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Abstract: Vocoder simulation studies have suggested that the carrier signal type employed affects 31 

the intelligibility of vocoded speech. The present work further assessed how carrier signal type 32 

interacts with additional signal processing, namely, single-channel noise suppression and envelope 33 

dynamic range compression, in determining the intelligibility of vocoder simulations. In 34 

Experiment 1, Mandarin sentences that had been corrupted by speech spectrum-shaped noise (SSN) 35 

or two-talker babble (2TB) were processed by one of four single-channel noise-suppression 36 

algorithms before undergoing tone- (TV) or noise-vocoded (NV) processing. In Experiment 2, 37 

dynamic ranges of multiband envelope waveforms were compressed by scaling of the 38 

mean-removed envelope waveforms with a compression factor before undergoing TV or NV 39 

processing. TV Mandarin sentences yielded higher intelligibility scores with normal-hearing (NH) 40 

listeners than did noise-vocoded sentences. The intelligibility advantage of noise-suppressed 41 

vocoded speech depended on the masker type (SSN vs. 2TB). NV speech was more negatively 42 

influenced by envelope dynamic range compression than was TV speech. These findings suggest 43 

that an interactional effect exists between the carrier signal type employed in the vocoding process 44 

and envelope distortion caused by signal processing.45 
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I. INTRODUCTION 46 

The perceptual contribution of the temporal envelope has attracted enduring research interest. 47 

Many studies have assessed the importance of the temporal envelope for speech intelligibility 48 

under various conditions (e.g., Shannon et al., 1995; Dorman et al. 1997; Chen and Loizou, 49 

2011a). Vocoder simulations have long been used to extract the multiband temporal envelope 50 

waveforms while removing the underlying fine-structure information to synthesize 51 

envelope-based vocoded speech (e.g., Shannon et al., 1995; Dorman et al. 1997; Chen and Loizou, 52 

2011a). With envelope information from up to four bands, normal-hearing (NH) listeners can have 53 

near-perfect speech understanding in quiet condition (Shannon et al., 1995). 54 

In a cochlear implant (CI) device, incoming sound signals are received via a microphone and 55 

fed into a speech processor. Most of the existing CI speech processors capture multi-channel 56 

temporal envelopes of sound signal inputs, and then generate electric stimulations that excite 57 

patients’ residual auditory nerves directly. Vocoders aim to transfer only those acoustic cues that 58 

are present for CI users, so they simulate the signal processing of a CI. Vocoder simulations have 59 

been applied to examine numerous factors that influence the intelligibility of envelope-based 60 

vocoded speech, including the number of channels (Shannon et al., 1995; Dorman et al. 1997), 61 

carrier signal type (Dorman et al. 1997; Fu et al., 2004; Gonzalez and Oliver, 2005; Whitmal, et 62 

al., 2007; Chen and Lau, 2014), envelope cutoff frequency (Shannon et al. 1995; Xu et al. 2005; 63 

Souza and Rosen 2009), and frequency spacing (Kasturi and Loizou, 2007), among other factors. 64 

For this reason, vocoder simulations have been used widely to assess the potential of new 65 

speech-processing and coding strategies for CIs before large-scale clinical evaluations with users 66 

are conducted. Vocoder simulation remains a valuable tool in the field of CI research because it 67 

can be used to assess the effects of acoustic factors in the absence of patient-specific confounds. 68 

When performing vocoder simulations, the envelope waveform is extracted by steps of 69 

bandpass filtering (BPF), waveform rectification and low-pass filtering (LPF) (see Fig. 1). The 70 

envelope waveform is used to modulate a carrier signal. There are two common types of carrier 71 

signals used in synthesizing vocoded speech; pure-tone and white-noise signals yield tone- (TV) 72 

and noise-vocoded (NV) speech stimuli, respectively. A limited number of studies have compared 73 

the relative performance of these two vocoder types on speech intelligibility in English (e.g., 74 

Dorman et al. 1997; Whitmal, et al., 2007; Souza and Rosen, 2009; Rosen et al., 2015) and on the 75 
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listener’s ability to distinguish gender and speaker identity (in English, Fu et al., 2004; in Spanish, 76 

Gonzalez and Oliver, 2005). Dorman et al. (1997) compared English speech intelligibility using a 77 

tone or noise vocoder with varying numbers of channels and found only small differences that did 78 

not reach statistical significance under most test conditions with vowels, consonants, and 79 

sentences. Their findings suggested that neither of the two vocoder types was superior to the other. 80 

However, in a more recent study, Whitmal et al. (2007) examined the intelligibility of English 81 

sentences and vowel-consonant-vowel syllables using a six-band vocoder and found that a tone 82 

vocoder produced more intelligible speech than a noise vocoder under both quiet and noisy 83 

conditions across different signal-to-noise ratios (SNRs) and two different masker types, namely, 84 

speech spectrum-shaped noise (SSN) and two-talker babble (2TB). In their study on the 85 

interaction between carrier type and cutoff frequency in the vocoding process, Souza and Rosen 86 

(2009) found that TV speech was less intelligible than NV speech for a low envelope cutoff 87 

frequency of 30 Hz, but more intelligible for a high envelope cutoff of 300 Hz. And Rosen et al. 88 

