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The Cloud Security Alliance’s 2015 Cloud Adoption Practices and Priorities Survey 
reports that 73% of global IT professionals cite security as the top challenge holding 
back cloud services adoption. Malware with the capabilities to jump between the 
abstracted virtual infrastructures found within cloud service provider networks 
heightens the threat from botnet attack upon a cloud infrastructure. This research 
project aimed to provide a novel methodological approach for capturing communication 
traffic between botnets. The originality of this study comes from the application of 
standards-based IPFIX flow export protocol as a traffic capture mechanism. 

The first contribution to knowledge is a critical investigation into how IPFIX 
export overcomes the limitations of traditional NetFlow-based botnet communication 
traffic capture in cloud provider networks. The second contribution is the BotProbe 
IPFIX template, comprising eleven IANA IPFIX information elements. Field occupancy 
count and Spearman’s Rank correlation on 25 million botnet flows created an IPFIX 
template tailored specifically for botnet traffic capture. The third contribution is 
BotStack, a modular, non-intrusive IPFIX monitoring framework, created upon Xen 
hypervisor and virtual switched platforms, to incorporate IPFIX export into existing 
cloud stacks. The fourth contribution is compelling empirical evidence from weighted-
factor observation across multiple network vantage points, that siting IPFIX exporters 
on the host hypervisor provides maximum traffic visibility. 

BotProbe performs on average 26.73%±0.03% quicker than traditional NetFlow 
v5, with 14.06%±0.01% less storage requirements. BotProbe can be extended with 
additional application layer attributes, for use in less privacy sensitive environments. 
Both novel IPFIX templates were tested on the BotStack framework, capturing four 
distinct traffic profiles in the life cycle of a Zeus botnet. 

The techniques developed in this research can be repurposed to create IPFIX 
traffic capture templates for most Cybersecurity threats, including DDoS and spam, 
turning behavioural-based traffic capture from a big data challenge into a manageable 
data solution. 
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1. Introduction 

 

The European Union Agency for Network and Information Security claims that 

botnets are the main component in cybercrime consumerisation and the first 

Cybercrime as a Service to reach maturity (ENISA, 2015). To entirely eliminate a 

botnet the Command and Control (C&C) server must be taken off-line. Forensic 

techniques like signature-based detection are widely used in anti-malware software. 

This approach can disinfect a host device against a known malware strain, but does 

little to aid the takedown of a botnet C&C server. Internet Service Providers are able 

to facilitate takedown of botnet C&C servers across the Internet through analysis of 

Internet traffic protocols such as DNS, to sink hole malicious IP address ranges. In a 

networked environment, such as a Cloud Service Provider (CSP) infrastructure, such 

Internet protocols may not be present. Instead, analysis of network traffic can be used 

to identify malicious behaviour. 

 Academics have constructed many botnet detection algorithms based upon traffic 

analysis techniques. Network traffic is sampled at multiple collection points 

distributed across a network. Captured traffic is then cleansed and filtered before 

being fed into a botnet detection algorithm. Existing traffic capture methods have 

distinct drawbacks. Traffic capture using flow export protocols, such as NetFlow, are 

limited in the traffic attributes they capture, which in turn imposes limitations upon 

the attributes that can be used in the detection algorithms. Where flow export 

protocols are not able to capture a desired traffic attribute, traffic capture is 

supplemented with packet capture (PCAP) (Sperotto, et al., 2010). In high-speed data 

networks, the high data volumes captured by such methods turn threat intelligence 

into a big data challenge. NetFlow export traffic can be one of the largest 

heterogeneous data sources in high-speed data networks. It can grow to tens of 

terabytes of data per day and is expected to grow to petabytes over the years (Santos, 

2016). 
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 This research project conceptually developed a novel methodological approach to 

botnet traffic capture using IPFIX, a new generation of flow export protocols, to 

address a gap in knowledge around botnet detection in CSP networks. The design, 

construction and validation of this approach are described within this thesis.  

 This first chapter introduces the reader to the motivation behind botnet detection 

within CSPs. The boundaries of this research are defined, before outlining the overall 

research approach. Finally, this chapter declares the original contributions to 

knowledge from this research. 

 

1.1 Motivation 

History recalls countless technologies developed to steal or injure in order to obtain 

other people’s resources, be it land, possessions or information. Today’s 

technologically advanced civilisation is no different; stealthy malicious software 

(malware) is a tool to steal information or disrupt information systems. In 1948, John 

von Neumann predicted that computer code will one day have the ability to reproduce 

itself. The essay, the Theory of Self-Reproducing Automata (von Neumann and Burks, 

1966), is considered by many as the forerunner theory behind today’s computer 

viruses. In 1971, Creeper became the first self-replicating program, designed as an 

academic experiment to infect computers connected to ARPANET, an early version of 

the Internet. Thirteen years later, Cohen coined the term virus to refer to a self-

replicating program, hypothesising that these would become a major computer 

security problem. Cohen went on to suggest that since “prevention of computer 

viruses may be infeasible if widespread sharing [of programs] is desired” a cure 

“depends on the ability to detect a virus and overcome it.” (Cohen, 1984). 

 A bot is a software application that is used to perform repetitive operations - such 

as Google’s web crawler. A bot only becomes malicious when it is used as a delivery 

mechanism for a nefarious payload, such as malware. A botnet is a network of 

infected host machines under the control of a human operator known as a botmaster. 

What makes a botnet different to other malware is the use of C&C channels which a 

botmaster uses to disseminate commands to their bot armies. Chapter 2 explains how 

the power of botnets comes from this critical-mass of networked machines working 

together as a single platform from which to launch massive coordinated attacks such 

as distributed denial-of-service (DDoS) and click-fraud.  

 Anyone can pay to gain access to a cloud service. Therefore anyone with the right 

motivation can attack the cloud from within. As CSPs become vital building blocks in 
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the Internet of Things (IoT), as a convenient way to centrally store sensor or device 

data, the attack profile upon CSPs will change. Attacks have been witnessed upon the 

hypervisors that lie at the heart of CSP network infrastructures. Since 2014, attacks 

using botnets hosted within unsecure IoT devices have risen. With the public release 

of the Mirai bot source code in 2016 (Mansfield-Devine, 2016), copycat attacks have 

started to increase.  

 The CSP built environment poses challenges for botnet detection. Privacy 

expectations around tenant data restrict a CSP from providing malware detection 

services that require packet inspection-based forensics. Furthermore, if a CSP were to 

locate a detection probe within the tenant environment, it could raise concerns over 

whether data collected for malware detection is also being surveilled. Internet Service 

Providers (ISPs) use DNS record analysis to takedown botnets on the Internet. 

However, virtualisation methods used for tenant isolation make a CSP environment 

closer to a traditional LAN rather than the Internet, thereby limiting the availability of 

DNS for botnet detection. Additionally, high-performance remains a priority in multi-

tenant cloud environments from users demanding access to real-time and interactive 

applications and services (Garcia-Valls, Cucinotta and Lu, 2014). 

 Behaviour-based botnet detection has focused on NetFlow v5 as the primary 

method of traffic capture in botnet detection. NetFlow is an old protocol and has its 

drawbacks. Early flow protocols, such as NetFlow, were created to capture network 

traffic statistics as a context for measurement, billing and network management 

(Santos, 2016). Gates, et al., (2004) stated that the main weakness of NetFlow v5 for 

threat detection is its fixed template, which captures a rigid set of data fields that are 

not used in their entirety in security analysis, resulting in wasted data capture. In 

2013, IP Flow Information Export (IPFIX) was created under RFC-7011 (Internet 

Engineering Task Force, 2013a) as a standards-based replacement to overcome the 

many shortfalls of NetFlow. Figure 1 illustrates how a gap in knowledge exists in 

understanding how the functionality of IPFIX can be applied to threat detection and in 

particular for botnet detection within CSPs. 

 During the course of this research, informal conversations with Amazon and 

Microsoft have alluded to botnet detection in privacy sensitive environments being a 

problem that CSPs are currently facing. Such discussions have indicated that the 

impact of this research is not limited to just CSPs. The contributions from this 

research project have impact for any data network infrastructure that has potential for 

botnet attack, including the IoT, Smart City Area Networks (SCANs), future home 

networks and corporate networks.  
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Figure 1. An illustration of the gap in knowledge in botnet detection. 

Note that the gap in knowledge lies in how IPFIX can be applied to botnet detection. 

 

1.2 Research Aim 

This research has been driven by the gap in knowledge around how IPFIX can be 

applied to the challenge of botnet detection. The overall aim of this research is to 

address the problem of botnet detection in CSP multi-tenant virtualised networks 

through the creation of a traffic capture method utilising the IPFIX protocol. In high-

speed data networks analysis of captured traffic can become a big data challenge due 

to traffic volumes. The proposed capture method will use features of the IPFIX export 

protocol to collect only network traffic pertaining to botnet communication to reduce 

data capture volumes, whilst retaining CSP tenant isolation and tenant privacy.  

 

1.3 Research Hypothesis, Objectives and Boundaries 

Flow export protocols, such as NetFlow, are widely utilised within CSPs for network 

management reporting and statistics (Collins, 2014). IPFIX was designed to improve 

the known weaknesses of the NetFlow protocol, in particular NetFlow v5 (Trammell, 

et al., 2007).  

This research project was based upon the hypothesis that: 

“As NetFlow is already a successful candidate for behaviour-based botnet 

detection; the enhancements to IPFIX should offer advantages to CSPs over 

NetFlow v5 for capture of botnet communications.” 
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To achieve the aim of creating a novel botnet traffic capture method, the following 

objectives were addressed: 

 

Objective #1 was a critical investigation into IPFIX as an alternative flow export 

protocol to NetFlow v5, for botnet communication traffic capture in cloud provider 

networks;  

 

Objective #2 was the conceptual development of an innovative IPFIX template for 

botnet communication traffic capture in cloud provider networks; 

 

Objective #3 was to define, design and construct an IPFIX export framework for 

botnet communication traffic capture in cloud provider networks; 

 

Objective #4 was to validate the effectiveness of the novel design by demonstrating 

botnet communication traffic capture in a proof of concept network built upon both 

the template and framework. 

 

The boundaries of this research project will be delimited to: 

 Creation of a traffic capture method, rather than a detection algorithm; 

 Evaluation of IPFIX against NetFlow v5, rather than NetFlow v9. In the context 

of this research NetFlow v9 will be considered a non-standardised forerunner to 

IPFIX and will be primarily ignored; 

 CSP operating environments where infrastructure design includes tenant 

isolation and tenant privacy, for example Amazon EC2, Microsoft Azure and 

emerging IOT platforms, rather than ISP operating environments which face a 

different set of challenges; 

 Open source technology where possible, to facilitate future code modification, 

rather than using closed source technology. 
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1.4 Research Methodology 

All research is based on underlying philosophical assumptions about what constitutes 

valid research and which research methods are appropriate for the development of 

knowledge in a particular field. The following section outlines the assumptions and 

design strategies underpinning this study.  

 

1.4.1 Justification of Research Design 

An investigatory strategy was adopted to approach this research study, in order to 

utilise observational analysis through quantitative methods. The experimental 

methodology was designed in accordance with scientific method. A hypothesis was 

proposed in order to allow deductive reasoning to prove this hypothesis. Appropriate 

research objectives, see above, were devised to link evidence collection to the theory 

behind the hypothesis. These research objectives were defined in order to gather 

primary evidence from literature, as well as to obtain empirical evidence through 

experimentation, in order to justify the design elements for a proof of concept botnet 

communication capture prototype. The prototype was constructed from these design 

elements, and tested to compare performance against similar state of the art studies 

undertaken by other authors. The analysis of empirical data from testing allowed the 

hypothesis to be confirmed. A quantitative research method was adopted throughout 

this study to permit collection of numerical data for interpretation through statistical 

analysis. A quantitative approach allows relationships between test variables to be 

expressed as relative frequencies and correlation, in order to prove the theory.  

 

1.4.2 Rationale for the Research Approach 

Extensive evidence can be seen throughout global media of the extent of the social 

and economic threat from malicious botnets. The literature review provided a 

considerable body of evidence to suggest that cloud environments and virtualised 

infrastructures are at a risk from vulnerabilities in the underlying technologies that 

form these environments. In particular, vulnerabilities in hypervisors (see Chapter 2) 

make cloud environments an ideal tool for the rapid creation and deployment of 

infected virtual machines, with cloud management software being incapable of 

detecting such malicious behaviour. In a cloud environment all network traffic must 

pass through virtual switches contained within the cloud infrastructure. Therefore it is 

logical to monitor such devices for malicious behaviour. Collins, (2014) explained 



1. INTRODUCTION 
 

7 
 

how nearly all network devices used in the creation of cloud environments support 

flow technologies, such as NetFlow, which are used for network management and 

collection of network performance statistics. Literature showed that many existing 

botnet detection algorithms reply on packet capture or NetFlow for the collection of 

data to input into their detection algorithms. Research Objective #1, was prompted by 

studies from Trammell, et al., (2007) who claim that IPFIX was designed to address 

the known weaknesses of the NetFlow protocol. 

 From the outset, the purpose of this study was to capture botnet communication 

within cloud provider environments. Review of the state of the art revealed that 

multiple botnet detection algorithms exist, with varying degrees of success dependent 

upon the traffic attributes collected from the network. Often these detection attributes 

are arbitrarily selected with little supporting evidence of their relevance to botnet 

detection. The challenge in threat detection is not just the detection engine, but also 

the speed of detection. Networks, and associated business assets, are most at risk in 

the between infection and detection, which is on average 191 days (IBM, 2017). 

 It became evident that the drawback of most existing traffic capture techniques, 

when applied to high throughput networks, is that they collect big data; large volumes 

of highly varying information that requires processing for insight and decision 

making. As network traffic volumes continue to increase year upon year, analyses 

time is lengthened simply from increasing data volumes. Therefore this research set 

out to create a more efficient method of traffic capture that can be applied to existing 

botnet detection algorithms (see Chapter 3). Research Objective #2 was built upon 

claims by Trammell, et al. (2007) that IPFIX overcomes weaknesses in NetFlow v5, 

and took inspiration from Gates et al., (2004) who stated that the fixed template 

nature of NetFlow v5 limits its suitability to security analysis. Empirical data evidence 

was collected to demonstrate that IPFIX collects smaller data volumes than NetFlow 

and PCAP, is faster and demonstrates no noticeable impact upon host device CPU 

consumption. With Research Objective #2 demonstrating advantages of IPFIX when 

applied to botnet traffic communication capture, Research Objective #3 was defined 

so as to demonstrate how IPFIX collection can be incorporated into a prototype cloud 

stack. The theory of IPFIX export of botnet communication traffic was proven by 

testing the prototype with IPFIX templates to capture a real world botnet deployed 

within a sandboxed test network. The research approach is summarised in Figure 2.  
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Figure 2. The phases of the research approach. 

 

 The approach to researching the problem of botnet detection in CSP networks was 

conducted in four phases. Phase 1 was a review of technology and state of the art in 

botnet detection methods. Phase 2 was the construction, justified through empirical 

statistical evidence, of an IPFIX template for botnet traffic capture, which was 

performance tested against NetFlow v5. Phase 3 was the evaluation of component 

elements for the construction of a modular framework architecture that allows IPFIX 

export to be built into cloud network stacks. Phase 4 validates the design of the 

template and framework in a botnet traffic capture test. 
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1.4.3 Experimental Design 

Figure 2 shows three distinct experimental phases within the research approach. Phase 

2 used statistical analysis to create the IPFIX template, and also to demonstrate 

advantages in performance over other capture methods. Phase 3 was the design of 

IPFIX export into the cloud stack. Phase 4 tested the stack and the templates against 

real world malware. Thus addressing Research Objectives 2, 3 and 4. 

 The methodological approach for each phase of experimentation is outlined within 

the following chapters; creation of the BotProbe templates in chapter 4.3 with 

performance testing in chapter 4.8, testing of the BotStack framework in chapters 5.4 

and 5.6, and concept validation testing in chapter 6.3. Each methodology details the 

dataset origins, equipment used, methodical procedures and justification for the 

methods of analysis. Each chapter includes a critical discussion of the results together 

with the implications of how the experimental findings contribute towards the 

hypothesis of botnet communication traffic capture in cloud provider networks.  

 

1.5 Ethical Considerations 

All original research undertaken within Anglia Ruskin University must be performed 

in accordance to the university’s guidance and mandatory training on ethical research. 

Whilst this study did not involve animal or human participation, the research does 

involve handling of malicious software (malware). Therefore due ethical consideration 

was required to protect the researcher and the reputation of Anglia Ruskin University. 

Throughout this study the following ethical considerations were adhered to: 

 Malware was only executed in a sandboxed environment which was physical 

air-gap from both the university network and the Internet; 

 Malware was used for testing purposes only, and not used for malicious 

intensions or personal gain; 

 Malware was stored on appropriately labelled USB sticks, and kept in a 

restricted access environment; 

 Malware and PCAP were only obtained through legitimate repositories; 

 Where PCAP contains personal identifiable information, confidentiality was 

respected through the redaction of personal data. 
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1.6 A Summary of the Contributions to Knowledge 

Figure 3 outlines how this research makes several practical as well as theoretical 

contributions to knowledge, indicating in which peer reviewed articles these findings 

have been published: 

 

OBJECTIVE #2: The conceptual development of an innovative IPFIX template for botnet communication 
traffic capture in cloud provider networks.        (Chapter 4)
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s) Contribution #1: A critical investigation into how IPFIX export overcomes the limitations of 
traditional NetFlow-based botnet communication traffic capture in cloud provider networks.

 Graham & Winckles, 2014. An Analysis of Pre-Infection Detection Techniques for Botnets and other Malware
 Graham, M., 2014. Cloud-Based Detection Techniques for Botnets and Other Malware
 Graham, Winckles & Sanchez, 2015b. Practical Experiences of Building an IPFIX  Open Source Botnet Detector

Contribution #2: BotProbe: A novel IPFIX template; tailored for botnet traffic capture.

 Graham, Winckles & Sanchez, 2015b. Practical Experiences of Building an IPFIX  Open Source Botnet Detector
 Graham, 2017. BotProbe: Reducing Big Data Challenges in Threat Detection
 Graham, 2017. BotProbe: Making Network Big Data Manageable
 Graham, 2017. Botnet Observations: What can be done to up our game against this significant threat?

OBJECTIVE #3: To define, design and construct an IPFIX export framework for botnet communication 
traffic capture in cloud provider networks.                                     (Chapter 5)

Contribution #3: BotStack: A novel IPFIX monitoring framework.
Contribution #4: Empirical evidence for the optimum siting of a capture probe on the hypervisor.

 Graham, Winckles & Moore, 2014. Botnet Detection in Virtual Environments using NetFlow
 Graham, Winckles & Sanchez, 2015a. Botnet Detection within CSP Networks using Flow Protocols

 Graham, 2017. BotProbe: Reducing Big Data Challenges in Threat Detection
 Graham, 2017. BotProbe: Making Network Big Data Manageable

 Graham, 2017. Botnet Observations: What can be done to up our game against this significant threat?

OBJECTIVE #4: To validate the effectiveness of the novel design by demonstrating botnet 
communication traffic capture in a proof of concept network.                   (Chapter 6)

OBJECTIVE #1: A critical investigation into IPFIX as an alternative flow export protocol to NetFlow v5, 
for botnet communication traffic capture in cloud provider networks.             (Chapter 2 and Chapter 3)

 
 

Figure 3. A diagramatical view summarising how this thesis contributes to knowledge. 
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1.7 Thesis Structure and Organisation 

The remainder of this thesis has been structured as follows: 

 

Chapter 2: This chapter justifies the necessity for the research within this project. 

Real world examples are used to describe how new families of bots are beginning to 

target cloud infrastructures. The chapter also reviews the legal responsibility for cloud 

providers towards botnet takedown. 

 

Chapter 3: Through a thorough review of academic literature, this chapter outlines 

the features of IPFIX that bring advantages over NetFlow v5 to botnet traffic capture 

in a cloud service provider environment. The chapter reviews the state of the art in 

botnet detection using flow protocols, whilst explaining how IPFIX could be applied 

to improve these studies. NetFlow v9 is discussed, although throughout this thesis 

NetFlow v9 is considered to be a vendor proprietary forerunner of IPFIX and is 

therefore given marginal attention. 

 

Chapter 4: Using the understanding gained from chapters 2 and 3, this chapter 

describes the process by which almost 25 million botnet traffic flows are analysed in 

the creation of the novel BotProbe IPFIX templates. Empirical data is collected and 

analysed for the performance impact (processing times, data volumes and CPU 

loadings) of the BotProbe templates against NetFlow v5. 

 

Chapter 5: This chapter presents BotStack, a novel IPFIX framework for botnet 

traffic capture in cloud provider networks. Using this framework, a proof of concept 

network is constructed to determine the optimum siting of IPFIX sensors, as well as 

an understanding of how sensor clock settings impact traffic data capture. 

 

Chapter 6: The interoperability of BotProbe with BotStack is validated by infecting a 

proof of concept network with the Zeus botnet. BotProbe captures botnet traffic 

communications across four distinct profile phases of a botnet life cycle. 

 

Chapter 7: The final chapter summarises the research findings, drawing conclusions 

of the impact of this study for cloud service providers. This chapter also highlights 

future directions for this research. 
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2. Technological Review 

 

2.1 Introduction 

The aim of this research project, as described above, is to understand how the IPFIX 

protocol can form a capture mechanism for botnet traffic in CSP multi-tenant 

virtualised networks. The starting point to achieving this aim is to understand what 

makes a CSP infrastructure vulnerable to attack, the potential threats from malware 

that specifically abuses the cloud and the limitations of current detection techniques. 

 Many real world scenarios exist where cloud infrastructures have provided host to 

botnet C&C servers. The Cloud Security Alliance (CSA) recognises Abuse and 

Nefarious Use of Cloud Services as a top threat to cloud computing (Brook, et al., 

2016). The Internet of Things (IoT) has started to become intrinsically linked to cloud 

hosted infrastructures, due to its ability to store data centrally. The International Data 

Corporation (IDC) predicts that by 2020, over 90% of all IoT data will be hosted on 

cloud platforms (Turner, 2015). Increasingly IoTs devices have been found hosting 

botnets; 2013 had the Darlloz botnet (Hayashi, 2013), 2014 had fridges sending 

SPAM (Thomas, 2014), 2015 had Lizard Stresser (Krebs, 2015) and 2016 had the 

Mirai botnet (Mansfield-Devine, 2016) which sustained a record-breaking 620Gbps 

DDoS attack, before the source code was publically released prompting copycat 

attacks.  

 The attack surface of a cloud can be extended both through infrastructure design 

techniques and the hardware or software upon which it is provisioned. Tenant 

separation is typically achieved through virtualisation of both physical (Input/Output, 

CPU) and networking (switching, storage) functions. Real world attacks have utilised 

hypervisor vulnerabilities to allow malware to jump into, across and out of virtualised 

environments. In a CSP this could mean an attack on another tenant, or upon a storage 

repository. 

2 
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2.2 Botnet Fundamentals 

A bot, or robot, is nothing more than a software application that performs repetitive 

operations; such as the web crawlers used by Google to index the Internet. A bot only 

becomes malicious when it is used as a delivery mechanism to transport nefarious 

payloads to multiple devices. Compromised devices work together to form a network 

of infected machines, or botnet. Under the remote control of a human botmaster 

operator, these machines lie dormant until they reach a critical mass of infected 

devices and the botmaster initiates an attack. Typically, an attack takes the shape of a 

mass attack of many hundreds of thousands of bots upon a single victim. The 

contender for the first botnet lies with either the Sub7 trojan, or the Pretty Park worm. 

Both appeared at about the same time in 1999 and both introduced the concept of 

connecting to victim machines via an IRC communications channel which was used to 

deliver malicious commands. Since then, botnets have evolved in threat, stealth and 

danger to become one of the most significant cybersecurity threats faced by 

organisations and individuals today.  

 Without doubt, the power of a botnet comes from this “mass” of networked 

machines working together as a single platform. A larger botnet is both more effective 

at achieving its objective, as well as harder to takedown. However, more than a few 

hundred thousand bots and the botnet becomes easier to detect; fewer than a hundred 

thousand bots and the attack becomes less effective. It is estimated that at any one 

time, globally as many as 2.5 million devices are connected to over 5000 C&C servers 

(Trend Micro, 2016). With botnets-for-hire services starting from $20 an hour for a 

DDoS attack, such services are a tool for non-specialised individual to perform 

powerful attacks (ENISA, 2015). 

 The ability to perform a mass attack upon a single victim, using globally 

distributed bots makes botnets suited for specific types of attack: 

DDoS  In 2015, it was estimated that malicious bots generate 29% of all 

Internet traffic (Imperva, 2015). The first half of 2016 saw more 

100Gbps+ attacks than in all of 2015 (Arbor Networks Inc., 2016), 

including the first 600Gbps+ DDoS attack (Kaspersky Lab, 2016). 93% 

of DDoS attacks in Q1 2016 were from DDoS as a Service (Incapsula, 

2016). In 2016, the Lizard Stresser botnet used IoT Webcams to launch 

a 400Gbps DDoS attack (Krebs, 2015). In 2016, a CCTV botnet was 

detected generating over 50,000 HTTP requests per second during a 

targeted DDoS attack (Cid, 2016). 
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Identity 

Theft 

Botnets targeted more than 1,500 financial institutions across more than 

100 countries in 2015 (Dell SecureWorks CTU Threat Intelligence, 

2016). During two months in 2014, a single botnet mined $600,000 in 

crypto coins (Dell SecureWorks CTU Research Team, 2014). Over 400m 

identities were stolen globally in 2015 from bots such as Dridex, Simba 

and Ramnit (Symantec, 2016a; Verizon, 2016). 

Click 

Fraud 

It has been estimated that botnets could have cost the global advertising 

industry in excess of $7.2 billion in 2016 (Association of National 

Advertisers and White Ops, 2016). 

 

2.3 A Review of the Limitations of Botnet Detection Techniques 

Amazon’s AWS Security Best Practices (Todorov and Ozkan, 2013) recommends that 

tenant protection from malware is achieved through anti-virus (AV) software, anti-

spam (AS) software and host-based Intrusion Detection System (IDS) software. 

Amazon’s recommendations to protect against botnets include device patching, only 

using trusted software and applying the principle of least privileges. The CSA (Cloud 

Security Alliance, 2011) recommends securing the network and preventing tenant data 

leakage through a combination of VLANs (Virtual LANs), IDS, IPS (Intrusion 

Prevention System) and Firewalls. Modi, et al., (2013) agree, advising on deploying 

IDS and/or IPS for anomaly detection within cloud architectures.  

 This advice has several weaknesses. Primarily, the advice puts the responsibility 

upon tenants to provide self-protection. Such an approach may protect individual 

tenants, but does not prevent the nefarious use of cloud services. A CSP hosting 

protection services within the tenant environment has two considerations; the privacy 

implications of such systems as they are based upon packet inspection techniques, and 

that a malicious user can disable these protection services. As the size of IoT networks 

increases, effective endpoint security becomes more difficult. Furthermore, AV, IDS 

and IPS are built upon signature-based detection engines. Signature-based detection 

has three drawbacks (Graham and Winckles, 2014; Graham, 2014): (1) an inability to 

cope with malware polymorphism and metamorphism, where any change to a virus 

binary requires a new signature definition; (2) a lack of zero day protection until a 

signature is created and deployed; and (3) it is a post-infection technique taking action 

only after malware has entered a system. Heuristic detection may overcome some of 

these drawbacks, but such techniques can be slow and are still subject to the same 

binary obfuscation techniques that malware authors deploy against signature-based 
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detection. Signature-based techniques do have established roles in the real-time 

protection of individual devices against malware. However, in a botnet of 100,000 

devices, inoculating one device has little impact on the overall botnet. The takedown 

of a botnet requires locating and eradicating the C&C server, which is something that 

signature-based AV, IDS and IPS are not capable of doing. 

 Internet Service Providers can successfully takedown botnets by blackholing 

appropriate IP address ranges using DNS record analysis. In practice, DNS takedown 

is a slow process and can take months to successfully trace a C&C server. DNS 

blacklisting is susceptible to evasion techniques such as IP fluxing and domain 

fluxing, such as those used by the Conficker and Torpig botnets (Graham and 

Winckles, 2014). A takedown strategy is often reliant upon accurate estimations of the 

botnet size. DNS can be unreliable when used in botnet size estimation (Rajab, et al., 

2007). Blackholing techniques rely upon DNS records, which are intrinsically linked 

to the Internet. Within a networked environment such as a CSP infrastructure, DNS is 

not required to obtain device addressing information, so DNS may not be present in a 

LAN. Thereby defeating DNS record analysis as a protection mechanism in such 

environments.  

 Every botnet uses a communications channel which enables communication 

between each bot and their C&C server(s). The necessity for bots to communicate 

with their peers throughout their life is fundamental to behaviour-based detection (Gu, 

et al., 2007). First generation botnets used a traditional client-server topology. This 

communication model is straightforward to set up and maintain, but fewer C&C 

servers make the botnet more liable to takedown. Some first generation botnets 

increased resilience by using primary/standby servers, but these more rigorous 

communication models required complex code. To increase resilience to takedown, 

botnets migrated to a decentralised peer-to-peer (P2P) topology where each bot node 

can act as a client or a server. P2P botnets display similar behaviour to benign P2P 

software making them more difficult to detect (Yen and Reiter, 2010). Out of the box 

P2P protocols maintain internal models of neighbouring nodes, allowing researchers 

to infiltrate a P2P botnet by becoming part of the botnet to obtain neighbour node IP 

addresses. Phatbot attempted to overcome this by using WASTE, an anonymous P2P 

protocol. Although WASTE does not scale for large networks (Wang, Sparks and Zou, 

2010). The meshed ad-hoc nature of P2P networks, together with a lack of message 

delivery guarantee, can mean P2P botnets suffer from higher command propagation 

time across the network which impacts bot synchronisation (Zhao, et al., 2013). C&C 

and P2P models are both still used in botnet topology. The communication channel 
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protocol can also be used as an attribute in behaviour-based detection. Early bots 

utilised IRC. Whilst straight forward to code, IRC is easily mitigated by blocking IRC 

ports. A common method for achieving stealth is to employ HTTP as the 

communication protocol. By masquerading as legitimate HTTP or encrypted HTTPS 

traffic, bots cans bypass port-filtering firewalls and IDS detection (Zeidanloo and 

Manaf, 2009). IRC and HTTP are both still used as botnet communication channels. 

 

2.4 A Review of Botnet Mitigation Legislation and Responsibility 

In 2010, the OECD (Organisation for Economic Cooperation and Development) 

released research suggesting that global ISPs should take steps to mitigate the threat 

from botnet SPAM (van Eeten, et al., 2010). The report achieved little other than to 

raise an argument around where responsibilities lie for tackling botnets. In 2013, the 

US Federal Communications Commission (FCC) produced a voluntary code of 

conduct for ISPs (Communications Security, Reliability and Interoperability Council, 

2013). The US-centric report suggested that ISPs collaborate on botnet detection and 

eradication. The report highlighted two hindrances preventing collaboration. First, the 

cost of implementing technical solutions; and second, that global laws and policy 

discourage global collaboration. Since its release, several major US 

telecommunications providers have adopted the code, including AT&T, Comcast, 

Sprint and Verizon. Similar voluntary codes have followed in other countries. These 

types of codes of conduct will remain voluntary until international law can resolve 

collaboration issues. Demarcation points in responsibilities are also open to 

interpretation. Fryer, Stalla-Bourdillon and Chown (2015) argue that the third party 

companies which host website platforms should also take some responsibility toward 

botnet mitigation. 

 In 2014, the CSA launched an anti-bot working group to coordinate research into 

botnet prevention within CSPs, however by 2017 this working group appeared to have 

become inactive having released little information. In 2015, a report from the US 

Federal Trade Commission (FTC) highlighted that IoT devices must implement 

security by design, rather than treat security as an afterthought (Federal Trade 

Commission, 2015). ISO/IEC27018:2014 is an attempt, through non-legal regulation, 

to address the lack of cloud computing legislation. For European CSPs, this standard 

links to the Article 17 of the European Commission Data Retention Directive (EC 

Data Retention Directive 2006/24/EC, 2006) which stipulates that Data Controllers 

within the European Economic Area who are responsible for the processing of data, 



2. TECHNOLOGICAL REVIEW 
 

17 
 

must take appropriate measures to protect personal data against accidental destruction 

or loss, alteration or unauthorised disclosure. This international standard covers a wide 

variety of subjects, but concerns itself more with protection of personally identifiable 

information. Ultimately, the requirements of ISO27018 are not a replacement for 

national or international law, nor does it specifically address the risk from botnets. By 

the completion of this thesis in 2017, there are no legal requirements for CSPs or ISPs 

to actively mitigate against botnets. 

 

2.5 A Review of the Cloud as an Attack Platform 

2.5.1 ATTACKS FROM THE CLOUD 

The CSA identifies Abuse and Nefarious Use of Cloud Services as a top threat to 

cloud computing (Brook, et al., 2016). The report cites threats that are directly related 

to botnets; including DDoS attacks, email SPAM and phishing, mining for digital 

currency, large-scale click fraud and malicious content hosting (such as a C&C 

server). The report recommends that CSP customers should be permitted to monitor 

the health of their own cloud workspace. Whilst a dashboard-style overview of 

bandwidth utilisation may give clues to malicious activity, it is no more than an 

indicator of possible threat. 

  One driver in the move away from maliciously infecting victim devices, towards 

using service providers to host malicious VMs, is the technological advantages gained 

from virtualised platforms. These include performance, scalability, ease of 

management, lower risk of detection and stability of cloud services (Level 3, 2015). 

Another driver is cost. Bryan and Anderson (2010) rented 10 virtual servers on 

Amazon’s EC2 platform at a total cost of $6 to demonstrate a cloud hosted DDoS 

attack. Roth (2011) demonstrated the power of distributed computing by renting 

servers on Amazon’s EC2 platform at a cost of $2.10 per hr per instance. Eight 

instances were clustered, each trying 50,000 passwords combinations per second, 

taking 2 minutes to perform a 39 million word dictionary attack to brute force a victim 

password. Ragan and Salazar (2014) demonstrated how an automated service for 

registering free-trial CSP instances could create a botnet to mine bitcoins. 

 Cybercriminals are businessmen, recognising the same benefits from cloud-based 

services as legitimate businesses. From the point of view of a botmaster, access to 

considerable distributed processing power at almost negligible prices provides two 

opportunities. Firstly, the cloud removes the necessity and complexity of infecting a 

victim’s device. Instead the botmaster can use a cloud provider to create a VM 
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instance, remove any AV or IDS, infect this VM with their own bot and clone this VM 

multiple times to rapidly create a sizeable botnet at little cost. Secondly, the cloud can 

play host to the C&C servers. If an ISP blacklists the C&C server IP addresses, the 

distributed architectural nature of the cloud allows for rapid re-deployment of the 

C&C server in a totally new geographic IP subnet.  

 Either of these reasons makes the cloud an effective platform from which to launch 

botnet attacks. One of the earliest examples was in 2009, when the Amazon’s EC2 

platform was used to host a Zeus C&C server as a backend alternative in case the 

original domain was lost (Amazon, 2009). Again in 2009, Amazon’s EC2 platform 

was used to launch a massive-scale DDoS attack on Bitbucket which took Amazon 16 

hours to block (Metz, 2009). By 2014, Amazon’s AWS platform was anticipated to be 

hosting 41% of the world’s malware (Heimer, 2014). In 2014, Dropbox was used to 

deliver the Upatre SPAM bot (Trend Micro, 2014). Again in 2014, Dropbox was used 

as a C&C server for the PlugX RAT (Pauli, 2014). In June 2015 a botnet that was 

infecting Skype sessions with adware was traced back to Amazon’s AWS platform 

(Osbourne, 2015). 

 

2.5.2 IOT ATTACKS 

Public infrastructure and utilities continue to remain a high profile target. In 2010, 

Stuxnet was the first known worm to target the industrial SCADA (Supervisory 

Control and Data Acquisition) control systems used in heavy industry, by attacking 

Iranian nuclear centrifuges (Kushner, 2013). Stuxnet morphed into the industrial 

worms Duqu in 2011 and Flame in 2012. At around the same time, poor device 

security facilitated a shift from attacks on industry into attacks on the IoT. In 2012, a 

hacker attempted a census on the entire Internet IPv4 addressing space. To perform 

this the Carna botnet was created from 420,000 embedded devices that used default 

passwords (Botnet, 2012). In 2013, Linux.Darlloz attacked routers, cameras and set- 

top boxes that used default usernames and passwords, to create a botnet to mine 

crypto coins (Hayashi, 2013). In the same year, a botnet was supposedly created using 

smart fridges to perform SPAM attacks, but this has since been refuted (Thomas, 

2014). In 2015, Lizard Stresser botnet was found performing 400Gpbs DDoS attacks 

from home routers with default passwords (Krebs, 2015). In 2016, botnets took 

advantage of cloud based Linux IoT devices by exploiting volatile memory 

vulnerabilities in ELF (Executable and Linkable Format). The first was 
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Linux.Routrem (Symantec, 2016b) also known as Remaiten. This was followed by 

Linux.Laubot (Symantec, 2016c) which specifically targeted ARM architectures. 

