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Abstract 

BACKGROUND: C. difficile-associated infection (CDI), particularly in hospital patients has led 
 

to an increase in mortality and morbidity rate in US, UK and Europe. Virulence is mainly 

dependent on the expression of two key C. difficile-specific proteins, toxin A (TcdA) and 

toxin B (TcdB). Current CDI diagnostic is by ELISA or polymerase chain reaction (PCR); the 

former is limited in terms of sensitivity the latter in terms of clinical relevance, as 

detection of bacterial DNA is not informative about viability or whether the bacteria 

express toxins. Hence the development of this project, which aims to combine the 

clinically relevant information provided by an antibody-based test with the sensitivity of a 

PCR assay by using the proximity ligation assay (PLA) for detection of C. difficile TcdA and 

TcdB. PLA detects proteins via their interaction with pairs of antibodies coupled to 

noncomplementary DNA oligonucleotides. The binding of both antibodies to their 

target protein brings the oligonucleotides into proximity, allowing them to be bridged 

by a third oligonucleotide with complementarity to the other two. This facilitates their 

ligation and the detection of the resulting amplicon by real-time quantitative PCR (qPCR) 

acts as a surrogate marker for the protein of interest. Hence PLA has potential as a 

clinically relevant diagnostic tool for the detection of pathogens where nucleic acid based 

tests are inconclusive proof of infection. 

METHODS: We prepared monoclonal and polyclonal PLA probes targeting purified C. difficile 

toxins A (TcdA) and B (TcdB) and also targeting TcdA and TcdB spiked in canine faeces. 

Further evaluation of the assay was also done targeting TcdA and TcdB in clinical faeces and 

swab samples. Hydrolysis probe-based qPCR as well as digital PCR (dPCR) assays were used 

to detect antibody/antigen interactions. 

RESULTS: The performance of the PLA assays was antibody-dependent but both TcdA and 

TcdB assays were 10X more sensitive than comparable ELISAs in either single or duplex 

format when detecting purified toxins and spiked canine faeces shows sensitivity similar to 

ELISA performed in our lab. But the assay did not show sufficient sensitivity when evaluating 

the clinical faeces and swab samples. Both PLAs could be performed using single monoclonal 

antibodies coupled to different oligonucleotides. Finally, we used digital PCR to demonstrate 

accurate and reliable quantification of TcdA by digital PLA (dPLA). 

CONCLUSIONS: PLA has potential as new diagnostic applications for the detection of C. 

difficile. Further optimization of an assay is required to develop the assay for the detection 
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of TcdA and TcdB in clinical samples. Once this assay is developed into a diagnostic kit for C. 

difficile TcdA and TcdB, PLA can be used for further development of an assay for other 

pathogenic organisms where nucleic acid based tests do not indicate viability or expression 

of toxins, resulting in more targeted clinical decision-making, helping reduce the mortality 

rate for high-risk individuals. Importantly, since it is not always necessary to use two 

different antibodies, the pool of potential antibodies useful for PLA diagnostic assays is 

vastly enhanced. Finally, in the future, the combined testing of DNA and protein targets 

from the same sample on the same analytical platform (i.e. qPCR) may further improve the 

sensitivity and specificity of disease diagnosis leading to improved clinical outcomes, patient 

satisfaction and reduced associated costs. 
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1.0 Overview: 

Clostridium difficile (C. difficile) is a gram positive spore forming bacillus responsible for C. 
 

difficile-associated infection (CDI) in hospital patients (Shah et al., 2010) and has become 

one of the most common health care-associated pathogens (Gerding and Lessa, 2015b). Its 

severity in terms of mortality and morbidity is associated with several epidemic strains 

(Bauer et al., 2011), although more than half of the infected patients do not present with 

any symptoms (Loo et al., 2011). The clinical symptoms of CDI are rather variable ranging 

from diarrhoea to pseudomembranous colitis (Janarthanan et al., 2012) due to the 

variability in the interaction between the bacterial pathogen virulence factors and the hosts’ 

immune response (Solomon et al., 2013). 

 

The primary virulence factors of C. difficile are enterotoxins A (TcdA) and B (TcdB), which are 
 

specified by two genes, tcdA and tcdB, respectively. Most pathogenic strains are toxin A-

positive, toxin B-positive (A+B+) although some variants are toxin A-negative, toxin B-

positive (A-B+) (Voth and Ballard, 2005). There are also non-pathogenic strains that do not 

express either toxin (Natarajan et al., 2013). New strains of C. difficile for example, the 

North American pulsed-field type 1, restriction-endonuclease analysis group type BI, and 

PCR ribotype 027 have emerged which are more virulent than the normal C. difficile strains 

(Goorhuis et al., 2008a) and have contributed to the increase in the morbidity and mortality 

rate associated with CDI in US, UK and Europe (Ghose, 2013). Therefore, the critical and 

timely intervention of CDI is required, which depends on faster and more accurate diagnosis 

of infectious agents. Numerous diagnostic tools have been developed over the last few 

decades for the detection of CDI, ranging from selective anaerobic culture method, Cell 

Cytotoxicity Neutralisation Assay (CCNA) to Enzyme Linked Immuno Sorbent Assay (ELISA) 

for the detection of proteins. Until recently, CCNAs were considered the gold standard 

method for detection of CDI but the development of molecular test such as the polymerase 

chain reaction (PCR) has replaced this method. Although the PCR-based assays target 

bacterial toxin genes with high sensitivity, PCR positive results cannot confirm the viability 

of the bacteria or their ability to produce toxins, suggesting that PCR positive results may 

not always accurately reflect the clinical disease (Platts-Mills, Liu and Houpt, 2013) 
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Therefore, there exists a gap in the methods used for the diagnosis of CDI. Currently, clinical 

laboratories such as Public Health England, UK recommend the use of a two-step method 

for CDI diagnosis including an initial screening ELISA for the presence of Glutamate 

Dehydrogenase (GDH) antigen followed by testing of positive samples using CCNA or PCR 

(Goldenberg et al., 2010a). Since this approach to C. difficile diagnosis is costly, laborious 

and time consuming, there is an urgent need for the development of the single diagnostic 

test for CDI that is sensitive and specific and which can address the drawbacks of the current 

diagnostic methods. 

 

2.0 Clostridium difficile 

Clostridium difficile (C. difficile) is a Gram – positive, spore forming, anaerobic bacillus which 
 

was first described by Halle and O’ Toole in 1935 (Hall and O'Toole, 1935) and has become 

most common health care associated pathogen (Gerding and Lessa, 2015a). It is the cause of 

C. difficile infection in hospital patients, causing C. difficile associated diarrhoea (CDAD) and 

can lead to a severe life-threatening condition called pseudomembranous colitis (PMC) 

which results in inflammation of the large intestine (Janarthanan et al., 2012). 

 

2.1 C. difficile Infection 
 

2.1.1 Clinical disease 
 

C. difficile spores exist in the environment but can also be found in the normal 

gastrointestinal tract of animals and humans (Burnham and Carroll, 2013). Nearly 1-3% of 

healthy adults and 20-40% of hospitalised patients are expected to carry C. difficile spores 

but show no disease symptoms (Hookman and Barkin, 2009). However, once C. difficile has 

colonised a host there are several factors that may result in the development of severe CDI. 

These include chronic underlying disease, impaired immune response against infection, 

prolonged use of antibiotics and an increased length of stay in hospital (Kuipers and 

Surawicz, 2008). The use of antibiotics such as clindamycin, cephalosporin, penicillin 

and fluoroquinolone (Hensgens et al., 2012) has been associated with CDI. It is presumed 

that the use of multiple antibiotics or prolonged course of antibiotics can disrupt the normal 

gut microbiota, which may cause germination and proliferation of C. difficile followed by 

production of C. difficile toxins (Owens et al., 2008). Symptoms of CDI are dependent upon 
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the production of secreted C. difficile toxins, TcdA and/or TcdB (Rupnik, Wilcox and Gerding, 

2009). There are also non-pathogenic strains that do not express either toxin (Natarajan et 

al., 2013) thus cause no illness. 

 

Clinical features and complications of CDI are variable and depend on the severity of the 

disease which can range from mild diarrhoea, dehydration, nausea, fever, abdominal 

cramps to fulminant pseudomembranous colitis (PMC) (Bartlett and Gerding, 2008). 

Roughly, 4-10% of CDI patients develop fulminant PMC, which is characterised by 

hypotension, increased level of lactic acid, Ileus or toxin megacolon, sepsis, multi-organ 

failure leading to death (Greenstein et al., 2008). 

 

One of the most serious and problematic features of CDI is its recurrence or relapse. In this 

condition, the CDI infection reappears even after the successful treatment of the first 

CDI infection. The recurrence may occur with the same C. difficile strain or as a result 

of reinfection with a different strain (Williams and Spencer, 2009). The reason for relapse is 

still unclear but it may be caused by the antibiotic treatment of the initial CDI which may 

result in germination and proliferation of C. difficile spores on the GI tract. 

 

2.1.2 C. difficile virulence factors 

A) Toxins 
 

C. difficile strains produce three toxins, TcdA, TcdB and a binary toxin (CDT). Both TcdA 

and TcdB are glycosyltransferase toxins encoded by tcdA and tcdB genes respectively and 

are found in single open reading frames located within a 19.6-kb pathogenicity locus 

(PaLoc)(Rupnik, Wilcox and Gerding, 2009). PaLoc also contains three additional regulatory 

open reading frames tcdC, tcdD and tcdE (Figure1). tcdC and tcdD are the regulatory 

genes in which tcdC is a negative regulator of toxin (tcdA and tcdB) production and tcdD is a 

positive regulator of tcdA and tcdB expression. The gene encoding the tcdE (a 

putative holine protein) is speculated to facilitate the release of large toxin molecules 

(TcdA and TcdB) through the permeabilization of the pathogen cell wall (Carter et al., 2014). 
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Figure 1: Pathogenicity Locus (PaLoc) encodes for two large toxins, TcdA and TcdB in the pathogenic 

strain of C. difficile. It is absent in non-pathogenic strain of C. difficile (TcdA- TcdB-). PaLoc comprises of 

fives gene tcdD, tcdB, tcdA, tcdE and tcdC. Figure taken from (Voth and Balllard, 2005) 
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In non-toxigenic strains of C. difficile (TcdA- TcdB-) the PaLoc sequence is replaced by 

127 bp non –coding sequence (Tan, Wee and Song, 2001). 

 

TcdA (308 kDa) and TcdB (270kDa) consist of three functional domains as seen in Figure 2. 

The enzymatic domain or N-terminal Gylcosylatransferase (GT) domain is located at the 

amino-terminus , the receptor binding domain (RBD) is present at the carboxy-terminus and 

there are hydrophobic(HR) amino acids that act as a putative transmembrane segment, 

which is responsible for the translocation of toxin into the cytosols of the host cells 

(Chumbler et al., 2012). The enzyme domain is responsible for glycosylation of 

small GTPases of Rho and Ras families in host cells causing their inactivation leading 

to cytoskeletal variation in host cells. Since Rho was identified as a regulator of cell 

contraction, adhesion, division, and motility , TcdA and TcdB act as a glucosyltransferases 

which affects the molecular function of Rho thus leading to inflammation, angiogenesis, 

and/or atherogenesis of the host cells in CDI (Jank, Giesemann and Aktories, 2007). The RBD 

contains multiple repetitive oligopeptides known as clostridial repetitive oligopeptide 

(CROPs). Sequence and crystralographic analysis of this region reveal that tcdA contains 

between 30 and 38 contiguous repeats whereas tcdB contains between 19 and 24 

residues (Ho et al., 2005). These CROP regions may play a putative role in initial target cell 

interaction and binding of the toxin to the cell surface carbohydrates (Ho et al., 2005).In the 

study done by Ho et al, terminal 127 and 255 residues of receptor binding domain (RBD) of 

TcdA were crystallised which showed that TcdA forms a solenoid like structure, which is 

proposed to increase the surface area of proteins and thus causes protein-protein or 

protein-carbohydrate interaction. 
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Figure 2 : Structure of TcdA and TcdB: TcdA and TcdB consist of four domains: The enzymatic A 

component is an N-terminal glucosyltransferase domain (GT) (red). The B component contains an 

autocatalytic cysteine protease domain (CPD) (blue) , a central translocation domain (TMD) (yellow) 

covering a hydrophobic region (orange) and a receptor binding domains consisting of clostridial 

repetitive oligopeptides (CROPs) (green). 
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TcdA and TcdB are primary determinants of virulence and pathogenicity and produce 

classical symptoms of CDI (Jank, Giesemann and Aktories, 2007). The cytotoxic effect of both 

TcdA and TcdB cause disruption of the actin cytoskeleton and tight junctions, which leads to 

decrease in transepithelial resistance, fluid accumulation and destruction of the intestinal 

epithelium (Carter, Rood and Lyras, 2012). This process of disruption initially 

involves translocation of the toxins in the cytosols followed by glycosylation of Rho GTPases 

as the results of enzymatic activity of the toxins. Finally due to the inactivation 

of Rho proteins, down regulation and inactivation of numerous cell functions occurs such 

as actin cytoskeleton regulation, epithelial barrier functions, wound repairs, cell deaths 

and phagocytosis (Pruitt and Lacy, 2012a) (Figure 3). 
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Figure 3 Action of TcdA and TcdB toxins from C. difficile in the intestine: The C. difficile bacterial cells can be 

seen in red attached to the host cells. The bacterial strains which are toxigenic produce the TcdA and TcdB as 

shown in blue and pink respectively. TcdA binds to the pointed side of the epithelial cells and once it enters the 

cells it causes cytoskeleton changes to the cells which results in disruption and loosening of the epithelial 

barrier, production of inflammatory mediators attracting neutrophils (light blue), cell death and also allows both 

TcdA and TcdB to cross the epithelium. TcdB binds to the basolateral cell membrane and destroys the epithelial 

integrity of monolayer. Accumulation of neutrophils takes place due to the cytotoxic effect of both TcdA and 

TcdB. (Rupnik, Wilcox and Gerding, 2009) 
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The contributions of toxins TcdA and TcdB to pathogenesis has been assessed in animal 

models. Lyras et al in 2009 used a hamster model and with the help of isogenic tcdA and 

tcdB (encoding TcdA and TcdB respectively) mutants of C. difficile strains they revealed that 

purified TcdB is more virulent that TcdA (Lyras et al., 2009). Genetic inactivation 

of tcdA and tcdB genes showed that the absence of TcdA and TcdB results in the absence of 

disease in a hamster model of infection (Kuehne et al., 2010). 

 

B) Binary toxin (CDT) 
 

Binary toxin or CDT is produced by hypervirulent strains of C. difficile strains which is the 

least well understood of the toxins and exact association of the toxin and disease is still 

unknown (Cloud and Kelly, 2007;  Ananthakrishnan, 2011).  It belongs to the family of ADP-

ribosylating toxins consisting of two separate toxins known as CdtA and CdtB encoded by 

their genes cdtA and cdtB respectively as seen in Figure 4. The cdt genes are located in the 

binary toxin locus known as CdtLoc which includes cdtR, encoding a regulator of toxin 

synthesis (Perelle et al., 1997).The function of CdtA is to induce the production of ADP-

ribosyltransferase which causes the breakdown of actin cytoskeleton followed by the 

cell cytopathy, whereas CdtB binds to the host cells and helps in translocation of binary 

toxin A into the cytosol (Gerding et al., 2014). 
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Figure 4 Binary toxin or CDT: It is encoded by the cdt Loc pathogenicity locus comprised of three 

genes cdtA, cdtB and cdtR.cdtA and cdtB encodes for two proteins. cdtB binds to the cells and is a 

translocation component while cdtA is an enzymatic component which helps in enzymatic activity of 

the toxin. The orphan response regulator or cdtR help in the expression of cdtAB genes. Figure taken 

from Rupnik et al., 2009 
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2.1.3 Additional virulence factors 

Other virulence factors produced by C. difficile include proteolytic and hydrolytic enzymes, a 
 

capsule and fimbriae. Hydrolytic and proteolytic enzymes play an important role in 

providing the important nutrients for the growth of bacteria within the gut. These enzymes 

also cause the breakdown of the host tissues to help in adherence and colonisation of the 

colon (Janoir et al., 2007). In about a third of C. difficile isolates fimbriae have been proven 

in an attachment of the pathogen to the gut. The polysaccharide capsule of C. difficile makes 

the pathogen more virulent as it prevents the opsonisation by neutrophils (Haiko and 

Westerlund-Wikström, 2013)2.2 Hypervirulent (HV) strains of C. difficile 

 

The emergence of new HV strains of C. difficile has resulted in higher incidence of 

CDI, increased severity of disease and higher mortality rates (McDonald et al., 2005). HV 

strains cluster into a distinct phylogenetic groups but the most prominent of them is the 

strain that belongs to the ribotype 027, identified as toxinotype III , North American pulsed-

field gel electrophoresis type 1 (NAP1), and restriction endonuclease analysis group 

BI (BI/NAP1/027)(Cookson, 2007). Ribotype 027 is characterised by increased sporulation 

and toxin production. This hypervirulence may be due to an 18 base pair deletion and a 

single nucleotide mutation at position 117 in the toxin regulatory gene (tcdC), the latter 

resulting in a frameshift and premature stop codon leading to a cropped tcdC gene (Curry 

et al., 2007). Since TcdC is a negative regulator of TcdA and TcdB expression, these 

alterations lead     to     increased expression of     both toxin proteins and result increased 

virulence (Spigaglia and Mastrantonio, 2002). This BI/NAP1/027strain produces 16 times 

more TcdA and 23 times more TcdB than normal C. difficile strain (Warny et al., 2005). This 

strain also produces CDT and increased level of proteolytic and hydrolytic enzymes, which 

causes increased colonisation in the gut by increasing adherence to mucosal epithelial cells 

(Deneve et al., 2009). 

 

A second hypervirulent strain of C. difficile is NAP8/078, isolated from calves and pigs. This 

strain is different from the BI/NAP1/027, because this strain shows the 18-bp deletion in 

tcdC which causes down-regulation of toxin management and then additional 21-bp 

deletion in the same gene (Angione et al., 2014). This strain is usually causing CDI in the 
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human population in the rural areas where pigs and calves are raised (Goorhuis et al., 

2008). 

