ANGLIA RUSKIN UNIVERSITY

THE RESILIENCE AND OPTIMISATION
OF CLOUD COMPUTING

RAZVAN-IOAN DINITA

A thesis in partial fulfilment of the requirements of
Anglia Ruskin University for the degree of
Doctor of Philosophy

February 2015

Acknowledgements

[would like to express my special appreciation and thanks to my advisor Professor Dr.
Marcian Cirstea, you have been a tremendous mentor for me. [would like to thank
you for encouraging my research and for allowing me to grow as a research scientist.
Your advice on both my research as well as on my career has been priceless. [would
also like to thank Dr. George Wilson and Mr. Adrian Winckles for serving as my
Supervisors and offering me support and guidance throughout my research. All of you
have been there to support me when I conducted my experiments and collected data
for my PhD thesis.

A special thanks to my family, words cannot express how grateful I am to my mother
and father for all of the sacrifices that you’'ve made on my behalf. Your prayers for me
were what sustained me thus far. I would also like to thank all of my friends who
supported me in writing, and encouraged me to strive towards my goal. At the end I
would like express appreciation to my beloved partner Brindusa who spent sleepless

nights by my side and was always my support in the moments of need.

ANGLIA RUSKIN UNIVERSITY
ABSTRACT

FACULTY OF SCIENCE AND TECHNOLOGY
DOCTOR OF PHILOSOPHY
THE RESILIENCE AND OPTIMISATION OF CLOUD COMPUTING
RAZVAN-IOAN DINITA

February 2015

The field of Cloud Computing is relatively new branch of Information Technology
in which various services are devolved from a centralised local location to a de-
centralized remote Intranet/Internet environment. It has recently experienced rapid
growth and acceptance with academia and industry, presenting new challenges
worthy of fundamental research. Some of the largest challenges today revolve around
achieving higher levels of sustainability and infrastructure performance.

This work investigates an optimised and novel approach to an Autonomous Virtual
Server Management System in a ‘Cloud Computing’ environment through designing
and building an Autonomous Management Distributed System (AMDS). The AMDS
helps reduce hardware power consumption through autonomously moving virtual
servers around a network to balance out hardware loads, as well as being easily
configurable and extendable, made possible by its software infrastructure. Through
use of an internally configured Cloud Computing test-bed rig, the AMDS makes use of
several physically and logically defined networks to communicate with all devices
that are a part of the cloud infrastructure. Once connected, the AMDS monitors these
devices and issues optimisation commands accordingly. Experimental results show
an overall power consumption reduction of up to 8%, which in a typical datacentre of
several thousand servers translates into a significant cost reduction.

This work also presents an initial design, along with proof-of-concept
implementation as an AMDS module, of a Botnet heuristic detection algorithm.
Experimental results show an overall malicious data packet detection rate of 52%, a
significant figure for only 5000 data samples analysed by the module. Another
strength is that this design allows an abstract software model to be constructed,
which can then be implemented using a multitude of programming languages.

This research shows how the carbon footprint of a Cloud Computing datacentre
can be reduced and reveals a significant impact on issues of sustainability with
respect to both energy efficiency and economic viability. It also shows how datacentre
security can be enhanced by detecting Botnet activity and preventing the disruption
of day-to-day operations through a highly scalable, flexible, and autonomous software
implementation.

Key words: Distributed Software, Carbon Footprint, Sustainability

ii

Table of Contents

ACKNOWLEDGEMENTS ...ociitimmmmmmsmsisssnissassssssssassssssssssassssssssassans |
ABSTRACT .ot AR R RSB R R SRR AR R R AR AR RS 11
L0100 o 2 L \'
CHAPTER 1: INTRODUCTION ...ccviiiimiimmmsismsmssassssssssssssssssas 7
1.1 RESEARCH SCOPE AND OBJECTIVES ..eturesuressresssesssesssessssessssessssessssenssssassssssssssssssassssasssssssssnssssnssesassesasses 9
1.2 RESEARCH OBJECTIVES BREAKDOWN — FILLING THE KNOWLEDGE GAP......ootoreereeurerenreesneesseseanes 10
1.3 APPROACGH ettt sseessesss s s s s s s e e £ R e RS E e e e bR E e nE e et 12
1.4 ORIGINAL CONTRIBUTIONS TO KNOWLEDGEcctoturtureeuseseuseseusesessesessesessessasessssessssessasessasessasessasessasessanes 12
1.5 OVERVIEW OF THE THESIS....vusstsseresrerssesesressessessesssssessssssssssssesssssssssesssssssssessssssssssssssssssssssssssssesssssssssssees 13
CHAPTER 2: A REVIEW OF STATE-OF-THE-ART IN CLOUD COMPUTINGcoesusnrunes 17
2.1 INITIAL BACKGROUND CONSIDERATIONS .oreutureueuresesresssressssessssensssessssessssensssessssensssenssssssssesssessssessssesasseeas 17
2.2 CLOUD COMPUTING HISTORY .ecureiuresuresurenssresssesssessssessssessssessssessssessssessssessssessssessseesssesssssessssssssessssesassesas 19
2.2.1 EQTLY HISEOTY wreoreeeeeeerieerisseassesseesssssasssassesssessssssssssssesssssssssassssssesssssssssassesssesssssasssassssssesssssanssassssssesssssanss 19
2.2.2 RECENE NISTOTY coorreureeurirereresseassesssesasssasseassesssesssssassssssesssssssssassssssessssssssssssesssesssssasssasssssesssssasssassssnsesssesanes 20

2.3 CLOUD COMPUTING — DEFINITION AND TERMINOLOGIES....c.ccesuressresrresrresssensssesssensssensssessssessssensseeas 21
2.4 CLOUD ESSENTIAL CHARACTERISTICS, AND SERVICE AND DEPLOYMENT MODELS....ccoceetreneereernens 22
2.4.1 ESSENtiAl CRATACEETISTICS..c.ccrrecrrsirissirisssirsscrnsisissesisssssssessssisssesisssssssssssessssessssssssssssmssssssssansesases 22
2.4.2 SEIVICE MOUEIS c...coorreresevsirsscrssirissssissscvsserssisissesisssssssssass s s s ssssssassesassssesssssssssassssansesanses 23
2.4.3 Cloud dePIOYMENTE MOUEIS.....ceoerereeerrerseresrirseseesssesssssssssssesssessssassesssesssssssssassesssessssssssassssssesssssanes 24

2.5 LOGICAL BREAK-DOWN OF CLOUD COMPUTING ENVIRONMENTS ...coveureurerrmemenressesesressssnsessesssssssaseens 25
2.6 DATACENTRE STRUCTURAL DESIGN ..eeiuresureerressresssesssesssessssessssessssessssessssessssessssessssessseesssssssseesssesassecas 27
2.7 CLOUD COMPUTING STANDARDS....cceturesuressreesressressssessssessssensssessssssssssssssssssssssssssssesasssssssessssesassessssesassesas 28
2.8 COMMERCIAL CLOUD OFFERINGS...ccturesureussresssressressssessssessssessssessssessssessssessssessssesssssassessssesssssssssessssesnssesas 30
2.8.1 VMWare vSphere and vCenter Operations Management SUILESc.ouewroreconserseesnes 30
2.8.2 XON PTOJECE HYPCIVISOI .coreeerreverireenireeenssscansssesssssessssassssssassssssassssessssssessssssesssssssssssansssssassssssasssas 32
2.8.3 VMWare vs. Xen Project Hypervisor - Why VMWare was ChOSenNcoureveeonseseeranes 33

