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ABSTRACT 
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DOCTOR OF PHILOSOPHY 

DEVELOPMENT, OPTIMISATION AND VALIDATION OF A LIQUID 

CHROMATOGRAPHY-MASS SPECTROMETRY METHOD FOR THE DETECTION OF 

DRUGS OF ABUSE AND PHARMACEUTICALS IN DRINKING WATER 

YAN PENG 

November 2016 

 

The quality of drinking water is fundamental to human health and welfare and therefore it is 

important to remove contaminants. Recent research has focused on the presence of drugs 

of abuse and pharmaceuticals in water which could have an adverse effect on human 

health via bio-accumulation. Therefore, the focus of this research is to develop a method to 

simultaneously analyse 20 traditional illicit drugs, novel psychoactive substances (NPS) 

and antidepressants in drinking water from the East Anglian, UK, which has never been 

investigated before. Furthermore, removal efficiencies were also determined to assess the 

drinking water treatment plants effectiveness in treating and eliminating such compounds. 

 

The analysis was based on solid-phase extraction (SPE) and liquid chromatography-mass 

spectrometry (LC-MS) using a C18 column for identification and quantification, followed by 

a biphenyl column for confirmation. 65 - 107 % SPE recoveries were achieved for 17 

analytes. For the C18 column, precision was below 7.57 % and 15.04 % relative standard 

deviations for higher and lower concentrations and method accuracy was below ± 8.66 % 

bias at low, medium and high concentrations. Method detection and quantification limits 

(0.0056 - 1.0918 ng/L and 0.0187 - 3.6394 ng/L) were at sub ng/Ls. For the biphenyl 

column, the method was selective and instrumental detection limits ranged from 0.0115 to 

0.4795 ng/mL. This is the first reported method for the analysis of 20 drugs of abuse and 

pharmaceuticals in drinking water using LC-MS. 

 

Cocaine, methamphetamine, citalopram, fluoxetine, ketamine, mephedrone and methylone 

were detected in drinking water between 0.139 and 2.814 ng/L. The latter two NPS have 

been found in drinking water for the first time. In addition, the removal efficiencies of 

drinking water treatment plants were determined for methamphetamine, fluoxetine, 

ketamine and mephedrone from -25.27 % to 98.76 %.  

 

The findings could help to identify and recognise the ever-changing composition of 

contaminants in drinking water, which can aid in the development of water treatments for 

their removal. Moreover, this research could inform drinking water regulatory bodies of the 

presence of drugs of abuse and pharmaceuticals, as they are currently not included within 

the regulatory framework. 

 

Keywords: drugs of abuse, pharmaceuticals, solid phase extraction, liquid 

chromatography-mass spectrometry, drinking water 
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CHAPTER 1 INTRODUCTION 

This research has developed and validated a method based on solid phase extraction 

(SPE) and liquid chromatography-mass spectrometry (LC-MS). These methods were then 

used to determine drugs of abuse and pharmaceuticals in drinking water. This chapter 

introduces the theoretical background and publications underpinning this research. It 

discusses drugs of abuse and pharmaceuticals as emerging water contaminants and their 

impact, occurrence in the environment and distribution in drinking water. Therefore, a 

review of the drinking water treatment methods currently used is also included. The 

chapter discusses published findings regarding the presence and concerns of drugs of 

abuse and pharmaceuticals in drinking water, as well as the possible adverse effects on 

human health through possible bio-accumulation, which highlights the importance of this 

research. The chapter concludes with the drugs of abuse and pharmaceuticals chosen in 

this investigation, including the reasoning behind their selection, as informed by the 

reviewed literature. Additionally, the type of sample preparation and analytical technique 

used are reviewed and the parameters of method validation are also included. This chapter 

finishes with the aims of this research. 

 

1.1 Sustainable drinking water 

Daily water intake is essential to humans for keeping the body hydrated and maintaining 

normal body functions. However, the majority (97 %) of Earth’s available water is saline 

and non-potable, while 2 % is locked away in glaciers and stagnant ice. Only 1 % of water 

meets with the needs of humanity (Royal Society of Chemistry, 2007). This means that 

there is a shortage of potable water resources on Earth (ibid). Moreover, in the face of an 

increasing global population, potable water has inevitably been polluted by various human 

activities (Harrison, 2014). Providing sufficient drinking water to satisfy the demand for 

human needs and an increasing population has become one of the key challenges being 

facing mankind in the 21st century (Royal Society of Chemistry, 2007). The sustainable 

management of this precious water resource plays an important role in helping to deal with 

this challenge by retaining water at an appropriate standard for human consumption on a 

long-term basis (ibid). In order to achieve this goal, it is important to identify and recognise 
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the ever-changing composition of contaminants and pollutants in drinking water, which can 

aid the development of water treatments for their removal and inform policy and regulations 

(Kümmerer, 2009; Escher, et al., 2011).  

 

It is important to distinguish what a water contaminant and a water pollutant is. A water 

contaminant is a substance that is present in the aquatic environment but should not 

normally occur at concentrations over natural background (Chapman, 2007). When a water 

contaminant poses as an adverse biological effect to resident communities, it crosses over 

to pollutant status and is defined as a water pollutant (Chapman, 2007; Harrison, 2014). As 

an example with regards to drinking water, pesticides are known as water pollutants, due to 

the existing evidence and publication on their harm to human health. However, drugs of 

abuse and pharmaceuticals are still defined as water contaminants, since no human health 

consequences associated with exposure of these trace substances via drinking water have 

been reported so far.  

 

1.2 Pollutants and contaminants in drinking water 

The presence of pollutants and contaminants in drinking water has always received a 

considerable amount of public attention and scientific interest, particularly with respect to 

their effects on human health (Peng, Hall and Gautam, 2016). Historically, as an example, 

a substantial number of papers have highlighted the detection of endocrine disrupting 

compounds in drinking water (Falconer, et al., 2006; Benotti, et al., 2009). These have 

included compounds such as herbicides (atrazine and simazine) and insecticides 

(monocrotophos and triazofos) (Rodriguez-Mozaz, López de Alda and Barceló, 2004; 

Sinha, et al., 2011). These pollutants are present in run-offs from crops due to their 

solubility in water, which is their primary route into surface water and ground water 

(Aydinalp and Porca, 2004; Konstantinou, Hela and Albanis, 2006). This, then, eventually 

contaminates drinking water, as surface water and ground water are normally used as 

sources of drinking water. This is discussed further in Section 1.4. As an example, in the 

central and eastern regions of the United Kingdom (UK), 58 % of drinking water comes 

from treated surface water, 32.5 % from ground water and 9.5 % from either surface or 
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ground water (Drinking Water Inspectorate, 2014). Concerning the direct consumption of 

pesticide-contaminated water, there is increasing anxiety about the impact on the quality of 

drinking water and the results of serious consequences, especially regarding human health. 

For example, there is evidence for the possibility of increased rates of cancer and adverse 

effects on reproduction as some pesticides are suspected of being carcinogens or are able 

to disrupt endocrine activities (Ejaz, et al., 2004; Harrison, 2014). Thus, many developed 

countries such as the United States of America (USA) and European countries have 

introduced a variety of actions to regulate the use of pesticides and have even banned key 

pesticides that are associated with serious health effects, such as the organochlorine 

insecticides dichlorodiphenyltrichloroethane (DDT) and aldrin, in order to protect the 

waters (Ongley, 1996; World Health Organization, 2003; Rodriguez-Mozaz, López de Alda 

and Barceló, 2004; World Health Organization, 2004; Pesticide Action Network Europe, 

2008). As a result, the amount of pesticides used showed a significant reduction worldwide 

due to proper management through regulation (Pimentel, et al., 1991).  

 

In the last few years, the focus has shifted towards other emerging contaminants in the 

field of drinking water quality and analysis (Wille, et al., 2012). Drugs of abuse and 

pharmaceuticals are included in this group. Although they have been used for a long time, 

they have only recently been detected in drinking water due to advances in detection 

methods (Mompelat, Le Bot and Thomas, 2009; Pal, et al., 2013; Peng, Hall and Gautam, 

2016). For example, cocaine has been widely used as an illicit drug since the 20th century 

(Isralowitz and Myers, 2011), but it was only reported to have been detected in drinking 

water in 2008 using liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

(Boleda, et al., 2011), which is a highly selective and sensitive technique popularly used for 

water analysis in recent years (discussed later in Section 1.9.2).  

 

Alongside review papers on water analysis, the majority of publications and research 

focuses on the presence of drugs of abuse and pharmaceuticals in waste water and 

surface water (Mompelat, Le Bot and Thomas, 2009; Peng, Hall and Gautam, 2016). 

These findings are used both in a forensic perspective to estimate community drug usage 
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patterns and in an environmental perspective to evaluate the possible adverse effects on 

aquatic organisms’ health (Baker and Kasprzyk-Hordern, 2011a). For example, cocaine 

has been detected in surface water in the range of 0.4 to 44 ng/L (Pal, et al., 2012). These 

concentrations of cocaine found in the aquatic environment have been shown to induce 

cyto-genotoxic effects in the mollusc Zebra mussel, such as primary DNA damage, a 

marked increase in micronucleated cells and a clear rise in apoptosis (Binelli, et al., 2012). 

Recently, the concern of the public and scientists is more focused on the detection of drugs 

of abuse and pharmaceuticals in drinking water (Peng, Hall and Gautam, 2016). These are 

present at very low concentrations in drinking water (Section 1.6), but are thought to be a 

potential threat to human health because these compounds are biologically active and may 

induce adverse effects. This is discussed further in Section 1.7.  

 

1.3 United Kingdom (UK) policies governing drinking water quality 

In order to provide wholesome and clean water intended for human consumption, the 

quality of drinking water in Europe is governed by the Drinking Water Directive (Council 

Directive 98/83/EC) through regularly monitoring and testing 48 microbiological, chemical 

and indicator parameters (European Commission, 2016b). With regards to the UK, the 

Drinking Water Directive has been translated into the national legislation, Water Supply 

(Water Quality) Regulations 2016, which relates to the water quality of the UK (Department 

for Environment, Food & Rural Affairs, 2016; European Commission, 2016b). This UK 

legislation is imposed in England and Wales and its legal standards are those which are 

laid down in the Drinking Water Directive of Europe, together with added national 

requirements for some parameters (European Commission, 2016b; The Water Supply 

(Water Quality) Regulations 2016). For example, pesticides in drinking water are monitored 

by the Water Supply (Water Quality) Regulations 2016 in order to maintain high-quality 

drinking water and the maximum concentration of the total pesticides should not be above 

0.5 μg/L (microgram per litre). However, emerging contaminants, such as drugs of abuse 

and pharmaceuticals, are currently not included in the above-mentioned European and UK 

legislation for drinking water (Council Directive 98/83/EC; The Water Supply (Water Quality) 

Regulations 2016).  
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In 2013, the European Water Framework Directive (Directive 2013/39/EU) was introduced 

for the monitoring of priority substances in surface water on a European basis. As a result, 

diclofenac, a pharmaceutical compound belonging to a class of non-steroidal 

anti-inflammatory drugs (NSAIDs), has been added to the first watch list for collecting 

information regarding the risk is poses to the aquatic environment (Directive 2013/39/EU; 

Thermo Scientific, 2015). Although only one pharmaceutical compound is being monitored 

in surface water, this is a positive move in understanding the emerging contaminants in 

aquatic environments. As the drinking water standards are set based on the latest scientific 

evidence regarding the occurrence and level of pollutants and contaminants in drinking 

water (European Commission, 2016a), this highlights the need for studies for the 

evaluation of the presence of drugs of abuse and pharmaceuticals in drinking water, which 

this research aims to provide.  

 

1.4 Occurrence of drugs of abuse and pharmaceuticals in drinking water 

A number of research papers have been published on the transport of drugs of abuse and 

pharmaceuticals into the aquatic environment (Mompelat, Le Bot and Thomas, 2009; Pal, 

et al., 2013). They are known to be present in waste water from human waste (Mompelat, 

Le Bot and Thomas, 2009; Pal, et al., 2013; Peng, Hall and Gautam, 2016). When these 

compounds are consumed, they are distributed by the body and are either excreted 

unchanged as the parent compounds or as metabolites (Mompelat, et al., 2010). These are 

then released through faeces and urine into waste water (Repice, et al., 2013). In addition, 

improper disposal of unused or expired pharmaceuticals into toilets is also known to be a 

minor route into waste water (Gros, Petrović and Barceló, 2007). The waste water 

containing drugs of abuse and pharmaceuticals does pass through waste water treatment 

plants (WWTPs), but the processes of WWTPs are not designed to specifically eliminate 

these types of contaminants and therefore they are not always completely removed and 

are still present in the effluent waste water (Repice, et al., 2013). Subsequently, these 

contaminants are then released into surface water, such as rivers and lakes (Gros, 

Petrović and Barceló, 2007; Pal, et al., 2013). These drug residues are now being reported 

to have reached ground water, which is thought to be caused from either water leakage 
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from waste water systems or seepage from surface waters (Jurado, et al., 2012). With 

regards to drinking water, surface and ground waters that may contain drugs of abuse and 

pharmaceuticals are also used as a source of raw water for drinking water production 

(Mompelat, Le Bot and Thomas, 2009; Peng, Hall and Gautam, 2016). The raw water is 

treated by drinking water treatment plants (DWTPs) for human consumption by removing 

contaminants, pH adjustment and then additionally treated to improve taste, odour and 

colour (Drinking Water Inspectorate, 2010a). However, the treatment processes of DWTPs 

are generally designed to address the reduction in micro-organisms, metals and chemicals 

such as nitrates and pesticides, but not necessarily for drugs of abuse and 

pharmaceuticals (Drinking Water Inspectorate, 2010b). Therefore, the incomplete removal 

of drugs of abuse and pharmaceuticals is considered to be the main reason why these 

contaminants still exist and eventually end up in drinking water (Section 1.6). 

 

The presence of drugs of abuse and pharmaceuticals in drinking water supplies raises 

concern over the removal efficiencies of these contaminants during current treatment 

processes of DWTPs. To date, a few studies have reported drugs of abuse and 

pharmaceuticals in both raw water and finished drinking water and have evaluated the 

removal rates of these compounds, as studied in a review paper (Peng, Hall and Gautam, 

2016). In general, most of the studied drugs of abuse and pharmaceuticals are eliminated 

during DWTPs; however, some are still being detected in finished drinking water, which 

illustrates that they survive current water treatment processes. For example, the partial 

elimination of methadone (91 %) and its metabolite 

2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) (88 %) were reported when 

methods used by a DWTP consisted of pre-chlorination, clarification, post-ozonation, 

granular activated carbon (GAC) filtration and post-chlorination (Boleda, Galceran and 

Ventura, 2009). Their partial removal efficiencies may be due to several factors, such as 

their physico-chemical characteristics and the treatment processes applied 

(Huerta-Fontela, Galceran and Ventura, 2008). These are discussed further in Section 1.5. 

The various treatment processes of drinking water and specific examples of how drugs of 

abuse are removed, or partially removed, are discussed further in Section 1.5. The review 
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of drugs of abuse and pharmaceuticals detected in drinking water is also included in 

Section 1.6. 

 

1.5 Raw water treatment methods for the production of drinking water 

Water used for drinking water supplies is abstracted from surface water sources such as 

rivers and lakes and ground water sources (aquifers) (Drinking Water Inspectorate, 2014). 

This water, that has not undergone drinking water treatments, is referred to as raw water 

(Peng, Hall and Gautam, 2016). Drinking water treatment processes are used to remove or 

deactivate particles, pathogens, organic and inorganic pollutants from raw water and give a 

residual disinfectant (Royal Society of Chemistry, 2007). Various water treatment methods 

are applied, depending on the conditions of the raw water; generally, however, drinking 

water goes through six main stages of treatment which involve physical and chemical 

processes. These processes are known as pre-treatment, pre-oxidation, clarification, 

primary disinfection, filtration and secondary disinfection (LeChevallier and Au, 2004; 

Huerta-Fontela, Galceran and Ventura, 2008) and are described in the following 

sub-sections. 

 

1.5.1 Pre-treatment  

This stage is mainly used for treating the raw water abstracted from surface water sources, 

which is then stored in reservoirs for a long storage time (Thames Water, 2014). This 

process, known as self-purification, allows for water quality improvement, by the settling of 

suspended solids and adsorbed substances such as turbidity and heavy metals, 

biodegradation of organic substances by sunlight and die-off of faecal bacteria and viruses 

(LeChevallier and Au, 2004). In addition, filtering screens are also employed in 

pre-treatment to remove floating objects such as leaves from the water as these can cause 

blockage and damage in treatment processes (Thames Water, 2014). 

 

1.5.2 Pre-oxidation  

This initial treatment is normally applied to raw water from surface sources (LeChevallier 

and Au, 2004; Huerta-Fontela, Galceran and Ventura, 2008). Usually, the oxidants are 
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added in this early stage treatment process in order to provide a long contact time for 

continual oxidation (LeChevallier and Au, 2004). Chlorine is often used in DWTPs, 

particularly in Europe, and are hence called pre-chlorination (Huerta-Fontela, Galceran 

and Ventura, 2008; Environmental Protection Agency, 2011). Thus, the oxidation reactions 

of chlorine and the effectiveness of removing drugs of abuse and pharmaceuticals by 

chlorination are discussed in this section. In addition, ozone, another powerful oxidant, is 

also used by some DWTPs instead of chlorine for pre-oxidation, which is referred to as 

pre-ozonation (Environmental Protection Agency, 2011). This is probably because ozone 

oxidises more compounds and produces fewer undesirable by-products compared to 

chlorine (Zwiener, 2007). However, ozonation is widely used in the primary disinfection 

stage and hence is further discussed in Section 1.5.4.  

 

During the pre-chlorination stage, chlorine gas is added to water until it has undergone 

oxidation reactions and is then available as free chlorine residual, which has a high 

disinfecting ability (Huerta-Fontela, Galceran and Ventura, 2008; Environmental Protection 

Agency, 2011). Thus, the application of chlorine is for the purpose of disinfection, e.g. to kill 

microorganisms (LeChevallier and Au, 2004). Moreover, chlorine is also capable of 

oxidising unwanted inorganic compounds (e.g. iron or manganese) and organic 

compounds (e.g. drugs of abuse and pharmaceuticals) from water (ibid). The oxidation of 

these organic compounds by chlorine is related to electrophilic substitution. Their reactivity 

is influenced by the chemical properties of the compounds, such as whether they have 

amines and phenols as the electron-donating functional groups, which are the sites that 

are reactive to chlorine (Pinkston and Sedlak, 2004; Westerhoff, et al., 2005; 

Huerta-Fontela, Galceran and Ventura, 2008). Amino and phenolic groups have high 

electron densities, possessing a lone pair of electrons, which enable them to donate 

electrons to a neighbouring atom and thus are more likely to play a part in electrophilic 

substitution reactions (Miller and Solomon, 2000). Chlorine acts as the electrophile to 

selectively attack amino and phenolic groups in order to yield chlorinated amines and 

ortho- or para-substituted chlorophenols (Pinkston and Sedlak, 2004). Thus, the amine 

and/or phenol-containing compounds undergo a rapid reaction with chlorine, leading to 
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high removal during the pre-chlorination treatment (Westerhoff, et al., 2005; 

Huerta-Fontela, Galceran and Ventura, 2008). In contrast, if compounds contain 

electron-withdrawing functional groups (e.g. carboxyl and ester), they are less likely to 

undergo electrophilic substitution, as these groups are more likely to draw electron density 

from neighbouring atoms towards themselves (Miller and Solomon, 2000). This results in 

the slow reaction between carboxyl and/or ester-containing compounds and chlorine, 

leading to low removal during the pre-chlorination treatment (Westerhoff, et al., 2005). This 

correlates with a report by Huerta-Fontela, Galceran and Ventura (2008), wherein 

amphetamine that contains a primary amine and methamphetamine that contains a 

secondary amine, were removed at high percentages (> 99 %) by pre-chlorination, 

whereas cocaine with ester groups exhibited poor removal percentage (13 %). The 

structures of three drugs of abuse, as described above, can be found in Figure 1.1.  

 

  

Amphetamine Methamphetamine Cocaine 

Figure 1.1: Structures of amphetamine, methamphetamine and cocaine (drawn 

using ChemDraw Pro 13.0) and their functional groups relevant for pre-chlorination 

(circled) 

 

Many drugs of abuse and pharmaceuticals exhibit amino or phenolic groups in their 

structure (shown in Table 1.3), thus pre-oxidation with chlorine is an effective treatment to 

remove these compounds. However, further treatments are essential for removing some 

drugs of abuse and pharmaceuticals that contain groups such as carboxyl and ester, or 

exhibit different chemical properties that prevent their total removal via pre-oxidation. 

 

1.5.3 Clarification  

Clarification is the second stage of drinking water treatment for the further removal of 

suspended sediments and dissolved organic carbon, which is normally applied to raw 
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water from surface sources (Westerhoff, et al., 2005; Stackelberg, et al., 2007; 

Huerta-Fontela, Galceran and Ventura, 2008). In this stage, several steps are used, 

including coagulation, flocculation, sedimentation and sand filtration, (Huerta-Fontela, 

Galceran and Ventura, 2008). Firstly, coagulants such as ferric chloride are added to cause 

coagulation (Stackelberg, et al., 2007). The purpose of adding coagulants is to destabilise 

particles by reducing their surface electrical charge and to form the hydrolysis products that 

allow inter-particle attraction to form large particles (LeChevallier and Au, 2004). 

Flocculation is the next step, which is a physical process to promote particle aggregation 

by gentle mixing (ibid). Large particles that have sufficient settling velocities precipitate into 

the sedimentation basin, which can be separated from the water (Thames Water, 2014). 

Finally, the water undergoes gravity filtration through a sand filter to further remove 

suspended particles (LeChevallier and Au, 2004).  

 

Clarification has been shown to be an efficient process to remove high molecular organic 

material in water, such as humic acids, whose molecular weights are from 700 to 200,000 

(Ishiwatari, 1971; Vieno, Tuhkanen and Kronberg, 2006). However, this treatment is not an 

effective method to remove drugs of abuse and pharmaceuticals from the drinking water. 

According to Vieno, Tuhkanen and Kronberg (2006), five selected pharmaceuticals 

(diclofenac, ibuprofen, bezafibrate, carbamazepine and sulfamethoxazole) were poorly 

removed (all below 10 % removal, apart from diclofenac with 30 % removal) by the 

clarification process, which is probably due to their relatively lower molecular weights (< 

361.83). 
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1.5.4 Primary disinfection 

Primary disinfection is the process of chemical oxidation and ozone is typically used as the 

oxidant in this stage (LeChevallier and Au, 2004). This treatment is referred to as 

post-ozonation and seems to be considerably more efficient at removing organic 

compounds compared to other treatments. For example, post-ozonation followed by GAC 

filtration has been applied at numerous DWTPs globally for pesticides removal (Royal 

Society of Chemistry, 2007). The role of post-ozonation is to break down pesticides into 

compounds, which are readily absorbed by subsequent GAC filtration (ibid).  

 

Like chlorine, the addition of ozone is for the purpose of disinfection and oxidation (von 

Gunten, 2003a). Ozone is a better disinfectant as it is able to inactivate even protozoa 

where other conventional disinfectants fail (von Gunten, 2003b). In addition, it is a more 

selective oxidant when compared to chlorine, because it oxidises not only amines and 

phenols (same reactive sites as chlorine), but also compounds with double bonds 

(Westerhoff, et al., 2005). Double bonds comprise a region of high electron density that is 

attractive to ozone electrophiles (von Gunten, 2003a). The mode of reactivity is related to 

electrophilic substitution, which is the same reaction as with chlorine (Section 1.5.2). 

Therefore, drugs of abuse and pharmaceuticals that contain amines, phenols or double 

bonds may show high reactivity with ozone and result in the high removal percentages 

during the post-ozonation treatment (Westerhoff, et al., 2005). For example, caffeine, 

which has double bonds in the structure (shown in Figure 1.2), was eliminated by up to 76 % 

in the post-ozonation treatment, whereas a lower removal percentage (38 %) was obtained 

using the pre-chlorination treatment, as chlorine only reacts with amines and phenols and 

caffeine lacks these two reactive sites (Huerta-Fontela, Galceran and Ventura, 2008).  

 



12 
 

 

Caffeine 

Figure 1.2: Structure of caffeine (drawn using ChemDraw Pro 13.0) and its 

functional groups relevant for post-ozonation (circled) 

 

1.5.5 Filtration 

Various filtrations are used in this stage, such as slow sand filtration and membrane 

filtration, but activated carbon filtration is the most commonly used process for drinking 

water treatment (LeChevallier and Au, 2004). This is because the adsorption process with 

activated carbon is considered as an efficient way to remove most of the organic 

compounds, such as pesticides (Royal Society of Chemistry, 2007). Adsorption is related 

to the properties of the compounds (Huerta-Fontela, Galceran and Ventura, 2008). The 

octanol-water partition coefficient (kow) of compounds, which represents the ratio of the 

solubility of a compound in octanol to its solubility in water, therefore influences the 

adsorption rates with the log kow used as a relative indicator (Miller, et al., 1985; Yu, 

Peldszus and Huck, 2008). If log kow value is higher, the compound is more hydrophobic 

(less soluble in water, but more soluble in octanol). In contrast, if log kow value is lower, the 

compound is less hydrophobic but more hydrophilic (more soluble in water) (Miller, et al., 

1985). As adsorption is controlled by hydrophobic interactions between the activated 

carbon sorbent and the compound, compounds with a higher log kow value should have a 

higher adsorption affinity on activated carbon, whereas compounds with a lower log kow 

value have a relatively lower adsorption affinity (Huerta-Fontela, Galceran and Ventura, 

2008; Yu, Peldszus and Huck, 2008).  

 

This can be explained by the comparison of the removal efficiencies of two 

pharmaceuticals, meprobamate and diazepam. As meprobamate contains two primary 
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amines (Figure 1.3), which are hydrophilic functional groups, this compound has a lower 

log kow (0.70) and lower adsorption affinity on activated carbon (Westerhoff, et al., 2005; 

Harrold and Zavod, 2013). Thus, in the paper published by Westerhoff, et al. (2005), 

meprobamate was found to be difficult to remove (33 %) when treated with activated 

carbon. Whereas, diazepam exhibited a higher (67 %) removal as this compound has a 

higher log kow (2.82) due to its hydrophobic functional groups (Figure 1.3), such as 

aromatic rings (Westerhoff, et al., 2005; Harrold and Zavod, 2013). 

 

 

 

Meprobamate Diazepam 

Figure 1.3: Structures of meprobamate and diazepam (drawn using ChemDraw Pro 

13.0) and their functional groups relevant for activated carbon filtration (circled) 

 

1.5.6 Secondary disinfection 

Finally, secondary disinfection is used to maintain the quality of finished drinking water in 

distribution systems (LeChevallier and Au, 2004). Chlorine is added to the water to retain 

the free chlorine residual throughout the drinking water supply system, which is known as 

the post-chlorination treatment (Boleda, Galceran and Ventura, 2009). Unlike pre-oxidation 

with chlorine, the main aim of this treatment is to kill any remaining pathogens and control 

bacterial growth in order to keep the water safe as it travels through the distribution system, 

eventually reaching the domestic supply tap (Thames Water, 2014). Post-chlorination 

treatment is necessary as any microbial contamination can cause a public health risk 

(LeChevallier and Au, 2004). 
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1.6 Review of drugs of abuse and pharmaceuticals in drinking water 

As drugs of abuse and pharmaceuticals cannot be totally removed by current drinking 

water treatments as highlighted in Section 1.5, to date, some drugs of abuse and 

pharmaceuticals have been quantified in drinking water at nanogram per litre (ng/L) levels 

(Peng, Hall and Gautam, 2016). There is limited literature in this area, probably because of 

the analytical problems in quantifying these compounds at ultra-trace levels and this is 

further discussed in Section 1.9. A review summarised that 24 pharmaceuticals and 

metabolites have been detected in drinking water and therapeutic classes of 

pharmaceuticals such as NSAIDs and anticonvulsants are generally analysed (Mompelat, 

Le Bot and Thomas, 2009). However, only a few reports are available on the presence of 

other pharmaceutical classes in drinking water, such as antidepressants. This is the reason 

for the selection of antidepressants as the representative of pharmaceuticals in this 

research, which is further discussed in Section 1.8.3. Table 1.1 lists some pharmaceuticals 

and their concentrations as reported in drinking water. 
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Table 1.1: Concentrations of pharmaceuticals reported in drinking water 

COMPOUND COUNTRY CONC.  

/ ng/L 

REFERENCE 

Anticonvulsants 

Carbamazepine France 43.2 a Togola and Budzinski, 2008 

 Germany 60 b Heberer, et al., 2004 

 USA 258 a Stackelberg, et al., 2004 

Dilantin USA 1.3 b Vanderford and Snyder, 2006 

Primidone Germany 40 b Heberer, et al., 2004 

Antidepressants 

Amitriptyline China 0.1 - 0.5 c Wu, et al., 2015 

Citalopram Poland 1.5 a Giebułtowicz and Nałęcz-Jawecki, 2014 

Fluoxetine China 0.1 - 0.2 c Wu, et al., 2015 

 Spain 2.74 b López-Serna, et al., 2010 

 USA 0.59 - 0.82 c Benotti, et al., 2009 

 USA 19.2 a Padhye, et al., 2014 

 USA < 0.5 d Vanderford and Snyder, 2006 

Mianserin China 0.1 Wu, et al., 2015 

Antineoplastics 

Bleomycin UK 5 - 13 c Aherne, Hardcastle and Nield, 1990 

Psycho-stimulants 

Caffeine  France 22.9 a Togola and Budzinski, 2008 

 USA 119 a Stackelberg, et al., 2004 

United States of America (USA); United Kingdom (UK) 
a Maximum concentration; b Mean concentration; c Concentration range; d Mean concentration below 

quantification limit but above detection limit 

 

Very few studies have reported drugs of abuse in drinking water (Stackelberg, et al., 2007; 

Huerta-Fontela, Galceran and Ventura, 2008; Boleda, Galceran and Ventura, 2009; Boleda, 

et al., 2011; Boleda, Galceran and Ventura, 2011; Valcárcel, et al., 2012; Carmona, Andreu 

and Picó, 2014; Mendoza, et al., 2014; Mendoza, et al., 2016; Rodayan, et al., 2016). 

These were mainly focused on the analysis of traditional illicit drugs, including 

amphetamines, cannabinoids, cocainics, dissociative anaesthetics and opioid analgesics. 

Amphetamines have been quantified in a few samples from Canada, Spain and Latin 

American countries at trace levels (0.2 - 3.13 ng/L) (Boleda, et al., 2011; Valcárcel, et al., 

2012; Mendoza, et al., 2016; Rodayan, et al., 2016). These low concentrations could be 

due to the high removal efficiency at DWTPs (96 - 100 %) (Huerta-Fontela, Galceran and 

Ventura, 2008; Boleda, Galceran and Ventura, 2011).  
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Cannabinoids have also reported in three drinking water samples from Spain (Valcárcel, et 

al., 2012; Carmona, Andreu and Picó, 2014). However, the low concentrations (0.49 - 5.53 

ng/L) and low detection frequencies (12.5 - 33.3 %) determined do not correlate with the 

high consumption levels of cannabinoids, but probably due to their lower solubility in water 

(log kow > 5) (Mendoza, et al., 2014; United Nations Office on Drugs and Crime, UNODC, 

2015).  

 

Cocaine and its metabolites have been detected in drinking water from Canada, Japan, 

European and Latin American countries with concentrations (0.1 - 130 ng/L) varying 

between countries (Huerta-Fontela, Galceran and Ventura, 2008; Boleda, et al., 2011; 

Boleda, Galceran and Ventura, 2011; Mendoza, et al., 2014; Mendoza, et al., 2016; 

Rodayan, et al., 2016). These differences correlate with their regional consumption rates 

and removal efficiencies of DWTPs, which is further discussed in Section 5.3.1. For opioid 

analgesics, nine parent compounds and two metabolites were present in drinking water 

from Canada, Japan, the USA, European and Latin American countries between 0.1 and 

44 ng/L (Stackelberg, et al., 2007; Boleda, Galceran and Ventura, 2009; Boleda, et al., 

2011; Valcárcel, et al., 2012; Mendoza, et al., 2016; Rodayan, et al., 2016). Ketamine (15 

ng/L) is the only NPS that has currently been detected in drinking water (Rodayan, et al., 

2016). This is further discussed and compared with the results of this research in Section 

5.3.3.  
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Table 1.2: Concentrations of drugs of abuse reported in drinking water 

COMPOUND COUNTRY CONC.  

/ ng/L 

REFERENCE 

Amphetamines   

Amphetamine Spain < 1.0 c; 1.7 d Boleda, et al., 2011 

MDMA Latin America a < 0.2 c; 0.4 d Boleda, et al., 2011 

Spain 1.51 Valcárcel, et al., 2012 

Spain 1.47 Mendoza, et al., 2016 

Methamphetamine Latin America a < 0.5 c; 0.6 d Boleda, et al., 2011 

Spain < 0.5 c; 1.4 d Boleda, et al., 2011 

Spain 3.13 Mendoza, et al., 2016 

Cannabinoids    

THC Spain 5.53 Valcárcel, et al., 2012 

Cocainics    

Cocaine Canada 4.3 e Rodayan, et al., 2016 

 Europe b 0.1 e Boleda, et al., 2011 

 Japan < 0.1 c Boleda, et al., 2011 

 Latin America a 0.6 e Boleda, et al., 2011 

 Spain 0.4 e; 2.3 d Boleda, et al., 2011 

 Spain 1.61 Mendoza, et al., 2014 

 Spain 0.11 - 85.67 f Mendoza, et al., 2016 

Dissociative Anaesthetics 

Ketamine Canada 15.0 e Rodayan, et al., 2016 

Opioid Analgesics 

Codeine Canada 44.0 e Rodayan, et al., 2016 

 USA 30 d Stackelberg, et al., 2007 

Fentanyl Canada 12.0 e Rodayan, et al., 2016 

 Spain < 1.0 c; 1.4 d Boleda, et al., 2011 

Methadone Europe b 0.1 e Boleda, et al., 2011 

 Latin America a 0.2 e Boleda, et al., 2011 

 Spain 0.2 e; 2.7 d Boleda, et al., 2011 

 Spain 0.99 Valcárcel, et al., 2012 

 Spain 0.11 - 0.31 f Mendoza, et al., 2016 

Morphine Canada 6.4 e Rodayan, et al., 2016 

Oxycodone Canada 5.1 e Rodayan, et al., 2016 

Tramadol Canada 5.4 e Rodayan, et al., 2016 

3,4-methylenedioxymethamphetamine (MDMA); ∆9-tetrahydrocannabinol (THC) 
a Includes Argentina, Brazil, Chile, Colombia, Panama, Peru and Uruguay; b Includes Austria, France, 

Germany, Iceland, Slovakia, Switzerland and the UK; c Mean concentration below quantification limit 

but above detection limit; d Maximum concentration; e Mean concentration; f Concentration range 
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The published review has revealed a lack of research regarding other drugs of abuse in 

drinking water, such as novel psychoactive substances (NPS) (Peng, Hall and Gautam, 

2016). This is discussed further in Section 1.8.2. Available data regarding the 

concentrations of some drugs of abuse in drinking water is summarised in Table 1.2. Many 

drugs of abuse have been only determined in one study, such as amphetamine, 

∆9-tetrahydrocannabinol (THC), ketamine, morphine, oxycodone and tramadol (Boleda, et 

al., 2011; Valcárcel, et al., 2012; Rodayan, et al., 2016). Thus, there is a real need to 

undertake more studies to enable a better comparison of data and the prevalence of drugs 

of abuse in drinking water. 

 

1.7 Human health impacts 

A major concern about the presence of drugs of abuse and pharmaceuticals in drinking 

water is the possible adverse effect on human health (Mompelat, Le Bot and Thomas, 

2009; Peng, Hall and Gautam, 2016). Some of the drugs of abuse and pharmaceuticals as 

described above have been detected in drinking water with concentrations generally 

reported in the ng/L range (Section 1.6). Although these concentrations are described as 

lower than those known to cause pharmaceutical and toxicological effects, there are still 

concerns with the continuous trace level exposure to drugs of abuse and pharmaceuticals 

causing a chronic human health risk, as they can bio-accumulate in human body (Peng, 

Hall and Gautam, 2016). For instance, carbamazepine, an anticonvulsant, has been 

detected in drinking water at the concentration of 0.258 x 10-3 mg/L (milligram per litre) 

(Stackelberg, et al., 2004). Assuming that an individual drinking two litres (L) of water per 

day would ingest an amount of carbamazepine equivalent to 0.516 x 10-3 milligram (mg), 

being 0.188 mg over a year, whereas a single therapeutic dose of carbamazepine is 100 

mg (ibid). Therefore, the likelihood of acute human health risk is extremely low.  

 

However, some drugs of abuse and pharmaceuticals, such as cocaine and diazepam, are 

toxic, persistent and lipophilic, leading to accumulation in bone, fat or other body 

compartments (Nayak, Misra and Mulé, 1976; Friedman, et al., 1985; Cone and 

Weddington, 1989). These drugs could then be retained in the body for a long time, as 
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known with chronic use, although this could also be the case through chronic exposure by 

contaminated drinking water.  

 

Moreover, it is also necessary to be aware of the problems of possible drug-drug reactions, 

which might cause the synergistic effects. For example, mixing cocaine with heroin can 

amplify the effects of both drugs and increase the risk of death (Duvauchelle, Sapoznik and 

Kornetsky, 1998). As it is essential to drink water every day to maintain hydration, with 

drugs of abuse and pharmaceuticals now being reported to be present in drinking water, 

even at trace levels, their bio-accumulation in the human body and drug interaction are a 

matter of concern. 

 

Therefore, the potential for chronic adverse effects of drugs of abuse and pharmaceuticals 

in drinking water should not be overlooked, especially for vulnerable people. For instance, 

young and elderly people are more sensitive as they have a reduced capability to remove 

toxic compounds from their bodies compared to healthy adults (Jones, Lester and 

Voulvoulis, 2005). Another concern is the exposure of toxic compounds to foetuses. As an 

example, antineoplastics (anticancer pharmaceuticals) have received increasingly reported 

concerns about their adverse effects on foetus health. As these pharmaceuticals, as many 

others do, cross the placenta, the foetus could be exposed to antineoplastics from their 

mother taking such prescribed medications (Bawle, Conard and Weiss, 1998; Paskulin, et 

al., 2005). Abnormal foetus development, such as growth retardation, craniofacial and 

digital anomalies, has been reported (Johnson, et al., 2008; Cancer Research UK, 2016). 

Some antineoplatstics have also been detected in drinking water, for example bleomycin 

was present at the concentration of 13 ng/L (Aherne, Hardcastle and Nield, 1990). 

Therefore, drinking water is another exposure route for such compounds. The quantity of 

antineoplastics found in drinking water may not be a problem for adults, but there may be 

sufficient levels to pose a health risk for the foetus (Derbyshire, 2008). 

 

To date, no substantial human health consequence associated with the exposure of drugs 

of abuse and pharmaceuticals via drinking water has been reported. However, as this is a 
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relatively new area of research, only their detection in drinking water has been proved so 

far. However, drugs of abuse and pharmaceuticals in the environment can still be 

recognised as potential threats to human health due to their residues in drinking water and 

their potential toxic effects through accumulation (Hernando, et al., 2006; Peng, Hall and 

Gautam, 2016). Therefore, it is still necessary to assess the human health risk of drugs of 

abuse and pharmaceuticals in drinking water. As the risk can be evaluated by analysing the 

concentration of such contaminants in drinking water and comparing this to the level that 

causes adverse effects on human health (Johnson, et al., 2008), studies regarding the 

analysis of drugs of abuse and pharmaceuticals in drinking water are prerequisite for 

proving their environmental concentrations, which is the aim of this research.  

 

1.8 Selection of drugs of abuse, pharmaceuticals and internal standards for this 

research 

As mentioned in Section 1.7, there is a need for further research exploring the presence of 

drugs of abuse and pharmaceuticals in drinking water. However, it is impossible to analyse 

all drugs of abuse and pharmaceuticals that may be present in the drinking water in one 

study. Therefore, the rationale of defining major compounds of interest within this research 

is of importance, as detailed in the following sub-sections.  

 

Studies regarding drinking water analysis mainly focus on traditional illicit drugs. However, 

as mentioned in Section 1.6, there is a limited amount of research in this area and literature 

reviews have revealed a lack of research in the UK (Mompelat, Le Bot and Thomas, 2009; 

Pal, et al., 2013; Peng, Hall and Gautam, 2016). Thus, traditional illicit drugs were 

analysed in drinking water collected from the East Anglia region of the UK in this research, 

which can be compared with other published studies. Therefore, the most commonly 

traditional illicit drugs in the UK and Europe were chosen as target analytes (Mixmag, 2012; 

European Monitoring Centre for Drugs and Drug Addiction, EMCDDA, 2014a). While the 

majority of studies regarding the presence of pharmaceutical residues in aquatic 

environments mainly focused on four therapeutic classes (NSAIDs, anticonvulsants, 

antibiotics and lipid regulators), only 15 % of studies include antidepressants (Mompelat, 
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Le Bot and Thomas, 2009). Due to the shortfall in studies regarding antidepressants, this 

therapeutic class was chosen in this research as a representative of pharmaceuticals and 

the most frequently prescribed antidepressants in England according to the Health & 

Social Care Information Centre (HSCIC) report (2014) were selected in this research. 

