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Neoadjuvant chemoradiotherapy (CRT) followed by total mesorectal excision (TME) is the 
gold standard treatment for locally advanced rectal cancer with threatened circumferential 
resection margin (CRM). This strategy considerably improves loco-regional control but fails 
to improve overall survival (OS) due to distant failure. In addition there is a lack of consensus 
on optimal timing of surgery and the management of patients with complete clinical response 
after CRT who could benefit from either less invasive or wait and watch approaches. This 
shifting paradigm has placed greater recent interest in quantification of imaging biomarkers 
such as textural analysis (TA) linked to underlying intra-tumour heterogeneity associated 
with adverse outcomes. This could help to select patients with predicted poor prognosis for 
personalized intensive therapy. The aims of this thesis were: firstly, to assess the short and 
long-term effects of delayed surgery after CRT and secondly to investigate the prognostic 
potential of TA based on conventional magnetic resonance imaging (MRI) in stage II-III 
locally advanced rectal cancer. Thirdly, the potential of functional parameters (standardized 
uptake value [SUV], apparent diffusion coefficient [ADC]) quantified on pre-treatment 
integrated positron emission tomography and MRI (PET/MR) system to predict pathological 
response to CRT (independent sample t-test) and survival was assessed. 
 
TA using a filtration-histogram technique of MR images was undertaken using TexRAD, a 
proprietary software algorithm. Regions of interest enclosing the largest cross-sectional area 
of tumour area were manually delineated on the axial images. Cox-multiple regression 
analysis determined which univariate features (clinical, textural, radiological and histological) 
on Kaplan-Meier survival analysis independently predicted OS, disease free survival (DFS) 
and recurrence-free survival (RFS). The time interval to surgery did not predict the survival 
outcomes. Male gender independently predicted DFS and RFS while CRM predicted RFS 
for the entire cohort (n-112). In a subset of the cohort (n-56) pre-treatment TA, extramural 
venous invasion (EMVI) on MRI independently predicted OS while TA and threatened CRM 
on MRI predicted DFS. For OS; EMVI on MRI and for DFS; TA and CRM involvement on 
MRI were the independent post-treatment factors. Only TA independently predicted RFS on 
pre- or post-treatment analyses. Both SUV and ADC values were not predictive of outcomes. 
 
Delayed surgery after CRT does not lead to worse survival outcomes. Along with local or 
distant failures, male gender and pathological CRM are associated with worse survival. MR 
based TA of rectal cancers can predict outcome before undergoing surgery and could 
potentially select patients for individualized therapy.  
 
Key words: Rectal cancer, Chemoradiotherapy, MRI, Textural analysis, PET/MRI, Tumour 
regression 
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1 Chapter 1: Introduction and literature 
review 

1.1 Overview 
 
The management of rectal cancer has changed dramatically in the last two decades from a 

surgically managed disease into a multimodality treatment model over the last decade. 

Currently the standard management of locally advanced rectal cancer, where tumour 

invades or extends close to the mesorectal fascia, is neoadjuvant chemoradiotherapy (CRT) 

followed by total mesorectal excision (TME) (van Gijn, et al., 2011). In parallel, laparoscopic 

rectal cancer surgery has developed so that it is feasible to utilize this technique with its 

proven short term benefits for pelvic dissection (Motson, et al., 2011). Though, the current 

management with the use of high resolution magnetic resonance imaging (MRI) in staging 

and selecting patients for CRT has shown considerable improvement in loco regional 

control. But, this is not the case for systemic control and these strategies may not 

necessarily improve overall survival (Lange, et al., 2013).  

 

In addition, there remain many unanswered questions, especially with regards to the 

management of locally advanced rectal cancer. There is a lack of consensus on the optimal 

time interval to surgery after finishing chemoradiotherapy in such patients (Sizer, et al., 

2009). Currently, the time interval to surgery after completion of CRT is arbitrarily fixed at of 

6-8 weeks (Glimelius, 2014) without regard for on-going tumour response which may occur 

after the conventional 6 to 8 week window (Johnston, et al., 2009). Furthermore, restaging of 

irradiated rectal tumours is challenging because of difficulty of morphological MRI in 

differentiating fibrosis from viable residual tumour (van der Paardt, et al., 2013). In addition, 

a proportion of such patients would achieve complete clinical response and could benefit 

from either wait and watch approach or less invasive local excision surgery (Habr-Gama, et 
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al., 2004).  But there is a poor correlation of clinical complete response with true pathologic 

complete response (Zmora, et al., 2004). 

 

This shifting paradigm has placed greater recent interest in quantification of imaging 

biomarkers linked to underlying intra-tumour heterogeneity associated with adverse 

outcomes in terms of treatment failure and drug resistance (Ganeshan and Miles, 2013) This 

could help to select patients with predicted poor prognosis for personalized intensive 

therapy. Heterogeneity can be quantified on imaging non-invasively using textural-analysis 

(TA). TA assesses the distribution of pixel grey-level intensity, coarseness and regularity in 

digital images (Castellano, et al., 2004). In the last decade or so, TA has been employed in 

oncological studies of lung (Kido, et al. 2002), brain (Skogen, et al. 2013), renal (Goh, et al., 

2011) and breast (Ahmed, et al., 2013) to act as a diagnostic, prognostic and treatment 

response assessment imaging biomarker. Though, the potential of CT based textural 

analysis as a prognostic tool has been investigated for colorectal cancer (Ganehsan, et al., 

2007 and Ng, et al., 2013) but there is a lacking evidence for the potential of MRI based TA 

(MRTA) in predicting survival in locally advanced rectal cancer.  

 

Conventional radiological anatomical response assessment based on percentage reduction 

in tumour length such as the Response Evaluation Criteria in Solid Tumours (RECIST) 

(Machida, et al. 2008 and Therasse, et al. 2000) is well established. However change in 

tumour size does not always reflect treatment response. Sometimes size my increase due to 

necrosis, cytotoxic oedema or haemorrhage resulting from treatment rather than disease 

progression (Tuma, 2006). In addition this method of assessment is not appropriate for 

predicting response for cytostatic rather than cytocidal cancer therapies (Wahl, et al. 2009). 

In such cases tumour response cannot be reliably predicted. Because of the limitations of 

conventional imaging, functional MRI techniques such as diffusion-weighted imaging (DWI) 

and positron emission tomography (PET) reflecting tumour microenvironment are currently 

the subject of investigation for a potential prognostic and tumour response assessment tool 
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for various cancers. However the evidence in the literature is either based on the studies 

either using PET or DWI techniques separately or combining data indirectly from 

independent PET and MR images. The major limitation with such studies is that since scans 

are not performed simultaneously, there is a potential for errors in lesion co-registration 

especially for organs such as bowel which may change location and shape over short 

periods (Hofmann, et al., 2008).  In recent years with technological advancement and 

development of PET detectors that could function in the presence of strong magnetic field, 

state of art integrated PET/MR imaging technique is now available and carries a huge 

research potential. 

 

The main objectives of this research project was to investigate a gap in the knowledge of 

locally advanced rectal cancer with regards to short and long-term effects of delayed 

laparoscopic surgery after CRT,  prognostic potential of TA based on conventional MRI and 

to assess the ability to functional parameters quantified on integrated PET/MRI to predict 

pathological response to CRT. This gap in the knowledge and the objectives were 

investigated through three clinical studies in the thesis.  

 

 The main objective of the first clinical study was to determine both the short 

and long-term effect of delayed TME beyond 12 weeks in laparoscopic setting 

after long course CRT in locally advanced rectal cancer including patients 

with threatened CRM and T4 stage.  

 

 The main objective of the 2nd clinical study in the thesis was to investigate 

whether MRI based textural analysis in addition to morphological MRI and 

histopathological parameters can predict survival outcomes in rectal cancer. 

Textural analysis of pre-treatment MRI, 6-week post CRT MRI was carried out 

to develop imaging biomarkers that can predict long term prognosis in locally 

advanced rectal cancer patients treated with neoadjuvant CRT. 
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 The main objective of the third study was to investigate whether pre-treatment 

integrated PET-MR functional features correlated with histological response in 

locally advanced rectal cancer treated with long course CRT. In addition, a 

potential correlation of PET and functional MRI features in the setting of 

integrated PET/MRI system was evaluated.  Moreover, association of clinical, 

histological and functional imaging parameters with disease free survival was 

also evaluated for these patients. 

 

1.2 Thesis outline 
 
Chapter 1 This introductory chapter provides an overview of rectal cancers including its 

epidemiological background, aetiology, different treatment modalities, staging with particular 

reference to MR staging and restaging after long course CRT and issue relating to optimal 

timing of surgery. This also provides an introduction for chapter 4. 

Chapter 2 The concept of textural analysis, basic principles of MRI, functional imaging 

modalities (PET, DWI) and integrated PET/MRI are introduced in this chapter along with 

their current use for various oncological applications with special reference to rectal cancer. 

This also provides an introduction to the chapters 5 and 6. 

Chapter 3 Details of methodology, methods and materials employed for the clinical studies 

in chapters 4-6 are discussed here. This includes the inclusion and exclusion criterion for 

locally advanced rectal cancer, image acquisition and analysis protocols and statistical 

analysis.  

Chapter 4 In this chapter, the outcomes for the patients with MRI defined poor risk 

histologically confirmed locally advanced rectal adenocarcinomas treated with neoadjuvant 

long course CRT followed by delayed surgery are discussed and critiqued in the light of 

relevant evidence in literature. 
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Chapter 5 This chapter is based on the second objective of the thesis. The results of the use 

of MRI based textural analysis as a prognostic imaging biomarker and an independent 

predictor of survival along with morphological conventional MRI parameters in patients with 

locally advanced rectal cancer are discussed. 

Chapter 6 In this chapter, a pilot study addressing the third objective and research questions 

of the thesis is discussed. This study investigated whether pre-treatment integrated PET-MR 

functional features could predict pathological tumour regression and survival in the study 

population 

Chapter 7 provides the summaries and conclusions of the clinical studies along with the 

limitations and future potential fields in rectal cancer research.   

1.3 Rectal cancer 
 
Rectal cancer is a malignant tumour arising from the epithelium of the rectal mucosa and 

constitutes one third of all the colorectal cancers (CRC) (Bowles, et al., 2013). More than 

90% of all the colorectal carcinomas are adenocarcinomas. Conventional adenocarcinoma is 

characterized by glandular formation, which is the basis for histological tumour grading 

(Fleming, et al., 2012). Mucinous adenocarcinomas are a histological subtype of CRC in 

which the tumour cells secrete abundant extracellular mucin involving more than 50% of the 

tumour volume. It is well documented that up to two-third of all the mucinous colorectal 

adenocarcinomas arise from rectum which is the most common site (Secco, et al., 1994). 

Other rare types of colorectal carcinomas include neuroendocrine, squamous cell, 

adenosquamous, spindle cell and undifferentiated carcinomas. The World Health 

Organisation (WHO) classification of type and grade of CRC (Bosman, et al., 2010) is shown 

in Table 1-1-1 
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Table 1-1-1 Histological types and grades of colorectal carcinoma according to WHO 

classification. (Adopted from Bosman, et al. 2010 Note: G1: well differentiated G2: 

moderately differentiated G3: poorly differentiated G4: undifferentiated (Jass, and Sobin, 

1989) 

Histological type Description Grading system 

(G1-G4) 

Adenocarcinoma Glandular epithelium 1-3 

Mucinous 

adenocarcinoma 

More than 50% extracellular mucin 1-3 

Signet ring cell 

carcinoma 

More than 50% signet ring 

cells(intracytoplasmic mucin) 

3 

Squamous cell 

carcinoma 

Exclusive squamous differentiation  1-3 

Adenosquamous 

carcinoma 

Adenocarcinoma and squamous cell 

carcinoma (mixed) 

1-3 

Small cell carcinoma Similar to small cell carcinoma of the lung 

(neuroendocrine) 

4 

Undifferentiated 

carcinoma 

No glandular or other features to indicate 

definitive differentiation.  

4 

 

1.4 Epidemiology 
 
Understanding the magnitude of the clinical problem that CRC presents requires analysis of 

its epidemiology.  According to the report of World Health Organization- International Agency 

for Research on Cancer, CRC is the third most common cancer in man and second in 

women world-wide (Ferlay, et al., 2013). CRC shows geographic variation in its distribution 

throughout the world and is mainly a disease of western world; the highest rates are in 

Australia/New Zealand and Western Europe and the lowest in Africa (except Southern 

Africa) and South-Central Asia (Haggar and Boushey, 2009). This difference might be due 

higher intake of dietary fats especially animal fats and less consumption of diets rich in fibre 

such as fruit and vegetables in the Western world (Gingras and Beliveau, 2011). In 2013, 

41,112 new cases of CRC were registered in the UK (age-standardized incidence rate of 71 

new cases per 100,000 persons) and it was the fourth most common cancer, accounting for 
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12% of all new cases (Cancer Research UK, 2016). The commonest anatomical site is in 

rectum and rectal cancer accounts for approximately one third of CRC. The proportions of 

rectal cancer cases are higher in males than females. In 2010-2012, the average numbers of 

new rectal cancer cases registered per year in the UK were 11567. Of those, 7327 were 

males (31.5%) and 4240 were females (23.1%) (Cancer Research UK, 2015). The lifetime 

probability of being diagnosed with an invasive CRC in the UK is 1 in 14 for men and 1 in 19 

for women. The incidence of CRC is strongly related to age and it rises with increasing age 

in both sexes. Almost 83% of cases were diagnosed in people aged 60 or above in the UK in 

2011-2013 (Cancer Research UK, 2016). 

 

In addition to morbidity, CRC is also a major cause of mortality world-wide. CRC is the fourth 

commonest cause of cancer related mortality and accounts for 8% of all the deaths from 

cancer worldwide (Ferlay, et al., 2013).  CRC is the second leading cancer killer both in 

United States (Haggar and Boushey, 2009) and Europe (Ferlay, Parkin and Steliarova-

Foucher, 2010). The nationwide UK figures are representative of disease burden globally. 

According to Cancer Research UK 2012-dataset, CRC is also the second most common 

cause of cancer related mortality in the UK, with the crude mortality rates of 28 per 100,000 

men and 23 per 100,000 women. Around 40% of CRC deaths are due to rectal cancers 

alone according to this dataset (Cancer Research UK, 2014). 

1.5 Aetiology of colorectal cancer 

1.5.1 Hereditary syndromes 
 
Both genetic and environmental factors have been implicated in the development of CRC. 

Up to 90% of CRC are termed sporadic (Acheson and Scholefield, 2002) and arise from 

changes in the somatic cells. The hereditary syndromes account for fewer than 10% of CRC 

predominantly in younger patients (Lynch and de la Chapelle, 2003). The two commonest 

hereditary syndromes are hereditary non-polyposis colorectal carcinoma (HNPCC) and 

familial adenomatous polyposis (FAP) (Jang and Chung, 2010). Other hereditary syndromes 
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include Peutz-Jeghers syndrome and juvenile polyposis syndrome characterized by 

development of hamartomatous polyps as primary lesions. In HNPCC, also called Lynch 

Syndrome, affected individuals can develop colonic adenomas with greater frequency than 

the general population but polyposis is rare (Jasperson, et al., 2010). The lifetime risk of 

developing CRC is 50%– 80% and there is preponderance for an early age with 70% of 

males and 57% of females diagnosed with CRC before the age of 50 years (Stoffel, et al., 

2009). Tumours tend to be right-sided (Weitz, et al., 2005) and have classical histological 

features such as being poorly differentiated, mucinous and have large numbers of tumour-

infiltrating lymphocytes. Endometrial cancer is the most common extra-colonic malignancy 

associated with Lynch syndrome (Stoffel, et al., 2009). Other cancers associated with Lynch 

syndrome include gastric, ovarian, biliary, urinary tract, small bowel, brain and pancreatic. 

Characteristic features of FAP include the development of hundreds to thousands of colonic 

adenomas (50% of patients by age 15 years, 95% by age 35 years). Polyps undergo 

malignant change inevitably by the age of 40 (Weitz, et al., 2005) unless prophylactic 

colectomy is performed. An important variant is attenuated FAP with 10 to 100 colorectal 

adenomas. There may, in addition, be extracolonic manifestations, for example desmoid 

tumours and osteomas of the skull (Gardner syndrome) (Jasperson, et al., 2010). 

Hyperplastic polyposis (HPP) is an infrequent condition, characterized by presence of 

multiple hyperplastic polyps throughout the colon that are typically discovered in routine 

screening. These lesions carry significant cancer risk and histologically appear as sessile 

serrated adenomas (Legget, et al., 2001). 

1.5.2 Pathogenesis 

Understanding of the molecular mechanisms in pathogenesis of colorectal cancer is 

important to identity biological makers to improve cancer surveillance, assess response to a 

therapy and their correlation with long term outcomes. About 20% of all patients with this 

cancer are estimated to have some component of familial risk caused by alterations in single 

genes regulated by environmental factors that are less penetrant but more common than 
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those associated with hereditary colorectal cancer (Lynch and de,la, 2003).  Pathogenesis of 

CRC can be classified into three distinct molecular pathways of genomic instability, 

proposed by Ogino and Goel (2008). These pathways include chromosomal instability (CIN) 

pathway, DNA mismatch repair pathway associated with epiphenomenon of microsatellite 

instability (MSI), and epigenomic instability or CpG island hypermethylation (CIMP) pathway. 

Figure 1-1 shows multiple pathways in pathogenesis of colorectal cancer. Table 1-1-2 shows 

molecular classification of colorectal carcinoma. 

 

 

Figure 1-1 Multiple pathways in colorectal cancer pathogenesis 
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Table 1-1-2 Molecular classification of colorectal carcinoma. Adapted from 

(Cunningham, et al., 2010)  

 

CIMP = CpG island methylator phenotype.  MSS = microsatellite stability. MSI = 

microsatellite instability. MSI-H = high-level microsatellite instability. MSI-L= low-level 

microsatellite instability. +++ = present. +/− = might or might not be present. −−− = absent 

1.5.2.1 Chromosomal Instability pathway (CIN) 
 
CIN accounts for approximately 60% of CRC (Walther, Houlston and Tomlinson, 2008) and 

is characterized by aneuploidy and chromosomal gains and losses. These tumours can be 

inherited, as typified by familial adenomatous polyposis (FAP) due to germline mutations in 

the adenomatous polyposis colic (APC) gene which is found on chromosome 5q 21-22, or 

they can occur sporadically. The evolution of CRC proceeds in a classic adenoma cancer 

sequence proposed by Fearon and Vogelstein (1990), with inactivation of tumour suppressor 

APC gene initiating adenomas. This is followed by activation of proto-oncogene, KRAS, 

mutations in the transforming growth factor- b (TGF- b), allelic loss of chromosome 18q and 

finally TP53 inactivation, causing the transformation of normal cells into cancer cells (Figure 

1-1). APC is a key negative regulator of β-catenin, a component of WNT signalling pathway. 

Β-catenin is an intracellular protein which, when activated, translocates to the nucleus and 

stimulates cell proliferation by transcriptional activation of target genes. In the absence of 

 Chromosomal 

instability pathway 

Mismatch repair 

pathway 

Aberrant DNA 

methylation 

pathway 

 Hereditary or Sporadic Hereditary Hereditary or 

Sporadic 

MSI MSS MSI-H MSI-H or MSI-L 

CIN Present Absent Absent 

CIMP Negative Negative CIMP-H 

KRAS Mutation +++ ± --- 

BRAF --- --- +++ 

MLH1 status Normal Mutation Methylated 
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Wnt legend, the APC protein halts cellular proliferation and promotes apoptosis by 

phosphorylating β-catenin, leading to its ubiquitination and degradation through the 

proteosome pathway. In the case of an inactivating mutation, APC-mediated β-catenin 

degradation is lost and nuclear concentrations of β-catenin remain high, which results in the 

formation of the adenoma (Sepulveda and Lynch, 2013). KRAS induces tumour proliferation 

through EGFR signalling pathway. Mutations in KRAS gene occur in 35-45% of tumours of 

colon and rectum and resistant to benefits from anti-EGFR antibody therapy. Testing for 

KRAS mutations is recommended for metastatic CRCs who are candidate for anti-EGFR 

antibody therapy (Engstrom, et al., 2009).  

1.5.2.2 Microsatellite instability pathway 
 
Microsatellite instability is a measure of the inability of the DNA nucleotide mismatch-repair 

(MMR) system to correct errors that often occur during DNA replication, which is controlled 

by genes MLH1, MSH2, and MSH6 (Abdel-Rahman, et al., 2006). Deficient MMR leads to 

altered length of short nucleotide repeats in tumour DNA compared to normal DNA, a 

phenomenon termed microsatellite instability (MSI) (Boland and Goel, 2010)). Mutations in 

MMR genes are the underlying genetic defect in the majority of HNPCC Syndrome (Beggs 

and Hodgson, 2008). Sporadic tumours are characterised by proximal location, mucinous 

histology, poor differentiation, and lymphocytic infiltration (Cunnigham, et al., 2010). Unlike 

CIN pathway, MSI is associated with a better prognosis in CRC (Guastadisegni, et al., 

2010). 

1.5.2.3 Aberrant DNA methylation pathway 
 
DNA segments with abundant guanine and cytosine bases (CpG islands) become 

methylated leading to a distinct the CpG island methylator phenotype (CIMP). Because the 

basic DNA sequence is not altered, this is considered an epigenetic rather than a genetic 

change and leads to stable differential states of gene expression (Laird, 2005). In most 

sporadic cases, microsatellite instability occurs when the promoter region of the genes in the 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
http://proxy1.anglia.ac.uk:2061/science/article/pii/S0959804910003813
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mismatch-repair system (often MLH1) is silenced by hypermethylation of CpG islands 

(Toyota, et al., 1999). Promoter CpG methylation is associated with a serrated pathway of 

colorectal carcinogenesis (Jass, 2005) distinct from the classic adenoma–carcinoma 

pathway described by Fearon and Vogelstein (1990). The BRAF oncogene is a downstream 

effector of KRAS in the EGFR-dependent signalling cascade. BRAF mutations have been 

reported in 5-10% of sporadic disease and have been linked to serrated carcinoma pathway 

of colorectal tumorigenesis (Sepulveda and Lynch, 2013). 

1.5.3 Risk factors for colorectal cancer 

1.5.3.1 Non-modifiable risk factors 
 
Factors increasing the risk of developing colorectal cancer can be modifiable or non-

modifiable. The non-modifiable risk factors include inflammatory bowel disease (IBD) and 

history of CRC in first degree relatives in addition to hereditary and genetic factors as 

described above (Lynch and Smyrk, 1999). The increased risk for cancer in IBD is 

predominantly acquired and is associated with the site, extent and duration of inflammation. 

Patients with ulcerative colitis affecting only the rectum, a condition termed ulcerative 

proctitis, rather surprisingly do not have significantly increased risk for developing rectal 

cancer (Ekbom, et al., 1990). In a meta-analysis of 116 studies comprising of 54478 

patients,  the overall prevalence of CRC in UC was estimated to be 3.7%, increasing to 5.4% 

in those with pancolitis (Eaden, et al., 2001) Whereas CRC is rarely encountered before 7 

years of colitis, the risk rises thereafter, with a cumulative risk for CRC in a patient with UC 

of 2% at 10 years, 8% at 20 years, and 18% at 30 years (Eaden, et al., 2001).Crohn‘s colitis 

is also associated with increased risk of colorectal cancer; the relative risk is similar to that 

for ulcerative colitis (Itzkowitz and Harpaz, 2004). The presence of a family history of colon 

cancer does increase this risk still further for the individual with IBD; this shows that, as for 

sporadic colon cancer, both genetic and acquired factors are important. Molecular and 

genetic alterations occur more rapidly in IBD-CRC and in an unconventional sequence. In 

IBD-associated cancers evidence for dysfunctional signalling in the WNT signal transduction 

http://www.refworks.com/refworks2/default.aspx?r=references|MainLayout::init
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pathway is found relatively infrequently and occurs late in the dysplasia–cancer 

sequence conversely, p53 mutations occur as a relatively early genetic change in IBD-

associated cancers (Rhodes and Campbell, 2002). Having a first-degree relative (FDR) with 

CRC over the age of 50 can increases  the risk up to two to three times that of an average 

risk individual (Jasperson, et al., 2010). Having one FDR with CRC under age 45 years, or 

having two FDRs affected with CRC confers a 3–6-fold CRC risk compared to the general 

population (Johns and Houston, 2001). 

1.5.3.2 Modifiable risk factors 
 
The modifiable risk factors are related to diet and life style. Recent meta-analysis by 

Johnson, et al., (2013) shows independent significant association of increased body mass 

index, red meat intake and cigarette smoking with colorectal cancer. Low physical activity, 

low vegetable consumption, and low fruit consumption showed significant inverse 

association with CRC. Different mechanisms are believed to be responsible for causative 

relationship between these risk factors and CRC. N-nitroso compounds (NOCs) are formed 

in processed meat food and a high intake of red meat is related to the endogenous formation 

NOCs in the gastro-intestinal tract. Decarboxylation of amino acids by gut bacteria yields 

amines and amides that can be nitrosated in the large bowel. Many NOCs, including 

nitrosamines and nitrosamides, are alkylating agents and can react with DNA and are 

carcinogenic in laboratory animals and, thus, may be a risk factor for some cancer entities, 

for example, colon cancer (Santarelli, Pierre and Corpet, 2008). A quantitative analysis of 56 

observational studies found that each 5 kg m² increase of body mass index is associated 

with 18% increased risk of colorectal cancer. The association is stronger for colon than rectal 

cancer, for men than women, for premenopausal than postmenopausal women, for North 

American than European populations (Ning, Wang and Giovannucci, 2010). The exact 

mechanism of the correlation between obesity and colorectal cancer is not entirely clear but 

hormonal factors seem to play a significant role. Adiposity relates to hyperinsulinemia which 

reduces insulin-like growth factor (IGF)-binding proteins levels and thereby increases free 
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circulating IGF-I Concentrations. Both insulin and IFG-I are important determinants of cell 

proliferation and apoptosis and thus may promote carcinogenesis (Giovannucci, 2001). 

Adipose tissue also behaves as an active endocrine organ secreting cytokines such as 

interleukin-6 (IL-6), free fatty acids, and tumour necrosis factor-[alpha] (Giovannucci, et al., 

2010). This induces a chronic proinflammatory response possibly promoting carcinogenesis. 

Inactivity increases the risk of colon and high levels of physical activity may reduce the risk 

of colon cancer by as much as 50% (Colditz, et al., 1997). Physical activity acts on cancer 

risk independent of its effects on body weight in a dose–response relationship. In a 

population based cohort study by White, Jacobs and Daling (1996), moderate or high 

intensity recreational activity (two or more times per week vs. none) was associated with a 

decreased risk of colon cancer (RR = 0.70, 95% CI=0.49-1.00). Physical activity may reduce 

circulating levels of insulin, hormones, and other growth and it decreases gastrointestinal 

transit time, physical activity can also minimise contact time between the colonic mucosa 

and potential carcinogens in the stool (Stein and Colditz, 2004).  

1.5.4 Chemoprevention 
 
In general, it takes 10-15 years to progress from normal colorectal epithelium, via the stage 

of an adenoma, to colorectal cancer (Stryker, et al., 1987). This time span provides a 

window of opportunity for chemoprevention, especially in high-risk patients with a history of 

an adenoma or cancer. A meta-analysis of placebo controlled double blind trials found a 

statistically significant 17% decrease in the relative risk of adenoma in general population for 

aspirin vs. placebo, which corresponded to a 6.7% absolute risk reduction (Cole, et al., 

2009).  Chemoprevention with calcium supplements has shown to be effective in preventing 

adenomas within those people who have previously undergone polypectomy (Carroll, et al., 

2010. Studies have shown protective association between 5-aminosalicylates use and CRC 

or CRC and dysplasia in UC (Velayos, Terdiman, and Walsh, 2005). They can decrease 

epithelial cell turnover and promote apoptosis through COX-2 dependent (inflammatory) and 

independent (non-inflammatory) pathways by interfering with the Wnt/β-catenin signalling 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410150/#bib4
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pathway. 5-ASA‘s have also shown to have antioxidant and free radical scavenger 

properties and can reduce DNA oxidative stress and microsatellite instability (Stolfi, et al., 

2008). 

1.6 Screening for CRC 
 

Before, treatment of symptomatic CRC is discussed; first the current state of knowledge 

regarding screening for asymptomatic disease needs to be outlined. Colorectal cancer like 

breast and cervical cancer enjoys typically long natural history and almost always proceeded 

by precancerous lesions such as adenomatous polyps. Early detection and removal of these 

lesions reduces the incidence of CRC as shown by the US National Polyp Study (Winawer et 

al., 1993). Specific screening strategies for CRC should be targeted to populations by 

considering its level of risk. A Population is considered to be of average risk for the 

development of colorectal cancer once they reach the age of 50. Those who have symptoms 

or who are at higher risk should be managed according to their perceived risk (Winawer, et 

al., 2003). Today there is a range of options for CRC screening in the average-risk 

population, with current technology falling into 2 general categories: stool tests, which 

include tests for occult blood (FOBT) or exfoliated DNA; and structural exams, which include 

flexible sigmoidoscopy (FSIG), colonoscopy, double-contrast barium enema, and computed 

tomographic colonography (Levin, et al., 2008). These tests may be used alone or in 

combination to improve sensitivity or, in some instances, to ensure a complete examination 

of the colon if the initial test cannot be completed. However, the only two tests which have 

been evaluated in randomized trials and demonstrated to reduce mortality of CRC are FOBT 

and FSIG. Stool tests are best suited for the detection of cancer, although they also will 

deliver positive findings for some advanced adenomas (Bretthauer, et al., 2010). Guaiac-

based faecal occult blood test‘s efficacy has been confirmed in major prospective trials, with 

a reduction of 16% in relative risk for CRC mortality (Hewitson, et al., 2008). To improve the 

specificity of guaiac-faecal occult blood test, immunochemical faecal occult blood has been 
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evaluated and demonstrated to perform better (Van Rossum, et al., 2008) but it is more 

expensive and lacks evidence based on randomized trials. A newer stool DNA test checks 

for the presence of mutations associated with colorectal neoplasia, while this test is 

commercially available in United States since 2003 but it is not adapted for screening (Di 

Lena, Travaglio and Altomare, 2013) because it is not widely available, and the results not 

very accurate or reliable enough (Ahlquist, et al., 2008). The structural examination of distal 

colon in the form of FSIG can achieve the dual goals of detecting adenocarcinoma as well as 

identifying adenomatous polyps. The results of largest randomized trial to date (UK flexible 

sigmoidoscopy screening trial) demonstrated that after 11 years of follow-up, the incidence 

of colorectal cancer  and mortality in the intervention group was reduced by 33% and 43% 

respectively (Atkin, et al., 2010). There are no prospective randomized controlled trials of 

screening colonoscopy for the reduction in incidence or mortality of CRC; however, because 

colonoscopy is used to evaluate other positive screening tests, there is evidence to indicate 

that colonoscopy and polypectomy result in incidence reductions in randomized controlled 

trials of other screening tests. The University of Minnesota randomized controlled trial of 

FOBT observed a 20% reduction in incidence of CRC, which the authors attribute to 

colonoscopy and polypectomy in patients with a positive FOBT (Church, et al., 2004).  

1.7  Anatomy of rectum 
 
Understanding the anatomy of rectum is essential to appreciate the principles of its 

treatment. The definitions of rectum and low rectal cancer are highly variable. The rectum 

has been defined as ―the portion of the intestinal tract extending from the rectosigmoid 

junction to the anorectal ring (Lowry, et al., 2001). As a rule, one third of the rectum is 

located intraperitoneally and two thirds extraperitoneally. Martling, et al. (2001) defined the 

rectum as 15 cm from the anal verge as measured by rigid endoscopy and attributed low 

rectal cancer within 5 cm from the anus. This definition would be used in the study proposed 

as it is more practical and rigid sigmoidoscopy is carried out routinely for the objective 

assessment and local staging of tumour. 
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A cuff of peri-rectal fat surrounds the rectum in a circumferential manner and extends to the 

entire length of rectum except the last distal one centimetre. Peri-rectal fat is less abundant 

anteriorly than posteriorly.  A distinct circumferential visceral layer termed as fascia propria 

of rectum separates the peri-rectal fat from parietal endopelvic fascia. This visceral fascia 

propria enclosing the peri-rectal fat containing rectal lymphatic and blood vessels is termed 

as mesorectum. Figure 1-2 depicts the mesorectal fascia on axial MRI. Autonomic nerve 

plexus containing both sympathetic and parasympathetic nerve fibers to pelvic viscera are 

present in an avascular plane between visceral fascia propria of rectum and endopelvic 

parietal fascia (Mahadevan, 2011). Mesorectum along with fascia propira forms the plane of 

a landmark surgical technique called ―Total mesorectal excision‖ (TME) described by Heald, 

et al., (1993). TME is an anatomical approach to rectal cancer surgery that involves enbloc 

resection of rectal tumour along with excision of the mesorectal tissue to the level of levators 

outside the mesorectum in an avascular plane between fascia propria of rectum and parietal 

endopelvic fascia (Lowry, et al., 2001). By operating within this plane enables the surgeon to 

perform radical resection of rectal cancer but at the same time allows preservation of 

autonomic nerve fibers which are essential for pelvic visceral functions.  Lateral or radial 

surgical resection margin also called the circumferential margin is the least distance between 

the resection margin and radial extend of rectal tumour microscopically (Lowry, et al., 2001). 

Its prognostic importance in rectal cancer was initially described in 1986 by Quirke, et al. 

Involvement of circumferential resection margin (CRM) is associated with poor prognosis 

(Quirke, et al., 1986). Involvement of mesorectum by rectal cancer enhances the risk of 

positive CRM. Determination of CRM involvement is one of the most important criteria of 

locally advanced rectal cancer that will make them suitable to neoadjuvant 

chemoradiotherapy and hence to down stage them. The details of imaging and 

histopathological criteria of determining the CRM involvement and its prognostic importance 

are discussed in sections 1.8.1 and 1.9.4.1. The blood supply to the rectum comes from 

superior rectal artery which is the continuation of inferior mesenteric artery.  The blood 

supply to lower one third of rectum comes from inferior haemorrhoidal artery, a branch of 



18  
 

internal iliac artery. Like the rest of colon, the lymphatic drainage of rectum follows its blood 

supply. Lymph nodes within the mesorectum receive the initial lymph from the rectum and 

are divided into two types: N1, lymph nodes located close the rectal wall and centrally placed 

N2 lymph nodes. From these rectal nodes, the lymph form upper 2/3 of the rectum drains 

into the nodes located around the origin of inferior mesenteric artery. Lower 1/3 of the 

rectum also drains into inferior mesenteric lymph nodes along with the bilateral internal iliac 

nodes located along the pelvic side wall (Mahadevan, 2011). Chemoradiotherapy (CRT) with 

curative intent as well as radical surgery must therefore address these lymph node groups in 

treating rectal cancers. 

 

 

Figure 1-2 MRI axial image: Normal anatomy of mesorectum. Mesorectal fascia is shown 

as hypointense layer (white arrowheads) surrounding hperintense mesorectal fat. Meosrectal 

fat is more abundant posteriorly than anteriorly (black arrowheads). Adapted from Lafrate et 

al., (2006) 

1.8 Staging 
 
After establishing the diagnosis of rectal cancer histologically, the next step in the 

management of rectal cancer is to determine its staging. Staging determines the site, size 

and local infiltration of primary tumour along with involvement of lymph nodes and distant 

metastases. Staging is not only important from the management planning point of view but it 
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also signifies prognosis, evaluates the results of treatment and facilitates the exchange of 

information between treatment centres (Compton and Greene, 2004). The staging of rectal 

cancer has evolved over the years.  It was originally classified by Dukes (1932) and further 

modified by Astler and Coller (1954) (Table 1-3). 

Table 1-1-3 Dukes and Modified Astler-Coller (MAC) classification of colorectal cancer 

(Adapted from Wu, 2007). 

Dukes’ 

Classification  

Description Modified Astler-Coller classification 

A Invasion into but not 

through the bowel wall 

Lesions limited to the mucosa 

B Invasion through the bowel 

wall 

Type B1—Lesions extending into the 

muscularis propria, but not penetrating it, with 

negative nodes 

Type B2—Lesions penetrating the muscularis 

propria, with negative nodes 

C Involvement of lymph 

nodes 

Type C1—Lesions extending into the 

muscularis propria, but not penetrating it, with 

positive nodes 

Type C2—Lesions penetrating the muscularis 

propria with positive nodes 

 

Duke‘s three stages are based on mural involvement and the presence of regional nodal 

involvement on histopathological assessment, although the number of regional nodes 

involved was not considered. The Dukes‘ staging system does not incorporate preoperative 

clinical information which is essential for planning treatment. In 1987, cancer staging system 

based on local tumour depth of invasion (T), the presence and number of nodal metastases 

(N), and the presence of distant metastases (M) was introduced by the American Joint 

Committee on Cancer (AJCC) and International Union for  Cancer Control (UICC) (Hutter, 

1987). In addition to the histological assessment, the TNM staging system allows 

assessment of T, N, and M categories through endoscopy, imaging and physical 

examination as well. Though TNM staging was initially developed to predict prognosis but it 
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has assumed additional roles to determine optimal therapy, assessment response to therapy 

and entry into clinical trials (Quirke, et al., 2007). Table 1-1-4 shows the TNM classification 

of CRC tumors based on the AJCC cancer Staging Manual, 7th edition (Edge, et al., 2010 

and Cunnigham, et al., 2010). 