 

2.3 Epidemiology 
 

The mortality rate and the incidence of CDI have increased considerably over the last two 

decades in both the community and hospital settings; probably due to the improper 

administration of antibiotics and spread of the hypervirulent C. difficile strain (Huttunen et 

al., 2012). According to US epidemiological reports, C. difficile has replaced the methicillin-

resistant Staphylococcus aureus (MRSA) as the commonest cause of the infection associated 

in the healthcare system (Miller MD et al., 2011). Several reports from Europe, US 

and Canada, show a 2 to 4 fold increase in the incidence of CDI since the last decade, 

mainly affecting elderly patients who are exposed in the health care settings such as 

hospitals and long-term healthcare facilities (Khanna et al., 2012). In the US, alone 

annually 250,000 CDI cases are reported and 14000 deaths are associated with CDI 

(Centres for Disease Control and Prevention 2013, (Lessa et al., 2015) 

 

According to another study conducted by a research group in Europe names European 

study group on Clostridium difficile (ESGCD), the mean incidence of CDI associated with 

the healthcare system is 4.1 per 10000 hospital patient days (Bauer et al., 2011). Figure 

5, shows that in the UK alone, a significant increase in CDI was seen between 1990 and 

2007. In 2007, over 50,000 cases of CDI were reported out of which 20% belong to the 

younger age group of less than 30 years. Due to these increase in incidences, recurrence 

and mortality, reporting of all CDI cases was made mandatory by Public Health England 

and the C. difficile Ribotyping Network (CDRN) was created to analyse the faecal samples 

collected from NHS laboratories across the UK. After 3 years of analysis (2008- – 2011) 

performed by the CDRN reference laboratory, it was found that the majority of the 

samples contained ribotype 027 and most of these samples belonged to patients above 

65 years of age (Wilcox et al., 2012). However the current data shows that the 

prevalence of C. difficile ribotype 027 has fallen to <5%, showing the ribotype 027 is no 

longer the prominent strain of C. difficile causing CDI in England (PHE, Biennial report 2013-

2015). Decline in these ribotypes led to the compensatory rise in other ribotypes such as 

R002, R005, R014/020, R015, R023 (Public Health England, 2014). 
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The current situation with CDI in the UK is that improvement in the incidence of CDI has 

been achieved because of strict CDI management regime such as antibiotic stewardship, 

mandatory reporting of the CDI, financial penalties on the CDI outbreak within hospitals and 

disinfecting the hospital environment and hand hygiene (Wilcox et al., 2012). Although 

there has been an overall decline in the CDI reported cases has been seen in the UK approx. 

44500 cases in 2004 to approx. 14000 cases in 2014, but there is still an urgent need for the 

development of accurate diagnostic method (England, 2015) 
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2.4 Current diagnostic techniques for C. difficile 
 

CDI is diagnosed based upon clinical symptoms such as diarrhoea, fever, abdominal 
 

pain, leucocytosis, a history of antibiotic administration (Kazanowski et al., 2014) and 

followed by laboratory confirmation. Currently, there are many different assays available 

that can be used for CDI diagnosis; however the best diagnostic method for CDI has still not 

been clearly established (Surawicz et al., 2013). The current diagnostic tests for CDI can be 

divided into three main categories as shown in Figure 6: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Different diagnostic methods used for CDI diagnosis are divided into: 

detection of TcdA and TcdB (yellow), detection of C. difficile (purple) and 

determination of toxigenic C. difficile (red) 
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A. Presence of C. difficile 
 

Culture Method: 
 

George et al., in 1979 developed the first culture method for C. difficile using selective 

cycloserine-cefoxitin fructose agar (CCFA) (George et al., 1979). In order to detect 

the presence of C. difficile, infected stool samples were inoculated to culture media in 

anaerobic conditions. After 48 hours of growth, the C. difficile can be recognised as white 

grey colonies which produce a characteristic smell like horse manure. This is a very 

sensitive method for the detection of C. difficile but limitations in the technique include 

that it cannot distinguish between toxin and non-toxin producing strains (Arroyo et 

al., 2005), moreover, it is laborious and time-consuming. 

 
 

Glutamate Dehydrogenase Antigen Detection: 
 

C. difficile strains produce a relatively large amount of a cell wall associated metabolic 

enzymes known as glutamate dehydrogenase (GDH). Among C. difficile ribotypes, GDH 

appears to be highly conserved and independent of PaLoc structure (Carman et al., 2012). 

Hence, GDH can act as a biomarker for the presence of the C. difficile pathogen in stool 

samples. A rapid and simple immune-enzymatic method such as enzyme immunoassay (EIA) 

(mainly well or membrane type ELISA) is used to detect the GDH enzyme. EIA for GDH is 80 

to 90% more sensitive when compared with the culture method (Crobach et al., 2009). 

These tests also allow the CDI diagnosis to be ruled out by negative results as they have a 

highly negative predictive value range between 94% and 100% (Shetty, Wren and Coen, 

2011) which confirms and excludes the patients that truly don’t have the disease. Like the 

bacterial culture method, a positive result for the GDH test means the presence of C. 

difficile pathogen only, but it does not predict the toxicity of the C. difficile which is the main 

drawback of this test. The GDH test can be used as a sensitive screening test in a dual 

testing algorithm in which only the GDH positive sample are further tested for confirmation 

tests to differentiate between the toxins producing and non-toxin 

producing C. difficile strains (Fenner et al., 2008). However, there is a debate on the choice 

of confirmation test which should be used. The tests that could be combined with the stool 

GDH test for toxin detection on the GDH positive samples are solid – phase toxin A/B EIAs, 

Cell Cytotoxicity Assay and PCR. PCR is the most sensitive and fastest method to confirm 
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the presence of toxigenic C. difficile strain in GDH positive sample (Doing et al., 2010)(Doing 

et al., 2010) (Goldenberg et al., 2010b). (Gilligan, 2008) showed that ELISA’s are less 

sensitive than cell cytotoxicity test, therefore, proposed the use of cell cytotoxicity test as a 

confirmatory test. 

 
 

B. Presence of toxigenic C. difficile 

Toxigenic culture method 

The toxigenic culture method is a two-step gold standard method for the diagnosis of 

C. difficile infection. The test is based on the isolation of C. difficile in a selective culture 

media followed by toxin determination by cell cytotoxicity neutralization assay (CCNA), 

ELISA or PCR-based assay. Although, the toxigenic culture method is very sensitive but the 

long turnaround time (2-5 days) and labour intensive procedure makes it difficult to use in a 

routine laboratory environment. Therefore, this method can be best used as a reference 

method for the evaluation of any new diagnostic tests, new therapies and for 

epidemiological purposes (Planche and Wilcox, 2011). 

 
 

C. Toxin Detection 
 

Cell Cytotoxicity Assay (CTA) 
 

The CTA is an FDA (US) approved method which was first described by Chang et al. in 1978 

for the diagnosis of CDI (Chang, Gorbach and Bartlett, 1978). The method is based on the 

detection of the biological properties of toxicogenic C. difficile in stool samples. The first 

step of the method involves a 24 – 48 hours' incubation of the diluted and filtered stool 

sample onto cultured cell monolayers. After incubation, a specific cytopathic effect can be 

observed in the cells due to the cell cytoskeleton disruption which results in rounding of the 

cell (Pancholi et al., 2012). This cytopathic effect is caused by the cytotoxic activity 

associated with the TcdB. Toxin B is 1000 to 10000 times more potent to 

cause cytopathic effects      than      Toxin A (Sullivan, Pellett and      Wilkins, 1982). 

The cytotoxic effect of the cell is neutralised or reversed by C. difficile antitoxin and if the 

effect is neutralized this confirms that the faecal sample is C. difficile positive. The test is 

very specific and sensitive as it can detect C. difficile toxins (particularly C. difficile toxin B) at 

a picrogram level (Aldeen et al., 2000). However, there are several drawbacks associated 
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with this test, for example as slow turnaround time as the results are not available before 24 

to 48 hours. CTA requires the supply of cultured cell monolayers which makes the method 

expensive and requires a high level of technical expertise to perform which restricts this 

method for easy use in the reference laboratories. Finally, this method is not standardised 

as the results depend on dilution of a stool sample, incubation period and type of cell lines 

used for the monolayer (René et al., 2012) 

 
 

ELISA for TcdA and TcdB: 
 

ELISA is a rapid and easy to perform assay for detection of C. difficile TcdA and TcdB in stool 

samples. In 2009, Crobach et al., did a comparison study in which diagnostic accuracy of 

ELISA for TcdA/ TcdB, GDH ELISA and real-time PCR for diagnosis of C. difficile TcdB was 

evaluated and compared with CCNA and toxigenic culture method. ELISAs gave high 

specificity but relatively low sensitivity in detecting CDI. However, due to the lower relative 

sensitivity to detect the toxigenic C. difficile , Society for Healthcare Epidemiology of 

America and Infectious disease of America CDI guidelines state that ELISA for C. 

difficile toxins are sub optimal and are not suitable for use as a single standalone test for CDI 

diagnosis (Cohen et al., 2010). 

 
 

Molecular Methods 
 

Rapid molecular methods such as the PCR and loop-mediated isothermal amplification 

(LAMP) can be used for CDI diagnosis (Surawicz et al., 2013).The primary targets for these 

methods are the C. difficile tcdA and tcdB and PaLoc accessory genes (Spigaglia and 

Mastrantonio, 2002). As compared to other non-culture based methods (EIAs and LFDs), 

molecular methods have a higher sensitivity but they can only detect the presence of C. 

difficile toxin genes and not the toxin (protein) itself, therefore, they provide no 

information on toxin expression levels or pathogen viability (Platts-Mills, Liu and Houpt, 

2013). According to Crobach et al 2009, although PCR-based assays are highly sensitive they 

cannot be used as a single standalone test because of their low positive predictive values. 

Crobach et al recommended using them as a screening test in the endemic situation 

emphasising mainly on the negative test results. For instance, if a sample tested with the 

PCR gives the negative result than CDI can be excluded but if the sample gives a positive 
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result than a confirmatory test has to be performed in order to recognise the sample a truly 

positive. 

There are currently FDA approved qPCR assays available commercially; for detection of 

tcdA genes, 1) Xpert® C. difficile , Cepheid , Sunnyvale, USA, 2) illumogene®, 

Meridian Bioscience, OH, USA and 3) AmpliVue® and 4) QUIDEL Molecular, CA, USA are 

available. Whereas, few methods are designed to target the gene tcdB for instance , 1) 

BD GeneOhm C diff Assay, 2) BD Diagnostics ,NJ, USA; 3) D MAX Cdiff , BD Diagnostics and 4) 

Simplexa™ C. difficile universal Direct, France ). 

 
 

Two-Step laboratory testing algorithm 
 

Limitations in sensitivity and specificity of a common rapid diagnostic test have led to the 

development of several two - step as well as a three-step algorithm method to improve the 

diagnostic accuracy for CDI. The two-step algorithm method includes an initial screening 

ELISA for the presence of GDH antigen followed by testing of positive samples using CCNA 

(Goldenberg et al., 2010a). Table1.1, interprets the outcomes of the recommended two step 

algorithm workflow for CDI. Figure 7 shows a two-step algorithm method for diagnosis that 

has been standardised and adopted by different societies and is used in different hospitals 

in US, UK and Europe. The societies that recommend the usage of this method are for 

example American Society of Microbiology in the US, European Society of Clinical 

microbiology and infectious diseases and NHS laboratories in England. This two-step 

algorithm method can further be extended by adding third confirmatory testing method of 

toxin gene PCR (Nucleic acid amplification test - NAAT) which now makes this method a 

three-step algorithm method. According to the department of health, third step can be 

used as an optional step and is not mandatory according to the guidelines. 
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Figure 7: Two step algorithm method for CDI diagnosis (figure taken from PHE, 2014) Different 

combinations of diagnostic methods are used for accurate diagnosis of CDI, but for increased 

accuracy, PCR assay are also performed as a third step (optional) for confirmation of CDI. 
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Results of 2 step 
Algorithm 

 

Interpretation 

 
 

GDH EIA (or NAAT*) 
positive, toxin EIA 
positive 

 
 
 

CDI is likely to be present 

 
 

GDH EIA(or NAAT) 
positive, toxin EIA 
negative 

 
 

C. difficile could be present; patient may be 
carrying the pathogen without any 
symptoms. Patient could be potential C. 
difficile excretor. 

 
 

GDH EIA (or NAAT) 
negative , toxin EIA 
negative 

 
 

C. difficile or CDI is very unlikely to be 
present. 

 

Table 1.1 Interpretation of two step-algorithm method for CDI diagnosis 
 

(Table modified from PHE, 2014). 
 

*NAAT: Nucleic acid amplification test. 
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This approach of two-step algorithm C. difficile diagnosis is costly, laborious and time-

consuming therefore, there is an urgent need for the development of the single diagnostic 

test for CDI that is sensitive and specific and which can address the drawbacks of the current 

diagnostic methods. We aim to develop the rapid diagnostic methods for CDI based on 

proximity ligation assay. Such an assay will be more physiologically relevant than PCR and 

will provide the specificity of an ELISA whilst making use of the sensitivity of the PCR. 

 

3. Proximity Ligation Assay 
 

3.1 Introduction 

The proximity ligation assay (PLA) is a technology that is used for detection, quantification 
 

and localization of proteins. The method requires two DNA tagged antibodies which bind to 

the same protein or protein complex, allowing their attached DNA molecules 

to come into close proximity which are then hybridised by a connector oligonucleotide (by 

enzymatic ligation) to form a DNA template. The amplification of the DNA template can be 

done by either real-time PCR or isothermal amplification. 

 

PLA was first demonstrated in 2002 (Fredriksson et al., 2002). In the beginning, two DNA 
 

aptamers (ssDNA that can bind to the target proteins) were used for PLA (Famulok, Mayer 

and Blind, 2000), which bind their target antigen and have target binding specificity and 

affinity comparative to monoclonal antibodies (Pai, Roberts and Ellington, 2008). However, 

difficulties in designing aptamers and availability of large range of commercial antibodies, 

resulted in the development of antibody-based PLA (Fredricks and Relman, 1999); (Gullberg 

et al., 2004). PLA combines the specificity of antibody-based assays with the sensitivity and 

broad dynamic range of real-time PCR together with a simplified workflow and faster 

turnaround time (Ke et al., 2013). Currently, different types of PLA has been developed for 

many applications such as analysis of cellular protein/protein interaction (Gajadhar and 

Guha, 2010), cancer biomarker analysis and other proteomic studies (Söderberg et al., 

2007) but there has been only a single report for demonstration of proof of principle on 

development of PLA for detection of a pathogen, Lawsonia intravellularis and 

porcine parvovirus. The PLA demonstrated the same sensitivity as nucleic acid based 

tests (Gustafsdottir et al., 2006). 
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3.2 Type of PLAs 

1. The homogenous PLA: The assay uses two proximity probes (3’ and 5’), prepared by non- 
 

covalent binding of biotinylated antibodies with two different streptavidin modified 

oligonucleotides which are non-complementary to each other (Fredriksson et al., 2002). 

The proximity probes are incubated with the target antigen and a connector 

oligonucleotide, which can hybridise to both proximity probes if the probes bind to 

adjacent epitopes on the target antigen. A ligation step joins the 3’-end of one of the 

two streptavidin-linked oligonucleotides to the 5’-end of the other, generating a DNA 

molecule that can be amplified and detected real-time PCR amplification. The workflow for 

homogenous PLA is illustrated in Figure 8. This method has many advantages over current 

molecular and antibody-based assay such as the accurate detection of target molecules with 

significantly reduced problems of cross-reactivity in complex samples, high sensitivity due to 

low background noise, faster turnaround time (Gustafsdottir et al., 2005) and a higher 

dynamic range than ELISA. 
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PP1 

 
 
 
 
 
 
 
 
 

PP2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Homogenous PLA workflow: A) Biotinylation of antibodies: Antibodies are attached to biotin (purple cone) and 

excess biotin is removed by dialysis. The efficiency of biotinylation is determined by Forced Probe Proximity Test (FPPT) 

(not shown in diagram). B) Preparation of proximity probes: Two proximity probes (PP1 and PP2) are prepared by 

noncovalent binding of two non-complementary streptavidin- modified oligonucleotides to biotinylated antibodies C) PP1 

and PP2, a connector oligonucleotide (‘splint’) (complementary to the 3’ end of one and the 5’ end of the other 

oligonucleotide) and the sample containing the target antigen are mixed together and incubated for an hour at 20˚C. D) 

Incubation helps in binding of probes with the antigen and hybridization to the connector E) A ligation step joins the 3’-

end of one of the two streptavidin-linked oligonucleotides to the 5’-end of the other, generating Ligation product as DNA 

molecule. F) Finally these ligation products can be detected and quantified by real-time PCR. Ref: Greenwood, Christina 

2015 
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The homogenous PLA was further developed to create a more specific assay that requires 

the binding of three independent affinity reagents to the same target molecule thus 

enhancing the specificity of the signal generated. This method is known as triple specific 

proximity ligation assay (3PLA). Despite showing high sensitivity than standard homogenous 

PLA, no further development and published research has been done using 3PLA. This may 

be due to the need for three probes which increases the complexity and price of the assay. 

 

2. Solid phase PLA (SP-PLA) 
 

SP-PLA is another form of PLA which is dependent on three binding events of the antibody 
 

(see figure 9). It uses the capture antibody in order to immobilise target protein onto a solid 

phase. Firstly, the sample is combined with a capture antibody the unbound antigen is 

removed by washed with buffer. The capture antibody and antigen complex is then 

incubated with the proximity probes and thus target antigen is sandwiched between the 

proximity probes and the capture antibody. After the probe binding step, a further wash 

step removes the unbound proximity probes. Finally, the ligation and qPCR steps are carried 

out as with homogenous PLA (Nong et al., 2013). This method shows more sensitivity, 

specificity and has greater dynamic range than the homogenous PLA, (Darmanis et al., 

2010). 

The sensitivity and specificity of sp-PLA are increased due to the additional binding event 

through the capture antibody. Moreover, sensitivity and specificity are also increased by 

washing steps in this assay which causes the removal of unbound antigen, proximity probes 

and excess reagent reducing the risk of cross-reactive detection of the antigen other than 

target antigen and reducing background amplification. The method may also be very useful 

for detecting proteins directly from bio-fluids such as blood and faeces as the washing step 

may remove ligation or PCR inhibitors present in them. 
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Figure 9: Solid Phase PLA (SP-PLA) is similar to standard sandwich immunoassay in which A) 

antibody specific to an antigen (yellow) is captured on a solid surface B) antigen is combined to 

capture antibody followed by washing off the unbound antigens. C) Binding of the antigen 

antibody complex is detected by qPCR-PLA. Greenwood et al 2015 
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3. In situ proximity ligation assay (in situ PLA): 
 

Another modification of PLA is, in situ PLA which uses rolling circle amplification (RCA) for 

the detection of individual proteins and protein-protein interaction in cell lines and tissues 

(Söderberg et al., 2006). In this method, cell or tissues are fixed on a slide and proximity 

probes are added causing binding of two proximity probes to the same protein complex in 

the sample. Oligonucleotides conjugated to the antibodies come in proximity which is 

hybridised by the addition of two connector oligonucleotides. The addition of ligase to this 

complex causes the ligation and seals the gap to form a circular DNA molecule. This newly 

formed circular DNA molecule is then amplified by isothermal amplification method known 

as RCA. (Figure 10) 
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1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 
 

Figure 10: In situ PLA: 1) the antigen complex (yellow and blue) is probed with one oligonucleotide 

coupled antibody for each protein. To the oligonucleotides, two pieces of single stranded DNA (the short 

one is named splint and the long one is termed the backpiece) can hybridise. 2) After ligation of them, a 

DNA polymerase (green) uses the circle as a template, producing a long strand of ssDNA to which 

fluorescently labelled detection probes are able to hybridise. The analysis is then continued by 

fluorescence microscopy. (Gabriele et al 2009) 
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The RCA uses phi29 DNA polymerase for amplification of circular DNA because if its 

proofreading activity with low error rate of 1 in 106 Bp thus making the RCA more accurate 

and efficient (Yang et al., 2007). The RCA is initiated by using one of the proximity probes as 

a primer and after the first cycle of amplification the phi 29 polymerase displaces to the 

newly created strand and repeated cycles of amplification results in the formation of long 

single stranded DNA molecules which consists of multiple copies of the same DNA 

sequences linked in series. The amplified product is then detected through hybridization of 

fluorescence – labelled oligonucleotide complementary to a tag sequence in the RCA 

product (Söderberg et al., 2008) 

 

3.3 Applications of PLA 
PLA has been used to quantify and evaluate proteins in diverse sample types and 
 

applications. The use of the low volume of sample in homogenous PLA and the ability of 

solid phase PLA to investigate larger sample volumes made this technology a useful tool 

for proteomic studies ranging from detection of cancer biomarkers, stem cell proteins 

protein-protein complex (Swartzman et al., 2010), protein-mRNA correlation. 