2.9 ALTERNATIVE SOLUTIONS TO CLOUD MANAGEMENT AND SECURITY ENHANCEMENT......cccereueune. 34
2.9.1 Web-based SOftWATE APPITOACHceueeereesrerseerseerseseassesssesssesassssissssssssessssessssssissssssssssssssasses 34
2.9.2 Reconfigurable Datacentres using Virtual Computing Laboratory (VCL).................... 35
2.9.3 Dynamic, CUSLOM-DUIIL HYPEOTVISOL cuerurrrerererecreersssissssssesssessssassesssessessssssassesssesssssnssassssssesssssanes 36
2.9.4 A full-stack Cloud Management SOIULIONccoweeeereneerossesnserisssrisssesssesassesissssssssssssesnses 36
2.9.5 Queuing Methodology for Reducing Datacentre Power COnSUmMption............... 37
CHAPTER 3: BOTNETS AND BOTNET MONITORING TECHNIQUES.......cccocunmnmsnsnsisnsnnns 40
3.1 BOTNETS tetueeeueecureesresssessssessssessssessssessssessssessssessseeasssessseessseessseessseessseessseeasssesssseusseesssesassesassesussessssessssesassecas 40
3.1.1 Botnet CommunicAtion ArCRIEECEUTES.....cirmirnieeonseronsirnscrissisissssssssesssesissesisssssssssssssesansesanses 40
3.1.2 Botnet EXPOSUIE TOCANIQUESccoveecerrererseesecsseessssassssssesssesssssassesssessessssssassesssesssssssssassssssesssssanes 42
3.1.3 Botnet deteCtion tOCANIQUES........occvweevereerersreseesseessssssssssesssssssssassesssessessssssassesssesssssasssassssssesssssanss 43

3.2 BOTNET MONITORING TECHNIQUES AND TOOLS FOR USE IN A VIRTUAL ENVIRONMENT 44
3.2.1 NetFlow based Traffic MONIEOTINGccroreerreersssessssessssesssesissssissssssssessssessssesasssssssssssssesanses 44
3.2.2 IPFIX based TraffiC MONIEOTING.......couerreeosrironseriseerissssssssesssesassesasssssssssssssessssessssssssssssssssssssesasses 47
3.2.3 Netflow vs. IPFIX — Why Netflow WaS CROSENccomreueveerseernsirinserisssrisssesassesissesissssssssssssesnses 48
CHAPTER 4: RESEARCH METHODOLOGYocovmmmsmsmmmssmsnmsissssmnisssssssssssssssssssssssssssssns 50
4.1 SOFTWARE PACKAGE REVIEW ...uotitiririreusereusesessesesseseaseseasssessssessssessssessssessssessssessssessssessssessssesssssassssassssans 50
4.2 VSPHERE JAVA API PRESENTATION ...cvtrirtreurereuseseuseseusesessesessssessesessesessssessssessssessssessssessssesssssssssssssssassssans 51
4.3 UBUNTU OPERATING SYSTEM OVERVIEW w.couuiussiissanss 55
4.4 ADOPTED SOFTWARE ENGINEERING METHODOLOGY ...vueuitersnesssasssens 56
4.5 TESTING PRINCIPLES wecvutuumsrssusssesssssssessssasssssssasnsass 58

CHAPTER 5: AUTONOMOUS MANAGEMENT DISTRIBUTED SYSTEM (AMDS) - THE
SOFTWARE 61

5.1 AMDS DESIGN CONSIDERATIONScotveureueersessessessssssessesssssssssessssssssesssssssssessesssssssssessssssssressssassssessssassaneses 61
5.2 AMDS DESIGN SPECIFICATIONS....cuttreureureereessessessssssessesssssssssessssssssssssssssssessessssssssssssssssssessssassssesssssssaseses 62
5.3 AMDS IMPLEMENTATION ...vuturseueseersessessessssssessesssssssssesssssssssesssssssssssssssssssessessssasessesssssssssessssassasessssassanesns 66

53.1 Programming Language CONSIAEIALIONScoweverermreemrernsesissesisssesssessssesassssassssssssessssesasssses 66

5.3.2 IMPICIMENEALION PrOCESS....coureeirerueeriseerisssssssesssesassssassssissssssssessssssassssssssssssssssssssasssssssssssssessssesassses 67
5.3.3 AMDS VirtuQl MACRAING SEUUPcuueeeeeeererreeerseersserisssrisssesssesassssissssissssssssessssssassssassssssssssssesassses 72
534 AMDS Setup on the Virtual MACHINE......eeeseeeeeresreesrtrsstrisserisssesssesissesssssissssssssessssesasssses 75
5.3.5 Autonomous Virtual Machine Managementeroseronssesssesssesissssissssssssessssesasssses 75

5.4 AMDS LIFETIME OPERATIONAL LOGIC FLOW w.evtvvvureuerrsesesessssssessessssssssesssssssssessesssssssssesssssssssesssssssanesns 76
CHAPTER 6: AMDS SYSTEM ENHANCEMENT - BOTNETScccciinmnmnmimnmnmnnnmsnsssssssesnans 79
6.1 DETECTION OF SUCCESSFUL NETWORK HIJACKING ATTEMPTS — AN ABSTRACT MODEL......cccevnc.. 79
6.2 AMDS BOTNET DETECTION MODULE - DESIGN ...ccureturesuressressssessssesssessssessssessssessssessssessssessssssssssssseeas 82

CHAPTER 7: CLOUD COMPUTING TEST BED - SOFTWARE DEPLOYMENT ON
HARDWARE 85

7.1 CLOUD TEST BED HARDWAREccoutitureseressreesses e sessssessssessssess s et snsnssneas 85

7.2 DEPLOYMENT OF THE AMDS ON THE CLOUD TEST BED ...cceureiirisireerreei e ssessseens 89

7.2.1 Experiment 1: Ensure Correct AMDS OPeratiON..... v oeomcorrnsconersscnssssessssonsssseossssseasesns 90

7.2.2 Experiment 2: AMDS NetWOrk SAMPIING .coceeeeveeeseeereceeerserssrsecseersessssissssssesssssssssssssssesseess 93

7.2.3 Experiment 3: AMDS Performance MeaSUTEMENLScwronerssesonsesnsesssssssssssssesnses 95

7.2.4 Experiment 4: AMDS Botnet Module Detection Capabilities ... oronssonseseens 97

7.3 DEPLOYMENT RESULTS ANALYSIS ..cutreutureussresesresssesessessssessssessssessssessssessssssssesssssssssesassessssesssssssssessssesassecas 98

7.3.1 Ensure Correct AMDS Operation EXPeriment RESUILS.......c.ococceronsronseonsesseessessnssassesseess 99

7.3.2 AMDS Network Sampling EXperiment RESUILSoowercoreersserossrensenseesseessssissesssessessansses 105

7.3.3 AMDS Performance Measurements EXperiment RESUILScumeoreeronserneerineseens 109

7.3.4 AMDS Botnet Module Detection Capabilities Experiment ReSUILS.........ccouerecrrecrarere. 113

CHAPTER 8: AMDS - OPERATIONAL PERFORMANCE AND EFFICIENCY EVALUATION
119

8.1 EXPERIMENT 1 RESULTS SUMMARYoouturisereesreessessssensssessssessssessssessssessssessssessssssssssssssesssssssssssssssssscas 119

8.2 EXPERIMENT 2 RESULTS SUMMARYooutureeereesreessessssensssesssseusssessssessssessssessssessssessssessssssssseasssssssssssscas 120

8.3 EXPERIMENT 3 RESULTS SUMMARYoouturisereesreessessssensssessssessssessssessssessssessssessssssssssssssesssseasssssssssssscas 120

8.4 EXPERIMENT 4 RESULTS SUMMARYcouturissreesreessessssesssessssessssessssessssessssessssessssssssssssssssssseassssassssssscas 121

CHAPTER 9: CONCLUSIONS AND FURTHER WORK ..ot 124

9.1 REFLECTION ON AIMS AND OBJECTIVES ..cusuettrusssresssressresssesssessssessssessssessssessssessssesssssssssssssssassssssssssssscas 124

9.2 ORIGINAL CONTRIBUTIONS TO KNOWLEDGE ..cucuruttreueeresssesssrensssesssessssessssessssessssessssessssessssesssssssssenssseas 126

9.2.1 A novel method of optimising cloud networks in terms of energy consumption and

SYSLEIN OPETALION (AMDS) oooeeetresreseeesseresesis s sseis s essss s sesassssss s sas s s asassss s ssssssssssesassesasessassssens 126