 

Assessment of the invasion depth (T stage) and lymph node involvement (N stage) are vital 

components of preoperative staging in rectal cancers. Both have been show independent 

marker for poor prognosis. The extent of tumour penetration through the rectal wall (T 

status) corresponds directly to the rate of recurrence and indirectly to the overall 5 year 

survival. In a pooled analysis of 5 randomized trials by Gunderson et al., (2004), there was a 

progressive decrease in overall survival at 5 years with increasing T stage (T1-2, 75%; T3, 

60%; T4, 47%; P < .001). A similar trend was seen for disease recurrence. Increasing T 

stage (T1-2, T3, and T4) was associated with a steady increase in rates of both local 

(7% v 12% v 16%; P < .001) and distant relapse (22% v 34% v41%; P < .001). The presence 

of lymph node metastasis and metastatic lymph node ratio in a resected specimen shows a 

similar impact on overall survival and disease relapse regardless the depth of tumour 

invasion (Peng, et al., 2008). Once the T, N and M status of a rectal cancer is determined, 

they are combined to form a clinic-pathological stage grouping (Table 1-1-5) to be assigned 

to an individual tumour for the advantage of facilitating treatment decisions (Kim, et al., 

2011). Only patients with stage II and III rectal cancer were included in the clinical studies. 

Locally advanced rectal cancers treated with neoadjuvant chemoradiotherapy usually 

requires restaging before undergoing surgery to assess response to the treatment and then 

further treatment is determined on the final histopathological TNM staging. Different prefixes 

to the TNM staging are applied and suggested in reporting rectal cancer staging to highlight 

the different imaging modalities used for investigation and the point at which the staging 

takes place (Edge, et al., 2010 and Moran, et al., 2008). These include; cTNM indicating  the 

clinical classification, pTNM indicating the pathological classification, y prefix indicating the 
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stage assessed after neoadjuvant treatment (for example ypTNM), mr indicating the staging 

assessed on MRI. 

Table 1-1-4 The UICC TNM Classification of CRC tumours. Based on the AJCC cancer 

Staging Manual, 7th edition. Adapted from Cunningham, et al., (2010). 

 

 

 

 

 

T - Primary tumour 

TX Primary tumour cannot be assessed 

T0 No evidence of primary tumour 

Tis Carcinoma in situ: intraepithelial or invasion of the lamina propria 

T1 Tumour invades submucosa 

T2 Tumour invades muscularis propria 

T3 Tumour invades through muscularis propria into pericolorectal tissues 

T4a Tumour directly invades other organs or structures and or perforates visceral 

peritoneum 

T4b Tumour directly invades or is adherent to other organs or structures 

N - Regional lymph nodes 

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in 1-3 regional lymph nodes; N1a Metastasis in one and N1b Metastasis in 

two to three regional lymph nodes 

N2 Metastasis in 4 or more regional lymph nodes; N2a Metastasis in 4–6 and N2b  

Metastasis in 7 or more regional lymph nodes 

M - Distant metastases 

MX Distant metastases cannot be assessed 

M0 No distant metastases 

M1 Distant metastases 
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Table 1-1-5 Clinical stages in rectal cancer and 5-year survival (Adapted from Edge, et 

al., 2010 and Weitz, et al., 2005). 

Group Staging T N M Dukes MAC 5-year survival 

0 Tis N0 M0 - -  

I T1 N0 M0 A A 80-95% 

T2 N0 M0 A B1 

IIA T3 N0 M0 B B2 72-75% 

IIB T4a N0 M0 B B2 65-66% 

IIC T4b N0 M0 B B2 

IIIA T1-T2 N1/N1c M0 C C1 55-60% 

T1 N2a M0 C C1 

IIIB T3-T4a N1/N1c M0 C C2 35-42% 

T2-T3 N2a M0 C C1/C2 

T1-T2 N2b M0 C C1 

IIIC T4a N2a M0 C C2 25-27% 

T3-T4a N2b M0 C C2 

T4b N1-N2 M0 C C3 

IV Any T Any N M1 - - 0-7% 

1.8.1 Rectal Cancer staging-Modalities 
 
Digital rectal examination, MRI and Endoscopic rectal ultrasound are used in local staging of 

rectal cancer. For the operating surgeon, digital rectal examination helps in determining the 

level of tumour from anal verge, and the pelvic floor and also the size of tumour, and its 

fixity. It is an essential first step and a rough guide in evaluating the tumour resectibility and 

sphincter preservation (Nicholls, et al., 1985). Rigid sigmoidoscopy is important in localizing 

especially those tumours beyond the reach of an examining finger. Currently, MRI and 

endoscopic rectal ultrasound are preferred imaging modalities for the local staging but both 

have strengths and limitations in terms of their accuracy in determining T and N status 

(Morino, et al., 2015). 

 

Endoscopic rectal ultrasound is more accurate in staging T0, T1 and T2 tumours but it tends 

to over stage tumours than under stage especially the T3 tumours (Blomqvist, et al., 2000).  
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However this technique is operator dependent and has steep learning curve and therefore, 

its accuracy ranges from 63-94% for T staging and 64-76% for N staging (Yeung, et al., 

2009). In addition, Brown, et al. (2004) demonstrated the limitations of endoscopic 

ultrasound in identifying the mesorectal facial involvement which as described in section 1.7, 

is crucial for predicting CRM involvement. The mesorectal fascia represents the potential 

CRM in patients undergoing TME. Involvement of or close proximity of a tumour to the CRM 

(1mm of less) has been shown to be an independent predictor of local failure when 

determined by pathological assessment (Quirke, et al., 1986). In a prospective study by 

Adam, et al., (1994) local recurrence after a median 5 year follow up was significantly higher 

(78%) for patients who had tumour involvement of the CRM than for those without such 

involvement (10%). MRI is the modality of choice for the staging of locally advanced rectal 

cancers because it is more accurate than endoscopic ultrasound for determining CRM 

involvement. A study by the Mercury group (2006) showed that high resolution MRI 

accurately predicts whether the surgical resection margins will be clear or affected by 

tumour. The accuracy for prediction of a clear margin was 91% with a negative predictive 

value of 93% (proportion of MR based negative CRM patients that were true negative on 

histology). This compared with an accuracy of 77% and negative predictive value of 98% in 

patients who had received preoperative chemoradiotherapy or long course radiotherapy. In 

addition, MRI is also useful for accurate detection of the presence of extramural vascular 

invasion which is associated with poor prognosis (Brown, et al., 2003). When first introduced 

in 1980s, rectal cancer staging using body coil MRI in initial studies was not accurate 

(Hodgman, et al., 1986).  Though the introduction of an endorectal coil positioned directly 

over the lesion improved the accuracy of T staging but it had an endocoil insertion failure 

rate of up to 40% due to stenotic cancers (Hunerbein, et al., 2000). With the introduction of 

phase arrayed multielement surface coils and high performance magnetic field gradients, the 

resultant higher spatial and contrast resolution scanning increases the diagnostic accuracy. 

A study by Zhang, et al., (2008) using 3-T field strength and eight-channel phased array coil 

MRI showed 92 % accuracy for T staging and 79% for N staging compared to 
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histopathological staging. In addition, MRI correctly predicted sphincter sparing procedure in 

97% of cases. Similarly study by Brown, et al., (2003) using high resolution MRI imaging 

showed higher weighted agreement between MRI and histological assessment of T (94%) 

and N staging (85%). Hence, MRI has become a gold standard for the staging of locally 

advanced rectal cancer and was also the imaging modality used in the staging and selecting 

locally advanced rectal cancer patients in the thesis studies as discussed in sections 3.1.1 

and 3.2.2 

1.9 Treatment of rectal cancer 
 
Once the diagnosis is established and staging is determined, a decision regarding further 

management such as to carry out immediate surgery or neoadjuvant CRT is made. Factors 

such as tumour site, fixity in pelvis, grade, and histological type and TNM status of tumour 

are considered in making such decisions. The management of rectal cancer has changed 

dramatically in the last two decades from a surgically managed disease into a multimodality 

treatment model over the last decade (van Gijn, et al., 2011). In the subsequent sections, the 

treatment of early rectal cancer is described briefly but the treatment of locally advanced 

rectal cancers is discussed in details because the population of the thesis studies comprises 

of latter cancer type. 

1.9.1 Early rectal cancer (T1-2 N0 M0) 
 
Surgery is a mainstay for the curative treatment of early stage rectal cancer and includes 

local excision as well as classical surgery. Though radical surgery produces superior 

oncological outcome but at the expense of considerable morbidity, whereas local excision is 

associated with significantly higher rates of local recurrence due to occult nodal involvement 

(Endreseth, et al. 2005) but offers a good compromise in poor-risk patients with lower 

morbidity and mortality (Abir, Alva and Longo, 2004). Local excision by transanal endoscopic 

microsurgery (TEMS) can adequately treat patients with early rectal cancer confined to the 

rectal wall (Moore et al., 2008). However local excision on its own is an inadequate 
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treatment for T1 rectal cancer with adverse features such as poorly differentiated cancer, 

lymphovascular invasion, tumour size more than 3 cm and depth of submucosal invasion 

(Maeda, Koide and Katsuno, 2014). Local excision in such cases is combined with 

radiotherapy and chemotherapy or salvage resection (Valentini, et al., 2009). Local excision 

alone for T2 cancer is not recommended because it compromises survival and associated 

with high local recurrence of up to 30% and is best treated with radical surgery alone 

(Mellgren, et al., 2000). 

1.9.2 Locally advanced rectal cancer (T3-T4 and/or N+) 
 
Management of locally advanced rectal cancer follows two pathways. The conventional 

pathway is immediate surgery followed by adjuvant chemoradiotherapy based on the 

histological features and lymph node involvement in the resected specimen. However this 

has largely been replaced by neoadjuvant radiotherapy with or without chemotherapy and 

has become the standard treatment for rectal cancers with threatened CRM. Neoadjuvant 

pelvic radiation is administered in two ways: short-course and long course radiotherapy. The 

differences in two approaches lie in the fractionation and timing of surgery post radiotherapy. 

In general, short-course radiotherapy delivers a total radiation dose of 25 Gy in five fractions 

followed by surgery 1 week later. Though, this approach reduces the risk for local recurrence 

but because of short time interval to surgery, does not cause significant tumour shrinkage 

and hence is only recommended resectable rectal cancers (ACPGBI guidelines, 2007). 

Long-course radiotherapy delivers a total radiation dose of 50.4 Gy in 28 fractions followed 

by surgery 4 to 8 weeks later (Minsky, 2012).  Long course therapy is typically administered 

with concurrent 5-fluorouracil based chemotherapy (Fleming, Påhlman and Monson, 2011). 

The aims of this approach are to downstage the tumour and achieve a histologically free 

CRM that results in decreasing the local recurrence. 
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1.9.2.1 Neo-adjuvant vs. adjuvant CRT 
 
The use of neo-adjuvant CRT is preferable to adjuvant CRT in the management of locally 

advanced rectal cancer. The evidence of superiority of CRT in the pre-operative setting 

comes from a landmark trial by the German Rectal Cancer Study Group neoadjuvant vs. 

adjuvant long course CRT (Sauer, et al., 2004). In this trial, 823 rectal cancer patients with 

T3-4M0 and/or node-positive stage were randomly assigned to either preoperative or post-

operative CRT group. The results of the study showed significant improvement in 5 year 

local recurrence in preoperative group (6% vs.13% P=0.006). In a sub group of patients who 

were likely to undergo abdominoperineal resection on staging, higher sphincter preservation 

rate was achieved (39% vs.20% P=.004) in the preoperative CRT group. Ten year follow up 

shows persistent improvement in local control in pre-operative group but no effect on overall 

survival (Sauer, et al., 2012). Another randomized multicentre trial, MRC CRO7, favoured 

neo-adjuvant short course radiotherapy to selective adjuvant CRT. The relative risk of local 

recurrence was significantly reduced in the patients receiving short-course radiotherapy by 

61% (HR 0.30, p<0.0001) (Sebag-Montefiore, et al., 2009). 

1.9.2.2 Short-course vs. long course neo-adjuvant CRT 
 
In the last decade or so, the search for the best and optimal neo-adjuvant CRT or 

radiotherapy regimen has resulted in various trials which evaluated the two approaches of 

short and long-course radiotherapy in the pre-operative setting. The former approach was 

evaluated in trials by the Scandinavian countries. The Swedish Rectal Cancer Trial in 1997 

randomly assigned the rectal cancer patients with cT1-3 stage to either short course 

radiotherapy followed by surgery and surgery alone groups. TME was not mandatory as 

inclusion criteria for the trial. The 5 year local recurrence rate was found to be significantly 

lower (11%) in the combined radiotherapy and surgery group than surgery alone group 

(27%) (p< 0.001). The other important finding of the trial was the significant increase in the 

survival rate of up to 21% in the combined modality treatment group (p=.002). Folesson, et 
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al, (2005) reported on-going benefits in terms of survival and local control for the same trial 

after longer follow-up of 13 years in radiation group. Though this is the first and the only trail 

to show the improved overall survival rate with radiation therapy but this may be attributed to 

difference to in local recurrence between the two groups. Non standardization of TME 

surgery may account for higher local recurrence of 27% in surgery alone group. This issue 

was addressed by the Dutch trial (Kapiteijn, et al., 2001) that used the same design but 

surgery was standardized as TME for both groups. Significant improvement in local control 

had been reported in radiation group on both initial and long term follow up (van Gijn, et al., 

2011) but without difference in overall survival between the two groups. However, short-

course radiotherapy did not offset the disadvantage of an involved CRM in this trial. 

Exclusion of the patients with CRM involvement in the analysis, improved 10-year overall 

survival was seen in patients with stage III but negative CRM compared to patients in the 

surgery alone group (50% vs. 40%, p=0.032). Both the trials above had patient population 

with significant number of early stage rectal cancers.  

 

The approach of long-course chemoradiotherapy evolved in parallel to the short course 

approach and is more popular in the North America and some European countries. Both the 

trials of short-course radiotherapy mentioned above had patient population with significant 

number of early stage rectal cancers. The landmark, German Rectal Cancer trial (Sauer, et 

al., 2004), described in the section 1.9.2.1 changed the management for T3-4 ± N1-2 stage 

rectal cancer patients to preoperative CRT with concurrent chemotherapy. A Polish rectal 

study group carried out the first small randomized trial (n=312) comparing preoperative short 

course radiotherapy with long course CRT in resectable stage III/IV rectal cancers (Bujko, et 

al., 2006). Rectal cancers in the long course chemoradiotherapy group were on average 

19mm smaller (P=0.001), achieved significantly higher rates of completer pathological 

response (16% vs. 0.7% P < .001) and lower positive circumferential margins (4.4% vs. 

12.9% P=.017). Despite these significant findings there was no difference in sphincter 

preservation rate, post-operative complications, local recurrence and 4-year overall survival 
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between the two groups. Another randomized multicentre trial of 326 patients with cT3N0-

2M0, comparing the two approaches conducted by the Trans- Tasman Radiation Oncology 

Group (TROG) showed no difference in survival or late toxicity (Ngan, et al., 2012). Though 

the difference in cumulative local recurrence was 3% at 3-years in favour of long-course but 

not statistically different. Similarly despite a large observed difference of local recurrence 

favouring long-course in sub-set of 79 patients with distal cancers <5 cm from anal verge 

(12.5% vs. 3%), the results were not significant (Ngan, et al., 2012).  However, the results of 

the trial were limited by small number of patients and relatively short follow-up. The results of 

the Dutch trial and the trials comparing the two approaches (Polish and TROG trials) indicate 

the advantage of long course CRT for more advanced rectal cancers where down staging of 

cancer is desirable to enable complete surgical resection. 

1.9.3 The role of chemotherapy in CRT regimens 
 
Evaluation of the trials above shows that long-course chemoradiotherapy confers a better 

local control advantage on the advanced rectal cancers. Another advantage of long-course 

chemoradiotherapy is that it can safely be combined with systemic chemotherapy.  The 

rationale for adding a chemotherapeutic agent to preoperative CRT regimens is that it 

enhances the effect of radiotherapy by acting as radiosensitizers and induces tumour down 

staging. This enables surgeons to perform sphincter preserving surgery in distal rectal 

cancers and enhances rate of pathological complete response. In addition early 

incorporation of these agents might address concurrent systemic disease (Ceelen, 2012). 

The French randomized control trial (Gerard, et al., 2012) compared the results of 

preoperative long course radiotherapy with combined long course CRT. Adjuvant 

chemotherapy was given to patients in both arms. Patients in combined therapy group 

experienced significant lower 5-year local recurrence compared to those in radiotherapy 

alone group (8.1 vs. 16.5% P=.004). Multicentre European Organization for Research and 

Treatment of Cancer (EORTC) trial of similar design randomized patients to receive 

preoperative long course chemoradiotherapy or radiotherapy alone (Bosset, et al., 2006). 
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However this trial also randomized patients to receive adjuvant chemotherapy to 

demonstrate the impact of chemotherapy administration in preoperative, post-operative or 

both settings. The results indicated that patients who did not receive chemotherapy either 

pre or post operatively had worse local recurrence rates. There was no difference in local 

recurrence rates among the other groups. Both these trials showed significantly higher 

pathological complete response in combined modality group. However despite these 

findings, there was no difference in overall survival between the study groups. By taking into 

consideration of all the above evidences, it can be concluded that rectal cancer patients who 

are at higher risk of local recurrence such as threatened CRM are best treated with 

neoadjuvant long course CRT. 

1.9.4 Radical surgery and total mesorectal excision 

1.9.4.1 Total Mesorectal excision 
 
Though complete clinical response following long course CRT has led to non-surgical 

management for locally advanced rectal cancers in selected cases but surgical resection is 

still a gold standard for curative treatment. The main aim of surgical treatment is complete 

eradication of primary tumour along with mesorectal fat. Until early 1980s, a 5-cm rule for 

proximal and distal longitudinal resection margins was followed to prevent anastomotic 

recurrences (Kosinski, et al., 2012). Later studies demonstrated that distal intramural spread 

usually is limited to within 2.0 cm of the tumour except for metastatic and poorly 

differentiated rectal cancers. In a study by Wolmark and Fisher (1986), comparison of distal 

resections margins of less than 2 cm, 2–2.9 cm, and greater than 3 cm showed no 

significant differences in survival or local recurrence. The technique of Total Mesorectal 

Excision (TME) described by Heald, et al. (1993) has dramatically improved locoregional 

tumour control and overall survival in rectal cancer surgery (Heald, et al., 1998).  The 

hallmark of TME technique is to achieve CRM clearance to rectal tumour. There is a strong 

agreement that higher local recurrence rates, higher distant metastases rates and poorer 

survival are seen when the CRM is involved or less than 1 mm (Nagtegaal and Quirke, 
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2008). In their review of more than 17,500 patients, Nagtegaal and Quirke demonstrated that 

following neoadjuvant therapy (both radiotherapy and radiochemotherapy) the predictive 

value of the CRM for local recurrence is significantly higher than when no preoperative 

therapy has been applied.  The role of MRI in accurately predicting the CRM involvement 

and selecting patients for CRT is already discussed in section 1.8.1. Retrospective study by 

Hida, et al., (1997) of lymph node metastases detected in the mesorectum distal to 

carcinoma of the rectum suggested that the longest distal spread from the primary tumour to 

the metastatic node was 2 cm in carcinoma of the recto sigmoid, 4 cm in carcinoma of the 

upper rectum, and 3 cm in carcinoma of the lower rectum. Therefore, in proximal rectal 

cancer, mesorectal excision 5 cm below the lower border of the tumour is suffice to avoid 

low anastomosis resulting in poorer bowel functions for the patients. 

1.9.4.2 Sphincter-sparing and non-sphincter sparing radical resections 
 
There are two types of radical resections; sphincter-sparing (anterior resection) and non–

sphincter-sparing (Abdominoperineal) resections. Sphincter-Preserving radical resections 

include anterior resection, low anterior resection and ultra-low anterior resection. The radical 

resection that preserves a portion of rectum with colorectal anastomosis is called anterior 

resection (Kosinski, et al., 2012). Low anterior resection is a colorectal resection with 

anastomosis of colon to the rectum below the peritoneal reflection (Lowry, et al., 2001). For 

more distal ultra-low anterior resection approach is used where entire rectum is removed 

with coloanal anastomosis. Intersphincteric resection with coloanal anastomosis represents 

the extreme form of sphincter sparing surgery in which part, or all, of the internal sphincter is 

resected. This approach is used for the rectal cancers that are confined to the rectal wall and 

within 2 cm of the sphincter complex (Mulsow and Winter, 2011). TME must be excised for 

up to 5cm distal to the lower edge of the tumour for the upper rectal cancers and for mid-low 

rectal cancer it should be excised up to the level of pelvic floor 
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Non-sphincter-sparing procedure includes Abdominoperineal resection (APR) that results in 

a permanent end colostomy. APR involves complete removal of distal colon, rectum, and 

anal sphincter complex using both abdominal and perineal approaches (Perry and 

Connaughton, 2007). Rectal tumours which are 2-3 cm from anal verge and fixed to levators 

and sphincter are best dealt with APR especially in experienced hands. In upper (10-15cm) 

and middle (5-10cm) rectal cancers TME has considerably reduced the local recurrence and 

survival but similar trend is not observed for low rectal cancers (0-5cm from anal verge) 

(Kapitijen, et al., 2001). In a prospective randomized trial, the Dutch Colorectal Cancer 

Group compared low anterior resection and APR for low rectal cancer performed by the 

surgeons who had been trained in TME. APR patients had a survival of 38.5%, compared 

with 57.6% for those undergoing sphincter sparing surgery (p = 0.008). Positive 

circumferential margins and tumour perforations were also significantly more common in 

APR patients (Nagtegaal, et al., 2005). The poorer results of APR were attributed to the 

plane of resection that followed the thinning mesorectum at the level of levators and anal 

sphincters. This surgical technique based on principles of TME results in surgical dissection 

along the tapering mesorectum through the sphincter muscle or rectal tube leading to higher 

rate of CRM involvement and higher perforation rate. The resected specimen with this 

conventional technique tapers (Morson‘s waist) at the level of levators that increases the risk 

of CRM involvement. An alternative approach described by Holm, et al. (2006) for locally 

advanced rectal cancers is characterized by dissection in extralevator plane that avoids 

―waisting‖ of the specimen. The resulting specimen is cylindrical and risk of CRM 

involvement is reduced. 

1.9.4.3 Laparoscopic vs. open surgery 
 
Laparoscopic approach in colonic cancer has proven to have both short and long term 

advantages in randomized trials.  Short term benefits include reduced incidence of post-

operative pain, pulmonary complications and surgical morbidity (Schwenk, et al., 2005).  In 

addition, this approach is oncologically safe and enjoys similar long-term outcomes as for 
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the open approach.  The 5-year follow-up of  the patients in  The UK Medical Research 

Council CLASSIC trial that randomized conventional and laparoscopic assisted surgery in 

colorectal cancer found  no difference for overall survival, disease free survival and local or 

distant recurrences between the two groups ((Jayne, et al., 2007).  Similarly, the COLOR 

trial, that only included patients with colonic cancer excluding rectal cancer found no 

difference in 3-year disease free survival between the open and laparoscopic colectomy 

groups (Bonjer, 2009).  

 

Laparoscopic approach in rectal cancer is technically more demanding than that for colonic 

cancer because of the narrow and confined operative field within the pelvis. In the English 

CLASSIC trial, concerns were raised on this approach for the patients with low rectal who 

underwent laparoscopic low anterior resection and were found to have higher rates of 

positive CRM (12%) compared with open low anterior resection (6%) but this did not 

translate into higher local failure (Guillou, et al., 2005).  In order to address the concerns for 

short and long-term oncological safety of laparoscopic approach specifically for rectal 

cancer, a randomized phase three COLOR II trial was carried out between 2004 and 2010 

and randomized 1103 patients into laparoscopic and open surgery groups. There was no 

difference in terms of clinical short term outcomes such as involvement of resection margin, 

perioperative morbidity and completeness of mesorectum (van Der Pas, et al., 2013).  The 

same group reported long-term outcomes for these patients recently and found no difference 

in 3-year locoregional recurrence (5% in each group), 3-year OS (87% vs. 84%) and DFS 

(75% vs. 71%) between the laparoscopic and open groups respectively (Bonjer, et al., 

2015). 

 

The COLOR II trail did not include rectal cancer patients with clinical stages, T4 and T3 

within 2 mm of CRM and laparoscopic resection in such locally advanced rectal cancer 

patients becomes more challenging especially after neo-adjuvant CRT because of tissue 

oedema and fibrosis (Motson, et al. 2011). The COREAN trial addressed the feasibility of 
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laparoscopic approach in cT3N0-2 mid and low rectal cancer patients who had received 

neoadjuvant long course CRT by randomizing them to open or laparoscopic surgery (n-340 

patients). There was no difference between the two groups for both the short-term outcomes 

in terms of CRM involvement, quality of TME excision specimen, number of harvested lymph 

nodes and peri-operative morbidity (Kang, et al., 2010) and long- term outcomes in terms of 

local recurrence and 3-year DFS (Jeong, et al., 2014).  The results of these studies indicate 

that oncological outcomes in laparoscopic rectal surgery are comparable to those of 

conventional surgery. However the evidence based on these studies is not applicable to all 

patients with rectal cancer especially patients with threatened CRM and T4 stage. 

1.9.5  Histological response to neo-adjuvant CRT 
 
As I have discussed in the above section 1.9.2.2  that the treatment of locally advanced 

rectal cancer has evolved into multimodality treatment in the form of neoadjuvant CRT 

followed by TME. The main objectives of long-course CRT are to down stage tumours, 

enable R0 resection (completely excised tumour without any microscopic [R1] or 

macroscopic [R2] involvement of margins, see section 3.1.4.2) and improve locoregional 

control and survival outcomes. Down staging of tumour on histological assessment has 

shown to be independent prognostic factor in predicting long term survival in rectal cancer 

patients after long course CRT (Dhadda, et al., 2011). In addition to substantial downsizing, 

up to 25% of patients show complete pathological response characterized by absence of 

viable tumour cells in the resected specimen (Smith, et al., 2010 and Garcia-Aquilar et al., 

2011). Results of the pool analysis of neoadjuvant CRT trials by Mass, et al. (2010) showed 

that 5 year disease free survival was significantly higher for patients with pathological 

complete response than for the patients without the response (83.3% vs. 65.6% p 

<0.0001).The effect of pathological complete response on long-term outcome was not 

affected or modified by clinical T or N category, administration of adjuvant chemotherapy, 

distance from anal verge, or type of surgery.  
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1.10  Optimal time interval between long course CRT and Surgery 
 
The combined modality treatment in locally advanced rectal cancer has considerably 

decreased the local recurrence as evident from the results of pivotal German trial discussed 

in section 1.9.2.1 (Sauer, et al., 2005).  However, this approach does not translate into 

improvement in overall survival in these patients. In addition, pathological complete 

response has emerged as new and valid surrogate marker of DFS (Mass, et al. 2010). 

Various treatment strategies can achieve higher percentages of complete pathological 

response. Continuous infusion of concurrent chemotherapy compared to boluses and 

increased radiation doses can achieve significantly higher pathological complete response in 

approximately 50% of cases (Mohiuddin, et al., 2000). Currently there is no consensus on 

the optimal timing of surgery after finishing long course CRT.  Another strategy is to delay 

the interval between CRT and surgery to allow more time for the tumour to shrink and thus 

increasing the possibility of pathological down staging. In the large randomized trials 

discussed in the section 1.9.2.1 (Sauer, et al., 2004) and the section 1.9.3 (Bosset, et al., 

2006 and Gerard, et al., 2006), the median time interval to surgery was 5-6 weeks. 

Randomized data on the time interval between the completion of chemoradiotherapy and 

surgery is very limited. Lyons R90-01 is the only trail that randomized patients to have 

surgery at 2 week and 6-8 week time intervals after long course CRT. Patients in longer 

interval group experienced significant greater down staging as compared to the patients who 

had surgery within two weeks (26% vs. 10% (Francois, et al. (1999). As a result of this trial, 

delaying the surgery up to 6 weeks after radiotherapy completion was established as the 

standard of care. 

 

However the retrospective analyses of case-series and analysis of non-randomized trials 

later showed the relevance of the time interval to increasing clinical and pathological down 

staging of rectal tumour. Further delaying the surgery beyond conventional 4 to 6 week 

window can lead to greater tumour response to long course chemoradiotherapy in a time 
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dependent fashion.  In a retrospective pilot study by Johnston, et al. (2009) at the Colchester 

University Hospital, an on-going radiological tumour response for up to 12 weeks after 

completion of long course CRT was demonstrated when assessed by performing serial 

MRIs. There was significant decrease in T-stage from 6% on MRI performed at 6 week 

interval to 41.2% on the MRI performed just before surgery (P <0.001).  Similarly, Moore, et 

al. (2004) observed a non-significant trend towards increased pathological complete 

response in their retrospective analyses of 157 rectal cancer patients treated with long 

course CRT. The rate of pathological complete response increased from 9% in the interval of 

30-40 days, to 16% in 41-49 days and to 23% in >49 days. A retrospective cohort study 

showed significant increase in complete pathological response for the patients operated 

beyond 7 weeks after long course CRT than for the patients operated earlier than 7 weeks 

(35% vs. 17% P=0.03) (Tulchinsky, et al., 2008). In a prospective nonrandomized study by 

Garcia-Aguilar, et al. (2011), 25.4% of patients demonstrated complete pathological 

response at 11 week  as compared to 18% at 6 week time interval (P<0.05). A recent meta-

analysis of 13 studies (n-3584 patients) that mainly included retrospective or prospective 

case series and one non-randomized phase II trial, demonstrated that an interval beyond 

classical 6-8 weeks to surgery after finishing CRT, results in significantly improved 

pathological complete response from 14% to 20% (RR=1.42 CI: 1.19 -1.68, p<0.0001) 

(Petrelli, et al., 2016).  

 

As it is evident from the discussion above that with the delay of surgical interval after CRT, 

there is a corresponding increase in tumour regression but there is little evidence about its 

short-term effect on surgical morbidity and long-term oncological outcomes. Conventional 

time interval of 4-6 weeks is optimal enough to allow for the resolution acute radiation 

reaction before surgery. By prolonging the time interval to surgery beyond this conventional 

time period can theoretically make TME technically more difficult because of radiation 

induced pelvic fibrosis. This might result in increase in surgical complications. In the meta-

analysis (Petrelli, et al., 2016), the data on post-operative complications was available for 7 
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studies out of 13 in total. No difference was observed in the R0 resection, sphincter-

preservation, wound and anastomotic complications for the patients operated beyond 8 

weeks. None of the studies included in the meta-analysis individually reported any significant 

influence of time interval on the post-operative complications. Instead, longer time interval 

post CRT could decrease perioperative morbidity as reported by Kerr, Norton and Glynne-

Jones (2008) in their retrospective analysis of 189 patients. This study demonstrated that 

shorter interval by 1 week (median interval 10 weeks) independently predicted anastomotic 

leakage (OR 0·97, 95% CI 0·94 to 1·00) and perineal wound complications (OR 0.97, 95% 

CI 0.95 to 0.99). 

 

As for surgical morbidity, the meta-analysis (Petrelli, et al., 2016) did not demonstrate any 

difference in long-term OS and DFS rates between the shorter and longer interval (beyond 8 

weeks) groups (6- studies, n-1360 patients). None of the studies comparing shorter and 

longer time interval to surgery after CRT has demonstrated any significant positive influence 

on overall survival despite achieving increasing rate of pathological complete response in the 

longer interval group. Long-term results of the Lyons R90-01 trial showed no significant 

difference in overall survival rate between the short-interval and long-interval groups (69% 

vs. 66% P=0.880) (Glehen, et al., 2003). Conversely, in the retrospective analysis of 102 

patients treated with neo-adjuvant radiotherapy alone, the  time interval to surgery from 

diagnosis longer than 16 weeks was significantly associated with decrease in OS and 

metastasis free survival (OR 2.05, P=0.05) (Supitot, et al., 2006). This highlights the 

detrimental effect on patient survival if surgery is delayed beyond 12 weeks as there is a 

potential risk for the subclinical tumour in situ to grow and spread in that time interval. 

Conversely, the retrospective study by Habr-gama, et al., (2008) showed the deferral of 

surgery for up to 12 weeks and beyond was safe. There was no difference in disease free 

survival overall survival between the patients operated before or after 12 weeks. 
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1.11  Conclusion of Literature Review of the first chapter and research 
question for the first clinical study of the thesis 

 
The optimal management of locally advanced rectal cancer has evolved into neoadjuvant 

long course CRT followed by TME. Laparoscopic surgery has also evolved in parallel to this 

paradigm shift in the management of locally advanced rectal cancer.  Preoperative long 

course CRT improves local control and results in down-staging. Delay in surgery beyond 8 

weeks after CRT results in more pronounced tumour regression and pathological complete 

response.  However there is no consensus on optimal time interval to surgery after long 

course CRT. It varies between < 2 weeks in a randomized study to 8-12 weeks in non-

randomized studies. Delaying the surgery beyond the conventional 6-8 week window does 

not lead to increase in sphincter preservation, surgical complications or local recurrence. It is 

also not detrimental to overall survival as shown in the meta-analysis (Petrelli, et al., 2016) 

but individual retrospective studies shows conflicting evidence. In addition, the effect of 

delaying surgery beyond the 12 week interval on surgical morbidity and oncological 

outcomes is very limited.  Though the laparoscopic surgery is shown to be feasible in stage 

III rectal cancer in the two randomized trials, COLOR II (van Der Pas, et al., 2013) and 

COREAN (Keng, et al., 2010) but the evidence based on these studies is not applicable to 

all patients with rectal cancer especially patients with threatened  CRM and T4 stage. One of 

the aims of this thesis is to address these questions. With this background knowledge and a 

potential gap in knowledge, the objective of the first study in the thesis is: 

 

 To determine the both short and long-term effects of delayed TME beyond 12 

weeks in laparoscopic setting after long course CRT in locally advanced 

rectal cancer including patients with threatened CRM and T4 stage. 
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2 Role of MRI and functional imaging 
(MRI, PET or PET/MRI) in rectal 
cancer 

The role of MRI in staging and hence selecting patients with locally advanced rectal cancer 

with threatened CRM for neoadjuvant CRT to attain down-staging and hence resectibility is 

already discussed in section 1.8.1. The eligibility criteria for the inclusion of rectal cancer 

patients in the first clinical study (Chapter 4) were based on high risk MRI features as 

discussed in section 3.1.1. The 2nd study in the thesis (Chapter 5) investigated whether MR 

based textural features of locally advanced rectal cancers could predict survival outcomes. 

In the first section of this chapter, the basic principles of morphological MRI, concept of 

textural analysis and its current use in various oncological applications were discussed and 

this forms the introduction of for the chapter 5. In the second section of this chapter, 

quantification of imaging biomarkers on functional MRI techniques along with PET markers 

is discussed. The second section forms the basis for the introduction and literature review of 

the 3rd clinical study in the thesis (Chapter 6).  

2.1 Magnetic Resonance Imaging 

2.1.1  Basic principles of MRI 
 
The hardware of MRI system can be categorized into three parts; main magnet, gradient 

system and radiofrequency coils. The main magnet produces a strong, constant and static 

magnetic field (Moser, et al., 2009). A typical clinical scanner has a magnetic field of 1.5 

Tesla which is thirty thousand times stronger than the earth‘s magnetic field (Liney, 2006). 

The role of gradient system is in spatial localization of MR signal which is described later in 

the section 2.1.1.4.  Electromagnetic pulse is generated by a transmitter coil which 

surrounds the whole or a part of the body. A body coil is usually built into the construction of 

the magnet (Liney, 2009). Coils can be classified as volume coil (area to be examined inside 
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the coil), surface coils (applied over limited region of interest) or phased-array coils (multiple 

surface coils in conjunction with each other) (Welker, et al., 2001). 

 

The basic concept behind MRI is the spinning nucleus around its own axis which produces a 

tiny magnetic field (Liney, 2006). To produce an image MRI makes use of body‘s natural 

magnetic properties. It uses the hydrogen atom which is the simplest and most abundantly 

found in the human body. The nucleus of the hydrogen atom contains single proton that 

spins around its axis and behaves like a small bar magnet. In the normal circumstances, 

these millions of spins generate no net magnetic field because of random orientation of their 

axes. However, when these spins are exposed to a strong magnetic field (β0) such as that of 

MRI scanner as illustrated in Figure 2-1; these spins align themselves longitudinally and thus 

produce longitudinal magnetization (MHz) in parallel to the direction of the magnetic field. 

This alignment is not static and in addition to spinning on their own axes, the nuclei rotate 

around the direction of the magnetic field. This process is called precession which occurs at 

a characteristic speed called Larmor frequency which is the hall mark of MRI imaging 

(Weishaupt, 2006). The Larmor frequency is directly proportional to the strength of magnetic 

field and is given by Larmor equation: ωο = βο * γ. Where ωο is the Larmor frequency in 

megahertz (MHz), βο is the strength of the magnetic field in Telsa (T) and γ is the 

gyromagnetic ratio, a constant fixed to a specific nucleus.  

 

Figure 2-1 In the presence of magnetic field, randomly aligned protons align 

themselves in the direction of magnetic field and produce net magnetization vector 

Mz. 

Random 
alignment 

External field 

Alignment 

Direction of βο 

Mz 
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2.1.1.1 Excitation of Spin System 
 
Energy is introduced into this stable spin system in the form of radiofrequency pulse at a 

frequency similar to that of Larmor frequency and at 90 degrees to the direction of βο. This 

causes resonation of the hydrogen nuclei and they precess in phase with each other. This 

phenomenon is called phase coherence.  This causes the energy absorption by protons and 

excitation of spin system which results in tilting of longitudinal magnetic vector MHz through 

90 degrees towards the transverse plane  perpendicular to the direction of βο and thus 

produces transverse magnetization Mxy (Figure 2-2) (Weishaupt, 2006). The precession of 

transverse magnetization vector induces a current in a receiver coil that gives rise to MR 

signals. Receiver coils are located in the transverse plane and are used around the body 

part in question to act as aerials for the detection of the emitted signal. The intensity of the 

received signal is then plotted on a grey scale and cross sectional images are built up 

(Berger, 2002). 