 

With regard to pathogen detection very few studies have been done such as avian influenza 

virus (Schlingemann et al., 2010) and bacterial markers have also been identified using 

proximity assays. PLA for the detection of pathogens was first demonstrated with the 

development of both homogenous and solid phase PLA for Lawsonia intracellularis and 

porcine parvovirus (Gustafsdottir et al., 2006) showing 100 times more sensitivity than 

standard ELISAs and similar sensitivity to qPCR. Foot and mouth disease virus has also been 

detected using homogenous PLA with sensitivity 100 fold more than standards ELISAs and 

comparable analytical sensitivity to reverse transcription-qPCR (Nordengrahn et al., 2008). 

PLA using a different detection method other than qPCR has also been used for 

identification of pathogen such as isothermal loop-mediated amplification for detection 

of Brucella abortus responsible for causing brucellosis (Zhu, Deng and Shi, 2009) and RCA – 

PLA for detection of RNA viruses such as human and avian influenza virus (Schlingemann et 

al., 2010) which does not require any nucleic acid extraction procedure and costly 

equipment as in standard PCR method. Moreover, due to the high variability of RNA virus, 

nucleic acid based methods are not consistent, thus, detection of protein using PLA may 

provide information about the on-going infection. 
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PLAs have been used to analyse functional differences between mutations, which may help 

with the development of mutation-specific targeted therapies. For example in glioblastoma 

multiforme which is the most common primary brain tumour, in situ PLA helps in 

identification of mutant epidermal growth factor receptor (EGFR) dimer configuration which 

is capable of evading the blockade caused by anti-EGFR therapeutics (Gajadhar et al., 2012). 

Therefore, PLA method can also be very useful in the detection of pathogens, that shows 

frequent antigenic shift or drift such as influenza virus A and B. The genetic variation can 

interfere with current diagnostic assays but the use of antibodies that target the highly 

conserved nucleoproteins could allow proximity assays to be more robust to genetic 

variation. Sensitive and specific multiplex assays for pathogen detection is very important, 

therefore, if appropriate antibodies or aptamers are identified for the pathogens, 

development of PLA for detection of multiple pathogens in a single reaction will be very 

useful in diagnostic and monitoring of bio warfare agents and also differentiate between the 

pathogenic and non-pathogenic strain of pathogen in a single PLA reaction. 

 

3.4 Limitations of PLA 

Although PLAs have many advantages over standard diagnostic methods such as ELISAs or 
 

PCR, there are some drawbacks which are restraining the wider use of PLA. One of the main 

limitations is that it is highly dependent upon the quality of the antibody used in the probe. 

Therefore, in order to get successful analytical and diagnostic sensitivity and specificity of 

PLA, a source of suitable antibodies is needed which are difficult to generate as compared to 

the generation of oligonucleotides for nucleic acid based test (NATs). Moreover, the 

performance of antibodies varies from batch to batch, therefore, adding to the variation in 

the PLA results and may require reoptimisation of the assay with every new batch of 

antibodies (Marx, 2013). The recent innovations in aptamers technology add to the range of 

binding reagents that complement the vast pool of antibodies that can be used for this 

assay. 

 

A further limitation in applying PLA as a clinical diagnostic method is the detection of 
 

background signal due to nonspecific ligation of oligonucleotides in the absence 

of antigen (Nong et al., 2013). This nonspecific background signal can be minimised by the 

use of solid phase PLA, which uses magnetic beads as solid supports for the capture and 
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separation of the target molecule from unbound probes and antibodies. However, it 

requires multiple washing steps making the method laborious and time consuming (Jiang et 

al., 2014). The triple specific PLA (3PLA) also has limitations as it is complex due to the use of 

three probes hence makes it difficult to be used as the clinical diagnostic method. 

 

In conclusion, PLA provides an integrated approach to the quantification of 

protein, protein/protein interaction     and pathogen detection using the specificity of 

antibody- based assay and sensitivity and broad dynamic range of PCR. The broad dynamic 

range of PLA (up to 6 logs) is an additional advantage in case of pathogen detection as the 

individual sample is likely to contain both abundant and the scarce target antigen. 

Availability of proximity assays in numerous variants provides flexibility and adaptability of 

an assay in the detection, quantification and localization of the protein. Finally, PLAs have a 

great potential to be developed as fast, ultra-sensitive and highly convenient assay for 

diagnosis of pathogens and proteins following further advancement in instrumentation and 

reagents. 
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Chapter 2 
 
 

Materials and Methods 
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4.0 Materials 
 

4.1 Equipment 

The equipment used in the study is listed in Table 2.1 below. 
 
 

Equipment Name of Equipment Company 

 
 
 
 
 
 

Pipettes 

mLine pipettes 
 

0.1µL - 3µL 
 

0.5µL - 10µL 
 

2µL - 20µL 
 

10µL - 100µL 
 

20µL - 200µL 
 

100µL - 1000µL 

 
 
 
 
 
 

Sartorius Ltd, Epsom, UK 

 

Centrifuge 
 

Rotina 380 R centrifuge 
Hettich Zentrifuge, Tutttlingen, 

Germany 

Microfuge 5424 Microfuge Eppendorf, Stevenage, UK 

 

ELISA Reader 
iMark Microplate Absorbance 

Reader 
160-1130, Biorad, Hemel 

Hemstead, UK 

QPCR Biorad CFX Connect Biorad, Hemel Hempstead, UK 

 Eco48 PCR PCRMax, Stone, UK 

  

TC9639 Flatbed thermal cycler 
Denville Scientific Inc. South 

Plainfield, USA 

Digital PCR (dPCR) Constellation dPCR instrument Formulatrix, Bedford, MA, USA 

 

Water Bath 
 

Grant Sub Aqua pro 
Grant Instruments Ltd., 

Cambridgeshire, UK 

 

Western Blotting 
Electrophoresis Unit 

 
miniVE Integrated Vertical 

Electrophoresis Unit 

Fisher Scientific UK Ltd., 
Loughborough, UK 

 

Electrophoresis power supply 
 

EPS3501 XL 
GE Healthcare Life Sciences Ltd., 

Buckinghamshire, UK 

Table 2.1 Equipment used in the study 
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Antigen Type 
Molecular 

Weight 

 

Strain 
 

Amount 
 

Concentration 
 

Source 

 
 

C. difficile TcdA 

 
 

308kDa 

 
 

VPI 10463 

 
 

100µg 

 
 

0.4mg/mL 

The Native 

Antigen 

Company, Upper 

Heyford, UK) 

 
 
 

C. difficile TcdB 

 
 
 

270kDa 

 
 

VPI 10463 

(toxinotype 0) 

 
 
 

100µg 

 
 
 

0.4mg/mL 

 

The Native 

Antigen 

Company, Upper 

Heyford, UK) 

 

 

4.2 Antigens 
 

Purified and lyophilised C. difficile TcdA and TcdB, (The Native Antigen Company, Upper 

Heyford, UK) bought contained 0.05M Hepes, 0.15M NaCl and 5% sucrose. Details such 

as molecular weight, concentration, and strain and catalogue number are shown in table 

2.2. The lyophilised antigens were reconstituted in 250µL of sterile distilled water 

(10245203, Thermo Scientific, Loughborough, UK), giving final concentrations of 0.4µg/µL 

and 0.4µg/µL of antigen, respectively. 10 aliquots of antigen (25µL) were stored at -

80°C. Once the antigen was taken out of the -80°C and thawed, the aliquot was stored 

at 4°C for up to 1 month. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.2 List of C. difficile toxins used in the study 
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4.3 Antibodies 
 

The anti-C. difficile TcdA and TcdB antibodies that were utilised in this thesis, the company 

from which they were supplied and the concentration they were used at and the antigens 

they were raised against are shown in table 2.3. 

 
 
 
 

 

Antibody 
 

Host 
 

Specificity 
 

Immunogen 
Final 

Concentration 

 

Source 

 
 

Anti-Clostridium 

difficile toxin A IgG2a 

(PCG4) 

 
 

Mouse 

monoclonal 

 
 

C. difficile 

toxin A 

only 

 
 

Full length 

Protein (C. 

difficile) 

 
 
 

1.160mg/mL 

 
 

#Ab19953, Abcam, 

Cambridge, UK 

 
 

Clostridium difficile 

toxin B IgG1 

Antibody(5A8-E11) 

 
 

Mouse 

monoclonal 

 
 

C. difficile 

toxin B 

only 

 
 

Full length C. 

difficile Toxin 

B Protein 

 
 
 

1.14mg/mL 

 

#ABIN234836, 
 

Antibodies-online, 

Aachen, Germany) 

 
 

Clostridium difficile 

toxin B Antibody (IgY) 

 
 

Chicken 

Polyclonal 

 
 

C. difficile 

toxin B 

Full length C. 

difficile Toxin 

B Protein with 

Freund’s 

adjuvant 

 
 
 

2mg/mL 

 

#PAB29154, Abnova, 

Tapei, Taiwan 

Table 2.3 List of C. difficile antibodies used in the study 
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5.0 Methods 
 

5.1 Biotinylation of antibodies 
 

Biotinylation of the antibodies was performed using two different methods, EZ-Links Sulfo-

NHS-LC-Biotin, No-Weigh Format Biotinylation kit (21327, Thermo Scientific, Loughborough, 

UK) and APEX Biotin-XX Ab labelling method (Thermo Scientific, Loughborough, UK). 

 
5.1.1 EZ-Links Sulfo-NHS-LC-Biotin, No-Weigh Format Biotinylation method 

 

Component Name of Component Company 

 
 
 

Antibodies 

 
 

50µg of each antibody 
Anti-clostridium difficile toxin A 

IgG2a (PCG4) 

 
 

#Ab19953, Abcam, Cambridge, 
UK 

  
 

Clostridium difficile toxin B IgG1 
antibody(5A8-E11) 

 
 

#ABIN234836, 
Antibodies-online, Aachen, 

Germany) 

  
 

Clostridium difficile toxin B 
antibody (IgY) 

 

#PAB29154, Abnova, Tapei, 
Taiwan 

 

Buffer 

 

1X PBS , pH 7.4 

 

10051163, Thermo Scientific, 
Loughborough, UK 

 
 

Dialysis Unit 

 
 

Slide A –Lyzer mini dialysis units 
MCO 7000 

 
 

69562, Thermo Scientific, 
Loughborough, UK 

Table 2.4 EZ-Links Sulfo-NHS-LC-Biotin, No-Weigh Format Biotinylation components 
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The components for EZ-Links Sulfo-NHS-LC-Biotin, No-Weigh Format Biotinylation method 

are described in Table 2.4. In this method, 50 µg of antibody was added to 1x PBS, pH7.4 

making a final volume of 200µL to which 0.67µL of 10 nM biotin was added. Tubes were 

centrifuged at 10,000 g for 10 seconds and incubated at 20°C for 1 hour. Two times 100µL of 

each antibody-biotin solution were transferred to two Slide A –Lyzer mini dialysis units with 

MCO 7000 KDaltons (pore size) per antibody and free biotin was removed by dialysis in 500 

mL of 1x PBS, pH 7.4 at 4°C. The buffer was changed 5 times; 1st after 2 hours and then 3 

times after every one hour followed by overnight dialysis against 1 litre of a buffer. 

 

A modified dialysis step was also performed by doing using the same dialysis process as 

described above for 2 consecutive days. The flow chart F1 below describes the steps 

involved in the EZ-Links Sulfo-NHS-LC-Biotin, No-Weigh Format Biotinylation method. 
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Step 1 
Antibody Preparation 

200µL of antibody solution of 

concentration 0.5µg/µL is prepared 
 
 
 
 

Step 2 
Combining Antibody-Biotin solution 

Biotin is added to antibody solution at 
recommended biotin to antibody 

labelling ratio of 20:1 
 
 
 

Step 3 
Mixing and Centrifuge 

Antibody-biotin solution is mixed and 
spun at 10,000 g for 10 seconds 

 
 
Biotin labelling reaction 

 
 
 

Step 4 
Incubation 

Antibody-biotin solution is incubated 
at 20˚C for 1 hour 

 
 
 

Step 5 
Dialysis 

Antibody-biotin solution is transferred 
to Slide A – Lyzer dialysis unit MCO Removal of Free Biotin 

7000 and dialysed in 1X PBS 
 
 
 
 

Step 6 (as per protocol) 
Changing dialyses buffer 
Buffer is changed 4 times 

1st time after 2 hours than 3 times 
after each 1 hour and then overnight. 

Step 6 (modified dialysis) 
Changing dialyses buffer 
Buffer is changed 4 times 

1st time after 2 hours than 3 times after 
each 1 hour and then overnight and same 

repeated on second day 
 
 

Step 7 
Storing biotinylated Ab 

Transfer biotinylated antibody to new storage tube and store it at -80˚C after 
adding equal volume of Ab storage buffer containing fish gelatin. 

 
 

Flowchart F1 : Steps involved in the EZ-Links Sulfo-NHS-LC-Biotin, No-Weigh Format Biotinylation 

method. 
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Component Name of Component Company 

 
 
 
 

Biotinylation kit 

 
 
 

APEX Biotin-XX Ab labelling kit 

 
 
 

A10495, Invitrogen Ltd, Paisely, 

UK 

 
 
 

Antibodies 

 

50µg of each antibody 
Anti-clostridium difficile toxin A 

IgG2a (PCG4) 

 
 
 

#Ab19953, Abcam, Cambridge, UK 

 
 

Buffer 

 

1X PBS , pH 7.4 

 

10051163, Thermo Scientific, 
Loughborough, UK 

 
 
 

Dialysis Unit 

 
 

Slide A –Lyzer mini dialysis units 
MCO 7000 

 
 

69562, Thermo Scientific, 
Loughborough, UK 

 

 

5.1.2 APEX Biotin-XX Ab labelling kit 

The table 2.5 describes the components used for Apex Biotin-XX Ab labelling kit is as 
 

follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.5 Components for Apex Biotin-XX Ab labelling kit 
 
 
 

The flow chart F2 below shows that steps involved in the Apex Biotin-XX Ab labelling 

method for biotinylation. The APEX antibody-resin was hydrated by applying 100μl of wash 

buffer (Component C) to the resin in the labelling tip. 10μL of antibody solution was applied 

to the top of the resin. The antibody solution was gently pushed onto the resin using the 

elution syringe (Component H), any drops that eluted from the tip were discarded as waste 

to the vial of reactive dye (Component A), and following were added to the tube; 

a. 2μl Dimethyl sulfoxide (DMSO), (Component D); then pipetted up and down to dissolve. 
 

b. 18μl Labelling buffer (Component E); pipetted up and down to dissolve. 10μl of this 

was added to the top of the resin, and the solution was gently pushed through. 

Any dye that eluted from the tip was discarded as waste. The tip was incubated at room 

temperature for 2 hours. The APEX antibody labelling tip was washed twice with 50μL of 

wash buffer (Component C) by applying 50μL to the top of the resin, pushing through the tip 
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into the microcentrifuge tube. 10μL of neutralisation buffer (Component F) was added to a 

clean microcentrifuge tube and the APEX antibody labelling tip was transferred to this tube. 

40μl of elution buffer (Component G) was applied to the top of the resin. This was pushed 

through the tip to elute the labelled antibody into the microcentrifuge tube containing 

neutralisation buffer. The 50µL of eluted solution was mixed to ensure neutralisation and 

the tube placed on ice. 

The biotin-labelled Ab solution was extensively dialysed in cold PBS (pH 7.4) using the 

Thermo Slide-A-Lyzer MINI Dialysis Unit. 
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Step 1 
Prepare the Apex antibody 

Labelling tip 
 
 
 
 
 

Step 2 
Addition of antibody 

Apply antibody solution to the resin 
in the tip and push the Ab solution 

onto the resin 
 
 
 
 

Step 3 
Prepare reactive dye 

Mix DMSO and Labelling buffer to 
prepare reactive dye 

 
 
 
 

Step 4 
Addition of reactive dye 

Add reactive dye onto the resin and 
push gently 

 
 
 
 

Step 5 
Incubation 

Incubate the tip for 2 hours at room 
temperature 

 
 
 
 

Step 6 
Washing 

Wash twice the labelling tip with 
washing buffer supplied and add 

neutralization buffer to stop binding 
reaction 

 
 

Flowchart F2: Steps involved in the Apex Biotin XX Ab labelling 
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5.2 Forced Proximity Probe Test (FPPT) 
 

 

Reagents kit 

 

Reagents 

 

Company 
 
 

TaqMan® Protein 
Assays Oligo Probe Kit 

 
 

3′ Prox-Oligo, 200 nM 
5′ Prox-Oligo, 200 nM 

 
 
 

#4453745 Life Technologies, USA 

 
 
 
 
 
 

TaqMan® Protein 
Assays Open Kit 

 
 
 
 

Antibody Dilution Buffer II 
Assay Probe Storage Buffer II 

Assay Probe Dilution 
Buffer II 

 
 
 
 
 
 

#4483013 Life Technologies, USA 

 
 

TaqMan® Protein 
Assays Core Reagents 

Base Kit 

 
 

DNA Ligase II (250X) 
Universal PCR Assay II (20X) 

Fast Master Mix, 2✕ 

 
 
 

#4483013 Life Technologies, USA 

Table 2.6 Components for FPPT 
 
A forced proximity probe test (FPPT) was performed according to the manufacturer’s 

protocol (Life Technologies, Carlsbad, CA, USA), to determine whether the antibodies to be 

used in the PLA were adequately biotinylated. The components used for the FPPT are shown 

in Table 2.6 and the steps involved in a FPPT are shown in flowchart F3. The concentration 

of biotinylated antibody stored at -80˚C was 0.25mg/mL. Biotinylated antibodies were 

diluted to 200nM by adding 44µL of Antibody Dilution Buffer II to 6µL of biotinylated 

antibody. Prox-Oligo mix was prepared by combining 5µL 200nM of 5’ Prox-Oligo (5’ 

Streptavidin linked oligonucleotide) and 200nM of 3’ Prox-Oligo (3’ Streptavidin linked 

oligonucleotide). The prox-oligo mix was mixed gently and centrifuged at 10,000g for 10 

seconds. 

 

The Forced Proximity Probe (FPP) as shown in table 2.7 was made by combining 2µL of 

diluted 200nM biotinylated antibody to a 2µL of the prox-oligos mix. A negative control was 

also included in which 2µL of Antibody Dilution Buffer II was added to the 2µL of 200nM of 

prox-oligo mix. The negative control (NC) does not contain biotinylated antibody. 
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Reagents Forced Proximity Probes No Protein Control 

200nM oligo mix 2µL 2µL 

200nM biotinylated 
 

antibody 

 

2µL 

 

----- 

Antibody Dilution Buffer 
 

II 

 

----- 

 

2µL 

Table 2.7 Forced Proximity Probe mix 
 
The FPP and negative control were centrifuged (10,000g for 10 seconds) and incubated at 

20°C for 1 hour to bind the streptavidin-linked oligonucleotide to the biotinylated antibody. 