9.2.2 A novel method to prevent, detect and stop network intrusions and malicious

behaviour in @ ClOUA INfIASEIUCTUIEcuueeeeeeeeetreeresserssesissesisessisssessssesassssissssssssssssesassssassssassssasssesans 127

9.2.3 A flexible solution to a general communications/networking problem..................... 128

0.3 FUTURE WORK ..ccuteeurereureesseesseessesessessssessssessssessssessssessssessssessssesssseussseusssessssesssstssssesssssssssesssssansssassssanseas 129

LIST OF FIGURES......iciiiiimmmmsnmmnsisssinissss s ss s s s ss s sssmsssassssssssassssssnsas s s VI

LIST OF TABLES ... s s ss s sssssassssssssss s sssan s VII

LIST OF CODE FRAGMENTS ... s ssssssssssssssssssassssssssassssssssasssses VIII

LIST OF EQUATIONS ...cotitiimmsmssmssmsnissssssisnissssssssssssssssssssssssssssassssssssss s sssassssssmsssassssssssasassssnsas s s IX

REFERENCES ..o st st s ss s s s smsas s sssasas s s X

PUBLICATIONS BASED ON THIS WORK (SEE APPENDIX B)cconnnmmmmmmmmssssnns XVII

LIST OF APPENDICES ..o sssssssssssssssssssssssssssssssassssssssanss XVIII

iv

Copyright

This work may:

[. be made available for consultation within Anglia Ruskin University Library, or
[I. be lent to other libraries for the purpose of consultation or may be
photocopied for such purposes
[II. be made available in Anglia Ruskin University’s repository and made available
on open access worldwide for non-commercial educational purposes, for an

indefinite period.

Chapter 1: Introduction

Chapter 1: Introduction

Computing is a term referring to goal-oriented activities that revolve around
algorithmic processes (JTFCC, 2005). Ever since the middle of last century, the
scientific computing domain has evolved more rapidly than any other technology. It
began with highly simplistic computing devices, quickly moving to more complex
devices, and, for the better part of last half of the 20t century, evolving into very large
clusters of interconnected computing devices working towards the same pre-set

computational goals, almost identical to utility computing (Carroll et al., 2012).

“Cloud Computing” is a higher-level term used to describe distributed computing,
which involves data flows across real-time, high-speed networks. This enables the
possibility of running intensely computational applications across multiple physical
devices in parallel. This term, when used by laypeople, generally refers to generally
available online services. These services, although appearing to be supported by
physical hardware, are in fact running on virtualised hardware simulated by software
operating on real machines. One of the main advantages of this approach is the ability
to scale, up or down, these virtual infrastructures on the fly without any noticeable

service disruptions, similar to a cloud (CORDIS, 2013).

Cloud Computing is also viewed as the sum of multiple technology iterations and
paradigms. Its scope is to provide benefits from all involved technologies without
requiring their complete understanding. It aims to reduce costs and shift user focus to

the business side rather than keeping it on potential IT barriers (Hamdaqa, 2012).

A central part of Cloud Computing is virtualisation, that is, the deployment of
software versions of hardware implementations, such as Storage drives, CPU and
RAM modules, network devices etc. This enables physical infrastructure
generalisation, transforming it from the most immutable component to a highly
mutable, manageable collection of computing resources. As such, IT operation costs
are being reduced through improved implementation, speed and maximised
infrastructure utilisation. In addition, by employing autonomic computing processes,
clients are able to provide computing resources on-demand. Furthermore these
automations minimise user involvement, which in turn improves the speed of

operations whilst reducing human errors (Hamdaqa, 2012).

By employing notions from Service-Oriented Architecture (SOA), Cloud Computing
helps business clients avoid and overcome daily problems through computing
solutions. Through the services it provides that make use of tried-and-tested SOA
standards and best practices, Cloud Computing enables easy, global access to cloud

services in a homogenised manner (Hamdaqa, 2012).

Cloud Computing shares concepts with ‘utility computing’ which allows for cloud pay-
per-use models and services to employ metrics, so making them an integral part of
various autonomic computing processes. This allows for highly scalable and fault-
tolerant cloud services. Cloud Computing is also similar to ‘grid computing’, but
throughout its technological lifetime has managed to address potential quality of
service (QoS) and reliability issues. Cloud Computing also provides a large set of tools
that enable development of data and/or computer intensive parallel applications at a
greatly reduced cost compared to traditional parallel computing approaches

(Hamdagqa, 2012).

Due to the relatively infant nature of Cloud Computing, currently standards are still
yet to be definitive. Consequently several cloud platforms and services employ
proprietary standards, tools, and protocols developed in-house and fit for purpose.
This impacts heavily on the application migrations between cloud platforms making
the process complicated and expensive (McKendrick, 2011). These discrepancies are
generally referred to as vendor lock-ins, which can be of three types: platform, data,
and tools (Hinkle, 2010). Each of these lock-in types provides different challenges,
ranging from technical (platform lock-in) to data ownership (data lock-in) to

management tools (tool lock-in) issues.

A new Cloud Computing type has been defined in recent years called ‘heterogeneous
Cloud Computing’. This type of cloud environment hinders vendor lock-in, aligning
itself with enterprise hybrid cloud model based datacentres (Staten, 2012). The
nonexistence of vendor lock-in creates a choice of hypervisors (virtualized operating
systems) for specific tasks by removing the necessity of hypervisor flavour client
considerations (Vada, 2012). Heterogeneous clouds are typically made up of private,
public, and software-as-a-service clouds, all co-existing on-site, having the ability to
integrate well with traditional, non-virtualised datacentres. (Geada et al., 2011) They
also are composed of multiple vendor-supplied hypervisors, servers, and storage

(Burns, 2012). Cloud systems expose Application Programmable Interfaces (APIs)

8

that are quite often ill matched with each other. This raises numerous technical
compatibility issues when migrating applications between vendors or systems. A
pertinent solution would be the adoption of common standards (Livenson et al,

2011).

Cloud Computing services were first made available to the general public in 20061
followed by proprietary Cloud services as offered by Amazon EC2, Google and
Microsoft for example. The main driver for this technology has come from the need to
reduce operation costs and at the same time maximise hardware resource utilisation,
which led to years of individual company efforts to further develop these in-house
software tools and platforms. All of the key companies in this field have developed
proprietary software to help better manage the Cloud infrastructure.

As such, due to the highly commercial nature of these companies, they have not at any
point in time fully shared their recent technological advances amongst themselves as
well as with the wider public, being academic or otherwise. Such technology designs
have not been fully made public and are not available in any of the available academic
literature (journal and conference papers, books). Whilst similar technological
solutions are available, most are Field-Programmable Gate Arrays (FPGA) based,
making them very rigid in terms of adaptability and flexibility. This has left a

significant gap in knowledge, which fundamental research is able to fill.

1.1 Research Scope and Objectives

The question this research work is attempting to answer is:

Can the efficiency, security, and robustness of Cloud Computing be enhanced through
improved software design?

As such, the main aim is to create a software entity capable of interfacing with
existing infrastructure (Hypervisors, Routers, Switches, ILOs etc.) and obtain
information from each relevant network device / software. The entity would then
analyse this data and transmit commands back to the linked devices in order to

increase overall operational efficiency.

To achieve this aim, the following objectives will be pursued:

1 Barr, |.; (August 25, 2006). “Amazon EC2 Beta”, Amazon Web Services Blog.

9

Objective 1. Critically evaluate pattern of disruption across a Cloud infrastructure as a

result of an overloaded service request.

Objective 2. Conceptually develop a software optimization technique by which a Cloud

could autonomously manage the workloads placed on that infrastructure.

Objective 3. Implement and test a software application to achieve Objective 2 for a

specific Cloud scenario (VMWare Hypervisors).

Objective 4. Innovatively develop metrics that quantify Cloud vs. centralized service

provision in terms of environmental sustainability.