Traditional illicit drugs and antidepressants are further discussed in Section 1.8.1 and 

Section 1.8.3. 

 

The emphasis of this research is also on NPS, such as ketamine, cathinones, piperazines 

and synthetic cannabinoids, since they are progressively being abused (Home Office, 2012) 

and no data regarding drinking water analysis is available, except for ketamine (Rodayan, 

et al., 2016). The choice of studied NPS was based on findings from the Advisory Council 

on the Misuse of Drugs (ACMD) report (2010), Mixmag survey (2012), EMCDDA reports 

(2013; 2014a; 2015a; 2015e), UNODC report (2014) and published studies (Davies, et al., 

2010; Ramsey, et al., 2010; Baker and Kasprzyk-Hordern, 2011b; Dargan, et al., 2011; 

Mwenesongole, et al., 2013). Further background and discussion to the NPS investigated 

in this research is included in Section 1.8.2.  

 

In summary, this research aims to analyse not only traditional illicit drugs and 

pharmaceuticals, but also NPS in drinking water.  

 

1.8.1 Traditional illicit drugs 

Traditional illicit drugs have always received considerable attention by law enforcement 

agencies. The use of these drugs is a global problem and is normally related to physical 

and psychological harm in addition to drug dependence, such as the user continuing to 

take drugs despite associated problems (Degenhardt, et al., 2004; Pal, et al., 2013). 

Globally, between 3.5 % and 7.0 % of the world population aged 15 - 64 have reported 

using a traditional illicit drug in 2012, mainly a substance belonging to the cannabis, 

opioids, cocaine or amphetamines group (UNODC, 2014). Thus, the production, trafficking 

and consumption of traditional illicit drugs are prohibited by national or international laws 

(Degenhardt, et al., 2004). Traditional illicit drugs are also popular in the field of drinking 
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water analysis. Studies have generally focused on the detection and quantification of a mix 

of commonly used traditional illicit drugs. The most studied traditional illicit drugs in drinking 

water are amphetamine, methamphetamine and cocaine because of their high 

consumption (Pal, et al., 2013; Peng, Hall and Gautam, 2016). Amphetamines such as 

amphetamine and methamphetamine are a class of synthetic stimulant drugs, containing 

phenethylamine, and have sympathomimetic activity, which is designed to stimulate the 

central nervous system (Moore, 2003). Cocaine is a psychotropic drug, but it is also 

considered as a powerful, addictive stimulant (Isenschmid, 2003). 

 

The number of seizures of illicit drugs in the European Union from drug users, traffickers 

and producers were reported to be around one million in 2012 (EMCDDA, 2014a). The 

report indicated that 9 % of seizures were cocaine, 3 % amphetamine and 1 % 

methamphetamine. Among all seizures, two-thirds were reported by Spain and the UK. 

This trend reflects the results of the Mixmag survey based in the UK, where 41.8 % of 

respondents have taken cocaine, 4.8 % amphetamine and 0.8 % methamphetamine in 

2011 (Mixmag, 2012). Due to their high prevalence, cocaine, amphetamine and 

methamphetamine have recently been analysed in drinking water in Europe (Boleda, et al., 

2011; Mendoza, et al., 2014; Mendoza, et al., 2016). However, in these studies, only two 

samples were collected from large cities in the UK. Hence, cocaine, amphetamine and 

methamphetamine were included in this research for comparative purposes, as mentioned 

earlier. 

 

1.8.2 Novel psychoactive substances 

NPS have gained popularity among drug users as they are available over the internet and 

can be considered as alternatives to controlled drugs. For example, NPS are designed to 

mimic the action and effects of known specific controlled drugs, such as amphetamines 

and cannabis (Home Office, 2012). Hence, NPS (such as ketamine, cathinones, 

piperazines and synthetic cannabinoids) have received a considerable amount of attention 

from the Home Office as their consumption has continuously grown in the UK (ibid). In April 

2016, the Psychoactive Substances Bill, a new legislation in relation to the NPS, was 
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announced by the Government, which intends to introduce a ban on their production, 

distribution, sale and supply in order to reduce the easy availability of these substances 

(Sumnall and Atkinson, 2015; Psychoactive Substances Act, 2016).  

 

However, NPS have received minimal attention in water analysis. In the UK, NPS have 

been studied in waste and surface waters (Baker and Kasprzyk-Hordern, 2011b; 

Mwenesongole, et al., 2013) and their presence has been reported in surface water, 

including ketamine, 1-benzylpiperazine (BZP) and 1-(3-trifluoromethylphenyl)piperazine 

(3-TFMPP) (Baker and Kasprzyk-Hordern, 2011b). It is not surprising that NPS could make 

their way into drinking water, similar to reports of traditional illicit drugs. However, so far 

only ketamine has been reported in drinking water in Canada (Rodayan, et al., 2016) and 

no data regarding other NPS is available. Therefore, this research aims to address this gap 

in knowledge by analysing NPS in drinking water.  

 

According to the UNODC report (2014), ketamine, cathinones, piperazines and synthetic 

cannabinoids are the most widely used NPS. Ketamine was used to treat asthmaticus due 

to its anaesthetic effect, but it also has a hallucinogenic effect, which makes it a popular 

drug of abuse and an agent of sexual assault (Jenkins, 2003). According to the Mixmag 

survey, 24.5 % of UK respondents have taken ketamine in 2011 (Mixmag, 2012). In 

addition, a study revealed that ketamine was detected in UK surface water at a 

concentration of 21.3 ng/L (Baker and Kasprzyk-Hordern, 2011b). Therefore, due to its 

prevalence and its presence in surface water, ketamine was included in this research. 

 

Cathinone, an alkaloid of the khat plant, and its derivatives are structurally close to the 

phenethylamine family, thus their pharmacological effects are similar to amphetamines 

(EMCDDA, 2015e). For example, methcathinone, the first derivative, is the cathinone 

analogue of methylamphetamine, while methylone is the cathinone analogue of MDMA 

(ACMD, 2010). Thus, cathinones are considered as substitutes of amphetamines and have 

gained popularity among drug users (Ammann, et al., 2012b). EMCDDA summarised that 

butylone, mephedrone, methylone, methcathinone and methylenedioxypyrovalerone 
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(MDPV) are the most commonly sold cathinones on the recreational market in Europe 

(ACMD, 2010; EMCDDA, 2015e). Moreover, more than 200 kilograms (kg) of MDPV have 

been seized in Europe between 2008 and 2013 (EMCDDA, 2014a) and 1.1 % of adults 

(aged 16 - 59) reported using mephedrone in England and Wales in 2012 (EMCDDA, 

2013). Another relevant study carried out in the UK analysed drug products purchased 

from various internet suppliers. After analysis, nine of the 18 products contained butylone 

and MDPV, followed by mephedrone (one) and methylone (one) (Ramsey, et al., 2010). 

Thus, butylone, mephedrone, methcathinone, MDPV and methylone are the most 

frequently found cathinones on the recreational market and they were selected in this 

research. 

 

Piperazines are a group of synthetic drugs, which contain the six member ring and two 

opposing nitrogen groups (EMCDDA, 2015a). They are central nervous system stimulants 

with hallucinogenic effects similar to those produced by amphetamines (Vorce, et al., 2008). 

This makes piperazines good alternatives to amphetamines. According to EMCDDA 

(2015a), 1-(3-chlorophenyl)piperazine (3-CPP), 3-TFMPP and BZP are the commonly 

found substituted piperazines in Europe. In a recent study, Davies, et al. (2010) purchased 

26 drug products from five internet suppliers and the results showed that nine drug 

products contained 3-TFMPP, followed by 1-methyl-4-benzylpiperazine (MBZP) (five), BZP 

(four), 3-CPP (three) and 1-(4-fluorophenyl)piperazine (4-FPP) (two). Thus, these five 

piperazines were selected as the target analytes in this research. Moreover, 

1-(4-methoxyphenyl)piperazine (4-MeOPP) and 1-(4-trifluoromethylphenyl)piperazine 

(4-TFMPP) have been studied in waste water collected from Cambridgeshire 

(Mwenesongole, et al., 2013). These two piperazines were also chosen, as this will provide 

knowledge of the transport from waste water to drinking water in Cambridgeshire. 

 

Synthetic cannabinoids are one of the most commonly reported NPS on the global market. 

For example, the number of newly identified NPS at the global level rose from 251 in 2012 

to 348 in 2013 and their overall increase was mostly due to synthetic cannabinoids 

(UNODC, 2014). Synthetic cannabinoids are similar to THC, which is the active component 



25 
 

of cannabis, as they create cannabis-like effects, such as hallucinogenic, sedative and 

depressant effects (EMCDDA, 2015d). Therefore, synthetic cannabinoids are considered 

as alternatives to cannabis and are becoming popular. In the UK, a survey revealed that 

3.3 % of respondents have tried synthetic cannabinoids in 2011 (Mixmag, 2012). The 

usage of synthetic cannabinoids was even higher than methamphetamine (0.8 %), one of 

the traditional illicit drugs (ibid). There is, therefore, a possibility that synthetic cannabinoids 

could also be present in the UK’s drinking water, as with traditional illicit drugs and thus 

they were analysed in this research. Dargan, et al. (2011) analysed 20 products from a 

number of legal high websites and found that 70 % of products contained (1-butyl-1H-

indol-3-yl)(naphthalen-1-yl)methanone (JWH-073) and 40 % contained (4-

chloronaphthalen-1-yl)-(1-pentylindol-3-yl)methanone (JWH-398). Therefore, as JWH-073 

and JWH-398 are the most frequently found synthetic cannabinoids on the recreational 

market, they were selected as representatives of synthetic cannabinoids in this research. 

 

1.8.3 Antidepressants 

As mentioned earlier, there are a limited number of studies regarding the analysis of 

antidepressants in drinking water, thus antidepressants were chosen as the representative 

of pharmaceuticals and were analysed in this research. The selection of antidepressants 

was owing to the ever-increasing number of these pharmaceuticals. Antidepressants are 

the most effective medicines to treat depression, various anxiety disorder, 

obsessive-compulsive disorder and panic attacks (HSCIC, 2014). In 2013, the number of 

antidepressants dispensed in England was increased by 6.3 %, which was the largest 

increase in the volume of prescription in terms of therapeutic area (ibid). This is probably 

because psychiatric diseases are becoming increasingly prevalent, which is a growing 

concern for mental health. For example, in the UK, 20 % of adults aged 16 and older 

showed signs of depression or anxiety in 2013 (Mental Health Foundation, 2015). 

 

To date, selective serotonin reuptake inhibitors (SSRIs), such as citalopram and fluoxetine, 

are the most widely used antidepressants over their predecessors, tricyclic 

antidepressants (TCAs), such as amitriptyline and dosulepin, because these newer 
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antidepressants have less toxicity and troublesome side effects (adrenergic, antihistaminic 

and anticholinergic) compared to TCAs (Anderson, 2003; HSCIC, 2014). A report 

published by the British Journal of Psychiatry described that prescriptions of seven TCAs 

were 74 million for the period 2000 - 2006, lower than the total prescriptions of five SSRIs 

(119 million) (Hawton, et al., 2010). Among the group of SSIRs, citalopram and fluoxetine 

were the first and second most frequently prescribed antidepressants in England for 2003 - 

2013 (HSCIC, 2014). Because of their high consumption, it is reasonable to assume that 

citalopram and fluoxetine could be present in drinking water, so these two antidepressants 

were covered in this research. 

 

1.8.4 Studied drugs of abuse, pharmaceuticals and internal standards for this 

research 

In this research, deuterated internal standards were added to the mixed standards and 

samples prior to the SPE and LC-MS analysis. Their signals were used to calculate peak 

area ratio of the analyte to the internal standard (PAR), which were used for data analysis. 

Deuterated internal standards are the analogues of the analyte in which several atoms are 

labelled with deuterium and thus will theoretically co-elute with the analyte (Chambers and 

Diehl, 2007). This helps to compensate for matrix effects (further discussed in Section 

1.9.2.2.1), injection variation and fluctuations in instrumental response, as these factors will 

affect the signal of the internal standard to the same degree as the analyte signal (Cody, 

2003). As many studied NPS lack available deuterated analogues and the cost of using a 

deuterated internal standard for each analyte is high, three representative internal 

standards (amphetamine-d6, cocaine-d3 and fluoxetine-d6) were chosen for 20 analytes 

under investigation (Couchman and Morgan, 2011; Pedrouzo, et al., 2011). These internal 

standards were stable and didn’t interfere with target analytes (Section 3.1.2.1 and Section 

4.2.1), thus allowing for reliable quantification. Based on their retention times (Table 3.3), 

amphetamine-d6 was chosen as an internal standard for analytes that elute near the 

beginning of the analysis. Cocaine-d3 and fluoxetine-d6 were used for analytes that elute in 

the middle and at the end of the analysis, respectively.  
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Table 1.3 lists the drugs of abuse and pharmaceuticals investigated in this research and 

internal standards used, including structures (drawn using ChemDraw Pro 13.0), empirical 

formulas, molar masses and logarithmic acid dissociation constant (pKa) values. The 

compounds belong to a large range of chemical classes, namely, amphetamines 

(amphetamine), antidepressants (fluoxetine), cathinones (mephedrone), cocainics 

(cocaine), dissociative anaesthetics (ketamine), piperazines (BZP) and synthetic 

cannabinoids (JWH-073). This classification of drugs of abuse and pharmaceuticals was 

based on the UNODC (2014) and HSCIC (2014) reports. This research is considered as an 

initial research into drinking water from the East Anglia region of the UK, the purpose being 

to develop and validate a method for drugs of abuse and pharmaceuticals from various 

chemical classes for the detection and quantification. As 20 drugs of abuse and 

pharmaceuticals from seven chemical classes were to be simultaneously analysed in this 

research, the metabolites were not included owing to limits and scope of this analysis and 

its resulting validation. 
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Table 1.3: Drugs of abuse, pharmaceuticals and internal standards included in this 

research 

COMPOUND STRUCTURE EMPIRICAL 

FORMULA 

MOLAR 

MASS 

(g/mol) 

pKa 

Synthetic Cannabinoids  

(1-butyl-1H-indol-3- 

yl)(naphthalen-1-yl)

methanone 

(JWH-073) 

 
 

C23H21NO 327.4 – 

(4-chloronaphthalen 

-1-yl)-(1-pentylindol-

3-yl)methanone 

(JWH-398) 

 

 

C24H22ClNO 375.9 – 

Dissociative Anaesthetics  

Ketamine 

 
 

C13H16ClNO 237.7 7.5 a 

Cocainics     

Cocaine 

 

C17H21NO4 303.4 8.7 a 

Cocaine-d3 

 

C17H18D3NO4 306.4 – 

a Moffat, et al., 2011 
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Table 1.3 cont’d: Drugs of abuse, pharmaceuticals and internal standards included 

in this research 

COMPOUND STRUCTURE EMPIRICAL 

FORMULA 

MOLAR 

MASS 

(g/mol) 

pKa 

Amphetamines  

Amphetamine 

 

 

C9H13N 135.2 9.9 a 

Amphetamine-d6 

 

 

C9H7D6N 141.2 – 

Methamphetamine  

 

 

C10H15N 149.2 9.9 a 

Antidepressants     

Citalopram 

 

C20H21FN2O 324.4 9.6 b 

Fluoxetine 

 

C17H18F3NO 309.3 10.1 b 

Fluoxetine-d6 

 

C17H12D6F3NO 315.3 – 

a Moffat, et al., 2011; b Kwon and Armbrust, 2008 
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Table 1.3 cont’d: Drugs of abuse, pharmaceuticals and internal standards included 

in this research 

COMPOUND STRUCTURE EMPIRICAL

FORMULA 

MOLAR 

MASS 

(g/mol) 

pKa 

Cathinones  

Butylone 

 

 

C12H15NO3 221.3 – 

Mephedrone 

 

 

C11H15NO 177.2 8.7 c 

Methcathinone 

 

 

C10H13NO 163.2 7.1 d 

Methylenedioxypyrovalerone 

(MDPV) 

 

 

C16H21NO3 275.3 – 

Methylone 

 

 

C11H13NO3 207.2 – 

c Santali, et al., 2011; d Baker and Kasprzyk-Hordern, 2013 
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Table 1.3 cont’d: Drugs of abuse, pharmaceuticals and internal standards included 

in this research 

COMPOUND STRUCTURE EMPIRICAL 

FORMULA 

MOLAR 

MASS 

(g/mol) 

pKa 

Piperazines   

1-(3-chlorophenyl) 

piperazine  

(3-CPP)  
 

C10H13ClN2 196.7 8.6 a 

1-(4-fluorophenyl) 

piperazine 

(4-FPP) 

 

 
 

C10H13FN2 180.2 – 

1-(4-methoxyphenyl) 

piperazine  

(4-MeOPP) 

 

 
 

C11H16N2O 192.3 9.0 a 

1-(3-trifluoromethylphenyl) 

piperazine  

(3-TFMPP) 

 
 

C11H13F3N2 230.2 8.7 a 

1-(4-trifluoromethylphenyl) 

piperazine  

(4-TFMPP) 

 

 
 

C11H13F3N2 230.2 – 

1-benzylpiperazine  

(BZP) 
 

C11H16N2 176.3 9.6 a 

1-methyl-4-benzylpiperazine 

(MBZP) 
 

C12H18N2 190.3 – 

a Moffat, et al., 2011 
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1.9 Introduction to analytical methods for the detection of drugs of abuse and 

pharmaceuticals in drinking water 

The lack of knowledge regarding the presence of drugs of abuse and pharmaceuticals in 

drinking water, as described in Section 1.6, can also be explained by the analytical 

difficulties involved in carrying out the quantification of drugs of abuse and pharmaceuticals 

at ultra-trace levels. Generally, the concentrations of drugs of abuse and pharmaceuticals 

in drinking water are found in the ng/L range (Mompelat, Le Bot and Thomas, 2009; Pal, et 

al., 2013; Peng, Hall and Gautam, 2016), which are close to or even lower than the limits of 

quantification from published methods (Stackelberg, et al., 2007; Boleda, et al., 2011; Wu, 

et al., 2015; Rodayan, et al., 2016). Limit of quantification is the lowest concentration that 

can be measured reliably (Armbruster and Pry, 2008), which is further discussed in Section 

1.10.5. Thus, if the concentration of an analyte in a sample is lower than its quantification 

limit, this analytical method is not sensitive enough for quantification. For example, Boleda, 

et al. (2011) used SPE followed by LC-MS/MS to examine 50 drinking water samples 

collected from Spain. Cocaine was detected and quantified in 33 samples, while 

amphetamine was detected in just one sample. This might be because the number of 

seizures reported for cocaine in Europe was twice the number for amphetamines in 2012 

(EMCDDA, 2014a), although it could also be related to their limits of quantification. In the 

aforementioned research, the limit of quantification for amphetamine was 1 ng/L, a tenfold 

higher than cocaine, 0.1 ng/L (Boleda, et al., 2011). This means that, by using this method, 

one could quantify cocaine but not amphetamine if the concentrations of amphetamine and 

cocaine are both at 0.5 ng/L. Hence, more concerns should focus on overcoming analytical 

difficulties in drinking water analysis, such as achieving lower limits of quantification, thus 

resulting in higher method sensitivity. In addition, in this research, 23 analytes (20 target 

drugs of abuse and pharmaceuticals plus three internal standards) were simultaneously 

analysed in one analytical run (Table 1.3). Therefore, it is crucial to develop a method that 

uses a suitable sample preparation and analytical technique, which could offer both 

selectivity and sensitivity. 
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1.9.1 Sample preparation - solid phase extraction (SPE) 

Although the matrix of a drinking water sample is comparatively clean, sample preparation 

prior to analysis cannot be overlooked. SPE, which uses a solid phase to separate the 

different components of a liquid sample, is the most reported sample preparation method 

used to extract the drugs of abuse and pharmaceuticals from drinking water (Postigo, 

Lopez de Alda and Barceló, 2008; Waters, 2016). The use of SPE can remove undesired 

interferences from water samples, retain analytes as much as possible and, more 

importantly, significantly concentrate the water samples, which is essential for a drinking 

water analysis, as target analytes are likely to be present in water samples at extremely 

low concentrations (Peng, Hall and Gautam, 2016; Waters, 2016). Thus, SPE was chosen 

as the sample preparation method in this research. Further background information 

regarding the SPE sorbents and discussion to the extraction protocol used in this research 

is provided in Section 1.9.1.1 and Section 1.9.1.2, respectively, and the benefits are 

discussed in Section 1.9.1.3.  

 

1.9.1.1 SPE sorbents  

SPE sorbents are available with many different packing materials, which result in different 

chemical behaviours. Based on their behaviours, SPE sorbents can be divided into five 

categories, namely reversed phase, normal phase, cation-exchange, anion-exchange and 

mixed-mode, which exhibits reversed phase behaviour in combination with either the 

cation-exchange or anion-exchange (Thurman and Mills, 1998). The selection of the most 

suitable SPE sorbent in this research was based on the sample matrix (drinking water) and 

the chemical properties of the investigated target analytes (drugs of abuse and 

pharmaceuticals). In this research, the studied drugs of abuse, pharmaceuticals and 

internal standards contain amines and aromatic rings (Table 1.3), which make them 

capable of interacting with both acidic and non-polar groups in the SPE sorbents. 

Therefore, mixed-mode cation-exchange sorbent exhibiting acidic and non-polar surface 

groups (Tzanavaras and Zacharis, 2010) were chosen for their extraction in drinking water 

(Section 3.2). 
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1.9.1.2 SPE Process 

Most extraction protocols of the mixed-mode cation-exchange SPE involve six separate 

steps, including sample pre-treatment, column conditioning, column equilibration, sample 

loading, column washing and analyte elution. These protocol steps are described in the 

following sub-sections. 

 

1.9.1.2.1 Sample pre-treatment 

Before applying the sample to the SPE for extraction, it is necessary to pre-treat the 

sample for the purpose of promoting analyte retention during the sample loading step 

(Simpson, 2000). In order to retain a basic analyte on the surface of mixed-mode 

cation-exchange sorbent, there are two elements involved: (1) positive charged basic 

groups on the analytes, and (2) negative charged acidic groups on the sorbent, as the 

retention is facilitated based on ionic interactions (Sigma-Aldrich, 1998). Basic groups of 

the analytes can be charged in this step by pH control and charging the acidic groups on 

the SPE sorbent is related to the column equilibration step, which is discussed in Section 

1.9.1.2.3. Dropping the sample pH by the addition of an acid will increase the concentration 

of the charged form of the basic analyte. For all basic groups to exist in the charged state, 

the sample pH is required to be at least two pH units below the pKa of relevant analyte 

(Harris, 2010). The pKa values of drugs of abuse and pharmaceuticals investigated in this 

research range from 7.1 (methcathinone) to 10.1 (fluoxetine) (Table 1.3). The pKa values of 

some cathinones and piperazines have not yet been reported; however, their pKa values 

can be predicted to be in the range of 7 - 10 based on the known pKa of other cathinones 

and piperazines. For synthetic cannabinoids, no such information is available. As synthetic 

cannabinoids are the alternatives to cannabis, the pKa values of JWH-073 and JWH-398 

can be considered as similar as the known pKa of THC (10.6), which is the principal active 

constituent of cannabis (Huestis, 2003; Boleda, et al., 2011). Thus, it was necessary to 

lower the pH of the water sample to below five in this research. 2 % v/v formic acid and 0.1 

M hydrochloric acid were used for Oasis MCX and Strata-X-Drug B, respectively, based on 

their generic protocols (Section 2.3.3.1). 
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1.9.1.2.2 Column conditioning  

Column conditioning is the first step used to activate the sorbent bed to allow for a proper 

phase interface with the applied sample (Simpson, 2000). As mixed-mode 

cation-exchange sorbents are hydrophobic, they are unable to be wet with polar solvent, 

such as water. When an aqueous sample is applied for extraction, it is necessary to first 

treat the sorbent bed with a water-miscible organic solvent, such as methanol, before 

sample loading. 

 

1.9.1.2.3 Column equilibration 

The aim of column equilibration is to adjust the pH of the sorbent in order to convert all 

acidic groups to their charged state, which can easily interact with the analytes (Thurman 

and Mills, 1998). The retention mechanism is discussed in Section 1.9.1.2.1. The pH of the 

sorbent is recommended to be a minimum of two pH units above the pKa of the sorbent 

(Simpson, 2000). For a mixed-mode cation-exchange sorbent, this can be accomplished 

by passing acidified water through the SPE column (Baker and Kasprzyk-Hordern, 2011a; 

Peng, Hall and Gautam, 2016). Hence, 2 % v/v formic acid (for Oasis MCX cartridge) and 

0.1 M hydrochloric acid (for Strata-X-Drug B cartridge) were added into water in this 

research (Section 2.3.3.1). 

 

1.9.1.2.4 Sample loading 

During sample loading, it is necessary to optimise the sample loading volume for the final 

protocol (Section 2.3.3.3 and Section 3.2.3). The main aim is to load as large a volume of 

sample as possible, because the larger the volume of sample applied, the higher the 

enrichment factor obtained, thereby leading to increased method sensitivity (discussed 

later in Section 1.9.1.3). This is even more important for a drinking water analysis, as target 

analytes are present in trace amounts (ng/L) (Peng, Hall and Gautam, 2016). It is important 

to control the flow rate of the sample when it passes through the column. Sample 

application with an adequately slow flow rate is recommended, as the residence time of 

analytes in the column must be sufficient for the retention to occur (Simpson, 2000). 
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1.9.1.2.5 Column washing 

Column washing is when a solvent is used to selectivity remove as many unwanted 

interferences as possible, while leaving the analytes retained on the sorbent (Simpson, 

2000). If the wash solvent is too weak, interferences may still be retained on the column 

and, subsequently, eluted along with the analytes in the elution step. On the other hand, if 

the wash solvent is too strong, the desired analytes may be eluted in this step, leading to 

loss of analyte. Therefore, the selection of wash solvent is important in order to ensure 

good-quality extracts. In this research, the wash solvent was selected based on the generic 

protocol of used SPE cartridges, Oasis MCX and Strata-X-Drug B (Section 2.3.3.1).  

 

1.9.1.2.6 Analyte elution 

The aim of this step is to elute the desired analytes from the sorbent by disrupting the 

interactions between the analytes and the sorbent (Waters, 2001). As mentioned in Section 

1.9.1.2.1, the retention mechanism of mixed-mode cation-exchange is the interaction of 

positively charged basic groups on the analytes and negatively charged acidic groups on 

the sorbent. This interaction can be disrupted by neutralising either the analyte or the 

sorbent. Normally, it is better to neutralise the analyte rather than the sorbent as the 

neutralisation of sorbent will release species retained on the sorbent, including the 

undesired interferences. To neutralise the analyte, the pH of elution solvent should be 

adjusted to at least two pH units above the analyte pKa (Sigma-Aldrich, 1998). According to 

the pKa values of drugs of abuse and pharmaceuticals investigated in this research (Table 

1.3), the pH of the elution solvent needs to be adjusted above 12. Based on the generic 

protocol of used SPE cartridges, Oasis MCX and Strata-X-Drug B, 5 % and 10 % of 

ammonium hydroxide was added for pH control, respectively (Section 2.3.3.1). Moreover, 

the strength of the elution solvent is also of importance. If the elution solvent is too weak, 

analytes cannot be completely removed from the column, resulting in only partial elution. 

On the other hand, if the elute solvent is too strong, the undesired interferences may be 

eluted in this step, leading to the poor-quality extracts. Thus, elute solvent needs to be 

optimised in order to achieve the complete recovery of analytes from the sorbents (Section 

2.3.3.2 and Section 3.2.2). 
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1.9.1.3 Benefits of SPE for the detection of drugs of abuse and pharmaceuticals in 

drinking water 

One benefit of using SPE is to remove potential interferences and purify compounds from 

the sample matrix (Waters, 2016). The application of an effective sample clean-up could 

reduce matrix effects, as components in the sample matrix are the common contributor to 

signal suppression during the ionisation process in LC-MS. Matrix effects are further 

discussed in Section 1.9.2.2.1.  

 

The use of SPE can also concentrate the water samples (Waters, 2016), which is more 

important for this research as mentioned earlier. Reported concentration levels of drugs of 

abuse and pharmaceuticals in water samples are in the sub ng/L range (Mompelat, Le Bot 

and Thomas, 2009; Pal, et al., 2013; Peng, Hall and Gautam, 2016), far lower than the 

sensitivity capability of the commonly used analytical instruments. For example, the 

published instrumental detection limits of LC-MS/MS regarding the analysis of drugs of 

abuse and pharmaceuticals were at nanogram per millilitre (ng/mL) (Kasprzyk-Hordern, 

Dinsdale and Guwy, 2007; Baker and Kasprzyk-Hordern, 2011b). Hence, the use of 

analytical techniques alone is insufficient to determine most drugs of abuse and 

pharmaceuticals in drinking water. This sensitivity gap could be bridged by using SPE to 

reduce the volume of the water sample for the purpose of analyte enrichment. This is 

normally performed by isolating analytes of interest from large volumes of water sample, 

such as a few 100 millilitres (mL), and re-dissolving them in small volumes of injection 

solvent for analysis (single mLs) (Baker and Kasprzyk-Hordern, 2011a; Peng, Hall and 

Gautam, 2016). Published research, which analysed drugs of abuse in waste and surface 

water, has reported the use of SPE to enrich river water samples, with 500 mL of river 

water sample reduced to 0.5 mL of extracted LC-MS/MS sample (Baker and 

Kasprzyk-Hordern, 2011b). The enrichment factor of this method was 1000, which was 

calculated as the ratio of the loaded sample volume (500 mL) to the extracted sample 

volume (0.5 mL) (ibid). Therefore, the application of SPE has significantly lowered the 

quantification limits of analytical methods for the studied drugs of abuse. For example, in 

the aforementioned research (Baker and Kasprzyk-Hordern, 2011b), the limit of 
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quantification for cocaine was 0.1 µg/L when using LC-MS/MS only, which is far higher 

than the reported environmental concentration (ng/L) (Pal, et al., 2013). However, when 

using SPE for the sample enrichment, its limit of quantification was reduced to 0.1 ng/L, 

which is capable of detecting cocaine in water samples. Therefore, SPE is considered an 

effective pre-concentration method, which enables analytes to be detected and improves 

the quantification limit of the analytical method (Baker and Kasprzyk-Hordern, 2011a). 

 

1.9.2 Instrumental techniques - liquid chromatography-mass spectrometry (LC-MS) 

and high performance liquid chromatography-diode array detection (HPLC-DAD) 

Since the 1970s, different analytical techniques, mainly varying between gas 

chromatography-mass spectrometry (GC-MS) and LC-MS/MS, have been utilised for the 

analysis of drugs of abuse and pharmaceuticals in a wide range of aqueous matrices, from 

waste water to drinking water (Castiglioni, et al., 2008; Noguera-Oviedo and Aga, 2016; 

Peng, Hall and Gautam, 2016). GC-MS has been used to detect drugs of abuse in waste 

water (Mwenesongole, 2015), where this technique generates much less solvent waste 

compared to LC-MS/MS and mass spectra are able to be compared between instruments 

and to a reference database for their identification (Peng, Hall and Gautam, 2016). 

However, its disadvantage is the need for lengthy derivatisation procedures when detecting 

low volatility and high polarity compounds (Kasprzyk-Hordern, Dinsdale and Guwy, 2007). 

Recently, LC-MS/MS has become the most commonly applied analytical technique when 

detecting drugs of abuse and pharmaceuticals in water samples, since most of these 

analytes are non-volatile and with a low-to-medium polarity, which are not amenable to 

GC-MS analysis (Postigo, Lopez de Alda and Barceló, 2008). In comparison to GC-MS, 

the analysis time of LC-MS/MS could be significantly reduced due to non-essential 

pre-column derivatisation (Mwenesongole, et al., 2012). This trend of LC-MS/MS over 

GC-MS is consistent with the recently published review (Vazquez-Roig, Blasco and Picó, 

2013). In previous studies (n = 19) regarding the analysis of illegal drugs and 

pharmaceuticals in water samples, 15 used LC-MS/MS for detection, while only two used 

GC-MS. Thus, using LC-MS/MS for the analysis of drugs of abuse and pharmaceuticals in 

waters is increasingly popular. 
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In forensic toxicology, LC-MS has been used to analyse drugs of abuse and 

pharmaceuticals in biological samples such as blood, plasma and urine (Maurer, 1998). 

However, to the author’s knowledge, it is less commonly used in the field of water analysis. 

A recent review showed that only ten out of 29 studies for determining pharmaceuticals in 

water used LC-MS and all studies that used LC-MS analysed pharmaceuticals from only 

one chemical class (Kosjek and Heath, 2008). In addition, LC-MS has never been used to 

analyse drugs of abuse in water samples (Petrovic, et al., 2010; Peng, Hall and Gautam, 

2016). Even though LC-MS/MS is increasing in popularity for the analysis of drugs of 

abuse and pharmaceuticals in water, LC-MS also has several advantages. It is less 

expensive compared with LC-MS/MS, which means it is still the instrument of choice for 

many laboratories (Holčapek, Jirásko and Lísa, 2012). Díaz-Cruz, et al. (2003) reported 

that the instrumental sensitivities achieved by LC-MS and LC-MS/MS were comparable. As 

there is little information published on the investigation of drugs of abuse and 

pharmaceuticals in water using LC-MS and as this was the instrument available for this 

research, it was decided to investigate LC-MS as an alternative to the popularly used 

LC-MS/MS in the analysis of drugs of abuse and pharmaceuticals in drinking water. This 

research is novel, as there have been no other studies to simultaneously analyse drugs of 

abuse and pharmaceuticals in drinking water using LC-MS. 

 

LC-MS is a powerful hyphenated technique that provides both high selectivity and 

sensitivity, as it combines the separation power of liquid chromatography (LC) with the 

detection and identification power of mass spectrometry (MS). LC separates compounds of 

a mixture by their chemical properties (Sargent, 2013), while MS is a detector with great 

sensitivity and the ability to identify compounds by their mass-to-charge ratio (m/z) values 

(Harris, 2010). In Section 1.9.2.1 and Section 1.9.2.2, LC and MS are further discussed. 

High performance liquid chromatography-diode array detection (HPLC-DAD) for the 

development of the LC-MS method in this research was also used (Section 2.3.1 and 

Section 3.1.1), as solvents and water grades are cheaper than those needed at LC-MS 

grade, leading to a cost reduction in the method development stage. The diode array 

detector (DAD) is described in Section 1.9.2.3. 
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1.9.2.1 Liquid chromatography (LC) 

In LC, an autosampler injects a small amount of a liquid sample into a flow of polar mobile 

phase, then the mobile phase carries the sample through the non-polar stationary phase 

where separation occurs (Fallon, Booth and Bell, 1987). The components of the sample 

not only move and interact with the mobile phase, but also partition into this stationary 

phase. Due to their different chemical properties, the components in the sample interact 

slightly differently with the mobile phase and stationary phase (Braithwaite and Smith, 

1985).  

 

The elution times of components can be manipulated through polarity changes in the 

stationary phase or mobile phase characteristics in order to achieve better separation. 

Typically, the mobile phase is a mixture of water with a relatively non-polar organic solvent 

that is miscible with water, such as methanol or acetonitrile (Sargent, 2013). The organic 

solvent is referred to as an organic modifier, whereby increasing the percentage of organic 

modifier can make the mobile phase more non-polar. Thus, with control of the mobile 

phase composition (mainly the choice of the organic modifier and its percentage), the 

elution times of components can be changed, resulting in better separation. These 

variables were studied under the method development and optimisation (Section 2.3.1 and 

Section 3.1.1). 

 

Moreover, the flow rate of the mobile phase is normally applied as 1 mL/min for DAD. 

However, when using MS as the detector, a lower flow rate should be applied in order to 

produce smaller droplets, as droplet size is related to the effectiveness of nebulisation and 

desolvation processes in the electrospray ionisation (ESI) interface and the generation of 

gas phase analyte ions, which are further discussed in Section 1.9.2.2.1. The typical flow 

rate of the mobile phase can be from 0.2 to 0.5 mL/min for LC-MS (Naegele, 2011). 

 

1.9.2.2 Mass spectrometry (MS) 

MS is a powerful technique that is used to detect and identify the separated analytes from 

LC. The analytes introduced from the LC are ionised at atmospheric pressure by an 
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atmospheric pressure ionisation (API) probe, such as ESI or atmospheric pressure 

chemical ionisation (APCI) (Sargent, 2013). The principle of ionisation is described in 

Section 1.9.2.2.1. Once ions are generated, they are introduced by the desolvation line (DL) 

into the vacuum and then confined and converged by the lens system including qarray, 

skimmer, octapole and entrance lens (Shimadzu, 2011). By optimising the voltages of DL, 

qarray DC and qarray RF for selected ions, enhanced peak intensity can be achieved 

because these voltages act as a force to introduce the selected ions to the mass analyser 

(Shimadzu, 2008). The more the ions are converged as they enter the mass analyser, the 

higher the peak intensity obtained. It is necessary to investigate the optimum voltage 

values for the DL and qarray based on the selected ions. This parameter was studied 

under method optimisation (Section 2.3.2 and Section 3.1.2.3). Subsequently, the ions are 

separated in relation to their m/z values by the mass analyser (discussed later in Section 

1.9.2.2.2). Then ion energy is converted into the electrical signal and measured by the 

detector (Shimadzu, 2011). 

 

1.9.2.2.1 Atmospheric pressure ionisation - electrospray ionisation  

The sample and the liquid mobile phase after LC separation enter the API unit, where 

ionisation occurs at atmospheric pressure (Sargent, 2013). The ionisation mechanisms for 

the ESI and APCI, which are the most commonly used API techniques, are different. 

However, only the ionisation principle of ESI is described in this section as APCI was not 

used in this research.  

 

ESI is a method of ionisation to transfer ions present in the sample from the liquid phase 

into the gas phase (Watson and Sparkman, 2007). The sample and mobile phase from the 

LC eluent is drawn into a metal capillary tube contained within the ESI probe and charged 

by the application of a potential difference between the capillary tip and sampling cone 

(Shimadzu, 2011). If a positive potential is applied to the capillary tip, it causes positive ions 

to predominantly populate the fine droplets. It is referred to as positive ion mode, which is 

normally used for the analysis of basic compounds (Molin and Traldi, 2007). On the other 

hand, negative ion mode is used to form negative ions by applying the negative potential to 
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the capillary tip. This mode is suitable for the analysis of acidic compounds (ibid).  

 

Nitrogen is then blown out around the outside of the capillary tip as nebuliser gas in order 

to spray the solution. This process is known as nebulisation. The purpose of nebulisation is 

to generate small charged droplets that contain positive or negative ions, because the 

droplet size can affect the effectiveness of the following step (Watson and Sparkman, 

2007). The effectiveness of the nebulisation process is related to the mobile phase 

composition. Small charged droplets may form when the mobile phase has a high 

percentage of organic solvent due to the low surface tension of mobile phase (Sargent, 

2013). If the mobile phase has a high percentage of water content, its surface tension is 

high and large liquid droplets may form. In this case, the higher potential difference is 

required to induce the small size droplets (ibid). Therefore, it is necessary to investigate the 

optimum values for the potential difference applied based on the mobile phase composition. 

This parameter was fixed based on the tuning file of the LC-MS (Section 2.3.2.2). 

 

Once the finely charged droplets are formed, they are attracted by an electrostatic field 

from the capillary tip to the sampling cone (counter electrode) and then enter into the DL. 

During the course of the movement, the solvent of the droplets is vaporised by using a 

heated drying gas (Shimadzu, 2011). This process is referred to as desolvation and is used 

to reduce the droplet size and increase the charge density on its surface (Sargent, 2013). 

When the surface charge increases to a point where the repulsion forces between ions 

with like charges exceed the tension forces of the surface, the Rayleigh limit is reached 

and the droplets disintegrate into even smaller droplets (Molin and Traldi, 2007). The 

repetition of vaporisation and disintegration leads to very fine droplets and, ultimately, it is 

thought that sample ions are desorbed into the gas phase (Sargent, 2013). Once in their 

gas phase, these ions are introduced into a lens system and mass analyser for separation 

and detection (Shimadzu, 2011). 

 

In the ESI process, a commonly encountered problem is that the ionisation efficiency of 

analytes is susceptible to the components present in the sample matrix, which refers to 
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matrix effects (Hajšlová and Zrostlíková, 2003; Chambers, et al., 2007). Ions present in the 

charged droplets have different abilities to move to the droplet surface, which are affected 

by the number of charges and the size of their molecules in solution (Tang and Kebarle, 

1993; Taylor, 2016). Those ions at the surface of droplets have a better chance of escaping 

into the gas phase and being detected by the mass analyser (Taylor, 2016). If the ions of 

matrix components move to the surface preferentially to the ions of analytes, more matrix 

ions will be at the surface spaces. During ESI ionisation, matrix ions will compete and 

interfere with analyte ions to evaporate into the gas phase, resulting in a decreased 

number of analyte ions entering the mass analyser for detection (Chambers, et al., 2007). 

As a result, the analyte signals will be suppressed and unrepeatable, which will lead to 

decreased method sensitivity and impact on accuracy, precision and reproducibility of 

analytical method (Chambers, et al., 2007; Kasprzyk-Hordern, Dinsdale and Guwy, 2007). 

Therefore, it is of importance to reduce the matrix effects. In this research, the SPE was 

used to remove matrix components and standard addition method was applied in order to 

compensate for the matrix effects.  

