Implementation. Oakland, USA, 4-6 May 2015.

California, USA: USENIX.

Raff, A., 2015. New Dyre Version - Yet Another Malware Evading Sandboxes. Seculert Blog, [blog]

30 April, Available at: <http://www.seculert.com/blogs/new-dyre-version-yet-another-malware-

evading-sandboxes> [Accessed 1 August 2016].

Ragan, R. and Salazar, O., 2014. CloudBots: Harvesting Crypto Coins like a Botnet Farmer. [video

online] Available at: <https://www.youtube.com/watch?v=llW8rI_l0u4> [Accessed 15 August 2015].

Rajab, M., Zarfoss, J., Monrose, F. and Terzis, A. 2007. My Botnet Is Bigger than Yours (Maybe,

Better than Yours): Why size estimates remain challenging. In: First Workshop on Hot Topics in

Understanding Botnets (HotBots). Cambridge, USA, 10 April 2007. California, USA: USENIX.

Ramachandran, A., Feamster, N. and Dagon, D., 2006. Revealing botnet membership using DNSBL

counter-intelligence. In: Second Workshop on Steps to Reducing Unwanted Traffic on the Internet. San

Jose, USA, 7 July 2006. California, USA: USENIX.

Rincón, S.R., Vaton, S., Beugnard, A. and Garlatti, S., 2015. Semantics based analysis of botnet

activity from heterogeneous data sources. In: International Conference on Wireless Communications

and Mobile Computing. Dubrovnik, Croatia, 24-28 August 2015. IEEE.

Rintalan, N., 2011. Tweaking the $!@# Out of XenServer. [online] Available at:

<https://citrix.sharefile.com/d/sbe33a16657845e4b> [Accessed 20 May 2014].

Ristenpart, T., Tromer, E., Shacham, H. and Savage, S., 2009. Hey, You, Get Off Of My Cloud:

Exploring information leakage in third-party compute clouds. In: Proceedings of the 16th ACM

Conference on Computer and Communications Security. Chicago, USA, 9-13 November 2009. New

York: ACM.

Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., Van Steen, M., Freiling, F.C. and Pohlmann, N.,

2011. Sandnet: Network traffic analysis of malicious software. In: Proceedings of the First Workshop

on Building Analysis Datasets and Gathering Experience Returns for Security. Salzburg, Austria, 10

April 2011. New York: ACM.

REFERENCES

162

Roth, T., 2011. Breaking encryptions using GPU accelerated cloud instances. In: Black Hat Technical

Security Conference. Las Vegas, USA, 30 July-4 August 2011.

Rushby, J., 1989. Kernels for safety. Proceedings of Symposium on Safe and Secure Computing

Systems. Glasgow, UK, October 1989. Blackwell Scientific Publications.

Rutkowska, J., 2004. Red Pill... or how to detect VMM using (almost) one CPU instruction. [online]

Available at: <http://www.ouah.org/Red_%20Pill.html> [Accessed 2 December 2014].

Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J. L. and van Doorn, L.,

2005. Building a MAC-based security architecture for the Xen open source hypervisor. In: 21st Annual

Computer Security Applications Conference. Tucson, USA, 5-9 December 2005. IEEE Computer

Society.

Sangroudi, A.A. and Mirabedini, S. J., 2015. Botnets detection for keeping the security of computer

systems based on fuzzy clustering. Indian Journal of Science and Technology, 8(28), p.1.

Santos, O., 2016. Network Security with NetFlow and IPFIX: Big Data Analytics for Information

Security. Indiana: Cisco Press.

Sefraoui, O., Aissaoui, M. and Eleuldj, M., 2012. OpenStack: Toward an open source solution for cloud

computing. International Journal of Computer Applications, 55(3), pp.38-42.

Shiravi, A., Shiravi, H., Tavallaee, M. and Ghorbani, A.A., 2012. Toward developing a systematic

approach to generate benchmark datasets for intrusion detection. Computers & Security, 31(3), pp.357-

374.