Objective 5. Conceptually develop an application that will identify virtualised system
hijacking and undertake a range of appropriate activities from simple notification to

service suspension.

Objective 6. Test the method/software and compare against other alternatives, e.g.

FPGA/hardware and other software systems.

The detail of these objectives will now be presented in terms of their specific

contribution to knowledge.

1.2 Research Objectives Breakdown - Filling the Knowledge Gap

Objective 1:

* The protocols that enable current network topologies to interface in such a
way as to support Cloud functionality are well established. However the effect
of an un-anticipated amount of people trying to access the same file/service is
poorly understood (Williams et. al., 2011). This effect will be investigated and

thoroughly documented.
Objective 2:

* Key causes of disruption will be examined and a solution will be designed and

developed to ensure the resilient and optimal operation of a cloud network.

10

The design will be of a modular in nature and, as such, easily extensible to

accommodate any type of Cloud infrastructure.

Objective 3 refers to the management of a Cloud Computing network and is

comprised of three parts:

The optimised running of a cloud will be investigated and a new set of metrics
that can be tested will be developed to quantify the efficiency (carbon
footprint) of an optimised cloud network compared to a non-optimised cloud
network and to a non-cloud infrastructure (Anderson, 2010; Armbrust et.al,,
2009; Chou etal,, 2011).

Management tools are available to enable Cloud Administrators to re-
configure hardware loadings according to service demands, but the approach
is largely by-trial-and-error (Moretti et. al, 2008; Tsutomu, 2010). This
research will test existing tools and design and develop a new set of tools
aimed at helping Cloud Administrators improve overall cloud energy efficiency,
while at the same time maintain an acceptable level of service.

Existing management technology designs are available, however most are a
FPGA based, making them very rigid in terms of adaptability and flexibility
(Murakami, 2008; Cirstea, 2003; Junyoung et al., 2009). This research, through
the software it will produce, will present a viable and easy to use alternative to

existing approaches.

Objective 4:

One consequence of the adoption of Cloud Computing in the commercial sector
is that companies do not need to invest in their own hardware infrastructure.
This has environmental consequences and their quantification is important for
developing strategies for a sustainable environment (Chou et al,, 2011). This
research will attempt to quantify the environmental sustainability of Cloud

Computing.

Objective 5:

A botnet is a group of compromised computers connected to the Internet. Each
compromised computer is called a bot, and could include individual virtual
bots within a virtualised system. Whilst there are tools to protect a Cloud from
such malware attacks, a very poorly researched area is how a successful

hijacking of a Cloud’s virtual operating system could be identified (Zeidanloo,

11

et. al, 2010; Chandrashekar, 2009; Ke et. al., 2009; Murakami, 2008;
Rutkowska et al., 2008). This research will develop a technique to identify the

successful hijacking of a Cloud’s virtual operating system.

Objective 6:
* In the context of this research a VMWare based cloud technology is being used
to test Objective 3. This research will use Objective 3’s results to compare the
proposed software solution to other similar, but FPGA based, technology test

results in terms of reliability, efficiency and flexibility.

At this point, an overview of the methodological steps undertaken towards filling the

research gap will be presented.

1.3 Approach

Since the focus of this research is on software, the author has chosen to follow a
traditional Software Development methodology from the point of view of designing,
implementing, and testing the AMDS. The steps undertaken and the reasoning behind
each of these steps will be presented in a later chapter, but broadly speaking the

following has been undertaken:

* Review of the State-of-the-Art
* Developing the Software
e Setting it up on Hardware

* Optimising the Software

The Gantt Chart in Appendix A presents further information on the project

management of this research.

1.4 Original Contributions to Knowledge

This research work has resulted in several contributions to knowledge in this subject

area and are briefly listed below.

12

i. A novel method of optimising cloud networks in terms of energy consumption
and system operation. The novelty consists of the software’s ability to

reconfigure itself on the fly based on live network readings.

ii. A novel method to prevent, detect and stop network intrusions and malicious

behaviour in a cloud infrastructure.

iii. A flexible software solution (as opposed to the general approach of using rigid
hardware) to a general communications/networking problem. The software
solution will automatically acquire data about traffic and hardware loads of a
cloud infrastructure, analyse them and redistribute loads for efficient energy
management and optimal data communication parameters (security, data

transfer speed, access wait times, power consumption).

1.5 Overview of the Thesis

This document is structured into nine chapters; the content and purpose of each are

briefly described as follows:

Chapter 1, ‘Introduction’ sets the research context by providing a brief look into the
history of Cloud Computing. It identifies several key issues still in need of research as
well as present the research questions that the author has set out to investigate. The
benefits of creating an autonomous system capable of optimising a Cloud Computing
environment from an energy consumption point of view are briefly described, as is
how such a system is capable of detecting unauthorised access of a Cloud

infrastructure network.

Chapter 2 ‘A review of the state-of-the-art of Cloud Computing’ then follows which
includes the relevant literature background that has shaped the research questions,
and the optimization implications for efficiency (carbon footprint), management and

security.

A detailed explanation of what a Cloud Computing environment is composed of and
several Botnet monitoring techniques are described in Chapter 3 entitled ‘Cloud

Principles of Operation and Botnet Monitoring Techniques’. It describes each typical

13

component of a cloud and how they interact with one another within that overall
Cloud structure, as well as going over some of the better-known Botnet detection

techniques.

Chapter 4, the ‘Research Methodology’ chapter focuses on the approach and strategy
taken to answering the research questions. The design and configuration of a Cloud
Test Bed is described including both the virtual (network and software) and the

physical (hardware and physical parameters) aspects of the infrastructure.

The title of Chapter 5 is ‘Autonomous Management Distributed System (AMDS) - The
Software’ which focuses on the design, development and the implementation of the
AMDS. It considers the following main points:
* the network optimization technique that serves as basis for the software
implementation;
* the design of all system components and the relationship between them ;
* the development strategy, detailing the steps undertaken towards the
implementation;
* the implementation process, including the choice of programming

language and what specific features were utilised.

The AMDS deployment strategy is described in Chapter 6; ‘Cloud Computing Test Bed
- Software Deployment on Hardware’, and also describes the detail as to how the
AMDS was installed on a Virtual Machine and what steps have been undertaken to
achieve interconnectivity between the Virtual Network interfaces and the underlying
physical hardware. It also focuses on how data results from the experimental work is
generated and presented in the form of logs over a period of several months, and also

presents some analyses of these results.

Chapter 7 ‘AMDS System Enhancement - Botnets’ utilises the Chapter 6 results in the
context of Network Hijacking. It presents, in depth, a novel prevention strategy that

could be implemented as a module of the AMDS.

The test results from the AMDS and other FPGA based solutions are compared side-
by-side in Chapter 8 ‘AMDS in Comparison with Alternative Solutions’. The
comparisons take into account how each solution performs in terms of security,

reliability, data transfer speed, access times and power consumption efficiency.

14

Finally, Chapter 9 summarises how energy costs can be driven down, operational
efficiency improved and security enhanced by deploying the AMDS on any Cloud
environment (proof of concept was developed on a VMWare backed test bed). The
work reflects on the initial research questions and evaluates to what extent they have
been answered.

It also presents several ideas that could be part of future research projects. Such
projects would utilise and expand the AMDS to further benefit a Cloud Computing

environment.

15

Chapter 2: A Review of State-of-
the-Art in Cloud Computing

16

Chapter 2: A Review of State-of-the-Art in Cloud

Computing

An overview of the main themes and issues emerging from reviewing the research
literature related to Cloud Computing will now be presented, highlighting those key
issues that helped define this research field. The history and definitions comprising

Cloud Computing will also be addressed.

2.1 Initial Background Considerations

The first theme considered relates to the efficiency quantification (carbon footprint)
of an optimised cloud network compared to a non-optimised cloud network and to a
non-cloud infrastructure.

In their work on the future of Cloud Computing, Anderson et al. (2010) present the
views of several academics and researchers with respect to the efficiency of running
applications in a Cloud environment compared to traditional, localised applications
running on a desktop computer. They argue that running applications in the Cloud
improves overall operational efficiency of an application due to it not requiring
dedicated hardware, which most of the time translates into wasted resources if the
hardware is not running at full capacity. This also implies a higher than needed
carbon footprint and higher costs due to the suboptimal configuration.