 

2.1.1.2 T1 and T2 relaxation times 
 
The signal intensity and hence contrast image of MRI depends both upon intrinsic properties 

of biological tissues and extrinsic parameters controlled by system operator. Proton density 

and relaxation time of protons after excitation are intrinsic features of biological tissues and 

contribute to the image contrast in MRI (Sharma, 2009).  When the RF pulse is switched off , 

the MR signals rapidly decreases in intensity due to two independent relaxations processes 

that results in decrease in transverse magnetization. (Berger, 2002). The first is called T1 

RF pulse 

Mz 

Mxy 

Figure 2-2 Application of a 90 degree RF pulse tilts longitudinal net magnetization 

Mz in xy plane 
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relaxation that results when protons move from high energy stat to low energy state by 

emitting their energy into the surrounding tissues. Hence T1 relaxation is also called spin 

lattice relaxation. This results in decay of transverse magnetization and realignment of 

protons along the βo. The second is called T2 relaxation that results in the decay of 

transverse magnetization because of dephasing of precessing protons. There is an overall 

cumulative loss of phase coherence due to exchange of energy  in between neighbouring 

spins intrinsic magnetic fields (spin-spin interaction).These two relaxations are independent 

of each other. T2 relaxation occurs within the first 100-300 msec. While complete decay of 

transverse magnetization due to T1 relaxation occurs within (0.5–5 sec) (Weishaupt, 2006). 

T1 increases with an increase in the magnetic field strength (B0) and T2 remains relatively 

unchanged with increasing magnetic field strength (B0) (Sharma 2009). 

2.1.1.3 Repetition Time and Echo Time 
 
These relaxation times can be altered by extrinsic system operator mechanisms such as 

repetition time (TR) and echo time (TE). TR is the time interval between the application of 

first RF pulse and the beginning of the successive pulse. It basically affects the length of 

relaxation period between excitation pulses and effects T1 relaxation time. By selecting a 

short TR, tissues with short T1 would regain their longitudinal magnetization during that TR 

and thus would emit a large signal and hence would appear bright on the image. On the 

other hand tissues with long T1 would have achieved less longitudinal magnetization and 

appear dark on the image. So a short TR would give strong T1 weighted image. Echo time 

affects the T2 relaxation and is the interval between the application of excitation pulse and 

the collection of MR signal. (How does MRI Work). Since T2 is much shorter than T1 

relaxation time, so a longer echo time is selected so that tissues with Longer T2 would 

produce higher signal intensities and thus appear bright on T2 weighted images. Tissues 

with a short T2 would appear dark because of their signal decay at the time of echo 

collection. By selecting a short TE (avoids T2 weighting) and a longer TR (nullifies T1 effect), 
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a contrast based on differences in proton densities of the tissues is produced (Weishaupt, 

2006 and Westbrook, 2010). 

2.1.1.4 Gradient Coils 
 
In order to achieve the selective excitation of the slice to be imaged and localization of the 

site of origin of MR signals, the magnetic field is made inhomogeneous by use of three 

orthogonal sets of gradient coils built in to the bore of the magnet along X, Y and Z axis 

(Figure 2-3) (McRobbie, 2007). Larmor frequency and precessional phase of protons thus 

alters in a linear fashion along the gradient and each slice now has its unique frequency 

(Weishaupt, 2006). This forms the basis for spatial encoding i.e. the localization of spatial 

position of a signal in three dimensions. Depending on the plane of the image, each gradient 

performs one of three functions that are essential for spatial encoding. These functions are 

slice selection in a desired image plane, frequency encoding (spatial identification of signal 

along the long axis of image) and phase encoding (spatial identification of a signal along the 

short axis) (Westbrook, 2010). This three dimensional information about the image signal is 

stored as a raw data in MRI imaging system in the form of matrix voxels called k-Space. The 

k-space data is further processed through Fourier transformation to form an MRI image 

(Bitar, et al., 2006). 

 

 

X coil. Alters 
magnetic field left to 
right across the 
scanning tube 

Z coil. Alters magnetic field from head to toe 
with in scanning tube. 

Y coil. Alters magnetic field from top to bottom across the scanning tube. 

Figure 2-3 X, Y & Z gradient axis 
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2.1.1.5 Pulse sequences Mechanisms 
 
MRI pulse sequence is a set of radio frequency and gradient pulses of fixed duration and 

separation applied to acquire T1 and T2 weighted sequences (Liney, 2010). Two basic but 

important MRI pulse sequences relevant to staging of rectal cancer are spin echo (SE) and 

inversion recovery (IR) sequences. In order to understand the mechanism of these 

sequences, it is important to know another form of relaxation time termed as T2*.In addition 

to dephasing due to pure spin-spin energy transfer, proton spins lose phase coherence due 

to inhomgeneities of external magnetic field generator itself, differences in magnetic 

properties of neighbouring tissues or tissue-air interface. This type of decay in MRI signal is 

called free induction delay and is designated as T2*. Unlike T2 relaxation, T2* is time 

independent and typically shorter than T2 (Westbrook, 2010). 

2.1.1.5.1 Spin Echo Sequence (SE) 

 
The loss of MR signal due to T2* can be avoided by using spine echo sequence. In this 

sequence, 90° excitation pulse is applied to the slide selected in the first instance. After its 

application, protons start losing phase coherence due to static magnetic field inhomgeneities 

(T2*). So half way through the echo time, a second 180° excitation pulse is delivered to 

rephrase the spins. The regenerated signal is measured at total echo time (Weishaupt, 

2006). The spin echo sequences produce good quality image and is considered as gold 

standard for image contrast and weighting. Standard spin echo sequences take long scan 

times and are prone to motion artefacts. Due to advancement in MRI technology, fast or 

turbo spine echo (FSE/TSE) is used where multiple 180 degree rephrasing pulses are 

applied per repetition time allowing multiple phase encoding per TR (Westbrook, 2010). 

2.1.1.5.2 Inversion Recovery Sequence (IR) 

 
Inversion recovery sequence is essentially a standard SE sequence preceded by an 

additional 180° inverting pulse that flips the longitudinal vector in opposite direction to that of 

βο.  As this negative longitudinal vector begins to relax towards βο, the 90° excitation pulse 
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of SE is applied within the time interval T1 (inversion time) after the inversion pulse. A final 

180° rephasing pulse similar to SE sequence is applied to produce echo signals. The main 

determinant of contrast in this sequence is T1 inversion time. Two widely used inversion 

recovery sequences in clinical practice are Short T1 inversion recovery (STIR) and fluid-

attenuated inversion recovery (FLAIR). STIR is used to suppress fat signals by delivering a 

90° excitation pulse at T1 inversion time when net magnetization vector of fat is just passing 

through the traverse plane called the null point for the fat. Since at this point fat has got no 

longitudinal magnetization so 90° excitation pulse induces no transverse magnetization and 

thus no signals from the fat tissue. The duration of T1 for fat suppression is usually between 

100-180 ms based on field strength .FLAIR sequence is mainly used in brain MRI where  

using long T1  suppresses signals from cerebrospinal fluid to differentiate brain tumours, 

oedema and fat (Weishaupt, 2006 and Westbrook, 2010). 

2.1.2 Application of MRI in restaging of rectal Cancer 
 
The initial clinical staging of a rectal cancer is determined by the combination of endoscopic, 

clinical and radiological findings. As already discussed in section 1.8.1 that how MRI evolved 

over the years since its introduction and has become the imaging modality of choice for the 

initial staging and assessment of proximity of the tumour to the CRM, with accuracy rates up 

to 94% (Brown et al, 2003). Restaging of rectal cancer after CRT is important as it gives 

valuable information about the tumour response to CRT. Down staging of tumour on 

histological assessment has shown to be independent prognostic factor in predicting long 

term survival in rectal cancer patients after long course CRT (Dhadda, et al., 2011). 

Restaging of rectal cancer can change the management strategy for the locally advanced 

rectal cancers. Restaging helps to identify patients who achieve complete clinical response 

characterized by absence of tumour on physical examination, biopsy and radiological 

assessment. A study by Habr-Gama et al. (1998) has reported a cCR of   up to 30% to CRT 

in distal rectal cancer patients. Surgery with its associated morbidity and mortality can be 

avoided in such patients with excellent long term overall and disease free survival results 
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(Habr-Gama et al 2004). Down staging enables surgeons to perform sphincter sparing 

operations for distal cancer once considered standard of care for such tumours. 

 

However accuracy of MRI in restaging locally advanced cancer after long course CRT has 

been questioned. The factors responsible for low accuracy include fibrosis, desmoplastic 

reaction, oedema, inflammation, and viable tumour nets at a fibrotic scar from a previous 

tumour (Kim, et al., 2010). The low accuracy of post treatment MRI is related to both over-

staging and under-staging of tumour. The mercury study group (2006) reported that 

accuracy of MRI in predicting clear circumferential margin decreases from 91% (284/311, 

95% CI: 88% to 94%) in patients who underwent primary surgery to 77% (75/97, 95% CI: 

69% to 86%) in patients with neoadjuvant CRT or long course radiotherapy. In their 

retrospective study, Allen, et al. (2007) reported overall accuracy of 60% (18/30, 95% CI: 42 

t0 78) for T stage and 70% (21/30, 95% CI: 54 to 86) for N stage on T2-weighted MRI post 

CRT when compared with findings on histological assessment of resected specimen. The N 

stage accuracy increased to 87% when nonmucinuous adenocarcinomas were separately 

assessed. Similar study by Chen, et al. (2005) reported overall accuracy of T stage as 52% 

(24/50) and for N stage as 68% (16/50).  Both these studies showed that most of the 

inaccurate T staging occurs as result of over staging of superficial tumours T0-T2 and 

T3<5mm. The overstaging is due to the limited capability of MR imaging to allow 

differentiation between viable tumour, residual fibrotic nontumor tissue, and desmoplastic 

reaction (Kim, et al., 2010). Another study by Suppiah, et al. (2009) showed even poorer 

accuracy of 45% for T staging. The accuracy for N staging was consistent with other studies 

i.e. 71%. In all these studies, patients had pre-treatment MRI and post treatment MRI 

followed by surgery. However the results of these studies may be flawed as speculated by 

Arulampalam, et al, (2010). In the study by Suppiah, et al. (2009), the post treatment MRI 

was performed after median time interval of 4½ weeks but definitive surgery was actually 

carried out 8 weeks after completion of CRT.  In the study by Allen, et al. (2007) the median 

time interval of performing post treatment scan was 38 days since CRT completion date and 
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surgery was delayed for further 43 days since the treatment scan. Arulampalam, et al, 

(2010) argue that the gap between the post treatment MRI and surgery could undermine the 

results of these studies. The study by Johnston, et al. (2009) reported an on-going clinical 

and symptomatic response in the gap between post treatment MRI and the surgery. While 

reviewing the data for locally advanced rectal cancer patients in their institution they 

observed that a subset of 17 patients had undergone MRI a third time. Each of these 17 

patients had three high resolution MRI scans; MRI 1 before treatment, MRI 2 6-7 Weeks 

after CRT and MRI 3 immediately before definitive surgery. MRI 3 was performed 15–37 

(mean 29) days after MRI 2, 3–21 (mean 10) days before surgery. This studied showed that 

there was significant decrease in T staging of the cancer from 6% on MRI 2 to 41.2 % on the 

MRI 3. There was high correlation between the T -stage on the third MRI scan and the 

pathological T-stage (82% 14/17). The second MRI overstaged 7 out of the 17 cases, giving 

an agreement between this MRI and the subsequent pathology of 58.8%. Three out of the 

17 patients showed complete response on histopathology. This had been correctly classified 

in two cases on MRI 3, with MRI 3 overstaging the third case as T1N0. Interestingly, staging 

on MRI for these three cases had been reported as T3a for two and T3b for one. There was 

no further response on N staging on the third MRI and the correlation between the scan and 

pathological assessment was 88%. The author attributes these high correlation findings 

between the third MRI and histology, to the resolution of tissue oedema and easier 

interpretation of fibrosis with the increasing time frame post CRT, together with the on-going 

response to treatment. Though this study is limited by a small number of patients but their 

findings in the study were significant in terms of their magnitude. In the first study of thesis, 

serial MRIs after CRT were used to optimize the timing of surgery after long course CRT in 

locally advanced rectal cancer. Because of the time dependent response post CRT, some of 

these patients who achieved complete clinical and radiological response could be 

considered for weight and watch approach or could undergo minimally invasive surgery such 

as TEMS. The first study in the thesis will also try to establish the proportion of such patients 

in the entire cohort. 
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2.1.3 MRI as an imaging biomarker 
 
Though the current combined modality management of locally advanced rectal cancer 

combined with use of high resolution MRI has shown considerable improvement in loco 

regional control. However, this is not the case for systemic control and these strategies may 

not necessarily improve overall survival (Lange, et al., 2013). Furthermore, restaging of 

irradiated rectal tumours is challenging because of difficulty of morphological MRI in 

differentiating fibrosis from viable residual tumour van der Paardt, et al., 2013). In addition, a 

proportion of such patients would achieve complete clinical response and could benefit from 

either wait and watch approach or less invasive local excision surgery (Habr-Gama, et al., 

2004). But there is a poor correlation of clinical complete response with true pathologic 

complete response (Zmora, et al., 2004). This shifting paradigm has placed greater recent 

interest in quantification of imaging biomarkers associated with adverse outcomes.  

 

Quantification of imaging biomarker on MRI can be divided into those based on conventional 

imaging and those based on functional imaging techniques.  In this section, only the imaging 

biomarkers linked to conventional or morphological MRI are discussed and described. The 

quantification of imaging biomarkers on functional MRI techniques along with PET markers 

is discussed in section 2.2 . The role of conventional MRI in TNM staging of rectal cancer is 

already discussed in detail in the section 1.8.1. In addition, high accuracy of MRI in 

predicting threatened CRM ((Brown et al., 2003) and hence selection of these patients for 

neoadjuvant CRT before surgery has become a gold standard in rectal cancer staging 

(Mercury study group, 2006). Subsequent studies and planned subgroup analysis of high 

quality imaging, histopathological and surgical data by the Mercury study group validated 

additional imaging biomarkers correlating with prognostic outcomes. Extra mural venous 

invasion (EMVI) defined as the presence of cancer cells in the vessels beyond the 

muscularis propria is another manifestation of locally advanced rectal cancer and is an 

established marker of poor prognosis in rectal cancer (Freedman, Macaskill and Smith, 
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1984). Traditionally, it has been assessed on histological analysis of resected specimens. 

Pre-treatment high resolution MRI can detect EMVI and has a potential of prognostic 

imaging biomarker. The study by Brown et al. (2003) demonstrated that pre-operative MRI 

correctly predicted EMVI in 15 of 18 patients who had positive EMVI on histopathological 

analysis (κ=0.68). In a separate study by the same group (Smith, et al., 2008), the sensitivity 

(probability of MRI to detect EMVI among those with positive EMVI on histology) and 

specificity (fraction of patients with negative EMVI status on MRI who would have negative 

EMVI on histology) of MRI-predicted EMVI in 94 rectal and sigmoid cancer patients were 

62% and 88% respectively on comparison with histological analysis. Relapse free survival 

(RFS) at 3 years for the patients with positive EMVI status was 35% compared to 74% for 

the patients with negative EMVI status (p< 0.001). 

 

One of the advantages of long course CRT over short course is that it induces tumour 

regression. There are number of pathological tumour regression grading (pTRG) criteria 

validated in rectal cancer and are mainly based on the qualitative assessment of proportion 

of fibrosis relative to remaining cancer tissue (Thies and Langer, 2013). Pathological TRG 

has been demonstrated to be an independent predictor of 5-year DFS in rectal cancer 

patients treated with CRT (Vecchio, et al., 2005). In the study by Rödel, et al. (2005), 

prognostic assessment of histological tumour regression grading in a cohort of 385 rectal 

cancer patients treated with long course CRT was carried out. It was found that 5-year DFS 

in patients with complete regression, intermediate regression and no regression was 86%, 

75% and 63% respectively (p=.006).  On multivariate analysis, the histopathological T and N 

stages were the independent prognostic factors for DFS. The Mercury study group (2006) 

applied the same principles of pTRG to MRI assessment of TRG (mrTRG) to determine the 

degree of tumour replacement by fibrosis characterized by low signal intensity (Patel, et al., 

2011).  This study showed that mrTRG independently predicted OS (HR 4.4, 95% CI: 1.65 to 

11.7, p=.003) and DFS (HR 3.28, 95% CI: 1.22 to 8.80, p=.019) on multivariate analysis. 
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2.1.4  Textural Analysis 
 
Besides quantification of MRI biomarkers such as CRM, EMVI and TRG, there has been a 

greater recent interest in quantification of imaging biomarkers linked to underlying intra-

tumour heterogeneity associated with adverse outcomes in terms of treatment failure and 

drug resistance (Ganeshan, et al., 2013). Heterogeneity can be quantified on imaging non-

invasively using textural-analysis (TA). The interpretation of radiological images is based on 

the naked eye examination. Yet there are features in the images that can yield a greater 

degree of information by analysing its textural properties. TA assesses the distribution of 

pixel grey-level intensity, coarseness and regularity in digital images (Castellano, et al., 

2004). 

There are four steps involved in analysis of medical images for computer aided diagnosis 

described by Sharma, et al. (2008). 1) Image filtering, 2) segmentation, 3) feature extraction, 

and 4) analysis of extracted features.  The main aim of image filtration is to suppress 

unwanted photon noise and to enhance image features important from further analysis point 

of view. Application of band pass filters in statistical textural analysis is used to highlight 

different spatial scales. One such filter is Laplacian of Gaussian band pass filter. Different 

filter values or width will enhance specific structures corresponding to that filter value, while 

structures less that this filter value will become blurred (Ganeshan, et al., 2009). Lower filter 

values (filter 0.5-1.0) will highlight structures with fine textures, and higher filter values 

highlight structures with medium (filter 1.5-2.0) and coarse (filter 2.5) textures in the filtered 

image (Davnall, et al., 2012).  

 

Segmentation is the process that divides the image into various regions of similar properties 

based on their texture, grey-level, colour or contrast. Digital images used in clinical practice 

are usually stored in the computer as a two dimensional array and is made up of mutually 

related small picture elements called pixels. Each pixel has a value that represents the grey-

level intensity of that picture.  According to Haralick (1979), pixels grey-level intensities and 
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their spatial relationship gives image a fine, smooth, coarse or grainy texture. Tuceryan and 

Jain (1998) defined image texture as a function of the spatial variation in grey-level pixel 

intensities. Texture analysis, thus is the evaluation of the position and intensity of pixels, in 

digital images (Castellano, et al., 2004). Texture features produced as a result of the 

analysis are in fact the complex mathematical parameters computed from the distribution of 

pixels. These features thus represent the underlying texture type.  

 

Feature extractions and analysis relates to patterns recognition and their quantifications. 

There are different techniques for textural analysis that can be categorized into four main 

types: structural, model based, statistical and transform methods (Tuceryan and Jain, 1998). 

The description of each of these techniques is beyond the scope of my thesis. More 

commonly used methods in analysis of medical imaging are statistical and transform 

methods and will be mainly discussed here. Statistical methodology is the most widely used 

and it measures the distribution and relationships of grey-level values in the image. Texture 

parameters derived from these methods are ranked into first, second and higher order 

parameters. First and second order parameters are more commonly used in medical image.  

First order statistical parameters include histogram of an image and its variance and are 

dependent on the individual grey-level value of a pixel without taking into the consideration 

of spatial interaction between the pixel values. Parameters derived on the basis of histogram 

analysis, include mean, standard deviation, uniformity (in-homogeneity) entropy (irregularity 

of intensity distribution), skewness (asymmetry of the histogram), and kurtosis (flatness of 

the histogram) (Davnall, et al., 2012). First order statistics are not suitable if image has got 

more than one texture or non-random spatial distribution of pixels (Prats-Montalban, De 

Juan and Ferrer, 2011). Second order statistical parameters analyse the grey-level 

distribution of pixel pairs in the image at a random location and orientation relative to each 

other. Gray level co-occurrence matrix (GLCM) proposed by Haralick (1979) is the most 

widely used texture feature. A GLCM matrix contains a number of rows and a number of 

columns equal to number of gray level intensities that shows the frequency of a pixel location 
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relative to each other pixel for a given distance and angle (Prats-Montalban, De Juan and 

Ferrer, 2011). Haralick (1979) described up to 14 textural features that can be computed 

from GLCM, however more commonly used are variance, contrast (difference between the 

highest and smallest values of pair of pixels considered), Entropy (disorderliness of the 

matrix), dissimilarity (heterogeneity of the grey levels), homogeneity (uniformity of  the 

matrix), Correlation(e linear relationship between the grey levels of pixel pairs) and energy( 

consistency/orderliness of textural information) (Mridula, Kumar and Patra 2011). Another 

second order statistics is Run length matrix (RLM) that measures the runs of pixels with 

same grey level intensity in a particular direction. The average of these run lengths is a 

measure of coarseness of a texture. More small runs with similar grey level intensities will 

form a smooth texture as compared to long runs with different grey level intensities that 

would form a coarse texture.   

 

Higher order statistics estimate properties of three or more than three pixel values occurring 

at specific locations relative to each other. Amadasun and king (1989) categorized them into 

coarseness (measures edge density) contrast (measures intensity difference between 

neighbouring regions), busyness (measures spatial frequency of intensity changes) and 

complexity (measures sharp edges and lines). In Transform based analysis, textural features 

are defined by spatial frequencies. Fine textures are rich in high frequencies, whereas 

coarse textures are rich in low frequencies. They include Fourier, and Wavelet transforms. 

Fourier transform gives a global sense of the frequency characteristics of an image but lacks 

spatial localization and hence not very popular. This problem can be overcome by using 

wavelet filters that allows the analysis of frequency content of an image at various resolution 

scales with minimal loss of information (Prats-Montalban, De Juan and Ferrer, 2011). 

Another popular model-based method in medical imaging process is based on the concept 

of fractal geometry. This concept is based on the natural objects having statistical self-similar 

fractal sets at different scales. In other words the variations in the object have the same 

distribution as the whole over a range of different scales. Fractional dimension is a measure 
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of variation at different scales and determines the roughness of surface. For an image, the 

fractal dimension is related to the variation in image intensity at different scales or pixel 

ranges (Tuceryan and Jain, 1998). In general features based on statistical methods have 

more discriminatory powers in image quantification than transform methods (Conners and 

Harlow, 1980). 

2.1.4.1 Application of textural analysis in medical imaging 
 
Textural analysis of medical imaging is not a new idea. In early 1970, it was first applied to 

plain radiographs (Harlow and Eisenbeis, 1973). Chen, Chang and Huang (1999) used it to 

characterize solid breast nodules on ultrasonography. In the last decade, there has been 

renewed interest in textual analysis of medical imaging due to advances in computer 

technology and development of new textural analysis algorithms and increasingly applied to 

CT, MRI and PET imaging. In oncological imaging based studies, textural analysis has 

emerged as diagnostic, prognostic and treatment response assessment tool.  

2.1.4.2 Tumour Heterogeneity 
 
Heterogeneity is a well-known feature of tumours and is associated with adverse outcomes 

in terms of treatment failure and drug resistance (Mroz and Rocco, 2013). Intratumour 

heterogeneity can be related to both genetic and histopathological variations such as 

cellularity, angiogenesis, extravascular extracellular matrix, and areas of necrosis (Davnall, 

et al., 2012). Gerlinger, et al., (2012) in their study showed that intratumour genetic 

heterogeneity varies both in space and over time. They also demonstrated that single or 

random biopsy of tumour may not represent the full extent of intratumour heterogeneity due 

to sampling error. Therefore it is important to identify the imaging biomarkers that can be 

correlated with worse histopathological features such as tumour grade, hypoxia and 

angiogenesis. Heterogeneity can be quantified on imaging using textural analysis which 

provides the non-invasive method of assessment. The study by Ganeshan, et al., (2013) 

identified the biological correlates for tumour hypoxia and angiogenesis on the basis of 
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textual analysis of CT images. This study showed significant association between medium to 

coarse texture scale and angiogenesis and hypoxia makers in primary non-small cell lung 

cancers.  

2.1.4.3 Lesion detection and characterization 
 
Texture analysis helps in characterizing lesion into benign or malignant based on their 

texture differences. In the study by Kido, et al., (2002), fractal analysis of gray-scale images 

of <2cm small periphery nodules, showed that fractal dimensions for organizing pneumonias 

and tuberculomas were greater than those of bronchogenic carcinomas ( p < 0.0001) and 

hamartoma ( p < 0.0001). Similarly the study by Gibbs and Turnbull (2003) showed 

significant differences for second order co-occurrence matrices such as contrast, variance 

and sum entropy between benign and malignant breast lesions when applied to high 

resolution contrast enhanced MRI images. These findings supported the general perception 

that benign lesions are homogenous compared to malignant lesions. They also showed, 

combining textural analysis with other parameters such as lesion size, age and time to 

maximum enhancement, can achieve diagnostic accuracy of 0.92 ± 0.05. Other studies 

showed the potential of textural analysis in differentiating malignant and  benign lymph 

nodes in rectal  cancer (Cui, et al., 2011) and differentiating colon cancer and normal colonic 

mucosa (Goh, et al., 2009). 

2.1.4.4 Treatment response 
 
Imaging biomarkers based on Textural analysis also helps in improving the predictive 

response to a cancer treatment. In a study of 39 patients with metastatic renal cell cancer 

receiving tyrosine kinase inhibitors (TKI), analysis of  changes in CT textural parameters 

after 2 cycles of TKI were better predictor of response than conventional response 

evaluation criteria in solid tumours(Goh, et al., 2011). Percentage change in coarse texture 

uniformity of ≤ 2 % was an independent factor that correlated with shorter time to 

progression.  O‘ Connor et al. (2011) studied 10 patients with 26 liver metastasis and 
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showed that tumour heterogeneity measured by fractal dimension on pre-treatment MRI 

predicted shrinkage in tumour volume after 5 cycles of  anti-angiogenic and cytotoxic 

chemotherapy. In a recent study of 100 breast cancer patients who received chemotherapy , 

textual analysis (GLCM-Matrices) of dynamic contrast enhanced-MR images showed 

significant differences for the contrast (p value=0.042) and difference in variance(p 

value=0.043) parameters between responders and non-responders (response determined 

by greater than or less than 50% change in largest diameter)(Ahmed, et al., 2013). Higher 

values of contrast (a measure of local image variation) and difference in variance (a 

measure of variation in the difference in gray levels between pixel pairs) found in the study 

supported the fact that heterogeneous tumours will respond poorly to the chemotherapy. 

These differences were more significant at 1-2 minute post contrast image time and no 

significant differences were observed in pre contrast images. Textural analysis of 

fluorodeoxygenase (FDG) uptake heterogeneity on pre CRT 18F-FDG PET images of 

patients with oesophageal carcinoma was assessed by Tixier, et al., (2011). Co-occurrence 

matrices strongly differentiated non responders from partial responders. 

2.1.4.5 Prognostic tool 
 
To date few studies have explored the potential of textural analysis as a prognostic tool for 

cancer survival. These studies are confined to CT or PET-CT based textural analysis. 

Ganeshan, et al. (2012) carried out two separate pilot studies on non-small cell lung cancer 

(NSCLC) (54 patients) and oesophageal cancers (21 patients). The studies showed that 

histogram based textural analysis of pixel distribution (first order statistics) of unenhanced 

CT images obtained using PET-CT examinations was significant independent predictor of 

poor survival for both NSCLC (P=0.001) and oesophageal cancer (P=0.0006).  In a separate 

study by the same group (Ng, et al., 2012); textural analysis of primary colorectal cancers 

(57 patients) was done to determine its relation with overall survival. Textural analysis 

showed that at a filter value of 1.0, entropy, uniformity, kurtosis, skewness, and standard 

deviation of pixel distribution were separate independent predictors of poorer 5-year overall 
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survival. These results differ from the other studies as it showed that primary tumours with 

less heterogeneity at fine-texture level showed association with worse prognosis. But this 

study assessed whole-tumour volume rather than a single axial level and contrast enhanced 

CT images were analysed unlike previous studies. The author postulates that this may also 

be due increased vascular permeability of tumour cells that itself has shown to be associated 

with advance tumour stage and worse survival in colorectal cancer patients (Yonenaga, et 

al., 2005). Increased vascular permeability leads to greater cell packing resulting in uniform 

distribution of vascularisation and greater parenchymal enhancement. In another study, 

coarse uniformity texture of liver in patients with non-metastatic colorectal cancer was shown 

to be effective marker of survival than hepatic perfusion CT (Miles, et al., 2009). 

2.1.5 MRI based textural analysis and colorectal cancer 
 
Textural analysis has also emerged as a promising imaging biomarker in MRI over the last 

10 years or so.  Majority of the studies are confined to lesion detection and its differentiation 

involving breast, brain and prostate tumours (Davnall, et al., 2012).  A few studies assessed 

the feasibility of textural analysis in predicting tumour response to neoadjuvant treatment. O‘ 

Connor, et al., (2011) investigated 10 patients with 26 CRC liver metastases who had 

dynamic-contrast enhanced MRI before starting bevacizumab and FOLFOX-6. They 

demonstrated that pre-treatment heterogeneity measurement of tumour microvasculature 

was able to predict the response. Conversely, pre-treatment tumour volume did not 

determine the subsequent change in volume after the treatment. To date, there has been 

very little work in exploring the potential of MR based TA as an imaging biomarker in rectal 

cancer. In a recent prospective study of 15 consecutive rectal cancer patients treated with 

CRT, textural analysis of pre- and mid-treatment T2w -MR images was carried out to assess 

its correlation with pathological tumour response to treatment. (De Cecco, et al., 2015).  The 

study demonstrated that the textural parameter, kurtosis was significantly lower (p=.01) in 

patients with pathological complete response in comparison with those with either partial or 

no response on pre-treatment scan. The higher kurtosis in partial and no-responder group in 
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this study reflects higher heterogeneity (Miles, Ganeshan and Hayball, 2013) and thus 

poorer response to CRT. 

2.1.6 Technical limitations and challenges 
 
Though the textural analysis of medical images has been in use for over a couple of decade 

but wide spread application of this technique is limited due to lack of standardized approach 

and due to difference in acquisition parameters and reconstruction modes. In longitudinal 

studies measuring the change in parameters due to neoadjuvant treatment, acquisition 

parameters in image segmentation and scanner characteristics on serial scans should be 

kept the same so that the measurement of heterogeneity reflects the underlying tumour 

biology rather than scanner variations.  In their analysis of 200 PET/CT images of various 

cancers, Galavis, et al. (2010) studied 50 statistical first, second and third order parameters 

for their variability due to different image reconstruction modes. Entropy (first order), energy, 

low grey RLM, and maximal correlation coefficient showed small variations (≤ 5%). Forty 

features including high order statistics such as coarseness, contrast and busyness exhibited 

large > 30% variations. Second order entropy, sum entropy and high grey level run 

emphasis showed intermediate variations (10% ≤ range ≤ 25%).  However robustness of 

textural analysis methodology used can resist changes in textual analysis due to variations 

in acquisition parameters. This was demonstrated in a multicentre study where textural 

analysis was performed in three centres with the same MRI machine but using their own 

routine acquisition protocols. Analysis was performed on T1 and T2-weighted images from 

10 healthy individuals and 63 patients with histologically proven intracranial tumours. This 

study found no significant differences in textural classification among three acquisition sites 

(Herlidou-Même, et al., 2003).  In this study the authors conducted initially  a preliminary 

phantom study to assess the effectiveness  of textural analysis methodology in relation to 

changes in acquisition parameters(varying slice thickness, and excitation to change size to 

modify to signal to noise ration and voxel resolution) and found no significant differences in 

textural classification among test objects. Another technical consideration of importance is 
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the demarcation of region of interest on the images that can induce inter and intra-observer 

variation. However this can be reduced by using semi-automated approaches to delineate 

the tumour (Ganeshan and Miles, 2013).  

2.1.7 Conclusion of Literature Review of the MRI and textural analysis and 
research question for the second clinical study of the thesis 

 
This literature review highlights the principle of conventional or morphological MRI and 

issues in restaging of irradiated rectal tumours because of difficulty of conventional MRI in 

differentiating fibrosis from viable residual tumour (van der Paardt, et al., 2013). Though the 

combined modality treatment and use of high resolution MRI in selecting and staging locally 

advanced rectal cancer has considerable improved loco-regional control but there is no 

improvement in OS because of distant failure (Lange, et al., 2013).  In addition, individual 

tumours show intra-tumour heterogeneity due to regional variations in microvasculature, 

cellular density and metabolic activity. Intra-tumour heterogeneity is linked to tumour 

aggressiveness in terms of poor prognosis and resistant to treatment.  This shifting paradigm 

has put a great emphasis on quantification of non-invasive imaging biomarkers linked to 

tumour heterogeneity (Ganeshan, et al., 2010). The CRM involvement, EMVI and 

quantification of TRG on conventional MRI have proven to be important prognostic factors. 

In addition quantification of tumour heterogeneity in the form of textural analysis allows 

extraction of additional features on imaging without needing for the patients to undergo 

further scans or invasive biopsies. It has been increasingly applied to various imaging 

modalities in the last decade or so and emerged as a non-invasive imaging biomarker. To 

date there is no study that assessed the potential of MR based textural analysis in predicting 

survival outcomes in rectal cancer. This information could be used in future to tailor 

treatment in individual cases and could prove to be an important step towards 

personalization of patient management. In addition early identification of patients with poor 

predicted prognosis increases cost effectiveness by switching patients to alternative 

treatments and avoiding toxicity of chemotherapy drugs and radiation. 
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 The main objective of the 2nd clinical study in the thesis is to investigate 

whether MR based textural analysis in addition to morphological MRI and 

histopathological parameters can predict survival outcomes in rectal cancer. 

2.2 Functional imaging in rectal cancer and integrated PET/MRI  
 
As discussed in section 1.9.2.1, neoadjuvant CRT combined with total mesorectal excision 

has become a standard treatment of locally advanced rectal cancer after paradigm changing 

trials by the German rectal cancer study group (Sauer, et al., 2004 ) and the Dutch cancer 

society (Kapiteijin, et al.,  2001). Long term follow-up in such patients showed that though 

this strategy has significantly reduced the local recurrence but no difference in overall 

survival was observed because of distant failure (Sauer, et al., 2012 and van Gijn, et al., 

2011). The long term outcome of these landmark trials tells us that there is still much room 

for additional research to improve rectal cancer management in terms of improving OS. 

Tumour response assessment has emerged as an attractive end point (Glynne-Jones, et al., 

2006) and is also important because this information can be used for treatment planning and 

carries prognostic significance. In the study by Rödel, et al. (2005), prognostic assessment 

of histological tumour regression grading in a cohort of 385 rectal cancer patients treated 

with long course CRT was carried out. It was found that 5-year DFS in patients with 

complete regression, intermediate regression and no regression was 86%, 75% and 63% 

respectively (p=.006). Complete pathological response as discussed in section 1.9.5, is 

present in 15-27% of patients treated with neoadjuvant chemoradiotherapy and is associated 

with significant increased disease free survival  with low local and distal recurrence rates as 

show in the systematic review and meta-analyse  by Mass, et al. (2010) and Martin, 

Heneghan and  Winter (2012) respectively.  In a separate meta-analysis by Lee, Hsieh and 

Chuang (2013) it was shown that patients with partial tumour regression had a superior DFS 

than those with poor response and pooled HR was decreased by 50% (HR 0.49, 95% CI 

0.28–0.85). This has placed greater emphasis on pre-operative imaging modalities to identity 
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patients that could be predicted to have either worse or better tumour regression grades. 

This in turn could help to select patients for personalized treatment in the form of more 

intensive therapy in patients with predicted poor response.  

 

Because of the limitations of conventional imaging as discussed in section 2.1.2, functional 

MRI techniques such as DWI and PET reflecting tumour microenvironment are currently the 

subjects of investigation for a potential prognostic and tumour response assessment tool for 

various cancers. In this section, principles of PET imaging formation, factors affecting PET 

imaging, commonly used PET radiotracers and PET instrumentation are discussed. In 

addition, principles of MRI modality-DWI and integrated PET/MRI are also discussed. This 

section also forms the basis for the introduction and literature review of the 3rd clinical study 

in the thesis (Chapter 6). In this study the potential of integrated PET-MRI features to predict 

histological tumour response was investigated. 

2.2.1 Principles of PET imaging 
 
Positron emission tomography (PET) is a functional imaging modality that uses molecular 

probes to image and measure biochemical processes in vivo (Basu, et al., 2011). In 

essence, it is a nuclear imaging method based on physical properties of radioactive 

substances called radiopharmaceuticals that emit positrons when they undergo radioactive 

decay upon administration to patients. Positron emitter molecules contains proton rich but 

nutrient deficient nucleus. The relative dearth of neutrons in the nucleus results in protons 

that are in close approximation with each other and repel one another. This results in making 

their nuclei unstable that achieve stability by transforming protons into neutrons and emits a 

positively charged electron i.e. positron during this process. Positron on release travels a 

very short distance (termed as range) not more than a mm or two in the surrounding matter 

until it interacts with negatively charged electron. The range of positron is dependent on the 

energy with which it is emitted and density of a matter. Upon their collision, these two 

electrons are annihilated that results in release of two high energy (511-Kev) gamma 
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photons traveling at 180˚from one another. Specialized ring of opposing PET detectors are 

used to detect these photon pairs simultaneously within a narrow time frame of few 

nanoseconds. The simultaneous detection of the two photons is called coincident detection 

and is the basis for obtaining a tomographic image. The straight path along which these two 

γ rays are detected is called line of response (LOR) (Workman and Coleman, 2006). This 

principle of PET imaging is illustrated in Figure 2-4. 