Somorovsky, J., Heiderich, M., Jensen, M., Schwenk, J., Gruschka, N. and Lo Iacono, L., 2011. All

Your Clouds Are Belong To Us: Security analysis of cloud management interfaces. In: Proceedings of

the Third ACM Workshop on Cloud Computing Security Workshop. Chicago, USA, 12-21 October

2011. New York: ACM.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., Stiller, B., 2010. An overview of ip flow-

based intrusion detection. IEEE Communications Surveys and Tutorials, 12(3), pp.343-356.

Steinberger, J., Schehlmann, L., Abt, S. and Baier H., 2013. Anomaly Detection and Mitigation at

Internet Scale: A survey. In: International Conference on Autonomous Infrastructure, Management and

Security, Springer, vol. 7943, pp.49-60.

Strayer, W.T., Lapsely, D., Walsh, R. and Livadas, C., 2008. Botnet detection based on network

behavior. In: Botnet Detection, Springer, vol. 36, pp.1-24.

Symantec, 2016a. Internet Security Threat Report, Volume 21, April 2016. [pdf] USA: Symantec

Corporation. Available at: <https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-

2016-en.pdf> [Accessed 12 June 2016].

Symantec, 2016b. Linux.Routem. [online] Available at:

<https://www.symantec.com/security_response/writeup.jsp?docid=2016-033103-0851-99> [Accessed

17 December 2016].

Symantec, 2016c. Linux.Luabot. [online] Available at:

<https://www.symantec.com/security_response/writeup.jsp?docid=2016-090915-3236-99> [Accessed

17 December 2016].

Thomas, P., 2014. Despite the news, Your Refrigerator is Not Yet Sending Spam. Symantec Official

Blog, [blog] 23 January, Available at: <https://www.symantec.com/connect/blogs/despite-news-your-

refrigerator-not-yet-sending-spam> [Accessed 11 November 2016].

REFERENCES

163

Todorov, D. and Ozkan, Y., 2013. AWS Security Best Practices. [pdf] USA: Amazon. Available at:

<https://s3.amazonaws.com/awsmedia/AWS_Security_Best_Practices.pdf> [Accessed 12 August

2016].

Trammell, B. and Boschi, E., 2011. An introduction to IP Flow Information Export (IPFIX). IEEE

Communications Magazine, 49(4), pp.89-95.

Trammell, B., Boschi, E., Mark, L. and Zseby, T., 2007. Requirements for a standardized flow storage

solution. In: International Symposium on Applications and the Internet Workshops. Hiroshima, Japan,

5-19 January 2007. IEEE Computer Society.

Trend Micro, 2016. Global Botnet Threat Activity Map. [online] Available at:

<https://www.trendmicro.com/us/security-intelligence/current-threat-activity/global-botnet-map/>

[Accessed 1 November 2016].

Trend Micro, 2014. Dropbox Used in Delivering Upatre Malware. [online] Available at:

<http://www.trendmicro.com/vinfo/us/threat-encyclopedia/spam/566/dropbox-used-in-delivering-

upatre-malware> [Accessed 29 November 2014].

Turner, V., 2015. IDC Analysis Proof Points for the Internet of Things, October 2015. [pdf] USA:

Oracle. Available at: < https://www.oracle.com/us/assets/idc-analysis-2774134.pdf > [Accessed 18

June 2016].

Van Eeten, M., Bauer, J.M., Asghari, H., Tabatabaie, S. and Rand, D., 2010. The role of internet

service providers in botnet mitigation an empirical analysis based on spam data. TPRC, 2010.

Vaquero, L.M., Rodero-Merino, L. and Morán, D., 2011. Locking the Sky: A survey on IaaS cloud

security. Computing, 91(1), pp.93-118.