Armbrust et al. (2009) also discusses the operational efficiency of cloud applications
compared to traditional approaches. It is argued that cloud environments provide a
much higher operational efficiency through optimally configured hardware resources,
and, as such, they render much lower operating costs and reduced carbon footprint.
Chou et al. (2011) argues that efficient computing is an area of development for Green
Computing - an energy and efficiency focused approach to Cloud Computing. From
there, Sustainable Computing emerged as a new development focused area of Cloud
Computing. In any case, they both focus on reduced carbon footprint through

improved efficiency through hardware and software design.

Another aspect investigated refers to the effect of an unanticipated number of people
trying to access the same file/service. This work will present the results of several
hardware overload experiments and their implications.

Williams et al. (2011) discusses the effects such an event would have in a datacentre

17

environment. It defines an overload as being caused by a Virtual Machine (VM) having
access to less memory (RAM) than needed, usually due to hosting a service accessed
by more people than initially anticipated. The solution presented is a software-based
approach to VM Management capable of mitigating such overload events on-demand.

A tool designed to manage multiple VM clusters (queues) is presented by Bagci
(2014). It employs two algorithms managing the addition and removal of VMs to and

from the clusters, as well as client request redirection to the least utilised cluster.

This work will also look into what management tools are available to enable Cloud
Administrators to re-configure hardware loadings according to service demands. One
such tool is proposed by Moretti et al. (2008), a user-friendly abstraction engine/tool,
“All-Pairs”, to be used in data-intensive tasks. This would allow users to specify a
“high-level structure of the workload” (Moretti et al., 2008, Fig. 2 Caption), while the
abstraction engine takes care of partitioning and dispatching resources towards
completing the task.

Another similar tool, but more comprehensive as it is designed to act as a sole entity
on a cloud infrastructure, is presented by Feller et al. (2014). This tool, called Snooze,
builds on the strengths of existing open source cloud management solutions to
deliver a highly scalable and flexible complete set of tools for managing large scale

Infrastructure as a Service (laaS) infrastructures.

The consequences and effects of the adoption of Cloud Computing in the commercial
sector are also addressed. Chou et al. (2011) looks at trends and characteristics and
makes a case for companies adopting a sustainable Cloud Computing, presenting

increased automation, flexibility, and reduced operational costs as clear benefits.

Finally, this work also presents strategies/solutions towards how a successful
hijacking of a Cloud’s virtual operating system could be identified and mitigated.

It builds on work by Chandrashekar et al. (2009), which presents an overview of
botnets and stealthy malware and then goes on to discuss several defence strategies
for “current and emerging trends in botnet development”.

This research also looks at work done by Ke et al. (2009), which presents a software
based botnet detection tool implemented as a standalone application looking at
network traffic.

Murakami (2008) and Rutkowska et al. (2008) on the other hand, both present

software approaches as VM Hypervisor enhancements. They attempt to discover

18

botnet activity by having the Hypervisor discover malicious behaviour in already
infected VMs.

Zeidanloo et al. (2010) and Karim et al. (2014) looks at existing botnet detection
approaches and presents their strengths and weaknesses, while at the same time

categorising them into honey-pot and Intrusion Detection System (IDS) techniques.

2.2 Cloud Computing History

This section will present a timeline of the Cloud Computing developments throughout

history, from its early days until more recent times.

2.2.1 Early History

Cloud Computing concepts first emerged in the 1950s, when large-scale mainframes
were made available to be used in different size organisations, ranging from schools
to big corporations. Since the initial design of the mainframe required significant
amount of physical space to operate, they generally resided within their own room,
and network access was facilitated via simple design machines known as dumb
terminals. Due to the high costs of purchasing and maintaining mainframes, multiple
users shared the same data storage layer and CPU power from any station. This

practice yielded better return on investments (Strachey, 1959).

In the 1970s, IBM designed an operating system called VM that made it possible for
several virtual environments (Virtual Machines - VMs) to coexist on the same physical
mainframe system. These VMs were capable of running different guest operating
systems, each with virtual access to a part of the total available physical RAM and CPU,
as well as direct access to CD-ROMs, Keyboards, Networking, etc. It was at this point
in time when virtualisation became the biggest technology driver in the recent history

of communications and computing areas (Smith et al., 2005).

As hardware costs slowly came down, it became necessary for a new paradigm shift
to occur. This was achieved through the development of a software system called the
Hypervisor, which was capable of bringing multiple physical nodes together and

presenting them as a single node operating under the same paradigm as the earlier

19

virtualisation principles. For visualisation purposes, this infrastructure design was

assigned the term of Cloud Computing (Ryan et al., 2013).

2.2.2 Recent history

Cloud Computing has only recently become a commercial reality. During the last
decade, the term “Cloud Computing” has become customary among large companies
having a major impact on how software is viewed in current computing paradigms. It
has shown big potential to innovate the IT industry and to make software more
attractive by taking into account that a large capital is no longer required to build a
customized hardware local infrastructure (Armbrust et al.,, 2010). Cloud Computing
thus offers companies a new way of using web services for their computing needs

(Breeding, 2012).

A significant number of companies have looked upon cloud services as a low cost
solution for data storage and computing needs (Corrado et al., 2011). According to
Armbrust et al. (2010), the inherent ability of cloud providers to sell their services on
a pay-as-you-go basis means that businesses are able to write off large investments
and maximise profits. A direct consequence is the reduction of their carbon footprint

by having less hardware on location.

In recent times, Cloud Computing has had a major economic impact and it is seen as
key to boosting the world’s competitiveness (Bornico et al,, 2011). An advantage of
using cloud services is that cloud resources are virtualised and the users can have
private access to their infrastructure. Another advantage is that cloud applications
are device-independent when compared to traditional approaches, meaning that any
device with a web browser (Desktop, Laptop, Table, Smartphone) is capable of

accessing them over the Internet (Baun et al., 2011; Barnatt, 2012).

As a prediction for the year 2020 made by the IT market research company Pew in
2010, services such as Yahoo!, Twitter, YouTube, Facebook, Hotmail or Google Apps
will end up implementing cloud technology because most people will want to easily
upload and share information (Anderson at al., 2010). Forrester Research expects the
cloud industry will grow from $41 billion in 2010 to $241 billion in 2020 (Breeding,
2012).

20

2.3 Cloud Computing - Definition and Terminologies

Cloud Computing is based on the principle of a host company developing software (a
Hypervisor) capable of managing multiple physical and virtual hardware at the same
time. This allows it to virtually portion physical hardware resources (CPU, RAM,
Storage) and securely assign them to different customers (Virtual Machines), thus
eliminating the need for one physical hosting device per customer. Multiple
Hypervisors are typically controlled by another higher-level software entity (e.g.:

VMWare vSphere).

More recently the term Cloud Computing has been used to describe a paradigm shift
in the Internet hosting industry. Since it was first mentioned in 2007, researchers
tried to define Cloud Computing from different points of view, but did not manage to
reach a consensus regarding its definition. One of the most clear and accepted
definitions for the term cloud given by NIST (Mell et al., 2011) is: “Cloud Computing is
a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g, networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”.

Another definition for the term “Cloud Computing” is given by Baun et al. (2011): “By
using virtualized computing and storage resources and modern Web technologies,
Cloud Computing provides scalable, network-centric, abstracted IT infrastructures,
platforms and applications as on-demand services. These services are billed on a
usage basis.” This definition is not as specific as the NIST definition and it does not

specify whether the services are provided by a distributed system or by a mainframe.