 

1.9.2.2.2 Analysis unit 

To date, several mass analysers have been developed and improved in order to achieve 

better performance, such as high-resolving power in order to resolve peaks in the mass 

spectra, higher mass accuracy, wider mass range, faster acquisition time, wider linear 

dynamic range and reduced cost of instrumentation (Holčapek, Jirásko and Lísa, 2012). 

These include the quadrupole (single and triple), ion trap, time of flight, orbitrap and ion 

cyclotron resonance. With respect to the analysis of drugs of abuse and pharmaceuticals in 

environmental aqueous samples, the majority of researchers have used the triple 

quadrupole (QqQ) mass analyser (Kosjek and Heath, 2008; Postigo, Lopez de Alda and 

Barceló, 2008; Petrovic, et al., 2010; Peng, Hall and Gautam, 2016). However, there is little 

information published regarding the use of the single quadrupole (Q), this being the mass 

analyser available. Thus, the Q mass analyser was chosen for this research. 
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The Q mass analyser is composed of four rods, which are arranged at an equal distance 

from the central axis (Shimadzu, 2011). Depending on the electrical potential, these four 

rods are divided into two sets; one is at a positive electrical potential, the other is at a 

negative electrical potential (Cody, 2003). Two voltages, direct current (DC) and alternating 

current (AC), are involved and a combination of DC and AC voltages is applied on each set 

of rods. Thus, an electric field is generated within the quadrupole analyser (Shimadzu, 

2011). The quadrupole analyser acts as a mass filter based on the amplitude of DC and AC 

voltages. Only the ions of given m/z values have a stable trajectory to pass through the 

four rods and be detected (ibid).   

 

The Q mass analyser can be used in two acquisition modes, being scan mode or selected 

ion monitoring (SIM) mode. In scan mode, the mass analyser is set to observe a range of 

m/z values, whereas in SIM mode only a few specific m/z values are monitored (Harris, 

2010). Scan mode can provide ion information over a specific m/z range. Therefore, in this 

research, scan mode was initially used to analyse the drugs of abuse and pharmaceutical 

standards in order to obtain their mass spectra, which help to select the diagnostic ions of 

each studied compound to be monitored in SIM mode (Section 2.3.2.2). SIM mode is 

significantly more sensitive than scan mode as more time can be spent on each m/z. In this 

research, SIM mode was used to monitor the diagnostic ions obtained from the scan mode 

for method development, method validation and water sample analysis. 

 

1.9.2.3 Diode array detector (DAD) 

The DAD detects the absorbance of compounds in the ultraviolet-visible (UV-Vis) spectral 

region and thus can identify analytes being eluted from the LC column (Cole and Levine, 

2003). The resulting spectrum is the absorbance of an analyte over a range of wavelength. 

Usually the highest wavelength from the spectrum is chosen for quantification. Thus, it is 

important to choose the optimal wavelength in order to achieve the appreciable 

absorbance for all analytes of interest (discussed in Section 3.1.1).  
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1.10 Method validation parameters for this research 

As mentioned in Section 1.8.2 and Section 1.9.2, this research is novel as the presence of 

14 NPS (cathinones, piperazines and synthetic cannabinoids) in drinking water has never 

been investigated before. Also, LC-MS is much less used in the field of drinking water 

analysis, especially for multi-residue analysis. Thus, the new analytical method used in this 

research needs to be developed, optimised and then validated before applying to drinking 

water samples.  

 

Method validation can be defined as the procedure of providing evidence and statistical 

interpretation to show that the method being developed is reliable and reproducible for its 

intended purpose (Harris, 2010). At this point, the use of a validated method provides a 

reasonable degree of confidence, which can generate reproducible data of sufficiently 

reliable quality with statistical grounds (Peters, Drummer and Musshoff, 2007). Before 

validating a method, it is suggested that one should select the validation parameters and 

define the evaluation criteria by considering the scopes and requirements of the method 

(Singh, 2013). In this research, the method uses SPE followed by LC-MS to identify and 

quantify selected drugs of abuse and pharmaceuticals (Table 1.3) in drinking water. A 

simple interpretation of its validation is to ensure that the methodology can measure the 

correct analytes (drugs of abuse and pharmaceuticals) in the correct amount over the 

specified range in the sample matrix (drinking water). For quantitative procedures, 

according to the recommendations of some major regulatory authorities, such as the 

International Union of Pure and Applied Chemistry (IUPAC) and the International 

Conference on Harmonisation (ICH), the following parameters should be validated: 

selectivity, stability, calibration model (linearity), precision, accuracy, limit of detection and 

limit of quantification (Peters, Drummer and Musshoff, 2007). Thus, these validation 

parameters are deemed relevant for this research and are described in detail in the 

following sub-sections.  

 

It is suggested to begin the validation with the selectivity study, as major modifications of 

the method might be needed if this parameter is not fulfilled (Swartz and Krull, 1997; Wille, 



46 
 

et al., 2011). If the method is found to be selective, one can proceed to the autosampler 

storage stability study in order to ensure that samples and standards are stable during 

analytical run (Peters, Drummer and Musshoff, 2007). The next step is to undertake the 

linearity experiment in order to determine the model of calibration for the analytical method 

(Huber, 2007). After ascertaining the calibration model, precision and accuracy are 

evaluated. The results can be used to further ensure that the data obtained from the 

analytical method is accurate and reproducible (Swartz and Krull, 1997). In addition, limits 

of detection and quantification are also determined as the indicators of instrument and 

method sensitivity (Singh, 2013). 

 

1.10.1 Selectivity  

Selectivity is defined as the ability of a specified analytical method to measure explicitly the 

analyte of interest when other compounds are present (Swartz and Krull, 1997). To 

demonstrate the selectivity of the method, it is important to ensure that the peak of the 

target analyte is due only to a single component (Peters, Drummer and Musshoff, 2007). 

Therefore, it is suggested to prove that the developed method is selective enough to 

separate all studied drugs of abuse, pharmaceuticals and internal standards from each 

other (Huber, 2007). Moreover, it is also important to ensure that there is no interference 

from the matrix blank (Peters, Drummer and Musshoff, 2007). Selectivity was assessed by 

monitoring a matrix blank following the procedures described in Section 2.4.1 and then 

comparing this to a mixed standard containing 20 target analytes and three internal 

standards to check interferences (Section 4.1).  

 

1.10.2 Autosampler storage stability 

The stability of target analytes and internal standards during the analytical run should be 

assessed prior to other validation experiments, as it is a prerequisite for reliable and 

reproducible quantification (Wille, et al., 2011). In this research, mixed standards were 

prepared every five working days and then put in the autosampler until the LC-MS analysis. 

Thus, autosampler storage stability was assessed for the selected drugs of abuse, 

pharmaceuticals and internal standards in the LC-MS injection solvent (0.5 % formic 
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acid/4.975 % acetonitrile/94.525 % water) during the maximum length of time standards 

stored at 10 °C on the temperature controlled autosampler (Peters, Drummer and 

Musshoff, 2007). The typical analysis time for water sample analysis ranged from 24 to 36 

hours and the maximum anticipated run time for method validation experiments was four 

days. Based on the experiment schedule, a period of five days was enough to cover the 

typical working time. Therefore, this was chosen as the time interval to be investigated. To 

test the stability of the studied drugs of abuse, pharmaceuticals and internal standards, 

repeated injections of mixed standards were analysed at a five-day interval (Section 2.4.2). 

An analysis of instrumental response plotted against the injection time was employed for 

each analyte, while the internal standard and p-value obtained from the bar graph was 

used to evaluate the stability (Section 4.2). The acceptance criterion of stability is 

discussed in Section 4.2.  

 

1.10.3 Calibration model - linearity 

The purpose of calibration is to determine the concentration of a substance in an unknown 

sample (Huber, 2007). Firstly, it is essential to ascertain the model of calibration for the 

analytical method. There are different models for calibration, such as linear, curvilinear and 

non-linear (Van Loco, et al., 2002). The linear model is widely used for the calibration of an 

analytical method. This is because, when using this mode, it is easier to estimate the 

equation of the calibration curve and compute the coefficients and standard deviations 

when compared to other models (Wille, et al., 2011). Thus, undertaking the linearity 

experiment is a prerequisite in order to verify whether the method shows that instrumental 

response is proportional to the analyte concentration (Hartmann, et al., 1998). The linearity 

was assessed over a wide range of concentrations (Section 2.4.3) and the results were 

presented as a linear regression plot of instrumental response against concentration 

(Section 4.3.1). The linearity was evaluated by calculating the linear regression trend line 

by the ordinary least squares method. The method of ordinary least squares is used to find 

the best fit line (not forced through the origin) to a number of data points by minimising the 

sum of the squares of the distances from the actual data points to the determined line 

(Linoff and Berry, 2011). The coefficient of determination, which was obtained from the 
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linear regression plot, was used to determine the linear range. Then, the linearity was 

additionally assessed by the plot of relative response against the log concentration 

(Section 4.3.2). The acceptance criteria of linearity are described in Section 4.3. The 

linearity result can also aid to select the appropriate working range to be considered during 

sample analysis (UNODC, 2009). 

 

1.10.4 Precision and accuracy 

The precision of an analytical method describes how well replicate measurements agree 

with one another and is normally expressed as the percent relative standard deviation 

(RSD) of replicates (Harris, 2010). Precision in this research was assessed using 

intra-assay precision and intermediate precision (Swartz and Krull, 1997). Intra-assay 

precision is a measure of precision for analysis operating over a short time interval under 

the same conditions, such as the same operator, same equipment and same laboratory 

(Peters, Drummer and Musshoff, 2007). The experimental procedure is described in 

Section 2.4.4.1 and Section 2.4.4.3. Intermediate precision is the result of the method 

operating under different conditions (Swartz and Krull, 1997). In this research, the 

difference in experimental period (over days) was examined (Section 2.4.4.2). The 

acceptance criteria of precision are described in Section 4.4. 

 

The accuracy of an analytical method is the closeness of agreement between the 

calculated values obtained by calibration curve and the standard concentrations (Wille, et 

al., 2011). Accuracy can be expressed as a percent deviation from the true value (Peters, 

Drummer and Musshoff, 2007). The experimental procedure and acceptance criteria of 

accuracy are described in Section 2.4.4.3 and Section 4.4. 

 

1.10.5 Detection and quantification limits 

The study of detection limit and quantification limit is to specify the capabilities of an 

analytical method for detection and quantification (Singh, 2013). In this research, the 

method was based on using LC-MS for analysis and SPE for sample preparation. Two sets 

of detection limit and quantification limit need to be determined (Corley, 2003). One set 
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includes instrumental detection limit (IDL) and instrumental quantification limit (IQL), while 

the other set includes method detection limit (MDL) and method quantification limit (MQL). 

 

1.10.5.1 Instrumental detection and quantification limits 

IDL and IQL are used to define only the limitations of the LC-MS instrument (Bernal, 2014). 

In this research, IDL and IQL are determined using the mixed drug and pharmaceutical 

standards in order to prove that the LC-MS is sensitive enough to perform the detection 

and quantification of the studied drugs of abuse and pharmaceuticals (Section 2.4.5). IDL 

is the lowest concentration of an analyte that can be reliably distinguished from the 

background on an instrument, while IQL is the lowest concentration of an analyte that can 

be quantitatively determined by the instrument (ibid).  

 

The signal-to-noise ratio (S/N) method was used to estimate the IDLs and IQLs for the 

studied drugs of abuse and pharmaceuticals and comparisons are made to the published 

methods using LC-MS/MS (Section 4.5.1). The S/N is defined as the ratio of analyte peak 

signal to baseline noise in a certain area around the analyte peak (Huber, 2007). The IDL is 

taken as the concentration of analyte that gives the S/N of 3:1 (Harris, 2010). At this 

concentration, the presence of an analyte can be deduced and reported with a confidence 

level of 99.86 % for a normal distribution (Corley, 2003). For IQL, the concentration of 

analyte that gives the S/N of 10:1 is chosen (Singh, 2013). 

 

In addition to this, the Root Mean Square Error (RMSE) method, which is recommended by 

the US Environmental Protection Agency (US EPA), was also chosen as another means of 

calculating IDLs and IQLs. The RMSE approach is more accurate and reliable compared to 

the S/N method. Using the S/N method, interpretation is very subjective because the S/N is 

dependent on the chosen region of the baseline where the noise is calculated (Wells, Prest 

and Russ, 2011). If the selected time window is very narrow and away from the analyte 

peak where only small noise peaks occur, the instrumental noise could be relatively low, 

leading to higher S/N for IDL and IQL determinations, therefore resulting in overestimation. 

For the RMSE approach, the variability between laboratories and analysts is low as it uses 
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the root mean square error (the difference between the predicted response and measured 

response) instead of calculating the noise (Corley, 2003; Bernal, 2014). To undertake the 

RMSE method, it is first required to generate a calibration curve that is near the estimated 

IDL and IQL range and then calculate the error based on the obtained linear regression 

equation (Corley, 2003). The concentrations of mixed standards for calculating the IDLs 

and IQLs of two LC-MS methods (C18 column and biphenyl column) using the RMSE 

approach is shown in Section 2.4.5 and the calculation process is further discussed in 

Section 4.5.1.  

 

1.10.5.2 Method detection and quantification limits 

Determination of MDL and MQL are also required when the method involves the sample 

preparation step. They are applied to the whole analytical method, including sample 

preparation and instrument analysis, for the test of an analyte within the sample matrix 

(Bernal, 2014). MDL and MQL are dependent on various factors, such as sample matrix 

interference, recovery in the sample extraction and the concentration factor (enrichment or 

dilution factor) of sample preparation (Corley, 2003). MDL and MQL can be calculated 

based on the values of IDL and IQL, the recovery of analyte from the matrix and 

concentration factor (Baker and Kasprzyk-Hordern, 2011b). The calculation processes are 

discussed in detail in Section of 4.5.2. 

 

1.11 Research aims 

In light of the above discussion, this research aims to address the aforementioned gaps in 

knowledge. Firstly, as very little published information regarding the occurrence of drugs of 

abuse and pharmaceuticals in drinking water is available (Section 1.6), traditional illicit 

drugs (Section 1.8.1) and antidepressants (Section 1.8.3) were chosen to be analysed in 

drinking water. In addition, newer drugs of abuse, NPS, were also investigated in this 

research as they are increasingly being abused but have never been studied in drinking 

water before, except for ketamine (Section 1.8.2). Secondly, this research was carried out 

in order to develop and validate a methodology based on using SPE for sample 

preparation, followed by LC-MS as the detection and quantification technique for the 
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simultaneous analysis of 20 selected drugs of abuse and pharmaceuticals in drinking water. 

This method is novel, as there have been no other published studies which use LC-MS for 

the purpose of multi-residue analysis in drinking water (Section 1.9.2). HPLC-DAD was 

also used as an analytical instrument during a preliminary study for chromatographic 

separation development (Section 2.3.1 and Section 3.1.1). Finally, water samples, both 

raw water and drinking water, were collected from several DWTPs and taps in the East 

Anglia region of the UK (Section 2.2), which have never been investigated before.  

 

This research focuses on the analysis of the presence of selected drugs of abuse and 

pharmaceuticals in water samples and the evaluation of their removal efficiencies in 

DWTPs. It is hoped that the findings of this research could inform drinking water regulatory 

bodies of the presence of these contaminants, as they are currently not included within the 

legislation and regulatory framework for drinking water (Section 1.3). It is also hoped they 

will highlight the need for investing new and effective treatment processes, which are 

designed to remove drugs of abuse and pharmaceuticals from DWTPs. Moreover, this 

research can be considered as a preliminary test, as it is impossible to monitor every 

substance that may be present in drinking water. If the result of this research does reveal 

that trace amounts of drugs of abuse and pharmaceuticals are present in drinking water, it 

indicates the need to study a complete suite of parent compounds and their metabolites in 

order to fully characterise their transport through DWTPs and the potential for exposure 

through drinking water. 
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CHAPTER 2 EXPERIMENTAL PROCEDURES 

This chapter first describes the standards and solvents used during the development and 

validation of the method for the determination of drugs of abuse and pharmaceuticals in 

drinking water. This is followed by the methods of sample collection and storage protocols 

used during drinking water sample analysis. The chapter is then divided into sub-sections 

which describe the experimental methods used, including method development and 

optimisation, method validation and drinking water analysis. 

 

2.1 Drug and pharmaceutical standards and solvents 

All standards were of an analytical grade, at a purity > 97 %. Amphetamine hydrochloride, 

cocaine hydrochloride, methamphetamine hydrochloride, ketamine hydrochloride, butylone 

hydrochloride, mephedrone hydrochloride, methylone hydrochloride, 

1-(3-chlorophenyl)piperazine hydrochloride, 1-(4-fluorophenyl)piperazine, 

1-(4-methoxyphenyl)piperazine, 1-(4-trifluoromethylphenyl)piperazine, 1-benzylpiperazine, 

1-methyl-4-benzylpiperazine, citalopram hydrobromide and fluoxetine hydrochloride were 

purchased as powders from Sigma-Aldrich (UK). Methylenedioxypyrovalerone 

hydrochloride, methcathinone hydrochloride, 1-(3-trifluoromethylphenyl)piperazine 

hydrochloride, (1-butyl-1H-indol-3-yl)(naphthalen-1-yl)methanone and (4-

chloronaphthalen-1-yl)-(1-pentylindol-3-yl) methanone were purchased as powders from 

LGC Standards (UK).  Amphetamine-d6, cocaine-d3 and fluoxetine-d6 were used as 

internal standards and were purchased as 0.1 mg/mL solutions in methanol or acetonitrile 

(Sigma-Aldrich, UK). Stock solutions of all drug and pharmaceutical standards were 

prepared from their solids in methanol at a concentration of 1 mg/mL and were stored at 

-20 °C. Ultra-pure water was obtained from an Elga Purelab Ultra (Veolia, UK) and 

deionised water was obtained from an Elga Purelab Prima (Veolia, UK). Other solvents 

used and purchased are listed in Table 2.1. Silanised vials, LC-MS autosampler vials and 

inserts were purchased from Fisher Scientific (UK) and Hichrom (UK). 
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Table 2.1: Solvents used and their suppliers in this research 

SOLVENTS  GRADE SUPPLIERS 

2-propanol  HPLC Fisher Scientific (UK) 

Acetonitrile  HPLC 

LC-MS 

Fisher Scientific (UK) 

Sigma-Aldrich (UK) 

Ammonium hydroxide  HPLC Sigma-Aldrich (UK) 

Ethyl acetate  HPLC Fisher Scientific (UK) 

Formic acid  LC-MS Sigma-Aldrich (UK) 

Hydrochloric acid  HPLC Sigma-Aldrich (UK) 

Methanol  HPLC 

LC-MS 

Fisher Scientific (UK) 

Sigma-Aldrich (UK) 

Water  LC-MS Sigma-Aldrich (UK) 

 

2.2 Sample collection and storage 

Water samples used for method development and validation (Section 2.3 and Section 2.4) 

were ultra-pure water and raw water, while different water samples including raw water, 

finished drinking water and tap water were used during the course of drinking water 

analysis (Section 2.5). Raw water (water samples collected before drinking water 

treatments) and finished drinking water (water samples collected after drinking water 

treatments) were grab samples collected from three DWTPs of Anglian Water and Essex 

and Suffolk Water. Sampling dates were all on Mondays in February 2016. A number of 

2.00 L high-density polyethylene (HDPE) containers (Fisher Scientific, UK) were used for 

sample collection and storage. After collection, the filled containers were immediately 

transported to the laboratory. Raw water and finished drinking water samples were stored 

at 10 °C and extracted within 12 hours of collection, as drugs of abuse and 

pharmaceuticals may start degrading after 24 hours of collection (Togola and Budzinski, 

2008; Boleda, et al., 2011; Valcárcel, et al., 2011; Valcárcel, et al., 2012). In addition, two 

tap water samples were collected from Anglia Ruskin University and a privacy residence in 

Cambridge, UK, in 2.00 L HDPE containers and were extracted on the day of sample 

collection. As no human or animal participants were involved in this research, formal ethics 

approval was not required. 
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2.3 Method development and optimisation experiments 

This section provides experimental procedures and is divided into three parts, namely the 

development and optimisation of HPLC-DAD, LC-MS and SPE. 

 

2.3.1 Development of LC method by HPLC-DAD 

2.3.1.1 Drug and pharmaceutical standards for LC method development  

Mixed standards were prepared from 20 individual standard stock solutions (1 mg/mL). 

They were then evaporated using the miVac DNA concentrator (Genevac, UK) and 

reconstituted in HPLC injection solvent (0.5 % formic acid/4.975 % acetonitrile or 

methanol/94.525 % water, v/v), resulting in the concentration of 1 mg/mL. 

 

2.3.1.2 Instrumental parameters and gradient elution profiles for LC method 

development using a C18 column 

Chromatography was performed on a Shimadzu VP HPLC system (Shimadzu, Japan) 

using an ACE UltraCore SuperC18 UHPLC/HPLC column (75 x 4.6 mm i.d., 2.5 µm particle 

size) (Hichrom, UK). Separation was performed with mobile phase A (acetonitrile or 

methanol with 0.5 % v/v formic acid, pH 2.1) and mobile phase B (water with 0.5 % v/v 

formic acid, pH 2.1) at a flow rate of 1 mL/min. An injection volume of 1 microlitre (µL) was 

used and the column was maintained at 30 °C. The DAD was set from 190 nm to 800 nm. 

Data was collected, analysed and processed using LABsolutions software.  

 

The time programme of gradient elution is shown in Table 2.2 when using acetonitrile as 

the organic modifier. Mobile phase A was acetonitrile with 0.5 % v/v formic acid. Mobile 

phase B was water with 0.5 % v/v formic acid. The obtained results are discussed in 

Section 3.1.1. 
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Table 2.2: Time programme of gradient elution for HPLC-DAD analysis with 

acetonitrile and a C18 column 

TIME  

/ min 

MOBILE PHASE A / % v/v 

(0.5 % formic acid/99.5 % acetonitrile) 

MOBILE PHASE B / % v/v 

(0.5 % formic acid/99.5 % water) 

0 10 90 

1 10 90 

21 60 40 

22 100 0 

29 100 0 

30 10 90 

35 10 90 

 

The time programme of gradient elution is shown in Table 2.3 when using methanol as the 

organic modifier. Mobile phase A was methanol with 0.5 % v/v formic acid. Mobile phase B 

was water with 0.5 % v/v formic acid. Obtained results are discussed in Section 3.1.1. 

 

Table 2.3: Time programme of gradient elution for HPLC-DAD analysis with 

methanol and a C18 column 

TIME  

/ min 

MOBILE PHASE A / % v/v 

(0.5 % formic acid/99.5 % methanol) 

MOBILE PHASE B / % v/v 

(0.5 % formic acid/99.5 % water) 

0 10 90 

12 10 90 

24 60 40 

25 100 0 

32 100 0 

33 10 90 

41 10 90 

 

2.3.1.3 Instrumental parameters and gradient elution profile for LC method 

development using a biphenyl column 

Chromatography was performed on a Shimadzu VP HPLC system (Shimadzu, Japan) 

using a Kinetex biphenyl 100 Å LC column (100 x 4.6 mm i.d., 2.6 µm particle size) and a 

matching SecurityGuard ULTRA cartridge UHPLC biphenyl (4.6 mm i.d.) (Phenomenex, 

UK). Separation was performed with mobile phase A (0.5 % formic acid/59.7 % 

methanol/39.8 % acetonitrile, v/v, pH 2.1) and mobile phase B (0.5 % formic acid/99.5 % 

water, v/v, pH 2.1) at a flow rate of 1 mL/min. Injection volume, column temperature and 

DAD setting were the same as the HPLC-DAD method using the C18 column, which are 
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mentioned in Section 2.3.1.2. Data was collected, analysed and processed using 

LABsolutions software. The time programme of gradient elution is shown in Table 2.4 and 

obtained results are discussed in Section 3.1.1. 

 

Table 2.4: Time programme of gradient elution for HPLC-DAD analysis with a 

biphenyl column 

TIME  

/ min 

MOBILE PHASE A / % v/v 

(0.5 % formic acid/59.7 % methanol/39.8 % acetonitrile) 

MOBILE PHASE B / % v/v 

(0.5 % formic acid/99.5 % water) 

0 10 90 

1 10 90 

26 60 40 

27 100 0 

34 100 0 

35 10 90 

40 10 90 

 

2.3.2 Development and optimisation of MS method for LC-MS 

2.3.2.1 Drug and pharmaceutical standards for MS method development and 

optimisation 

Mixed standards were prepared from 20 individual standard stock solutions (1 mg/mL) and 

three internal standards (0.1 mg/mL). Mixed standards were evaporated using the miVac 

DNA concentrator (Genevac, UK) and reconstituted in LC-MS injection solvent (0.5 % 

formic acid/4.975 % acetonitrile/94.525 % water, v/v). The concentration of mixed 

standards was 0.01 mg/mL for the scan mode (Section 3.1.2.1) as well as the investigation 

of DL, qarray DC and RF settings (Section 3.1.2.3) and 100 ng/mL for the SIM mode 

(Section 3.1.2.1), as well as time segmentation (Section 3.1.2.2). 

 

2.3.2.2 Instrumental parameters for MS method development and optimisation 

For LC conditions, the flow rate was fixed at 0.2 mL/min and an injection volume of 10 µL 

was used. The column was maintained at 30 °C and the temperature of the autosampler 

was set at 10 °C. Two analytical columns were used. A C18 column was used for the 

identification and quantification of the studied drugs of abuse and pharmaceuticals, while a 

biphenyl column was used for confirmation. 
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For interface conditions, an LCMS-2020 single quadrupole mass spectrometer (Shimadzu, 

Japan) with an ESI source was used in positive ionisation mode. Interface conditions were 

fixed based on the tuning file, as follows: interface temperature, 350 °C; DL temperature, 

250 °C; heat block temperature, 200 °C; nebulising gas flow, 1.5 L/min; drying gas flow, 15 

L/min. Nitrogen was used as the nebulising and drying gas and was supplied by a nitrogen 

generator (Parker, UK). 

 

For MS conditions, data acquisition was carried out in both scan mode and SIM mode. 

Scan mode was used to obtain the mass spectra of the studied drugs of abuse, 

pharmaceuticals and internal standards from individual standards. The m/z range was set 

to scan from 40 to 800 m/z and the event time was 1 sec. For SIM mode, the diagnostic 

ions of target analytes and internal standards were obtained from their mass spectra 

(Appendix I) by selecting the most abundant ion and are listed in Table 2.6 (C18 column) 

and Table 2.8 (biphenyl column). Event time was 0.03 min. The interface voltage was 4.5 

kV and the detector voltage was -1.4 kV based on the tuning file. Data was collected, 

analysed and processed using LABSolutions software.  

 

2.3.2.3 LC gradient programme, MS segmentation, Desolvation line (DL) voltages 

and lens system voltages for MS method development and optimisation using a C18 

column 

Chromatographic separation was carried out using Shimadzu Nexera UHPLC system 

(Shimadzu, Japan) equipped with an Acquity UPLC BEH C18 column (150 x 2.1 mm i.d., 

1.7 µm particle size) and a matching VanGuard pre-column (5 x 2.1 mm i.d., 1.7 µm 

particle size) (Waters, UK). Separation was performed with mobile phase A (acetonitrile 

with 0.5 % v/v formic acid, pH 2.1) and mobile phase B (water with 0.5 % v/v formic acid, 

pH 2.1). The gradient programme is shown in Table 2.5.  
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Table 2.5: Time programme of gradient elution for LC-MS analysis with a C18 column 

TIME  

/ min 

MOBILE PHASE A / % v/v 

(0.5 % formic acid/99.5 % acetonitrile) 

MOBILE PHASE B / % v/v 

(0.5 % formic acid/99.5 % water) 

0 10 90 

1.5 10 90 

14 60 40 

15.5 100 0 

22.5 100 0 

24 10 90 

44 10 90 

 

MS analysis time was divided into ten segments and their time intervals are shown in Table 

2.6. Quantifier ions of the studied analytes and internal standards were selected based on 

their mass spectra (Appendix I). DL voltage and lens system voltages (qarray DC and 

qarray RF) were optimised for each studied analyte. Their voltage values, as shown in 

Table 2.6, were determined from LC-MS optimisation experiments by systematically 

changing these MS parameters and selecting the voltages that gave the best instrumental 

response as optimal. Result graphs were produced using Microsoft Office Excel 2007. 
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Table 2.6: MS parameters of SIM mode for LC-MS analysis with a C18 column 

TIME / min COMPOUND QUANTIFIER ION / m/z DL VOLTAGE / kV QARRAY DC VOLTAEG/ kV QARRAY RF VOLTAEG / kV 

0.00 - 4.25 BZP  177 9.6 6.4 35.2 
 MBZP  191 12.8 9.6 38.4 

4.25 - 7.05 Methcathinone  164 12.8 9.6 32.0 

 Methylone  208 16.0 6.4 35.2 

7.05 - 8.30 4-MeOPP  193 6.4 6.4 32.0 

 Amphetamine-d6  142 6.4 9.6 32.0 

 Amphetamine  136 25.6 16.0 28.8 

8.30 - 10.95 Methamphetamine 150 38.4 9.6 32.0 

 4-FPP  181 6.4 6.4 38.4 

 Butylone  222 16.0 6.4 41.6 

10.95 - 12.25 Mephedrone  178 16.0 9.6 32.0 

 Ketamine  238 12.8 6.4 35.2 

12.25 - 14.60 3-CPP  197 9.6 6.4 32.0 

 MDPV  276 96.0 6.4 41.6 

 Cocaine-d3  307 12.8 0.0 51.2 

 Cocaine  304 32.0 0.0 48.0 

14.60 - 15.70 3-TFMPP  231 32.0 16.0 38.4 

 4-TFMPP  231 32.0 16.0 38.4 

15.70 - 17.40 Citalopram  325 32.0 0.0 44.8 

17.40 - 19.20 Fluoxetine-d6  316 22.4 16.0 48.0 

 Fluoxetine  310 16.0 16.0 41.6 

19.20 - 35.00 JWH-073  328 32.0 19.2 48.0 

 JWH-398  376 0.0 19.2 57.6 
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2.3.2.4 LC gradient programme, MS segmentation, DL voltages and lens system 

voltages for MS method development and optimisation using a biphenyl column 

Chromatographic separation was carried out using Shimadzu Nexera UHPLC system 

(Shimadzu, Japan) equipped with an Kinetex biphenyl 100 Å LC column (100 x 4.6 mm i.d., 

2.6 µm particle size) and a matching SecurityGuard ULTRA cartridge UHPLC biphenyl (4.6 

mm i.d.) (Phenomenex, UK). Separation was performed with mobile phase A (0.5 % formic 

acid/59.7 % methanol/39.8 % acetonitrile, v/v, pH 2.1) and mobile phase B (0.5 % formic 

acid/99.5 % water, v/v, pH 2.1). The gradient programme is shown in Table 2.7.  

 

Table 2.7: Time programme of gradient elution for LC-MS analysis with a biphenyl 

column 

TIME  

/ min 

MOBILE PHASE A / % v/v 

(0.5 % formic acid/59.7 % methanol/39.8 % 

acetonitrile) 

MOBILE PHASE B / % v/v 

(0.5 % formic acid/99.5 % 

water) 

0 30 70 

4 30 70 

19 60 40 

20 100 0 

29 100 0 

30 30 70 

50 30 70 

 

MS analysis time was divided into ten segments and their time intervals are shown in Table 

2.8. Confirmation ions were selected for studied analytes and internal standards. The 

procedures are described in Section 2.3.2.3 and their values are shown in Table 2.8. DL 

voltages and lens system voltages (qarray DC and qarray RF) were the same as the 

LC-MS method using the C18 column and are also included in Table 2.8.
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Table 2.8: MS parameters of SIM mode for LC-MS analysis with a biphenyl column 

TIME / min COMPOUND CONFIRMATION ION / m/z DL VOLTAGE / kV QARRAY DC VOLTAEG / kV QARRAY RF VOLTAEG / kV 

0.00 - 6.80 BZP  177 9.6 6.4 35.2 
 MBZP  191 12.8 9.6 38.4 

6.80 - 8.55 Methcathinone  164 12.8 9.6 32.0 

 Amphetamine-d6  142 6.4 9.6 32.0 

 Amphetamine 136 25.6 16.0 28.8 

8.55 - 10.40 Methylone 208 16.0 6.4 35.2 

 Methamphetamine 150 38.4 9.6 32.0 

 4-MeOPP 193 6.4 6.4 32.0 

10.40 - 13.50 4-FPP 181 6.4 6.4 38.4 

 Mephedrone 178 16.0 9.6 32.0 

 Butylone  222 16.0 6.4 41.6 

13.50 - 16.60 Ketamine 238 12.8 6.4 35.2 

16.60 - 18.40 3-CPP  197 9.6 6.4 32.0 

18.40 - 23.00 3-TFMPP  231 32.0 16.0 38.4 

 4-TFMPP  231 32.0 16.0 38.4 

 Cocaine-d3 307 12.8 0.0 51.2 

 Cocaine 304 32.0 0.0 48.0 

 MDPV 276 96.0 6.4 41.6 

23.00 - 27.60 Citalopram  325 32.0 0.0 44.8 

27.60 - 31.00 Fluoxetine-d6  316 22.4 16.0 48.0 

 Fluoxetine  310 16.0 16.0 41.6 

31.00 - 38.00 JWH-073  328 32.0 19.2 48.0 

 JWH-398  376 0.0 19.2 57.6 
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2.3.3 Development and optimisation of SPE method 

A PRESSURE+ 48 positive pressure manifold with 48 wells (Biotage, UK) was used for all 

SPE extractions and a miVac DNA concentrator (Genevac, UK) was used for sample 

evaporation. The LC-MS protocol (C18 column) used was optimised during method 

development and optimization, as discussed in Section 2.3.2. SIM mode was used for the 

quantification of all water samples. Samples were extracted three times by SPE and then 

analysed in triplicate by LC-MS; therefore, nine measurements were obtained for each 

sample. A solvent blank was injected between each standard run. 

 

2.3.3.1 Comparison of SPE cartridges, Oasis MCX (3 mL) and Strata-X-Drug B (3 mL) 

Oasis MCX and Strata-X-Drug B cartridges were investigated using generic protocols 

(Waters, 2003; Phenomenex, 2011), as shown in Table 2.9. Three cartridges (60 mg, 3 mL) 

were analysed simultaneously for each protocol. 2.00 mL of raw water was spiked with a 

mixed standard of 20 target analytes and three internal standards (10 ng for each, with a 

final concentration of 5 ng/mL) and was extracted for each cartridge. Acids were added into 

raw water for pH adjustment: 2 % v/v formic acid for Oasis MCX cartridges and 0.1 M 

hydrochloric acid for Strata-X-Drug B cartridges. Eluants were then evaporated and 

reconstituted in 100 µL LC-MS injection solvent (0.5 % formic acid/4.975 % 

acetonitrile/94.525 % water, v/v). Three lots of 2.00 mL non-spiked raw water were 

analysed simultaneously using the same protocol as shown in Table 2.9. After evaporation, 

extracted non-spiked raw waters were also reconstituted in 100 µL LC-MS injection solvent 

and spiked with the same quantity of target analytes and internal standards (10 ng for each, 

with a final concentration of 100 ng/mL) for recovery calculation (Section 3.2.1).  
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Table 2.9: Generic protocols for SPE with Oasis MCX and Strata-X-Drug B cartridges 

PROTOCOL SPE CARTRIDGES 

Oasis MCX (60 mg, 3 mL) Strata-X-Drug B (60 mg, 3 mL) 

Condition 2.00 mL methanol 2.00 mL methanol 

Equilibrate 2.00 mL deionised water 

(2 % v/v formic acid) 

2.00 mL deionised water 

(0.1 M hydrochloric acid) 

Load 2.00 mL water sample 

(2 % v/v formic acid) 

2.00 mL water sample 

(0.1 M hydrochloric acid) 

Wash 2.00 mL deionised water 

(2 % v/v formic acid) 

2.00 mL deionised water 

(0.1 M hydrochloric acid) 

Eluent 1 2.00 mL methanol 2.00 mL methanol 

Eluent 2 2 x 2.00 mL methanol 

(5 % v/v ammonium hydroxide) 

2 x 2.00 mL ethyl acetate/isopropanol/ammonium 

hydroxide (70:20:10, v/v) 

Evaporate miVac DNA concentrator miVac DNA concentrator 

Reconstitute 100 µL LC-MS injection solvent 100 µL LC-MS injection solvent 

 

2.3.3.2 Optimisation of SPE elution solvent for Strata-X-Drug B (3 mL) 

Using the Strata-X-Drug B protocol in Table 2.9, three elution solvents, namely methanol, 

acetonitrile and ethyl acetate/isopropanol (85:15, v/v) were investigated separately for the 

step of eluent 1. Three cartridges (60 mg, 3 mL) were used simultaneously for each elution 

solvent. A mixed standard containing 20 target analytes and three internal standards (10 

ng for each) was added into 2.00 mL of acidic raw water (0.1 M hydrochloric acid) resulting 

in the concentration of 5 ng/mL and was extracted for each cartridge. Eluants were then 

evaporated and reconstituted in 100 µL LC-MS injection solvent (0.5 % formic acid/4.975 % 

acetonitrile/94.525 % water, v/v). Three lots of 2.00 mL non-spiked raw water were 

analysed simultaneously and then spiked with the same quantity of target analytes. 

Internal standards (10 ng for each) were dissolved in 100 µL LC-MS injection solvent, with 

a final concentration of 100 ng/mL, after evaporation for recovery calculation (Section 

3.2.2).  

 

2.3.3.3 Optimisation of SPE sample loading volume for Strata-X-Drug B (6 mL) 

The sample loading volume was investigated using optimised protocol as shown in Table 

2.10. Higher sample loading volume (200 mL) and larger capacity of Strata-X-Drug B (60 

mg, 6 mL) cartridge were incorporated into this SPE method. Three cartridges (60 mg, 6 
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mL) were analysed simultaneously. A mixed standard containing 20 target analytes and 

three internal standards (20 ng for each) was added into 200 mL acidic raw water (0.1 M 

hydrochloric acid) resulting in the concentration of 0.1 ng/mL and extracted for each 

cartridge. Eluants were then evaporated and reconstituted in 100 µL LC-MS injection 

solvent (0.5 % formic acid/4.975 % acetonitrile/94.525 % water, v/v) for LC-MS analysis. 

Three lots of 200 mL non-spiked raw water were analysed simultaneously and then spiked 

with the same quantity of target analytes and internal standards (20 ng for each) dissolved 

in 100 µL LC-MS injection solvent, resulting in a final concentration of 200 ng/mL, after 

evaporation for recovery calculation (Section 3.2.3). 

 

Table 2.10: Optimised protocol for SPE with Strata-X-Drug B cartridges 

PROTOCOL SPE CARTRIDGES 

STRATA-X-DRUG B (60 mg, 6 mL) 

Condition 2.00 mL methanol 

Equilibrate 2.00 mL deionised water (0.1 M hydrochloric acid) 

Load 200 mL water sample (0.1 M hydrochloric acid) 

Wash 2.00 mL deionised water (0.1 M hydrochloric acid) 

Eluent 1 2.00 mL ethyl acetate/isopropanol (85:15, v/v) 

Eluent 2 2 x 2.00 mL ethyl acetate/isopropanol/ammonium hydroxide 

(70:20:10, v/v) 

Evaporate miVac DNA concentrator 

Reconstitute  100 µL LC-MS injection solvent 

 

2.4 Method validation experiments 

In this section, method validation parameters (Section 1.10) were assessed by the analysis 

of mixed standards reconstituted in LC-MS injection solvent and waters spiked with known 

concentrations of target analytes. For internal standards, 5 ng/mL of amphetamine-d6, 0.1 

ng/mL of cocaine-d3 and 0.75 ng/mL of fluoxetine-d6 were added to all mixed standards for 

autosampler storage stability, instrumental linearity, instrumental precision, IDL and IQL, 

whereas 50 ng/L of amphetamine-d6, 5 ng/L of cocaine-d3 and 25 ng/L of fluoxetine-d6 were 

added to spiked waters for analytical method precision and accuracy. The LC-MS protocols 

using a C18 column and biphenyl column optimised during the method development and 

optimisation (Section 2.3.2) were used. SIM mode was used for all method validation 
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studies. The optimised SPE protocol (Table 2.10) was used for the extraction of spiked 

waters and the loading volume was 200 mL. Microsoft Office Excel 2007 was used to set 

out the analysis of the results. 

 

2.4.1 Selectivity 

The selectivity of the method (Section 4.1) was studied using a 100 ng/mL mixed standard 

dissolved in LC-MS injection solvent containing 20 target analytes and three internal 

standards. Ultra-pure water was also analysed as the matrix blank. 

 

2.4.2 Autosampler storage stability  

Mixed standards were prepared in LC-MS injection solvent at two concentrations (10 and 

500 ng/mL). Standards remained on the autosampler at 10 °C for five days. Replicate 

injections (n = 8) at each concentration were analysed per day and the solvent blank was 

injected between each standard run. The stabilities of studied target analytes and internal 

standards are discussed in Section 4.2.1 and Section 4.2.2. 

 

2.4.3 Instrumental linearity  

The calibration model (Section 4.3) was studied using 19 mixed standards, which were 

prepared in LC-MS injection solvent at the concentration of 0.001, 0.01, 0.025, 0.05, 0.075, 

0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 100, 500, 1000, 5000 and 10000 ng/mL. Replicate 

injections (n = 3) were analysed for each concentration and the solvent blank was injected 

between each standard run. 