Velan, P., 2013. Practical experience with IPFIX flow collectors. In: Proceedings of the 2013

IFIP/IEEE International Symposium on Integrated Network Management. Ghent, Belgium, 27-31 May

2013. IEEE.

Velan, P., Jirsík, T. and Čeleda, P., 2013. Design and evaluation of http protocol parsers for IPFIX

measurement. Advances in Communication Networking, Springer, vol. 8115, pp.136-147.

Verizon, 2016. Verizon’s 2016. Data Breach Investigations Report. [pdf] USA: Verizon. Available at:

<http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf> [Accessed 1

November 2016].

Von Neumann, J. and Burks, A.W., 1966. Theory of self-reproducing automata. IEEE Transactions on

Neural Networks, 5(1), pp.3-14.

Wang, L., Tao, J., Kunze, M., Rattu, D. and Castellanos, A.C., 2008. The Cumulus Project: Build a

scientific cloud for a data center. In: First Workshop on Cloud Computing and its Applications.

Chicago, USA, 22 October 2008.

Wang, P., Sparks, S. and Zou, C.C., 2010. An advanced hybrid peer-to-peer botnet. IEEE Transactions

on Dependable and Secure Computing, 7(2), p.113.

Wang, Z. and Lee, R., 2006. Covert and side channels due to processor architecture. Annual Computer

Security Applications Conference, vol. 6, pp.473–482.

Wijesinghe, U., Tupakula, U. and Varadharajan, V., 2015. An enhanced model for network flow based

botnet detection. In: Proceedings of the 38th Australasian Computer Science Conference. Sydney,

Australia, 27-30 January 2015.

REFERENCES

164

Wojtczuk, R. and Kallenberg, C., 2014. Attacking UEFI boot script. In: 31st Chaos Communication

Congress. Hamburg, Germany, 27-30 December 2014.

Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C. and Kirda, E., 2009. Automatically

generating models for botnet detection. European Symposium on Research in Computer Security,

Springer, vol. 5789, pp.232-249.

Yen, T.F. and Reiter, M.K., 2010. Are Your Hosts Trading Or Plotting? Telling P2P file -sharing and

bots apart. In: 30th International Conference on Distributed Computing Systems. Genova, Italy, 21-25

June 2010. IEEE.

Zeidanloo, H.R. and Manaf, A.A., 2009. Botnet command and control mechanisms. In: Second

International Conference on Computer and Electrical Engineering, 2009. Dubai, UAE, 28-30

December 2009. IEEE.

Zhang, J., Luo, X., Perdisci, R., Gu, G., Lee, W. and Feamster, N., 2011. Boosting the scalability of

botnet detection using adaptive traffic sampling. In: Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security. Hong Kong, China, 22-24 March 2011. New

York: ACM.

Zhang, J., Perdisci, R., Lee, W., Luo, X. and Sarfraz, U., 2014. Building a scalable system for stealthy

P2P-botnet detection. IEEE Transactions on Information Forensics and Security, 9(1), pp.27-38.

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A. and Garant, D., 2013. Botnet detection

based on traffic behavior analysis and flow intervals. Computers & Security, vol. 39(A), pp.2-16.

APPENDIX A: FIELD COUNTS FOR ALL IES/EES

165

Appendix A: Field Counts for all IEs/EEs

The tables in this appendix contain the field counts (occupancy) for every IEs and EEs that

contained data, in the bot samples analysed during this study.