 However, both of these botnets were eclipsed by the Mirai botnet which made 

global news headlines after sustaining a record-breaking 620Gbps DDoS attack 

(Mansfield-Devine, 2016). Following this attack the Mirai botnet source code was 

publically released. The end of 2016 and early 2017 saw several copycat attacks using 

modified Mirai code. Whilst the IoT continues to be built on cheap devices with no 

security or unchanged default passwords, the IoT will remain a source from which to 

host attacks.  

 

2.6 A Review of the Cloud as an Attack Surface 

2.6.1 ATTACKS UPON THE CLOUD 

Whilst the cloud provides an effective platform from which to host botnets, the cloud 

infrastructure itself is not immune to attack. Since cloud computing is no more than a 

combination of existing computing techniques such as virtualisation, grid computing 

and service-oriented computing, security issues in the cloud differ little from 

traditional IT solutions (Ouedraogo, et al., 2015). What makes the cloud different to 

traditional computing is (1) co-residency means that tenants often share the same 

network infrastructure and storage with other tenants, competitors, or even hackers; 

and (2) in a post Snowden era, tenants are more astute in critically evaluating a 

supplier’s capacity for surveillance. Privacy expectations limit a CSP’s ability to 

provide tenants with the more traditional protection solutions that are associated with 

packet inspection techniques, such as signature-based detection.  

 Alternatively, leaving malware protection to the responsibility of the tenant may 

broaden the cloud attack surface. Deployment of insufficient or outdated anti-virus 

software may permit malware capable of compromising a tenant’s VM. If malware 

can escape a VM onto the underlying CSP network infrastructure, it has the potential 

to attack the CSP’s storage repositories or neighbouring tenants. Unsecure cloud 

management interfaces are another source for malware to enter the cloud 

infrastructure. Somorovsky, et al., (2011) exploited Amazon EC2 sessions through 

XSS (Cross Site Scripting) in the EC2 control software interface. 
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2.6.2 THE HYPERVISOR EXPOSED 

A hypervisor allows emulated virtual devices to share the physical host’s resources. 

CSPs use hypervisors to allow multiple VMs to each act as a stand-alone, tightly 

isolated container, thereby providing tenant isolation from other tenants. Effectively, a 

hypervisor is software which acts as a gatekeeper between the privileged kernel 

domain and the unprivileged guest domain. Exploiting vulnerabilities in this software 

could allow unauthorised entry or exit from this isolated sandboxed environment. 

Govindavajhala and Appel (2003) demonstrated this by using a lightbulb to raise the 

temperature on DRAM and SRAM chips to force memory errors. These errors 

allowed them to exploit both Sun and IBM VMs. Chapter 2.7 describes real world 

hypervisor exploits. 

 A hypervisor can have multiple pointers to the same memory location to allow the 

management of numerous concurrent virtual machines. Rutkowsa (2004) exploited 

this through four lines of code known as the Red Pill. She was able to determine 

whether the host was physical or virtual by analysing memory registers in the Store 

Interrupt Descriptor Table, which in Intel processors can be accessed by non-

privileged users.  

 Thirteen years later, at the time this thesis was written, malware still exploits red 

pill type vulnerabilities to determine if it is being executed within a virtual or physical 

machine. With the knowledge that researchers typically study malware in a sandboxed 

virtual environment, malware exists that will modify its behaviour, or refuse to 

execute, in virtual machines to prevent researchers from understanding its behaviour. 

Botnets with the ability to do this include Stormbot, Agobot and Phatbot. The Dyre 

malware determined if it was running in a virtual environment by analysing the 

number of processors the environment used, under the assumption that virtual 

environments are usually configured with only one processor and one core to save 

resources (Raff, 2015). Rather than terminate when running on a virtual machine, 

malware such as Cloudburst actively seeks out virtual environments in order to exploit 

vulnerabilities that allow it to escape out of the VM onto the underlying infrastructure.  

 The CSA attributes seven of its top twelve threats to the cloud to hypervisor 

vulnerabilities (Brook, et al., 2016). As hypervisors become more feature rich they 

start to contain more bugs in the code. Extra security features in hypervisors can make 

the hypervisor more visible to attack and can often hamper bot detection (Vaquero, 

Rodero-Merine and Morán, 2011) Current practices of replicating functionality at 

many levels, including security features at the hypervisor and guest OS levels, create 
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inertia in software management which often impairs performance of the systems 

(Garcia-Valls, Cucinotta and Lu, 2014).  

 Fully secure isolation is still an area of study. Rushby (1989) proposed true 

isolation, where each VM has its own resources instead of sharing resources. Few 

products support this, as the x86 chip set does not have a “no sharing” concept, so not 

all instructions in the chip can be virtualised. The Chinese Wall concept suggests that 

isolation can be achieved through hosting parties that have conflict of interest on 

separated infrastructure. This usually means additional infrastructure which increases 

cost whilst reducing device utilisation. Sailer, et al., (2005) proposed an isolation 

method on the Xen hypervisor using Access Control Modules, which may reduce the 

opportunity for inter-VM attacks on the same host machine, but it does not eliminate 

vulnerabilities in hypervisor code. VM Introspection (VMI) is a technique for the 

transparent real-time inspection of the operation of a VM, by directly reading the 

volatile memory of the running VM from the hypervisor’s privileged domain. 

Typically, VMI research is applied to malware, but Memarian, Conti and Leppänen 

(2015) detected botnets in infected cloud VMs by searching for hidden processes and 

DLLs. From a CSP’s point of view, VMI can be performed without the knowledge of 

the guest OS, thereby providing a possibility of detecting malware without a probe in 

the tenant environment. However, this makes it an invasive technique which may 

breach tenant privacy expectations. Hypervisors remain a rich source of vulnerabilities 

that will continue to be exploited. 

 

2.7 A Model for Attacking a Cloud Infrastructure 

Hypervisor attacks have been witnessed in the wild. When considered individually, 

these attacks have successfully exploit different vulnerabilities in order to jump 

between the physical and virtual network layers.  

 When considered as a combined attack, it could be possible for malware to enter 

the cloud infrastructure and propagate across the network. In a CSP environment, 

malware could then attack the CSP infrastructure, in particular storage, or attack 

tenants in other logical partitions. In an IoT environment, malware could compromise 

multiple devices or sensors. Figure 4 shows a model for malware to exploit hypervisor 

weaknesses using real world attacks. 
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Figure 4. A three stage model for hypervisor exploitation. 

 

The principal attack vectors, as indicated by the numbers in red circles in Figure 4, are 

as follows: 

(1) Host Escape (Host → VM) 

A hypervisor’s management software could theoretically allow a cloud administrator 

with access to a privileged domain, access to the unprivileged guest domains. This 

would provide direct access to the contents of a tenant’s VM memory at runtime. A 

CSP would mitigate this risk by applying the principle of least privileges, thereby 

restricting access privileges so that no single person could accumulate all the 

necessary privileges to do this. In August 2012, the Crisis malware was the first to 

perform host escape jumping from the hardware to the guest VM (Katsuki, 2012). 

 

(2) VM Hopping (VM → VM) 

Malware can possess the functionality to recognise when it is running in a virtual 

environment rather than on a physical machine. Wang and Lee, (2006) used memory 

leakage to set up covert communication channels between VMs to facilitate a cached 

side-channel attack on a neighbouring VM’s cryptographic library. Ristenpart, et al., 

(2009) exploited VM placement in Amazon’s EC2 platform to perform side-channel 

attacks upon neighbouring VMs. Vaquero, Rodero-Merine and Morán (2011) provide 

a detailed study on side-channel exploitation, categorising them into three specific 

attack vectors: storage channel, timing channel and side-channel. Irazoqui, et al, 

(2014) captured AES keys from neighbouring VMs on Amazon’s EC2 and Google 
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Cloud using cache leakage attacks. Inci, et al, (2015) repeated Irazoqui’s work to 

capture RSA keys from neighbouring VMs on Amazon’s EC2.  

 

(3) VM Escape (VM → Host) 

A larger attack surface opens up when malware can jump from the virtual 

environment onto the host device, and then onto the physical network. Before 2009, it 

was theorised that VM escape attacks could be perfromed through system directory 

traversal. In 2009, Cloudburst exploited corrupted memory locations in VMware 

shared folders to tunnel through to the underlying OS (Kortchinsky, 2009). In 2012, 

vulnerability CVE-2012-0217 allowed an attacker to escape from a VM onto the 

device kernel whilst achieving escalated privileges. In 2014, Google’s App Engine 

was exploited to allow code on the underlying OS to be executed from a Java VM 

(Constantin, 2014) and firmware bootscript vulnerabilities were found to permit guest 

escalation to the host (Wojtczuk and Kallenberg, 2014). In 2015, the Venom 

vulnerability (CVE-2015-2456) was discovered in the QEMU floppy disk controller 

allowing VM escape on products that had spawned from QEMU; namely KVM, Xen 

and VirtualBox.  

 QEMU vulnerabilities are the root cause of many VM escape techniques. A Xen 

VM guest with access to the PCNET controller can use a buffer overflow to execute 

packets on the host (CVE-2015-3209). A Xen guest with access to an emulated 

CDROM device has access to the QEMU process (CVE-2015-5154). A guest may be 

able to read host-level data residing in the QEMU process (CVE-2015-5165). Issues in 

unplugging an emulated block device allowed guest access to the host by unplugging 

the device again (CVE-2015-5166). A vulnerability in VMware printer virtualisation, 

which is installed by default, allows a guest OS to access and print documents on the 

Host OS. Even without VMware tools installed, the guest can still talk to the host over 

COM1 (Kortchinsky, 2015). 2015 ended in a low for QEMU with the following 

vulnerabilities that allowed VM escapes: CVE-2015-5307 which also allowed the 

guest to DoS the host, CVE-2015-6654, CVE-2015-7835, CVE-2015-8104 and CVE-

2015-8615. In July 2016, a bug in Xen hypervisor (CVE-2016-6258), dubbed the 

bunker buster, allows a malicious admin within a para-virtualised VM guest to access 

the host via fast-paths in the page table and obtain root access. More detailed 

descriptions of all the CVEs mentioned above can be found at https://cve.mitre.org. 
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2.8 Summary 

This chapter presented evidence on the reality of botnet threats upon CSPs. 

Fundamental exploits exist in hypervisors at the heart of CSPs making them 

vulnerable to attack from malware such as Crisis and Venom. Should these malwares 

enter a CSP environment, for example via a client’s virtual machine, these exploits 

present other tenants and the cloud infrastructure itself as potential attack surfaces. 

Multi-tenancy, achieved through hypervisor technology, introduces a further challenge 

in creating a detector in the optimal location of a minimal number of probes to achieve 

maximum network visibility. This is considered in greater detail in chapter 5. 

 The ability to provision centralised storage for multiple distributed devices position 

CSPs as a vital building block for the IoT. However, there remains no reliable method 

for botnet detection within CSP infrastructures. AV is not the solution for botnet 

detection as it is incapable of tracing the C&C servers and requires the device to be 

compromised before detection can take place. Whereas botnets should be detected 

before an attack commences. Furthermore, CSPs are under no legislation to tackle the 

botnet threat. This differs somewhat with ISPs, who have voluntary legislation to 

tackle botnets, and may go towards explaining why ISPs have various solutions for 

botnet detection. ISP solutions generally rely upon DNS record analysis, which cannot 

be re-engineered for CSPs as DNS is an Internet protocol and not a local area network 

protocol.  

 This chapter begins to address research objective #1 through understanding the 

threats to CSPs from botnets and limitations of current malware detection in such an 

environment. Flow protocols are widely utilised by CSPs to capture network traffic 

management and reporting statistics (Steinberger, et al., 2013). The next chapter 

further addresses this research objective in considering the application of flow export 

within a botnet detector; focusing on the advantages of standards-based IPFIX over 

earlier proprietary NetFlow protocols.    
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3. An Overview of Flow Export 

 

3.1 Introduction 

Chapter 2 advocated the requirement for research into botnet detection in cloud 

environments. The botnet threat, both to and from the cloud, is real, whilst hypervisor 

vulnerabilities expose the cloud infrastructure to attack. AV and VM introspection 

techniques have limitations in obtaining the profile of a botnet attack, where it is 

essential to identify the C&C servers in order to facilitate takedown of the botnet. 

 The communication systems that make botnets such a powerful attack force are 

also their Achilles heel. The regular chatter between bots and their C&C servers can 

be used for detection. In high-speed data networks, traffic capture methods such as 

PCAP, can result in volumes of big data. This big data requires subsequent analysis in 

order to locate a few botnet signature packets that could be only a few bytes in size. 

Not only is analysis at this scale difficult, but packet capture also results in huge 

quantities of accumulated storage data in a short period of time (Hofstede, et al., 

2014). Flow protocols, such as NetFlow, are used by over 80% of network operators 

to capture network traffic management and reporting statistics (Steinberger, et al., 

2013). Many researchers have repurposed NetFlow to capture network traffic for 

botnet detection. However, NetFlow was designed to be a network management 

protocol and presents limitations when applied to security threat analysis. In 2013, 

IPFIX (RFC-7011) was developed to overcome the weaknesses of NetFlow.  

 Chapter 1 identified a gap in knowledge which formulated the hypothesis for this 

research study; that the enhancements of standards-based IPFIX overcome the 

weaknesses of proprietary NetFlow, when applied to in botnet communication traffic 

capture. This chapter reviews the available literature to compare these two protocols, 

presenting an argument that IPFIX does exhibit advantages in a CSP environment that 

warrant further understanding. This chapter also reviews the literature that discusses 

the state of the art in botnet traffic capture using flow protocols. 

3 
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3.2 A Brief History of Flow 

In the 1980s SNMP (Simple Network Management Protocol) was the standard for 

network management. SNMP was designed to poll a proprietary MIB (Management 

Information Base) in a device every x number of minutes for basic information, such 

as up/down status and common error alerts, regardless of any change in the device 

state. However, the information obtainable from the MIB was limited. SNMP was not 

designed to carry a large amount of data and the protocol come with overheads. If 

more granular information was needed, Syslog would be used alongside SNMP, 

allowing devices to push information after an event or status change, rather than 

require regular polling. Syslog could be used for the efficient logging of device 

information, but an unstructured data format made it slow for querying and reports. 

 In 1991, the Internet Engineering Task Force (IETF) proposed aggregating packets 

into flows using packet header information for Internet accounting in RFC-1272 

(Internet Engineering Task Force, 1991). The working group was disbanded in 1993 

due to a lack of vendor interest. In 1996 a new working group was tasked with 

developing an architecture for flow measurement. A generic framework for Real-time 

Traffic Flow Management (RTFM) was published in 1999 as RFC-2721 (Internet 

Engineering Task Force, 1999). RTFM was a network flow metering process based on 

SNMP. Meanwhile Cisco was working on a proprietary flow export technology to 

speed up layer 3 packet switching called NetFlow. This precursor work became Cisco 

Express Forwarding - where forwarding decisions are made on the first packet of a 

flow, with subsequent packets being switched. Cisco patented NetFlow in 1996 (Kerr 

and Bruins, 2001). Cisco continued to develop NetFlow for network management. 

Multiple versions were developed, with the first commercial release being NetFlow v5 

in 2002. In 2004 Cisco introduced NetFlow v9 (known as Flexible NetFlow, or FnF) 

which provided much needed improvements over NetFlow v5; including support for 

templates, VLANs, IPv6 and MPLS, amongst other features. Meanwhile, other 

vendors developed their own proprietary NetFlow protocols; none of which were 

interoperable. 

  In 2004 the IETF recognised the need for a standardised approach. In 2008 the first 

specifications of IPFIX were drawn up, based on NetFlow v9 as the underlying 

building block. In 2013 IPFIX was made the standard for flow protocol export under 

RFC-7011 through RFC-7015 (Internet Engineering Task Force, 2013a; 2013b; 

2013c; 2013d; 2013e) and RFC-5103 (Network Working Group, 2008). 
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 IPFIX was defined to provide an extensible, flexible data model that is reliable, 

secure and congestion-aware (Trammell and Boschi, 2011). IPFIX is a push protocol, 

where a device regularly sends IPFIX flow messages to collectors without the 

collector having to specifically request the data. Flow exports a highly structured 

dataset, where structured means that the data adheres to a pre-defined model that is 

organised in a predetermined way (Santos, 2016). When traffic capture in high-speed 

data networks produces big data, a structured dataset is an advantage not only for 

reporting, but also when it comes to analysis and querying; for example, for malicious 

network activity. IPFIX supports structured data as documented in RFC-6313 

(Internet Engineering Task Force, 2011). As network operators are already capturing 

flow data for network management purposes, it makes sense to understand if these 

datasets can be re-purposed for other activities such as botnet detection. 

 

3.3 Flow Export Architecture 

Network monitoring is typically classified as either active or passive. Active 

monitoring, such as ping or traceroute, injects traffic into a network to perform 

measurements. Active monitoring has the potential to impact the traffic under monitor 

through introduced latency. Passive monitoring, such as PCAP, observes traffic as it 

passes a measurement point. Flow export falls into the passive monitoring category 

(Hofstede, et al., 2014). RFC-7011 defines flow as:  

“… a set of packets or frames passing an Observation Point in the network 

during a certain time interval. All packets belonging to a particular flow have 

a common set of properties.” (Internet Engineering Task Force, 2013a) 

 

 Figure 5, below, describes a flow-based monitoring architecture. A flow probe (or 

flow exporter), installed on the device being monitored, observes network traffic 

packets. This probe either reads packets directly from a monitored link via a network 

tap, or receives packets via the packet forwarding mechanism in the device being 

monitored. The probe then exports the flow records using the IPFIX or NetFlow 

protocols to a flow collector. The collector aggregates the flows based on a set of 

common properties, thereby reducing the overall amount of traffic collected for 

storage. Stored flow data is then automatically or manually analysed. Hofstede, et al, 

(2014) provide an excellent overview of the flow monitoring and export process. 
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Figure 5. The four elements of a flow monitoring architecture. 

(Adapted from Hofstede et al., 2014) 

 

3.4 IPFIX Compared with NetFlow  

Flow export protocols have evolved over time, primarily in order to overcome 

operational drawbacks. The application of NetFlow v5 in security analysis is restricted 

by its fixed template (Gates et al., 2004) which limits the number of traffic attributes 

that can be exported. This was overcome in NetFlow v9, which introduced 

customisable templates. However, the proprietary format of NetFlow v9 presented 

vendor interoperability issues, which drove the IETF to standardise flow export as 

IPFIX in 2013. NetFlow v9 is considered a protocol in its own right and is considered 

in the following section for purposes of clarity. However, as IPFIX was developed 

from Cisco’s implementation of the NetFlow v9 protocol, throughout the remainder of 

this thesis NetFlow v9 is assumed to be an early, proprietary version of IPFIX and is 

generally ignored.  

 In addressing research objective #1, the following section outlines a comparison of 

IPFIX with NetFlow features that impact the design of a botnet traffic capture 

mechanism in high throughput network environments. Table 1 summarises how IPFIX 

morphed from a simple network management statistics protocol as NetFlow, into a 

protocol which application to security analysis. Table 1 shows how IPFIX evolved 

from NetFlow v5 to address template extensibility, the lack of security features in 

NetFlow, standardisation in data structure and transport protocols, and feature support 

for modern data networks such as multi-cast, VLANs and IPv6. 
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TABLE 1. FEATURE COMPARISON BETWEEN NETFLOW V5, NETFLOW V9 AND IPFIX PROTOCOLS 

( SUMMARISED FOR BOTNET TRAFFIC CAPTURE ATTRIBUTES ) 

  NetFlow v5 NetFlow v91 IPFIX2 

Commercial Release 2002 2004 2013 

Standards Based Proprietary Proprietary 
Standardised 
(RFC-7011) 

Template Elements 18 
79  

(Cisco: 105) 
386 

Template Extensibility Fixed Template Yes RFC-5610 

Information Elements No Single-vendor ID 
Multi-vendor ID 

RFC-7012, RFC-7013 

Enterprise Elements  No No RFC-5610 

Variable Length Fields No No RFC-6313 

Structured Data Yes Yes RFC-6313 

Transport Protocol UDP 
UDP  

(Cisco: UDP, SCTP) 
TCP, UDP 

SCTP (RFC-6526) 

Flow Security None None Encryption, Integrity 

Cache Timeouts  Fixed Fixed Customisable 

IPv6  No Cisco only Yes 

VLAN  No Cisco only Yes 

MPLS No Cisco only Yes 

IPsec Tunnelling No Cisco only Yes 

MAC Address  No Cisco only Yes 

Multi-cast  No Cisco only Yes 

Flow Direction Unidirectional 
Unidirectional 
(Cisco: Biflow) 

Bidirectional 
(RFC-5103) 

 

                                                           
1 RFC-3954 (Informational) (Network Working Group, 2004) 
2 RFC-7011 to RFC 7015 (Internet Engineering Task Force, 2013a; 2013b; 2013c; 2013d; 2013e) 
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3.4.1 VENDOR INTEROPERABILITY 

Arguably the biggest drawback of NetFlow comes from a lack of standardisation 

across vendor implementations of the protocol. Most manufacturers of network 

hardware have their own proprietary version of a flow export protocol; Cisco’s 

NetFlow, Juniper’s JFlow, Alcatel-Lucent’s CFlow, Huawei’s NetStream, Citrix’s 

AppFlow and so on. Any moderately sized organisation is unlikely to deploy just a 

single vendor’s equipment throughout their network, particularly if they desire a best-

of-breed implementation. A typical multi-tenant CSP infrastructure uses servers, 

physical virtualisation, network virtualisation and LAN devices, data storage and 

management requirements such as accounting and security. No one single vendor 

addresses this entire hardware and software remit. Each has their own flow 

implementation. This does not present such an issue for NetFlow v5, which has 

relatively limited functionality. However, when NetFlow v9 proprietary features are 

deployed, interoperability becomes an issue. This may explain why NetFlow v5 is still 

the most common flow export protocol. In constructing a botnet traffic capture 

mechanism non-interoperability presents two issues. One, the highly structured format 

of flow data becomes lost as different vendors implement their own features using 

various methods, thus making querying and analysis of captured data more complex. 

Two, there is no guarantee that all vendors export the same traffic attributes, thus 

resulting in blind spots across a distributed network. The standardisation of the flow 

protocol to IPFIX addresses vendor non-interoperability issues, as is evidenced by the 

features investigated below. 

 

3.4.2 TEMPLATE EXTENSIBILITY 

NetFlow v5 exports a fixed structure of 20 fields; comprising 18 data fields with two 

padding fields. Figure 15, below, shows the NetFlow v5 template structure. These 20 

fields are pre-defined and cannot be changed, removed or added to, regardless of 

whether the information needs capturing or not. This means that each NetFlow v5 

packet is always 48 bytes in length. Gates argued that only 10 fields provide useful 

data when NetFlow is applied to security analysis (Gates et al., 2004). Thereby 

making the fixed template structure of NetFlow v5 a drawback, as effectively 18 bytes 

of each 48 byte NetFlow v5 packet is superfluous when used in security analysis. 

NetFlow v9 introduced customisable templates, allowing a flow device to define the 

information to be exported. A NetFlow v9 template can contain any quantity of fields 

and is no longer capped at 18 fields. Each NetFlow v9 template is identifiable by its 
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template ID, which corresponds to the set ID in the set header section of the dataset. 

NetFlow v9 is documented in RFC-3954 (Network Working Group, 2004), which 

outlines 79 different fields that are supported in NetFlow v9 templates. However, 

NetFlow v9 has not been standardised, which has led to differing vendor 

implementation of NetFlow v9 arising. For example, Cisco’s implementation of 

NetFlow v9 offers 105 fields, with fields 106-127 reserved for future use (Santos, 

2016). There is no guarantee that the 79 defined fields, or Cisco’s additional fields, 

will operate between vendors implementation. Many of the NetFlow v9 fields focus 

on capturing flow contextual information, such as byte or packet counters, rather than 

traffic content information. 

 IPFIX overcomes field interoperability by standardising the template format and 

template fields in RFC-7012 (Internet Engineering Task Force, 2013b). With IPFIX, 

template fields are called Information Elements (IEs). The RFC does not define the 

IEs themselves. Instead, the RFC states that in order to maintain cross-vendor 

interoperability, the Internet Assigned Numbers Authority (IANA) is responsible for 

controlling the available IPFIX IEs. IANA defines 433 standard fields in the IPFIX 

Information Element Registry3. Of these 433 IEs, 17 are now deprecated, with another 

57 IEs preserved for NetFlow v9 fields so as to retain compatibility between NetFlow 

v9 and IPFIX. IPFIX was designed as an extensible data model for flexibility and 

customisation. IPFIX supports the creation of new template fields if they are not 

defined in the 433 IANA fields. With IPFIX, new template fields are called Enterprise 

Elements (EEs). The IPFIX IEs range 434 to 32767 is reserved for vendor defined 

EEs. Effectively, EEs allow the addition of any Layer 2 through Layer 7 information 

to the IPFIX template. This means that as new threat detection techniques are 

developed, new fields can be created to be added to the IPFIX template. Trammell and 

Boschi (2011) state that EEs allow IPFIX to extend flow collection beyond network 

and transport layers, making it able to export information from future networks. 

Whilst IPFIX template extension support is documented in RFC-5610 (Network 

Working Group, 2009b), currently only a few IPFIX vendors support creation of new 

EEs. Where EEs are supported, this is usually done through open source libraries such 

as libpcap. A list of IPFIX probes that support EEs is outlined in Chapter 5. IPFIX 

also supports Option Templates. Whilst an IPFIX template describe the capture flow, 

option templates define non-flow attributes such as flow metadata, collection 

infrastructure or other properties of a set of flows (Santos, 2016). NetFlow v9 does not 

support vendor extensions to allow capture of new data attributes (Patterson, 2012). 

                                                           
3 https://www.iana.org/assignments/ipfix/ipfix.xhtml 
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 NetFlow v5 lacks support to capture network information such as IPv6, VLANs, 

MPLS, IPsec tunnelling, MAC addresses or multi-cast. The fixed nature of the 

NetFlow v5 template structure prevents support for these features being added. As 

cloud providers utilise these network functions, it is essential for a data capture 

mechanism to support these. Likewise, with the IPv4 address range now exhausted, 

the IoT will take advantage of the massive address space in IPv6. IPFIX supports all 

of these features as IEs, whilst EEs allow the creation of new template attributes to 

accommodate new technology and next-generation protocols. NetFlow v9 lacks 

support for these features, apart from Cisco’s implementation. When studying 

anomalous IPv6 traffic Lee, et al., (2007) chose IPFIX over NetFlow v9 because of 

the ease in which new EEs could be constructed to capture IPv6 attributes. In a botnet 

traffic capture mechanism, as bots evolve with new features, EEs can be created so 

that new detection attributes can be included into existing IPFIX capture templates. In 

particular this EE space can be used for protocol specific attributes, such as HTTP 

GET information that may allow confirmation that suspect traffic is indeed malicious. 

Velan (2013) argues that the lack template customisation makes both NetFlow v5 and 

NetFlow v9 limited for threat detection, as they only analyse a packet’s encapsulation 

protocol rather than the packet itself. Velan, Jirsik and Čeleda (2013) go on to state 

that support for EEs means IPFIX will be superior to NetFlow in next-generation 

network monitoring, whilst supporting higher collection performance and better use in 

analysis tools. 

 

3.4.3 VARIABLE LENGTH FIELDS 

NetFlow not only lacks the functionality to create new template elements, neither does 

it support variable length fields. A NetFlow v5 fixed 18 field template is always 48 

bytes in length, regardless of the data captured. Whilst fields can be added and 

removed to the NetFlow v9 template, attribute capture is limited to fixed length fields. 

Variable length fields are required to efficiently capture variable length strings. In a 

botnet traffic capture mechanism this allows the creation of EEs to capture strings 

such as HTTP GET requests, SMTP Hellos, IRC messages, or any other Layer 2 

through Layer 7 attributes which would help in facilitating confirmation that suspect 

traffic is indeed malicious. Most Layer 7 attributes tend to be variable length strings. 

IPFIX supports variable length fields as documented in RFC-6313 (Internet 

Engineering Task Force, 2011). Furthermore, it achieves this whilst continuing to 

maintain the data structure, allowing variable length fields to be used without any 

impact upon post-capture data analysis. The method in which IPFIX supports variable 
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length fields and structured data prompted Hofstede, et al., (2014) to state that IPFIX 

should not only be considered as the flow export protocol of choice, but also the 

generic transport protocol for structured data. It may be possible for NetFlow v9 to 

support variable length fields by creating out-sized fields and using field padding. 

Although this approach wastes space within captured packets. Additionally, NetFlow 

v9 does not support the creation of EEs, making this argument arbitrary.  

 

3.4.4 TRANSPORT PROTOCOL 

When early NetFlow protocols were designed it was expected that flow records would 

be confined to private networks, with flow exporters and flow collectors in close 

proximity to each other. Both NetFlow v5 and NetFlow v9 use UDP as the transport 

protocol. In a large network, using UDP as a transport layer protocol introduces two 

limitations. UDP lacks any congestion awareness, which can leading to network 

flooding when a device is down or undergoing a DDoS attack. UDP is an unreliable 

protocol lacking data re-transmission, making it susceptible to data loss. A design 

requirement of IPFIX was to address these reliability and congestion-awareness 

issues, whilst remaining transport protocol independent (Trammell and Boschi, 2011). 

The transport protocol for IPFIX can be selected from UDP, TCP or SCTP (Stream 

Control Transmission Protocol). SCTP for IPFIX is documented in RFC-6526 

(Internet Engineering Task Force, 2012). UDP is not recommended and is provided 

primarily to allow migration from NetFlow to IPFIX installations. Instead, SCTP is 

the recommended transport protocol for IPFIX as it addresses congestion awareness 

(Santos, 2016), which allows graceful degradation through selective dropping of 

exported datagrams under high load, rather than overloading buffers (Internet 

Engineering Task Force, 2013a). SCTP ensures the reliable transmission of IPFIX 

templates, thereby improving end-to-end delay whilst reducing dropped packet count 

and packet retransmissions. Whilst NetFlow does not support transport over TCP, 

Cisco’s version of NetFlow v9 does support congestion awareness through NetFlow 

Reliable Export with SCTP.  

 

3.4.5 FLOW SECURITY 

An early draft of IPFIX highlighted the lack of security in NetFlow (Network Working 

Group, 2004). Confidentiality, integrity and authentication were not implemented in 

NetFlow as they reduced the efficiency of the protocol. This makes NetFlow 

vulnerable to many forms of attack, such as man-in-the-middle (MITM) attacks, 
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packet tampering, packet forgery and attacks upon the collector. Security requirements 

for IPFIX are documented in RFC-7011 (Internet Engineering Task Force, 2013a). 

This mandates that IPFIX transmission includes authentication to prevent MITM 

attacks, integrity to prevent IPFIX flow manipulation or duplication, and obfuscation 

for flow record confidentiality. RFC-7011 recommends that when TCP is used as the 

transport protocol, transmission should use TLS (Transport Layer Security) v1.2 or 

above and SYN cookies are used for protection against DDoS attacks. However, 

SCTP can be difficult to transmit over the Internet as some devices will drop SCTP 

packets due to unrecognised protocol numbers (Hofstede, et al., 2014). To overcome 

this, transmission of SCTP over the Internet is recommended with TLS. A drawback 

to this is that it requires bidirectional streams with one TLS connection per stream, 

thereby contradicting the reasons for selecting SCTP as an IPFIX transport protocol in 

the first place. Therefore, RFC-7011 recommends that when using SCTP, or UDP, as 

a transport protocol, that DTLS (Datagram Transport Layer Security) is the preferred 

security mechanism. When using DTLS, it is essential that IPFIX messaging is sent 

over the same SCTP stream to prevent injection attacks. When using SCTP, RFC-

7011 mandates a cookie exchange mechanism. RFC-7011 recommends TLS or DTLS 

is used to prevent fake IPFIX messages when transportation uses SCTP or UDP. 

SCTP does not mandate encryption however several IPFIX probes implement flow 

encryption by using TLS (see Chapter 5 for more information). In a botnet traffic 

capture mechanism within a network where the detection system itself is at risk, such 

as a CSP or IoT environment, IPFIX provides mitigation of attacks such as DDoS, 

MITM and packet manipulation. 

 

3.4.6 CONFIGURABLE CACHES TIMEOUTS 

Flow exporters maintain a flow cache table in the device memory to track all known 

active flows passing through the device. Flows are cached until either the timeout 

settings hit a threshold, or the flow terminates; for example through a TCP FIN or 

RST flag. In NetFlow the timeout setting is fixed according to the device flow cache 

size, which in turn is constrained by the device hardware or software. This is usually 

set to 60 seconds (Patterson, 2012). If malware can generate enough traffic, for 

example via a DDoS attack, with a high flow cache timeout setting it could be 

possible to exceed the maximum number of permissible flow cache entries. Thus 

forcing the flow exporter to drop flows, or crash. Similarly, because the number of 

flow records coming into a collector can escalate considerably during a DDoS attack, 

if cache timeouts are high enough, the flow exporter can overload its collector, forcing 
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the collector to error or crash (Hofstede, et al., 2014). IPFIX neither mandates a time 

period after which flow entries expire, or enforces a duration after which flow records 

are forced to be exported. This has two advantages for a botnet traffic capture 

mechanism. It protects the flow capture infrastructure from DDoS attack. It also 

allows optimisation of flow expiry and idle time so IPFIX can capture short-lived 

communication bursts, such as a bot to C&C server keep-alive beacons. 

 

3.4.7 BIDIRECTIONAL FLOWS 

Most networked host-to-host communications involve packet exchanges in both 

directions. For example, TCP is two directional since it relies on packet 

acknowledgement. NetFlow v5 is unidirectional, hence TCP is captured as two non-

interconnected flows; namely a request and response. IPFIX provides support for 

bidirectional flows (biflow) as documented in RFC-5103 (Network Working Group, 

2008). Many IPFIX exporters claim to support biflow, but in reality they recognise 

flow pairs through record adjacency. It is possible to pair flows together in NetFlow 

v5 and NetFlow v9, but this requires the creation of an algorithm to undertaken flow 

pairing during analysis (Minarik, Vykopal and Krmicek, 2009). Only Cisco’s 

implementation of NetFlow v9 supports biflow. A biflow is a single record which 

contains both the traffic details from A to B and B back to A (Patterson, 2012). This 

allows request and responses to be individually distinguished and interconnected as a 

biflow pair. Biflow pairing is becoming more important in security analysis by 

associating inbound and outbound flows to application. For example, biflow pairing 

determines which party initiated the conversation, particularly useful for P2P traffic 

study. Yen and Reiter (2010) used biflow ratios to detect the Storm P2P botnet. 

Studies in packet symmetry have shown that the ratio of inbound to outbound packets 

can be useful in determining malicious traffic (Kreibich, et al., 2005; Lee and 

Brownlee, 2007). For example, separating the request and reply pairs of server, client 

and single flows can recognise a distributed attack against a DNS server (Minarik, 

Vykopal and Krmicek, 2009). In a botnet traffic capture mechanism biflow pairs 

would allow the determination of the direction of conversation between a C&C server 

and a victim. Separation of unanswered from answered TCP requests may suggest a 

C&C server searching for a botnet peer that is offline, or a C&C server undertaking a 

scan for victims. Alternatively, rather than use Biflow, flow pairs can be distinguished 

by collecting both source and destination IP addresses, which can be a more efficient 

method of capture when used with data aggregation (Patterson, 2012). 
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3.5 Flow Export Compared with Packet Capture 

Flow export and packet capture are both passive monitoring techniques, observing 

traffic as it passes a measurement point and making a copy of some or all of this 

traffic. PCAP captures both packet header and payload information. This makes PCAP 

capture a big data challenge in high-speed data networks as it can capture gigabytes of 

data per second. Flow export captures only information in the packet header, ignoring 

the payload data. Flow export therefore captures the same metadata as PCAP, but the 

overall amount of traffic capture for storage is considerably less without the payload. 

In network monitoring, flow export tends to be used for high level investigation 

within a network, with PCAP utilised for deep dive investigation requiring payload 

information.  