 

2.4.4 Precision and accuracy 

2.4.4.1 Instrumental intra-assay precision 

Mixed standards were prepared in LC-MS injection solvent at low (5 ng/mL), medium (50 

ng/mL) and high (500 ng/mL) concentrations. Replicate injections (n = 6) were analysed at 

each concentration for instrumental intra-assay precision (Section 4.4.1) and the solvent 

blank was injected between each standard run. 
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2.4.4.2 Instrumental intermediate precision  

Instrumental intermediate precision was verified at three concentrations (low, medium and 

high) on three separate days for instrumental intermediate precision (Section 4.4.2). These 

three concentrations were the same as described above for intra-assay precision. 

Replicate injections (n = 3) at each concentration were analysed on each day and the 

solvent blank was injected between each standard run. 

 

2.4.4.3 Method precision and accuracy 

Five calibrators were prepared in ultra-pure water at the concentration of 5, 30, 50, 70 and 

100 ng/L. In addition, three quality controls (QCs), which were used to estimate the method 

accuracy (Section 4.4.3), were independently prepared by spiking ultra-pure water with 

mixed standards, resulting in the concentrations of 10, 40 and 80 ng/L. 0.1 M hydrochloric 

acid was added to all calibrators and QCs for pH control. Calibrators and QCs were 

extracted and then were analysed with replicate injection (n = 3) for method precision 

(Section 4.4.3). 

 

2.4.5 Detection and quantification limits 

Five mixed standards dissolved in LC-MS injection solvent were studied for each analyte in 

order to calculate the IDLs and IQLs for a C18 column (Section 4.5.1.1) and biphenyl 

column (Section 4.5.1.2). The concentrations of mixed standards are listed in Table 2.11. 

Replicate injections (n = 3) at each concentration were analysed and the solvent blank was 

injected between each standard. MDLs and MQLs for the studied drugs of abuse and 

pharmaceuticals were calculated based on the IDLs and IQLs, SPE recovery results and 

enrichment factor (2000 in this research). The calculation equations and results are shown 

in Section 4.5.2. 
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Table 2.11: Individual concentrations in the mixed standards used for the calculation of IDLs and IQLs for LC-MS analysis with a C18 

column and biphenyl column 

COMPOUND MIXED STANDARD CONCENTRATIONS / ng/mL 

C18 Column Biphenyl Column 

1 2 3 4 5 1 2 3 4 5 

BZP  0.100 0.250 0.500 0.750 1.000 0.025 0.050 0.075 0.100 0.250 

MBZP  0.050 0.075 0.100 0.250 0.500 0.025 0.050 0.075 0.100 0.250 

Methcathinone  0.050 0.075 0.100 0.250 0.500 0.100 0.250 0.500 0.750 1.000 

Methylone  0.100 0.250 0.500 0.750 1.000 0.010 0.025 0.050 0.075 0.100 

4-MeOPP 0.750 1.000 2.500 5.000 7.500 0.075 0.100 0.250 0.500 0.750 

Amphetamine  0.500 0.750 1.000 2.500 5.000 0.500 0.750 1.000 2.500 5.000 

Methamphetamine  0.250 0.500 0.750 1.000 2.500 0.250 0.500 0.750 1.000 2.500 

4-FPP  0.075 0.100 0.250 0.500 0.750 0.050 0.075 0.100 0.250 0.500 

Butylone  0.010 0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100 0.250 

Mephedrone  0.025 0.050 0.075 0.100 0.250 0.100 0.250 0.500 0.750 1.000 

Ketamine  0.010 0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100 0.250 

3-CPP  0.075 0.100 0.250 0.500 0.750 0.250 0.500 0.750 1.000 2.500 

MDPV  0.025 0.050 0.075 0.100 0.250 0.025 0.050 0.075 0.100 0.250 

Cocaine  0.010 0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100 0.250 

3-TFMPP  0.025 0.050 0.075 0.100 0.250 0.075 0.100 0.250 0.500 0.750 

4-TFMPP  0.025 0.050 0.075 0.100 0.250 0.075 0.100 0.250 0.500 0.750 

Citalopram  0.010 0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100 0.250 

Fluoxetine  0.100 0.250 0.500 0.750 1.000 0.050 0.075 0.100 0.250 0.500 

JWH-073  0.750 1.000 2.500 5.000 7.500 0.250 0.500 0.750 1.000 2.500 

JWH-398 0.750 1.000 2.500 5.000 7.500 0.500 0.750 1.000 2.500 5.000 



68 
 

2.5 Drinking water analysis 

Five drinking water samples and three raw water samples collected from the East Anglia 

region of the UK were prepared and analysed in triplicate using a C18 column. In addition, 

all were confirmed using a biphenyl column. For each sample, six lots of 200 mL water 

were measured and 0.1 M hydrochloric acid was added for pH control. Three lots of 200 

mL water were used as non-spiked samples and the other three were spiked with mixed 

standards, resulting in the added concentrations of 5, 50 and 100 ng/L. Amphetamine-d6, 

cocaine-d3 and fluoxetine-d6 were added to all samples (three non-spiked samples and 

three spiked samples) at the concentration of 50, 5 and 25 ng/L, respectively. Each 

non-spiked sample was extracted three times using the SPE protocol in Table 2.10 and 

then analysed with replicate injection (n = 3) using the LC-MS method (C18 column) in 

Section 2.3.2.3. Three spiked samples were also extracted and analysed in the same 

analytical batch. Then, all samples were analysed using the LC-MS method (biphenyl 

column), as described in Section 2.3.2.4 for confirmation. Moreover, ultra-pure water as 

method blank and mixed standards (50 ng/L) as positive control for the confirmation of the 

retention time were also analysed. The results of water samples (raw and drinking waters) 

were analysed using Microsoft Office Excel 2007 and are discussed in Chapter 5. 
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CHAPTER 3 RESULTS AND DISCUSSION: METHOD DEVELOPMENT AND 

OPTIMISATION 

This chapter includes the development and optimisation of the simultaneous method for 

the identification and quantification of 20 drugs of abuse and pharmaceuticals in drinking 

water. LC-MS methods using two analytical columns were developed and validated and 

are discussed in Section 3.1. A C18 column was used as the main method for identification 

and quantification and a biphenyl column was used for the purpose of confirmation. The 

reason for using two different analytical columns is discussed in Section 3.1.2.1. Finally, 

Section 3.2 includes the development and optimisation process of the sample preparation 

and extraction method based on SPE. 

 

3.1 Development and optimisation of LC-MS method 

During the course of the LC-MS method development and optimisation, preliminary 

experiments of the method development regarding LC conditions (Section 3.1.1) were 

initially undertaken using a HPLC-DAD. Then the developed LC method was transferred 

onto a LC-MS and MS conditions were developed and optimised further. The results are 

described and discussed in Section 3.1.2.  

 

3.1.1 Development of LC method by HPLC-DAD 

When developing a new LC method for the analysis of ionisable compounds, the optimal 

pH of the mobile phase is one of the most crucial decisions to make. As the pH of the 

mobile phase is close to the pKa of the analyte, compounds will exist in both the 

non-ionised and ionised forms, resulting in different retention times (Kazakevich and 

LoBrutto, 2007). In this research, all analytes investigated are basic compounds and their 

pKa values are between 7.1 (methcathinone) and 10.1 (fluoxetine) as detailed in Table 1.3. 

Hence, the pH of the mobile phase should be adjusted either below 5.1 or above 12.1. If 

below pH 5.1, all basic compounds will exist in the ionised form, as the mobile phase pH is 

more than two pH units below the pKa values of relevant analytes (discussed in Section 

1.9.1.2.1). In contrast, when the mobile phase pH is above 12.1, all compounds will exist in 

the non-ionised form due to the pH being more than two pH units above their pKa values. In 
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addition, the low pH can also improve the peak shape and remove the peak tailing when 

analysing basic compounds. Peak tailing is often the characteristic of a protonated basic 

compound interacting with deprotonated silanol sites on the surface of the silica particle 

(Snyder, Kirkland and Glajch, 1997). In order to overcome this ionic interaction between 

the basic compounds and the column, the mobile phase pH should be controlled at around 

2 to protonate the silica, as the pKa value of silica ranges from 4 to 5 (Dolan, 2011). Thus, 

0.5 % v/v formic acid was added to the mobile phase to adjust the pH to 2.  

 

The gradient elution profiles for a C18 column were then developed and the influence of two 

organic modifiers in mobile phase, acetonitrile and methanol, on the chromatographic 

separation was studied and compared in order to obtain the best resolution, together with 

shorter analysis time. Following the gradient elution as detailed in Table 2.2 and Table 2.3, 

the chromatograms of a mixed standard containing 20 analytes were obtained using 

acetonitrile (Figure 3.1) and methanol (Figure 3.2). The wavelength 265 nm was chosen, 

as all target analytes showed appreciable absorbance at this wavelength. The retention 

times of the studied drugs of abuse and pharmaceuticals are listed in Table 3.1.  
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Table 3.1: Retention times for 20 analytes obtained from a HPLC-DAD analysis with a 

C18 column and biphenyl column 

COMPOUND RETENTION TIME / min 

C18 Column Biphenyl Column 

Acetonitrile  Methanol  Methanol/Acetonitrile 

BZP 1.54 1.30 2.59 

MBZP 3.11 2.32 5.55 

Methcathinone 3.48 2.54 7.34 

4-MeOPP  4.38 2.93 9.76 

Methylone 4.57 3.07 9.47 

Amphetamine 4.86 3.94 7.64 

Methamphetamine 5.66 4.13 9.30 

4-FPP 5.91 3.89 10.86 

Butylone 6.36 5.51 11.73 

Mephedrone 6.60 6.14 11.37 

Ketamine 6.99 7.62 13.62 

3-CPP 8.63 12.08 14.82 

MDPV 9.18 16.90 16.49 

Cocaine 9.21 12.79 16.53 

3-TFMPP 10.27 19.15 15.96 

4-TFMPP 10.57 19.36 16.68 

Citalopram 12.58 21.40 21.68 

Fluoxetine 15.03 24.33 21.72 

JWH-073 24.80 27.68 23.74 

JWH-398 26.01 28.19 23.77 
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Figure 3.1: Chromatogram of a mixed standard containing 20 analytes at 1 mg/mL from a HPLC-DAD analysis obtained with acetonitrile and 

a C18 column 
(1) BZP, (2) MBZP, (3) methcathinone, (4) 4-MeOPP, (5) methylone, (6) amphetamine, (7) methamphetamine, (8) 4-FPP, (9) butylone, (10) mephedrone, 

(11) ketamine, (12) 3-CPP, (13) MDPV, (14) cocaine, (15) 3-TFMPP, (16) 4-TFMPP, (17) citalopram, (18) fluoxetine, (19) JWH-073, (20) JWH-398 
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Figure 3.2: Chromatogram of a mixed standard containing 20 analytes at 1mg/mL from a HPLC-DAD analysis obtained with methanol and a 

C18 column 
(1) BZP, (2) MBZP, (3) methcathinone, (4) 4-MeOPP, (5) methylone, (6) 4-FPP, (7) amphetamine, (8) methamphetamine, (9) butylone, (10) mephedrone, 

(11) ketamine, (12) 3-CPP, (13) cocaine, (14) MDPV, (15) 3-TFMPP, (16) 4-TFMPP, (17) citalopram, (18) fluoxetine, (19) JWH-073, (20) JWH-398 
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In terms of acetonitrile, the application of gradient elution, as described in Table 2.2, gave a 

good chromatographic separation of the 20 drugs of abuse and pharmaceuticals. As 

shown in Figure 3.1 and Table 3.1, the majority of target analytes (16) are well separated in 

27 min using acetonitrile based on their retention times, including the positional isomers 

3-TFMPP and 4-TFMPP. However, a co-elution between MDPV and cocaine was obtained 

and two analytes (4-MeOPP and methylone) were eluted at similar retention times; thus, it 

is impossible to identify these analytes by simply using their retention times. 

 

On the other hand, an acceptable separation of most target analytes (13) can be achieved 

in 29 min when methanol was used as the organic modifier. As can be seen from Figure 

3.2 and Table 3.1, one set of positional isomers 3-TFMPP and 4-TFMPP were co-eluted 

and cannot be separated based on their retention times. In addition, two groups of analytes 

showed overlapping peaks: (1) 4-MeOPP and methylone and (2) 4-FPP, amphetamine and 

methamphetamine.  

 

Of the two organic modifiers, it is found that acetonitrile was more selective and suitable for 

the analysis of the studied drugs of abuse and pharmaceuticals compared to methanol 

when using the C18 column. This is because more analytes can be separated based on the 

retention times. Although some analyte peaks such as MDPV and cocaine overlapped 

using acetonitrile (Table 3.1), the co-elution does not represent a drawback, since this 

HPLC-DAD method was later transferred onto LC-MS, where these analytes can be 

identified by their quantifier ions (which is shown later in Table 3.3). Moreover, the most 

important reason for choosing acetonitrile is that the one set of positional isomers 

3-TFMPP and 4-TFMPP can only be separated when acetonitrile was used as the organic 

modifier (Figure 3.1 and Figure 3.2). As 3-TFMPP and 4-TFMPP have the same molecular 

weight (Table 1.3) and share the same quantifier ion (Table 3.3), it is necessary to achieve 

the chromatographic separation between them, otherwise they cannot be identified even 

when using a MS detector (discussed in Section 3.1.2.1). Therefore, acetonitrile was 

chosen as the organic modifier and gradient elution, as shown in Table 2.2, was the final 

developed HPLC-DAD method to be transferred to LC-MS. 
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Methanol and acetonitrile were also run for a biphenyl column and the mix of methanol and 

acetonitrile (6:4, v/v) was chosen as an organic modifier. Several gradient runs were 

undertaken in order to achieve better separation. The final time programme of the gradient 

elution is detailed in Table 2.4. The chromatogram of a mixed standard containing 20 

analytes obtained by this gradient elution is shown in Figure 3.3 and their retention times 

are listed in Table 3.1.  
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Figure 3.3: Chromatogram of a mixed standard containing 20 analytes at 1 mg/mL from a HPLC-DAD analysis obtained with a biphenyl 

column 
(1) BZP, (2) MBZP, (3) methcathinone, (4) amphetamine, (5) methamphetamine, (6) methylone, (7) 4-MeOPP, (8) 4-FPP, (9) mephedrone, (10) butylone, 

(11) ketamine, (12) 3-CPP, (13) 3-TFMPP, (14) MDPV, (15) cocaine, (16) 4-TFMPP, (17) citalopram, (18) fluoxetine, (19) JWH-073, (20) JWH-398 
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In Figure 3.3, the developed HPLC-DAD method using the biphenyl column gave an 

acceptable chromatographic separation in 24 min and many target analytes can be 

separated based on their retention times, including 3-TFMPP (15.96 min) and 4-TFMPP 

(16.68 min). The separation of 3-TFMPP and 4-TFMPP was important, as this method was 

then transferred to LC-MS and these two positional isomers cannot be separated based on 

diagnostic ions, as mentioned earlier. Thus, this method was suitable for the separation of 

the studied drugs of abuse and pharmaceuticals in this research.  

 

3.1.2 Development and optimisation of MS method by LC-MS 

During the course of the MS method development and optimisation, two HPLC-DAD 

methods using the C18 column and biphenyl column were first transferred onto LC-MS. The 

flow rate of the mobile phase was reduced to 0.2 mL/min in order to make the method 

compatible with MS, as described in Section 1.9.2.1. In addition, the gradient elution 

profiles of the HPLC-DAD methods were changed based on the altered flow rate and 

LC-MS column dimension (150 x 2.1 mm, i.d.) and are detailed in Table 2.5 (C18 column) 

and Table 2.7 (biphenyl column). The method development experiments regarding 

diagnostic ions and peak separation were then undertaken to further improve method 

selectivity (Section 3.1.2.1). In addition, a variety of factors with regards to MS conditions 

needed to be optimised in order to increase method sensitivity, including time 

segmentation (Section 3.1.2.2) and the optimisation of DL, qarray DC and RF voltages 

(Section 3.1.2.3).  

 

3.1.2.1 Diagnostic ions and peak separation  

After changing the gradient elution profile and flow rate, the diagnostic ions of the studied 

drugs of abuse, pharmaceuticals and internal standards were determined and then 

monitored in SIM mode in order to increase the selectivity and sensitivity, as mentioned in 

Section 1.9.2.2.2. The diagnostic ions normally include ions used for quantification and 

confirmation. The quantifier ions of target analytes monitored in the LC-MS method using a 

C18 column were obtained from their mass spectra by selecting the most abundant ion. The 

corresponding mass spectra of all studied drugs of abuse, pharmaceuticals and internal 
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standards can be found in Appendix I. Based on their mass spectra, the ion with the 

highest relative intensity was the protonated molecular ion [M+H]+ for each analyte, except 

for amphetamine-d6. For example, the molar mass of 4-MeOPP is 192.3 g/mol (Table 1.3) 

and its most abundant ion is m/z 193 (as shown in Figure 3.4 below). The molar masses of 

the studied drugs of abuse and pharmaceuticals are shown in Table 1.3. Thus, the 

protonated molecular ion was monitored for each analyte as the quantifier ion for the 

purpose of quantification, as shown in Table 3.2. For amphetamine-d6, m/z 142 was 

chosen as the quantifier ion, as it is the protonated molecular ion of this compound and 

also has a high intensity in the mass spectrum (which is shown in Figure 3.5 A). The 

selected quantifier ions are in agreement with published literature (de Castro, et al., 2008; 

Elliott and Smith, 2008; Baker and Kasprzyk-Hordern, 2011b; Sørensen, 2011; Ammann, et 

al., 2012a; Ammann, et al., 2012b). 
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Table 3.2: Quantifier ion, confirmation ions and ion ratios for 20 analytes and three internal standards obtained from a LC-MS analysis with a C18 column 

COMPOUND  Quantifier Ion (Q) Confirmation Ion 1 (C1) Confirmation Ion 2 (C2) Ion Ratios 

Mass to charge 

ratio / m/z 

Relative 

Intensity / % 

Mass to charge 

ratio / m/z 

Relative 

Intensity / % 

Mass to charge 

ratio / m/z 

Relative 

Intensity / % 

Q/C1 Q/C2 

BZP 177 100 208 19 214 17 5.26 5.88 
MBZP 191 100 417 11 213 7 9.09 14.29 
Methcathinone 164 100 205 49 377 35 2.04 2.86 
Methylone 208 100 249 9 517 6 11.11 16.67 
4-MeOPP 193 100 42 21 385 19 4.76 5.26 
Amphetamine-d6 

a 142 100 142 69 214 21 1.45 4.76 
Amphetamine 136 100 177 66 115 36 1.52 2.78 
Methamphetamine 150 100 191 26 413 16 3.85 6.25 
4-FPP 181 100 222 15 373 11 6.67 9.09 
Butylone 222 100 263 6 – – 16.67 – 
Mephedrone 178 100 219 21 458 20 4.76 5.00 
Ketamine 238 100 – – – – – – 
3-CPP 197 100 238 42 390 8 2.38 12.50 
MDPV 276 100 – – – – – – 
Cocaine-d3 

a 307 100 – – – – – – 
Cocaine 304 100 – – – – – – 
3-TFMPP 231 100 272 82 115 7 1.22 14.29 
4-TFMPP 231 100 272 85 115 11 1.18 9.09 
Citalopram 325 100 341 15 – – 6.67 – 
Fluoxetine-d6 

a 316 100 357 46 134 10 2.17 10.00 
Fluoxetine 310 100 351 35 350 17 2.86 5.88 
JWH-073 328 100 391 35 677 12 2.86 8.33 
JWH-398 376 100 341 39 378 37 2.56 2.70 

a Amphetamine-d6, cocaine-d3 and fluoxetine-d6 to be used as internal standards
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Figure 3.4: Mass spectrum of 4-MeOPP at 0.01 mg/mL from a LC-MS analysis 

obtained with scan mode, showing its quantifier ion (circled)  

 

In this research, amphetamine-d6, cocaine-d3 and fluoxetine-d6 were used as internal 

standards for the quantitative analysis. If they contain fragment ions with the same m/z as 

the quantifier ions of their undeuterated analogues, the analyte signals would be 

overestimated, leading to the incorrectness of analyte concentrations in the standards and 

samples (Bogusz, 1997). Figure 3.5 shows the ion m/z 136, which is the quantifier ion of 

amphetamine, which was not present in the mass spectrum of amphetamine-d6. It 

demonstrates that no cross-contribution (Peters, Drummer and Musshoff, 2007) between 

amphetamine-d6 (internal standard) and amphetamine (its undeuterated analogue) 

occurred and thus amphetamine-d6 can be used as the internal standard to provide reliable 

quantification. The same applied to the other two internal standards, cocaine-d3 and 

fluoxetine-d6 (Appendix I). 
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Figure 3.5: Mass spectra of internal standard (A) amphetamine-d6 at 0.01 mg/mL 

and undeuterated analogue (B) amphetamine at 0.01 mg/mL from a LC-MS 

analysis obtained with scan mode, showing their quantifier ions (circled)  
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Moreover, it is recommended that two ions should be monitored for each analyte as 

confirmation ions and the ion ratio of quantifier ion to confirmation ion should be calculated 

in order to improve the reliability of confirmation (Commission Decision 2002/657/EC; 

Rivier, 2003; Boleda, et al., 2011). For example, m/z 328 was used as the quantifier ion of 

JWH-073 because it was the base peak and m/z 391 and m/z 677, the other two 

predominant ions, should be used as confirmation ions (Figure 3.6 A). These ions and their 

ratios are shown in Table 3.2. However, using LC-MS, some of the analytes had only one 

or two predominant ions in their mass spectra, including butylone, ketamine, MDPV, 

cocaine and citalopram (Table 3.2). The mass spectrum of cocaine, as an example, is 

depicted in Figure 3.6 B. Only its protonated molecular ion, m/z 304, was present. This is 

because the ESI technique was used for the LC-MS method, which provoked light 

fragmentation and yielded less characteristic ions (López de Alda and Barceló, 2000). 

Hence, it is not always possible to monitor three diagnostic ions for all studied analytes in 

this research with just the use of LC-MS and ESI. In this research, another approach for 

the confirmation assessment was used, which is the use of two analytical columns with 

different selectivity. This approach is further explained in this Section.  
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Figure 3.6: Mass spectra of (A) JWH-073 at 0.01 mg/mL and (B) cocaine at 0.01 

mg/mL from a LC-MS analysis obtained with scan mode, showing their quantifier 

ions (red circled) and confirmation ions (blue circled)  
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This limitation is also observed by López de Alda and Barceló (2000) when using LC-MS 

with ESI to analyse steroid sex hormones and associated synthetic compounds in water 

and the authors have recommended using another approach for the confirmation 

assessment. In this publication, two analytical columns with different selectivity were used 

to run the samples. One column was used for identification and quantification, while the 

other column was used for further confirmation (López de Alda and Barceló, 2000). This 

approach was used in this research. A C18 column was used for identification and 

quantification and a biphenyl column was used for confirmation by comparison to 

standards. For the biphenyl column, the protonated molecular ion [M+H]+ of each analyte 

was used as the confirmation ion based on the mass spectra of studied analytes (Appendix 

I) and their m/z values are included in Table 3.3. The quantifier ions of target analytes 

monitored in the LC-MS method using a C18 column are also shown in Table 3.3. The 

criteria and procedures for the identification and confirmation of the studied drugs of abuse 

and pharmaceuticals in drinking water samples are discussed in Section 5.1.1 and Section 

5.1.2. 
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Table 3.3: Retention times (RT), retention indexes (RI) and diagnostic ions for 20 

analytes and three internal standards obtained from a LC-MS analysis with a C18 

column and biphenyl column 

COMPOUND C18 COLUMN BIPHENYL COLUMN 

RT  

/ min 

RI Quantifier 

Ion / m/z 

RT  

/ min 

RI Confirmation 

Ion / m/z 

BZP 2.14 0.29 a 177 4.98 0.62 a 177 

MBZP 2.95 0.40 a 191 5.39 0.67 a 191 

Methcathinone 5.42 0.74 a 164 7.52 0.93 a 164 

Methylone 6.43 0.87 a 208 8.91 1.11 a 208 

4-MeOPP 7.26 0.99 a 193 9.46 1.18 a 193 

Amphetamine-d6 7.35 – 142 8.05 – 142 

Amphetamine 7.42 1.01 a 136 8.12 1.01 a 136 

Methamphetamine 9.20 1.25 a 150 9.18 1.14 a 150 

4-FPP 9.65 1.31 a 181 10.89 1.35 a 181 

Butylone 10.63 1.45 a 222 11.60 1.44 a 222 

Mephedrone 11.16 0.80 b 178 11.36 1.41 a 178 

Ketamine 11.78 0.85 b 238 14.99 0.75 b 238 

3-CPP 13.33 0.96 b 197 17.49 0.88 b 197 

MDPV 13.78 0.99 b 276 20.25 1.01 b 276 

Cocaine-d3 13.91 – 307 19.96 – 307 

Cocaine 13.91 1.00 b 304 19.99 1.00 b 304 

3-TFMPP 14.66 1.05 b 231 19.14 0.96 b 231 

4-TFMPP 15.00 1.08 b 231 20.12 1.01 b 231 

Citalopram 16.31 0.90 c 325 26.55 0.93 c 325 

Fluoxetine-d6 18.11 – 316 28.67 – 316 

Fluoxetine 18.15 1.00 c 310 28.74 1.00 c 310 

JWH-073 24.01 1.33 c 328 33.00 1.15 c 328 

JWH-398 25.57 1.41 c 376 34.76 1.21 c 376 
a Amphetamine-d6 to be used as internal standard; b Cocaine-d3 to be used as internal standard; c 

Fluoxetine-d6 to be used as internal standard 

 

For the C18 column, 23 selected quantifier ions were monitored in SIM mode using the 

method stated in Section 2.3.2.3 in order to achieve the simultaneous identification of the 

studied drugs of abuse, pharmaceuticals and internal standards. Figure 3.7 shows the 

selected ion chromatogram of a mixed standard containing 20 analytes and three internal 

standards obtained by the SIM mode using a C18 column. The retention times (RTs) were 

obtained by comparing them to individual standards. The results are shown in Table 3.3, 

including the retention times of the drugs of abuse, pharmaceuticals and internal standards 

and the analytes identified to be used relative to the internal standards for later 
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identification, quantification and method validation. Table 3.3 also includes diagnostic ions 

and retention index (RI), which is the ratio of the retention time of analyte to the retention 

time of corresponding internal standard. The results of retention index were used in 

Chapter 5 for the identification and confirmation of the studied drugs of abuse and 

pharmaceuticals in collected raw and drinking waters, as the use of retention index could 

help to reduce the effects of variations that affect the retention time (Cody, 2003). 

 



87 
 

In
te

n
si

ty
 

 
 Retention Time (min) 

Figure 3.7: Selected ion chromatogram of a mixed standard containing 20 analytes and three internal standards at 100 ng/mL from a

LC-MS analysis obtained with SIM mode and a C18 column 
(1) m/z 177 BZP, (2) m/z 191 MBZP, (3) m/z 164 methcathinone, (4) m/z 208 methylone, (5) m/z 193 4-MeOPP, (6) m/z 136 amphetamine,  

(7) m/z 142 amphetamine-d6, (8) m/z 150 methamphetamine, (9) m/z 181 4-FPP, (10) m/z 222 butylone, (11) m/z 178 mephedrone,  

(12) m/z 238 ketamine, (13) m/z 197 3-CPP, (14) m/z 276 MDPV, (15) m/z 304 cocaine, (16) m/z 307 cocaine-d3, (17) m/z 231 3-TFMPP,  

(18) m/z 231 4-TFMPP, (19) m/z 325 citalopram, (20) m/z 310 fluoxetine, (21) m/z 316 fluoxetine-d6, (22) m/z 328 JWH-073, (23) m/z 376 JWH-398 
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As shown in Figure 3.7 and Table 3.3, the majority of the studied drugs of abuse and 

pharmaceuticals, including 3-TFMPP and 4-TFMPP, can be separated based on their 

retention times using SIM mode. These isomers, 3-TFMPP and 4-TFMPP, shared the 

same quantifier ion (m/z 231) but occurred at different retention times (14.66 and 15.00 

min) (Table 3.3). Hence, they can be separated and independently quantified, as shown in 

the selected ion chromatogram from SIM mode (Figure 3.7). These results prove that the 

proposed LC-MS method using the C18 column was selective enough to separate the 

isomers 3-TFMPP and 4-TFMPP compared to other studies using MS, as the detector that 

had found limitations with overlapping retention times (Elliott and Smith, 2008). 

 

On the other hand, the use of different quantifier ions in SIM mode can also enable 

separation if co-eluting compounds do have similar retention times. According to Figure 3.7 

and Table 3.3, there was co-elution of 4-MeOPP (7.26 min) and amphetamine (7.42 min), 

but they can be differentiated by their different quantifier ions, m/z 193 for 4-MeOPP and 

m/z 136 for amphetamine. The same concept was applied to the co-elution of MDPV (m/z 

276) and cocaine (m/z 304) (Table 3.3). Although the internal standards (amphetamine-d6, 

cocaine-d3 and fluoxetine-d6) and their respective undeuterated analogues had similar 

retention times, the quantifier ions for these co-eluting compounds were different, as 

shown in Table 3.3. Thus, they can also be distinguished from each other.  

 

Overall, by their retention times and quantifier ions, the SIM mode method using the C18 

column can distinguish all studied drugs of abuse, pharmaceuticals and internal standards 

from each other, as evidenced by the selected ion chromatogram of a mixed standard 

(Figure 3.7). This separation also includes three groups of co-eluting compounds, which 

cannot be separated when using the scan mode, as their quantifier ions are different (Table 

3.3). It is concluded that SIM mode was far more selective than scan mode (Harris, 2010) 

and hence enabled reliable identification of target drugs of abuse, pharmaceuticals and 

internal standards. 
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With using the biphenyl column, the selected ion chromatogram of a mixed standard 

containing 20 target analytes and three internal standards obtained by the SIM mode is 

shown in Figure 3.8 and their retention times are listed in Table 3.3. Based on their 

retention times and confirmation ions, all drugs of abuse, pharmaceuticals and internal 

standards can be distinguished from each other by using this SIM mode method. Thus, the 

LC-MS method using the biphenyl column, as described in Section 2.3.2.2 and Section 

2.3.2.4, was suitable for the purpose of confirmation. 
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Figure 3.8: Selected ion chromatogram of a mixed standard containing 20 analytes and three internal standards at 100 ng/m L from a

LC-MS analysis obtained with SIM mode and a biphenyl column 
(1) m/z 177 BZP, (2) m/z 191 MBZP, (3) m/z 164 methcathinone, (4) m/z 136 amphetamine, (5) m/z 142 amphetamine-d6, (6) m/z 208 methylone,  

(7) m/z 150 methamphetamine, (8) m/z 193 4-MeOPP, (9) m/z 181 4-FPP, (10) m/z 178 mephedrone, (11) m/z 222 butylone,  

(12) m/z 238 ketamine, (13) m/z 197 3-CPP, (14) m/z 231 3-TFMPP, (15) m/z 276 MDPV, (16) m/z 304 cocaine, (17) m/z 307 cocaine-d3,  

(18) m/z 231 4-TFMPP, (19) m/z 325 citalopram, (20) m/z 310 fluoxetine, (21) m/z 316 fluoxetine-d6, (22) m/z 328 JWH-073, (23) m/z 376 JWH-398 
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3.1.2.2 Time segmentation  

The SIM analysis using time segmentation was carried out in order to increase the 

sensitivity, which is of importance for this research, as the method is required to detect and 

quantify trace levels of drugs of abuse and pharmaceuticals in drinking water. The 

application of time segmentation is to divide the entire analysis time into multiple 

predefined time segments and, during each time segment, the MS is programmed to only 

monitor a subset of the diagnostic ions of target analytes that elute in this given segment 

(Stone, et al., 2009). The benefit of time segmentation is that there are fewer ions to be 

analysed during that time segment compared to the SIM analysis, which monitors for all 

target analytes during the entire analysis time. It results in the increase of method 

sensitivity because the number of diagnostic ions decreases and more acquisition time can 

be spent on each ion (Agilent Technologies, 2011). In this research, various time segments 

were investigated and the final parameters are shown in Table 2.6 (C18 column) and Table 

2.8 (biphenyl column). For 20 drugs of abuse and pharmaceuticals plus three internal 

standards under investigation, ten time segments containing one to four ions were used. 

Through the use of this ten time segments method (S10), the peak areas of 20 analytes of 

interest and three internal standards have all increased compared to the method without 

segmentation (S1) for these two analytical columns. Figure 3.9 shows the peak areas 

comparison of a mixed standard using the S1 and S10 methods for a C18 column as an 

example and all target analytes and internal standards gave at least 10 % increase in peak 

area. 
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Figure 3.9: Comparison of peak areas of 20 analytes and three internal standards at 

100 ng/mL obtained from a LC-MS analysis and a C18 column using SIM mode 

without segmentation (S1) and SIM mode with ten time segments (S10), n=3 

 

3.1.2.3 Optimisation of DL, qarray DC and RF voltages  

The voltages of DL and lens system (qarray DC and RF) on the MS (which are described in 

Section 1.9.2.2) were then optimised. As mentioned in Section 1.9.2.2, these voltages are 

used to introduce the selected ions to the mass analyser for detection; thus, they also have 

a significant impact on the peak intensity. The DL, qarray DC and RF voltages were 

adjusted to give the best peak intensity and hence selected as optimal. These voltages 

were the same for both the C18 column and biphenyl column and are shown in Table 2.6 

and Table 2.8, respectively. In order to study the effect of optimised DL, qarray DC and RF 

voltages, a mixed standard with internal standards were analysed using (1) the optimised 

values and (2) the default values (0 kV for DL, qarray DC and RF voltages). The results of 

the comparison of peak areas for 20 target analytes and three internal standards using the 

optimised values and the default values for a C18 column are shown in Figure 3.10. The 

peak areas of all analysed compounds have improved by at least 25 % after the 

optimisation of DL, qarray DC and RF voltages. 
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Figure 3.10: Comparison of peak areas of 20 analytes and three internal standards at 

0.01 mg/mL obtained from a LC-MS analysis and a C18 column using default values 

and optimised values of DL, qarray DC and RF voltages, n=3 

  

In summary, the developed and optimised LC-MS methods using the C18 column and 

biphenyl column, as detailed in Section 2.3.2, were selected due to their good selectivity, 

reliable compound identification and high sensitivity. These two methods can separate 20 

drugs of abuse and pharmaceuticals plus three internal standards based on their retention 

times and diagnostic ions. Thus, the LC-MS methods using the C18 column and biphenyl 

column were used for method validation studies, as discussed in Chapter 4, and were 

applied to drinking water samples, as discussed in Chapter 5.  
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3.2 Comparison, development and optimisation of SPE method 

As discussed in Section 1.9.1.2.1, the separation mechanism is based on the electrostatic 

interaction between the functional groups of the analyte and the functional groups on the 

SPE sorbent. Depending on the nature of the target analytes, it is necessary to screen 

various types of SPE cartridges in order to select the most suitable sorbent, which can 

provide maximum analyte retention and highest recovery (Section 3.2.1). The SPE 

extraction process also relies on the solvents selected and volumes used, which were also 

optimised (Section 3.2.2). Finally, a large loading volume of sample was examined to 

ascertain whether this increased the chances of detecting and quantifying the studied 

drugs of abuse and pharmaceuticals in water samples (Section 3.2.3). 

 

Two sets of samples were prepared and analysed during the course of SPE development 

and optimisation. These comprised water samples that were spiked with target analytes 

and internal standards and then extracted via SPE (set 1) and water samples (from the 

same source) that were extracted via SPE but spiked after extraction (set 2). Raw water 

was used to prepare the set 1 samples for all SPE experiments, as the SPE method 

developed in this research was required to extract both raw water and drinking water. 

There are more matrix components present in raw water that need to be removed during 

extraction compared to drinking water. Moreover, the raw water collected from the same 

source was also used for the set 2 samples to ensure that target analytes and matrix 

components that were already present in the set 1 and 2 samples were the same, resulting 

in an accurate comparison. The ratio of analyte peak area to internal standard peak area 

(PAR) in the set 1 and 2 samples were used to calculate the recovery, which assess the 

effectiveness of the SPE method and also enable comparisons between the different SPE 

cartridges and different extraction methods (Peters, Drummer and Musshoff, 2007). 

Recovery was calculated using Equation 3.1, as the percentage of the PAR of an analyte in 

set 1 sample in relation to those in set 2 sample (Chambers, et al., 2007).  
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% Recovery = (PAR sample spiked before extraction/PAR sample spiked after extraction) x 100 

(Equation 3.1) 

 

Where, PAR of the sample spiked before extraction is the mean PAR of the analyte in the 

set 1 sample and PAR of the sample spiked after extraction is the mean PAR for the same 

quantity of analyte in set 2 sample.  

 

In addition, the precision of the SPE method was also assessed and 15 % RSD is 

accepted, indicating good replicate measurements (Peters, Drummer and Musshoff, 2007; 

Tarcomnicu, et al., 2011).  

 

3.2.1 Comparison of SPE cartridges, Oasis MCX (3 mL) and Strata-X-Drug B (3 mL) 

The first step of SPE development was to choose the most appropriate sorbent and SPE 

cartridge. As mentioned in Section 1.9.1.1, mixed-mode cation-exchange has been the 

most widely used sorbent in water analysis, as this sorbent can be used to extract a wide 

range of different analytes, including basic compounds as well as neutral compounds, from 

aqueous samples due to both functional groups being present (acidic and non-polar 

groups). Thus, mixed-mode cation-exchange sorbent was chosen to extract drugs of 

abuse and pharmaceuticals from raw water and drinking water in this research. Two 

different mixed-mode cation-exchange cartridges from different manufacturers were 

selected for the evaluation of the recoveries of target analytes from water: the Oasis MCX 

from Waters and the Strata-X-Drug B from Phenomenex. The extractions using Oasis MCX 

and Strata-X-Drug B were conducted according to their generic protocols (Table 2.9), 

adapted from Waters (2003) and Phenomenex (2011), and other parameters including 

sample volume, analyte concentration and instrumental method were the same (Section 

2.3.3 and Section 2.3.3.1).  

 

Recovery results of 20 studied drugs of abuse and pharmaceuticals obtained by using 

Oasis MCX and Strata-X-Drug B cartridges were calculated using Equation 3.1 and are 

listed in Table 3.4 for comparison. Moreover, the precision results (RSD) were obtained 
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using three replicates. Results highlighted in green indicate the higher recovery obtained 

for that particular analyte, while the results highlighted in red show that the RSD is below 

15 %, which means good repeatability.  

 

Table 3.4: Comparison of recoveries and relative standard deviations (RSD) of 20 

analytes obtained from a SPE analysis with 3 mL Oasis MCX and 3 mL Strata-X-Drug 

B cartridges, n=3 

COMPOUND  

/ 10 ng 

3 mL Oasis MCX  

Cartridge 

3 mL Strata-X-Drug B 

Cartridge 

Recovery / % RSD / % Recovery / % RSD / % 

BZP 137 26.2 63 6.2 
MBZP 161 20.9 70 4.5 

Methcathinone 52 26.1 102 14.3 

Methylone 108 4.7 87 9.1 

4-MeOPP 171 39.4 84 3.9 

Amphetamine 102 1.2 99 1.1 

Methamphetamine 78 7.6 87 13.7 

4-FPP 150 13.4 88 2.7 

Butylone 118 16.0 87 9.8 

Mephedrone 72 17.1 84 10.5 

Ketamine 95 17.6 85 7.3 

3-CPP 110 36.7 84 7.6 

MDPV 93 29.7 100 1.4 

Cocaine 101 0.2 97 0.3 

3-TFMPP 100 35.1 106 8.1 

4-TFMPP 102 31.3 97 8.0 

Citalopram 79 13.5 96 0.8 

Fluoxetine 87 2.1 98 1.4 

JWH-073 55 38.6 66 14.4 

JWH-398 33 94.6 43 13.3 

 

For the Oasis MCX cartridge, as shown in Table 3.4, the majority of selected analytes (17 

out of 20) had moderate to high recoveries between 72 - 171 %. Low recoveries were only 

observed for JWH-398 (33 %), methcathinone (52 %) and JWH-073 (55 %). This indicates 

that the Oasis MCX generic protocol (Table 2.9) was able to retain many target analytes 

and then elute most of them from the SPE cartridge. However, for methcathinone, 

JWH-073 and JWH-398, this generic protocol was not ideal for their extractions, possibly 

due to inappropriate pH and a weaker elution solvent applied (Section 1.9.1.2.1 and 
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Section 1.9.1.2.6). Therefore, analytes were lost during the sample loading and/or the 

analyte elution step. As a result, the PARs of sample spiked before extraction (set 1) were 

significantly lower than those of sample spiked after extraction (set 2), which resulted in 

low recoveries (33 - 55 %). Although the moderate to high recoveries were achieved for 

nearly all target analytes, the RSD results for most analytes were over 15 % and only 

seven analytes had acceptable RSD (< 15 %) (Peters, Drummer and Musshoff, 2007), 

which are highlighted in red as shown in Table 3.4. This phenomenon could be because 

the applied generic protocol was not able to remove the matrix components and thus 

caused matrix effects. As a result, the number of analyte ions escaping into the gas phase 

and being detected varied from run to run, resulting in poor repeatability for most analytes 

(as stated in Section 1.9.2.2.1). Thus, Oasis MCX might be not suitable for extraction in 

this research, as poor repeatability can lead to erroneous results (ibid). 

