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ANGLIA RUSKIN UNIVERSITY

ABSTRACT

FACULTY OF SCIENCE AND TECHNOLOGY

DOCTOR OF PHILOSOPHY

A NEW APPROACH FOR INTERLINKING AND INTEGRATING
SEMI-STRUCTURED AND LINKED DATA

MOHAMED SALAH KETTOUCH

JULY 2017

This work focuses on improving data integration and interlinking systems targeting semi-structured
and Linked Data. It aims at facilitating the exploitation of semi-structured and Linked Data by ad-
dressing the problems of heterogeneity, complexity, scalability and the degree of automation.

Technologies, such as the Resource Description Framework (RDF), enabled new data spaces and
concept descriptors to define an increasing complex and heterogeneous web of data. Many data
providers, however, continue to publish their data using classic models and formats. In addition,
a significant amount of the data released before the existence of the Linked Data movement have
not emigrated and still have a high value. Hence, as a long term solution, an interlinking system
has been designed to contribute to the publishing of semi-structured data as Linked Data. Simul-
taneously, to utilise these growing data resource spaces, a data integration middleware has been
proposed as an immediate solution.

The proposed interlinking system verifies in the first place the existence of the Uniform Resource
Identifier (URI) of the resource being published in the cloud in order to establish links with it. It
uses the domain information in defining and matching the datasets. Its main aim is facilitating fol-
lowing best practice recommendations in publishing data into the Linked Data cloud. The results
of this interlinking approach show that it can target large amounts of data whilst preserving good
precision and recall.

The new approach for integrating semi-structured and Linked Data is a mediator-based architec-
ture. It enables the integration, on-the-fly, of semi-structured heterogeneous data sources with
large-scale Linked Data sources. Complexity is tackled through a usable and expressive interface.
The evaluation of the proposed architecture shows high performance, precision and adaptability.

keywords: Semantic Web, Linked Data, Data Integration, Data Interlinking, Instance Matching,
Interoperability.
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Chapter 1

Introduction

Research Is to See What Everybody Else Has Seen

and Think What Nobody Has Thought
Albert Szent-Györgyi

1.1 Setting the Scene

The ambition of the W3C1 and the Web experts to develop new functionalities, and the expec-

tations of Web users for better usability are growing. Despite recent progress there continues to

be a need for further automation of certain Web tasks (as will be shown in Section 7.3.4).

The World Wide Web has been a major technological achievement that improved the way

people publish and access information. It was the result of the ”marriage” of many technological

breakthroughs in the late 1980s, such as HTTP2, HTML3 and the URI4. These technologies

were able to connect users with the one data source that contains the information they need.

Search Engines were then developed in order to find this one data source in the Internet using

keywords. Although they were arguably an essential factor in the success of the Web, currently

they are not sufficient to respond to all users queries.
1World Wide Web Consortium
2HyperText Transfer Protocol
3HyperText Markup Language
4Uniform Resource Identifier
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1. INTRODUCTION
The Web today is the world’s largest data store. It is known as a set of interlinking doc-

uments of uncontrolled content and heterogeneous syntax and semantics. A space where ev-

eryone can contribute, at any time, which inherently leads to different types of heterogeneity.

For instance, the content of documents in the Web is expressed in different languages and uses

different units, terminologies, etc.

The Web, however, is more than a set of static documents and Web pages, described as the

Surface Web [Alba et al., 2008]. The heterogeneity confronting current information systems

and Web application is far from being just syntactical. Indeed, there is another Web called the

Deep Web which is many times larger than the Surface Web [Szeredi et al., 2014]. It is also

known as the Invisible Web since it cannot be crawled and indexed by any of the current search

engines, which are external programs but integral to the use of the Internet. The latter need to

send tailored parameters via a Web form submission in order to access the Deep Web, which is

something beyond their present capabilities.

Web APIs5 are an important part of the Deep Web and are an access method to local data in

the Web. They allow third party access to functions and data, which generate new knowledge

resources and open up new opportunities for applications to utilise, combine and re-propose

information. Along with offering the possibility of mashing up content from different Web data

sources [Bizer et al., 2009], most of the results are expressed in a semi-structured format that

can be automatically exchanged and computed. This led to a growth in their volume and in the

availability of semi-structured data on the Web.

In 2006, a new Web started to emerge: the transformation from a global information space

of linked documents to a Web of Linked Data. The concept of Linked Data conforms with long

standing aims of the Semantic Web community, which is to associate meaning and semantics

to data that is both machine and human readable, as pointed out by Berners-Lee and Fischetti

[1999, p 177]:

”The first step is putting data on the Web in a form that machines can naturally

understand, or converting it to that form. This creates what I call a Semantic Web -

a Web of data that can be processed directly or indirectly by machines.”

5Application Program Interface
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1. INTRODUCTION
Linked Data is a materialisation of this idea. It is a paradigm that lowers the barriers and

facilitates the publishing of interlinked structured and machine-readable data based on a set of

recommendations and principales [Berners-Lee, 2006b]. Linked Data has completely changed

the procedure of sharing knowledge over the World Wide Web [Bizer et al., 2009]. The reduc-

tion of restrictions in publishing Linked Data led to a dramatic growth in the Web of Data and

an extension to many areas and domains [Bizer et al., 2009].

Taking the semantics of data on the Internet into consideration is another limitation of search

engines that is beyond their current capabilities. Their search method is mainly textual [Kho-

daei and Shahabi, 2012; Mukherjea et al., 1997], based on matching the terms of the request

(query) with the terms of the indexed documents. This (full-text) method is compensated for by

sophisticated results ranking stage(s) [Szeredi et al., 2014].

The result of the growth of the Web, over time, with different development stages, is that

there are large islands of information stored in distributed, independent and autonomous data

sources. The latter are heterogeneous in terms of their structure, syntax, semantics, the access

method, language, or protocol, etc. These data sources are described in different data models.

In many cases, these data sources can be used complementarily to exploit their full potential

and to respond to the user or systems’ needs.

Currently, it is required, in many Web search scenarios, to manually gather and connect the

results in order to find the information the user needs, which can be difficult or even infeasible

given the scale of data today. This also involves access difficulties to the user, such as having

to learn a new query language (for example SPARQL6 for Linked Data), and for systems, to

rewrite the query or to adapt the request according to each data source. Other challenges for sys-

tems include changes to these data sources and their content, which will affect the mechanism

they designed in the first place to adapt or to rewrite the query or the request.

The content of previous data paradigms and spaces that has not been migrated to a newer

data space is not necessarily of no value. For instance, there is a large amount semi-structured

data, provided by the Web APIs, which are not part of the Linked Data cloud but still have a

high value. Converting from XML (a semi-structured format) to RDF (the data model of Linked

6(S) Protocol and RDF Query Language
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1. INTRODUCTION
Data) is not sufficient as this only deals with the syntactic rather than the semantic aspects of

the data. It is rather one of many steps. Several barriers exist and specific characteristics to be

considered for semi-structured data to be published as Linked Data (see Section 3.7).

This thesis extends the available solutions to address the challenges stated in the two previ-

ous paragraphs, which can be summed up as:

• The difficulty of retrieving and connecting information from different sources for users

and to sustain the change in the data sources for systems.

• The isolation of previous data spaces from the newer ones that starts to take place.

These challenges are addressed with the focus on semi-structured and Linked Data. The next

section explains the choices of inputs and tasks for this thesis, and highlights the significance

and impact of the outcome.

1.2 Motivation

The motivation of this thesis is presented in question/answer form, explaining the choices of

the subjects and input data models. This section emphasises the gap in knowledge and general

significance of the research and the work presented.

MQ1. Why this thesis is specifically focusing on semi-structured and Linked Data?

Documents are generally unreliable and uncontrolled sources of information. Technologies

exploiting them are mainly textual (full-text method). Semi-structured and Linked Data, how-

ever, can produce data-centric results allowing more flexible search criteria [Dayananda and

Shettar, 2011; Popov, 2013].

The latest information available about these two data models shows that that their providers

are growing in numbers [Abawajy, 2015; Ahammad et al., 2016]. Figure 1.1 shows the near

exponential increase of the number of Web APIs, which are access tools that use semi-structured

data in exchanging information and considered one of their primary sources. This is validated
4
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Figure 1.1: The increasing growth of Web API.
[ProgrammableWeb, 2013] (until 2013)
and [Burton, 2012] (projected from 2013 to 2016).

Figure 1.2: The format of the output of
Web APIs [ProgrammableWeb, 2013].

in Figure 1.2 that indicates the formats utilised to represent the outputs of Web APIs. There are

many other indications that confirms the rapid growth of semi-structured data being their use in

remote sensors, social media, smart phones and archives [Ahammad et al., 2016].

Likewise, both the number of datasets and the size of the information published as Linked

Data, continue to rise. Table 1.1 illustrates two important aspects. First, the wide range of

domains where information is published as Linked Data. Second, the average increase of 80%

in the number of contributors into the Linked Data cloud. Because of the increase in the number

of datasets is not a clear indication that the overall size of Linked Data follows the same pattern,

Table 1.2 shows the increase in terms of triples in DBpedia7, which is the largest reservoir of

Linked Data in the world [Alam et al., 2015]. It also shows that Linked Data is expanding to

cover more domains as shown by a growth in the number of entities and ontology classes.

Additionally, the providers of these two data models, the semi-structured and Linked Data,

are both part of the so-called the deep Web, its size is considerably greater than the conventional

Web pages but still unreachable by current search engines.

To sum up, semi-structured and Linked Data are two data models that are growing and

promising in terms of capabilities and size; yet, they are still unexploited by the current [Sz-

eredi et al., 2014] (all but experimental) search engines. They can be easily parsed, comparing

documents, even though they are not restricted by any predetermined or fixed vocabulary defin-

7http://dbpedia.org/
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Category Datasets 2011 Datasets 2014 Growth Example
Life Sciences 41 83 102% taxonconcept.org
Social Networking - 520 - quitter.se
Publications 87 96 10% bibsonomy.org
Governments 49 183 273% data.gov.uk
Cross-domain 41 41 - dbpedia.org
User-generated Content 20 48 140% data.semanticweb.org
Geographic 31 21 -32% geonames.org
Media 25 22 -12% linkedmdb.org

80%

Table 1.1: Linked Data Datasets Increase between 2011 and 2014 [Schmachtenberg et al.,
2014].

Release version Triples
(billions)

Entities
(millions)

Ontology
(classes)

Triples Growth Percentage

2016 8.8 6 754 27%
2015 6.9 5.9 736 130%
2014 3 4.58 685 22%
2013 2.46 4.26 529 +13% (3.77M in 3.8 release)

Table 1.2: DBpedia growth in the last 4 releases. [Alam et al., 2015] [Freudenberg et al., 2017]

ing their structure.

MQ2. Why integrating Semi-structured and Linked Data?

Data integration has been the focus of database research community, and then the Semantic

Web community, for more the 35 years [Doan et al., 2012]. The need for a unified view that

reconciles the different types of heterogeneity between different data models and formats has

not cease [Cambiaghi et al., 2016]. The new data paradigms and models, such as Linked Data,

that have different features and characteristics suggest the need to revisit this task.

Integrating semi-structured and Linked Data sources does not only mean collecting and

combining them (i.e. data federation), but also providing a logically unified view. This allows

a transparent and expressive access to these data sources that are unreachable by current text

based search engines. It is an important service to provide, especially today, as the capabilities

of general Web users does not seem to be growing at the same rate as technologies and query

languages in the Web. It is not sufficient to provide theoretical or technical achievements with-

out having usable access to these data sources within the reach of non-expert users. Providing

6



1. INTRODUCTION
a unified and homogeneous view allows users to search using every property that constitutes

source datasets without the need to write complex queries.

Non-expert is used as a term that does not only imply individuals without SPARQL back-

ground, but it also includes organisations without expertise in this new technology and cannot

afford to migrate a large amount of data.

MQ3. Why interlinking Semi-structured with Linked Data?

The main obstacle in publishing Linked Data is to connect the dataset being published ex-

ternally with related data sources in the cloud [Taheri and Shamsfard, 2012]. This is a popular

problem in Web Semantics known as data interlinking. It is, however, frequently addressed on

existing data stored in benchmark files. In this work the inputs are user datasets against the

Linked Data cloud (see Section 6.3). The approach aims at firstly verifying the existence of

data being published to provide links with it. It is based on instance matching and similarity

measurement algorithms that allow processing a large number of Linked Data datasets.

Linked Data is a (relatively) new paradigm that enables meaning that is both machine and

human readable. This conforms with the main aim of Semantic Web. There are many other

data sources that are still growing and providing semi-structured data on the Web. The over-

all objective is to provide an automatic tool that converts and publishes semi-structured data

model and links it with Linked Data. Addressing this entire issue is beyond the scope of this

thesis. The approach presented here extend the findings of other approaches in this area, and

focuses on providing external identity links between the output of the other approaches, such as

unpublished and unlinked RDF8 datasets, with dataset in Linked Data space. This enriches the

information available about the resource described in the Linked Data space, providing seman-

tics to semi-structured data.

MQ4. What do this research outcomes signify to ordinary users?

The direct service that this research can offer to the user is clearly demonstrated in its pro-

totypes (see Sections 7.3 and 7.4). Having a transparent and data centric access to multiple

dispersed sources will expand the content queried, thus increase the number of results, espe-

8Resource Description Framework
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cially if the sources follow different data models and paradigms from what was initiated in

different years. Furthermore, the prototypes and implementations the proposed data integration

architecture, which are a keyword search systems, allow the users to break free from the learn-

ing curve of new query languages, such as SPARQL, or the structure of the HTTP request in

Web APIs. They also offer other mechanisms to enrich the keyword with other information to

achieve a better expressivity. The final result is the automation of many tasks and functions that

the user would normally have to complete such as adapting to different structures, distributing

the request or the query, and combining and presents the results.

Data interlinking has clear and direct benefits to the ordinary user, which facilitates follow-

ing Linked Data principles in publishing data. This improves the usability and accessibility of

the data published and increases its chances for reusability [Hietanen et al., 2016].

There are various research areas where integrating semi-structured and Linked Data can

contribute indirectly, including life science, enterprise information systems stream data and

Smart Cities [Abelló et al., 2013; Kettouch et al., 2017b; Kienast and Baumgartner, 2011; Le-

Phuoc et al., 2012].

MQ5. What are the general barriers and challenges related to integrating and inter-

linking semi-structured and Linked Data?

This answer covers the generic difficulties that can arise in integrating and interlinking semi-

structured and Linked Data. For more detailed and specific challenges, please see Section 3.5

and 6.3. Three key barriers are:

• The structure and content of Linked Data is expected to rapidly change; therefore, many

tasks have to be done on-the-fly which imposes time and computations limitations;

• Semi-structured data are not defined by any ontology and do not follow any predetermined

structure;

• Many types of heterogeneity might be present including, the access protocol, the struc-

ture, the query language, etc.

8
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1.3 Research Questions and Objectives

This thesis seeks to solve these challenges by responding to these research questions:

RQ1. Can (converted) semi-structured datasets be interlinked with the Web of Linked

Data automatically via a process that shows good quality measures?

Answering this question contributes to the long-term solution of bridging between semi-

structured and Linked Data. It facilitates complying with Linked Data principles by providing

an identity link between the datasets being published and their counterparts in the Web of Linked

Data. The focus of this thesis is not the conversion from a semi-structured data format or model

to the Linked Data’s model, which can be straightforward depending on the selected method

(see Section 2.5.4), but it is rather on using the extracted characteristics of the output of this

conversion as requirements in designing the interlinking approach. Addressing this question

will lead to achieving the following objectives:

• To highlight the obstacles in publishing into Linked Data generally, and to publish semi-

structured data particularly.

• To critically investigate how related interlinking systems address the problem and high-

light the difference between their scope and this thesis’s focus.

• To design and implement an approach to link externally (converted) semi-structured to its

counterpart in Linked Data cloud.

• To test and evaluate the designed data interlinking approach against similar approaches.

RQ2. Is it feasible to search and access semi-structured and Linked Data through a

transparent, usable and expressive interface?

This question represents the short-term solution to bridge between semi-structured and

Linked Data. Addressing this question involves reconciling the different types of heterogeneity

between the sources belonging to the two data models. This thesis aims at offering data-centric

access that is both usable and expressive. This allows users to access information without hav-

ing to learn a technical query language.
9
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RQ3. Can an integration system sustain the dynamism of the continuous expansion

and changes in the Web of Data?

The problem of giving an integration system the ability to accommodate future changes is

not new. It is a common problem for legacy systems, but not at the current scale. The frequency

that Linked Data changes is relatively very high [An et al., 2013; Svoboda and Mlỳnková, 2011]

due to the lowering of barriers in publishing it on the Web and the possibility to create new

vocabularies and ontologies to define it, which themselves can expend or change. Moreover,

many Linked Data sources extract their content from a publicly-editable and living dataset.

Therefore results of querying these sources will change over time. For example, DBpedia,

which is the largest and most popularly used dataset in the Web of Linked Data extracts its

content from Wikipedia9 via an evolving code-base.

The research questions RQ2 and RQ3 will guide to attain the following research result

objectives:

• Identify the challenges in accessing and integrating semi-structured and Linked Data.

• Explore and examine the scope, limitations and strengths of some of the popular integra-

tion systems and other related research areas dealing with similar problems according to

the identified challenges.

• Conceptually design a highly automated and adaptable data integration system that takes

as an input semi-structured and Linked Data, and that has the ability to:

– Reconcile the different types of heterogeneity between the two inputs; and

– Accommodate and sustain the continuous changes and expansion of Linked Data

sources.

• Implement the data integration approach into a tool with a usable and expressive interface.

• Test and evaluate and the implementation of the data integration approach.
9https://www.wikipedia.org/

10



1. INTRODUCTION

1.4 Original Contributions to Knowledge

The thesis makes practical as well as theoretical contributions in bridging between semi-structured

and Linked Data. The main contributions are:

• Designing a novel schema matching approach for semi-structured and Linked Data that

has the ability to automatically accommodate the continuous changes of Linked Data

sources (see Chapter 5).

• Designing a new data integration approach for semi-structured and Linked Data with a

high degree of automation (see Chapter 6).

• Designing a new data interlinking approach that takes only a source dataset as input and

provides identity external links with many Linked Data cloud’s sources (see Chapter 7).

• Using the domain and UMBC semantic similarity tool to allocate variable weights in

measuring the similarity of the instances, according to the significance of their properties

in defining the identity of the dataset (see Chapter 7).

1.5 Research Methodology

The research presented in this thesis is firmly grounded on current requirements and needs. The

results not only have a theoretical value, but also the nature of the problem addressed and the

contributed approaches are highly applied as well. The research methodology can therefore

properly be described as constructive research, as presented by Kasanen et al. [1993]; Lukka

[2003]. Crnkovic [2010] revealed that the constructive research method is very common in com-

puter science, even though it is not very frequent to find it in their methodological discussion.

Crnkovic [2010, p. 4] defined constructive research as:

”Constructive research method implies building of an artifact (practical, theoret-

ical or both) that solves a domain specific problem in order to create knowledge

about how the problem can be solved (or understood, explained or modeled) in
11
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Figure 1.3: The research methodology used in this thesis [Author, 2017].

principle. Constructive research gives results which can have both practical and

theoretical relevance. The research should solve several related knowledge prob-

lems, concerning feasibility, improvement and novelty. The emphasis should be on

the theoretical relevance of the construct. What are the elements of the solution

central to the benefits? How could they be presented in the most condensed form?”

As Figure 1.3 illustrates, for a problem to pass as a constructive research, it ought to be

linked with an accumulated theoretical knowledge and be demonstrated through novel working

solutions. The research presented in this thesis is explicitly directed at building theoretical

models that can be implemented and adapted to various context and use cases. The approaches

proposed in Chapter 5, 6, and 7 are the main novelty and achievement of the research, and are

of both practical and theoretical value.

Kasanen et al. [1993] presents the constructive research method as six phases that can vary

in terms of order:

1. Obtaining a comprehensive and theoretical background of the topic. In this thesis, the

background is formed by current knowledge about the data input, such as semi-structured

and Linked Data, and the topics researched, such as schema matching, data interlinking

and integration.

2. Constructing innovative solutions. This is the main content of Chapter 5, 6, and 7 of

this thesis.

12
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3. Showing the theoretical contributions of the research. In this thesis, the theoretical

contributions are stated in this chapter, validated in the innovative solutions and elaborated

and expanded in the conclusion.

4. Finding a practical relevance of the research. The problems addressed in this thesis

are by their nature practical. The practical relevance is demonstrated and made clearer

through the implementation of the solutions proposed.

5. Demonstration that the solution works. All the implementations of the solutions pre-

sented in this thesis were evaluated. Several technologies and libraries were used in the

implementation of the solutions proposed, including: Java, Jena library, Rest APIs, HDT,

RDF, SPARQL, UMBC EBIQUITY-CORE. All the the solutions were implemented in

the same setting environment that can be found in Appendix III.

6. Examining a scope of applicability of the solution. The scope of the applicability of

the solution is indicated in Chapter 8 where all solutions are combined in one applied

framework.

1.6 Approach

The aim of this section is to demonstrate how this research is conducted and look at the general

method that guided the work in the thesis to design and address the research questions. As

Figure 1.4 shows, the approach followed to conduct this research consists essentially of three

phases:

1. Background Examination: this stage defines the input data and their technologies in

order to extracts their characteristics and the challenges associated with working with

them. It investigates the techniques and methods for publishing Linked Data content on

the Web as well as highlighting the importance of semi-structured data.

2. Exploratory Research: in this stage, the operations researched in this work, their compo-

nents and evaluation method are studied. This phase also explores the general categories

of the systems performing these tasks. It benefits from the previous stage by taking into
13



1. INTRODUCTION

Figure 1.4: Research Approach [Author, 2017].

consideration the characteristics and challenges of the input data and concentrating on

particular aspects. The related systems are reviewed in this stage with more focus on

those that are more specific and close to the proposed solutions.

3. Designing, Implementation and Evaluating Solutions: The recommendations resulted

in the background examination and the gaps discovered from the exploratory research

are the input for this phase. Both are used to identify the functional requirements for

designing and developing the new approaches. Three approaches are proposed as part

of this work that are complementary. Hence, the design phase is combined with the

implementation and the evaluation in order to give a clear idea about every solution before

using it as a component in another approach.

1.7 Overview of Thesis Structure

Figure 1.5 illustrates the structure of the thesis with reference to the research approach followed

in this thesis. The remainder of the thesis has been arranged as follow:

Chapter 2 - Linked Data: Technologies, Implications and Challenges: Drawing exten-

sively from the literature, this chapter begins with an introduction to the main concepts and Se-
14
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Figure 1.5: Thesis structure : Research approach [Author, 2017].
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1. INTRODUCTION
mantic Web technologies that support the Linked Data paradigm. It covers all the preliminaries

to be used in upcoming chapters i.e. RDF, ontologies, SPARQL, URIs, XML10 and JSON11.

The chapter also explores several challenges that arise in consuming or publishing data in a

Linked Data setting. Finally, it presents semi-structured data from a Linked Data perspective.

Chapter 3 - Data integration and interlinking: Having the introduced the inputs, their

paradigms and challenges in Chapter 2, this chapter introduces the operation that this thesis fo-

cus on being data integration and interlinking as well as schema matching. It gives an overview

of the different techniques, approaches and components they use and their evaluation methods.

Chapter 4 - Related Works: Following the introductory chapters, this gives an analysis of

and gathers the related work of the proposed approaches in Chapters 5, 6 and 7, and highlights

the gaps that need to be filled. It also identifies the sources of some of the features that the

author incorporated when designing the contributed solutions.

Chapter 5 - SimiMatch: Schema Matching for Semi-structured and Linked Data: This

chapter introduces SimiMatch, namely Schema Matching for Semi-structured and Linked Data,

a common and an important component of the proposed data integration and interlinking ap-

proaches. The chapter describes the individual modules in the approach and explains the stages

it goes through to reconcile the structural heterogeneity between semi-structured and Linked

Data.

Chapter 6 - LinkD: Element-based Data Interlinking of RDF datasets in Linked Data:

This chapter tackles the problem of data interlinking of semi-structured data with Linked Data

space. It proposes LinkD and its weight allocation module along with showing how SimiMatch

is adapted for this context. Finally, a comprehensive evaluation is presented at the end.

Chapter 7- SemiLD: Keyword Search over Semi-Structured and Linked Data: The focus

of this chapter is on the data integration task. It introduces SemiLD and its two prototypes,

which are keywords access systems that retrieve their data from semi-structured (Web APIs)

and Linked Data (SPARQL endpoint) sources. The chapter goes through the components of the

modular architecture proposed. An evaluation is carried out at the end.

10Extensible Markup Language
11JavaScript Object Notation
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1. INTRODUCTION
Chapter 8 - Conclusions and Future Work: This highlights the contributions and limita-

tion of the work presented in this thesis and articulates a vision for the future.

17



Chapter 2

Linked Data: Technologies, Implications

and Challenges

I will, in fact, claim that the difference between a

bad programmer and a good one is whether he

considers his code or his data structures more

important. . . Good programmers worry about data

structures and their relationships
Linus Torvalds

2.1 Introduction

Before proceeding to identifying and to highlighting the challenges that a category of systems

exploiting semi-structured and Linked Data are confronted by, it is helpful to study the data

themselves, their origin, different representations, and the available ways of publishing and

consuming them. Hence, this background chapter starts with introducing the vision of Web

Semantics to pave the way for understanding the composition and the origin of Linked Data.

The technicalities associated with publishing into the Web of Linked Data are defined in Section

2.3. Then, in Section 2.4, the different ways of exploiting Linked Data are explored with more

attention given to the relevant and popular methods. This chapter then changes its focus, in
18



2. LINKED DATA
Section 2.5, to semi-structured data, viewed from Linked Data point of view, their main source

and formats. Finally, in Section 2.6, the challenges of Linked Data are stated and explained.

2.2 The Origin: Web Semantics

Before the Semantic Web vision started to be implemented, it was entirely up to humans to in-

terpret the static Web content and derive conclusions. The Web in that ”read-only” era [Berners-

Lee et al., 2001] can be described as a display case where there was primarily only one way

of exchanging information, which is from the publishers to consumers [Singh et al., 2011].

More technically, it was more like a Web of hyperlinked documents, also known as Web 1.0, in

which every page of these documents is identified using a unique global address, a URL12, and

remotely accessed through HTTP links using a Web browser.

The development of new technologies and standards, including XML and Web APIs, rev-

olutionised the Web. They opened up new opportunities for users to interact or even to add or

modify content to the Web (through wikis for example). But more importantly, they allowed

interoperability, mashup applications and other data exchange capabilities. Broadly speaking,

this marked the beginning of the boom of Semantic Web research activities and for their effects

on the Web to become apparent, in the late 1990s [Songtao and Junliang, 2005].

In 2006, Shadbolt et al. [2006, p. 66] highlighted that Tim Berners-Lee:

”described the evolution of a Web that consisted largely of documents for humans to

read to one that included data and information for computers to manipulate... This

simple idea, however, remains largely unrealized. A Web of data and information

would look very different from the Web we experience today.”

The idea of a uniform data structure and paradigm in order to achieve this transformation

from a Web of documents to a Web of Data was introduced in the same year, and was called

Linked Data. As the title of this section suggests, Linked Data principles are built upon Seman-

tic Web technologies and standards.
12Uniform Resource Locator
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2. LINKED DATA
The Semantic Web aims at allowing a better sharing and re-use of data on the Web ”by

giving information a well-defined meaning, better enabling computers and people to work in

cooperation” [Berners-Lee et al., 2001, p. 4]. This meaning needs to be machine readable in

order to minimise human interference [Wang et al., 2006] and to enhance the interoperability of

Web content. The Semantic Web also advocates for a Web where intelligent programs or agents

can operate over distributed data sources to either automate certain tasks or work together with

end-users to accomplish tasks on demand [Popov, 2013].

The Semantic Web is traditionally represented by its framework: ”Semantic Web Layer

Cake” [Berners-Lee, 2006a] shown in Figure 2.1. The framework consists of a stack of tech-

nologies and standards that enable the creation of data stores on the Web, building vocabu-

laries, write rules for handling data, and developing applications and services to exploit the

output. These technologies will be explained (in the next section) in the context of Linked Data

publishing.

2.2.1 Ontologies

Before introducing the core concepts of Semantic Web, regarded from a Linked Data point of

view, it is first necessary to explain the concept of ontology. Ontologies are the pillars and the

key backbone of the Semantic Web as well as of Linked Data. An ontology is defined as a

formal specification of a shared conceptualisation of some domain knowledge [Gruber, 1993].

They represent a shared and common understanding of a domain that can be communicated

across people and application systems [Fensel, 2003]. They are flexible, extensible, and scalable

mechanisms to describe and structure a stored information. The information is encoded in

ontologies in the form of concepts and properties linked via semantic relations.

Ontologies can be seen, as any model in automated reasoning [Krachina and Raskin, 2006],

as an attempt to simulate human thinking [Kroeze, 2010] and his/her representation of real

world things and their properties. For example, if the question ”What is the last document you

have read?” is asked to a human being, his/her thinking process, will not normally consider

cars or houses. Only objects of the type document will be taken into account e.g. books,

thesis, newspaper etc. This task is very easy for a human brain, but challenging for machines.
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2. LINKED DATA

Figure 2.1: Semantic Web general framework (layer cake) [Berners-Lee, 2006a]
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2. LINKED DATA
Ontologies simulate such complex processes by categorising real world objects according to a

common vision and understanding, and allowing reasoning and inference upon the derived class

(i.e. category or concept) instances and their relationships [Franco-Bedoya, 2015].

There have been many methods and languages proposed in order to represent ontologies.

One of the earliest formalisms was Frame Language [Minsky, 1975] which allows descriptions

of subsets and hierarchy of the ontology classes via frames. Then Description Logics offered

new possibilities in modelling the relationships between concepts, roles and individuals [Nardi

et al., 2003]. One example of description logics is the popular OWL13, which is an XML-based

knowledge representation language for authoring ontologies. It is a W3C recommendation

[W3C, 2004] that aims at facilitating machine interpretability of Web content.

2.2.2 RDF Data Model

A data model is an abstraction used to represent real world entities, the relationship between

these entities and the operations that can be performed on the data [Ullman, 1990]. Various data

models can be distinguished on the Web, including: hierarchical, relational, graph etc.