A core principle of Cloud Computing is resource sharing towards achieving scalable,
coherent economies over a network (Mell et al, NIST, 2011). As such, the cloud
employs processes that focus on maximising shared resources effectiveness. The
main drive for these processes is the cloud resource requirement of being
dynamically reallocated on-demand (Amazon Web Services, 2013). For example, the
cloud could allocate resources for European clients during European business times
towards supporting a specific application, and reallocate the same resources for
North American clients during North American business times to support an entirely

different application. This enables maximising of computing resource usage while at

21

the same time reducing environmental impact through the lessened need for power

(e.g. air conditioning, rack space) by different computational functions.

In conclusion, the author has chosen to use NIST as the de facto reference in this field
as this gives the most comprehensive definition of Cloud Computing as well as a clear

breakdown of the different components it comprises.

2.4 Cloud Essential Characteristics and Service and Deployment Models

According to NIST (Mell et al.,, 2011), Cloud Computing is in its most basic form a
model for enabling secure, reliable, on-demand network access to a shared pool of
computing resources, ranging from physical systems (routers, switches, servers,
storage) to logical systems (applications, services). These can all be provisioned and
released autonomously, as required by different scenarios and situations. This model

employs five basic characteristics, three service models, and four deployment models.

2.4.1 Essential Characteristics

According to NIST (Mell et al, 2011), cloud clusters evidence several defining

characteristics.

On-demand self-service. A client can, through the use of a fully automated and
autonomous Cloud management service, provision computing capabilities. These

translate into active server time (services, data analysis) and network storage.

Broad network access. Generally, over-the-network services are available through
standardised means to a range of different thin and thick client devices. These range
from small mobile devices (phones, tablets, laptops) to fully fledged workstations

(PCs) (Mell et al., NIST, 2011).

Resource pooling. The Cloud’s resources are pooled together to service multiple
clients simultaneously. This is achieved by dynamically assigning and reassigning
physical and logical resources in accordance to current demand. Although the client

has, most of the time, no actual control of their data’s physical location, they can in

22

some cases specify a location at a higher abstraction level. Options tend to be limited
to country, state, or datacentre. Available resources include storage, computation

power, memory (RAM), and network bandwidth (Mell et al., NIST, 2011).

Rapid elasticity. Cloud management systems typically offer the client scalability
options, which allow for rapid outward and inward resource scaling. This is, however,
hidden from the client who is given the impression of an unlimited amount of

resources put at their disposal (Mell et al.,, NIST, 2011).

Measured service. The autonomous management service responsible for the entirety
of Cloud resources makes use of metering capabilities at different levels of
abstraction appropriate to the type service (CPU, RAM, storage, network bandwidth,
active user accounts) to control, optimise, and maximise resource usage. These
capabilities provide both the consumer and the aforementioned management service
with means to monitor, control, and generate reports on the Cloud services employed

at a given time (Mell et al., NIST, 2011).

2.4.2 Service Models

Referring back to the NIST Cloud Computing overview (Mell et al., 2011), cloud

clusters employ three main service models.

Software as a Service (SaaS). SaaS is focused on software appliances as services. It is
defined as software that can be purchased without the need to purchase other
infrastructure in order to run it. The main difference between traditional software
and cloud-based software is that users do not need to update the system or fix bugs
any more. Users just have to register for an account and to log in through a simple
interface such as Google Chrome or Internet explorer over the Internet. The client is
given the capability to use Cloud services running on a physical network
infrastructure. Although applications are accessible through a typically wide range of
different devices, the client does not at any given point in time have direct
management access to the underlying infrastructure or core application capabilities,
except for limited user-specific configuration settings (NIST, 2011). Any problem

involving the software is now pushed out of the way and taken care of by the vendor

23

(Corrado et al,, 2011). For instance, many applications such as social media platforms

(Facebook) or office software (Google Docs) are SaaS based services.

Platform as a Service (PaaS). PaaS is based on computational resources as high-level
application platforms. This concept is difficult to understand by first time clients.
PaaS users have the choice of deciding which software platform (developed by a
software provider) to use. PaaS was developed to facilitate application development
and better manage potential issues. The client is given the capability to deploy
consumer applications created using software tools (programming languages,
libraries, services) supported by the Cloud service provider. The client does not at
any given point in time have direct control over the underlying infrastructure, but has
control over their own deployed applications as well as some configuration settings
within the application hosting environment (Mell et al., NIST, 2011). Examples of

PaaS are Microsoft Azure and Google App Engine (Corrado et al., 2011).

Infrastructure as a Service (laaS). 1aaS refers to a flexible, virtualised and scalable
service that facilitates access to hardware resources. Using [aaS, users can create,
maintain and keep backup copies of their servers in different physical datacentres.
The client is given the capability to provision CPU, storage, bandwidth, and other core
computing resources used to deploy and manage arbitrary software (operating
systems, system based applications). The client does not have direct control of the
underlying infrastructure, but does however fully control the applications or
operating systems they have deployed. The client might also have limited control
over some specific networking components (firewalls) (Mell et al., NIST, 2011). This
type of infrastructure service is usually associated with Amazon Web Services (AWS)
and its services, Elastic Compute Cloud or EC2 and Simple Storage Service or S3. [aaS
also includes Virtual Private Cloud (VPC, described in section 2.4.3), IBM Blue Cloud
or FlexiScale (part of Flexiant after being acquired in 20072) (Corrado etal., 2011).

2.4.3 Cloud deployment models

The Public Cloud is a type of cloud service that is available for general use, where

users just have to create an account and to sign in in order to run their applications.

2 https://www.flexiant.com /news/flexiant-targets-web-hosting-sector-with-cloud-infrastructure-
software/

24

This is typically free of charge within certain storage limits set up by the cloud
provider, but can also be subject to a monthly subscription. Providers also offer the
possibility of creating a VPN connection (Corrado et al,, 2011), securely linking in-
house servers to public cloud resources. There are many providers that offer public

cloud services such as, Amazon, Google, Microsoft or Apple.

The Community Cloud is a cloud infrastructure used by various organizations that
share common aims. This type of cloud can be managed by the organizations using it
or by a third party (Mell et al., NIST, 2011). Clients like the European Union or the U.S.
Government are using community clouds for the purpose of sharing resources around
the world and within different agencies. Community Clouds are also used in higher
education environments and libraries, some of these institutions having developed a

complex network they share with one another.

Private Cloud, or Virtual Private Cloud (VPC), is defined as an on demand service that
provides infrastructural resources and maintained solely by an IT department within
private businesses other than known cloud providers. The aim of these private
services is not to sell an amount of storage over the Internet through its interfaces
(Sotomayor et al.,, 2009), but are focused on providing a flexible and infrastructure for

private use within the organization.

The Hybrid Cloud is a type of cloud service that allows users to run their applications
using more than one cloud service or provider, which allows them to take full
advantage of each deployment model (Corrado et al., 2011). More often than not, a
hybrid cloud is a combination between private cloud and public cloud (Zhang et al,,
2010). A key advantage hybrid clouds possess is the VI management interface where
specific requirements such as providing a homogeneous view of virtualised resources
or managing the full lifecycle of a virtual machine must be fulfilled (Sotomayor et al.,

2009).

2.5 Logical Break-down of Cloud Computing Environments

Cloud Computing systems are generally regarded as two separate, but interconnected
entities. The Backend is comprised of the entire Cloud network (wired physical

network and server hardware), while the Front-End represents the user side, which

25

aids in administration as well as service usage (Brodkin, 2007).

The Front-End typically makes use of either specialised or more commonly available
software. Specialised software tends to be created for the sole purpose of managing a
particular cloud service (Google App Engine), while the latter is used with wider

availability services, such as Email (GMail).

The Backend makes use of numerous specialised interconnected hardware systems
designed to facilitate network access (cables, routers, switches), computational needs
(servers), and storage requirements (NAS - Network Attached Storage). These
systems can, in theory, provide a very wide range of services from data processing to
video games to simple websites. Often, each such service would benefit from a

dedicated part of the Cloud system (Brodkin, 2007).

A Cloud network is generally autonomously administered by one server or a pool of
servers acting as a single entity. It handles tasks ranging from traffic monitoring to
service provision management. It follows a set of standardised protocols (rules) and
makes use of helper software called Middleware (Middleware.org). Middleware is
specialised software, comprised of one or more software entities, that facilitates
system communication across the Cloud network between servers and storage

mediums.