 

According to Table 3.4, the Strata-X-Drug B cartridge also gave moderate to high recovery 

values for all analytes of interest, ranging from 63 - 106 %, except for low recovery for 

JWH-398 (43 %). Moreover, the RSD results of the studied analytes for Strata-X-Drug B 

cartridge were all below 15 % criteria (highlighted in red), indicating good repeatability for 

all studied drugs of abuse and pharmaceuticals when using this type of SPE cartridge.  

 

When comparing results from Table 3.4, higher recovery results (highlighted in green) were 

obtained for 11 target analytes when using Oasis MCX cartridge and nine analytes of 

interest show better recoveries when using Strata-X-Drug B cartridge, but only 

Strata-X-Drug B can provide acceptable RSDs (< 15 %) for all studied drugs of abuse and 

pharmaceuticals. It is worth noting that the SPE method in this research was developed to 

simultaneously extract 20 drugs of abuse and pharmaceuticals from different classes 

(Table 1.3). Therefore, it is difficult to achieve high recoveries for all target analytes as 

non-ideal pH and elution solvent might be applied to some analytes, as discussed above. 

However, low RSDs should be required when selecting the most suitable SPE cartridge in 

order to ensure repeatable and precise recovery is obtained (Food and Drug 

Administration, 2001; Tarcomnicu, et al., 2011; Mwenesongole, 2015). In this regard, 
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Strata-X-Drug B was chosen in this research for the extraction of the studied drugs of 

abuse and pharmaceuticals in raw and drinking waters due to its good repeatability. 

 

3.2.2 Optimisation of elution solvent for Strata-X-Drug B (3 mL) 

After the selection of the Strata-X-Drug B cartridge, it was necessary to further develop and 

optimise the method in order to increase the recovery. As the Strata-X-Drug B cartridge 

contains a mixed-mode cation-exchange sorbent and has two different functional groups 

(non-polar and acidic groups) on its sorbent surface (Section 1.9.1.1), two elution solvents, 

as shown in Table 2.9, are used in tandem for this cartridge. Methanol is first applied to 

disrupt the interactions between the neutral analytes and non-polar groups. Among 20 

studied drugs of abuse and pharmaceuticals in this research, only two synthetic 

cannabinoids (JWH-073 and JWH-398) were eluted during this step, as they are more 

hydrophobic and mainly interact with non-polar surface groups. Then, ethyl 

acetate/isopropanol/ammonium hydroxide (70:20:10, v/v) is used as the second elution 

solvent in order to break the interactions between basic analytes and acidic groups. The 

remaining analytes of interest are basic compounds, including amphetamines, cocaine, 

ketamine, cathinones, piperazines and antidepressants (Table 1.3), and thus were eluted 

by this basified elution solvent.  

 

Based on the results in Table 3.4, good and repeatable recoveries were obtained for the 

majority of the studied drugs of abuse and pharmaceuticals when using the generic 

protocol of Strata-X-Drug B. Only JWH-398 that eluted in the first elution step showed low 

recovery (43 %) and thus the first elution solvent needed to be optimised. Methanol and 

acetonitrile are the most commonly used organic solvents for the elution of neutral analytes 

in the literature (Baker and Kasprzyk-Hordern, 2011a; Peng, Hall and Gautam, 2016). Ethyl 

acetate/isopropanol (85:15, v/v) is the recommended elution solvent for the extraction of 

marijuana metabolites such as THC, according to the technical document for the 

Strata-X-Drug B cartridge (Phenomenex, 2011). Thus, these three elution solvents, namely 

methanol (MeOH), acetonitrile (ACN) and ethyl acetate/isopropanol (EtOAC/IPA), were 

used following the procedures described in Section 2.3.3.2. The recovery results obtained 
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by using different first elution solvents were calculated based on Equation 3.1 and their 

precisions were obtained using three replicates (Table 3.5). Green recoveries indicate the 

highest value obtained for that particular analyte, while RSDs highlighted in red are below 

15 %, which mean good repeatability.  

 

Table 3.5: Comparison of recoveries and relative standard deviations (RSD) of 20 

analytes obtained from a SPE analysis with different first elution solvents (MeOH, 

ACN and EtOAC/IPA) for 3 mL Strata-X-Drug B cartridges, n=3 

COMPOUND  

/ 10 ng 

MeOH ACN EtOAC/IPA 

Recovery 

/ % 

RSD 

/ % 

Recovery 

/ % 

RSD 

/ % 

Recovery 

/ % 

RSD 

/ % 

BZP 63 6.2 70 11.0 103 10.1 

MBZP 70 4.5 70 8.9 98 8.5 

Methcathinone 102 14.3 105 8.0 107 11.1 

Methylone 87 9.1 86 1.6 102 5.8 

4-MeOPP 84 3.9 111 14.6 93 14.9 

Amphetamine 99 1.1 98 0.9 97 1.2 

Methamphetamine 87 13.7 79 3.2 83 4.4 

4-FPP 88 2.7 88 5.0 95 6.1 

Butylone 87 9.8 86 1.4 101 5.2 

Mephedrone 84 10.5 91 5.8 83 7.2 

Ketamine 85 7.3 83 7.1 72 10.3 

3-CPP 84 7.6 92 0.8 84 1.8 

MDPV 100 1.4 83 1.3 97 1.0 

Cocaine 97 0.3 92 0.4 98 0.6 

3-TFMPP 106 8.1 104 0.8 81 0.8 

4-TFMPP 97 8.0 99 0.8 80 1.8 

Citalopram 96 0.8 108 2.3 94 3.9 

Fluoxetine 98 1.4 102 0.3 98 0.9 

JWH-073 66 14.4 55 12.1 78 14.3 

JWH-398 43 13.3 59 13.6 87 14.8 

 

In Table 3.5, the comparison of the results from methods 1, 2 and 3 indicated that, for 

JWH-398, elution with ethyl acetate/isopropanol (85:15, v/v) in method 3 resulted in high 

recovery (87 %) with good repeatability (RSD = 14.8 %) and is better than elution with the 

other two organic solvents used in methods 2 and 3, namely methanol (43 %) and 

acetonitrile (59 %). For JWH-073, another analyte that eluted in the first elution step, using 

ethyl acetate/isopropanol (85:15, v/v) provided good repeatability (RSD = 14.3 %) and also 
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increased its recovery to 78 %. In addition, the remaining 18 analytes that eluted in the 

second elution step were not affected by changing the organic solvent for the first elution 

step and hence high recoveries (72 - 107 %) as well as low RSDs (< 15 %) were still 

obtained. Therefore, ethyl acetate/isopropanol (85:15, v/v) was the most suitable elution 

solvent for the first elution step owing to better recovery and good repeatability and was 

used for the final SPE method (Table 2.10). 

 

3.2.3 Optimisation of sample loading volume for Strata-X-Drug B (6 mL) 

As mentioned in Section 1.9.1.3, the larger the sample loading volume applied, the more 

the target analytes can be retained by SPE sorbent, thereby leading to increased chances 

of detection and quantification. It is of importance for this research as the studied drugs of 

abuse and pharmaceuticals are likely to be present in drinking water at sub ng/L levels. 

Thus, sample loading volume needs to be optimised in order to improve the method 

sensitivity. Following the procedures as detailed in Section 2.3.3.3, a higher volume of raw 

water (200 mL) and a larger capacity of Strata-X-Drug B cartridge (6 mL) were 

incorporated into the optimised SPE method (Table 2.10). Table 3.6 shows the results, 

including recovery, which were calculated based on Equation 3.1, and RSD, which was 

obtained by three replicates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

Table 3.6: Recoveries and relative standard deviations (RSD) for 20 analytes obtained from a SPE 

analysis with 200 mL sample loading volume for 6 mL Strata-X-Drug B cartridges, n=3 

COMPOUND 

/ 20 ng 

6 mL Strata-X-Drug B Cartridge 

Recovery / % RSD / % 

BZP 72 11.2 

MBZP 65 14.5 

Methcathinone 30 13.3 

Methylone 70 12.0 

4-MeOPP 39 14.9 

Amphetamine 97 0.9 

Methamphetamine 97 7.4 

4-FPP 81 2.8 

Butylone 67 12.9 

Mephedrone 47 14.6 

Ketamine 90 13.7 

3-CPP 79 8.6 

MDPV 96 7.1 

Cocaine 100 0.3 

3-TFMPP 86 7.9 

4-TFMPP 65 14.1 

Citalopram 98 13.8 

Fluoxetine 103 2.6 

JWH-073 107 14.5 

JWH-398 99 14.9 

 

In Table 3.6, most of the studied drugs of abuse and pharmaceuticals (17 out of 20) had 

moderate and high recoveries falling between 65 and 107 % and showed good precisions 

(RSD < 15 %) when loading a large volume of raw water (200 mL). Only three target 

analytes, namely methcathinone, 4-MeOPP and mephedrone, exhibited low recoveries (30, 

39 and 47 %). This is possibly due to the loss of analytes during the sample loading step, 

as higher recoveries (107, 93 and 83 %) have previously been observed when the sample 

loading volume was 2 mL (column F, Table 3.5).  

 

As this research aims to develop a simultaneous method and therefore is impossible to suit 

all studied drugs of abuse and pharmaceuticals from different classes, the acceptance 

criterion of recovery is to make sure that the value is repeatable and precise, regardless of 

the percent value obtained (Section 3.2.1). In this regard, low recoveries for methcathinone, 

4-MeOPP and mephedrone were acceptable as their RSD values were still below 15 %, 
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indicating good repeatability. Therefore, 200 mL was selected as the sample loading 

volume and was used for the final SPE method (Table 2.10). 

 

As shown in Table 3.7, the recovery results of seven drugs of abuse as well as two 

antidepressants from this research are compared with previously published research. 

These include amphetamine, methamphetamine, cocaine, ketamine, methcathinone, BZP, 

3-TFMPP, citalopram and fluoxetine. These eight references are chosen for comparison, 

as surface and drinking waters were used, which are similar to the sample matrix in this 

research (raw water from surface water source). Results regarding SPE recovery for other 

studied drugs of abuse have not been found in the literature.  

 

Table 3.7: Comparison of SPE recovery results in this research with published 

literature 

COMPOUND RECOVERY / % 

This 

Research 

Published Literature 

1 a 2 b 3 c 4 d 5 e 6 f 7 g 8 h 

RW DW SW SW DW SW DW RW DW 

Amphetamine 97 – 121 101 – 99 92 – 92 

Methamphetamine 97 – – 108 – 92 75 – 98 

Cocaine 100 – 99 105 – 102 91 – 86 

Ketamine 90 – – – – 100 93 – – 

Methcathinone 30 – – – – 71 – – – 

BZP 72 – – – – 99 – – – 

3-TFMPP 86 – – – – 101 – – – 

Citalopram 98 – – –  – – 97 – 

Fluoxetine 103 102 – – 102 101 – – – 

RW, raw water from surface water source; DW, drinking water; SW, surface water 
a Vanderford and Snyder, 2006; b Kasprzyk-Hordern, Dinsdale and Guwy, 2007; c Zuccato, et al., 

2008; d López-Serna, et al., 2010; e Baker and Kasprzyk-Hordern, 2011b; f Boleda, et al., 2011; g 

Gros, Rodríguez-Mozaz and Barceló, 2012;  
h Valcárcel, et al., 2012 

 

The comparison above shows that the recovery results of six target analytes in this 

research, including amphetamine, methamphetamine, cocaine, ketamine, citalopram and 

fluoxetine, are very close to those values from published literature (Table 3.7). However, 

the recoveries of methcathinone (30 %), BZP (72 %) and 3-TFMPP (86 %) are lower than 
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the recoveries of 71, 99 and 101 %, respectively, as reported by Baker and 

Kasprzyk-Hordern (2011b). This could be attributed to the different SPE cartridges and 

extraction processes used in these two methods, namely Strata-X-Drug B in this research 

and Oasis MCX in the previously published research, although both of them are 

mixed-mode cation-exchange sorbent. The differences have also been observed for some 

target analytes in Table 3.4 when determining the suitable SPE cartridge during this 

research. 

 

Overall, recoveries displayed in Table 3.6 show that this optimised SPE method (Table 2.10) 

was suitable for the extraction of the studied drugs of abuse and pharmaceuticals in 

drinking water in this research and the obtained results were used for the calculation of 

MDLs and MQLs in Section 4.5.2. 

 

3.3 Overall discussion and conclusion of method development  

The method applied in this research was based on using SPE followed by LC-MS. Two 

LC-MS analytical columns were used for the analysis of drugs of abuse and 

pharmaceuticals in drinking water, namely a C18 column for identification and quantification 

and a biphenyl column for confirmation. The first step was to develop the LC-MS method in 

order to simultaneously detect 20 target analytes and three internal standards. LC 

conditions were initially investigated by means of HPLC-DAD to achieve good 

chromatographic separation for the studied analytes, especially for the two isomers, 

3-TFMPP and 4-TFMPP. As a result, acetonitrile was chosen as the organic modifier of 

mobile phases for the C18 column and a mixture of methanol and acetonitrile (6:4, v/v) was 

selected for the biphenyl column (Section 3.1.1).  

 

The final gradient elution profiles for these two columns, as shown in Table 2.2 and Table 

2.4, were then transferred onto LC-MS and their peak separations were further 

investigated (Section 3.1.2.1). Scan mode was used to obtain the mass spectra of 20 

studied analytes and three internal standards (Appendix I) for selecting the diagnostic ions 

to be monitored in SIM mode. Based on their mass spectra, three predominant ions cannot 
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be found for all analytes and thus two columns were used to test the water samples, 

namely the C18 column for quantification and the biphenyl column for confirmation. The 

protonated molecular ion [M+H]+ of each analyte, which is the most abundant ion, was 

selected as the diagnostic ion (Table 3.8) and monitored in SIM mode in order to improve 

the method selectivity. As shown in Table 3.8, the developed LC-MS method using the C18 

column and biphenyl column can distinguish all studied drugs of abuse, pharmaceuticals 

and internal standards from each other by their retention times and diagnostic ions and the 

following chapter discusses the validation of selectivity (Section 4.1). In addition, the MS 

analysis time was divided into multiple time segments and DL, qarray DC and RF voltages 

were optimised for each analyte of interest and internal standard in order to increase the 

method sensitivity (Section 3.1.2.2). The MS segmentation programmes are detailed in 

Table 2.6 (C18 column) and Table 2.8 (biphenyl column) and these voltages are displayed 

in Table 3.8. The sensitivity of these two developed LC-MS methods is further investigated 

and discussed in the following chapter (Section 4.5). 

 

Finally, a sample preparation method based on SPE was developed and optimised. 

Strata-X-Drug B cartridges from Phenomenex were selected as good and repeatable 

recoveries were obtained for all target analytes (Section 3.2.1). The generic protocol of this 

cartridge was further optimised in order to increase the recovery. As a result, ethyl 

acetate/isopropanol (85:15, v/v) was chosen as the first elution solvent and 200 mL was 

used as the sample loading volume (Section 3.2.2 and Section 3.2.3). The recovery results 

obtained are shown in Table 3.8 by using the final SPE method, as described in Table 2.10. 
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Table 3.8: Summary of method development and optimisation results (C18 column and biphenyl column) 

COMPOUND METHOD DEVELOPMENT AND OPTIMISATION RESULTS 

LC-MS Method SPE Method 

Diagnostic  

ion / m/z 

Retention  

Time / min 

Retention  

Index 

DL  

Voltage / kV 

Qarray DC  

Voltage / kV 

Qarray RF  

Voltage / kV 

Recovery  

/ % 

C18 and Biphenyl C18 Biphenyl C18 Biphenyl C18 and Biphenyl C18 and Biphenyl C18 and Biphenyl Raw Water 

BZP 177 2.14 4.98 0.29 a 0.62 a 9.6 6.4 35.2 72 

MBZP 191 2.95 5.39 0.40 a 0.67 a 12.8 9.6 38.4 65 

Methcathinone 164 5.42 7.52 0.74 a 0.93 a 12.8 9.6 32.0 30 

Methylone 208 6.43 8.91 0.87 a 1.11 a 16.0 6.4 35.2 70 

4-MeOPP 193 7.26 9.46 0.99 a 1.18 a 6.4 6.4 32.0 39 

Amphetamine-d6 142 7.35 8.05 – – 6.4 9.6 32.0 – 

Amphetamine  136 7.42 8.12 1.01 a 1.01 a 25.6 16.0 28.8 97 

Methamphetamine  150 9.20 9.18 1.25 a 1.14 a 38.4 9.6 32.0 97 

4-FPP 181 9.65 10.89 1.31 a 1.35 a 6.4 6.4 38.4 81 

Butylone 222 10.63 11.60 1.45 a 1.44 a 16.0 6.4 41.6 67 

Mephedrone 178 11.16 11.36 0.80 b 1.41 a 16.0 9.6 32.0 47 

Ketamine  238 11.78 14.99 0.85 b 0.75 b 12.8 6.4 35.2 90 

3-CPP 197 13.33 17.49 0.96 b 0.88 b 9.6 6.4 32.0 79 

MDPV 276 13.78 20.25 0.99 b 1.01 b 96.0 6.4 41.6 96 

Cocaine-d3 307 13.91 19.96 – – 12.8 0.0 51.2 – 

Cocaine 304 13.91 19.99 1.00 b 1.00 b 32.0 0.0 48.0 100 

3-TFMPP 231 14.66 19.14 1.05 b 0.96 b 32.0 16.0 38.4 86 

4-TFMPP 231 15.00 20.12 1.08 b 1.01 b 32.0 16.0 38.4 65 

Citalopram  325 16.31 26.55 0.90 c 0.93 c 32.0 0.0 44.8 98 

Fluoxetine-d6 316 18.11 28.67 – – 22.4 16.0 48.0 – 

Fluoxetine  310 18.15 28.74 1.00 c 1.00 c 16.0 16.0 41.6 103 

JWH-073 328 24.01 33.00 1.33 c 1.15 c 32.0 19.2 48.0 107 

JWH-398 376 25.57 34.76 1.41 c 1.21 c 0.0 19.2 57.6 99 
a Amphetamine-d6 to be used as internal standard; b Cocaine-d3 to be used as internal standard; c Fluoxetine-d6 to be used as internal standard
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CHAPTER 4 RESULTS AND DISCUSSION: VALIDATION OF THE OPTIMISED 

METHOD 

This chapter includes the validation results of the instrument and method using the final 

optimised SPE and LC-MS methods, subsequent to their development and optimization, as 

discussed in Chapter 3. These results prove that the instrument and method were selective, 

sensitive and capable for identification, quantification and confirmation. This chapter 

interprets and discusses the results of several validation experiments, including selectivity, 

autosampler storage stability, instrumental linearity, precision, accuracy, detection and 

quantification limits for the instrument and method. All parameters were validated for the 

LC-MS method using a C18 column (Section 2.3.2.3) as this method was used for 

quantification. In addition, selectivity and the instrumental detection limit were studied 

using a biphenyl column (Section 2.3.2.4), as this method was only used for the purpose of 

confirmation. 

 

4.1 Selectivity 

As the methods used in this research were to simultaneously analyse 20 drugs of abuse 

and pharmaceuticals, as well as three internal standards, it is important to demonstrate the 

ability of the method for identification with selectivity. For the C18 column and biphenyl 

column, all studied drugs of abuse, pharmaceuticals and internal standards can be 

distinguished from each other either by their retention times or by diagnostic ions using the 

SIM mode, as shown and discussed in Section 3.1.2.1. Therefore, these two SIM mode 

methods were selective enough to enable the reliable identification of the target analytes, 

as evidenced by the selected ion chromatograms of a mixed standard with internal 

standards obtained by the use of the C18 column (Figure 3.7) and biphenyl column (Figure 

3.8). In addition, ultra-pure water was used as a matrix blank and analysed using a C18 

column and biphenyl column (Section 2.3.2.3 and Section 2.3.2.4) in order to check the 

interferences from the matrix. Figure 4.1 A and Figure 4.1 B show the selected ion 

chromatograms of a matrix blank obtained in SIM mode using the C18 column and biphenyl 

column, respectively.  
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Figure 4.1: Selected ion chromatograms of a matrix blank from a SPE-LC-MS 

analysis obtained with SIM mode and (A) a C18 column and (B) a biphenyl column 

 

In Figure 4.1 A, there were some peaks with the m/z 328 ion and m/z 376 ion present, 

which were the quantifier ions for JWH-073 and JWH-398. The signals may be from some 

components in the sample matrix. However, by comparing the selected ion chromatogram 

of a matrix blank (Figure 4.1 A) to the selected ion chromatogram of a mixed standard 
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containing the internal standards (Figure 3.7), these peaks were not present at the 

retention times of JWH-073 (24.01 min) and JWH-398 (25.57 min), which are labelled in 

Figure 4.1 A using the C18 column, so do not interfere. Moreover, there were no 

interference peaks observed in the matrix blank for other target analytes and internal 

standards. This proves that the peaks of all target analytes and internal standards were 

only as a result of the compound and not the matrix blank. Therefore, the LC-MS method in 

SIM mode using the C18 column was selective and can be used during method validation 

studies and water sample analysis in order to provide reliable identification. 

 

For the biphenyl column, by comparing the selected ion chromatogram of a matrix blank 

(Figure 4.1 B) to the selected ion chromatogram of a mixed standard containing the 

internal standards (Figure 3.8), some ions were detected for BZP, MBZP, JWH-073 and 

JWH-398 in the matrix blank. However, they were not present at the retention times of 

these analytes, which are labelled in Figure 4.1 B. Hence, there were no interferences 

observed in the matrix blank, indicating that this LC-MS method in SIM mode using the 

biphenyl column was selective enough for the identification of 20 studied drugs of abuse 

and pharmaceuticals as well as three internal standards. 

 

4.2 Autosampler storage stability  

Firstly, three internal standards were added to mixed standards (10 ng/mL) at the 

concentrations of 5 ng/mL (amphetamine-d6), 0.1 ng/mL (cocaine-d3) and 0.75 ng/mL 

(fluoxetine-d6). Their autosampler storage stability in the LC-MS injection solvent (0.5 % 

formic acid/4.975 % acetonitrile/94.525 % water) was assessed over five days at 10 °C, 

which was enough to cover the typical working time for validation experiments and water 

sample analysis (Section 4.2.1). The autosampler storage stability study was then 

conducted on two mixed standards in LC-MS injection solvent, one at low concentration 

(10 ng/mL) and the other at high concentration (500 ng/mL), in order to determine the 

stability of the studied drugs of abuse and pharmaceuticals (Section 4.2.2). The LC-MS 

method using a C18 column (Section 2.3.2.3) was used for the autosampler storage stability 

study. 



109 
 

4.2.1 Stability and instrumental response of internal standards 

In this research, PAR was used for data analysis, such as the analysis of autosampler 

storage stability, the establishment of the linear range, the assessment of precision and 

accuracy, the calculation of IDL and IQL as well as the quantification of target analytes in 

water samples. Hence, the investigation of the stability of amphetamine-d6, cocaine-d3 and 

fluoxetine-d6 is of importance before evaluating other validation parameters.  

 

The concentrations of the three internal standards that are added to the mixed standards 

need to be selected. The concentration of internal standard should yield a similar response 

to that of the analyte of interest. If the response of the internal standard is too high, it will 

result in low PAR, leading to increased error when using it for the purpose of quantification. 

Moreover, the peak of internal standard should always be visible on the chromatogram and 

should be accurate and reproducible. Thus, the concentrations of internal standards were 

selected based on their respective IQLs, ensuring the peak areas won’t be too large and 

can be measured with suitable precision, typically within 20 % RSD (Peters, Drummer and 

Musshoff, 2007; UNODC, 2009). The IQL was estimated based on the S/N, which is 

typically required to be equal to or greater than 10 (Huber, 2007). The measurement of 

signal was the maximum height of analyte peak above the baseline and the noise was 

measured based on the amplitude between the highest and lowest point of baseline (Wells, 

Prest and Russ, 2011). Based on the results in Table 4.1, the concentration of 

amphetamine-d6 was chosen at 5 ng/mL. This is because, at this concentration, its S/N 

was 17.23 and acceptable precision (RSD = 7.46 %) was attained. Cocaine-d3 and 

fluoxetine-d6 were selected at the concentrations of 0.1 ng/mL and 0.75 ng/mL, 

respectively, based on the criteria shown in Table 4.1. 
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Table 4.1: Signal-to-noise ratios (S/N) and relative standard deviations (RSD) for 

three internal standards at their respective concentrations obtained from a LC-MS 

analysis with a C18 column, n=3 

INTERNAL STANDARD CONCENTRATION / ng/mL S/N RSD / % 

Amphetamine-d6 5.00 17.23 7.46 

Cocaine-d3 0.10 15.02 7.64 

Fluoxetine-d6 0.75 17.58 4.13 

 

The stability of internal standards in LC-MS injection solvent was then evaluated by plotting 

the peak area of each internal standard at each concentration against the injection time 

(every three hours). Bar graphs of three internal standards can be found in Appendix II-a, 

while an example of amphetamine-d6 is provided in Figure 4.2.  

 

 
Figure 4.2: Bar graph of peak area against injection time for amphetamine-d6 at 5 

ng/mL for autosampler storage stability obtained from a LC-MS analysis with a C18 

column, n = 40 

 

The instability is indicated by a slope, which is significantly different from zero (p ≤ 0.05) 

(Saar, et al., 2010). Slope and p-value were calculated using linear regression analysis 

with Microsoft Excel 2007. The p-value was used for testing the null hypothesis that the 

slope of the linear regression line is equal to zero. If p-value is lower or equal than 0.05, it 

indicates that the null hypothesis is rejected and the slope is significantly different from 

zero, which shows the instability of the tested internal standard. If the p-value is above 0.05, 
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it indicates that the null hypothesis is retained and the slope is not significantly different 

from zero, which shows the difference is random and the tested internal standard is stable 

(ibid). Results regarding the p-values of three internal standards for autosampler storage 

stability are shown in Table 4.2. 

 

Table 4.2: Results of autosampler storage stability for three internal standards 

obtained from a LC-MS analysis with a C18 column 

COMPOUND AUTOSAMPLER STORAGE STABILITY 

Concentration  

/ ng/mL 

p-value a Is the Null Hypothesis 

Retained? 

Amphetamine-d6 5.00 0.94 Yes 

Cocaine-d3 0.10 0.71 Yes 

Fluoxetine-d6 0.75 0.87 Yes 
a p-value > 0.05 and therefore the null hypothesis was retained, indicating that the internal standard 

was stable 

 

The results in Table 4.2 show that amphetamine-d6 was stable in LC-MS injection solvent 

at the concentration of 5 ng/mL over the five-day period at 10 °C as its p-value was 0.94 (p > 

0.05), while the same was applied to cocaine-d3 and fluoxetine-d6. They were stable in 

LC-MS injection solvent at the concentrations of 0.1 and 0.75 ng/mL, respectively, over the 

five-day period at 10 °C.  

 

4.2.2 Stability of studied drugs of abuse and pharmaceuticals 

The stability of the studied drugs of abuse and pharmaceuticals in LC-MS injection solvent 

was also evaluated by linear regression analysis using a plot of the PAR of each analyte at 

each concentration against injection time (every three hours). Bar graphs of the studied 

drugs of abuse and pharmaceuticals at two concentrations (10 and 500 ng/mL) can be 

found in Appendix II-b. An example of citalopram is provided in Figure 4.3.  
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(A) 

 
(B) 

 
Figure 4.3: Bar graphs of peak area ratio against injection time for citalopram at (A) 

10 ng/mL and (B) 500 ng/mL for autosampler storage stability obtained from a 

LC-MS analysis with a C18 column, n = 40 

 

PAR was calculated as the ratio of analyte peak area to internal standard peak area. As 

shown in Section 4.2.1, amphetamine-d6, cocaine-d3 and fluoxetine-d6 have already been 

proved to be stable at their added concentrations (5 ng/mL, 0.1 ng/mL and 0.75 ng/mL, 

respectively). Thus, if the acceptance criterion of stability is fulfilled, it indicates that the 

studied drugs of abuse and pharmaceuticals were stable in LC-MS injection solvent during 
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five days at 10 °C. The stability criterion is as stated in Section 4.2.1 with the p-value 

greater than 0.05. The results of the autosampler storage stability for the studied drugs of 

abuse and pharmaceuticals are shown in Table 4.3, including p-value, which was 

calculated as detailed in Section 4.2.1.  

 

Table 4.3: Results of autosampler storage stability for 20 analytes obtained from a 

LC-MS analysis with a C18 column 

COMPOUND AUTOSAMPLER STORAGE STABILITY 

Low Concentration 

/ 10 ng/mL 

High Concentration 

/ 500 ng/mL 

p-value a Is the Null 

Hypothesis 

Retained? 

p-value a Is the Null 

Hypothesis 

Retained? 

BZP 0.16 Yes 0.48 Yes 

MBZP 0.86 Yes 0.84 Yes 

Methcathinone 0.48 Yes 0.69 Yes 

Methylone 0.41 Yes 0.73 Yes 

4-MeOPP 0.74 Yes 0.25 Yes 

Amphetamine 0.71 Yes 0.45 Yes 

Methamphetamine 0.71 Yes 0.45 Yes 

4-FPP 0.68 Yes 0.24 Yes 

Butylone 0.50 Yes 0.78 Yes 

Mephedrone 0.18 Yes 0.51 Yes 

Ketamine 0.71 Yes 0.77 Yes 

3-CPP 0.85 Yes 0.83 Yes 

MDPV 0.91 Yes 0.71 Yes 

Cocaine 0.21 Yes 0.96 Yes 

3-TFMPP 0.89 Yes 0.91 Yes 

4-TFMPP 0.95 Yes 0.73 Yes 

Citalopram 0.89 Yes 0.91 Yes 

Fluoxetine 0.72 Yes 0.85 Yes 

JWH-073 0.88 Yes 0.25 Yes 

JWH-398 0.76 Yes 0.61 Yes 
a p-value > 0.05 and therefore the null hypothesis was retained, indicating that the studied analyte 

was stable 
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Based on the results in Table 4.3, the p-values for all 20 studied drugs of abuse and 

pharmaceuticals were greater than 0.05. Thus, the slopes were not significantly different 

from zero, indicating stability over autosampler storage at both low and high 

concentrations.  

 

The stability study has confirmed that the investigated drugs of abuse, pharmaceuticals 

and internal standards were stable in LC-MS injection solvent during LC-MS analysis on 

the autosampler for the duration of five days. Therefore, mixed standards and water 

samples dissolved in LC-MS injection solvent can be stable and stored for up to five days 

at 10 °C. This shows that long sequences for five days can be prepared. In practice, mixed 

standards in LC-MS injection solvent were made every five working days and kept in a 

fridge or on the autosampler at 10 °C in order to prevent any significant degradation.  

 

4.3 Instrumental linearity  

The LC-MS method using a C18 column (Section 2.3.2.3) was tested for linearity in this 

research. A series of data points were obtained by analysing 19 mixed standards between 

0.001 to 10000 ng/mL (0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 

10, 100, 500, 1000, 5000 and 10000 ng/mL). To assess linearity, a linear regression plot 

(Section 4.3.1) was first used to determine the initial linear range of the LC-MS instrument, 

especially for the elimination of higher concentration points. Then, the initial linear range 

was further tested by the plot of relative response against log concentration (Section 4.3.2) 

in order to remove lower concentration points and obtain the final instrumental linear range. 

This is because the deviations from linearity at the low concentrations are too small to 

detect and can often go unnoticed in linear regression plot (Singh, 2013). 

 

4.3.1 Linear regression plot for initial linearity assessment 

The linear regression plots for the studied drugs of abuse and pharmaceuticals were 

obtained by plotting the mean PARs of standards against corresponding standard 

concentrations. An example of a linear regression plot can be seen in Figure 4.4 for 

ketamine over the 0.001 to 10000 ng/mL concentration range.  
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Figure 4.4: Linear regression plot of mean peak area ratio against standard 

concentration for ketamine over 0.001 to 10000 ng/mL for instrumental linearity 

obtained from a LC-MS analysis with a C18 column, n = 3  

 

It is apparent by visual examination of this linear regression plot for ketamine that the mean 

PARs at the highest three concentrations (1000, 5000 and 10000 ng/mL) were beginning to 

plateau and were not directly proportional to standard concentration. This indicates that 

these three concentrations were beyond the instrumental linear range and the response of 

ketamine was non-linear over the whole concentration range, being 0.001 to 10000 ng/mL. 

 

Besides visual examination, linearity can also be evaluated by the coefficient of 

determination (R2), which was obtained from the linear regression plot. The R2 value can 

be considered as an indicator to measure the degree of linear association between x and y 

variables (standard concentration and mean PAR). Thus, the closer the R2 value is to 1, the 

closer the correlation. An R2 value of 0.9900 or better is deemed as an acceptable 

measure of linearity (UNODC, 2009). In order to determine the initial instrumental linear 

ranges for the studied drugs of abuse and pharmaceuticals, the mean PAR results that 

showed plateau responses at the higher concentrations were removed until the R2 value 

was equal to or greater than 0.9900. For example, in the linear regression plot for ketamine 

(Figure 4.4), the R2 was calculated at 0.9611, which was outside the accepted 0.9900. 

After the removal of the highest three concentrations, the accepted R2 (0.9996) was 
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obtained (Figure 4.5). Thus, the initial instrumental linear range of ketamine was 0.001 to 

500 ng/mL. 

 

 
Figure 4.5: Linear regression plot of mean peak area ratio against standard 

concentration for ketamine over 0.001 to 500 ng/mL for instrumental linearity 

obtained from a LC-MS analysis with a C18 column, n = 3 

 

The linear regression plots for drugs of abuse and pharmaceuticals investigated in this 

research are displayed in Appendix III and their coefficient of determination values are 

listed in Table 4.4 (column B). As the R2 values were all greater than 0.9900, this indicates 

that good linearity was obtained for all assessed drugs of abuse and pharmaceuticals over 

the concentration range shown in Table 4.4 (column C), which is known as the initial 

instrumental linear range in this research. The linearity was examined further in the 

following Section 4.3.2 using the plot of relative response against log concentration. 
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4.3.2 Plot of relative response against log concentration for further examination of 

linearity 

The instrumental linear ranges obtained from the linear regression plots were then further 

tested by the plots of relative response against log concentration. Relative responses, 

which were calculated by dividing the responses of data point (mean PAR) by their 

corresponding standard concentrations, were plotted in the y-axis against corresponding 

standard concentrations on a log scale in the x-axis due to the wide linear range. This 

helps to normalise the response to the concentration of the analyte (Huber, 2007). 

Moreover, this plot could also be used to check the behaviour of variance. If the method is 

linear, the relative responses should be statistically the same, which would indicate that the 

relative responses do not change with concentrations, because the ordinary least squares 

model is based on the assumption that the variance is constant (Hartmann, et al., 1998). If 

an ideal linearity is achieved, the obtained line should be horizontal and show the data 

points within ± 5 % of the mean relative response (Huber, 2007).  

 

The plot of relative response against log concentration for ketamine is shown in Figure 4.6, 

where Rc is the line of mean relative response while 0.95 Rc and 1.05 Rc indicate 95 % 

and 105 % of the horizontal line, respectively (Hartmann, et al., 1998; Huber, 2007). This 

shows the plot for ketamine where data points beyond the line of 1.05 Rc were identified at 

the lowest three concentrations, 0.001, 0.01 and 0.025 ng/mL. Thus, these three data 

points were deleted from the linear range and the final instrumental linear range was 

changed to 0.05 to 500 ng/mL.  
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Figure 4.6: Relative response/log concentration plot of the ratio of mean peak area 

ratio to standard concentration against log concentration of standard for ketamine 

over 0.001 to 500 ng/mL for instrumental linearity obtained from a LC-MS analysis 

with a C18 column 

 

Other plots of relative response against log concentration are displayed in Appendix IV. 

The same approach for removing concentration points (column D, Table 4.4) that were 

beyond the 95 % and 105 % limits was used.  
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Table 4.4: Results of instrumental linearity for 20 analytes obtained from a LC-MS 

analysis with a C18 column 

COMPOUND INSTRUMENTAL LINEARITY 

Linear Regression Plot Relative Response/ Log Concentration Plot 

Coefficient of 

Determination 

/ R2 

Initial 

Linear 

Range  

/ ng/mL 

Deleted  

Concentration  

Points  

/ ng/mL 

Final  

Linear  

Range  

/ ng/mL 

BZP 0.9998 0.001 - 1000 7 Points (0.001 - 0.25) 0.5 - 1000 

MBZP 0.9997 0.001 - 1000 5 Points (0.001 - 0.075) 0.1 - 1000 

Methcathinone 0.9995 0.001 - 1000 6 Points (0.001 - 0.1) 0.25 - 1000 

Methylone 0.9997 0.001 - 1000 7 Points (0.001 - 0.25) 0.5 - 1000 

4-MeOPP 0.9992 0.001 - 1000 11 Points (0.001 - 2.5) 5 - 1000 

Amphetamine  0.9993 0.001 - 1000 10 Points (0.001 - 1) 2.5 - 1000 

Methamphetamine 0.9994 0.001 - 1000 8 Points (0.001 - 0.5) 0.75 - 1000 

4-FPP 0.9996 0.001 - 1000 6 Points (0.001 - 0.1) 0.25 - 1000 

Butylone 0.9997 0.001 - 500 3 Points (0.001 - 0.025) 0.05 - 500 

Mephedrone 0.9998 0.001 - 1000 3 Points (0.001 - 0.025) 0.05 - 1000 

Ketamine  0.9996 0.001 - 500 3 Points (0.001 - 0.025) 0.05 - 500 

3-CPP 0.9997 0.001 - 1000 6 Points (0.001 - 0.1) 0.25 - 1000 

MDPV 0.9994 0.001 - 1000 5 Points (0.001 - 0.075) 0.1 - 1000 

Cocaine 0.9999 0.001 - 500 3 Points (0.001 - 0.025) 0.05 - 500 

3-TFMPP 0.9997 0.001 - 1000 3 Points (0.001 - 0.025) 0.05 - 1000 

4-TFMPP 0.9998 0.001 - 1000 3 Points (0.001 - 0.025) 0.05 - 1000 

Citalopram  0.9996 0.001 - 500 2 Points (0.001 - 0.01) 0.025 - 500 

Fluoxetine 0.9998 0.001 - 1000 7 Points (0.001 - 0.25) 0.5 - 1000 

JWH-073 0.9998 0.001 - 1000 11 Points (0.001 - 2.5) 5 - 1000 

JWH-398 0.9997 0.001 - 1000 11 Points (0.001 - 2.5) 5 - 1000 
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4.3.3 Instrumental linear ranges 

The final instrumental linear ranges for the studied drugs of abuse and pharmaceuticals 

are shown in Table 4.4 (column E). It is apparent that the instrumental linear ranges are 

different for various analytes. For example, the instrumental linear range for ketamine was 

0.05 to 500 ng/mL, whereas the instrumental linear range for BZP was 0.5 to 1000 ng/mL. 