(2015) reported recently that using tone carriers with a denser spectrum improved the 89 

intelligibility of TV speech considerably over typical tone vocoders, equating and even surpassing 90 

the performance observed with noise vocoders. 91 

 92 

FIG 1. Block diagrams of (a) tone-vocoder and (b) noise-vocoder processes. 93 
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Studies on gender and speaker identification, in which good performance depends heavily on 94 

cues such as fundamental frequency (F0) and formant structure, have shown better performance 95 

for TV speech than for NV speech. Using one- and four-band noise vocoders, Fu et al. (2004) 96 

observed poor voice gender discrimination (approximately chance level). However, with a tone 97 

vocoder, they obtained better results that were more consistent with those of real CI users. In 98 

another study of gender and speaker identification in Spanish, Gonzalez and Oliver (2005) found 99 

that the tone vocoder performed substantially better than did the noise vocoder across conditions 100 

with different numbers of channels. Recently, Chen and Lau (2014) evaluated the effect of 101 

vocoder carrier signal type on the intelligibility of Mandarin Chinese, a tonal language, and found 102 

an advantage of tone over noise carriers on the intelligibility of vocoded Chinese speech. 103 

Noise is prevalent in our daily lives and poses a great challenge to human speech perception. 104 

Alleviation of background noise interference is the goal of many single-channel noise-suppression 105 

algorithms, such as the spectral-subtraction (Kamath and Loizou 2002), statistical-model-based 106 

(Ephraim and Malah, 1985), and subspace (Hu and Loizou, 2003) algorithms. However, noise 107 

suppression may cause undesirable distortion (e.g., “musical noise”) of speech, which is 108 

detrimental to speech perception (Loizou, 2007). Certain noise-suppression algorithms (e.g., 109 

statistically based Wiener filtering) have been shown to improve speech quality per se without 110 

improving speech intelligibility for NH listeners (Hu and Loizou, 2007; Li et al., 2011). 111 

Vocoded speech is synthesized with multiband envelope information from the original speech 112 

signal. When the original speech signal contains distortions due to noise-reduction processing, it 113 

is unclear how this distortion affects the intelligibility of envelope-based vocoded speech. In 114 

Experiment 1, our aim was to investigate whether the intelligibility advantage of tone over noise 115 

vocoders persists when noise-suppression processing is used. Comparisons between tone and 116 

noise vocoders have shown no inherent fluctuation in a tone carrier compared to a noise carrier. 117 

The combination of envelope distortion (caused by noise-suppression processing) and inherent 118 

fluctuation in a noise carrier may have a negative influence on the intelligibility of NV speech. 119 

Hence, we hypothesized that carrier signal type may affect the intelligibility of vocoded speech in 120 

the context of noise-suppression processing. In other words, we are supposing that the 121 

intelligibility advantage of tone over noise vocoders may occur when the vocoding process 122 

involves noise-suppression processing. In addition, the effect of noise masking is commonly 123 
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represented by two mechanisms: energetic masking by steady-state noise, and informational 124 

masking by other speech characteristics, such as fluctuations, in the noise (Carhart et al., 1967; 125 

Watson, 2005). Hence, in Experiment 1, we also examined whether the interactional effect of the 126 

vocoder type and noise-suppression processing depends on the masker type. 127 

Dynamic range plays an important role in speech perception (e.g., Zeng et al., 2002). This fact 128 

provides a partial explanation for why CI users have poor speech perception (i.e., reduced hearing 129 

dynamic range of 5–10 dB), especially in adverse listening environments. Fitting the wide 130 

dynamic range of speech signals into the narrow range of the residual hearing of CI users requires 131 

dynamic range compression. Several vocoder simulation studies have assessed the effect of 132 

envelope dynamic range on speech intelligibility (Fu and Shannon, 1999; Loizou et al., 2000; 133 

Chen et al., 2013; Lai et al., 2015). Similarly, we are interested in clarifying whether reducing the 134 

dynamic range has a negative effect on envelope-based vocoded speech, and to what extent 135 

carrier signal type affects the intelligibility of vocoded speech with a dynamic range-compressed 136 

envelope. In Experiment 2, our aim was to investigate whether the intelligibility advantage of tone 137 

over noise vocoders persists in the context of envelope dynamic range compression. Earlier work 138 

has shown that the spectral sidebands contained in TV speech (due to the multiplication of 139 

pure-tone carrier and envelope waveform) carries additional cue which is beneficial for speech 140 

intelligibility (e.g., Whitmal et al., 2007; Stone et al., 2008). In addition, white-noise carrier has 141 

intrinsic envelope fluctuations that are absent in pure-tone carrier. Multiplying the white-noise 142 

carrier by the envelope waveform may have an additional temporal influence on the envelope 143 

waveform, which is detrimental to speech understanding (Stone et al., 2011). Given the potential 144 

negative effect of dynamic range compression and the intelligibility disadvantage of NV relative 145 

to TV speech, this work hypothesized that when envelope dynamic range compression is included 146 

in the vocoding process, the intelligibility of NV speech would drop at a higher rate than that of 147 

TV speech. NV speech would be far less intelligible than TV speech. 148 

  149 

II. EXPERIMENT 1: EFFECT OF NOISE SUPPRESSION ON THE INTELLIGIBITY 150 

OF VOCODED SENTENCES 151 

The purpose of Experiment 1 was to examine the effect of noise suppression on the 152 

intelligibility of TV and NV Mandarin sentences. 153 
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 154 

A. Methods 155 

1. Subjects 156 

Eight (five males and three females) native-Mandarin-Chinese listeners (18–23 years old) 157 

participated in the experiment. All participants were undergraduate students at Southern 158 