Assay Probe Dilution Buffer II (36µL) was added to both forced proximity probe and NC and 

incubated for 30 minutes at 20°C. Following the incubation 98µL of Assay Probe Dilution 

Buffer II was added to both the forced proximity probe and negative control and was mixed 

and centrifuged at 10,000g for 10 seconds. 

 

Diluted FPP and negative control (4µL each) were aliquoted in quadruplicate to a 96 wells 

PCR plate. To each well containing FPP (4 wells) and NC (4 wells), 16µL of ligation/PCR 

mixture was added (Table 2.8). The fluorescently labelled connector oligonucleotide and the 

primers are present in Universal PCR Assay II (20X). 

 
 
 
 

 

Components 

Final 

Concentration/20µL 

Rxn 

 

Volume (µL) per 

reaction 

Fast Master Mix II (2X) 1X 10 

DNA Ligase II (250X) 1X 0.076 

Universal PCR Assay 

(20X) 

 

1X 
 

1 

Nuclease-free water  4.92 

Total  16 

Table 2.8 Reagents used for single PCR/Ligation reaction for the FPPT 
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Function Temperature (°C) Time Cycles 

Ligation Step 25 5 minutes 1 

Ligation 

deactivation and 

Denaturation 

 

95 

 

2 minutes 

 

1 

Denaturation 95 5 seconds 40 

Amplification 60 30 seconds 40 

 

 

Real-time PCR was performed using CFX Connect real-time PCR detection system using 

thermal conditions as shown in Table 2.9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.9 Thermal Cycling Conditions used in the FPPT 
 

Real-time PCR data were analysed using threshold setting at 103 and an automatic baseline. 

This resulted in Cq (quantification cycle) values. The ΔCq is calculated as the difference in the 

average of the Cq values obtained for the forced proximity probe and NC. 

 

Cq= average Cq (NC) – average Cq (FPP) 

 
 

The biotinylation efficiency is measured as a ΔCqvalue and if ΔCq >8.5 this indicates that the 
 

antibody has passed the FPPT and can be used further for TaqMan Protein Assay II. 
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Step 1 
Antibody Dilution 

Dilute the biotinylated antibody to 200nM with 
ADB II 

 
 
 

Step 2 
Prepare Prox-Oligo Mix 

Prepare Prox-Oligo mix by combining equal 
volume of each 3’oligo and 5’ oligo followed by 
mixing and centrifugation 

 
 
 

Step 3 
Probe Preparation 

Prepare forced proximity probe by combining 
prox-oligos and B-Ab and negative control by 
combining prox - oligo with ADB II 

 

Prox-oligo 3’ Prox-oligo 5’ 

 
 
 
 
 
 
 
 
Prox-oligo 3’ 

 
 
Prox-oligo 5’ 

 
 
 

Step 4 
Binding reaction 

Prepared forced proximity probe and negative 
control is than incubated at 20˚C for 1 hour. 

 
 
 

Step 5 
Probe Dilution 

Forced proximity probe and negative control are 
diluted with APDB II and incubated at 20˚C for 
20 minutes. 

 
 
 

Step 6 
Ligation/PCR reaction 

Ligation/PCR mix is performed 

PCR 

Flowchart F3: The steps involved in a Forced proximity Probe test (FPPT 
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5.3 Storage of biotinylated antibodies 
 

Biotinylated antibodies were stored at -80°C, -20°C or 4°C after adding an equal volume of 

Antibody Dilution Buffer II (supplied in TaqMan® Protein Assays Open Kit (# 4453745, Life 

Technologies ,USA) which helps in the stability of the antibodies. The final concentration of 

the entire stored biotinylated antibody after adding an equal volume of Antibody Dilution 

Buffer II is 0.125mg/mL. 

 

5.4 PLA 

To perform a robust and accurate PLA several preparatory steps were performed to ensure 
 

all the components are optimised. These steps are shown in Flowchart F4. 
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Flowchart F4 Preparation Steps for Proximity Ligation Assay 
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The components used for performing Proximity ligation assay are as follows (Table 

2.10) 

 
 
 

Reagents kit Reagents Company 

 
 
 

TaqMan® Protein 
Assays Oligo Probe Kit 

 
 

3′ Prox-Oligo, 200 nM 
5′ Prox-Oligo, 200 nM 

 
 
 

#4453745 Life Technologies, 
Carlsbad, CA, USA 

 
 
 
 
 
 
 

TaqMan® Protein 
Assays Open Kit 

 
 

Antibody Dilution Buffer II 
 

Assay Probe Storage Buffer II 
 

Assay Probe Dilution 
 

Buffer II 
 

Serum Dilution Buffer II 

 
 
 
 
 
 
 

#4483013 Life Technologies, 
Carlsbad, CA, USA 

 
 

TaqMan® Protein 
Assays Core Reagents 

Base Kit 

 
 

DNA Ligase II (250X) 
Universal PCR Assay II (20X) 

Fast Master Mix, 2 X 

 
 

#4483013 Life Technologies, 
Carlsbad, CA, USA 

Table 2.10 List of reagents for PLA 
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5.4.1 Preparing Proximity Probes (3’ and 5’) 

Two proximity probes for each antibody were prepared by combining the streptavidin- 
 

linked oligonucleotides with the biotinylated antibodies. 5µL of biotinylated antibody 

(200nM) was added to both 5µL of 3’ prox-oligo (200nM) to generate probe A and 5µL of 5’ 

prox-oligo (200nM) to generate Probe B, respectively. The 3’ and 5’ proximity probe mix was 

mixed and centrifuged at 10,000g for 10 seconds and incubated for 1 hour at 20°C. 

Following the incubation 90µL of Assay Probe Storage Buffer II was added and incubated at 

20°C for further 30 minutes. Ten aliquots of 10µL of probes A and B were made and stored 

at -20°C. 

 

5.4.2 qPCR – PLA 

The PLA was performed in steps as shown in the flowchart F5. A probe mix was prepared by 
 

adding both proximity probes (A and B) to the Assay Probe Dilution Buffer II. For a 20µL of 

ligation reaction, the components used for preparing the probe mix are shown in Table 2.11 

 
 

Reagents for Probe Mix 

 

1X (µL) 

Assay Probe Dilution Buffer II 1.92 

3’ proximity probe 0.04 

5’ proximity probe 0.04 

Total volume 2 

Table 2.11 Reagents and Volume for Probe Mix 
 
A probe mix was prepared in large volume by combining 2.5µL each of probes A and B with 

125µL probe dilution buffer and placing the mixture on ice. For each PLA, 2µL of this probe 

mix was placed in a single well of a 96 well plate, followed by 2µL of the target antigen, 

which was appropriately diluted with 1x Serum Dilution Buffer II. No protein controls (NPC) 

consisted of 2µL of proximity probe mix and 2µL of 1x Serum Dilution Buffer II. The plate 

was sealed, centrifuged at 780 g for 2 minutes and incubated for 1 hour at 20°C. Following 

removal of the seal, 16µL of PCR/ligation solution II (as in Table 2.12) was added to each 

well, the plate was sealed again, spun as before and the ligation was performed on a CFX 

Connect qPCR instrument with the conditions described in Table 2.13.
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Function Temperature (°C) Time Cycles 

Ligation Step 25 5 minutes 1 

Ligation 

deactivation and 

Denaturation 

 

95 

 

2 minutes 

 

1 

Denaturation 95 5 seconds 40 

Amplification 60 30 seconds 40 

 

 
 
 
 
 
 

 

Components 

Final 

Concentration/20µL 

Reaction 

 

Volume (µL) per 

reaction 

Fast Master Mix II (2X) 1X 10 

DNA Ligase II (250X) 1X 0.076 

Universal PCR Assay (20X) 1X 1 

Nuclease-free water  4.92 

Total  16 

Table 2.12 Reagents used for single PLA reaction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.13 PLA cycling conditions for ABI on CFX connect qPCR instrument 
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Alternatively, the PLA assay was carried as described, but using 48 well plates suitable for 

the Illumina Eco48 instrument. Since the instrument cannot be programmed to run at 25°C, 

the PLA was done in 2 steps as shown in table 2.14, step 1; the plate was placed in a water 

bath prior to the qPCR reaction at 25°C for 5 minutes. Step 2; qPCR Cycling and thermal 

conditions were 95 °C for 2 minutes and 40 cycles of 95°C for 5 seconds and 60°C for 10 

seconds. 

 
 
 

Temperature (°C) Time Function 

25 5 minutes in Water Bath Ligation 

 

Temperature (°C) Time Cycles Function 

 

95 
 

2 minutes 
 

1 
Ligation deactivation 

and Denaturation 

95 5 seconds 40 Denaturation 

60 30 seconds 40 Amplification 

Table 2.14 PLA cycling conditions for Illumina Eco48 qPCR instrument 
 
 
 

5.4.3 qPCR analysis 
 

qPCR data obtained from the Biorad CFX and Eco48 were analysed using the using the 

threshold setting at 103 and an automatic baseline. For the PLA, results were recorded as 

average Cqs ± standard deviations. The NPC was used as a reference background and its Cq 

value determined the non-target ligation background noise of the assay. Two replicate PLAs 

were performed for each sample and control. The ΔCq is also calculated as the difference in 

the average of the Cq values obtained for the positive sample and no protein control (NPC). 

 
 
 
 
 
 
 
 
 
 



  66 
 

 
 
 

Step 1 
Making Proximity Probes 

 
 
 
 
 

Step 2 
Binding reaction 

Binding of proximity probes 

With target antigen 

  
 

Step 3 Connector Oligo 

  
Ligation 

Templated ligation of the oligos in 
proximity using a connector oligo 
and DNA ligase 

 
 
 
 
 
 

Step 4 
PCR Amplification 

qPCR amplification & detection 
 
 
 
 
 

Step 5 
qPCR Data Analysis 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flowchart F5 Performing Proximity Ligation Assay 
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5.5. Duplex PLA for C. difficile TcdA and TcdB 
 

5.5.1 Preparing Duplex 3’ and 5’ probes 

The two PLA assays were combined into a duplex assay. In a duplex assay the 3’ and 5’ 
 

probes were prepared by combining an equal volume of 3’ probes of C. difficile TcdA and 

TcdB. Similarly, equal volume of 5’ probes of TcdA and TcdB were also combined (Table 

2.15). 

 
 
 
 

Probes 3’ (µL) 5’ (µL) 

C. difficile TcdA 1 1 

C. difficile TcdB 1 1 

C. difficile 

TcdA+TcdB 

 

2 
 

2 

Table 2.15 Components for Duplex 3’ and 5’ probes 
 
 
 
 

5.5.2 Antigen for Duplex PLA 

An equal volume of C. difficile toxin TcdA and TcdB (CDA-TNL and CDB-TNL, The Native 
 

Antigen Company, Upper Heyford, UK) were combined for the duplex assay Table 2.16. 

Both the antigens were diluted to the same concentration from 400,000ng/mL to 

20,000ng/mL. 

 

Antigen (20,000ng/mL) Volume (µL) 

C. difficile TcdA 5 

C. difficile TcdB 5 

Total 10 

Table 2.16 Antigen preparation for duplex PLA 
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Reagents for probe mix 1X (µL) 

Assay probe dilution buffer II 1.92 

3’ proximity probe (TcdA+TcdB) 0.04 

5’ proximity probe (TcdA+TcdB) 0.04 

Total volume 2 

 

 

C. difficile TcdA and TcdB positive control supplied with commercial ELISA TGC-E001-1 by 

tgcBiomics, Bingen, Germany was also used for performing the duplex PLA assay. 

 
5.5.3 Performing Duplex PLA assay 

A probe mix was prepared by combining both proximity probes (3’ and 5’) to the assay 
 

probe dilution buffer II as shown in the Table 2.17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.17 Reagents and volume for duplex probe mix 
 
 
 

For each duplex PLA 2µL of this probe mix was placed in a single well of a 96 well plate, 

followed by combining 2µL of target antigen which is a mixture of both TcdA and TcdB pure 

antigen and was diluted appropriately in a 1X Serum Dilution Buffer II. No protein controls 

(NPC) consisted of 2µL of proximity probe mix and 2µL of 1x Serum Dilution Buffer II. The 

plate was sealed, centrifuged at 780 g for 2 min (Rotina 380R Hettich Zentrifuge, Germany) 

and incubated for 1 hour at 20°C. Following removal of the seal, 16µL of ligation solution II 

(Table 2.12) was added to each well, the plate was sealed again and spun. The ligation was 

performed on a CFX Connect qPCR instrument with the conditions as used in the section 

5.4.2 which are 25°C for 5 minutes (ligation step), 95°C for 2 minutes (denaturation step) 

followed by 40 cycles of 95°C for 5 seconds and 60°C for 30 seconds (amplification step). 
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Function 
Temperature 

 
(°C) 

 

Time 

 

Cycles 

Ligation Step 25 5 minutes 1 

Ligation deactivation and 
 

Initial Denaturation 

 

95 

 

2 minutes 

 

1 

Denaturation 95 10 seconds 40 

Amplification 
 

(Extension/Amplification) 

 

60 

 

30 seconds 

 

40 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.19 PLA cycling conditions for Perfecta Toughmix on CFX connect qPCR instrument 
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5.6 qPCR – PLA using Canine faeces 

The canine faeces sample for performing PLA was prepared in two different methods and 
 

reagent used for performing the dialysis of faeces sample and PLA are as follows (Table 

2.18) 

 

Reagent Name of Reagent Company 

 
 

Faeces sample 

 
 

Canine faeces stored at 4˚C 

 
 

------- 

 
 
 

Dilution Buffer 

 
 

1X Serum Dilution Buffer II 

 
 
 

#4483013 Life Technologies, 

USA 

 
 
 

Dialysis Buffer 

 
 
 

0.5 X TE Buffer 

 
 

T11493 by Molecular Probe, 

Eugene, Oregon, USA 

 
 
 

Dialysis Chamber 

 
 

Slide A- Lyzer mini dialysis 

units 

 
 

69562,Thermo Scientific, 

Loughborough, UK 

 
 
 

C. difficile toxin 

 
 
 

TcdA and TcdB 

 
 

The Native Antigen Company, 

Upper Heyford, UK 

Table 2.18 Reagents for of dialysis canine faeces 
 
 
 
 

5.6.1 Preparing canine faeces sample for PLA without dialysis 

The compact stool sample (50mg) was added to 450µL of the 1X Serum Dilution Buffer II and 
 

the suspension was homogenised by vortexing. The sample was then centrifuged at 2500X g 
 

in a 5424 microfuge for 2-5 minutes and the supernatant was then spiked with 10ng/mL of 

TcdA which was further diluted to 1ng/mL and 0.5ng/mL in 1X SDB. This TcdA spiked 

samples were used for carrying out qPCR-PLA. 
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5.6.2 Preparing canine faeces sample for PLA with dialysis 

A 100µL aliquot of the TcdA antigen spiked faecal sample (10ng/mL and 1 ng/mL) was 
 

transferred to two Slide A- Lyzer mini dialysis units and dialysis was performed in 1 litre of 

0.5 X TE Buffer at 4°C. The buffer was changed 2 times after 2 hours and then overnight 

dialysis against 1 litre of the buffer. After dialysis, the spiked samples were transferred to 

Eppendorf tubes, further 1:10 and 1:20 dilution of both samples were carried out with 1X 

SDB to perform qPCR-PLA. 

 

5.6.3 qPCR-PLA canine faeces samples using ABI mastermix 

The PLA was performed as shown in section 5.4.2. The NPC was also included which 
 

consisted of 2µL of faeces supernatant with no antigen and 2µL of probe mix. The same 

conditions for the PLA as shown in Table 2.11 were used on the CFX connect qPCR 

instrument. 

 
5.6.4 qPCR-PLA TcdA/TcdB spiked canine faeces samples using Perfecta qPCR 

Toughmix 

The compact stool sample (50mg) was added to 450µL of the 1X Serum Dilution Buffer II and 

the suspension was homogenised by vortexing. The sample was then centrifuged at 2500X g 

in a 5424 microfuge for 2-5 minutes and the supernatant was then spiked with the 

concentration of 250ng/mL of TcdA and 250ng/mL of TcdB in separate tubes. The spiked 

toxins in the canine faeces were further diluted to the 25ng/mL and 2.5ng/mL and 

0.625ng/mL in 1X SDB. The PLA was performed as shown in section 5.4.2 and NPC was also 

included which consisted of 2µL of faeces supernatant with no antigen and 2µL of probe 

mix. The thermal condition used on CFX connect qPCR instrument for performing the PLA 

with Perfecta qPCR Toughmix are shown in Table 2.19. 

 

5.7 qPCR-PLA clinical faeces and swab samples using Perfecta qPCR Toughmix 
 

5.7.1 Preparation of clinical faeces samples 

The six clinical faeces samples stored at -80°C were defrosted by keeping them at room 
 

temperature. Once defrosted the 50µL of semi-solid stool sample was added to 200µL of the 

1X Serum Dilution Buffer II and the suspension was homogenised by vortexing. The sample 

was then centrifuged at 2500X g in a 5424 microfuge for 2-5 minutes. The supernatant was 
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pipette out into a new microfuge tube and is considered as a neat sample. The neat 

supernatant was than diluted to 1:10 and 1:100 dilutions in 1X SDB. 

 
5.7.2 Preparation of clinical swab samples 

The thirteen clinical swab samples stored at -80°C were defrosted by placing them for 30 
 

minutes at room temperature. The swabs were tipped down and transferred to the sterile 
 

falcon tubes. 500µL of the 1X SDB was added to each falcon tube followed by vortexing of 

each tube so that the stool materials on the swab tip are mixed into the buffer. This 

suspension was considered as a neat swab suspension. This neat suspension was diluted to 

1:10 dilution in 1X SDB. The swab sample was then ready to be used for testing with qPCR-

PLA. 

 

5.7.3 Performing qPCR-PLA for clinical faeces/swab samples using Perfecta qPCR 

Toughmix 

The PLA was performed as shown in section 5.4.2 using 1:10 and 1:100 dilution of the 

clinical faecal samples and neat and 1:10 dilutions of the clinical swab samples. The thermal 

conditions for Perfecta qPCR Toughmix were used as shown in the Table 2.19. The clinical 

swab and faeces sample were tested for both TcdA and TcdB. Purified TcdA/TcdB and their 

respective NPCs in 1XSDB were used as a control in order to test the working of the PLA. 

 

5.7.4 Ethics Statement 

The work was ethically approved by the East London & the City Local Research Ethics Committee. 
 

Participants were recruited from Barts and the London. Study title: Novel biomarkers to predict 
 

outcome in clostridium difficile – infection. 
 

REC reference number: 10/H0709/91. 
 

Ethics amendment dated: 25/11/2010. 
 