This is probably because, whilst the concentration is the same, not all analytes yield the 

same instrumental response. According to the selected ion chromatogram of a mixed 

standard at the concentration of 100 ng/mL (Figure 3.7), the instrumental intensity (peak 

height) of ketamine (286,371) was significantly higher than BZP (37,457). The highest 

concentration in the instrumental linear range of ketamine was 500 ng/mL and, beyond this 

concentration, the peak area was not directly proportional to the concentration due to a too 

strong signal causing detector saturation. Figure 4.7 A shows the selected ion 

chromatogram of ketamine at the concentration of 1000 ng/mL, resulting in a strong signal 

and causing flatting at the top of the peak. For BZP, its instrumental response was lower 

than ketamine and hence good peak shape was observed at the concentration of 1000 

ng/mL without detector saturation, as this concentration was within its instrumental linear 

range (Figure 4.7 B). This explains the different highest concentrations of instrumental 

linear range that were obtained for different analytes, such as 500 ng/mL for ketamine and 

1000 ng/mL for BZP. 
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Figure 4.7: Selected ion chromatograms of (A) m/z 238 ketamine at 1000 ng/mL 

and (B) m/z 177 BZP at 1000 ng/mL from a LC-MS analysis obtained with SIM mode 

and a C18 column 
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In addition, the instrumental responses of an analyte can be too weak at lower 

concentrations and therefore be unusable for the purpose of quantification. This is because 

the concentration at the lower end can be beyond the IQL for this analyte, which is the 

lowest concentration that can be quantitatively determined by the instrument (Section 

1.10.5.1). Since the instrumental response of ketamine was higher than BZP (Figure 3.7), 

the lowest concentration end of ketamine (0.05 ng/mL) was significantly lower than BZP 

(0.5 ng/mL), as shown in Table 4.4 (column E). Figure 4.8 shows the selected ion 

chromatograms of ketamine and BZP at the same concentration of 0.05 ng/mL. Good 

instrumental response (clear peak) was observed for ketamine (Figure 4.8 A), as this 

concentration (0.05 ng/mL) is higher than the IQL of ketamine (0.0412 ng/mL, Table 4.12), 

whilst no peak of BZP was detected (Figure 4.8 B) as 0.05 ng/mL is significantly lower than 

the IQL of BZP (0.4087 ng/mL, Table 4.12). 
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Figure 4.8: Selected ion chromatograms of (A) m/z 238 ketamine at 0.05 ng/mL and 

(B) m/z 177 BZP at 0.05 ng/mL from a LC-MS analysis obtained with SIM mode and 

a C18 column 

 

Instrumental linear ranges for the studied drugs of abuse and pharmaceuticals were 

investigated in this research between 0.001 and 10000 ng/mL, over seven orders of 

magnitude. Good linearity was obtained for all target analytes, over four to five orders of 

magnitude (column E, Table 4.4). This is consistent with a published review (Holčapek, 

Jirásko and Lísa, 2012). This indicates that the LC-MS could provide a good linear 
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dynamic range, which is common of five to six orders of magnitude. In addition, 

instrumental linear ranges of 16 target analytes included in this research are compared 

with those from published literature (Table 4.5), which were based on using LC-MS/MS 

(Baker and Kasprzyk-Hordern, 2011b; Reid, Derry and Thomas, 2014; Baz-Lomba, Reid 

and Thomas, 2016; González-Mariño, et al., 2016a; González-Mariño, et al., 2016b; Petrie, 

et al., 2016; Gao, et al., 2017). As described in Section 1.6, previously published work is 

limited with respect to such analytes in drinking water, while the instrumental linear ranges 

for MBZP, 4-MeOPP, 4-FPP and 4-TFMPP have not been reported yet. 
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Table 4.5: Comparison of instrumental linear ranges in this research with published literature 

COMPOUND INSTRUMENTAL LINEAR RANGE / ng/mL 

This 

Research  

Published Literature 

1 a 2 b 3 c 4 d 5 e 6 f 7 g 

LC-MS LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS 

BZP 0.5 - 1000 0.5 - 1000 – – – – – 0.5 - 200 

Methcathinone 0.25 - 1000 0.075 - 1000 – 1 - 400 – – – – 

Methylone 0.5 - 1000 – – 0.25 - 400 – – – – 

Amphetamine 2.5 - 1000 0.1 - 1000 – 5 - 400 – – 0.1 - 500 – 

Methamphetamine 0.75 - 1000 0.025 - 1000 – 2 - 200 – – 0.1 - 500 – 

Butylone 0.05 - 500 – – – – 0.07 - 100 – – 

Mephedrone 0.05 - 1000 – – 2 - 400 – – 0.05 - 500 0.5 - 200 

Ketamine 0.05 - 500 0.025 - 1000 – 0.5 - 400 – – 0.05 - 500 – 

3-CPP 0.25 - 1000 – – – – – – 0.5 - 200 

MDPV 0.1 - 1000 – – – – – 0.05 - 500 0.1 - 200 

Cocaine 0.05 - 500 0.025 - 1000 – 0.25 - 200 – – 0.05 - 500 – 

3-TFMPP 0.05 - 1000 0.025 - 1000 – – – – – 0.5 - 200 

Citalopram 0.025 - 500 – – 0.25 - 200 – – 0.5 - 1000 – 

Fluoxetine 0.5 - 1000 0.075 - 1000 – – – – 0.05 - 1000 – 

JWH-073 5 - 1000 – 15 - 500 – – – – – 

JWH-398 5 - 1000 – – – 1 - 100 – – – 
a Baker and Kasprzyk-Hordern, 2011b; b Reid, Derry and Thomas, 2014; c Baz-Lomba, Reid and Thomas, 2016; d González-Mariño, et al., 2016a; e 

González-Mariño, et al., 2016b; f Petrie, et al., 2016; g Gao, et al., 2017 
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According to Table 4.5, instrumental linear ranges from this research and published 

literature are comparable. Results indicate that LC-MS was able to provide as good 

linearity as LC-MS/MS and their lowest concentration ends of instrumental linear range are 

at the same levels. This proves the potential of LC-MS for the analysis of drugs of abuse 

and pharmaceuticals in drinking water at ultra-trace level, as these LC-MS/MS methods 

have been applied to waste water and surface water.  

 

4.4 Precision and accuracy 

Instrumental precision was studied in order to assess the (1) instrumental intra-assay 

precision (Section 4.4.1), the repeatability of instrument under repeatable condition 

(operating the same conditions over a short time interval), and (2) instrumental 

intermediate precision (Section 4.4.2), the repeatability of instrument under reproducible 

condition (operating under the same conditions over different days). In addition, the 

precision and accuracy of the analytical method were also conducted in order to test the 

ability of the method for the purpose of quantification, the results of which are shown and 

discussed in Section 4.4.3. The LC-MS method, using a C18 column (Section 2.3.2.3), was 

used for all experiments in this section and the SPE protocol in Table 2.10 was the sample 

preparation method for spiked waters. 

 

4.4.1 Instrumental intra-assay precision 

The instrumental intra-assay precision study was assessed over a short time interval (26.4 

hours) under the same instrumental conditions and its experimental procedure is described 

in Section 2.4.4.1. The precision was measured by six replicates at low (5 ng/mL), medium 

(50 ng/mL) and high (500 ng/mL) concentration levels and RSD results should not exceed 

15 %, except for the lower concentration level, where 20 % RSD is acceptable (Peters, 

Drummer and Musshoff, 2007). The RSD (%) of instrumental intra-assay precision for the 

studied drugs of abuse and pharmaceuticals are listed in Table 4.6.  
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Table 4.6: Results of instrumental intra-assay precision for 20 analytes obtained 

from a LC-MS analysis with a C18 column, n = 6 

COMPOUND INSTRUMENTAL INTRA-ASSAY PRECISION 

Low 

Concentration 

/ 5 ng/mL 

Medium 

Concentration 

/ 50 ng/mL 

High 

Concentration 

/ 500 ng/mL 

RSD / % RSD / % RSD / % 

BZP 15.04 1.52 1.87 

MBZP 7.67 1.68 1.23 

Methcathinone 7.98 4.04 1.28 

Methylone 6.70 2.33 0.71 

4-MeOPP 7.21 2.08 3.14 

Amphetamine  5.03 2.59 1.02 

Methamphetamine 4.51 3.35 1.44 

4-FPP 7.79 1.34 0.74 

Butylone 2.98 2.24 1.66 

Mephedrone 6.05 2.12 0.81 

Ketamine  3.05 3.30 0.67 

3-CPP 5.46 4.06 0.81 

MDPV 5.21 2.08 0.52 

Cocaine 3.98 1.99 0.33 

3-TFMPP 4.87 4.55 2.27 

4-TFMPP 6.04 2.39 0.90 

Citalopram  2.51 4.24 0.56 

Fluoxetine 6.50 6.61 2.54 

JWH-073 11.97 5.01 1.17 

JWH-398 9.28 3.46 1.27 
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The RSDs for the studied drugs of abuse and pharmaceuticals at low concentration (5 

ng/mL) were all below the 20 % acceptance criterion of precision normally set for the lower 

concentration, ranging from 2.51 % (citalopram) to 15.04 % (BZP) (as shown in column B, 

Table 4.6). It is apparent that the RSDs for low concentration (5 ng/mL) are higher 

compared to those measured at the higher concentration, medium (50 ng/mL) and high 

(500 ng/mL) levels. This is probably due to higher fluctuations in instrumental response 

occurring at low concentrations. Moreover, the RSDs as shown in Table 4.6 ranged from 

1.34 % (4-FPP) to 6.61 % (fluoxetine) for medium concentration (column C) and 0.33 % 

(cocaine) to 3.14 % (4-MeOPP) for high concentration (column D). Lower RSDs were 

obtained at the medium (50 ng/mL) and high (500 ng/mL) concentrations (< 6.61 % and < 

3.14 %, respectively) and were below the 15 % acceptance criterion of precision normally 

set for higher concentration. The results of instrumental intra-assay precision indicate good 

repeatability of the LC-MS method under repeatable conditions. 

 

4.4.2 Instrumental intermediate precision  

Instrumental intermediate precision was also verified at low (5 ng/mL), medium (50 ng/mL) 

and high (500 ng/mL) concentrations on three separate days under the same instrumental 

conditions (Section 2.4.4.2). Mixed standards were stored at 10 °C during these three days. 

The acceptance criteria of precision are the same as described above for instrumental 

intra-assay precision (Section 4.4.1), as RSD should be lower than 15 % at medium and 

high levels and below 20 % for low level. The RSDs (%) of instrumental intermediate 

precision for all studied drugs of abuse and pharmaceuticals were obtained by three 

replicates and are shown in Table 4.7.  

 

 

 

 

 

 

 



129 
 

Table 4.7: Results of instrumental intermediate precision for 20 analytes obtained 

from a LC-MS analysis with a C18 column, n = 3 

COMPOUND INSTRUMENTAL INTERMEDIATE PRECISION 

Low 

Concentration 

/ 5 ng/mL 

Medium 

Concentration 

/ 50 ng/mL 

High Concentration 

/ 500 ng/mL 

RSD / % RSD / % RSD / % 

BZP 6.30 1.49 1.94 

MBZP 2.62 1.63 1.28 

Methcathinone 3.05 1.03 1.24 

Methylone 2.82 2.42 0.70 

4-MeOPP 6.34 2.12 3.27 

Amphetamine  5.23 2.54 1.06 

Methamphetamine 2.60 3.42 1.40 

4-FPP 7.62 1.41 0.77 

Butylone 6.17 2.18 1.63 

Mephedrone 6.23 2.20 0.79 

Ketamine  6.04 3.23 0.66 

3-CPP 5.35 1.10 0.80 

MDPV 5.11 2.16 1.54 

Cocaine 6.84 2.03 0.75 

3-TFMPP 5.06 4.46 2.23 

4-TFMPP 5.92 2.48 0.88 

Citalopram  6.12 3.12 0.54 

Fluoxetine 4.32 6.87 2.49 

JWH-073 8.70 2.21 1.14 

JWH-398 6.52 6.33 1.32 

 

For the lower concentration (5 ng/mL), RSDs (column B, Table 4.7) ranged from 2.60 % 

(methamphetamine) to 8.70 % (JWH-073), all below the 20 % acceptance criterion. For the 

higher concentration (50 and 500 ng/mL), RSDs ranged from 1.03 % (methcathinone) to 

6.87 % (fluoxetine) at medium concentration (column C) and from 0.54 % (citalopram) to 

3.27 % (4-MeOPP) at high concentration (column D), which are all below the 15 % 

acceptance criterion. As observed with the instrumental intra-assay precision study, higher 

RSDs (< 8.70 %) were observed for low concentration level, while relatively lower RSDs (< 

6.87 %) were for medium and high concentration levels. The results of instrumental 

intermediate precision indicate good repeatability of the LC-MS method under reproducible 

conditions. 
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4.4.3 Method precision and accuracy 

In order to test the precision and accuracy of the method, five calibrators (5, 30, 50, 70 and 

100 ng/L) and three QCs (10, 40 and 80 ng/L) were extracted by SPE and analysed by 

LC-MS, following the procedures described in Section 2.4.4.3. A linear regression plot was 

generated for each analyte of interest from five calibrators, by plotting the mean PARs of 

calibrators against corresponding calibrator concentrations. The multi-level calibration 

curve obtained from this plot was used later for the calculation of method precision and 

accuracy (Appendix V). An example of a linear regression plot for methamphetamine is 

shown in Figure 4.9. An acceptable R2 (0.9983) was obtained, which indicates good 

linearity in this concentration range (5 - 100 ng/L) and therefore was suitable for reliable 

quantification. The linear regression plots of the studied drugs of abuse and 

pharmaceuticals are shown in Appendix V and all calibration curves were linear with R2 ≥ 

0.9900 (UNODC, 2009).  

 

 
Figure 4.9: Linear regression plot of mean peak area ratio against calibrator 

concentration for methamphetamine over 5 to 100 ng/L for method precision and 

accuracy obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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The precision and accuracy of the method were calculated based on the results of three 

QCs. Precision was assessed by calculating the RSD (%) of three PAR values for each of 

the three QCs, while accuracy was the deviation (%) of mean calculated concentration 

from true concentration (10, 40 and 80 ng/L). The calculated concentration was obtained 

by using the generated calibration curve, e.g. the accuracy of the method for 

methamphetamine was calculated based on the linear regression equation (y = 1.2050 x + 

2.5739) from the plot in Figure 4.9. Table 4.8 shows the calculation process of method 

precision and accuracy for methamphetamine.  

 

Table 4.8: Calculation of relative standard deviations (RSD) and biases of 

methamphetamine for method precision and accuracy from a SPE-LC-MS analysis 

with a C18 column, n=3 

QC MEAN 

PAR 

Std Dev RSD 

/ % 

CALCULATED 

CONC. a / ng/L 

TRUE CONC. / 

ng/L 

BIAS 

/ % 

Low 14.66 1.22 8.32 10.03 10 0.30 

Medium 52.71 0.77 1.46 41.61 40 4.03 

High 101.23 0.64 0.63 81.87 80 2.34 
a Calculation based on linear regression equation y = 1.2050 x + 2.5739 

 

Following the calculation process as described above, the results of the method precision 

and accuracy for all studied drugs of abuse and pharmaceuticals are presented in Table 

4.9 and Table 4.10, respectively. The acceptance criteria are within ± 15 % bias of the true 

value for accuracy and within 15 % RSD for the precision at each concentration level, 

except 20 % for the lower concentration (Peters, Drummer and Musshoff, 2007; Wille, et al., 

2011).  
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Table 4.9: Results of method precision for 20 analytes obtained from a SPE-LC-MS 

analysis with a C18 column, n = 3 

COMPOUND METHOD PRECISION 

Low 

Concentration 

/ 10 ng/L 

Medium  

Concentration 

/ 40 ng/L 

High 

Concentration 

/ 80 ng/L 

RSD / % RSD / % RSD / % 

BZP 7.87 6.44 1.56 

MBZP 4.48 1.97 1.02 

Methcathinone 5.34 3.99 3.24 

Methylone 7.01 0.67 1.77 

4-MeOPP 8.06 5.37 2.30 

Amphetamine  3.25 2.42 0.92 

Methamphetamine  8.32 1.46 0.63 

4-FPP 6.06 1.01 2.41 

Butylone 3.88 4.65 1.62 

Mephedrone 5.73 6.17 6.07 

Ketamine  7.52 3.10 1.46 

3-CPP 3.18 5.11 6.21 

MDPV 4.91 6.59 2.69 

Cocaine 1.92 7.57 2.25 

3-TFMPP 5.76 1.30 6.77 

4-TFMPP 3.55 7.24 7.15 

Citalopram  1.79 6.13 4.50 

Fluoxetine 5.29 4.78 5.04 

JWH-073 4.94 4.64 6.11 

JWH-398 3.55 4.27 4.04 

 

The results in Table 4.9 show that the RSDs of method precision for all studied drugs of 

abuse and pharmaceuticals were in the range of 1.79 % (citalopram) and 8.32 % 

(methamphetamine) for the low concentration (10 ng/L), 0.67 % (methylone) and 7.57 % 

(cocaine) for the medium concentration (40 ng/L) and 0.63 % (methamphetamine) and 

7.15 % (4-TFMPP) for the high concentration (80 ng/L). These RSD values were all below 

the acceptance criterion of precision (20 % for low concentration and 15 % for medium and 

high concentrations). The results of the method precision indicate good repeatability of this 

analytical method under repeatable condition.  
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Table 4.10: Results of method accuracy for 20 analytes obtained from a SPE-LC-MS 

analysis with a C18 column, n = 3 

COMPOUND METHOD ACCURACY / % 

Low 

Concentration 

/ 10 ng/L 

Medium  

Concentration 

/ 40 ng/L 

High 

Concentration 

/ 80 ng/L 

Bias / % Bias / % Bias / % 

BZP 7.24 - 1.88 7.69 

MBZP - 8.66 3.84 0.63 

Methcathinone - 7.75 - 3.60 0.64 

Methylone - 5.00 0.80 0.52 

4-MeOPP 8.34 7.98 0.71 

Amphetamine  2.17 0.72 0.65 

Methamphetamine  0.30 4.03 2.34 

4-FPP - 8.05 - 1.41 - 2.79 

Butylone - 0.59 2.56 1.00 

Mephedrone 2.33 - 5.54 0.68 

Ketamine  7.83 0.17 0.26 

3-CPP - 3.46 2.23 - 4.72 

MDPV - 0.28 1.21 0.91 

Cocaine - 6.79 - 2.42 6.04 

3-TFMPP - 5.12 1.34 0.17 

4-TFMPP 3.81 - 4.55 - 0.16 

Citalopram  - 5.40 - 3.96 2.34 

Fluoxetine - 6.77 0.47 1.49 

JWH-073 7.63 - 4.68 - 3.55 

JWH-398 4.86 - 3.48 - 6.50 

 

In addition, the biases of method accuracy (Table 4.10) ranged from -0.28 % (MDPV) to 

-8.66 % (MBZP) for the low concentration (10 ng/L), 0.17 % (ketamine) to 7.98 % 

(4-MeOPP) for the medium concentration (40 ng/L) and -0.16 % (4-TFMPP) to 7.69 % 

(BZP) for the high concentration (80 ng/L). It is obvious from the results that good method 

accuracy was obtained for all studied drugs of abuse and pharmaceuticals, as the criterion 

of acceptable accuracy is ± 20 % for low concentration and ± 15 % for medium and high 

concentrations.  
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Therefore, as observed with the studies of method precision and accuracy, this analytical 

method was suitable for the quantification of 20 drugs of abuse and pharmaceuticals in 

drinking water at low, medium and high concentrations. 

 

4.5 Detection and quantification limits 

As mentioned in Section 1.10.5, two sets of detection limit and quantification limit were 

determined in this research, including IDL and IQL, for defining the limitations of the LC-MS 

instrument (Section 4.5.1) and MDL and MQL for specifying the capabilities of the 

analytical method based on SPE followed by LC-MS (Section 4.5.2).  

 

4.5.1 Instrumental detection and quantification limits (IDL and IQL) 

This sub-section is divided into two parts, one for the LC-MS method using a C18 column 

(Section 4.5.1.1) and the other for the LC-MS method using a biphenyl column (Section 

4.5.1.2). IDL and IQL were determined using the RMSE approach, as mentioned in Section 

1.10.5.1.  

 

4.5.1.1 IDLs and IQLs of LC-MS method using a C18 column 

Following the procedures as detailed in Section 2.4.5, five mixed standards were analysed 

for calculating the IDLs and IQLs of the LC-MS method using a C18 column (Section 

2.3.2.3). Concentrations for each analyte were selected near its estimated IDL and IQL 

range (Table 2.11).  

 

The root mean square error approach was used to calculate the IDL and IQL for each 

analyte, as it is more accurate and reliable compared to other methods for determining the 

detection and quantification limits, as discussed in Section 1.10.5.1. Firstly, a linear 

regression plot of measured mean PARs against the concentrations of five mixed 

standards was generated for each target analyte. The linear regression equation was then 

obtained, which was used later for calculating the IDLs and IQLs. Figure 4.10 is an 

example of a linear regression plot of mean PAR against a concentration for 

methamphetamine with a R2 of 0.9925. The linear regression plots of other studied drugs 
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of abuse and pharmaceuticals used for the RMSE approach to calculate their IDLs and 

IQLs are shown in Appendix VI-a. 

 

 
Figure 4.10: Linear regression plot of mean peak area ratio against standard 

concentration for methamphetamine over 0.25 to 2.5 ng/mL for the calculation of 

instrumental detection and quantification limits using root mean square error 

approach obtained from a LC-MS analysis with a C18 column, n = 3 

 

The concentrations of five mixed standards (as shown in Table 2.11) were then used in the 

linear regression equation (y = 0.7159 x + 0.1002) and PARs were calculated for all 

concentration levels. The square error for each concentration was determined by the 

square of the difference between calculated PAR and measured PAR. RMSE was then 

calculated as follows (Corley, 2003): 

 

RMSE = [(E2 / (n-2)] 1/2 

 (Equation 4.1) 

 

Where, E2 is defined as the sum of square errors for all concentration levels and n 

represents the number of concentrations, which was 5 in this research.  
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Finally, the IDL and IQL can be calculated as follows (ibid): 

 

IDL = 3 x (RMSE/m) 

(Equation 4.2) 

IQL = 10 x (RMSE/m) 

(Equation 4.3) 

 

Where, m represents the slope obtained by the linear regression equation. 

 

Table 4.11 shows the calculation process of IDL and IQL for methamphetamine using the 

RMSE approach based on Equation 4.1 to Equation 4.3. 

 

Table 4.11: Calculation of instrumental detection and quantification limits (IDL and 

IQL) of methamphetamine using root mean square error (RMSE) approach from a 

LC-MS analysis with a C18 column, n=3 
CONC.  

/ ng/mL 

MEASURED 

MEAN  

PAR 

CALCULATED 

MEAN  

PAR a 

SQUARE 

ERROR 

 SUM OF 

SQUARE  

ERROR 

RMSE IDL 

/ ng/mL 

IQL 

/ ng/mL 

0.25 0.3477 0.2792 0.004692  

0.0121 0.0635 0.2661 0.8870 

0.50 0.4415 0.4582 0.000279 

0.75 0.6362 0.6371 0.000001 

1.00 0.7365 0.8161 0.006336 

2.50 1.9185 1.8900 0.000812 
a Calculation based on linear regression equation y = 0.7159 x + 0.1002 

 

Following the calculation process using the RMSE method, as described above, the IDLs 

and IQLs for all studied drugs of abuse and pharmaceuticals are presented in Table 4.12. 

Furthermore, the S/N method was also used and the obtained results are included in Table 

4.12 to check these IDLs and IQLs values. The IDL is taken as the concentration of analyte 

that gives the S/N of 3:1 and IQL is taken as 10:1. 
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Table 4.12: Results of instrumental detection and quantification limits (IDL and IQL) 

for 20 analytes obtained from a LC-MS analysis with a C18 column 

COMPOUND INSTRUMENTAL DETECTION AND QUANTIFICATION LIMITS  

C18 Column 

IDL / ng/mL IQL / ng/mL 

RMSE Method a S/N Method b RMSE Method c S/N Method d 

BZP 0.1226 0.2500 0.4087 0.7500 

MBZP 0.0503 0.0500 0.1675 0.5000 

Methcathinone 0.0651 0.0750 0.2168 0.5000 

Methylone 0.1270 0.2500 0.4232 0.7500 

4-MeOPP 0.8516 0.7500 2.8387 2.5000 

Amphetamine 0.5342 0.7500 1.7807 2.5000 

Methamphetamine 0.2661 0.2500 0.8870 1.0000 

4-FPP 0.0852 0.1000 0.2842 0.5000 

Butylone 0.0125 0.0250 0.0415 0.0750 

Mephedrone 0.0251 0.0100 0.0837 0.0500 

Ketamine 0.0123 0.0100 0.0412 0.0500 

3-CPP 0.0823 0.0750 0.2745 0.5000 

MDPV 0.0269 0.0500 0.0896 0.1000 

Cocaine 0.0113 0.0250 0.0378 0.0750 

3-TFMPP 0.0257 0.0500 0.0858 0.1000 

4-TFMPP 0.0267 0.0500 0.0891 0.1000 

Citalopram 0.0110 0.0100 0.0366 0.0500 

Fluoxetine 0.1267 0.2500 0.4222 0.7500 

JWH-073 0.8814 1.0000 2.9379 5.0000 

JWH-398 0.9253 1.0000 3.0844 5.0000 
a IDL = 3 x (RMSE/m); b IDL = 3 x (S/N); c IQL = 10 x (RMSE/m); d IQL = 10 x (S/N) 

 

IDLs across the studied drugs of abuse and pharmaceuticals are between 0.0110 and 

0.9253 ng/mL using the RMSE method and between 0.0100 and 1.0000 ng/mL using the 

S/N method, whilst the IQLs range from 0.0366 to 3.0844 ng/mL using the RMSE method 

and from 0.0500 to 5.0000 ng/mL using the S/N method.  

 

The results of IDLs and IQLs for seven drugs of abuse and one pharmaceutical from this 

research and available literature (Kasprzyk-Hordern, Dinsdale and Guwy, 2007; Baker and 

Kasprzyk-Hordern, 2011b) are compared and shown in Table 4.13. LC-MS was the 

analytical instrument in this research and LC-MS/MS was used in the previously published 

studies. The S/N method was used for calculating the IDLs and IQLs. The IDL and IQL 
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values for other studied drugs of abuse and pharmaceuticals have not been reported in the 

literature.  

 

Table 4.13: Comparison of instrumental detection and quantification limits (IDL and 

IQL) in this research with published literature 

COMPOUND INSTRUMENTAL DETECTION AND QUANTIFICATION LIMITS 

 This Research Published Literature 

 1 a 2 b 

LC-MS LC-MS/MS LC-MS/MS 

IDL c  

/ ng/mL 

IQL d  

/ ng/mL 

IDL c  

/ ng/mL 

IQL d  

/ ng/mL 

IDL c  

/ ng/mL 

IQL d  

/ ng/mL 

BZP 0.250 0.750 – – 0.500 1.000 

Methcathinone 0.075 0.500 – – 0.075 0.500 

Amphetamine 0.750 2.500 0.300 1.000 0.100 0.500 

Methamphetamine 0.250 1.000 – – 0.025 0.100 

Ketamine 0.010 0.050 – – 0.025 0.100 

Cocaine 0.025 0.075 0.050 0.200 0.025 0.100 

3-TFMPP 0.050 0.100 – – 0.025 0.100 

Fluoxetine 0.250 0.750 – – 0.075 0.500 
a Kasprzyk-Hordern, Dinsdale and Guwy, 2007; b Baker and Kasprzyk-Hordern, 2011b; c IDL = 3 x 

(S/N); d IQL = 10 x (S/N) 

 

The IDLs and IQLs from this research are lower or similar when compared to the two cited 

studies (Table 4.13) in the case of BZP, methcathinone, ketamine, cocaine and 3-TFMPP. 

The IDL and IQL values for amphetamine, methamphetamine and fluoxetine are higher but 

still comparable with the reported results. This indicates that the IDL and IQL values 

obtained by the LC-MS method using a C18 column in this research are very close to those 

reported values based on LC-MS/MS, proving the potential of LC-MS for the detection and 

quantification of these chosen drugs of abuse and pharmaceuticals at ultra-trace levels. 

 

4.5.1.2 IDLs of LC-MS method using a biphenyl column 

Five mixed standards were analysed for calculating the IDLs of the LC-MS method using a 

biphenyl column (Section 2.3.2.4) and their concentrations are shown in Table 2.11. The 

RMSE and S/N methods were used to calculate the IDLs for all studied drugs of abuse and 

pharmaceuticals following the procedures as detailed in Section 4.5.1.1. The linear 
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regression plots of the studied drugs of abuse and pharmaceuticals used for the RMSE 

approach are shown in Appendix VI-b, while the values of IDL for all target analytes are 

shown in Table 4.14 (column B and C). The results of IDLs for the studied drugs of abuse 

and pharmaceuticals from the LC-MS method using the biphenyl column are also 

compared with those IDL and IQL values from LC-MS method using the C18 column. These 

results are listed in Table 4.14 (column D to G). 

 

Table 4.14: Comparison of instrumental detection and quantification limits (IDL and 

IQL) of 20 analytes obtained from a LC-MS analysis with a biphenyl column and C18 

column 

COMPOUND INSTRUMENTAL DETECTION AND QUANTIFICATION LIMITS 

Biphenyl Column C18 Column 

IDL / ng/mL IDL / ng/mL IQL / ng/mL 

 RMSE 

Method a 

S/N 

Method b 

RMSE 

Method a 

S/N 

Method b 

RMSE 

Method c 

S/N 

Method d 

BZP 0.0286 0.0500 0.1226 0.2500 0.4087 0.7500 

MBZP 0.0266 0.0500 0.0503 0.0500 0.1675 0.5000 

Methcathinone 0.0994 0.2500 0.0651 0.0750 0.2168 0.5000 

Amphetamine 0.4795 0.5000 0.5342 0.2500 1.7807 0.7500 

Methylone 0.0115 0.0250 0.1270 0.7500 0.4232 2.5000 

Methamphetamine 0.2260 0.2500 0.2661 0.7500 0.8870 2.5000 

4-MeOPP 0.0831 0.2500 0.8516 0.2500 2.8387 1.0000 

4-FPP 0.0635 0.0250 0.0852 0.1000 0.2842 0.5000 

Mephedrone 0.1095 0.0500 0.0251 0.0250 0.0837 0.0750 

Butylone 0.0198 0.0500 0.0125 0.0100 0.0415 0.0500 

Ketamine 0.0288 0.0500 0.0123 0.0100 0.0412 0.0500 

3-CPP 0.2973 0.2500 0.0823 0.0750 0.2745 0.5000 

3-TFMPP 0.0751 0.1000 0.0257 0.0500 0.0858 0.1000 

4-TFMPP 0.0782 0.1000 0.0267 0.0250 0.0891 0.0750 

Cocaine 0.0210 0.0075 0.0113 0.0500 0.0378 0.1000 

MDPV 0.0217 0.0250 0.0269 0.0500 0.0896 0.1000 

Citalopram 0.0292 0.0100 0.0110 0.0100 0.0366 0.0500 

Fluoxetine 0.0314 0.0750 0.1267 0.2500 0.4222 0.7500 

JWH-073 0.2764 0.1000 0.8814 1.0000 2.9379 5.0000 

JWH-398 0.4233 0.1000 0.9253 1.0000 3.0844 5.0000 
a IDL = 3 x (RMSE/m); b IDL = 3 x (S/N); c IQL = 10 x (RMSE/m); d IQL = 10 x (S/N) 

 

In Table 4.14, the IDL values for 13 target analytes (BZP, MBZP, amphetamine, methylone, 

methamphetamine, 4-MeOPP, 4-FPP, cocaine, MDPV, citalopram, fluoxetine, JWH-073 



140 
 

and JWH-398) obtained by using the biphenyl column are lower or similar when compared 

to the IDLs of the C18 column. For the rest of the target analytes, their IDLs when using the 

biphenyl column are higher than those IDL values obtained by using the C18 column, but 

are still lower than or comparable with the IQLs of the C18 column. Overall, the IDLs 

obtained by the LC-MS method using the biphenyl column are lower than or very close to 

those IQL values based on the LC-MS method using the C18 column. Therefore, this 

indicates that the LC-MS method using the biphenyl was suitable for the detection of the 20 

studied drugs of abuse and pharmaceuticals when they were quantified in water samples 

by using the C18 column, proving the potential of this method for the purpose of 

confirmation.  

 

4.5.2 Method detection and quantification limits (MDL and MQL) 

In this research, MDL and MQL were used to specify the capabilities of SPE-LC-MS 

method for the detection and quantification of the studied drugs of abuse and 

pharmaceuticals in water samples (Section 1.10.5.2) and were calculated according to 

Section 2.4.5, respectively. The equations applied for determining MDL and MQL are 

based on previously published equations by Baker and Kasprzyk-Hordern (2011b). SPE 

recovery results present in Table 3.6 (column B) were used for the calculation and the 

results of IDL and IQL obtained by using the RMSE method are based on Table 4.12. The 

enrichment factor for this method was 2000, which is the ratio of loaded sample volume 

(200 mL) to extracted sample volume (0.1 mL). 

 

MDL = [IDL / (SPE Recovery x Enrichment Factor)] x 100 

(Equation 4.4) 

MQL = [IQL / (SPE Recovery x Enrichment Factor)] x 100 

(Equation 4.5) 

 

Based on Equation 4.4 and Equation 4.5, the MDLs and MQLs of a C18 column for all 

studied drugs of abuse and pharmaceuticals are presented in Table 4.15. In this research, 

IDLs and IQLs of the LC-MS method using a C18 column are all in the ng/mL range, as 
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shown in Table 4.12, but the MDL and MQL of the same target analyte can drop down to 

the ng/L range after the application of SPE as the sample preparation method (Table 4.15). 

This is because SPE can highly concentrate the water samples (enrichment factor was 

2000) and thus could enable the studied drugs of abuse and pharmaceuticals to be 

detected in drinking water, which are expected to be present at sub ng/L levels (Section 

1.6). 

 

Table 4.15: Results of method detection and quantification limits (MDL and MQL) for 

20 analytes obtained from calculation for a C18 column 

COMPOUND METHOD DETECTION AND QUANTIFICATION LIMITS 

 C18 Column 

 MDL / ng/L MQL / ng/L 

BZP 0.0851 0.2838 

MBZP 0.0387 0.1288 

Methcathinone 0.1085 0.3613 

Methylone 0.0907 0.3023 

4-MeOPP 1.0918 3.6394 

Amphetamine 0.2754 0.9179 

Methamphetamine 0.1372 0.4572 

4-FPP 0.0526 0.1754 

Butylone 0.0093 0.0310 

Mephedrone 0.0267 0.0890 

Ketamine 0.0068 0.0229 

3-CPP 0.0521 0.1737 

MDPV 0.0140 0.0467 

Cocaine 0.0057 0.0189 

3-TFMPP 0.0149 0.0499 

4-TFMPP 0.0205 0.0685 

Citalopram 0.0056 0.0187 

Fluoxetine 0.0615 0.2050 

JWH-073 0.4119 1.3729 

JWH-398 0.4673 1.5578 

 

In Table 4.15, citalopram has the lowest MDL (0.0056 ng/L) and MQL (0.0187 ng/L) values 

across all studied drugs of abuse and pharmaceuticals. This result is consistent with the 

findings of IDL and IQL (Table 4.12), which indicate that the lowest IDL and IQL values are 

also for citalopram. On the other hand, the MDL (1.0918 ng/L) and MQL (3.6394 ng/L) 

values of 4-MeOPP are higher than JWH-398, which has the highest IDL and IQL (Table 
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4.12). This is probably due to relatively low SPE recovery (39 %) obtained for 4-MeOPP, 

compared to JWH-398 (99 %) (Table 3.6). 

 

MDL and MQL results from this research using LC-MS and published references using 

LC-MS/MS (Cahill, et al., 2004; Gros, Petrović and Barceló, 2006; Kasprzyk-Hordern, 

Dinsdale and Guwy, 2007; Zuccato, et al., 2008; Bijlsma, et al., 2009; Alonso, et al., 2010; 

Baker and Kasprzyk-Hordern, 2011b; Boleda, et al., 2011; Valcárcel, et al., 2012) are 

compared and presented in Table 4.16 and Table 4.17, respectively. These are 

amphetamine, methamphetamine, cocaine, ketamine, methcathinone, BZP, 3-TFMPP, 

citalopram and fluoxetine. MDLs and MQLs for other studied drugs of abuse have not been 

reported in the literature. In these two tables, relatively clean water samples, including 

surface water, ground water, drinking water and Milli-Q water, were used for reference 

methods, which are similar to this research (raw water from surface water source).  

 

Table 4.16: Comparison of method detection limits (MDL) in this research with 

published literature 

COMPOUND METHOD DETECTION LIMIT 

This 

Research 

SPE-LC-MS 

Published Literature 

SPE-LC-MS/MS 

1 a 2 b 3 c 4 d 5 e 6 f 

 ng/L ng/L ng/L ng/L ng/L ng/L ng/L 

Amphetamine 0.2754 – – 0.2 0.19 2 0.50 

Methamphetamine 0.1372 – – – 0.12 0.6 0.05 

Cocaine 0.0057 – – 0.1 0.04 0.8 0.05 

Ketamine 0.0068 – – – – – 0.08 

Methcathinone 0.1085 – – – – – 0.10 

BZP 0.0851 – – – – – 1.00 

3-TFMPP 0.0149 – – – – – 0.05 

Fluoxetine 0.0615 18 20 – – – 1.00 
a Cahill, et al., 2004; b Gros, Petrović and Barceló, 2006; c Kasprzyk-Hordern, Dinsdale and Guwy, 

2007; d Zuccato, et al., 2008; e Bijlsma, et al., 2009; f Baker and Kasprzyk-Hordern, 2011b 

 

In this research, MDL values for cocaine, ketamine, BZP and fluoxetine are significantly 

lower when compared to all published references included in Table 4.16. The MDL of 

3-TFMPP is slightly lower than the MDL reported by Baker and Kasprzyk-Hordern (2011b). 



143 
 

For amphetamine, methamphetamine and methcathinone, MDL values are comparable to 

the available literature (Table 4.16). 

 

Table 4.17: Comparison of method quantification limits (MQL) in this research with 

published literature 

COMPOUND METHOD QUANTIFICATION LIMIT 

This 

Research 

SPE-LC-MS 

Published Literature 

SPE-LC-MS/MS 

1 a 2 b 3 c 4 d 5 e 6 f 7 g 

 ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L 

Amphetamine 0.9179 – 1 0.65 – 1.00 1.0 4.28 

Methamphetamine 0.4572 – – 0.41 – 0.10 0.5 1.28 

Cocaine 0.0189 – 0.3 0.13 – 0.10 0.1 0.13 

Ketamine 0.0229 – – – – 0.50 1.5 – 

Methcathinone 0.3613 – – – – 1.00 – – 

BZP 0.2838 – – – – 5.00 – – 

3-TFMPP 0.0499 – – – – 0.10 – – 

Citalopram 0.0187 – – – 10 – – – 

Fluoxetine 0.2050 66 – – 10 5.00 – – 
a Gros, Petrović and Barceló, 2006; b Kasprzyk-Hordern, Dinsdale and Guwy, 2007; c Zuccato, et al., 

2008; d Alonso, et al., 2010; e Baker and Kasprzyk-Hordern, 2011b; f Boleda, et al., 2011; g Valcárcel, 

et al., 2012 

 

For MQLs, the comparison results are similar to MDLs. As shown in Table 4.17, the MQL 

values of four analytes (cocaine, ketamine, BZP and fluoxetine) in this research are still 

significantly lower than the published results, as well as citalopram. The MQLs of 

methcathinone and 3-TFMPP are slightly lower than the MQLs reported by Baker and 

Kasprzyk-Hordern (2011b). For the other two analytes (amphetamine and 

methamphetamine), their MQL values in this research are comparable with the published 

results (Table 4.17). 

 

Thus, the low MDLs and MQLs obtained in this research prove the capability of this novel 

SPE-LC-MS method for the detection and quantification of the studied drugs of abuse and 

pharmaceuticals in drinking water. This is because their values are lower than or similar to 

those published methods using SPE followed by LC-MS/MS, which have already been 

applied in order to analyse surface water, ground water and tap water.  
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4.6 Overall discussion and conclusion of method validation 

The LC-MS methods using a C18 column (as detailed in Section 2.3.2.3) and biphenyl 

column (as detailed in Section 2.3.2.4) were developed and optimised in Chapter 3 to 

simultaneously detect 20 drugs of abuse and pharmaceuticals. In order to improve the 

selectivity and sensitivity of the methods, the analysis was undertaken in SIM mode, the 

diagnostic ions were monitored in ten time segments and the voltages of DL, qarray DC 

and RF that gave the best peak intensity were used. These two methods were then 

validated in this chapter. The LC-MS method using a C18 column was validated in terms of 

selectivity, autosampler storage stability, instrumental linearity, precision, accuracy, 

instrumental and method limits of detection and quantification, as this method was used for 

quantitative purpose. Validation studies, including selectivity and instrumental detection 

limit, were only undertaken for the LC-MS method using a biphenyl column as it was used 

for confirmation only. 

 

The first step in the validation was to demonstrate the selectivity of the method. Through 

the monitoring of matrix blank, no interference peaks were identified at the retention times 

of the drugs of abuse, pharmaceuticals and internal standards studied for both columns. 

Thus, these LC-MS methods (C18 column and biphenyl column) have been proven to be 

selective, as the peak of target analyte detected was due to the target compound itself. 

 

A five day autosampler storage stability was carried out after investigating the selectivity in 

order to determine the stability of 20 drugs of abuse and pharmaceuticals as well as three 

internal standards during LC-MS analysis. The mixed standards in the LC-MS injection 

solvent were prepared at both low (10 ng/mL) and high concentrations (500 ng/mL) and 

their stability was assessed by plotting instrumental response (PAR) against injection time 

(every three hours). All drugs of abuse and pharmaceuticals investigated were found to be 

stable at both low and high concentrations during the five-day analysis period, as the 

slopes of their bar graphs were not significantly different from zero (p > 0.05) (Table 4.3). 

Moreover, three internal standards, namely amphetamine-d6 (5 ng/mL), cocaine-d3 (0.1 

ng/mL) and fluoxetine-d6 (0.75 ng/mL), were stable for up to five days in the autosampler 
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(p > 0.05) (Table 4.2). Therefore, based on these stability results, the mixed standards 

dissolved in the LC-MS injection solvent can be stored on the autosampler at 10 °C for the 

duration of five days, which was sufficient time to cover the typical working time for method 

validation and water sample analysis. 

 

After this, the instrumental linearity for the studied drugs of abuse and pharmaceuticals 

was assessed using mixed standards at 19 different concentrations between the range of 

0.001 ng/mL and 10000 ng/mL. The instrumental linear range was determined by the linear 

regression plot for the elimination of higher concentration points and the plot of relative 

response against log concentration for the elimination of lower concentration points. The 

R2 of all linear regression plots were higher than 0.9900 (Table 4.4) and the relative 

responses of all data points fell within ± 5 % of the mean relative response after their 

removal. Hence, the results fulfilled the acceptance criteria of linearity (Huber, 2007; 

UNODC, 2009). Good instrumental linear ranges were obtained for all studied drugs of 

abuse and pharmaceuticals over four to five orders of magnitude. These linear ranges 

were wide enough to cover the expected working range to be considered during the 

sample analysis, as evidenced by previous publications (Kasprzyk-Hordern, Dinsdale and 

Guwy, 2007; Baker and Kasprzyk-Hordern, 2011b).  