 

Figure 2-4 Electron–positron annihilation, producing two 511 keV photons leaving in 

opposite directions. 

2.2.2 Factors affecting the quality of PET imaging 

2.2.2.1 Attenuation 
 
There are several physical factors that degrade the quality of images and introduce image 

reconstruction bias affecting the accuracy of a PET scan. However some can be corrected. 

Attenuation is one of the most important factors affecting the accuracy of quantification in 

PET Images. The intensity of photon signal tends to decrease as it passes through tissue 

based on the density and thickness of tissue. Attenuation refers to some of photon travelling 

through the tissue may stop completely before reaching the detectors termed as absorption 

(Figure 2-5a). This results in overall loss of detection of true coincidence events leading to 

increased image noise. In addition attenuation causes non-uniformities in the reconstructed 

image leading to image artifacts and distortion. Since both photons must exit the body to 
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make a coincident event, so attenuation depends only on the total thickness or total length 

along the path of photons independent of depth of source of annihilation event. Attenuation 

correction has traditionally been performed by rotating a rod source of positron emitter such 

as germanium-68 along the field of view first without and then with the patient in the imaging 

position. This results in a blank and transmission scans respectively and attenuation 

correction factor is derived from the ratio of coincidence counts in these two scans. This then 

can be used to correct the PET data for emission scan and to create an attenuation-

corrected image of the patient (Zanzonico, 2012).  The development of combined PET/CT 

scanner system has been evolutionary in imaging technology and is more diagnostically 

useful than dedicated PET system. The CT part of PET/CT scanner is a transmission map 

that is used to generate attenuation corrected image. This not only reduces acquisition time 

but also allows precise anatomical localization of functional abnormalities (Workman and 

Coleman, 2006).  

2.2.2.2 Random coincidence 

Random coincidence event occurs due to two photons generated from different annihilation 

event and gets inappropriately detected by detector pair and positioned within the time 

window used to define a true coincidence. This phenomenon is illustrated in (Figure 2-5b). 

There are two ways in which random events can be detected and subtracted from the 

acquired data. The random events can either be estimated from mathematical assumption 

that random events are proportional to square of single events or from direct measurements 

of delayed events acquired in out of time window (Townsend, 2004). 

2.2.2.3 Scattering  
 
Scattering event refers to change in the direction of one or both photon‘s path due to 

interaction with tissues along the path and as a consequence loses energy before reaching 

the detectors resulting in in-correct line of response (Figure 2-5c). Scatter comprises of a 

large proportion of acquired data especially in 3D mode. Scatter can be corrected by 
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applying energy threshold but in reality scatter is difficult to assess and additional 

sophisticated correction scatter models have been developed to minimize the residual 

scatter bias (Townsend, 2004).  

  
Figure 2-5 Factors affecting the quality of PET imaging 

2.2.2.4 Spatial Resolution 
 
There are three factors that affect the spatial resolution in PET imaging (Shukla and Kumar, 

2006). Firstly, positron on release carry kinetic energy and travel a finite distance (range) 

through the surrounding material before it annihilates with an electron. This introduces an 

intrinsic degree of misposition error in spatial localization. Secondly, positron does not stop 

completely just before it combines with an electron and always have residual momentum.  

As a result the two annihilation photons are not emitted exactly at 180 degree from each 

other and have directional component by 0.5 degree. This induces a degree of error in 

spatial localization based on the diameter of detector ring and is about 2mm for 90cm ring 

detector. The third factor that determines the spatial resolution is the size of detector rings 

and a pair of opposite detectors receiving the annihilated photons in coincidence constitutes 

a channel. These channels are usually 0.4-0.6cm wide and reduction in size of detectors 

decreases the variation in delineating specific spatial location.  
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2.2.3 PET radioisotopes and radiopharmaceuticals 
 
Radionuclides that are commonly used in PET imaging are isotopes of atoms that are 

naturally present in biological molecules such as carbon, oxygen and nitrogen. These 

radionuclides have fewer neutrons than their stable counterparts. Table 2-1 lists the 

commonly used PET radionuclides along with their value of the ranges and the energies. 

Table 2-1 Common PET Radioisotopes (Blokland, et al. 2002, Workman and Coleman, 

2006) 

Radionuclides Number 

of 

protons  

(Atomic 

Number) 

Mass 

number  

(Number 

of protons 

+ 

neutrons) 

Half-life 

(minutes) 

Maximum 

Positron 

energy 

(MeV) 

Mean 

range 

(mm) 

Non-radioactive 

stable 

counterparts 

with mass 

number  

Fluorine - 18 9 18 110 0.64 0.2 Fluorine -19 (9 

protons and 10 

neutrons) 

Oxygen - 15 8 15 2 1.72 1.5 Oxygen – 16 (8 

protons and 8 

neutrons) 

Nitrogen-13 7 13 10 1.19 1.4 Nitrogen -14 (7 

protons and 7 

neutrons) 

Carbon - 11 6 11 20 0.96 0.3 Carbon – 12 (6 

protons and 6 

neutrons) 

 

Positron emitting radionuclides are not found naturally and have to be synthesized. A 

cyclotron is a device that can facilitate this process. It is essentially a particle accelerator. 

Charged particles made from an ion source are introduced into a large evacuated container. 

Two high-voltage electrodes accelerate these particles that are kept in a circular pathway by 

an application of strong magnetic field at ring angle to the electrical field. A beam of protons 

is produced and cyclotron shoots them at the target atoms and results in these protons 
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ending up in the nucleus of target atom and making them unstable by lowering the neutron 

to proton ratio (Bomanji, Costa and Ell, 2001). Radiolabelling is a chemical reaction in which 

radionuclides once formed are incorporated into a pharmaceutical agent or a desired 

molecule to form a radiopharmaceutical. These radiopharmaceuticals are then administered 

into a patient and get distributed according to its pharmacokinetic. Since many of positron 

emitters have small molecular weights relative to the desired molecule or agent used for 

labelling, consequently they have no or minimal impact on behaviour of these molecules in 

the body (Li and Conti, 2010). Also very small amount of radiopharmaceuticals are 

administered in diagnostic imaging so they have a negligible pharmacologic effect. 

Radioactive biomolecules of sugars, amino acids and nitrogen bases have been developed. 

Some of the examples of PET pharmaceutical are shown in Table 2-2 (Dunphy and Lewis, 

2009). 

Table 2-2 Example of radiopharmaceuticals (Dunphy and Lewis, 2009) 

Radiopharmaceutical Structural 

analogue 

Measured parameter 

(18F)Fluorodeoxyglucose (FDG) Glucose Glucose metabolism 

(18F)Fluorothymidine (FLT) Thymidine DNA synthesis 

(18F)Fluoromisonidazole(FMISO)  nitroimidazoles Hypoxia 

(11C)Methionine (MET) Methionine Amino acid metabolism 

(18F)Fluoroestradiol (FES) Estradiol Estrogen receptor status 

(11C)Choline Choline Up regulation of choline kinase 

associated with cancer 

 

The selection of PET nuclides is based on their physical and chemical features, half-lives, 

availability and the biological process that needs to be analysed. In general most 

radionuclides have short half-lives and limited availability. Ideally the half-life of PET nuclides 

should be long enough to allow radiolabelling and imaging procedure. Radionuclides such 

as nitrogen-13 (10 minutes) and oxygen-15 (2 minutes) have very short half-lives that not 

only limit their production in only PET centres with on-site cyclotron facility but also limit their 

clinical applicability. 18-FDG in the most widely used PET nuclide because of its longer half-
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life that allows its distribution by commercial vendors and can be used directly at PET sites 

without on-site cyclotron (Wadsak and Mitterhauser, 2010). The positron energy of 18-F 

nuclide is low resulting in short tissue range. This leads to lower radiation dose and higher 

resolution (Basu, et al. 2011). In addition, 18-FDG is a structural analogue of glucose 

molecule and is very similar to it in terms of biochemical behaviour. Since most pathological 

settings are associated with changes in glucose metabolism and for this reason, 18-FDG is 

used as major work horse in oncology, cardiology and neurology PET imaging. Glucose 

undergoes glycolysis as a first step in generating energy at a cellular level. There is a typical 

increase in the expression of glucose transport receptors (GLUT) in tumour cells which in 

turn leads to increased glucose uptake and increase glycolytic rate in these cells than 

normal tissue. Being a structural analogue, 18-FDG behaves similar to glucose but only to a 

point. It is phosphorylated by hexokinase enzyme to become a FDG-6-phosphate. Since 

FDG-6-Phosphate is not a suitable substrate to undergo further metabolism by glucose-6-

phosphatse enzyme so it becomes trapped within cells. Tumour cells being more 

metabolically active will accumulate more [18F] FDG and hence leads to more uptake of 

radiotracer which is a basis for differentiating pathological tissue from benign tissue with 

FDG-PET imaging (Groves, 2007). Figure 2-6 shows metabolic trapping of 

fluorodeoxygenase. 

 

Despite its major oncological applicability, FDG-PET imaging is not without limitations. The 

major limitation of FDG is its nonspecific uptake by both neoplastic cells and the other cells 

associated with increased metabolic activity such as inflammation and infection. Although, 

viable cancer cells form the majority of the FDG signal but a part of uptake by infiltrating 

immune cells such as activated macrophages induces a false-positive PET signal and has 

significant implications in the analysis of PET images (Wahl, et al., 2011). In addition, 

tumours enclosed in organs with higher normal physiological uptake such as brain, muscle 

and bladder cannot be properly delineated. Moreover, some malignancies such as prostate 

and renal cancers and hepatomas are not associated with enhanced glucose metabolism 
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and therefore, are poorly differentiated by FDG-PET imaging (Wadsak and Mitterhauser, 

2010). 

 

2.2.4 PET instrument 

2.2.4.1 Photon detection and scintillation detectors 
 
The main aim of photon detection is to measure the total energy delivered by emitted high 

energy photons (511 KeV) as it passes through the detector. In order to achieve the highest 

accuracy and sensitivity in detecting the photon‘s energy, detectors need to have four 

specialized features; stopping power, light output, decay time of light and good energy 

resolution (Shukla and Kumar, 2006). The stopping power relates to the detectors ability to 

efficiently absorb photon‘s total energy and is inversely proportional to the average distance 

traversed by photons before they deliver energy in the detector. This distance relies on high 

effective atomic number and density of the detector‘s material. In addition the detector 

should have an ability to produce higher light output to allow the better spatial and energy 

resolution. The time taken by the light to decay determines the accuracy with which 

coincident photons can be detected by a pair of detectors. As the proportion of photons 

striking a detector increases, the chance of missing a photon increases due to detector dead 

time that puts limits on count rates. A shorter decay time is desirable as it allows faster 

generation of the signal and counting higher photon rates. The use of fast detectors with 
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Figure 2-6 Metabolic trapping of fluorodeoxygenase 
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narrow coincidence time window reduces the likelihood of detecting accidental coincidence 

events.  

 

The detection elements that are used in most PET scanners are scintillation crystals which 

are a few millimetres in size. These small individual crystals are tightly arranged into blocks, 

typically 6 x 6 or 8 x8 coupled to four photo-multiplier tubes. After their interaction with 

photons, the scintillation crystals release visible or near ultraviolet light to photo-multiplier 

tubes that detect and measure the scintillation photons. The photo-multiplier tubes have 

multiple channels coated with photocathode inside a common vacuum envelope and each 

channel provides essentially an independent photo detectors. The photocathode, when 

struck with light from the crystals emits electrons that are amplified into logical output 

electronic signals. These electronic pulses are then fed into energy discriminating circuit 

called pulse height analyser that sorts out the pulses according to their energy. Only the 

pulses within a predetermined pulse energy window are included in the image (Zanzonico, 

2012). Sodium iodide doped with thallium (NAI) and bismuth germinate (BGO) are the first 

generation scintillators used in conventional PET scanner. BGO detectors were associated 

with high stopping power and sensitivity but poor light output compared to NAI detectors that 

had very high light output. In addition these detectors had longer decay time limiting their 

performance at high count rates. Latest generation of very high performance scanners use 

Lutetium Oxyorthosilicate that possesses high light output similar to NAI and high sensitivity 

similar to BGO detectors as well as the very fast decay time (Basu, et al., 2011). 

2.2.4.2 PET image formation 
 
Once the coincident events are determined along their lines of responses between pairs of 

parallel and opposite detectors, next step is to store the data set of a large number of these 

events. Data associated with each line of response is characterized by angle of orientation 

along y-axis and by the shortest distance between the detector and centre of field of view 

along the x-axis (Figure 2-7a). If multiple LORs passing through the same point at different 
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angles are plotted, the graph obtained is termed as a sinogram resembling a sine wave plot 

turned on its side (Figure 2-7b). All the detector pairs that observe this interaction will have 

LOR data stored on this curve. A sinogram is essentially a matrix of pixels that represent the 

number of counts measured along each LOR. Each horizontal row of pixels represents the 

number of counts at a specific projection angle (Fahey, 2002). Sinogram data is then 

corrected for variations due to factors such as scatter and attenuation. This data is then used 

to reconstruct cross-sectional images using various algorithms. Although it is beyond the 

scope of this thesis to give details of reconstruction algorithm but it is important to mention 

the two techniques of reconstruction that are filtered back projection or iterative 

reconstruction technique. Filtered back projection is a traditional reconstruction algorithm 

that has been used in nuclear medicine and is still used in single-photon emission computed 

tomography (SPECT) and CT reconstruction. Since this technique is known to amplify noise 

in the image, so it has been replaced by iterative method in new generation PET systems as 

a more accurate and superior method of quantification (Jha, et al., 2014). 

 

 

2.2.4.3 Data acquisition mode 
 
PET data can be acquired in both 2D multi-slice and 3D modes. In a typical PET system, the 

scanner has retractable lead or Tungsten septa placed in between each ring. These septa 
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Figure 2-7 Principles of PET image formation 
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are positioned for 2D multi-slice mode and essentially separate the imaging planes.  

Detection of photons in one imaging plane being in coincidence with photons detected in 

other imaging planes is prohibited. Use of the septa reduces the scattered events from 30-

40% of all collected events to approximately 10-15%. Retracting the interplane septa in 3D 

acquisition mode increases the sensitivity by a factor of 10. However the disadvantage of 

this mode is an increase in the amount of scatter and random coincidences and the need for 

complicated and more time consuming 3D reconstruction algorithms. In addition the 

sensitivity in 3D mode is much higher at the axial centre of the scanner than at either end 

requiring more position for the whole body scanning. Despite of all these factors, majority of 

studies are performed in this mode due to improved image quality and low signal to noise 

ratio (Fahey, 2002 and Smith, 2010). 

2.2.4.4 Quantification of PET imaging data  
PET imaging data can be quantified and analysed using different methods. A semi-

quantitative method for assessing glucose metabolism by means of standardized uptake 

values (SUV) is discussed here and was used in the data analysis of this study. 

Measurement of SUV is relatively easy, clinical practicable and accessible in all clinical 

acquired PET scans. SUV is defined as a proportion of the FDG concentration in a ROI to a 

total dose injected corrected to patient‘s body weight (Strauss and Conti, 1991). Either an 

absolute value such as SUV ± max (maximal value in ROI) or serial measurements ΔSUV 

(relative changes in SUV max) have been used for various oncological and clinical trial 

purposes (Boellaard, 2011). Quantitative PET has been recognized as a prognostic and 

response monitoring tool. SUV max was shown to be an independent prognostic factor 

(p=0.01) for diseases specific survival and predictive of treatment response along with 

performance status of patient and staging in inoperable non-small cell lung cancer patients 

treated with radiotherapy (Borst, et al., 2005). In another prospective case series study of 

152 patients with metastatic colorectal cancer, significant 2 and 3 year survival benefit was 

observed in patients with lower than median uptake SUV (p=0.017). The survival 
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disadvantage was regardless of the subsequent treatment in the form of curative surgery or 

chemotherapy (De Geus – Oei, et al., 2006).  Based on the outcome of these studies, it can 

be hypothesized that FDG uptake indicates biological aggressiveness of underlying tumours. 

2.2.4.5 Principles of diffusion weighted imaging-MRI 
 
A variety of MRI pulse sequences comprising of radiofrequency and gradient pulses and 

providing a range of contrast has already been discussed in details in the section 2.1.1.5. 

The image formed on the bases of these pulse sequences is principally based on the rate of 

decay of protons from high energy state to low energy state after excitation by a 

radiofrequency pulse to a static magnetic field (Berger, 2002). In comparison, DWI technique 

produces image contrast by measuring the diffusion of water molecules with in tissues at 

cellular level. Water molecules are in constant state of random flow between intracellular, 

extracellular and interstitial tissue compartments limited by partially permeable cell 

membranes. The apparent diffusion coefficient of water molecules is altered by various 

pathological conditions either due to destruction of cell membranes (e.g. cell lysis), changes 

in cellular density (e.g. inflammation or tumour) or due to cellular swelling (e.g. 

ischemia)(Bammer, 2003).  Diffusion weighted sequence is achieved by applying two 

additional dephasing and rephasing gradients of equal magnitude but in opposite direction to 

the conventional spin echo pulse sequence over a set interval. In tissues with impeded water 

movement due to higher cellular density (e.g. tumours), relatively stationary water molecules 

will dephase and rephase equally during that interval. Therefore it has little effect on the 

overall T2 decay and thus produces stronger signal. However in tissues with low cellular 

state and free diffusion, movement of moving water molecules during that interval would lead 

to incomplete rephasing and results in signal loss from that spatial location (Charles-

Edwards and deSouza, 2006). 



71  
 

2.2.4.6  Image analysis 
 
The sensitivity of a DW-MRI to quantify diffusion is represented by its b-value that can be 

adjusted by altering the amplitude and application time of gradient pulses as well as the time 

interval (diffusion time) between their application. The higher this interval, the more sensitive 

an image is to small changes in water movement at cellular level (Boone, Taylor and 

Halligan, 2013). It is important to note that image contrast in DWI-MR sequences depends 

not only on diffusion but also on relaxation times of water molecules. To abolish the effects 

other than that of diffusion, DWI-MR signal is acquired at least with two b-values, typically 

one b-value of 0 (without diffusion weighting) and the second higher b-value depending on 

tissue or organ being evaluated. By acquiring images at multiple b-values, more accurate 

quantitative calculation of DWI over time termed as apparent diffusion coefficient (ADC) can 

be achieved. The ADC infect represents a slope of graphical plotted line between logarithm 

of signal intensity of tissue along the y-axis versus b values along the x-axis. The ADC 

values are displayed as a parametric map by assigned ADC to each voxel and then 

recorded by drawing ROIs on the map (Qayyum, 2009). The calculation of ADC is an 

automated process by a software application on a scanner workstation. 

2.2.4.7 Clinical application of DWI in response assessment of rectal cancer 
 
Radiological anatomical response assessment based on percentage reduction in tumour 

length such as the Response Evaluation Criteria in Solid Tumours (RECIST) (Machida, et 

al., 2008 and Therasse, et al., 2000) is well established. However change in tumour size 

does not always reflect treatment response. Sometimes size my increase due to necrosis, 

cytotoxic oedema or haemorrhage resulting from treatment rather that disease progression 

(Tuma, 2006). In addition this method of assessment is not appropriate for predicting 

response for cytostatic rather than cytocidal cancer therapies (Wahl, et al. 2009). In such 

cases tumour response cannot be reliably predicted. Functional MRI techniques such as 

DWI have the ability to combine morphological, physiological and pathological changes in 

order assess tumour response.  
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The potential of pre-treatment tumour ADC in predicting of response to chemoradiation has 

been investigated previously in patients with locally advanced rectal cancer. In a pilot study 

of 14 patients with clinically advanced non-metastatic rectal adenocarcinoma, Dzik-Jurasz, 

et al. (2002) found a  strong negative correlation between mean pre-treatment tumour ADC 

and percentage MR regression in tumour size after chemotherapy (r= −0·67, p=0·01) and 

after chemoradiation (r= −0·83, p=0·001). This study showed that low ADC in responders 

may represent the amount of necrosis and loss a nonviable part of treated cancer. In a 

separate study of 9 patients with locally advanced rectal cancer treated by CRT (Hein, et al., 

2003) it was found that mean ADC decreased continuously in the 2nd week (p=0.028), 3rd 

week (p=0.012) and 4th week of treatment (p=0.008). Subsequent histopathological 

evaluation revealed that there was an increased interstitial fibrosis in the tumour region. 

Limiting effect of fibrosis to free diffusion was hypothesized to be the factor for decrease in 

ADCs. Jung, et al. (2012), explored the potential of DWI to predict histological response in 

rectal cancer and found that in histopathological responders, per-treatment ADC was 

significantly lower as compared to non-responders (p = 0.034). The results also showed a 

significant increase of mean ADC after neoadjuvant CRT in responders (p <0.005) 

suggesting effective tumour response (e.g. tumour lysis) and change from high to low 

cellular tissue state and increase in free diffusion. Curvo‐semedo, et al. (2012) explored the 

potential of ADC quantified on initial staging MRI as a non-invasive imaging biomarker of 

rectal tumour invasiveness. Significant lower ADC values were found in rectal cancers with 

mesorectal fascia (p=0.013) and lymph node involvement (p=0.011) on MRI, poor 

histological differentiation (p=0.025). Though lower ADC values were noticed in patients with 

EMVI but the difference was not significant. A recent meta-analysis by li, et al. (2014) of 

1564 patients showed superiority of DW-MRI over FDG-PET or FDG-PET/CT in predicting 

histological tumour regression in patients with locally advanced rectal cancer treated with 

neoadjuvant CRT. The pooled sensitivity (true positives i.e. histological responder) 85% 

(95% CI: 75-91) vs. 81% (95% CI: 74-86) and negative predictive value (proportion of 

patients correctly identified who didn‘t respond to CRT on histology)  91% (95% CI: 80-95) 
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vs. 80% (95% CI: 68-89) were significantly higher than those of FDG-PET or FG-PET/CT 

(=p <0.05) This suggest that DWI-MRI is a valid technique to evaluate tumour regression in 

rectal cancers and hence this modality was used in this study as well. 

2.2.5 Multimodality molecular imaging-PET/MRI  
 
Recent introduction of high resolution PET combined with other modalities has 

revolutionized the practice of clinical imaging. Combined PET/CT scanners in the same 

gantry increases the sensitivity and specificity of PET for the detection of lesion by enabling 

direct correlation of region of increased uptake of radiotracer with their anatomical location 

on the CT scan. In addition X-rays from the CT component of PET/CT scanners are used to 

construct an attenuation map of the body which is imperative in accurate interpretation of 

PET images (Collins, 2007). However the scanning with CT carries an inherent theoretical 

risk of radiation exposure especially if acquired with full diagnostic protocols and poor soft 

tissue resolutions in the absence of oral or intravenous contrast. Conversely MRI technique 

does not carry the risk of radiation and also produces high spatial resolution and contrast 

imaging. In addition, functional MRI techniques such as diffusion and perfusion imaging 

could compliment the functional information obtained from PET (Habib and Rameshwar, 

2009). In recent years with technological advancement and development of PET detectors 

that could function in the presence of strong magnetic field, state of art integrated PET/MR 

imaging technique is now available.  

 

In the last decade indirect PET/MRI studies have been conducted (combining data from 

independent PET/CT images software fused with independent MRI images and shown the 

potential use of PET/MRI biomarkers in various oncological applications. In a retrospective 

study of 37 patients with suspected live metastasis, diagnostic accuracy between 18F-FDG 

PET/CT, dynamic contrast enhanced MRI, and retrospectively fused PET and MRI 

(PET/MRI) was compared. The results showed that the sensitivity of PET/MRI and contrast-

enhanced MRI was significantly higher than that of PET/CT (Donati, et al., 2010).  The major 
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limitation with such studies is that since scans are not performed simultaneously, there is a 

potential for errors in lesion co-registration especially for organs such as bowel which may 

change location and shape over short periods (Hofmann, et al., 2009). In the pilot study of 

the thesis, PET and DWI parameters on integrated PET/MRI platform were assessed for 

their potential in predicting histological response of rectal cancers to neoadjuvant treatment. 

2.2.5.1 Oncological applications of integrated PET/MRI  
 
There is limited evidence on integrated PET/MRI in oncologic applications and there was no 

study found to date on the correlation of histological TRG with imaging features for rectal 

cancers on integrated system. Other pilot studies comprising of small patient population 

have demonstrated the feasibility of PET/MRI in diagnosing and staging cancers. A study by 

Paspulati, et al. (2015) was carried out to determine the feasibility of PETMRI in colorectal 

cancer (n- 12 patients with 4 rectal cancers) by comparing its diagnostic and staging 

potential with PET/CT. The correlations of main outcome measures (maximal and mean 

standard uptake value (SUVmax and SUVmean) and the longest and shortest tumor 

diameters) were high between PET/MRI and PET/CT with no statistical differences. In 

another feasible  study of 32 patients with different cancer lesions by Drzezga, et al. (2012) 

comparing interrelated PET/CT and PET/MRI did not reveal a significant difference (p=0.5) 

between the number of lesions detected on PET/MR and the number detected on PET/CT. 

In addition this study showed as reliable and as comparable anatomical location of 

suggestive PET lesions in PETMRI as that of PET/CT. However quantitative evaluation 

based on SUV showed significant difference between the two imaging modalities in mean 

SUV measured with higher lesion contrast in PET/MR implying suitability of PET/MRI in 

quantitative evaluation of therapy response. 

 

The real theoretical advantage of adding MRI to PET comes from functional element of MRI 

such as DWI and contrast-enhanced images. There is no valid data that would infer 

superiority of combining PET and MRI in initial staging of rectal cancer over conventional 
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staging modalities such as pelvic MRI and or TRUS. A retrospective study of 23 patients by 

Kam, et al. (2010) correlated the primary staging of rectal cancer on PET/MRI fusion images 

with histopathological staging. The results did not seem to add much benefit to conventional 

rectal cancer staging modalities. Fusion PET/MRI correctly staged 57% of T3 and 75% of T 

tumours respectively.  For N staging, sensitivity was low and only 44%. In all the cases with 

absent positive lymph nodes on MRI, PET was never positive. Hence, TNM staging of rectal 

cancers included in this study was assessed on conventional MRI. 

2.2.6 Conclusion of Literature review of the functional imaging (MRI-DWI, 
PET/MRI) and main objective of the third clinical study of the thesis 

 
This chapter highlights the principles of functional imaging modalities of PET and MRI and its 

application in oncology especially with reference to rectal cancer. Although various 

exploratory studies are present in the literature that investigated the role of functional MR-

DWI, PET, PET-CT and combining PET and MRI data in identifying responders to 

neoadjuvant treatment in rectal cancers but there is a lacking evidence on the role of 

integrated PET-MR in this area. With this gap in the knowledge, the third study of the thesis 

discussed in chapter 6 was carried out. The main objective of this study was to investigate 

whether pre-treatment integrated PET-MR functional features correlated with histological 

response in locally advanced rectal cancer treated with long course CRT. In addition, a 

potential correlation of PET and functional MRI features in the setting of integrated PET/MRI 

system was evaluated.  Moreover, association of clinical, histological and functional imaging 

parameters with disease free survival was also evaluated for these patients.  
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3 Methodology, methods and materials 

In this chapter research methodologies used for the three clinical studies (Chapters 5-7) 

included in the thesis have been discussed. Firstly, a brief background and essential 

principles that need to be considered in conducting a social research are discussed with 

relevance to this thesis and then methodologies for the clinical studies included in the thesis 

are presented. 

3.1 Methodology of the study of Outcomes in a Cohort of patients with 
delayed surgery after long course CRT 

 
Consideration of underlying philosophical perspectives is critical in conducting social 

research as this will govern the choice of research design and methodology (Crotty, 1998). 

Research in health care is mainly based upon empirical approach and is based on scientific, 

logical and methodological principles and conducted in a way that is objective and value 

free.  It is mainly of quantitative nature and is conducted within the domain of positivist 

paradigm. It involves the description of population of interest and measurement of its 

characteristics (variables) and the variability of these observations. It takes into account the 

probability or chance that might be responsible for the variations among the variables 

(Bunniss and Kelly, 2010).  Interpretivism is a contrasting epistemological position to 

positivism and is concerned with that how people interpret the world around them and 

requires the social scientist to see perceive things from the individual‘s point of view through 

interviews, unstructured surveys and focus groups (Bryman, 2012). The main objective of 

this thesis was to determine the effect of delayed surgery in locally advanced rectal cancer 

after the long course chemoradiotherapy (section 1.11). A deductive approach was used to 

hypothesize that delaying the surgery after long course chemoradiotherapy does not 

adversely affect outcomes. Since the data collected was mainly numerical so a quantitative 

research methodology based on a positivist paradigm was employed. A research design 

provides a structural framework for technique of the data collection and analysis i.e. 

research methodology (Bryman, 2012). The studies included in the thesis are observational 
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studies based on single arm case series without a control group. Non randomized clinical 

studies will always have low internal validity because it is impossible to be confident that all 

important confounding elements have been determined and appropriately controlled for. 

Though patients are not, strictly speaking, allocated in truly observational studies but such 

studies are still prone to selection bias because clinicians propose treatments to patients 

which are apparently going to benefit them based on their demographic and prognostic 

information (MacLehose, et al. 2000). In terms of hierarchy of evidence (Evans, 2003), 

findings of case series study design are ranked low but like randomized controlled trials, 

results derived from such studies depend upon their quality by ensuring that bias is 

attenuated and effect on outcomes shown are likely to be true (Dalziel, et al. 2005). Although 

randomized controlled trials are considered to be the most valid study design to evaluate the 

effect of an intervention, up to 30% of NICE health technology assessments have included 

information from the case series studies (Dalziel, et al. 2005). Such studies are often useful 

to illustrate the outcomes of novel treatments, in discovery of unexpected benefits or risks of 

a treatment and in generating new hypothesis to be tested in clinical trials (Vandenbroucke, 

2001). Moreover, these studies are easier to conduct, need less time and financial resources 

than the randomized controlled or cohort studies (Chan and Bhandari, 2011). Chapter 4 in 

this thesis is based on a retrospective cohort of 112 consecutive patients diagnosed with 

rectal adenocarcinoma and treated with long course CRT with curative intent from 01/2004 

to 06/2012 at the department of surgery, Colchester General Hospital. The goal of this study 

was to assess a new clinical and radiological approach to optimize timing of surgery after 

long course CRT and to assess the safety and feasibility of the laparoscopic approach in 

patients with rectal cancer who undergo long course CRT. The timing of surgery after long 

course CRT is a controversial issue with no clear consensus. At present, the standard 

practice is to wait 6-8 weeks after the completion of CRT for resection of tumour (Foster, et 

al. 2013).  An earlier study from Colchester General Hospital involved small number of 

patients (n-46) and showed that there is an on-going time dependent tumour response 

beyond this period when assessed on serial MRIs as a part of an established protocol in the 
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hospital (Johnston, et al. 2009; section 1.10). As a result of that, laparoscopic surgery was 

postponed for the responding patients up to almost three months or beyond without resulting 

in wider CRM and greater tumour downgrading (Motson, et al., 2011). Based on the positive 

findings of these preliminary case series studies from Colchester University Hospital, this 

retrospective consecutive case series was carried out to determine the long term effect on 

clinical and oncological outcomes of delaying the surgery beyond the traditional 6-8 weeks in 

the colorectal department of Colchester General Hospital.  

3.1.1 Patient Selection 
 
The number of patients in the thesis reflects the selection of patients considered suitable for 

long course CRT. The indication of long course CRT in this series was restricted to stage II-

III MRI defined poor risk histologically confirmed locally advanced rectal adenocarcinomas 

originating within 15cm from the anal verge. Patients who were administered with palliative 

CRT were excluded. Features of poor risk were defined as below: 

 T3 tumours with > 5 mm infiltration into perirectal fat, 

 T4 tumours, 

 multiple enlarged lymph nodes in the mesorectum, 

 threatened or involved CRM 

Involvement of or threatened CRM on histology (presence of tumour cells within ≤ 1mm of 

resection margin) is associated with higher positive predictive value (85%) for local 

recurrence (Quirke, et al. 1986). In addition CRM involvement is also a powerful predictor of 

both developing distant metastasis (HR-2.8) and poor survival (HR-1.7) (Nagtegaal and 

Quirke, 2008). Similarly T3 tumours extending more than 5mm extramurally into perirectal fat 

show poorer cancer specific 5 year survival than the tumours with 5mm or less of perirectal 

fat infiltration regardless of nodal status ( 54% vs. 85% 5 year survival rate, p value < 

0.0001) (Merkel, et al. 2001). The role of MRI in rectal cancer staging has been discussed in 

section 1.8.1. High resolution MRI can predict CRM involvement with great accuracy 

(Mercury study group, 2006) and differentiate between good prognosis tumours (Taylor, et 
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al. 2011) from the one with poor features. Based on this evidence, MRI has become a gold 

standard for rectal cancer staging and hence this imaging modality was used to select poor 

risk patients eligible for long course CRT. All patients were assessed for eligibility of long 

course CRT in the multidisciplinary team meeting comprising of a surgeon, oncologist, 

radiologist and pathologist. All patients had the first staging MR scan before starting the long 

course CRT. Patients with metastatic rectal cancers at the time of diagnosis assessed by the 

CT of chest, abdomen and pelvis were excluded.  

3.1.2 Treatment 
 
Chemotherapy consisted of 240 mg/m²/day oral Tegafur–uracil (UFT) on days 1–28,  given 

with leucovorin 90 mg/day or iv bolus 5-FU 300 mg/m2 days 1, 8, 15, 22, and 29 with 

leucovorin 20 mg/m². Chemotherapy was administered concurrently with two-phase, 

conformal, external beam radiotherapy of 45–50.4 Gy in 25–28 fractions over 5 weeks. 

Clinical reassessment was done at two week intervals from 4 weeks post completion of CRT 

with a second MRI scan, performed approximately 6–7 weeks after CRT completion to 

optimise the timing of surgery at maximal response. Clinical reassessment was done with 

the combination of clinical examination, rigid sigmoidoscopy and examination under 

anaesthesia. A CT scan of the chest, abdomen, and pelvis was also repeated to exclude the 

development of distant metastases. Following a multidisciplinary meeting review, the 

patients with documented down staging or no response proceeded to surgery. For the 

patients that appeared to show partial response had their surgery deferred and a third MRI 

was performed 4 weeks after the second (post CRT) MRI was performed to gain a maximal 

response. Selective patients who achieved complete clinical and radiological response were 

not immediately operated with their consent and were kept under strict follow up using Habr-

Gama‘s ―watch and wait‖ approach (Habr-Game, et al., 2004). ―Watch and wait‖ included 

complete physical, digital and endoscopic rectal examinations every 4-8 weeks during the 

first year with a low threshold for the surgical intervention if any indication occurred. CT scan 

of chest abdomen and pelvis and MRI scan every 6 months during the first year and then 
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once yearly were also performed for such cases. If the complete clinical response was 

sustained for a year without recurrence then patients were considered complete responders 

and were kept under routine oncology follow up without surgery. 

 

Total mesorectal excision (section 1.9.4.1) was performed laparoscopically in the majority of 

cases to assess the safety and feasibility of the laparoscopic approach in patients with rectal 

cancer who underwent long course CRT. The choice of a surgical procedure in the form of 

either anterior resection or abdominoperineal resection was at surgeon‘s judgement but a 

suggestion by multidisciplinary team meeting was also taken into consideration. All 

operations were carried out by experienced colorectal surgeons and their senior trainees 

under direct supervision. Operative and technical specifications were standardized (Motson, 

et al., 2011). Patients undergoing anterior resection were given bowel preparation a day 

before surgery. Patients received 20 mg of enoxaparin at 1800 on the day before surgery 

and 1.5 g of cefuroxime and 500 mg of metronidazole. Enhanced Recovery Programme 

based on the recommendations of enhanced recovery after surgery (ERAS) group (Fearon, 

et al., 2005) was standardized for all the patients undergoing elective surgical resections. 

Pneumoperitoneum was achieved using the standard Colchester technique with a blunt 5-

mm reusable trocar placed in the right flank, which accommodated a 5-mm 30º laparoscope 

(Motson, 1994). A 5-mm port was placed in the epigastrium just to the right of the midline 

and a further 10-mm port was placed in the right iliac fossa. Another 5-mm port was placed 

in the left flank for retraction and splenic flexure mobilisation. The 10-mm right iliac fossa 

port was exchanged later for 10/12 disposable port (Ethicon Endosurgery, UK) if the bowel 

was to be transacted using an Endoscopic stapling device. Dissection was performed using 

the Harmonic Scalpel (Ethicon Endosurgery, Cincinnati, OH). Before any dissection, the 

small intestine was displaced into the right upper abdomen by a combination of lateral tilt 

and reverse- Trendlenburg position. A medial to lateral dissection was performed 

commencing at the sacral promontory and continued in a cranial direction toward the origin 

of the inferior mesenteric artery, which was divided using Laparoclips (Covidien, Gosport, 
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UK). The left ureter was identified. Dissection proceeded along the fascia of Toldt to the 

lateral peritoneal attachments and cranially toward the spleen. The inferior mesenteric vein 

(IMV) was preserved until the lateral dissection was completed and then divided between 

laparoclips. Where necessary the splenic flexure was mobilized via an approach through the 

lesser sac above the pancreas with dissection continued laterally to join up with the previous 

lateral dissection. Laparoscopic TME was performed down to the pelvic floor. Autonomic 

nerves were identified and preserved. The rectal tube was transacted using a linear stapler 

cutter (Ethicon Endosurgery). The segment to be resected was extracted through a 5–6-cm 

vertical transumbilical incision with a wound protector in situ (3M Steri-DrapeTM Wound 

Edge Protector).  Postoperative adjuvant chemotherapy was administered to the patients 

based on the histopathological analysis of the resected specimens in the MDT meeting. 