University of Science and Technology, and were paid for their participation. All subjects had NH, 159 

as determined by having measured pure-tone thresholds (250–8000 Hz) better or equal to a 20-dB 160 

hearing level. The study protocol was approved by the Human Research Ethics Committee for 161 

Non-Clinical Faculties of Southern University of Science and Technology. 162 

 163 

2. Materials 164 

The speech material consisted of sentences taken from the Mandarin Hearing in Noise Test 165 

(MHINT) database (Wong et al., 2007), which includes 24 lists of 10 sentences, with each 166 

sentence containing 10 key words. All of the sentences were produced by a male speaker with an 167 

F0 range of 75–180 Hz. 168 

Two types of masking were used to corrupt the sentences: steady-state SSN and 2TB. For SSN 169 

masking, a finite impulse response filter was designed based on the average spectrum of the 170 

MHINT sentences, and a white noise was filtered and scaled to the same long-term average 171 

spectrum and level as the sentences. The 2TB masker contained two equal-level interfering male 172 

talkers. A random noise segment of the same length as the clean speech signal was cut out of the 173 

noise recordings, appropriately scaled to reach the desired input SNR level, and finally added to 174 

the speech signals at -2-dB and 6-dB input SNR levels for the SSN and 2TB maskers, respectively. 175 

The input SNR levels were chosen based on known performance from a pilot study. 176 

 177 

3. Signal processing 178 

The noise-suppressed vocoded speech generation processes are summarized in block diagrams 179 

in Figure 1. Input noise-corrupted speech signals were first processed by existing single-channel 180 

noise-suppression algorithms, followed by the tone- or noise-vocoding process. To process 181 

noise-corrupted sentences, we used four representative noise-suppression algorithms: the 182 

generalized Karhunen-Loeve transform (KLT) approach (Hu and Loizou, 2003), the Log 183 
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Minimum Mean Square Error (logMMSE) algorithm (Ephraim and Malah, 1985), the multiband 184 

spectral subtraction (MB) algorithm (Kamath and Loizou, 2002), and the Wiener algorithm based 185 

on a priori SNR estimation (Scalart and Filho, 1996). These four algorithms encompass the four 186 

most commonly used types of single-channel noise-suppression methods, namely the subspace, 187 

statistical-modeling, spectral-subtraction, and Wiener-filtering approaches, respectively (see 188 

review in Loizou, 2007). 189 

For the KLT method, the noise-corrupted speech signal is projected into orthogonal subspaces; 190 

KLT parts representing the signal subspace are modified by a gain function, determined by the 191 

estimator; remaining KLT parts representing the noise subspace are nulled; and the enhanced 192 

signal is obtained from the inverse KLT of the modified parts (Hu and Loizou, 2003). The 193 

statistical-modeling approach employs statistical models with optimization criteria (e.g., 194 

minimum mean square error) to estimate the magnitude spectrum of the speech signal (Ephraim 195 

and Malah, 1985). The spectral-subtractive algorithm is implemented with an estimate of the 196 

clean signal spectrum, generated by subtracting an estimate of the noise spectrum from a 197 

noise-corrupted speech spectrum (Kamath and Loizou 2002). The Wiener filter uses a priori SNR 198 

statistics to design a gain function that suppresses low-SNR segments, while preserving high-SNR 199 

ones. Detailed descriptions of the algorithms including the exact parameters used in the current 200 

study can be found in Hu and Loizou (2007) and Loizou (2007). The Matlab code used to 201 

implement the four noise-suppression algorithms was obtained from Loizou (2007). 202 

All noise-suppressed materials were further processed by a tone or noise vocoder (Fig. 1). To 203 

implement the tone vocoder, speech signals were first processed through a pre-emphasis filter 204 

(first-order high-pass filter with 1200-Hz cutoff frequency). Then, signals were bandpass-filtered 205 

into eight frequency bands between 80 Hz and 6000 Hz with sixth-order Butterworth filters. The 206 

cutoff frequencies for the channel allocation of bandpass filters were (in Hz): 80, 221, 426, 724, 207 

1158, 1790, 2710, 4050, and 6000. From each band, the envelope was extracted by full-wave 208 

rectification and low-pass filtering with a 200-Hz cutoff frequency by way of a fourth-order 209 

Butterworth filter. Sine waves at the center frequencies of the bandpass filters were generated 210 

with amplitudes modulated by the extracted envelopes. All amplitude-modulated sine waves from 211 

the resultant set of bands were summed to generate a TV stimulus, whose amplitude was adjusted 212 

to have the same root-mean-square (RMS) energy as the original speech signal. RMS energy 213 
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scaling was performed with respect to the noisy and noise-suppressed input speech signals under 214 

the noisy and noise-suppressed conditions, respectively. Noise-suppression processing causes an 215 

RMS energy difference between noisy and noise-suppressed speech signals. The RMS energy 216 

scaling was done with respect to the energy of each original speech signal. Experimental results 217 

may vary when RMS energy is scaled with respect to the same energy (of either the noisy or 218 

noise-suppressed speech signal); this possibility warrants further investigation. 219 

Implementation of the noise vocoder was similar to that of the tone vocoder, except that a 220 

white noise instead of a sine wave was used as the carrier signal, and amplitude-modulated by the 221 

extracted envelope. Output from each band was further band-limited with the same bandpass filter 222 

at that band. All amplitude-modulated noises (with band-limiting processing) were summed to 223 

generate the NV stimulus, with its amplitude adjusted to have the same RMS power as the 224 

original signal. Again, RMS energy scaling was performed with respect to the noisy and 225 

noise-suppressed input speech signals under the noisy and noise-suppression conditions, 226 

respectively. The envelope dynamic compression block (labeled ‘Com’ in Fig. 1) was deactivated 227 