 Volumes of exported flow data can be further reduced by real-time data 

aggregation. Aggregation capability is typically a feature of the exporter/collector 

pair, rather than defined by the flow protocol. IPFIX however standardises 

aggregation, as detailed in RFC-7015 (Internet Engineering Task Force, 2013e). RFC-

7015 defines aggregated flows as “flows representing packets from multiple original 

flows sharing some set of common properties”. Similar flows are aggregated by key 

field tuples such as {source IP, destination IP, source port, protocol}. Should 10 flows 

match this tuple over a fixed collection period, they are exported as one aggregated 

flow. Other traffic monitoring features, such as Cisco’s SPAN, do not support 

aggregation by default.  

 

From a CSP perspective, flow export has advantages over packet capture: 

 Flow export allows data storage volume savings; in the order of 1/2000th of the 

original PCAP volume (Hofstede, et al., 2014); 

 Flow export is less privacy sensitive (Hofstede, et al., 2014); since only the 

packet headers are considered. Note: IPFIX EEs can be constructed to capture 

payload data; 

 Flow export data complies with European data retention laws (Hofstede, et al., 

2014) where European service providers are legally obliged to retain 

connection data from between six months to two years for the purpose of 

“prevention, investigation, detection and prosecution of criminal offences” (EC 

Data Retention Directive 2006/24/EC, 2006); 
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 Flow export is more suitable for high-speed data networks (Hofstede, et al., 

2014) as not capturing packet payloads make it more scalable and able to cope 

with high-speed data network throughput over 100Gbps where packet capture 

is traditionally limited or requires expensive hardware. 

 

3.5.1 A NOTE ON SFLOW AND OPENFLOW 

NetFlow and IPFIX are flow export protocols. Other protocols exist with “flow” in 

their name, but these are not flow export protocols, so are beyond the scope of this 

research project: 

 

 sFlow is a packet sampling protocol, capturing every 1:X packets. Flow export, 

by default, captures every packet. In large networks where export rates become 

prohibitively high due to network throughput, it is more common to see 

NetFlow revert to 1:X sampling to reduce data volumes and processor 

overheads on NetFlow devices.  

      The drawback of sampling is that only capturing every X th packet may miss 

short-lived inter-botnet communications. Caching can be another drawback of 

sFlow. With flow export the flow cache resides on the export device. With 

sFlow it is common to see the flow cache external to the sFlow device hence 

aggregation is not possible. If necessary, IPFIX supports packet sampling 

(PSAMP) as defined in RFC-5476 (Network Working Group, 2009a); 

 

 OpenFlow is a software-defined packet forwarding protocol. OpenFlow is used 

to transport the routing decisions between a logically centralised controller and 

the data plane of a software switch (Internet Research Task Force, 2015). 
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3.6 Flow-Based Botnet Detection 

Total eradication of a botnet requires the takedown of all C&C servers associated with 

that bot. Signature-based techniques such as AV software can disinfect individual 

machines to remove part of the botnet, but is not capable of locating and removing the 

C&C servers, as outlined above in Chapter 2. Signature-based detection is also heavily 

reliant upon analysing the packet payload content, which is both resource intensive 

and can be evaded by payload encryption (Zhao, et al., 2013). In a CSP environment, 

packet inspection also raises considerations around tenant privacy.  

 Botnet behaviour-based detection exploits uniformities in both botnet 

communication and behaviour, such as the communication between a recruited victim 

and its C&C server (Gu, Zhang and Lee, 2008). In behaviour-based detection, network 

traffic is fed into a detection engine. Typically, the detection engine comprises two 

stages. First, the incoming data is filtered, such as clustering or correlation, to reduce 

the data volumes requiring analysis. Second, this filtered data is then fed into a 

detection algorithm, such as decision tree or a machine learning algorithm. Behaviour-

based detection has two disadvantages: 

(1) Detection algorithms tend to be formulated based upon which attributes can be 

captured. If the data capture mechanism is based on NetFlow v5, detection 

attributes are limited to 18, increasing to 79 when NetFlow v9 is used. If the 

attributes are unable to be captured in NetFlow, capture is subsidised with 

PCAP. Although the additional volumes of data captured by PCAP can hinder 

analysis. However, Sperotto, et al., (2010) considered packet inspection as 

complementary to flow-based capture techniques, where a combination of both 

NetFlow and PCAP may improve detection accuracy. This is at a cost of having 

to correlate multiple data feeds of varying structures.  

(2) Because a data feed is a stream of traffic, it can take time to build up a traffic 

profile of the botnet. Therefore it is important that the detection algorithm is 

able to detect a bot as early in the bot life cycle as possible. However, this also 

provides an advantage. If a detection algorithm works at detection early in the 

life cycle, before the botnet attacks, a window of time exists before mitigation 

action needs to be taken. This window provides time to confirm that the suspect 

traffic is indeed botnet traffic. In other words, detection only needs to happen in 

near real-time.  
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BOTNET DETECTION EXPERIMENTS 

The remainder of this section reviews the prior art in botnet detection using flow 

protocols, in chronological order. To address research objective #2 and the conceptual 

development of an IPFIX capture template, traffic attributes used by previous 

researchers must be understood. Therefore, this review of prior studies concentrates 

on data collection methodologies and the attributes captured, rather than the detection 

algorithms themselves. What was apparent from the literature review was that whilst 

some traffic attributes are more popular than others (refer to Table 2), very few 

authors provide evidence that their chosen attributes are empirically justified as botnet 

traffic indicators. Chapter 4 addresses this by considering the frequency and duplicity 

of all available IPFIX IEs and EEs. Table 2, below, provides a summary of each 

NetFlow and non-NetFlow attribute collected by each researcher as data feeds into 

both C&C and P2P detection algorithms. In Table 2 in can be seen how almost all 

prior studies have used NetFlow v5, packet capture, or a combination of the two. 

These is a core set of about ten NetFlow v5 attributes that are captured across all 

studies, whilst other NetFlow v5 attributes are more rarely used. Indeed, the nextHop 

NetFlow v5 field is not used by any detection algorithms. A traffic capture engine 

based on NetFlow v5 captures all 18 data field regardless of their use, resulting in 

redundant data that must be removed before analysis. More recent studies have begun 

to use NetFlow v9 (Wijesinghe, Tupakula and Varadharajan, 2015; Haddadi, et al., 

2014). These both added flow contextual fields to the traditional NetFlow v5 template, 

yet failed to take advantage of other fields available in NetFlow v9. No bot detection 

studies can be found that take advantage of the power of IPFIX in data capture.  

 Some of the earliest research into the use of flow protocols in network security was 

performed by Gates, et al., (2004). From studies of the Korgo and Sasser worms, they 

propose that eight fields in NetFlow v5 are superfluous for malware detection; namely 

input interface, output interface, source AS, destination AS, source mask, destination 

mask, next hop IP and type of service. However, as NetFlow v5 has a fixed template, 

these fields cannot be removed so are captured regardless of their value to threat 

detection. Hence, when NetFlow v5 is used in threat detection its inefficiency results 

in data volume and storage wastage. Cooke, Jahanian and McPherson, (2005) found 

that introducing proxy servers as a stealth layer in IRC botnets prevented detection of 

distinguishing C&C server traffic characteristics. They conclude that payload 

inspection is time and resource costly and subject to encryption. They instead 

recommended NetFlow be used to search for non-humanlike traffic characteristics of 

bot attack/propagation traffic. BLINC (Karagiannis, Papagiannaki and Faloutsos, 
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2005) was created to distinguish between benign and malicious P2P traffic by 

classifying traffic patterns at the transport layer. They found that P2P flows with no 

payloads were indicators of port scanning or IP address scanning. As BLINC only 

uses NetFlow for data capture, it was unable to characterise specific P2P protocols as 

this requires data found in the payload. They decline the use of port numbers in 

detection due to possibilities for port spoofing. Rishi (Goebel and Holz, 2007) use 

regular expression (regex) searches on traffic connection time, source/destination IP 

address, source/destination port, IRC channel and IRC nickname to extract malicious 

IRC channels. They chose to use packet capture because NetFlow v5 does not support 

IRC attributes. This experiment could be reproduced using IPFIX EEs to extract IRC 

data. Karasaridis, Rexroad and Hoeflin (2007) captured mainly transport-layer 

attributes to detect IRC botnets in tier-1 ISPs. They found that idle IRC clients 

produced different traffic patterns to active IRC clients. They preferred NetFlow as it 

was non-intrusive, respected privacy and generated considerably less traffic than 

PCAP. However, to be able to confirm their detection engine was capturing IRC bots, 

they used packet capture to extract application layer data.  

 In the first of three related studies, BotHunter (Gu, et al., 2007) claimed to be the 

“first distributed bot infection profile analysis tool.” BotHunter analysed payload data 

from SNORT IDS running a customised malware ruleset, to look for IRC bot 

scanning, infection and keep-alive communication patterns. BotSniffer (Gu, Zhang 

and Lee, 2008) used the same SNORT IDS to analyse payload data, but improved the 

BotHunter correlation engine to detect IRC bots, HTTP bots and look to for SPAM by 

correlating DNS with SMTP traffic. Two anomaly detection algorithms looked for 

high-scan rates and high failed connection rates based on the spatial-temporal 

correlation of network traffic worked under the premise that bots have much stronger 

and more consistent synchronisation and correlation in their responses compared to 

human users. They suggested that looking for user-initiated IRC queries, such as 

WHOIS, LIST and NAMES, could indicate benign traffic, as malicious traffic is 

unlikely to use these commands. BotMiner (Gu, et al., 2008) again enhanced the 

BotHunter platform to create an engine for high-speed, low packet loss networks, to 

detect IRC, HTTP and P2P bots that does not require priori knowledge of bot 

signatures. A proprietary NetFlow format is used to extract transport layer traffic, 

whilst packet capture is used to capture for application layer information such as 

SMTP and DNS record attributes. BotHunter’s weakness was that in looking for pre-

defined bot life cycle patterns, it could not detect a bot if its infection model changed.

 Strayer, et al., (2008) feed flow characteristics into machine learning correlation 
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algorithms to pro-actively look for IRC botnet hosts. The algorithm uses 

discriminatory flow attributes such as flow duration, flow direction, average bytes-

per-packet per flow, average packets-per-second per flow and average bits-per-second 

flow. Unfortunately, some classification algorithms presented false positives of up to 

40%, rendering this technique questionable. Also questionable is the amount of 

potentially useful detection data that is filtered out at an early stage without evidence. 

This includes port scanning, high bandwidth flows and short lived flows. Botlab 

(John, et al., 2009) looks for spam-bots, again using a customised flow extracted from 

packet capture. They create application-layer behavioural signatures in order to 

attribute incoming spam to a specific bot. Botlab was successful because the bots 

analysed used either hardcoded IP addresses or DNS information to locate their C&C 

servers. The fluxing technique used by more recent botnets may make these signatures 

more difficult to create. Wurzinger, et al., (2009) hypothesises that when a bot 

receives commands from its botmaster, each bot must respond in its own specific way. 

They use IDS to extract payload traffic using packet capture, to generate bot 

signatures based on network traffic, command/response pairs and IRC and HTTP 

application traffic. These signatures are then compared against pre-generated models 

for IRC, HTTP and P2P bots. They acknowledge that a drawback to this technique is 

that it requires pre-generated signature models before it can detect a particular bot.  

 BotGrep (Nagaraja, et al., 2010) uses NetFlow v5 to capture traffic on high-speed 

ISP networks, then applies Graph theory to detect P2P bot traces. To be able to cope 

with throughput at high-speed, they use NetFlow to sample network traffic at 1:500 

rates. A limitation to sampling in that it can miss the few tell-tale botnet packets, so 

detection accuracy will suffer. Also, they fail to state the NetFlow attributes captured.  

Perdisci, Lee and Feamster (2010) analyse the structural similarities among malicious 

HTTP malware to create signatures. They focus on HTTP malware rather than bots. 

However, their HTTP attributes could apply to HTTP botnet detection. They split 

HTTP attributes into (1) course-grain - statistical values of HTTP request, 

GET/POST, URL lengths, number of request parameters and (2) fine-grain - 

clustering by HTTP structural similarity of HTTP GET/POST and URL. 

 To detect P2P traffic, BotTrack (Françios, Wang and Engel, 2011) uses NetFlow to 

capture only IP addresses, which are clustered into dependency graphs and analysed 

using a PageRank algorithm. They prefer NetFlow to packet capture due to NetFlow’s 

collection efficiency, whilst non-packet inspection characteristics address privacy 

concerns. In BotCloud, Françios, et al., (2011) replace the resource-intensive 

PageRank component of BotTrack with MapReduce and a mini Hadoop cluster to 
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reduce computational time by a factor of seven. In order to improve capture efficiency 

both BotTrack and BotCloud capture a limited set of NetFlow attributes, without any 

justification for ignoring other bot attributes that may enhance the detection algorithm. 

Rossow, et al., (2011) use a Sandnet environment to analyse the network behaviour of 

malicious software that uses HTTP and DNS protocols. The value of their work is in 

identifying common malware HTTP and DNS attributes from analysing 70 million 

flows from 207GB of data. Packet capture was used to capture this data, but IPFIX 

EEs could enable collection of the same attributes at a fraction of this space. 

DISCLOSURE (Bilge, et al., 2012) searches for C&C servers within high-speed tier-1 

ISP networks, extracting flows with different incoming/outgoing characteristics as 

potential bots. They found that the size of flow from benign servers fluctuate 

measurably more than from C&C servers. They selected NetFlow v5 for data capture 

because it is commonly used by ISPs, but found some limitations of NetFlow. It does 

not capture payload data which is required for bot detection. It is unidirectional so 

only captures one side of the conversation. It struggles in aggressive sampling rates 

required for DISCLOSURE to work in high-speed ISP networks. All of these issues 

can be addressed by IPFIX. Zhang, et al., (2011) also had issues with data volumes in 

packet capture sampling in high-speed ISP networks. They developed a sampling 

mechanism for PCAP, which reassembles flows based on aggregating key fields. This 

methodology essentially provides a NetFlow format that can capture packet payload 

data, although this is computationally costly. IPFIX could capture the same data more 

efficiently. Additionally, if network speeds become too high for IPFIX to efficiently 

aggregate the traffic, IPFIX supports PSAMP for sampling. This system has since 

been enhanced, using NetFlow and packet capture, to statistically fingerprint P2P 

traffic to determine if it is belongs to a legitimate P2P network (Zhang, et al., 2014). 

Zhao, et al., (2013) split complete flows into multiple shorter time windows to 

improve overall detection speed, enabling detection of botnet behavioural patterns 

early in the propagation life cycle. Packet capture was used to capture flow contextual 

data to show bot P2P communication, which displays many continuous, uniform, 

smaller sized packets, unlike benign P2P usage. To counter bot detection evasion 

mechanisms, such as packet injection or random reconnection, they measure P2P 

reconnects against total flows over time. NetFlow cannot capture this additional 

contextual information, however it is possible using IPFIX.  

 Yen and Reiter (2010) find that bot P2P traffic demonstrate boths lower peer churn 

with more failed connections and lower traffic volumes over shorter time-periods, 

than compared to human P2P file-sharing. Building upon this Narang, Reddy and 
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Hota (2013) compare three machine learning techniques to improve P2P bot detection 

speeds in IDS. Detection attributes are extracted from PCAP and aggregated into 

custom flows, before being input into their machine learning detection algorithms. 

They find that reducing the number of attributes in a flow, such as port numbers and 

protocols both of which can be spoofed, increases the detection speed with only a 

marginal loss of accuracy. To detect P2P botnets in their quieter period before attack 

Hang, Wei and Faloutsos (2013) proposed superflows as a technique to improve the 

low accuracy of Yen and Reiter’s work. Where superflows are flows with the same IP 

nodes that are close in time, irrespective of protocol or port number. They claim that 

superflows should be able to overcome the proprietary nature of flow export tools. 

Similarly, PeerShark (Narang, et al., 2014) uses packet capture to create bespoke 

conversations based on flow length and duration. They find that conversations can 

detect the pre-attack stealthy, low-volume conversations between botmaster and 

modern P2P bots. Again, these experiments can all be reproduced using IPFIX. 

 Based upon observations that malware authors use various encoding schemes, such 

as Base64, Hex or ASCII, to obfuscate HTTP-based C&C channels, CoCoSpot 

(Dietrich, Rossow and Pohlmann, 2013) uses the length of the first 8 messages of a 

flow, protocol and URI encoding scheme to detect HTTP botnets. Lin, Chen and 

Chang (2014) use packet size and packet count from PCAP packet capture to classify 

malicious P2P bots against benign P2P flows. They find that P2P bots use more 

packets per session and that these packets, ranging from 63-399 bytes, are smaller 

than benign P2P traffic. Haddadi, et al., (2014) capture HTTP flows using a NetFlow 

v9 template, before feeding them into a machine learning algorithm. Whilst they use 

NetFlow v9, the template is nothing more than NetFlow v5 with the addition of 

VLAN fields and some flow contextual fields. They also collect NetFlow input/output 

interfaces, AS addresses and IP masks, despite Gates et al. (2014) advice to the 

contrary. They indicate that their approach is not successful. This may be because they 

do not capture NetFlow fields such as IP addresses, port numbers and non-numeric 

data. Wijesinghe, Tupakula and Varadharajan (2015) claim to use an IPFIX template 

for traffic capture. However, their published results are from NetFlow v9, not IPFIX 

as claimed. Furthermore, their NetFlow v9 template is simply NetFlow v5 with the 

addition of a payload length field. As with Haddadi et al., they omit to take full 

advantage of the additional fields that NetFlow v9 can bring to botnet detection. Garg, 

Peddoju and Sarje (2016) found that different P2P protocols generate different failed 

connection profiles, but when coupled with new peer discovery by ports, P2P bots 

generate different profiles to benign P2P traffic. 
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TABLE 2. A SUMMARY OF BOTNET DETECTION EXPERIMENTS  

LISTING THE INPUT ATTRIBUTES INTO THEIR DETECTION ALGORITHM, SINCE GATES 2004 
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Gates, et al. 2004 - 5 ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

  
            

BLINC 
Karagiannis,et al. 

2005 P 5 ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ 
 
✔ 

    
  ✔ 

           

RISHI 
Goebel & Holtz  

2007 I P ✔ ✔ 
     

✔ ✔ ✔ ✔ 
      

  
    

✔ ✔ 
      

BOTHUNTER 
Gu, et al. 

2007 I P ✔ ✔ 
    

✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

  
    

✔ 
       

Karasaridis, et al. 2007 I 5 ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ ✔ 
     

  ✔ 
   

✔ 
       

BOTMINER 
Gu, et al. 

2008 I,H,P 5, P ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ 
      

  
         

✔ ✔ 
 

BOTSNIFFER 
Gu, et al. 

2008 I, H P ✔ ✔ 
     

✔ ✔ ✔ ✔ 
      

  
    

✔ 
 
✔ 

  
✔ ✔ 

 

Strayer, et al. 2008 I P   
    

✔ ✔ ✔ ✔ 
  

✔ ✔ 
    

  
            

BOTLAB 
John, et al. 

2009 H P ✔ ✔ 
       

✔ ✔ 
 
✔ 

    
  

         
✔ ✔ 

 

Wurzinger, et al. 2009 I,H,P P ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ 
 
✔ 

    
  

 
✔ 

  
✔ ✔ ✔ ✔ 

 
✔ ✔ 

 

Perdisci, et al. 2010 H P ✔ ✔ 
     

✔ ✔ 
        

  
 
✔ 

    
✔ 

 
✔ 

   

Yen & Reiter 2010 P 5, P ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ 
 
✔ 

    
  

      
✔ 

     

BOTRACK 
Francios et al. 

2011 P 5 ✔ ✔ 
     

✔ ✔ 
        

  
            

SANDNET 
Rossow, et al. 

2011 H 5,P ✔ ✔ 
   

✔ 
   

✔ ✔ 
 
✔ 

    
  

      
✔ ✔ ✔ ✔ ✔ 

 

Zhang, et al. 2011 I,H,P P ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

  
            

DISCLOSURE  
Bilge, et al. 

2012 H 5 ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ 
      

  
            

COCOSPOT 
Dietrich, et al. 

2013 H P ✔ ✔ 
     

✔ ✔ 
 
✔ 

      
  ✔ ✔ 

    
✔ 

     

ENTELECHEIA 
Hang, et al. 

2013 P 5 ✔ ✔ 
     

✔ ✔ ✔ ✔ 
 
✔ 

    
  

            

Narang et al. 2013 P P ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

  
            

Zhao, et al. 2013 P P ✔ ✔ 
   

✔ 
 
✔ ✔ ✔ ✔ 

 
✔ 

    
  ✔ ✔ 

          

Haddadi, et al. 2014 H 9   
  

✔ ✔ ✔ ✔ ✔ ✔ 
    

✔ ✔ ✔ ✔ ✔ 
  

✔ ✔ 
        

Lin et al. 2014 P P   
    

✔ 
     

✔ 
     

  
            

PEERSHARK 
Narang, et al. 

2014 P P ✔ ✔ 
   

✔ ✔ ✔ ✔ 
  

✔ 
     

  
 
✔ 

          

Zhang, et al. 2014 P 5,P ✔ ✔ 
   

✔ ✔ ✔ ✔ 
  

✔ ✔ 
    

  
          

✔ ✔ 

Wijesinghe, et al. 2015 I,H,P 9 ✔ ✔ 
   

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

  
 
✔ 

          

Garg, et al. 2016 P P ✔ ✔       ✔   ✔ ✔ ✔ ✔ ✔ ✔                                   
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3.7 Summary 

In high-speed data networks such as a CSP environment, PCAP packet capture 

presents two drawbacks. Both of which arise because PCAP captures the packet 

payload as well as the packet header. PCAP raises a privacy debate, as it captures 

packet payloads which store content. This payload capture, in turn, makes PCAP a big 

data challenge, capturing Gigabytes of information every second. All of this data must 

be stored and later analysed. 

 Flow export is a more efficient packet capture method, allowing a finer granularity 

in data capture. Almost all research involving flow export protocols in botnet 

detection have utilised NetFlow to capture traffic attributes to feed into botnet 

detection algorithms. Where a specific bot attribute is not available for capture in the 

fixed NetFlow v5 template, flow export is used in conjunction with PCAP to capture 

missing attributes (Sperotto, et al., 2010). This approach has led to the development of 

many successful botnet detection algorithms. However, when multiple data feeds are 

used they must be correlated before analysis, as well as introducing high data storage 

demands, particularly when supplemented with PCAP data. 

 Chapter 1 articulated the gap in the knowledge in the understanding of how the 

next-generation of flow export protocols, such as IPFIX, can be applied to efficient 

botnet detection. Chapter 2 outlined failures in signature-based detection methods, 

such as AV, to track the botnet C&C servers; an essential step in botnet takedown. 

This chapter further contributes to addressing research objective #1 through a critical 

investigation into the suitability of IPFIX for botnet traffic capture, in a CSP. By 

taking a critical look at how IPFIX compares to NetFlow, evidence in presented in 

agreement with the hypothesis that IPFIX is more suited to threat detection than 

NetFlow. Table 1 summarises this critical review from the point of view of a botnet 

traffic capture mechanism for use in CSPs. The key features in which IPFIX addresses 

design weaknesses of NetFlow are through standards-based vender interoperability, a 

high degree of template extensibility, inherent protocol security, and support of 

modern network requirements such as IPv6 and VLANs. In particular, IPFIX template 

extensibility allows not only bespoke template creation, but also supports variable 

length fields which allow the creation of bespoke enterprise elements to capture data 

attributes such as variable length HTTP GET strings. These features will be applied to 

template construction in Chapter 4. The other key features of IPFIX will be used in 

Chapter 5, in the design of a botnet capture prototype.  
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 Gates, et al., (2004) opined that the main weakness of NetFlow v5 in security 

analysis is it that it captures a fixed dataset that is not used in its entirety. This is 

echoed in Table 2 which shows that experiments which capture network traffic using 

NetFlow v5, also capture traffic data attributes that are not used by the detection 

algorithm. This results in high volumes of superfluous data which must be removed 

before analysis. The information in Table 2 will be used in Chapter 4 as a factor in 

determining which fields should be included in the IPFIX template. 

 The next chapter examines how IPFIX template extensibility, variable length fields 

and support for EEs can take botnet traffic capture from a big data challenge to a 

manageable data solution, by creating BotProbe, a template for botnet traffic capture. 
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4. BotProbe: A Novel IPFIX Template for 

Botnet Traffic Capture 

 

4.1 Introduction 

Chapter 3 reviewed many of the key design characteristics of IPFIX over its 

proprietary predecessor NetFlow. Gates, et al. (2004) considered NetFlow v5 to be 

inefficient at traffic capture for security analysis, with only 10 of the 18 fields in the 

fixed template configuration of NetFlow v5 capturing attributes pertaining to network 

security. Velan (2013) concurred, stating that the lack of template customisation in 

NetFlow v5 and NetFlow v9, make them limited for use in threat detection.  

 Until now, botnet detection algorithm design has been confined to the few traffic 

attributes that can be acquired through NetFlow. When a researcher needs to capture 

an attribute that is not contained within the 18 NetFlow v5 fields, PCAP can 

supplement data capture (Sperotto, et al., 2010). In high-speed data networks, such as 

a CSP environment, such inefficiencies from PCAP quickly translate into big data 

traffic volumes that burdens both analysis and storage. Some researchers have 

attempted to address the excessive traffic volumes captured by PCAP by creating 

packet capture aggregation procedures (Narang, et al., 2014; Hang, Wei and 

Faloutsos 2013; Narang, Reddy and Hota, 2013). Aggregation reduces the traffic 

captured by duplicate flows, but still captures considerable traffic within the packet 

body. 

 This chapter describes how three design features of IPFIX, namely template 

extensibility, enterprise elements and variable length fields, can address the 

limitations of NetFlow and PCAP data capture. This opens the path for the creation of 

new botnet detection algorithms, where researchers now have the ability to dictate the 

attributes that require capture for their algorithms, rather than the capture mechanism 

prescribing which attributes can and cannot be used in the detection algorithms. 

4 
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4.2 IPFIX Template Customisation 

The research hypothesis states that IPFIX should offer advantages over NetFlow v5 

for the detection of botnet communications in CSPs environments. In order to justify 

demonstrable advantages, an IPFIX template should be able to a) capture botnet traffic 

characteristics that cannot be captured by NetFlow, b) capture botnet traffic more 

efficiently than NetFlow or c) identify botnet traffic earlier in the botnet life cycle 

than NetFlow allows. 

 Of the seven features that the IPFIX protocol can offer for botnet traffic capture 

over NetFlow, as outlined above in Chapter 3, Santos (2016) claims that the most 

important design enhancement of IPFIX is template customisation. Customisation 

means an IPFIX template is no longer confined to capturing the 18 fields that NetFlow 

v5 captures, of which 8 fields are superfluous to security threat detection (Gates et al., 

2004). In a customised IPFIX template each field element can be fully utilised in the 

detection of a botnet communication traffic. This allows the creation of an IPFIX flow 

Protocol Data Unit (PDU) that can capture the same, or more, information than a 

NetFlow flow PDU, a less than the 48 byte size of a NetFlow v5 PDU. In a high-speed 

data networks such as a CSP, reducing the size of the flow PDU should in turn reduce 

both device processing power requirements and data storage requirements.  

Template customisation can be described as three features: 

(1) Template extensibility allows the creation of customisable export templates, in 

which any of the 433 IEs defined by IANA can be added or remove from the 

template as required;  

(2) Enterprise elements allow the creation of new template fields to export any 

layer 2 to layer 7 information held within a PDU, should this information not 

be supported in the 433 IANA defined fields. It is the support for EEs that 

makes IPFIX superior to NetFlow in next-generation networks (Velan, Jirsik 

and Čeleda, 2013); 

(3) Variable length fields permit efficient capture of data that are not fixed length 

strings, such as HTTP GET or SMTP Hello messages.  

 

 Each of these features contributes to advantages over NetFlow for botnet 

communication detection. Template extensibility allows the construction a template 

without superfluous fields which should be smaller than a 48 byte NetFlow v5 PDU. 

Template extensibility with support for EEs, permit the capture of additional 
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information over and above NetFlow. Variable field length elements allows capture of 

application layer traffic that may be able to detect botnets earlier in their life cycle. 

Many researchers, as outlined in Chapter 3, argue that application layer information is 

required for the early detection of botnets. The limited subset of attributes in NetFlow 

v5, predominantly IP address and protocol information, limits botnet detection to the 

attack phase when a bot is producing the highest number of detectable packets.  

 It should be noted that NetFlow v9 also supports template extensibility. Two 

studies into NetFlow v9 for botnet traffic capture (Wijesinghe, Tupakula and 

Varadharajan, 2015; Haddadi, et al., 2014) have been undertaken. However, these 

studies have failed to recognise the full potential of next-generation flow protocols 

because the implementation of template extensibility in NetFlow v9 is more rigid than 

in IPFIX. This rigidity imposes a limitation upon the usefulness of NetFlow v9 in 

threat detection, as there is less capability for packet content analysis (Velan, Jirsik 

and Čeleda, 2013).  

 This chapter, and subsequent chapters, makes comprehensive reference to IPFIX IE 

and EE fields. IANA is responsible for maintaining the list of IPFIX IE name 

descriptors. IANA does not maintain the list of EEs, as this is the responsibility of the 

element creator. To ensure a consistent single naming convention throughout this 

thesis, the nomenclature used for both IE and EE element names is the SuperMediator 

element name descriptors. SuperMediator is an IPFIX collector chosen for this 

research project, where justification for selection is detailed in Chapter 5, below.  

 

4.3 BotProbe IPFIX Template Creation Methodology 

The following section outlines the methodology for creating IPFIX templates for 

botnet traffic capture. This includes justification for the selection of the botnet data 

samples used in this study, as well as detailing the equipment and methods used in 

data capture and analysis. 

 

4.3.1 DATASET 

The dataset used throughout this study comes from a malware repositiory maintained 

by Czech Technical University (CTU), Prague4. The CTU repository holds almost 200 

botnet samples, collected from 2013 onwards. The datasets have been captured and 

maintained through academic funding received by CTU.  

                                                           
4 https://stratosphereips.org/category/dataset.html 
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 Other botnet repositories do exist. Shiravi et al. (2012) presented a study of 

available botnet datasets and described the properties a dataset should have in order to 

be used for comparison purposes. García, Uhlíř and Rehak (2014) considered 

Shiravi’s work to explain the weaknesses of several publically available datasets such 

as the CAIDA, DARPA and KDD datasets to justify using datasets from the CTU 

repository. They found that anonymisation of payloads in public datasets has an 

impact on research output. Several commercial organisations maintain their own 

malware datasets. However, these tend to be proprietary and are not readily available 

to academic researchers. Public repositories suffer from two drawbacks, a) they are 

often maintained by individuals so tend not to be as up to date or extenive as the CTU 

datasets and b) samples have often not been anoymised to respect confidentiality of 

personal data, which is against the ethical considerations of this study (Chapter 1.5). 

 Alternatively, it would have been possible to create our own bespoke datasets for 

this study. The fundamental reason for choosing not to do this was the limited ethical 

availability of legitimate bot C&C server software. C&C servers are required to 

construct the bot executable software needed to create reliable, replicable botnet 

samples. Only four C&C server softwares could be found through legitimate sources; 

Zeus, Spybot, Spyeye and Mirai; thus reducing variablilty in generated test data. 

Instead, these softwares were used in validation testing of the concept build in Chapter 

6, as the C&C software allowed complete control of the malware during testing. 

 The CTU repository was chosen as the dataset for this study for several reasons. 

Reliability of the datasets in this repository can be considered high, as CTU provide 

ground truth justification for each individual dataset, including VirusTotal analysis 

outputs for each sample. Variance across dataset samples is ensured as the repository 

is one of the largest and most varied collections of botnet samples held in PCAP 

format. Thus maintaining generalisability of sample data from a single repository, 

rather than requiring datasets from multiple repositories. The availability of these 

datasets to the research community ensures replicability to researchers to confirm the 

results in this study using the same datasets. Data accuracy can be assumed as the 

CTU dataset has been used in other academic studies. García and Pechuocek (2016) 

used CTU122_1(Geodo) and CTU162_1(Upatre) to study connectity between C&C 

servers. Kirubavathi and Anitha (2016) used Kazy, Medfos, Kelihos and Sogou 

datasets to study flow characteristics, although did not quote the specific dataset 

reference numbers. Haddadi and Zincir-Heywood (2015) used Virut, NSIS, 

ZeroAccess and Kelihos samples to study connection pattersn between HTTP bots. 

Again they did not specificy dataset sample references numbers. Sangroudi and 
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Mirabedini (2015) used 13 different CTU datasets to study the use of fuzzy clustering 

in botnet detection. García, Uhlíř and Rehak (2014) used CTU44 through to CTU54 

to study C&C bots characteristics in NetFlow. Whilst these authors did not use the 

exact same dataset samples as this study, CTU is considered to be a trustworthy and 

reliable repository.  

 The CTU repository holds almost 200 botnet samples. To simulate a random 

selection process, samples were arbitarily selected from the CTU repository with no 

perceived bias. The criteria for a sample was that it must comprise over 100,000 flows 

over a range of communication channel protocols. In test samples of less than 100,000 

flows, it was found that bot information was lost in background noise. As this criteria 

reduced the number of bot samples available for testing, no restriction was placed 

upon the creation date of the sample. Selected test samples are listed in Appendix B.  

 

4.3.2 EQUIPMENT 

The test samples in the CTU repository are presented in PCAP format. PCAP will be 

fed into an IPFIX exporter and then the exporter will extract botnet traffic. The 

predominant IPFIX exporters that support PCAP as an input stream are nProbe and 

YAF (Yet Another Flowmeter). Either nProbe or YAF could have been selected as the 

exporer in this test, as both support a wide range of IEs and EEs for data traffic 

capture; as summarised in Table 3. nProbe supports 69 IEs compared to 43 IEs by 

YAF, although many of the addition IEs supported by nProbe collect flow contextual 

statistics. YAF supports a larger range of traffic contextual EEs (refer to Table 4). 

Chapter 5 compares six IPFIX exporters, and provides further justification for the 

selection of YAF  as the chosen IPFIX exporter for this research.  YAF exports IPFIX 

as a proprietary.yaf format. An IPFIX mediator is required to convert this into a .csv 

format suitable for statistical analysis packages. This study used SuperMediator. 

Again, refer to Chapter 5 for justification for the selection of SuperMediator as the 

IPFIX mediator software for flow collection. 

 

TABLE 3. SUPPORT FOR IANA DEFINED IES AND EE PROTOCOLS, BY IPFIX PROBE 

Probe IEs EE Protocols 

nProbe 
 (Deri, 2003) 

69 
BGP, DHCP, DNS, FTP, GTP, HTTP, IMAP, MySQL, 

Oracle, POP, Radius, RTP, STP, SMTP 

YAF / SuperMediator 
(Inacio and Trammell, 2010) 

43 
DHCP, DNP, DNS, FTP, HTTP, IMAP, IRC, MySQL, 

NNTP, POP, RTP, SIP, SMTP, SSH, SSL, TFTP 
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TABLE 4. SUPPORT FOR EES IN BOTNET TRAFFIC PROTOCOLS, BY IPFIX PROBE 

Probe DNS FTP HTTP IRC SMTP TFTP 

nProbe 6 4 9 - 2 - 

YAF / SuperMediator 16 5 45 1 11 2 

 

   The test environment for the template construction comprised a single host 

server running a single guest VM. The host server was a Dell Latitude E5440 laptop, 

with an Intel i5-4310U CPU 2.6GHz and 8GB RAM, running Windows 7 Enterprise 

64-bit SP1 and VMWare Workstation 11.1.2. The guest VM was a Ubuntu 14.04 LTS 

desktop configured with four 2.6GHz processors and 2.9GB RAM, into which YAF 

v2.8.4 and SuperMediator v1.3.0 were installed. 

 

4.3.3 METHOD 

The aim of this test was to quantify the capability of each template element to capture 

botnet characteristics within flow traffic. This would facilitate construction of an 

IPFIX template where each template field has been proven to be statistically 

significant in the detection of botnet communication traffic. The independent variables 

in this test were the individual IEs and EEs available to the exporter template. The 

dependent variables were the botnet samples from the CTU repository. Figure 6 

summarises the test method.  

 The configuration for exporting IEs (“ie_tester.conf”) differs slightly to the 

configuration for exporting EEs (“ee_tester.conf”). With IE export, SuperMediator 

requires IE IDs to be specified after the FIELDS keyword under the exporter 

declaration. All flows are output to a single .csv file. With EE export, a second 

exporter is declared using a DPI path. The EEs to be exported have their IDs defined 

in tables within the DPI_CONFIG block. Each defined table outputs its own .txt file, 

titled as per the table name.  