 

5.7.5 Statistical Analysis 

All statistical analysis was done using computer assisted statistical analysis software, GraphPad 
 

Prism, version 6. The Mann Whitney U test was used for the statistical assessment . The p-value of 
 

less than 0.5 was considered statistically significant. 
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5.8 Digital PLA 
 

The PLA was performed as in section 5.4.2 except that the qPCR amplification step was 

performed separately from the ligation reaction (see Flowchart F6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  74 
 

 

Step 1 
Making Proximity Probes 

 
 
 
 
 

Step 2 
Binding reaction 

Binding of proximity probes 
with target antigen 

 
 
 
 

Connector Oligo 

Step 3 

Ligation 
Templated ligation of the oligos in 

proximity using a connector oligo and DNA 
ligase in CFX Connect qPCR machine 

  

 
 
 

Step 4 
Priming 

Pin pushing on plate seal over each well and 
thus isolating individual partitions from one 

another and diving each sample into 496 
identical portions 

 
 
 
 
 

Step 5 
PCR Amplification 

 
 
 
 
 

Step 6 
Imaging 

 
 
 
 

Step 7 
Result Analysis 

 Flowchart F6: Steps for performing digital PLA  
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Temperature (°C) Time (minutes) Number of Cycles Function 

18 15 1 Ligation 

 

60 
 

10 
 

1 
Ligation 

Deactivation 

 

 

The Ligation step was performed on a CFX Connect qPCR instrument with the conditions as 

shown in Table 2.20. 

 
 
 
 
 
 
 
 
 

Table 2.20 Cycling condition for Ligation for dPLA 
 
Following ligation, the 96 well plate was centrifuged at 780 g for 2min before 10µL of each 

assay were loaded into a single well on a “Constellation dPCR 96 Well Microplate” 

(Formulatrix). The dPLA plate was sealed with a rubber seal (3M 300LSE, Formulatrix, 

Bedford, MA, USA) and placed in the priming drawer of the dPCR machine. Priming takes 15 

minutes and involves pins pushing on the plate seal over each well to force the liquid into 

the channels and a roller forcing the tape into the connecting channels, thus isolating the 

individual partitions from one another and dividing each sample into 496 identical 

partitions. The microplate was then placed on a flat block thermal cycler to amplify the DNA 

using the following conditions: 95°C for 3 minutes, followed by 40 cycles of 95°C for 10 

seconds, 60°C for 30 seconds (Table 2.21). Following endpoint PCR, the microplate was 

placed on the imaging station at the top of the Constellation instruments, which takes 

images of each well. 

 

Function Temperature (°C) Time Number of Cycles 

Initial 

denaturation 

 

95 
 

3 minutes 
 

1 

Denaturation 95 10 seconds 40 

Annealing and 

Amplification 

 

60 
 

30 seconds 
 

40 

Table 2.21 Cycling condition for PCR amplification for dPLA 
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5.8.1 dPCR analysis 
 

Data were analysed using a threshold method to separate positive from negative partitions. 

An initial assessment with the “raw images” view used the ROX which is a passive reference 

dye in the master mix to confirm that all partitions were properly filled with reagents and 

provided a visual estimate of target concentration. The analysis was performed by setting a 

threshold for both the ROX and FAM filters. The ROX histogram displays two peaks, a small 

one on the left representing empty partitions and a larger peak on the right representing 

partitions that contain reagents. A threshold was set manually just to the left of the two 

peaks. The FAM histogram also displays two peaks: one represents partitions without target 

DNA, the other those containing PCR amplicons. The threshold was placed halfway between 

the two peaks and the software then counted the number of positive partitions and 

calculated the amount of target DNA. 
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5.9 Enzyme Linked Immuno-sorbent assay (ELISA) for C. difficile TcdA and 

TcdB 

A diagnostic/research Elisa kit to detect C. difficile TcdA and TcdB was purchased from tgc 

Biomics, Bingen, Germany and the components of the kit are shown in table 2.22 

 

Component Name of Component Company 

 
 

ELISA Kit 

 

C. difficile toxin A and 
 

toxin B ELISA kit 

TGC-E001-1) supplied by 
 

tgcBiomics, Bingen, 
 

Germany 

 
 

Antigen 

 
 

TcdA and TcdB 

The Native Antigen 
 

Company, Upper Heyford, 
 

UK) 

 

ELISA Reader 

iMark™ Microplate 
 

Absorbance Reader 

#160-1130, Bio-Rad, 
 

Hertfordshire, UK 

Table 2.22 Components for ELISA 
 
 
 

5.9.1 Dilution of the C. difficile TcdA and TcdB 

TcdA and TcdB antigen concentrations were assayed in the range of 1.25, 0.625 and 
 

0.312ng/mL and 2.5, 1.25, 0.625ng/mL respectively to determine the sensitivity of using this 
 

commercial ELISA kit. The sample antigen was diluted in dilution buffer supplied in ELISA kit 

for C. difficile TcdA and TcdB. 

 

All reagents were brought to room temperature before use. The kit is supplied with the 96 

well microtitre ELISA plate already coated with anti-toxin A and anti-toxin B antibodies. The 

workflow of the ELISA can be seen in flowchart F6. 100µL of the TcdA, TcdB and 100 µL of 

the positive control (C. difficile TcdA & TcdB) supplied with the ELISA kit were added to 

individual wells. The negative control wells were also included in which 100µL of dilution 

buffer (Supplied in ELISA kit) was added into the wells. Now 50µL of the conjugate anti-toxin 
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A & B –HRP was added to each well to detect TcdA & TcdB and the sample and conjugate 

mixture was then incubated at 37°C for 60 minutes. Wells were washed 3 times with the 1X 

washing buffer in order to remove the unbound components and thereafter 100µL of the 

substrate was added to each well followed by incubation at 20°C for 15 minutes. The 

development of colour was seen after incubation which was stopped by adding 50µL of stop 

reagent (Supplied in ELISA kit) into each well. The optical density was measured at 450nm 

and 620nm with iMark™ Microplate Absorbance Reader. 
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ELISA Flowchart F6 
 

Step 1 
Preparation of Sample 

TcdA and TcdB is diluted to appropriate 
concentration 

 
 
 

Step 2 
Addition of Sample 

Diluted sample is added to the ELISA 
plate pre-coated with anti-toxin A and 

anti-toxin B antibodies 
 
 
 
 

Step 3 
Addition of HRP conjugated Ab 

Anti-toxin A/B-HRP conjugate is added 
to the sample and pre-coated antibody 

complex 

 
 TcdA 

 TcdB  
 
 

Pre-Coated anti-toxin A 

 
 

Pre-Coated anti-toxin B 

 
 
 
 

Anti-toxin A/B-HRP 

 
 
 

Step 4 
Incubation 

The sample and conjugate mixture was 
incubated at 37˚C for 1 hour 

 
 
 

Step 5 
Washing 

Wells containing mixture were washed 
3X in order to remove unbound 

components 
 
 
 

Step 6 
Addition of Substrate 

Substrate was added to each well 
followed by incubation at 20˚C for 15 

minutes 
 
 
 

Step 7 
Addition of Stop reagent & 

Reading the Absorbance 
Stop reagent was added to stop the reaction 

followed by reading the absorbance. 

 
 

Substrate 
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5.10 Western Blot 
 

5.10.1 Gel preparation and electrophoresis 

For western blotting, resolving layer (8%) and stacking layer (4%) were prepared using 
 

protogel from National Diagnostics, Hull, UK and loaded on the Hoefer Mini VE vertical 

electrophoreses system. Initially, the gel cast was assembled with 1.5 mm spacers and 

tested with distilled H2O for leaks. Once the leak was tested, 8% of the stacking layer was 

prepared by combining the following components in the W/V: 

 

 sterile water 
 

 Tris (1.5 M pH 8.8) (BDH) 

 SDS (10%) (BDH) 

 acrylamide:bisacrylamide (30%) 19:1 ratio w/w) (Sigma) 
 

 ammonium persulphate (APS) (10%) (Sigma) 
 

 N,N,N’,N’-tetramethylethylenediamine (TEMED) (Sigma). 
 

The tube containing the above components was mixed thoroughly and 5mL was added in 
 

the space between the glass plates, covered with 1mL of the 70% ethanol and was left to set 

for 30 minutes. Once the resolving layer was set, the 70% ethanol was poured off and 4% 

stacking layer was prepared by combining the following components: 

 

 sterile water 
 

 Tris (0.5M pH6.8) 

 SDS (10%) 

 acrylamide:bisacrylamide (30%) 19:1 ratio w/w) (Sigma) 

 APS (10%) 

 TEMED 

 

All these components were mixed and 2mL of the stacking gel was poured above the set 

resolving layer and the comb was put into it. Once the gel was set, comb was taken out, 

wells were formed which were cleaned by sterile water in order to remove all acrylamide. 
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5.10.2 Sample preparation 

20µL of the sample was prepared by combining 10µL of C. difficile toxin A antigen 
 

(0.5µg/10µL) with 10µL of 2X loading buffer (10% SDS (w/v) , Glycerol, 1M Tris H 6.8, 1M 

DTT and water). Similarly, 20µL of TcdB sample was also prepared by combining 10µL of C. 

difficile toxin B antigen (0.5µg/10µL) with 10µL of 2X loading buffer. Breast cancer cell line 

MCF10 cell was used as a negative control. Samples were boiled for 10 minutes at 100°C on 

a heat block (#DB2A, Techne DRI-BLOCK, Staffordshire, UK.) 

 

5.10.3 Gel Electrophoresis: 

A 6µL of protein stained marker HiMark (#LC5699 from Novex life technologies, Paisley UK) 
 

was added to the first well and samples were added to the other wells. The amount of 

samples added to each well was made up to the same volume by adding the appropriate 

amount of sample reducing buffer plus sample. The gel was run in 1X running buffer (pH 

8.56) that contains the following components: 

 

 250mM Tris 
 

 1.92M glycine (VWR, East Grinstead, UK) 

 1% w/v SDS 

 

The gel was run at 180V, 50mA, 25W for 2 hours. The run was stopped once the dye 

reached the bottom of the glass plate. 

 

5.10.4 Transfer of protein to nitrocellulose 
 

Once the gel had finished running it was removed from the electrophoresis set up and 
 

proteins in the gel were transferred to a nitrocellulose membrane (Watman, Schleicher & 

Schuell, and Dassel, Germany). The nitrocellulose membrane, filter papers and sponges 

were soaked in 1X transfer buffer containing (250mM Tris, 1.92M glycine, pH8.48 and 

methanol). The gel was then sandwiched between the blotting paper and sponges. The 

order of the layers in the transfer cassette is as follows: 

 

 black cassette 

sponge 

 filter paper 

 gel 
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 nitrocellulose membrane 

filter paper 

 sponge 
 

 red cassette 
 

This sandwich blot was kept and soaked in the 1X running buffer in the electro blotting tank 

and transfer of proteins from the gel to the membrane were conducted at 50V, 180mA, and 

22W for 3 hours. 

 
5.10.5 Western blot analysis 

The transfer of the protein was checked with Ponceau S red stain (0.5% Ponceau S in 1% 
 

acetic acid) (Sigma). The membrane was blocked overnight at 4°C in 3 % ( w/v) milk 

powder in 1X PBS with gentle shaking. The blocked membrane was washed in TBST (1X 

TBS-Tween20) for 1 minute and probed for 3 hours at room temperature with 1:1000, 

1:2000 and 1:5000 primary antibody for C. difficile toxin A diluted in 3% MPBS (3% Marvel 

(w/v) + 1X PBS) and 1:1000 and 1:2000 primary antibody for C. difficile toxin B diluted in 

3% MPBS (3% marvel (w/v) + 1X PBS). After being washed twice with 10mL 

PBS/Tween for 15 minutes, the membranes were incubated in an anti-mouse antibody 

which was conjugated with horse-radish peroxidase- (Pierce Biotechnology, Rockford, 

USA) at 1:1000 and incubated at room temperature for 1 hour. The membranes were 

then washed twice as before. Enhanced chemiluminescent (ECL) (#98490B from 

Interchim, Montlucon, France) reagents were used for 1 minute for visualisation (Millipore, 

Watford, UK). The dark room was set up and under red light, 1 piece of X-Ray film was 

placed over the membrane and cassette was closed. The X-Ray was exposed to the 

membrane and incubated for 30 seconds. The film was then removed and placed in the 

developer (Sigma) for 1 minute in the agitated movement so that bands are visible on the 

film. The exposed film was then washed in sterile water to remove the developer and then 

placed in fixer (Sigma) for 1 minute followed by washing with sterile water. Once the film 

was dried it was scanned in the image scanner and analysed. 
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Chapter 3 
 
 

Results 
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6.0 Results 
 

6.1 Validation of C. difficile TcdA and TcdB antigens and specific antibodies 

with SDS-PAGE and Western blotting 

In order to perform successful PLAs, high-quality target antigens of C. difficile, as well as 

antibodies specific to the toxins TcdA and TcdB are required for the assay. There is concern 

about the specificity and efficacy of many commercial antibodies (Voskuil, 2014).Therefore, 

validation of the target antigens (quality/molecular weight) and antibody specificity prior to 

PLA is required. Full-length TcdA and TcdB were purchased from The Native Antigen 

Company, Upper Heyford UK and 10µL of both at the concentration of 0.5µg/10µL were 

added to 10 µL loading buffer which was resolved on 8% of resolving layer and 4% of 

stacking gels followed by western blotting. A cell lysate of the breast cancer cell line MCF10 

was used as a negative control. Primary antibodies to anti-C. difficile toxin A mAb 

(#Ab19953, Abcam, Cambridge,UK) and anti-C. difficile toxin B mAb (#ABIN234836, 

Antibodies-online Aachen, Germany) were used to probe the blot. 

 

Figure 11(A) and Figure 11(B) shows the presence of a protein band of molecular weight 

around ~290kD for TcdA and ~270kD for TcdB respectively and matches the expected size 

from the manufactures data sheet. This shows that the C. difficile TcdA and TcdB which will 

be used for the development of proximity ligation assay are both full-length proteins. No 

bands were seen in the negative control which shows that C. difficile toxins do not cross 

react. 
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A  
KDa M TcdA MCF10 

460 
 
 
 

268 
 
 
 
 
 

B 
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M MCF10 TcdB 

 
 
 

268 
 
 
 
 

Figure 11: (A) Western blot analysis of C. difficile TcdA. Lane 1 shows the molecular weight marker 

(M), HiMark (#LC5699 from Novex life technologies, Paisley UK). Lane 2 shows the C. difficile TcdA 

band at a molecular weight of approx. 300kDa. The 0.5µg of TcdA was blotted with 1:1000 dilution 

of primary antibody and 1:1000 dilution of secondary antibody (Anti-mouse HRP). The membrane 

was exposed to ECL for 1 minute followed by exposure to X-ray film for 30 seconds in a dark room. 

No bands were seen in the negative control lane. 
 

(B) Western blot analysis of C. difficile TcdB. lane 1 shows the molecular weight marker, HiMark 

(#LC5699 from Novex life technologies, Paisley UK). Lane 2 shows the C. difficile TcdB band at a 

molecular weight of approx. 270kDa. The 0.5µg of TcdB was blotted with 1:1000 dilution of primary 

antibody and 1:1000 dilution of secondary antibody (Anti-mouse HRP). The membrane was exposed 

to ECL for 1 minute followed by exposure to X-ray film for 30 seconds in a dark room. No bands were 

seen in the negative control lane. 
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6.2 Determining the sensitivity of C. difficile TcdA and TcdB with Enzyme 

Linked Immuno-Sorbent Assay 

ELISAs are the most common clinical laboratory test for the detection of C. difficile toxins 

and give results within 3 hours as compared to several days for anaerobic culture and cell 

cytotoxin assays. Several C. difficile TcdA/TcdB ELISA kits are commercially available such as 

Premier toxin A and B (Meridian Bioscience, Inc.) and manufacturers suggest that these kits 

have a limit of detection (LOD) of 2.5ng/mL for TcdA and 1.25ng/mL for TcdB. Similarly, C. 

difficile TOX A/B II (TechLab, Inc., Blacksburg, VA) shows LOD of 1.25ng/mL for TcdA and 

2.5ng/mL for TcdB (Novak 2008). Finally, we selected an ELISA kit sold by tgcBiomics, GmbH 

because it apparently has the highest sensitivity of all the ELISA kits compared with a LOD of 

0.5ng/mL for TcdA and 1ng/mL for TcdB, moreover, it was less expensive than other ELISA 

kits available. 

 

C.difficile TcdA and TcdB quantification was determined twice following to the 

manufacturer’s instruction (section 5.9). The quantification and LOD of the kit were 

analysed using purified TcdA and TcdB (The Native Antigen Company, Upper Heyford, UK) at 

the concentration range of 1.25, 0.625 and 0.312ng/mL and 2.5, 1.25, 0.625ng/mL 

respectively. This particular concentration range was selected in order to test the minimum 

LOD of the ELISA. The sensitivity of the kit when the antigen was suspended in canine faeces 

over the same concentration range (methods section 5.9) was also determined. The canine 

faeces sample was used as the substitute to the human sample as there was no human 

clinical sample available as this stage of optimization of the assay and moreover, no ethics 

permission was required to work on canine faeces. 

 

The readout of the assay is based on the measurements of the optical density at 450 and 

620 nm and is calculated as OD450-OD620. The average OD450-655 of the negative control of the 

neat and faecal suspension was below 0.05 and according to the kit specifications; the cut-

off for the positive result was 0.2 if the background was below 0.1. The positive control did 

not have any OD as it was highly concentrated in both TcdA and TcdB. 
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Figure 12 (A) shows the LOD for the ELISA for neat purified TcdA was 1.25ng/mL with the 

average OD450-655 of 0.275. Antigens suspended in canine faeces sample, suspended with the 

purified TcdA at the concentration of 1.25ng/mL, 0.625ng/mL and 0.312ng/mL, did not alter 

the results of the ELISA and gave the same LOD of 1.25ng/mL with the average OD450-655 of 

0.297 for TcdA. 

 

Figure F12 (B) shows that the LOD for neat purified TcdB was 1.25ng/mL with the average 
 

OD450-655 of 0.280. Purified TcdB with the concentration range of 2.5ng/mL, 1.25ng/mL and 

0.625ng/mL spiked into canine faeces sample gave the same LOD of 1.25ng/mL showing the 

average OD450-655 of 0.244. 
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Figure 12: (A) Sensitivity of a commercial ELISA used to detect TcdA using neat antigen (Pink) and 

antigens suspended in canine faeces (orange). According to kit specification, the LOD for the assay 

had a cut off of 0.2 optical density (OD) 450-655nm (pink dashed line) when the negative control was 

less than 0.05 OD450-655nm (the negative control for the assay was 0.04 OD450-655nm). Error bars show 

standard deviations. 

 

 
 

Figure 12: (B) Sensitivity of a commercial ELISA used to detect TcdB using neat antigen (Pink) and 

antigens suspended in canine faeces (orange). The LOD (ng/mL) to detect purified C. difficile TcdB 

(Pink) with antigen concentration (2.5,1.25,0.625) and C. difficile TcdB fecal suspension (Orange) 

with antigen concentration (2.5,1.25,0.312). The cut off with the negative control <0.05 is OD 0.2 OD 

450-655nm (according to kit specification) and is shown by the dotted horizontal pink line.
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6.3 Development of Proximity ligation assay (PLA) to detect C. difficile TcdA 

and TcdB 

The PLA used in the project is commercially available known as TaqMan Protein Assay II 

(TPA II) (Applied Biosystems, Life Technologies). To perform the TPA II (methods 5.4.2), 

biotinylation of the antibodies specific to the C. difficile TcdA and TcdB is first required and 

this was performed using two commercial kits. Initially, biotinylation of the selected Abs was 

performed using the APEX Biotin-XX Ab labelling kit (Invitrogen) (methods section 5.1.2) and 

then EZ-Link Sulfo-NHS-LC-Biotin; No-Weigh Format Biotinylation kit (Thermo Scientific) 

(section 5.1.1) was used. 