(compression factor α = 1; see Experiment 2) in the vocoding process. 228 

 229 

4. Procedure 230 

The experiment was performed in a sound booth, and stimuli were played to listeners 231 

diotically through an HD 650 circumaural headphone (Sennheiser, Germany) set at a comfortable 232 

listening level. Before the actual testing session, each subject participated in a 10-min training 233 

session and was given four lists of 10 MHINT sentences. The training session familiarized the 234 

subjects with the testing procedure and conditions. During the training session, the subjects were 235 

allowed to read transcriptions of the training sentences while they were listening to the sentences. 236 

Four testing conditions [= 2 masker types (i.e., SSN at -2 dB SNR and 2TB at 6 dB SNR) × 2 237 

vocoder types (i.e., TV and NV) × 1 signal processing condition (i.e., noisy)] were used during 238 

training. In the testing session, the order of the conditions was randomized across subjects, and 239 

the subjects were asked to repeat orally all of the words they heard. In addition, the lists were 240 

randomized across listeners. The sentences used during testing were not the same as any of the 241 

training sentences. Each subject participated in a total of 20 conditions [= 2 masker types (i.e., 242 

SSN at -2 dB SNR and 2TB at 6 dB SNR) × 2 vocoder types (i.e., TV and NV) × 5 signal 243 
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processing conditions (i.e., KLT, logMMSE, Wiener, MB, and noisy)]. One list of 10 Mandarin 244 

sentences was used per tested condition, and none of the sentences was repeated across conditions. 245 

Subjects were allowed to listen to each stimulus a maximum of three times, and were asked to 246 

repeat as many words as they could recognize. A simple custom software interface was designed 247 

for the listening experiment, which each participant used to control the auditory delivery of the 248 

processed stimuli. During the testing session, a tester accompanied the participant and scored 249 

his/her response in the computer. A 5-minute break was given every 30 minutes to avoid listening 250 

fatigue. The intelligibility score for each condition was computed as the ratio between the number 251 

of correctly recognized words and the total number of words contained in each MHINT list. The 252 

total testing time was one hour and ten minutes (10-minute training and 60-minute testing). 253 

 254 

5. Data analysis 255 

The data were subjected to two-way repeated measures analyses of variance (rmANOVAs) 256 

with recognition score as the dependent variable and vocoder type and signal processing condition 257 

as within-subject factors. Recognition scores were first converted to rational arcsine units using 258 

the rationalized arcsine transform (Studebaker, 1985). A one-way rmANOVA was conducted for 259 

each type of vocoder to further analyze the effect of signal processing condition; the ANOVA 260 

alpha level was Bonferroni corrected, and only those tests with p values lower than 0.0125 (= 261 

0.05/4) were considered significant. Paired t-tests were conducted in each signal processing 262 

condition to further analyze vocoder-type effects. 263 

 264 

B. Results 265 

Mean recognition scores for all conditions in Experiment 1 are shown in Figure 2, with data 266 

for the SSN and 2TB maskers shown in panels a and b, respectively. For the results of the SSN 267 

masker at -2 dB SNR condition (Fig. 2a), a two-way rmANOVA indicated significant effects of 268 

vocoder type (F1, 7 = 34.13, p < 0.005) and signal processing condition (F4, 28 = 19.83, p < 0.001), 269 

but no significant interaction between these two variables (F4, 28 = 0.397, p = 0.81). One-way 270 

rmANOVAs showed significant differences in performance between Wiener-processed and noisy 271 

(i.e., no noise suppression) vocoded speech for both vocoder types (p < 0.01), and paired t-tests 272 

revealed performance differences (p < 0.05) between paired TV and NV speech under all signal 273 
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processing conditions. 274 

 275 

FIG 2. Sentence recognition scores for all conditions with and without noise reduction algorithms 276 

with (a) a -2-dB SNR SSN masker and (b) a 6-dB SNR 2TB masker. The error bars denote ±1 277 

standard error of the mean. The asterisk denotes that the intelligibility score is significantly 278 

(p<0.01) larger than that in the noisy condition. 279 

 280 

For the results of the 2TB masker at 6 dB SNR condition (Fig. 2b), a two-way rmANOVA 281 

indicated significant effects of vocoder type (F1, 7 = 69.14, p < 0.001) and signal processing 282 

condition (F4, 28 = 3.65, p < 0.05), but not a significant interaction (F4, 28 = 0.40, p = 0.81) between 283 

vocoder type and signal processing condition. Again, a one-way rmANOVA revealed no 284 

significant performance difference (p > 0.02) between noise-suppressed and noisy vocoded 285 

speech. Paired t-tests revealed significant performance differences (p < 0.05) between paired TV 286 

and NV speech under all signal processing conditions. 287 

 288 

III. EXPERIMENT 2: EFFECT OF ENVELOPE DYNAMIC RANGE COMPRESSION 289 

ON THE INTELLIGIBITY OF VOCODED SENTENCES 290 

The purpose of Experiment 2 was to examine the effect of envelope dynamic range 291 

compression on the intelligibility of TV and NV Mandarin sentences. 292 

 293 

A. Methods 294 

1. Subjects and Materials 295 

Seven (four males and three females, 19–20 years old) new (i.e., did not participate in 296 
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Experiment 1) NH native-Mandarin listeners participated in this experiment. All participants were 297 