 

The detailed IPFIX template creation method was: 
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(1) A bot sample was selected, at random, from the CTU repository; 

(2) YAF was configured to convert the .pcap sample into .yaf IPFIX format: 

# yaf --in in_file.pcap --out out_file.yaf -v       

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la        

--applabel --max-payload 65535 

(3) The IPFIX stream (“out_file.yaf”) was fed into SuperMediator, which 

exports the fields defined in “ie_tester.conf” to a .csv file: 

# super_mediator --config ie_tester.conf 

(4) The .csv file output from SuperMediator was analysed as per Figure 7 below. 

 

 SuperMediator configuration files can be found in Appendix C. 

 

2. IPFIX Exporter

(YAF)

3. IPFIX Mediator

(SuperMediator)

4. Data Analysis

.pcap

.yaf

.csv

IPFIX Template 

Creation Method

End

1. Select Bot 

Sample

 

Figure 6. Flow diagram of the IPFIX template creation test. 
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4.3.4 ANALYSIS  

IPFIX IEs capture both situational data about a flow, such as 

maxFlowEndMicroseconds (IANA_ID#268) or flowSamplingTimeSpacing 

(IANA_ID#399), and traffic contextual data about a packet, such as protocol 

(IANA_ID#4) or source port (IANA_ID#7). The EEs defined in SuperMediator, tend 

to be more traffic contextual based.  

 Botnet detection through communication traffic relies more upon information 

contained within traffic contextual data, rather than within flow situation data. 

YAF/SuperMediator presented 75 IEs, of which 43 are recognised by IANA, and 288 

EEs as test candidates for botnet traffic indicators. Each IE and EE was tested for two 

factors for inclusion in the template: 

 Quantity - the overall occupancy of the test element in botnet traffic; 

 Quality - the content of that element field being present in botnet traffic, but 

being different to other elements being captured.  

 

 Quantity was measured through frequency analysis. A low field count meant that 

the element was not present in sufficient quantities in botnet traffic to justify 

collection. Visual inspection of the frequency data defined the low quantity cut-off 

threshold as when < 1% of fields were either consistently empty, or contained null 

values which had no meaning in the data. 

 Quality was measured through correlation analysis. Correlation to other elements 

determines which elements are retained within the template. Cohen’s classification 

was used to interpret effect size: small (<0.10), medium (<0.30) and large (<0.50) 

(Cohen, 1988), as this allowed analysis to focus on the smaller effect correlations. 

Where the correlation with other elements was interpreted as large, this indicated that 

the two test elements captured data that was similar, or identical; therefore one of the 

duplicating elements could be discarded in order to maintain template efficiency. 

Where the correlation with other elements was interpreted as smaller, this indicated 

that this test element captured data that was not being captured by other elements. 

 Low duplication does not, in itself, guarantee inclusion within the template. To be 

included, the element must display a high quantity (as defined above) and either 

academic literature could be found confirming the usefulness of the element as a 

botnet traffic classifier, or visual inspection and intuition of the captured data 

indicates the element may have usefulness as a botnet classifier. 
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 Scatter plots were also used to indicate the strength of a linear, or curvilinear, 

relationship between two continuous variables (Pallant, 2013). These were plotted 

prior to correlation, as a general indication of variable relationship with which to 

compare. Hierarchical clustering of elements could also have indicated similarity 

between IEs and EEs, but was inconclusive across this dataset.  

 In large sample sizes, visual inspection of frequency distribution histograms are 

usually a strong enough indicator of linearity of the sample distribution (Collins, 

2014; Field, 2009; Altman and Bland, 1995). The sample sizes in this study were 

considered large at n > 100,000. However, this approach is not always reliable (Field, 

2009). Statistical techniques are available for measuring how a distribution appears to 

differ from a normal distribution; including the Shapiro-Wilk test, the D’Agostino 

skewness test, and the Anscombe-Glynn kurtosis test (Ghasemi and Zahediasl, 2012). 

However, in large populations, Kolmogorov-Smirnov (K-S) with 95% confidence 

levels are used for distribution testing (Dancey and Reidy, 2007). K-S is sensitive to 

outliers, so Lilliefors correction can be used to make this test less conservative (Peat 

and Barton, 2005). In K-S testing, H0 assumes the sample demonstrates normal 

distribution and H1 assumes the sample is significantly different to normal 

distribution. In a one-sample K-S test, with α set to 0.05, when ρ < α, H0 is rejected.  

 Correlation coefficients are used to estimate the degree of association between two 

variables. Pearson’s product-moment correlation coefficient (PPMCC) estimates the 

strength of a linear relationship when the test variables are either ratio or interval, and 

approximate a normal distribution. Although PPMCC is not a meaningful figure if it 

has been obtained from a sample which shows any curvilinear relationship (Clegg, 

1995). Instead, Spearman Rank Order Correlation (Spearman’s rho) is used when one 

or both variables are ordinal (Pallant, 2013), or when sample data is not normally 

distributed (Greenhalgh, 1997). Spearman’s rho is able to measure both linear and 

non-linear relationships, as it is unaffected by sample distribution (Gauthier, 2001). 

Spearman’s rho is also less prone to outliers than PPMCC (Gauthier, 2001). With 

large enough sample sizes, any violation of normality assumption does not cause 

major problems (Pallant, 2013). In Spearman’s rho testing, H0 assumes there is no 

correlation between variables A and B, H1 assumes either a direct (positive) 

correlation or an indirect (negative) correlation. 

 Spearman’s rho was used on all data in this study, as this study a) combined 

discrete with ordinal data, and b) contained data that closely approximates a normal 

distribution as well as data that strongly demonstrates a non-normal distribution. 

Alternatively, PPMCC could have been used for normally distributed data and 
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Spearman’s rho for data that did not demonstrate normal distribution. However, the 

use of two varying analysis methods would have made direct comparison of the 

correlation coefficients less effective. Flow diagram Figure 7 summarises the data 

analysis method.  

 

4.3.5 ANALYSIS METHOD 

The detailed data analysis method was: 

(1) Each traffic contextual IE and EE were selected, in turn, for analysis; 

(2) The field count frequency was recorded for each element in the botnet sample; 

(3) Low occupancy fields, defined as <1.0% of fields containing data, were 

discarded under the basis of template space optimisation, in that they do not 

capture sufficient data to justify the space they require in the template; 

(4) Data was categorised and cleansed before correlation takes place: 

 The test element was categorised as either nominal (discrete named data, i.e. 

string or URL), interval (continuous numeric variable) or ratio (continuous 

numeric variable where “0” has a meaning); 

  “0” values in interval data are considered as null and therefore removed; 

 Nominal data was transformed to ranked numerical data. 

(5) Normality distribution indicated the use of parametric or nonparametric 

statistical analysis methods. With large sample sizes (n > 10,000) the normality 

assessment was statistically confirmed using Lilliefors corrected K-S tests; 

(6) Scatter plots confirm the normality assessment in the above step; 

(7) Correlation testing was used to calculate the effect size between variables. 

When all data showed normal distribution, Pearson Product-Moment Correlation 

Coefficient was used. Where normality distribution showed both normally and non-

normally distributed data in a population, Spearman’s rho correlation was used to 

allow direct comparison of coefficients. Two-tailed analysis was used to identify 

the correlation direction; 

(8) Cohen’s classification was used to interpret the effect size and the element was 

either retained in the template (9) or discarded (10). 
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Figure 7. Flow diagram of the IPFIX template creation data analysis. 
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4.4 Information Elements Results 

4.4.1 FREQUENCY ANALYSIS 

YAF/SuperMediator supported the capture of a total of 75 IPFIX IEs. Field occupancy 

analysis of the 21 bot samples (refer to Table 7) revealed that 44 IEs consistently 

captured no data at all. So these 44 IEs were removed from further analysis.  

 Of the 31 remaining IEs, a further six IEs were also removed from further analysis: 

 sTime and eTime - these IEs contained identical data to flow start and end 

fields sTimeMS and eTimeMS respectively;  

 sIP_INT and dIP_INT - these IE are simply the integer equivalent value of 

IPv4 address fields sIP and dIP respectively;  

 DPI and flowKeyHash - are used when capturing EEs, so are ignored until the 

EEs are analysed, below. 

 The total field count of the remaining 25 IEs is displayed in Table 5. A breakdown 

of field count by individual bot sample can be found in Table 31 in Appendix A. 

 

TABLE 5. FIELD COUNT AND DATA TYPE CATEGORISATION FOR THE 25 IES  

ANALYSED DURING CONSTRUCTION OF THE BOTPROBE TEMPLATE 

 (BOT SAMPLES = 21; FLOW RECORDS = 7,363,521) 

INFORMATION 
ELEMENTS 

sIP dIP sPort dPort protocol application duration 

SuperMediator_ID# 0 1 4 5 6 7 17 

Total Field Count 7363521 7363521 7363521 7363521 7363521 4383033 7363521 

Occupancy 100.0% 100.0% 100.0% 100.0% 100.0% 59.5% 100.0% 

Nominal/Interval/Ratio N N R R R I R 

        
 

 

sTimeMS eTimeMS packets rPackets bytes rBytes iFlags rIFlags uFlags 

20 21 25 26 27 28 29 30 31 

7363521 7363521 7363521 5620371 7363521 5620371 7363521 7363521 7363521 

00.0% 100.0% 100.0% 76.3% 100.0% 76.3% 100.0% 100.0% 100.0% 

R R R I R I R R R 

         

         

rUFlags attributes rAttributes tcpSeq rTcpSeq endReason ToS rToS collector 

32 33 34 37 38 41 75 76 80 

7363521 891114 347368 7357619 7363521 7363521 19583 4 7363521 

100.0% 12.1% 4.7% 99.9% 100.0% 100.0% 0.3% 0.0% 100.0% 

R I I R R R I I N 
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4.4.2 VARIABLE CATEGORISATION 

The variable categorisation of each of the 25 IEs prior to transformation are provided 

in Table 5. All nominal elements were transform to numerical data for correlation: 

 sIP, nominal [IP address = X.X.X.X] to ratio5; 

 dIP: nominal [IP address = X.X.X.X] to ratio;  

 collector: nominal [Collector name = “c1”] to ratio. 

 

Data was cleansed to maximise potential correlations. “0” values in interval variables 

were deleted, because “0” indicates blank data in the following fields: 

 application; 

 rPackets;  

 rBytes; 

 ToS;  

 rToS; 

 attributes;  

 rAttributes. 

 

4.4.3 ASSESSMENT OF NORMALITY 

Across all the IEs tested, Lilliefors corrected K-S tests were typically <0.001; 

indicating that the samples did not demonstrate normal distribution. Q-Q plots and 

histograms of the elements also displayed non-normal distribution, thereby confirming 

the use of Spearman’s rho for correlation analysis. This is common in large samples 

(Pallant, 2013) where assessing normality becomes less important.  

 These findings agree with Collins who states that finding “parametric distributions 

in raw network data are rarer that the Yeti” (Collins, 2014).  

 

 

                                                           
5 SuperMediator also exports sIP_INT and dIP_INT  IEs, which are integer values of IPv4 addresses sIP and dIP, but 

do not convert MAC addresses. It was found to be more reliable to ignore sIP_INT and dIP_INT and use transformed 

values of sIP and dIP. 
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4.4.4 SCATTER PLOTS 

Figure 8 shows scatter plot matrices for two bot samples selected at random, 

CTU3_1(Kelihos) and CTU25_1(Zbot), where rs is Spearman’s rho correlation, ρ  

indicates the probability of the correlation through chance and n is the total number of 

flows correlated in that sample. The scatter plots generally varied in shape between 

IEs, whilst retaining a similar structure when viewed for the same IE across different 

bot samples. Chapter 4.7.1 contains a discussion on Figure 8. 
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Figure 8. IE scatter plots. 
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4.4.5 CORRELATION TESTING 

The assessment of normality analysis, above, indicated that all IEs demonstrated a 

non-normal distribution and would therefore undergo comparison via Spearman Rank 

Order Correlation. Each IE within a test sample was correlated with all the other IEs 

in that sample. To allow comparison of relative correlation effect sizes across all 21 

test samples, each correlation matrices for all 21 samples were aggregated into the 

single correlation matrix in Table 6. Table 7 summarises the 21 test samples used to 

create Table 6. In order to allow visual interpretation of the correlation effects across 

the sample population of 21 test samples, each IE in Table 6 was colour coded 

according to the overall effect size score. For example, Table 6 shows that sPort 

correlated with dIP with an rs >=0.5 for 2 samples, rs >=0.3 for 11 samples, rs >=0.1 

for 6 samples, and hence 2 samples had rs <0.1, giving an overall effect size score of 

39, which equates to a medium correlation hence the matrix square is coloured yellow. 

The score for each effect size was: 

 Each correlation >= 0.500 was assigned 5 points;  

 Each correlation >= 0.300 was assigned 3 points;  

 Each correlation >= 0.100 was assigned 1 point; 

 Each correlation < 0.100 was assigned -5 points.  

 

 These effect score points are arbitrary, and simply provide a relative scale for 

comparison. Because smaller effect sizes are of interest to this study, the points scale 

was engineered to match correlation values, where larger correlations were assigned a 

higher score to ensure the lower scores are visible. This provided suitable granularity 

to highlight any anomalous samples that differ radically from other samples arising 

due to differences in the behaviour of each bot tested. An alternative method is to 

correlate all 7 million flows into a test. This was rejected because small correlation 

differences were dwarfed by the much larger effects within the overall population.   

 Table 6 demonstrates several areas of correlation clustering. The most obvious 

cluster is amongst the TCP flags; when orange squares indicate a large correlation. 

TCP flags also exhibit medium strength clusters with port/protocol/application, and 

with packets/bytes. A medium cluster is shown between packets/bytes/protocols/ports; 

and another medium cluster between IP/ports. This becomes important when 

constructing the final IPFIX template as it suggests that some IEs need not be 

exported because their behaviour is captured through other IEs. Observed IE 

relationships are discussed and justified in Chapter 4.7.1. 
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TABLE 6. AGGREGATED CORRELATION MATRIX: IES 

(BOT SAMPLES =21; FLOW RECORDS =7,363,251) 

 

 

TABLE 7. 21 BOTNET SAMPLES USED IN THE CREATION OF THE IE AGGREGATED CORRELATION MATRIX 

Sample Sample Date Bot (VirusTotal) Flows 

CTU3_1 21/07/2013 Kelihos 318,602 

CTU8_1-win5 10/09/2013 Zbot 186,958 

CTU8_1-win9 10/09/2013 Zbot 168,065 

CTU10_1-win7 11/07/2013 Unknown 178,564 

CTU10_1-win9 11/07/2013 Unknown 278,687 

CTU10_1-win10 11/07/2013 Unknown 231,420 

CTU16_1-win5 23/08/2013 Kelihos (Waledac) 812,996 

CTU16_1-win11 23/08/2013 Kelihos (Waledac) 801,931 

CTU25_1 09/09/2013 Zbot 288,419 

CTU25_5 10/02/2014 Zbot 829,624 

CTU110_4 09/04/2015 HTbot 284,196 

CTU144_1 23/09/2015 Shifu 408,482 

CTU145_1 23/09/2015 Fake uTorrent 411,928 

CTU148_1 26/09/2015 Zusy 172,287 

CTU149_1 05/12/2015 Kelihos 235,287 

CTU149_2 09/12/2015 Kelihos 207,959 

CTU160_1 29/04/2016 Tinba (Andromeda) 206,008 

CTU165_1 27/05/2016 Zeus (New Variant) 230,475 

CTU166_1 29/04/2016 Tinba (Andromeda) 583,368 

CTU167_1 27/05/2016 Storm 197,941 

CTU168_2 03/08/2016 Andromeda 330,696 



4. BOTPROBE: A NOVEL IPFIX TEMPLATE FOR BOTNET TRAFFIC CAPTURE 
 

63 
 

4.5 Enterprise Elements Results 

4.5.1 FREQUENCY ANALYSIS 

YAF/SuperMediator supported the capture of a total of 288 individual EEs6. Field 

occupancy analysis of the 33 bot samples (Tables 15, 17, 19 and 21) revealed that 225 

EE consistently captured no data, so these 225 were removed from further analysis.  

 The remaining 63 fields that exported data, fell across nine protocols: NNTP, RTP, 

SIP, SSH, HTTP, DNS, SMTP, SSL and IRC. The distribution of all nine protocols, 

across all botnet samples (n=17,192,796 flows) are provided in Table 8.  

 Of these nine protocols, HTTP, DNS, SMTP and SSL captured 99.8% of the 

overall traffic and comprised the focus of this study (Tables 9 - 12). Although IRC 

exhibited a low traffic count, as IRC is still a commonly used bot communication 

channel, IRC was retained within the study data. One explanation for the lower than 

expected overall traffic percentage of IRC could be because the sample bots were 

relatively recent, dating from 2013 to 2016. For a breakdown of field count by 

individual bot sample, see Appendix A: Table 32 (HTTP), Table 33 (DNS), Table 34 

(SMTP), Table 35 (IRC) and Table 36 (SSL).  

 The remaining 0.2% of traffic comprised NNTP, RTP, SIP and SSH. No evidence 

could be found in literature to suggest that NNTP, RTP, SIP, or SSH have been used 

as bot communication channels. Rather than dedicate template space to these four 

protocols, sPort and dPort IEs can be used to indicate if a flow contains any of these 

protocols through their corresponding port number. 

 

  TABLE 8. PROTOCOL DISTRIBUTION FOR THE 33 BOTNETS SAMPLED 

Protocol Flows 
% of overall 

traffic 

NNTP 4 0.0% 

RTP 38,407 0.2% 

SIP 32 0.0% 

SSH 102 0.0% 

HTTP 7,167,557 41.7% 

DNS 8,655,304 50.3% 

SMTP 877,827 5.1% 

SSL 453,303 2.6% 

IRC 260 0.0% 

 

 
                                                           
6 https://tools.netsa.cert.org/super_mediator/super_mediator.conf.html (see “DPI configuration Block”) 
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TABLE 9. FIELD COUNT AND DATA TYPE CATEGORISATION FOR HTTP EES 

(BOT SAMPLES = 17; HTTP FLOW RECORDS = 7,167,557) 

HTTP 
Server 
String 

User 
Agent 

Get Version Referer 

SuperMediator_ID# 110 111 112 114 115 

Total Field Count 51044 930256 955053 977373 56619 

Occupancy 0.7% 13.0% 13.3% 13.6% 0.8% 
Nominal/Interval/Ratio N N N N N 

 
  

     

Location Host 
Content 
Length 

Age Accept 
Accept 

Lang 
Content 

Type 

116 117 118 119 120 121 122 

225810 672754 712180 9957 671085 141112 710588 

3.2% 9.4% 9.9% 0.1% 9.4% 2.0% 9.9% 
N N R R N N N 

        

Resp. Cookie 
Set 

Cookie 
Auth. Via 

123 220 221 252 253 

946977 31592 65905 5095 4157 

13.2% 0.4% 0.9% 0.1% 0.1% 
N N N N N 

 

 

TABLE 10. FIELD COUNT AND DATA TYPE CATEGORISATION FOR DNS EES 

(BOT SAMPLES = 15; DNS FLOW RECORDS = 8,655,304) 

DNS 
A 

Record 
NS 

Record 
CNAME 
Record 

SOA 
Record 

MX 
Record 

PTR 
Record 

TXT 
Record 

AAAA 
Record 

SM_ID# 1 2 5 6 12 15 16 28 
Total 4653441 722218 60868 157665 1290 699362 494193 447267 

Occupancy 53.8% 8.3% 0.7% 18.2% 0.0% 8.1% 5.7% 5.2% 
N / I / R N N N N N N N N 

 

 

TABLE 11. FIELD COUNT AND DATA TYPE CATEGORISATION FOR SMTP EES 

(BOT SAMPLES = 4; SMTP FLOW RECORDS = 877,827) 

SMTP Hello From To 
Content 

Type 
Subject Response 

Rcvd 
Date 

SuperMediator_ID# 162 163 164 165 166 169 251 

Total Field Count 197758 122212 197732 35920 84389 197754 42062 

Occupancy 22.5% 13.9% 22.5% 4.1% 9.6% 22.5% 4.8% 

Nominal/Interval/Ratio N N N N N N N 
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TABLE 12. FIELD COUNT AND DATA TYPE CATEGORISATION FOR SSL EES 

(BOT SAMPLES = 12; SSL FLOW RECORDS = 453,303) 
 

      

SSL 
Comm. 
Name 

Private 
Org. 

Country 
Name 

Locality 
Name 

State 
Name 

SuperMediator_ID# 3 5 6 7 8 

Total Field Count 59651 1111 63907 17572 16846 

Occupancy 13.2% 0.2% 14.1% 3.9% 3.7% 
Nominal/Interval/Ratio N N N N N 

       

Street 
Address 

Org. 
Org. 
Unit 

Private 
Org. 

Postal 
Code 

Client 
Version 

Server 
Cipher 

9 10 11 15 17 186 187 

943 64134 30042 879 989 11284 11284 

0.2% 14.1% 6.6% 0.2% 0.2% 2.5% 2.5% 
N N N N N I N 

       

Cert 
Version 

Cert 
Serial 

NotValid 
Before 

NotValid 
After 

PublicKey 
Length 

Record 
Version 

189 244 247 248 250 288 

33002 33002 33002 33002 31370 11284 

7.3% 7.3% 7.3% 7.3% 6.9% 2.5% 
I N N N I N 

 

 

TABLE 13. FIELD COUNT AND DATA TYPE CATEGORISATION FOR IRC EES 

(BOT SAMPLES = 3; IRC FLOW RECORDS = 260) 

IRC TextMsg 

SuperMediator_ID# 125 

Total Field Count 260 

Occupancy 100.0% 

Nominal/Interval/Ratio N 

 

4.5.2 VARIABLE CATEGORISATION 

The variable categorisation for each of the 51 EEs prior to transformation is provided 

in Tables 9 - 13. Most EEs were variable length strings and were therefore nominal 

variables.  All nominal elements were transformed to numerical data for correlation.  

 Data was cleansed to maximise potential correlations. “0” values in interval 

variables were deleted, as “0” indicates blank or null data in the following fields: 

 sslClientVersion; 

 sslCertificateVersion; 

 sslPublicKeyLength. 
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4.5.3 ASSESSMENT OF NORMALITY 

Across all the EEs tested, Lilliefors corrected K-S tests were typically <0.001; 

indicating that the samples did not demonstrate normal distribution. Q-Q plots and 

histograms of the elements also displayed non-normal distribution, thereby confirming 

the use of Spearman’s rho correlation. 

 

4.5.4 SCATTER PLOTS 

Scatter plot matrices for HTTP, DNS, SMTP and SSL are shown in Figures 9 -12. 

Each protocol scatter plot pair were generated from two bot samples selected at 

random from the test samples for that protocol (Tables 15, 17, 19 and 21) for visual 

comparison of EEs across different bots. For example, Figure 9, the plot of 

httpUserAgent against httpGet for CTU25_1(Zbot) shows a single agent generating 

multiple GET requests, whilst the same plot for CTU145_1(uTorrent) shows several 

agents generating multiple GET requests. Indicating a behavioural difference between 

the two bots. Chapter 4.7.2 contains a discussion on Figures 9 - 12. 

Figure 9. HTTP scatter plots. 

Figure 10. DNS scatter plots. 
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Figure 11. SMTP scatter plots. 
 

Figure 12. SSL scatter plots. 

 

4.5.5 CORRELATION TESTING 

The assessment of normality analysis, above, indicated that all EEs demonstrate non-

normal distribution and would therefore undergo comparison via Spearman Rank 

Order Correlation.  

 Using the same method as described in Chapter 4.4.5, aggregated correlation 

matrices for each protocol were created and overall effect size score was colour coded 

to permit visual comparison of protocol EEs across the test population. For aggregated 

correlation matrices by protocol, refer to Tables 15, 17, 19, and 21. The bot samples 

tested to create these matrices are summarised in Tables 14, 16, 18 and 20. Chapter 

4.7.2 contains a discussion on Tables 14 - 21. 
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TABLE 14. AGGREGATED CORRELATION MATRIX: HTTP 

(BOT SAMPLES =7; FLOW RECORDS = 2,733,520) 

 

 

TABLE 15. BOTNET SAMPLES USED IN THE CREATION OF THE HTTP CORRELATION MATRIX 

Sample Sample Date Bot (VirusTotal) HTTP Flows 

CTU3_1 21/07/2013 Kelihos 136,561 

CTU25_1 09/09/2013 Zbot 573,606 

CTU66_1 07/04/2014 Sality 195,975 

CTU110_4 09/04/2015 HTbot 201,895 

CTU111_2 09/04/2015 Unknown 193,255 

CTU144_1 23/09/2015 Shifu 410,220 
CTU145_1 23/09/2015 Fake uTorrent 395,118 

 

 

The correlation matrices, Tables 14, 16, 18 and 20, were plotted to allow visualisation 

of EEs relationship strengths. For example, Table 14 shows a cluster of large and 

medium effect correlations between http EEs host, length, server, ua, get and loc. 

This becomes important when constructing the final IPFIX template as it suggests that 

some EEs need not be exported because their behaviour is caught through other EEs. 

Observed EE relationships are discussed and justified in Chapter 4.7.2. 
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TABLE 16. AGGREGATED CORRELATION MATRIX: DNS 

(BOT SAMPLES =5; FLOW RECORDS = 2,507,560) 

 

 

 

TABLE 17. BOTNET SAMPLES USED IN THE CREATION OF THE DNS CORRELATION MATRIX 

Sample Sample Date Bot (VirusTotal) DNS Flows 

CTU3_1 21/07/2013 Kelihos 1,159,998 

CTU66_1 07/04/2014 Sality 169,363 

CTU149_1 05/12/2015 Kelihos 801,947 

CTU149_2 09/12/2015 Kelihos 743,481 

CTU168_2 03/08/2016 Andromeda 719,765 
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TABLE 18. AGGREGATED CORRELATION MATRIX: SMTP 

(BOT SAMPLES =4; FLOW RECORDS =877,827) 

 

 

 

TABLE 19. BOTNET SAMPLES USED IN THE CREATION OF THE SMTP CORRELATION MATRIX 

Sample Sample Date Bot (VirusTotal) SMTP Flows 

CTU3_1 21/07/2013 Kelihos 198,319 

CTU110_4 09/04/2015 HTbot 96,299 

CTU149_1 05/12/2015 Kelihos 304,851 

CTU149_2 09/12/2015 Kelihos 278,358 
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TABLE 20. AGGREGATED CORRELATION MATRIX: SSL 

(BOT SAMPLES =7; FLOW RECORDS = 453,303) 

 

 

 

TABLE 21. BOTNET SAMPLES USED IN THE CREATION OF THE SSL CORRELATION MATRIX 

Sample Sample Date Bot (VirusTotal) SSL Flows 

CTU25_1 09/09/2013 Zbot 20,664 

CTU110_4 09/04/2015 HTbot 78,966 

CTU111_2 09/04/2015 Unknown 42,562 

CTU140_1 23/10/2015 Bunitu 64,816 

CTU140_2 23/10/2015 Bunitu 46,647 

CTU141_1 28/09/2015 Bunitu 74,160 

CTU141_2 23/10/2015 Bunitu 81,691 
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4.6 Presenting the BotProbe IPFIX Templates  

4.6.1 THE BOTPROBE TEMPLATE 

The BotProbe template is shown in Figure 13. The template created a 43 byte PDU 

compared with the 48 byte NetFlow v5 PDU, where unlike the NetFlow template, 

each IE within this IPFIX template has been justified as a potential bot traffic 

attribute, with no superfluous fields. The IEs utilised within the template confine data 

export to attributes contained within the packet header, so the template can be used in 

environments that need to maintain payload privacy. Figure 13 forms the template 

used in BotStack (Chapter 5). 

 

 The BotProbe template flow record (Eq. 1) is the union of the static flow tuple 

(Fstatic) with the dynamic botnet characteristics tuple (Fdynamic): 

 

  Fbotprobe = Fstatic ⋃ Fdynamic      (Eq. 1) 

 

Where the tuples are defined as: 

Fstatic  = ( sIP, dIP, sPort, dPort, protocol ) 

Fdynamic = ( sTimeMS, eTimeMS, packets, iFlags, tcpSeq, collector ) 
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10.0.3.4

192.168.0.1

0_sIP                                    (8) Bytes  (4)

1_dIP                                  (12) Bytes  (4)

Template ID (301) Field Count (11)

4_sPort                                (7) Bytes  (2)

5_dPort                              (11) Bytes  (2)

25_packets                         (2) Bytes  (8)

21_eTimeMS                    (154) Bytes  (8)

20_sTimeMS                    (153) Bytes  (8)

6_protocol                          (4) Bytes  (1)

29_iFlags                            (6) Bytes  (1)

37_tcpSeq                        (184) Bytes  (4)

80_collector                    (211) Bytes  (1)

Template Records

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

 

Figure 13. The BotProbe IPFIX template, comprising of 11 SuperMediator IEs 

with IANA ID# in brackets. 
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4.6.2 THE EXTENDED BOTPROBE TEMPLATE 

The extended BotProbe template is shown in Figure 14. The addition of EEs into the 

template extends data export to application layer attributes, so the template can be 

used in environments when payload privacy is less sensitive. Figure 14 forms the 

template used in BotStack (Chapter 5). 

 

 The extended BotProbe template flow record (Eq. 2) is the union of the 11 field 

BotProbe template (Fbotprobe) with the botnet protocol specific traffic tuples:  

 

  Fextended = Fbotprobe ⋃ Fidentifier ⋃ FHTTP ⋃ FDNS ⋃ FSMTP ⋃ FSSL ⋃ FIRC         (Eq. 2) 

 

Where the protocol tuples are defined as:  

Fidentifer = ( flowKeyHash ) 

FHTTP = ( httpGet, httpResponse ) 

FDNS  = ( dnsARecord, dnsSOARecord ) 

FSMTP = ( smtpHello ) 

FSSL = ( sslName ) 

FIRC = ( ircTextMessage ) 

   

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

6542876452

404 Not Found

192.168.0.1

srcIPv4                       (8)        0 Bytes  (4)

dstIPv4                     (12)       1 Bytes  (4)

Template ID (302) Field Count (19)

srcPort                       (7)        4 Bytes  (2)

dstPort                     (11)       5 Bytes  (2)

packetTotal              (2)       25 Bytes  (8)

flowEndMS            (154)     21 Bytes  (8)

flowStartMS          (153)     20 Bytes  (8)

proto                         (4)        6 Bytes  (1)

initTCPFlag               (6)       29 Bytes  (1)

tcpSeqNos             (184)     37 Bytes  (4)

collectorIPv4         (211)     80 Bytes  (4)

Template Records

16_flowKeyHash Bytes  (1)

125_ircTextMessage variable

112_httpGet variable

123_httpResponse variable

1_dnsARecord Bytes  (1)

6_dnsSOARecord Bytes  (4)

162_smtpHello variable

41_sslName    variable

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

6557765411

302 Found

192.168.0.1

10.0.2.29

210.222.39.8

53542

80

6

184785

187029

7

8

4951234579

192.168.0.1

2557373211

POST /?ptrxcz_FP

200 OK

0_sIP                                    (8)

1_dIP                                  (12)

4_sPort                                (7)

5_dPort                              (11)

25_packets                         (2)

21_eTimeMS                    (154)

20_sTimeMS                    (153)

6_protocol                          (4)

29_iFlags                            (6)

37_tcpSeq                        (184)

80_collector                    (211)

 

Figure 14. The extended BotProbe IPFIX template, including an additional seven EEs 

with IANA ID# in brackets. 
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4.7 Discussion of the BotProbe IPFIX Templates 

Behavioural-based detection functions, such as botnet traffic detection, can quickly 

capture a lot of traffic. Multiple distributed probes across a diverse high-speed data 

network capture Gigabits of PCAP data per second per collector. Whilst this raises 

concerns for data storage, a larger impact is the overload of data that requires analysis, 

either manually or by machine. The challenge is in keeping the capture datasets to a 

manageable size for both storage and analysis, whilst capturing sufficient attributes to 

be able to identify known and as of yet unknown malware. Whilst flow export is a 

more focused data collection method compared to PCAP, each element in a template 

will impact both the volume of collected data as well as the time taken to process the 

flow. With flow export, if an element is present in a template but the flow contains 

none of this data, the field is still fully populated with null data. This is common to all 

flow exporters, not just YAF; although when YAF collects EE, field sizes are 0 bytes 

if the data is not present in the flow. Therefore each element within an IPFIX template 

requires justification for inclusion, to ensure full utilisation of the IPFIX PDU, unlike 

NetFlow. 

 

4.7.1 A DISCUSSION OF INFORMATION ELEMENTS  

A) SCATTER PLOTS 

Figure 8 shows scatter plots for various IEs, from two different bot samples 

CTU3_1(Kelihos) and CTU25_1(Zbot). These two bot samples were unbiasedly 

selected at random from all samples being analysed (see Table 7) to demonstrate IE 

behaviour similarities and contrasts in different botnets.  

 When comparing TCP IEs (iFlags, uFlags, rIFlags, rUFlags), the scatter plots 

look similar with all TCP IEs appearing with similar regularity. Likewise for packet 

and byte scatter plots (packets, rPackets, bytes, rBytes) similar behaviour is presented 

between each IE within the sample. Similar behaviour is also shown with 

corresponding IEs across the two samples. First impressions of the packet and byte 

scatter plots are that most plots display two branches. This suggests two different 

correlation events within the IE, indicating that two different trends are occurring and 

that the data should be separated for further analysis. However, zooming in closer into 

the scatter plot shows that data forms a funnel shape as x-axis = 0, y-axis = 0 is 

approached. Hence, these branches actually indicate the limits of the data points, with 

data points only falling between the branches. The closer the branches, the closer the 

linear relationship, as can be seen with CTU3_1(Kelihos) packets and rPackets  
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which closely resembles a linear relationship. This is confirmed by the strong 

correlation rs(238,841) = +0.994, ρ<0.001, where rs is Spearman’s rho correlation, ρ  

indicates the probability of the correlation through chance and n is the total number of 

flows correlated in that sample.  

 The largest contrasts in scatter plot shapes are seen in the IP and port IEs. For 

example, differences are observed between the dIP and sPort. In CTU3_1(Kelihos) 

this appears as a solid block indicating a wide range of ports and IPs, suggesting a 

SPAM attack or port scan. In CTU25_1(Zbot) the scatter plot suggests a more focused 

attack. Likewise for sIP and dPort. When transformed values of sIP are correlated 

with dIP the L-shape scatter plot suggests high correlation between lower-range IP 

addresses. Closer inspection of the bot sample PCAP showed that most of the sample 

data was traffic to and from IP 8.8.4.4 and 8.8.8.8 hinting at DNS requests, confirming 

the suspicion of SPAM. 

 Figure 8 only shows a small selection of IE correlations. All IEs demonstrated 

variability in scatter plot shapes, however the IEs in Figure 8 where selected because 

they showed more “interesting” correlations. Figure 8 shows comparison between 

CTU3_1(Kelihos) and CTU25_1(Zbot), however similar variability in IEs was evident 

in all other samples.  

 

B) FIVE FIELD FLOW TUPLE 

The seven field flow tuple for categorising a unique flow is defined by Cisco as source 

IPv4, destination IPv4, input interface, source port, destination port, layer 3 protocol 

and type of service (Patterson, 2012). However, in security analysis this is often 

reduced to a five field tuple; dropping ‘input interface’ and ‘type of service’ (ToS) 

(Santos, 2016). The sIP, dIP, sPort, dPort and protocol IEs all demonstrated 100% 

template field occupancy in testing. The medium to small association of sPort and 

dPort with both each other and with sIP and dIP (refer to Table 6) suggests that the 

traffic captured by these four IEs is suitably different to warrant all four IEs in the 

template, as these field are complementary rather than duplicating captured traffic. 

Conversely, protocol and dPort demonstrated a large association indicating the 

potential for duplication of traffic captured. This is expected, because in 

telecommunications a packet’s destination port is usually set in accordance with the 

communication protocol used. What was unexpected, was that this correlation was not 

larger. A possible reason may be that bots utilise spoofing techniques as a defence 
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mechanism; assigning the protocol to different port numbers from those defined in the 

IANA port list.  