 

Through instrumental intra- and inter-day analysis, the precision of the LC-MS method was 

determined and assessed by the RSDs of PAR results obtained from the mixed standards, 

which were prepared at low (5 ng/mL), medium (50 ng/mL) and high (500 ng/mL) 

concentrations within the linear range. The instrumental intra-assay precision was 

determined over a 26.4-hour period under the same instrumental conditions. The RSDs of 

all studied drugs of abuse and pharmaceuticals were less than 6.61 % across medium and 

high concentrations and were less than 15.04 % at low concentration (Table 4.6). The RSD 

results were within the acceptance criteria of precision, 15 % for medium and high 

concentrations and 20 % for low concentration, indicating good repeatability of the LC-MS 

method (Peters, Drummer and Musshoff, 2007). In addition, the instrumental intermediate 

precision was determined by analysing the mixed standards at the same three 
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concentrations (5, 50 and 500 ng/mL) on three separate days. At the low concentration, all 

drugs of abuse and pharmaceuticals studied were, in general, less than 8.70 % RSD, 

which is within the accepted 20 % and, as the concentration increased, the corresponding 

RSDs reduced to 6.87 % and fell within the required 15 % (Table 4.7). This, therefore, 

indicates good repeatability of the LC-MS method over three days of analysis.  

 

Method precision and accuracy were determined by analysing five calibrators (5, 30, 50, 70 

and 100 ng/L) as well as three QCs (10, 40 and 80 ng/L), which were all prepared by 

spiking 20 analytes of interest and three internal standards in ultra-pure water. The results 

of RSD and bias for low concentration were all below 8.32 % and ± 8.66 %, respectively, 

while 7.57 % and ± 7.98 % for medium concentration and 7.15 % and ± 7.69 % for high 

concentration were achieved (Table 4.9 and Table 4.10). This, therefore, proves the 

potential of this analytical method for the quantification of these chosen drugs of abuse and 

pharmaceuticals in drinking water. 

 

For the LC-MS method using a C18 column, the IDLs and IQLs for all studied drugs of 

abuse and pharmaceuticals are presented in Table 4.18. The IDL and IQL were calculated 

by using the RMSE and S/N methods (Section 1.10.5.1). IDLs across the studied drugs of 

abuse and pharmaceuticals are between 0.0110 and 0.9253 ng/mL using the RMSE 

method and between 0.0100 and 1.0000 ng/mL using the S/N method, whilst the IQLs 

range from 0.0366 to 3.0844 ng/mL using the RMSE method and from 0.0500 to 5.0000 

ng/mL using the S/N method. In addition, the MDL and MQL were calculated according to 

Equation 4.4 and Equation 4.5 and presented in Table 4.18. MDLs across the studied 

drugs of abuse and pharmaceuticals ranged from 0.0056 ng/L for citalopram to 1.0918 ng/L 

for 4-MeOPP, whilst the MQLs ranged from 0.0187 ng/L for citalopram to 3.6394 ng/L for 

4-MeOPP. In comparison with published literature, the IDLs and IQLs obtained in this 

research are similar or in some cases lower than those reported by published references 

(Table 4.13, Table 4.16 and Table 4.17). 

 

 



147 
 

For the LC-MS method using a biphenyl column, the IDLs were determined for all studied 

drugs of abuse and pharmaceuticals and are presented in Table 4.18. The IDLs obtained in 

this research are comparable with the IDLs and IQLs results from the LC-MS method using 

a C18 column, which indicates the potential of this method when using a biphenyl column 

for the purpose of confirmation when analysing water samples suspected of containing 

target drugs of abuse and pharmaceuticals.  

 

Based on the above discussion, the LC-MS method using the C18 column has been 

validated to allow for the identification of target analytes in SIM mode with high selectivity 

and also be capable for the purpose of quantification with high sensitivity, accuracy and 

precision. Therefore, this LC-MS method has been proved to be successful as a 

simultaneous identification and quantification method for 20 drugs of abuse and 

pharmaceuticals. Moreover, the LC-MS method using the biphenyl column has been 

proved to be selective and sensitive enough and thus has the ability in the confirmation of 

target drugs of abuse and pharmaceuticals in drinking water. The application of these two 

newly validated methods to real sample analysis is included in Chapter 5. 
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Table 4.18: Summary of method validation results (C18 column and biphenyl column) 

COMPOUND METHOD VALIDATION RESULTS 

C18 Column Biphenyl Column a 

Retention Time  

/ min 

Quantifier ion  

/ m/z 

Linearity  

/ ng/mL 

IDL  

/ ng/mL 

IQL  

/ ng/mL 

MDL  

/ ng/L 

MQL  

/ ng/L 

Retention Time  

/ min 

IDL  

/ ng/mL 

BZP 2.14 177 0.5 - 1000 0.1226 0.4087 0.0851 0.2838 4.98 0.0286 

MBZP 2.95 191 0.1 - 1000 0.0503 0.1675 0.0387 0.1288 5.39 0.0266 

Methcathinone 5.42 164 0.25 - 1000 0.0651 0.2168 0.1085 0.3613 7.52 0.0994 

Methylone 6.43 208 0.5 - 1000 0.1270 0.4232 0.0907 0.3023 8.91 0.0115 

4-MeOPP 7.26 193 5 - 1000 0.8516 2.8387 1.0918 3.6394 9.46 0.0831 

Amphetamine-d6 7.35 142 – – – – – 8.05 – 

Amphetamine  7.42 136 2.5 - 1000 0.5342 1.7807 0.2754 0.9179 8.12 0.4795 

Methamphetamine 9.20 150 0.75 - 1000 0.2661 0.8870 0.1372 0.4572 9.18 0.2260 

4-FPP 9.65 181 0.25 - 1000 0.0852 0.2842 0.0526 0.1754 10.89 0.0635 

Butylone 10.63 222 0.05 - 500 0.0125 0.0415 0.0093 0.0310 11.60 0.0198 

Mephedrone 11.16 178 0.05 - 1000 0.0251 0.0837 0.0267 0.0890 11.36 0.1095 

Ketamine  11.78 238 0.05 - 500 0.0123 0.0412 0.0068 0.0229 14.99 0.0288 

3-CPP 13.33 197 0.25 - 1000 0.0823 0.2745 0.0521 0.1737 17.49 0.2973 

MDPV 13.78 276 0.1 - 1000 0.0269 0.0896 0.0140 0.0467 20.25 0.0217 

Cocaine 13.91 304 0.05 - 500 0.0113 0.0378 0.0057 0.0189 19.99 0.0210 

Cocaine-d3 13.91 307 – – – – – 19.96 – 

3-TFMPP 14.66 231 0.05 - 1000 0.0257 0.0858 0.0149 0.0499 19.14 0.0751 

4-TFMPP 15.00 231 0.05 - 1000 0.0267 0.0891 0.0205 0.0685 20.12 0.0782 

Citalopram  16.31 325 0.025 - 500 0.0110 0.0366 0.0056 0.0187 26.55 0.0292 

Fluoxetine-d6 18.11 316 – – – – – 28.67 – 

Fluoxetine  18.15 310 0.5 - 1000 0.1267 0.4222 0.0615 0.2050 28.74 0.0314 

JWH-073 24.01 328 5 - 1000 0.8814 2.9379 0.4119 1.3729 33.00 0.2764 

JWH-398 25.57 376 5 - 1000 0.9253 3.0844 0.4673 1.5578 34.76 0.4233 
a The confirmation ions of LC-MS method using a biphenyl column were same with the quantifier ions of LC-MS method using a C18 column (column C) 
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CHAPTER 5 RESULTS AND DISCUSSION: DRINKING WATER ANALYSIS 

This chapter first includes the procedures of analysing the raw and drinking water samples 

that were collected from the East Anglia region of the UK (Section 5.1) and then discusses 

their results (Section 5.2). Drugs of abuse and pharmaceuticals detected in drinking water 

in this research are also compared with those detected in other countries (Section 5.3). 

Finally, the removal efficiencies of detected drugs of abuse and pharmaceuticals during 

DWTPs were evaluated by comparing their concentration in raw and drinking waters and 

then comparing the levels present with previously published data (Section 5.4). 

 

5.1 Analysis of drugs of abuse and pharmaceuticals in raw and drinking water 

samples 

Following the procedures of sample collection and storage as detailed in Section 2.2, five 

types of drinking water samples were collected from the East Anglia region, UK (two as tap 

water and three from three DWTPs). In addition to this, three raw water samples were 

collected at the same time from the same DWTPs in order to evaluate the removal 

efficiencies of the studied drugs of abuse and pharmaceuticals. Three non-spiked water 

samples as well as three spiked water samples were prepared (Section 2.5) and then 

extracted using the optimised SPE method (Table 2.10). Regarding the LC-MS analysis, a 

C18 column (Section 2.3.2.3) was first used for the identification and quantification of the 

studied drugs of abuse and pharmaceuticals. The processes of identification and 

quantification are further discussed in Section 5.1.1 and Section 5.1.3, respectively. When 

samples were suspected of containing target analytes, a biphenyl column (Section 2.3.2.4) 

was used for confirmation, which is discussed in Section 5.1.2.  

 

5.1.1 Identification of detected drugs of abuse and pharmaceuticals 

Raw and drinking water samples collected from the East Anglia region of the UK, including 

non-spiked and spiked water samples, were first analysed using a C18 column. Drugs of 

abuse and pharmaceuticals detected from non-spiked water samples were identified 

based on two parameters, including the quantifier ion monitored in SIM mode and the 

difference of retention index (retention time of target analyte/retention time of internal 
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standard) between the non-spiked water sample and positive control (a mixed standard). 

The reason for using the retention index instead of retention time is discussed in Section 

3.1.2.1. As an illustration, Figure 5.1 depicts the overlapping selected ion chromatograms 

of a non-spiked drinking water (collected from the DWTP A of Anglian Water) and a mixed 

standard (50 ng/L), which were used to identify the methamphetamine in the drinking water 

sample. 
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Figure 5.1: Identification of methamphetamine in the drinking water from the 

DWTP A of Anglian Water, showing overlapping selected ion chromatograms (m/z 

150) of (A) a non-spiked water sample and (B) a mixed standard at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

 

In the selected ion chromatogram of the non-spiked water sample (Figure 5.1 A), there was 

a peak present with the m/z 150, which was the quantifier ion of methamphetamine, and its 

retention index was 1.239. This corresponds with the retention index of methamphetamine 

in the mixed standard (positive control) analysed in the same batch, being 1.242 (Figure 

5.1 B). The difference between these two retention indexes was -0.24 %, thereby meeting 

the requirement that the retention index of the target analyte in a sample shall correspond 

to that of the same substance in positive control at a tolerance of ± 1.00 % (World 

Anti-doping Agency, 2010). Therefore, this compound found in the water sample was 

8.60 8.65 8.70 8.75 8.80 8.85 8.90 8.95 9.00 9.05 9.10 9.15 9.20 9.25 9.30 9.35 9.40 9.45 9.50 9.55 9.60 9.65 9.70 9.75 9.80 9.85 9.90 9.95 min

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

(x10,000)

150.00(+) DWTP 1 Drinking Water Spiked 50ngL C18.lcd
150.00(+) DWTP 1 Drinking Water Non-Spiked C18.lcd

9
.2

1
3

9
.1

8
3 A 

B 



151 
 

identified as methamphetamine. In addition, a solvent blank was analysed directly before 

the non-spiked water sample and demonstrates that the presence of methamphetamine in 

the drinking water sample was not due to carryover from the mixed standard or spiked 

water samples. 

 

For the rest of the detected drugs of abuse and pharmaceuticals, the overlapping selected 

ion chromatograms of non-spiked water samples collected from the East Anglia region (UK) 

and mixed standards (50 ng/L) used for identification are included in Appendix VII (raw 

water samples) and Appendix X (drinking water samples). The retention index differences 

between the non-spiked water samples and mixed standards (positive control) for all 

detected analytes were within ± 1.00 % (as shown in Table 5.1) and no peaks were present 

in the solvent blanks at the corresponding retention times.  
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Table 5.1: Retention indexes (RI) and diagnostic ions for drugs of abuse and pharmaceuticals detected in raw and drinking water samples obtained from a 

SPE-LC-MS analysis with a C18 column and biphenyl column 

 COMPOUND C18 COLUMN BIPHENYL COLUMN 

  Sample RI Standard RI RI Difference / % Quantifier Ion / m/z Sample RI  Standard RI  RI Difference / % Confirmation Ion / m/z 

Raw Water         
1 a Methamphetamine 1.236 1.240 - 0.32 150 1.138 1.142 - 0.35 150 

 Mephedrone 0.805 0.807 - 0.25 178 1.407 1.405 0.14 178 

 Ketamine 0.846 0.847 - 0.12 238 0.750 0.752 - 0.27 238 

2 b Fluoxetine 0.996 1.002 - 0.60 310 0.998 1.003 - 0.50 310 

3 c Mephedrone 0.812 0.808 0.49 178 1.415 1.411 0.28 178 

 Ketamine 0.855 0.849 0.70 238 0.749 0.753 - 0.53 238 

Drinking Water         

1 a Methamphetamine 1.239 1.242 - 0.24 150 1.140 1.142 - 0.18 150 

 Mephedrone 0.806 0.809 - 0.37 178 1.410 1.404 0.43 178 

 Ketamine 0.853 0.854 - 0.12 238 0.750 0.748 0.27 238 

 Cocaine 1.010 1.011 - 0.10 304 1.003 1.001 0.20 304 

2 b Fluoxetine 0.998 1.002 - 0.40 310 0.999 1.002 - 0.30 310 

3 c Mephedrone 0.810 0.808 0.25 178 1.413 1.411 0.14 178 

 Ketamine 0.857 0.852 0.58 238 0.751 0.748 0.40 238 

4 d Methylone 0.893 0.897 - 0.45 208 1.106 1.110 - 0.36 208 

 Mephedrone 0.806 0.808 - 0.25 178 1.406 1.397 0.64 178 

 Ketamine 0.850 0.851 - 0.12 238 0.749 0.751 - 0.27 238 

 Cocaine 1.009 1.011 - 0.20 304 1.002 1.004 - 0.20 304 

 Citalopram 0.898 0.897 0.11 325 0.932 0.930 0.21 325 

5 d Mephedrone 0.808 0.807 0.12 178 1.412 1.410 0.14 178 

 Ketamine 0.850 0.853 - 0.35 238 0.749 0.753 - 0.53 238 

 Citalopram 0.899 0.897 0.22 325 0.935 0.932 0.32 325 
a Sample from DWTP A of Anglian Water; b Sample from DWTP B of Anglian Water; c Sample from DWTP C of Essex and Suffolk Water; d Sample from taps, City of Cambridge 
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5.1.2 Confirmation of detected drugs of abuse and pharmaceuticals 

Initially, raw and drinking water samples were analysed using a C18 column and the target 

analytes were then further confirmed using a biphenyl column (Section 2.3.2.4), which 

were evaluated by comparing their retention indexes with the mixed standards. Figure 5.2 

depicts the overlapping selected ion chromatograms of a non-spiked water sample and a 

mixed standard (50 ng/L) was used to confirm the identity of methamphetamine in the 

drinking water sample as an example, which was collected from the DWTP A of Anglian 

Water.  
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Figure 5.2: Confirmation of methamphetamine in the drinking water from the 

DWTP A of Anglian Water, showing overlapping selected ion chromatograms (m/z 

150) of (A) a non-spiked water sample and (B) a mixed standard at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

 

The retention index of the methamphetamine peak in the non-spiked water sample (1.140) 

corresponds with its retention index in the mixed standard (1.142). The difference in their 

retention indexes was -0.18 % and thus fulfills the acceptance criterion of retention index 

difference as described in Section 5.1.1, which confirms the presence of 

methamphetamine in this water sample. The retention index differences for the rest of the 

detected drugs of abuse and pharmaceuticals in raw and drinking water samples were all 
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within ± 1.00 % (Table 5.1) and their confirmation of selected ion chromatograms are 

shown in Appendix VIII and XI, respectively. Moreover, no peaks were present at the 

retention times of the studied drugs of abuse and pharmaceuticals in the solvent blanks, 

which were analysed before non-spiked water samples, indicating that no carryover 

occurred. 

 

To the author’s knowledge, there are no specific guidelines in relation to the criteria for the 

identification and confirmation of drugs of abuse and pharmaceuticals in raw and drinking 

water samples. However, the Commission Decision 2002/657/EC published by the 

European Union has been used (Boleda, Galceran and Ventura, 2009; Baker and 

Kasprzyk-Hordern, 2011b; Boleda, et al., 2011). This is a guideline in respect of the 

detection of drugs residues at trace levels in live animals and animal products, which 

states that a minimum of three identification points are recommended for confirmation 

(Commission Decision 2002/657/EC). Therefore, the identification and confirmation of 

target drugs of abuse and pharmaceuticals detected in raw and drinking water samples 

were carried out in this research using three identification points: (1) one retention index 

obtained from a C18 column, (2) one retention index obtained from a biphenyl column and 

(3) one ion monitored in SIM mode for both the C18 column and biphenyl column. Retention 

indexes and diagnostic ions for drugs of abuse and pharmaceuticals detected in raw and 

drinking water samples are shown in Table 5.1. 

 

5.1.3 Quantification of detected drugs of abuse and pharmaceuticals 

The quantification of detected drugs of abuse and pharmaceuticals in raw and drinking 

waters was conducted using the standard addition method. This method can compensate 

for matrix effects when analysing drugs of abuse and pharmaceuticals in water samples 

(Petrović, et al., 2005; Chiaia, Banta-Green and Field, 2008; Peng, Hall and Gautam, 

2016). This method is of importance as matrix effects are a common problem associated 

with the ionisation process in LC-MS (Furey, et al., 2013), which was the analytical 

instrument used in this research. Matrix effects can impact on the accuracy, precision and 

reproducibility of an analytical method (Chambers, et al., 2007), as the signals of analytes 
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and internal standards may be suppressed or enhanced due to interferences from 

components in the sample matrix (stated in Section 1.9.2.2.1). Thus, calibrators of the 

standard addition method are prepared within the same matrix as the sample, resulting in 

more accurate quantification, as any interferences in the sample matrix that affect the 

signals of analytes and internal standards in a sample will also affect their signals in 

calibrators to the same degree (Quintana and Reemtsma, 2004). In this regard, raw and 

drinking water samples collected from the East Anglia region, UK, were spiked with mixed 

standards containing 20 studied drugs of abuse and pharmaceuticals as well as three 

internal standards and were used as calibrators for quantification. 

 

For each water sample, three non-spiked samples (non-spiked sample 1, 2 and 3) and 

three spiked samples (added concentrations of 5, 50 and 100 ng/L) were extracted by SPE 

and each eluent was then analysed with triplicate injections by LC-MS using a C18 column 

(Section 2.5). Results were grouped into three sections, namely (1) non-spiked sample 1 

and three spiked samples, (2) non-spiked sample 2 and three spiked samples, and (3) 

non-spiked sample 3 and three spiked samples. Three linear regression trend lines were 

gained for each analyte by plotting the mean PARs of the four samples in each section 

against the corresponding added standard concentrations (0, 5, 50 and 100 ng/L), as 

shown in Figure 5.3. This resulted in the generation of three linear regression equations 

and thus three concentrations of each analyte in the same sample were calculated and the 

standard deviation (Std Dev) and RSD (%) were also calculated. Figure 5.3 gives an 

example of the standard addition plot for methamphetamine in the drinking water sample 

that was collected from the DWTP A of Anglian Water.  
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Figure 5.3: Standard addition plot of mean peak area ratio against added standard 

concentration for methamphetamine over 0 to 100 ng/L for the quantification of its 

concentration in the drinking water from the DWTP A of Anglian Water obtained from 

a SPE-LC-MS analysis with a C18 column, n = 3 

 

The coefficient of determination (R2) values of three linear regression trend lines were 

0.9997, 0.9998 and 0.9997, which all fulfill the acceptance criterion of linearity (> 0.9900), 

as described in Section 4.3.1, meaning that they were suitable for quantification. In addition, 

Table 5.2 depicts the process of calculating the concentration of methamphetamine in this 

drinking water sample using the standard addition method.  
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Table 5.2: Calculation of methamphetamine concentration in the drinking water from 

the DWTP A of Anglian Water using standard addition, n=3 

 ADDED 

CONC.  

/ ng/L 

MEAN 

PAR 

GRADIENT INTERCEPT SAMPLE  

CONC. 

 / ng/L 

 

Extraction 1 

0 

5 

50 

100 

 

1.469 

6.244 

46.094 

87.995 

 

0.8653 

 

1.9207 

 

2.220 

 

Extraction 2 

0 

5 

50 

100 

 

1.544 

6.244 

46.094 

87.995 

 

0.8648 

 

1.9566 

 

2.262 

 

Extraction 3 

0 

5 

50 

100 

1.322 

6.244 

46.094 

87.995 

 

0.8662 

 

1.8500 

 

2.136 

     2.206 Mean Conc. 

     0.064 Std Dev 

     2.901 RSD / % 

 

As a result, the mean concentration of methamphetamine in the drinking water sample 

collected from the DWTP A of Anglian Water was 2.206 ± 0.064 ng/L. Also, good 

repeatability was obtained for the analysis of three non-spiked samples as its RSD was 

2.922 %, below the 20 % acceptance criterion of precision at low concentration (Section 

4.4). 

 

Standard addition plots for other studied drugs of abuse and pharmaceuticals detected in 

raw and drinking water samples are included in Appendix IX and XII. All R2 values were 

higher than 0.9900 and RSDs did not exceed 20 %, indicating good linearity and 

repeatability. Based on the calculation as shown in Table 5.2, the concentrations of drugs 

of abuse and pharmaceuticals detected in the raw and drinking water samples were 

calculated and are shown in Table 5.3. 
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Table 5.3: Concentrations and detection frequencies of drugs of abuse and pharmaceuticals detected in three raw water samples and 

five drinking water samples collected from the East Anglia region, UK, n = 3 

 COMPOUND CONCENTRATION / ng/L 

Methylone Methamphetamine Mephedrone Ketamine Cocaine Citalopram Fluoxetine 

Raw Water Sample        

1 a n.d. 1.761 ± 0.015 6.471 ± 0.417 11.199 ± 0.318 n.d. n.d. n.d. 

2 b n.d. n.d. n.d. n.d. n.d. n.d. 2.675 ± 0.153 

3 c n.d. n.d. 5.742 ± 0.195 6.217 ± 0.108 n.d. n.d. n.d. 

Conc. Range n.a. n.a. 5.742 - 6.471 6.217 - 11.199 n.a. n.a. n.a. 

Detection Freq. (%) 0 33 67 67 0 0 33 

        

Drinking Water Sample       

1 a n.d. 2.206 ± 0.064 1.871 ± 0.099 0.139 ± 0.010 0.185 ± 0.018 n.d. n.d. 

2 b n.d. n.d. n.d. n.d. n.d. n.d. 0.270 ± 0.023 

3 c n.d. n.d. 2.814 ± 0.023 0.977 ± 0.034 n.d. n.d. n.d. 

4 d 1.368 ± 0.055 n.d. 0.767 ± 0.058 1.124 ± 0.060 0.836 ± 0.080 2.800 ± 0.022 n.d. 

5 d n.d. n.d. 2.519 ± 0.074 0.736 ± 0.028 n.d. 2.257 ± 0.144 n.d. 

Conc. Range n.a. n.a. 0.767 - 2.814 0.139 - 1.124 0.185 - 0.836 2.257 - 2.800 n.a. 

Detection Freq. (%) 20 20 80 80 40 40 20 

n.d., not detected; n.a., not available 
a Sample from DWTP A of Anglian Water; b Sample from DWTP B of Anglian Water; c Sample from DWTP C of Essex and Suffolk Water; d Sample from taps, 

City of Cambridge 
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5.2 Results and discussion of drugs of abuse and pharmaceuticals in raw and 

drinking waters from the East Anglia region of the UK 

Following the analysis procedures as described in Section 5.1, seven studied drugs of 

abuse and pharmaceuticals were quantified in raw and drinking waters from the East 

Anglia region in the UK. Table 5.3 shows the results of this research, including detected 

compounds and their detection frequencies and concentrations in drinking water and raw 

water. These results are discussed in Section 5.2.1 and Section 5.2.2, respectively. 

Moreover, this research is discussed further in Section 5.4 in relation to removal efficiency 

during DWTPs. 

 

5.2.1 Drugs of abuse and pharmaceuticals detected in drinking water from the East 

Anglia region of the UK 

As shown in Table 5.3, out of the 20 target analytes, five drugs of abuse and two 

pharmaceuticals were determined in drinking water samples with concentrations all above 

their MQL values (Table 4.15). These include traditional illicit drugs (cocaine and 

methamphetamine), antidepressants (citalopram and fluoxetine) as well as NPS (ketamine, 

mephedrone and methylone). The concentrations of these detected drugs of abuse and 

pharmaceuticals were all in ng/L, from 0.139 ng/L for ketamine (sample 1) to 2.814 ng/L for 

mephedrone (sample 3). Different detection frequencies (number of positive 

samples/number of total samples) were observed for different analytes of interest in this 

research. For example, methylone was only detected in sample 4 collected from a tap in 

Cambridge, whereas ketamine was widely quantified in drinking water from the East Anglia 

region of the UK, except for sample 2, which was collected from the DWTP B. This can be 

due to many factors, such as different consumption rates and patterns in the UK and 

different removal efficiencies of DWTPs. These differences are further discussed in the 

following sub-sections. 
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5.2.1.1 Traditional illicit drugs 

In Table 5.3, cocaine was quantified in two drinking water samples (1 and 4) in the 

concentration range of 0.185 - 0.836 ng/L, whereas methamphetamine was only detected 

in sample 1 at 2.206 ng/L. The detection frequency of cocaine was 40 %, which is higher 

than methamphetamine (20 %). This could be explained by the different MDLs and MQLs 

of these two traditional illicit drugs obtained in this research. Since cocaine had relatively 

lower MDL and MQL (0.0057 and 0.0189 ng/L), as shown in Table 4.15, this compound 

could have an increased chance of detection compared to methamphetamine, the MDL 

and MQL of which were 0.1372 and 0.4572 ng/L. Moreover, the concentration of 

methamphetamine present in the drinking water of the East Anglia region (2.206 ng/L) was 

slightly higher than the concentration range of cocaine (0.185 - 0.836 ng/L). This result 

correlates with findings from Mwenesongole (2015) in that the concentration of 

methamphetamine is higher than cocaine in waste water samples from Cambridge, UK. 

The detection of these two traditional illicit drugs has been reported by other publications 

(Boleda, et al., 2011; Mendoza, et al., 2014; Mendoza, et al., 2016; Rodayan, et al., 2016) 

and the results are described and compared with this research in Section 5.3.1. 

 

Amphetamine was also analysed in this research but was not detected in the drinking 

water samples from the East Anglia region of the UK. This finding is interesting, since 

amphetamine continues to dominate the market for amphetamine-type stimulants in 

Europe (UNODC, 2015). In 2013, 34,000 seizures of amphetamine (6.7 tonnes) reported in 

Europe were far higher than methamphetamine with 7,000 seizures (0.5 tonnes) and more 

than 50 % were accounted for by Germany, the Netherlands and the UK (EMCDDA, 

2015b). However, methamphetamine was detected and quantified, but amphetamine was 

not in this research. This is probably because the presence of amphetamine in drinking 

water samples from the East Anglia region was below its MDL level 0.2754 ng/L (Table 

4.15) and hence cannot be detected. Thus, the method sensitivity for amphetamine needs 

to be further improved. 
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5.2.1.2 Antidepressants 

Two antidepressants (citalopram and fluoxetine) have been detected in drinking water from 

the East Anglia region of the UK. The concentrations of citalopram found in water samples 

were 2.257 and 2.800 ng/L, which are all significantly higher than the concentration of 

fluoxetine 0.270 ng/L (Table 5.3). This is probably because 14.4 million items of citalopram 

distributed in England are far higher than fluoxetine, with 6.4 million items in 2015 (HSCIC, 

2016). To date, a few publications have reported the detection of these two 

antidepressants in drinking water from China, Poland, Spain and the USA (Vanderford and 

Snyder, 2006; Benotti, et al., 2009; López-Serna, et al., 2010; Giebułtowicz and 

Nałęcz-Jawecki, 2014; Padhye, et al., 2014; Wu, et al., 2015). The results from these 

publications are summarised and then compared with this research in Section 5.3.2. 

 

5.2.1.3 Novel psychoactive substances 

In recent years, growing numbers of NPS have been seized from all over the world 

(UNODC, 2015). In 2013, 46,730 seizures of NPS weighing more than 3.1 tonnes were 

reported across Europe, which indicates a seven-fold increase between 2008 and 2013 

(EMCDDA, 2015c). Strong growth in the drug market also results in the increase of 

non-fatal intoxications and deaths as well as broader social harms (ibid). As a result, NPS 

have been receiving considerable attention from law enforcement agencies. For instance, 

in the UK, some NPS such as mephedrone and ketamine have been added to the Crime 

Survey for England and Wales (CSEW) since 2010/11 to collect information regarding their 

use in the general population and they are also controlled under the Misuse of Drugs Act 

1971 as Class B substances (The Misuse of Drugs Act 1971 (Ketamine etc.) (Amendment) 

Order 2014; Home Office, 2015). Recently, NPS have been prohibited by the Psychoactive 

Substances Act 2016 in order to control these substances in the UK (Psychoactive 

Substances Act, 2016). In Europe, the EU Early Warning System operated by EMCDDA 

gathers and analyses information regarding the use of NPS from the 28 European Union 

Member States, Turkey and Norway and provides a report in order to ensure a rapid 

response to emerging threats (EMCDDA, 2015c).  
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In this research, three NPS were detected in the drinking water of the East Anglia region 

including ketamine (Section 5.2.1.3.1), methylone and mephedrone (Section 5.2.1.3.2). In 

this research, the latter two NPS have been reported in drinking water for the first time. 

This proves that these newer emerging drugs of abuse are already present in the drinking 

water of the UK, which could be due to their increased illegal consumption in the UK as 

well as the legitimate use of ketamine. These results are discussed in more detail in the 

following sub-sections.  

 

5.2.1.3.1 Ketamine 

Worldwide, ketamine has been the most commonly reported NPS on the market over 

several years. According to the World Drug report by UNODC (2015), ketamine has been 

identified by 58 countries. This is probably because this NPS is also used as a prescribed 

anaesthetic for human and veterinary treatments (ibid). In addition, ketamine is one of the 

most highly abused drugs in the East Anglia region, as evidenced by the findings from 

Cambridgeshire Constabulary, where it was the third highest in terms of seizures in 2011 

(Mwenesongole, 2015). Thus, due to its high level of consumption (illegal and medical use), 

the presence of ketamine has been reported in the aquatic environment in the UK. For 

example, in a study conducted in Cambridge, ketamine was detected in waste water at the 

concentration of 97 x 103 ng/L (Mwenesongole, 2013) and its presence (21.3 ng/L) was 

also found in surface water in a study conducted in Marsden (Baker and Kasprzyk-Hordern, 

2011b). This research has further demonstrated the presence of ketamine in drinking water 

at the concentration range of 0.139 - 1.124 ng/L in the East Anglia region (Table 5.3). In 

addition, four in five collected samples tested positive for the presence of ketamine and 

hence a relatively higher detection frequency (80 %) was observed for ketamine (Table 5.3), 

which corroborates further that it is a commonly consumed drug in the East Anglia region. 

Based on the CSEW data supplied by Home Office (2015), the use of ketamine in the UK 

was highest among 20 to 24-year-olds between 2014 and 2015. This correlates well with 

the results of this research where positive identification of ketamine was observed for all 

samples collected from Cambridge, which, as a university city, has a high student 

population in the age range 20 - 24 (i.e. 14.6 % of all residents in 2011) (Office for National 
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Statistics, 2013). The detection of ketamine in drinking water has also been reported in the 

southern Ontario of Canada (Rodayan, et al., 2016), which is described and compared with 

this research in Section 5.3.3. 

 

5.2.1.3.2 Cathinones 

Two out of five cathinones were determined in drinking water, including mephedrone and 

methylone. This is not surprising considering that cathinones are one of the most highly 

abused NPS in Europe, comprising 23 % of the total seizures in 2013, and there was a 

60-fold increase in the number of seizures of cathinones from 2008 to 2013 (EMCDDA, 

2015c).  

 

The highest concentration of a cathinone in drinking water was observed for mephedrone 

at the concentration of 2.814 ng/L (Table 5.3). This could be due to the high level of 

mephedrone use in the UK, as it is considered a substitute for ecstasy (EMCDDA, 2015c; 

UNODC, 2015). For example, according to the seizure data reported by Cambridgeshire 

Constabulary, mephedrone was the fourth most seized drug in 2011 (Mwenesongole, 

2015). In addition, mephedrone was frequently detected in most drinking water samples 

except for sample 2 (Table 5.3). This indicates a wider usage of this drug in the East Anglia 

region of the UK, compared to methylone, which was only detected in one sample (sample 

4). This is the first time to the author’s knowledge that mephedrone has been detected in 

drinking water. It is interesting that the occurrence of mephedrone in drinking water has 

only been observed in the UK, as its presence on the drug market has been reported by 46 

countries in recent years (UNODC, 2015). Therefore, it is necessary to carry out further 

studies regarding the analysis of mephedrone in drinking water in order to gather more 

information from other regions of the UK and from other countries. 
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As shown in Table 5.3, methylone, one cathinone analogue of MDMA (ACMD, 2010), was 

also detected in this research at the concentration of 1.368 ng/L, which is slightly lower 

than the concentrations of mephedrone in samples 1, 3 and 5. This result correlates with 

findings in the Mixmag drug survey (2012), where methylone was reported as one of the 

most abused cathinones in the UK, except for mephedrone. 

 

Butylone, methcathinone and MDPV were also incorporated in this analytical method 

(Table 1.3) but were not detected. This could be due to their relatively lower consumption 

levels in the UK. However, butylone and methcathinone have previously been detected in 

waste water from Cambridge, UK, at the concentrations of 4 and 253 x 103 ng/L, 

respectively (Mwenesongole, 2015). Thus, it is worth collecting more water samples from 

Cambridge and further investigating whether or not these cathinones are present in 

drinking water. 

 

5.2.1.3.3 Piperazines 

According to the information supplied by Cambridgeshire Constabulary, piperazines were 

also one of the highest seized drugs in Cambridge in 2010 (Mwenesongole, 2015). 

However, this research has failed to detect all seven piperazines in the drinking water from 

the East Anglia region of the UK. In two other published studies, BZP and 3-TFMPP were 

detected in both waste and surface waters in the UK (Baker and Kasprzyk-Hordern, 2011b; 

Mwenesongole, 2015). Therefore, piperazines are known to be present in the UK’s waste 

water and have even contaminated surface water. Therefore, it is surprising that this 

research did not detect piperazines in drinking water, even though their MDLs were low 

when using this method described in this research, such as 0.0851 ng/L for BZP and 

0.0149 ng/L for 3-TFMPP (Table 4.15). Hence, more drinking water samples are needed 

for further analysis, either from this area or other regions of the UK. 

 

5.2.1.3.4 Synthetic cannabinoids 

Synthetic cannabinoids are preferred by some drug users as they can mimic the action of 

cannabis and may also not be picked up in a positive drug test result (UNODC, 2015). 
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Based on the seizure data reported by EMCDDA (2015c), over 21,000 seizures of 

synthetic cannabinoids amounting to 1.6 tonnes were found across Europe in 2013, which 

accounted for almost 40 % of the total number of seizures for NPS. However, synthetic 

cannabinoids have not been reported to be present in waste and surface waters. In this 

research, JWH-073 and JWH-398 were included in the analytical method (Table 1.3), but 

were not detected in drinking water samples from the East Anglia region of the UK. This is 

probably because these two synthetic cannabinoids had relatively higher MDLs (0.4119 

ng/L for JWH-073 and 0.4673 ng/L for JWH-398, as shown in Table 4.15). Thus, it is worth 

carrying out a further study to enhance the sensitivity of the method for synthetic 

cannabinoids. 

 

5.2.2 Drugs of abuse and pharmaceuticals detected in raw water from the East 

Anglia region of the UK 

Four studied drugs of abuse and pharmaceuticals detected in drinking water samples were 

also found in raw water samples, including methamphetamine, mephedrone, ketamine and 

fluoxetine, and their concentrations ranged from 1.761 ng/L for methamphetamine to 

11.199 ng/L for ketamine (Table 5.3). The results of raw water samples were then used for 

calculating the removal efficiencies of these analytes during DWTPs and are further 

discussed in Section 5.4. It is worth noting that methylone, cocaine and citalopram were 

only detected in drinking water samples collected from taps in Cambridge and therefore the 

removal efficiencies were not calculated. In one collection from DWTP 1, cocaine was 

detected in the drinking water, but not in the raw water sample. This may be because the 

samples were collected at the same time and residence time was not considered during 

the sampling. This is discussed further in Section 5.4.3.  

 

5.3 Comparison of drugs of abuse and pharmaceuticals in drinking water with those 

detected in other countries 

In this section, drugs of abuse and pharmaceuticals detected in drinking water from this 

research are compared to those from published literature, which could reflect their 

presence on a global scale.  
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Two traditional illicit drugs (cocaine, methamphetamine), two antidepressants (citalopram 

and fluoxetine) and one NPS (ketamine) were determined in drinking water from the East 

Anglia region of the UK in this research (Table 5.3) and they have also been quantified in 

drinking water from other countries. Available data including sample collection site, study 

period, detected compounds and their concentrations from this research and published 

references are presented in Table 5.4.  

 

Table 5.4: Concentrations of drugs of abuse and pharmaceuticals detected in 

drinking water from different countries 
COMPOUND COLLECTION 

SITE 

STUDY 

PERIOD 

CONC.  

/ ng/L 

REFERENCES 

Cocaine Canada 2012 4.3 c Rodayan, et al., 2016 

 Europe a 2008 - 2009 0.1 c Boleda, et al., 2011 

Japan 2008 - 2009 < 0.1 d Boleda, et al., 2011 

Latin America b 2008 - 2009 0.6 c Boleda, et al., 2011 

Spain 

Spain 

2008 - 2009 0.4 c Boleda, et al., 2011 

2012 1.61 Mendoza, et al., 2014 

Spain 2013 0.11 - 85.67 e Mendoza, et al., 2016 

UK 2016 0.185 - 0.836 e This Research 

Methamphetamine Latin America b 2008 - 2009 < 0.5 d Boleda, et al., 2011 

Spain 2008 - 2009 < 0.5 d Boleda, et al., 2011 

Spain 2013 3.13 Mendoza, et al., 2016 

UK 2016 2.206 This Research 

Ketamine Canada 2012 15.0 c Rodayan, et al., 2016 

 UK 2016 0.139 - 1.124 e This Research 

Citalopram Poland 2013 1.5 f Giebułtowicz and Nałęcz-Jawecki, 2014 

UK 2016 2.257 - 2.800 e This Research 

Fluoxetine China 2014 0.1 - 0.2 e Wu, et al., 2015 

 Spain 2009 2.74 c López-Serna, et al., 2010  

USA 2006 - 2007 0.59 - 0.82 e Benotti, et al., 2009 

USA 2009 - 2010 19.2 f Padhye, et al., 2014 

USA n.r. < 0.5 d Vanderford and Snyder, 2006 

UK 2016 0.270 This Research 

n.r., not reported 
a Includes Austria, France, Germany, Iceland, Slovakia, Switzerland and the UK; b Includes Argentina, Brazil, Chile, 

Colombia, Panama, Peru and Uruguay; c Mean concentration; d Mean concentration below quantification limit but 

above detection limit; e Concentration range; f Maximum concentration 
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As mentioned in Section 1.6, the occurrence data of drugs of abuse and pharmaceuticals 

in drinking water is limited. Hence, only ten published references are included in Table 5.4 

for the comparison of their presence on a global scale. These are discussed in more detail 

in the following sub-sections. Only one research group in this table has analysed two 

drinking water samples collected from the UK (Boleda, et al., 2011). However, 

concentration results obtained from Boleda, et al. (2011) were the mean concentration of 

15 samples collected from seven European countries. No information is available on their 

concentrations in drinking water from the UK only. Therefore, no conclusions regarding the 

occurrence of drugs of abuse and pharmaceuticals can be drawn on the UK.  

 

Two NPS (methylone and mephedrone) were also detected in drinking water from this 

research (Table 5.3). However, there have been no other studies conducted on the 

analysis of methylone and mephedrone in drinking water before. Therefore, no data is 

available that allows for a comparison of their presence within the UK or globally. 

 

5.3.1 Traditional illicit drugs 

In this research, two traditional illicit drugs (methamphetamine and cocaine) were detected 

in drinking water from the East Anglia region of the UK. As shown in Table 5.4, 

methamphetamine was detected at the concentration of 2.206 ng/L from the UK in 2016, 

which is significantly higher than that reported from Spain (< 0.5 ng/L) and Latin American 

countries (< 0.5 ng/L) between 2008 and 2009. This could be due to the eight-year gap 

between this research and the publication by Boleda, et al. (2011). According to the 

EMCDDA (2014b) report, various European countries have seen an increase in the use of 

methamphetamine since 2012. Therefore, this might be the reason why higher 

concentrations of methamphetamine are being detected in the UK (2.206 ng/L). In addition, 

this correlates well with the results from Mendoza, et al. (2016) where 3.13 ng/L of this 

traditional illicit drug were reported in Spain in 2013. 