undergraduate students at Southern University of Science and Technology, and were paid for their 298 

participation. 299 

The speech materials were the same as in Experiment 1, and the SSN masker was used to 300 

corrupt the MHINT sentences at 3 dB and -3 dB input SNR levels. 301 

 302 

2. Signal processing 303 

We implemented a simple compression method (Chen et al., 2013). Letting 𝑥𝑥 and 𝑦𝑦 denote 304 

input and output amplitude envelopes, respectively, the output compressed amplitude envelope 𝑦𝑦 305 

was computed as: 306 

( ) ,y x x xα= × − +         (1) 307 

where x  is the mean of the input amplitude envelope x , and α is the compression factor constant 308 

chosen for compressing the output amplitude envelope dynamic range. Mean values of the output 309 

and input amplitude envelopes were equal (i.e., xy = ), regardless of the value of α. A small 310 

compression factor α denotes a large compression ratio and vice versa. When 𝛼𝛼 = 0 in Eq. (1), the 311 

compressed amplitude envelope becomes a DC signal with a constant value of x  (i.e., xy = ), and 312 

the dynamic range is 0 dB. When 𝛼𝛼 = 1.0, the output amplitude envelope maintains the original 313 

dynamic range of the input (i.e., no envelope compression). Figure 3 shows the three compressed 314 

amplitude envelope waveforms, with compression factor 𝛼𝛼 = 1.0, 0.5, and 0.2, respectively. Note 315 

that the three compressed amplitude envelope waveforms have the same mean values (dashed lines 316 

in the three panels in Fig. 3). We employed α values of 1, 0.5, and 0.2, which reduced the input 317 

envelope dynamic range by 0 dB, 6 dB, and 14 dB, respectively. 318 

The compressed envelope was multiplied by the carrier signal (i.e., tone or noise) to generate 319 

vocoded stimuli, as in Experiment 1. The noise suppression (NS) block in Fig. 1 was deactivated in 320 

the vocoding process. The compression strategy in Eq. (1) was motivated by preserving the 321 

loudness of processed speech signals, while reducing the dynamic range of envelope variation 322 

selectively (Chen et al., 2013). The compression strategy in Eq. (1) is different from those used in 323 

actual CIs, wherein a nonlinear function is used to limit the speech envelope into the range 324 

restricted by the threshold and most comfortable levels of a CI listener. 325 
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 326 

FIG 3. Example waveforms of compressed amplitude envelope with compression factor 𝛼𝛼 of 327 

values (a) 1.0, (b) 0.5, and (c) 0.2. The dashed line in each panel denotes the mean value of the 328 

amplitude envelope waveform. 329 

 330 

3. Procedure 331 

The experimental procedure used in Experiment 2 was essentially the same as that used in 332 

Experiment 1. Again, in the training session in which subjects were familiarized with the testing 333 

procedure and conditions, each subject was given four lists of 10 sentences (different from those 334 

used in the testing session) and allowed to read transcriptions while listening to the sentences. 335 

However, in Experiment 2, each subject was exposed to a total of 12 conditions [= 2 input SNR 336 

levels (i.e., 3 dB and -3 dB) × 2 vocoder types (i.e., TV and NV) × 3 values of compression factor 337 

(i.e., α=1.0, 0.5 and 0.2)], which were randomized across the subjects. As in Experiment 1, one 338 

list of 10 sentences was presented per condition, and none of the sentences was repeated across 339 

the conditions. The total testing time was 50 minutes (10-minute training and 40-minute testing). 340 

 341 

6. Data analysis 342 

The data were analyzed as in Experiment 1. The three within-subject factors for the three-way 343 

rmANOVAs were vocoder type, SNR level and compression factor; and paired t-tests were 344 

conducted in each compression condition to further analyze vocoder-type effects. 345 

 346 

B. Results 347 

The mean recognition scores of Mandarin sentences for all conditions are shown in Figure 4. 348 

A three-way rmANOVA indicated significant effects of vocoder type (F1, 6 = 167.47, p < 0.005), 349 

SNR level (F1, 6 = 230.66, p < 0.005) and compression factor (F2, 12 = 107.75, p < 0.005), as well 350 
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as a non-significant interaction between vocoder type and SNR level (F1, 6 = 5.9, p =0.06), a 351 

non-significant interaction between SNR level and compression factor (F2, 12 = 153.80, p =0.3), a 352 

significant interaction between vocoder type and compression factor (F1, 6 = 6.69, p < 0.05), and a 353 

non-significant interaction among vocoder type, SNR level and compression factor (F2, 12 = 3.08, 354 

p =0.09). Paired t-tests showed that performance differed significantly (p < 0.001) between TV 355 

and NV speech under all test conditions with the same SNR level and compression factor value. 356 

 357 

FIG 4. Sentence recognition scores for all test conditions. The error bars denote ±1 standard error 358 

of the mean. The asterisk denotes that the intelligibility score of tone-vocoded speech is 359 

significantly (p<0.005) larger than that of noise-vocoded speech. 360 

 361 

The significant interaction between vocoder type and compression factor appears to be due to 362 

the ceiling/flooring effect on the intelligibility scores of TV/NV speech in Fig. 4. To further 363 

analyze the interactional effect between vocoder type and compression factor, Figure 5 displays 364 

the scores of TV and NV speech in near-linear range (as a function of compression factor), and 365 

excludes the effect of ceiling/flooring on data analysis. The SNR levels in Fig. 5 are -3 dB and 3 366 

dB for TV and NV speech, respectively. It is seen in Fig. 5 that at uncompressed condition (i.e., 367 