  The implication from this study that all five IEs are necessary in the BotProbe 

template is in agreement with other botnet detection research. The extent of the use of 

the five field tuple is evident in Table 2, above. However, several researchers have 

moved away from this five field flow tuple, choosing to drop either sPort or dPort 

(Haddadi et al., 2014; Narang, Reddy and Hota, 2014; Lin, Chen and Chang, 2014; 

Zhang, et al., 2014; Françios, et al., 2011; Strayer, et al., 2008). A reason for 

dropping dPort is port spoofing, whilst protocol gives a more accurate traffic 

description (Dietrich, 2013). However, some researchers chose instead to drop 

protocol from their algorithms (Narang, et al., 2014; Françios, et al., 2011; Goeble 

and Holz, 2007; Gu, et al., 2008; Karasaradis, Rexroad and Hoeflin, 2007). Whilst 

dropping any of the five fields from the tuple reduces template space, their research 

methodologies provide no evidence that this is a benefit. Occupancy for ToS 

(SuperMediator_ID#75) was 0.3%. This meant that over the 7,363,251 flows 

analysed, the ToS field used 7.16M bytes to capture just 19,583 bytes of data. With 

such a low occupancy and with no academic evidence as a useful botnet indicator, 

ToS was uneconomical to capture. Likewise for rToS (0.0% occupancy). This is in 

agreement with Gates, who suggested the type of service field is redundant in 

NetFlow v5 bot traffic capture (Gates, et al., 2004). 

 

C) FLOW CONTEXTUAL IES 

Several flow contextual flags demonstrated 100% occupancy; including eTimeMS, 

sTimeMS, duration and collector. Over all 21 bot samples analysed, a perfect positive 

association was measured between sTimeMS and eTimeMS: rs(7,363,251) = +1.00, 

ρ<0.001, where the p value indicates the probability of this correlation through chance 

is < 0.1%. This large association is unexpected as each flow is assigned a start and end 

time. A large correlation effect size implies that two IEs are likely to be capturing 

similar data, either duplicating of reinforcing data capture. A perfect association 

would suggest that all flow durations are equal length, i.e. the difference between 

eTimeMS and sTimeMS was constant. Visual observation of the data showed that this 

perfect correlation is misleading. In actuality, the flow durations did fluctuate, but the 

duration times were small when compared to the start or end times. Therefore, during 

correlation calculations these difference approached 0, resulting in a perfect 

correction, when in fact the relationship is far from perfect, as is shown by the 
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duration IE. Both sTimeMS and eTimeMS are required to calculate the duration of a 

flow and to correctly order flows, so as to map malware propagation across a network 

in real time. Rather than calculate duration from two 8 byte fields, a more template 

space efficient method may be to capture duration (SuperMediator_ID#17) as a 4 byte 

field.  The duration IE showed a large association with packets and bytes, and a 

medium association with the reverse equivalent IEs rPackets and rBytes, suggesting 

duplication of captured data. The duration IE also showed a small correlation with 

sTimeMS and eTimeMS timing IEs. This is not unexpected, as the duration of a flow 

is not anticipated to correlate with the times the flows started, unless a bot called 

home for the same duration at the same time each day. Whilst it may be efficient to 

replace one of the timer IEs with duration, both sTimeMS and eTimeMS timers were 

included in the template, as the accuracy of duration has yet to be fully tested. This is 

in agreement with Gates who retained flow timers for security analysis in NetFlow v5 

(Gates et al, 2007) and most other botnet researchers (as summarised in Table 2, 

above). IPFIX supports flow timers at nanosecond granularity (IANA_ID#156 and 

IANA_ID#157). At present, neither YAF nor SuperMediator are able to support these 

IANA_IDs. Additionally, measurement to nanoseconds requires specialist network 

cards and other equipment, which may not be present in a cloud environment. 

 YAF assigns each flow a collector flag indicating the device from which the flow 

export originated. The data samples under test in this study were in PCAP format, 

hence YAF was unable to extract collector/exporter information as it is not present in 

PCAP, meaning that this IE could not be fully analysed. However, collector will be 

retained in the template to provide useful information as to where a bot is captured in 

the network and how it propagates. YAF uses attribute as a flow context flag, which 

is set to 1 when all forward direction flow packets are of a fixed size. A low field 

count for both attribute (12.1% occupancy) and rAttribute (4.7% occupancy) 

suggested these two attributes have little relevance to botnet traffic. Due to low 

occupancy, correlation figures could not be calculated for rAttribute. Literature 

provided no evidence for the use of these two IEs in botnet detection, so both were 

discarded. The endReason flag can be set to “”, active, idle, force, rsrc or eof to 

indicate why a flow has terminated. As a contextual flag, endReason is unlikely to be 

influenced by botnet traffic. This flag showed a large association with iFlags and a 

medium association with protocol and other IEs, and therefore can be considered to be 

duplicating other information captured in IEs that might be more relevant. 
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D) PACKETS AND BYTES IES 

IEs packets and bytes had 100% occupancy, whilst the occupancy of rPackets and 

rBytes was slightly lower. A large association was measured between packets and 

bytes. Unexpectedly, this correlation was not measured as perfect, possibly because 

the samples contained a low number of small packets of only a few bytes which were 

recorded as zero packet size. A perfect positive association was measured between 

packets with rPackets: rs(7,363,251) = +1.00, ρ<0.001. The association between bytes 

and rBytes was not quite so large, possibly for the same reason of small bytes being 

recorded as zero size. As expected, packet and byte flows showed large associations 

with iFlags (which holds the initial TCP flag in a flow) and medium correlation with 

ports and protocol IEs. As these IEs capture similar traffic data, packets will be 

retained in the template as it shows larger correlation with other IEs. Gates made no 

distinction between whether packets or bytes is the best indicator (Gates, et al., 2004). 

Several researchers chose to capture both bytes and packets fields. Whilst others, in 

line with the results obtained during the creation of the BotProbe template, chose to 

drop bytes in favour of packets (Lin, Chen and Chang, 2014; Zhao, et al., 2013; 

Rossow, et al., 2011). It could be argued that bot keep-alive packets are so small, they 

may not register in packets and that bytes would make a better attribute. However, 

during conceptual validation in chapter 6, no evidence could be found that this was the 

case and Zeus was successfully witnessed sending keep-alives captured as packets. 

 

E) APPLICATION IES 

IANA defines three IEs for capturing application information; elementID 94-

applicationDescription (string), 95-applicationID (array) and 96-applicationName 

(string). YAF identifies the application description from the protocol and port 

numbers, and assigns a corresponding number into the application field. Effectively, 

protocol and application both capture the same data, so, as expected, protocol and 

application exhibited a large correlation association. A reason for this not being a 

perfect association is that application only retains a list of common applications rather 

than an exhaustive list of all applications. Hence the occupancy for application was 

lower at 59.5%, against 100% for protocol. A large association was measured between 

application and TCP flag IEs iFlags and uFlags. However, a marginally larger 

association was measured between protocol and these same TCP flag IEs. Therefore, 

as the data showed application to have a lower field occupancy than protocol, 

application was dropped in favour of protocol. 
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F) TCP IES 

TCP flag IEs holds discrete handshake flags (SYN, ACK, FIN, RST, et cetera) 

according to TCP flow status. The IE iFlags holds flags for the initial packet in the 

flow, whilst uFlags holds flags for the subsequent packets. The tcpSeq IE contains the 

TCP number that is randomly assigned when the host initiates a TCP session. A large 

correlation was measured across all six TCP IEs. A medium sized correlation was also 

measured between protocol and packets, and protocol and bytes, suggesting that data 

is being duplicated. IEs protocol and packets have both already been confirmed above 

as being required in the template. Of the four TCP flags (iFlags, uFlags, rIFlags and 

rUFlags), the initial flags (iFlags) showed the largest correlation with the other TCP 

flags and likewise had the highest occupancy. This suggests iFlags was the most 

useful of these attribute in botnet traffic capture, as the initial TCP flow contains 

marginally more useful handshake information than subsequent flows. As such, only 

iFlags was retained in the template.  

 The low occupancy of the TCP flag IEs was expected to be because the samples 

contained both TCP and UDP traffic; whilst TCP flags were only assigned to TCP 

flows. Low occupancy may suggest that TCP flags add little value in botnet detection. 

However the Blaster worm was detected because multiple SYN flows with fewer 

ACK replies indicated port scanning activity (Dübendorfer, et al., 2005). Capture of 

initial TCP flags (iFlags), and union TCP flags (uFlags) are specific to IPFIX, which 

may explain why not much literature could be found for comparison studies. Rincón, 

et al., (2015) suggested that both initial and union TCP flags can be utilised in the 

search for incomplete TCP flows in DNS traffic, but provided no empirical evidence 

to back this up. Despite a low occupancy and similar large correlation to the four 

types of TCP flag IEs, tcpSeq has also been retained in the template, as it can be used 

to group common flows during analysis.  

 

G) REVERSE FLOWS 

Six of the 23 IEs available in YAF/SuperMediator export reverse flow IEs. All 

measured either a large or medium correlation with their forward counterpart 

(excluding rAttribute for which no correlation data was generated, as explain above) 

suggesting little benefit in capturing the reverse IEs. Reverse IEs are not defined by 

IANA, which was another argument to exclude reverse IEs in the template, in order to 

maintain a standards compliant IPFIX template.  
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4.7.2 A DISCUSSION OF ENTERPRISE ELEMENTS 

Many botnet detection algorithms utilise data at an application layer, as is evident in 

Table 2 above. An example of application data often used by a detection algorithm is 

HTTP GET, which can hold data specific to a botnet family type. Therefore, whilst 

data from a packet header (captured by IEs) can indicate the presence of malicious 

activity, application data (typically captured by EEs) can confirm traffic is of botnet 

origin (Husák, Velan and Vykopal, 2015). YAF treats EE export differently to IE 

export. When an EE is present in an IPFIX template, if the flow does not contain that 

EE data the export field is not populated. This is unlike IEs where the export field is 

fully populated with null data. This meant that the justification for inclusion of EEs in 

the template based on data export volume efficiency was less of a requirement than 

inclusion of IEs. However, due consideration was still applied to EEs as they typically 

export data in variable length strings, which can impact PDU size if an EE is included 

in an IPFIX template. There was also some expectation that EEs would impact IPFIX 

software processing time, regardless of whether data was exported or not.  

 The overall occupancy of the EEs tested was noticeably lower than the occupancy 

values of IEs, suggesting that EEs are less reliable botnet traffic attributes and that 

their export is inefficient. This argument can be countered by EEs not populating the 

IPFIX PDU if they are not present in the flow (as above). Of the 17 million EE flows 

analysed, two out of the 51 EEs had an occupancy >25% and 37 EEs had an 

occupancy of <10%. Low occupancy resulted in fewer data points during correlation. 

In some of the correlation matrices, correlation scores were not significant enough to 

be used, so are marked as null data in Tables 14, 16, 18 and 20. This meant only 23 

bot samples contained EEs that could be used for study. In some instances, such as for 

SMTP analysis, a population of as few as four bot samples could be found in the CTU 

Prague repository. With fewer samples available for study, the results obtained from 

EE analysis should be considered to be less reliable than IE results, which had more 

samples. However, as mentioned above, the implications of this are lessened as the 

inclusion of EEs in the template has less of an impact on export data volumes.  

 

A) SCATTER PLOTS  

Figures 9 - 12 show scatter plots for key EEs across the protocols under test: HTTP, 

DNS, SMTP and SSL. A scatter plot for IRC was not created as IRC only had a single 

variable. As with the IE scatter plots, plots for different bot samples are shown in 

these figures for comparison. The bot samples used to create these four figures vary, 
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as no one sample contained all protocols. The EEs in these scatter plots were chosen 

as displaying the most “interesting” features, however all EEs correlated, including 

those not shown, demonstrated some degree of similarity across all samples.  

 In Figure 9, the length EE scatter plots show similar behaviour, as HTTP payload 

length was small for the majority of HTTP packets. There are stark contrasts in the 

other HTTP EEs. In CTU25_1(Zbot) get against host plots a T-shape, suggesting a lot 

of variable GET requests from a specific host, indicating a network scan. Compared 

with CTU145_1(uTorrent), the same EEs have clusters of data points, suggesting 

more direct HTTP traffic. More differences are seen in DNS (Figure 10). For 

CTU3_1(Kelihos), a against cname shows a very different plot to 

CTU149_1(Kelihos) which is a similar botnet attack. This is because the 

CTU149_1(Kelihos) sample contained fewer DNS CNAME-records. Similar can be 

seen with DNS a against aaaa. Both plots show a definite semi-linear correlation, but 

CTU149_1(Kelihos) has fewer outliers as the sample had fewer DNS AAAA-records. 

If this sample was captured over a longer period, the plots would be expected to trend 

towards being more similar, as the samples were from similar botnets. This might 

indicate that more active samples provide more reliable analysis. Again, SMTP scatter 

plots (Figure 11) show similarities and differences. CTU3_1(Kelihos) had more 

variable SMTP_HELO packets compared to CTU149_1(Kelihos), which becomes 

more evident when comparing to and response in the two samples. The SSL scatter 

plots (Figure 11) probably show the most consistent behaviour between bot samples, 

indicating that SSL has a similar functionality across all bots. 

 All EE scatter plots demonstrated high variability. This is confirmed by their 

correlation coefficients, which are mostly medium to small. Less linearity indicates 

that EE behaviour varies between bot family. More work is needed to understand if 

patterns between EEs can be used as signatures to detect specific bot families.  

 When correlating EEs, bot samples with fewer flows were found to be less reliable. 

Therefore, for HTTP and DNS, flows of >100,000 were analysed. For SSL and SMTP 

flows >10,000 were analysed, because only smaller flow sample sizes were available 

for study.  

 

B) HYPERTEXT TRANSFER PROTOCOL EES 

HTTP (TCP port 80) is the default application layer protocol for traffic transmission 

over the Internet. HTTP is also a popular bot C&C channel due to the difficulty in 

blocking port 80. Of the 30 bot samples that contained HTTP traffic, 17 samples were 
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over the 100,000 minimum flow threshold required for analysis, as outlined in the 

results analysis above. Of these 17 samples, low field occupancy in 10 samples 

resulted in insufficient data points to produce statistically significant correlation 

scores. No evidence was found for correlation association between the available 

HTTP EEs and YAF IEs.  

 YAF included 17 HTTP EEs for analysis. The majority of these exhibited small 

correlation effects with each other, indicating little duplication in captured data 

between HTTP EEs. This suggested that whilst occupancy was low, these EE are 

meaningful attributes to capture in bot traffic. Of the 17 HTTP EEs, only four EEs 

exhibited an occupancy above 10%, casting into doubt the usefulness of the remaining 

13 EEs with occupancy below 10%. No academic evidence could be found to support 

that httpVersion, httpLocation, httpContentLength, httpAge, httpAccept, 

httpContentType, httpLanguage, httpSetCookie, httpAuthorization, httpVia, 

httpXForward or httpRefresh are indicative of botnet traffic attributes. Visual 

inspection of the captured data provided no further evidence on retaining these EEs, as 

they containing data of little use in detection. For example, httpLength captures the 

length of the GET request, which can be easily calculated if required. 

 Only two EEs demonstrated occupancy and valid content: httpResponse 

(SuperMediator_ID#123) (n=13.2%) holds response fields parameters and httpGet 

(SuperMediator_ID#112) (n=13.3%) holds GET/POST URIs. Both EEs exhibited a 

medium to large correlation effect size with other EEs that have been used to botnet 

detection in previous studies, such as httpUserAgent which was used to fingerprint 

browser characteristics in the detection of the Storm P2P bot (Holz, et al., 2008). 

Additionally httpGet holds domain or IP address, request parameters and cookies 

duplicated in other EEs. This is in agreement with BotSniffer which was amongst the 

first engine to feed HTTP GET/POST information into their algorithm (Gu, Zhang 

and Lee, 2008). From a network security point of view, four HTTP fields are critical: 

httpUserAgent, httpReferer, httpHost and httpCookie (Collins, 2014). Within this 

research project, no evidence could be found to justify capture of these four EEs, but 

httpGet and httpResponse exhibited a large correlation with httpUserAgent, httpHost 

and httpCookie. Husák, Velan and Vykopal (2015) selected seven HTTP attributes to 

identify bots, including httpUserAgent, httpReferer, httpHost, httpContentType, 

httpResponse, httpPath and httpRequestMethod. Whilst httpPath and 

httpRequestMethod are available as EEs in YAF, httpGet contains similar 

information. 
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C) DOMAIN NAME SYSTEM EES 

DNS (TCP/UDP port 53) converts domain names to IP addresses. DNS record 

attributes are commonly used by ISPs for botnet takedown, as bots use DNS to obtain 

the current IP address of their C&C servers. However, it was not until 2016 that a bot 

called Pisloader, was found to use DNS as a C&C channel (Chickowski, 2016).  Five 

of the 15 bot samples analysed produced reliable correlation scores. No samples had 

occupancy sufficent to calculate correlation effect sizes for dnsMXRecord or 

dnsTXTRecord. No evidence was found for correlation association between the 

available DNS EEs and YAF IEs. The largest occupancies were measured in 

dnsARecord (53.8%) and dnsSOARecord (18.2%). Visual inspection of the captured 

data showed that these two EEs contained data that may be useful for botnet traffic 

identification: dnsARecord (SuperMediator_ID#1) contained the host domain or IPv4 

address giving a potential indication of the C&C server, and dnsSOARecord 

(SuperMediator_ID#6) marked the start of the authority zone, which was highly 

populated in the SPAM bot samples such as CTU25_5(Zbot) (although this sample 

failed to produce reliable correlation figures so was excluded from analysis). Perfect 

association was measured between dnsARecord and dnsAAAARecord which holds 

the IPv6 equivalent to the IPv4 address held in dnsARecord. A large association was 

also measured between dnsARecord and dnsSRVRecord and medium correlation with 

dnsCNAMERecord, reinforcing its inclusion in the template. 

 

D) SIMPLE MAIL TRANSFER PROTOCOL EES 

SMTP (TCP ports 25/587) is an email transport protocol. Other proprietary email 

protocols exist but are not supported in YAF/Supermediator. Four bot samples 

provided reliable correlation scores. No evidence was found for correlation 

association between the available SMTP EEs and YAF IEs. Visual inspection of the 

captured data revealed only smtpHello (SuperMediator_ID#162) to contain useful 

information; holding both the SMTP command (HELO, AUTH, FROM, et cetera), 

and more importantly holding the sender IP address or domain which could be used to 

traceback the originator. This could be more reliable than smtpFrom which can be 

spoofed. IEs smtpTo and smtpRresponse exhibited a medium association, but both 

contained victim data rather than originator. The smtpSubject EE has potential to 

export SPAM when it contains nefarious words in the subject title. However, with a 

low occupancy, no academic evidence could be found to suggest this EE was worth 

retaining in the template. 
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E) SECURE SOCKET LAYER EES 

SSL (TCP port 443 for HTTPS and several other ports) provides encrypted Internet 

communications. No academic evidence could be found suggsting that bots currently 

use SSL as a communication channel. Even so, SSL still comprised over 2.6% of the 

bot sample traffic, indicating that bots may use SSL to encrypt communication. Seven 

of the 16 bot samples analysed produced reliable correlation scores. None of the SSL 

EEs correlated with IEs. Overall the SSL EEs had a low occupancy with no EE above 

15%, but many correlations between EEs were evident. Visual inspection revealed 

that overall the SSL EEs contained little useful information. Perhaps the most useful 

being sslName (SuperMediator_ID#41) which contained certificate authority details, 

including some interesting Russian domains and IP addresses, which could possibly 

be used to trace the originator. The sslName EE has been included in the template, but 

little acadmic evidence could be found to suggest inclusion of other SSL EEs.  

 

F) INTERNET RELAY CHAT EES 

IRC (TCP ports 6600-6669 and 7000) is an application layer protocol for client/server 

text chat over the Internet. IRC was the original botnet communication channel, and is 

still in common use. IRC is much studied as an indicator of botnet traffic. IRC header 

and IRC channel are commonly used attributes (Gu, Zhang and Lee, 2008; 

Karasaradis, Rexroad and Hoeflin, 2007; Goeble and Holz, 2007; Gu, et al., 2007). 

YAF only supports one IRC field, ircTextMessage (SuperMediator_ID#125), which  

captures USER, JOIN, NICK, USERHOST and associated chat. The EE 

ircTextMessage has been retained in the template capturing IRC header information. 

IRC channel information can be captured by sPort and dPort. Retention of both of 

these attributes is in agreement with previous academic studies. 

 

4.7.3 THE BOTPROBE TEMPLATE VERSUS THE EXTENDED BOTPROBE TEMPLATE 

CSP tenants have an expectation that their data is not under surveillance by the CSP, 

for anomaly detection or otherwise, with privacy requirements enforced within a CSP 

environment. IEs export data contained within a packet header, which can be 

considered to be in the public domain, particularly in the Internet. EEs export data 

which tends to be transmitted within the packet payload, which is traditionally a 

private domain. Anecdotal evidence from conversations with cloud providers during 

this study suggests that some CSPs are being approached by tenants who are willing to 
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trade a degree of access to payload data in return for a highly level of security. This 

prompted the creation of the extended BotProbe template, to demonstrate that the 

technology exists to support EE capture, even if privacy rules prohibit their capture. 

The BotProbe template has been designed to use IEs defined by IANA to ensure 

vendor interoperability. This means that the BotProbe template is not restricted to use 

only with YAF, and should be reproducible on any IPFIX exporter/collector pair. EEs 

are not defined by IANA, but are bespoke to a vendor. Therefore, the extended 

BotProbe template is less likely to work outside of a YAF environment.  At present, 

the only other IPFIX exporter with support for EEs is nProbe. The extended BotProbe 

template could be replicated in nProbe by replacing %HTTP_URL with httpGet, 

%HTTP_RET_CODE with httpResponse, %DNS_QUERY with dnsARecord  and 

%SMTP_MAIL_FROM with smtpHello. NProbe does not have an equivalent for 

dnsSOARecord, ircTextMessage or sslName. Whilst these nProbe EEs are similar to 

YAF, there is no guarantee they will capture identical information. The extended 

BotProbe template also includes FlowKeyHash (SuperMediator_ID#16) in the IE 

FIELDS. SuperMediator outputs EE traffic into separate .txt files, defined in 

SuperMediator DPI_CONFIG TABLES. flowKeyHash is a cross reference field between 

EE flows in the .txt file and IEs exported in “flow_records.csv”. This field is not 

necessary when using nProbe, as nProbe outputs both IEs and EEs to the same file.  

 

4.7.4 IMPLICATIONS OF CAUSE AND EFFECT 

It should be noted that correlation does not imply effect (Clegg, 1995). Correlation is 

a measure of association between two variables, i.e. how likely two elements are to be 

performing similar roles in the template. Causality of independent variables (cause) 

upon a dependent variable (effect) is often difficult to prove with statistics and instead 

is proven via direct experimentation. Nor does regression imply cause and effect 

(Clegg, 1995). Regression is used to indicate how the relationship between a set of 

independent variables can predict an outcome. In this study, field occupancy is used as 

an indicator that a variable is present in sufficient quantities in botnet traffic to 

warrant capture, whilst correlation is used to see if two or more elements are duplicate 

data being captured. It is wrong to suggest that because a variable such as sIP occurs 

in this traffic (cause) that there must be a botnet present (effect), as sIP is common to 

all traffic not just botnets. Similarly, it is wrong to use regression to suggest protocol 

number cannot be directly calculated from sIP addresses, even though they have a 

large association. Determining cause and effect is the role of the detection algorithm, 

which is beyond the scope of this study.   
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4.8 BotProbe Performance Test Methodology 

Despite Gates, et al., (2004) suggesting that NetFlow v5 comprises data fields that are 

not of use in security analysis, NetFlow v5 has still continued to be used in the 

academic study of botnet traffic detection. Table 2, above, summarises the attributes 

used by previous botnet detection algorithms; indicating that shortfalls in the 

attributes available in NetFlow v5 are supported by using PCAP.  

  This research project presents the hypothesis that IPFIX offers advantages over 

NetFlow v5. This chapter has already demonstrated how template extensibility allows 

the creation of more focused botnet detection templates than that of NetFlow v5. The 

data collection for each of the studies in Table 2 can be undertaken using either the 

BotProbe template as a direct replacement for capture of the NetFlow v5 elements, or 

the extended BotProbe template as a direct replacement for the capture of the NetFlow 

v5 elements and the additional elements captured in PCAP (Zhang, et al., 2014; 

Rossow, et al., 2011; Yen and Ritter, 2010; Gu et al., 2008). Template extensibility 

has allowed the novel BotProbe templates to perform the data capture more 

efficiently, as the templates are no longer fixed at 48 bytes like in NetFlow v5. For 

example, the nine fields captured by Gates, et al., (2004) totalled 30 bytes, but still 

uses the full 48 byte PDU to capture these nine fields. Wijesignhe, Tupakula and 

Varadharajan (2015) claim to capture their attributes in a 30 byte IPFIX PDU. The 

results they provide however, indicate that their study used NetFlow v9, not IPFIX, so 

were unable to capture EEs.  

 The remainder of this chapter provides empirical evidence of the performance of 

the two BotProbe IPFIX templates against NetFlow v5. In order to further satisfy the 

hypothesis that IPFIX offers advantages over NetFlow v5, performance comparisons 

will be made in:  

(1) Template processing times; 

(2) Overall data volumes captured by the templates; 

(3) The impact of each template upon the device CPU loading. 
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4.8.1 CREATING A NETFLOW V5 TEMPLATE FOR BENCHMARKING 

YAF is solely an IPFIX exporter, with no support for NetFlow v5 export. In order to 

gain comparative performance measurements, the testing of IPFIX against NetFlow 

needed to be undertaken on the same device. This required the creation of a NetFlow 

v5 template in IPFIX, so that NetFlow v5 export can be simulated by YAF. Figure 15 

provides a side-by-side comparison of an actual NetFlow v5 PDU (left) with the 

IPFIX simulated PDU (right), showing the SuperMediator ID field numbers. It is not 

possible to create an exact replica of NetFlow v5 in IPFIX, as the NetFlow v5 fields 

do not map directly into IANA IPFIX IEs; with the exception of srcAddr, dstAddr, 

srcPort, dstPort, tos and proto which do map directly. As the performance tests were 

to validate the speed and volumes of capture data, rather than field content related, the 

remaining twelve NetFlow fields were simulated using fields of identical size rather 

than content. This meant that both the actual NetFlow template and the simulated 

template were 48 bytes in length. IPFIX does have equivalent IEs to NetFlow’s dPkts, 

dOctets and first and last fields, however, these cannot be directly mapped, as IPFIX 

future proofs these fields with support for IPv6 at 8 bytes, versus 4 bytes in NetFlow.  

 

srcAddr Bytes  (4)

dstAddr Bytes  (4)

NetFlow v5 Field Count (20)

nextHop Bytes  (4)

input Bytes  (2)

first Bytes  (4)

dOctets Bytes  (4)

dPkts Bytes  (4)

output Bytes  (2)

last Bytes  (4)

srcPort Bytes  (2)

dstPort Bytes  (2)

NetFlow v5 Template

padding Bytes  (1)

tcpFlags Bytes (1)

proto Bytes (1)

tos Bytes (1)

srcAS Bytes  (2)

dstAS Bytes  (2)

srcMask Bytes (1)

dstMask Bytes (1)

padding Bytes (2)

sIP 0 Bytes  (4)

dIP 1 Bytes  (4)

Template ID (303) Field Count (20)

domain 13 Bytes  (4)

vlan 15 Bytes  (2)

ingress 52 Bytes  (4)

rTcpSeq 38 Bytes  (4)

tcpSeq 37 Bytes  (4)

application 7 Bytes  (2)

egress 53 Bytes  (4)

sPort 4 Bytes  (2)

dPort 5 Bytes  (2)

Simulated NetFlow v5 Template

iFlags 29 Bytes  (1)

rIFlags 30 Bytes (1)

protocol 6 Bytes (1)

ToS 75 Bytes (1)

attribute 33 Bytes  (2)

rAttribute 34 Bytes  (2)

uFlags 31 Bytes (1)

rUFlags 32 Bytes (1)

firstNonEmpty 81 Bytes (2)
 

Figure 15. A comparison of the NetFlow v5 template with the template simulated in IPFIX 

Actual NetFlow v5 Template (left); simulated NetFlow v5 template (right) 

 

4.8.2 DATASET 

As with the template creation tests, botnet samples used in the performance tests were 

adopted from the malware repository at CTU University, Prague.  
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4.8.3 EQUIPMENT 

The test environment was identical to the environment used in the creation of the 

IPFIX templates, above. 

 

4.8.4 TEST #1 - PROCESSING TIME TESTING METHOD 

The aim of this test was to quantify the differences in execution times between (1) the 

BotProbe template and NetFlow v5 and (2) the extended BotProbe template and 

NetFlow v5. The independent variables were the three templates; BotProbe, extended 

BotProbe and NetFlow v5. The dependent variables were 10 randomly selected botnet 

samples (refer to Table 22), chosen to ensure a variety of botnet families were tested. 

Flow diagram Figure 16 summarises the testing method.  

The detailed processing time testing method was: 

(1) Before testing began, any Ubuntu system processes running in the guest 

VM that were unnecessary to the data capture test were disabled; 

(2) A bot sample was selected, at random, from the CTU repository; 

(3) YAF was configured to convert the .pcap sample into .yaf IPFIX format: 

# yaf --in in_file.pcap --out out_file.yaf -v       

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la       

--applabel --max-payload 65535 

(4) A python script was executed against the appropriate template under test: 

  # python timer.py botprobe.conf 

  # python timer.py extended.conf 

  # python timer.py nfv5.conf 

(5) The python script started a timer, twice executed SuperMediator with the 

appropriate test template, stopped the timer and calculated the total time taken; 

(6) The python script was executed a total of 10 times, to minimise the noise effect 

from background processes; 

(7) The fastest six run times were recorded to calculate a mean score; 

(8) The test was repeated for all three templates. 

 

SuperMediator templates can be found in Appendix C. 

The python script can be found in Appendix D. 
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Figure 16. Flow diagram of the processing time test. 
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4.8.5 TEST #1 - PROCESSING TIME TESTING ANALYSIS 

To quantify the differences in processing times between the IPFIX templates, the 

mean execution time was compared for each template. To minimise the noise effect 

from background Ubuntu processes upon the CPU, each template was executed 10 

times with the slowest four times rejected, as explained below. The mean of the six 

fastest runs allows experimental error values to be calculated. 

 The processing time of each template was measured using a python script 

(Appendix D) which calculated the time taken for SuperMediator to export the .yaf 

file to .csv. The python script executed SuperMediator twice and displayed the 

quickest time from the two iterations. During the experiment design phase it was 

found that regardless of how many times the python script consecutively executed a 

batch of SuperMediator captures, in approximately 70% of cases the first 

SuperMediator run was the quickest. Times of subesquent runs in the batch varied 

with no apparent pattern. This was contrary to expectation as the first run of 

SuperMediator in a batch creates any new output files needed, with subsequent runs 

overwriting these. It would be expected that creation of new files would take longer 

than overwriting existing files. The reason for this was unknown. It was anticipated 

that there may be some lag due to SuperMediator terminating processes between 

subsequent runs. To account for this irregularlity the python script need only run 

SuperMediator twice in each test batch, with the quickest of each run recorded. There 

was no advantage gained from running large batches of SuperMediator. 

 It was also found during the design phase that background processes in the Ubuntu 

testing VM created noise that varied the times taken to run the processing tests. It was 

considered unfeasible to eliminate all background noise, as this involved stopping 

processes that were required during test. In most instances, the operating system 

automatically restarted these stopped processes. The following steps were taken to 

minimise background noise: 

 Prior to each test session, all unnecessary services were disabled in the testing 

VM, after which the testing VM was given a two minute period to allow all 

processes to stabilise; 

 Neither the testing VM nor the host device were touched whilst a test was 

running, so as not to initiate any new processes; 

 Each test was run 10 times with the fastest six (found to be the optimum 

number during the design phase) results used to create a mean score. 
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4.8.6 TEST #2 -  DATA VOLUME TESTING METHOD 

The aim of this test was to quantify the differences in data volumes captured between:  

 (1) The BotProbe template and NetFlow v5; 

 (2) The extended BotProbe template and NetFlow v5;  

 (3) The BotProbe template and PCAP. 

  

 The independent variables were the three templates. The dependent variables were 

10 randomly selected botnet samples (refer to Table 23), chosen to ensure a variety of 

botnet families. Flow diagram Figure 17 summarises the testing method.  

 

The detailed data volume testing method was: 

(1) Before testing began, any existing .yaf or SuperMediator (.csv, .txt) created 

files were deleted, so as not to cause confusion with new output files; 

(2) A bot sample was selected, at random, from the CTU repository; 

(3) The size of the bot sample .pcap file was recorded; 

(4) YAF was configured to convert the .pcap sample into .yaf IPFIX format: 

# yaf --in in_file.pcap --out out_file.yaf -v       

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la       

--applabel --max-payload 65535 

(5) The IPFIX stream (“out_file.yaf”) was fed into SuperMediator, which 

exported the appropriate template under test: 

 # super_mediator --config botprobe.conf 

 # super_mediator --config extended.conf 

 # super_mediator --config nfv5.conf  

(6) The sizes of the output files were recorded.  

(7) The test was repeated for all three templates. 

 

SuperMediator templates can be found in Appendix C. 
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Figure 17. Flow diagram of the data volume test. 

 

4.8.7 TEST #2 - DATA VOLUME TESTING ANALYSIS 

To quantify the differences in data volumes created by the templates, the size of the 

output files were directly compared for each template. During the experiment design 

phase, it was found that when a test was rerun without any changes to the dependent 

or independent variables, each run gave identical data volume measurements. This 

was unlike the processing time test and CPU load tests, in which background Ubuntu 

system processes impacted speed measurements as undesireable noise. Therefore, 

each volume test was only performed once, giving no experimental error figures from 

test noise.  
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4.8.8 TEST #3 - CPU LOAD TESTING METHOD 

The aim of this test was to quantify the difference in impact upon the test device CPU 

loadings from each template. The independent variables were the three templates. The 

dependent variables were four randomly selected botnet samples. Flow diagram 

Figure 18 summarises the testing method.  

 

The detailed CPU load testing method was: 

(1) Before testing began, unnecessary services in the guest VM were disabled; 

(2) A bot sample was selected, at random, from the CTU repository; 

(3) YAF was configured to convert the .pcap sample into .yaf IPFIX format: 

# yaf --in in_file.pcap --out out_file.yaf -v       

--plugin-name=/usr/local/lib/yaf/dpacketplugin.la       

--applabel --max-payload 65535 

(4) The IPFIX stream (“out_file.yaf”) was fed into SuperMediator, to export the 

appropriate test template. SuperMediator was not executed at this stage: 

 # super_mediator --config botprobe.conf 

 # super_mediator --config extended.conf 

 # super_mediator --config nfv5.conf  

In a separate terminal window, a python script was executed: 

 # python cpu_load.py  

(5a) A wait period of 10 seconds allowed all processes to stabilise; 

(5b) PSUTIL data capture commenced; 

(5c) The SuperMediator command in the first terminal window was executed; 

(5d) After 15 seconds (300 timer iterations) the capture was stopped; 

(5e) The highest CPU utilisation over the 15 second period was recorded; 

(6) The python script was executed a total of 10 times, to minimise the noise effect 

from background processes; 

(7) The lowest six CPU loads were recorded; 

(8) The test was repeated for all three templates. 

 

SuperMediator templates can be found in Appendix C. 

The python script can be found in Appendix D. 
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Figure 18. Flow diagram of the CPU load test. 
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The python script used the system processor attribute from the PSUTIL library to 

measure the impact of YAF upon CPU in the Ubuntu testing VM. 

 

4.8.9 TEST #3 - CPU LOAD TESTING ANALYSIS 

To quantify the differences in impact upon the underlying testing CPU from each 

template the mean CPU load was compared for each template. To minimise the noise 

effect from background Ubuntu processes upon CPU, each template was executed 10 

times with the lowest four CPU loads rejected. The standard error of the highest six 

CPU loads allows experimental error values to be calculated. 

 As with the processing time test, it was found during the experiment design phase 

that background processes in the Ubuntu testing VM created background noise that 

impacted the times taken to run the processing tests. It was considered unfeasible to 

eliminate all background noise, hence the same noise reduction steps were taken as 

outlined in the processing time test, above. 

 

4.9 BotProbe Performance Results 

4.9.1 TEST #1 - PROCESSING TIMES TESTING RESULTS 

10 bot sample datasets were tested against each template - BotProbe, extended 

BotProbe and simulated NetFlow v5. Table 22 compares the processing times for each 

dataset; (1) the BotProbe IPFIX with NetFlow v5 and (2) the extended BotProbe with 

NetFlow v5. 