 

6.3.1 Results for forced proximity probe test (FPPT) 

The forced proximity probe test was performed to determine whether or not the 
 

biotinylated antibodies can bind to the oligonucleotides in order to perform the PLA. The 
 

result of the FPPT for the antibody that was biotinylated using the APEX Biotin-XX Ab 

labelling kit (Invitrogen) can be seen in Figure 3. The ΔCq was calculated which is a 

difference between the Cqs of the negative control containing oligonucleotides only and 

Cqs of the forced proximity probes containing both biotinylated antibodies and 

oligonucleotides. The ΔCq was calculated for each biotinylated antibody. The arbitrary cut-

off value of ΔCq≥8.5 was mentioned in the TaqMan assay protocol from Life Technology for 

the antibody to pass the FPPT. Figure 13 shows the FPPT of the biotinylated TcdA mAb 

(Abcam) and ΔCq is <8.5, therefore the TcdA mAb failed the test. 
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Figure 13 Forced proximity test amplification curve for TcdA mAb forced proximity probe, 

containing 3’and 5’ prox oligo mix and biotinylated antibodies (Green) and the negative control 

containing 3’ and 5’ prox-oligo mix and Antibody Dilution Buffer II (Red). Three replicate were 

performed for both TcdA mAb forced proximity probe and negative control. The forced proximity 

probe amplifies at the average Cq (quantification cycle) of 26.5 and since the average Cq for the 

negative control is 31.5, the ΔCq is 5 which is <8.5. (RFU : Relative Fluorescence Unit) 
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After the biotinylation of TcdA mAb (Abcam) was unsuccessful, the decision was made to 

use EZ-Link Sulfo-NHS-LC-Biotin, No-Weigh Format Biotinylation kit (Thermo Scientific) for 

biotinylation of the antibodies. The results in Figures 14 show an amplification plots for FPPT 

for mAb for TcdA, mAb for TcdB and pAb for TcdB with an average Cq of for the forced 

proximity probe and average Cq for the negative control. 
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Figure 14 Result of the forced proximity tests (A) mAb for TcdA with ΔCq 12.96, (B) mAb for TcdB 

with ΔCq 15.97 and (C) pAb for TcdB with ΔCq 10.92 using use EZ-Link Sulfo-NHS-LC-Biotin, No-

Weigh Format Biotinylation kit (Thermo Scientific) kit for biotinylation of antibodies. The green 

amplification plots were obtained in the presence of biotinylated antibodies with oligonucleotides 

and the red ones in the absence of biotinylated antibodies, with only prox-oligonucleotides present. 

(RFU : Relative Fluorescence Unit) 
 

Table 3.1 below shows, all three antibodies tested (TcdA mAb, TcdB mAb and TcdB 

polyclonal (pAB) passed the forced proximity probe test as they significantly exceeded the 

forced proximity probe quality threshold of a ∆Cq ≥ 8.5. 
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Sample Name 
 

Cq 
 

Mean Cq 
∆Cq = (Mean Cq NPC 
– Mean Cq antibody) 

  
Abcam TcdA mAb 
negative control 

30.47  
 

30.24 

 
 
 
 

12.96 

29.92 

30.18 

30.41 
 

Abcam TcdA mAb 
Forced proximity 

probes 

17.37  
 

17.28 

17.32 

17.32 

17.12 
 

TcdB mAb negative 
control (antibodies-

online) 

33.82  
 

33.89 

 
 
 
 
 
 

15.97 

33.89 

34.45 

33.38 
 

TcdB mAb Forced 
proximity probes 

(antibodies-online) 

17.83  
 

17.92 

17.98 

17.88 

17.98 
 
 
 

TcdB pAb negative 
control (Abnova) 

32.80  
 
 
 

32.66 

 
 
 
 
 
 
 
 
 

10.92 

32.63 

32.50 

32.68 

 
 

TcdB pAb Forced 

proximity probes 
 

(Abnova) 

21.62  
 
 
 

21.74 

21.93 

21.72 

21.71 

 
 

Table 3.1: The Cq value of negative control (containing prox-oligonucleotides and Ab dilution buffer) 

and Forced proximity probes (containing biotinylated antibodies and prox oligonucleotides) of three 

different biotinylated antibodies are seen. The average of the Cq values is calculated followed by the 

∆Cq values for antibodies tested using forced proximity probe test. All three antibodies tested (TcdA 

mab, TcdB mAb and TcdB polyclonal (pAB) passed the forced proximity probe test as they 

significantly exceeded the forced proximity probe quality threshold of a ∆Cq ≥ 8.5. 
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mAb for TcdA recorded a ∆Cq of 12.96, mAb for TcdB with ∆Cq of 15.97 and the pAb for 

TcdB with ∆Cq of 10.92 as seen in the table 3A above. These results indicated that all three 

antibodies do not contain an excess of free biotin and are sufficiently biotinylated therefore 

they are suitable for use in the homogenous PLA. 

 
6.3.2 Detection of C. difficile TcdA and TcdB with proximity ligation assay 
 

6.3.2.1 Development of TcdB specific PLA 

The biotinylated stock antibodies were used to prepare the 3’ probe (“probe A”) and 5’ 

probe (“probe B”) (methods 5.4.1) and further used to perform PLA for detection of TcdA 

and TcdB (methods 5.4.1). Since TcdB is generally thought to be the key virulence 

determinant (Lyras et al., 2009) and TcdA-negative, TcdB-positive isolates appear to be on 

the increase (Kim et al., 2008), we initially targeted the TcdB antigen for the development of 

the first proximity ligation assay. No information on the epitope recognition of the selected 

antibodies for TcdB was available from the manufacturer, therefore we performed a single 

repeat of the TcdB specific PLA using a conventional combination of monoclonal (mAb) and 

polyclonal (pAb) probes and compared the 3’-oligonucleotide polyclonal /5’-oligonucleotide-

monoclonal combination (Bp3m5) with the combination of 3’-oligonucleotide-monoclonal 

/5’-oligonucleotide-polyclonal (Bm3p5) probes specific to TcdB to determine the best pair of 

probes suited for the detection of TcdB. PLAs were carried out in duplicate over the 

following TcdB antigen concentrations (250, 25, 2.5, 1.25, 0.625, 0.3 and 0.12ng/mL). The 

result for Bp3m5 probes and Bm3p5 probes are shown in Figure 5. The result was 

determined as the difference in quantification cycle (∆Cq) obtained at each concentration 

compared to the “no protein control” (NPC). The result in figure 15 shows that the 

combination of 3’ pAb - 5’mAb (Bp3m5) probes were more sensitive than 3’mAb -5’pAb and 

Bp3m5 is an ideal set of probes for the TcdB-specific PLA as it can detect TcdB at the 

concentration of 0.125ng/mL but 3’mAb and 5’ pAB combination (Bm3p5 probes) can detect 

1.25ng/mL. Therefore, the PLA run performed in duplicate showed that we can use the 

Bp3m5 combination of the probes for the optimization of the TcdB specific PLA. 
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Figure 15 Result for TcdB PLA: A single PLA run was carried out in duplicate reactions on 

purified TcdB antigen using either 3’-oligonucleotide polyclonal /5’-oligonucleotide-

monoclonal combination (grey). ((Bp3m5 probes) and 3’-oligonucleotide-monoclonal /5’-

oligonucleotide-polyclonal combination (black) (Bm3p5 probes). ∆Cq obtained at each 

concentration in plotted on the Y-axis and concentration of TcdB is seen on the X-axis of the 

graph. NPC is referred to as negative control or no protein control. 
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Since the C-terminal end of the TcdB gene is characterised by several repeat motifs (Pruitt 

and Lacy, 2012b), we surmised that it might be possible to target TcdB using a single mAb. 

Hence, we also tested a PLA using only the single mAb and used the combination of 3’-

oligonucleotide-monoclonal /5’-oligonucleotide-monoclonal (Bm3m5) probe for the PLA and 

compared this with the of 3’-oligonucleotide-polyclonal/5’-oligonucleotide-monoclonal 

Bp3m5 probes. In order to check the repeatability of an assay, two replicate PLAs were 

carried out in duplicate at each of antigen concentrations (250, 25, 2.5, 1.25, 0.625, and 

0.12ng/mL). The difference in quantification (∆Cq) obtained at each concentration 

compared to the NPC was calculated. The statistical analysis of the data was done using 

multiple t-tests for each concentration of the TcdB used for both sets of probes and p-value 

for each concentration was calculated. Figure 16 shows no statistically significant difference 

in sensitivity in the ∆Cqs for PLA at difference concentrations using either combinations of 

the probes (p=0.754 (250ng/mL), p=0.502 (25ng/mL), p= 0.119 (2.5ng/mL), p= 0.270 

(1.25ng/mL), p=0.754 (0.625ng/mL) and p= 0.953 (0.125ng/mL), n=2) and allowed the 

detection of 0.12ng/mL of TcdB which is more sensitive than the corresponding ELISA. 
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Figure 16 Repeatability of TcdB PLA: Two replicates of the PLAs carried out in duplicates on purified 

TcdB antigen using either 5’-oligonucleotide-monoclonal/3’-oligonucleotide-polyclonal combination 

((Bp3m5 -dark boxes) or 5’-oligonucleotide-monoclonal /3’-oligonucleotide-monoclonal combination 

(Bm3m5- (light boxes). The difference in quantification cycle (∆Cq) obtained at each concentration 

compared to the “no protein control” is plotted (Y-axis). PLAs were carried out in duplicate at each 

of seven antigen concentrations (250, 25, 2.5, 1.25, 0.625, and 0.12ng/mL). A., B., Error bars show 

standard deviations. The p-value for each concentration is more than 0.05 which shows that there is 

no statistically significant difference in sensitivity in the ∆Cqs for PLA using either of the probes. 
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6.3.2.2 Development of TcdA specific PLA 

Since TcdA also has multiple repeat epitopes at its C-terminal end, we hypothesised that it 

might also be possible to develop a sensitive PLA using a single mAb, (Frey and Wilkins, 

1992). Therefore, the combination of single mAb probes 3’-oligonucleotide-monoclonal /5’-

oligonucleotide-monoclonal (Am3m5) were used and PLA was carried out with purified TcdA 

at the concentration range of 250, 25, 2.5, 1.25, 0.625 and 0.125ng/mL. Figure 17 (A and B) 

shows that this approach of using single mAb to perform PLA was successful for TcdA as well 

and resulted in a sensitive assay, detecting purified TcdA down to 0.125ng/mL. 
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            Figure 17: Single TcdA PLA using Am3m5 probe 
 
(A) PLA amplification curve for TcdA using Am3m5 probes. The green colour trace denotes the 

highest TcdA concentration of 250ng/mL. The amplification plot for other concentrations are 

25ng/mL (orange), 2.5ng/mL (purple), 1.25ng/mL (light blue), 0.625ng/mL (light green), 0.125ng/mL 

(dark blue) and Red Trace denotes the NPC (no protein control). The data was analysed using a 

threshold setting of 103 with automatic baseline. NPC is referred as no protein control 
 

(B) Single PLA carried out on purified TcdA antigen, with 3’-oligonucleotide-monoclonal /5’-

oligonucleotide-monoclonal Am3m5 probes. The difference in quantification cycle (∆Cq) obtained at 

each concentration compared to the NPC is plotted. The ∆ Cq calculated between 250ng/mL of 

purified toxin and NPC was 10.13 and with the minimum concentration of 0.125ng/mL was 1.41. 
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The repeatability of the assay was assessed by performing four additional independent 

repeats of the PLA assay with two replicates of each concentration. Figure 18 shows the 

average results and suggest that it is possible to quantify reproducibly as little as 

0.625ng/mL and detect 0.125ng/mL of purified TcdA which is five to ten times more 

sensitive than the ELISA. 

 
 
 
 
 
 
 
 

 
 

                                                                         TcdA Concentration 
 

Figure 18: Repeatability of the TcdA PLA: The difference in quantification cycle (∆Cq) 

obtained at each concentration compared to the NPC is plotted at each of seven antigen 

concentrations (250, 25, 2.5, 1.25, 0.625 and 0.125ng/mL). The black bars show the results 

from four independent PLAs with the TcdA mAb coupled to either 5’- or 3’ oligonucleotide 

(Am5m3). Error bars show standard deviations of ∆Cqs of four different PLAs. The p –value 

calculated from the t-test with n=4 is more than 0.05 (p=0.851), which show no statistical 

difference in the ∆Cqs of the 4 different PLAs performed for each concentration. 
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Along with sensitivity and specificity of an assay, early detection of an antigen is also an 

important factor in order to develop an assay for a clinical diagnosis. Therefore in order to 

reduce the time of an assay, Eco48 instrument was used which has a superior temperature 

control which helps in maintaining the thermal uniformity across the sample plate, 

therefore, performs the 40 PCR cycles in approximately 40 minutes. Therefore, PLA was also 

carried out using the Eco48 qPCR instrument for TcdA at the same concentration range as 

shown in figure 8 to reduce the time taken to perform the qPCR stage of the PLA. Since the 

instrument cannot be programmed to run at 25°C, the plate was placed in a water bath 

prior to the qPCR reaction (method section 5.4.2) which makes the assay tedious. Figure 19 

shows the PLA assay performed with a similar sensitivity with the detection limit of 

0.125ng/mL with faster qPCR reaction and reducing the assay time by 20 minutes. The 

statistical comparison for the PLAs for TcdA performed with Illumina Eco and CFX was done 

using Mann-Whitney U test. The t-test calculated the p-value of 0.571 which show no 

significant difference in the results irrespective of the instrument used for the PLA thus 

shows that PLA can be performed in the Illumina Eco 48 without affecting the PLA result and 

also reduces the assay time from 1 hour to 45 minutes. 
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Figure 19: PLA performed on the Illumina Eco48 instrument vs PLA performed on CFX: The 

difference in quantification cycle (∆Cq) obtained at each concentration compared to the NPC is 

plotted at each of seven antigen concentrations (250, 25, 2.5, 1.25, 0.625 and0.12ng/mL). Results 

from four independent PLAs with the TcdA mAb coupled to either 5’- or 3’ oligonucleotide (Am5m3). 

Error bars show standard deviations from 4 replicates of PLA in duplicate for each concentration. No 

Statistical difference was seen between PLA results from both the instruments using Mann-Whitney 

U test (P value=0.571 and n= 4) 
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6.3.3 Development of a Duplex PLA targeting TcdA and TcdB 

C. difficile toxins, TcdA and TcdB have similar structure see Figure 1 in introduction chapter. 

More than half of the C. difficile strains do not express toxins (A-B-) and therefore, they 

colonise the patient without showing any symptoms. But there are strains of the C. difficile 

which express either TcdA or TcdB (TcdA+/TcdB- or TcdA-/TcdB+) but most pathogenic strain 

produces both TcdA and TcdB (Drudy, Fanning and Kyne, 2007). Therefore, after 

the development of TcdA and TcdB specific single PLA, we focused on developing a duplex 

PLA targeting both toxins (TcdA and TcdB) into a single assay. In a duplex assay, the 3’ and 

5’ probes were prepared by combining equal volume of 3’ mAb probes of C. difficile TcdA 

and 3’ pAb probes of C. difficile TcdB. Similarly, equal volume of 5’ mAb probes of TcdA 

and 5’ mAb probes of TcdB were also combined followed by assay conditions the same 

as for individual PLAs (methods 5.5). Two independent duplex PLA were performed 

targeting combined TcdA/TcdB toxins. The analysis of the results was done by 

determining the ΔCq same as in singleplex assays. Figure 20 shows that the assay was 

able to quantify target toxin to 1.25ng/mL and LOD was 0.125ng/mL. These results were 

similar to the singleplex assay for which LOD of TcdA and TcdB was 0.125ng/mL. Since, 

the TaqMan mastermix (supplied by Life Technologies) uses single hydrolysis probe with 

FAM labelled as the marker for PCR detection, therefore, the duaplex PLA cannot 

distinguish between the two toxins TcdA and TcdB. 
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Figure 20: Duplex assay targeting TcdA and TcdB with Am5m3 and Bm5p3. The difference in 

quantification cycle Δq obtained at each concentration compared to the “NPC” is plotted. Two 

independent PLAs were carried out in duplicate using two separate pools of 3’ oligonucleotide- and 

5’ oligonucleotide-mAb targeting TcdA (Am5m3) and TcdB (Bm5p3). Error bars show standard 

deviations from two replicates of PLA performed in duplicate for each concentration. 
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6.3.4 Validation and optimization of C. difficile TcdA and TcdB specific PLA using 

Canine faeces 

Development of a PLA using pure antigen is not representative of the clinical setting so TcdA 

and TcdB specific PLAs were performed with the antigen spiked into canine faeces sample as 

a model of human faecal samples. Previous studies have shown the isolation of pathogenic 

C. difficile toxins from the diarrhoeic and non-pathogenic C. difficile from non-diarrhoeic 

dogs, therefore, the canine faecal sample was used (Chouicha and Marks, 2006). Initially, 

the canine faeces sample was prepared by spiking 10ng/mL of TcdA toxin (methods section 

5.6) into 50mg of canine faeces and further diluted to 1ng/mL and 0.5ng/mL in 1X Serum 

Dilution Buffer II. The non-spiked faecal sample was also used as the negative control or no 

protein control assay. Two independent PLA s were carried out in duplicates using the 

standard PLA conditions (methods 5.4.2). The results in table 3.1 show that the assay did not 

work as no amplification was seen in the neat TcdA spiked faecal sample. But when the neat 

TcdA spiked faecal sample was diluted in Serum Dilution Buffer II the working of the assay 

was restored. 
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PLA 1 

    
 

PLA 2 

   

 

TcdA 
Concentation 

 
10ng/mL(NEAT) 

1ng/mL 
1:10 of 

neat 

0.5ng/mL 
1:20 of 

neat 

 

NPC 
(neat) 

 
10ng/mL(NEAT) 

1ng/mL 
1:10 of 

neat 

0.5ng/mL 
1:20 of 

neat 

 

NPC 
(neat) 

Replicate 1 

(∆Cq) 
NA NA 37.43 NA NA NA 37.58 NA 

Replicate 2 

(∆Cq) 
NA NA 38.31 NA NA NA 38.02 NA 

 
 

Table 3.2: TcdA spiked Canine faecal PLAs. Two separate PLAs were performed in duplicate and 
∆Cq of the values were calculated. The neat sample showed no amplification (NA) but the dilution 
of the sample with 1XSDB restored the working of the assay in both PLAs.  
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Even with this dilution the neat sample still did not amplify which was most likely due to the 

presence of PCR inhibitors such as bile salts and other complex polysaccharides in the faeces 

sample (Oikarinen et al., 2009). Therefore in order to remove any potential inhibitors of the 

qPCR, canine faeces sample for PLA were dialysed in the 1X TE buffer and further diluted in 

order to remove any leftover PCR inhibitors (methods 5.6.2). PLAs were performed using 

five replicates of each concentration. The results in Table 3.3 show that the dialysis and 

dilution of the spiked canine faeces helped to partially restore the sensitivity of the assay to 

the levels of the ELISA assay which has the detection of 0.5ng/mL. 
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TcdA 

Concentation 

10ng/mL(Neat) 1ng/mL 

1:10 of 

Neat 

0.5ng/mL 

1:20 of 

Neat 

NPC 

(Neat) 

Replicate 1 38.04 34.26 33.02 NA 

Replicate 2 38.14 36.63 33.20 NA 

Replicate 3 NA NA 33.45 NA 

Replicate 4 NA NA 33.38 NA 

Replicate 5 NA NA 33.28 NA 

 
 

Table 3.3: Result for TcdA spiked canine faecal PLA with dialysis and dilution of the sample. Five 
replicates of each concentration (10ng/mL (Neat: no dilution), 1ng/mL(1:10 dilution) and 
0.5ng/mL (1:20 dilution)) were used. Dialysis of faecal samples resulted in restoring the sensitivity 
of PLA with the spiked faecal sample.  
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Although dialysis and dilution of the spiked canine faeces helped to partially restore the 

sensitivity of the assay this additional step increased both the time of the assay by 24 hours 

as well as its complexity (with additional dialysis), which would limit its use as a diagnostic 

test. Therefore, to overcome the inhibitory elements in the spiked faecal sample the 

Perfecta qPCR Toughmix (Quanta) was used to perform the qPCR step of the PLA instead of 

the ABI mastermix (Life Technologies, USA). The Perfecta qPCR Toughmix (Quanta) contains 

additives which prevent inhibition of PCR by common PCR inhibitors. 