CR=1.0), the intelligibility scores of TV and NV speech are similar. Envelope dynamic range 368 

compression causes decreased intelligibility to both TV and NV speech. However, it is noted that 369 

the intelligibility score of NV speech drops at a higher rate than that of TV speech does, indicating 370 

that the effect of compression is different between TV and NV speech. 371 
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 372 

FIG 5. Sentence recognition scores for selected test conditions in Fig. 4. The solid and dashed 373 

lines show the scores for TV speech at -3 dB and NV speech at 3 dB, respectively. The error bars 374 

denote ±1 standard error of the mean. 375 

 376 

IV. DISCUSSION AND CONCLUSIONS 377 

 Prior vocoder simulation studies have demonstrated a perceptual contribution of the temporal 378 

envelope to speech intelligibility (e.g., Shannon et al. 1995; Dorman et al. 1997; Whitmal et al., 379 

2007; Stone et al., 2008; Stone et al., 2011; Chen and Loizou, 2011a). Several factors can be 380 

manipulated to control the amount of information that is included in the multiband envelope. In 381 

the present work, we assessed how noise suppression and envelope dynamic range compression 382 

affect the intelligibility of vocoded speech. We also investigated the effect of carrier signal type 383 

on the intelligibility of noise-suppressed and envelope dynamic range-compressed vocoded 384 

speech. 385 

 386 

A. Intelligibility advantage of tone- over noise-vocoded speech 387 

 In Experiments 1 and 2, TV speech was found to be more intelligible than NV speech under 388 

the same signal-processing conditions, consistent with earlier studies reporting a perceptual 389 

advantage of a tone vocoder over a noise vocoder (e.g., Whitmal et al., 2007; Chen and Lau, 390 

2014). We further showed that this advantage persisted even under conditions of envelope 391 

waveform distortion (i.e., noise suppression and narrowing of the dynamic range). Taken together, 392 
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these results provide evidence for the notion that there is a perceptional advantage of TV speech 393 

not only when processed by the raw vocoder simulation model, but also when there is additional 394 

signal processing, such as noise suppression and envelope dynamic range compression. 395 

 Two mechanisms may account for the perceptual advantage of TV speech. The first potential 396 

mechanism concerns the spectral sidebands that are contained in TV speech when a pure tone is 397 

multiplied by the envelope waveform (e.g., Whitmal et al., 2007; Stone et al., 2008). The 398 

amplitude-modulated tone carrier has two spectral sidebands, and these sidebands impose a 399 

periodic temporal structure in voiced speech segments on the tone-vocoder’s output, with the 400 

talker’s pitch being preserved over most voiced segments (Whitmal et al., 2007). Hence, the 401 

spectral sidebands contain an additional cue that is beneficial for speech intelligibility, even when 402 

the noise-suppressed envelope contains nonlinear distortions due to noise-suppression processing. 403 

The second potential mechanism is related to the difference in intrinsic temporal fluctuations 404 

between sine-wave and white-noise carriers. White-noise carriers have intrinsic envelope 405 

fluctuations that are absent in sine-wave carriers. Hence, the white-noise carrier, when multiplied 406 

by the envelope waveform, may have an additional temporal influence on the envelope waveform 407 

and cause a detrimental effect on speech understanding (Stone et al., 2011). 408 

 Another factor that might account for the intelligibility difference observed between TV and 409 

NV speech might be the tonal quality of Mandarin Chinese. Mandarin differs from English in that 410 

a syllable’s tone (or F0 contour) is used to differentiate meaning between otherwise similar lexical 411 

items (Howie, 1976; Chen and Loizou, 2011b;). Although the F0 contour is the primary cue for 412 

lexical tone identification, the tonal envelope waveform also carries important information for 413 

tone identification (Luo and Fu, 2004). In this study, the F0 of the target MHINT sentence ranged 414 

from 75 Hz to 180 Hz, and the envelope cutoff frequency was set to 200 Hz. Hence, the envelope 415 

waveform and the spectral sidebands of tone-vocoded speech may carry important tonal 416 

information. However, noise-vocoded speech, due to its use of noise carriers, may influence or 417 

distort the envelope waveform. 418 

 419 

B. Dependence of masker type on the intelligibility of noise-suppressed vocoded speech 420 

 For noise-suppressed wideband speech signals, no improvements in speech intelligibility 421 

have been observed for NH listeners (Hu and Loizou, 2007; Li et al., 2011). When the 422 
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noise-suppressed wideband speech signal was processed by a vocoder, we observed 423 

masker-dependent intelligibility performance. With an SSN masker, a single-channel 424 

noise-suppression algorithm (i.e., Wiener filtering, see Loizou and Kim, 2011) may improve the 425 

intelligibility of vocoded speech, regardless of vocoder type. However, when the masker is 426 

competing speech (i.e., 2TB), no intelligibility improvement was observed with processing by 427 

existing noise-suppression algorithms. 428 

 The exact mechanism underlying the presently observed masker-dependent intelligibility 429 

performance in vocoded speech is unclear. We hypothesize that noise-suppression processing 430 

causes less envelope distortion of speech signals with an SSN masker than with a 2TB masker. 431 