 

TABLE 22. A COMPARISON IN PROCESSING TIMES BETWEEN IPFIX AND NETFLOW V5 

Dataset 
BotProbe vs 
NetFlow v5 

Extended vs  
NetFlow v5 

CTU3 12.63% ± 0.22% -25.51% ± 0.13% 

CTU8-9 29.35% ± 0.27% 10.99% ± 0.76% 

CTU110-4 29.42% ± 0.42% 11.86% ± 0.54% 

CTU127-2 40.85% ± 0.01% 17.85% ± 0.05% 

CTU141-2 32.96% ± 0.46% 2.50% ± 0.24% 

CTU142-1 32.92% ± 0.17% 3.28% ± 0.10% 

CTU144-1 31.92% ± 0.13% 13.29% ± 0.06% 

CTU147-1 18.92% ± 0.21% 4.54% ± 0.08% 

CTU148-1 28.42% ± 0.14% 2.39% ± 0.04% 

CTU149-1 9.94% ± 0.61% -15.50% ± 0.82% 

MEAN 26.73% ± 0.31% 2.57% ± 0.42% 
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4.9.2 TEST #2 - DATA VOLUME TESTING RESULTS 

The same 10 bot sample datasets were tested against each templates - BotProbe 

template, extended BotProbe template and simulated NetFlow v5. Table 23 compares 

the sizes of the total files output. The BotProbe template is also compared to the size 

of original PCAP for each dataset. 

 

TABLE 23. A COMPARISON IN DATA VOLUMES BETWEEN IPFIX, NETFLOW V5 AND PCAP  

Dataset 
BotProbe vs 
NetFlow v5 

Extended vs 
NetFlow v5 

BotProbe vs 
PCAP 

CTU3 11.54% ± 0.00% -116.71% ± 0.00% 94.65% ± 0.00% 

CTU8-9 11.94% ± 0.00% -17.44% ± 0.00% 96.01% ± 0.00% 

CTU110-4 17.08% ± 0.00% -23.78% ± 0.00% 97.32% ± 0.00% 

CTU127-2 13.32% ± 0.00% -153.48% ± 0.00% 94.80% ± 0.00% 

CTU141-2 13.54% ± 0.00% -182.27% ± 0.00% 98.24% ± 0.00% 

CTU142-1 18.35% ± 0.00% -147.02% ± 0.00% 98.76% ± 0.00% 

CTU144-1 12.17% ± 0.00% -30.68% ± 0.00% 89.25% ± 0.00% 

CTU147-1 10.47% ± 0.00% -4.82% ± 0.00% 93.61% ± 0.00% 

CTU148-1 13.18% ± 0.00% -97.81% ± 0.00% 74.80% ± 0.00% 

CTU149-1 19.04% ± 0.00% -48.60% ± 0.00% 92.09% ± 0.00% 

MEAN 14.06% ± 0.01% -82.26% ± 2.05% 92.95% ± 0.22% 

 

4.9.3 TEST #3 - CPU LOAD TESTING RESULTS 

Four bot samples of various flow sizes (CTU148_1(Zusy), flows = 172287; 

CTU149_1(Kelihos), flows = 235287; CTU3_1(Kelihos), flows = 318602 and 

CTU145_1(uTorrent), flows = 411928) were processed with the maximum system 

CPU utilisation shown in Figure 19. 

 

Figure 19. CPU utilisation for each of the three templates. 
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4.10 Discussion of BotProbe Performance 

4.10.1 TEST #1 - PROCESSING TIMES 

The BotProbe template demonstrated an average reduction in processing time of 

26.73% ± 0.03% over NetFlow v5. This was higher than the anticipated reduction of 

10%, from the BotProbe template being 43 bytes in size, compared to 48 bytes for 

NetFlow v5. Some of this additional reduction may result from the fields chosen to 

simulate the NetFlow v5 template, where some fields may be quicker to process than 

others. However, experimental verification of this was not undertaken because the 

method of comparing against a simulated template will only ever provide approximate 

results. The extended BotProbe template demonstrated an average reduction in 

processing time of 2.57% ± 0.04% over NetFlow v5. This was an unexpected result, 

as the extended BotProbe template contains more fields than the NetFlow v5 template, 

which implies it should take longer to process. Again, this may be due to the fields 

chosen to simulate NetFlow v5. The extended BotProbe template exhibited a range in 

processing times, from -25.51% ± 0.13% to 17.85% ± 0.05%. It was expected that this 

variance is due to the nature of the bot samples. When a sample contains a higher 

quantity of application data, the flow requires more processing, which increases 

processing times. The bot samples, chosen at random for testing, contained a range of 

application protocols in differing quantities. Hence, a range in processing times was 

not unexpected. Furthermore, if an EE was specified for export in a template but the 

protocol is not present in the flow, rather than exporting null data against this field, 

YAF does not export any data for this EE, thereby improving processing times. This 

suggests that any number of EEs can be included in the template without impacting 

processing time if they are not present in the flow. Therefore specific IPFIX templates 

could be created to target specific bot families, such as DNS bots. 

 

4.10.2 TEST #2 - DATA VOLUMES 

The BotProbe template demonstrated an average reduction in data volumes of 14.06% 

± 0.01% over NetFlow v5. This was slightly higher than the 10% reduction expected, 

from the BotProbe template being 43 bytes in size compared to 48 bytes for NetFlow 

v5. However, this confirmed that the field sizes in the simulated NetFlow v5 template 

closely resembled the actual NetFlow v5 field sizes. The BotProbe template exhibited 

a range in reduction volumes from 10.47% ± 0.00% to 19.04% ± 0.00%. This was 

anticipated to be due to how YAF processes flow aggregation, and the differences in 

aggregation between the IEs in the BotProbe template against those in the simulated 
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NetFlow v5 template. The extended BotProbe template exhibited an increase in traffic 

compared to NetFlow v5, from 4.82% ± 0.00% to 182.27% ± 0.00%. This increase 

may be due to bot samples containing varying application protocol data, where EE 

string lengths will vary by both protocol and by bot sample context. However, as 

demonstrated in the processing times tests above, despite an increase in data volumes, 

the templates were quicker to process. This raises the possibility of further 

performance improvements by constructing EEs that export more specific variable 

length fields. Comparing the BotProbe template with the original raw PCAP capture 

files exhibited a reduction in data volumes ranging from 74.80% ± 0.00% to 98.76% ± 

0.00%, depending on the context of the flows. Hofstede et al., (2014) indicate an 

expected reduction from IPFIX in the order of 1/2000th of the original PCAP size. 

However, Hofstede does not specify IPFIX elements, so their results can only be taken 

as an overall order of reduction. The BotProbe template may not have achieved these 

reductions as it is tailored for a specific application. Even so, for a CSP capturing TBs 

of PCAP data, the order of volume reduction from the BotProbe template could result 

in GB quantities of data. With European communications providers required to retain 

connection data for between 6 to 24 months (EC Data Retention Directive 

2006/24/EC, 2006) this is a saving in storage requirements. 

 

4.10.3 TEST #3 - CPU LOADS 

There were no measureable impact upon CPU load between the BotProbe template 

and NetFlow v5. The BotProbe template averaged at 13.4% ± 0.7% impact, whilst the 

NetFlow v5 averaged at 12.1% ± 0.6% impact, which was within experimental error 

margins. The extended BotProbe template averaged at 17.2% ± 0.8%; a marked 

increase in CPU load, possibly due to the additional software plugins required when 

capturing EEs. In comparison, the CPU load benchmark with no IPFIX export was 5% 

± 0.0%. These results were obtained in a Ubuntu 14.04 LTS desktop VM, with four 

2.6GHz processors with 2.9GB RAM. Scaling this up to running YAF on a high end 

server should expect minimal CPU impact. These minimal CPU impact results suggest 

the feasibility of running IPFIX export at 1:1 capture rates on low specification, low 

powered devices, such as those found in the IoTs. In high-speed data networks, 

NetFlow is typically configured to sample at rates between 1:500 and 1:2000; not only 

compensating for a lack of flow aggregation which produces high volumes of capture 

data, but is also to conserve device power. Sampling is detrimental to anomaly 

detection (Mai, et al., 2006) as it is more likely to miss small, infrequent bot keep-

alive packets.  
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4.11 Summary 

Cisco created NetFlow as a protocol to support network management. NetFlow v5 was 

the traffic capture mechanism for many botnet detection algorithms, despite 

drawbacks being known when applying the protocol to security threat detection 

(Santos, 2016; Trammell and Boschi, 2011; Gates et al., 2004). A primary weakness 

is the rigidity of the 18 field NetFlow v5 template, of which eight fields offer little 

value in botnet detection. NetFlow v9 has its own drawbacks. The protocol is 

proprietary, limited to 79 IEs and lacks support for EEs, restricting it to capturing only 

packet header information with no functionality to extract payload data (Patterson, 

2012). This has forced many researchers to supplement traffic capture requirements 

with PCAP (Sperotto, et al., 2010). 

 The hypothesis of this research predicts that IPFIX offers advantages over NetFlow 

in botnet detection. Chapter 3 outlined tangible benefits of IPFIX, such as security by 

design and scalability through support for complex protocols such as IPv6 and MPLS, 

whilst also being a ratified international standard. The contribution from this chapter 

comes from empirical evidence that template extensibility, variable length fields and 

enterprise elements all hold benefits over both NetFlow v5 and PCAP, addressing 

research objective #2 to create an IPFIX template for botnet traffic capture. 

 The challenge for any traffic capture mechanism is to move away from capturing 

big data volumes, towards capturing a smaller yet manageable dataset to ease data 

analysis. The BotProbe template demonstrated an improvement over NetFlow v5 of an 

average of a 26.73% ± 0.03% reduction in processing time and an average of 14.06% 

± 0.01% reduction in data volumes. The BotProbe template demonstrated as much as a 

98.76% ± 0.00% reduction in traffic volumes over PCAP. The extended BotProbe 

template expanded the capture mechanism to include application protocol information, 

providing contextual botnet information upon the network layer information from the 

packet header. With IPFIX as a capture mechanism, previous botnet detection 

experiments should expect an improvement in both capture speed and reduction in 

data volumes when run against the original capture method, without the need to 

amend the variables used by the detection algorithms. A reduction in data volumes 

translates as a benefit to communication providers bound by European law to retain 

connection information for a period of time. 

 The evidence provided in this chapter suggests that IPFIX has the potential to 

advance botnet detection. The limitations of other traffic capture mechanisms have 

confined the variables used in detection algorithms to the few traffic characteristics 
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that the protocols can capture. IPFIX turns this around, allowing the algorithms to 

dictate the variables that are required for capture, rather than the capture mechanism 

determining the available variables for the algorithms. This should permit the creation 

of new botnet detection algorithms based on new traffic attributes. 

 Having provided empirical evidence to demonstrate that IPFIX offers advantages 

over both NetFlow and PCAP, the next chapter uses these IPFIX templates as a 

foundation upon which to construct a framework to incorporate IPFIX export into a 

CSP environment. 
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5. BotStack: A Novel IPFIX Framework 

 

5.1 Introduction 

Building upon the evidence provided from the previous chapter that IPFIX provided 

reductions in both data volumes and processing times over NetFlow v5, this chapter 

describes an architectural framework for incorporating an IPFIX capture element into 

the cloud stack. Whilst previous academic studies have suggested various cloud stack 

frameworks, many of which are covered in this chapter, no literature could be found 

incorporating IPFIX within the cloud stack. 

 BotStack, the framework proposed within this chapter forms the foundation of a 

proof of concept demonstrator platform for future work in optimising botnet traffic 

capture and detection methods. The platform is constructed from open source tools 

that are common to CSP environments; thereby easing the migration process from 

existing cloud environments to this novel IPFIX platform. Open source tools are 

selected as the building blocks for BotStack because not only are they commonly 

found in CSP environments, but an open source approach permits modification to 

software to overcome any interoperability issues, or enhancements. 

 

5.2 Design Considerations for IPFIX Export in a CSP Environment 

A cloud is a multi-tenanted environment with high privacy expectations. The design 

requirements of a cloud provider infrastructure provide additional challenges over a 

traditional network. Lenk, et al., (2009) describe three basic components of a cloud 

infrastructure: (1) the physical resource, (2) the virtual resource and (3) the 

management front-end API which allows automate setup and tear-down of virtual 

machines, failover, demand scalability and OS provisioning. Effectively, a cloud 

environment can be described as a virtualised guest-layer running on top of a physical 

network-layer. 

5 
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 In this research project, the CSP framework fundamentally follows an 

Infrastructure as a Service (IaaS) model, in which guest operating systems share an 

underlying infrastructure, but are partitioned from other tenant VMs. NIST, the 

National Institution of Standard and Technology, defines IaaS as where “the capability 

provided to the consumer is to provision processing, storage, networks, and other 

fundamental computing resources where the consumer is able to deploy and run 

arbitrary software, which can include operating systems and applications. The 

consumer does not manage or control the underlying cloud infrastructure but has 

control over operating systems, storage, and deployed applications .” (Mell and 

Grance, 2011).  

 Within these design constraints the following assumptions were made: 

 The framework provisions the design principles of co-residency, where tenant 

isolation is provided upon a shared underlying infrastructure; and data 

integrity, where data privacy and integrity are provided through minimal 

interaction with tenant data traversing the CSP infrastructure; 

 The framework facilitates support for leading-edge technology, where the 

provider recognises cost reductions and operational enhancements through the 

inherit benefits from superior technologies such as IPv6 (Díaz, Martín and 

Rubio, 2016); 

 The framework is to be constructed from open source technology wherever 

possible, thereby allowing software modification between existing and future 

framework elements. 

 

Multiple component elements are required to facilitate IPFIX export within a CSP 

infrastructure. Figure 5 identifies four elements that are necessary in flow monitoring; 

the probe, the collector, data storage and data analysis. The following section provides 

justification for each framework element selected for traffic data capture. This 

includes not only IPFIX export and collection, but consideration is given to the 

elements that are necessary in the provision of a virtual infrastructure across which 

IPFIX export is supported. Less consideration is given to the physical infrastructure 

and data storage, as this modular framework should be capable to being overlaid on 

top of the CSPs existing infrastructure, whilst data analysis is considered in more 

detail within future work in chapter 7. 
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5.2.1 HYPERVISOR 

Machine virtualisation allows a single physical machine to host multiple, 

heterogeneous Operating Systems upon the same hardware (Garcia-Valls, Cucinotta 

and Lu, 2014). In an IaaS model it is not uncommon for VMs from several various 

tenants to be co-located on the same physical hardware, where each VM requires 

isolation from its neighbours. Virtualisation is provided by a Virtual Machine Monitor 

(VMM), also known as a hypervisor. The hypervisor is a software component that 

isolates multiple VMs whilst managing the sharing of physical host’s resources, 

thereby allowing each emulated VM to act as a stand-alone, tightly isolated container. 

The vulnerabilities described in chapter 2 typically occur by exploiting weaknesses in 

hypervisor software code. Hypervisors can be broadly split into two categories; type-1 

bare-metal hypervisors that sit directly on the host hardware, and type-2 hosted 

hypervisors that sit as applications in the host OS. Examples of type-1 hypervisors 

include Xen, VMware ESXi and Microsoft’s Hyper-V, whilst type-2 hypervisors 

include Linux KVM (Kernal-based Virtual Machines), VMware Player and Oracle’s 

VirtualBox. Figure 20 compares the benefits and disadvantages of four of the market 

leading hypervisors. As type-1 hypervisors typically have a higher performance than 

type-2 hypervisors, KVM, as a type-2 hypervisor, is not considered for the framework. 

Of the remaining three hypervisors, Xen is open source, available under a GPL 

(General Public License).  

 

Figure 20. A comparison of hypervisors. 
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 Xen hypervisor is available as either a standalone hypervisor (Linux Foundation, 

2013), or within the XenServer project from Citrix (Citrix Systems Inc., 2015). The 

XenServer project is an open source project that provides an out-of-the-box solution 

bundle, including Xen hypervisor, Open vSwitch, Xen Management software and a 

pre-installed CentOS operating system. This includes all the major elements for an 

IPFIX framework. Initially the BotStack framework was designed with XenServer 

v6.2.0 as its foundation, but during the build of the infrastructure several issues were 

encountered. More detailed descriptions of the issues encountered were presented at 

BotConf 2015 (Graham, Winckles and Sanchez, 2015b). In summary, XenServer 

v6.2.0 ships with an older version of Open vSwitch (OVS) which does not support 

IPFIX. Upgrading OVS requires an upgrading the XenServer CentOS operating 

system to 64-bit. In order to keep the OS footprint as small as possible, the incumbent 

CentOS 5.6 in XenServer has a reduced feature set which prevented the upgrade of the 

OS. Citrix subsequently released XenServer v6.4.94, known as XenServer Creedence, 

[sic] which includes CentOS v5.10 and a version of OVS that supports IPFIX. 

Unfortunately in testing, OVS failed to provide any IPFIX timestamps. Also, OVS 

flow aggregation did not work, which meant huge numbers of individual data flows 

instead of a reduced number of aggregated flows. Due to these issues, XenServer was 

rejected, necessitating a custom build framework using the standalone Xen hypervisor, 

on top of a Ubuntu OS. 

 As a type-1 hypervisor, Xen runs directly on the hardware, booting directly from 

BIOS. With Xen, the privilege Domain-0 (Dom0) creates and destroys the emulated 

VMs that run in the abstracted guest Domain-U (DomU), and controls the DomU 

access to the underlying hypervisor and physical resources. Xen is a popular choice in 

industry and is prominent amongst CSP. Key members of the Linux Foundation Xen 

Project7 include Amazon AWS and Citrix. Xen is also more prominent in academic 

research, compared with other open source hypervisors such as KVM. Xen was the 

hypervisor of choice in IaaS platform research, including OpenEdge (Kunz, et al., 

2016); Apache CloudStack (Kumar, et al., 2014); OpenStack (Sefraoui, Aissaoui and 

Eleuldj, 2012); Nimbus (Keahey, 2009); Eucalyptus (Nurmi, et al., 2009) and 

Cumulus (Wang, et al., 2008). When Jasti, et al, (2010) analysed security in multi-

tenanted cloud environments, they built their test environment on top of a Xen 

hypervisor. Garcia-Valls, Cucinotta and Lu (2014) describe two operational modes of 

Xen hypervisor. Para-virtualisation mode is a higher performance mode as no 

hardware platform emulation is required, making it more suitable for real-time cloud 

                                                           
7 https://www.xenproject.org/project-members.html 
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computing since it identifies the specific components of an operating system that have 

to be virtualised in order to optimise performance. Para-virtualisation has challenges 

such as virtualizing and sharing memory between guest operating systems. Also, a 

guest OS may require modification to make it aware that it is running in a virtualised 

environment, so that it can maintain direct communication with the hypervisor via 

hypercalls. Full-virtualisation mode, or Hardware-assisted Virtual Machines (HVM), 

allows full emulation of hardware attached devices, such as network adaptors, without 

the need to modify the guest OS. As each VM has its own virtual BIOS, each VM is 

un-aware it is being emulated on top of a host device. This makes it possible to run 

multiple operating systems, even heterogeneous ones, on the same hardware. Whilst 

HVM more closely resembles the complete isolation of a physical server, it is both 

slower and more expensive. CSPs, such as Amazon AWS, tend to run the faster para-

virtualisation, particularly when running Linux. However, hypercalls direct to the 

hypervisor allow malware to exploit the type of vulnerabilities outlined in chapter 2. 

 The Xen hypervisor was selected upon which to base BotStack, so as to maintain 

an open source infrastructure. 

 

5.2.2 HYPERVISOR MANAGEMENT 

A CSP typically uses a management API toolstack to manage hypervisor events, such 

as the setup, monitoring and tear-down of individual VMs, or the provisioning of an 

OS (Lenk, et al., 2009). There are two options available for Xen management through 

APIs (see Figure 21). By default, Xen ships with the XL toolstack; a lightweight 

minimal toolstack based on the xenlight library (libxl). XL has a limited command set 

and has been designed for managing single host environments, replacing the now 

deprecated XEND toolstack. 

 

 

Figure 21. A comparison of Xen toolstacks. 
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 Citrix recommends XAPI (Xen Application Programming Interface) for managing 

virtual device pools. XAPI was originally created by Citrix specifically for use with 

XenServer. XAPI is now open source and supports the full life cycle management that 

a CSP might be expected to perform, such as managing storage repositories, VM 

states, device pools and high availability. 

 XAPI was selected for BotStack to manage the Xen hypervisor environment as it 

provides a higher functionality toolstack than XL. 

 

5.2.3 VIRTUAL MACHINE MANAGEMENT 

The XAPI toolstack is a command line interface. Management of CSP virtual 

environments can be complex, so a GUI is preferred. The Xen Project lists several 

GUI packages that integrate into the toolstack API, as outlined in Figure 22. Xen 

Orchestra was not able to establish a connection to the test bed. The Xen Project 

suggests two other GUIs that were not considered for the framework; ConVirture was 

chargeable after a 30 day trial period and Zentific was no longer available for 

download. Both XenCentre and OpenXenManager, an open source copy of 

XenCentre, provide identical functionality. 

 XenCentre was selected for BotStack, as OpenXenManager was found to 

occasionally freeze, requiring a complete system reboot. 

 

Figure 22. A comparison of management GUIs. 
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5.2.4 VIRTUAL SWITCH 

Advantages to cloud providers of virtual networking include energy efficiency savings 

(Beloglazov and Buyya, 2010), dynamic allocation of resource and bandwidth (Guo, et 

al., 2010) and optimisation of VM placement and traffic flow (Fang, et al., 2013). 

With type-1 hypervisors, such as Xen hypervisor, virtual machines share the resources 

of their host server. In a physical network, hardware devices typically use network 

interface cards to connect to hardware switches. In a virtual network, virtual devices 

can be connected, via a virtual network interface to software switches, known as 

virtual switches (vswitches). The performance of vswitch CPUs now match the 

performance of physical switch CPUs (Pettit, et al., 2010) whilst having the 

advantages of being virtual. Of the four data centre vswitches outlined in Figure 23, 

only Open vSwitch (OVS) is open source, making OVS popular within academic 

research. By default, OVS operates in bridging mode using the built-in bridging 

functionality of the host Linux distribution. Alternatively, OVS can be configured to 

operate as a fully functional switch in switching mode. In either mode, there is a 

negligible difference in network throughput (Pettit, et al., 2015) or CPU impact 

(Rintalan, 2011), however switching mode supports VLANs, quality of service, access 

control lists and port bonding which may occur within a CSP infrastructure. 

 OVS was selected for BotStack as it integrates with all major hypervisors, and 

provides support for a range of monitoring protocols, including NetFlow v5, NetFlow 

v9 and IPFIX (Pfaff, et al., 2015). 

  

 

Figure 23. A comparison of data centre virtual switches. 
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 Additionally, OVS has its own flow management controller which uses OpenFlow. 

This would allow a CSP to interface into a Software Defined Networking architecture, 

for dynamic on-the-fly network configuration to contain, or divert, a botnet. 

OpenFlow can be disabled should a CSP favour an alternative third party controller.  

 

5.2.5 FLOW EXPORTATION 

Two of the essential components in flow export are the exporter probe and collector 

(Figure 5). Hofstede, et al., (2014) lists a number of commercial and open source flow 

exporters, each with varying degrees of support for IPFIX features. In order to take 

advantage of the IPFIX benefits outlined in chapter 3, an IPFIX exporter should 

support features that include: (1) IPFIX flow aggregation to reduce the overall volume 

of exported data; (2) IPFIX template customisation with support for both IEs and EEs; 

(3) the ability to periodically dump captured flows to a data file for analysis; and (4) 

standards-based IPFIX security features including flow integrity and obfuscation. 

 OVS claims to export NetFlow v5, NetFlow v9 and IPFIX. OVS is configurable to 

capture packets on a physical interface (PIF) via an network interface card, and virtual 

interfaces (VIF) via a network tap. These features make OVS suitable for deployment 

within the framework. During the build of the infrastructure doubts were raised over 

the OVS capability to support for IPFIX export. Several IPFIX collectors, including 

YAF, nProbe, Plixer’s Scrutinizer, IPFIXcol and nfdump, would not recognise the 

IPFIX stream format exported from OVS. In both OVS bridging mode and switching 

mode, IPFIX was found to be missing timestamps and appeared not to apply flow 

aggregation, resulting in an overload of traffic at the collectors. This was reported to 

the OVS developers, who did not perceive this to be a priority fix. Furthermore, as 

OVS did not support template customisation, OVS was retained in BotStack as the 

virtual switch, but was not used to perform IPFIX export functionality.  

 Of the open source IPFIX exporters in Figure 24, only two probes support both IE 

and EE template customisation: nProbe (Deri, 2003) and YAF (Inacio and Trammell, 

2010). The process for template configuration is equally straightforward in both YAF 

and nProbe, where template fields for capture can be specified in the command line 

syntax at exectution. YAF has been designed to specifically conform to IPFIX 

compliance, making YAF the only exporter that supports RFC-6313 for structured 

data, an advantage when querying data. The cost of IPFIX compliance means that, 

unlike nProbe, YAF does not support NetFlow. NProbe has an advantage in that it is 

both an exporter and collector in one. NProbe supports a greater number of IEs than 
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YAF, although nProbe’s IEs are predominantly flow contextual rather than traffic 

contextual data, as outlined in Table 3. Both exporters support EE export through 

software plug-ins, although information on how to create new EEs was lacking in both 

cases. nProbe is available at no cost through an academic license, although full 

functionality required a commercial license.  

 Argus is a well-known network audit and traffic analyser that supports its own 

version of NetFlow. Argus documentation states that it only supports a subset of 

IPFIX, so was not considered in this research. Bro is also a well-known tool for IDS, 

which supports IPFIX. However, Bro is primarily a SEIM solution that monitors 

security event and policy violations, but is not capability of providing the level of data 

correlation required by this research project.    

 A review of IPFIX literature revealed that YAF and nProbe are equally the most 

commonly used exporters in academic research. A trend was observed for nProbe 

being the primarily exporter between 2004 and 2008, with YAF overtaking as the 

preferred exporter after 2009. When Velan, Jirsik, Čeleda (2013) tested their HTTP 

header parsing algorithms, the only exporters that supported HTTP IEs were nProbe 

and YAF. The algorithm they designed for nProbe was marginally quicker than their 

regex algorithm tested with YAF, however they failed to provide a head to head 

comparison when no algorithms were present, providing no reason to favour one 

exporter over the other. No reliable evidence could be found comparing the 

performance of nProbe with YAF.  

 When Brockhus (2015) compared a number of flow exporters, YAF exported 1229 

flows against nProbe’s 924 flows over the same traffic capture. They do not explain 

this difference in results. Furthermore, the reliability of this data is questionable as the 

research has yet to be published in a reputable journal. The performance speed of 

YAF against nProbe was not tested during this research, as the IPFIX framework 

requirement is for a full-featured IPFIX exporter, rather than the fastest. When 

Rincón, et al., (2015) used IPFIX to capture TCP connections they chose YAF 

because it provides a MySQL mediator to their analysis software. 

  Whilst either nprobe or YAF were fit for purpose as the IPFIX export element 

of BotStack, YAF was selected due to its support for a larger number of EEs by 

default.  
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Figure 24. A comparison of open source IPFIX flow exporters. 
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5.2.6 FLOW COLLECTION 

The YAF IPFIX exporter is a probe that sits in a traffic stream capturing data. It then 

encapsulates any captured data into the IPFIX protocol for transport. This IPFIX 

stream is then sent to a collector, which converts these exported flows into formats 

required for storage and analysis. The selection of a flow collector is often based upon 

the desired storage format (Hofstede, et al., 2014).  Again, Hofstede, et al., (2014) lists 

commercial and open source flow collectors. Open source collectors are compared in 

Figure 25. IPFIX collectors with noteworthy support for IE and EEs include nProbe, 

IPFIXcol and the SiLK suite. When Velan, (2013) compared IPFIX collectors, nProbe 

was ignored as it is an exporter by design, rather than a collector. Velan went on to 

compare nfdump, SiLK and IPFIXcol; concluding that IPFIXcol was the quickest and 

most flexible. However, this is subject to bias as IPFIXcol was created by Velan as a 

PhD project. IPFIXcol was found to be overly complicated with little or no 

documentation, restricting its application to the framework. 

  YAF is part of the Network Situational Awareness (NetSA) security tool suite 

developed by software engineers at CERT. By design, YAF exports IPFIX in a 

proprietary .yaf format, as this allows YAF to be feature rich, whilst letting a 

mediator convert the data to a human readable format. NetSA created SiLK as the 

collector for the YAF proprietary format. The drawback of SiLK is that it was 

designed as a network management analysis tool, so focuses heavily on flow statistics, 

rather than traffic content analysis. Another disadvantage is that SiLK stores data in a 

“packed” flat binary file format, which requires an additional NetSA tool called rwcut 

to analyse data. Rwcut is designed for high-level flow context analysis and does not 

have the functionality to perform detailed statistical tests such as frequency and 

correlation. Other NetSA created mediators that support .yaf, include yafscii and 

ipfixDUMP, however neither support outputting data as .xls or .csv format. The role 

of an IPFIX mediator is to provide federation of IPFIX messages, allowing 

anonymisation, filtering, translation and aggregation of IPFIX streams to one or more 

collectors (Santos, 2016). SuperMediator is an IPFIX mediator, created by NetSA, 

which imports .yaf, and outputs it to .csv.  

 SuperMediator was selected for BotStack to partner YAF as the IPFIX collector. 

Mediators are not designed for complex flow analysis. SuperMediator can be extended 

using python plugins, allowing support for additional IEs/EEs to be added. In this 

research, data analysis is performed manually, outside of the IPFIX framework 

requirements. 
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Figure 25. A comparison of open source IPFIX flow collectors. 
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5.3 Presenting BotStack: An IPFIX Framework for CSPs 

The individual component elements identified in the above analysis for selection in 

the IPFIX framework for CSPs are presented in Table 24, with the logical 

representation of the BotStack framework architecture in Figure 26. 

 

TABLE 24. BOTSTACK FRAMEWORK COMPONENTS 

BotStack: An IPFIX Framework 

Host OS Ubuntu 14.04 LTS 

Hypervisor Xen 4.4.0 (64 bit) 

Hypervisor Management XAPI Toolstack 

VM Management XenCentre v6.5 

Virtual Switch Open vSwitch v2.0.2 

Flow Exporter YAF v2.8.4 

Flow Collector SuperMediator v1.3.0 

 

 

DOM-U
(User Space)

DOM-0

VM #1 VM #2

YAF

HOST SERVER

vif1.0 vif2.0

xenbr0

openvswitch-mod.ko

KERNEL
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IPFIX
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Figure 26. The logical architecture of BotStack. 
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5.4 Probe Positioning Test Methodology 

A “network as a sensor” takes advantage of the distributed nature of networks to turn 

the networks themselves into proactive cyber event notification tools (Cisco, 2015). 

As a traffic capture mechanisms is just as vulnerable as any other networked device, 

due consideration to the siting of IPFIX export probes is necessary. RFC-7011 

mandates that IPFIX transmissions include features for confidentiality, authentication 

and integrity, thereby mitigating the risk to IPFIX data of stream manipulation or 

interception (Internet Engineering Task Force, 2013a). Chapter 3 describes flow 

security features in more detail. Whilst these security features secure the data streams 

between devices, they do little to protect the probes themselves from attack. A probe 

sited within the unprivileged guest domain not only has the potential to imply 

surveillance rather than protection, but also presents a vulnerable attack surface to 

malware. Whilst a probe placed outside of the guest domain is less visible to an 

adversary, the risk profile of the probe increases should the adversary realise that the 

mechanism is specifically monitoring for malware. RFC-7011 (Internet Engineering 

Task Force, 2013a) makes recommendations to mitigate DDoS attacks on probes, 

however, a probe may still be vulnerable to timer misalignment attacks should 

malware be able to force clock changes upon the host device.  

 Catchment area is another consideration in probe placement. Flow is a push 

technology, exporting only data that passes through a probe. If a probe is not within a 

data stream it will not export this data. A single sampling point may lack visibility of 

key data streams, or create a congestion point in the network. Therefore multiple 

sampling points are required across the entire infrastructure where botnet activity is 

being monitored. Multiple probes not only present malware with a larger attack target 

surface, but increase the complexity of data coordination during analysis. A balance 

must be struck between the number of probes and their catchment area. Hofstede, et 

al., (2014) state that the deployment of packet capture probes in virtual networks is 

similar to deployment in wired networks. They describe two modes in which probes 

can be positioned. Firstly, inline - where the probe is directly connected to the stream 

by a passive network tap that captures traffic at line speed without introducing delay. 

Secondly, mirrored - where packet forwarding devices, such as switches, mirror 

packets from one port for capture on another port. This means that a probe with a 

layer 2 vantage point on a switch, only captures traffic from mirrored (or SPAN) 

ports. Whereas a probe with a layer 3 vantage point can monitor blocks of IP 

addresses, thereby capturing traffic from all ports (Collins, 2014). Minarik, Vykopal 

and Krmicek (2009) compared the efficiency of mirroring, such as used in NetFlow, 
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with direct tap connections, such as used by IPFIX. Connecting a NetFlow probe via a 

SPAN port dramatically decreased the data quality compared to the network tap 

connection. The tap connection captured more flows as it was able to capture both 

incoming and outgoing traffic on the segment, whilst the SPAN port was limited in 

which segment it could capture data from. SPAN also saw more packet duplication. 

 

5.4.1 DATASET 

The resultant dataset from this test was generated by systematically polling probes 

that were strategically distributed across the CSP infrastructure (Figures 30 - 34).  

 

5.4.2 EQUIPMENT 

A test network was constructed using the BotStack components outlined in Table 24. 

Two Dell PowerEdge R710 servers, each with four Intel Xenon 5160 3.0GHz CPUs 

and 8GB RAM, ran Ubuntu 14.04 LTS desktop operating systems. Xen 4.4.0, the 

XAPI toolstack, Open vSwitch v2.0.2 and YAF v2.8.4 were installed into Dom0. Both 

servers had three Ubuntu 14.04 LTS desktop VMs. Open vSwitch was configured to 

use network taps to capture traffic across all virtual ports and forward this to a capture 

probe. The network was configured as a flat 192.168.0.0/24 network. Figure 27 

outlines vantage points for probe placement; where probes #1 and #2 are within tenant 

virtualised environments, #3 is located on the CSP LAN, #4 and #5 are on host 

servers, with #6 and #7 are on networked devices. Five different tests measured the 

visibility of each probe placement. 

PROBE #2PROBE #1

HOST 
SERVER

HOST 
SERVER

.1 .2 .3 .4

.11 .12

PROBE #4 PROBE #5

PROBE #3

PROBE #6IPFIX
COLLECTOR

.101

FIREWALL

.100

PROBE #7

 

Figure 27. An illustration of potential probe vantage placements. 
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5.4.3 METHOD 

The aim of this test was to empirically determine the optimum siting configuration of 

the IPFIX probes, to allow botnet propagation to be tracked across the CSP 

infrastructure with maximum network visibility for the least number of probe 

installations. The independent variables were the ICMP ping tests between devices. 

The dependent variables were the various available probe locations. Flow diagram 

Figure 28 summarises the systematic test method. The detailed method was: 

(1) A YAF probe was installed into devices sited at the test vantage points; 

(2) YAF was configured to export ALL network traffic as IPFIX: 

# yaf --live pcap --in xenbr0 --out probeflow.yaf 

(3) Each device was systematically pinged, so the probe captured resultant echoes: 

  # ping 192.168.0.x 

(4) YAF was stopped;  

(5) The YAF output file (.yaf) was saved for analysis. 

1. Position Probe in 

Test Location

2. Execute YAF

3. Perform ICMP 

Ping Tests

5. Retain IPFIX 

Data  for Analysis

4. Stop YAF

End

Location Testing 

Method

 

Figure 28. Flow diagram of the probe location optimisation test. 
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5.4.4 ANALYSIS 

In order to empirically determine the optimum locations of the IPFIX probes, each 

probe placement point was analysed for its capability to capture systematic ICMP 

pings across an IP address range. To faciliate empirical calcuation, each device was 

assigned a costing weight as illustrated in Table 25, according to the importance of the 

network infrastructure the probe has visibility of. 

 

TABLE 25. NETWORK LINK COSTINGS 

BY IMPORTANCE OF LINK 

Network Link Cost 

VE to VE 50 

VE to Server 10 

Server to Server 5 

Device to Device 1 

VM to VM 0 

 

 These scoring metrics are graphically represented in Figure 29. The highest 

weighting was allocated to intra-VM connections, representing a malcious attack from 

one tenant upon another tenant.  The next highest weighting was allocated between the 

tenant VE and the host server indicating either a VM escape or host escape. 