TABLE 31. COMPREHENSIVE FIELD COUNT FOR EACH IE, ACROSS ALL BOT SAMPLES

(BOT SAMPLES = 21, FLOW RECORDS = 7,363,521)

APPENDIX A: FIELD COUNTS FOR ALL IES/EES

166

TABLE 32. COMPREHENSIVE FIELD COUNT FOR EACH HTTP EE, ACROSS ALL BOT SAMPLES

(BOT SAMPLES = 17, HTTP FLOW RECORDS = 7,167,557)

APPENDIX A: FIELD COUNTS FOR ALL IES/EES

167

TABLE 33. COMPREHENSIVE FIELD COUNT FOR EACH DNS EE, ACROSS ALL BOT SAMPLES

(BOT SAMPLES = 15, DNS FLOW RECORDS = 8,655,304)

TABLE 34. DETAILED FIELD COUNT FOR EACH SMTP EE, ACROSS ALL BOT SAMPLES

(BOT SAMPLES = 4, SMTP FLOW RECORDS = 877,827)

TABLE 35. COMPREHENSIVE FIELD COUNT FOR EACH IRC EE, ACROSS ALL BOT SAMPLES

(BOT SAMPLES = 3, IRC FLOW RECORDS = 260)

APPENDIX A: FIELD COUNTS FOR ALL IES/EES

168

TABLE 36. DETAILED FIELD COUNT FOR EACH SSL EE, ACROSS ALL BOT SAMPLES

(BOT SAMPLES = 12, SSL FLOW RECORDS = 453,303)

APPENDIX B: LIST OF BOTNET SAMPLES ANALYSED DURING THIS STUDY

169

Appendix B: List of Botnet Samples

Analysed During this Study

This appendix contains a list of all the PCAP botnet samples that were used in this study for

the creation of either the BotProbe and/or the extended BotProbe templates. All botnet

samples are from CTU University, Prague. The table details the date the sample was captured,

the alleged bot (according to VirusTotal) and for which template the sample was analysed.

TABLE 37. A DETAILED LIST OF BOT SAMPLES USED IN THE CREATION OF BOTH BOTPROBE TEMPLATES

PCAP Sample
Name

Creation
Date

VirusTotal
Bot

IE HTTP DNS SSL SMTP

CTU3_1 21/07/2013 Kelihos Y Y Y

Y

CTU8_1-win5 10/09/2013 Zbot (?) Y Y

Y

 CTU8_1-win9 10/09/2013 Zbot (?) Y Y

Y
 CTU10_1-win7 11/07/2013 Unknown Y

Y

 CTU10_1-win9 11/07/2013 Unknown Y

Y
 CTU10_1-win10 11/07/2013 Unknown Y

Y

 CTU16_1-win5 23/08/2013 Kelihos (Waledac) Y Y
 CTU16_1-win11 23/08/2013 Kelihos (Waledac) Y Y
 CTU25_1 09/09/2013 Zbot (Zeus) Y Y Y Y

 CTU25_5 10/02/2014 Zbot (Zeus) Y

Y
 CTU66_1 07/04/2014 Sality

Y Y

 CTU69_1 23/02/2014 Kazy (Caphaw)

Y
 CTU109_1 09/03/2015 Cridex Y

CTU110_4 09/04/2015 HTbot Y Y

Y Y

CTU111_2 09/04/2015 Unknown

Y

Y
 CTU119_3 08/07/2015 Geodo

Y

 CTU127_2 08/07/2015 Kazy (Miuref)

Y
 CTU140_1 23/10/2015 Bunitu

Y
 CTU140_2 23/10/2015 Bunitu

Y Y
 CTU141_1 28/09/2015 Bunitu

Y
 CTU141_2 23/10/2015 Bunitu

Y Y
 CTU142_1 25/09/2015 Shifu

Y
 CTU144_1 23/09/2015 Shifu Y Y

 CTU145_1 23/09/2015 Fake uTorrent Y Y
 CTU148_1 26/09/2015 Zusy Y

Y

 CTU149_1 05/12/2015 Kelihos Y

Y

Y

CTU149_2 09/12/2015 Kelihos Y

Y

Y

CTU150_1 05/12/2015 Tinba

Y
 CTU153_1 04/01/2016 Dridex

Y
 CTU160_1 29/04/2016 Tinba (Andromeda) Y

Y

 CTU165_1 27/05/2016 Zeus (New Variant) Y

Y
 CTU166_1 29/04/2016 Tinba (Andromeda) Y

 CTU167_1 27/05/2016 Storm Y

CTU168_2 03/08/2016 Andromeda Y Y Y

APPENDIX C: SUPERMEDIATOR FILES

170

Appendix C: SuperMediator Files

This appendix contains all of the SuperMediator configuration files used throughout the

creation of either the BotProbe template and/or the extended BotProbe template.