Patients with involved lymph nodes or R+ resections received adjuvant chemotherapy after 

their recovery from the surgery.  

3.1.3 Follow up 
 
Patients were followed up postoperatively at 4-6 week for the detection of potential 

complications related to surgery such as wound healing and then every 3 months for the first 

year and then every 6 months for the detection of recurrent disease. Follow up included 

clinical examination, assessment of carcinoembryonic antigen, colonoscopy, and periodic 

radiological imaging by ultrasound study or CT/PET/MRI to detect local or distant 

recurrence. The follow up time interval was calculated from the date of diagnosis to death, 

last contact or date of conclusion of the study (21.03.2014 20:00 hours) whichever came 

first.  

3.1.4 Outcomes measured 

3.1.4.1 Survival end points 
 
Overall survival (OS), disease free survival (DFS) and relapse free survival (RFS) were 

measured as survival end points. The ultimate goal of cancer therapies has been to lengthen 
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the overall survival. Moreover up to 80% of recurrences occur within 2 years of curative 

surgical resection for colorectal cancers (Waldron and Donovan, 1987). DFS has been 

increasingly used as survival end point in colon cancer trials. 

3.1.4.2 Histopathological end points 
 
The histopathological information was retrieved from the pathology database at the 

Colchester general hospital. All the reports contained a standard data set of pathology 

results including the information regarding the CRM involvement, attainment of curative 

resection (R0) and pathological complete response according to rectal carcinoma guidelines 

of Royal College of Pathologists (Loughrey, Quirke and Shepherd, 2014). These early 

histopathological endpoints were selected for the analysis because of their prognostic 

importance.  R classification was used in this study to specify whether tumour was 

completely excised or not.  Based on its prognostic importance, the R classification was 

adopted both into TNM classification of malignant cancers and the American Joint 

Committee on Cancer (AJCC) Manual for staging of cancer (Wittekind, et al., 2009).  When a 

tumour was completely excised, it was classified as R0, that with residual microscopic 

disease at margins was classified as R1 and R2 included a tumour with macroscopic margin 

involvement. The presence of tumour at the resection margins greatly influences the 

outcome. Presence of residual tumour was associated with significant decrements in 5-year 

survival as demonstrated by Hermanek, et al. (1995) in their multicentre observation study of 

over 1100 patients of colorectal cancers ( R0 - 55% (95% CI: 52-58%) vs. R1 and R2 - 7% 

(95% CI: 3-11%). In addition to these traditional definitions of residual disease, an alternative 

criterion for the residual disease with respect to CRM in rectal cancer has evolved. Studies 

have shown that CRM is valid and reproducible early endpoint that predicts both local 

regional and distant failure (Glynne-Jones, et al., 2006). Involvement of CRM (lateral or 

radial margin) margin has been demonstrated to be a single most prognostic factor in 

predicting local recurrence in rectal carcinoma (Adam, et al., 1994). Involvement of CRM or 

CRM positive defined as minimal distance between tumour and CRM ≤ 1 mm is associated 
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with high local recurrence rate in 85% of cases compared to low risk of 3% in CRM negative 

tumour with a minimal distance between the tumour and CRM > 1 mm (Quirke, et al., 1986). 

In addition, positive CRM after neoadjuvant chemotherapy is also associated with poorer 3 

year-DFS rate of only 9% compared to 52% in CRM negative cases (Mawdsley, et al. 2005). 

A CRM of ≤ 1 mm was categorized as R1 resection in this thesis. Complete pathological 

response rate was defined as absence of viable tumour cells in a resected specimen (Smith, 

Waldron and Winter, et al., 2010) and has been shown to be a potential early surrogate 

endpoint for predicting DFS. A pooled analysis of 14 datasets comprising of total 3105 rectal 

cancer patients treated with chemoradiation and TME, demonstrated significantly improved 

disease-free and overall survivals for the patients with pathological complete response after 

chemoradiation (Mass, et al., 2010).  

3.1.4.3 Operative Complications 
 
Laparoscopic rectal surgery is considered to be a major undertaking due to confined space 

in pelvis, intimate anatomical relations of rectum and different nature of pathological tumour 

spread in both longitudinal and circumferential manner (Chand, et al., 2012). It gets more 

challenging after CRT due to distortion of tissue planes resulting from scarring and fibrosis in 

irradiated tissues (Motson, et al. 2011). As a result significantly higher complication rates are 

associated with rectal cancer surgery (Law, et al., 2007). In addition, development of 

postoperative complication adversely affects the long term oncological outcomes in terms of 

higher local recurrence and worse survival rates (Ptok, et al., 2007 and Law, et al., 2007).  

The study included in the thesis assessed the feasibility and quality of laparoscopic TME in 

locally advanced rectal cancer patients treated with neoadjuvant CRT in terms of R0 

resection of distal margin and CRM, local recurrence rate and number of lymph node 

harvested in the resection specimen. Postoperative complications were recorded and 

categorized into major (Grade III or above) and minor complications (grade I-II) based on 

Clavien-Dindo classification for surgical complications (Dindo, Demartines and Clavien, 2004 

Appendix - 1) to determine their influence on overall and disease free survival. This 
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classification system is the most widely used system worldwide to define and grade post-

operative complication because it is simple, reproducible and flexible (Clavien, et al., 2009). 

Postoperative mortality was defined as death occurring during the hospital stay or within 30 

days post-surgery (Clavien, et al., 2009).  

3.1.5 Data collection and ethical considerations 
 
Guidance on the ethical approval of this study was sought from the Colchester University 

Hospital Trust Research and Development department. It was advised that ethical approval 

of retrospective review of patient data was not required because of the historical nature of 

data (Appendix - 2). Instead, permission, guidance and advice were sought form the trust 

internal audit department to proceed with the study. NHS Data was accessed in line with the 

Trust policy respecting patient confidentiality and all the studies in the thesis were performed 

according to guidance of Helsinki Declaration as emended in Edinburgh Scotland in October 

2010 (Sierra, 2011). Medical data was collected anonymously so that patients could not be 

identified by assigning linkage numerical codes to the each patient. A list of consecutive 

patients undergoing CRT for the study period was retrieved from the radiation physics 

department based at Essex County hospital. All the patients in the list were assessed 

against the eligibility criteria by referring to their oncological and surgical record accessed 

through respective databases. Further information regarding MR images, details of 

operation, histopathological outcomes, postoperative complications and follow up was 

gathered by looking into patient‘s medical record and radiological PACS and pathology 

databases. 

3.1.6 Statistical analysis 
 
Survival analysis requires for each patient a well-defined point in time when the patient is 

observed, and there must also be a well-defined end-point when the observation ends 

(Bradburn et al., 2003). Censoring relates to subjects who form part of a cohort but who 

never sustain the event of interest (Flynn, et al., 2012). All Standard definitions based on the 
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consensus of an expert panel proposed by Punt, et al., (2007) were used in this thesis as 

follows.  All observations were censored at the dates of last follow-up of patient, end of the 

study or loss to follow up (section 3.1.3). Overall survival was defined as ―time from the date 

of diagnosis to death from any cause‖. Recurrence either local or distant and second primary 

cancer were not considered as events and ignored. Disease free survival was defined as 

―time from the date of diagnosis to any event, irrespective of the cause‖. Recurrence, second 

primary same or other cancer and death from any cause were considered as events. 

Relapse free survival was defined as ―time to any event except for second primary same or 

other cancers that were ignored‖. Local recurrence was defined as evidence of recurrent 

tumour mass within the pelvis or in the perineum after a surgical resection (Bujko, et al., 

2006). Recurrence anywhere else was considered as distant.  

 

Descriptive and inferential analyses were performed using the computer program R (R 

Development Core Team, 2013). Descriptive statistics included gender, age, time interval to 

surgery after neoadjuvant L long course CRT, type of operation, laparoscopic vs. open 

surgery, ypCRM involvement, complete pathological response, complete response 

(radiological or pathological), R resection, adjuvant chemotherapy, post-operative morbidity 

and mortality (both 30 and 60 day), recurrence and median follow-up. Continuous variables 

were expressed either as means with standard deviation (SD) or medians with interquartile 

range (IQR) based on their normal distribution. Survival analysis was performed based on 

binary outcomes relating to any event that may be absent or present as describe in the 

above paragraph. The simplest and most widely used survival technique i.e. Kaplan-Meier 

survival curve based on the probabilities of occurrence of event at a certain point of time was 

used to calculate the estimates of overall survival, DFS and relapse free survival (Goel, 

Khanna and Kishore, 2010). The Kaplan-Meier technique is limited as it cannot calculate the 

actual effect size or adjust for potential confounders affecting survival outcomes (Flynn, 

2012). Because of the retrospective and non-randomized nature of the study, it is prone to 

confounding variables that can limit the true estimate of survival times (Ho, et al., 2008). To 



86  
 

decrease this risk, a multivariate survival model, the Cox Proportional Hazard Model was 

used to estimate the effect of different covariates on all the three survival times. Covariates 

included were sex, age, time interval (weeks) to surgery after long course CRT, complete 

response minor and major complications, anastomotic leak, CRM involvement, lymph node 

involvement, ratio of lymph node involved, type of operation, adjuvant chemotherapy,  local 

and distal recurrence. The significance of these covariates in adversely affecting the survival 

outcomes has already been discussed in the above sections (1.8.1, 1.9.4.2, 1.9.5 and 1.10). 

Survival analysis was performed by R package survival (Therneau, 2013), R package 

prodlim (Thomas, 2013), and R package rms (Harrell Jr, 2013). For a Cox Proportional 

Hazards Model approach to the analysis, the relative hazard for any two subjects should be 

independent of time, which is the proportional hazards assumption (Bellera, at al., 2010). 

This has been checked by plotting the Schoenfeld residuals against time and testing the 

Pearson-product moment correlation between the residuals and time for each of the 

covariates. This was achieved using function cox.zph from the R package survival. The 

proportional hazards assumption was met, therefore data were not transformed. The output 

form the Cox model was Hazard ratio (HR) where HR >1 indicated increased risk of an event 

associated with that covariate and HR <1 indicated a reduced risk for that covariate. The 

associated 95% confidence intervals were calculated to indicate statistical uncertainty of HR 

estimate (where it crossed 1, this indicated that there was no statistically significant 

difference). 

 

Searches of Cox regression models for survival end points with time interval to surgery after 

neoadjuvant CRT were performed using the stepAIC function from the R package MASS 

(Venables and Ripley, 2002). This selected the covariates (lymph node involvement, time 

interval to surgery after long course CRT, major complications, CRM involvement and distal 

recurrence) using the Akaike Information Criterion (AIC). This allowed the subsequent 

comparison of the models with all the covariates and the selected covariates using the same 

data. The likelihood ratio test for comparing the models with selected covariates that include 
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and exclude time interval to surgery after long course CRT was also performed to determine 

whether the covariate ,time interval to surgery after long course CRT adjusted for selected 

covariates was statistically significant or not.  

3.2 Methodology for MRI Textural Analysis Study 
 
The role of MRI in staging and restaging after neoadjuvant CRT has already been discussed 

in sections 1.8.1 and 2.1.2 respectively. The trial by the Mercury group showed the tumour 

regression grade assessed by MRI post CRT correlates well with overall survival and DFS 

(Patel, et al., 2011). The main objective of this study was to determine whether textural 

features of rectal cancer on MRI can predict long term survival in patients treated with long 

course CRT. Texture analysis measures intra-tumour heterogeneity that has been shown to 

be associated with poorer prognosis secondary to intrinsic aggressive tumour biology or 

treatment resistance (Davnall, et al., 2012). From the data-set collected in the first thesis 

study, 56 consecutive patients during 01/2006 - 06/2011 time periods were selected to 

perform textural analysis. This time period was selected because of inconsistency of 

available imaging formats for the earlier patients and to achieve a minimum of a 3 year 

follow-up time period for all the patients. This enabled to calculate three year DFS that has 

been demonstrated as a valid surrogate for 5 year OS with coefficient of correlation >0.90 in 

a meta-analysis of 18 randomized trials involving 13000 patients with resectable colorectal 

cancer (Sargent, et al., 2005). 

3.2.1 MR protocols and acquisition parameters 
 
Clinical reassessment was performed twice-weekly from 4 weeks post completion of CRT 

with a second MRI scan, performed approximately 6–7 weeks after CRT completion to 

optimise the timing of surgery at maximal response. CT scans of the chest, abdomen, and 

pelvis were also repeated to exclude the development of distant metastases. Following a 

multidisciplinary meeting review, patients with no response or substantial down staging, a 

date for surgery was arranged. Those with partial response were further followed on and a 
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second MRI was performed 4 weeks after the first staging MRI, to assess if further response 

occurred. The scanner and acquisition parameters of MRI pose a technical challenge for 

clinical implementation of texture analysis as changes in these parameters lead to greater 

non-linear influence on signal intensity that could confound the texture analysis results 

(Davnall, et al. 2012).  In order to avoid this, the series of patients selected for this study had 

their MRIs performed with the same GE Sigma Genesis 1.5-T (software version 9.0) whole-

body system using a torso coil (phased array). All patients underwent the same imaging 

protocol without the intravenous contrast. The imaging protocol was based on the 

recommendations of 2012-consensus meeting of the European Society of Gastrointestinal 

and Abdominal Radiology in the clinical management of rectal cancer (Beets-Tan, et al., 

2012).  No bowel preparation or bowel relaxants were given. The imaging protocol included 

an initial localizing scan followed by a sagittal T2-weighted fast spin-echo (FSE) sequence 

scan to identify the primary tumour. Parameters for the sagittal T2-weighted FSE were 

recovery time (TR) 5020 and echo time (TE) of 89; field of view (FOV) 260mm; number of 

excitations (NEX) 4; and slice thickness/gap 4/1mm. An axial T2-weighted FSE sequence 

was used to image the whole pelvis from the iliac crest to the symphysis pubis to identify the 

pelvic side wall and nodal disease. Parameters for this axial sequence were TR/TE 3420/85; 

FOV 400mm; NEX 2; slice thickness/gap 5/1mm. An oblique axial T2 weighted FSE high-

resolution sequence was performed with slices positioned perpendicular to the long axis of 

the rectal tumour to enable accurate tumour staging. The parameters of this high-resolution 

axial sequence are TR/TE 5200/95; FOV 200mm NEX 6; slice thickness/gap, 3/0.3mm with 

the number of slices dependent on the tumour size. Finally, an oblique coronal T2 weighted 

FSE high resolution sequence was performed perpendicular to the oblique axial sequence. 

In the context of low rectal cancer, additional oblique acquisitions were angled to the long 

axis of the anal canal to show the relationship of the levator ani muscles to the tumour to 

demonstrate the potential resection margin. The parameters of this sequence are TR/TE, 

5000/93; FOV 200mm; NEX 6; slice thickness/gap 3/0.3mm with the number of slices 

dependent on the tumour size. All sequences used a matrix of 256/256. Acquisition times 
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were approximately 4.26 min for sagittal T2 weighted FSE; 3.26 min for axial T2 weighted 

FSE and 13.42 min for each of the high resolution series. 

3.2.2 Image Interpretation 
 
To limit intra-observer variations in interpretation, MRI scans were reviewed by two 

independent radiologists. Both the radiologists had more than 10 years‘ experience of 

gastrointestinal radiology reporting and were blinded to clinical outcomes to avoid 

measurement bias. The image interpretation was standardized and reporting was done 

according to a proforma formulated on the basis of validated and published criteria of the 

Mercury study group (Appendix – 3) (Patel, et al., 2011). The discrepancy in reporting was 

resolved by discussion and consensus when required. T staging of tumour at baseline and 

post treatment (ymrT) was based on interpretation of local extent of persistent tumour signal 

intensity relative to the layers of bowel wall on T2 weighted images (Patel, et al., 2011).  

Nodal stage baseline and post treatment was based on interpretation of lymph node size, 

morphology, border characteristics and signal intensity (Koh, et al., 2008). A node was 

regarded as positive if unequivocally larger than expected for a regional node, if the node 

was of abnormally rounded shape, if it had an irregular border or mixed signal intensity. 

Extramural vascular invasion was defined on MRI as intermediate signal intensity apparent 

within vessels with accompanying nodular expansion of the vessel or irregular vessel 

contour was recorded on baseline and post treatment MRI (Smith, et al., 2008). 

3.2.3 MRI tumour regression grading (mrTRG) 
 
Both the pathological and MRI based tumour regression grading were evaluated.  For 

pathological tumour regression, the grading system described by Dworak, Keilholz and 

Hoffmann for rectal cancer in 1997 was used.  This grading system was based on the 

amount of radiation induced fibrosis in relation to residual tumour and classified tumour 

regression into five grades shown in Table 3-1.  This grading system is widely used in rectal 

cancer (Rödel, et al., 2005). Fokas, et al., (2014) revisited and assessed the prognostic 
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significance of pTRG based on Dworak system for the 386 patients treated in the land mark 

trial by the German study group (Sauer, et al., 2004). They were able to demonstrate that 

TRG along with ypN status were the only independent prognostic factors in predicting 10-

year cumulative incidence of distant metastasis (p=.035) and DFS (p=.039). TRG based on 

similar principles of pathological TRG described by Dworak, Keilholz and Hoffmann (1997) 

has been validated and applied to MRI assessment of TRG by Patel, et al., (2011). Scans 

were reviewed to determine the degree of tumour replacement by fibrotic stroma. Table 3-2 

details the MRI tumour regression grading system.  

Table 3-1 Pathological tumour regression grading (Dworak, Keilholz and Hoffmann, 1997 

and Fokas, et al., 2014) 

Grade 0 No tumour regression 

Grade 1 Minimal regression (Predominantly tumour with fibrosis in less than 25% of 

tumour mass 

Grade 2 Moderate regression (Predominantly tumour with fibrosis in up to 50% of 

tumour mass 

Grade 3 Good regression (Predominantly fibrosis) 

Grade 4 Total regression (No viable tumour cells, only fibrotic mass) 

Table 3-2 MRI based tumour regression grading (Patel, et al., 2011) 

Grade 

1. 

Complete radiological 

response. 

No evidence of treated tumour. 

Grade 

2. 

Good response. Dense hypointense fibrosis. Minimal residual tumor. 

Grade 

3. 

Moderate response. >50% fibrosis/mucin and intermediate signal 

representing residual tumour. 

Grade 

4. 

Slight response. Minimal fibrosis/mucinous degeneration, mostly 

tumour. 

Grade 

5. 

No response. Tumour has same appearance as baseline. 
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3.2.4 MRI length analysis/mr RECIST 
 
Maximum tumour length was measured on sagittal images baseline and post treatment. 

Complete disappearance of tumour was defined as a complete response.  Partial response 

to treatment was defined as at least a 30% decrease in tumour length, taking as reference 

the baseline tumour length. Progression of disease was defined as at least a 20% increase 

in tumour length, stable disease was defined as neither sufficient shrinkage to qualify for 

partial response nor sufficient increase to qualify for progression of disease (Machida, et al. 

2008 and Therasse, et al., 2000). 

3.2.5 MR Textural Analysis (MRTA) 
 
MR images were retrieved from the radiology PACS system at the Colchester University 

hospital and burned onto encrypted discs in DICOM format. These discs were taken to the 

University College Hospital, London for the texture analysis.  There are different methods for 

performing texture analysis but statistical based methods already discussed in details in 

section 2.1.4 are most commonly used for the analysis of medical images (Holli, et al., 2010) 

and hence this method was used for this study as well. These methods also produce higher 

discrimination indexes than the other methods (Castellano, et al., 2004). Statistical based 

methods measure intra-tumour heterogeneity by evaluating grey level intensity and position 

of pixels within the image. First order statistical features derived from the histogram analysis 

of pixel intensities within the region of interest were evaluated. 

 

T2-weighted pre-treatment and 6-week post CRT MRI was used for MRTA. Regions of 

interest (ROIs) enclosing the largest cross-sectional area of rectal tumour area were 

manually delineated on the axial images. This was done under the supervision of a GI 

radiologist with 7 years‘ experience who was blinded to clinical outcome. The ROIs 

underwent textural analysis under the supervision of an imaging scientist with 9 years of 

experience in texture analysis using proprietary commercially available TexRAD research 

software (version 3.3, TexRAD Ltd www.texrad.com, part of Feedback Plc, Cambridge, 

http://www.texrad.com/
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UK)(Yip, et al. 2014).  MRTA comprised an image filtration-histogram approach where 

texture within the ROI was quantified following Laplacian of Gaussian (LoG) band-pass 

spatial scale filter (SSF) to highlight features ranging from 2mm (fine) to 6mm (coarse) in 

radius; 3mm-5mm in radius corresponds to medium-texture scales. Thus, band-pass image 

filtration was used to essentially extract and enhance image features of different sizes and 

intensity variation corresponding to fine, medium and coarse texture scales within the ROI 

delineating the rectal cancer. Histogram analysis comprised quantifying first-order statistics 

of mean grey level intensity, standard-deviation, and entropy, mean of positive pixels (MPP), 

kurtosis and skewness of the rectal ROI. An article by Miles, et al. 2013 has described the 

above parameters in detail (Table 3-3) and what these parameters mean in terms of image 

features i.e. reflect in varying degree - the number, intensity and variability of objects or 

features of high and low signal intensity in this study within the rectal cancer. These 

parameters have further shown to be associated with underlying histological features 

reflecting tumour heterogeneity such as solid cancerous tissue, necrosis, angiogenesis, 

hypoxia and fibrosis (Sieren, et al., 2011 and Ganeshan, et al., 2013), predicting response to 

neoadjuvant CRT (De Cecco, et al., 2015) and survival(Ng, et al., 2013 and Yip, et al. 2014) 

as a potential imaging biomarker. 

Table 3-3 Definitions of histogram parameters (Miles, et al., 2013) 

Parameter Definition 

Mean The average value of pixels within the region of interest 

Standard deviation 

(SD) 

Measurement of dispersion from the mean value. A low SD indicates 

homogeneity of an image. 

Skewness Asymmetry of histogram. A negative value indicates long tail on the left 

and a positive value indicates the tail on the right side is longer. 

Entropy Irregularity of gray-level distribution 

Kurtosis A measure of flatness of the histogram. A positive value indicates more 

peaked histogram than a normal distribution and a negative value 

indicates flatter histogram than a normal distribution. 
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3.2.6 Follow up 
 
Details of follow up are described in section 3.1.3. 

3.2.7 Data analysis 
 
Tumours were categorized into ―favourable‖ and ―unfavourable‖ responders to enable binary 

comparison by multivariate analysis. Based on known histopathological outcomes according 

to ypT stage, ―favourable‖ mrT and ymrT stages were defined as stages T0, T1, T2 and T3a 

with ―unfavourable‖ defined as mrT and ymrT stages T3b, T3c, T3d or T4. Stage T3a and T2 

tumours have similar outcomes and therefore classified as ―favourable‖ (Patel, et al., 2011). 

―Favourable‖ mrN, ymrN and ypN were defined as N0, while node positivity was 

unfavourable. ―Favourable‖ mrEMVI, ymrEMVI was defined as no EMVI, while presence of 

EMVI was unfavourable. Favourable MRI tumour regression grade was defined as grades 1, 

2 & 3 with unfavourable defined as stages 4 and 5. This binary division was chosen since 

Dworak pTRG 0-2 included patients with predominant tumour and minimal/no fibrosis 

whereas pTRG3-4 included patients with 50% or greater fibrotic stroma. Similarly favourable 

pTRG was defined as stages 2, 3 and 4 while unfavourable pTRG was defined as TRG 

stages 0 and 1. For length analysis partial response was categorised as favourable, while 

stable or progression of disease was unfavourable. 

3.2.8 Statistical analysis 
 
All Standard definitions of survival endpoints based on the consensus of an expert panel 

proposed by Punt, et al., (2007) were used  and has already been discussed and explained 

in section 3.1.6. Univariate Kaplan Meier survival analysis was employed to identify which 

texture parameter predicted survival outcomes (OS, DFS and RFS) which further involved to 

identify the best "optimal" cut-off (via an iterative process) at which the good and poor 

survival patient groups are best separated (lowest p value from Log-rank test which 

assesses the difference between the Kaplan-Meier curves) for each parameter. P value of 

less than .05 was considered to be significant difference. Due to small numbers, significant 
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textural parameters yielding less than 10 patients per group for comparison were not 

reported and hence censored (Weiss, et al., 2014). Multi-variate Cox regression analysis 

(Forward-Wald) was used to determine which of the significant univariate textural markers, 

clinical, histological and radiological parameters were significant independent predictors of 

outcomes. Analysis was performed separately for pre and post-treatment variables. 

Statistical analysis was performed using R software (version 2.14.2; R Foundation for 

Statistical Computing, Vienna, Austria) and SPSS (version 20).  

3.3 Methodology Integrated PET/MRI imaging biomarkers to predict 
histological tumour regression and 3 year DFS 

3.3.1 Patient selection 
 
This pilot study was a part of a wider tumour angiogenesis study investigating radiological-

pathological and prognostic correlation across various cancers initiated by Institute of 

nuclear medicine at University College London Hospital (UCLH). Institutional ethical 

approval was obtained for this prospective study from the ethical committee of ULCH and 

Research and Development departments of the hospitals in East London and Essex County. 

Research activities were carried out by taking into account of ethical principles laid down in 

the Declaration of Helsinki as international guidance for research involving human subjects 

(Sierra, 2011). Patients with non-metastatic operable locally advanced rectal cancer stage II 

and III eligible for long course CRT were included in the study. Pre-operative imaging was 

performed as part of a wider PET/CT PET/MR cross validation study. Exclusion criteria were 

as below:  

 Patients that are under 45. 

 Patients allergic to CT/MRI dyes (contrast mediums) 

 Patients that are unable to give informed consent 

 Patients with severe claustrophobia 

 Pregnancy 

 Severe uncontrolled Diabetes 
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 Renal impairment with estimated glomerular filtration rate < 50 ml/min/1.73m2 

 Contraindications of MRI such as cardiac pacemaker, metallic and cochlear implants 

 Patients not able  to undergo 2 scanning procedures 

Patients were identified from the multidisciplinary meetings held in the local hospitals of East 

London and Essex Counties. Patients were then contacted either by telephone or in person 

at the time of their outpatient appointments. Informed consent of the patients was taken by 

explaining and giving them an information leaflet (Appendix 4). Patients, who were willing to 

participate after fully understanding the patient information sheet, were consented by signing 

the paper consent form (Appendix 5). PET and MRI safety questionnaires were filled in to 

rule out contraindications to MRI (Appendix 6 and 7). Patients were then booked to go for 

the preoperative integrated PET/MRI scanning at nuclear department of university college 

hospital, London. 

3.3.2 Imaging protocol 

3.3.2.1 Instrumentation 
 
All scans were carried out on a fully integrated single gantry PET/MRI system (Siemens, 

Biograph mMR installed in 2012) in the Department of Nuclear Medicine at ULCH. MRI 

component comprised of state of the art 3-T magnet (63cm in length and 60cm in bore) and 

high performance whole body gradient system (159cm in length, 45mT/m and 200 T/m/s 

slew rate). The PET component setup between gradient and coils was equipped with 

compatible PET photodetectors (avalanche photodiodes) (Delso, et al., 2012). The 

transverse spatial resolution, sensitivity and axil FOV for the PET scanner was 4.3 at 1cm, 

15.0 kcps/MBq and 25.8 cm respectively (Drzezga, et al., 2012). 

3.3.2.2 Attenuation correction 
 
Several different approaches have been used for attenuation correction in PET/MR images 

(Wagenknecht, et al., 2013) but the details of all of them are beyond the scope of this thesis. 

Attenuation correction has traditionally been performed by either doing transmission scan in 
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PET-only scanners or by CT part of PET/CT scanners and has already been described in 

section 2.2.2 . These traditional approaches to attenuation correction are not possible in 

integrated PET/MRI system. MR image intensities are based on proton density and T1 and 

T2 relaxation mechanisms (described in section 2.1.1.2) and have no direct correlation with 

photon attenuation in regard to ionizing radiation in CT or PET images (Wagenknecht, et al., 

2013). For example, bone and air that cause highest and lowest attenuation in PET 

respectively do not contribute a MR signal (Hofmann, et al., 2008). The sequence-based 

attenuation correction approach was used in this study. Two-point Dixon fat- and water-

weighted images were used for the segmentation of whole body MR images into four tissue 

classes: soft tissue, fat, lung and background (Al-Nabhani, et al., 2014). Lung regions were 

segmented as air in the inner part of the body through connected component analysis that 

groups pixel in the image into components sharing similar intensity values. Misclassified 

voxels such as air artifacts in pelvis (because of absence of signals in cortical bone) and in 

blood vessels including heart and aorta (because of blood flow) were corrected by 

application of spatial morphological closing filter (Martinez-Möller, et al., 2009). One known 

limitation of Dixon based attenuation correction is absent signal within cortical bone. As a 

result of that, bone tissues was not attenuated and regarded as soft-tissue. This could 

underestimate the SUVs either in lesions within bone or close to it such as brain tumours 

(Samarin, et al., 2012). 

3.3.2.3 Workflow 
 
Imaging was performed as part of a wider PET/CT and PET/MR cross validation study. All 

the scans were performed according to a protocol based on the guidelines by the European 

Association of Nuclear Medicine (EANM) (Boellaard, et al., 2010). The protocol included 

initial patient preparation that aimed to lower tracer uptake in normal organs such as muscle, 

bladder, heart and kidneys while enhancing uptake in the tumour tissue and keep radiation 

exposure as low as possible. Patients were asked to fast at least 6 hours before the scan 

and venous blood sample was taken to measure blood glucose levels ensuring a value 



97  
 

below 150 mg/dl.  Patients were injected intravenously based on their body weight with F-

FDG and then rested quietly avoiding unnecessary movements for approximately 90 minutes 

to allow pharmaceutical uptake and avoid active muscles uptake (Schelbert, et al., 1998). 

After the uptake period, patients were urged to urinate to reduce bladder activity and then 

positioned in the scanner. All patients underwent whole-body PET/CT first and then 

transferred onto the 3T PETMR scanner as soon as was practical. The standard PET/MRI 

protocol used in the study is shown in Table 3-4. After the application of phased array 

surface coil,  MR sequence of approximately 20 seconds; coronal (2-point Dixon) 3-

dimensional volumetric interpolated breath-hold examination (VIBE), for attenuation-

correction purposes was acquired. This was followed by acquisition of diagnostic T2-

weighted MR Sequences; small field of view, axial non-angled, turbo spin echo sequence 

centred on the rectal tumour was acquired. DWI images were also acquired using 3 b-values 

of 0, 400, and 800.  ADC map was generated automatically from these on a pixel based 

basis. PET acquisition took place concomitantly and the PET data was reconstructed using 

ordered-subset expectation maximization with 21 subsets and 3 iterations and a Gaussian 

filter of 5 mm in full width at half maximum (pixel size 2mm; 2-mm slice thickness; 127 

slices). PET data was acquired simultaneously for 5 minutes. 

Table 3-4 Imaging protocols for integrated PET/MRI 

 T2- Turbo spin echo (TSE) Diffusion weighted imaging 

Repetition time (ms) 4560 14726 

Echo time (ms) 104 90 

Echo train length 25 1 

Section thickness 3 mm 5 

Interslice gap 3.6mm 5 

Field of view ~22cm ~32cm 

Matrix 384x384 224x256 

Fat suppression No Y 

Bandwidth (Hz/Px) 200 1698 

NEX 3 2 

b-values  0, 400, 800 
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3.3.2.4 Data analysis 
 
PET/MR images were analysed with a dedicated software workstation for display and 

interpretation of multimodality DICOM images (OsiriX MD v7.0) by a PET accredited 

radiologist with 4 years of experience in reporting oncological PETMR studies (Rosset, 

Spadola and Ratib, 2004). The observer was blinded to clinical outcomes of the patients. 

Tumour location and extent is confirmed by visual review of all the images acquired, and 

with fusion of the PET & MR dataset as required.  Quantitative analysis was performed by 

measuring the SUVs derived by attenuation corrected PET images using a 3D spherical 

volume of interest. Two types of standardized uptake values were measured for correlation 

with response to treatment; maximum SUV (SUVmax) and peak SUV (SUVpeak).  SUVmax 

reflected the highest metabolic activity of the tumour (highest image pixel) within the 3D ROI 

and is the most commonly used value in response assessment studies. However being a 

relatively single pixel ROI, SUVmax is subjected to image noise leading to inaccuracies in its 

measurement and is thus less reproducible (Boellaard, et al., 2004).  A more robust 

alternative measurement, SUVpeak has been proposed based on a circular volume of interest 

(1cm3) with centred on the hottest part of tumour (Wahl, et al. 2009). Because of its larger 

size, SUVpeak avoids the image noise seen with SUVmax. ADC measurements were obtained 

using the single axial slice on the ADC map with the largest cross-sectional tumour 

dimension and expressed as mean (ADCmean) and minimum (ADCmin) absolute values.  

Region of interest was drawn free-hand, carefully excluding areas of clear artefact as seen 

on the DWI images with high b value-800 (Schaarschmidt, et al., 2015)(Ippolito, et al., 2015). 

3.3.3 Neoadjuvant chemoradiotherapy 
 
All the patients included in the study have had long course CRT preoperatively delivered at 

their local hospitals. The CRT protocols differed slightly from one hospital to another as 

shown in Table 3-5.  
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Table 3-5 Long course chemoradiotherapy protocols 

Hospital Neoadjuvant radiotherapy 

(external beam) dose 

Concurrent chemotherapy 

agent 

Hospital 1 45 Gy in 25-27 fractions over 

5 weeks 

Capacitabine 

Hospital 2 50.5 Gy in 28 fractions over 

5 weeks 

Capacitabine 

Hospital 3 45–50.4 Gy in 25–28 

fractions over 5 weeks 

Tegafur–uracil (UFT) 

3.3.4 Surgical technique 
 
Total mesorectal excision was performed at the respective hospitals following neoadjuvant 

treatment and the choice of a surgical procedure in the form of either anterior resection or 

abdominoperineal resection was at surgeon‘s judgement but a suggestion by 

multidisciplinary team meeting was also taken into consideration.   

3.3.5 Follow-up 
 
Patients were followed up according to the local colorectal cancer surveillance protocols at 

their respective hospitals. The follow up time interval was calculated from the date of 

diagnosis to death, last contact or date of conclusion of the study (28.01.2016), whichever 

came first. The information regarding follow-up details including recurrences were gathered 

by carrying out physical visit to the respective hospitals and sitting together with the 

colorectal advanced nurse practitioners. With the help of the specialist nurses, information 

was retrieved from the local hospital cancer databases and MDT letters. 

3.3.6 Histopathological Assessment 
 
The histopathological information was retrieved from the respective institutional pathology 

databases. All the reports contained a standard data set of pathology results including the 

information regarding the CRM involvement. For the assessment of pathological tumour 

regression grades, lead consultants in the histopathology departments at respective 
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hospitals were contacted and requested to assess the tumour regression grades on the 

post-operative pathology specimens. Different classification systems are available to 

quantify tumour regression in rectal cancers but they are all based on a single reproducible 

parameter of the degree of tumour replacement by radiation induced fibrotic stroma (Thies 

and Langer, 2013). The classification systems used in this study differ between the patients 

because of the differential preference of the local histopathologists. Two systems were used 

in the study were Dworak (a five-tier system, TRG 0–4) (Dworak, Keilholz and Hoffmann, 

1997) and 4 tier system endorsed by Royal college of pathologists (TRG 1-4) (Loughrey, 

Quirke and Shepherd, 2014) (Table 3-6). In addition to a difference in the number of tiers, 

the Dworak grading system differed from the royal college of pathology because of the 

reverse order of its numerical scheme. For the statistical analysis, patients were divided into 

two groups of good and bad responders based on the tumour regression grades. Good 

responders were defined as Dworak TRG 3-4 and royal college of pathology TRG 1-2 while 

bad responders were defined as Dworak TRG 0-2 and royal college of pathology TRG 3-4.  

Table 3-6 Tumour regression systems 

Royal college of pathologist system Dworak system 

1. No viable tumour cells (fibrosis or 

mucus lakes only 

0. No regression 

2. Single cells or scattered small groups 

of cancer cells 

1. Predominantly tumour with fibrosis 

<25% of tumour mass 

3. Residual cancer outgrown by fibrosis 2. Fibrosis 25%-50% of tumour mass 

4. Minimal or no regression (extensive 

residual tumour). 

3. Fibrosis >50% of tumour mass 

 4. No vital tumour cells detectable 

3.3.7 Outcomes measured 
 
The primary outcome measured was pathological tumour regression as described in the 

above section and secondary outcome measured was DFS. Disease free survival was 

defined as ―time from the date of diagnosis to any event, irrespective of the cause‖. 
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Recurrence, second primary same or other cancer and death from any cause were 

considered as events (Punt, et al. 2007).  