Generally servers are not utilised to their full potential, thus generating important
resource waste. To counter this, a technique called Virtualisation is used to split a
server into multiple logical, smaller servers that run independently from each other,
but linked together through one or more logical networks, which allows for

maximised performance yield (Smith et al., 2005).

With regards to Storage needs, the required data capacity of a particular service is, in
practice, double its size. This is because in a Cloud environment each piece of data is
stored in at least two different places: main storage mediums, and backup storage
mediums. This practice is referred to as Redundancy. Redundancy is a principle that
allows for data recovery in the case of hardware failure, which is a likely possibility in
high demand environments. It is automatically employed by the Cloud management
software by duplicating each piece of information and storing them in different

physical locations across the Cloud network. This allows for quick recovery in data

26

loss scenarios (Singh, 2009).

All Cloud Computing environment components and principles presented (Front-End,
Backend - Middleware, Virtualisation, Storage, Redundancy) aid in creating a secure,
robust, and redundant system that can be used for highly mission critical as well as

non-mission critical services.

2.6 Datacentre Structural Design

Housing high amounts of computational and storage power, the datacentre underpins
Cloud Computing instances and contains thousands of networking hardware (servers,
firewalls, routers, switches). As such, careful consideration must be given to the
design and physical layout of this network architecture, as it is key in the successful
and optimal operation of virtual applications running on top. Furthermore, aspects
such as resiliency, scalability and security require special consideration during this

design phase.

At the moment, most network architecture designs employ tried and tested concepts
of layered approaches. These approaches consist of three basic layers: access,
aggregation, and core. The access layer consists of the physical interconnected
hardware. They share data over fast and very fast network links of 1 and 10 Gbps
routed accordingly through switches, each backed by two additional aggregation
switches which provide redundancy fail-safes. The aggregation layer deals with
critical aspects such as the domain, location, load balancing, and other important
services. The core layer facilitates connectivity between several aggregation switches.
This ensures resiliency through no single point of failure. Routers within this layer

deal with inwards and outwards traffic management.

A common infrastructure design makes use of many Ethernet routers and switches.

This design generally meets the following criteria, as described in Al-Fares et al,

(2008); Greenberg et al.,, (2009); Guo et al., (2008); Guo et al,, (2009); Mysore et al,,

(2009):

* Uniform high capacity: The maximum rate of a server-to-server traffic flow should
be limited only by the available capacity of the network-interface cards of the

communication aware servers, and server assignment to a service should be

27

independent of the network topology. It should be possible for an arbitrary host in
the datacentre to communicate with any other host in the network at the full
bandwidth of its local network interface.

* Free VM migration: Virtualisation allows the entire VM state to be transmitted
across the network in order to facilitate migration of a VM from one physical
machine to another. A Cloud Computing hosting service may migrate VMs for
statistical multiplexing or dynamically changing communication patterns to
achieve high bandwidth for tightly coupled hosts or to achieve variable heat
distribution and power availability in the datacentre. The communication
topology should be designed so as to support rapid virtual machine migration.

* Resiliency: Failures tend to be common in highly scalable environments. The
network infrastructure must be fault-tolerant against various types of server
failures, link outages, or server-rack failures. Existing unicast and multicast
communications should not be affected to the extent allowed by the underlying
physical connectivity.

* Scalability: The network infrastructure must be able to scale to a large number of
servers and allow for incremental expansion.

* Backward compatibility: The network infrastructure should be backward
compatible with switches and routers running Ethernet and IP. Because existing
datacentres have commonly leveraged commodity Ethernet and IP based devices,

they should also be used in the new architecture without major modifications.

2.7 Cloud Computing Standards

This section presents an overview of current Cloud Computing standards that have
influenced the author’s decision of which cloud architecture to deploy on the cloud

test bed.

Even though Cloud Computing has rapidly spread among both public and private
sector, widely embraced standards have not yet been developed. As such, from this
point of view, a pressing concern is the Vendor lock-in. This is a practice whereby, due
to the nature of the cloud infrastructure setups among the bigger Cloud Service
Providers (CSP), moving from one CSP to another is made a difficult task to complete.
Unfortunately, the rivalrous economic nature of these CSPs business relations with

one another push them to continue wanting even more to “lock-in” their clients in

28

order to win a bigger portion of the already thriving “cloud market”, which further

intensifies the concern and the need for change (JISC, 2010).

According to several JISC case studies, research communities are highly concerned
with developing new interoperability protocols and standards. Their concerns are
related to current research applications being limited due to their proprietary nature.
Higher education institutions wanting to move their research into the cloud are
required to redesign their code to ensure correct operability with the CSP cloud APIs
of their choice, regardless of whom the chosen CSP might be. The choice is difficult
because once these research applications have been deployed on a specific cloud,
moving them to another CSP’s cloud required a tremendous amount of effort. As such,
the only answer to many of these interoperability issues lies in developing rigorous
standards-based control and management protocols. As such, two specifications have
been developed towards achieving widely accepted standards: the Open Virtual
Format (OVF), championed by the Distributed Management Task Force (DMTF), and
the Open Cloud Computing Interface (OCCI), championed by the Open Grid Forum
(OGEF).

The OVF specification defines an open virtual machine format. It has been designed to
provide a standard format for packaging software based virtual solutions. It is used to
add to a “user’s infrastructure a self-contained, self-consistent, software application
that provides a particular service or services”. (DMTF, 2011)

The OCCI “comprises a set of open community-led specifications” with an aim to
deliver open management and control cloud Application Programmable Interfaces
(APIs). Since its inception, it has “evolved into a flexible API with a strong focus on
integration, portability, interoperability and innovation while still offering a high

degree of extensibility”. (OGF, 2011)

Recently, several leading IT companies, such as IBM, Cisco, HP, and Sun Microsystems,
have begun pushing for wider acceptance of mentioned specifications by becoming
active members of the Open Cloud Manifesto (OCM) group3, while others, such as
Amazon, Google, Microsoft, and Salesforce.com, have rejected the manifesto on
account of not being given the opportunity to participate in developing the document,
but just the option to join*. The main reason behind the OCM’s existence is to

“showcase the abilities and requirements that should be there in the cloud

3 http://www.opencloudmanifesto.org/
4 http://blogs.wsj.com/digits/2009/03/28/a-cloud-manifesto-controversy/

29

environment so that the processes like portability, ease of workflow management and

interoperability are done properly”s.

2.8 Commercial Cloud Offerings

This section presents several commercial cloud projects that were considered by the

author when choosing which cloud architecture to deploy on the test bed.

2.8.1 VMWare vSphere and vCenter Operations Management Suites

vSphere and vCenter are both products developed by VMWare used in cloud
infrastructure management. They are designed to be used together, each dealing with

a different aspect of a datacentre.

According to the VMWare vSphere Features page®, vSphere has been designed to
manage physical resources (servers, network devices) and deploy, automate, and
maintain virtualised hardware (virtual machines, devices, infrastructures). Through a
large set of tools at its disposal across all Cloud Computing infrastructure logical
areas, such as Computing, Availability, Automation, Network, Security, and Storage,
vSphere is able to deliver high availability and fault tolerant services, as well as

maintain network, security, and storage control at the same time.

According to the VMWare vCenter Features page’, vCenter, on the other hand, has
been designed to work in parallel with vSphere by being capable of generating
reports on current network and operations. It enables deep application monitoring
through an extensive dashboard that makes use of self-learning analytics and
automated correlation of application and infrastructure performance. It also provides
deep visibility into the storage infrastructure through several topology, statistics, and

events views.

5 http://www.opencloudmanifesto.org/cloud-computing-manifesto-white-paper/38
6 http://www.vmware.com/uk/products/vsphere-operations-management/features.html
7 http://www.vmware.com/uk/products/vcenter-operations-management/features.html

30

vCenter Operations Management Suite
Amplifies vSphere Value'

+50%

IT Cost Savings

!]