RDF structure information as a set of statements where each statement comprises a subject,

a predicate (property), and an object [Brickley and Guha, 2004]. The subject-predicate-object

relationship is called a triple. The subject represents what is being described by the RDF triple

and it can be either a URI or black node. The resource represented by a blank node is called an

anonymous resource. The predicate is the relationship between the subject and the object, and

it ought to be a URI. The object can be a URI, blank node, or a literal and it retains the value of

the subject in relation to the predicate. Formally, an RDF triple can be defined as follows:

Definition 2.1 (RDF triple). An RDF triple is represented as a tuple {S,P,O}∈ (I∪B∪L)×

I× (I∪B∪L), where S is called the subject, P the predicate, and O the object and I, B and

L, are used to represent IRIsa, blank nodes and literals respectively.
aInternationalised Resource Identifier

Example 2.1 puts the definition and the previous explanation in an RDF/XML document style:

13Web Ontology Language
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Example 2.1: RDF/XML example of a triple
<rdf:Description rdf:about="subject">

<predicate rdf:resource="object" />

<predicate> literal value </predicate>

<rdf:Description>

Example 2.2 is an RDF file describing the Cambridgeshire county:

Example 2.2: An RDF description of Cambridgeshire County
1 <?xml version="1.0" encoding="UTF-8"?>

2 <rdf:RDF xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc= "

http://purl.org/dc/elements/1.1/" xmlns:region= "http://Example.com/ ">

3 <rdf:Description rdf:about=" http://Example.com/Cambridgeshire ">

4 <dc:title > Cambridgeshire </dc:title >

5 <dc:publisher > Mohamed </dc:publisher >

6 <region:population > 806,700 </region:population >

7 <region:principaltown

8 rdf:resource="http://example.com/Cambridge "/>

9 </rdf:Description>

10 </rdf:RDF>

RDF uses CURIE (or Compact URI) abbreviation style to define reusable prefixes that can

be used to write URIs in a shorter form. Three prefixes were declared in the previous example

(line 2), one of them is: xmlns:dc= �http://purl.org/dc/elements/1.1/�. The prefix is

then used in two predicates: dc:title and dc:published. The syntax of prefix declaration

varies depending on the serialisation.

RDF data model also allows specification of the language or the data type of the literal

values, as the following examples show: ''Pyramid''\@en (''Pyramide''\@fr) and

''2016-11-20''^^xsd:date.

Similarly to XML, RDF is not constrained by any mechanisms for declaring the properties

names [Decker et al., 2000]. It is the role of the RDF descriptive vocabulary that is called

the RDF Schema (RDFS14) [Rula and Palmonari, 2013]. RDFS, positioned just above RDF in

the Semantic Web Layer Cake (see Figure 2.1), consists of a set of classes and properties to

describe RDF resources [Brickley and Guha, 2004]. It distinguishes resources into classes and

predicates in an ontological structure, where their data types and the relationships are defined.
14Resource Description Framework Schema
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Despite the fact that RDF vocabulary itself possesses predicates such as rdf:type to define

the domain, it still needs additional schema properties to compensate its lack of (or to enrich

its) expressivity, such as [Christodoulou, 2015]:

• rdfs:Class and rdf:Property to define new class and property instances;

• rdfs:subClassOf and rdfs:subPropertyOf to define class and property hierarchies respec-

tively;

• rdfs:domain and rdfs:range to associate a class to the subject and object of a property.

Example 2.3 shows a definition of a property hasMother using RDFS:

Example 2.3: Definition of a property hasMother using RDFS
<http://www.example.com/humans.rdfs#hasMother> a rdf:Property;

rdfs:label "has for mother"en,"a pour mere"fr ;

rdfs:comment "to have for parent a female."en,"avoir pour parent une
femelle."fr ;

rdfs:range <http://www.example.com/humans.rdfs#Female>;

rdfs:subPropertyOf

<http://www.example.com/humans.rdfs#hasParent>.

2.2.3 SPARQL

SPARQL is a semantic query language to retrieve and update RDF data. It utilises triple pattern

matching in order to retrieve the results of the queries. The results can be result sets or RDF

graphs. In 2008, SPARQL 1.0 [W3C SPARQL Working Group, 2008] became an official W3C

recommendation, so did its successor, SPARQL 1.1 [W3C SPARQL Working Group, 2013],

five years later. SPARQL 1.1 extended the previous version by providing more support for

complex and federated queries.

SPARQL endpoints15 can also run queries remotely using Jena16 framework, for instance.

Jena framework is an open source and flexible set of Java libraries ”implementing basic func-

tionalities for semantic data storage and querying, following the W3C standards” [Efthymiou
15An endpoint is one end of a communication channel
16http://jena.apache.org/
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et al., 2015, p. 4]. It also provides a SPARQL engine that allows running queries on local RDF

files and also to send requests to SPARQL endpoints and retrieve the results.

The SPARQL query described in the rest of this section is a generic SELECT query that

extracts raw values from a SPARQL endpoint. Other forms of queries, that are not covered or

used in this thesis, exist to retrieve results in other formats or to load and update RDF store using

SPARQL. Five main parts, in which two are required and three optional, can be distinguished

in a SELECT SPARQL query:

• Definition of prefixes (optional): Although their use is optional, they are recommended

for better readability of the rest of the query. Similarly to RDF (as described in Section

2.2.2) they are located at the very beginning to define abbreviation for namespaces that

will be used in the triple pattern (subject, predicate or object), for example:

PREFIX exp: http://example.com/resource/

In the above example, the namespace is ”http://example.com/resource/” and ''exp'' is

the prefix.

• Dataset Clause (optional): It indicates the URI of the RDF dataset to be used during

pattern matching. If it is not declared, the query processor determines the dataset to use.

FROM <uri> | FROM NAMED <uri>

• Results clause (required): This is the part where the requested variable or set of variables

is/are indicated.

SELECT [Aggregate_function] { * , var_1, var_2, ..., var_n}

The users can also ask for all variables using * as the above example shows. Similarly to

SQL, SPARQL also offers the possibility of adding aggregate functions to the query, as

the example highlights. The common aggregate functions include COUNT, SUM, MIN, and

MAX.

• Query pattern (required): The following represents the part that specifies the triple

pattern that needs to be matched with the underlying dataset.
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WHERE {

...

Triple Patterns to be matched

...

FILTER(... patterns to be filtered ...)

}

• Query modifiers (optional): These are applied to create a user desired solution se-

quence out of the retrieved results. The modifiers supported by SPARQL are Distinct,

Order By, Reduced, Limit and Offset.

ORDER BY DESC(m) OR ASC(m)

LIMIT L

OFFSET F

2.2.4 URI

A Uniform Resource Identifier (URI) is a compact string of characters for identifying an abstract

or physical resource [Berners-Lee et al., 1998]. A URI can be further classified as a locator,

a name, or both. Figure 2.2 illustrates the difference between the URL, URI and IRI. URLs

identify names of resources on the Web via a representation of their primary access mechanism

and network location. URIs are URLs that are also used to identify things that exist on the

Web. The IRI extends upon the URI by using Unicode characters to enable its representation in

different languages.

As stated in Section 2.2, information on the Web needs to be accessible by both actors:

humans and machines. Making data and its links machine-readable does not indicate humans

would be excluded from being able to request and receive information in a format that is un-

derstandable to them. Dereferenceable URI is the technology that serves that purpose. It is

a resource retrieval mechanism that uses any of the Internet protocols (for example HTTP) to

obtain a copy or representation of the resource it identifies [Yaghouti et al., 2015].
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Figure 2.2: Difference between URL, URI and IRI [Gandon, 2014]

2.3 Publishing Linked Data

This section explains how the technologies in the lower stack of the Semantic Web architecture

are used together to publish Linked Data. First, the Linked Data initiative and its relation with

the Semantic Web are explained. This section then goes on to introduce the Semantic Web

technologies needed to publish in a Linked Data way.

2.3.1 The Linked Data Paradigm

Before going into the theoretical and technical details of Linked Data, it is essential to make

the distinction between data and a document containing data. Data is a machine readable set of

discrete and objective facts about events [Tuomi, 1999] or values of qualitative or quantitative

variables [Roy and Zeng, 2015]. Document is a broad word, but can be regarded in this context

as a human readable medium of data transmission, for example: mail messages, HTML pages,

reports, etc.

As outlined in previous sections (see Section 1.1 and 2.1), Linked Data is a pragmatic ap-

proach for the transformation from a document-based Web to a Web of interlinked structured

data. The idea was to create a Web where anything can be linked to anything. Linked Data aims

to provide links between different data sources in order to create a single global data space,

”the Web of Data” [Hausenblas, 2011]. These links ought to be machine-readable and connect
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to related data whether from the same or from other external sources. This objective can be

achieved by utilising RDF, URIs and HTTP to publish and interlink structured data on the Web.

Linked Data and Semantic Web are two terms that are often used interchangeably [Lehmann

and Völker, 2014] to refer to an initiative that promotes interoperability and the degree of au-

tomation over distributed and heterogeneous sources while preserving their autonomy. Even

though this is not completely inaccurate, Linked Data, strictly speaking, was introduced as a

common way of publishing data that complement the general architecture and functioning of

the Semantic Web.

More formally, Linked Data refers to a set of best practices for publishing and interlinking

structured data on the Web, described by Tim Berners-Lee in his Web architecture note Linked

Data [Berners-Lee, 2006b]:

P1. Using URIs as names for things.

P2. Using HTTP URIs so that people can look up those names.

P3. When someone looks up a URI, provide useful information.

P4. Include links to other URIs. So that they can discover more things.

Linked Open Data (LOD) is Linked Data released under open license [Méndez and Green-

berg, 2012]. ”Open Data” indicates the right to link data and reuse it freely, without any copy-

right restrictions, something which is indispensable if data is to be linked [Mitchell, 2013]. LOD

diagram in Figure 2.3 [Abele and McCrae, 2017] illustrates the wide use of Linked Data in dif-

ferent domains and areas e.g. Sciences, governmental and statistical data, geography, etc. It

also highlights the major LOD contributors such as DBpedia, LinkedMDB17 and Geonames18.

2.3.2 Identifying Resources using URIs

URIs are one of the technologies that allowed the shift from the Web of documents to the Web

of Linked Data. Their usage for identifying things and to allow discoverability is the first and
17http://www.linkedmdb.org/
18http://www.geonames.org/
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Figure 2.3: The Linked Open Data cloud shows the wide use of the paradigm in many domains
and areas [Abele and McCrae, 2017]
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the last principle and best practice (P1) and (P4) of the Linked Data paradigm respectively.

”Things” is the key word in the previous sentence. The traditional utilisation of URIs is to

identify Web documents [Berners-Lee et al., 1998]. In Linked Data, their function is extended

to serve as a unique ”ID” for resources and real world objects on the Web. Having more than

one resource with the same URI leads to ambiguity and assigning more than one URI to the

same resource leads to redundancy, which decrease significantly the chances of reusability.

Using dereferenceable URIs is important for the second Linked Data principle (P2), ”in fact,

without them, it is not possible to check what is attached to the URI” [Albertoni et al., 2014,

p. 8]. Therefore, they are needed for accessibility to the description of resources; and hence, for

the reusability of URIs. Content negotiation mechanism [Fielding et al., 1999] is the method

to disambiguate the format of the Web document retrieved e.g. XML or RDF for consumption

and HTML for humans [Christodoulou, 2015].

2.3.3 Describing Linked Data using RDF

RDF can be associated with the third principle (P3) of the Linked Data paradigm. Note that

the third principle is also about looking up and accessing information, something that will be

discussed in Section 2.4.3.

Linked Data uses RDF data model, which is the standard recommended by W3C. RDF is the

uniform model utilised in Linked Data to structure and represent information about resources.

RDF in Linked Data can be seen as a directed and labelled graph, composed of a finite set

of RDF statements or triples. The nodes of the graph represent the resources (classes) or the

subjects depending on its position in the RDF statement, and the typed arcs play the role of

predicates (or properties). Various syntax formats can be utilised to represent the RDF data

model, such as: RDF/XML19, Turtle20, N-Quads21, N-Triples22 , JSON-LD23 and Notation324.

19https://www.w3.org/TR/REC-rdf-syntax/
20https://www.w3.org/TR/turtle/
21https://www.w3.org/TR/n-quads/
22https://www.w3.org/TR/n-triples/
23https://www.w3.org/TR/json-ld/
24https://www.w3.org/TeamSubmission/n3/
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2.4 Consuming Linked Data

Consumption in this context is the ability to access and retrieve data. The consumption methods

presented in this section can be found elsewhere classified as publishing methods such as in

[Rietveld, 2016]. This is similar to the ”chicken or the egg” problem. In order to be able to apply

certain consumption methods, Linked Data providers usually have to follow certain procedures

on top of the four principles (and they follow these procedures in order to be ”consumed” in

these ways). In this thesis, they are considered more as consumption mechanisms because their

variations are more noticeable at this stage of the process.

Before introducing data integration in the next chapter, it is necessary to understand how to

access each of the data sources separately, which are in the context of this thesis semi-structured

and Linked Data sources. It also helps explaining the choices made in designing the approaches

used in this thesis and their advantages and limitations. Therefore, this section shows some of

the popular ways and technologies available to retrieve or query Linked Data sources.

2.4.1 Crawling Pattern

It is the most straightforward method whereby users download, process and parse the RDF files

in order to get the results. From a data provider point of view, it is about hosting serialised RDF

files of Linked Dataset on the Web. Even though it seems a simple way of publishing Linked

Data, Rietveld [2016] stated that the majority of RDF files published through this mechanism

fail to follow the standards and best practices of the Linked Data paradigm. He also stated some

of the common errors that can be found in files which are: incorrect HTTP headers; published in

a corrupt compressed archive and containing duplicate triples or serialisation errors. The crawl-

ing pattern also has advantages of being relatively easy to implement on top of the downloaded

RDF files and that is not related to the status or the performance of any remote server.
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2.4.2 On-The-Fly Dereferencing

On-The-Fly dereferencing pattern is comparable to the functioning of the Web of documents. It

conceptualises the Web as graph of documents that consists of dereferenceable URIs [Göçebe

et al., 2015]. As introduced as part of the referenceable URIs (see Section 2.2.4), dereferencing

means that a description of a resource identified by an URI is recovered using the HTTP GET

request in a machine-readable format (as an RDF file for example) and optionally in human-

friendly format.

In this pattern, the query is executed by dereferencing the URI address in order to access the

RDF file, then follows the URI links by parsing the received file on-the-fly [Hartig et al., 2009].

It can be relatively easy and fast for the server to process if it is used as subject pages access

(a simple index lookup) [Verborgh et al., 2014b]. It can also be, however, complex and slow

if dereferencing thousands of URIs in the background [Göçebe et al., 2015; Heath and Bizer,

2011]. This pattern is implemented by Linked Data browsers such as Marbles25.

2.4.3 Using SPARQL to query Linked Data

SPARQL endpoint is a protocol service and one popular method for querying Linked Data

sources. It enables users to query a knowledge base via the SPARQL language. SPARQL end-

point is viewed as a machine-friendly interface, as frequently one or many machine-processable

formats are offered in expressing the results. Many triple stores offer a SPARQL interface, such

as Jena TDB [Grobe, 2009] and Virtuoso [Erling and Mikhailov, 2010]. A human-readable

presentation can also be implemented.

Although SPARQL endpoints have shown many capabilities in terms of the ability of ex-

pressing and running complex and federated queries, they are often criticised about their perfor-

mance and availability. At least two scenarios are able to reveal SPARQL endpoints limitation.

The first is in case where the query is asking for a considerable amount of result sets, or multi-

ple queries are sent to the same data source. The second is when running federated queries on

multiple sources. Because SPARQL endpoints concentrate all their query processing tasks on

25https://sourceforge.net/projects/marbles/
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the server side only [Beek et al., 2016], the execution of queries can be slow [Heath and Bizer,

2011] or can trigger an interruption as a result of restrictions set by data source to prevent the

service from overloading or collapsing. Consequently, as confirmed by a study carried out by

Verborgh et al. [2014a] who estimated that one and a half (1.5) days each month is the average

downtime of SPARQL endpoints servers. This is one impetus for systems like LDF.

2.4.4 Querying through Linked Data Fragments (LDF)

Although it can be argued that LDF approach is more related to the publishing stage, its benefits

can be seen in the consuming part; hence, it is classified in this section. LDF is a publishing

method ”that allows efficient offloading of query execution from servers to clients through a

lightweight partitioning strategy” [Verborgh et al., 2014b, p. 1]. It can be described as a com-

promise between the limited subject-based Linked Data dereferencing and the difficultly of the

scalable server-side SPARQL execution [Verborgh et al., 2014b].

2.4.5 Linked Search Engines

Linked Data search engines are not a method of consuming Linked Data, but rather a category

of applications, generally built upon the crawling pattern, facilitating to some extent the ex-

ploitation of data in this paradigm. They crawl RDF data on the Web and aggregate it. The

retrieved data can be queried by following the links or by keyword search. The results can be

presented in various forms depending on the application. Many examples can be listed in this

section, for example: Swoogle [Ding et al., 2004] and Falcons [Cheng et al., 2008].

2.5 Un-migrated Sources: Semi-Structured Data

Semi-structured data are ”schema-less” data [Buneman et al., 2001], meaning it does not have

any rigid and predetermined schema upfront, which is one of the main advantages that make

them very popular. They are ”self-describing” [Buneman et al., 2001], which means the struc-

ture and the values are embedded in the same file. These characteristics made semi-structured
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data the most suitable and natural data model to accommodate heterogeneity [Chung and Jesura-

jaiah, 2005] and an important feature of the Web [Ya-qin and Wen-yong, 2010]. XML and

JSON26 are the main data models representing semi-structured data. Both of them are hierar-

chical and can be easily parsed [McMullen and Hawick, 2013; Ray, 2003] due to the availability

of tools and libraries.

This subchapter begins by introducing the RESTful API. Then, the two most utilised semi-

structured technologies on the Web, XML and JSON, are presented.

2.5.1 RESTful Web APIs

A Web API is a broad class of Web services and interfaces. In the context of the thesis, a Web

API can be defined as an interface of a service that consists of a set of HTTP request messages

along with a definition of the structure of response messages [Cao et al., 2013]. The most used

technologies in representing the outputted messages JSON or XML (see MQ2 in Section 1.2).

This interface is standards-based application-to-application programming interface, meaning it

can be called from other programs [Burghardt et al., 2005].

A Web API is considered a RESTful service [Richardson and Ruby, 2008] when conforming

to the REST27 architecture principles [Fielding and Taylor, 2000], being client-server based

communication, statelessness of the request and the use of a uniform interface. The common

technology used to implement RESTful Web services is HTTP [Maleshkova et al., 2010].

RESTful28 Web APIs are one major technology that makes use of semi-structured data in

their data exchange. Many formats are utilised for this. XML and JSON are, however, the most

frequently used mechanisms. They are the preferred representation for machine-readable data

[Trifa et al., 2010].

The steady increase of the number of Web APIs, and RESTful web services in general [Wu

et al., in press], suggests that the amount of semi-structured data is constantly growing on the

Web. More precisely, the number of Web APIs continued to increase even in post-Linked Data

26JavaScript Object Notation
27Representational state transfer
28A service based on REST is called RESTful
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era (after 2006) (see Figure 1.1 in Section 1.2). Many explanations can be put forward, for

example: some use cases are more suitable to be implemented in a Web API architecture, the

implementation of a Linked Data source is less accessible, or the Linked Data paradigm is not

a success and does not respond to the developer needs etc. One conclusion that can be drawn

is that relatively to Linked Data, older data sources being semi-structured data sources are still

growing.

2.5.2 XML

XML is a mark-up language that allows users to define a set of tags which describe arbitrary

document structure [Bray et al., 1997]. It is designed to be ”eXtensible” by allowing to create

user-defined forms by defining various entities, tags or elements [Van der Aalst and Kumar,

2003]. XML is a labelled tree, where each tag corresponds to a labelled node in the data-model,

and each nested sub-tag is a child in the tree [Decker et al., 2000].

The flexibility and the simplicity of defining an XML structure along with the availability

of tools for manipulating it, made of XML an effective and a popular mechanism in cross

application communication and information exchange.

2.5.3 JSON

JSON is a popular format for data serialisation and a lightweight, text-based, language-independent

data interchange format. It is widely used as an alternative to XML [Guinard et al., 2010], not

as a mark-up language, but as a data exchange format particularly when dealing with existing

Web services [Sumaray and Makki, 2012]. Soon after its creation, JSON was adopted by many

well-known companies, such as: Google29 and Yahoo30 [Robal and Kalja, 2009], due to its

efficiency yet simplicity in representing semi-structured data.

29https://www.google.com/
30https://www.yahoo.com
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2.5.4 Structuring Semi-structured Data

The focus of this section is to give a brief overview about the tools and methods that allow the

transition from semi-structured data model, particularly JSON and XML, to RDF data model.

The problem of converting hierarchical, or tree-based, data models to graph-based data

models has existed for more than a decade. Various solutions have been proposed [Bohring

et al., 2005; Cruz et al., 2004; Johnson, 2013; Van Deursen et al., 2008] that can be classified

into two categories: Fixed RDF transformation and ontology-dependent RDF transformation.

The systems of the first category perform syntactical and generic conversions from one data

model and format to another. The transition, in this category of approaches, consists of mainly

restructuring and reorganising different components of semi-structured data (namespace, root,

tags, attributes and values) into a subject, predicate and object RDF structure. This operation

is not considered challenging as an XSLT31 script or the combination of JSON/XML parser

with Jena framework can achieve an acceptable result. The disadvantage of this operation is the

fact that no meaning will be associated with the resultant RDF file. Many examples of tools

appertain to this class of systems can be stated including [Breitling, 2009] or the java library

XmlToRdf32.

The second class of systems are based on ontologies when converting semi-structured data

schema, frequently XML, to an RDF schema. It is a challenging task to project the representa-

tion of concepts and the relationships between them of a given ontology while converting from

one data model to another. This is what Van Deursen et al. [2008] attempted to achieve, for

instance. The system they proposed takes as inputs an XML file, an OWL ontology, and the

mapping document describing the link between the XML file and the ontology. RDF instances

conforming to the OWL ontology are the outcome of this tool.

31Extensible Stylesheet Language Transformations
32https://github.com/AcandoNorway/XmlToRdf
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2.6 Linked Data Challenges

It is not the role of the approaches proposed in this thesis to address most of the challenges

described below. It is essential, however, that they take them into consideration when Linked

Data datasets are queried or retrieved. For example, the schema matching approach (see Chapter

5) does not remove the semantically repeated properties from the data sources, they are only

discarded when they become part of the system.

These challenges are not associated with the publishing or the consumption parts as most of

them are common and their effects can occur in both operations.

• Incompleteness: It is the logical result of the dispersed and distributed nature of Linked

Data. Real world entities can be seen from different points of view which can decide the

focus of the elaboration of details. Thus, they are frequently only partially described in

one data source.

• Freshness of the data: Some authors, such as Liu [2015], view it as part of a broader

challenge called inconsistency. Inconsistency can be related to various forms of inter and

intra source data conflicts, including out-of-date predicates and objects. The freshness

of the data, in this thesis, does not only indicate the outdated predicates and objects (for

example: dbo:populationTotal), it can be a challenge that is associated to an entire

Linked Data source. DBpedia, for instance, is a publicly-editable, living data set, being

extracted from Wikipedia by an evolving codebase, so results may (and will, and have)

change over time.

• Data and Properties Redundancy: It generally signifies that the same real world enti-

ties are represented in multiple data sources. But in this thesis, it is not just limited to

this definition. The redundancy can also be semantic. Two predicates appertain to two

different Linked Data vocabularies can express the same meaning.

• Incorrectness: This refers to pure errors. It can be argued that these errors can occur in

any data model or paradigm and that is not only a concern for Linked Data. On the other

hand, this challenge is noteworthy in Linked Data because these errors can be propagated
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from one source to the other due to copying and to the linking aspect of this paradigm.

• Linking resources: As put by Zhao [2010], connecting URIs leads to bridging the gap

between a local namespace and the Linked Data. Although many tools have emphasised

this need and addressed this problem over many years, it is still challenging to establish

links between resources in the Web of Linked Data. This is due to many reasons, in-

cluding the four previously stated challenges plus others, such as the scalability of data

published as Linked Data. This challenge is addressed more specifically in Chapter 6.

2.7 Summary

This chapter introduced two important data models on the Web: Linked and semi-structured

data. It also went in depth into their technologies and components, their different features and

challenges. The author also discussed how to publish data as semi-structured or Linked Data,

and the different ways of consuming them. From this background review, the author identified

the criteria that need to be taken into consideration in designing the modules of the approaches

proposed as part of this thesis.

The next chapter explains how to facilitate following the principles when contributing to

Linked Data. Moreover, it discusses the process of how the two presented data models (semi-

structured and Linked Data) can be used together to respond to the user’s queries.
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Chapter 3

Data Integration and Interlinking

Of course, shopbots and auction bots abound on the

Web, but these are essentially handcrafted for

particular tasks; they have little ability to interact

with heterogeneous data and information types.

Because we haven’t yet delivered large-scale,

agent-based mediation, some commentators argue

that the Semantic Web has failed to deliver
Nigel Shadbolt

3.1 Introduction

This literature review chapter turns its attention to two of the most researched subjects or tasks in

the Semantic Web generally and in Linked Data in particular: data integration and interlinking.

In the work presented in this thesis (in particular, see Chapters 6 and 7), both these two tasks

utilise schema matching or at least one of its subcategories, as Figure 3.1 shows. Hence, this

present chapter starts by defining and investigating the common problem of schema matching

and the different methods utilised to address it. Then, from Section 3.3 to Section 3.6, the

chapter defines data integration and its concepts, and presents a classification of data integration

approaches. Those sections also show how the current challenges of data integration go beyond
39



3. DATA INTEGRATION AND INTERLINKING

Figure 3.1: A diagram the shows the relationship between different terms used in this chapter
[Author, 2017].

the issue of heterogeneity. The remaining sections of this chapter cover data interlinking, taking

an in-depth look at its stages and reviewing its subtopics.

3.2 Schema Matching

Schema matching is the process of finding semantic correspondences [Do and Rahm, 2002]

(frequently equality) between the elements of two or more schemas which describe datasets

originating from the same or different dispersed data sources. The model and format of the

datasets may differ as a result.

3.2.1 Difference between Schema Matching, Mapping and Integration

This section resolves the ambiguities which exist across the terms schema matching, mapping

and integration. The common term in all these subareas is schema; this term can refer to a

database schema, a generic model or an ontology [Atzeni and Torlone, 1997; Giunchiglia et al.,

2009; Madhavan et al., 2001]. Schema mapping is the process of finding relationships between

the instances of the elements of two schemas. Matching the elements of the schemas is a

fundamental requirement for schema mapping [Bellahsene et al., 2011]. For example: schema
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matching finds that the academic grades of a French university student (20 points grading scale)

in the source schema corresponds to the divisions of the grades of a UK university student

(100% grading scale) in the target schema. Schema mapping utilises this match in order to

specify the division rate that relates the instances of the source with the target properties. In

this example (academic grading in France compared to the UK) such a division rate would

be five (5). Schema integration consists of the merging of a number of sources schemas into

one integrated schema, called the global schema (see Section 3.4.3). The latter is an important

subarea, a module and/or step of data integration. In some scenarios, including the approach

presented in this thesis (see Chapter 5), schema integration is essentially a schema matching

process that produces an integrated schema via the generation of the constraints and rules that

specify its creation.

3.2.2 Schema Matching Qualitative Evaluation Measures

The measures described in this section are utilised in this thesis to evaluate the approaches

proposed in Chapters 5 and 6. Figure 3.2 summarises the evaluation methodology for schema

matching techniques and illustrates the components of the evaluation equations. Three measures

[Do et al., 2002] are utilised to verify the effectiveness of a schema matching approach:

• Recall

The recall measure represents the ability to retain the true matches, or true owl:sameAs links

in the Linked Data terms. It is calculated using the equation below:

Recall =
T he number o f true sameAs discovered links

T he number o f actual links

=
| true− positive |

| true− positive | ∪ | f alse−negative |

• Precision

The precision measure represents the percentage of true matches that lie within the discovered

links. The equation to calculate the precision is similar to that used to calculate recall, but
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Figure 3.2: A comparison between real and automatically derived correspondences [Do et al.,
2002].

instead of dividing the number of true matches by the number of actual links, for precision they

are divided by all the discovered links.

Precision =
T he number o f true sameAs discovered links

T he number o f all discovered links

=
| true− positive |

| true− positive | ∪ | f alse− positive |

• F1 score

Neither precision nor recall separately will accurately reflect the match quality since their values

can be maximised at the expense of each other (high recall can be easily achieved at the cost of

poor precision by returning as many candidates as possible, and to maximise the precision at the

expense of poor recall the matcher may return only a few correct correspondences) [Do et al.,

2002]. Therefore, it is necessary to take into account both measures or a combined measure. F1
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is the combined measure and the harmonic mean of the recall and the precision.

F1 =
2∗ precision∗ recall

precision+ recall

3.3 An overview of Schema Matching Techniques

Schema matching has been approached in various ways, many of which have prompted the

creation of important research subareas. This section provides an overview of the most popular

categories of such approaches and gives examples of tools designed to target semi-structured

and Linked Data in particular.

One of the most popular classifications is the one which distinguishes between schema-

level and instance-level matching. Within the schema-level classification, two sub-classes of

approaches can be identified: structure matching and element (or property) matching. Struc-

ture matching generally uses a knowledge base or ontologies to generate mapping rules. This

approach has problems with consistency [Dong and Hussain, 2014] as it cannot sustain the

dynamism, freshness, and large scale of data.

There is another approach which does not use ontologies to support the mapping but rather

employs other means of finding correspondences between the properties of the schemas, in-

cluding: similarity measurements (syntactic or semantic), linguistic matching, constraint-based

matching [Bernstein et al., 2011], etc. In this thesis, the term property matching (or alignment)

refers to this type of approach.