3.3.8 Statistical analysis 
 
Descriptive analysis was performed initially.  Categorical variables were summarized and 

presented as frequency and percentages while mean ± SD were determined for continuous 

variables.  Continuous variables including PET and DWI parameters were tested for their 

normal distribution using Kolmogorov-Smirnov and Shapiro Wilks W tests (Ghasemi and 

Zahediasl, 2012). Both the tests indicated that the functional imaging parameters (SUVmax, 

SUVpeak, ADCmean and ADCmin) were normally distributed. Thus the parametric independent 

sample t test (Sedgwick, 2012) was used to compare the means of functional imaging 

parameters for the two groups of histopathological responders (good vs. bed). The potential 

correlations between the functional PET features (SUVmax, SUVpeak) and DWI features 

(ADCmean and ADCmin (reflection of highest tumour cellularity) was evaluated using Pearson‘s 

correlation coefficient (r) (Bewick, Cheek and Ball, 2003). Classification system by Salkin 

shows strength of correlation based on r values (r=0.8-1.0, very strong correlation; r=0.6-0.8, 

strong correlation; r=0.4-0.6, moderate correlation; r=0.2-0.4, weak correlation; r=o.o-2, no 

relationship (Grueneisen, et al., 2014). A p value was set at <0.05 to consider a significant 

difference. Univariate Kaplan-Meier survival analysis was employed to identify which clinical 

(age, sex), pre-treatment MRI (EMVI status and CRM involvement), histopathological (ypT 

stage, ypN stage, ypCRM involvement, ypEMVI status and pathological responders) and 

functional PET/MRI parameters (SUVmax, SUVpeak, ADCmean and ADCmin) predicted DFS. 

Tumours were categorized into ―favourable‖ and ―unfavourable‖ responders to enable binary 

comparison (Patel, et al., 2011).  Based on known outcomes according to ypT stage, 

favourable ypT stage was defined as stages T0-T2 with unfavourable defined as stages T3-

T4. Favourable mrN and ypN were defined as N0, while node positivity was unfavourable. 

―Favourable‖ mrEMVI, ypEMVI was defined as no EMVI, while presence of EMVI was 

unfavourable. "Optimised Kaplan- Meier" analysis was employed via an iterative process to 
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identify the best "optimal" cut-off at which the good and poor survival patient groups are best 

separated (best p value) for the PET (SUVmax, SUVpeak) and DWI (ADCmean, ADCmin) 

parameters. Differences between Kaplan-Meier curves were evaluated by using a log-rank 

test with a p value of less than .05 considered to indicate significant difference. Statistical 

analysis was performed using R software (version 2.14.2; R Foundation for Statistical 

Computing, Vienna, Austria) and SPSS (version 20). 
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4 Outcomes in a cohort of patients with 
delayed surgery after long course 
CRT 

In this chapter, outcomes for the patients with MRI defined poor risk histologically confirmed 

locally advanced rectal adenocarcinomas treated with neoadjuvant long course CRT 

followed by delayed surgery are described. The details of the eligibility criteria, treatment, 

methodology and follow-up are discussed in section 3.1. Data was collected on 

demographics, treatment regime, operative data, complications, mortality and overall, 

disease free and relapse free survival. There were 112 patients identified on the basis of 

eligibility criteria. The basic characteristics of patients are shown in Table 4-1.  

Table 4-1 Base line characteristics of patients (n=112) 

Male 

Female 

70 (63%) 

42 (37%) 

Age, median (IQR) 64 (58-71) 

Time interval (weeks) to surgery after long 

course chemo-radiotherapy, median (IQR) 

12 (10-14) 

Anterior resection 

APR 

Hartman‘s 

TEMS 

Found inoperable at surgery 

No surgery 

59 (52.6%) 

32 (28.5%) 

4 (3.5%) 

3 (2.6%) 

5 (4.4%) 

9 (8%)  (wait and watch- 4, disease 

progression-4, unfit for surgery-1) 

Laparoscopic TME 

Laparoscopic converted to open 

Open TME 

87 (84%) 

11 (12.6%) 

8 (8%) 

R1 or R2 resection 8 (8%, ypCRM involvement-7, distal margin 

involvement-1) 

Complete pathological response  19 (19%) 

Complete response (clinical, radiological and 

pathological) 

26 (23%) 
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Adjuvant chemotherapy 20 (20%) 

Major complications 

Minor complications 

33 (32%) 

13 (13%) 

Complications type 

Anastomotic leak 

Perineal wound infection 

Surgical site infection 

 

14/59 (24%) 

6/32 (19%) 

9 (9%) 

Postoperative mortality 

30 day 

60 day 

 

3 (3%) 

4 (4%) 

Local recurrence 

Distal recurrence 

11/102 (10%) 

25/102 (22%) 

Median follow up, months (IQR) 

Deaths recorded during follow up 

Median follow up for survivors ,months 

41 (27-61) 

43 (38%) 

56 (range, 19-100) 

4.1 Surgical outcomes 
 
The total number of patients treated with long course CRT with curative intent was 112. 

Different outcomes of the patients following CRT is shown in a flow diagram (Figure 4-1). 

Twelve patients did not have any surgery after CRT as a part of their initial management 

plan due to multiple reasons; 7 had complete clinical and radiological response and were 

treated with a wait and watch approach, 4 experienced disease progressions on repeat 

staging and one patient was deemed anesthetically unfit. The remaining 100 patients 

underwent planned surgery after neoadjuvant CRT. However 5 patients were found to be 

inoperable at the time of surgery either on laparotomy (n-3) or examination under 

anaesthesia (n-2). TME was carried out in 93 patients (laparoscopic-85, open=8). Two 

patients underwent TEMS. The median time interval to surgery was 12 weeks (IQR, 10 -14). 

Three further patients initially treated with wait and watch approach had to undergo local 

resection during the follow-up. One underwent TEMS on the basis of a suspicion of local 

recurrence but did not have recurrence. Two patients developed local recurrence after 20 

and 30 months respectively and underwent successful laparoscopic TME.  
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Figure 4-1 Flow diagram showing different outcomes of patients treated with 

neoadjuvant chemoradiotherapy 

Surgical morbidity is quoted for these three patients as well along with the 100 patients 

undergoing planned surgery (n-103). Anterior resection was carried out in 59 cases (53%) 

while 32 patients (29%) underwent APR. The 30-day post-operative mortality was 2.9% (3 

patients). This included one patient who had an anastomotic leak and died of multiple organ 

failure following re-operation; one patient who had a post-operative myocardial infarction and 

one patient who developed Adult Respiratory Distress Syndrome. An additional patient died 

within 60 days of primary surgery making the 60 day mortality rate 3.8%. This patient 

underwent laparotomy for small bowel obstruction and developed prolonged ileus and died 

of aspiration pneumonia. Major complications occurred in 32% of patients (33/103). These 

complications included those requiring interventions (surgical, radiological or endoscopic), 

life threatening complications requiring ITU support or death of patient. Minor complications 

occurred in 13% of patients. Surgical site infection (defined according to criteria of the 
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‗Centres for Disease Control and Prevention‘ (Horan, et al. 1992) occurred in 15 patients 

(14%), 8 patients with incisional wound infection and 7 patients with intra-abdominal 

collections. Two patients with intra-abdominal abscess underwent laparotomy and wash out, 

three had radiological drainage and the remainder were treated with antibiotics. The 

anastomotic leak rate was 24 % (14/59). Seven patients with an anastomotic leak underwent 

surgical intervention and 1 patient had CT guided drainage. Four patients were managed 

conservatively (two of these patients were found to have a small asymptomatic leak on water 

soluble enema prior to reversal of defunctioning ileostomy). Two patients with a leak had an 

examination under anaesthesia and drainage of abscess cavity through rectum/vagina. One 

of these patients developed chronic pelvis sepsis leading to fasciitis of gluteal tissues 

resulting in fasciotomy but developed further sepsis and died. In addition to the 7 patients 

with an anastomotic leak requiring surgical intervention a further seven patients had further 

surgery within 30 days: 3 laparotomies for small bowel obstruction secondary to adhesions, 

2 laparotomies and washouts for intra-abdominal collections, 1 haematoma and 1 wound 

dehiscence. The rate of perineal wound break down following abdominoperineal resection 

was 19% (6/32). Three patients developed rectovaginal fistula. Two were managed 

conservatively and one had a colostomy. 

4.2 Histological outcomes 
 
R0 resection was achieved in 92 % (90/98) of cases who underwent surgery with curative 

intent after long course CRT. Complete pathological response was seen in 19 such cases 

(19%).  

4.3 Recurrence 
 
Recurrence was calculated for the patients who either underwent a planned macroscopic 

complete resection (n-95) or patients with complete clinical response treated with a ‗wait and 

watch‘ approach (n=7).  The 10 patients that were excluded were; 5were inoperable at the 

time of surgery, 4 had disease progression on repeat staging and 1 was unfit for surgery. 

Overall recurrence was 31% (32/102). The local recurrence rate was 11% (11/102). The 5-
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year cumulative local recurrence rate was 16% (Figure 4-2). The majority of local 

recurrences occurred during the first two years and no patient experienced local recurrence 

after 42 months. Distant metastasis was observed in 25% of cases (n=25/102) 

4.4 Survival Outcomes 

4.4.1 Kaplan-Meier survival analysis 
 
A Kaplan-Meier overall, DFS and RFS survival time curves were estimated using data from 

112 patients (Figure 4-3, Figure 4-4and Figure 4-5. The median follow up time was 41 

months (IQR, 27 – 61) and the total number of deaths recorded was 43 (38.4%). The median 

follow up for the survivors was 56 months (range 19-100). The median OS and DFS were 94 

(95% CI: 59.8 to NA) and 60 (95% CI: 36.5 to NA) months respectively. The recurrence-free 

time curve did not fall to the level required to allow the estimation of the median time to 

recurrence, and so this and its confidence limits were not estimated. The incidence of 5 

year-OS, DFS and RFS was 58% (95% CI: 47 to 68), 49% (95% CI: 39 to 59) and 67% (95% 

CI: 59 to 78) respectively. All the survival curves flattened after 5 years indicating that the 

patients who survived to 5 years continued extended survival (Figures 4- 3, 4- 4 and 4- 5). 

 

Figure 4-2 Cumulative 

absolute local recurrence per 

cent rate as a function of time 

in months following surgery 
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Figure 4-3 Overall Survival: proportion of patients at follow up 

 

Figure 4-4 Disease free survival: proportion of patients at follow up 
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Figure 4-5 Recurrence free survival: proportion of patients at follow up 

4.5 Cox proportional univariate predictor model with the covariate, 
time interval to surgery after long course CRT 

 
There was complete case data for 97 of 112 cases for the survival analysis with the 

covariate, time interval as the only predictor. Fifteen were excluded because of different 

reasons (complete clinical response-7, disease progression-4, not fit for surgery-1, missing 

data-3).  A Cox proportional hazards model was used to analyze the 97 cases. From the 

likelihood ratio test the covariate, time interval to surgery after long course CRT was not 

statistically significant for either of OS (p= 0.813), DFS (p= 0.506) and RFS times (p= 0.619).  

The hazard ratios estimated on a Cox proportional hazards model with time interval to 

surgery as the only predictor were 1.011 (95% CI: 0.923 to 1.107), 1.027 (95% CI: 0.951 to 

1.109 p=0.499) and 1.024 (95% CI: 0.933 to 1.126 p=0.614) for OS, DFS and RFS 

respectively. 
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4.6 Cox proportional multivariate predictor models 
 
From 97 above patients, a further 8 were excluded (inoperable-5, missing data-3) when 

defining the complete-cases data set for the survival analysis with all the covariates; lymph 

node involvement, time interval to surgery post long course chemo-radiotherapy, gender, 

age at diagnosis, minor complications, major complications, anastomotic leak, CRM 

involvement, complete response (pathological and clinical response), total number of lymph 

nodes yielded in a specimen, ratio of lymph nodes involved, type of operation (anterior 

resection, APR, Other), adjuvant chemotherapy,  local and distal recurrence. The time 

interval to surgery did not correlate significantly with the survival outcomes on multivariate 

analysis as well (Table 4-2). The estimated hazard ratio for the time interval covariate, 

adjusted for all the other covariates, was 1.054 (95% CI: 0.914 to 1.215, p= 0.469), 1.090 

(95% CI: 0.968 to 1.227, p=0.167) and 1.131 (95% CI: 0.938 to 1.363, p=0.196) for OS, DFS 

and RFS respectively. Among all the covariates, it was not surprising to find that only distal 

recurrence was significantly associated with worse survival outcomes for all three 

parameters (p value <0.001). Male gender showed statistically significant worse correlation 

with both DFS (HR 3.374, 95% CI: 1.294 to 8.796, p value= 0.013) and RFS (HR 8.983, 95% 

CI: 1.604 to 50.308, p value=0.013) while CRM involvement predicted worse RFS (HR 

15.275, 95% CI: 1.702 to 137.052, p=0.015). On multivariate analysis, hazard ratio for the 

covariate ‗complete response‘ showed beneficial effect on OS (HR 0.701) and DFS (HR 

0.786) indicating that such patients were less likely to suffer an event at any given point in 

time but this relationship was not significant (Table 4-2).
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Table 4-2 Estimated hazard ratios for Overall Survival, DFS and RFS with classical 95% confidence limits, with all the covariates, 

using the complete-cases data set n=89 with all the covariates 

Predictor and 

category 

Reference 

category 

Overall Survival Disease free survival Recurrence free survival 

Hazard 

ratio 

95% confidence 

limits 

p-

value 

Hazard 

ratio 

95% 

confidence 

limits 

p-

value 

Hazard 

ratio 

95% confidence 

limits 

p-

value 

Lower Upper Lower Upper Lower Upper 

Nodes involved [Yes] [No] 3.169 0.503 19.962 0.219 3.438 0.527 22.443 0.197 0.349 0.030 4.096 0.402 

Time interval to 

surgery 

 1.054 0.914 1.215 0.469 1.090 0.968 1.227 0.157 1.131 0.938 1.363 0.196 

Sex [Male] [Female] 2.398 0.835 6.884 0.104 3.374 1.294 8.796 0.013 8.983 1.604 50.308 0.013 

Age  1.027 0.975 1.082 0.313 1.024 0.981 1.068 0.285 1.027 0.966 1.093 0.395 

Minor 

complications[Yes] 

[No] 1.035 0.274 3.913 0.960 1.236 0.364 4.200 0.734 0.607 0.112 3.289 0.562 

Major 

complications[Yes] 

[No] 2.162 0.642 7.278 0.213 1.990 0.731 5.421 0.178 0.868 0.121 6.243 0.888 

Anastomotic leak 

[Yes] 

[No] 0.910 0.236 3.516 0.891 0.927 0.279 3.080 0.901 1.159 0.163 8.257 0.883 

CRM involvement 

[Yes] 

[No] 3.297 0.591 18.409 0.174 3.264 0.681 15.648 0.139 15.275 1.702 137.052 0.015 

Complete 

pathological and 

clinical response 

[Positive] 

[No] 0.786 0.196 3.149 0.734 0.701 0.212 2.314 0.560 1.239 0.210 7.320 0.813 
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Total number of 

lymph nodes 

 0.966 0.858 1.087 0.563 0.972 0.859 1.099 0.647 1.144 0.941 1.391 0.177 

Ratio of lymph nodes   0.040 0.000 268.159 0.473 0.004 0.000 62.679 0.261 19.721 0.001 436563.903 0.559 

Type of operation 

[APR] 

[Other] 

 

[Ant] 

[Ant] 

 

0.169 

0.171 

 

0.015 

0.006 

 

1.974 

5.273 

 

0.156 

0.313 

 

0.938 

0.346 

 

0.095 

0.013 

 

9.273 

8.894 

 

0.956 

0.521 

 

0.577 

0.012 

 

0.041 

0.000 

 

8.111 

1.409 

 

0.683 

0.069 

Adjuvant 

chemotherapy [Yes] 

[No] 0.858 0.260 2.829 0.802 0.498 0.156 1.588 0.238 0.212 0.032 1.393 0.106 

Local [Yes] [No] 1.479 0.330 6.636 0.609 1.503 0.464 4.864 0.496 5.367 0.898 32.071 0.065 

Distal [Yes] [No] 4.798 1.925 11.956 0.001 14.639 5.730 37.401 0.001 270.349 38.619 1892.554 0.001 
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4.7 Discussion 
 
The main objective of the study was to determine the effect of delaying the surgery up to 12 

weeks and beyond on the short and long term outcomes in locally advanced rectal cancer 

patients treated with CRT.  The median time interval to surgery was 12 weeks. The surgical 

approach is this study was predominantly laparoscopic and up to 92% of TMEs were 

performed with this technique (Table 4-1). Laparoscopic surgery for locally advanced rectal 

cancer is complex and associated with considerable morbidity. Radiotherapy leading to 

tissue scarring and fibrosis make it more challenging to define tissue planes. More than 90% 

of patients had clear CRM in this series which is one of the most important prognostic factors 

in rectal cancer surgery as discussed in sections 1.8.1 and 2.1.3. Despite including patients 

with threatened CRM and cT4 lesions, the rate of clear CRM was almost similar to the 

reported results in COLOR II (93%) (van der Pas, et al., 2013) and COREAN trials (96%) 

(Kang, et al., 2010). Both these trials, as discussed in section 1.9.4.3, excluded patients with 

cT4 lesions and COLOR II trial also excluded the patients with threatened CRM. The rate of 

major complications (32%) in our series is in range of 25-37.6% reported in the other 

laparoscopic rectal cancer studies (Scheidbach, et al., 2002, Leroy, et al., 2004, Laurent, at 

al., 2007 and Lujan, et al., 2009). However the rate of anastomotic leak (24%) was higher 

than the reported rate of 6-17% in the aforementioned studies. This difference may be due to 

different population group as these studies also included patients with stage I cancers that 

did not require pre-operative CRT and excluded patients with T4 locally advanced rectal 

cancer. Male gender (17% vs. 8%, p=0.009), neoadjuvant radiotherapy (31% vs. 9%, 

p=value 0.005) and low anastomosis (24% vs. 4%, p <0.001) have been shown to be an 

independent risk factors for higher anastomotic leak rate in rectal cancer surgery 

(Matthiessen, et al., 2004). Morino, et al., (2003) analysed a consecutive series of 100 

patients who had laparoscopic TME in the form of anterior resection for low and mid-rectal 

tumours. The indications of TME also included adenomas (13%) in addition to rectal cancer. 

Only 38 patients have had neoadjuvant CRT before undergoing TME. They reported 
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conversion rate of 12%, overall morbidity of 36% and clinical anastomotic leak rate of 17%. 

However in the sub-group analysis, leak rate was even higher for the patients treated with 

neoadjuvant CRT (21%, 8/38) than the patients without neoadjuvant CRT (12.5%). The 

higher leak rate in this cohort could be due fact that all the patients and majority (90%, 

52/59) in the cohort have had neoadjuvant long course CRT and low anterior resection with 

defunctioning ileostomy respectively. Anastomotic leak rate has been mainly defined in the 

literature on the basis of clinical or symptomatic leaks ignoring those patients with subclinical 

or asymptomatic leak detected by contrast imaging in the absence of sign and symptoms 

(Matthiessen, et al., 2004).  Using the same criteria and excluding 2 patients in our series 

with radiological leak detected on contrast enema prior to reversal of stoma, it could be 

acceptable to conclude the rate of symptomatic leak of 20% in our series which is line with 

the published data for the high risk group included in this series. One of the criteria for 

measuring the feasibility of the procedure is unplanned conversion rates from laparoscopic 

to open surgery. In this cohort, the conversion rate was 12.6% which is within the range (0-

34%) of the most recent data in the meta-analysis comparing laparoscopic and open TMEs 

(Ohtani, et al., 2011). The conversion rates in the randomized COLOR II (van der Pas, et al., 

2013) and COREAN (kang, et al., 2010) trials were 17% and 1% respectively.  

 

The delay in the surgery did not lead to statistically worse survival outcomes. The hazard 

ratios for the time interval to surgery post CRT for OS, DFS and RFS were 1.011 (95% CI: 

0.923 to 1.107), 1.027 (95% CI: 0.951 to 1.109 p=0.499) and 1.024 (95% CI: 0.933 to 1.126 

p=0.614). The results indicate that with the help of serial MRIs, surgery can safely be 

delayed without compromising long term outcomes in selective patients who show partial 

response on initial repeat staging after CRT.  The patients with partial response were further 

followed on and a second MRI was performed 4 weeks after the first staging MRI, to assess 

if further response occurred. In addition, with this approach, patients who achieve complete 

clinical and radiological response could avoid radical surgical resection and potentially be 

treated with either minimal invasive local excision such as TEMS or using Habr-Gama‘s 
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―watch and wait‖ approach. In this study, 9% of cases (n- 9/112) were treated with either wait 

and watch approach with the patients‘ consent (n-7) or TEMS (n-2).  

 

The incidence of 5 year-OS, DFS and RFS in this study was 57%, 49% and 67% 

respectively which is lower than that reported in other series (Table 4-3). The landmark trial 

by Saur, et al., (2004) demonstrated 5-year overall survival and DFS rate of 76% and 68% 

respectively in the pre-operative group receiving chemo-radiotherapy followed by surgery 6 

weeks later . In the NSAB-03 trial, the 5-year OS and DFS were 74.5% and 64.7% 

respectively in the preoperative arm receiving chemo-radiotherapy (Roh, et al., 2009). In the 

trial by Park, et al., (2011), 5-year OS and DFS were 83% and 73% respectively. This 

discrepancy in the results among these randomized trials as well as between the current 

study could be attributed to differences in timing of surgery, definition of survival outcomes or 

adjuvant chemotherapy administration (Table 4-3). The definition of DFS in the German 

Cancer Study trial (Sauer, et al., 2004) matched our definition of RFS the incidence of which 

is similar to the results presented here. The time interval to surgery in these trials was up to 

8 weeks compared to median time interval of 12 weeks in this study. Though, this extended 

time interval did not impact on the survival outcomes but there is a theoretical concern that 

tumours with poor response to CRT could regrow and repopulate within the time interval to 

surgery as demonstrated by Tarnawski, et al., (2002) in head and neck cancers. But this 

factor may not have any major impact on the outcome of this study. Firstly there is no 

convincing evidence on the re-growth of either primary irradiated tumours or lymph nodes in 

10-12 week time interval for rectal cancer (Glimelius, 2014). Secondly, the patients with 

either no response or substantial down staging on the first staging MRI, were immediately 

operated and only the patients with partial response were further followed on with serial 

MRIs and clinically to assess if further response occurred. None of the other studies with few 

exceptions demonstrated any impact of time interval to surgery on survival. Long term 

results of the Lyon trial that randomized patients to have surgery either 2 weeks or 6-8 

weeks after radiotherapy did not show any survival difference between the two groups 



116  
 

(Glehen, et al., 2003). Contrary to this Supitot, et al., (2006) analyzed 102 patients with T 2–4, 

N 0-1, M0 rectal cancers that received preoperative RT in their institution and found that that 

an interval of more than 16 weeks between diagnosis and surgery correlated significantly 

with poorer OS (OR=2.59, p=0.005) and metastasis-free survival (OR=2.05, p=0.05) on 

univariate analysis but did not predict survival outcome on multivariate analysis. However in 

this study, radiotherapy without concurrent chemotherapy was given as neoadjuvant therapy 

whereas evidence suggests that neoadjuvant CRT is more effective than radiation treatment 

alone in achieving a better tumour response (Bosset, et al., 2006) which could overcome the 

prognostic importance of a long time interval to surgery after CRT. One noticeable difference 

as compared to the other studies shown in Table 5-3 was that only 20% of the patients 

received adjuvant chemotherapy in the thesis study. However, it was mandatory for all the 

patients in the neoadjuvant arm of the randomized trials. There is a limited data to support 

the advantage administering adjuvant chemotherapy in patients treated with neoadjuvant 

long course CRT. The evidence favoring this approach is primarily extrapolated from the 

proven benefit shown in the studies employing adjuvant radiotherapy in the management of 

locally advanced rectal cancer before the era of neoadjuvant combined modality treatment 

(Petersen, et al. 2012).  A meta-analysis of four trials randomizing rectal cancer patients 

treated with neoadjuvant CRT to adjuvant chemotherapy did not demonstrate improvement 

in overall survival (HR 0.97, 95% CI: 0.81 to 1.17), DFS (HR 0.91, 95% CI: 0.77 to 1.07) or 

distal recurrences (HR 0.94, 95% CI: 0.78 to 1.14) (Breugom, et al., 2015).  

 

The finding of a lack of detrimental effect of longer time interval on survival outcomes in this 

study is relevant form the point of view that by delaying surgery after CRT can lead to 

greater down staging due to time dependent response (Johnston, et al., 2009). Complete 

pathological response was seen in 19 patients (19%) and complete response (clinical and 

pathological) was seen in 26 patients (23%) in our study. This rate of pathological complete 

response is in keeping with that of a meta-analysis of 13 non-randomized and several 

retrospective studies comprising of 3584 patients (Petrelli, et al., 2016). This meta-analysis 
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demonstrated that pathological complete response increased from 14% in shorter interval 

group (< 8 weeks) to 20% in longer interval group (> 8 weeks) (RR 1.42 95% CI: 1.19–1.68, 

p< 0.0001). The attainment of higher rate of pathological complete response is an attractive 

end point because it has shown to be associated with improved survival in the pool analysis 

of several studies by Mass, et al., (2010). They demonstrated that the 5 year disease free 

survival was significantly higher for patients with pathological complete response than for the 

patients without pathological complete response (83.3% vs. 65.6% p <0.0001).The effect of 

pathological complete response on long-term outcome was not affected or modified by 

clinical T or N category, administration of adjuvant chemotherapy, distance from anal verge, 

or type of surgery. In this study the hazard ratio for the covariate, complete response was in 

the favour of OS (HR 0.701) and DFS (HR 0.786) indicating that such patients were less 

likely to suffer an event at any given point in time. However this relationship was not 

significant which could be due to small number of patients in this cohort.  

 

The only covariates which were associated with worse survival other than local or distant 

failures were male gender and pathological CRM.  On multivariate analysis, male gender 

was significantly associated with worse DFS and RFS (p=0.01) while CRM involvement was 

associated with RFS only (p=0.01) (). Survival disadvantage of male compared to female in 

colorectal cancer has also been observed in a large population based study where 5 year 

age adjusted survival was higher in women compared to men (64.5% vs. 61.9% p <0.0001) 

(Majek, et al., 2013). The prognostic importance of CRM involvement in rectal cancer was 

initially described in 1986 by Quirke; et al. and is associated with poor prognosis. In a 

prospective study by Adam, et al., (1994) local recurrences after a median 5-year follow 

up was significantly higher (78%) for patients who had tumour involvement of the CRM than 

for those without such involvement (10%).  

 

 

 



118  
 

Table 4-3 Outcomes comparison with other series for the patients with locally 

advanced rectal cancer treated with neoadjuvant long course chemo-radiotherapy 

followed by total mesorectal excision 

Outcome 

measures 

Colchester 

series (n-112) 

German rectal 

cancer study (n-

799) (Sauer, et 

al., 2004)  

NSABP trial R-03 

(n-254) (Roh, et 

al., 2009) 

Korean trial (n-

240) Park, et 

al., 2011) 

Neoadjuvant  

therapy 

45–50.4 Gy in 

25–28 fractions 

+ Tegafur uracil 

50 Gy/28 fractions 

+ fluorouracil 

45 Gy/25 fractions 

with a 5.40 Gy 

boost + fluorouracil 

and leucovorin 

50 Gy/25 

fractions + 

capecitabine 

Proportion of 

patients receiving 

adjuvant 

chemotherapy 

Selective (20%) Mandatory for all 

the patients 

Mandatory for all 

the patients 

Mandatory for all 

the patients 

Time interval to 

surgery 

12 weeks 6 weeks Within 8 weeks 4-6 weeks 

Length of follow up 42 months 

(range, 19-100 

months) 

45 months (range, 

5 to 101) 

8.4 years (range, 

10.9 months to 12.9 

years) 

52 months 

Post-operative 

complications 

32% 36% (p=0.68) 25% 16% 

Anastomotic leak 24% 11% Not stated 4% 

Complete 

pathological 

response 

19% 2% (p<0.001) 15% 18/105 (17%) 

5 year-OS 58% 76% (p=0.80, HR 

0.96, 95% CI, 

0.70 to 1.31) 

74.5% 83% (p=.620) 

5- year DFS 49% 68% (p=0.32, HR 

0.87, 95% CI 0.67 

to 1.14) 

64.7 (p=.011, HR 

0.629,  95% CI 

0.439  to 0.902) 

73% p=.865 

5-year RFS 67% Not stated Not stated Not stated 

5-year cumulative 

incidence of local 

recurrence 

16% 6% (p=0.006) 10.7% (p=.693, HR 

0.86, 95% CI 0.41 

to 1.81) 

5% (p=.392) 



119  
 

4.8 Conclusion 
 
This study clearly demonstrates that the delay in surgery after long course CRT does not 

lead to worse survival outcomes and achieves higher percentage of complete responder. But 

this did not translate into significant improvement in survival outcomes. Instead, distant 

failure was the single most significant factor that predicted worse OS, DFS and RFS. The 

incidence of short-term outcomes such as clear CRM and surgical morbidity in this high risk 

group was comparable to the series including low-high risk rectal cancer patients. This 

demonstrates the safety and feasibility of laparoscopic TME in locally advanced rectal 

cancer including patients with threatened CRM and T4 lesions. 
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5 MRI based texture parameters as 
potential imaging biomarkers for 
predicting long term survival in 
locally advanced rectal cancer 
patients 

In this study the role of MR based textual analysis as prognostic imaging biomarker and an 

independent predictor of survival in patients with locally advanced rectal cancer was 

investigated. The details of methodology including patient selection criteria are described in 

section 3.2. The brief description of the methodology is given as below. 

 

Consecutive patients with primary, non-metastatic, locally advanced rectal adenocarcinoma 

treated with long course CRT with curative intent from 01/2006 to 06/2011 in our institution 

were included. Textural analysis (TA) using a filtration-histogram technique of T2-weighted 

pre- and 6-week-post CRT MRI was undertaken using TexRAD, a proprietary software 

algorithm by manually delineating a region of interest around the largest tumour cross-

sectional area. The filtration-step extracted features at different anatomical scales (fine, 

medium, and coarse) followed by quantification of statistical features (mean intensity, 

standard-deviation, entropy, skewness, kurtosis and mean of positive pixels – MPP) using 

histogram analysis. Univariate Kaplan-Meier analysis was used to assess the ability of the 

textural biomarkers, clinically employed radiological and histological features (TN-staging, 

EMVI, CRM involvement, tumour height from anal verge, pathological complete response, 

TRG and response evaluation criteria in solid tumours [RECIST]) to predict overall survival 

(OS), disease-free survival (DFS) and recurrence-free survival (RFS). Cox-multiple 

regression analysis determined which univariate markers were independent predictors of 

survival. 
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5.1 Baseline characteristics 
 

Base line characteristics of patients are described in Table 5-1. The details of T-sub staging, 

nodal status, CRM involvement, EMVI status and TRG on pre and post treatment MRI scans 

are shown in Table 5-2. The study population consisted of 56 patients (34 male, 22 female) 

with median age of 64 ± 8.8. TME was carried out in 51 patients. Three patients were found 

to be inoperable at the time of surgery, one underwent TEMS and one patient has had 

disease progression on repeat staging. Complete pathological response (T0N0) was 

observed in 21% of patients (n-12). Overall recurrence was observed in 23% of patients (n-

13). The rate of distal and local recurrence (defined in section 3.1.6) was 20% and 5% 

respectively. The median follow up for the entire cohort was 47.2 ± 18.2 months (range 6-

87). Thirty six (36/50, 64%) patients were alive and censored when data was analysed. The 

median follow up for these 36 patients was 56±11.6 months (range 31-87). The mean overall 

survival was 65.7 months (95% CI, 57.9 -73.823) and 5 year cumulative survival time was 

64%. The mean DFS and 5 year cumulative DFS was similar i.e. 60 months (95% CI, 51.2-

69.219). The mean RFS time was 70.8 months (95% CI, 62.4 – 79.2). All the relapses 

occurred by 21 months at which time the cumulative survival time was 75%. 

Table 5-1 Base line Characteristics of Patients 

Gender 

Male 

Female 

 

34 (61%) 

22 

Age (median ± SD) 64±8.82 

Time interval to surgery after completing long 

course chemo-radiotherapy (median ± SD) 

weeks 

13±3.42 

Operation Type 

Anterior resection 

APR 

Hartmann‘s 

TEMS 

 

33 (59%) 

16 (28%) 

2 (4%) 

1 (2%) 



122  
 

Found inoperable at surgery 

No surgery (disease progression) 

3 (5%) 

1 (2%) 

Laparoscopic TME 

Open TME 

47 (84%) (4 converted to open) 

4 (7%) 

Height of tumour from anal verge( cm) 

>5 

<5 

 

39 (70%) 

14 (25%) 

ypCRM involvement 6 (11%) 

yp T stage 

T0 

T2 

T3 

T4 

 

14 (25%) 

14 (25%) 

20 (36%) 

4   (7%) 

yp N stage 

N0 

N1 

N2 

 

36 (64%) 

14 (25%) 

2 (4%) 

Complete pathological response T0N0 12 (21%) 

R0 resection 

Yes 

No 

 

46 (82%) 

6 (11%) 

yp tumour regression grade( 0-4) 

0 

1 

2 

3 

4 

NA 

Not documented 

 

3   (5%) 

12 (21%) 

10 (18%) 

1   (2%) 

14 (25%) 

4   (7%) 

12 (21%) 

yp tumour regression grade 

Good responders (TRG 2-4)  

Bad responders (TRG 0-1) 

 

25 (47%) 

15 (27%) 

Adjuvant Chemotherapy 

Yes 

No 

 

11 (20%) 

42 (75%) 
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Major post-operative complication  

Yes 

No 

 

17 (30%) 

35 (63%) 

Anastomotic leak 

Yes 

No 

 

6 (18%) 

27  

Overall Recurrence 13 (23%) 

Local Recurrence 3 (5%) 

Distal Recurrence 11 (19%) 

 

Table 5-2 Pre and Post treatment Magnetic resonance imaging parameters 

 Pre-treatment MRI Post-treatment  MRI 

T0 

T1 

T2 

T3a 

T3b 

T3c 

T3d 

T4 

 

 

4 (7%) 

3 (5%) 

11 (20%) 

12 (21%) 

10 (18%) 

14 (25%) 

3 (5%) 

2 (4%) 

7 (13%) 

1 (2%) 

13 (23%) 

14 (25%) 

5 (9%) 

9 (16%) 

N0 

N1 

N2 

14 (25%) 

24 (43%) 

16 (29%) 

40 (71%) 

12 (21%) 

0 

Circumferential resection margin (CRM) 

threatened 

31 (55%) 24 (43%) 

Median tumour height from anal verge (cm) 8.4 8.7 

Tumour regression grade (mrTRG 1-5) 

1 

2 

3 

4 

5 

  

6 (11%) 

17 (30%) 

13 (23%) 

16 (29%) 

2 (4%) 

Tumour regression (mrTRG) 

Good responders (1-3)  

Bad responders (4-5) 

  

36 (64%) 

18 (32%) 
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Complete responder T0N0  6 (11%) 

Extramural vascular invasion (EMVI) 

Yes 

No 

 

14 (25%) 

40 (71%) 

 

8 (14.2%) 

44 (79%) 

5.2 Survival Analysis 

5.2.1 Overall Survival 

5.2.1.1 Pre-treatment variables 
 

Pre-treatment MRTA was significant univariate markers of OS (best was MPP at fine texture-

scale, p=0.008, Table 5.3). Amongst other pre-treatment MRI characteristics, positive 

mrEMVI status (p=0.017, Table 5.4) and threatened mrCRM (p=0.036, table 5.4) were 

significant univariate markers. The clinical variable, major complication also predicted worse 

OS (p=0.002) but as this was post-operative rather than pre-treatment or post-treatment 

factor, so was not included in multivariate analysis. Using multi-variate analysis, the pre-

treatment textures (MPP at fine texture-scale, HR: 6.9, 95% CI: 2.43 – 19.55, p<0.001, mean 

at medium texture-scale, HR: 5.73, 95% CI: 1.62 – 20.21, p=0.007) and mrEMVI positive 

status (HR: 2.96, 95% CI: 1.04 – 8.37, p=0.041) were the only independent predictors of OS 

(Table 5.5, Figures 5.1-a, 5.1b and 5.1c respectively). 

5.2.1.2 Post-treatment variables 
 

Texture feature, skewness at fine texture-scale, was the only univariate marker of OS on 

post-treatment MRTA (p=0.034, Table 5.3). Positive ymrEMVI status (p=0.002, Table 5.4), 

threatened ymrCRM (p=0.027, Table 5.4) and poorer ymrTRG (p=0.002, Table 5.4) 

predicted worse OS. Among the histological variables, only ypCRM involvement (p=0.007, 

Table 5.4) predicted OS. On multivariate analysis, positive ymrEMVI status (Table 5.5, 

Figure 5.1-d) was the only independent predictor of OS (HR: 4.23, 95% CI: 1.41- 12.69, 

p=0.01) 
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5.2.2 Disease free survival 

5.2.2.1 Pre-treatment variables 
 

Similar to OS, pre-treatment MRTA was significant univariate markers for DFS. Best textural 

feature was mean at medium-texture (p= 0.007, Table 5.3 and Figure 4.2a). Amongst the 

other pre-treatment MR characteristics only threatened mrCRM was associated with poorer 

DFS (p=0.006, Table 5.4). On multivariate analysis, MPP at fine texture-scale (HR: 3.36 

95% CI: 1.36 – 8.31, p=0.008), mean at medium texture-scale (HR: 4.53, 95% CI: 1.58 – 

12.94, p=0.003), and threatened mrCRM (HR: 3.1, 95% CI: 1.01 – 9.46 p=0.046) were the 

only independent predictors of DFS (Table 5.5, Figures 5.2a, 5.2b and 5.2c respectively). 