 

Initially, PLAs were performed using purified TcdA toxin. Figure 21 shows that replacing the 

ABI mastermix with Perfecta qPCR master mix did not change the LOD of the assay and gave 

the similar results as the ABI mastermix when performed with the purified TcdA. 

Interestingly, Perfecta qPCR Toughmix did not allow amplification for the NPCs which shows 

that Toughmix inhibits the non-specific ligation of the free oligonucleotides in the NPC 

whereas background ligation was seen in the case of PLA using ABI mastermix. 
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                                                                              Toxin A concentration 
 

Figure 21: Purified TcdA specific PLA using ABI mastermix and Perfecta qPCR Toughmix. 

Quantification cycle (Cq) obtained at each concentration of purified TcdA is plotted. PLA was carried 

out in duplicate. The error bars shows the standard deviation of the three PLA replicates. The graph 

shows no bar for toughmix NPC because toughmix inhibits the non-specific binding of 

oligonucleotides. Statistical analysis shows no significant difference between the Cqs of the PLA 

using ABI mastermix and Perfecta ToughMix (p-value = 0.8571 and n=3. T-test (Mann-Whitney U)). 
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These results showed that Perfecta qPCR Toughmix worked successfully in the PLA using 

purified toxin. Therefore, further PLAs was carried out using canine faeces sample spiked 

with the purified TcdA and TcdB giving a final concentration of 250ng/mL. The spiked 

sample was further diluted to 25 and 2.5ng/mL and 0.625ng/mL in 1X SDB. The non-spiked 

faecal sample was also used with the NPC (method section 5.6.3). Two replicate of PLAs 

were carried out in duplicate using the above-said concentration for both TcdA and TcdB 

spiked sample. The results in Table 3.4 show that the dilution of the sample in 1X SDB and 

performing PLA with Toughmix overcame the inhibitors in the faecal sample. The 250ng/mL 

(neat) for both TcdA and TcdB did not show any amplification, but the further dilution of the 

sample showed the amplification of the samples giving the LOD of 0.625ng/mL for both 

TcdA and TcdB spiked canine faeces. Finally, the use of Toughmix partially restores the 

partial sensitivity of the assay without requiring dialysis thus reduces the time and 

complexity of the assay. 
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TcdA spiked ∆Cq 
 

Canine Faeces 
∆Cq 250ng/mL ∆Cq 25ng/mL ∆Cq 2.5ng/mL 

0.625ng/mL 

 
TcdA 

Concentration 

 
250ng/mL(NEAT) 

25ng/mL 1:10 

of neat 

2.5ng/mL 1:10 

of 25ng/mL 

0.625ng/mL 

 
1:5 of 25ng/mL 

 
PLA Replicate 1 

 
NA 

 
4.73 

 
1.25 

 
1.65 

 
PLA Replicate 2 

 
NA 

 
4.7 

 
3.06 

 
1.04 

 

TcdB spiked ∆Cq 
 

Canine Faeces 
∆Cq 250ng/mL ∆Cq 25ng/mL ∆Cq 2.5ng/mL 

0.625ng/mL 

 

TcdB Concentration 

 

250ng/mL(NEAT) 

 
25ng/mL 1:10 

of neat 

 
2.5ng/mL 1:10 

of 25ng/mL 

0.625ng/mL 

 
1:5 of 

25ng/mL 

 
PLA Replicate 1 

 
NA 

 
4.97 

 
2.67 

 
1.09 

 
PLA Replicate 2 

 
NA 

 
4.2 

 
1.27 

 
0.62 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.4: Two independent PLAs were carried out in duplicate with Perfecta qPCR Toughmix using 

canine faeces sample spiked with TcdA and TcdB antigen at the concentration of 250ng/mL. The 

spiked sample was further diluted in 1X SDB to the concentration of 25ng/mL, 2.5ng/mL and 

0.625ng/mL along with their NPCs. The neat 250ng/mL of the sample showed no amplification (NA) 

for both TcdA and TcdB. But dilution of the faecal sample in 1xSDB shows the ∆Cq range of 

concentration samples used in the PLA for TcdA spiked canine faeces and TcdB spiked canine faeces. 
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6.4 Validation of C. difficile TcdA and TcdB specific PLA using clinical faeces 

and swab sample 

After the successful validation of the PLA using the TcdA and TcdB spiked canine faeces 

sample using the perfecta Toughmix, the validation of the assay was done on the C. difficile 

positive human faecal and swab samples. The C. difficile human faecal and swab sample was 

used as a negative control which was tested negative by PCR detection method. The control 

qPCR-PLA was also performed along with the clinical faeces and swab samples using purified 

toxins and NPCs with 1XSDB in order to test the working of PLA using standard purified 

toxins. 

 

6.4.1 PLA using clinical faecal samples 

In total, six C. difficile positive human faecal samples were tested for the presence of both 
 

TcdA and TcdB using PLA. The faecal samples were prepared as shown in methods section 
 

5.7.1 and PLA was performed in duplicates for each faecal sample using perfecta qPCR 

Toughmix as shown in methods section 5.7.3. The results in Figure 22 showed that the PLA 

performed to detect the presence of TcdA in the human faecal sample diluted to 1:10 and 

1:100 had amplified later than the negative human faecal sample (background ligation) 

diluted to 1:10 and 1:100 respectively. Therefore, higher background ligation gave the lower 

Cq values as compared to the positive sample. The ΔCqs (CqNPC – CqPos) for each sample was 

calculated against the NPC faecal sample. The majority of the samples gave negative ΔCq 

values which suggested the low sensitivity of the assay. The positive sample 1, 2 and 6 

amplified earlier then the NPCs (background ligation) giving the ΔCq value less than 1, but 

this was not significantly different to prove the sample to be positive. The ΔCq for the 

control PLA was 9.1 which showed that the qPCR-PLA using purified TcdA (250ng/mL) and 

NPC with 1X SDB has worked with the same sensitivity as before. The statistical analysis 

gave no significant difference between the mean Cqs of the each TcdA positive faecal 

sample (1:10) and NPC (1:10) dilution (p=0.569, n=6, Mann-Whitney U) and TcdA positive 

faecal sample 1:100 and NPC (1:100) dilution (p= >0.999, n=6, Mann-Whitney U). 
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                                                                     Human Faecal samples 

 
Figure 22: TcdA specific PLA using clinical faecal samples: The ΔCqs for TcdA PLA of 1:10 dilution of 

positive human faecal sample (dark boxes) calculated against the 1:10 of NPC (p=0.569, n=6, Mann-

Whitney U). The ΔCqs of 1:100 dilution of positive human faecal sample (light boxes) calculated 

against the 1:100 of NPC (p= >0.999, n=6, Mann-Whitney U). The orange bar shows the control PLA 

performed to test the working of PLA using purified TcdA (250ng/mL) and NPC using 1XSDB with ΔCq 

7.8. Pos 1 -6 are referred to as C. difficile positive sample.  
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Figure 23 showed that the results for the detection of TcdB in the positive human faecal 

samples were similar to the TcdA PLA. The ΔCqs for the all the positive faecal samples 

diluted to 1:10 and 1:100 dilutions were calculated against the negative faecal sample 1:10 

and 1:100 respectively. The NPCs (background ligation) amplified earlier than the positive 

faecal samples thus gave negative ΔCqs, again suggesting the poor sensitivity of the PLA 

assay with TcdB. The statistical analysis showed no significant difference between the mean 

Cqs of the each TcdB positive faecal sample (1:10) and NPC (1:10) dilution (p=0.156, n=6, 

Mann-Whitney U) and TcdB positive faecal sample 1:100 and NPC (1:100) dilution (p= 0.081, 

n=6, Mann-Whitney U). 
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                                                          Human Faecal samples 
 
 
 

Figure 23: TcdB specific PLA using clinical faecal sample: The ΔCqs for TcdB PLA of 1:10 dilution of 

positive human faecal sample (black bar) calculated against the 1:10 of NPC (p=0.156, n=6, Mann-

Whitney U). The ΔCqs of 1:100 dilution of positive human faecal sample (black bar) calculated 

against the 1:100 of NPC (p= 0.081, n=6, Mann-Whitney U). The orange bar shows the control PLA 

performed to test the working of PLA using purified TcdB (250ng/mL) and NPC using 1XSDB with ΔCq 

of 5.03. Pos 1 -6 are referred to as C. difficile positive sample 
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6.4.2 PLA using clinical swab samples 

The C. difficile positive human swab samples were also tested using PLA for TcdA and TcdB. 
 

In total, there were 13 swab samples which were prepared as shown in the method section 

5.7.1 and PLA was performed in duplicates with Perfecta qPCR Toughmix using thermal 

conditions as shown in the methods section 5.7.4. 

 

Figure 24 shows the PLA results for the detection of TcdA in a neat human swab sample and 

1:10 dilution of the human swab sample. The ΔCqs for the all the positive swab samples 

neat and 1:10 dilutions were calculated against the negative swab sample neat and 1:10 

dilutions respectively. As the majority of the swabs samples, neat or 1:10 dilution had 

amplified later than their respective negative swab sample, this shows that the assay has 

worked with poor sensitivity giving negative ΔCq values due to higher background ligation. 

Although neat swab samples 4 and 10 gave the ΔCq values of 1 and 1.02 respectively but 

this was not significantly different to prove the sample to be positive. Cq values of the 

positive samples and NPCs were significantly different when compared statistically 

(p=0.0216 (neat), p= 0.0001 (1:10), n=13) due to higher background ligation and early 

amplification of the NPCs as compared to the positive swab samples which amplified very 

late due to inhibition in the samples. 
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                                                                              Human Faecal samples  

 

 

Figure 24: TcdA specific PLA using clinical swab samples : The ΔCqs for TcdA PLA of neat positive 

human swab sample (black bar) calculated against the neat NPC or negative swab sample (p=0.0216, 

n=13 , Mann-Whitney U). The ΔCqs of 1:10 dilution of positive human swab sample (black bar) 

calculated against the 1:10 of NPC (p=.0001, n=13, Mann-Whitney U). The orange bar shows the 

control PLA performed to test the working of PLA using purified TcdA (250ng/mL) and NPC using 

1XSDB with ΔCq 8.9. 
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Figure 25 shows the ΔCqs of TcdB specific PLA for 13 swab samples, neat and 1:10 dilution 

against the NPC neat and NPCs 1:10 respectively. The results showed that 6 out of the 13 

neat swab samples have ΔCq value as negative showing the poor sensitivity of the assay due 

to higher background ligation in NPCs and late amplification of the positive sample due to 

the inhibition of the PCR reaction. The remaining 7 samples gave the ΔCq values less than 1, 

thus showing no significant difference to prove the samples to be positive. Moreover, when 

Mann-Whitney U test was performed on the data, no significant difference was seen 

between the neat positive swab samples and Neat negative swab sample (p=0.0791, n=13). 

 

On the other hand, ΔCq values for the 1:10 dilution of the positive swab samples against 

negative sample were calculated. The results in figure 25 showed ΔCq value for entire 13 

samples to be negative due to early amplification of the NPCs as compared to the positive 

sample(p=0.0001, n=13, Mann-Whitney U). This result shows that inhibition in the positive 

samples and high background ligation had led to the poor sensitivity of the assay. 
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        Human Faecal samples 
 

 

Figure 25: TcdB specific PLA using clinical swab sample: The ΔCqs for TcdB PLA of neat positive 

human swab sample (dark boxes) calculated against the neat NPC or negative swab sample 

(p=0.0791, n=3, Mann-Whitney U). The ΔCqs of 1:10 dilution of positive human swab sample (light 

boxes) calculated against the 1:10 of NPC ((p=0.0001, n=13, Mann-Whitney U). The orange bar 

shows the control PLA performed to test the working of PLA using purified TcdB (250ng/mL) and NPC 

using 1XSDB with ΔCq 5.03. 
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6.5 Digital PLA specific to C. difficile TcdA and TcdB 

Digital PCR (dPLA) is a precise readout method alternate to qPCR. The dPCR helps in 
 

determining absolute copy numbers, it is highly tolerant to complex inhibitors and the 

results do not reply on standards or references (Pohl and Shih, 2004). PLA was performed 

using the Formulatrix dPCR instrument as an alternative readout method to the qPCR-based 

PLA. 

 

Initially, dPLA was carried out using purified TcdA in five replicates with range of 

concentration of 250, 25, 2.5, 1.25, 0.625, 0.312, and 0.125 (ng/mL). At the same time, the 

same set of reagents were used to perform the same PLA on the qPCR machine (CFX qPCR), 

in order to check and compare the LOD of the experiments. Figure 26 shows that the dPLA 

produced the same LOD of 0.125ng/mL as the qPCR PLA targeting purified TcdA. Once 

working of dPLA was confirmed with TcdA, the repeatability of a PLA assay was tested. 

Three independent PLAs targeting TcdA were analysed in duplicate by dPCR and the results 

in figure 27 indicated that it is possible to obtain the precise quantification of the copy 

numbers of ligated PLA probes. Average copy numbers at 0.6ng were 70 (range 65-75), at 

0.3ng 49 (range 35-49) and NPCs 14 (range 11-17). Coefficients of variation were 5.9%, 

10.8% and 19.2%, respectively; suggesting that quantification by dPLA has the potential to 

be more precise and robust than qPCR-based PLA. Figure 28 shows that when a comparison 

between dPLA and qPCR-based PLA at the lowest concentration of antigen tested (0.1 

ng/mL) was performed the lowest levels of detection were similar, with the lowest limits 

probably determined by ligation efficiencies. 
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Figure 26: TcdA qPCR PLA vs TcdA dPLA: A: dPLA was carried out using purified TcdA in five 

replicates with the range of concentration of 250, 25, 2.5, 1.25, 0.625, 0.312, and 0.125 (ng/mL) 

NPC (as no protein control or negative control) and positive count shows the number of ligation 

events in each PLA. B: qPCR PLA was also carried out using purified TcdA using the same reagent 

mix and the same range of concentration in order test the working of PLA using dPCR setup. Error 

bar demonstrates the standard deviation. 
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Figure 27: dPLA assay targeting TcdA pure toxin: (A) Each row of the screen image corresponds to 

an independent PLA, carried out in duplicate at each concentration of antigen and no protein control 

(NPC). (B) The counts are shown in the graph, indicating the median counts. 
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Figure 28: Comparison of dPLA and PLA at the LOD: Copies (PLA) or Cqs (PLA) obtained by diluting 

TcD to 0.1ng/mL was compared to the no protein controls (NPC). Nine independent PLA reactions 

were amplified in duplicate either using dPCR (indicated by white bars) or qPCR (indicated by grey 

bars)  and the resulting average differences in copy numbers (dPLA) or Cqs (qPCR) for each PLA are 

shown.  
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Similarly, four independent dPLAs targeting using purified TcdB were also performed in five 

replicates with range of concentration of 2.5, 1.25, 0.625, 0.312 (ng/mL) using the 

combination of Bp3m5 probes (as used for qPCR PLA for TcdB). The result in Figure 19 shows 

that TcdB PLA assay did not work with the dPLA set up. Average copy numbers at 2.5 ng/mL 

were 8 (range 4-13), at 1.25ng/mL were 6 (range 1-12), at 0.625ng/mL were 5 (range 2-9), 

0.312ng/mL were 3 (range 2-7) and NPCs were 5 (range 0-13). Due to the uneven positive 

counts, large error bars can be seen and which makes it difficult to differentiate the LOD of 

the assay. Finally, the combined results for the TcdA and TcdB dPLA shows that TCdA 

specific dPLA shows similar sensitivity as the standard qPCR PLA but TcdB specific PLA does 

not work with the dPLA set up. 
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Figure 29: TcdB specific dPLAFour independent: dPLAs targeting purified TcdB were also 

performed in five replicates with the range of concentration of 2.5, 1.25, 0.625, and 0.312 

(ng/mL) using the combination of Bp3m5 probes. The counts are shown in the graph, with 

the vertical bar indicating the median counts. 
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General Discussion 
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7.0 Discussion & Conclusion  

C. difficile-associated infection (CDI) particularly in hospital patients (Shah et al., 2010) has 
 

led to increase in mortality and morbidity rate in US, UK and Europe mainly due to elevated 

level of two main virulence factors TcdA and TcdB and also due to the limitations of the 

current CDI diagnostic in terms of sensitivity, specificity or sometime time required for 

diagnosis. PCR and antibody-based methodologies used in CDI diagnostic assay have their 

distinct advantages and disadvantages: PCR assays are sensitive and easy to develop but 

detection of DNA does not prove the presence of the viable and infectious pathogen (Platts-

Mills, Liu and Houpt, 2013). For instance, there are asymptomatic strains of C. difficile that 

do not produce either of the toxins but they are colonised in the patient, thus, PCR 

detection of the asymptomatic C. difficile colonisation can lead to unnecessary treatment of 

many patients. On the other hand, antibody-based diagnostic methods such as ELISA is 

specific but they are relatively insensitive as compared to the nucleic acid based tests 

(Planche et al., 2008) (Sajid, Kawde and Daud, 2014). Therefore, both of these molecular 

tools, qPCR and ELISA has been combined together to develop PLA which uses the sensitivity 

of the qPCR assay and specificity of the ELISA method. PLA has been used for wide variety of 

applications ranging from detection of cancer biomarkers (Zhu et al., 2006), proteins in the 

single cells (Stahlberg et al., 2012) and prions (Hammond et al., 2014). The use of PLA in 

detecting bacterial pathogens is somewhat limited. To date, there are only two studies 

showing the use of PLA for detection of bacterial proteins. The very first study was 

performed by (Gustafsdottir et al., 2006), detailing the proof of principle for the detection of 

bacterium Lawsonia intracellularis using PLA. The second publication demonstrated 

homogenous PLA for pathogenic detection of human pathogenic E.coli (O157:H7) (Leslie et 

al., 2010). 