Other approaches are hybrid matching, referring to methods which utilise various disparate

factors in the matching process. Discriminations between the systems of this kind can be es-

tablished according to the degree of the automation of the process – manual, semi-automatic,

automatic – or according to the kind of links they create – relationship or identity. Approaches

can also be classified as either pairwise/2-way schema matching (where the maximum number

of inputted schemas is two) or holistic/n-way (in which more than two schemas can be consid-

ered).
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Ontology matching is an important subarea of schema matching, and has been used in sys-

tems such as: AgreementMaker [Cruz et al., 2010], RiMOM [Wang et al., 2010], SERIMI

[Araujo et al., 2011], etc. These have all been presented as part of the annual Ontology Align-

ment Evaluation Initiative (OAEI ) event. These approaches address the problem of finding

correspondence between ontologies and discovering owl:sameAs relationships between Linked

Data resources.

There have been some approaches, addressing the problem of data integration generally,

which incorporate schema matching: e.g., in Smart Cities [Bischof et al., 2014; Kettouch et al.,

2016; Nemirovski et al., 2013]. But such approaches frequently tend to consider ontology

matching as a secondary issue. Hence, some of this work lacks a detailed description of the

matching and of the reconciliation process.

3.4 Data Integration

Data integration is the process of providing homogeneous access to a set of heterogeneous and

autonomous sources [Calı et al., 2004]. Data integration is more than schema integration, as

pointed out in Section 3.2.2. It is the combination of many operations, including the latter, but

with the addition of others such as: formulating and distributing the queries, reconciling the

output and finally collecting and displaying the results.

Data integration is sometimes referred to by the term data interoperability since such topics

share approximately the same issues and objectives. Data integration is still considered to be a

very challenging task, despite it having been a major research subject (as a database problem)

in Web Semantics for a number of years [Kalja et al., 2014]. The rise of new data models and

representations, as well as new challenges in terms of precision and performance, has kept this

research area continuously active.

As Figure 3.3 shows, data integration should be viewed as a black box from a user’s percep-

tion. It needs to hide the complexity and provide a single point of access to many data sources.

Note that in Figure 3.3 the word ”integrate” is underlined. The reason for this is that by chang-

ing that word to ”collect” the black box becomes a data federation system rather than a data
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Figure 3.3: How data integration should be seen from the user’s point of view [Author, 2017].

integration system. Data integration not only gathers data, but also offers a logically unified

view to the query process.

Data integration is a process that can be divided into two phases. The first phase is top-

down and aims at preparing, distributing and running the queries and requests. The second

phase is bottom-up and aims at reconciling the heterogeneity of the results, running the queries

in relation to the unified view and preparing the outputs to be displayed. This component in data

integration can perform different tasks depending on the phase in which the system is running.

Two main methods have been proposed (and researched) for solving the problem of data

integration and reconciling heterogeneity: the materialised architecture and the virtual architec-

ture.

The materialised architecture, also known as data warehousing, is a consistent, but non-

volatile, solution which integrates data and stores it in a single information repository [Poe

et al., 1997]. The latter serves as a materialised view to one or more sources [Gupta and Mu-

mick, 2005]. It is frequently implemented in decision-support systems and for OLAP33 queries.

33Online Analytical Processing
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Queries, in the materialised integration architecture, are executed on, and loaded in, a single

central database which stores, in advance, all the data which can be retrieved. Materialised

views are physical structures that store data retrieved at a specific time. Hence, the major issue

with using this approach is the freshness of the information and the possible resource implica-

tions for very large datasets.

Virtual (mediator-based) data integration is referred to using a number of other terms, such

as centralised architecture or distributed query processing. In this architecture, the integration

system provides a ”unified and transparent view to a collection of data stored in multiple, au-

tonomous and heterogeneous data sources” [Lenzerini, 2003, p. 14]. This unified view, known

as the global schema, decomposes the inputted query into a number of sub-queries, which will

all then be distributed, and then executed, on the different sources considered – before the even-

tual combining of the outputs. This gives the user transparency and the impression of querying

a single data space. One of the features of virtual integration is that the system has no control

over the participant sources. This can be seen as a drawback in some use cases but an advantage

in others (which require the preservation of the autonomy of the data sources). Virtual data

integration’s most well-known positive, and crucial for the present contributed research, aspect

is the flexibility to add or accommodate new sources.

The characteristics of the data considered in this thesis, particularly Linked Data, suggest

that virtual integration is the more suitable approach. Linked Data’s flexibility in publishing

new information and creating new vocabularies necessitate a view which is repairable and able

to be changed over time.

The focus of the remainder of this thesis, addressing the problem of data integration, is on

virtual integration. Figure 3.4 suggests the position of these components in the data integration

process. The next sections describe four main concepts that are associated with, or define to

some extent, virtual data integration:
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Figure 3.4: General architecture of virtual data integration [Katsis and Papakonstantinou, 2009].

3.4.1 Usable Front End

The user interface, as observed, is generally not considered as a component or as a major part

of a data integration system. It is mentioned in this section as a separate concept because

of the new challenges generated by the appearance of new data paradigms – which suggest

more work should be invested in this component of systems. Data integration systems, taking

into account Linked Data sources, are different from the conventional environments for which

developers write queries, knowing the search requirements and the data schema and structure.

This means that they also have different challenges to overcome in terms of offering a usable

interface that does not significantly limit expressivity (see Section 3.5). Having both a usable

and an expressive interface that offers different features to assist users in their access sessions,

and allows more structured queries and thus less confusion in the integration stage is important.

Considering its order in the running of the system, the user interface can deeply influence the

results of the following steps. In the second phase of data integration, the front end focuses on

result visualisation. Presenting information that can be clearly interpreted by the user is a major

consideration in relation to usability.
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3.4.2 Mediator

The mediator is a core component of data integration systems. Positioned as an intermediate

and a broker between the users and the sources, the mediator has the function of abstracting the

user from the fact that information is coming from various different sources. Conventionally,

the word mediator was used interchangeably with the term global schema. In the context of

this thesis, however, the mediator is the middleware that comprises the global schema and other

modules that together act as a transparent interface to a set of data sources. The mediator has

many roles. These can be summarised using two headings:

• accepting and processing the user query before distributing it to the adapters (or wrap-

pers); and

• collecting and reconciling the outputs in order to present them as results in the form

requested by the user.

The mediator can involve a pre-processing step. The pre-processing role can vary from

one approach to another. In most cases, however, it is needed to either formulate and clean the

queries that will be sent to the sources, or/and the reverse, to prepare the sources to be processed.

Either way, the execution of effective pre-processing is generally important before any further

operations are carried out.

3.4.3 Global Schema

As introduced in section 3.2.1, the global schema is the virtual view that temporarily stores

and represents the information presented from the sources. The global schema is the compo-

nent responsible for representing the outputs of the different sources into a single and uniform

temporary storage. Various methods of expressing the relationships between the global schema

and the sources schemas have been proposed – to respond to different conditions and use cases.

These methods can be classified into two categories:

• Local as View (LaV):– This is the paradigm whereby the local schemas are described as
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views of the global schema (as illustrated in Figure 3.5). Thus, new sources can easily be

integrated and added.

Figure 3.5: Local as View global schema design [Author, 2017].

• Global as View (GaV): – Here, the global schema is described according to the local

schemas (as shown in Figure 3.6). The advantage of GaV is simplicity of query rewriting

[Wu et al., 2012] and decomposing [Chou, 2005].

Figure 3.6: Global as View global schema design [Author, 2017].

The global schema is situated at the centre of the virtual data integration architecture and

it represents the transition from the heterogeneity of the data sources to the uniformity (of the

global schema). For this reason, it is crucial to choose an appropriate structure and format
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for representing the global schema that suits the characteristics of the data models taken into

account. Other requirements ought to be considered, such as the flexibility to manipulate the

chosen data structure and format (for example: the availability of tools to parse it).

3.4.4 Wrapper/Adapter

An adapter is a program, specific to one data source, which conventionally has two roles de-

pending on the stage of the process. The first role is to connect the mediator with the source so

the query can be executed. This includes the adapter’s function of being responsible for trans-

lating between the mediator query language and the query language native to the data source

[Ashish and Mehrotra, 2010]. An example of an adapter would be that of a Web API source in

a locally based application which must establish an HTTP connection with the Web server so

that requests can be sent. The second role, which adapter components are most known for, is to

extract and parse the results of a query so that they are formed and structured in a suitable form

for the user. The position of the adapter is that it is a process situated between the mediator and

its data source.

3.5 Current Challenges in Linked Data Integration

One of the primary reasons for the introduction of the Linked Data space was in order to promote

interoperability and uniform access to many RDF sources using one query language. Yet, a new

type of heterogeneity has arisen due to the distributed nature of the publishing of Linked Data

and the use of different vocabularies and structures to represent it. This area of research still

has an important emphasis on design approaches to reconcile the heterogeneity within Linked

Datasets. The following are the eight major challenges that this thesis identifies in regard to

most of the current data integration systems:

• Decentralisation and Autonomy of the Sources: It is paramount for data integration

systems, in or out of the Web of Linked Data, to deliver fresh and up-to-date information.

This cannot be achieved without addressing the dynamism of the relationships between
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the mediated schemas, or those between a central repository and its sources. The dis-

tributed nature and the autonomy of Linked Data sources make it unlikely that the use

of one model to represent all the data across a particular domain can be sustained. Each

source has its specificities, conditions, and a different vision in regard to the way to ex-

pand. The internal links within one Linked Data namespace can be consistent and easily

maintained. The external links, however, represent a challenging task, given that they

connect two vocabularies, models or views that are situated in separate locations and are

regularly changing.

• Heterogeneity: Many different and incompatible data and knowledge description for-

mats exist due to both legacy systems, on the one hand, and the increasing variety of new

approaches on the other. Various types of heterogeneity may occur at many levels, includ-

ing structural, syntactical and/or semantic mismatches; the access method; the language;

and/or the protocol [Macura, 2014].

• Usability for end users: This does not merely indicate that the system ought it to be

easy to operate, but also that it should provide sufficient information for the users to

appropriately interpret the outputs. The most usable method for accessing data sources,

arguably, is keyword search [Freitas et al., 2012], as no pre-knowledge is required to use

this [Macura, 2014].

• Expressivity: This is defined as the ability to ”query datasets by referencing elements in

the data model structure” [Freitas et al., 2012, p. 26]. A system can be considered expres-

sive if it helps the users to make their queries more specific and structured and helps them

to provide more details when querying data sources. In addition, defining and limiting the

domain can reduce the semantic conflicts; therefore, this increases expressivity. Target-

ing domain-specific knowledge is one of the characteristics of systems with the ability to

perform complex semantic interpretation and inference [Kaufmann and Bernstein, 2010].

• Adaptivity and the degree of Automation: Here, this can be defined as the flexibility

to accommodate continuous changes in data structures and models. This is an essential

criterion, particularly when Linked Data namespaces are amongst the sources, due to the

increasing expansion of the Web of Lined Data. It is also crucial for the potential to add
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further sources in the future. Offering tailored integration views [Ziegler and Dittrich,

2007] for specific sources or cases can be seen as a limitation.

• Privacy: Privacy of personal data access is a recent major issue in terms of this area.

Since most data integration systems are designed to be used by the public, the solutions

are required to not include, mine or index sources which contain personal data and other

sensitive information. Privacy is a big issue that can be met by including only publicly

accessible sources – by, for instance, using Web APIs and SPARQL endpoints.

• Implementability: This is a common data integration issue and is of particular promi-

nence in the generic and highly automated integration approaches, especially when ad-

dressing different data structures alongside Linked Data. It is not a problem in the cases

of study or task-specific systems.

3.6 An overview of Data Integration Approaches

Many solutions, intended to solve the problems of data integration and reconciling heterogene-

ity, have been proposed and researched (see Section 4.6). Since data integration is a fundamen-

tal issue for any deployed information system and a long-studied topic [Brennan et al., 2011],

various ways of classifying the available systems and approaches proposed in this area have

emerged. For instance, data integration systems can be categorised according to:

• The data models and the formats considered, or;

• The mediation method, or;

• The autonomy of the sources and the degree of automation of the process.

The various data integration approaches are reviewed in this section in the context of search

systems, with the exception of the last class – commercial data integration – where the contrast

between the focus of the semantic research community and the commercial tools is looked at

instead. Although not common to categorise according to the search mechanisms used, this

classification scheme is best suited to the collection of the maximum number of works that are
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related to the research approaches proposed in this thesis. This classification accords with the

type of application of the contributed approach (in Chapter 7) and allows for the covering of a

wide variety of solutions. Four classes are identified in this section:

3.6.1 Document-Centric Search

This is also referred to as universal search. This category consists mainly of the popular search

engines, such as Google, Yahoo and Bing. At the time that these were introduced, many other

technological breakthroughs were able to connect users with that one data source which con-

tained the information that they needed. Search Engines had the role of finding this one data

source by searching for documents across the Internet using keywords. Although they were ar-

guably an essential factor in the success of the Web, currently they are not competent to respond

to all user queries. Data, originating from various sources, can be used complementarily to re-

spond to the users’ needs, and this feature is not supported by current search engines. Whilst

search engines are able to perform federated searches across autonomous repositories, and some

of them extend their search to cover ”non-document” repositories, they still lack the ability to

interpret and join the information retrieved, semantically.

3.6.2 Semantic Search

Semantic Search is also referred to as Question Answering (QA) [Collarana et al., 2016]. The

collection of systems involved with semantic searching includes most of the Natural Language

Processing (NLP) systems. A knowledge base [Collarana et al., 2016] or an unambiguous on-

tology [Lopez et al., 2013] is commonly used in this type of system to process the query and

to integrate the outputs. The main limitation of these systems is revealed when addressing

large open-domain sources where the system ontology or the knowledge base is unable to dis-

ambiguate the query. Frequently, this class of systems is used to tackle heterogeneity within

Linked Data, whereas semi-structured data sources, accessed through Web APIs, are not con-

sidered. Various solutions can be mentioned which fall within this category [Lopez et al., 2012;

Schlaefer et al., 2007; Shekarpour et al., 2015]. The term heterogeneity is used, in regard to
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most of the approaches in this category, to refer to the ambiguities and discrepancies in describ-

ing Linked Data resources. These can lead to multiple, yet not similar, results for one query.

The semantic search approaches propose tools for combining and ranking the results that give

priority to the most accurate information.

Heterogeneity in the present thesis has a wider meaning, as discussed in Section 3.5, being

the differences in the structures, syntaxes, access methods, languages, and protocols present not

only internally between Linked Datasets, but externally in relation to semi-structured sources.

3.6.3 Hybrid Search

The term hybrid search indicates the ability to take in various data structures to respond to

the user’s query [Morbidoni et al., 2008; Usbeck et al., 2015]. Frequently, the various data

structures referred to include both structured and unstructured data [Usbeck et al., 2015]. In

this thesis, the data structures in the definition of hybrid search are limited to semi-structured

Linked Data (which is structured data). Bhagdev et al. [2008, p. 567] argued that the interesting

aspect of hybrid search is its ability to overcome ”an implicit limitation of most of the current

literature, that is that semantic search must rely on metadata only”.

This category of systems can be studied from many perspectives. The main aspect that will

be discussed in relation to the existing tools that belong to this category, in Section 4.6, is the

methods used to integrate different data structures.

3.6.4 Commercial Data Integration Solutions

Many products, some of them offered by well-known IT companies, can be listed in this sec-

tion. DB2 information integrator (DB2II) and Oracle Integration are just two instances; these

are provided by IBM and Oracle respectively. They generally support various data types and

formats and they are fairly efficient in their query optimisations. On the other hand, commercial

data integration products generally, including these two examples, offer solutions which instead

of integrating data, combine and fuse data originated from heterogeneous and dispersed sources
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[Friedrich and Wingerath, 2010]. They ”are essentially data federation tools that are still far

from [being] data integration systems” [Poggi, 2006, p. 24]. The user of these products is still

not provided with a logically unified view in relation to their queries (as discussed at the begin-

ning of this chapter), but rather a tailored interface which accommodates different result types

and formats.

More importantly, Linked Data sources, as far as can be seen from the documentation of

these products, are not listed as part of the considered sources. The RDF data model, as high-

lighted in Sections 2.2.2 and 2.3.3, has distinct structural features that distinguish RDF sources

from other data sources. Therefore, it requires different procedures to integrate its schemas and

to sustain these changes. These procedures are not part of the scope of the commercial products

as they are still experimental and under research and development.

3.7 Data interlinking

The interlinking of Linked Data is a subject which has been extensively researched by the

Semantic Web community over the last few years [Lesnikova, 2016]. It is a fundamental concept

of Linked Data, and a key factor for the success of the Semantic Web, to create typed links

between the different data sources in the extension of the global data space [Bizer et al., 2009].

The ideal scenario in publishing Linked Data is allocating a unique URI to every real-world

entity. Having multiple identities for the same resource reduces its discoverability and therefore

reduces significantly its value and the chances of it being re-used. This ideal scenario, however,

is practically unachievable, considering the distributed nature of the Linked Data paradigm [Hu

et al., 2014] and the massive number of real word things that exist. Hence, alternative solutions,

such as data interlinking, take place in order to provide owl:sameAs links, as illustrated in

Figure 3.7, between items representing the same resources that may be situated in the same

or in different data sources. owl:sameAs links, as provided by OWL semantics, allow the

discoverability of references to identical resources residing in different machine readable data

repositories. They are also used to materialise inferable knowledge and to potentially generate

additional results [Umbrich et al., 2012].
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Data interlinking can be seen as a reverse of data integration. The term indicates the op-

eration of discovering the machine counterparts of the same real-world object [Nguyen et al.,

2012b]. The term ”data interlinking” is used by some researchers interchangeably with the

term ”instance matching” [Euzenat, 2015]; for others, instance matching is one stage of the

interlinking process [Nguyen et al., 2012b]. The interlinking referred to in this thesis represents

the entire process and steps needed to establish similarity links between two resources. Instance

matching and ontology alignment are techniques that can be used as steps to solve the problem

of interlinking.

Figure 3.7: The Data Interlinking Process [Scharffe and Euzenat, 2011].

There is an ambiguity between the terms ”link discovery” and ”data interlinking”. Demi-

dova et al. [2015] indicated, basing on some examples, that entity interlinking is broader than

link discovery since the latter focuses only on sameAs links. Ngomo and Auer [2011], however,

stated that that link discovery approaches aim at finding typed links, including sameAs. One of

the first and most popular approaches which labelled itself as link discovery, SILK (see Section

4.4.4), aligns with this statement. This thesis agrees with Ngomo and Auer [2011], and other

authors, and considers link discovery a broader topic than data interlinking since it is not limited

to identity links.

The rest of this section identifies and explains four of the main phases and concepts re-

lated to the interlinking task; two of these are fairly indispensable, being blocking and instance

matching. Figure 3.8 shows how these stages are positioned in the data interlinking process.

The use of ontologies and similarity measures are two popular methods employed to determine

whether two descriptions or labels, respectively, refer to the same real-world entity.
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Figure 3.8: General architecture showing the different ways in which data interlinking was
approached [Author, 2017].

3.7.1 Blocking

Blocking, in this context, means grouping similar objects, as Figure 3.9 illustrates, using a

blocking key. It is the initial stage in the interlinking process whereby the number of candidates

is reduced. As a result, a block that consists of a set of potential identity pairs of instances is

generated. This is an important step as it affects the performance of the system, considering that

the inputs of the heavy processing operations in the instance matching stage will have resulted

from the blocking. The blocking stage aims to achieve two goals:

• Reduction Ratio

This measure represents the efficiency of the blocking. It quantifies the ability of a blocking

algorithm to minimise the number of comparisons (in further stages) by removing obvious non-

matches. More formally:

RR (Reduction Ratio) = 1− T he number o f candidates
T he number o f All pairs

The number of all pairs = |S| x |T| (S and T are the number of inputs of the source and target

datasets respectively).
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Figure 3.9: A digram illustrating and explaining the blocking step [Author, 2017].

The number of candidates indicates the number of pairs produced by the blocking. Gener-

ally, the blocking algorithms search for obvious non-matches and exclude these from the target

set:

| Tb |≤| T | (Tb target set produced by the blocking)

T he number o f candidates =| S | × | Tb | (≤| S | × | T |)

• Pair Completeness

This value measures the number of true matches identified by the blocking algorithm versus the

number of these that exist in the entire dataset, as described in the equation below:

PC (PairCompleteness) =
Cm

M

Cm indicates the number of true matches candidates found by the blocking algorithm.

M refers the number of the true matches in the entire dataset. Therefore, theoretically:

Cm ≤M
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3.7.2 Instance Matching

Instance matching goes by a number of different names, these being: record linkage, data

matching, the merge-purge problem and entity resolution [Christen, 2012; Elmagarmid et al.,

2007]. Instance matching is the problem of matching pairs of instances that refer to the same

underlying entity [Scharffe et al., 2013]. Instance matching is a technique originating from

knowledge discovery and data mining algorithms [Elmagarmid et al., 2007]. But recently, it

has seen numerous applications in Web Semantics.

In data interlinking, this is the stage that immediately succeeds the blocking step. The

matching status of the outputted pairs is verified in order to discover identity pairs [Nguyen

et al., 2012b].

3.7.3 Using Ontologies in Data Interlinking Alignment

Ontology alignment is a subarea of schema matching (see Section 3.2) and is the process of

finding correspondences [Euzenat et al., 2007] between concepts, properties, or instances in

two or more ontologies, based on their similarities [Gunaratna et al., 2014]. Ontologies in

data interlinking are generally used to identify and compare instances that are part of the same

classes, based on them having the same properties.

Using ontologies does not exclude the possibility of using other similarity techniques. Their

utilisation can serve as a hint that materialises as a coefficient or as an element of a similarity

algorithm, for example. Experiments have revealed also ”that the use of ontology features

increases accuracy of instance matching for data integration” [Wang et al., 2006, p. 1].

There are many methods by which ontologies can take part in an interlinking process. They

can be summarised, however, under two broad headings. The first approach is to describe the

two resources using a common ontology before the interlinking and matching process takes

place, as Figure 3.10 illustrates. The second approach is to align the independent ontologies of

the two resources to draw correspondence that will then be used in the interlinking, as Figure

3.11 shows.
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Figure 3.10: Data interlinking via a Common Ontology [Author, 2017].

Figure 3.11: Ontology Alignment in Data Interlinking [Author, 2017].

3.7.4 Similarity Measures

Similarity algorithms are used to measure the distances between the properties of the elements

of the source and target datasets. They can be sorted into one of two categories:

3.7.4.1 Syntactic Similarity

Syntactic similarity refers to the set and string similarity algorithms that are used in some in-

stance matching approaches to calculate the syntactic distance between two predicates or entity

labels. Jaro-Winkler is a popular example of a string similarity algorithm. This algorithm uses

a mixture of string and set similarity [Nikolov et al., 2008a], meaning that the compared values

may be tokenised before the standard Jaro-Winkler algorithm is applied and the maximal total
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score is selected [Nikolov et al., 2008b].

3.7.4.2 Semantic Similarity

In this group of algorithms and tools, the distance used is based on the meaning of the word

rather than on its label or lexical form. Semantic similarity is an essential element of many

Semantic Web topics, including Natural Language Processing (NLP) [Ma et al., 2015] and

information retrieval [Batet et al., 2013]. The UMBC tool is an example of one kind of tool

which has been proposed for semantic similarity measurement. It is constructed by combining

the use of LSA word similarity and WorldNet knowledge. UMBC focuses on the semantics of

the word but not on its lexical category. This makes it a typical similarity measurement mean

for data interlinking and integration approaches which take Linked Data as at least one of their

inputs, since the available vocabularies for describing resources in this paradigm vary between

nouns and verbs. UMBC also provides a Web API whereby external systems can retrieve the

similarity between two texts without the necessity of going through a re-implementation of the

approach. The following URL provides a prototype of the UMBC API:

http://swoogle.umbc.edu/SimService/GetSimilarity?operation=api&phrase1=

SourcePropertyLabel&phrase2=TargetPropertyLabel

3.8 An Overview of Data Interlinking and Link Discovery

Approaches

In the last few years, the problem of interlinking has been approached in a number of different

ways, and this has led to the appearance of many sub problems and classifications. The most

popular classification is the one which distinguishes between ontology matching and instance

matching. An ontology may not be consistent and the solutions using it as a reference cannot

precisely represent real-world knowledge [Dong and Hussain, 2014] nor can they sustain the

dynamism and freshness of data.
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Discriminations between the systems proposed can also be established according to the

degree of automation of the process (manual, semi-automatic, automatic), and the kinds of

the links they create (relationship, identity or vocabulary links). The existing data interlinking

systems also use many techniques to optimise interlinking efficiency, these being: contextual

matching, probabilistic matching and logic-based matching [Homoceanu et al., 2014] etc.

SLINT [Nguyen et al., 2012b], SLINT+ [Nguyen and Ichise, 2013], [Böhm et al., 2012],

SERIMI [Araujo et al., 2011] and RiMOM [Zheng et al., 2013] are some examples of relatively

successful approaches for interlinking large-scale data. However, Homoceanu et al. [2014] and

many other authors believe that their results are either still unsatisfactory or are based on data

sets which are biased in order to achieve the highest possible precision and recall. These were

all presented as part of the yearly event: Ontology Alignment Evaluation Initiative (OAEI).

EventMedia [Khrouf and Troncy, 2016] and the system proposed by Zhang et al. [2013] are

projects aiming at interlinking data within a specific domain. As part of their projects, they both

tried to find the most accurate weights to give to the properties in their particular domains.

There are a large number of approaches and tools designed to address the problem of match-

ing and discovering links in the Linked Data space. What has been presented in this section are

examples of arguably the most popular approaches that have addressed the problem differently

or shown a promising result at some point.

3.9 Summary

This chapter explained two major Semantic Web research topics: data integration and data

interlinking. It also described these approaches’ different components and has highlighted their

current challenges. Schema matching is another topic that was discussed – at the beginning of

this chapter – because both data integration and data interlinking approaches use it. This latter is

the module responsible for reconciling the structural heterogeneity in both the data integration

and the interlinking approaches presented in this work. This chapter also presented a general

overview of the different methods by which these topics have been approached along with a

discussion of some of their advantages and limitations.
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The author through this chapter showed the different paths, as well as their limitations and

advantages, that can be taken in addressing data integration and interlinking of semi-structured

and Linked Data. Along with Chapter 2, This allows the explication of some of the choices

made in designing the contributed approaches in the present thesis.

The next chapter expands the literature review started in this chapter by analysing existing

schema matching, data integration and data interlinking approaches.
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Chapter 4

Related Works

You can have data without information, but you

cannot have information without data.
Daniel Keys Moran

4.1 Introduction

This chapter looks into existing systems addressing schema matching, data interlinking and

integration in Section 4.2, 4.4, 4.6 respectively. Each of these sections are followed by an

analysis and discussion section where limitations of the related works studied are discussed

and constructive observations are made. It is not the author’s intention to cover all existing

approaches, but to review and investigate the capabilities of a selection of the most popular and

related systems with respect to their approach, evaluation method, scope, etc. Different metrics

are utilised to select the reviewed approaches in each of the topics covered in this chapter.

4.2 Schema Matching

Many schema matching approaches were proposed throughout the last two decades. This review

presents a selection of the popular approaches that significantly differ in their matching process
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or the evaluation method they used.

4.2.1 Cupid

Cupid [Madhavan et al., 2001] is a generic and hybrid schema matcher that utilises a name

matcher and a structure-based match algorithm. This tool uses a generic internal representation,

called the schema tree. The schema tree is used to find the element matchings of a schema,

using the similarity of their names and types at the leaf level [Manakanatas and Plexousakis,

2006]. However, since the structural matching phase is primarily based on the similarity of the

leaves, Cupid cannot find accurate mappings if there are considerable variations in the structure

of the given graphs [Le et al., 2004].

Evaluation: Cubid was evaluated against two other schema matching, DIKE and MOMIS.

The first part of the evaluation the systems were tested with some canonical match tasks con-

sidering very small schema fragments [Do et al., 2002]. In the second part, the systems were

tested using 2 real-world semi-structured (XML) schemas for purchase orders. A comparison

was then drawn by exploring for the correspondences which could (or could not) be identified

by a particular system [Do et al., 2002]. Although Cubid showed a better efficiency against

other systems by identifying all necessary correspondences for these match tasks, no quality

measures were calculated.

Some pre-match effort was needed in Cupid to specify domain synonyms and abbreviations.

4.2.2 COMA

COMA [Do and Rahm, 2002] is a generic match system that supports semi-structured (XML)

and relational schemas. It provides a library of match algorithms and allows various ways for

combining match results. This library can be extended with new match algorithms to be used

in combination with other matchers. The combination of strategies addresses different aspects

of match processing, such as, aggregation of matcher-specific results and match candidate se-

lection. In COMA, schemas are converted into rooted directed acyclic graphs [Do et al., 2002]
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and used as the input of the match algorithms. The complete path from the root of the schema

graph to the corresponding node is the unique ID of each schema element. COMA++ [Au-

mueller et al., 2005] extends COMA by supporting both schemas and ontologies (written in

OWL). Other improvements were also made such as adding a graphical user interface and new

matchers ontology matching and reusing existing match results.

Some pre-match effort was needed in COMA to specify domain synonyms and abbrevia-

tions.

Evaluation: 5 XML schemas (for purchase orders taken from biztalk.org) were used

to evaluate COMA [Do and Rahm, 2002]. Their size ranged from 40 to 145 unique elements

(paths). Ten match tasks were defined, each matching two different schemas. To provide a basis

for evaluating the quality of different automatic match strategies, the authors first manually

performed the match tasks.

The evaluation of COMA went through 12,000 test series in order to evaluate the system

using different choices of matchers and strategies. Each test series constituted of 10 experiments

(predefined match tasks). The best combinations of parameters were identified based on their

precision and recall across the series. The best F1 score achieved by COMA was 0.91 (average

precision 0.93, average recall 0.89). Some pre-match effort was needed in COMA to specify

domain synonyms and abbreviations.

4.2.3 Harmony

Harmony is a match module proposed as part of the Open Information Integration project

(OpenII) [Seligman et al., 2010]. It takes as an input both structured and semi-structured data

sources including XML, relational, and ontology-based data sources. As described in [Bellah-

sene et al., 2011], this approach utilises external dictionaries in the matching process which

indicates that the update of Harmony is related to the freshness and ability of these dictionaries

to be extended automatically or semi automatically.