5.2.2.2 Post-treatment variables 
 
Post-treatment MRTA was significant univariate markers of DFS (best was kurtosis at 

medium texture-scale, p=0.009, Table 5.3). Amongst other post-treatment MRI 

characteristics, positive mrEMVI status (p=0.017, Table 5.4), threatened mrCRM (p=0.019, 

Table 5.4) and mrTRG (p=0.02, Table 5.4) showed significant association with DFS. The 

only histopathological parameter showing association with DFS was pathological complete 

response (p=0.035, Table 5.4). On multivariate analysis, Kurtosis at medium texture-scale 

(HR: 3.97, 95% CI: 1.44 – 10.94, p=0.007) and ymrCRM involvement (HR: 3.36 95% CI: 

1.21 – 9.32, p=0.02) were the only independent predictors of DFS (Table 5.5, Figures 5.2d 

and 5.2e respectively). 

5.2.3 Relapse free survival 

5.2.3.1 Pre-treatment variables 
 

Similar to OS and DFS, pre-treatment MRTA was significant univariate markers for RFS as 

well (Table 5.3). Amongst the texture features best were standard deviation and entropy at 

coarse-textures (p=0.011) and MPP at fine and medium-textures (p=0.011). Amongst the 

pre-treatment MR characteristics, threatened mrCRM (p=0.016, Table 5.4) showed 
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significant association with worse RFS. Using multivariate analysis, texture parameters of 

MPP at fine texture-scale (HR: 8.90, 95% CI: 2.39 –33.13, p= 0.001) and kurtosis at medium 

texture-scale (HR: 7.78 95% CI: 2.08 - 29.05, p=0.002) were the only independent predictors 

of RFS (Table 5.5, Figures 5.3a and 5.3b respectively). 

5.2.3.2 Post-treatment variables 
 

Post-treatment MRTA was also a significant univariate markers of RFS (best was entropy at 

coarse-texture, p=0.002, Table 5.3). Amongst the histopathological parameters, ymrN-Stage 

(p=0.024, Table 5.4), ypCRM involvement (p=0.009, Table 5.4) and pathological complete 

response (p=0.034, Table 5.4) were significant predictors of RFS. On multivariate analysis, 

only texture parameters, entropy at coarse texture-scale (HR: 8.6, 95% CI: 1.89 – 39.86, 

p=0.005) and kurtosis without filtration (HR: 4.27, 95% CI: 1.40- 13.03, p=0.01) were the 

only independent predictors of RFS (Table 5.5, Figures 5.3c and 5.3d respectively).
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Table 5-3 MR Textual analysis-Significant parameters predicting OS, DFS, and RFS on univariate analysis 

Textural parameter Filter value Threshold value Number of patients above and below 

the threshold value 

Mean 

Survival 

95% Confidence 

interval 

P value 

Overall Survival: Significant pre-treatment texture parameters 

Mean 3 <-8.26000 Poor 27 45.42 38.49-52.35 0.03 

Good 29 72.87 62.53-83.21 

MPP 2 <63.73500 Poor 17 40.78 29.28-52.28 0.008 

Good 39 72.23 63.53-80.93 

3 <75.29500 Poor 19 43.51 32.54-54.48 0.029 

Good 37 71.63 62.70-80.56 

4 <82.32500 Poor 22 45.60 35.83-55.36 0.019 

Good 34 74.32 65.64-83 

Overall Survival: Significant post-treatment texture parameters 

Skewness 2 >0.33500 Poor 36 38.96 27.30-50.62 .034 

Good 18 65.71 55.09-76.33 

DFS: Significant pre-treatment texture parameters 

Mean 2 <-3.54000 Poor 25 39.20 30.63-47.76 0.031 

Good 31 68.61 57.38-79.85 

3 <-8.26000 Poor 27 38.24 30.14-46.34 0.007 

Good 29 71.31 60.04-82.59 

4 <-14.94500 Poor 27 39.49 31.24-47.74 0.027 



128  
 

Good 29 69.29 57.75-80.82 

6 <-37.01500 Poor 28 40.23 32.11-48.35 0.043 

Good 28 68.65 56.81-80.48 

MPP 2 <64.45000 Poor 18 37.14 25.38-48.91 0.022 

Good 38 66.87 56.66-77.09 

3 <75.29500 Poor 19 38.78 27.20-50.35 0.045 

Good 37 66.35 55.97-76.74 

4 <84.73000 Poor 24 40.32 30.20-50.44 0.022 

Good 32 69.74 59.17-80.31 

5 <93.57000 Poor 28 42.21 32.76-51.66 0.047 

Good 28 69.68 58.48-80.88 

6 <102.46000 Poor 28 42.21 32.76-51.66 0.047 

Good 28 69.68 58.48-80.88 

Skewness 2 <0.21000 Poor 28 42.35 33.22-51.48 0.044 

Good 28 69.28 57.78-80.78 

DFS: Significant post-treatment texture parameters 

MPP 2 >69.58500 Poor 37 43.04 34.91-51.17 0.032 

Good 17 74.01 61.17-86.86 

Skewness 2 >0.33500 Poor 18 38.96 27.30-50.62 0.034 

Good 36 65.71 55.09-76.33 

Kurtosis 3 <-0.11000 Poor 20 36.87 28.50-45.25 0.042 

Good 34 65.73 54.49-76.97 

4 <-0.42500 Poor 18 34.73 25.96-43.52 0.009 
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Good 36 67.04 56.34-77.75 

RFS: Significant pre-treatment texture parameters 

Mean 3 <-870000 Poor 26 43.44 35.13-51.75 0.0169 

Good 30 80.75 72.34-89.17 

4 <-14.94500 Poor 27 44.10 36.01-52.19 0.026 

Good 29 80.47 71.77-89.17 

Standard Deviation 0 <39.73000 Poor 21 47.36 35.99-58.73 0.032 

Good 35 77.69 68.85-86.54 

2 <137.50999 Poor 38 64.17 52.90-75.44 0.034 

Good 18 64.54 58.73-70.35 

4 <151.41000 Poor 28 50.57 39.79-61.35 0.018 

Good 28 80.71 72.28-89.14 

5 <164.86499 Poor 32 61.52 48.81-74.22 0.017 

Good 24 63.29 57.59-69 

6 <162.29000 Poor 31 50.88 40.70-61.07 0.011 

Good 25 82.72 74.92-90.52 

Entropy 0 <5.18500 Poor 33 52.67 43.14-62.19 .034 

 Good 23 81.74 72.66-90.82 

4 <6.33500 Poor 32 61.52 48.81-74.22 0.016 

 Good 24 63.29 57.59-69 

5 <6.34500 Poor 32 61.52 48.81-74.22 0.016 

 Good 24 63.29 57.59-69 

6 <6.34500 Poor 31 50.88 40.70-61.07 0.011 



130  
 

 Good 25 82.72 74.92-90.52 

MPP 2 <63.04500 Poor 16 42.82 29.42-56.22 0.011 

Good 40 77.33 69.02-85.63 

5 <118.22000 Poor 31 50.88 40.70-61.07 0.011 

Good 25 82.72 74.92-90.52 

6 <99.05000 Poor 27 47.93 38.13-57.73 0.019 

Good 29 80.56 71.95-89.16 

Skewness 2 <0.45500 Poor 38 50.89 42.91-58.87 0.037 

Good 18 84.08 75.48-92.68 

Kurtosis 4 <0.09500 Poor 17 40.17 30.92-49.43 0.047 

Good 39 76.45 67.56-85.34 

RFS: Significant post-treatment texture parameters 

Standard deviation 5 <128.57999 Poor 18 56.21 39.42-73 0.018 

Good 36 60.95 54.61-67.29 

6 <158.10500 Poor 30 61.13 48.31-73.95 0.021 

Good 24 63.53 57.38-69.69 

Entropy 3 <6.17500 Poor 28 61.62 48.32-74.92 0.042 

Good 26 61.85 55.13-68.56 

4 <6.18000 Poor 26 57.96 44.17-71.75 0.005 

Good 28 64.11 58.67-69.54 

5 <6.15000 Poor 25 56.73 42.60-70.87 0.003 

Good 29 64.27 59.03-69.50 

6 <6.1600 Poor 24 55.41 40.93-69.89 .002 
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Good 30 64.42 59.37-69.46 

Kurtosis 0 >0.75000 Poor 17 45.55 32.89-58.21 .034 

Good 37 76.17 67.11-85.23 
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Table 5-4 Clinical, MR and histopathological parameters significantly predicting OS, DFS an RFS on univariate analysis 

Parameters 
  

n= 
Mean OS 
(95% CI) 

p- 
value 

Mean DFS (95% 
C1) 

P-value Mean RFS(95% 
CI) 

P-value 

Clinical parameters 

Age 
 

<65 years  29 
50.76 (42.85-
58.66) 

.271 
46.32(37.08-
55.57) 

.444 
51.79(42.56-
61.02) 

.150 

≥65 years 27 
69.34 (58.06-
80.62) 

 
63.53(51.07-
75.98) 

 
77.14(66.89-
87.39) 

 

Sex 

Female 22 
52.45 (44.17-
60.72) 

.633 
47.14 (37.22-
57.06) 

.711 
52.06 (42.15-
61.97) 

.360 

Male 34 
65.72 (56.57-
77.59) 

 
61.76(50.18-
73.33) 

 74.29(64-84.58)  

Adjuvant 
chemotherapy 

Positive 11 55.95(42.76-69.14) .628 
52.41(36.44-
68.38) 

.948 
52.41(36.44-
68.38) 

.321 

Negative 42 69.17(60.34-77.99)  
62.72(52.64-
72.80) 

 
72.54(63.27-
81.81) 

 

Major 
complication 

Positive 17 39.96(30.67-49.24) .002 
35.76(25.72-
45.80) 

.007 
42.73(31.94-
53.52) 

.132 

Negative 35 77.41(70.06-84.76)  
71.35(61.53-
81.17) 

 
74.27(64.75-
83.8) 

 

Anastomotic leak 

Positive 6 49.92(34.96-64.88) .174 
47.60(28.82-
66.37) 

.280 
52.73(38.49-
66.98) 

.795 

Negative 27 74.87(65.04-84.69)  
70.18(58.41-
81.94) 

 72.40(61-83.79)  

Pre-treatment MRI parameters 

mrT Stage 
 

MrT1-T3a 7 
62.37(53.19-
71.553) 

.256 
54.10(38.48-
69.71) 

.493 
54.10(38.48-
69.71) 

.989 

mrT3b-T4 47 65.37(56.51-74.20)  
60.46(50.61-
70.31) 

 
70.66(61.44-
79.89) 

 

mrN stage 
 

mrN0 14 
54.388(43.34-
65.43) 

.799 
47.96(35.59-
60.33) 

.714 
55.67(43.89-
67.45) 

.895 

mrN1&2 40 66.66(57.35-75.97)  62.12(51.51-  69.93(59.97-  
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72.72) 79.90) 

mrEMVI status 
Positive 14 46.11(33.66-58.57) .017 

42.85(28.91-
56.79) 

.097 
51.55(36.84-
66.27) 

.221 

Negative 40 72.56(63.91-81.22)  
65.87(55.65-
76.08) 

 
73.49(64.16-
82.82) 

 

Height 
<5cm 14 46.81(37.95-55.67) .315 

41.58(30.61-
52.54) 

.226 
50.36(39.59-
61.13) 

.973 

≥5cm 39 66.96(58.78-75.14)  
65.19(54.75-
75.64) 

 
71.37(61.55-
81.18) 

 

mrCRM status 
 

Clear 23 77.56(67.68-87.44) .036 
76.93(66.50-
87.36) 

.006 
82.42(74.27-
90.58) 

.016 

 Threatened  31 
 52.18(43.85-
60.51) 

  
44.02(34.40-
53.65) 

 
51.41(41.38-
6.45) 

 

Post-treatment MRI parameters 

ymrT stage 
 

ymrT1-T3a 13 64.30(58.42-70.19) .056 
57.36(47.32-
67.40) 

.194 60.21(51-69.41) .306 

ymrT3b-T4 41 62.95(53.41-72.43)  
58.11(47.41-
68.81) 

 
67.89(57.50-
78.27) 

 

ymrN stage 
 

ymrN0 41 70.78(61.74-79.83) .171 
65.03(54.91-
75.15) 

.278 
75.42(66.56-
84.28) 

.024 

ymrN1&2 12 49.94(39.02-60.86)  
42.87(28.50-
57.24) 

 
42.87(28.50-
57.24) 

 

ymrEMVI status 
Positive 8 38.30(23.85-52.74) .002 

33.26(18.27-
48.25) 

.017 46(27.62-64.40) .236 

Negative 44 72.47(64.18-80.76)  
66.14(56.38-
75.90) 

 
73.22(64.28-
82.15) 

 

Height 
<5cm 13 48.39(39.29-57.49) .661 

42.72(31.06-
54.39) 

.445 49.50(38-61) .895 

≥5cm 38 66.97(57.31-76.63)  
62.97(52.24-
73.71) 

 
70.89(60.85-
80/93) 

 

ymrCRM status 
 

Clear 29 76.08(67.09-85.06) .027 
71.40(60.26-
82.54) 

.019 75.79(65.57-86) .141 
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Threatened 24 49.80(40.01-59.59)  
43.44(32.82-
54.07) 

 
52.72(41.54-
63.90) 

 

mrTRG status 
 

mrTRG1-3(Good 
responders) 

36 63.98(58.05-69.91) .002 
57.82(49.83-
65.81) 

.022 
61.55(54.06-
69.04) 

.205 

mrTRG 4-5 (Bad 
responders) 

18 50.31(35.86-64.76)  
47.08(31.51-
62.64) 

 
62.21(45.39-
79.04) 

 

mrRECIST tumour 
response 
 

Partial response 36 69.40(59.98-78.81) .319 
62.12(51.21-
73.03) 

.625 
71.96(61.83-
82.10) 

.417 

Stable disease 16 51.32(38.69-63.95)  
47.99(34.09-
61.90) 

 
53.99(40.50-
67.49) 

 

Histopathological parameters 

ypT stage 
 

ypT0-T2 13 64.30(58.42-70.19) .056 
57.36(47.32-
67.40) 

.194 60.21(51-69.41) .306 

ypT3-T4 41 62.92(53.41-72.43)  
58.11(47.41-
68.81) 

 
67.89(57.50-
78.27) 

 

ypN stage 
 

ypN0 36 73.02(64.21-81.82) .126 
67.67(57.31-
78.04) 

.142 
74.24(64.70-
83.78) 

.138 

ypN1-2 16 48.91(38.37-59.45)  
42.84(30.63-
55.04) 

 
47.10(34.62-
59.59) 

 

ypCRM 
involvement 
  

Clear 46 72.30(64.33-80.26) .007 
66.19(56.79-
75.58) 

.058 
73.92(65.33-
82.51) 

.009 

Threatened 6 35.15(23.16-47.14)  
30.61(16.21-
45.02) 

 
30.61(16.21-
45.02) 

 

Complete 
response 
(ypT0N0M0) 
 

Positive 12 82.45(70.91-93.98) .073 
82.45(70.91-
93.98) 

.035 
All cases 
censored 

.034 

Negative 40 56.23(49.43-63.02)  
49.43(41.18-
57.68) 

   

pTRG 

Good responder 
(pTRG 2-4) 

25 72.81(61.73-83.90) .934 
71.63(59.7-
83.55) 

.949 
82.22(73.74-
90.70) 

.159 

Bad responder(p0-
1) 

15 61.21(51.24-71.18)  
58.37(46.26-
70.48) 

 
58.37(46.26-
70.48) 

 

pTRG Complete 14 77.81(63.96-91.65) .354 77.81(63.96- .301 All cases .072 
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response (pTRG 
4) 

91.65) censored 

Incomplete or no 
response 

26 60.36(52.79-67.92)  
57.40(48.09-
66.72) 
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Table 5-5 Parameters significantly predicting OS, DFS and RFS on multivariate 

analysis 

Pre-treatment multivariate analysis 

Survival endpoints parameters p-value Hazard ratio 95% confidence interval 

OS Mean (SSF-3) 0.007 5.73 1.62 – 20.21 

MPP(SSF-2) <0.001 6.9 2.43 – 19.55 

mrEMVI status 0.041 2.96 1.04 – 8.37 

DFS Mean(SSF-3) 0.003 4.53 1.58 – 12.94 

MPP(SSF-2) 0.008 3.36 1.36 – 8.31 

mrCRM status 0.046 3.1 1.01 – 9.46 

RFS MPP(SSF-2) 0.001 8.90 2.39 – 33.13 

Kurtosis(SSF-4) 0.002 7.78 2.08 - 29.05 

Post-treatment multivariate analysis 

OS ymrEMVI status 0.01 4.23 1.41-12.69 

DFS Kurtosis(SSF-4) 0.007 3.97 1.44– 10.94 

ymrCRM status 0.02 3.36 1.21 – 9.32 

RFS Entropy(SSF-6) 0.005 8.6 1.89 – 39.86, 

Kurtosis(SSF-0) 0.01 4.27 1.40- 13.03 
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Figure 5-1 Kaplan-Meier curves show a significance difference in survival for (a) pre-

treatment mean positive pixel (MPP) at fine texture (b) pre-treatment mean at medium 

texture (c) mrEMVI status and (d) ymrEMVI status with their log- p values. 
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Figure 5-2 Kaplan-Meier curves show a significance in DFS for (a) pre-treatment mean 

positive pixel (MPP) at fine texture (b) pre-treatment mean at medium texture (c) 

mrCRM involvement 
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Figure 5- 2 Kaplan-Meier curves show a significance in DFS for (d) post-treatment 

kurtosis at medium texture (e) post-treatment ymrCRM involvement 
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Figure 5-3 Kaplan-Meier curves show a significance difference in recurrence free 

survival for (a) pre-treatment mean positive pixel at fine texture (b) pre-treatment 

kurtosis at medium-texture (c) post-treatment entropy at coarse-texture and (d) post-

treatment kurtosis without filtration 
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5.3 Discussion 
 

This is the first study to assess the prognostic significance of texture variables in addition to 

morphological MRI and pathology findings in rectal cancer undergoing chemo radiotherapy. 

The results of this study demonstrate the potential use of MRTA on T2w images to predict 

survival outcome.  On pre-treatment MRTA; lower MPP at fine-texture was the independent 

predictor for all three survival outcomes, negative and lower mean at medium-texture was 

independent predictor of OS and DFS and Kurtosis at medium-texture was independent 

predictor of RFS only. Intra-tumour heterogeneity has been attributed to various factors such 

as hypoxia, necrosis, angiogenesis and genetic variations (Nelson, et al., 2004 and 

Russnes, et al., 2011). Both hypoxia and necrosis reflect increase numbers of dark tumour 

regions which tend to give negative mean (Miles, et al., 2013). The negative mean 

correlating with worse outcomes in this study suggests highlighted dark areas of rectal 

tumours exceeding the number of hyperdense bright areas reflecting angiogenesis MPP 

considers only pixels greater than 0 and reduces the impact of dark areas on the mean 

histogram value. MPP has been correlated negatively with hypoxia in colorectal cancers 

exhibiting K-RAS mutations (Ganeshan, et al., 2012). Lower than threshold MPP values in 

predicting inferior outcomes are consistent with possibility of predominance of hypoxic areas 

in rectal cancer rather than angiogenic in this study. The role of hypoxia in rendering solid 

cancers resistant to radiotherapy and its strong association with cancer propagation and 

hence poorer survival outcome is well established (Hockel, et al., 1996). 

 

For RFS none of the variables other than texture features predicted worse RFS on both pre 

and post-treatment multivariate analysis. On pre-treatment analysis MPP along with lower 

kurtosis at medium texture and on post-treatment analysis lower entropy at coarse texture 

along with higher kurtosis without filtration were independent predictors. For DFS lower ‗-ve 

kurtosis‘ at medium texture along with ymrCRM involvement independently predicted DFS. 

Kurtosis is inversely related to the number tumour areas being highlight by filter irrespective 
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of whether the opposing areas are dark or bright but increases in the presence of greater 

intensity variations in highlighted areas (Miles, et al., 2013). Lower –ve kurtosis at medium 

texture would reflect highlighted areas of same attenuation at this texture scale such as 

hypoxia and necrosis. The finding of lower kurtosis at medium texture predicting poorer DFS 

and RFS on post-treatment MRTA may suggest more focal radiation induced inactive 

fibrosis which has previously been associated with inferior outcomes in lung cancers 

(Takahashi, et al., 2011). There is only one study in the literature that assessed the 

relationship of contrast enhanced CT texture features with OS in colorectal stage I-IV cancer 

(Ng, et al., 2013). In this study, it was demonstrated that texture features reflecting less 

heterogeneity were associated with poorer survival and the author attributed the findings to 

hypo-vascularity (Ng, et al., 2013). Somewhat similar findings in our study could be 

hypothesized to lack of vascular enhancement in these tumours. Heterogeneity at medium 

and coarse texture scale in colorectal cancer has been attributed largely to angiogenesis 

(Ganeshan, et al., 2012). Because MR-scans in this study were without contrast, less 

heterogeneity could be hypothesized to lack of vascular enhancement in these tumours. 

However, the diverse relations between textural features and survival outcomes in this study 

would reflect dissimilarities in the associations between angiogenesis and hypoxia among 

NSLC, CRC and rectal cancer alone. 

 

Pre- and post-treatment MR EMVI status was independent predictors of OS on multivariate 

analysis. These results matched with those of recent study in the literature by Chand, et al. 

2015. In this database patients with ymrEMVI-positivity had significantly worse DFS at 3 

years (42.7%) compared with ymrEMVI-negative tumours (79.8%). MRI CRM status at pre- 

and post CRT was noted to be significant on multivariate analysis for DFS, while mrTRG and 

ymrEMVI were also significant on univariate analysis. This is similar to previous datasets 

from Patel, et al., (2011) (where mrTRG was significant on multivariate analysis for OS and 

DFS) and Taylor, et al., (2014)(where involvement of CRM on preoperative MR-based 

staging was the only significant parameter that independently predicted OS, DFS, and LR on 
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multivariate analysis compared to AJCC-TNM based criteria). Significant univariate 

histopathological parameters such as ypCRM, pathological complete response and ypTRG 

fail to predict survival independently on multivariate analysis. This study suggests that high 

resolution pre- and post-treatment MR based assessment of CRM and EMVI status along 

with MRTA are superior and independent imaging markers for predicting survival than the 

standard TNM based criteria. 

5.4 Limitations of the study 
 

However results of this study should be interpreted in the context of the study design and 

limitations. There is lack of validated published histological correlates of tumour 

heterogeneity for different texture scales and for pre and post treatment analysis in rectal 

cancers. Thus our contemplated affiliations of texture features in this study are hypothetical 

and hence study is hypothesis generating rather than hypothesis confirming. The studies 

exploring the potential of TA in predicting survival outcomes for CRC has been carried out 

for CRCs rather that rectal cancer alone and all are CT based texture features. In addition 

this data is based on small population from a single centre. This is the first exploratory study 

with regards to MRTA in rectal cancer survival. Due to small number, using the same data to 

identify optimal cut off for each marker to divide the population into good and bad prognosis 

group could lead to overstatement of significant results. In terms of technical considerations, 

acquisition parameters with MRI can introduce higher signal intense variability as compared 

to CT or PET which in theory could affect reproducibly of the results. 

5.5 Conclusion 
 

Intra-tumour heterogeneity quantified as textural analysis on MRI may indirectly reflect 

tumour hypoxia and necrosis which are associated with treatment resistance and adverse 

outcomes. Morphological MRI evaluations as well as MR Textural analysis have a 

complementary role identifying locally advanced rectal cancer patients with poor prognosis. 
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Treatment for this group could be tailored with for example, more intensive individualized 

neoadjuvant treatment before undergoing surgery and administration of adjuvant 

chemotherapy. 
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6 Integrated PET/MRI imaging 
biomarkers to predict histological 
tumour regression and 3 year DFS 

The rationale for using neoadjuvant CRT in locally advanced rectal cancers is to induce 

tumour down staging. Histological assessment of down staging and regression has shown to 

be an independent prognostic factor in predicting long term survival in such patients (section 

1.9.5). As a result of that tumour response assessment has emerged as an attractive end 

point and is also important because this information can be used for treatment planning and 

carries prognostic significance. Though MRI based restaging could help to identify patients 

who achieve complete clinical response but its accuracy is limited due to therapy induced 

fibrosis, desmoplastic reaction, oedema, inflammation, and viable tumour nets at a fibrotic 

scar from a previous tumour (section 2.1.2). This has placed greater emphasis on pre-

operative imaging modalities to identity patients that could be predicted to have either worse 

or better tumour regression grades.  Pre-treatment values can be argued to more valuable if 

it could predict response to neoadjuvant therapy. It is more important to be able to predict 

who is going to respond to neo-adjuvant therapy rather than simply documenting change 

post therapy because whatever side effect or disadvantage neoadjuvant therapy carries, it 

would have already been inflicted by the time of post therapy scan. 

 

The potential of textural analysis on conventional MR images to predict survival was 

explored in the study discussed in the last chapter. Although various exploratory studies are 

present in the literature that investigated the role of functional MRI such as diffusion 

weighted imaging (DWI), PET, PET-CT and combining PET and MRI data in identifying 

responders to neoadjuvant treatment in rectal cancers but there is a lacking evidence on the 

role of integrated PET-MR in this area.  
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The main objective of this study was to investigate whether pre-treatment integrated PET-

MR functional features correlated with histological response in locally advanced rectal 

cancer treated with long course CRT. In addition, a potential correlation of PET and 

functional MRI features in the setting of integrated PET/MRI system was evaluated.  

Moreover, association of clinical, histological and functional imaging parameters with 

disease free survival was also evaluated for these patients.  The details of methodology 

including patient selection criteria are described in section 3.3. The brief description of the 

methodology is given as below. 

 

Patients with non-metastatic operable locally advanced rectal cancer stage II and III eligible 

for long course chemoradiotherapy were recruited from the hospitals in Essex and East 

London to undergo pre-treatment integrated PET/MRI scanning at nuclear department of 

university college hospital, London. Quantitative analysis of PET/MRI images was performed 

by measuring maximum SUV (SUVmax ) and peak SUV (SUVpeak ) reflecting  metabolic 

activity of the tumour and ADCmean  and ADCmin (reflection of tumour cellularity). Quantitative 

analysis was performed by measuring the SUVs derived by attenuation corrected PET 

images using a 3D spherical volume of interest. Region of interest was drawn free-hand, 

carefully excluding areas of clear artefact as seen on the DWI images with high b value-800 

to quantify ADC values (section 3.3.2.4).  For the statistical analysis, patients were divided 

into two groups of good and bad responders based on the tumour regression grades. 

Independent sample t test was used to compare the means of functional imaging parameters 

for the two groups of histopathological responders (good vs. bed). The potential correlations 

between the functional PET features (SUVmax, SUVpeak) and DWI features (ADCmean and 

ADCmin was evaluated using Pearson‘s correlation coefficient. Univariate Kaplan-Meier 

survival analysis was employed to identify which clinical (age, sex), pre-treatment MRI 

(EMVI status and CRM involvement), histopathological (ypT stage, ypN stage, ypCRM 

involvement, ypEMVI status and pathological responders) and functional PET/MRI 

parameters (SUVmax, SUVpeak, ADCmean and ADCmin) predicted DFS. 
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6.1 Results 
 

Baseline characteristics of patients are shown in Table 6-1. Total number of patients 

recruited for the study was 16 with 11 (69%) males. Median age of the patients was 62 

years. All the patients completed neoadjuvant CRT and underwent curative resection but two 

patients. One patient has had complete clinical response on restaging and was treated with 

wait and watch approach and the second patient has had disease progression after the 

neoadjuvant treatment and died before undergoing resection. Three patients (19%) had 

complete response (1-clinical response and 2- complete pathological response). In terms of 

pathological tumour regression, 11 (69%) patients were categorized as bad responder and 5 

patients (31%) as good responder in response to CRT. The rate of both local and distal 

recurrences was 19%. The patient who died before undergoing surgery was considered to 

have local recurrence. The median follow- up time period was 29 months (range 3-45). The 

overall 3-year DFS was 45% for the entire cohort. 

 

There was no significant statistical difference between the mean values of PET parameters 

(SUVmax and SUVpeak) and DWI parameters (ADCmax and ADCmin) across the two groups of 

good and bad pathological responders (Error! Reference source not found.).The average 

alues of SUVmax and SUVpeak were 13.73 vs. 19.2 (p=0.164) and 10.3 vs. 13.93 (p=0.161) in 

the two groups of responder vs. non-responder respectively. The average values of ADCmean 

and ADCmin were 1174mm²/s vs. 1055 mm²/s (p=0.346) and 743.6 mm²/s vs. 584.18 mm²/s 

(p=0.303) for the two groups respectively. 

 

The Pearson‘s correlation coefficients (r) between PET and DWI parameters for all the rectal 

cancers are shown in Table 6-3. The correlation between SUVmax/ADCmean was -

0.406(p=0.150), SUVmax/ADCmin, -0.312(p=0.278), SUVpeak/ADCmean, -0.280(p=0.331) 

and SUVpeak/ADCmin,-0.239(p=0.410) 
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On Univariate KM survival analysis, only ypN stage significant predicted worse 3-year DFS 

(P=.025). None of the PET/MRI parameters including SUVmax, SUVpeak, ADCmean and ADCmin 

could significantly predict DFS (p=0.069, p= 0.069, p=0.176 and p=0.06 respectively (Table 

6-4). 

Table 6-1 Base line characteristics of patients 

Total number of patients 16 

Gender 

Male 

Female 

 

11 (69%) 

5 (31%) 

Age median ± SD 62 ± 7.5 

Pathological tumour regression  

Good responder 

Bad responder 

 

5 (31%) 

11 (69%) 

Complete responder 3 (19%) 

CRM involvement on MRI 

Yes 

No 

 

8 (50%) 

8 

EMVI status on MRI 

Yes 

No 

 

11 (69%) 

5 (31%) 

ypT0-T2 stage 

ypT3-T4 stage 

7 (44%) 

8 (50%) 

ypN0 stage 

ypN1-2 stage 

6 (56%) 

9 (38%) 

ypCRM involvement 

Yes 

No 

 

2 (13%) 

13 (81%) 

ypEMVI status 

Yes 

No 

 

5 (31%) 

10 (63%) 

Local recurrence 

Distal recurrence 

3 (19%) 

3 (19%) 

Follow-up months median ± SD 

(range months) 

29 ± 10 

(3 – 45) 
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Table 6-2 Comparison of mean values for functional imaging parameters across the 

two groups of responder and non-responder to neoadjuvant treatment 

Variable Responders (Mean 

± SD) 

Non responders 

(Mean ± SD) 

P value 

(Independent T test) 

SUVmax 13.73 ± 4.16 19.2 ± 6.79 0.164 

SUVpeak 10.3 ± 3.46 13.93 ± 4.29 0.161 

ADCmean 1174 ± 360.78 1055.76 ± 137.197 0.346 

ADCmax 1707.8 ± 515.32 1760.36 ± 364.73 0.817 

ADCmin 743.6 ± 316.71 584.18 ± 77.93 0.303 

Table 6-3 Pearson’s correlation coefficients between PET and DWI parameters 

 ADC mean ADC max ADC min 

SUVmax  Pearson Correlation  -.406 -.316 -.312 

P value .150 .271 .278 

SUVpeak  Pearson Correlation -.280 -.216 -.239 

P value .331 .459 .410 
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Table 6-4 Clinical, histopathological and PET/MRI parameters predicting DFS on 

univariate analysis 

Parameters 

  
n= 

Mean DFS 

(95% CI) 

p- 

value 

Clinical Parameters 

Age 
<65 years  9 30.55 (23.33 – 37.77) .657 

≥65 years 7 35.91 (24.58 – 47.2)  

Sex 
   Male 11 37.88 (30.89 – 44.87) .363 

Female 5 26.7 (14.04- 39.35)  

Pre-treatment MRI parameters 

mrEMVI status Positive 11 33.24 (24.13 – 42.35) .663 

Negative 5 25.60(22.22 – 28.97)  

mrCRM status 

 

Clear 8 33 (22.01 – 43.98) .978 

 Threatened 8 29.5(22.83 – 36.16)   

Histopathological parameters 

ypT stage ypT0-T2 7 37.48 (28.55 – 46.41) .885 

ypT3-T4 8 32.62 (25.73 – 39.51)  

ypN stage ypN0 6 All cases censored .025 

ypN1-2 9   

ypCRM 

involvement 

  

Clear 13 36.08 (29.19 – 42.98) .464 

Threatened 2 22.5 (16.26 – 28.73)  

ypEMVI status 
Positive 5 30.80 (22.86 – 38.73) .759 

Negative 10 37.14 (29.58 – 44.70)  

pTRG 
Good responder  5 38.80 (27.93 – 49.66) .400 

Bad responder 11 29.54 (22.16 -36.92)  
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Functional imaging parameter 

 
Threshold 

value 

Number of 

patients 

above and 

below the 

threshold 

value 

Mean 

Survival 

95% 

Confidence 

interval 

P value 

SUVmax >17.21 
Poor 8 23.62 14.44-32.80 

.069 
Good 6 34 34 - 34 

SUVpeak >12.58 Poor 8 23.62 14.44 – 32.80 .069 

  Good 6 34 34  

ADCmean <1253.519 Poor 13 
All cases censored .76 

Good 3 

ADCmin >432.5 Poor 12 
All cases censored 

.06 

Good 4 

6.2 Discussion 

The main objective of this study was to assess the association with pathological tumour 

regression and pre-therapy functional imaging features derived from integrated PET/MRI 

scan. Though the results failed to prove any significant association but the mean values of 

pre-treatment rectal tumour mean ADC and minimum ADC were higher in the responder 

group than in the non-responder group. Pre-treatment ADC values have been investigated 

as a predictor of response to CRT in rectal cancers but there is conflicting evidence in this 

regard. The results in the thesis study are in keeping with those of the studies by Ha, et al. 

(2013) and Monguzzi, et al. (2013) where mean ADCs for rectal cancer before neoadjuvant 

CRT  were higher but not significantly in responders than non-responders (p=0.631 and 

p=0.276). However in both these studies, post-treatment ADC values were also evaluated 

and there was a significant difference between the two groups with significantly greater 

increase in post-treatment ADC values in tumours with favourable response. In a separate 

study by Elmi, et al. (2013), the  mean pre-treatment ADC value was marginally higher in 

significance in responders (p=0.035) compared to non-responders but conversely, Sun, et 
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al. (2010) in their study demonstrated that rectal tumours with lower pre ADCmean values are 

more like to undergo pathological  T down-staging after CRT (p=0.013). Comparison of per- 

and post-treatment ADC values along with relative change in predicting response to CRT in 

rectal cancer was done in the meta-analysis of 16 studies by Xie, et al. (2015). In predicting 

a good response, the post-treatment ADC value proved to have highest specificity (p<0.001) 

but there was no difference in sensitivity between the three values (p=0.380, 0.192 and 

0.214 respectively). For completer pathological response, post-treatment ADC value was 

shown to have the lowest sensitivity (p<0.001). In the thesis study, only pre-treatment ADC 

values were evaluated.  

Pre-treatment values can be argued to more valuable if it could predict response to 

neoadjuvant therapy. It is more important to be able to predict who is going to respond to 

neo-adjuvant therapy rather than simply documenting change post therapy because 

whatever side effect or disadvantage neoadjuvant therapy carries, it would have already 

been inflicted by the time of post therapy scan. Though the pre-treatment mean ADC values 

were higher in the responder group in the thesis study but these values are typically higher 

in poor responders (Xie, et al., 2015). Higher pre-treatment ADC values in non-responding 

tumours are hypothesized to be related to tumour necrosis and hypoxia which renders them 

resistant to chemoradiation (Koh, et al., 2007).  This difference could be due different 

underlying biology of rectal cancers in the thesis study such as more differentiated tumours 

associated with higher pre-treatment ADC values (Hayashida, et al., 2006) in the responder 

group.  Another possible explanation for the overlapping of ADC values may be variations in 

the quantitative measurements and image analysis. Due to conflicting evidence in the 

literature, validation studies to correlate tumour heterogeneity factors and DWI-parameters 

are required.  

Similar to ADC values, mean values of PET parameters (SUVmax and SUVpeak) were higher 

in the non-responder group but the difference was not statistically significant. This may well 
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be due to small number of patients in this pilot study which may also account for the non-

significance of values between the two groups. The patients in the study did not undergo 

repeat PET/MRI staging due to the nature, cost of the study and difficulty in getting the 

patients to travel again to central London after a stressful five week course of 

chemoradiation followed by restaging at their local hospitals. Though significant reduction in 

SUV values have been demonstrated in pathological responders in several studies (de 

Geus-Oei, et al. 2009) but other studies have shown conflicting evidence.  In the study by 

Perez, et al. (2014), a statistical significant correlation was found between low baseline 

SUVmax assessed on integrated PET/CT and complete pathological response (p=0.043) 

compared to SUVmax (p=0.23) at 6  and 12 weeks (0.15).  In a separate study by Martoni, et 

al. (2011), median baseline SUV was significantly higher in non-responding group. Both the 

post-treatment SUV and percentage change did not show statistical difference between the 

two groups. In addition, quantitative assessment of SUVs after the therapy could lead to bias 

because radiation itself could cause inflammation leading to FDG uptake. In the systematic 

review by Joye, et al. (2014), a pooled analysis of individual data of 14 studies on DWI and 

25 studies on FDG PET/CT was carried out. The results of the analysis were not 

encouraging enough to safely identify responders and non-responders. A low overall mean 

positive predictive value was observed for both functional imaging parameters in predicting 

pathological complete response (54% for DWI and 39% for FDG PET/CT). There are many 

limitations to aforementioned studies and reviews as most of the data is from the 

retrospective ultra-specialized single centre studies with small population groups as well as 

heterogeneity within the studies in terms of patient selection, neoadjuvant treatment, imaging 

protocols and analysis. In addition to these limitations the data on these studies in based on 

PET or PET/CT and MRI-DWI parameters. The thesis study was different from those in 

literature as the functional imaging parameters were measured on combined integrated 

PET/MRI system. CT component of PET carries an inherent risk of poor soft tissue 

resolutions in the absence of oral or intravenous contrast. Conversely MRI technique does 

not carry the risk of radiation and also produces high spatial resolution and contrast imaging. 
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Though the findings in the study lacked statistical power but the results of this study could 

theoretically be accurately correlating with intra-lesional characteristics due to integrated 

nature of PET and MRI systems.  