Filename: ie_tester.conf

SuperMediator .conf file created by Mark Graham 11/11/2015
Last update: 2/2/2016

This file determines the attributes that will be collected by SuperMediator.
This template exports ALL IANA defined IEs that SuperMediator is able to collect.
NOTE: The template exports IEs 0-90, although IEs 81-90 are not defined
in the SuperMediator documentation.

There is 1 exporter:
E1 - Information Elements (outputs to: /flow_records.csv)

Define the IPFIX input file:
COLLECTOR FILEHANDLER
 PATH "out_file.yaf"
COLLECTOR END

Define EXPORTER 1, which exports IE data to “flow_records.csv”
EXPORTER TEXT
 PATH "flow_records.csv"
 DELIMITER ","
 FIELDS 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,48,50,51,52,53,54,55,56,57,58,59,60,61,
62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90
EXPORTER END

ENTERPRISE ELEMENTS are not exported in the BotProbe template
DPI_CONFIG
DPI_CONFIG END

DNS_DEDUP
DNS_DEDUP END

LOGLEVEL DEBUG

PIDFILE "/data/super_mediator.pid"

APPENDIX C: SUPERMEDIATOR FILES

171

Filename: ee_tester.conf

SuperMediator .conf file created by Mark Graham 11/11/2015
Last update: 2/2/2016

This file determines the attributes that will be collected by SuperMediator.
This template exports ALL Enterprise Elements recognised by SuperMediator, with each element
grouped into the appropriate protocol table.

There are 2 exporters:
E1 - Information Elements (outputs to: /flow_records.csv)
E2 - Enterprise Elements (outputs to: /dpi/[tablename].txt)

Define the IPFIX input file:
COLLECTOR FILEHANDLER
 PATH "out_file.yaf"
COLLECTOR END

Define EXPORTER 1, which exports IE data to “flow_records.csv”
In this configuration no IEs are collected (as FIELDS 0)
EXPORTER TEXT
 DELIMITER ","
 PATH "flow_records.csv"
 FIELDS 0
EXPORTER END

Define EXPORTER 2, which exports EE data to “http.txt”, “dns.txt”, etc...
EXPORTER TEXT
 DELIMITER ","
 PATH "dpi"
 DPI_ONLY
 MULTI_FILES
EXPORTER END

ENTERPRISE ELEMENTS to capture
DPI_CONFIG
 TABLE http [110,111,112,113,114,115,116,117,118,119,120,121,122,123,220,221,252,253,254,255,
256,257]
 TABLE http_extn [258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,
276,277,278,279,280]
 TABLE dns [1,2,5,6,12,15,16,28,33,43,46,47,48,50,51,53]
 TABLE DNS_other_1 [3,4,7,8,9,10,11,13,14,17,18,19,20,21,22,23,24,25,26,27,29]
 TABLE DNS_other_2 [30,31,32,34,35,36,37,38,39,40,41,42,44,45,49,52]
 TABLE irc [125]
 TABLE ftp [131,132,133,134,135]
 TABLE tftp [126,127]
 TABLE sip [155,156,157,158,159,160,161]
 TABLE smtp [162,163,164,165,166,167,168,169,170,222,251]
 TABLE ssl [185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,244,245,246,247,248,
249,250,288]
 TABLE ssh [171]
 TABLE a [54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79]
 TABLE b [80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99]
 TABLE c [100,101,102,103,104,105,106,107,108,109,124,128,129]
 TABLE d [130,136,137,138,139,140,141,142,143,144,145,146,147,148,149]
 TABLE e [150,151,152,153,154,172,173,174,175,176,177,178,179]
 TABLE f [180,181,182,183,184]
 TABLE g [200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219]
 TABLE h [223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239]
 TABLE i [240,241,242,243]
 TABLE j [281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298,299]
DPI_CONFIG END