Evaluation: a clear evaluation of the effectiveness of this approach has not been yet pre-

sented [Rahm, 2011].
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4.2.4 MapForce

MapForce [Force, 2014] is a graphical schema matching and mapping tool which supports

XML, database, flat file, EDI34, and Microsoft Excel. MapForce has a data mapping environ-

ment which can load source and target schemas so that the user can easily map the schemas

using functions and features provided by the tool. It tries to achieve higher efficiency through

a graphical user interface [Rathinasamy, 2011]. This enables mapping functionalities like child

elements mapping, functional libraries, and filters. A drag and drop mapping system makes the

mapping easy from source to target schemas. This mapping process can be exported to XSLT

transformations. The user in MapForce, for instance, has to draw correspondences between two

schemas in order for the data integration queries to be generated automatically.

Evaluation: MapForce is a commercial tool so it has not been qualitatively evaluated as

part of a research project.

4.3 Analysis and Discussion of Schema Matching Approaches

A common aspect of the systems and approaches discussed in the previous section is that they

need a human action in order to function or to apply settings to accommodate changes in cir-

cumstances or in the considered data sources. This is infeasible in practice when paradigms

like Linked Data are amongst the sources, as its main characteristic is it can change and extend

very rapidly. The problem of human interference, or the degree of automation, in adapting the

schema matching systems to current or likely future changes has not been the main priority in

the approaches explored.

Unlike the OAEI instance and ontology matching techniques [Jimenez-Ruiz, 2017] (see

Sections 4.4.1,4.4.2 and 4.4.3), where reference alignments are provided to allow a clearer

comparison, evaluating schema matching and mapping techniques targeting different data mod-

els against existing tools and approaches has always been a difficult task [Bellahsene et al.,

2011]. It is challenging ”to make data of different types of benchmarks comparable with each

34Electronic data interchange
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other” due to the lack of a common description or a parameter that can be measured upon [Pfaff

and Krcmar, 2014, p. 1]. The comparison is frequently carried out theoretically taking into

account approaches that have not necessarily presented explicit results. Well-established mea-

sures for qualitative evaluation are needed to evaluate the precision, recall and scalability, as

well as identifying the best suited threshold value for semantic distance comparisons. As far as

explored, there are no implemented schema matching approaches targeting semi-structured and

Linked Data which also address the problem of sustaining and accommodating the inevitable

continuous changes in Linked Data sources.

4.4 Data Interlinking

Many data interlinking approaches have been proposed throughout the years either indepen-

dently or as part of the yearly OAEI event. This section presents a review of the most popular

and more related solutions.

4.4.1 SERIMI

SERIMI [Araujo et al., 2011] was the second best system at the OAEI Instance Matching 2011

[Nguyen et al., 2012a]. It does not require any ontology alignment upfront or prior knowledge

of the data or the schema. It is the tool that the interlinking approach proposed in this thesis

based on (see Section 6.3). It consists of two phases: the selection phase and the disambiguation

phase.

The selection phase is based on what their authors Araujo et al. [2011] described as existing

traditional information retrieval and string matching algorithms. More specifically, it begins by

extracting the entity label properties of the source dataset, which are the properties describing

the labels that most represent the resource being interlinked (all RDF predicates that have a

literal value with less than 200 characters). Only discriminative predicates with a higher entropy

than a certain threshold are considered. Then, the labels of these properties are utilised to search

for resource candidates with the same or similar labels. The results are resource candidates
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called a pseudo-homonym set. The entity label properties of each of these resource candidates

are extracted in the same way as was done to the source dataset. The entity labels of the common

property between the source and target entity label properties is then normalised, tokenised and

compared using RWSA [Branting, 2003] algorithm. The resources with a similarity score below

70% are discarded from the pseudo-homonym set.

Having a set of pseudo-homonym for each source resource, the disambiguation phase then

takes place to filter out false positive matches from true positive matches. They define false

positive matches as resources in which their instances share the same label but belong to differ-

ent classes, for example: Algiers can be a street, hotel, or a city. This problem is addressed in

SERIMI via a model called Resource Description Similarity (RDS). RDS identifies the class of

interest by finding the set of resources that are the most similar among pseudo-homonym sets.

The limitation of SERIMI is that it is restricted to only a single [few] properties for the

matching [Nentwig et al., 2017]. Additionally, the similarity threshold and other parameters

have to be specified manually.

4.4.2 SLINT

SLINT is a domain independent Linked Data interlinking system. It uses coverage and dis-

criminability to select the important predicates. Then, these predicates are aligned based on

their confidence. The confidence in this context is high when corresponding predicates describe

instances sharing the same type and characteristics. Using a three steps process (indexing, accu-

mulating and candidate selection) SLINT generates the pair of instances with a high possibility

to be homogeneous. The score of the instances of the generated candidates is calculated taking

into account the confidence of their predicates and their similarities. The similarity is calculated

differently according to the data type. For objects of type date, for instance, the similarity is

1 if the two values are equal and 0 otherwise. For strings type objects and URIs, they utilise

TF-IDF35 which gives advantage to instances sharing more common tokens.

SLINT was published as part of the yearly ontology matching event in 2012 (OM-2012).

35Term Frequency-Inverse Document Frequency
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Other versions and extensions were published since then, including SLINT+ [Nguyen and

Ichise, 2013], ScSLINT [Nguyen and Ichise, 2015]. SLINT+ presented the same principles

of SLINT applied on OAEI 2013 benchmarks. ScSLINT identifies the lack of scalability of

its predecessors and tried to address the performance. ScSLINT, however, does not consider

balancing performance with precision or recall. Nguyen and Ichise [2015] (the authors who

proposed ScSLINT) also described the use of weighted matrix structure in computing the sim-

ilarity in candidate generation stage of SLINT+ (and SLINT) as not scalable and inaccurate on

ambiguous data. The main features presented in ScSLINT and later versions have been: i) to

normalise the data format in calculating the confidence, ii) to consider only target properties’

objects that overlap the objects of its source counterpart property, and iii) to enable the user to

install new similarity measures. These modifications naturally enhance the performance rela-

tive to previous releases, but they are also expected to impact other non-performance measures

(such as precision and recall), something that is not elaborated in ScSLINT.

4.4.3 RiMOM

Risk Minimization based Ontology Mapping (RiMOM) [Zhang et al., 2016] was first developed

in 2006 [Li et al., 2006a] and was originally a multi-strategy ontology matching and property

matching approach. It is based on the combination of three lexical strategies being EditDistance,

Vector-Distance and WordNet [Niu et al., 2011]. An adaptive variation of similarity flooding is

also used with the structural matching.

In 2010, RiMOM focus shifted, to some extent, to instance matching. As described in

Shvaiko et al. [2010], their approach consists of four stages being: Preprocessing, Information

Complementation, Matching and Spread Similarity, which respectively aim for:

• classifying individuals by their classes;

• completing information of each individual;

• running the matching algorithm for each class respectively;

• computing the similarity of two candidates based on weight-mean of properties assigned

with specified weights.
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RiMOM2013 [Zheng et al., 2013] is an extension of RiMOM. It was presented as part of

the ontology matching annual event OM-2013. Generally, the new characteristics that have

been contributed to this new version, in contrast to the 2010 version, were a new interface and

control layers that allow the user to customise the matching procedure. This included selecting

preferred components, setting the parameters for the system, choosing to use translator tool

or not. For the instance matching track, particularly, a new algorithm inspired by Wang et al.

[2012], called Link Flooding Algorithm, was used. It is constituted of three modules. The first

module performs a simple pre-processing and normalisation of the data such as unifying the

language and data format and removing special characters. The second module is described

using examples, but it is mainly logical matching whereby the subjects are aligned. The third

module is for objects alignment (another term of instance matching described in Section 3.7.2).

A weighted average score of the similarity of the instances of specific properties is calculated

and compared against a threshold to decide whether two instances are aligned. The similarity

measure used is EditDistance [Navarro, 2001].

RiMOM is a popular tool that produced promising results as an ontology matching solution

[Li et al., 2006a]. As an instance matching approach, RiMOM similarity metrics has been eval-

uated in Rong et al. [2012] against existing learning approaches. The results suggested that the

combination of the three strategies is not accurate enough for instance matching. RiMOM2013

showed good results, but it targeted specific properties (comments, mottos, birthDates and

almaMaters) that were rather tailored for the addressed benchmark of the OM-201336 event.

4.4.4 SILK

The Link Discovery Framework (SILK) [Volz et al., 2009] is a link discovery system that sup-

ports a data publisher in setting explicit links between two datasets. It has its own declarative

language Silk - Link Specification Language (Silk-LSL) that data publishers can use to choose

which types of RDF links ought to be discovered between data sources and which conditions

data items must fulfil in order to be interlinked. Various similarity metrics can be applied to

these link conditions as well as taking into account the graph around the data item using an

36http://om2013.ontologymatching.org/
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RDF path language.

Four main advantages the authors of SILK outlined: i) the flexibility that Silk-LSL offer in

defining link conditions; ii) generating not only identity links, but other types of RDF links; iii)

the ability to be applied in distributed environments without replicating the data locally; iv) the

implementation of multiple caching, indexing and pre-selection to improve the performance.

On the other hand, SILK has not been evaluated and tested in the same way as existing

data interlinking approaches have been. No benchmark was used and the primary focus was

the number of the links that can be discovered. The precision and the recall have not been

considered. This is may be due to two reasons. SILK was published in 2009, when there were

not many systems to compare against and OAEI had just started publishing benchmarks, for

instance matching, in the same year. The second reason is that SILK is a link discovery system;

therefore, other RDF links can also be discovered which makes it challenging to evaluate the

same way as identity links (interlinking) approaches. It is used to assist with linking data with

existing resources in the Web of Data. Although the evaluation is not as revealing as it can

be, Nguyen and Ichise [2015] stated that the limitation of SILK can be seen when addressing a

large-scale dataset.

4.4.5 LIMES

LIMES [Ngomo and Auer, 2011] is a link discovery tool that, similarly to ScSLINT, focuses

on improving the processing time when mapping large knowledge bases. It views the problem

of data interlinking from a metric space perspective. It uses mathematical characteristics, such

as triangle inequality, to compute pessimistic approximations of distances and to estimate the

similarity between instances [Symeonidou, 2014]. Based on these approximations, LIMES find

and exclude a large number of computations without losing links.

LIMES showed more efficiency in terms of time-consuming than SILK [Rajabi et al., 2015].

Similarly, to many record linkage and link discovery tools, it concentrates much of its efforts

on filtering out non-matches before going through the more time-consuming comparisons.
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4.5 Analysis and Discussion of Data Interlinking Approaches

The one noticeable aspect in the data interlinking approaches, including some that were not

mentioned in the previous section, is that they are multidisciplinary. Many techniques originated

from different computing and mathematics subfields are employed or combined to improve

the results, including: Semantic Web, Data Mining, Geometry, Probabilities, etc. In terms

of modules constituting the approaches, the most common stage in most of the interlinking

systems is the pre-processing. This suggests that the pre-processing is necessary before the

heavy processing of data interlinking.

The other point that can be drawn is that most of the solutions explored have not addressed

balancing between performance and precision. Balancing between performance and precision

indicates that the solution ought to aim at or attempt an acceptable precision and recall of a

relatively large-scale dataset in a reasonable time. The reason for this can be linked to the

nature of the instance matching organised challenges, such as the OEAI yearly event, where the

comparison is centred mainly on precision and recall but not performance. The other argument

or observation that can be stated is that the application of data interlinking is not always time-

critical as in other fields, such as data retrieval.

Although OAEI provides reference benchmarks from a variety of sources, the available

evaluation data is still insufficient to recognise and compare the performance of the approaches

[Ferrara et al., 2008]. This statement was made in 2008; yet, it can be still considered as

accurate to some extent, as not too many changes have been introduced since then.

All the approaches discussed, except SILK, and seen to date but non-mentioned interlink-

ing approaches, were designed to discover identity and/or other links on existing published data.

Going back to the point made in the previous paragraph about performance, it would be theoret-

ically better to find the links in the publishing stage. Meaning that the tool should automatically

interlink the data being published with its existing counterpart in the Web of Linked Data.
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4.6 Data Integration

The data integration approaches reviewed in this section have been chosen on the basis that:

i) they can be compared against the integration approach proposed in this thesis (see Chapter

7); ii) consider semi-structured and Linked Data as input models, or; iii) those that the author

utilised some of their components.

4.6.1 FuhSen

FuhSen [Collarana et al., 2016] is a keyword search platform that integrates heterogeneous data

sources. It is a usable and an adaptable solution within its scope of interest, which is crime

data information. As part of the integration process, the application uses many components

including their own vocabulary named ”OntoFuhSen”. The vocabulary is used as an exchange

and an intermediate language between the other parts of the system. In its current status, it

was tailored to accommodate information about their targeted data, being information about a

person, a product or an organisation. In spite of the fact that the vocabulary can be extended,

its position suggests that many other changes would also need to be made. Wrappers (adapters)

are one of the components connected to the vocabulary. They are designed to extract data from

the source outputs. In FuhSen, every data source is associated with a collection of wrappers.

4.6.2 PowerAqua

PowerAqua [Lopez et al., 2012] is one instance of QA37 solutions, evolved from AquaLog

[Lopez et al., 2007], that proposes the use of multiple ontologies that will be selected according

the user’s query. It is a concept that will be utilised in the proposed data integration approach

because, as stated by the authors, it is not possible to select in advance which of the vocabularies

or ontologies will be needed to answer a query.

37Question Answering
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4.6.3 MOMIS

In Vincini et al. [2013], the authors described the Mediator/Wrapper based architecture for in-

tegrating semi-structured and structured data. Mediator envirOnment for Multiple Information

Sources (MOMIS) uses its own description, definition language and thesaurus for extracting,

defining and storing the information inputted and retrieved from the sources. In their semi-

automatic methodology, they follow Global as View (GaV) paradigm (see Section 3.4.3) to

express the global schema following the view of local schemas.

4.6.4 SWIM

Semantic Web Integration Middleware (SWIM) uses query mediation and provides tools to

”view data as virtual RDF” [Koffina et al., 2006]. The middleware publishes, or re-publish,

XML and Relational databases (RDB) as RDF. Resource Query Language (RQL) queries which

are then composed and optimised according to the RDF views and the mappings constructed.

4.6.5 LSM

The layer architecture in Le-Phuoc et al. [2012] illustrates Linked Stream Middleware (LSM), a

middleware system to integrate time-dependent data, or sensor data, with the Linked Data cloud.

It unifies and publishes stream raw data, coming from different sources, as Linked stream data

before finally executing SPARQL queries over them. The system uses wrappers in the data

acquisition layer to collect the data from different sensor devices and publishes them into a

unified format. Having the data stored in a Linked Data layer, it will then be accessed via two

types of query engines: a standard SPARQL query processor and Continuous Query Evaluation

over Linked Streams (CQELS) engine processor.
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4.7 Analysis and Discussion of Data Integration Approaches

It can be clearly seen from the schema matching and data integration approaches review (see

Section 4.6 and 4.6) that the problem of reconciling heterogeneity affects many research areas

and systems. One of the major aspects distinguishing one category from another is their inter-

pretation of heterogeneity or the part thereof they are concentrated on. The other point is the

characteristics and the context of the data. For instance, Smart Cities’ integration systems or

modules receive stream data originated from sensors; thus; they demand more ability to main-

tain data freshness [Kettouch et al., 2017b, 2016]. Whereas search systems’ needs, for example,

are different. They are more interested in retrieving accurate results in a reasonable time from

the largest, but relevant, number of sources and display them in an interpretable form.

The idea presented in the previous paragraph suggests that there is not one optimal solution

for the entire data integration problem. Still, this does not mean that there cannot be an effective

solution for particular data models in a particular context. The two previous statements are one

of the primary reasons why schema matching is addressed separately from its super class (data

integration) in this thesis. Schema matching reconciles specifically structural heterogeneity

without paying attention to the other differences, such the access method for example. It is a

common and a fundamental part of most of data integration and exchange systems [Bellahsene

et al., 2011; He and Chang, 2003]. It can also be argued it is the most context-free module as it

only matches between structures regardless of where it is applied. It aims at achieving generic

challenges, such as: adaptivity, performance, data freshness and precision, so the module suits

nearly all types of applications.

4.8 Summary

The analysis of related works have led the author to conclude that there is a need for new ap-

proaches for data integration and interlinking. This chapter also found that the explored schema

matching techniques are not adapted for the data input and the requirements, such as: degree of

automation and adaptivity to changes, that this thesis focuses on. On the other hand, the author
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has also identified several features that the proposed system can incorporate or base on in ad-

dressing the research questions and designing the contributed solutions, such as: the knowledge

base in-dependency in SERIMI [Araujo et al., 2011] and the selection of an ontology on-the-fly

depending on the user’s query presented in PowerAqua. This chapter has also identified features

that can be used as evaluation criteria for the proposed system (see Sections 4.3, 4.5 and 4.7).

The next three chapters present the new approaches proposed to fill the knowledge gap

identified in this thesis, along with addressing the limitations discussed in this chapter and the

criteria extracted in Chapters 2 and 3. The next chapter introduces the new schema matching ap-

proach and explains how it copes with the data freshness requirements and continuous changes

in the Linked Data space.
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Chapter 5

SimiMatch: Schema Matching for

Semi-structured and Linked Data

Intelligence is the ability to adapt to change.

Stephen Hawking

5.1 Introduction

Schema Matching is at the core of many Web semantics, database systems and topics, such as

data integration, data warehouse and semantic query processing. It is frequently considered as

the most challenging and decisive stage. Today, not only does schema matching have to deal

with ”static” heterogeneity, but it also needs to accommodate continually changing data content,

structure and organisation. This is something that legacy systems have also experienced, but not

at the current scale.

The Linked Data paradigm is a common standard, implemented through a set of recommen-

dations, that complement the general architecture of the Semantic Web. The aim was to create

a single space containing data, that is machine-readable and connected to related data whether

from the same or other external sources. However, figures show (see MQ1 in Section 1.2) that

one of the main sources of semi-structured data providers, Web APIs, continued to grow even
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after the creation of the Linked Data concept [Abawajy, 2015]. Given that data sources with

significant value are still in a semi-structured format, it is essential to bridge between the two

data models, so that the full potential of the Semantic Web can be realised.

The reduction of barriers in sharing knowledge over the Web via Linked Data gave more

flexibility in contributing to this data space. Consequently, data repositories appertaining to this

paradigm are changing and expanding very rapidly. Linked Data aims to provide links between

different data sources in order to create a single global data space, ”the Web of Data”.

The appearance of new data spaces along with the growing amount of semi-structured data

suggests that more research on schema matching is needed. In addition, since Linked Data is

expected to change over time using different vocabularies, the schema matching as part of it

ought to be able to accommodate these changes.

This chapter presents an approach for schema matching that takes as input both semi-

structured and Linked Data. The new approach proposed in this thesis is called SimiMatch

Kettouch et al. [2017a, in press] and it is based on the observation made by the author in [Ket-

touch et al., 2015a] that datasets in the same domain may not be syntactically identical but the

semantics of their properties may overlap. The contribution lies in exploiting automatically this

overlap by mapping between the elements of the sources and global schema. The process in-

volves extracting the semantically distinct properties from the sources, regardless of their model

or namespace, and transferring the output into the virtual view. This process is repeated, incre-

mentally building up a virtual view, ignoring duplicate information, to create a unique set of

semantically distinct properties from all the sources. As shown in Figure 5.1, SimiMatch is a

module in both the data interlinking and integration approaches proposed in this thesis.
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Figure 5.1: Relation of SimiMatch approach with reference to other systems of this thesis
[Author, 2017].

5.2 The New SimiMatch Approach

SimiMatch is an element-based schema matching approach that targets two data models, the

semi-structured (hierarchical) model and Linked Data (graph) model. It is designed to be

adapted and employed as a module, that reconciles the structural heterogeneity in the proposed

integration approach SemiLD (see Chapter 7) and the interlinking approach LinkD (see Chapter

6).

SimiMatch preserves the autonomy of the participant source. The matching is performed

without converting the data model or migrating it to another data space. SimiMatch is a domain-

dependent solution. Thus all the sources need to belong to the same domain for its full potential

to be achieved. Its focus is on the matching operation. No automatic recognition of the domain

is involved. In cross-domain Linked Data sources (DBpedia for example), the domain is ex-

tracted from the value of the property rdf:type. For semi-structured data sources, the Web APIs

are initially categorised manually to their domain.

SimiMatch does not utilise any reference, such as a knowledge base or an ontology, in

generating the mapping rules. As a result, it has the ability to process large-scale sources. The

result is a global schema that is a virtual view: a single and uniform temporary storage able

to accommodate the data coming from two, or more, data sources. Its creation and update is

automatic and unsupervised; hence, it does not require any manual interference. Consequently,

the approach can adapts any future changes from these dynamic data sources.
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Figure 5.2: Description of the creation and update of the global schema in SimiMatch [Author,
2017].

Although it is technically more precise to refer to SimiMatch as a schema integration ap-

proach since the output is a global schema (see Section 3.2.1), it is presented and investigated

in this thesis as schema matching problem as the main task and the focus is in matching the

elements (within the sources and between the sources and the global schema).

The overall functionality of SimiMatch is described in Figure 5.2. It can be seen that it

does not differentiate between semi-structured and Linked Data sources. Both the elements of

semi-structured data and the properties of Linked Data are represented as triangles. This shows

that once the properties labels are extracted and pre-processed, they will be treated in the same

way regardless of their origin or type of data model

The clock sign in the middle shows that the same process is repeated on a time-lapse basis

to ensure the global schema is kept up to date. This is achievable due to the high degree of

automation of the process. The approach is based on properties (elements) matching, which are

the tags or attributes for semi-structured data and the predicates for Linked Data. The global

schema is created when the system is first run. To keep the global schema updated, the system
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verifies periodically whether a new source has been added or the structures of existing sources

have been modified or extended.

Before the process described in the diagram takes place, the properties go through a pre-

processing stage whereby the labels are cleaned and prepared to be compared semantically. To

achieve this, the last part of the URI of the predicate for Linked Data is extracted, and numbers

and some special characters, including commas and underlines, are replaced with null.

For example, if the property retrieved is:

http://schema.org/releaseDate

The result after the pre-processing is: release data

5.2.1 The Extraction of the Semantically Distinct Properties of the Sources

Schema

First, the set of the semantically distinct properties of each of the sources is extracted locally.

This is achieved by calculating the semantic difference between the properties in each source.

As Figure 5.3 shows, where there are two properties (P1 and P12), or more, sharing the same

meaning, only the first one (P1) is transferred to the result set and the rest are discarded.

Figure 5.3: The extraction of the semantically distinct properties (extracted from Figure 5.2).
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The sets of the semantically distinct properties are illustrated in Figure 5.3 by the bubbles

inside the circles of the data sources DS0, DS1 ...DSn.

The retrieval of the properties differs between the semi-structured and Linked Data. For

semi-structured data, originated from Web APIs, the properties are extracted by processing one

result, since all datasets share the same properties. On the other hand, not all the datasets in

a particular Linked Data namespace share the same structure. Therefore, the properties are

extracted through a separate process that takes into consideration many Linked Data datasets.

Various vocabularies are utilised to describe Linked Data. Yet, many of these vocabularies, par-

ticularly when they are related to the same domain, have overlapping semantics [Kettouch et al.,

2017a]. Hence, a representative sample is sufficient to retrieve all semantics of the properties.

More formally, a data source (DS) consists of a set of n properties (P), as follows:

Definition 5.1 (Data source).

DS =
{

Px | x = 1,n
}

For every data source, the semantically distinct properties are extracted as follows:

Definition 5.2 (Semantic Distinction).

SemD(DS) = {P in DS|sDistn
x=1(P,Px)< T h where Px ∈ DS}

P =



pr in (s,pr,o) ∈ LD where


s= subject

pr = predicate

o= object

t in (r,t,v) ∈ SsD where


r= root

t = tag/attribute

v = value

LD and SsD refer to Linked Data and Semi-structured Data respectively. sDist(P,Px) de-

notes the semantic distance between P and Px.
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The set of the semantically distinct properties of the local schema DS consists of all those

properties with a unique meaning. In other words, each property is compared with all the

other properties from the same DS. If the semantic distance (sDist) between them is less than a

threshold (T h) then the property goes into the set of the semantically distinct properties.

The properties of DS can be originated either from a Linked Data model, where the property

is the predicate of the triple, or a semi-structured model, where the property is a tag or an

attribute.

The semantic text similarity system used in this approach is UMBC EBIQUITY-COR [Han

et al., 2013]. The UMBC tool is constructed by combining Latent Semantic Analysis (LSA)

word similarity and WorldNet knowledge. Other semantic similarity algorithms were explored,

such as [Li et al., 2006b], but UMBC is used because it concentrates on the semantics of the

word but not its lexical category, which fulfils the requirements of the semantic similarity tool

adapted to SimiMatch, since the available vocabularies for describing vary between nouns and

verbs (see Section 3.7.4.2).

5.2.2 The Creation of the Global Schema

Once at least two semantically distinct property sets are extracted from two DS, the creation

of the global schema starts to take place. The creation of the global schema is incrementally

processed each time a new property set is extracted from another DS. In the creation of the

global schema all the semantically distinct properties of all the sources that are considered

are extracted. This forces a semantic overlap between the global schema and all the sources

considered. It is designed to make the properties of every source semantically a subset of the

properties of global schema. The following formula describes the creation of the global schema

(GS) and is based on the semantic distinction (semD) formula previously described. At the time

when the first data source DS0 considered the GS would be empty, therefore, all the semantically

distinct properties are transferred directly as there is nothing to compare against. The system

then goes on to incrementally extract the semantically distinct properties from the other sources,

which are transferred to the global schema.
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Definition 5.3 (Global Schema).

GS =



semD(DS0)

⋃n
i=1
{

Pj ∈ semD(DSi) | sDist(P,Pj)< T h,

∀P ∈ GS, j = 0,size(DSi)
}

Algorithm 5.1 SemanticDistinction [Author, 2017]
Input: set1, set2: PropertiesSets

threshold
Output: P: PropertiesSet

1: get_index(set1, set2)
2: sizeSet1 = size (set1)
3: sizeSet2 = size (set2)

4: for i=0 And i < sizeSet1 do
5: for j=0 And j < sizeSet2 do
6: if check_if_not_indexed(set1[i], set2[ j]) then
7: distance = SemanticDistance (set1[i], set2[ j]);
8: else if distance > threshold then
9: P.addAttribute(set1[i])

10: Insert_index(set1[i], set2[ j])
11: else
12: i++; j++;
13: end if
14: end for
15: end for
16:
17: return P;

Algorithm 5.1 shows how the semantic matching of the properties are being indexed. Note

that not only the matchings between the data sources and the global schema are indexed, but

also internally within each of the Linked Data sources. Set1 and set2 in an internal extraction

of the semantically distinct properties are, respectively, the new properties retrieved (after a

period of time) and the current set of semantically distinct properties. It is not applied to semi-

structured sources as they do not share the same characteristic of Linked Data, which is the

continuous dynamism and changes in vocabularies and structures describing their datasets. For

external semantic distinct between a source and the global schema, set1 and set2 represents
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the set of semantically distinct properties of each of them. The order is irrelevant when inserting

or accessing indexes in this approach.

Finally, the same process is repeated but this time for the matching of instances rather than

the creation of a global view. The only difference between the creation of the global schema

and the matching of the results is a further stage, which is the transfer of the values of the

sources properties to the global schema properties. The values of the elements do not affect the

operation as it has no role in the matching. Therefore, it is theoretically valid for the outputs

of a SPARQL query or an HTTP request to be matched with the created global schema if the

semantic distance measurement is used, as every source is a semantic subset.

5.2.3 Indexing the Global Schema

A record of the global schemas previously created is saved containing the time stamp, results

were required for its creation, and the data sources considered. This allows the system to verify

whether a global schema conforming to the user’s queries is available.

Algorithm 5.2 GlobalSchemaIndex [Author, 2017]
Input: set1: SourcesQueried

1: for i=0 And i < GS_Index.size do

2: if ( ! GS_Index.get(SourcesList).containsAll(set1)) then
3: Create(GlobalSchema, SourcesList)
4: Update(GS_Index, SourcesList)

5: else if ( Now() − GS_Index.get(set1).CreationDate > UPDATE_RATE) then
6: Update(GlobalSchema)
7: Update(GS_Index)
8: end if

9: end for

The input for Algorithm 5.2 is the list of the sources queried by the user. The other input

is the current time which is retrieved from the system. In Line 1 the algorithm iterates through

the records of the global schemas previously created. Then Line 2 checks whether there is

no global schema stored locally that contains all the sources that user queried. If that is the
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case, SimiMatch goes on creating a global schema for these sources following the same steps

described in the previous sections of this chapter. It also updates the records and adds metadata

about the newly created global schema.

Lines 5-8 verify whether the global schema that created is still up to date. Finding the

number of the days (or months) needed to update the global schema (UPDATE_RATE) is not

part of the scope of this research. It can be the focus of another study that investigates the

average rate of changes in Linked Data sources. The aim of SimiMatch is provide the ability

to accommodate these changes. In the experiments carried out as part of this thesis, the update

rate is set at one week (based on observations and estimations). The update can be launched in

the implementation by either the developer or the user.

If the global schema containing the sources that user queried is not up to date, SimiMatch

re-creates the global schema and transfers the new properties, that are not present in the previous

version, to the global schema and updates the time stamp.

To help evaluate this process, the semantic similarity threshold and the number of results

are saved. This records the effect of different parameters on the efficiency of the approach; and

therefore, to identify the most accurate combination.

5.3 Implementation and Evaluation of SimiMatch

This section presents the implementation and proposes an evaluation of SimiMatch. The flowcharts

in Figures 5.4 and 5.5 describe the overall functionality of SimiMatch. Figure 5.4 illustrates the

different stages the approach goes through to match two schemas and update the global schema.

Figure 5.5 highlights the concept of automatically re-running the schema matching process ac-

cording to a time-lapse to check for any changes in the schemas.

SimiMatch and the semantic similarity tool are implemented using Java. The same pro-

gramming language is used in the preparation of the inputs along with other tools, such as

Jena framework, SPARQL, XML, JSON and various parsers libraries. The XML format has

been used for implementation to represent the global schema, as it is an effective and a pop-
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Figure 5.4: Flowchart describing the implementa-
tion of SimiMatch [Author, 2017].

Figure 5.5: Flowchart describes the re-
running of SimiMatch according to a
timelapse [Author, 2017].
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ular mean of information exchange (see Section 2.5.2). The UMBC semantic similarity tool

is re-implemented locally to eliminate the time penalty of connecting to the API every time a

semantic distance is calculated.