In addition to determining the potential of imaging parameters in predicting pathological 

tumour response, the potential of PET/MRI parameters along with known clinical, 

radiological and pathological variables in predicting 3-year DFS was also assessed. 

Because of prospective nature of the study, long term follow-up information was not 

possible. Three year-DFS has been demonstrated as a valid surrogate for 5 year OS with 

coefficient of correlation >0.90 in a meta-analysis of 18 randomized trials involving 13000 

patients with resectable colorectal cancer (Sargent, et al., 2005). The meta-analysis also 

revealed that most relapses occur within 2 years of surgery. The median follow-up for the 

thesis study was 29 months. Hence DFS was chosen as endpoint rather than OS. The only 

variable that predicted DFS among all the variable was ypN stage (p=0.25) (Table 6-4, 

Figure 6-1). Lymph node involvement is a biological predictor of survival for survival after 

surgery in rectal cancer treated with neoadjuvant radiotherapy (Chang, et al., 2009). The 

analysis of Surveillance, Epidemiology and End Results (SEER) US population based data 

had shown progressive decrease in survival for any T stage category with increasing lymph 

node involvement (Gunderson, et al. 2010). In the thesis study, the patients with no lymph 

node involvement (ypN0) were disease free until the conclusion of the study. Kaplan-Meier 

survival curves for the PET/MRI functional parameters SUVmax (Figure 6-2a), SUVpeak (Figure 

6-2b) and ADCmin (Figure 6-3) showed good separation between the good and bad survivor 

groups (p=0.06) but it was not significant difference. The patients with higher SUVmax, 

SUVpeak ADCmin and lower ADCmean values than cut-off had poor survival. 

 

 



155  
 

 

Figure 6-1 Kaplan-Meier curves show a significance difference in disease free survival 

(DFS) for ypN involvement
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Figure 6-2 Kaplan-Meier curves show a non-significance difference in disease free survival (DFS) for (a) SUVmax and (b) SUVpeak
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Figure 6-3 Kaplan-Meier curves show a non-significance difference in disease free survival (DFS) for (a) ADCmean and (b) ADCmin
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The evidence of prognostic significance of PET or DWI-MRI parameters in the literature is 

mainly limited to stage IV colorectal lesions with liver metastasis and there is a lack of 

specific evidence on the prognostic significance of these parameters specifically for rectal 

cancer. In a retrospective study of 163 patients by Jang, et al. (2012), median SUVmax values 

did not show prognostics significance for DFS (p=0.52) in resectable stage1-IV primary 

colorectal cancers. In the study by Tam, et al. (2013), ADC values of liver lesions did not 

predict either progression free survival or OS in patients with colorectal liver metastasis. In a 

separate study involving patients undergoing liver resection for colorectal metastasis, 

survival was significantly higher for patients with low SUVmax (p=0.0095 at cutoff of 10) on 

univariate analysis (Riedl, et al., 2007). In another study of patients with colorectal liver 

metastasis, pre-treatment higher than median SUVmax and lower ADCmean values of liver 

lesions were significant predictors of poor OS (Heijmen, et al., 2015). In the thesis study, 

only resectable stage III rectal cancers were included and instead of median values, 

Optimised Kaplan Meier" analysis was employed to determine the cut-off point using a 

minimal or best p-value approach (Weiss, et al., 2014). Patients with poor survival have had 

non-significant lower ADCmean values in the thesis study. A Lower ADCmean value has 

been shown to be significantly associated with aggressive tumour profile in rectal cancer 

such as poor histological tumour differentiation and presence of nodal disease (Curvo-

Semedo, et al., 2012). Both these features are associated with adverse outcomes in 

colorectal cancer (Nanni, et al., 2002). Another interesting but non-significant finding in 

thesis study was that patients with higher ADCmin values than the cut-off had poor survival. 

This finding is not consistent with that of previous studies involving central nervous system 

tumours. Lower pre-therapy ADC values had been demonstrated to be predictive of worse 

survival rates in contrast enhanced intracranial tumours such as lymphoma (Barajas, et al. 

2010) and glioblastoma (Yamasaki, et al., 2010). Low ADC values are associated with 

increased cell density and conversely areas with reduced cell density such as necrosis are 

associated with an increased ADC values (Herneth, Guccione and Bednarski, 2003). Higher 
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pre-ADCmin values in poor survivors in the thesis study could be hypothesized due to 

preponderance of necrotic areas in these tumours that has been shown to be an 

independent prognostic factor in colorectal cancer irrespective of pathological staging 

(Richards, et al., 2012). In the thesis study, rectal tumour ADC values were obtained using 

the single axial slice on the ADC map with the largest cross-sectional tumour dimension. The 

size of ROI can significantly influence the ADC values in rectal cancer. Variations in the 

reporting of ADC values could be due to the choice of method employed to mark ROIs such 

as whole tumour volume (Sun, et al., 2010), single tumour slice with the largest cross-

sectional diameter (Dzik-Jurasz, et al., 2002) or small sample of solid tumour (Kim, et al., 

2011). ROIs encompassing only solid tumour portion are likely to omit areas of necrosis 

leading to lower ADC values. In their study, Lambregts, et al., (2011), demonstrated that the 

significantly higher rectal tumour ADC values were obtained from ROIs involving the whole-

volume and single-slice than the small tumour sample ROI on pre-treatment MRI. In 

addition, there were no significant variations rectal tumour ADC values obtained either from 

whole tumour volume or single slice method. 

 In colorectal cancers, increasing tumour size and hence cellular density has been 

demonstrated to be associated with higher SUV values (p=.0004) (Gu, et al., 2006).  The 

tumour zones with minimum ADC value reflect the highest cellular and proliferative tumour 

zone (Lee, et al., 2011). Because SUVmax reflects the most metabolically active zone of 

tumour lesions, a potential correlation was investigated between the ADCmin and SUVmax as 

well as other between other functional parameters of PET and DWI-MRI parameters. The 

results indicated negative correlation between the ADC and SUV values but none of the 

results were significant. A significant negative correlation between SUV and ADC values 

have been demonstrated in previous studies involving rectal cancer (Khong, et al., 2011 and 

Er, et al., 2014) but in these studies the measurements were quantified on subsequent 

PET/CT and DWI-MRI scans performed after few days apart. In contrary to this, in the thesis 

study the datasets for both SUV and ADC were acquired at the same time on an integrated 
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PET/MRI scanning system, thus reducing the potential risk of artifacts due to misregistration 

and biological changes. A significant and negative correlation between the SUVmax and 

ADCmin was demonstrated in a study of 19 patients with primary cervical cancer on 

integrated PET/MRI scanning (r = −0.692, p<0.001) (Grueneisen, et al., 2014). The non-

significance of the results in the thesis study could be due to small sample size and due to 

heterogeneity in quantifications of ADC as compared to other studies. Because, ADC 

quantifications are potentially sensitive not only to choice of b-values and field strength 

(Malyarenko, et al., 2013) but measurements differ among different vendors and coil 

systems (Sasaki, et al., 2008).  

6.3 Limitations of the study 
 

The study is subject to many biases. Firstly, the study sample comprised of small number of 

patients that could have been the reason that no significance difference was present 

between the responders and non-responder in terms of functional imaging biomarkers. 

Patients were recruited from the different hospitals with slight variations in the regimens of 

long course CRT protocols. This could have resulted in differential tumour response to 

neoadjuvant treatment leading to selection and treatment biases. Grading system to quantify 

pathological tumour response also differed among the pathologists in these hospitals leading 

to measurement bias. Functional imaging parameters were measured by one experienced 

radiologist leading to potential intra-observer variations. The results of this study should also 

be interpreted in light of the fact that there is a lack of standardization protocols for image 

sequence acquisition, image registration and data analysis leading to apparent considerable 

differences in ADC values of similar cancer type. There is also a lack of validated 

histopathological correlates with functional imaging parameters especially on integrated 

PET/MRI platform. Randomized, multicentre prospective larger studies with longer follow-up 

are required to investigate prognostic significance of functional imaging parameters. 
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6.4  Conclusion 
 
To my best knowledge this was the first study that investigated the potential correlation of 

functional imaging parameters on integrated PET/MRI system with pathological tumour 

response and their impact on prognosis in non-metastatic resectable locally advanced rectal 

cancers. This study indicated that there was no statistical difference for pre-treatment ADC 

and SUV values measured on integrated PET/MRI between good and bad histological 

responder groups of rectal cancer patients treated with neoadjuvant CRT. In addition, both 

ADC and SUV did not predict survival and only nodal disease involvement predicted survival 

among all the clinical, radiological and pathological variables. 
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7 Conclusion of thesis and future 
directions 

7.1 Summary of findings in the first study on the cohort of patients 
with delayed surgery after long course CRT 

 

There is a lack of consensus on optimal management of timing of surgery after long course 

CRT for rectal cancers. Studies have shown that there is an on-going tumour response to 

CRT after the conventional 6 to 8 week window. On the other hand concerns have been 

raised that a longer time interval to surgery after CRT can make TME technically more 

difficult because of radiation induced pelvic fibrosis and may also be detrimental to patient 

survival as it may allow the tumour in situ to grow and spread. It is against this background 

that the first study in the thesis was carried out to determine the effect of delayed surgery 

after long course CRT in rectal cancer patients on patient outcomes specifically mortality, 

morbidity, local and distant recurrence of tumour. 

 

1. There is very limited evidence in the literature with intervals beyond 12 weeks, 

whereas majority of patients were operated beyond 12 weeks after finishing neo-

adjuvant treatment in this study. Nevertheless, the delay in surgery after long course 

CRT did not lead to worse survival outcomes. 

 

2. Delaying the surgery beyond 12 weeks demonstrated higher complete response 

(clinical and pathological) in this study but it did not translate into improved survival. 

 

3. In addition, through this study I was able to demonstrate the feasibility of the 

laparoscopic approach in the setting of delayed surgery after CRT in locally 

advanced rectal cancer patients. Based on the comparable results of operative 

morbidity and mortality in this study, it can be argued it is feasible and safe to use a 
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minimally invasive approach for surgical resection of rectal cancer following CRT in a 

specialist unit with structured training. 

 

4. On multivariate analysis, male gender independently predicted DFS and RFS, while 

threatened CRM independently predicted RFS. It was not surprizing to find out that 

distant failure was the only independent factor that predicted worse OS as well as 

DFS and RFS. 

7.2 Summary of findings in the 2nd study on prognostic potential of 
MRI based texture analysis as a potential imaging biomarkers for 
predicting long term survival in locally advanced rectal cancer 
patients 

 

The objectives of neoadjuvant therapy in locally advanced rectal cancer are to attain loco-

regional control, tumour regression, R0 resection and to increase overall survival. Though 

CRT followed by TME achieves most of these goals but it does not necessarily improve OS 

as demonstrated in the first study where distant failure rate was double the rate of local 

failure. This result is in agreement with the evidence in the literature. Furthermore, restaging 

of irradiated rectal tumours is challenging because of difficulty of morphological MRI in 

differentiating fibrosis from viable residual tumour.  In addition, a proportion of such patients 

would achieve complete clinical response and could benefit from either wait and watch 

approach or less invasive local excision surgery. This shifting paradigm has placed greater 

recent interest in quantification of imaging biomarkers linked to underlying intra-tumour 

heterogeneity associated with adverse outcomes in terms of treatment failure and drug 

resistance. With this background and based on the outcome of the first study, I carried out 

MR based textural analysis on a sub-set of entire cohort of pre and 6-week post-treatment 

images to correlate with survival outcomes.  
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1. This is the first study of its kind that clearly demonstrated the prognostic significance 

of texture features in addition to morphological MRI in rectal cancer undergoing CRT. 

For OS, MRTA along with mrEMVI were independent predictors pre-treatment 

analysis while on post-treatment analysis, the only independent predictor was 

mrEMVI. For DFS, both MRTA and mrCRM were the independent predictors on the 

both analyses. Interestingly, only MRTA was an independent predictor on both pre-

and post-treatment analysis for RFS. 

 

2. Another interesting fact is that none of the pathological parameters such as TN 

staging, ypCRM, tumour regression and pathological complete response stood out as 

independent predictors on multivariate analysis. This negative finding in the study 

strongly favours the argument that it is more important to find markers such as based 

on imaging that could predict prognosis rather than post-surgery because whatever 

morbidity or mortality that surgery carries, it would have already been inflicted.  

 

3. This study clearly signifies the potential importance of quantification of pre and post 

CRT imaging biomarkers derived from TA for rectal cancer patients before 

undergoing surgery. These markers along with established morphological MR 

features such as EMVI and CRM could prove to very valuable in selecting patients 

predicted to have worse survival outcomes for personalized treatment in the form of 

additional chemotherapy before undergoing definitive surgery.  

 

7.3 Summary of findings of the third study on Integrated PET/MRI 
imaging biomarkers to predict histological tumour regression  

 

Tumour response assessment is important because of its prognostic significance. Complete 

and partial responses are associated with significant increased survival with low local and 

distal recurrence rates (Mass, et al., 2010 and Martin, Heneghan and Winter, 2012). This 
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has placed greater emphasis on pre-operative imaging modalities to identity patients that 

could be predicted to have either worse or better tumour regression grades. This in turn 

could help to select patients for personalized treatment in the form of more intensive therapy 

in patients with predicted poor response. With this background the potential of integrated 

PET-MRI features to predict histological tumour response was investigated in the third study 

of thesis. There is limited evidence on integrated PET/MRI in oncologic applications and to 

the best of my knowledge it was the first study to investigate correlation of histological TRG 

with imaging features for rectal cancers on integrated system. 

 

1. No significant association was demonstrated between pre-treatment rectal tumour 

functional imaging parameters (ADC and SUV values) and tumour regression 

groups. 

 

2. Interestingly pre-treatment meanADC was higher in patients with good tumour 

regression grades but these values are typically higher in poor responders (Xie, et 

al., 2015).  

 

3. Higher pre-treatment ADC values in non-responding tumours are hypothesized to be 

related to tumour necrosis and hypoxia which renders them resistant to 

chemoradiation (Koh, et al., 2007). Conversely, more differentiated tumours are 

associated with higher pre-treatment ADC values (Hayashida, et al., 2006) and such 

tumours are more likely to respond to systemic treatment. In this study of 16 patients, 

all patients but one had good-moderately differentiated rectal cancer. 

 

4. Though the findings in the study lacked statistical power, the results of this study 

could theoretically be accurately correlating with intra-lesional characteristics due to 

integrated nature of PET and MRI systems. There is a less chance of potential for 
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errors in lesion co-registration especially for organs such as the bowel which may 

change location and shape over short periods with this technique. 

 

5. Because of the prospective nature of the study, only short-term follow-up of these 

patients was possible. The only variable that predicted 3-year DFS was ypN stage. 

Kaplan-Meier survival curves for the PET/MRI functional parameters SUVmax), 

SUVpeak, and ADCmin showed good separation between the good and bad survivor 

groups (p=0.06) but it was not a significant difference probably due to the small 

number of patients.  

7.4 Future directions 
 

The evidence available so far on delaying the surgery is based on retrospective studies 

including the study in this thesis using variable CRT protocols and time intervals. Though the 

delay of 12 weeks and beyond did not impact on the survival outcomes in this thesis and the 

surgical morbidity was comparable to the evidence in the literature but prospective 

randomized control trials are needed to develop a consensus on optimal timing of surgery in 

the delayed setting. An on-going phase II multicentre randomized 6 vs. 12 trial launched by 

Royal Marsden NHS Foundation Trust (www.clinicaltrials.gov/show/NCT01037049) was 

started in 2009 to determine the primary end point whether greater tumour regression is 

observed when surgery is delayed to 12 weeks. Secondary outcome measures are surgical 

morbidity and 5-year local and distal recurrence rates. Another similar French trial 

(GRECCAR6) is in progress randomizing patients between 7 and 11 weeks 

(www.clinicaltrials.gov/show/NCT01648894). The results of these trials will help in 

determining the optimal time interval to operate at maximal response time.  

 

Textural analysis and functional PET and MRI parameters are evolving as a potential 

imaging biomarker in cancer imaging in the last decades or so. The observed correlations 
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between survival and texture analysis in the study should be confirmed in prospective 

studies comprising of large number of representative populations. An extensive analysis is 

required to assess the combined effectiveness of textural parameters, DWI and PET 

features in predicting tumour response and prognosis. In addition there is a lack of validated 

published histological correlates of tumour heterogeneity and functional imaging parameters 

especially on integrated PET/MRI platform for colorectal cancers and especially rectal 

cancers. Moreover, there is a lack of standardization protocols for image sequence 

acquisition, image registration and data analysis leading to apparent considerable 

differences in SUV and ADC values of similar cancer types. Hence, randomized, multicentre 

prospective larger studies with longer follow-up are required to investigate prognostic 

significance of functional imaging parameters. 
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Appendices 

Appendix 1 Clavien-Dindo Classification of surgical complications. Adopted from 
Clavien, et al., (2009). The Clavien-Dindo classification of surgical complications: five-year 
experience. Annals of Surgery. 2009, 250 (2):187-96 

Grade Definition 

Grade  I Any deviation from the normal course without the need for pharmacological 
treatment or surgical, endoscopic and radiologic interventions 
Allowed therapeutic regimens are: drugs as antiemetic, antipyretics, 
analgesics, diuretics, electrolytes and physiotherapy. This grade also 
includes wound infections opened at the bedside  

Grade  II Requiring pharmacological treatment with drugs other than such allowed for 
grade I complications 
Blood transfusions and total parenteral nutrition are also included 

Grade  III Requiring surgical, endoscopic or radiological intervention 

 III a Intervention not under general anaesthesia 

 III b Intervention under general anesthesia 

Grade  IV Life-threatening complication (including CNS complications)* requiring 
IC/ICU management 

 IV a Single organ dysfunction (including dialysis) 

 IV b Multiorgan dysfunction 

Grade  V  Death of a patient 

*Brain haemorrhage, ischemic stroke, subarachnoid bleeding, but excluding transient ischemic 

attacks. 

CNS, central nervous system; IC, intermediate care; ICU, intensive care unit. 
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Appendix 2 Ethical approval letter 
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Appendix 3  MRI report proforma 

Patient study Number 
Reader 1 2 

 Initial MRI MRI 6 weeks MIR 12 weeks if 
applicable 

Date of scan    

T stage 
Subgroup  
 

   

N stage N0 N1 N2 N0 N1 N2 N0 N1 N2 

Distance to tumour 
to anal margin mm 

   

CRM status 
 

YES/NO YES/NO YES/NO 

Tumour regression 
grade 1-5 

 1   2   3   4   5 1   2   3   4   5 

Length of tumour 
RECIST mm 

   

EMVI YES/NO YES/NO YES/NO 

 

Progression: Yes No 

Standard for reporting T-Stage Subgroups: 
T3a ≤ 1 mm extramural spread beyond the muscularis propria 
T3b - 1 to 5 mm beyond 
T3c > than 5 mm and ≤ 15 mm beyond 
T3d > than 15 mm beyond. 
T4a -  invasion of organs/muscles i.e. sphincters, levators, bladder 
T4b -  invasion of peritoneum 
 
MR Tumour regression grade-Criteria  
TRG-1  absence of any tumour signal 
TRG-2  Small amounts of residual tumour visible but with a predominant fibrotic low 
signal intensity 
TRG-3  Mixed areas of low signal fibrosis and intermediate signal intensity present 
but without predominance of tumour. 
TRG-4  Predominantly tumour signal intensity remains with minimal fibrotic low signal 
intensity  
TRG-5  No fibrosis evident, tumour signal visible only 
 
Good responders: TRG 1-3  
Poor  responders: TRG 4-5 
 
Nodal stage criterion  
Nodal stage post treatment based on interpretation of lymph node border characteristics and 
signal intensity. A node was regarded as positive if either an irregular border or mixed signal 
intensity was demonstrated 
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Appendix 4 Patient information sheet 

 

You are invited to participate in this study, which is looking to examine blood vessels in 
tumours. It is purely voluntary to participate in the study and if you do not wish to be involved 
your treatment will not be disadvantaged in any way. Please take your time to decide.  
1. What is the purpose of the study? - To investigate the use of PET/CT and PET/MR to 
determine blood vessels in cancers  
2. Why have I been chosen? - During this period of time, patients with types of lung, breast, 
colorectal, oesophageal, brain, bone, head and neck, thyroid, hepatocellular, urologenital 
cancers, and lymphoma are being asked to volunteer.  
3. Who is organising the Study? - Lister/QEII Hospitals and University College Hospitals.  
4. What will happen to me if I take part? - You will have a PET/CT (see below) scan and a 
PET/MR scan . Immediately after the PET/CT scan we will perform a short extra scan of 
your tumour.  
5. What do I have to do? - You will undergo a PET/CT and PET MRI scan (see below).  
For many cancer patients this is not research but standard routine medical care. In others 
the role of PET/CT scanners is unclear. We will make it clear to you whether your PET/CT 
scan is research or routine.  
Before you have the PET CT scan you will need to fast 6 hours (you can drink water). 45 
minutes before the scan we put a cannula (a small plastic tube) into a vein in your arm. The 
cannula will be used to give you the injection of the radioactive sugar called FDG, and we 
may need to take some samples of blood during your scan. This will be about 2 tablespoons 
of blood.  
You will need to lie still in order for the radioactive sugar to make its way around your body.  
You will then need to lie still on the scanning table for about 45 minutes whilst we perform a 
whole body scan. At the end of your PET/CT scan you will need to wait a further 5 to 10 
minutes on the table whilst we perform the additional scan (CT), which is for research only. 
For this, we will give you a small injection (you will not need an additional needle, as you will 
have had a cannula/drip already in place for your PET/CT scan) of CT dye in to your blood at 
this time. This may make you feel warm. We will also take a small blood samples from a vein 
with a small needle.  
You will then have a PET MR scan. You will need to lie still on the scanning table for 45 
minutes for this scan. The entire procedure will take about 4 hours.n Any unused blood 
samples will be stored in secured freezers (Biochemical Medicine department, 1st floor, 
Whitfield Street Laboratories or other suitable equivalent facilities) and may be used for 
future research, provided that any such research has been granted ethical approval  We 
would like all patients to undergo a PET MRI scan. PET MRI scans are a combination of 
PET and MRI technology It is explained more thoroughly below. All of these scans will 
happen on the same day. 
We would also like you to return to have the PET CT scan again, using a different 
radioactive tracer/dye. This will give us additional information about the inflammation. There 
are several tracers/dye we could use: Rubidium, Fluciclatide, Fluorothymidine, HX4 or F-
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Miso. You will not have CT dye with this scan. We will only carry out a second PET CT scan 
if you are happy to have another scan. If you return for a second PET CT scan using a 
different tracer/dye, the procedure will be fully explained to you prior to booking the 
appointment.  
Patients with colorectal urogenital, and oesophageal cancer will receive a small injection of 
buscopan (hyoscine butylbromide) to relax the bowel. This medication is used routinely, but 
can cause dry mouth, blurred vision or a feeling of faintness. These side effects usually lasts 
less than an hour. Patients with high pressure in the eye (acute glaucoma) will not be given 
buscopan.  
If you have an operation to remove your tumour, either at UCLH or at a different hospital, we 
will use a small sample of it to stain for blood vessels and other tumour growth factors. We 
may also wish to keep a separate sample as a gift for future ethically approved projects, 
including genetic research. The tumour sample will be identifiable to the researcher as 
yours, so that we may compare the results of the staining, with the results of your scan.  
We are also interested in patients‘ experience of PET-CT and MRI scans, therefore we will 
ask you to complete questionnaires regarding anxiety, and your experience of the scan.  
6. What is a PET/CT scanner? This scanner combines two scans. A CT scan shows if there 
are structural abnormalities, and the PET scan shows any rapidly growing tissue such as 
cancer tissue.  
7. What is a PET MR scanner?  
This is a state of the art imaging scanner. This equipment is able to look at the radioactive 
injection and image the lungs at the same time. There is no additional radiation involved. 
The PET-MR scanner uses magnets to produce the images. You will be lying inside an open 
tunnel for up to 45 minutes. The scanner will make some loud noises in order to create the 
pictures. Because the scanner is loud and noisy, you will be given earplugs and headphones 
to protect your ears. You will also be able to listen to music. You can bring your own CD or 
iPod if you want to.  
You will be asked to hold your breath during the scans for up to 20 seconds, you will also be 
given an injection of a dye (contrast agent) through a small tube in one of your veins, this will 
highlight the blood vessels in the area being scanned. You may receive some oxygen while 
you are having your MRI scan.  
The MRI component measures different structures and densities to CT scans and this 
difference may be useful in providing improved structural information about cancer.  
PET/MRI scans are not suitable for patients that have had certain types of metallic implants 
such as pacemakers.  
8. What are the risks involved?  
As part of the PET/CT scan you will receive an injection of what is known as a ‗tracer‘. A 
tracer known as FDG (Fluorodeoxyglucose) is routinely administered prior to PET/CT scans. 
We also have ethical approval to use a range of novel tracers, including 82Rubidium, 18F-
MISO, HX4, ML10, FLT, choline or tracers targeted to molecules on the surface of cells 
called ―integins‖, because they integrate the cells with those in their environment (eg 
Fluciclatide). The only known significant risk from the use of these tracers is from radiation. 
The risk from the radiation dose you will receive is small, about the same radiation you will 
get from the environment over 4-6 years. This is known as background radiation. However 
some people believe that small amount of radiation can cause a small increase in cancer 
after many years (e.g. in 20 years time). The increased risk is small if it exists at all. This risk 
becomes less as you get older. Thus we only perform the study on patients above 45.  
Given that some of these tracers are novel in use, there are currently no known side-effects 
other than the risk from radiation. If any further information about the use of these tracers in 
this study and their possible risks becomes available, we will amend the protocol and patient 
information sheet to take these risks into account, or we will stop the use of the tracer 
altogether, pending Sponsor confirmation and ethical review.  
9. What are the benefits for entering the study? Your doctors might gain extra information 
about your tumour, which may help them make a more accurate prognosis and improve 
treatment. You may be helping future patients with a similar illness to your own.  
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You may help scientists understand the biology of cancer better  
10. What if new information becomes available? If we discover the answer to our question 
earlier we will stop the trial.  
11. What happens at the end of the study?  
The result of your study will be made available to your referring doctor.  
12. Will my records be kept private? All scans images and reports in our departments are 
strictly confidential and access is restricted only to the relevant health care professionals. 
Although the results of our research may be published, no individuals are ever named. Your 
records will be kept at the University College London Teaching Hospital Trust. The overall 
responsibility for your records being kept private will be Professor Groves (Chief 
Investigator). Anonymised data collected during the study may be sent to associated 
researchers of GE Healthcare, which may be sent outside of the European Economic Area 
where the laws do not protect your privacy to the same extent as the UK law. The company 
will take all reasonable steps to protect your privacy.  
13. Will my GP be informed? The combined results of all scans will be communicated to your 
doctor. In turn your doctor may convey information to your GP.  
14. Are there compensation mechanisms available if things go wrong? - Yes our 
departments and individuals are all fully insured.  
15. Are some patients excluded from the trial? Yes. Patients that are under 45. Patients 
allergic to CT/MRI dyes (contrast mediums) Patients that cannot understand this information 
sheet.  
if you have a Pacemaker and certain metallic implants. Some patients with severe kidney 
problems will also be excluded  
Your participation in the trial is entirely voluntary. You are free to decline to enter or to 
withdraw from the study any time without having to give a reason. If you choose not to enter 
the trial, or to withdraw once entered, this will in no way affect your future medical care. All 
information regarding your medical records will be treated as strictly confidential and will only 
be used for medical purposes. Your medical records may be inspected by competent 
authorities and properly authorised persons, but if any information is released this will be 
done in a coded form so that confidentiality is strictly maintained. Participation in this study 
will in no way affect your legal rights‘.  
16. What if there is a problem?  
Every care will be taken in the course of this study. However, in the unlikely event that you 
are injured by taking part, compensation may be available.  
If you suspect that the injury is the result of the Sponsor‘s (University College London) or the 
hospital's negligence then you may be able to claim compensation. After discussing with 
your research doctor, please make the claim in writing to Professor Ashley Groves who is 
the Chief Investigator for the research and is based at The Institute of Nuclear Medicine, 
University College Hospital, 235 Euston Road, London NW1 2BU. The Chief Investigator will 
then pass the claim to the Sponsor‘s Insurers, via the Sponsor‘s office. You may have to 
bear the costs of the legal action initially, and you should consult a lawyer about this.  
Regardless of this, if you wish to complain, or have any concerns about any aspect of the 
way you have been approached or treated by members of staff or about any side effects 
(adverse events) you may have experienced due to your participation in the research, the 
normal National Health Service complaints mechanisms are available to you. Please ask 
your research doctor if you would like more information on this. Details can also be obtained 
from the Department of Health website: http://www.dh.gov.uk‖ 05/Q0505/34 – PIS (V12) 
February 2013 4 
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Appendix 5 Patient consent form 

 

Please initial box  

 I confirm that I have read and understood the 
information sheet dated July 2012 (version 10) 
for the above study and have had the opportunity 
to ask questions.  

 

2  I confirm that I have had sufficient time to 
consider whether or not want to be included in 
the study  

 

3  I understand that my participation is voluntary 
and that I am free to withdraw at any time, 
without giving any reason, without my medical 
care or legal rights being affected.  

 

4  I agree that a tumour sample may be stored for 
use in future ethically approved research studies.  

 

5  I agree to take part in the above study.   

6  'I understand that data (scan images, and details 
of treatment) collected during the study may be 
looked at by individuals from GE Healthcare (in 
an anonymous form), from regulatory authorities 
or from the NHS Trust, where it is relevant to my 
taking part in this research. I give permission for 
these individuals to have access to my data.'  
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Appendix 6 General safety recruitment checklist for PET- MRI 

 

 

 

 

 

The following details must be obtained before contacting PET-CT / PET-MR 
Patient availability (3 dates minimum)   Date 1) ________________ Date 2) _____________ 
Date 3)________________ 
  

 MR safety questionnaire verbally completed                                                                     
            YES/NO  

If the patient answers YES to any question please contact PET-MR to discuss. 

 Previous imaging requested via IEP                                                                                                    
YES/NO 

Reference no: ___________________ 

 For colorectal patients: Colonoscopy report requested                                                                       
YES/NO 

 Patient discussed with PET-CT      Date:_______________     PETCT staff 
member:___________________  

                                                                       

  Patient discussed with PET-MR     Date:_______________     PETMR staff 
member:___________________                                                              

 

NAME  
 

Date of 
birth 

Hospital 
No 

Contact No AMG Group Contact 

 Brain MR Liver MR Local 
Tumour 
Staging 

Staging CT Other 

Clinical 
Indications 

     

Vetted By      

Tick as 
required 

     

 Injection PET-CT PET-MR Staging CT Staging MR 

Date      

Time      

Tumour Type and Location:________________________________      Referral 
Source:____________________ 
Date AMG research group informed of patient: ______________________                                                           
Patient given PIS Date: _____________                             Initial patient contact 
date: __________________ 
Study vetted by:  __________________                                     Date of patients MDT /Clinic 
appt: ________________ 
Checklist completed by:________________     Date:___________     Date checklist 
emailed:_________________________ 
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CT & MRI contrast  
 Does the patient have a known contrast allergy?                                                                                    

YES/NO 

 Does the patient have an iodine allergy?                                                                                                    
YES/NO 

 Is the patient asthmatic?                                                                                                                                  
YES/NO 

 Does the patient suffer from kidney problems?                                                                                           

YES/NO                     

 Patients most recent eGFR/Creatinine received?                                                                                        
YES/NO 

         Result __________________________eGFR/Creatinine (delete as appropriate) 
 

 Is the patient diabetic?                                                                                                                                     
YES/NO 

 If yes, how is their diabetes managed? Please circle as appropriate: 
Diet controlled / Insulin / Oral medication specify type: ___________________________ 
If patient is on Metformin, please discuss with AMG medics to decide if patient is suitable to 
participate. 
 
Name of Dr patient discussed with: _________________________   Signature of 
Doctor:_____________________________      Date:_______ 
Patient suitable to participate in research : Yes/No            
Reason:______________________________________________________________ 
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Appendix 7 MRI safety questionnaire 

MRI scanning uses strong magnetic fields. For your own safety and the safety of others it is 
very important that you do not go into the MRI scan room with any metal in or around 
your body and clothing.    
 

NAME  
 

Date of birth Height Weight 

 
Please answer the following questions carefully, and ask if anything is not clear. 
 
All information is held in the strictest confidence.  
 
1. Do you have a heart pacemaker? These may stop working near the 
MRI scanner.      YES/NO   
2. Have you ever had any surgery on your heart?            
  YES/NO  
3. Have you ever had any surgery on your head, brain, spine or eyes?         
  YES/NO  
4. Have you had any surgery in the past 2 months?            
  YES/NO  
5. Do you have any foreign bodies inside you? (e.g. implants, devices, shrapnel)     
  YES/NO  

If yes, please 
list______________________________________________________________          
_______________________________________________________________  

6. Have you ever had any metal particles in your eyes? (e.g. from welding or metal work)   
  YES/NO  
7. Could you be pregnant?      (Women Only)        
 YES/NO  
8. Before entering the MRI scan room you must remove all metal objects, including coins,         

jewellery, body-piercings, hearing aids, dentures containing metal, dental braces, 
artificial limbs or callipers.                                                                 
Do you agree to remove all of the above before entering the MRI scan room?     
  YES/NO  

9. Is there anything else you think we should know about in relation to your MRI scan?     
  YES/NO  

If yes, please give 
details______________________________________________________ 

10. Do you wear dentures, a dental plate or a brace?                          
YES/NO  
11. Have you had blackouts, epilepsy or fits in the past 2 months?             
              YES/NO  
12. Do you have any tattoos or trans-dermal patches (i.e nicotine or pain relief patches)                              
YES/NO  
13. Are you wearing coloured contact lenses?             
              YES/NO  
14. An MRI contrast agent (dye) is often required to give us the best information from   

your MRI scan. Do you consent to an injection of contrast agent (dye) if required?    
              YES/NO          
If yes, please complete the MRI Contrast section overleaf  

* If you are having an MRI scan of your abdomen or pelvis we may need to administer drugs 
that have a short term effect on your body as part of your scan. Please complete the relevant 
questions related to your MRI scan on the following page.  

please circle  
YES or NO  
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Anonymised data from your MRI scan may be used for teaching/research purposes.  

I have read, understood and answered all the relevant questions above.  
  
Signature………………………………………………   Date……………………  

 
 
Checked by (MRI Authorised Person)………………………......………………… 
Date……………………  

 
 
For clinical staff use only: IV Access record  

Date & time of 
insertion  

 Site  Gauge  

Gloves worn  Skin  
preparation 

 Sterile 
dressing  
applied & 
dated   

 

Number of  
attempts 

 Inserted by  Volume of  
saline flush   

 

Time of 
removal 

 Removal by        

 

1) MRI Contrast – patients who consent for an injection of MRI contrast.  
  
An MRI contrast agent (dye) is often used to help with the diagnosis of MRI scans. The 
contrast agent is a colourless fluid that is injected into one of your veins during your scan. It 
is rare to have an allergic reaction to MRI contrast agent. However, it is important that we 
know if you have certain kidney problems, are breast-feeding, or if you have had an allergic 
reaction to MRI or X-ray contrast agents in the past. If you would like more information about 
MRI contrast agents please ask one of the MRI radiographers.  
 
Do you have any allergies?                                                                                                               
YES/NO  
If yes, please give details...     
  
----------------------------------------------------------------------------------------------------------  
Do you have any kidney problems? If yes please give details...                                                
               YES/NO      
----------------------------------------------------------------------------------------------------------  
Are you breast feeding?                                                                                                                       
 YES/NO     
  
For Radiographer use only: eGFR: ____________ Date:___________ Checked 
By___________ 
 

2) MRI of abdomen/pelvis – Buscopan/ Glucagon (antispasmodic)  
  

Your bowel is constantly moving. This can cause blurring of the MRI images. Buscopan or 
Glucagon is injected into a vein or muscle to slow down your bowel motion for about 30 
minutes and improve the quality of your MRI scan. It is rare to have an allergic reaction to 
these drugs. However, it is important that we know if you have any of the conditions 
mentioned below. If you would like any more information about Buscopan/Glucagon please 
ask one of the radiographers.  

Do you suffer from glaucoma (high pressure in the eyes)?                                               
 YES/NO            

Do you have a family history of glaucoma?                                                                      
 YES/NO  

Do you any problems with your heart? If yes please give details...                                     
 YES/NO      

-----------------------------------------------------------------------------------------------------------  

Are you diabetic?                                                                                                           
 YES/NO     

Do you have Myasthenia Gravis?                                                                                    
 YES/NO  

Are you driving home after your scan?                                                                            
 YES/NO     
  
For Radiographer use only: Checked By_______________  
 