DNS_DEDUP
DNS_DEDUP END

LOGLEVEL DEBUG

PIDFILE "/data/super_mediator.pid"

APPENDIX C: SUPERMEDIATOR FILES

172

Filename: botprobe.conf

SuperMediator .conf file created by Mark Graham 11/11/2015

This is the BOTPROBE TEMPLATE configuration file used by SuperMediator.
This exports 11 Information Elements:
0 = sIP
1 = dIP
4 = sPort
5 = dPort
6 = protocol
20 = sTimeMS
21 = eTimeMS
25 = packets
29 = iFlags
37 = tcpSeq
80 = collector

There is 1 exporter:
E1 - Information Elements (outputs to: /flow_records.csv)

Define the IPFIX input file:
COLLECTOR FILEHANDLER
 PATH "out_file.yaf"
COLLECTOR END

Define EXPORTER 1: Output for the 11 x IEs
EXPORTER TEXT
 DELIMITER ","
 PATH "flow_records.csv"
 FIELDS 0,1,4,5,6,20,21,25,29,37,80
EXPORTER END

LOGLEVEL DEBUG

PIDFILE "/data/super_mediator.pid"

APPENDIX C: SUPERMEDIATOR FILES

173

Filename: extended.conf

SuperMediator .conf file created by Mark Graham 11/11/2015

This is the EXTENDED BOTPROBE TEMPLATE configuration file used by SuperMediator.
This exports 12 Information Elements:
0 = sIP
1 = dIP
4 = sPort
5 = dPort
6 = protocol
20 = sTimeMS
21 = eTimeMS
25 = packets
29 = iFlags
37 = tcpSeq
80 = collector
16 = flowKeyHash, which is used to cross reference EEs to IEs

This also exports 7 Enterprise Elements:
1 = dnsARecord
6 = dnsSOARecord
41 = sslName
112 = httpGet
123 = httpResponse
125 = ircTextMessage
163 = smtpHello

There are 2 exporters:
E1 - Information Elements (outputs to: /flow_records.csv)
E2 - Enterprise Elements (outputs to: /dpi/[tablename].txt)

Define the IPFIX input file:
COLLECTOR FILEHANDLER
 PATH "out_file.yaf"
COLLECTOR END

Define EXPORTER 1, which exports IE data to “flow_records.csv”
EXPORTER TEXT
 DELIMITER ","
 PATH "flow_records.csv"
 FIELDS 0,1,4,5,6,20,21,25,29,37,80,16
EXPORTER END

Define EXPORTER 2, which exports EE data to “http.txt”, “dns.txt”, etc...
EXPORTER TEXT
 DELIMITER ","
 PATH "dpi"
 DPI_ONLY
 MULTI_FILES
EXPORTER END

ENTERPRISE ELEMENTS to capture
DPI_CONFIG
 TABLE http [112, 123]
 TABLE dns [1, 6]
 TABLE irc [125]
 TABLE smtp [163]
 TABLE ssl [41]
DPI_CONFIG END

LOGLEVEL DEBUG

PIDFILE "/data/super_mediator.pid"

APPENDIX C: SUPERMEDIATOR FILES

174

Filename: nfv5.conf

SuperMediator .conf file created by Mark Graham 11/11/2015

This file determines the attributes that will be collected by SuperMediator.
This template reproduces NetFlow v5 in IPFIX.
NOTE: It is not possible to truly replicate NetFlow5 in IPFIX, so this template aims to
replicate fields of similar size to the original NetFlow v5 fields,
rather than similar field content.