Note that Linked Data input files used for this evaluation were produced in February 2016.

As explained previously in this thesis, Linked Data sources are changing quickly over time.

For example, in DBpedia version 2016-45, triples are filtered from the Raw Infobox Extractor

and some properties will not be loaded on the public endpoint. Thus, running the system at

a different time can require a different method to prepare the input and may display different

results but the trend will be maintained. The public services (SPARQL endpoints) of Linked

Data sources frequently apply resource limits and they are occasionally unavailable (see Section

2.4.3). Therefore, RDF dumps were downloaded locally in HDT38 format to avoid this limi-

tation. HDT (Header, Dictionary, Triples) is a compact data structure and binary serialisation

format for RDF that keeps big datasets compressed to save space while maintaining search and

browse operations without prior decompression.

The system is tested in three domains that have available and accessible data sources in both

data models (semi-structured and Linked Data):

• Movies: data were retrieved from four data sources, of which two are Linked Data: DB-

pedia and LinkedMDB, and two semi-structured: The Open Movie Database39 (OMDb),

The Movie Database40 (TMDB).

• Location data: three Linked Data sources were considered: DBpedia, LinkedGeoData41

and Geonames and one semi-structured: GoogleMapsAPI42.

• People’s data: this category involves data sources that provides information only about

public figures (celebrities, writers, actors, producers, politicians, singers, etc.). Two

Linked Data sources were included: DBpedia and LinkedMDB, and two semi-structured:

38Header, Dictionary, Triples
39http://omdbapi.com
40http://themoviedb.org/documentation/api
41http://linkedgeodata.org/About
42http://developers.google.com/maps

89



5. SIMIMATCH
IMDB43 (the Internet Movie Database) and Last.fm44

The choices of data sources in each of domain is a combination between specialised data

repositories, such as: LinkedMDB (for movies related data) or Last.fm (for music related data)

and general (cross-domains) repositories, such as DBpedia. This selection is to provide a rep-

resentative testing datasets that cover the different scenarios that may occur.

5.3.1 Retrieving the Syntactically Distinct Properties

Before running the system, the inputs of the schema matching system are prepared by querying

the considered data sources. The query retrieves the properties of N results (movies, locations

and persons) of each of the data sources of the various domains. A common keyword (that

occurs in many resources in the domain), such as ”the”, is used to retrieve a sufficient number

of results to carry out the experiment. Only the syntactically distinct properties have been

fetched.

Tables 5.1a, 5.1b and 5.1c show the number of the properties retrieved in each domain. The

limit in the number of results is set at N=700 because presenting additional results does not

have any effect on results in Tables 5.2a, 5.2b and 5.2c.

5.3.2 Internal Semantic Distinction and The Creation of the Global Schema

Comparing Table 5.1a with Table 5.2a, Table 5.1b with Table 5.2b and Table 5.1c with Table

5.2c show that the number of syntactically and semantically distinct properties of the semi-

structured data sources is the same. This points out a major difference between Linked and semi-

structured data. Although semi-structured data is created to be flexible in terms of changing the

structure, the technology exploiting it, particularly in data exchange and RESTful services,

frequently uses a fixed structure. Whereas with Linked Data sources, if the same tables are

compared, there are different heterogeneous vocabularies that are continuously changing in

describing datasets even in the same sources that belong to the same domain.
43http://imdb.com/help/show_leaf?about
44http://www.last.fm/api
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Syntactically Distinct Properties
N movies Linked Data Sources Semi-structured Data sources Total

DBpedia LinkedMDB TMDB OMDb
100 103 36 20 13 172
200 131 41 20 13 205
300 157 43 20 13 233
400 171 47 20 13 251
500 179 47 20 13 259
600 184 48 20 13 265
700 186 48 20 13 267

(a) Movie data sources [Author, 2017].

Syntactically Distinct Properties
N movies Linked Data Sources Semi-structured Data sources Total

DBpedia LinkedGeoData Geonames GoogleMapsAPI
100 115 89 15 11 230
200 156 97 15 11 279
300 177 97 15 11 300
400 193 97 15 11 316
500 193 47 15 11 316
600 193 48 15 11 316
700 193 48 15 11 316

(b) Location data sources [Author, 2017].

Syntactically Distinct Properties
N movies Linked Data Sources Semi-structured Data sources Total

DBpedia LinkedMDB IMDB Last.fm
100 104 10 4 8 126
200 134 10 4 8 146
300 148 10 4 8 160
400 155 10 4 8 167
500 179 10 4 8 191
600 184 10 4 8 196
700 186 10 4 8 198

(c) People data sources [Author, 2017].

Table 5.1: The number of the syntactically distinct properties extracted per source [Author,
2017].
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Semantically Distinct Properties
N movies Linked Data Sources Semi-structured Data sources Total Global

schema
DBpedia LinkedMDB TMDB OMDb

100 74 36 20 13 143 112
200 93 41 20 13 167 136
300 110 43 20 13 186 153
400 119 45 20 13 197 164
500 121 45 20 13 199 164
600 121 45 20 13 199 164
700 121 45 20 13 199 164

(a) Movie data sources [Author, 2017].

Semantically Distinct Properties
N
movies

Linked Data Sources Semi-structured Data sources Total Global
schema

DBpedia LinkedGeoData Geonames GoogleMapsAPI
100 83 82 12 11 188 159
200 109 88 12 11 220 190
300 125 88 12 11 236 206
400 136 88 12 11 247 215
500 136 88 12 11 247 215
600 136 88 12 11 247 215
700 136 88 12 11 247 215

(b) Location data sources [Author, 2017].

Semantically Distinct Properties
N
movies

Linked Data Sources Semi-structured Data sources Total Global
schema

DBpedia LinkedMDB IMDB Last.fm
100 84 10 4 8 106 97
200 106 10 4 8 128 106
300 110 10 4 8 132 112
400 114 10 4 8 136 116
500 117 10 4 8 139 122
600 120 10 4 8 142 122
700 120 10 4 8 142 122

(c) People data sources [Author, 2017].

Table 5.2: The number of the semantically distinct properties of the data sources and the global
schema created by SimiMatch [Author, 2017].
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Movies Locations People
release_Date, date population_Total, population honours, awards
subject, is_Primary_Topic_Of operated_By, operator name, given_Name
producer, executive_producer region, area influenced_By, influenced

Table 5.3: Examples of semantically similar labels of properties [Author, 2017].

The changes in the column ”Total” in Tables 5.1a, 5.1b, and 5.1c compared to Tables 5.2a,

5.2b, and 5.2c respectively are the result of the first step of the approach presented, which

is the extraction of the semantically distinct properties from each of the data sources. The

global schema column demonstrates the second step, which is the incremental extraction of the

semantically distinct properties between the new output of the first step and the current global

schema.

Additionally, Table 5.2a highlights the difference between the degree of semantic hetero-

geneity within the vocabularies used in LinkedMDB and DBpedia. The increase in the semanti-

cally distinct properties which resulted from inputting more datasets to the system is more sig-

nificant in DBpedia. LinkedMDB, however, showed a slight rise and stabilised at 400 datasets.

Likewise, LinkedGeoData, in Table 5.2b, demonstrates roughly the same pattern. This contrast

can be related to many reasons, including: the large scale of DBpedia compared to LinkedMDB

or LinkedGeoData, or it can be more a cross-domains versus specialised data source issue. It is

not, however, the focus of this thesis to confirm it.

Figure 5.6a, 5.6b and 5.6c are based on tables 5.2a, 5.2b and 6.5 respectively. They high-

light the considerable gap between the numbers of the syntactically and semantically distinct

properties according to the number of results retrieved in the movies, people and location data

sources respectively. It shows the difference in the terminology of the vocabulary used to de-

scribe resources in the same domain, but it also points out to the redundancy and the overlap in

the semantic of these terminologies. Table 5.3 contains examples of some semantically similar

Linked Data properties found in the process in each of the domains:

Two additional noticeable aspects are demonstrated in these three figures. First, the number

of properties in the global schema is not equal to the total number of semantically distinct

properties of the sources. It highlights that some properties are discarded during the second step

because their semantic information already exists in the global schema. Second, the number of
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(a) Movies data sources [Author, 2017]. (b) Location data sources [Author, 2017].

(c) People’s data sources [Author, 2017].

Figure 5.6: Comparison between the number of semantically and the syntactically distinct prop-
erties and the number of properties in their global schema [Author, 2017].
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semantically distinct properties stabilises at N=500, which confirms, to some extent, that the

semantic information of the vocabulary used to describe a resource in a specific domain is

limited and considerably lower than its syntax.

5.3.3 Evaluation

Diverse methodologies are utilised to evaluate schema matching techniques and tools [Do et al.,

2002] due to the absence of a universal benchmark [Bernstein et al., 2011; Pfaff and Krcmar,

2014]. The methodology used in this thesis is drawn from [Do et al., 2002]. The basis for this

qualitative evaluation is created by manually solving the match task. The manual match result

is then considered as a ”gold standard” to assess the quality of the result of the proposed tool.

This allows the calculation of the precision and recall in the same way as described in Section

3.2.2.

Table 5.4 shows a summary of the results of the evaluation in the three domains (M, L and P

stands for movie, location, and people data, respectively) as well as the global precision (PrGlb),

recall (RecGlb) and their harmonic mean, the F1Glb score. The full results of the evaluation can

be found in Appendix I. All the factors affecting the evaluation of the results were taken into

account, being: number of the results queried, threshold (of semantic similarity measurement)

and the global schema version used to accommodate the results (labelled by the number of

datasets utilised to create it).

Threshold GS N PrM RecM F1M PrL RecL F1L PrP RecP F1P PrGlb RecGlb F1Glb
0.7 10-700 10-700 0.98 0.89 0.94 0.97 0.84 0.9 0.83 0.93 0.87 0.93 0.89 0.91
0.75 10-700 10-700 0.98 0.89 0.94 0.99 0.83 0.9 0.84 0.93 0.88 0.94 0.88 0.91
0.8 10-700 10-700 0.99 0.89 0.94 0.99 0.83 0.9 0.92 0.88 0.9 0.97 0.87 0.91
0.85 10-700 10-700 0.99 0.89 0.94 0.99 0.81 0.89 0.94 0.88 0.91 0.97 0.86 0.91
0.9 10-700 10-700 0.99 0.89 0.94 0.99 0.81 0.89 0.96 0.88 0.92 0.98 0.86 0.92
0.95 10-700 10-700 0.99 0.89 0.94 0.99 0.8 0.89 0.98 0.88 0.93 0.99 0.86 0.92

Table 5.4: Evaluation Results of SimiMatch [Author, 2017].

To analyse the results of the table, the 3D scatter diagrams in Figure 5.7 illustrate the cor-

relation between the three parameters affecting the global F1 score of SimiMatch, which are

the version of the global schema (or the number of results out of which the global schema was

created), the threshold used in the semantic similarity and the number of results queried (N).
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The global schema version and the number of results stops at 200 as further data does not sig-

nificantly change the F1 score or the trend already reported. It can be seen that SimiMatch

performs best when the threshold is more than 0.75 and the version of the global schema is

greater than 100. The number of the results also has slight negative effect on the F1 score. The

average precision and recall when utilising this set of parameters are 0.96 and 0.90 respectively.

In terms of performance, the time to retrieve and process 100 to 700 results grows virtually

linearly from 1 to 3 seconds (more information about the implementation environment can be

found in Appendix III). Figure 5.8 shows the linear growth and the insignificance of the delay

caused by increasing the number of the results in SimiMatch. It conforms to the indexing

approach in Algorithm 5.1 where only new properties that have not been previously processed

are considered.

This finding is exploited in this chapter in order to create a domain-dependent global schema

out of set of heterogeneous data sources in terms of model, structure and terminologies of their

properties. The global schema contains the minimum number of properties to accommodate

the results, which decreases the number of comparisons to be processed if the inputs filled with

the results are to be mapped again. The approach proposed not only improves performance by

pruning the number of comparisons in the mapping, but significantly minimises the possible

conflicts that may occur due to duplicate meanings in data sources.
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Figure 5.7: A 3D scatter diagram showing the correlation between the different parameters
affecting the F1 score of SimiMatch [Author, 2017].
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Figure 5.8: Processing time according to the number of results [Author, 2017].

5.4 Limitations

The primary aim of SimiMatch is to improve the degree of automation and to sustain the dy-

namism of Linked Data space. Addressing such a challenge comes at a cost. The schema

integration system that aims at adapting itself to unpredictable and unknown future changes of

Linked Data datasets cannot rely on and employ the structure of these datasets in the reconcil-

iation process. Hence the first limitation of SimMatch is that it concentrates on the semantics

of the textual form of the properties. The outcome of this approach can be affected negatively

if the labels of the properties are encoded in a semantically meaningless syntax. But in the

context of this thesis, where the sources are Web services and Linked Data sources, the datasets

generally are expressed in a data-mining and parsing friendly form as they have been designed

to facilitate data exchange with other services or applications. This does not exclude the need

for a properties disambiguation in the pre-processing step, which will be one of the targets of

future work.

5.5 Summary

The Semantic Web community has been researching schema matching and heterogeneity recon-

ciliation for decades. Yet, the appearance of new data spaces, along with the continuing growth
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of existing data models, such as semi-structured data model, keep this area active. Schema

matching has to cope with new challenges as the web of Linked Data, the new data space,

reflects different properties and features. One of the most important challenges is taking into

account its rapid and continual expansion via different vocabularies and visions in schema map-

ping. This chapter highlighted this challenge and proposed SimiMatch, an approach that is able

to match the schemas of numerous semi-structured and Linked Data sources. It explained how

it is adaptable to future changes and why it is an effective solution when utilised as part of a

data integration context (see Section 5.3.3). An in-depth explanation of each of its stages was

provided, which include the external and internal extraction of the semantic distinct properties

(see Section 5.2.1), and the creation and the indexing of the global schema (see Sections 5.2.2

and 5.2.3). The implementation and evaluation results (see Section 5.3) in three domains, being

movies, locations and people’s data, were presented to show the effectiveness of the approach.

SimiMatch contributes towards a virtual integration system called SemiLD (see Chapter 7)

that will be able to provide transparent access to heterogeneous and autonomous sources. It

addresses the challenge of sustaining the continuous changes of a large-scale Web of Data via

similarity measurement and property matching. SimiMatch is also adapted and embedded in

the novel data interlinking system that will be presented in the next chapter. The new data

interlinking approach is an approach that is able to effectively provide identity links between

RDF datasets that are not associate with any ontology with datasets that are part of the Linked

Data cloud.
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Chapter 6

LinkD: Element-based Data Interlinking

of RDF datasets in Linked Data.

Sites need to be able to interact in one single,

universal space.
Tim Berners-Lee

6.1 Introduction

The problem of interlinking datasets in and with the Linked Data cloud has been one of ma-

jor challenges and an important research subject in the Semantic Web. The existence of links

enhances the value of the data and facilitate information discovery [Getoor and Diehl, 2005].

Datasets residing on dispersed data sources without links resemble islands of data [Hassan-

zadeh, 2013], where every island stores part of the data needed by the user. To gather all the

necessary pieces of information, the user needs to manually find each island.

Even though these links between things in the world may be implicit in semi-structured data

returned from Web APIs, semantic links in Linked Data allows ”Web publishers to make these

links explicit, and in such a way that RDF-aware applications can follow them to discover more

data” [Heath and Bizer, 2011, p. 8]. This leads to a Web where data is more discoverable for
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both machine and human users, and therefore more usable.

Creating semantic links between different Linked Datasets creates the Web of Data, a global

database where data is connected to relevant data. The value of the Web of Data rises and falls

with the amount and the quality of links between data sources [Volz et al., 2009]. Providing a

tool to facilitate the migrating of these datasets to the Web of Data will enhance the value of

both the published Linked Data and migrated datasets.

Publishing semi-structured data as Linked Data involves many steps, including enhancing

the quality of the converted semi-structured data [Yeganeh et al., 2011], such as by merging

duplicated resources, identifying resources type, internally linking related entities etc. It is the

stage that xCurator [Yeganeh et al., 2011] concentrated on, the only tool found at the time of

writing this thesis that specifically aims at publishing and linking semi-structured as Linked

Data. xCurator also has a module to provide external links between the transformed semi-

structured data and the Web of Linked Data, which is the other stage, but it is considered sec-

ondary and has neither been detailed nor evaluated by their authors.

Unlike publishing semi-structured in the Web of Data, there are many tools and approaches

proposed to interlink Linked Data. Most of these tools were proposed as part of the yearly

event of OAEI [Jimenez-Ruiz, 2017]. Their aims do not seem to differ considerably from this

chapter’s objective, which is to link transformed semi-structured data (RDF file) with the Web

of Data, or the second stage of semi-structured linking, but they are not adapted to be directly

utilised in this use case. The proposed interlinking approaches employs various information,

such as the structure and resources types, in order to find identical instances between a set of

source resources and target resources. These information and options are frequently unavail-

able or incomplete when interlinking automatically transformed semi-structured data using a

fixed semi-structured to RDF transformation. Additionally, it is time consuming and requires

a significant amount of input and manual setting to convert a considerable amount of semi-

structured data using the ontology-based semi-structured to RDF transformation (see Section

2.5.4) in order to generate some structural information, which can be incomplete, imprecise, or

inaccurate.

The interlinking is frequently addressed on existing data. LinkD, the proposed approach,
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however, is a system that verifies in first place the existence of the URI of the resource being

published in the cloud in order to establish links with it. The overall aim of the research is

to facilitate the following of best practices and recommendations in publishing data into the

Linked Open Data cloud. The input of the system is transformed semi-structured data (XML

and JSON) using a fixed semi-structured to RDF transformation. The focus of this chapter is

to provide a new design and tool to externally link transformed semi-structured data. The main

contribution of the presented chapter is the use of the domain to allocate variable weights in

measuring the similarity of the instances, according to the significance of their properties in

defining the identity of the dataset. Figure 6.1 shows the relation of LinkD with reference to the

other two systems proposed in this thesis.

Figure 6.1: Relation of LinkD approach with reference to other systems of this thesis [Author,
2017].

6.2 An Overview of the Contributed LinkD Approach

The scope of this chapter is to design a system that can externally link the output of the fixed

Semi-structured to RDF transformation, which is an RDF file with no explicit meaning or struc-

ture associated with it. The transformation itself is beyond the objectives of this thesis. The

RDF file are a set of triples describing resources according to the hierarchy of the transformed

tree-based XML or JSON file. The fixed transformation is selected because it can be automated

and requires less pre-transformation effort (see Section 2.5.4), which is necessary for the sys-

tem to be adapted to interlink large-scale datasets. Interlinking datasets with the Web of Data (a

large database of resources) necessitates the utilisation of lightweight processes and avoidance
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of operations such as type identification or type-related comparisons.

Based on the characteristics of the output of the fixed XML to RDF transformation of semi-

structured dataset and the requirements of the approach, the designed system needs to be based

on string and set similarity. The labels of the semi-structured data are the only features that

can be confirmed to be maintained after the fixed transformation. Additionally, it would be

challenging to employ resources expensive operations and apply them to a large amount of

candidates retrieved from different name-spaces of Linked Data cloud.

The existing approach that conforms to most of these characteristics and requirements is

SERIMI (see Section 4.4.1). Hence the approach proposed is drawn from the SERIMI system

[Araujo et al., 2011], and based on the assumptions of a variety of domain-dependent interlink-

ing systems, for instance: EventMedia [Khrouf and Troncy, 2016] and the system proposed by

Zhang et al. [2013]. SERIMI is one of the advanced approaches allowing the matching of in-

stances of two large-scale datasets without the need of pre-knowledge about their data, schema

or domain. However, properties weights of the instances have not been taken into consideration

in the SERIMI approach. EventMedia and the approach proposed by Zhang et al. [2013] are

projects aiming at interlinking data in a specific domain. As part of their project, they tried to

find the most accurate weights to be given to the properties in their particular domain.

The idea presented in this work is to add a domain detection phase, before matching the

instances, in order to impose variable weights to the properties of the data being interlinked.

The weights are extracted from the existing observations of the specialised systems (cited in the

previous paragraph) and extended by the author’s observation in other domains. The proposed

system aims at interlinking an RDF dataset with its counterpart in the Linked Data cloud using

different algorithms for similarity measurement, taking into account the domain of the dataset

being interlinked. The main aim of this system is to facilitate and to automate following best

practices in publishing data into the Linked Data cloud. The contribution of this system is to

apply variable weights to the value of the matched resource properties according to the domain

extracted e.g. the similarity of the values of the resource properties longitude and latitude will be

given more weights in the case where the domain detected is geospatial; whereas, if the domain

is an event, the coefficient of the similarity index between the value of resource properties time

and place will be higher than other properties.
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Figure 6.2: General architecture of LinkD [Author, 2017].

An asymmetric and unsupervised approach is used in LinkD to compute the similarities in

the system presented. It would be almost impractical to process the integral heterogeneous web

of Linked Data using a manual or supervised (based on conceiving training set) approaches due

to the prior knowledge or the resource needed to apply such techniques [Araujo et al., 2011].

The common drawback of unsupervised algorithms, however, is the high computational cost

required to implement them.

Figure 6.2 describes the different processes of the new LinkD approach proposed by the

author. It can be seen that the dataset goes through many stages before matches in the cloud can

be found. These stages can be organised and grouped in two main phases as follows:

6.2.1 Candidate Selection (Blocking)

Contrary to the common instance matching approaches, LinkD starts with one dataset, which is

the source dataset. The source dataset is an RDF file derived from XML/JSON files that might
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not be described by an ontology or associate with any meaningful structure. The target dataset

is retrieved after running a keyword SPARQL search query on the Linked Data namespaces

considered. The SPARQL query is composed by extracting the domain and the entity label

(labels that represent the dataset) of the source dataset. The latter is generally the content of the

property title, name or label that have a literal value with less than 200 characters [Araujo et al.,

2011].

The domain extraction is an important phase in finding the counterparts of a dataset in

Linked Data cloud in the proposed system. The domain is determined by extracting the content

of the property rdf:type and classify it with one of the pre-defined domain categories available

in the system. In the case where rdf:type is not used, the domain is selected manually.

Having the domain extracted, the potential candidate for the interlinking will be significantly

reduced and limited as a result of more specified SPARQL keyword search. In the next stage

(Date interlinking), different weights will be applied according to the domain detected. More

weight will be given to the properties that define more the identity of the dataset (properties with

unique values) and create less conflict with the other datasets, example: longitude and latitude

for location or ISBN number for books.

Example 6.1 is a template of SPARQL query to search for target datasets from DBpedia.

Example 6.1: A template of a SPARQL query to search for target datasets from DBpedia
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?resource WHERE {

?domain rdf:type <http://schema.org/''source_domain''.

?resource foaf:name ?resource_title.

?filter contains(?resouce_title, ''source_title'')

}

6.2.2 Data Interlinking

After the blocking stage, the system compares between the properties of each of the candidates

with the properties of the sources datasets in order to determine which candidate can be linked

with it. Three types of links exist in Linked Data: relationship, identity or vocabulary links.
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Identity links or owl:samAs are the most common type of links addressed by the existing in-

terlinking systems and this is the focus of LinkD. Along with allowing the representation of

semantic equivalence in an independent and reusable way, owl:samAs can serve as hints to

reasoner systems on how to unify data.

The data interlinking stage consists of four steps:

6.2.2.1 Preparing the Datasets

A Pre-processing step is performed to extract the value from the resources that are described

using URIs, which is its last part according to Linked Data principles. Commas and underlines

will be also replaced by spaces to improve the accuracy of the matching algorithms.

Example: the output of the http://dbpedia.org/page/London_River after pre-processing

is London River.

6.2.2.2 Property Alignment (SimiMatch)

This stage is responsible for matching between the semantically similar properties of the source

and the target (candidate for interlinking) dataset. The SimiMatch tool is adapted and utilised in

LinkD to generate matching rules between the two schemas instead of creating a global schema.

Algorithm 6.1 explains the adaptation of SimiMatch to align properties of two properties sets in

LinkD. SimiMatch measures the semantic distance between the label of the predicates of source

and the candidate datasets and compares it to a threshold. The matches rules are expressed using

a map data structures. The map stores data in the form of key and value pairs where every key is

unique. As a result, Algorithm 6.1 iterates, for each key, through values in order to find the pair

with the highest semantic similarity (or the lowest similarity distance) score that is above the

threshold. If new pair with a higher similarity score is discovered, the new value of the key in

matches will replace the previous one. A candidate property is matched with one of the source

properties.
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Algorithm 6.1 SimiMatch in LinkD [Author, 2017].
Input: set1, set2: PropertiesSets

threshold
Output: matches: Map

1: sizeSet1 = size (set1)
2: sizeSet2 = size (set2)

3: for i=0 And i < sizeSet1 do
4: temp_distance=0;
5: for j=0 And j < sizeSet2 do
6: distance = SemanticDistance(set1[i], set2[ j]);
7: if distance > threshold AND distance > temp_distance then
8: matches.add(set1[i], set2[ j])
9: else

10: i++; j++;
11: end if
12: end for
13: end for
14:
15: return matches;

6.2.2.3 Domain Weight Allocation

It is observed and validated in Section 5.3.2 that RDF datasets referring to the same real world

object or describing resources in the same domain share roughly the same properties even

though the syntax may be expressed differently. More importantly, it is noticed [Kettouch et al.,

2015a] in many systems for interlinking domain-dependent Linked Data, that some properties

are more precise in defining the identity of a dataset. Therefore, it is more practical to employ

and concentrate on them in the interlinking process. Having a prediction of a limited list of the

properties that will matched in a particular domain, it become feasible to set rules for allocating

weights for the similarity index of the content of these properties.

Many factors come into play in defining the weight of the properties in Data interlinking

with the Web of Linked Data. Three decisive criteria are identified in this chapter:

• Number of repetition of the property and its content: Similarly to the primary key in

a database, the property or the instance with higher weight need to be unique; thus, its

value should not repeat in the candidate set or in a particular domain.
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• Content length: the result of the string similarity (both semantic and syntactic) applied

in LinkD can be negatively affected by long literals.

• Time relatedness: this criterion allow to find unique properties that do not change over

time, something that can mislead the interlinking process. To find whether a property is

time related, at least two version of the published resource need to be compared.

Several approaches attempted to improve data interlinking and instance matching perfor-

mance and precision using properties weights, such as: RIMOM [Zheng et al., 2013], CODI

[Huber et al., 2011] and BOEMIE [Castano et al., 2008]. These approaches are not adapted to

be utilised in LinkD for many reasons, including:

• They do not consider all these criteria, or;

• The properties with distinct values are not domain-dependent, or;

• The processing of the weight is embedded in the matching process; or;

• They are not element based and depend on the structure.

The first and second reasons can make the weight allocation process incomplete. The third

and last reasons can make the interlinking system not suitable to process large scale of data as

it can affect considerably performance and computational time.

The weight allocation used LinkD is an extension of the weight generator proposed by Nath

et al. [2014], which is the weight allocation solution close to meeting the criteria identified

in this thesis. It is an approach that is based on penalising repeated properties by a negative

probability factor np. This thesis extended this concept by adding two other negative factors

that represents ”properties’ content length” and ”properties’ time-relatedness” in order to cover

all the identified requirement, which allows LinkD to calculate the uniqueness of the properties

and their abilities to define the datasets they describe. The following equation defines λ , the

function to calculate the weight of a property p.

λ (p) = (1.0−np1(p))∗ (1.0−np2(p))∗ (1.0−np3(p))∗ (1.0−np4(p))
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The weight λ is penalised by np1, the ratio of the number of repetition to the number of

instances the property belongs to, as described below.

np1 =
Rep(p)
| i 3 p |

np2 represents the repetition of the content of resource properties over the total number of

instances (I) (which it does not necessarily belongs to), as defined below.

np1 =
Rep(p)
| I |

The value np3 penalises properties with literals that are longer than 200 characters, which

is what is considered in SERIMI as representative entity label.

np3 =


0 length(ob j(p))6 200 else

1
length(ob j(p))

The value of np4 is 1 if the object of the property can change from version to version (ver1..n)

and/or depends on time.

np4 =

0 i f ob j(pver1) 6= ob j(pver2) else

1

6.2.2.4 Instance Matching

Having the list of matched properties between the source dataset and each of the target datasets,

the system extracts their content (instance). The similarity of the instances is then measured

using Jaro-Winkler algorithm. The Jaro distance d between two strings is the result of the

following equation:

d =


0 i f m = 0

1
3
(

m
s1

+
m
s2

+
m− t

m
) i f m 6= 0
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Where:

• s1 and s2 are the label of the instance of the source dataset and the label of the instance

of the target dataset respectively.

• m is the number of matching characters.

• t is half the number of transpositions.

Finally, the similarities of the properties and their instances are combined in a linear combina-

tion of the measures described in Tversky’s contrast model as shown in the equation below:

T versky(A,B) = λ (A∩B)−α f (AB)−β f (BA)

Where: α , β , and λ ≥ 0. Three parts can be noticed in the Tversky model:

• (A ∩ B) represents the set of common properties between A and B

• (A - B) are the set of distinct properties between A and B

• (B - A) are the set of distinct properties between B and A

The coefficients α , β , and λ represents the weights of the commonalities and differences in the

equation. Since the distinctness between the resources is not relevant in our case, α and β are

set 0. One of the contribution of the author’s proposed approach lies in setting the value of λ

according to the domain of the source dataset.

6.3 Implementation and Evaluation

The flowchart in Figure 6.3 explains the implementation of LinkD. The parts A, B, C and D rep-

resents the stages (explained in Section 6.2.2) ”preparing the datasets”, ”property alignment”,

”domain weight allocation” and ”instance matching” respectively.
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ID Source Target Domain Source Target Target Domain

Pairs Pairs Pairs
D1 LinkedMDB DBpedia movies 10108

474M

77769
D2 LinkedMDB DBpedia people 3650 831558
D3 NYTimes DBpedia locations 2083 639450
D4 NYTimes DBpedia people 4588 831558
D5 NYTimes DBpedia organisations 1274 209471

Table 6.1: Details of the considered datasets from IM@OAEI2011 [Author, 2017].

Although, strictly speaking, LinkD is addressing rather a different problem (interlinking

datasets based on specific restrictions as explained in Section 6.1) to data interlinking ap-

proaches presented at the OAEI, this section used IM@OAEI2011 benchmark to allow the nu-

merical and direct comparison against other relatively successful data interlinking approaches.