 

So this MPhil study shows the development of the first ever PLA for the detection of 

C. difficile bacterial toxins TcdA and TcdB. As both TcdA and TcdB are encoded by the tcdA 

and tcdB gene respectively showing major similarity in their structures, the criterion for the 

development of the PLA was the selection of purified full-length target antigen TcdA and 

TcdB (The Native Antigen company) and specific antibodies raised against these whole C. 

difficile toxins so that they don’t cross react with each other. The validation of C. difficile  
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TcdA/ TcdB antigens and specific antibodies were performed by SDS-PAGE and western 

blotting, showing clear single protein bands for both commercial antigens and with 

expected molecular weights of ~308KDa (TcdA) and ~270KDa (TcdB). Following this 

validation step, an initial attempt at biotinylating the TcdA specific mAb using the APEX 

Biotin-XX Ab labelling kit (Invitrogen) resulted in a failed FPPT with ΔCq less than 8.5 which is 

an arbitrary cut-off set by Life technologies, USA. There could be three reasons for this FPPT 

failure: 1) the Inadequate biotinylation of the antibody, 2) longer dialysis may be required 

and insufficient dialysis could have also led excess or free biotin in the solution 3) low 

recovery of biotinylated antibody (the Apex kit indicates the recovery of biotinylated 

antibody is between 40- 80%). Due to the failure of FPPT using the APEX method for 

biotiinylation, a new biotinylation method was tried known as EZ-Link Sulfo-NHS-LC-Biotin, 

No-Weigh Format Biotinylation kit (Thermo Scientific). This kit involved simple and fewer 

steps as compared to the Apex biotinylation kit, thus reducing the chances of manual errors 

during biotinylation and helps in better recovery of the biotinylated antibodies as compared 

to the apex method. Therefore, the use of this method led to successful biotinylation of 

TcdA and TcdB specific antibodies with all biotinylation exceeding the forced proximity 

probe quality threshold of a ∆Cq ≥ 8.5. 

 

We initially targeted TcdB for PLA, since there are some TcdA-ve pathogenic strains of C. 

difficile and developed a TcdB-specific PLA using a combination of two different antibodies 

(anti-TcdB monoclonal antibodies (mAb) and polyclonal (pAb) antibodies). This PLA had a 

LOD of 2.5ng/mL; three times lower than that of an equivalent ELISA (company) which was 

1.25ng/mL. Since the C-terminal end of the tcdB gene is characterised by several repeated 

motifs (Pruitt and Lacy, 2012b), we surmised that it might be possible to target these using a 

single mAb tagged with two different oligonucleotides. Hence, we tested a PLA with the 

purified TcdB using only the single mAb probes and were able to detect toxin LOD 

0.125ng/mL. Similarly, PLA targeting TcdA was also developed and since TcdA also has 

multiple repeat epitopes at its C-terminal end, we hypothesised that it might also be 

possible to develop a sensitive PLA using a combination of single mAb (Frey and Wilkins, 

1992). This approach was also successful and resulted in the highly reproducible detection 

of purified TcdA at 0.125ng/mL. In both the cases detection of purified TcdA and TcdB using 
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PLA resulted in 10 times more sensitivity than the ELISA performed in the lab with the 

purified toxin which has LOD of 1.25ng/mL for TcdA and TcdB. 

 

Since there were few regulatory complications with ethics regarding the use of the human 

clinical sample in our lab, therefore, TcdA and TcdB specific PLAs were performed with the 

antigen spiked in a canine faeces sample as a model of human faecal samples. The canine 

faecal sample was used because there have been previous studies which showed the 

isolation of pathogenic C. difficile toxins from the diarrhoeic and non-pathogenic C. difficile 

from non-diarrhoeic dogs (Chouicha and Marks, 2006). The initial PLA was performed by 

spiking known concentration of purified TcdA (as mentioned in section 5.6) resulting no 

amplification. The most likely reason for this result could be the presence of PCR inhibitors 

such as bile salts and other complex polysaccharides in the faeces sample which have been 

shown to inhibit PCR reactions (Oikarinen et al., 2009), (Chouicha and Marks, 2006). To 

remove these potential inhibitors we performed dialysis and dilution of the 10ng/mL of 

TcdA spiked canine faeces which helped in the amplification of the spiked samples and 

partially restore the sensitivity of the assay giving LOD of 1ng/mL. However, this additional 

step increased the time and complexity of the assay, which would limit its use as a 

diagnostic test. Therefore, in order to eliminate the additional steps of dialysis and dilutions, 

an alternative mastermix was used called Perfecta qPCR toughmix (Quanta Bioscience). This 

Toughmix contains highly processive thermostable DNA polymerase combined with the high 

avidity monoclonal antibodies and this combination is highly resistant to the PCR inhibitors. 

Therefore, the use of this Toughmix instead of Taqman mastermix (recommended by Life 

Technologies) helped in reducing the inhibition caused by the PCR inhibitors in the spiked 

faeces sample thus restoring the sensitivity of the assay with LOD of 0.625ng/mL for both 

TcdA and TcdB. 

 

The LOD of PLA compared to ELISA performed in the lab showed the 10 times more 

sensitivity when using purified TcdA and TcdB, however, the sensitivity of the PLA reduced 

to 2 times using spiked canine faeces sample for PLA and ELISA. Therefore, this suggests that 

sensitivity of the PLA was still inhibited by the presence of faecal inhibitors even after the 

dilution and use of Toughmix for the qPCR part of the PLA. 
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Another detection method such as C. DIFF QUIK CHEK COMPLETEtest which is a rapid 
 

membrane test has the detection level of TcdA at 0.63ng/mL and TcdB at 0.16ng/mL in the 

faecal sample. When the sensitivity of this test was compared to PLA, this shows that PLA 

has the similar LOD for TcdA specific PLA but was 4 more times less sensitive for TcdB PLA 

when using the spiked canine faecal sample. Although the C. DIFF QUIK CHEK 

COMPLETEtest is better than PLA in term of sensitivity but this method is not specific as it 

cross-reacts with isolates of C. sordelli (according to manufacture specification) which is not 

the case in C. difficile TcdA and TcdB specific PLAs making PLA better than this particular 

test. 

 

After the development of TcdA and TcdB specific PLA, we developed a duplex PLA 

targeting both purified toxins in a single PLA assay. The results of the duplex assay were 

similar to the singleplex assay giving a LOD of 0.12ng/mL with good repeatability. However, 

one of the limitation in this PLA assay was that using a TaqMan protein kit uses only single 

fluorophore (FAM) as the marker for PCR detection, therefore, it is incapable of 

distinguishing between two targets (TcdA and TcdB) in real time amplification but more 

importantly this result shows that we can see more reliable and robust detection of the 

toxins at the very low concentration of 0.12ng/mL. The next stage of the research could be 

to design own 3’ and 5’ oligonucleotides attached with two different fluorophore that are 

capable of distinguishing between TcdA and TcdB in real time. As TcdB is approx. 1000 fold 

more toxic than TcdA (Sun, Savidge and Feng, 2010) and TcdB positive isolates appear to be 

on increase development of this duplex assay will help in providing the diagnostic 

information which will help in treating the CDI patients accordingly. 

 

Along with sensitivity and specificity of an assay, early detection of an antigen is also an 

important factor in a good diagnostic assay. Currently, proximity assay cannot be completed 

in less than ~2.5 hours, mainly because binding of proximity probes and antigen requires an 

hour of incubation for maximum sensitivity, the ligation step takes 10 minutes and the use 

of hydrolysis probes requires minimum extension time for the PCR reaction (~1 hour in CFX). 

Hence, we focused on reducing the time taken to complete the PCR step of PLA from 65 

minutes in CFX qPCR machine to 45 minutes which was achieved using Illumina PCRMax 

Eco48 using same thermal conditions. The reduction of 20 minutes in the qPCR reaction of 

the PLA was seen which is very important and useful for this type of assay. Hence, the  
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overall time taken to complete the PLA has now reduced from 2.5 hours to less than 2 hours 

without compromising the sensitivity and specificity of an assay which is very important. 

The PLA now give results in approximately less than half the time of the C. difficile 

TcdA/TcdB ELISA which takes ~3.5 hours to give the results. Although there is a rapid 

membrane test known as C. DIFF QUIK CHEK COMPLETEtest which can give results in 30 

minutes but it cross reacts with other strains of clostridium test making it less specific than 

PLA. The speed of the PLA can be further increased by many potential methods such as by 

reducing hybridisation time with molecular crowding, use of faster chemistries such as 

scorpions and developing the mastermix which can be designed to work with minimal 

activation and annealing/polymerisation. 

 

Once the validation of the PLA was successful in the TcdA and TcdB spiked canine faeces 

sample using perfecta Toughmix, the assay was then validated with the CDI infected human 

faeces and swab samples in Public Health England, London, UK. Initially, the CDI positive 

human faecal samples were tested and in order to remove the PCR inhibitors from the 

faecal samples, we diluted the neat sample and performed the PLA-specific to TcdA and 

TcdB on the diluted samples. The assay worked with poor sensitivity for both TcdA and TcdB 

specific PLA because of early amplification of negative control than the positive faecal 

samples. Similar results with poor sensitivity were also seen when TcdA and TcdB specific 

PLAs were performed on the CDI positive human swab samples. The possible reason for 

these results may be presence of high PCR inhibitors in the human faecal samples which 

inhibited the assay, even after pre-treatment of the faecal sample by dilution and use of 

Toughmix. But, the dilution of the faecal sample as the pre-treatment method had been 

successful before in the case of detection of L. interacellularis in the pig faeces using 

homogenous PLA with high sensitivity (Gustafsdottir et al., 2006). Moreover, homogenous 

PLA for the detection of invasive aspergillosis had also been successfully developed in our 

lab which used broncho-alveolar lavage (BAL) fluid samples from the patients. The dilution 

of BAL fluid sample in 1XPBS overcame the inhibition for the BAL sample for detection of 

aspergillosis and showed 1000X greater sensitivity than the current lateral flow device for 

the detection of invasive aspergillosis. On the other hand, the dilution of the BAL fluid did 

not largely affected the fungal load in the sample as there was enough target antigen to 

detect with high sensitivity but this was not in the case of C. difficile PLA. Therefore, the 
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other probable reason for poor sensitivity of the assay could be due to the presence of 

fewer toxins in the sample due to degradation of toxin because of protease (Chouicha and 

Marks, 2006) (Corthier et al., 1989), which were undetectable by PLA setup or possibly the 

target was lost when the samples were diluted in the 1X SDB to remove the inhibitors in the 

faeces and swabs. Although, the dilution of the sample as these pre-treatment methods had 

been successful in the case of detection of invasive aspergillosis in our lab but this pre-

treatment methods did not help in minimising the PCR inhibitors for C. difficile. Therefore, 

alternative pre-treatment methods should be performed such as heat treatment of the 

faecal sample, treatment of the faeces with bovine serum albumin (BSA) and use of single 

stranded DNA binding T4 gene 32 proteins (gp32) for reduction of the PCR inhibitors in the 

faeces sample (Schrader et al., 2012). The use of the pre-treatment method other than 

dilution method might increase the time of the assay but hands on time for the assay will 

still be less than the current diagnostic methods for detection of C. difficile toxins such as 

ELISA which involved high hands on time due to multiple wash steps. Finally, the successful 

treatment of the faecal sample could make C. difficile specific PLA a promising assay to be 

used in the clinical setup with high sensitivity and specificity. 

 

The stability of the C. difficile specific antibodies used in the PLA could be another important 

factor which affects the sensitivity of the PLA when using human faecal samples. The 

antibodies used in this assay works fine when used with purified toxins and canine faecal 

samples (as seen in the results chapter), but might not be stable and ideal for the C. difficile 

PLA when using human faecal and swab samples. In order to develop the sensitive and 

specific C. difficile PLA for the clinical samples different set of mAbs can be used or new 

antibodies can be bought from the different manufacturer. Since, the generation of own 

new C. difficile antibodies is difficult, as it requires biological system, moreover, the activity 

of the antibody varies from batch to batch; therefore, use of aptamers are the suitable 

alternative for developing the PLA-specific to C. difficile toxins. Despite having similar 

functions to antibodies, the aptamers have many advantages over antibodies which can 

help in developing highly sensitive and specific C. difficile PLA. The advantages of aptamers 

includes, uniform activity regardless of the batch synthesis, they bind there target with 

specificity and affinity comparable to the monoclonal antibodies, they are non-

immunogenic although they are difficult to synthesise but once prepared they have 
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unlimited shelf life unlike the antibodies who have limited shelf-life (Toh et al., 2015). 

Moreover, as aptamers are nucleic acid, they can be easily labelled and linked to the linkers, 

reporter molecules and other functional groups which is beneficial for the development of 

probes for the PLA (Luzi et al., 2003). Finally, the other main issue remains the detection of 

the background caused by ligation of non-interacting antibodies in the NPCs, which 

impedes achieving the sensitivity of an assay with clinical samples. 

 

We have also developed a first digital PLA (dPLA) protocol using digital PCR (dPCR) as a 
 

readout method for TcdA and TcdB as an alternative to qPCR. The advantages of dPCR are 

that it provides more precision by determining absolute copy numbers, it is highly tolerant 

to complex inhibitors and the results do not reply on standards or references (Pohl and Shih, 

2004). Therefore, we used, the Formulatrix dPCR instrument for the PLA. It uses a 

simple platform with physical partitions in order to count actual ligation events for each 

PLA and results in an easy to understand readout of the copy numbers. The quantification 

of the PLA using dPCR did give similar sensitivity and LOD for TcdA with a 

quantification limit of 0.312ng/mL with canine faeces sample and using Taqman mastermix 

(recommended by Life Technologies). This showed that although the dPLA had a similar 

LOD as qPCR-PLA for TcdB, the use of dPLA overcame the inhibition caused by the bile salt 

and other complex inhibitors in the toxin spiked canine sample as the superior master mix 

was not used. 

 

But when the similar set up was used for performing TcdB specific dPLA, the assay did not 

work similar to the sensitivity and LOD as of TcdB qPCR PLA. This may be due to the nature 

of the TcdB assay or the probe set up, but further steps need to be taken to optimise TcdB 

dPLA assay. Moreover, as the dPLA counts the actual ligation events therefore, the problem 

of background ligation was still seen in the dPLA in both TcdA and TcdB dPLA assay thus 

affecting the sensitivity of the assay. 

 

In summary, we have developed the first PLA-specific to C. difficile TcdA and TcdB combining 

the specificity of antibody-based assay with sensitivity and dynamic range of the qPCR. As 

the results for C. difficile PLA above suggests, PLA is more specific than commercial 

immunoassay and has an ability to be more sensitive than nucleic-acid based tests. The 

potential for development of duplex assay adds further advantage to the specificity of the           
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assay. Finally, we also established the first digital PLA for C. difficile diagnosis, with initial 

results suggesting that it reliable, reproducible and show similar sensitivity for detection of 

TcdA antigen when using qPCR. However, in order gain the maximum sensitivity further 

optimisation is required to overcome the inhibition caused by the faecal inhibitors in the 

clinical sample and also decreasing the detection of background caused by ligation of non-

interacting antibodies in the NPC, which hampers achieving maximum sensitivity. 

 

8.0 Future Directions 
 

This study has led to the development of a PLA-based diagnostic test for the detection of C. 
 

difficile TcdA and TcdB. However, future studies should be performed in order to optimise 

and improve several factors to create the diagnostic kit that can be used in the clinical 

laboratories. Most importantly, unlike a nucleic acid-based test, non-specific ligation of the 

oligonucleotides in the absence of antigen always results in the detection of a background 

signal which is the main drawback of PLA. The background signal can be minimised by 

optimising certain components in the PLA which may include an optimising choice of probe 

and ligase concentrations, reaction times and PCR conditions which may help in increasing 

the performance of PLA. The concentration of antibody reagents can be reduced which 

keeps the assay background very low, thus reducing the chance of proximity in the absence 

of target. 

 

Increasing the concentration of the connector oligonucleotides in the PLA reaction can also 

help in reducing the background signal by hybridising the unbound probe which is not in 

close proximity to one connector each thus stop the to undergo ligation (Gustafsdottir et 

al., 2006). 

 

The use of asymmetric connector hybridization model in PLA can also help in reducing the 

background ligation thus increasing the sensitivity and dynamic range of the assay. In this 

model, the affinity of one side of the connector or splint towards the antibody or aptamer is 

weakened which ultimately reduce the non-target specific ligation (background noise) 

without affecting the target specific ligation (Kim et al., 2010). Therefore adopting the 

similar model in the C. difficile TcdA and TcdB may help in solving the issue of background 

ligation. 
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The use of alternative PLA methods such as in situ and solid phase PLA may also minimise 

the problem of background signal. The extensive washing steps involved in the solid phase 

PLA can also help in solving the problem of background ligation by removing the free and 

unbound probes thus enhance sensitivity owing to the reduce background ligation. 

 

Although the PCR inhibition in the TcdA/TcdB spiked canine faeces was reduced by dilution 

and use of perfecta Toughmix the CDI positive clinical samples performed very poorly. 

Therefore, the alternate method for removing the PCR inhibitors in the human faecal 

sample is the development of solid phase PLA, which shares the properties of the classic 

sandwich immunoassay. In this method, the target specific biotinylated antibody linked to 

the magnetic bead is captured on the solid support to which the target antigen binds 

followed by washing steps which allegedly remove any unbound antigen and other 

inhibitors in the faeces sample. This complex of the target antigen and the antibody is then 

detected by 3’ and 5’ probes during incubation followed by washing to remove the unbound 

probes. Finally, the ligation step following qPCR assay is done. Despite the fact that this 

assay is more complex and involves more step but it can be a promising assay for the 

detection of the TcdA and TcdB in the faecal sample full of PCR inhibitors. 

 

The limitation of the duplex PLA assay we have developed can be solved by designing new 

3’ and 5’ oligonucleotide which will be attached with the different fluorophores replacing 

the oligonucleotide supplied in the Taqman kit from life technologies. Using two different 

fluorophores can help in the development of the duplex PLA for C. difficile TcdA and TcdB 

capable of distinguishing the two individual targets on the qPCR. 

 

The duplex assay also has the potential of further developing it into a multiplex PLA, which 

will be capable of detecting TcdA, TcdB and glutamate dehydrogenase (GDH) enzyme in a 

single PLA assay. As mentioned previously, GDH is a metabolic enzyme which is produced by 

both toxigenic and non-toxigenic C. difficile strains. This enzyme is used as a marker for the 

presence of C. difficile in clinical specimens. Therefore, a new PLA could be developed using 

a probe containing the antibody specific to the GDH enzymes, which will show the presence 

of either pathogenic or non-pathogenic C. difficile in the sample. Once the GDH specific PLA 

is developed, it can be incorporated into the duplex assay, ultimately it will result in 

development of highly specific multiplex PLA capable of detecting the presence of colonised 
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C. difficile either capable of producing toxin of not and also detection of the released TcdA 

and TcdB toxins or other hypervirulent strains of C. difficile in a single PLA test, which may 

have the positive impact on the health of at-risk patients of CDI. 

 

Once this assay is developed into a diagnostic kit for C. difficile TcdA and TcdB, PLA can be 

used for further development of an assay for other pathogenic organisms resulting in more 

targeted clinical decision-making, helping reduce the mortality rate for high-risk individuals. 

Finally, in the future, the combined testing of DNA and protein targets from the same 

sample on the same analytical platform (i.e. qPCR) may further improve the sensitivity and 

specificity of disease diagnosis leading to improved clinical outcomes, patient satisfaction 

and reduced associated costs. 
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