There is 1 exporter:
E1 - Information Elements (outputs to: /flow_records.csv)

Define the IPFIX input file:
COLLECTOR FILEHANDLER
 PATH "out_file.yaf"
COLLECTOR END

Define EXPORTER 1, which exports IE data to “flow_records.csv”
EXPORTER TEXT
 DELIMITER ","
 PATH "flow_records.csv"
 FIELDS 0,1,13,15,7,37,38,52,53,4,5,29,30,6,75,33,34,31,32,81
EXPORTER END

LOGLEVEL DEBUG

PIDFILE "/data/super_mediator.pid"

APPENDIX D: PYTHON SCRIPTS

175

Appendix D: Python Scripts

This appendix contains the python scripts used for the performance testing methods.

Filename: timer.py

Python script for measuring the time taken to execute different SuperMediator templates

Last edited by Mark Graham 07/03/2016

Syntax: python timer.py template
e.g. python timer.py super_mediator_1.conf

Where:
template = SuperMediator template name for analysis

import timeit
import os
import sys

template = "super_mediator -c " + str(sys.argv[1])
start = []
end = []
total = []
overall = 0

for loop in range(0, 1):
 start.append(timeit.default_timer())
 os.system(template)
 end.append(timeit.default_timer())

for loop in range(0, 1):
 total.append(end[loop]-start[loop])
 print total[loop]
 overall = overall + (end[loop]-start[loop])

print "Quickest time: {0:.4f}".format(min(total))

APPENDIX D: PYTHON SCRIPTS

176

Filename: cpu_load.py

Python script for measuring the CPU load generated by different SuperMediator templates

Last edited by Mark Graham 07/03/2016

Syntax: python cpu_load.py

import psutil
import numpy
import time

system_proc = []

print "Waiting for system to settle..."
time.sleep(10)

print "Capture started..."
for x in range(300):
 a = psutil.cpu_times_percent(interval=0.05, percpu=False)
 system_proc.append(a.system)

print "Capture ended..."
print "Max system %: ", max(system_proc)

APPENDIX E: SERVER BOOT SCRIPT

177

Appendix E: Server Boot Script

This appendix contains a bash script that configures each server in the test network. This

configures the physical NICs, the virtual VIFs and the NTP clock setting to allow server

synchronisation.

Filename: startup.sh

Bash script to set up Internet and LAN connections on Server1
Created: Mark Graham 26/03/2015
Last edited: Mark Graham: 27/08/2015 - Added NTP clock synchronisation

xenbr0/eth0 = LAN (IP Address: 192.168.0.110)
xenbr1/eth1 = <not used>
xenbr2/eth2 = Internet (IP Address: DHCP)

Syntax: bash start.sh

Remove Xenbr0 from OVS and add it to brctl
Echo “TEST LAB CONFIG MANAGER”
echo "[+] Deleting xenbr0..."
ovs-vsctl del-br xenbr0
ifconfig virbr0 down
brctl delbr virbr0
brctl addbr xenbr0
brctl addif xenbr0 eth0
ifconfig xenbr0 up

Stop Network Manager (Otherwise the Configuration Below Does Not Work.)
echo "[+] Stopping Network-Manager..."
stop network-manager

Remove Legacy Configuration
ifconfig xenbr1 0
ifconfig xenbr0 0

Configure Internet Connection
echo "[+] Connecting to Internet..."
ifconfig eth2 up
ifconfig eth2 0
ifconfig xenbr2 0
dhclient xenbr2
cat /etc/resolv.conf

Configure LAN Connection
echo "[+] Connecting to the LAN..."
ifconfig eth0 192.168.0.110 netmask 255.255.255.0
ifconfig xenbr0 up
ifconfig eth0 0
ifconfig xenbr0 192.168.0.110 netmask 255.255.255.0
ovs-vsctl add-br xenbr0

Synchronise with NTP Server
echo "[+] Synch NTP..."
service ntp restart