IM@OAEI2011 is chosen because it was utilised by many other relatively successful approaches.

Five datasets from IM@OAEI2011 were taken into consideration, of which four domains

being: movies, people, locations and organisations, and three Linked Data sources being: DB-

pedia, LinkedMDB and NYTimes. In the other approaches utilising this benchmark, the number

of target pairs is the same as the source pairs as their aims is to find identity links between two

sets. In LinkD; however, the aim is to provide links with the Linked Data cloud; hence, the

target pairs are the entire DBpedia repository (English DBpedia 3.945). Although DBpedia is

not the Linked Data cloud, it is the largest Linked Data repository that can be used as a target to

evaluate LinkD against large-scale data. Having many Linked Data providers on the target side

removes the possibility of approximate numerical comparison against other related systems.

Table 6.1 gives the overview of the considered datasets (D1 to D5).

6.3.1 Evaluation of the Blocking stage

Table 6.2 shows the result of the evaluation of the blocking stage. To calculate the pair complete-

ness (PC), the evaluation needs to have a gold standard upon which the true positive (correct)

candidates can be counted. It is something that related approaches do not clarify in their evalu-

ation and the results are displayed without giving details about the values of the components of

45http://wiki.dbpedia.org/services-resources/datasets/data-set-39/downloads-39
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Figure 6.3: Flowchart describing the implementation of LinkD [Author, 2017].

112



6. LINKD
ID Instance Target Pairs Correct Candidate RR PC

Pairs (after blocking) Candidates Pairs
D1 786079023 16868 9829 170501744 0.78 0.97
D2 3035186700 24123 3447 88048950 0.97 0.94
D3 1331974 350 12545 2000 42044235 0.98 0.96
D4 3815188104 18740 4496 85155120 0.98 0.98
D5 266866054 6672 1269 8500128 0.97 0.97

Table 6.2: Results of the blocking stage [Author, 2017].

ID Source Links Matched Unmatched Properties Runtime Rec Pr F1
Pairs Discovered Instances Instances Aligned (seconds)

D1 10108 10989 9586 522 1044776 51007 0.95 0.87 0.91
D2 3650 3896 3388 262 706400 2241 0.93 0.87 0.9
D3 2083 1825 1811 272 327825 1774 0.87 0.99 0.93
D4 4588 4765 4476 112 338037 2247 0.98 0.94 0.96
D5 1274 1306 1198 76 135015 1519 0.94 0.92 0.93

Table 6.3: Results of the instance matching stage [Author, 2017].

the equation.

The correct candidates in Table 6.2 are based on estimating the number of occurrences of

the actual sameAs links of the datasets in the target pairs.

6.3.2 Evaluation of Instance Matching Stage

Table 6.3 reports the results of the instance matching stage. These values represents the lower

band results as the benchmark utilised is created in 2011, which means new resources that may

contains true positives that are not listed could have been published since then.

The weight allocation stage is run before the interlinking. It is a separate process that it

is not repeated for every interlinking unless new datasets that belong to a domain that has not

been previously processed are added. The result is an array for every domain considered that

contains properties labels and their weights.
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ID LinkD SLINT SERIMI Agree.Maker

Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1
D1 0.95 0.87 0.91

0.93 0.99 0.96 0.79 0.81 0.8 0.9 0.8 0.85
D2 0.93 0.87 0.9
D3 0.87 0.99 0.93 0.96 0.97 0.96 0.69 0.67 0.68 0.79 0.61 0.69
D4 0.98 0.94 0.96 0.99 0.98 0.99 0.94 0.94 0.94 0.98 0.8 0.88
D5 0.94 0.92 0.93 0.98 0.95 0.96 0.89 0.87 0.88 0.84 0.67 0.74

Target Pairs
D1 10108
D2 3650
D3 474M 2083
D4 4588
D5 1274

Table 6.4: Comparison of LinkD with related systems [Author, 2017].

6.3.3 Comparison with Previous Interlinking Systems

Table 6.4 provides a comparison between LinkD and popular interlinking systems. It can be

clearly noticed the extent of the improvements that LinkD introduced to SERIMI. D1 and D2

are joined together in the other approaches, in LinkD, however, they are separated into two

domains being movies and people (actors, writers, director, etc.).

Although Table 6.4 shows that SLINT is performing better in terms of F1 score in all the

datasets of IM@OAEI2011 considered including LinkD, the scale of the targeted data is sig-

nificantly larger in LinkD. This highlights that the nature of the problem addressed is not the

same. It is the only way, however, to numerically compare LinkD and to show that despite the

difference in terms of the scale of the data targeted, LinkD performance is relatively good.

Table 6.5 reports the time it took LinkD to process the datasets D1-D5 comparing SLINT

(more information about the implementation environment can be found in Appendix III). It is

not a direct comparison, the difference in terms of the number of target pairs is highlighted. For

instance, with the presumption that SLINT performance strongly and directly correlates with

the amount of the target datasets, its performance for D1 would be 474 Millions divided by

10108, multiplied by 67, the results is approximately 3,141,867 seconds.
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ID LinkD (seconds) for 474M SLINT (seconds)
D1 51 007

67 (for 13758)
D2 2 241
D3 1 774 3.55(for 2083)
D4 2 247 12.74 (for 4588)
D5 1 519 4.29 (for 1274)

Table 6.5: Performance evaluation of LinkD against SLINT [Author, 2017].

6.4 Summary

This section proposed a new interlinking approach, called LinkD, that provides identity links

between a single source dataset and the Linked Data cloud, using the domain as reference in ap-

plying variable weights in the similarity measurement. The approach proposed goes through

two stages to achieve this aim: the blocking (see Section 6.2.1) and data interlinking (see

Section 5.3. A variety of distance measurement tools and algorithms were used to calculate

the similarity between the labels describing the resources, including UMBC EBIQUITY-COR

[Han et al., 2013] (to measure semantic distance) and Jaro-Winkler (to measure the similarity

between two sets or strings, (see Section 6.2.2.4)). Neither the structure nor the ontology of

the dataset were considered on the proposed system in order to maintain its feasibility to target

large-scale data. The major challenges faced are the high computational cost and the dynamic

allocation of the weights according to the domain and the number of the matched properties.

The evaluation of different components (see Section 6.3) showed that LinkD is able to target

significantly larger datasets whilst maintaining high quality measures (precision, recall and F1

score) (see Section 6.3.3).

A new data integration approach along with its prototypes are presented in the next chapter.

It aims at ”consuming” two important data models available on the Web being semi-structured

and Linked Data. The new data integration approach of the next chapter is the short-term

solution the author proposes in this thesis to bridge between semi-structured and Linked Data.
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Chapter 7

SemiLD: Keyword Search over

Semi-Structured and Linked Data

With data collection, ’The sooner the better’ is

always the best answer.
Marissa Mayer

7.1 Introduction

The distributed and the autonomous nature of Linked Data sources make it unlikely to sustain

the use of one model in representing data in a particular domain. Each source has its specifici-

ties, conditions, and a different vision on the way to expand. The internal links (pointers to data

within the local Linked Data source) can be relatively consistent and easily maintained as the

data publishers are aware of the changes occurring on their data repositories. The external links,

however, represent a challenging task, given they connect two vocabularies, models or views

that are managed and situated in separate locations and are regularly changing. This dynamism

of the relations between the integration system and sources, and the continuous expansion of

Web of Data, along with data freshness requirements, suggests that a solution would need to

integrate data virtually on-the-fly Kettouch et al. [2015b]. SemiLD combines the use of ontolo-

gies, to obtain high precision, with property matching, to achieve a high degree of automation
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while targeting large-scale data.

The distributed and autonomous nature of Semantic Web sources, as explained in Section

3.5, imposes more challenges and leads to heterogeneous terminologies. Multiple ontologies

and vocabularies can be utilised to represent similar information in a particular domain. On

the other hand, as stated in Section 5.2.1 (and confirmed in Section 5.2.2), although different

dispersed RDF datasets, describing data in the same domain, may not be exactly identical, they

overlap in the semantics of their properties. This statement is as valid for Linked Data sources

as for semi-structured data sources. Semi-structured data are frequently described using XML

or JSON technologies, where tags play the same role as properties in RDF.

This chapter proposes a mediator-based modular architecture to integrate on-the-fly hetero-

geneous semi-structured and Linked Data. This chapter presents SemiLD, a novel approach to

integrate semi-structure and Linked Data. SimiMatch and LinkD are adapted and included as

modules in SemiLD, as Figure 7.1 shows. This chapter provides two prototypes of the SemiLD.

The first prototype is a highly-automated keyword search system that retrieves its input from

various SPARQL endpoints and Web APIs. The second prototype is movie collection man-

ager and is provided to highlight the adaptivity of the author’s proposed approach as well as

to present another working scenario and an evaluation method. The evaluation of the system

illustrates the high performance, usability and efficiency of the contributed approach.

Figure 7.1: Relation of SemiLD approach with reference to other systems of this thesis [Author,
2017].
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Figure 7.2: General architecture of SemiLD [Author, 2017].

7.2 The new SemiLD Approach

Figure 7.2 illustrates the author’s proposed modular architecture of SemiLD solution. SemiLD

uses a global schema, as part of the mediator, that has the ability to learn and expand auto-

matically. The global schema is an XML file, constructed using SimiMatch, that contains all

the possible and potential properties (tags) that the system may retrieve in running a query in a

specific domain. By using the interlinking module, the system is able to match properties and

transfer values from different semi-structured and Linked Data sources to the global schema,

in a specific domain. The ontologies (or vocabularies) are used in the system to support the

formulating of the query.

SemiLD modular architecture consists of Six (6) main components:
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7.2.1 User Interface

A user-friendly interface is a crucial component in order to allow non-expert users to benefit

from the service provided. Ontologies and vocabularies may contribute to the writing of the

queries by adapting them to the vocabulary or the structure used. As explained in Section 3.4.1,

this enabled new opportunities that classic environments did not have. Previously developers

had to specify the search requirements, data model and the query language in order to be able

to write the query.

To hide the complexity of SPARQL queries and API HTTP requests, the proposed interface

allows keywords as an input. As argued in Section 3.5, keyword searches are considered the

most usable mean of accessing information on the Internet. Their limitation, however, is centred

on their lack of expressivity as little information is provided in the query. This problem can be

addressed in the implementation by adding optional and domain-related text fields that can

match the structure of some of the sources. This will enable adding additional information to

the query. In this approach, the expressivity is addressed by offering the possibility to post-filter

results according to all the properties of all the sources. For every property, it provides a list of

the potential values to filter with. This is because of the global schema that reconciles between

the heterogeneity of the properties of different sources and transfer their data to a uniform

repository file. The usability is also addressed in the interfaces of the prototypes (see Section

7.3.1, 7.3.2 and 7.3.3) by providing some features that are adapted to the domain of the data

sources searched.

The output of this module is one main keyword, which will be used to retrieve the ontologies

needed in the query engine module and the results from all relevant sources. Other optional

keywords and parameters may also provided to increase the expressivity of the query but they

may not be supported by all the sources considered (depending on the structure and the number

of parameters accepted by their Web APIs). The latter need to be defined and included in the

interface. For example: Web APIs for movies require mandatorily one keyword of the title,

but some of them also permit to send more information, such as: the year and the genre, as

an optional input. In the interface, a text field to write the year can be provided in order to be

used with a limited list of sources, but it is not utilised in the processing nor in the retrieval of
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ontologies.

7.2.2 Ontology

Ontologies are a flexible, extensible, and scalable mechanism to describe and structure stored

information [Ramis et al., 2014]. The information is encoded in ontologies in the form of

concepts and properties linked via semantic relations. SemiLD uses ontologies for two tasks in

the system:

• To support the query engine distributor in forming and structuring the query against

Linked Data sources by allocating the appropriate vocabulary.

• To cluster the outputs according to the domain in a domain-independent application of

the approach to ensure an accurate and conflict-free property matching.

The ontology module is based on what is proposed in Fatima et al. [2014]. It consists of many

parts, rather than one central ontology repository, that crawl for the ontologies and vocabularies

of the Linked Data namespaces considered, in order to support and sustain their continuous

changes. The following three components are part of the ontology module:

7.2.2.1 Ontology Crawler

The Ontology Crawler is responsible for caching online ontologies and checking regularly for

updates. Using the list of saved ontologies and their paths, the crawler module checks regularly

not only for the existence of the file containing the ontology, but also for the date of creation

compared to the online version. The crawler is key to maintaining the high performance, pre-

cision and efficiency in search mining ”by semantically discovering, formatting, and indexing

information” [Dong and Hussain, 2014, p. 2]. The process is demonstrated in Algorithm 7.1.
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Algorithm 7.1 Ontology Crawler [Author, 2017]
Input: ontology_list, cache_path

1: records = count(ontology_list)
2: list← new queue
3: while record + 1 < records do
4: file_exists = check_if cached(listrecord,cache_path)
5: if file_exists == 1 then
6: creation_date= get_creation_date(listrecord)
7: modify_date= check_modify_date(listrecord)
8: if modify_date >creation_date then
9: file = fetch_revision(listrecord)

10: update_index(file)
11: update_cache(file)
12: end if
13: else
14: file = fetch_file(listrecord)
15: insert_index(file)
16: save_cache(file)
17: end if
18: end while

7.2.2.2 Ontology Cache

It is a repository of ontologies that have been retrieved from running previous queries. This

eliminates the time that the system would take to mine for ontologies online. A simple indexer

is built into the ontology cache module that classifies the ontologies URIs according to the

keyword and Linked Data source requested.

7.2.2.3 Ontology API

The API is an intermediate between the query engine distributor and the rest of ontology mod-

ules of the system. After receiving a keyword from the engine distributor, it considers the

sources then outputs a list of tags and vocabularies needed to form the query.
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7.2.3 Sources Metadata

The metadata modules provides the minimum information required for the functioning of the

system. It stores the path to access the sources, such as Web API URI and structure and

SPARQL endpoint link and version. In addition, the index of SimiMatch (see Section 5.2.3),

specifying which global schemas has been previously created, is also saved in the metadata.

7.2.4 Query Engine Distributor

The query engine distributor is the central subsystem where all the information is gathered from

the ontology module and the sources metadata store in order to perform the integration in both

directions. Algorithm 7.2 illustrates the overall functioning of the query engine distributor.

Having received the information needed, the system prepares the query to be sent to the sources

(top-down part). In the ascending direction (bottom-up), the query engine, through adapters,

parses the outputs retrieved from the sources. The results are then organised into a list of

datasets in order to facilitate the next step (interlinking). For every semi-structured source,

Algorithm 7.2 Query Engine [Author, 2017]
Input: Keyword, Metadata, ontology_index_file

. Top-down direction
1: for each source in Metadata.source_list() do
2: Query_structure= OntologyAPI(source, keyword)
3: Load (Adapter)
4: Connect (metadata.sourceLocation())
5: Query = PrepareQuery (Key_word, Query_structure)
6: Result_file = Execute (Query)
7: end for each

. Bottom-up direction
8: Results = Parse (Result_file)
9: rows_count = Results.length()

10: outputs.setSize(rows_count)
11: for i=0 to rows_count do
12: outputs(i).setcontent(Results.getrow(i).getcontent())
13: end for
14:
15: return outputs
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an instance of an adapter is created to process its queries and outputs. It contains pre-defined

functions to identify the source type and to send, parse and organise the information. Two

roles are assigned to this module: first, it establishes the connection with the API URI or the

SPARQL endpoint of the source; second, it gathers all the information to reformulate the query

and sends it. Having retrieved the files containing the results from the sources and identifying

both the format and the model, the adapters do the reverse process, splitting the results into a

list of datasets.

7.2.5 SimiMatch

As indicated at the end of the Chapter 5, SimiMatch is designed to be utilised as part of a

data integration and an interlinking system. It is the module responsible for reconciling the

structural heterogeneity between the semi-structured and Linked Data. This section explained

how SimiMatch is embedded and adapted as a component in SemiLD.

7.2.5.1 Semantic Distinction

The algorithms of the global schema creation and update utilise a common method, described

in Algorithm 5.1 (in Section 5.2.2), to calculate the semantic distance between each item of two

sets of properties. The output of this method is an index and a set of the semantically distinct

properties that the two inputs contain.

7.2.5.2 Internal Properties Extraction

As explained in Section 5.2.1, the extraction of properties in Linked Data is different from the

semi-structured data model. One result is sufficient in semi-structured data since all datasets

share the same properties. Various vocabularies, however, are used in describing Linked Data.

These vocabularies share many semantically properties when describing data in the same do-

main. Therefore, SimiMatch discards semantically duplicates properties in order solve this

redundancy and to avoid conflicts in generating matching rules.
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Algorithm 7.3 Properties Extraction in a Linked Data source [Author, 2017]
Input: PRx: Properties retrieved of a result x
Output: P: Semantically distinct properties of an LD source

N: Number of the First Results
1: x = 0
2: n_semanticDP = 0
3: n_previousSemanticDP = 0

4: do
5: if x==0 then
6: P.addProperties(PR0)
7: n_semanticDP = size(P)
8: else
9: n_semanticDP = size(P)

10: P.AddAttributes(SemanticDistinction(PRx, P))
11: n_semanticDP = size(P)
12: end if
13: N++

14: while n_semanticDP 6= n_previousSemanticDP

Algorithm 7.3 illustrates the extraction of semantically distinct properties in Linked Data

source. N is the number of the first results required for (nearly) all semantically distinct to

be retrieved which varies according to the Linked Data source considered, as Section 5.3.1

shows (where N=500 is when the number of semantically distinct properties started to sta-

bilise). n_semanticDP and n_previousSemanticDP refers to ”the number of semantically

distinct properties found” and ”the number of semantically distinct properties found until the

previous result”. Thus the process of the internal extraction of properties does not terminate

until these two variables are equal, which means that the number of semantically distinct prop-

erties virtually stabilised.

7.2.5.3 Global Schema Creation

The global schema is formed by extracting all the semantically distinct properties of all the

sources considered. This will force a semantic overlap between the global schema and all the

sources considered. It is designed to make the properties of every source semantically a subset

of the properties of global schema, as demonstrated in Algorithm 7.4. As indicated in Section

5.2, the global schema is created when the system is first developed, and it is updated incre-
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Algorithm 7.4 The Creation of the global schema [Author, 2017]
Input: S: DataSources

i: Number of Data Sources
psi: Properties of a Source i

Output: G: GlobalSchema

1: while S.hasNext() do
2: if S0 (The first Source) then
3: ps0 = extractProperties(S0)
4: G.addAttributes(ps0)
5: else
6: G.AddAttributes(SemanticDistinction(psi, G) )
7: end if
8: i++;
9: end while

mentally on a time-lapse basis to verify whether a new source has been added or the structure

of existing sources is modified or extended. Whenever a new set of semantically distinct prop-

erties is added or updated, it is semantically compared with the existing distinct properties the

global schema already contains. Thus, only the new properties with a unique meaning and no

counterparts inside the global schema are added.

7.2.6 Interlinking Subsystem

Having the global schema created with a guarantee of a semantic overlap with all the participant

sources, the interlinking system matches semantically the properties of the retrieved results with

it. Data interlinking is a technique that discovers the counterparts of the same real world object

that may be situated in the same or in a different data source [Nguyen et al., 2012b]. In the

context of this chapter, however, it is used as a complementary tool to the integration approach.

Unlike LinkD objective presented in Chapter 6, which is to establish identity links between

resource, the main role of this adapted LinkD version presented in this chapter is to populate

the global schema created using SimiMatch. It re-matches the properties of the properties of the

different sources with the global schema. Then it utilises these matches to transfer the values of

the sources properties to their counterparts in the global schema.

The flowchart in Figure 7.3 describes the interlinking module proposed. It can be seen
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that the dataset goes through many stages before the properties matches are identified and the

content is re-allocated from the sources to the global schema. These stages can be organised

and grouped in three main phases as follows:

7.2.6.1 Preparing the datasets

Section (A) in the flowchart in Figure 7.3 corresponds to the query engine distributor (Section

7.2.4). It highlights that the subsystem starts when the results are retrieved from all sources.

A pre-processing step (see Section B in Figure 7.3) is then performed to extract the label of

the resources (in this case the predicate) that are described using URIs, which is its last part

according to Linked Data principles. The label of the predicate (or the property) is tokenised

in order to optimise the measurement of semantic similarity in the next stages (see Section

6.2.2.1). The properties label with only one character are excluded, as no semantics can be

derived from them.

7.2.6.2 Properties Matching

The distance between the properties of the source dataset and the target dataset is measured by

calculating the semantic similarity of their labels (see Section C in Figure 7.3), using the seman-

tic text similarity system: UMBC EBIQUITY-CORE [Han et al., 2013]. UMBC concentrates

on the semantics of the word but not its lexical category, which makes it a typical similarity

measurement mean for our system, since the available vocabularies for describing vary be-

tween nouns and verbs. It also provides a Web API whereby external systems can retrieve the

similarity between two texts without the necessity of going through the re-implementation of

the approach (an example is presented in Section 3.7.4.2).

The UMBC similarity tool is implemented in SemiLD to eliminate the time to connect to,

send and receive information from their API every time a similarity matching is needed. This

also helps in evaluating the genuine performance of the system.

126



7. SEMILD

Figure 7.3: Flowchart of the interlinking module and the Query Engine Distributor [Author,
2017].
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7.2.6.3 Instances integration

This is the final stage of the integration process. Having the list of the matched properties

between the global schema and each of the target datasets, the system extracts their content

(instance) (see Section D in Figure 7.3). The instances are then transferred to their counterpart

in the global schema using the generated mapping rules.

7.3 Prototype 1 Evaluation

The first prototype is a java Web based data-centric keyword search system (more information

about the implementation environment can be found in Appendix III). It is an extension of

the implementation of SimiMatch. The same technologies employed in SimiMatch are used

to impelement the other modules (Java, Jena, XML, JSON, UMBC EBIQUITY-CORE etc.).

XML is the format used to represent the global schema due to its effectiveness and popularity

in information exchange along with the simplicity and the availability of the tools manipulating

this data language.

The user in this SemiLD prototype searches for information about movies, people and loca-

tions in ten heterogeneous sources, being:

• Four Linked Data sources: DBpedia (movies, locations and people), LinkedMDB (movies

and people), LinkedGeoData (locations), Geonames (locations);

• Six Semi-structured sources: OMDB (movies), TMDB (movies), GoogleMapsAPI (loca-

tions), GooglePlusAPI 46 (people), IMDB47 (people) and Last.fm (people).

Figure 7.4 shows the home page of the proposed SemiLD prototype. For the purpose of the

experiment, the fields ”number of results” and ”global schema version” as well as radio buttons

to select the domains have been added. The user in SemiLD can enter one or multiple keywords.

46https://developers.google.com/+/web/api/rest/
47http://www.imdb.com/xml/[parameters]
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Figure 7.4: Home page of SemiLD prototype [Author, 2017].

7.3.1 Movies Search

This section presents details about a search session for movies. Figure 7.5 shows the loading

page from the four movies datasets considered. They are designed to inform the user in real time

what data source SemiLD is processing. Figure 7.6 illustrates the filtering service of SemiLD

that is designed to offer more experssivity to the search without affecting the system’s usability.

Finally, Figures 7.7 and 7.8 depict the presentation of the results. As it can be seen, various

information are provided to the user including the original data source.

7.3.2 Locations Search

The presentation of the results of locations in SemiLD differs from presenting the information

on movies. The results in this domain are also projected onto a Google map using googleMap

API. Figure 7.9, 7.10 and 7.11 show various presentations of location search results.
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Figure 7.5: Loading pages of movies search in SemiLD [Author, 2017].

Figure 7.6: Filtering feature in SemiLD prototype [Author, 2017].
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Figure 7.7: Movies results presentation [Author, 2017].

Figure 7.8: Movies description presentation [Author, 2017].
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Figure 7.9: Locations results presentation [Author, 2017].

Figure 7.10: Locations results in a Google map presentation [Author, 2017].
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Figure 7.11: Locations results description [Author, 2017].

7.3.3 People Search

Similarly to locations search, the presentation of the results of people in SemiLD is slightly

different from presenting the information of movies, as Figure 7.12 illustrates.

7.3.4 Formative Evaluation

To measure the quality of SemiLD and to allow direct comparison with related systems, this

prototype is evaluated using the method proposed by Xu and Mease [2009]. The evaluation

is based on calculating the completion time of three tasks that 10 users had to carry out. The

number of participant is chosen to be the same as FuhSen. This was (at the time of writing

this thesis) the only related systems that is evaluated, using a clear methodology that presents

numerical evaluation results enabling precise comparison.

The tasks formulated to evaluate SemiLD (SemiLD’s evaluation sheet can be found in Ap-

pendix II) are:

1. find ”the director of a movie called The Best that was released in 1998”.

133



7. SEMILD

Figure 7.12: People results presentation [Author, 2017].

2. find the latitude and longitude of Alexandria with the country code 256.

3. (a): find a person James Smith Garcia, who is 30 years old and works as an English

Teacher. (b): find yourself.

In the first task, participants are asked to search for the director name a movie called The best.

This movie was selected to highlight the difference between a data-centric search and document-

centric search engine.

The second task points out the advantage of all properties-values filtering offered in the

SemiLD prototype since there are many cities and locations Alexandria over the world.

The last task (including the two subtasks) is to draw a comparison with FuhSen where they

used something similar to evaluate their criminal investigation system.

The users were instructed to stop when they considered that they had invested sufficient

effort to accomplish the task or when they find a result that they consider correct.

Five participants tried to complete the tasks using conventional search tools such as Yahoo,

Google or Bing, and the other five utilised this SemiLD prototype. For the purpose of the

experiment, the participants who did not have a Google+ account were asked to create one
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Figure 7.13: Users task completion rate [Author, 2017].

temporarily. Figure 7.13 shows the task completion success rate. It can be observed that no

participant was able to accomplish Task 3 (a) using a conventional search engine. In contrast,

with SemiLD prototype, all users were able to find James Smith Garcia. The explanation

for these figures can be related to the difference in terms of data freshness between Web APIs

search and document-centric search. Universal (conventional) search engines takes time to

index a Web page; whereas, Web APIs interacts directly with the database or the data source

hence the results are instantly available after publication. The second explanation can be the

ranking algorithms and the way they prioritise a result over another, which does not always

favour what the user is looking for. For the rest of the tasks, SemiLD performed similarly or

slightly better than the FuhSen or the other search engines.

Figure 7.14 shows the time each participants needed to complete the tasks using SemiLD

comparing to FuhSen and the other conventional search engines. The participants in the evalu-

ation of SemiLD in Task 3 were not the same as those for FuhSen. This part of the diagram is

rather a rough comparison of how the search times of the two systems compare. Task 1 and 2

do not belong to the crime investigation domain, so they are not part of FuhSen scope.

In general, it took all participants less than 2 minutes, 1.5 minutes and 1 minute to ac-

complish the first, second, and the third tasks respectively. As it can be seen, the participants

completed Task 1 faster using SemiLD. Using conventional search engines, the results were
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Figure 7.14: Task completion duration [Author, 2017].

showing the best movies in 1998 rather than a movie called The best made in 1998. In Task 2,

the duration of the search is significantly less in SemiLD due to all properties-values filtering.

Searching for Alexandria 256 in a universal search engine will not necessarily output Alexandria

the city with the country code 256. Many interpretation might be made depending on the num-

ber occurrences of these words in the indexed documents, their popularity and other factors.

Search results examples of the participants encountered were: Arius of Alexandria (256-336

AD), Alexandria with the calling code 256, books where Alexandria is mentioned in the 256th

page etc. Task 3 shows that the figures of SemiLD are comparable to those of FuhSen with the

slight advantage of the latter in Task 2. These figures demonstrates that even though SemiLD is

designed to be generic, its performance can be considered similar to FuhSen’s performance in

its own domain.

7.3.5 Evaluation of Usability

This evaluation was carried out with all participants (those who used conventional search en-

gines were asked to test SemiLD at the end and give their feedback). Similarly to FuhSen, two

techniques were used during this evaluation: Think aloud protocol and a Post-Study System
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Figure 7.15: PSSUQ results: Summary of subjective user feedback on SemiLD [Author, 2017].

Usability Questionnaire (PSSUQ) [Lewis, 1995]. Figure 7.15 summarises the results. SemiLD

received good scores in all aspects, which indicates the good interaction design decisions im-

plemented in the prototype. Some of the users indicated ways to improve the usability during

the experiment, for example: ordering the content of the filter select box alphabetically and

removing ”number of results” and the ”global schema version” text fields that were added for

the purpose of the experiment. These comments should be taken into consideration for further

improvements of the user interface and experience.

7.4 Prototype 2 Evaluation

This section presents another example test scenario of the implementation of the proposed ar-

chitecture. SemiLD is implemented into a keyword search in a collection manager for movies.

This prototype is implemented using Java and Jena libraries, along with other several tools to

parse JSON and XML files.

The user searches for information about movies in four heterogeneous sources, being:

• Two Linked Data sources: DBpedia, LinkedMDB;
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• Two Semi-structured sources: OMDB, TMDB.

The system then fetches all the available information and displays them in an interactive

interface. Many graphical forms and features that are adapted to the context of this prototype

are provided as part of the usable experience to hide complexity.

7.4.1 The Structuring of the Global Schema

The aim of this section is to show the significant difference between the number of the proper-

ties that are syntactically un-similar and semantically different, as well as identify the N number

for this implementation. The N number, discussed in Section 7.2.5, represents the number of

the first results needed to extract all the semantically distinct properties. First, a query is run

to count the syntactically distinct properties on the SPARQL on DBpedia endpoint, which is

a multi-domain Linked Data source that uses various and heterogeneous vocabularies in de-

scribing datasets in the same domain. Then, the semantic distance is measured between these

properties in order to extract the semantically distinct properties and count them. The N number

is identified when the number of semantically distinct properties becomes steady.

Example 7.1 is a SPARQL query that counts (and retrieves by removing count) the syntacti-

cally distinct properties that the first 200 movie datasets contains. It is an adaptable query for all

Linked Data endpoints supporting subquery feature (SPARQL 1.1), where only the vocabularies

used change. In this example, it is expressed to work on the DBpedia endpoint.

Example 7.1: A SPARQL query to count syntactically distinct properties
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT COUNT(DISTINCT ?p) WHERE {

?s ?p ?o .