Monitoring server to server comminucations indicates a bot’s potential to attack a 

neighbouring tenant. Monitoring device to device communication allows bot 

propagation to be tracked. As the aim was to track botnet propagation across a CSP 

network, no emphasis was given to VM-VM communication within a tenant’s VE. 

DomU

Dom0

50 00

10 10 10 10

5

1 11 1

1

 

Figure 29. Network vista weightings, by importance in botnet communication detection. 
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5.5 Probe Positioning Results 

Figures 30 - 34, below, display the observed device communication for each 

positioning test. Five individual positioning tests were conducted; with probes located 

at the potential vantage placements identified in Figure 27, in order to measure the 

network visibility across the network connection links outlined in Figure 29. Figures 

30 - 34 each indicate the location of the capture probe(s) and network visibility is 

represented by red or green network node links; where a green link shows a successful 

ping that was detected by the probe, and a red links shows a successful ping that was 

not detected by the probe. Table 26 summarises the obtained weighted values for each 

test. 

 

TABLE 26. WEIGHTED VALUES FOR ICMP PINGS, FOR EACH PROBE PLACEMENT TEST 

 
 

VE to  
VE 

VE to 
Server 

Server to 
Server 

Server to 
Device 

Device to 
Device 

TOTAL 

Test #1 0 0 0 0 0 0 

Test #2 0 0 0 0 0 0 

Test #3 50 2 x 10 5 2 x 1 0 77 

Test #4 50 4 x 10 5 4 x 1 0 99 

Test #5 50 4 x 10 5 4 x 1 1 x 1 100 

 

 

 Table 26 indicates that certain probe locations are sub-optimal for botnet 

communication traffic detection. Test #1 (Figure 30) was the benchmark test to 

understand visibility of traffic for probes located in the tenant virtual environment. 

Siting a probe in the tenant environment raises concerns around tenant privacy and 

surveillance; what other data is the probe capturing about the tenant environment 

besides botnet mitigation information. Furthermore, a probe in the tenant enviroment 

makes the probe highly visible. A malicious tenant may chose to disable the probe to 

turn the VM into an attack plane. Besides these drawbacks, Test #1 indicated that the 

probe had no visibility of communication traffic, confirming probes within a tenant 

environment are not a viable option. The same results were obtained from Test #2 

(Figure 31) with a probe located on the CSP network. Again, this probe was unable to 

capture any ping traffic, even though the pings were successful. This outcome was 

expected as the role of virtual and physical switches are to restrict broadcast of traffic. 

This natural switch behaviour can be overriden using SPAN ports, however traffic 

mirroring provides disadvantages such as duplication of traffic and other issues 
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outlined in section 5.4, above. Higher traffic visibility was obtained with a probe 

installed directly within the hypervisor of the server, see Test #3 (Figure 32), as the 

probe collected traffic passing directly through the vswitch installed within the server 

hypervisor environment. However, traffic visibility was restricted to just the server 

with the probe installed, with reduced visibility of traffic passing through other 

network devices. Test #5 (Figure 34) obtained the highest infrastrucuture visibility 

total of 100. However, as Figure 34 shows, this test required four probes to be 

positioned across the network. Restricting probes to the host server only, and 

excluding probes on cloud infrastructure devices such as routers, switches and 

firewalls, as in Test #4 (Figure 33), produced an almost identical infrastrucuture 

visibility total of 99. Although, locating the probes within the servers did restrict the 

traffic visibility across other CSP devices, which may impact the tracking of a bot as it 

propagates internally, such as to attack the storage infrastructure. 

 The purpose of the probe positioning tests was to empircally determine the 

optimum location of the IPFIX probes, defined above as the maximum traffic 

visibility for the minimal number of probes. Therefore the optimum probe positioning 

was in Test #4, with probes installed alongside the virtual switch within each server 

that hosts guest VMs. Whilst Test #4 does not provide complete infrastructure 

coverage, this placement selection should provide sufficient coverage to detect botnet 

communication between guest VMs or between tenants. If full visibility is required, 

Table 26 suggests the placement of an IPFIX probe on each critical CSP network 

device that requires protection. Albeit this configuration comes with two drawbacks; 

a) a complexity overhead of having to correlate data from multiple probes, and b) as 

the number of probes increases, so does the attack surface available to an adversary.  

 The empirical evidence provided from these tests back up Johnston, et al., (2016) 

who analysed ways to incorporate a NIDS within Xen. They took a theoretical look at 

four potential locales to site the NIDS; (1) on the virtual network itself; (2) on the 

Netback driver (incoming traffic into Dom0); (3) on the Netfront drive (incoming 

traffic into DomU); and (4) on the hypervisor itself. They found that drivers could be 

installed that allow packets to be copied between unprivileged guest domains, 

meaning VM to VM traffic could be completely missed by a NIDS on virtual network, 

on the Netback driver or on the Netfront driver. In agreement with this research they 

propose the optimum location with maximum visibility for a NIDS is on the 

hypervisor itself.  
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Figure 30. Location Test #1 - ICMP ping traffic captured by a probe in each tenant VM 

where red signifies a successful ping that was not captured by the probes. 
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Figure 31. Location Test #2 - ICMP ping traffic captured by a probe on the LAN 

where red signifies a successful ping that was not captured by the probe. 
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Figure 32. Location Test #3 - ICMP ping traffic captured by a probe on a host server 

where red signifies a successful ping that was not captured by the probe 

and green signifies a successful ping that was captured by the probe. 
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Figure 33. Location Test #4 - ICMP ping traffic captured by a probe on each host server 

where red signifies a successful ping that was not captured by the probes 

and green signifies a successful ping that was captured by the probes. 
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Figure 34. Location Test #5 - ICMP ping traffic captured by a probe on each device 

where green signifies a successful ping that was captured by the probes. 

 

5.6 Probe Timing Test Methodology 

In reconstructing the propagation of a bot across a network over time, the clocks of 

the collection devices distributed throughout a network must be synchronised to allow 

correlation of data flows by timestamps. In flow export, data packets are collected off 

the wire at an Observation Point, such as a device network interface. It is at this 

observation point, (i.e. the probe) that packets are pre-processed; which can include 

time-stamping as well as any data manipulation such as aggregation, sampling or 

filtering. One enhancement of IPFIX over NetFlow is the inclusion of security 

mechanisms such as SCTP, as detailed in chapter 3. SCTP ensures that IPFIX 

templates are sent reliably by improving end-to-end delay and count dropped packets; 

whilst PR-SCTP (partial reliability SCTP) add a mechanism to skip packet 

retransmissions (Santos, 2016). SCTP provides integrity of the flow data, mitigating 

against tampering attacks and packet insertion attacks. 

 If malware can impact data collection timestamps, it could successfully confuse the 

reconstruction of time related events. SCTP does little to protect against these sorts of 

timing attacks. Besides nefarious attacks, there may be occurrences in the cloud when 

guest VM timers are out of synchronisation due to misalignment, clock drift or global 

distribution across various time zones. Indeed, during testing of BotStack, it was 

found that even though steps were taken during configuration to attempt the consistent 

setting of clocks, some devices still had differing timers. 



5. BOTSTACK: A NOVEL IPFIX FRAMEWORK 
 

123 
 

 YAF uses the Libpcap library to timestamp each flow start and end time. Libpcap 

itself is reliant on the underlying OS kernel clock. The following set of tests alter 

clock timers on collection devices, to measure impact upon flow data timings across 

various probes, in order to understand if NTP (Network Time Protocol) can protect 

device synchronisation. 

 

5.6.1 DATASET 

As with the previous test, the dataset from this test was generated by systematically 

polling probe devices using ICMP ping traffic. After which, the clock settings were 

manually adjusted on either the servers or in the VMs, before repeating the test. 

 

5.6.2 EQUIPMENT 

The same test network, used in the previous probe placement tests, was used to test 

probe timings. VM#1, on Server #1, was assigned 192.168.0.1. VM#2, on Server #2, 

was assigned 192.168.0.4. VM#1 pinged VM#2 so that traffic must travel over two 

separate servers with probes attached, as indicated by the green path in Figure 35. 

 

192.168.0.1

PROBE #1 PROBE #2

Tenant

CSP

192.168.0.4

SUPERMEDIATOR

SERVER 
#1

SERVER
#2

VM#1 VM#2

.101

.12.11

 

Figure 35. The logical architecture for the probe timing test environment 

where green indicates the path taken by the ICMP ping traffic. 
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Four clock alignment scenarios were tested: 

 Server #1 and server #2 were both manually set to GMT, but not synchronised 

to NTP; 

 Server #1 and server #2 were both set to GMT and synchronised to NTP; 

 Server #1 is set to GMT, Server #2 was set to GMT +7. Both synchronised via 

NTP; 

 Server #1 and server #2 were synchronised to GMT via NTP, whilst VM#1 

and VM#2 were both manually allocated varying clock settings. 

 

5.6.3 METHOD 

The aim of this test was to understand how differences in device clock times impact 

the ability to coherently understand device data output from a holistic view. The 

independent variables were ICMP ping tests between devices. The dependent 

variables were the varying clock settings under test. Flow diagram Figure 36 

summarises the testing method.  

  

The detailed probe timer testing method for all four test scenarios was: 

(1) The clock timers on devices were set as per the test requirement. Where NTP 

was required, clocks were synchronised to: ntp.anglia.ac.uk 

(2) YAF was configured on the servers:  

 Server #1:     # yaf --live pcap --in xenbr0 --out timer_1.yaf 

 Server #2:     # yaf --live pcap --in xenbr0 --out timer_2.yaf 

(3) Four ICMP pings were sent from VM #1 to VM #2  

VM #1:      # ping 192.168.0.4 -n 4 

(4) & (5) Step 3 was repeated 5 times in total, every 60 seconds 

(6) YAF was stopped; 

(7) The resulting .yaf files were saved for later analysis. 
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Figure 36. Flow diagram of the probe timer misalignment test. 

 

5.6.4 ANALYSIS 

To understand the impact of clock time misalignment, the timestamps of the flow start 

times were manually compared between probes on server #1 and server #2 during 

each timing test. 
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5.7 Probe Timing Results 

The results of the ping tests results for the four scenarios are provided in Tables 27 - 

30. These tables showed ICMP ping traffic only, with all other network traffic 

removed. In each of the four tests, four pings were sent five times, every 60 seconds. 

For clarity of result presentation, sufficient ping traffic is detailed in order to show the 

difference in timing, with other subsequent pings being removed. Additionally, flow 

start times have been converted to EPOCH times for ease of readability.  

 During the four tests, ICMP pings were manually issued via the command line. It 

was not always possible to precisely time 60 seconds between each ping, hence not 

every batch of pings occurs exactly 60 seconds after the previous batch. Results in 

Table 30 offer an example of this, with 1 minute and 2 seconds between manual pings. 

Minimal inconsistencies in ping timing initiation is not anticipated to impact test 

results. 

 

TABLE 27. TIMING TEST #1 - BOTH SERVER CLOCKS MANUALLY SET TO GMT 

 

Note how ping #3 impacts ping #2 due to timestamp inconsistencies. 

 

 

TABLE 28. TIMING TEST #2 - BOTH SERVER CLOCKS ARE SYNCHRONISED TO GMT, VIA NTP 

 

Note how the ICMP pings are now synchronised and aggregated. 

 

 

collector sIP dIP packets protocol sTime ping  

Probe #1 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:41:19 1 

Probe #2 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:41:19 1 

Probe #2 192.168.0.1 192.168.0.4 4 icmp 08/19/2015 14:42:18 2 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/19/2015 14:42:18 2 

Probe #1 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:42:19 2 

Probe #1 192.168.0.4 192.168.0.1 2 icmp 08/19/2015 14:42:19 2 

Probe #1 192.168.0.1 192.168.0.4 2 icmp 08/19/2015 14:43:10 3 

Probe #1 192.168.0.4 192.168.0.1 2 icmp 08/19/2015 14:43:10 3 

collector sIP dIP packets protocol sTime ping  

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 12:38:19 1 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 12:38:19 1 

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 12:39:19 2 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 12:39:19 2 
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TABLE 29. TIMING TEST #3 - SERVER #1 SET TO GMT, SERVER #2 SET TO GMT +7, BOTH VIA NTP 
 

 

Note that whilst server #2 is set 7 hours in front of server #1, the time zone difference 

is not transferred to the ICMP timestamps. 

 

TABLE 30. TIMING TEST #4 - BOTH SERVERS ARE SYNCHRONISED TO GMT, VIA NTP 

BOTH VMS ARE MANUALLY ALLOCATED DIFFERENT TIMES 

collector sIP dIP packets protocol sTime ping  

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 14:23:59 1 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 14:23:59 1 

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 14:25:01 2 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 14:25:01 2 
 

Note how the different VM clock settings are not transferred to the ICMP timestamps. 

 

5.8 Discussion 

The IPFIX framework proposed in Table 24 comprised of individual open source 

technology elements. The justification for the selection of each framework element is 

detailed above. BotStack was designed to be modular, in that each element can be 

replaced by another element where necessary. For example, a CSP may have an 

existing relationship with a flow collection partner such as Plixer, who provide closed 

source incident response forensics analysis software which integrates with IPFIX. 

SuperMediator could be replaced with Plixer’s Scrutinizer software because IPFIX is 

a ratified standard. It was discussed above, that the only open source IPFIX collectors 

and exporters that are truly customisable are YAF and nProbe. A limitation of YAF is 

that it is only supported on Linux. Again, a standards based approach to IPFIX allows 

YAF to be replaced with nProbe, although not all YAF EE’s are available in the 

nProbe template. Another limitation of YAF is the lack of documentation around how 

to create customised EEs. This is also true of nProbe. It should be noted if an element 

in BotStack is replaced, interoperability cannot be confirmed, as neither Scrutinizer 

nor nProbe were tested with the framework elements. There is scope for creation of an 

open source IPFIX exporter/collector pair that fully support the construction of new 

EEs into an IPFIX template 

collector sIP dIP packets protocol sTime ping  

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 13:55:44 1 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 13:55:44 1 

Probe #1 192.168.0.1 192.168.0.4 4 icmp 08/20/2015 12:56:46 2 

Probe #2 192.168.0.4 192.168.0.1 4 icmp 08/20/2015 12:56:46 2 
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 The open source nature of BotStack makes it a practical test bed for academic 

research. BotStack was constructed upon the premise of allowing IPFIX export to be 

incorporated into CSP environments built upon an IaaS model. The flexibility 

provided by the ability to replace framework elements allows BotStack to be ported to 

other cloud service models that are built upon virtualised infrastructure, such as 

Platform as a Service (PaaS) or Storage as a Service (SaaS).  

 Evidence is provided in Chapter 5.5 that siting IPFIX probes upon virtual switches 

within servers hosting guest VMs, provides optimal probe location in detecting botnet 

propagation between tenanted environments. In a Xen environment, such as BotStack, 

which utilises para-virtualisation, this means an IPFIX probe should be installed 

within the hypervisor domain. Where full CSP infrastructure protection is required, an 

IPFIX probe should be installed in each critical network device that requires 

protection. Further work is needed to understand probe positioning in non-Xen 

hypervisors that do not support para-virtualisation. 

 Security mandates within RFC-7011 (Internet Engineering Task Force, 2013a) 

should mitigate most of the known techniques by which malware can influence IPFIX 

collection. IPFIX flows can be obfuscated via TLS encryption, mitigating packet 

inspection and tampering, whilst SCTP mitigates against replay attacks and DDoS. 

Note that whilst YAF supports both TLS and SCTP, testing these features is beyond 

the scope of this thesis, as it is the manufacturer’s responsibility to provide 

functionality against the IPFIX standard. However, malware continues to evolve to 

take advantage of new attack vectors.  One potential technique for future malware to 

evade detection is to tamper with the timestamps of collected data.  

 Tables 27-30 provide evidence that BotStack should be immune to malware 

attempting timer misalignment attacks. This is primarily because the tenanted 

environments take their clock timings from the host servers. If guest VM clocks are 

manually set so as to be different to the host server clocks, the timestamps on traffic 

captured by the probe is not impacted because probe packet timestamps are also taken 

from the server (Table 30). Hence, an attacker could not attempt to mis-align probe 

capture timings by amending clocks in a guest VM. Likewise, the probes are not 

impacted by time zone variations. When server clocks are set to different time zones, 

the difference between clocks in different zone are not transferred to the packet 

timestamp (Table 29). This means that probes can be distributed across a global 

network and export into a single data collection point without need to normalize 

clocks before data analysis. However, server clocks should be synchronized via NTP 

in order to ensure probe timing consistency. When clocks across multiple servers are 
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manually configured to be synchronization as close as possible, a small discrepancy in 

clock times can impact the perceived probe capture timings. Table 27 shows how 

ICMP ping traffic timestamps can be mis-interpreted by IPFIX aggregation engines 

when server clocks are set manually, but this is rectified when server clocks are set via 

NTP (Table 28). The impact of an attack on the NTP protocol itself was not tested. A 

method for future malware to perform a timing attack would be to physically disable 

NTP on the host device and force desynchronisation upon the host clocks. This could 

be an additional device that periodically checks probe hosts for clock synchronisation. 

A limitation of NTP is it only timestamps to millisecond precision. Precision Time 

Protocol (PTP) is accurate to 100 nanoseconds. Whilst IPFIX supports capture at 

nanosecond granularity (IANA_ID#156 and IANA_ID#157) no literature could be 

found evaluating IPFIX nanosecond time-stamping. The expense of PTP enabled 

hardware placed the testing of PTP beyond the scope of this study. 

 

5.9 Summary 

Chapter 1 identified the gap in the knowledge in the understanding of how the next-

generation of flow protocols, such as IPFIX, can be applied to botnet detection. 

Having created two IPFIX templates for botnet capture in chapter 4, this chapter made 

several contributions by addressing research objective #3; the construction of an 

IPFIX export framework that enables the capture of botnet communication traffic 

across cloud provider networks. 

 The first contribution from this chapter was BotStack, a novel IPFIX framework 

for CSPs. Each BotStack element is open source, with justification for inclusion 

provided. However, the flexibility of BotStack permits each element to be replaced 

with an alternative element should a CSP have a preferred vendor relationship, hence 

easing the migration process from the CSP’s current environment to one that supports 

IPFIX. Whilst BotStack was constructed for an IaaS model, the framework is flexible 

enough to be incorporated into PaaS, SaaS or IoT type models.  

 The second contribution was empirical evidence that the optimal siting of the 

IPFIX probes is within the hypervisor of tenant hosting servers. This presents many 

advantages. Removing the probe from the tenant environment not only negates any 

tenant surveillance concerns and respects tenant privacy, but also reduces the probe 

attack surfaces to malware housed within the tenant environment. A cost advantage is 

presented as this requires fewer probes for maximum traffic visibility. Additionally, a 
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management advantages arises as fewer probes reduces complexities in correlating 

multiple device data streams. 

 The third contribution was evidence that locating the IPFIX probe within the 

hypervisor reduces the risk of malware timing attacks. Whilst IPFIX security features 

mitigate risks to the IPFIX data stream, they do little to protect the probe itself from 

attack. Evidence shows that for as long as probes are synchronised via NTP, the 

ability for malware to influence the timestamp on the data flows is minimised.  

 The next chapter validates the interoperation of the BotStack framework created 

within this chapter, with the BotProbe templates constructed in chapter 4. This is 

achieved by deploying a real world botnet into a proof of concept network based on 

the IPFIX framework, and analysing the results of traffic captured via the IPFIX 

templates.  
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6. Concept Validation 

6.1 Introduction 

Chapter 4 described the creation of two novel IPFIX templates for capturing botnet 

communication traffic. Chapter 5 described the construction of an IPFIX framework 

which introduces IPFIX traffic capture into a cloud architecture. This chapter 

validates the interoperation of the BotProbe templates with the BotStack framework. 

A proof of concept test network, constructed from the BotStack framework, is infected 

with the Zeus botnet. BotProbe is used to capture botnet communication traffic, which 

is presented both as a visualisation of the overall attack process, and as four distinct 

profiles of a bot life cycle. 

 

6.2 Botnet Life Cycle Model 

Several scholars have defined the notion of a botnet’s life cycle (Feily, Shahrestani 

and Ramadass, 2009; Liu, et al., 2009; Govil, 2007; Gu, et al., 2007). These models 

primarily describe early life cycle processes, such as victim infection and C&C server 

registration. However, a botnet generates collectable traffic throughout its entire life 

cycle. The defining moment in a botnet life cycle is the attack phase, before which 

detection and takedown should happen. As the most relevant model to this study, 

BotHunter (Gu, et al., 2007) is extended to include latter life cycle elements, thereby 

creating a four phase botnet life cycle model where each phase displays a distinct 

traffic profile: 

 Scanning,  where the bot scans for propagation options (Gu, et al., 2007); 

 Infection, when the victim downloads the bot, which then registers with the 

C&C server (Gu, et al., 2007); 

 Maintenance, including bot keep-alive beacons, software updates; 

 Attack, includes the bot attack, such as DDoS, and post attack actions, such as 

transfer of stolen data back to the C&C server. 

6 
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6.3 Proof of Concept Validation Methodology 

6.3.1 DATASET 

The experiment used the Zeus Crime-wave Toolkit v2.0.8.9. The toolkit includes the 

Zeus C&C panel software, allowing the researcher to retain full control of the bot 

across its entire life cycle. Zeus was first discovered in 2007 stealing banking 

information via a man-in-the-browser attack. Despite its age, new active Zeus C&C 

servers are still being discovered, making this a suitable target botnet as a test subject. 

 

6.3.2 EQUIPMENT 

A proof of concept test network was constructed using the BotStack components 

outlined in Table 24. The logical architecture for this network is described in Figure 

37. Two Dell PowerEdge R710 servers, each with four Intel Xenon 5160 3.0GHz 

CPUs and 8GB RAM, ran Ubuntu 14.04 LTS desktop operating systems. Xen 4.4.0, 

the XAPI toolstack, Open vSwitch v2.0.2 and YAF v2.8.4 were installed into Dom0. 

Each server was configured with five VMs. Server #1 held IP addresses 192.168.0.11x 

and server #2 held 192.168.0.12x. Server #1 had a Windows XP Pro SP3 VM acting 

as the botmaster C&C server. This VM had Zeus Toolkit v2.0.8.9 installed, by which 

a bot.exe binary was created and configured to call back to the C&C server every 60 

seconds. The remaining nine VMs were Windows 7 Pro SP1. XenCentre v6.5 was 

installed on an additional PC to manage the VMs. The network was configured as a 

flat 192.168.0.0/24 network. 
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HOST SERVER
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.120
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Figure 37. The logical architecture for the proof of concept network. 
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6.3.3 METHOD 

The aim of this test was to provide demonstrable evidence of the inter-workings of the 

IPFIX framework and IPFIX template in capturing the four phases of a botnet life 

cycle. The dependent variables in this test were the test network and capture methods. 

The independent variables, which are the source codes of the bots, were constrained to 

a single bot (Zeus v2.0.8.9). The test could have been performed with a range of 

various bot C&C server types to compare traffic profile signatures. Figure 38 

summarises the testing method. The detailed proof of concept testing method was: 

(1) Each server was configured using a bash script  

   # bash startup.sh 

The bash script (Appendix E) configured Open vSwitch with the appropriate VIF 

settings and synchronised the server clocks with an NTP clock on the Internet; 

(2) Each of the 10 VMs were launched. ICMP ping tests confirmed connectivity; 

(3) YAF was configured to export IPFIX to the local server: 

# yaf --live pcap --in xenbr0 --out pocflow.yaf --rotate 60 

-v --plugin-name=/usr/loca/lib/yaf/dpacketplugin.la       

--applabel --max-payload 65535 --tls 

 --applabel and --max-payload are both required for dpacketplugin.la; 

 --rotate 60 = saves pocflow.yaf every 60 seconds; 

 --tls = encrypts IPFIX traffic using TLS 

(4) The scanning phase is simulated by the C&C VM using nmap in stealth mode: 

  # nmap -sS 192.168.0.112-115 

(5) The infection phase is simulated by three VMs (192.168.0.113, 192.168.0.121, 

192.168.0.122) downloading the bot.exe binary from the XP VM (192.168.0.111); 

(6) The maintenance phase is simulated by leaving the network to run for a period 

of 10-20 minutes in order to generate bot keep-alive traffic; 

(7) The attack phase simulated a DDoS attack from infected VMs upon a victim: 

# ping -n 5000 -l 1500 192.168.0.125 

(8) YAF was terminated to stop traffic capture; 

(9) IPFIX templates (Appendix C) were applied to create data for analysis: 

  # super_mediator --config botprobe.conf 

  # super_mediator --config extended.conf 
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Figure 38. Flow diagram of the Zeus botnet traffic capture test. 

 

 Traffic capture in a live network meant that it was anticipated that background 

noise from Windows VMs and other networked devices may obfuscate bot traffic. To 

maintain a realistic scenario, no attempt was made to reduce or eliminate this 

background noise, as the background noise anticipated in this test will also be present 

in a CSP network. Zhao, et al., (2013) suggested a realistic test environment can be 

created by introducing HTTP web browsing traffic, online gaming packets, bit torrent 

clients and email traffic. This was considered overkill for this proof of concept test.  

 The Zeus bot was under the control of the researcher throughout the test, via the 

Zeus C&C panel. This control over each bot activity meant that the bot’s behaviour 
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was predictable and consistent each time a test was performed. Therefore, the proof of 

concept test method was only performed once. 

  

6.3.4 ANALYSIS 

To confirm the interoperability between the IPFIX framework and IPFIX template, the 

exported IPFIX traffic was manually interpreted to identify the four phases of Zeus 

bot life cycle over time; scanning, infection, maintenance and attack. The overall life 

cycle timeline was visually displayed as an arc diagram. Each of the four life cycle 

model profiles were visually displayed as individual property graphs of each phase.  

 

6.4 Proof of Concept Results 

The exported IPFIX data was passed through SuperMediator using both the BotProbe 

and extended BotProbe templates. When the entire captured IPFIX dataset is plotted 

over time, see Figure 39, the phases of the life cycle are visible. The arc diagram 

displays the C&C server (.111) scanning the network via TCP SYN, the HTTP traffic 

between the three VMs (.113, .121 and .122) and the C&C server (.111) in the 

infection phase, followed by considerable ICMP ping traffic between the three VMs 

and a victim (.125) during the attack. The behaviour displayed in this diagram 

indicates that the VMs downloaded a botnet binary from the C&C server which was 

then used to attack the victim. The BotProbe template yields an identical arc diagram 

as the extended BotProbe template, as both templates feed from same captured IPFIX 

dataset. The extended BotProbe template providing more application layer detail, 

which the BotProbe template uses port numbers to identify the application. 

 

.111 .112 .113 .114 .115 .121 .122 .123 .124 .125

KEY
TCPSYN
HTTP
ICMP

 

Figure 39. Arc diagram of the entire botnet infection. 
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 The property graphs in Figure 40 were created through manual interpretation of the 

exported IPFIX data, in order to visually display the traffic profiles across each bot 

life cycle phase. Figures 39 and 40 are discussed in Chapter 6.5 below. 

 

 

 

 

 

 

 

 

Scanning - timeframe 15:00:01 - 15:10:30.  
 

 

 

Infection - timeframe 15:15:01 - 15:16:03. 
 

 

 

Maintenance - timeframe 15:31:00 - 15:41:00. 
 

 

 

 

 

 

Attack - timeframe: 15:45:01 - 15:47:03. 

 

Figure 40. Four botnet life cycle profiles visualised through IPFIX export data. 
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6.5 Discussion 

Bot authors generally concentrate their efforts on development of the bot at a code 

level; getting a bot to perform a new task, to employ better obfuscation methods, or to 

utilize a new communications channel protocol. However, fundamental botnet 

communication characteristics have remained unchanged. 

 BLINC, (Karagianis, Papagiannaki and Faloutsos, 2005) generated a library of 

traffic profile signatures using visual representation of traffic profiles, by plotting 

srcIPv4 and dstIPv4 for various applications. This library describes many network 

applications, but unfortunately omits botnets profile signatures.  

 The property graphs in Figure 40 were created using a similar method to BLINC, 

by manually plotting the nodal communications from the exported IPFIX capture of 

botnet traffic. Each node represents an IP address on the network, with the edges 

representing the size and direction of traffic communication, typically by protocol. 

When considering the nodal and edge distribution over time it is possible to observe 

the four distinct traffic profiles of a botnet attack lifecycle, as describes in Chapter 6.2 

above.  

 The scanning phase (Figure 40, top) is clearly depicted via short bursts of TCP 

SYN traffic from a single node (the C&C server in VM .111) to multiple IP addresses. 

This matches the expected traffic profiles as expected from the NMAP command 

issued during the tests. The infection phase (Figure 40, upper middle) depicts the 

C&C server infecting a victim VM .113, with the victim reporting back to the C&C 

once the botnet .exe has been installed. Likewise, with the maintenance phase (Figure 

40, lower middle), short HTTP update packets were seen from the victim to the server 

once a minute over the 10 minute testing phase. The attack phase (Figure 40, bottom) 

shows, over a period of two minutes, the C&C issuing attack commands to three bots 

which perform an ICMP denial of service on a victim. This compares well with the 

attack signature created by BLINC (Karagianis, Papagiannaki and Faloutsos, 2005), 

as shown in Figure 41 below. BLINC shows a single host scanning an address space 

to identify vulnerabilities, followed by an attack on a single destination port. The 

difference between Figure 41 and Figure 40, is that the volume of ICMP DOS traffic 

in Figure 40 is represented by the thickness of the edge between the nodes.   
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 The arc diagram in Figure 39 is an alternative interpretation of the IPFIX export 

data collected from the botnet attack. Compared with Figure 40 which shows the four 

attack phases as independent events over time, Figure 39 displays the entire timeline 

of the infection in one diagram. A cursory glance at the traffic profiles in Figure 39 

shows what could be “normal” peer-to-peer network traffic between a server (node 

.111) and clients. It is only when protocol information captured from the packet 

header using the BotProbe template, is overlaid onto the arc diagram, that strong 

evidence of anomalous traffic becomes apparent. Protocol information in the arc 

diagram suggests that one VM (.111), which is not a server, contacts another three 

VMs (.113, .121 and .122) via HTTP. After which, these three VMs send high 

volumes of ICMP data to a fifth VM (.125). This traffic could be a legitimate file 

transfer over HTTP, although the ICMP ping traffic to the victim VM suggests 

suspicious activity. This activity can be confirmed as malicious when more detailed 

HTTP information, captured via the extended BotProbe template, is applied. Analysis 

of the HTTP requests show the victim requesting the configuration files and bot 

executable from the C&C server:  

  GET /cfg1.bin HTTP/1.1 

  POST /index.php HTTP/1.1 

  GET /bot.exe HTTP/1.1 

 

 This GET/POST conversation is as is expected from the basic set up of Zeus bot in 

the proof of concept test. This corroborates with the findings of Binsalleeh et al, 

(2010) and Falliere and Chien, (2009) in their dissection of the HTTP Zeus botnet.  

 The full opportunity for applying IPFIX data as a feeder mechanism into botnet 

detection using graph theory has not yet been explored. Collins and Reiter (2007) 

Figure 41. Traffic scanning and attack profile.  

(Karagiannis, Papagiannaki and Faloutsos, 2005) 
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demonstrated how a bot impacts a graph’s structure by connecting otherwise 

unconnected components. Françios, et al., (2011) feed weightings based on nodal 

neighbours into a PageRank algorithm to detect botnets. Their work is based on 

number of neighbours, as opposed to any specific traffic attributes. Botyacc, 

(Nagaraja, 2014) used separated spatial and temporal metrics in property graphs to 

separate benign from malicious P2P traffic. IPFIX provides several mechanisms to 

extend the study of graph-based botnet detection. IPFIX is able to capture of any 

number of yet unstudied traffic attributes and characteristics, of which some may be 

malicious activity indicators.  

 IPFIX exports data in a highly structured format, meaning IPFIX can be easily 

applied to two new avenues of botnet research. Structured data makes it easier to feed 

IPFIX export data directly into graph database systems for visualisation and data 

querying of botnet propagation. Work is underway to channel the feeds from multiple 

IPFIX probes distributed across a network into graph analysis software such as neo4j8, 

with which it should be possible to visualise the bot life cycle as the bot propagates 

across a network in real-time. Additionally, as IPFIX data is highly structured, it 

makes it more suited, than unstructured packet capture traffic, to feed into detection 

engines. This provides possibilities for new machine AI engines that can be trained to 

recognise patterns. One such challenge in botnet detection is the issue of application 

beaconing. Beaconing impacts the number of false-positive events in botnet detection 

as a legitimate application behaves in a similar way to a botnet C&C, with regular 

keep-alive traffic between the server and client. The combination of IPFIX with graph 

theory may open up new areas of research for AI to distinguish legitimate application 

beaconing to malicious botnet updates, particularly when post-beaconing events are 

included in the analysis. Whilst an AI can be trained to recognise patterns, in security 

data analysis a human mind is still required to interpret the patterns found within 

(Collins, 2014). These are discussed in more detail in Chapter 7 - Future Work. 

 

6.6 Summary 

Chapter 1 identified a gap in the knowledge in the understanding of how the IPFIX 

protocol can be applied to botnet detection within CSP infrastructures. The 

contribution from this chapter came in addressing research objective #4 in validating 

the effectiveness of BotProbe and BotStack as a botnet traffic capture mechanism that 

can be deployed within a typical CSP environment. The results of data analysis in 

                                                           
8 https://neo4j.com/ 
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Figure 40 confirmed that botnet traffic was captured across each phase of a four phase 

bot life cycle: scanning, infection, maintenance and attack. The traffic profile results 

achieved by the BotProbe template were comparable with the NetFlow v5 findings of 

BLINC (Karagiannis, Papagiannaki and Faloutsos, 2005). The key difference being 

that each NetFlow v5 flow captured by BLINC was 48 bytes in length, compared with 

the BotProbe template which was 43 bytes and contains considerably more 

information. This chapter has also demonstrated how suspect traffic can be more 

rigorously interrogated at the application layer using the extended BotProbe template. 

Whilst data from the BotProbe template is sufficient to insinuate the presence of a 

botnet in one of more of the four life cycle phases, capture of HTTP GET statements 

in the extended BotProbe template provide further confirmation that this traffic is 

indeed of bot origin. This provides evidence to the argument that CSPs could provide 

a higher level of threat detection should tenants be willing to disclose a minimal 

amount of application/payload data.  

 The test undertaken in this chapter was performed as a proof of concept, in a cloud 

environment. Whilst the IPFIX framework was constructed from open source 

technologies that are common in a cloud infrastructure, the framework does not cover 

all technology possibilities. The framework is modular, providing flexibility to replace 

certain aspects, thus providing a platform to test IPFIX in various environments; such 

as different hypervisors, vswitches or IPFIX exporter/collector pairs. Furthermore, 

EEs bring flexibility to IPFIX template construction allowing the testing of new 

attributes that may assist in botnet detection. 

 The final chapter draws conclusions from all the evidence collated within this 

thesis, indicating areas for further development. 
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7. Conclusions 

 

The first chapter in this thesis outlined a gap in the understanding of how IPFIX 

export can be applied to botnet traffic capture. The IPFIX protocol, ratified as RFC-

7011 through RFC-7015 in 2013, is the present standard for flow export. As IPFIX 

was specifically designed to overcome weaknesses in the much older NetFlow export 

protocol, a hypothesis was presented that IPFIX should offer clear advantages over 

NetFlow. The originality of this work came from investigating how IPFIX is superior 

to NetFlow in the construction of a botnet capture mechanism. Evidence of similar 

investigation by other researchers prior to this study could not be found. 

 The motivation to move this study into a cloud service provider environment arose 

as more organisations and individuals opt to outsource some, or all, of their IT 

requirements to the cloud; be that for storage, on-demand processing power or for 

cloud-hosted software services. These three factors are all contributors toward the 

cloud becoming an important element of the Internet of Things and smart city area 

networks. Traditional signature-based malware detection systems do little to protect 

these areas from botnet attack. 

 This final chapters states how the evidence collated throughout this research project 

demonstrates real advantages of the IPFIX protocol over NetFlow for a novel 

methodological approach to botnet traffic capture in cloud service providers. This is 

presented through four original contributions to knowledge. Limitations of the study 

are then considered, along with various areas for future study in the application of 

IPFIX to botnet detection. This thesis closes with concluding remarks on the impact 

and importance of this work.  

 

 

 

7 
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7.1 Contributions to Knowledge 

This study set four research objectives to answer the hypothesis that IPFIX offers 

advantages over NetFlow v5 for botnet communication traffic capture in a CSP 

environment. Through evidence provided in earlier chapters towards validating this 

hypothesis, four original contributions to knowledge are made, as detailed below. 