When the noise-suppression algorithm was integrated into the vocoding process, this difference in 432 

envelope distortion could have accounted for the beneficial effect of noise suppression with 433 

steady-state noise corruption and the lack of intelligibility improvement by noise suppression with 434 

competing masker corruption. When Chen et al. (2015) evaluated the performance of 435 

noise-suppression (i.e., the same four single-channel noise-suppression algorithms used in this 436 

work) for improving speech recognition by Mandarin-speaking CI users, they tested three types of 437 

maskers: SSN, babble, and car noise. They found that although most noise-suppression algorithms 438 

could improve Mandarin speech recognition in the presence of noise (e.g., SSN), the algorithms 439 

performed differently across different environmental noise conditions. They used an 440 

envelope-distortion based objective intelligibility measure (i.e., the normalized covariance 441 

measure) to predict CI speech recognition scores and found that an envelope-distortion based 442 

intelligibility index could predict the intelligibility of noisy and noise-suppressed speech by CI 443 

listeners modestly well (i.e., correlation coefficient 0.81). Similarly, when Baumgärtel et al. (2015) 444 

evaluated the performance of single-channel noise reduction in the listening scenarios of 445 

stationary speech-shaped noise and competing speech, they also found better and worse 446 

performance in the stationary noise and competing speech scenarios, respectively. They attributed 447 

this masker-differentiated performance to the errors to estimate speech and noise power based on 448 

the speech presence probability in single-channel noise reduction processing. Baumgärtel et al. 449 

noted that in the stationary noise condition, speech and noise power estimates (or the separation of 450 

a noisy signal into speech and noise components) worked quite well, whereas in the nonstationary 451 

noise (e.g., competing speech) condition, estimation errors occurred and little performance 452 
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improvement was found. Future studies should investigate the degree of envelope waveform 453 

distortion generated by processing with existing single-channel noise-suppression algorithms. In 454 

addition, two different SNR levels were used for the SSN and 2TB conditions in Experiment 1, 455 

i.e., a negative SNR of -2 dB for SSN and a positive SNR of 6 dB for 2TB. It remains to be 456 

resolved how this SNR level difference interacts with masker type in determining the 457 

intelligibility of noise-suppressed vocoded speech. 458 

 459 

C. Influence of envelope dynamic range compression on the intelligibility of vocoded speech 460 

 In addition to demonstrating a perceptual advantage of employing a tone carrier over 461 

employing a noise carrier in the vocoding process, the present work showed that these two types 462 

of vocoded speech were associated with differing responses to envelope dynamic range 463 

compression. Dynamic range narrowing has been shown repeatedly to impede speech 464 

intelligibility (Fu and Shannon, 1999; Loizou et al., 2000; Chen et al., 2013). Fu and Shannon 465 

(1999) measured phoneme recognition in CI users when the dynamic range of the input speech 466 

signals was reduced by either peak clipping or center clipping. The compression strategy in Eq. (1) 467 

in the present study follows that in Chen et al. (2013), and is similar to that developed in Loizou 468 

et al. (2000). That is, both compression strategies use a linear transformation to convert the range 469 

of the input amplitude envelope to a smaller range of the output amplitude envelope; however, the 470 

main differences lie in (1) how the minimum envelope amplitude of the input signal is determined 471 

and (2) how the linear transformation is designed. In addition, the compression strategy in Eq. (1) 472 

preserves the loudness of the processed speech signal. 473 

 The present work further showed that noise-vocoded speech was more negatively affected by 474 

reducing the envelope dynamic range. With the same compressed envelope waveform (e.g., 475 

compression factor of 𝛼𝛼 = 0.5 or 0.2 in Fig. 4), noise-vocoded speech showed a much larger drop 476 

in intelligibility than did tone-vocoded speech relative to the uncompressed condition (i.e., 477 

compression factor of 𝛼𝛼 = 1.0). For instance, at 3 dB SNR level, compared to the uncompressed 478 

condition, a 6-dB drop of envelope dynamic range reduced intelligibility by 4.6% and 29.8%, and 479 

a 14-dB drop reduced intelligibility by 18.8% and 67.5%, for TV and NV speech, respectively 480 

(Fig. 5). This result indicates that narrowing the envelope dynamic range has a more negative 481 

influence on noise- than on tone-vocoded speech. This finding may not be fully attributed to the 482 
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confounding factor of saturation or flooring effect when comparing the intelligibility of TV and 483 

NV speech (see Fig. 4). Analysis in Fig. 5 excluded the effect of saturation/flooring in 484 

intelligibility scores by choosing two different SNR levels for TV and NT speech (i.e., -3 dB and 485 

3 dB, respectively). Again, it is observed in Fig. 5 that NV speech is more susceptible to the 486 

influence of reduced envelope dynamic range than TV speech, and its intelligibility score drops at 487 

a higher range than TV speech does. 488 

  489 

D. Implications of vocoder-based acoustic simulation for studies with CIs 490 

Vocoder simulations have been used for inferring systematically effects of noise suppression 491 

and dynamic range compression on speech intelligibility for the purpose of implications in CI 492 

listeners (e.g., Lai et al., 2015). Researchers have also developed speech-processing strategies for 493 

tonal languages (e.g., Mandarin Chinese) and have applied vocoder simulations for assessing their 494 

performance (e.g., Luo and Fu, 2006, Lan et al., 2004). Establishing an optimal vocoder for 495 

acoustic simulation in CI studies remains an important issue. Although tone-vocoding yields an 496 

intelligibility advantage over noise-vocoding, both simulation types may reflect speech 497 

intelligibility performance trends with respect to manipulations of acoustic cues. The present 498 

study provides evidence of an intelligibility difference between NV and TV speech for NH 499 

listeners when an extra signal-processing block is involved in the vocoding process. 500 