FILTER (?s = ?film)

{

SELECT ?film {

?film rdf:type <http://schema.org/Movie> .

}

limit 100

}

}
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Figure 7.16: The discrepancy between the syntaxes and semantic unsimilarity [Author, 2017].

For other Linked Data endpoints that have not updated and were still running SPARQL 1.0,

such as LinkedMDB (at the time this thesis is written), the system uses Jena framework to nest

the results of a query within another query. The version of the SPARQL endpoint is included in

the Metadata to decide automatically which of the two predefined means will be used.

After applying Algorithm 7.4 (see Section 7.2.6) to extract and count the number of the

semantically distinct properties, the line chart in Figure 7.16 illustrates discrepancy between

the numbers of the syntactically and semantically distinct properties according to the number

of the results retrieved (similar to results in Section 5.3).

The structure of the global schema is created when the system is first developed, and it is

updated in the background on a time lapse basis, similar to a ”cron job” (a scheduled process).

Since the time of the creation of the global schema is not part of the response time, the N number

can be set to a maximum and a ”safer” value that ensure all the properties are recalled from all

sources. Thus, it does not affect the adaptivity nor the degree of the automation, as it is does not

run every time the system is queried, and nor does it need to be changed when a new Linked

Data source is added.
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Figure 7.17: Results presentation and the filtering service [Author, 2017].

7.4.2 Prototype 2 User Interface

Figure 7.17 shows the dynamic and interactive feature that allows the users to filter the results

according to the properties of the global schema, along with the possible values extracted from

the sources. These features are essential in this keyword search to rectify their lack of expres-

sivity without affecting the usability, by assisting the users in finding the requested result. The

system also keeps track of the originated source of every result.

7.4.3 Prototype 2 Metadata

This is the only module in the system that is predefined manually. This repository indicates

the links to the SPARQL endpoints or Web APIs of the sources to be queried (see Table 7.1).

In addition, the metadata gives the users the possibility to choose the number of the results

desired from each of the sources considered, accessed through an interface (see Figure 7.18). It

is also important, as discussed in Section 7.2.3, to determine whether the version of SPARQL

supported in the endpoint is SPARQL 1.1 or lower.

140



7. SEMILD
The Source API URL / SPARQL Endpoint Results SPARQL 1.1
DBpedia http://dbpedia.org/sparql 4 1
LinkedMDB http://linkedmdb.org/sparql 4 0
IMDB http://api.themoviedb.org/3/search/movie 3 N/A
OMDB http://www.omdbapi.com/ 3 N/A

Table 7.1: Example of a Metadata repository [Author, 2017].

Figure 7.18: The interface to change the number of the results per source [Author, 2017].

7.4.4 Evaluation of the System

As part of the evaluation, the system is queried and tested using a common keyword best.

Example 7.2 is a SPARQL query to search a keyword in a Linked Data source.

Example 7.2: A SPARQL query to search using a keyword
PREFIX mdb: <PATH/data.linkedmdb.org/resource/movie/>

PREFIX rdfs: <PATH/w3.org/2000/01/rdf-schema#>

PREFIX dc: <PATH/purl.org/dc/terms/>

SELECT * WHERE {

?title dc:title ?keyword.

filter(REGEX(?keyword, ''best'',''i''))

}

LIMIT 4

SPARQL endpoints offer various formats in expressing the results. To point out the hetero-

geneity, RDF is the format outputted from Linked Data sources, and JSON and XML are the

formats expressing the results of the semi-structured sources.

S1, S2, S3, S4 in Tables 7.2 and 7.3 refer to DBPedia, LinkedMDB, TMDB, OMDB sources

respectively
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Keyword
Syntactically Distinct Properties Semantically Distinct Properties

Global Schema
S1 S2 S3 S4 S1 S2 S3 S4

100 103 36 20 13 74 36 20 13 112
200 131 41 20 13 93 41 20 13 136
300 157 43 20 13 110 43 20 13 153
400 171 47 20 13 119 45 20 13 164
500 179 47 20 13 121 45 20 13 164

Table 7.2: The Number of the Semantically Distinct Properties Extracted per Source [Author,
2017].

Keyword
Results Requested
per source

Results
available

Properties
retrieved

Properties
matched with

Global Schema
Overall

Precision
S1 S2 S3 S4 overall S1 S2 S3 S4 S1 S2 S3 S4

in 50 50 50 50 50 200 56 36 20 13 56 36 20 13 1
in 200 200 200 200 200 800 94 41 20 13 85 41 20 13 0.97
best 50 50 5 50 50 152 59 21 20 13 57 21 20 13 0.99
best 200 124 5 200 200 529 83 21 20 13 71 21 20 13 0.96
London 200 85 4 200 200 489 79 22 20 13 72 22 20 13 0.97
Steve 200 15 0 200 200 415 57 - 20 13 56 - 20 13 0.99

Table 7.3: Matching Precision of SemiLD prototype 2 [Author, 2017].

Table 7.2 evaluates the process of the creation of the global schema according to the number

of first results considered. It shows that DBpedia has a considerable semantic overlap between

the properties of the vocabularies describing its datasets. More importantly, there is a noticeable

overlap with the properties of the four sources considered. For example, for N= 500, the system

extracted 199 semantically distinct properties from all sources; however, 35 were deleted as

they have the same semantics as some of 164 properties previously retrieved. It can be seen that

DBpedia and LinkedMDB are more general than the rest of semi-structured sources. In this

case, they contain all the properties available in OMDB and TMDB.

Table 7.3 suggests a way to estimate the precision of the system. The keywords are ordered

from the most to the least general. The general keywords generate the maximum number of

results; whereas the specific words do not occur in many movies so less results exist. The preci-

sion is calculated by dividing the properties matched (the number of mapping rules generates)

on the semantically distinct properties retrieved. The global schema generated from processing

the 500 first results is the one utilised in this Table. Table 7.4 is an example of a portion of

the results retrieved. The predicates runtime and director are included to show the differences
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Title Runtime Director Year Source
My Best Friend’s Wedding 105 P. J. Hogan 1997 LinkedMDB
The Best Man 102 Franklin Schaffner 1964 LinkedMDB
My Best Friend’s Birthday - Quentin Tarantino 1987 LinkedMDB
The Best of Insomniac - Nick McKinney 2003 LinkedMDB
O Despertar da Besta - Jose Mojica Marins 1983 DBpedia
Best Wishes for Tomorrow 110 Takashi_Koizumi 2008 DBpedia
Best Player 98 Damon Santostefano 2011 DBpedia
The Best Exotic Marigold Hotel - - 2011 OMDB
The Best Offer - - 2013 OMDB
Best - Mary McGuckian 2000 TMDB
Best of the Best - Andrew Lau Wai-Keung 1996 TMDB
Best of the Best - Herman Yau 1992 TMDB
...

Table 7.4: Example of some of the results retrieved by running a search using the keyword
”best” [Author, 2017].

Approach Query expressiveness Adaptivity Up-to-date Data Generic Semantic
Google Federated Keywords, NL Yes Yes Yes No
PowerAqua Centralised NL No Yes Yes Yes
SWIM Centralised SPARQL/RQL No No Yes Yes
LSM Centralised SPARQL/CQELS No No No Yes
MOMIS Federated n/a No n/a Yes Yes
FuhSen Federated Keywords No Yes No Yes
SemiLD Centralised Keywords Yes Yes Yes Yes

Table 7.5: Theoretical comparison of SemiLD against related systems [Author, 2017].

between the sources and the results retrieved in term of the available information.

In Figure 7.19, the diagram presents a comparison between the performances of SemiLD

against FuhSen. Although the scenario in FuhSen upon which the line chart is generated is

different, the performance included is based on 10 wrappers, which is the optimal that FuhSen

can achieve. Table 7.5 presents a theoretical comparison of SemiLD, the system proposed,

against the related works. As discussed in Section 3.5, Adaptivity, in this context, refers to

the ability to add new sources automatically so as to increase the scale of the amount of data

retrieved, and not addressing a subset of the available sources in the targeted data structure(s).

In contrast to FuhSen, SemiLD does not utilise any pre-defined vocabulary or language. The

global schema is the intermediate that accommodates the resultant datasets. It is constructed

automatically according to the sources considered. More importantly, the approach generates

mapping rules between the global schema and the sources, that guarantees the integration of the
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Figure 7.19: Comparison between the performance of SemiLD and FuhSen [Author, 2017].

data. Furthermore, SemiLD has only two classes of adapters, one for semi-structured source

and the other for Linked Data sources, which are used to access rather than extract. They are not

modelled to conform to the structure of the sources. Instead, for every approach an instance of

adapter is created, which receives all the information needed from a metadata file. The latter is

the only module that contains preloaded information of the minimum needed about the sources

for the system to function.

As far as the present author is aware, FuhSen is the only integration tool that includes a clear

evaluation of its performance, though not the precision. None of the few available systems inte-

grating semi-structured with Linked Data sources, presents numerical data that allows a precise

comparison. It is challenging ”to make data of different types of benchmarks comparable with

each other” due to the lack of a common description or a parameter that can be measured [Pfaff

and Krcmar, 2014, p. 1]. Moreover, little has been done to address the current issue even though

there are many sources that are still actively outputting semi-structured data with a considerable

relevance.

Finally, the concept of privacy is addressed in this approach by excluding relational databases

and other tools that may give the users access to non-public data. The system can be only used

to search through different Web APIs and SPARQL endpoints, which represent an alternative
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gateway to available public data.

7.5 Summary

Researchers in the Semantic Web community have been designing tools and architectures to

integrate heterogeneous data originated from distributed sources in the last decade. Technolo-

gies, such as RDF, resulted from the increased adoption of the Linked Data paradigm, have

enabled new data spaces and concept descriptors to define an increasing complex and hetero-

geneous Web of Data. Other types of data that existed previously, such as semi-structured, still

hold a significant value in many areas. To bridge between the two data spaces, this chapter

proposed a mediator-based approach that has offered a homogeneous and transparent access to

their sources.

The idea was to create a more general global schema in order to force an overlap with the

participating sources. It was composed by retrieving all the semantically distinct properties of

both Linked Data sources and semi-structured sources (see Section 7.2.5). Then, using the inter-

linking module (see Section 7.2.6), the matching rules were generated automatically. The data

originated from the heterogeneous sources were parsed and re-organised in the global schema

(see Section 7.2.5.3) to be finally displayed in an interactive interface for the user (see Sections

7.3.1,7.3.2,7.3.3 and 7.4.2). The contributed approach consists of 5 components, being: a user

interface (see Section 7.2.1), an ontology (see Section 7.2.2), sources metadata (see Section

7.2.3), a query engine distributor (see Section 7.2.4) and an interlinking subsystem (see Section

7.2.5). The implementation of this approach (see Sections 7.3 and 7.4) was a keyword search

engine, embedded in a Movie Collection Manager for movies, that takes into consideration all

the challenges and the criteria stated in this thesis. The results (see Sections 7.3.4, 7.3.5 and

7.4.4) confirmed the performance, precision and usability of the proposed approach.
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Chapter 8

Conclusions and Future Work

You have your way. I have my way. As for the right

way, the correct way, and the only way, it does not

exist [in research].
Friedrich Nietzsche

8.1 Introduction

The main motivation behind this thesis is to provide a bridge between semi-structured and

Linked Data, which can be achieved by offering transparent and homogeneous access to both

data models, or by contributing to the migration of semi-structured data to the Web of Linked

Data. Schema matching is another area that was researched in this work to reconcile the struc-

ture of the two data models. This chapter summarises the contribution of this thesis and contin-

ues with potential future directions from this line of investigation.

8.2 Summary of Contributions to Knowledge

To fill the gap that exists between semi-structured and Linked Data and to bridge their data

sources, this thesis broke down this aim in Chapter 1 into research questions (RQs, see Section
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1.3) and their associated objectives. This section refers back to them explaining how this thesis

successfully addressed them.

As argued in Section 1.5, the author in this thesis made both theoretical and practical con-

tributions. The author in this work presented the following theoretical contributions:

• Extending the literature by offering a review of existing systems according to identified

challenges (see Chapter 4). These challenges were extracted after studying the input

data, being semi-structured and Linked Data, and analysing various technologies and

identifying different challenges associated with their usage (see Chapter 3). This helped

the author to have a clear insight about the challenges associated with addressing the

specific technologies and operation targeted by the research questions of this thesis.

• Highlighting the challenge of automatically accommodating the changes of Linked

Data sources in a schema matching approach (see Chapter 5). This challenge was ad-

dressed by designing an element-based schema matching approach (see Section 5.2) that

has the ability to update its global schema (see Section 5.2.2) automatically on a time-

lapse basis. The global schema is the output of the schema matching approach, which

is a set of the semantically distinct properties of all the considered data sources. The

evaluation of this approach (see Section 5.3) showed the correlation between the different

parameters that affect precision and recall of the designed approach, which allowed the

author to find the optimised settings. Additionally, the evaluation brought to light a view

showing the discrepancy between the number of semantically and syntactically distinct

properties in Linked Data sources (see Figure 5.6). This high quality measure of the re-

sults validates the feasibility of keeping the global schema up-to-date with the changes of

the Linked Data sources, which responds to the Research Question 3 (RQ3).

• Designing a data interlinking approach that verifies, in the first place, the existence of

the URI of the resource being published in the Web of Data in order to establish links

with it (see Chapter 7). Unlike other approaches, the interlinking approach does not start

with a source set and a target set of resources. The only input is one set of resources

(source set) that are not associated with any ontology, vocabulary or a predefined struc-

ture. The input is the result of an RDF fixed transformation of a semi-structured dataset
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(see Section 2.5.4). Therefore, the designed interlinking approach did not use ontologies

or a knowledge base in finding the identity links. Instead, it utilised the domain to al-

locate dynamic weights that define more the identity of the resources being interlinked

(see Section 6.2.2.4). The interlinking approach was based on SERIMI [Araujo et al.,

2011], since it is one of the relatively successful approaches that do not use the structure

during the interlinking process. The weight allocation is an extension and improvement

of what has been proposed in Nath et al. [2014]. Other criteria were added in the weight

allocation such as the time relatedness of the property. The evaluation (see Section 6.3)

showed the effectiveness of the approach in targeting large scale of data that is compa-

rable to related approaches targeting significantly less amount data, which addresses and

responds to RQ1.

• Providing a transparent and data centric access to semi-structured and Linked Data.

The querying, retrieval of results, the integration as well as the adaptation of the global

schema when adding new sources (due to embedding SimiMatch) are automatic. The

contributed data integration approach (see Section 7.2) comprises of both the designed

schema matching and data interlinking approaches that were adapted and embedded as

modules. Unlike other state of the art integration approach targeting semi-structured and

Linked Data, such as Fuhsen, the data integration approach presented in this thesis is

generic and not limited to a specific domain, as highlighted in its evaluation sections (see

Sections 7.3 and 7.4). Since the quality of the schema matching and interlinking of the

data sources has already been evaluated as part of Chapters 5 and 6, the evaluation in

this chapter concentrated on the usability and the expressivity of the user interface of

the proposed prototypes (see Sections 7.3.4, 7.3.5 and 7.4.2). The results (see Sections

7.3 and 7.4) respond to Research Question 2 (RQ2) and validates that is feasible for data

integration system targeting semi-structured and Linked Data to have a transparent, usable

and expressive interface.

The following are the practical contributions that the author made in this thesis:

• Offering three working prototypes: SimiMatch, LinkD and SemiLD (see Sections 5.2,

6.3 and 7.2 respectively).
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• Adding the filtering service that searches using every property and every value of each

property upon previously heterogeneous data sources in their structure, access method

and protocol, model ,etc (see Figure 7.6). It validates the ability of SemiLD to offer a

data centric results;

• Adding feature-centric and domain related components. For example, in prototype 1 (see

Section 7.3) the results of ”locations” are displayed in a map and the icons are numbered

to make the connection between the map and the results; whereas in ”people”, the picture

of the person is displayed in the icon and profession in the description.;

• Combining and using both semantic technologies (ontologies to formulate the queries)

and similarity measurements techniques (UMBC EBIQUITY-COR [Han et al., 2013] se-

mantic similarity tool) (see Section 7.2);

8.3 Scope and Limitations

The research presented in this thesis is concerned with bridging between semi-structured and

Linked Data. This objective involves many tasks in both the considered operations (the integra-

tion and the interlinking).

Integrating semi-structured and Linked Data can involve other specificities depending on

the context of the implementation. It is beyond the scope of this thesis to address these context-

related tasks. For instance, in this work, the context of the implementation is a search system.

The thesis, however, does not research or contribute to result optimisation or ranking techniques

and approaches.

Similarly, the interlinking operation does not involve digging deep into converting semi-

structured to RDF, but rather concentrates on providing an interlinking that supports the char-

acteristics of an RDF resulting from the conversion. The scope of this research is not to publish

semi-structured in the Web of Linked Data, but rather to contribute to this overall task by pro-

viding identity links between the two data paradigms.

The approaches concentrate on the labels of the properties, which can be encoded and do not
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signify any meaning. This is why one limitation of the approaches proposed is that the sources

need to be parsing and mining friendly. They are suitable for this work as the data considered

are originated from Web APIs and SPARQL endpoints, which are frequently designed to be

output data that is parse-able or utilise a well-expressed vocabulary. For these approaches to be

evolved and improved in the future, a disambiguation stage or module would be needed.

8.4 Future Work and Challenges

This section presents new areas of research and propose some potential projects that can build

upon the work presented in this thesis.

8.4.1 Semantic Data Management in Smart Cities

The Smart City approach presented in this section is one example where the approaches pro-

posed in this approach can be combined and applied toghether. Providing a semantic data man-

agement approach to Smart Cities allows more depth and rigour when analysing and reasoning

upon the available data.

One major problem Smart Cities information and data management systems are facing cur-

rently is the heterogeneity, not only of the stream data, but also of the external data sources,

such as the Web of Linked Data, the use of which is inevitable in decision making on the scale

of a city.

The birth of Smart City and Linked Data initiatives has led to new challenges, but also op-

portunities, in retrieving and managing data. This project aims at finding and exploiting ways of

how they can profit from each other. Publishing Smart City data as Linked Data can expand its

available information in Linked Data cloud by creating new entities and establishing new links.

Similarly, the more knowledge about a city the systems can recall the more effective are the

decisions made. The proposed middleware reconciles stream data, originated from both social

and physical sensors related to Smart Cities, with Linked Data in order to offer a transparent

access. In this project the authors Kettouch et al. [2017b] highlighted and addressed the data
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Figure 8.1: The proposed framework for semantic data management of Smart Cities [Kettouch
et al., 2017b].

freshness requirements necessary to take into account when working with stream and Linked

Data and described the functionality the proposed middleware.

The diagram in Figure 8.1 shows the general architecture of the ongoing project Smart

City and its proposed framework. It illustrates the overall role of the new middleware and its

modules with respect to the users, who could be managers, planners or simple citizens, and third

party companies. Third party companies are distinguished as they can contribute to the Linked

Data cloud by processing data originated from the sensors of the Smart City and publishing the

outputs. The flowchart in Figure 8.2 describes a potential workflow of the approach.

The challenge of this approach is the creation of a prototype. Hence, further work will be

needed to explore ways to simulate and test the entire framework (the modules were only tested

independently) and it will also need an accurate method to evaluate it.
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Figure 8.2: The flowchart describing the work flow of the proposed framework [Kettouch et al.,
2017b].
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8.4.2 Other Future Work

There is much future work and improvement that can be introduced to the solutions and the work

that is presented in this thesis. This section provides some examples of how the contributed

architectures and tools can be extended upon or enhanced in the future.

First, the schema matching approach can benefit from a disambiguation module, which

would increase the effectiveness of the approach and presents the properties in a more under-

standable form. Furthermore, a study investigating the average rate of changes in Linked Data

sources would make the settings of SimiMatch by defining the time lapse needed to effectively

keep the global schema updated.

The data integration approach, as pointed out previously (such as in Section 7.2) can be

adapted to different contexts due to the importance of this task and its wide and diverse use.

Accordingly, future work can include applying the novel data integration approach as a compo-

nent or a layer in different systems and study its impact. Automating certain processes in the

extraction of metadata from Linked Data sources can improve SemiLD.

LinkD’s further work could be embedded it in a complete publishing tool and set up a

dedicated namespace in order to be able to host the converted and published semi-structured

data and the identified links.

8.5 Concluding Remarks

Bringing together relevant data from different sources and updating it regularly enables a richer

analysis and more accurate decision. More importantly, however, designing generic approaches

that are sound theoretically and functions practically to bridge between data models and paradigms

not only contributes to the application where it is implemented, but also to the progress the Se-

mantic Web community making for a more homogeneous, automatic and consistent Web.

The author is convinced that this work advances the current understanding and state of-

the-art of semantic search. The approaches and the tools proposed along with the other similar
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approaches working on either data integration or interlinking can substantially affect many areas

and improve the accessibility and the usage of semantic data, and that this research brings to

light many new ideas that cen be extended to make further contributions.
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Appendix I - Full Evaluation Results of
SimiMatch

The global schema version and the number of results stops at 200 in the table below as further data does not
significantly change the F1 score or the trend already reported.

Full Evaluation Results of SimiMatch
N Domaine Threshold GS_version N_properties Precision Recall F1

10 M 0.7 10 482 1 0.87 0.93
10 M 0.7 50 482 0.98 0.88 0.93
10 M 0.7 100 482 0.98 0.9 0.94
10 M 0.7 200 482 0.98 0.9 0.94
10 M 0.7 300 482 0.98 0.92 0.95
10 M 0.7 400 482 0.98 0.92 0.95
10 M 0.7 500 482 0.98 0.92 0.95
10 M 0.7 600 482 0.98 0.92 0.95
10 M 0.7 700 482 0.98 0.92 0.95
10 M 0.75 10 482 1 0.87 0.93
10 M 0.75 50 482 0.98 0.88 0.93
10 M 0.75 100 482 0.98 0.9 0.94
10 M 0.75 200 482 0.98 0.9 0.94
10 M 0.75 300 482 0.98 0.92 0.95
10 M 0.75 400 482 0.98 0.92 0.95
10 M 0.75 500 482 0.98 0.92 0.95
10 M 0.75 600 482 0.98 0.92 0.95
10 M 0.75 700 482 0.98 0.92 0.95
10 M 0.8 10 482 1 0.86 0.92
10 M 0.8 50 482 1 0.87 0.93
10 M 0.8 100 482 0.99 0.91 0.95
10 M 0.8 200 482 0.99 0.91 0.95
10 M 0.8 300 482 0.99 0.91 0.95
10 M 0.8 400 482 0.99 0.91 0.95
10 M 0.8 500 482 0.99 0.91 0.95
10 M 0.8 600 482 0.99 0.91 0.95
10 M 0.8 700 482 0.99 0.91 0.95
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
10 M 0.85 10 482 1 0.86 0.92
10 M 0.85 50 482 1 0.87 0.93
10 M 0.85 100 482 0.99 0.91 0.95
10 M 0.85 200 482 0.99 0.91 0.95
10 M 0.85 300 482 0.99 0.91 0.95
10 M 0.85 400 482 0.99 0.91 0.95
10 M 0.85 500 482 0.99 0.91 0.95
10 M 0.85 600 482 0.99 0.91 0.95
10 M 0.85 700 482 0.99 0.91 0.95
10 M 0.9 10 482 1 0.86 0.92
10 M 0.9 50 482 1 0.87 0.93
10 M 0.9 100 482 0.99 0.91 0.95
10 M 0.9 200 482 0.99 0.91 0.95
10 M 0.9 300 482 0.99 0.91 0.95
10 M 0.9 400 482 0.99 0.91 0.95
10 M 0.9 500 482 0.99 0.91 0.95
10 M 0.9 600 482 0.99 0.91 0.95
10 M 0.9 700 482 0.99 0.91 0.95
10 M 0.95 10 482 1 0.86 0.92
10 M 0.95 50 482 1 0.87 0.93
10 M 0.95 100 482 0.99 0.91 0.95
10 M 0.95 200 482 0.99 0.91 0.95
10 M 0.95 300 482 0.99 0.91 0.95
10 M 0.95 400 482 0.99 0.91 0.95
10 M 0.95 500 482 0.99 0.91 0.95
10 M 0.95 600 482 0.99 0.91 0.95
10 M 0.95 700 482 0.99 0.91 0.95
50 M 0.7 10 2411 1 0.83 0.91
50 M 0.7 50 2411 0.98 0.87 0.92
50 M 0.7 100 2411 0.98 0.91 0.94
50 M 0.7 200 2411 0.98 0.91 0.94
50 M 0.7 300 2411 0.98 0.91 0.94
50 M 0.7 400 2411 0.98 0.91 0.94
50 M 0.7 500 2411 0.98 0.91 0.94
50 M 0.7 600 2411 0.98 0.91 0.94
50 M 0.7 700 2411 0.98 0.91 0.94
50 M 0.75 10 2411 1 0.82 0.9
50 M 0.75 50 2411 0.98 0.87 0.92
50 M 0.75 100 2411 0.98 0.91 0.94
50 M 0.75 200 2411 0.98 0.91 0.94
50 M 0.75 300 2411 0.98 0.91 0.94
50 M 0.75 400 2411 0.98 0.91 0.94
50 M 0.75 500 2411 0.98 0.91 0.94
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
50 M 0.75 600 2411 0.98 0.91 0.94
50 M 0.75 700 2411 0.98 0.91 0.94
50 M 0.8 10 2411 1 0.82 0.9
50 M 0.8 50 2411 1 0.87 0.93
50 M 0.8 100 2411 0.99 0.9 0.94
50 M 0.8 200 2411 0.99 0.9 0.94
50 M 0.8 300 2411 0.99 0.9 0.94
50 M 0.8 400 2411 0.99 0.9 0.94
50 M 0.8 500 2411 0.99 0.9 0.94
50 M 0.8 600 2411 0.99 0.9 0.94
50 M 0.8 700 2411 0.99 0.9 0.94
50 M 0.85 10 2411 1 0.82 0.9
50 M 0.85 50 2411 1 0.87 0.93
50 M 0.85 100 2411 0.99 0.9 0.94
50 M 0.85 200 2411 0.99 0.9 0.94
50 M 0.85 300 2411 0.99 0.9 0.94
50 M 0.85 400 2411 0.99 0.9 0.94
50 M 0.85 500 2411 0.99 0.9 0.94
50 M 0.85 600 2411 0.99 0.9 0.94
50 M 0.85 700 2411 0.99 0.9 0.94
50 M 0.9 10 2411 1 0.82 0.9
50 M 0.9 50 2411 1 0.87 0.93
50 M 0.9 100 2411 0.99 0.9 0.94
50 M 0.9 200 2411 0.99 0.9 0.94
50 M 0.9 300 2411 0.99 0.9 0.94
50 M 0.9 400 2411 0.99 0.9 0.94
50 M 0.9 500 2411 0.99 0.9 0.94
50 M 0.9 600 2411 0.99 0.9 0.94
50 M 0.9 700 2411 0.99 0.9 0.94
50 M 0.95 10 2411 1 0.82 0.9
50 M 0.95 50 2411 1 0.87 0.93
50 M 0.95 100 2411 0.99 0.9 0.94
50 M 0.95 200 2411 0.99 0.9 0.94
50 M 0.95 300 2411 0.99 0.9 0.94
50 M 0.95 400 2411 0.99 0.9 0.94
50 M 0.95 500 2411 0.99 0.9 0.94
50 M 0.95 600 2411 0.99 0.9 0.94
50 M 0.95 700 2411 0.99 0.9 0.94
100 M 0.7 10 5124 1 0.83 0.91
100 M 0.7 50 5124 0.98 0.87 0.92
100 M 0.7 100 5124 0.98 0.91 0.94
100 M 0.7 200 5124 0.98 0.91 0.94
100 M 0.7 300 5124 0.98 0.91 0.94
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Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
100 M 0.7 400 5124 0.98 0.91 0.94
100 M 0.7 500 5124 0.98 0.91 0.94
100 M 0.7 600 5124 0.98 0.91 0.94
100 M 0.7 700 5124 0.98 0.91 0.94
100 M 0.75 10 5124 1 0.83 0.91
100 M 0.75 50 5124 0.98 0.87 0.92
100 M 0.75 100 5124 0.98 0.89 0.93
100 M 0.75 200 5124 0.98 0.89 0.93
100 M 0.75 300 5124 0.98 0.89 0.93
100 M 0.75 400 5124 0.98 0.89 0.93
100 M 0.75 500 5124 0.98 0.89 0.93
100 M 0.75 600 5124 0.98 0.89 0.93
100 M 0.75 700 5124 0.98 0.89 0.93
100 M 0.8 10 5124 1 0.82 0.9
100 M 0.8 50 5124 0.99 0.87 0.93
100 M 0.8 100 5124 0.99 0.89 0.94
100 M 0.8 200 5124 0.99 0.89 0.94
100 M 0.8 300 5124 0.99 0.89 0.94
100 M 0.8 400 5124 0.99 0.89 0.94
100 M 0.8 500 5124 0.99 0.89 0.94
100 M 0.8 600 5124 0.99 0.89 0.94
100 M 0.8 700 5124 0.99 0.89 0.94
100 M 0.85 10 5124 1 0.82 0.9
100 M 0.85 50 5124 0.99 0.87 0.93
100 M 0.85 100 5124 0.99 0.89 0.94
100 M 0.85 200 5124 0.99 0.89 0.94
100 M 0.85 300 5124 0.99 0.89 0.94
100 M 0.85 400 5124 0.99 0.89 0.94
100 M 0.85 500 5124 0.99 0.89 0.94
100 M 0.85 600 5124 0.99 0.89 0.94
100 M 0.85 700 5124 0.99 0.89 0.94
100 M 0.9 10 5124 1 0.82 0.9
100 M 0.9 50 5124 0.99 0.87 0.93
100 M 0.9 100 5124 0.99 0.89 0.94
100 M 0.9 200 5124 0.99 0.89 0.94
100 M 0.9 300 5124 0.99 0.89 0.94
100 M 0.9 400 5124 0.99 0.89 0.94
100 M 0.9 500 5124 0.99 0.89 0.94
100 M 0.9 600 5124 0.99 0.89 0.94
100 M 0.9 700 5124 0.99 0.89 0.94
100 M 0.95 10 5124 1 0.81 0.9
100 M 0.95 50 5124 0.99 0.86 0.92
100 M 0.95 100 5124 0.99 0.89 0.94
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N Domaine Threshold GS_version N_properties Precision Recall F1
100 M 0.95 200 5124 0.99 0.89 0.94
100 M 0.95 300 5124 0.99 0.89 0.94
100 M 0.95 400 5124 0.99 0.89 0.94
100 M 0.95 500 5124 0.99 0.89 0.94
100 M 0.95 600 5124 0.99 0.89 0.94
100 M 0.95 700 5124 0.99 0.89 0.94
200 M 0.7 10 10382 1 0.84 0.91
200 M 0.7 50 10382 0.98 0.89 0.93
200 M 0.7 100 10382 0.98 0.92 0.95
200 M 0.7 200 10382 0.98 0.92 0.95
200 M 0.7 300 10382 0.98 0.92 0.95
200 M 0.7 400 10382 0.98 0.92 0.95
200 M 0.7 500 10382 0.98 0.92 0.95
200 M 0.7 600 10382 0.98 0.92 0.95
200 M 0.7 700 10382 0.98 0.92 0.95
200 M 0.75 10 10382 1 0.84 0.91
200 M 0.75 50 10382 0.98 0.89 0.93
200 M 0.75 100 10382 0.98 0.92 0.95
200 M 0.75 200 10382 0.98 0.92 0.95
200 M 0.75 300 10382 0.98 0.92 0.95
200 M 0.75 400 10382 0.98 0.92 0.95
200 M 0.75 500 10382 0.98 0.92 0.95
200 M 0.75 600 10382 0.98 0.92 0.95
200 M 0.75 700 10382 0.98 0.92 0.95
200 M 0.8 10 10382 1 0.84 0.91
200 M 0.8 50 10382 0.99 0.88 0.93
200 M 0.8 100 10382 0.99 0.91 0.95
200 M 0.8 200 10382 0.99 0.91 0.95
200 M 0.8 300 10382 0.99 0.91 0.95
200 M 0.8 400 10382 0.99 0.91 0.95
200 M 0.8 500 10382 0.99 0.91 0.95
200 M 0.8 600 10382 0.99 0.91 0.95
200 M 0.8 700 10382 0.99 0.91 0.95
200 M 0.85 10 10382 1 0.84 0.91
200 M 0.85 50 10382 0.99 0.88 0.93
200 M 0.85 100 10382 0.99 0.91 0.95
200 M 0.85 200 10382 0.99 0.91 0.95
200 M 0.85 300 10382 0.99 0.91 0.95
200 M 0.85 400 10382 0.99 0.91 0.95
200 M 0.85 500 10382 0.99 0.91 0.95
200 M 0.85 600 10382 0.99 0.91 0.95
200 M 0.85 700 10382 0.99 0.91 0.95
200 M 0.9 10 10382 1 0.84 0.91
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
200 M 0.9 50 10382 0.99 0.88 0.93
200 M 0.9 100 10382 0.99 0.91 0.95
200 M 0.9 200 10382 0.99 0.91 0.95
200 M 0.9 300 10382 0.99 0.91 0.95
200 M 0.9 400 10382 0.99 0.91 0.95
200 M 0.9 500 10382 0.99 0.91 0.95
200 M 0.9 600 10382 0.99 0.91 0.95
200 M 0.9 700 10382 0.99 0.91 0.95
200 M 0.95 10 10382 1 0.82 0.9
200 M 0.95 50 10382 1 0.87 0.93
200 M 0.95 100 10382 0.99 0.89 0.94
200 M 0.95 200 10382 0.99 0.89 0.94
200 M 0.95 300 10382 0.99 0.89 0.94
200 M 0.95 400 10382 0.99 0.89 0.94
200 M 0.95 500 10382 0.99 0.89 0.94
200 M 0.95 600 10382 0.99 0.89 0.94
200 M 0.95 700 10382 0.99 0.89 0.94