 

Contribution #1 - Evidence from a critical investigation into IPFIX state of the 

art, to suggest that the design of the IPFIX export protocol has advantages over 

NetFlow v5, when applied to botnet communication traffic capture in cloud 

provider networks. 

Addressing research objective #1, chapter 2 investigated the risk of botnet attacks on 

cloud service providers, arguing that internal cloud infrastructure is vulnerable to 

attack; in particular storage or co-resident tenants. This attack vector occurs mainly 

due to software vulnerabilities in hypervisors. The Crisis malware (Katsuki, 2012) and 

Venom (CVE-2015-2456) being two such examples. Dillion and Winters (2014) 

considered how trends to offload network edge-device intelligence to the cloud will 

allow devices and sensors to be built that require lower CPU capability and thereby 

reducing power consumption. In 2016, the Mirai botnet demonstrated the potential of 

damage from IoT hosted botnets (Mansfield-Devine, 2016). The impact of bot attacks 

is not just limited to CSPs. As home networks increase, TVs, thermostats, smoke 

alarms, and Internet connected white goods such as toasters and fridges, all become an 

attack surface for botnets. The future will see cloud centralised data storage as an 

essential building block in the IoTs. This will increase the likelihood of attacks upon 

CSPs. Much of this analysis in Chapter 2 has been presented at CFET 2014 (Graham 

and Winckles, 2014; Graham, Winckles and Moore, 2014) and OWASP 2014 

(Graham, 2014).  

 Scholars have known that NetFlow is limited in its application to threat detection 

(Velan, 2013; Gates, et al., 2004), proposing that IPFIX will become a superior in 

next-generation networking (Velan, Jirsik and Čeleda, 2013). With cloud provider 

attack vectors mapped to chapter 2, chapter 3 compared the design enhancements of 

IPFIX with NetFlow v5 and NetFlow v9. This critical investigation revealed seven 

areas where IPFIX offers direct advantage over NetFlow. When these advantages are 

applied to the creation of a botnet traffic capture mechanism for a cloud provider, the 

standards-based approach of IPFIX becomes important to ensure vendor 

interoperability. The impact of a standards-based approach is highlighted in Chapter 4, 
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where the BotProbe template is constructed to work with the YAF IPFIX exporter, but 

standardisation allows this template to be ported to the nProbe IPFIX exporter.  

 Another key advantage of IPFIX is template customisation. Chapter 3 argues that 

template customisation overcomes the rigidity of the fixed NetFlow v5 template. 

Support in IPFIX for enterprise element creation and variable length fields should 

allow the efficient capture of botnet application layer traffic attributes, such as HTTP 

GET statements. A condensed version of the comparison between IPFIX and NetFlow 

was presented at BotConf 2015 (Graham, Winckles and Sanchez, 2015b). 

 During the course of this research, it became evident that IPFIX can be applied to 

multiple threat detection scenarios. Work is underway to create IPFIX templates to 

capture spam traffic and malicious HTTP traffic. This granularity for defining and 

controlling attribute capture opens up IPFIX traffic to analysis through machine 

learning, which ultimately leads to automation of more repetitive, menial Security 

Operation Centre (SOC) work. 

 

Contribution #2 - BotProbe, a novel IPFIX template for botnet communication 

traffic capture in cloud provider networks. 

Chapter 4 addressed research objective #2 through the construction of the BotProbe 

templates. These templates are a clear advance in technology as demonstrated by the 

performance test results. Evidence is provided to suggest that the algorithm attributes 

captured in all previous botnet detection research can be captured more efficiently 

with IPFIX, whilst still maintaining the original integrity of the detection algorithms. 

Efficiencies come not only in reduced data volumes, but also from improvements in 

data capture processing times. The BotProbe template exhibited an average reduction 

in data volumes of 14.06% ± 0.01%, with a processing time reduction of 26.73% ± 

0.03% against NetFlow v5. Against PCAP, the BotProbe template measured an 

average reduction in data volumes of 92.95% ± 0.22%. These empirical results were 

measured from publically available datasets, permitting high repeatability of these 

results. 

 A high-speed data network requires multiple traffic capture devices to be 

distributed across the infrastructure. Multiple probes can capture TBs of data during 

the course of a day, making threat detection in network traffic a big data challenge. 

The evidence presented in Chapter 4 would indicate that BotProbe not only reduces 

data storage for CSPs, but has the potential to turn big data analysis into manageable 

data analysis.  
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 IPFIX has the potential to change the dynamics of botnet detection. Up until now, 

botnet detection algorithms have been constructed based upon the attributes available 

through the traffic capture techniques. Where PCAP is used, all attributes in an entire 

network packet are available to the detection algorithm, although at a cost of high data 

volumes. With NetFlow v5, data volumes captured are considerably reduced, although 

at the cost a fixed subset of 18 attributes available to the detection algorithm. IPFIX 

offers the best of both solutions, allowing more granular capture of any of the 

attributes in a network packet, through IEs and EEs. Thus resulting in reductions in 

capture data volumes. This means that detection algorithm creation is no longer 

limited to the attributes available in the capture mechanism. This study demonstrates 

how detection algorithms can now dictate which attributes to capture; opening the 

opportunity for creation of more accurate detection algorithms that utilise data from 

multiple layers of the OSI (Open Systems Interconnection) model. As new application 

layer EEs are created for threat detection, there is scope for IANA to consider the 

standardisation of some of these EEs to ensure IPFIX template portability. Versions of 

the BotProbe templates were presented at BotConf 2015 (Graham, Winckles and 

Sanchez, 2015b). 

 

Contribution #3 - BotStack, a novel, modular IPFIX export framework for 

botnet communication traffic capture in cloud provider networks. 

Chapter 5 addressed research objective #3 through the construction of the BotStack 

IPFIX framework. This modular framework architecture is built upon open source 

components commonly found in CSPs, to allow IPFIX to be built into existing cloud 

stacks. Steinberger, et al. (2013) claim that flow protocols, such as NetFlow, are used 

by over 80% of network operators to capture network traffic management and 

reporting statistics. This familiarity makes the migration shift from NetFlow to IPFIX 

a small step for CSPs, rather than a huge uplift of the entire network to a new 

unfamiliar technology.  

 The concept of constructing a traffic capture mechanism for CSPs came from 

conversations with several cloud providers, who articulated that a current challenge is 

the detection of botnets in a multi-tenant environment with data privacy sensitivities. 

More recently, cloud providers have been approach by customers offering some 

degree of access to payload data in return for enhanced security protection; tempered 

by the proviso that payload access is for legitimate detection purposes and this 

information does not leak out of the trusted CSP domain or erode civil liberties. In 
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September 2016, the Anti-botnet Working Group of the CSA, undertook a survey to 

understand the views of over 300+ cloud customers on such  trade-offs. At the time of 

the completion of this thesis, the results of this survey have yet to be published. 

Whilst the BotProbe template was constructed for use in privacy sensitive 

environments, the extended BotProbe template demonstrates the potential of IPFIX to 

capture detailed application layer information on botnets.  

 A comprehensive security strategy is built upon defence in depth, with multiple 

security solutions working together. BotStack is built to complement other security 

solutions that CSPs may choose to deploy such as AV, IPS or IDS. The BotStack 

framework was presented at IEEE INDIN 2015 (Graham, Winckles and Sanchez, 

2015a). 

 

Contribution #4 - Empirical evidence for siting IPFIX exporters on the host 

device hypervisor for maximum traffic visibility. 

Chapter 5 also addressed research objective #4. Key traffic visibility profiles in a 

network were assigned a weighted factor. With IPFIX exporters at various locations 

across a network infrastructure, empirical data was gathered to understand the capture 

probes visibility of network traffic. Evidence gathered indicates that maximum traffic 

visibility is obtained with an IPFIX exporter on each network device. However, the 

optimum siting of the exporters in a multi-tenant CSP network, for maximum traffic 

visibility for the least number of exporters, comes from siting IPFIX exporters on the 

host device hypervisor connected to a vswitch tap port. In a large network, an increase 

in distributed exporters not only means higher data volumes captured, but data 

requires more co-ordinated prior to analysis as probe numbers increase. Traffic 

capture through fewer exporters further addresses the big data challenge in traffic 

capture. Placing an exporter within a tenant VM not only raises both privacy and 

surveillance concerns, but makes the exporter highly visible to attack. A distinct 

advantage of siting an exporter outside the virtualised environment is it lowers this 

attack visibility. Additionally, siting an exporter on a CSP infrastructure host device 

further reduces a probes visible attack surface to network-based malware. Exporter 

location optimisation was performed on a flat network, with no broadcast domain 

restrictions or VLANs, which may impact traffic visibility. 

 Chapter 5 also demonstrated that exporters sited on a host device are less 

susceptible to timer tampering attacks. Malware that specifically attacks flow export 

devices is as of yet unknown. However, as the concept of network as a sensor gains 
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traction, attacks against flow export should be anticipated. Although contribution #1 

highlighted the security features that IPFIX offers over NetFlow, work is required to 

understand possible flow export attack vectors, particularly on public infrastructures 

such as smart cities. Work is also necessary to understand the impact upon flow traffic 

visibility should one of a distributed set of exporters be compromised, possibly 

suggesting a device to monitor all exporters against attack. Exporter siting location 

findings were presented at IEEE INDIN 2015 (Graham, Winckles and Sanchez, 

2015a). 

 

7.2 Limitations of the Study 

The statistical analysis results used towards the BotProbe template creation were 

reliant upon the datasets that are analysed. This study chose to use datasets provided 

by CTU University, Prague, for reasons outlined in chapter 4. The reliability of the 

datasets are not in question; the source was reliable and these datasets have been used 

in other academic studies, including García and Pechuocek (2016); Kirubavathi and 

Anitha (2016); Haddadi and Zincir-Heywood (2015). Using a dataset that is available 

to other academics ensures high repeatability of the results in this study by other 

researchers.  

 One consideration of the dataset was that, although CTU University captured this 

data from real botnets in the wild, capture was performed in a laboratory environment. 

This makes the datasets cleaner than datasets captured in a live network, where the 

number of background processes in the laboratory network would be less than 

expected in a real world network. In a real world network, more background noise 

may be represent from applications, such as beaconing (see the following section on 

Future Work). Background noise was not deemed to impact the results of this study, 

as the high number of botnet flows analysed should minimise the influence from non-

bot traffic. VirusTotal confirmed that each sample in the study does indeed contain 

botnet malware. Appendix B lists the suspected bot variants for the bot samples 

analysed during template creation. CTU continue to issue new datasets on a regular 

basis and work should continue to correlate these new datasets to further enhance the 

capture features of the BotProbe templates. The Zeus bot that formed the dataset in 

Chapter 6 was from the older Zeus C&C bot, as opposed to the more recent P2P 

GameOver Zeus bot. There are few bot C&C servers available for academic research, 

Zeus C&C server was one such readily available malware. Acquisition methods of 

more recent C&C server software is ethically questionable.  
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 The templates constructed in chapter 4 and the framework constructed in chapter 5 

were both presented with limitations by the IPFIX tools that are available through 

open source. The scope of the framework confined the study to open source tools to 

allow code modification as required. The number of open source tools that support 

IPFIX in any real capacity, such as a wide range of traffic contextual IEs and support 

for EE creation, was limited to nProbe or YAF. Commercial IPFIX tools provided no 

advantage in this study. YAF was chosen for this study for reasons outlined in Chapter 

5. The study could have been undertaken with nProbe, although with a lower number 

of IEs and EEs available for study. Even with the tools available, this research only 

studied a proportion of the 433 IEs defined by IANA, and the almost limitless number 

of EEs available for construction. Overall, the number of IEs and EEs available to 

study was sufficient to construct an effective template. Work continues to create new 

EEs to extend this study. 

 Another limitation in the operation of BotProbe is a challenge faced by all botnet 

researchers; that of botnet detection evasion techniques. Signature detection and 

traffic capture detection are usually subverted through payload encryption. As 

BotProbe has been designed to capture traffic on a local area network infrastructure, 

the likelihood of traffic being encrypted is lower. However, payload encryption is 

primarily a limitation to the extended BotProbe template that uses application layer 

protocols from the payload, rather than just packet header information that is unlikely 

to be encrypted. If packet header data is encrypted, both templates will be impacted. A 

typical scenario could be a bot using a Virtual Private Networks (VPNs) or a Tor style 

network, to conceal IP addresses (Casenove and Miraglia, 2014). Most of the 

detection experiments listed in Table 2 also suffer from this limitation. Bots may 

employ HTTPS to evade detection, however techniques such as TLS inspection have 

been used to decrypt HTTPS traffic on some devices. The impact of encryption on 

data capture was out of scope for this work, but does require further study. A method 

of limiting the impact of encryption would be to limit the template to packet header 

data only, as in the BotProbe template, although this opens up an argument about how 

restricting botnet capture to layer 3 traffic attributes could impact the performance of 

detection algorithms. Other probe evasion techniques may exist through flow integrity 

tampering, such as introducing deliberate delay, insertion of fake packets or timing 

attacks. These should be mitigated by built-in security features of IPFIX such as 

SCTP, as documented in RFC-6526 (Internet Engineering Task Force, 2012). 
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7.3 Future Work 

The contributions to knowledge established from this research project open up several 

further avenues for research.  

 

7.3.1 CLOUD NEUTRALISATION ECO-SYSTEM 

A research project is underway at Anglia Ruskin University to construct a conceptual 

eco-system to protect CSPs from botnets, as described in Figure 42. The research 

presented in this thesis forms the traffic capture element of this eco-system. An 

advantage of IPFIX over both NetFlow and PCAP, as described in Chapters 3 and 4, 

is that the highly structured format of exported IPFIX data presents itself favourably 

for analysis. Work is in progress to interface exported IPFIX data with deep learning 

neural network algorithms. There are two distinct areas where machine learning is 

applicable to the construction of the eco-system. 

 The BotProbe template constructed within this study has been constructed from a 

snapshot of previous botnets. But, bots are adaptive adversaries. As bot technology 

evolves to evade detection techniques, new attributes will become available that 

indicate new characteristics of these botnets. Work is underway to understand how 

machine learning can be applied to adaptive capture templates. A machine learning 

algorithm will monitor both traffic field occupancy and field variable duplicity 

correlation to adapt the capture template in real-time to ensure the most relevant 

traffic attributes are captured for feed into a botnet detection algorithm. This will 

involve the construction and study of new protocol specific IPFIX EEs, in particular 

for HTTP and SMTP. 

 Secondly, work is underway to apply machine learning to botnet detection. An 

algorithm takes threat intelligence information from honeypots, networks and other 

open source threat intelligence feeds to determine the most efficient and effective 

botnet characteristics and signature profiles. This algorithm will feedback into the 

adaptive capture engine to ensure optimum attributes feature in the IPFIX template, 

and feedforward into a neutralisation engine that uses Software Define Networking to 

dynamically reconfigure the network to contain the threat or forward the threat onto a 

honey-net for further analysis. 
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Figure 42. Conceptual botnet mitigation eco-system. 

 

 BotProbe has potential application to the field of network forensic investigations. 

PCAP is often used in legal interception, such as ISP lawful data interception. 

However, huge data volumes are a drawback as the data requires both storage and 

analysis. Data reduction achievable through BotProbe positions IPFIX templates as 

either a replacement for PCAP as a more targeted data interception approach, or as a 

complimentary tool in packet capture for PCAP indexing; to support the retrieval of 

data in PCAP data mines. Similarly, reduced data volumes from targeted data capture 

through BotProbe open up new applications in pre-attack forensics. The data volumes 

involved in PCAP prohibit the use of packet capture to capture network forensics 

before an attack. As BotProbe is able to reduce data volumes by the quantities shown 

in this study, IPFIX could be left to continually export network parameters for use in 

attack post-mortems to understand how the threat was able to infiltrate the network. In 

particular, this study demonstrated in Chapter 5 how IPFIX export can be incorporated 

into the hypervisor.  
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7.3.2 BOTNET DETECTION 

The flexibility in IPFIX template construction will allow new botnet traffic 

characteristics to be captured that have as yet been unavailable for detailed study due 

to difficulty of capture in NetFlow v5. This, in itself, opens up several avenues for 

further work: 

 Benign application beaconing, such as keep-alives, can impact botnet detection 

algorithms that rely on network traffic attributes. The capability of IPFIX to 

query traffic at the application layer could improve detection algorithms by 

reducing false positives associated with application beaconing; 

 A botnet takedown strategy is dependent upon the botnet population size. In 

turn, bot population measurement depends on the accuracy of the detection 

technique (Koo, Chang and Liao, 2012). IPFIX accommodates capture of IPv6 

attributes that may go to addressing some of the shortfalls in botnet population 

estimates that occur from IPv4 techniques such as NAT, DHCP and dynamic 

DNS; 

 Graph databases are particularly suited to the data structures and queries in 

security threat analysis (Collins, 2014), as evidenced in Chapter 6. If IPFIX 

can automate the study of the less understood traffic attributes, it may lead to 

advances in understanding of graph theoretic structures as a method to model 

and detect botnets. Developing a graph theory-based algorithm for detecting 

bot clusters in a network represented as a digraph or adjacency table lends 

itself to rigorous analysis by complex queries; 

 Software-based IPFIX exporters have application beyond botnet detection. A 

software approach to IPFIX probes make them cheaper to deploy than the 

“thick” probes currently used to collect PCAP. The small footprint of the core 

IPFIX export software means it can be deployed on low power devices, such as 

Internet of Things sensors. Likewise, small footprint, low CPU requirement 

IPFIX export software could be applied to Industrial Control System 

infrastructure to monitor key characteristics against attack. Work is underway 

to study the suitability of IPFIX EEs to capture SCADA and Modbus traffic 

for threat detection in vulnerable critical infrastructure systems.  
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7.4 Concluding Remarks 

Security models change to adapt to new adversaries. Security is no longer about 

simply securing endpoints; the number of networked and interconnected devices is 

rising and technologies such as IPv6 and the IoTs means there will soon become too 

many end devices to reliably protect. Security is no longer about securing the network 

perimeter; AV software, IDS and firewalls become more difficult to implement as the 

demarcation of the network perimeter become blurred. Malicious attack profiles are 

changing. New technologies and poor security practices introduce new vulnerabilities 

on top of existing unpatched vulnerabilities. The Mirai botnet was one such example 

of exploiting poor security implementations, with the impact felt worldwide. Reliance 

upon CSP and IoT services is only going to increase. Signature-based anti-virus, 

provide some level of protection to end devices, but contributes little towards botnet 

eradication. In an ever changing threat landscape, new techniques are needed to 

complement existing security methods. 

 The impact from the contributions to knowledge of research project are far 

reaching. Botnets are a threat at an economic level for business and organisations, as 

well a societal level threat for an increasing amount of users that reply on services 

outsourced to the cloud. Internet Service Providers have a voluntary code of conduct 

to tackle the botnet threat. Whilst no such code exists for Cloud Service Providers, the 

advanced made through this research project are the cornerstone for a CSP botnet 

mitigation platform. The results from this study demonstrate opportunities for new and 

more accurate botnet detection algorithms using botnet characteristic attributes that 

have up to now been difficult to capture. In January 2017, the outputs from this 

research study were contributory towards obtaining funding from the UK government 

Department of Culture Media and Sport (DCMS) and Innovate UK, to benchmark the 

viability of commercialising this research. Security threat analysis in high-speed data 

networks tends towards a big data challenge. Commercial interest in overcoming this 

challenge was high enough to secure a second funding phase, available later in 2017, 

to continue the development of BotProbe.  

 The original contributions derived from evidence presented from this research 

project have established that: IPFIX offers clear advantages over NetFlow when 

applied to botnet communication traffic capture in cloud service providers networks.
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Appendix A: Field Counts for all IEs/EEs 

The tables in this appendix contain the field counts (occupancy) for every IEs and EEs that 

contained data, in the bot samples analysed during this study. 

 

TABLE 31. COMPREHENSIVE FIELD COUNT FOR EACH IE, ACROSS ALL BOT SAMPLES 

(BOT SAMPLES = 21, FLOW RECORDS = 7,363,521) 
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TABLE 32. COMPREHENSIVE FIELD COUNT FOR EACH HTTP EE, ACROSS ALL BOT SAMPLES 

(BOT SAMPLES = 17, HTTP FLOW RECORDS = 7,167,557) 
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TABLE 33. COMPREHENSIVE FIELD COUNT FOR EACH DNS EE, ACROSS ALL BOT SAMPLES 

(BOT SAMPLES = 15, DNS FLOW RECORDS = 8,655,304) 

 
 

TABLE 34. DETAILED FIELD COUNT FOR EACH SMTP EE, ACROSS ALL BOT SAMPLES 

(BOT SAMPLES = 4, SMTP FLOW RECORDS = 877,827) 

 

 

TABLE 35. COMPREHENSIVE FIELD COUNT FOR EACH IRC EE, ACROSS ALL BOT SAMPLES 

(BOT SAMPLES = 3, IRC FLOW RECORDS = 260) 
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TABLE 36. DETAILED FIELD COUNT FOR EACH SSL EE, ACROSS ALL BOT SAMPLES 

(BOT SAMPLES = 12, SSL FLOW RECORDS = 453,303) 
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Appendix B: List of Botnet Samples 

Analysed During this Study 

This appendix contains a list of all the PCAP botnet samples that were used in this study for 

the creation of either the BotProbe and/or the extended BotProbe templates. All botnet 

samples are from CTU University, Prague. The table details the date the sample was captured, 

the alleged bot (according to VirusTotal) and for which template the sample was analysed. 

TABLE 37. A DETAILED LIST OF BOT SAMPLES USED IN THE CREATION OF BOTH BOTPROBE TEMPLATES 

PCAP Sample 
Name 

Creation 
Date 

VirusTotal 
Bot  

IE HTTP DNS SSL SMTP 

CTU3_1 21/07/2013 Kelihos Y Y Y 
 

Y 

CTU8_1-win5 10/09/2013 Zbot (?) Y Y 
 

Y 

 CTU8_1-win9 10/09/2013 Zbot (?) Y Y 
 

Y 
 CTU10_1-win7 11/07/2013 Unknown Y 

 
Y 

  CTU10_1-win9 11/07/2013 Unknown Y 
 

Y 
  CTU10_1-win10 11/07/2013 Unknown Y 

 
Y 

  CTU16_1-win5 23/08/2013 Kelihos (Waledac) Y Y 
   CTU16_1-win11 23/08/2013 Kelihos (Waledac) Y Y 
   CTU25_1 09/09/2013 Zbot (Zeus) Y Y Y Y 

 CTU25_5 10/02/2014 Zbot (Zeus) Y 
  

Y 
 CTU66_1 07/04/2014 Sality 

 
Y Y 

  CTU69_1 23/02/2014 Kazy (Caphaw) 
  

Y 
  CTU109_1 09/03/2015 Cridex  Y    

CTU110_4 09/04/2015 HTbot Y Y 
 

Y Y 

CTU111_2 09/04/2015 Unknown 
 

Y 
 

Y 
 CTU119_3 08/07/2015 Geodo 

 
Y 

   CTU127_2 08/07/2015 Kazy (Miuref) 
 

Y 
   CTU140_1 23/10/2015 Bunitu 

   

Y 
 CTU140_2 23/10/2015 Bunitu 

  

Y Y 
 CTU141_1 28/09/2015 Bunitu 

   

Y 
 CTU141_2 23/10/2015 Bunitu 

  

Y Y 
 CTU142_1 25/09/2015 Shifu 

   

Y 
 CTU144_1 23/09/2015 Shifu Y Y 

   CTU145_1 23/09/2015 Fake uTorrent Y Y 
   CTU148_1 26/09/2015 Zusy Y 

 
Y 

  CTU149_1 05/12/2015 Kelihos Y 
 

Y 
 

Y 

CTU149_2 09/12/2015 Kelihos Y 
 

Y 
 

Y 

CTU150_1 05/12/2015 Tinba 
 

Y 
   CTU153_1 04/01/2016 Dridex 

   

Y 
 CTU160_1 29/04/2016 Tinba (Andromeda) Y 

 
Y 

  CTU165_1 27/05/2016 Zeus (New Variant) Y 
 

Y 
  CTU166_1 29/04/2016 Tinba (Andromeda) Y 

    CTU167_1 27/05/2016 Storm Y     

CTU168_2 03/08/2016 Andromeda Y Y Y     
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Appendix C: SuperMediator Files 

 

This appendix contains all of the SuperMediator configuration files used throughout the 

creation of either the BotProbe template and/or the extended BotProbe template.  

Filename: ie_tester.conf 

################################################################################################ 
# SuperMediator .conf file created by Mark Graham 11/11/2015 
# Last update: 2/2/2016 
# 
# This file determines the attributes that will be collected by SuperMediator. 
# This template exports ALL IANA defined IEs that SuperMediator is able to collect. 
# NOTE: The template exports IEs 0-90, although IEs 81-90 are not defined 
# in the SuperMediator documentation. 
#  
# There is 1 exporter: 
# E1 - Information Elements   (outputs to: /flow_records.csv) 
################################################################################################ 
 
# Define the IPFIX input file: 
COLLECTOR FILEHANDLER 
   PATH "out_file.yaf" 
COLLECTOR END 
 
# Define EXPORTER 1, which exports IE data to “flow_records.csv” 
EXPORTER TEXT 
   PATH "flow_records.csv" 
   DELIMITER "," 
   FIELDS 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30, 
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,48,50,51,52,53,54,55,56,57,58,59,60,61, 
62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90 
EXPORTER END 
 
# ENTERPRISE ELEMENTS are not exported in the BotProbe template 
DPI_CONFIG 
DPI_CONFIG END 
 
DNS_DEDUP  
DNS_DEDUP END 
 
LOGLEVEL DEBUG 
 
PIDFILE "/data/super_mediator.pid" 
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Filename: ee_tester.conf 

################################################################################################ 
# SuperMediator .conf file created by Mark Graham 11/11/2015 
# Last update: 2/2/2016 
# 
# This file determines the attributes that will be collected by SuperMediator. 
# This template exports ALL Enterprise Elements recognised by SuperMediator, with each element 
# grouped into the appropriate protocol table. 
#   
# There are 2 exporters: 
# E1 - Information Elements   (outputs to: /flow_records.csv) 
# E2 - Enterprise Elements   (outputs to: /dpi/[tablename].txt) 
################################################################################################ 
 
# Define the IPFIX input file: 
COLLECTOR FILEHANDLER 
   PATH "out_file.yaf" 
COLLECTOR END 
 
# Define EXPORTER 1, which exports IE data to “flow_records.csv” 
# In this configuration no IEs are collected (as FIELDS 0) 
EXPORTER TEXT 
   DELIMITER "," 
   PATH "flow_records.csv" 
   FIELDS 0 
EXPORTER END 
 
# Define EXPORTER 2, which exports EE data to “http.txt”, “dns.txt”, etc... 
EXPORTER TEXT 
   DELIMITER "," 
   PATH "dpi" 
   DPI_ONLY 
   MULTI_FILES 
EXPORTER END 
 
# ENTERPRISE ELEMENTS to capture 
DPI_CONFIG 
  TABLE http [110,111,112,113,114,115,116,117,118,119,120,121,122,123,220,221,252,253,254,255, 
256,257] 
  TABLE http_extn [258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275, 
276,277,278,279,280] 
  TABLE dns [1,2,5,6,12,15,16,28,33,43,46,47,48,50,51,53]  
  TABLE DNS_other_1 [3,4,7,8,9,10,11,13,14,17,18,19,20,21,22,23,24,25,26,27,29] 
  TABLE DNS_other_2 [30,31,32,34,35,36,37,38,39,40,41,42,44,45,49,52] 
  TABLE irc [125] 
  TABLE ftp [131,132,133,134,135] 
  TABLE tftp [126,127] 
  TABLE sip [155,156,157,158,159,160,161] 
  TABLE smtp [162,163,164,165,166,167,168,169,170,222,251] 
  TABLE ssl [185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,244,245,246,247,248, 
249,250,288] 
  TABLE ssh [171] 
  TABLE a [54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 ] 
  TABLE b [80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99] 
  TABLE c [100,101,102,103,104,105,106,107,108,109,124,128,129] 
  TABLE d [130,136,137,138,139,140,141,142,143,144,145,146,147,148,149] 
  TABLE e [150,151,152,153,154,172,173,174,175,176,177,178,179] 
  TABLE f [180,181,182,183,184] 
  TABLE g [200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219] 
  TABLE h [223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239] 
  TABLE i [240,241,242,243] 
  TABLE j [281,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,298,299] 
DPI_CONFIG END 
 
DNS_DEDUP  
DNS_DEDUP END 
 
LOGLEVEL DEBUG 
 
PIDFILE "/data/super_mediator.pid" 
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Filename: botprobe.conf 

################################################################################################ 
# SuperMediator .conf file created by Mark Graham 11/11/2015 
# 
# This is the BOTPROBE TEMPLATE configuration file used by SuperMediator. 
# This exports 11 Information Elements: 
#  0 = sIP 
# 1 = dIP 
#  4 = sPort 
# 5 = dPort 
#  6 = protocol 
#  20 = sTimeMS 
# 21 = eTimeMS 
# 25 = packets 
#  29 = iFlags 
#  37 = tcpSeq 
#  80 = collector 
#   
# There is 1 exporter: 
# E1 - Information Elements   (outputs to: /flow_records.csv) 
################################################################################################ 
 
# Define the IPFIX input file: 
COLLECTOR FILEHANDLER 
   PATH "out_file.yaf" 
COLLECTOR END 
 
# Define EXPORTER 1: Output for the 11 x IEs 
EXPORTER TEXT 
   DELIMITER "," 
   PATH "flow_records.csv" 
   FIELDS 0,1,4,5,6,20,21,25,29,37,80 
EXPORTER END 
 
LOGLEVEL DEBUG 
 
PIDFILE "/data/super_mediator.pid" 
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Filename: extended.conf 

################################################################################################ 
# SuperMediator .conf file created by Mark Graham 11/11/2015 
# 
# This is the EXTENDED BOTPROBE TEMPLATE configuration file used by SuperMediator. 
# This exports 12 Information Elements: 
#  0 = sIP 
# 1 = dIP 
#  4 = sPort 
# 5 = dPort 
#  6 = protocol 
#  20 = sTimeMS 
# 21 = eTimeMS 
# 25 = packets 
#  29 = iFlags 
#  37 = tcpSeq 
#  80 = collector 
# 16 = flowKeyHash, which is used to cross reference EEs to IEs 
# 
# This also exports 7 Enterprise Elements: 
#  1 = dnsARecord 
# 6 = dnsSOARecord 
# 41 = sslName 
# 112 = httpGet 
# 123 = httpResponse 
# 125 = ircTextMessage 
# 163 = smtpHello 
# 
# There are 2 exporters: 
# E1 - Information Elements   (outputs to: /flow_records.csv) 
# E2 - Enterprise Elements   (outputs to: /dpi/[tablename].txt) 
################################################################################################ 
 
# Define the IPFIX input file: 
COLLECTOR FILEHANDLER 
   PATH "out_file.yaf" 
COLLECTOR END 
 
# Define EXPORTER 1, which exports IE data to “flow_records.csv” 
EXPORTER TEXT 
   DELIMITER "," 
   PATH "flow_records.csv" 
   FIELDS 0,1,4,5,6,20,21,25,29,37,80,16 
EXPORTER END 
 
# Define EXPORTER 2, which exports EE data to “http.txt”, “dns.txt”, etc... 
EXPORTER TEXT 
   DELIMITER "," 
   PATH "dpi" 
   DPI_ONLY 
   MULTI_FILES 
EXPORTER END 
 
# ENTERPRISE ELEMENTS to capture 
DPI_CONFIG 
  TABLE http [112, 123] 
  TABLE dns [1, 6] 
  TABLE irc [125] 
  TABLE smtp [163] 
  TABLE ssl [41] 
DPI_CONFIG END 
 
LOGLEVEL DEBUG 
 
PIDFILE "/data/super_mediator.pid" 
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Filename: nfv5.conf 

################################################################################################ 
# SuperMediator .conf file created by Mark Graham 11/11/2015 
# 
# This file determines the attributes that will be collected by SuperMediator. 
# This template reproduces NetFlow v5 in IPFIX. 
# NOTE: It is not possible to truly replicate NetFlow5 in IPFIX, so this template aims to  
# replicate fields of similar size to the original NetFlow v5 fields,  
# rather than similar field content. 
#  
# There is 1 exporter: 
# E1 - Information Elements   (outputs to: /flow_records.csv) 
################################################################################################ 
 
# Define the IPFIX input file: 
COLLECTOR FILEHANDLER 
   PATH "out_file.yaf" 
COLLECTOR END 
 
# Define EXPORTER 1, which exports IE data to “flow_records.csv” 
EXPORTER TEXT 
   DELIMITER "," 
   PATH "flow_records.csv" 
   FIELDS 0,1,13,15,7,37,38,52,53,4,5,29,30,6,75,33,34,31,32,81 
EXPORTER END 
 
LOGLEVEL DEBUG 
 
PIDFILE "/data/super_mediator.pid" 
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Appendix D: Python Scripts 

 

This appendix contains the python scripts used for the performance testing methods. 

Filename: timer.py 

################################################################################################ 
# Python script for measuring the time taken to execute different SuperMediator templates 
# 
# Last edited by Mark Graham 07/03/2016 
# 
# Syntax: python timer.py template 
#   e.g. python timer.py super_mediator_1.conf 
# 
# Where: 
#  template  = SuperMediator template name for analysis 
################################################################################################ 
 
import timeit 
import os 
import sys 
 
template = "super_mediator -c " + str(sys.argv[1]) 
start = [] 
end = [] 
total = [] 
overall = 0 
 
for loop in range(0, 1): 
 start.append(timeit.default_timer()) 
 os.system(template) 
 end.append(timeit.default_timer()) 
  
for loop in range(0, 1): 
 total.append(end[loop]-start[loop]) 
 print total[loop] 
 overall = overall + (end[loop]-start[loop]) 
 
print "Quickest time:  {0:.4f}".format(min(total)) 
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Filename: cpu_load.py 

################################################################################################ 
# Python script for measuring the CPU load generated by different SuperMediator templates  
#  
# Last edited by Mark Graham 07/03/2016 
# 
# Syntax: python cpu_load.py 
################################################################################################ 
 
import psutil 
import numpy 
import time 
 
system_proc = [] 
 
print "Waiting for system to settle..." 
time.sleep(10) 
 
print "Capture started..." 
for x in range(300): 
 a = psutil.cpu_times_percent(interval=0.05, percpu=False) 
 system_proc.append(a.system) 
 
print "Capture ended..." 
print "Max system %: ", max(system_proc) 
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Appendix E: Server Boot Script 

 

This appendix contains a bash script that configures each server in the test network. This 

configures the physical NICs, the virtual VIFs and the NTP clock setting to allow server 

synchronisation. 

Filename: startup.sh 

################################################################################################ 
# Bash script to set up Internet and LAN connections on Server1 
# Created: Mark Graham 26/03/2015 
# Last edited: Mark Graham: 27/08/2015 - Added NTP clock synchronisation 
#  
# xenbr0/eth0 = LAN (IP Address: 192.168.0.110) 
# xenbr1/eth1 = <not used> 
# xenbr2/eth2 = Internet (IP Address: DHCP) 
#  
# Syntax: bash start.sh 
################################################################################################ 
 
# Remove Xenbr0 from OVS and add it to brctl 
Echo “TEST LAB CONFIG MANAGER” 
echo "[+] Deleting xenbr0..." 
ovs-vsctl del-br xenbr0 
ifconfig virbr0 down 
brctl delbr virbr0 
brctl addbr xenbr0 
brctl addif xenbr0 eth0 
ifconfig xenbr0 up 
 
# Stop Network Manager (Otherwise the Configuration Below Does Not Work.) 
echo "[+] Stopping Network-Manager..." 
stop network-manager 
 
# Remove Legacy Configuration 
ifconfig xenbr1 0 
ifconfig xenbr0 0 
 
# Configure Internet Connection 
echo "[+] Connecting to Internet..." 
ifconfig eth2 up 
ifconfig eth2 0 
ifconfig xenbr2 0 
dhclient xenbr2 
cat /etc/resolv.conf 
 
# Configure LAN Connection 
echo "[+] Connecting to the LAN..." 
ifconfig eth0 192.168.0.110 netmask 255.255.255.0 
ifconfig xenbr0 up 
ifconfig eth0 0 
ifconfig xenbr0 192.168.0.110 netmask 255.255.255.0 
ovs-vsctl add-br xenbr0 
 
# Synchronise with NTP Server 
echo "[+] Synch NTP..." 
service ntp restart 