The better intelligibility of TV sentences relative to NV sentences may be due, at least in part, 501 

to the spectral sidebands contained in TV speech and the absence of intrinsic temporal 502 

fluctuations in sine wave carriers. Accordingly, when the vocoding process is combined with 503 

another signal-processing block, such as noise suppression or envelope dynamic range 504 

compression, it is necessary to consider potential interactions between the nature of the carrier 505 

signal and distortion produced during signal processing and how such interactions may impede 506 

the performance of the signal. The lower intelligibility of the NV speech might be attributable to 507 

envelope distortion caused by noise suppression and/or increased envelope distortion when the 508 

noise-suppressed envelope is multiplied by a noise carrier containing noise-like amplitude 509 

fluctuation. Conversely, the higher intelligibility of TV Mandarin speech may be due in part to a 510 

potential contribution of the spectral sidebands in the tone-vocoding process. 511 
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Although the tone and noise vocoders implemented in this work mimic speech processing in a 512 

CI device, many patient- and device-specific confounds were not addressed, including electrode 513 

array insertion, spread of the electrical field generated by the implant, etc. Williges et al. (2015) 514 

used a modified vocoder to sample the envelope waveform in each channel with either sequential 515 

or randomized pulse train. Spatial spread of the electrical field was simulated by multiplying each 516 

pulse with a two-sided exponential decaying function; additionally, an auralization step was 517 

implemented to mimic the transfer of signals in each channel to their respective positions along 518 

the cochlea. This vocoder implementation provides a realistic simulation of the technical and 519 

physiological steps of signal processing in CI listeners. Future work should investigate the effect 520 

of modelling such physiologically-inspired features on the results presented here. 521 

 522 

E. Limitations of the present work 523 

 First, the present work was focused selectively on the effects of noise-suppression and 524 

envelope dynamic range compression on the intelligibility of vocoded sentences. Many other 525 

factors that may affect the performance of these two vocoder types were not considered, such as 526 

envelope cutoff frequency, the number of channels, and filter width. Notably, Rosen et al. (2015) 527 

showed that a noise vocoder yielded a higher intelligibility than a tone vocoder for a small 528 

number of channels (i.e., 2–5). Second, the contribution of the selected cutoff frequency (200 Hz 529 

in this study) for extracting the envelope waveform needs to be further investigated. With a 530 

200-Hz cutoff frequency, the original signal (envelope, and a portion of full-wave rectified fine 531 

structure waveform) is preserved through channel one (with cutoff frequencies of 80 Hz and 221 532 

Hz) with the tone vocoder, but not with the noise vocoder which adds noisy fluctuations. Third, 533 

the tone vocoder modulates the carrier sinusoids in each frequency channel, i.e., the narrow-band 534 

signals. The noise vocoder, however, modulates white noise in each channel and then the 535 

amplitude-modulated white noises are bandpass-filtered; or the noise vocoder modulates 536 

wideband signals. Hence, it is possible that the aforementioned relative intelligibility deficit of 537 

noise-vocoded speech simulations may be due, perhaps in part, to the additional narrowband 538 

filtering of the amplitude modulation that occurs at the end of the noise vocoding process. Fourth, 539 

the present work used the envelope dynamic range compression strategy developed by Chen et al. 540 
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(2013). It is possible that a different pattern of results would be obtained with the use of 541 

alternative compression strategies. 542 

 543 

In conclusion, the present work assessed the effects of noise suppression and envelope 544 

dynamic range compression on the intelligibility of vocoded Mandarin sentences, and compared 545 

the intelligibility of tone- versus noise-vocoded speech. The following conclusions can be drawn: 546 

1) Under all test conditions, tone-vocoded Mandarin sentences showed higher intelligibility 547 

scores than did noise-vocoded sentences. This perceptual advantage is consistent with 548 

earlier findings. The present study extends this result to vocoded speech that was 549 

processed through a noise-suppression algorithm and through envelope dynamic range 550 

compression. The perceptual advantage of tone-vocoded Mandarin speech might be 551 

attributable to the spectral sidebands contained in tone-vocoded speech and the influence 552 

of the amplitude fluctuation of a noise carrier. 553 

2) The intelligibility benefit of noise suppression on both tone- and noise-vocoded speech 554 

was dependent upon the masker type employed. When corrupted by a steady-state noise, 555 

existing single-channel noise-reduction algorithms (e.g., Wiener filtering) might cause 556 

intelligibility improvement. However, when corrupted by a competing masker (e.g., 557 

two-talker babble), most existing noise-suppression algorithms did not yield 558 

intelligibility improvement. 559 

3) While the envelope dynamic range was narrowed, both tone- and noise-vocoded speech 560 

showed reduced intelligibility performance. However, noise-vocoded speech was more 561 

negatively influenced by envelope dynamic range compression, yielding a substantial 562 

intelligibility gap between tone- and noise-vocoded speech. 563 

4) When additional signal processing is involved in vocoder simulations, interpreting the 564 

functional contribution of this processing should be done cautiously. The nature of the 565 

carrier signal in the vocoding process and the envelope distortion caused during signal 566 

processing may jointly affect the intelligibility of vocoded speech. 567 

 568 
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