10 G 0.7 10 424 0.99 0.75 0.85
10 G 0.7 50 424 0.98 0.8 0.88
10 G 0.7 100 424 0.96 0.86 0.91
10 G 0.7 200 424 0.96 0.89 0.92
10 G 0.7 300 424 0.96 0.89 0.92
10 G 0.7 400 424 0.96 0.89 0.92
10 G 0.7 500 424 0.96 0.89 0.92
10 G 0.7 600 424 0.96 0.89 0.92
10 G 0.7 700 424 0.96 0.89 0.92
10 G 0.75 10 424 0.99 0.75 0.85
10 G 0.75 50 424 0.99 0.79 0.88
10 G 0.75 100 424 0.99 0.85 0.91
10 G 0.75 200 424 0.99 0.88 0.93
10 G 0.75 300 424 0.99 0.88 0.93
10 G 0.75 400 424 0.99 0.88 0.93
10 G 0.75 500 424 0.99 0.88 0.93
10 G 0.75 600 424 0.99 0.88 0.93
10 G 0.75 700 424 0.99 0.88 0.93
10 G 0.8 10 424 1 0.75 0.86
10 G 0.8 50 424 0.99 0.78 0.87
10 G 0.8 100 424 0.99 0.84 0.91
10 G 0.8 200 424 0.99 0.88 0.93
10 G 0.8 300 424 0.99 0.88 0.93
10 G 0.8 400 424 0.99 0.88 0.93
10 G 0.8 500 424 0.99 0.88 0.93
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
10 G 0.8 600 424 0.99 0.88 0.93
10 G 0.8 700 424 0.99 0.88 0.93
10 G 0.85 10 424 1 0.74 0.85
10 G 0.85 50 424 0.99 0.77 0.87
10 G 0.85 100 424 0.99 0.83 0.9
10 G 0.85 200 424 0.99 0.85 0.91
10 G 0.85 300 424 0.99 0.85 0.91
10 G 0.85 400 424 0.99 0.85 0.91
10 G 0.85 500 424 0.99 0.85 0.91
10 G 0.85 600 424 0.99 0.85 0.91
10 G 0.85 700 424 0.99 0.85 0.91
10 G 0.9 10 424 1 0.74 0.85
10 G 0.9 50 424 0.99 0.77 0.87
10 G 0.9 100 424 0.99 0.83 0.9
10 G 0.9 200 424 0.99 0.85 0.91
10 G 0.9 300 424 0.99 0.85 0.91
10 G 0.9 400 424 0.99 0.85 0.91
10 G 0.9 500 424 0.99 0.85 0.91
10 G 0.9 600 424 0.99 0.85 0.91
10 G 0.9 700 424 0.99 0.85 0.91
10 G 0.95 10 424 1 0.73 0.84
10 G 0.95 50 424 1 0.76 0.86
10 G 0.95 100 424 0.99 0.82 0.9
10 G 0.95 200 424 0.99 0.85 0.91
10 G 0.95 300 424 0.99 0.85 0.91
10 G 0.95 400 424 0.99 0.85 0.91
10 G 0.95 500 424 0.99 0.85 0.91
10 G 0.95 600 424 0.99 0.85 0.91
10 G 0.95 700 424 0.99 0.85 0.91
50 G 0.7 10 2725 0.99 0.72 0.83
50 G 0.7 50 2725 0.98 0.76 0.86
50 G 0.7 100 2725 0.96 0.81 0.88
50 G 0.7 200 2725 0.96 0.85 0.9
50 G 0.7 300 2725 0.96 0.85 0.9
50 G 0.7 400 2725 0.96 0.85 0.9
50 G 0.7 500 2725 0.96 0.85 0.9
50 G 0.7 600 2725 0.96 0.85 0.9
50 G 0.7 700 2725 0.96 0.85 0.9
50 G 0.75 10 2725 0.99 0.72 0.83
50 G 0.75 50 2725 0.99 0.76 0.86
50 G 0.75 100 2725 0.99 0.81 0.89
50 G 0.75 200 2725 0.99 0.85 0.91
50 G 0.75 300 2725 0.99 0.85 0.91
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
50 G 0.75 400 2725 0.99 0.85 0.91
50 G 0.75 500 2725 0.99 0.85 0.91
50 G 0.75 600 2725 0.99 0.85 0.91
50 G 0.75 700 2725 0.99 0.85 0.91
50 G 0.8 10 2725 1 0.71 0.83
50 G 0.8 50 2725 0.98 0.75 0.85
50 G 0.8 100 2725 0.98 0.8 0.88
50 G 0.8 200 2725 0.98 0.84 0.9
50 G 0.8 300 2725 0.98 0.84 0.9
50 G 0.8 400 2725 0.98 0.84 0.9
50 G 0.8 500 2725 0.98 0.84 0.9
50 G 0.8 600 2725 0.98 0.84 0.9
50 G 0.8 700 2725 0.98 0.84 0.9
50 G 0.85 10 2725 1 0.71 0.83
50 G 0.85 50 2725 0.98 0.75 0.85
50 G 0.85 100 2725 0.98 0.8 0.88
50 G 0.85 200 2725 0.98 0.84 0.9
50 G 0.85 300 2725 0.98 0.83 0.9
50 G 0.85 400 2725 0.98 0.83 0.9
50 G 0.85 500 2725 0.98 0.83 0.9
50 G 0.85 600 2725 0.98 0.83 0.9
50 G 0.85 700 2725 0.98 0.83 0.9
50 G 0.9 10 2725 1 0.7 0.82
50 G 0.9 50 2725 0.99 0.73 0.84
50 G 0.9 100 2725 0.99 0.78 0.87
50 G 0.9 200 2725 0.99 0.83 0.9
50 G 0.9 300 2725 0.99 0.82 0.9
50 G 0.9 400 2725 0.99 0.82 0.9
50 G 0.9 500 2725 0.99 0.82 0.9
50 G 0.9 600 2725 0.99 0.82 0.9
50 G 0.9 700 2725 0.99 0.82 0.9
50 G 0.95 10 2725 1 0.7 0.82
50 G 0.95 50 2725 0.99 0.73 0.84
50 G 0.95 100 2725 0.99 0.78 0.87
50 G 0.95 200 2725 0.99 0.83 0.9
50 G 0.95 300 2725 0.99 0.82 0.9
50 G 0.95 400 2725 0.99 0.82 0.9
50 G 0.95 500 2725 0.99 0.82 0.9
50 G 0.95 600 2725 0.99 0.82 0.9
50 G 0.95 700 2725 0.99 0.82 0.9
100 G 0.7 10 5573 0.99 0.72 0.83
100 G 0.7 50 5573 0.97 0.75 0.85
100 G 0.7 100 5573 0.95 0.81 0.87

Continued on next page

177



Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
100 G 0.7 200 5573 0.95 0.85 0.9
100 G 0.7 300 5573 0.95 0.85 0.9
100 G 0.7 400 5573 0.95 0.85 0.9
100 G 0.7 500 5573 0.95 0.85 0.9
100 G 0.7 600 5573 0.95 0.85 0.9
100 G 0.7 700 5573 0.95 0.85 0.9
100 G 0.75 10 5573 0.99 0.72 0.83
100 G 0.75 50 5573 0.98 0.75 0.85
100 G 0.75 100 5573 0.98 0.8 0.88
100 G 0.75 200 5573 0.98 0.85 0.91
100 G 0.75 300 5573 0.98 0.85 0.91
100 G 0.75 400 5573 0.98 0.85 0.91
100 G 0.75 500 5573 0.98 0.85 0.91
100 G 0.75 600 5573 0.98 0.85 0.91
100 G 0.75 700 5573 0.97 0.85 0.91
100 G 0.8 10 5573 1 0.71 0.83
100 G 0.8 50 5573 0.98 0.75 0.85
100 G 0.8 100 5573 0.98 0.79 0.87
100 G 0.8 200 5573 0.98 0.84 0.9
100 G 0.8 300 5573 0.98 0.84 0.9
100 G 0.8 400 5573 0.98 0.84 0.9
100 G 0.8 500 5573 0.98 0.84 0.9
100 G 0.8 600 5573 0.98 0.84 0.9
100 G 0.8 700 5573 0.98 0.84 0.9
100 G 0.85 10 5573 1 0.71 0.83
100 G 0.85 50 5573 0.9 0.75 0.82
100 G 0.85 100 5573 0.98 0.79 0.87
100 G 0.85 200 5573 0.98 0.83 0.9
100 G 0.85 300 5573 0.98 0.83 0.9
100 G 0.85 400 5573 0.98 0.83 0.9
100 G 0.85 500 5573 0.98 0.83 0.9
100 G 0.85 600 5573 0.98 0.83 0.9
100 G 0.85 700 5573 0.98 0.83 0.9
100 G 0.9 10 5573 1 0.7 0.82
100 G 0.9 50 5573 0.99 0.72 0.83
100 G 0.9 100 5573 0.99 0.78 0.87
100 G 0.9 200 5573 0.99 0.82 0.9
100 G 0.9 300 5573 0.99 0.81 0.89
100 G 0.9 400 5573 0.99 0.81 0.89
100 G 0.9 500 5573 0.99 0.81 0.89
100 G 0.9 600 5573 0.99 0.81 0.89
100 G 0.9 700 5573 0.99 0.81 0.89
100 G 0.95 10 5573 1 0.7 0.82
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Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
100 G 0.95 50 5573 0.99 0.72 0.83
100 G 0.95 100 5573 0.99 0.77 0.87
100 G 0.95 200 5573 0.99 0.81 0.89
100 G 0.95 300 5573 0.99 0.81 0.89
100 G 0.95 400 5573 0.99 0.81 0.89
100 G 0.95 500 5573 0.99 0.81 0.89
100 G 0.95 600 5573 0.99 0.81 0.89
100 G 0.95 700 5573 0.99 0.81 0.89
200 G 0.7 10 0.99 0.72 0.83
200 G 0.7 50 0.96 0.75 0.84
200 G 0.7 100 0.95 0.81 0.87
200 G 0.7 200 0.95 0.85 0.9
200 G 0.7 300 0.95 0.85 0.9
200 G 0.7 400 0.95 0.85 0.9
200 G 0.7 500 0.95 0.85 0.9
200 G 0.7 600 0.95 0.85 0.9
200 G 0.7 700 0.95 0.85 0.9
200 G 0.75 10 0.98 0.71 0.82
200 G 0.75 50 0.97 0.74 0.84
200 G 0.75 100 0.97 0.8 0.88
200 G 0.75 200 0.97 0.85 0.91
200 G 0.75 300 0.97 0.85 0.91
200 G 0.75 400 0.97 0.85 0.91
200 G 0.75 500 0.97 0.85 0.91
200 G 0.75 600 0.97 0.85 0.91
200 G 0.75 700 0.97 0.85 0.91
200 G 0.8 10 0.99 0.7 0.82
200 G 0.8 50 0.98 0.74 0.84
200 G 0.8 100 0.98 0.78 0.87
200 G 0.8 200 0.98 0.83 0.9
200 G 0.8 300 0.98 0.83 0.9
200 G 0.8 400 0.98 0.83 0.9
200 G 0.8 500 0.98 0.83 0.9
200 G 0.8 600 0.98 0.83 0.9
200 G 0.8 700 0.98 0.83 0.9
200 G 0.85 10 1 0.7 0.82
200 G 0.85 50 0.98 0.72 0.83
200 G 0.85 100 0.97 0.76 0.85
200 G 0.85 200 0.97 0.81 0.88
200 G 0.85 300 0.97 0.81 0.88
200 G 0.85 400 0.97 0.81 0.88
200 G 0.85 500 0.97 0.81 0.88
200 G 0.85 600 0.97 0.81 0.88
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
200 G 0.85 700 0.97 0.81 0.88
200 G 0.9 10 1 0.7 0.82
200 G 0.9 50 0.99 0.72 0.83
200 G 0.9 100 0.98 0.75 0.85
200 G 0.9 200 0.98 0.8 0.88
200 G 0.9 300 0.98 0.8 0.88
200 G 0.9 400 0.98 0.8 0.88
200 G 0.9 500 0.98 0.8 0.88
200 G 0.9 600 0.98 0.8 0.88
200 G 0.9 700 0.98 0.8 0.88
200 G 0.95 10 1 0.7 0.82
200 G 0.95 50 0.99 0.71 0.83
200 G 0.95 100 0.99 0.76 0.86
200 G 0.95 200 0.99 0.8 0.88
200 G 0.95 300 0.99 0.8 0.88
200 G 0.95 400 0.99 0.8 0.88
200 G 0.95 500 0.99 0.8 0.88
200 G 0.95 600 0.99 0.8 0.88
200 G 0.95 700 0.99 0.8 0.88

10 P 0.7 10 396 0.85 0.87 0.86
10 P 0.7 50 396 0.82 0.91 0.86
10 P 0.7 100 396 0.82 0.95 0.88
10 P 0.7 200 396 0.82 0.95 0.88
10 P 0.7 300 396 0.82 0.95 0.88
10 P 0.7 400 396 0.82 0.95 0.88
10 P 0.7 500 396 0.82 0.95 0.88
10 P 0.7 600 396 0.82 0.95 0.88
10 P 0.7 700 396 0.82 0.95 0.88
10 P 0.75 10 396 0.85 0.87 0.86
10 P 0.75 50 396 0.84 0.91 0.87
10 P 0.75 100 396 0.84 0.95 0.89
10 P 0.75 200 396 0.84 0.95 0.89
10 P 0.75 300 396 0.84 0.95 0.89
10 P 0.75 400 396 0.84 0.95 0.89
10 P 0.75 500 396 0.84 0.95 0.89
10 P 0.75 600 396 0.84 0.95 0.89
10 P 0.75 700 396 0.84 0.95 0.89
10 P 0.8 10 396 0.93 0.84 0.88
10 P 0.8 50 396 0.93 0.87 0.9
10 P 0.8 100 396 0.92 0.9 0.91
10 P 0.8 200 396 0.91 0.9 0.9
10 P 0.8 300 396 0.91 0.9 0.9
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Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
10 P 0.8 400 396 0.91 0.9 0.9
10 P 0.8 500 396 0.91 0.9 0.9
10 P 0.8 600 396 0.91 0.9 0.9
10 P 0.8 700 396 0.91 0.9 0.9
10 P 0.85 10 396 0.95 0.84 0.89
10 P 0.85 50 396 0.94 0.87 0.9
10 P 0.85 100 396 0.93 0.9 0.91
10 P 0.85 200 396 0.93 0.9 0.91
10 P 0.85 300 396 0.93 0.9 0.91
10 P 0.85 400 396 0.93 0.9 0.91
10 P 0.85 500 396 0.93 0.9 0.91
10 P 0.85 600 396 0.93 0.9 0.91
10 P 0.85 700 396 0.93 0.9 0.91
10 P 0.9 10 396 1 0.84 0.91
10 P 0.9 50 396 0.98 0.87 0.92
10 P 0.9 100 396 0.95 0.9 0.92
10 P 0.9 200 396 0.94 0.9 0.92
10 P 0.9 300 396 0.94 0.9 0.92
10 P 0.9 400 396 0.94 0.9 0.92
10 P 0.9 500 396 0.94 0.9 0.92
10 P 0.9 600 396 0.94 0.9 0.92
10 P 0.9 700 396 0.94 0.9 0.92
10 P 0.95 10 396 1 0.84 0.91
10 P 0.95 50 396 0.98 0.86 0.92
10 P 0.95 100 396 0.98 0.9 0.94
10 P 0.95 200 396 0.97 0.9 0.93
10 P 0.95 300 396 0.97 0.9 0.93
10 P 0.95 400 396 0.97 0.9 0.93
10 P 0.95 500 396 0.97 0.9 0.93
10 P 0.95 600 396 0.97 0.9 0.93
10 P 0.95 700 396 0.97 0.9 0.93
50 P 0.7 10 1930 0.83 0.88 0.85
50 P 0.7 50 1930 0.8 0.91 0.85
50 P 0.7 100 1930 0.8 0.96 0.87
50 P 0.7 200 1930 0.8 0.96 0.87
50 P 0.7 300 1930 0.8 0.96 0.87
50 P 0.7 400 1930 0.8 0.96 0.87
50 P 0.7 500 1930 0.8 0.96 0.87
50 P 0.7 600 1930 0.8 0.96 0.87
50 P 0.7 700 1930 0.8 0.96 0.87
50 P 0.75 10 1930 0.83 0.88 0.85
50 P 0.75 50 1930 0.81 0.91 0.86
50 P 0.75 100 1930 0.81 0.96 0.88
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Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
50 P 0.75 200 1930 0.81 0.96 0.88
50 P 0.75 300 1930 0.81 0.96 0.88
50 P 0.75 400 1930 0.81 0.96 0.88
50 P 0.75 500 1930 0.81 0.96 0.88
50 P 0.75 600 1930 0.81 0.96 0.88
50 P 0.75 700 1930 0.81 0.96 0.88
50 P 0.8 10 1930 0.91 0.86 0.88
50 P 0.8 50 1930 0.9 0.89 0.89
50 P 0.8 100 1930 0.89 0.94 0.91
50 P 0.8 200 1930 0.89 0.94 0.91
50 P 0.8 300 1930 0.89 0.94 0.91
50 P 0.8 400 1930 0.89 0.94 0.91
50 P 0.8 500 1930 0.89 0.94 0.91
50 P 0.8 600 1930 0.89 0.94 0.91
50 P 0.8 700 1930 0.89 0.94 0.91
50 P 0.85 10 1930 0.91 0.84 0.87
50 P 0.85 50 1930 0.91 0.88 0.89
50 P 0.85 100 1930 0.89 0.94 0.91
50 P 0.85 200 1930 0.89 0.94 0.91
50 P 0.85 300 1930 0.89 0.94 0.91
50 P 0.85 400 1930 0.89 0.94 0.91
50 P 0.85 500 1930 0.89 0.94 0.91
50 P 0.85 600 1930 0.89 0.94 0.91
50 P 0.85 700 1930 0.89 0.94 0.91
50 P 0.9 10 1930 1 0.84 0.91
50 P 0.9 50 1930 0.97 0.88 0.92
50 P 0.9 100 1930 0.94 0.93 0.93
50 P 0.9 200 1930 0.94 0.93 0.93
50 P 0.9 300 1930 0.94 0.93 0.93
50 P 0.9 400 1930 0.94 0.93 0.93
50 P 0.9 500 1930 0.94 0.93 0.93
50 P 0.9 600 1930 0.94 0.93 0.93
50 P 0.9 700 1930 0.94 0.93 0.93
50 P 0.95 10 1930 1 0.84 0.91
50 P 0.95 50 1930 0.98 0.87 0.92
50 P 0.95 100 1930 0.97 0.92 0.94
50 P 0.95 200 1930 0.97 0.92 0.94
50 P 0.95 300 1930 0.97 0.92 0.94
50 P 0.95 400 1930 0.97 0.92 0.94
50 P 0.95 500 1930 0.97 0.92 0.94
50 P 0.95 600 1930 0.97 0.92 0.94
50 P 0.95 700 1930 0.97 0.92 0.94
100 P 0.7 10 3813 0.82 0.9 0.86
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Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
100 P 0.7 50 3813 0.81 0.94 0.87
100 P 0.7 100 3813 0.79 0.96 0.87
100 P 0.7 200 3813 0.79 0.96 0.87
100 P 0.7 300 3813 0.79 0.96 0.87
100 P 0.7 400 3813 0.79 0.96 0.87
100 P 0.7 500 3813 0.79 0.96 0.87
100 P 0.7 600 3813 0.79 0.96 0.87
100 P 0.7 700 3813 0.79 0.96 0.87
100 P 0.75 10 3813 0.83 0.9 0.86
100 P 0.75 50 3813 0.82 0.94 0.88
100 P 0.75 100 3813 0.8 0.96 0.87
100 P 0.75 200 3813 0.8 0.96 0.87
100 P 0.75 300 3813 0.8 0.96 0.87
100 P 0.75 400 3813 0.8 0.96 0.87
100 P 0.75 500 3813 0.8 0.96 0.87
100 P 0.75 600 3813 0.8 0.96 0.87
100 P 0.75 700 3813 0.8 0.96 0.87
100 P 0.8 10 3813 0.9 0.88 0.89
100 P 0.8 50 3813 0.9 0.91 0.9
100 P 0.8 100 3813 0.88 0.93 0.9
100 P 0.8 200 3813 0.88 0.93 0.9
100 P 0.8 300 3813 0.88 0.93 0.9
100 P 0.8 400 3813 0.88 0.93 0.9
100 P 0.8 500 3813 0.88 0.93 0.9
100 P 0.8 600 3813 0.88 0.93 0.9
100 P 0.8 700 3813 0.88 0.93 0.9
100 P 0.85 10 3813 0.91 0.86 0.88
100 P 0.85 50 3813 0.9 0.9 0.9
100 P 0.85 100 3813 0.88 0.93 0.9
100 P 0.85 200 3813 0.89 0.93 0.91
100 P 0.85 300 3813 0.89 0.93 0.91
100 P 0.85 400 3813 0.89 0.93 0.91
100 P 0.85 500 3813 0.89 0.93 0.91
100 P 0.85 600 3813 0.89 0.93 0.91
100 P 0.85 700 3813 0.89 0.93 0.91
100 P 0.9 10 3813 1 0.86 0.92
100 P 0.9 50 3813 0.96 0.9 0.93
100 P 0.9 100 3813 0.94 0.93 0.93
100 P 0.9 200 3813 0.94 0.93 0.93
100 P 0.9 300 3813 0.94 0.93 0.93
100 P 0.9 400 3813 0.94 0.93 0.93
100 P 0.9 500 3813 0.94 0.93 0.93
100 P 0.9 600 3813 0.94 0.93 0.93
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Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
100 P 0.9 700 3813 0.94 0.93 0.93
100 P 0.95 10 3813 1 0.86 0.92
100 P 0.95 50 3813 0.97 0.89 0.93
100 P 0.95 100 3813 0.96 0.93 0.94
100 P 0.95 200 3813 0.96 0.93 0.94
100 P 0.95 300 3813 0.96 0.93 0.94
100 P 0.95 400 3813 0.96 0.93 0.94
100 P 0.95 500 3813 0.96 0.93 0.94
100 P 0.95 600 3813 0.96 0.93 0.94
100 P 0.95 700 3813 0.96 0.93 0.94
200 P 0.7 10 7578 0.8 0.89 0.84
200 P 0.7 50 7578 0.8 0.92 0.86
200 P 0.7 100 7578 0.79 0.96 0.87
200 P 0.7 200 7578 0.79 0.96 0.87
200 P 0.7 300 7578 0.79 0.96 0.87
200 P 0.7 400 7578 0.79 0.96 0.87
200 P 0.7 500 7578 0.79 0.96 0.87
200 P 0.7 600 7578 0.79 0.96 0.87
200 P 0.7 700 7578 0.79 0.96 0.87
200 P 0.75 10 7578 0.81 0.89 0.85
200 P 0.75 50 7578 0.8 0.92 0.86
200 P 0.75 100 7578 0.8 0.96 0.87
200 P 0.75 200 7578 0.8 0.96 0.87
200 P 0.75 300 7578 0.8 0.96 0.87
200 P 0.75 400 7578 0.8 0.96 0.87
200 P 0.75 500 7578 0.8 0.96 0.87
200 P 0.75 600 7578 0.8 0.96 0.87
200 P 0.75 700 7578 0.8 0.96 0.87
200 P 0.8 10 7578 0.88 0.87 0.87
200 P 0.8 50 7578 0.88 0.9 0.89
200 P 0.8 100 7578 0.87 0.93 0.9
200 P 0.8 200 7578 0.87 0.93 0.9
200 P 0.8 300 7578 0.87 0.93 0.9
200 P 0.8 400 7578 0.87 0.93 0.9
200 P 0.8 500 7578 0.87 0.93 0.9
200 P 0.8 600 7578 0.87 0.93 0.9
200 P 0.8 700 7578 0.87 0.93 0.9
200 P 0.85 10 7578 0.88 0.87 0.87
200 P 0.85 50 7578 0.87 0.9 0.88
200 P 0.85 100 7578 0.87 0.93 0.9
200 P 0.85 200 7578 0.87 0.93 0.9
200 P 0.85 300 7578 0.87 0.93 0.9
200 P 0.85 400 7578 0.87 0.93 0.9

Continued on next page
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Appendix I
Full Evaluation Results of SimiMatch

N Domaine Threshold GS_version N_properties Precision Recall F1
200 P 0.85 500 7578 0.87 0.93 0.9
200 P 0.85 600 7578 0.87 0.93 0.9
200 P 0.85 700 7578 0.87 0.93 0.9
200 P 0.9 10 7578 0.99 0.87 0.93
200 P 0.9 50 7578 0.94 0.89 0.91
200 P 0.9 100 7578 0.92 0.93 0.92
200 P 0.9 200 7578 0.92 0.93 0.92
200 P 0.9 300 7578 0.92 0.93 0.92
200 P 0.9 400 7578 0.92 0.93 0.92
200 P 0.9 500 7578 0.92 0.93 0.92
200 P 0.9 600 7578 0.92 0.93 0.92
200 P 0.9 700 7578 0.92 0.93 0.92
200 P 0.95 10 7578 1 0.86 0.92
200 P 0.95 50 7578 0.97 0.89 0.93
200 P 0.95 100 7578 0.96 0.92 0.94
200 P 0.95 200 7578 0.96 0.92 0.94
200 P 0.95 300 7578 0.96 0.92 0.94
200 P 0.95 400 7578 0.96 0.92 0.94
200 P 0.95 500 7578 0.96 0.92 0.94
200 P 0.95 600 7578 0.96 0.92 0.94
200 P 0.95 700 7578 0.96 0.92 0.94
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Appendix II - SemiLD’s Evaluation Sheet

SemiLD’s Evaluation Sheet
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Appendix III - Implementations’ Details

System Specification / Version / Download Link
Software / Datasets
Operating System Windows 10 Education 64-bit
CPU 2.53 GHz i5 CPU
RAM 6.00 GB
Java JDK 1.8.0
Apache Jena 2.7.4
RDF HDT 1.0
GSON (JSON library) 2.62
Tomcat Server 7.0
Dbpedia http://gaia.infor.uva.es/hdt/DBPedia-3.9-en.hdt.gz

LinkedMDB http://gaia.infor.uva.es/hdt/linkedmdb.hdt.gz

LinkedGeoData http://gaia.infor.uva.es/hdt/linkedgeodata

Geonames http://gaia.infor.uva.es/hdt/geonames-11-11-2012.hdt.gz

Implementations’ details

The source code of the implementations presented in this thesis can be found in:
https://github.com/medke
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