 

For cocaine, the result for the UK (0.185 - 0.836 ng/L) is comparable to Japan (< 0.1 ng/L), 

Latin American countries (0.6 ng/L), Spain (0.4 ng/L) and other European countries (0.1 
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ng/L). However, a concentration of 1.61 ng/L was measured for this traditional illicit drug in 

Spain by another research group (Mendoza, et al., 2014), which showed a higher 

concentration than other published values as well as the result of this research. This is 

interesting, since the concentrations of cocaine in Spain are quite dissimilar in two 

publications (Boleda, et al., 2011; Mendoza, et al., 2014). This could be explained by 

differences in cocaine use in certain parts of Spain, as drinking waters were only collected 

from central Spain by Mendoza, et al. (2014), although Boleda, et al. (2011) sampled 

drinking water from all over the country. Rodayan, et al. (2016) have also reported a higher 

concentration of cocaine (4.3 ng/L) in the drinking water of Canada, which could be 

associated with less efficient water treatments (clarification and post-chlorination) being 

applied in the studied DWTP. In addition, a significantly higher concentration of cocaine 

(85.67 ng/L) has been reported in Spain by Mendoza, et al. (2016), which could be due to 

the dumping of large amounts of cocaine at or near to the sampling sites. As cocaine is 

largely metabolised by a carboxylesterase reaction to benzoylecgonine (20 - 60 %) and 

only 1 - 15 % is excreted unchanged as the parent compound in urine, the ratio of cocaine 

to benzoylecgonine should be below 0.75 when measured concentrations result from 

human consumption (Castiglioni, et al., 2008; Van Nuijs, et al., 2009). However, the 

concentration ratio of cocaine to benzoylecgonine was 1.62 in this publication (Mendoza, 

et al., 2016), which is considered as an abnormal ratio (> 0.75), suggesting that the 

measured value may not only result from human consumption (Van Nuijs, et al., 2009). 

 

5.3.2 Antidepressants 

To date, a handful of publications have included these two antidepressants in drinking 

water analysis. Five of them reported the detection of fluoxetine in China, Spain and the 

USA and only one publication reported the detection of citalopram in Poland (Vanderford 

and Snyder, 2006; Benotti, et al., 2009; López-Serna, et al., 2010; Giebułtowicz and 

Nałęcz-Jawecki, 2014; Padhye, et al., 2014; Wu, et al., 2015). From the results presented 

in Table 5.4, the concentration range of citalopram in drinking water for the UK (2.257 - 

2.800 ng/L) is higher than that for Poland (1.5 ng/L). This difference is not surprising, 

considering that the prescribing patterns of antidepressants vary throughout the world, with 
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the UK having the sixth highest level of consumption in 2013 (Organisation for Economic 

Co-operation and Development, OECD, 2015). 

 

A study conducted in the southeastern region of the USA reported the highest 

concentration of fluoxetine in drinking water (19.2 ng/L), followed by Spain (2.74 ng/L) and 

the Nevada state of the USA (< 0.50 ng/L). In addition, the concentration range of this 

antidepressant in the USA (0.59 - 0.82 ng/L) could be found in the publication by Benotti, et 

al. (2009), as drinking water samples were collected from 19 DWTPs across the USA. 

Based on these results, a conclusion might be drawn that the concentration of fluoxetine in 

drinking water from Spain (2.74 ng/L) is higher than its concentration range in the USA 

(0.59 - 0.82 ng/L), but is remarkably lower than that from some regions of the USA, such as 

the southeastern region (19.2 ng/L). This also correlates with the regional trends in mental 

health medication use in the USA (World Health Organization, 2011). In this report, the 

regions with the highest users of mental health medications were in the east south central 

section of the USA. In this research, fluoxetine was also detected in drinking water from the 

East Anglia region of the UK and its concentration (0.270 ng/L) is similar to that found in 

China (0.1 - 0.2 ng/L). It is interesting that this antidepressant is present in drinking water at 

such low concentration, because the UK reported a high consumption level of 

antidepressants in 2013 (OECD, 2015). However, with high removal efficiency (89.91 %), 

as discussed in Section 5.4.2, this may further explain the low concentration detected in 

this research. 

 

5.3.3 Ketamine 

Ketamine was also determined in drinking water in this research, the concentration range 

being from 0.139 ng/L to 1.124 ng/L. The detection of ketamine in drinking water has only 

been reported in Canada by Rodayan, et al. (2016) at a higher concentration of 15.0 ng/L. 

This could be due to low removal efficiency of ketamine during the studied DWTP (49 %), 

as only clarification and post-chlorination were applied (as mentioned in Section 5.3.1). 
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5.4 Removal efficiencies of drugs of abuse and pharmaceuticals during drinking 

water treatment plants from the East Anglia region of the UK 

This section summarises and discusses the removal efficiency results of drugs of abuse 

and pharmaceuticals during DWTPs. In this research, raw water and drinking water were 

collected at the same time from three different DWTPs in the East Anglia region of the UK 

and four studied drugs of abuse and pharmaceutical were detected in both raw and 

drinking water samples. This includes methamphetamine, mephedrone, ketamine and 

fluoxetine. Their concentrations were used for the calculation of the removal efficiency of 

DWTPs. Table 5.5 lists the removal efficiencies of these four studied drugs of abuse and 

pharmaceuticals, which was calculated using the following Equation 5.1. 

 

Removal % = [(Concentration of analyte in raw water - Concentration of analyte in drinking 

water)/Concentration of analyte in raw water] x 100 % 

(Equation 5.1) 

 

Table 5.5: Concentrations of drugs of abuse and pharmaceuticals detected in raw 

and drinking waters and their removal efficiencies of three DWTPs from the East 

Anglia region, UK 

 COMPOUND 

Methamphetamine Mephedrone Ketamine Fluoxetine 

DWTP 1     

Raw Water Conc. / ng/L 1.761 6.471 11.199 n.d. 

Drinking Water Conc. / ng/L 2.206 1.871 0.139 n.d. 

Removal / % -25.27 71.09 98.76 n.a. 

 

DWTP 2 

    

Raw Water Conc. / ng/L n.d. n.d. n.d. 2.675 

Drinking Water Conc. / ng/L n.d. n.d. n.d. 0.270 

Removal / % n.a. n.a. n.a. 89.91 

 

DWTP 3 

    

Raw Water Conc. / ng/L n.d. 5.742 6.217 n.d. 

Drinking Water Conc. / ng/L n.d. 2.814 0.977 n.d. 

Removal / % n.a. 50.99 84.29 n.a. 

n.d., not detected; n.a., not available 
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In Table 5.5, the higher removal efficiencies were obtained for ketamine (84.29 and 

98.76 %), followed by fluoxetine (89.91 %), which indicate that the applied drinking water 

treatment methods were more efficient in removing them from water. This corresponds with 

low concentrations of ketamine and fluoxetine detected in drinking water samples (0.139 - 

0.977 ng/L and 0.270 ng/L, respectively, as shown in Table 5.5). Removals were reported 

as 50.99 and 71.09 % for mephedrone, thus relatively higher concentrations were detected 

in drinking water at 1.871 and 2.814 ng/L (Table 5.5). In addition, the concentration of 

methamphetamine in drinking water (2.206 ng/L) was higher than its concentration in raw 

water (1.761 ng/L), resulting in a negative removal from DWTP (-25.27 %). This is 

discussed further in Section 5.4.3. 

 

5.4.1 Ketamine 

In this research, the removal efficiencies for ketamine were obtained from DWTP 1 and 

DWTP 3 (Table 5.5). Surface water was used as raw water for these two DWTPs as they 

employ a similar water treatment process, which consists of pre-treatment, pre-ozonation, 

clarification, post-ozonation, GAC filtration and post-chlorination. These water treatment 

methods are described in detail in Section 1.5. For DWTP 1, ammonia and phosphate 

were also dosed during the secondary disinfection stage to maintain a certain pH range 

and provide a protective film for lead pipes in order to minimise the likelihood of lead being 

present in drinking water (Maine Water Utilities Association, 2010; Drinking Water 

Inspectorate, 2014).  

 

High removal efficiencies (84.29 - 98.76 %) were observed for ketamine in this research 

(Table 5.5), as this compound contains a secondary amine and a nonaromatic double bond 

(Table 1.3), which are the sites reactive to ozone and chlorine (Section 1.5.2 and Section 

1.5.4). This is consistent with findings from the study by Boleda, Galceran and Ventura 

(2011). This research group has evaluated the removal efficiency of ketamine in a Spanish 

DWTP (surface water treatment works). These treatment methods consist of 

pre-chlorination, clarification, post-ozonation, GAC filtration and post-chlorination. Similar 

removal efficiency (92 %) was reported for ketamine, even though chlorine was applied in 
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the pre-oxidation stage instead of ozone. In addition, another surface water treatment 

works was also used for the evaluation of removal efficiency in this publication. Ketamine 

was almost completely removed (98 % removal) by a series of water treatments, including 

pre-chlorination, clarification, ultrafiltration, ultraviolet (UV) disinfection, reverse osmosis, 

remineralisation and post-chlorination. UV disinfection, membrane filtration (ultrafiltration 

and reverse osmosis) and remineralisation were applied in this DWTP instead of 

post-ozonation and GAC filtration. The results show that these water treatments are 

slightly more efficient at eliminating ketamine from water. 

 

5.4.2 Fluoxetine 

The removal efficiency of fluoxetine was only calculated based on the data from DWTP 2 

(Table 5.5). Applied water treatments include aeration, filtration, chlorine disinfection and 

phosphate dosing. Fluoride was also added at the final step as a protection against tooth 

decay (Drinking Water Inspectorate, 2014). As this is a ground water treatment works, 

treatments are designed to remove dissolved gases, iron as well as manganese, while 

some oxidation processes are normally not required, such as ozonation and chlorination 

(Reddersen, Heberer and Dünnbier, 2002; Zwiener, 2007).  

 

DWTP 2 in this research has largely eliminated the fluoxetine from water with the removal 

efficiency of 89.91 % (Table 5.5). This is because chlorine can react rapidly with the 

secondary amine of this pharmaceutical (Table 1.3), which indicates that chlorination was 

effective for the removal of fluoxetine. However, a lower removal was reported by Padhye, 

et al. (2014). An American DWTP (surface water treatment works), which consists of 

pre-ozonation, clarification, post-ozonation, media filtration and post-chlorination, provided 

a 66.7 % removal for fluoxetine in this publication. It is surprising that ozonation and 

chlorination treatments only removed two thirds of this compound from water, as its 

secondary amine functional group is the site reactive to ozone and chlorine (Section 1.5.2 

and Section 1.5.4). This could be due to different raw water sources. Ground water was 

used as raw water for DWTP 2 in this research and surface water was used for the 

American DWTP (Padhye, et al., 2014). 
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5.4.3 Methamphetamine 

In a study conducted in Spain, the removal efficiency of methamphetamine in a surface 

water treatment works was evaluated by Huerta-Fontela, Galceran and Ventura (2008). 

Methamphetamine was totally eliminated (100 % removal), as this compound contains a 

secondary amine (Table 1.3), which is the site that is reactive to both ozone and chlorine 

(Section 1.5.2 and Section 1.5.4) and therefore explains why it was not detected in drinking 

water. Water treatment methods for this DWTP include pre-treatment, pre-chlorination, 

clarification, post-ozonation, GAC filtration and post-chlorination. This research also 

monitored the removal of drugs of abuse and pharmaceuticals in DWTP 1, which used 

water treatments similar to the above-mentioned Spanish DWTP (as mentioned in Section 

5.4.1). However, negative removal efficiency (-25.27 %) was observed for 

methamphetamine (Table 5.5). It is unusual to obtain a higher concentration in drinking 

water compared to that of raw water. An explanation for the negative removal of 

methamphetamine could be associated with residence time (Andrés-Costa, et al., 2014; 

Du, et al., 2015). In this research, raw and drinking waters were collected at the same time 

from the DWTP 1. As a result, there was a mismatch in timing between these two water 

samples, as it doesn’t compensate for the time delay during treatments, i.e. residence time. 

If a pulse of low concentration for methamphetamine occurs in raw water during this 

mismatch and is collected for removal calculation, drinking water concentration might be 

higher and negative removal could be observed. The negative removal efficiency of 

methamphetamine has also been reported in a Chinese WWTP due to the same reason 

(Du, et al., 2015). Thus, raw and drinking waters should be re-collected from DWTP 1 and 

analysed in order to verify these results. In addition, it is better to collect samples from the 

same location over a specific time period in order to get a representative sample with 

average water conditions, which may result in more accurate quantification in the future. 
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5.4.4 Mephedrone 

In this research, two removal efficiencies of mephedrone (71.09 and 50.99 %) were 

obtained from DWTP 1 and DWTP 3, respectively (Table 5.5), as this drug was detected in 

both raw and drinking water samples. Water treatments applied in these two DWTPs are 

discussed in Section 5.4.1. Mephedrone has the secondary amine and nonaromatic 

double bond as electron-donating functional groups (Table 1.3), thus this compound can 

undergo a rapid reaction with ozone and chlorine (Section 1.5.2 and Section 1.5.4), which 

removed more than half of the total amount of mephedrone from water. However, as far as 

the author is aware, the removal efficiency of DWTP has been reported for mephedrone for 

the first time and hence no comparative results are available in the literature. 

 

5.5 Overall discussion and conclusion of drinking water analysis 

Raw water (three samples) and drinking water (five samples) were collected from the East 

Anglia region of the UK (Section 2.5), as this sampling site has never been investigated 

before. All water samples were extracted three times by SPE and analysed in triplicate by 

LC-MS using a C18 column for identifying the studied drugs of abuse and pharmaceuticals. 

All were then confirmed by LC-MS using an additional biphenyl column. The identification 

and confirmation of detected target analytes were based on the quantifier and confirmation 

ions and the acceptable retention index difference between the water sample and positive 

control (± 1.00 %) (Section 5.1.1 and Section 5.1.2). After that, quantification was 

conducted using a standard addition method in order to compensate for matrix effects for 

LC-MS analysis. Thus, water samples were spiked with mixed standards containing the 

studied drugs of abuse, pharmaceuticals and internal standards, which were used as 

calibrators. Linear regression equations were generated for each analyte by plotting the 

mean PARs of one non-spiked sample and three spiked samples and the concentrations of 

detected target analytes were calculated based on the obtained equations (Section 5.1.3).  

 

The detected drugs of abuse and pharmaceuticals present in raw and drinking water 

samples that were collected from the East Anglia region of the UK are shown in Table 5.6. 

These include two traditional illicit drugs (methamphetamine and cocaine), two 
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antidepressants (citalopram and fluoxetine) and three NPS (methylone, mephedrone, 

ketamine). In this research, the concentrations of seven studied drugs of abuse and 

pharmaceuticals found in the drinking water of the UK were all at trace levels (from 0.139 

ng/L for ketamine to 2.814 ng/L for mephedrone). They were then compared with published 

references from other countries in order to understand their presence on a global scale. 

The concentrations of methamphetamine, cocaine, citalopram, fluoxetine and ketamine in 

drinking water vary between countries. These differences correlate with their global and 

regional consumption rates and patterns as well as the removal efficiencies of DWTPs. 

Moreover, it is worth noting that methylone and mephedrone have been determined in 

drinking water for the first time, which indicates NPS are already present in drinking water 

due to their high consumption levels in the UK. 

 

Removal efficiencies of detected drugs of abuse and pharmaceuticals were evaluated for 

three DWTPs from Anglian Water and Essex and Suffolk Water, which are shown in Table 

5.6. High removals were observed for fluoxetine (89.91 %) and ketamine (84.29 and 

98.76 %), which are consistent with the reported removals in published literature. In 

contrast, mephedrone cannot be largely removed during DWTPs (50.99 and 71.09 %) and 

thus relatively higher concentrations (1.871 and 2.814 ng/L) were detected in drinking 

water. To the author’s knowledge, the removal of DWTP has been reported for 

mephedrone for the first time. In addition, negative removal (-25.27 %) was obtained for 

methamphetamine as its concentration in drinking water is higher than in raw water. This is 

unusual and needs more investigations, as 100 % of removal for this traditional illicit drug 

has been reported in a Spanish DWTP, which used water treatments similar to the DWTP 

studied in this research (Huerta-Fontela, Galceran and Ventura, 2008). The findings in this 

research highlight the need for investing the more effective water treatments to remove 

drugs of abuse and pharmaceuticals from drinking water. 
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Table 5.6: Summary of drinking water analysis results 

COMPOUND CONC. IN  

RAW WATER  

/ ng/L 

CONC. IN  

DRINKING WATER  

/ ng/L 

REMOVAL 

EFFICIENCY OF 

DWTPs / % 

Methylone n.d. 1.368 n.a. 

Methamphetamine 1.761 2.206 -25.27 

Mephedrone 5.742 - 6.471 0.767 - 2.814 50.99 - 71.09 

Ketamine 6.217 - 11.199 0.139 - 1.124 84.29 - 98.76 

Cocaine n.d. 0.185 - 0.836 n.a. 

Citalopram n.d. 2.257 - 2.800 n.a. 

Fluoxetine 2.675 0.270 89.91 

n.d., not detected; n.a., not available 
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CHAPTER 6 CONCLUSION AND FURTHER WORK 

This chapter summarises the conclusions arising from a variety of studies undertaken in 

Chapter 3 (method development and optimisation), Chapter 4 (method validation) and 

Chapter 5 (drinking water analysis). 

 

6.1 Conclusion 

As the chemical industry, including the production of agrochemical, industrial and 

consumer chemicals, has expanded around the globe, the contamination of water sources 

has inevitably spread as a result of various human activities (Harrison, 2014). The 

presence of pollutants and contaminants in drinking water has led to increasing public 

attention and scientific interest regarding their effects on human health, because drinking 

water provides a direct route into the human body for any drug compounds that might be 

present. In recent years, scientific interest has focused on the study of drugs of abuse and 

pharmaceuticals in drinking water, as these water contaminants are biologically active and 

may induce adverse effects on human health. To date, there are only a few studies that 

focus on the occurrence and concentrations of traditional illicit drugs and pharmaceuticals 

in drinking water, most probably because they are present at sub ng/L levels or less and 

thus cannot be detected by most analytical methods. In addition, NPS such as cathinones 

and piperazine have also been found in surface water. As surface water is used as raw 

water for drinking water production, it is not surprising that NPS could be present in 

drinking water due to incomplete removal during DWTPs. As there have not been any 

analytical methods developed to detect and quantify this suite of drugs of abuse in drinking 

water, selective and sensitive analytical methods are needed for the determination of drugs 

of abuse, especially for NPS, and pharmaceuticals in drinking water.  
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This research aimed to develop and validate analytical methods for the simultaneous 

determination of 20 drugs of abuse and pharmaceuticals based on using SPE for sample 

preparation, followed by LC-MS as the detection and quantification technique. The 

selected compounds belong to a large spectrum of chemical classes, namely cocainics, 

amphetamines, dissociative anaesthetics, cathinones, piperazines, synthetic cannabinoids 

and antidepressants.  

 

LC-MS methods were developed and optimised using a C18 column and a biphenyl column. 

Mobile phase pH (2.1), organic modifier (acetonitrile for the C18 column and a mixture of 

methanol and acetonitrile for the biphenyl column) and time segmentation (ten segments) 

were chosen, while diagnostic ions, DL and lens system voltages were also investigated in 

order to achieve good chromatographic separations and enable reliable mass identification. 

The C18 column was used for identification and quantification, while the biphenyl column 

was used for confirmation when samples were suspected of containing the studied drugs 

of abuse and pharmaceuticals. Moreover, in order to determine which SPE cartridge would 

be most appropriate for the extraction of the studied drugs of abuse and pharmaceuticals 

from drinking water, Oasis MCX and Strata-X-Drug B were compared. Strata-X-Drug B 

was selected based on high and reliable recoveries for most analytes of interest. Elution 

solvents were further investigated to improve the recovery. The optimised elution solvents 

finally resulted in the use of ethyl acetate/isopropanol (85:15, v/v), followed by ethyl 

acetate/isopropanol/ammonium hydroxide (70:20:10, v/v). After determining the applied 

SPE protocol, sample loading volume was optimised and 200 mL was chosen in order to 

increase the chances of detecting and quantifying the studied drugs of abuse and 

pharmaceuticals in water samples. Moderate to high recoveries (65 - 107 %) were 

achieved for the majority of the studied drugs of abuse and pharmaceuticals and good 

precisions (RSD < 15 %) were obtained for all analytes using a Strata-X-Drug B cartridge.  

 

Following on from the studies of method development and optimisation, method validation 

was conducted in order to prove that these analytical methods were selective, sensitive 

and capable for the purpose of identification, quantification and confirmation. Key 
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performance tests were undertaken for the LC-MS method using a C18 column, which 

included selectivity, autosampler storage stability, instrumental linearity, precision, 

accuracy, instrumental and method detection and quantification limits. This method was 

selective enough to simultaneously identify 20 studied drugs of abuse and pharmaceuticals 

based on their retention times and diagnostic ions. This method showed good instrumental 

linearity for all target analytes of interest over four to five orders of magnitude. Method 

accuracy was reported below ± 8.66 % bias of true value at low, medium and high 

concentrations. The RSDs of instrumental and method precision were below 7.57 % at 

medium and high concentrations and below 15.04 % at low concentration. These results 

prove that this method was good for the purpose of quantification. Low detection and 

quantification limits were obtained for all studied drugs of abuse and pharmaceuticals 

using LC-MS (0.0110 - 0.9253 ng/mL for IDL, 0.0366 - 3.0844 ng/mL for IQL, 0.0056 - 

1.0918 ng/L for MDL and 0.0187 - 3.6394 ng/L for MQL) and are consistent with or in some 

cases lower than previously published LC-MS/MS methods. This indicates that the 

potential of this newly developed LC-MS method using the C18 column to determine the 

studied drugs of abuse and pharmaceuticals is down to trace levels. As a result of 

autosampler storage stability, it is suggested to store mixed standards as well as water 

samples in the LC-MS injection solvent for up to five days. In addition, selectivity and 

instrumental detection limit were also validated for the LC-MS method using a biphenyl 

column. Results show that this developed method allows for the identification of the studied 

drugs of abuse and pharmaceuticals and can separate all analytes of interest based on 

their retention times and diagnostic ions. Furthermore, the method was sensitive enough 

for confirmation, as IDLs for all target analytes were 0.0115 to 0.4795 ng/mL, which are 

comparable to their IDLs and IQLs using a C18 column. 

 

The analytical methods reported in this research are novel, as this is the first time a LC-MS 

method has been developed and validated for the identification and quantification of 14 

NPS in drinking water, including five cathinones, seven piperazines and two synthetic 

cannabinoids. In addition, this research has proved the capability of LC-MS as a cheaper 

and useful alternative to LC-MS/MS in the multi-residue analysis of drugs of abuse and 
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pharmaceuticals in drinking water at trace levels (sub ng/Ls). This demonstrates that those 

laboratories that only have LC-MS can also conduct drinking water research, which is 

normally undertaken by LC-MS/MS. 

 

The analytical method using a C18 column was successfully applied to raw water (three 

samples) and drinking water (five samples), which were collected from three DWTPs and 

two taps in the East Anglia region of the UK. To the author’s knowledge, this sampling site 

has never been studied for the determination of drugs of abuse and pharmaceuticals in raw 

and drinking waters. When samples were suspected of containing the studied drugs of 

abuse and pharmaceuticals, the analytical method using a biphenyl column was used for 

confirmation. The identification and confirmation criteria were fulfilled, as three 

identification points were obtained, namely (1) one retention index obtained from a C18 

column, (2) one retention index obtained from a biphenyl column and (3) one ion monitored 

in SIM mode for both the C18 column and biphenyl column. The standard addition method 

was used for calibration in order to compensate for any matrix interference and hence 

calibrators were prepared within the same matrix as the samples. 

 

Seven studied drugs of abuse and pharmaceuticals were detected in drinking water 

samples above their MQLs, including methylone (1.368 ng/L), methamphetamine (2.206 

ng/L), mephedrone (0.767 - 2.814 ng/L), ketamine (0.139 - 1.124 ng/L), cocaine (0.185 - 

0.836 ng/L), citalopram (2.257 - 2.800 ng/L) and fluoxetine (0.270 ng/L). The findings from 

this research make a positive contribution to identify and recognise the ever-changing 

composition of water contaminants in drinking water. This is the first time, to the author’s 

knowledge, that methylone and mephedrone have been determined in drinking water 

samples, which indicates these two NPS have already been present in drinking water due 

to their high consumptions in the UK. This research could inform drinking water regulatory 

bodies of the presence of drugs of abuse and pharmaceuticals, as they are currently not 

included within the regulatory framework. Moreover, the presence of methamphetamine, 

cocaine, citalopram, fluoxetine and ketamine in the UK’s drinking water (this research) is 

compared to published references from other countries, which can reflect their presence 
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on a global scale. The concentrations of these traditional illicit drugs, antidepressants and 

NPS in drinking water vary between countries and these differences can be due to their 

different consumption patterns as well as different removal efficiencies of DWTPs. 

 

In addition, the removal efficiencies of DWTPs were calculated for four studied drugs of 

abuse and pharmaceuticals, as they have been quantified in both raw water and drinking 

water. These are methamphetamine (-25.27 %), mephedrone (50.99 - 71.09 %), ketamine 

(84.29 - 98.76 %) and fluoxetine (89.91 %). This is in response to concerns that current 

treatment methods do not remove some of these contaminants and thus highlights the 

need for investing more effective water treatments to remove drugs of abuse and 

pharmaceuticals from drinking water. 

 

6.2 Suggestions for further work 

Although the LC-MS methods used in this research were able to identify and quantify the 

studied drugs of abuse and pharmaceuticals at trace levels, further work will be required to 

reduce the total analysis time in order to achieve high sample throughput, which is of 

importance for routine analysis. The total analysis times for the C18 column and biphenyl 

column were 44 min and 50 min, respectively, with an equilibration time of 20 min. 

Equilibration time is used to equilibrate the column to the initial column pressure and 

mobile phase composition and thus allow the column to be ready for subsequent runs. 

Enough equilibration is critical for running the gradient elution in order to ensure the 

reproducible retention times of analytes from run to run (Kazakevich and LoBrutto, 2007). 

Normally, it is suggested that ten column volumes of mobile phase are required for 

sufficient equilibration. Therefore, a small column internal diameter or a shorter length 

column can reduce the column volume, resulting in a shorter equilibration time (Separation 

Science, 2015). Hence, the LC-MS methods developed in this research can be further 

optimised using a column with a smaller column volume to decrease the waiting time.  

 

Furthermore, the confirmation of the identity of the analytes present in water samples 

needs to be improved. As drinking water is variable in composition, matrix components that 
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share the same diagnostic ions with the analytes may be present and could lead to the 

false positive results. Although two retention indexes and one diagnostic ion were used for 

identification and confirmation, it is still recommended to monitor more ions and calculate 

the ion ratios in order to provide further confirmation of the identity of the analytes present. 

The application of using the ion ratios could help with analyte identification and 

confirmation, as it is unlikely that a matrix component present in drinking water would 

co-elute with an analyte and also share the same ion ratio with the analyte. 

 

The LC-MS method using a biphenyl column was only validated for selectivity and 

instrumental detection limit as it was used for the purpose of confirmation. Other validation 

studies would be worth investigating, as this method has the potential for the quantification 

of trace drugs of abuse and pharmaceuticals in drinking water. Moreover, the chemistry of 

the biphenyl column allows for the combination of hydrophobic, polar and aromatic 

selectivity, which cannot be offered by the commonly used C18 column (Phenomenex, 

2016). For example, in this research, the separation of one set of positional isomers 

(3-TFMPP and 4-TFMPP) using the biphenyl column is better than the C18 column. Thus, 

the biphenyl column is also a good choice for the analysis of drugs of abuse and 

pharmaceuticals as many of them exhibit aromatic rings, although it has been much less 

used compared to the C18 column. In addition, these two novel LC-MS methods need to be 

further validated, such as the robustness study, which will enhance the reliability of 

operating the methods by different analysts and different LC-MS instruments and prove 

their transferrable between laboratories.  

 

In this research, water samples were extracted by SPE within 12 hours of collection. This is 

because drugs of abuse and pharmaceuticals may start degrading after 24 hours of 

collection, as informed by the published literature (Togola and Budzinski, 2008; Boleda, et 

al., 2011; Valcárcel, et al., 2011; Valcárcel, et al., 2012). Sample extracts were then 

dissolved in LC-MS injection solvent and stored in an autosampler until analysis. Thus, 

matrix-based stability was not considered and only the stability of analytes in the LC-MS 

injection solvent was studied. However, if water samples are collected from other areas 
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within the UK and other countries and arrive at the laboratory after 24 hours, the study of 

long-term matrix-based stability is required in order to continue refining the sample storage 

conditions during transport. 

 

During SPE studies, the larger loading volume of water samples, such as 500 mL or 1000 

mL, will be worth investigating if automatic SPE manifold is available. The larger the 

loading volume extracted, the higher the enrichment factor obtained, thereby resulting in 

increased method sensitivity and enhanced chances of determining the studied trace drugs 

of abuse and pharmaceuticals in drinking water.  

 

In this research, drinking water samples were collected from only five sampling points in 

the East Anglia region of the UK, thus more samplings in this area as well as in other cities 

within the UK are needed in order to investigate the spatial and temporal occurrence of the 

studied drugs of abuse and pharmaceuticals in drinking water. Residence time should be 

considered when collecting raw and drinking water samples from DWTPs, which may 

result in a more accurate calculation of removal efficiency. In addition, it would still be worth 

evaluating the removal efficiency of the different steps of drinking water treatments by 

collecting and analysing samples before and after each treatment process. It is hoped that 

the results could provide valuable information about the behaviour of drugs of abuse and 

pharmaceuticals through drinking water treatments and help the drinking water companies 

and scientists to invest in effective treatment processes.  

 

The result of this research reveals that some studied drugs of abuse and pharmaceuticals 

(cocaine, methamphetamine, citalopram, fluoxetine, ketamine, mephedrone and 

methylone) are present in drinking water. Therefore, it is important to study their 

metabolites in order to fully understand the transportation of drugs of abuse and 

pharmaceuticals through DWTPs and the potential of human exposure. The health impacts 

of these compounds in drinking water have been discussed in Section 1.7. The presence 

of their metabolites could pose an additional threat to humans, as some will still be 

pharmacologically active or even more potent than the parent compounds. For example, 
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morphine-6-glucuronide (an active metabolite of morphine) is more potent than its parent 

compound as an analgesic (Spiehler and Levine, 2003). In addition, the study of emerging 

drugs of abuse and pharmaceuticals (such as NPS) in drinking water could also further 

enhance this research area by helping to identify and recognise the ever-changing 

composition of such contaminants in drinking water. 

 

If trace amounts of drugs of abuse, pharmaceuticals and their metabolites are being 

detected in drinking water, there is a need for further research exploring their 

bioaccumulation and possible drug-drug reactions. If these compounds do have an impact 

on health, even if in trace amounts, the future screening of such compounds need to be 

carried out to inform drinking water regulatory bodies. The findings could also aid in the 

development of water treatments for their removal in order to deliver a sustainable and 

safe drinking water. It is well documented that the analytical science has an important and 

challenging role in the management of good quality drinking water, where this research 

contributes by developing a LC-MS based method of testing for drugs of abuse and 

pharmaceuticals in drinking water. Other future challenges include the development of 

treatment methods to address these newer contaminants, as well as creating fast and 

more economical analytical methods (LC-MS instead of tandem MS) which allow for the 

simultaneous detection of emerging drugs of abuse and pharmaceutical compounds. 
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APPENDICES 

Appendix I: Mass spectra for drugs of abuse, pharmaceuticals and internal standards at 0.01 mg/mL from a LC-MS analysis obtained 

with scan mode, showing their diagnostic ions (circled) 
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Appendix I: Mass spectra for drugs of abuse, pharmaceuticals and internal standards at 0.01 mg/mL from a LC-MS analysis obtained 

with scan mode, showing their diagnostic ions (circled) 
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Appendix I: Mass spectra for drugs of abuse, pharmaceuticals and internal standards at 0.01 mg/mL from a LC-MS analysis obtained 

with scan mode, showing their diagnostic ions (circled) 
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Appendix I: Mass spectra for drugs of abuse, pharmaceuticals and internal standards at 0.01 mg/mL from a LC-MS analysis obtained 

with scan mode, showing their diagnostic ions (circled) 
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Appendix I: Mass spectra for drugs of abuse, pharmaceuticals and internal standards at 0.01 mg/mL from a LC-MS analysis obtained 

with scan mode, showing their diagnostic ions (circled) 
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Appendix I: Mass spectra for drugs of abuse, pharmaceuticals and internal standards at 0.01 mg/mL from a LC-MS analysis obtained 

with scan mode, showing their diagnostic ions (circled) 
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Appendix II-a: Bar graphs of peak area against injection time for internal standards for autosampler storage stability obtained from a 

LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix II-b: Bar graphs of peak area ratio against injection time for drugs of abuse and pharmaceuticals for autosampler storage 

stability obtained from a LC-MS analysis with a C18 column, n = 40 
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Appendix III: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and pharmaceuticals 

over initial linear range for instrumental linearity obtained from a LC-MS analysis with a C18 column, n = 3 

  

  
 

y = 0.4147 x + 0.3567 
R² = 0.9998 

0

190

380

570

760

950

0 200 400 600 800 1000 1200

M
ea

n
 P

ea
k 

A
re

a 
R

at
io

Standard Concentration (ng/mL)

BZP

y = 1.5367 x + 0.8084 
R² = 0.9997 

0

540

1080

1620

2160

2700

0 200 400 600 800 1000

M
ea

n
 P

ea
k 

A
re

a 
R

at
io

Standard Concentration (ng/mL)

MBZP

y = 0.7455 x + 0.6577 
R² = 0.9995 

0

310

620

930

1240

1550

0 200 400 600 800 1000

M
ea

n
 P

ea
k 

A
re

a 
R

at
io

Standard Concentration (ng/mL)

methcathinone

y = 1.6602 x + 0.8499 
R² = 0.9997 

0

600

1200

1800

2400

3000

0 200 400 600 800 1000

M
ea

n
 P

ea
k 

A
re

a 
R

at
io

Standard Concentration (ng/mL)

methylone

0

2

4

6

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10



224 
 

Appendix III: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and pharmaceuticals 

over initial linear range for instrumental linearity obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix III: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and pharmaceuticals 

over initial linear range for instrumental linearity obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix III: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and pharmaceuticals 

over initial linear range for instrumental linearity obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix III: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and pharmaceuticals 

over initial linear range for instrumental linearity obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 

 

 

 

0.5

1

2

4

8

16

32

64
-4 -3 -2 -1 0 1 2 3 4

M
ea

n
 P

ea
k 

A
re

a 
R

at
io

/S
ta

n
d

ar
d

 C
o

n
ce

n
tr

at
io

n

Log Concentration of Standard (ng/mL)

methcathinone Rc 0.95 Rc 1.05 Rc Linearity 0.25-1000

1

2

4

8

16

32

64

128
-4 -3 -2 -1 0 1 2 3 4

M
ea

n
 P

ea
k 

A
re

a 
R

at
io

/S
ta

n
d

ar
d

 C
o

n
ce

n
tr

at
io

n

Log Concentration of Standard (ng/mL)

methylone Rc 0.95 Rc 1.05 Rc Linearity 0.5-1000



230 
 

Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix IV: Relative response/log concentration plots of the ratio of mean peak 

area ratio to standard concentration against log concentration of standard for drugs 

of abuse and pharmaceuticals over initial linear range for instrumental linearity 

obtained from a LC-MS analysis with a C18 column (Rc is the line of mean relative 

response) 
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Appendix V: Linear regression plots of mean peak area ratio against calibrator concentration for drugs of abuse and pharmaceuticals 

over 5 to 100 ng/L for method precision and accuracy obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix V: Linear regression plots of mean peak area ratio against calibrator concentration for drugs of abuse and pharmaceuticals 

over 5 to 100 ng/L for method precision and accuracy obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix V: Linear regression plots of mean peak area ratio against calibrator concentration for drugs of abuse and pharmaceuticals 

over 5 to 100 ng/L for method precision and accuracy obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix V: Linear regression plots of mean peak area ratio against calibrator concentration for drugs of abuse and pharmaceuticals 

over 5 to 100 ng/L for method precision and accuracy obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix V: Linear regression plots of mean peak area ratio against calibrator concentration for drugs of abuse and pharmaceuticals 

over 5 to 100 ng/L for method precision and accuracy obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix VI-a: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix VI-a: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix VI-a: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix VI-a: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix VI-a: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a C18 column, n = 3 
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Appendix VI-b: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a biphenyl column, n = 3 
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Appendix VI-b: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a biphenyl column, n = 3 
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Appendix VI-b: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a biphenyl column, n = 3 
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Appendix VI-b: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a biphenyl column, n = 3 
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Appendix VI-b: Linear regression plots of mean peak area ratio against standard concentration for drugs of abuse and 

pharmaceuticals for the calculation of instrumental detection and quantification limits using root mean square error approach 

obtained from a LC-MS analysis with a biphenyl column, n = 3 
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Appendix VII: Identification of drugs of abuse and pharmaceuticals in the raw water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

a) Samples from DWTP A 

 methamphetamine (m/z 150) mephedrone (m/z 178) ketamine (m/z 238) 

In
te

n
si

ty
 

 Retention Time (min) Retention Time (min) Retention Time (min) 

b) Samples from DWTP B 

 fluoxetine (m/z 310)  

In
te

n
si

ty
 

 

 Retention Time (min)  

8.60 8.65 8.70 8.75 8.80 8.85 8.90 8.95 9.00 9.05 9.10 9.15 9.20 9.25 9.30 9.35 9.40 9.45 9.50 9.55 9.60 9.65 9.70 9.75 9.80 9.85 9.90 9.95 min

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

(x10,000)

150.00(+) DWTP 1 Raw Water Spiked 50ngL C18.lcd
150.00(+) DWTP 1 Raw Water Non-Spiked C18.lcd

9
.2

1
3

9
.2

1
2

11.05 11.10 11.15 11.20 11.25 11.30 11.35 11.40 11.45 11.50 11.55 11.60 11.65 11.70 11.75 11.80 11.85 min

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5
(x10,000)

178.00(+) DWTP 1 Raw Water Spiked 50ngL C18.lcd
178.00(+) DWTP 1 Raw Water Non-Spiked C18.lcd

1
1

.2
0

2

1
1

.1
9

0

11.35 11.40 11.45 11.50 11.55 11.60 11.65 11.70 11.75 11.80 11.85 11.90 11.95 12.00 12.05 12.10 12.15 12.20 min
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

(x100,000)

238.00(+) DWTP 1 Raw Water Spiked 50ngL C18.lcd
238.00(+) DWTP 1 Raw Water Non-Spiked C18.lcd

1
1

.7
5

7
1

1
.7

5
4

17.6 17.7 17.8 17.9 18.0 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19.0 19.1 min

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
(x100,000)

310.00(+) DWTP 2 Raw Water Spiked 50ngL C18.lcd
310.00(+) DWTP 2 Raw Water Non-Spiked C18.lcd

1
8

.1
3

0

1
8

.1
8

3



254 
 

Appendix VII: Identification of drugs of abuse and pharmaceuticals in the raw water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

c) Samples from DWTP C 
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Appendix VIII: Confirmation of drugs of abuse and pharmaceuticals in the raw water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

a) Samples from DWTP A 
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Appendix VIII: Confirmation of drugs of abuse and pharmaceuticals in the raw water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

c) Samples from DWTP C 

 mephedrone (m/z 178) ketamine (m/z 238) 
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Appendix IX: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the raw water from The East Anglia region, UK, 

obtained from a SPE-LC-MS analysis with a C18 column, n = 3 

a) Samples from DWTP A 
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Appendix IX: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the raw water from The East Anglia region, UK, 

obtained from a SPE-LC-MS analysis with a C18 column, n = 3 

b) Samples from DWTP B 
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Appendix X: Identification of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

a) Samples from DWTP A 

 methamphetamine (m/z 150) mephedrone (m/z 178) ketamine (m/z 238) 
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Appendix X: Identification of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

b) Samples from DWTP B 

 fluoxetine (m/z 310)  
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Appendix X: Identification of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

d) Samples from tap 1, City of Cambridge 
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Appendix X: Identification of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a C18 column 

e) Samples from tap 2, City of Cambridge 
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Appendix XI: Confirmation of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

a) Samples from DWTP A 
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Appendix XI: Confirmation of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

b) Samples from DWTP B 
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Appendix XI: Confirmation of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

d) Samples from tap 1, City of Cambridge 
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Appendix XI: Confirmation of drugs of abuse and pharmaceuticals in the drinking water from The East Anglia region, UK, showing 

overlapping selected ion chromatograms of non-spiked water samples (black) and mixed standards (pink) at 50 ng/L from a 

SPE-LC-MS analysis obtained with SIM mode and a biphenyl column 

e) Samples from tap 2, City of Cambridge 
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Appendix XII: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the drinking water from The East Anglia region, 

UK, obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix XII: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the drinking water from The East Anglia region, 

UK, obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix XII: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the drinking water from The East Anglia region, 

UK, obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix XII: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the drinking water from The East Anglia region, 

UK, obtained from a SPE-LC-MS analysis with a C18 column, n = 3 
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Appendix XII: Standard addition plots of mean peak area ratio against added standard concentration for drugs of abuse and 

pharmaceuticals over 0 to 100 ng/L for the quantification of their concentrations in the drinking water from The East Anglia region, 

UK, obtained from a SPE-LC-MS analysis with a C18 column, n = 3 

e) Samples from tap 2, City of Cambridge 
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