Without VMware With vSphere With vSphere
and vCenter Operations
Management Suite

1.Management Insights. “Quantifying the Incremental Value of vCenter Operations
Management Suite for vSphere Customers,” September 2012.

Figure 1 - vSphere and vCenter Cost Savings Representation®

As can be seen in Figure 1 (VMWare, 2014), compared to only using vSphere by itself,
having a vCenter instance running in parallel increases IT cost savings by 22%. This
can, theoretically, be achieved through careful monitoring of datacentre resource
utilisation by using the Automated Cost Metering functionality provided by vCenter to
gain insight into infrastructure running cost. This would allow infrastructure micro

management decision making in relation to actual business needs.

Finally, from a development point of view, looking at the APIs exposed by VMWare
vSphere? it is clear that virtually every aspect of the vSphere operations can be
controlled through an external software entity making authenticated API calls. From
accessing and setting Alarms to obtaining overview and detailed views of any given
VM C(luster, a complete software solution can be built to act as a manager for the

vSphere client.

8 http://www.vmware.com/files/images/products/vmw-dgrm-vcenter-operation-management-suite-

amplifyvsph-lg.jpg
9 https://www.vmware.com/support/developer/vc-sdk/visdk4 1pubs/ApiReference/

31

2.8.2 Xen Project Hypervisor

According to the project wiki pagel9, the Xen Project Hypervisor is an open source
baremetal /type-1 hypervisor, the only one of its kind. It can be used for a large range
of projects dealing with: server virtualisation, Infrastructure as a Service (laaS),
desktop virtualisation, security applications, and embedded and hardware

appliances?0.

>_
Console
— — |

v

Control Domain
(domO)

Dom0 Kernel

Scheduler, MMU Xen Hypervisor

o i\ Memory» CPUs @ Host HW

Guest OS
and Apps

Figure 2 - Xen Project Architecture Diagram!!

As can be seen in Figure 2 and according to the project wiki!?, the Xen Architecture is
comprised of five different components:

* Xen Hypervisor - a very lean-written software layer (<150,000 lines of code)
that runs directly on hardware and is responsible for managing CPUs, Memory,
and interrupts, but with no knowledge of any networking of storage systems.

* Guest VMs and Apps - virtualised environments, each running their own

operating systems and applications.

10 http://wiki.xenproject.org/wiki/Xen_Overview#What_is_the_Xen_Project_Hypervisor.3F
11 http://wiki.xenproject.org/mediawiki/images/6/63 /Xen_Arch_Diagram.png
12 http: / /wiki.xenproject.org/wiki/Xen_Overview#What_is_the_Xen_Project_Hypervisor.3F

32

* Control Domain - specialised VM with higher than normal privileges, capable
of accessing hardware directly and interacting with other VMs.

* Toolstack and Console - the Control Domain contains a set of tools that allow
the user to manage VM creation, destruction, and configuration.

* Virtualised Operating System - OS with Xen Project-enabled and

ParaVirtualised-enabled kernels.

The Xen Project Hypervisor is a modern and fully featured Hypervisor capable of
managing an unlimited number of VMs, hardware permitting. According to the
project feature pagel3, the latest version (4.5) can manage up to 4095 physical CPUs,
both ARM and x86, and 16TB of physical RAM, which makes it more than suitable for

projects of any scale.

Finally, from a development point of view, looking at the APIs exposed by XenServer4
it appears that most day-to-day operations can be controlled through an external

software entity making authenticated API calls.

2.8.3 VMWare vs. Xen Project Hypervisor - Why VMWare was chosen

Both VMWare and the Xen Project Hypervisor offer comprehensive tools meant to aid
administrators in managing an extensive cloud infrastructure. The author found that
both VMWare and Xen offer similarly capable APIs, essential in the initial design and
development of the AMDS software, one of the key outputs of this research. Using
either toolset allow for the development of a comprehensive software management

solution.

Therefore, the reasons behind the author’s choice are purely practical. The VMWare
software suite was readily available through the academic institution being a
VMWare Regional Academy. This allowed the author access to both the software and
support on an on-going basis. Furthermore, the main output of this research is a
generic software tool that offers platform-independent cloud management and, as
such, either one of the two main cloud software providers would have made a good

choice.

13 http://wiki.xenproject.org/wiki/Xen_Project_Release_Features
14 http://docs.vmd.citrix.com/XenServer/6.2.0/1.0 /en_gb /sdk.html

33

2.9 Alternative Solutions to Cloud Management and Security

Enhancement

The author compared the AMDS to other related academic works in the field taking
into account security, reliability, data transfer speed, access times and power

consumption efficiency. Logs produced by the AMDS facilitate the comparison.

2.9.1 Web-based Software Approach

Ramos-Paja et al. (2010) presents an integrated learning platform, intended for
academic purposes, built to support Internet-based control-engineering education.
This software approach to a multi-purpose engineering tool makes use of Web

programming languages (PHP, HTML, JavaScript) and server software (Apache).

As can be seen in Figure 3, the authors’ software approach is used as the link between
internal systems (MATLAB) and the outside world (Web Clients). The approach is
highly modular and supports distributed computing deployment infrastructures, such
as a Cloud Computing environment with several Virtual Machines. This allows for
easy reconfiguration and ensures high extensibility to accommodate future, potential

problems in need of resolving.

-

N\
L4

Internet Apache < » User Interface
Web Server (PHP, Javascript, HTML)
1

553

TCP/IP service

i ,

Process Engine < >

(m-functions)

Web Clients

———— ————— — —

-

g S N —
/

I \\\‘ v
— — File system < >
Q 5@' (data and graphics storage) MATLAB Engine
Web-based tools server P

Local printing and storage

Figure 3 - Web tools structure - Analys and SimWeb (Ramos-Paja et al.,, 2010, Figure 6)

34

Potentially, this solution could be altered to interface with datacentre hypervisors or

management clients, however there is not much information on how to extend it.

2.9.2 Reconfigurable Datacentres using Virtual Computing Laboratory (VCL)

In Vouk et al. (2009), the authors describe a full vendor-oriented implementation
using an open source cloud platform called Virtual Computing Laboratory (VCL). The
paper discusses how using an open source based system can be a viable alternative to,

and even surpass in some cases, proprietary cloud solutions.
As can be seen in Figure 4, the entire solution is based on VCL. This approach consists

of several VLANs (Virtual Local Area Network), each dealing with a particular part of

the networked cluster (public access, network management, private network).

Cluster network switch

(VLAN 2) (e.g., 10.1 subnet)

(Management)

| Blade node Login
ESM — ethO node

il (VLAN g)

ESM — ethl

|

BladeCenter chassis

Management network switch Public
(e.g., 172.30.1 subnet) network

VLAN 5

MPI network switch
(e.g., 192.168.1 subnet)
Figure 4 - VCL high-performance computing physical network setup (Vouk et al,, 2009,
Figure 4)

This is a similar solution to this thesis’ author’s VMWare test bed, however the results
it is able to achieve are limited by the VCL features and limitations, whereas the
AMDS is highly configurable and easily deployable onto any type of cloud

infrastructure.

35

2.9.3 Dynamic, custom-built Hypervisor

In the approach taken by Tsutomu et al. (2010), the authors have created a custom
Linux kernel module, intended to be loaded on the fly, in an attempt to improve
runtime security and protect against buffer overflow attacks. This solution, called
HyperShield, can be applied to, and removed from, running Linux OSes (operating

system), as necessary.

operating system

N
virtualize NOMony external pass I/O
\ management interrupts through accesses
a / < \
e HyperShield ~4 g

)

hardware

Figure 5 - Design of HyperShield (Tsutomu et al.,, 2010, Figure 3)

As can be seen in Figure 5, the authors have developed a software approach to
securing a Linux based OS. This HyperShield, upon activation, would position itself
between the underlying hardware and the operating system processes, practically
virtualising the OS on the fly. This would ensure that all critical operations flow

through a secure, stable layer rather than through the regular OS channels.

This approach, although a novel approach to securing a running OS, requires the
operating system to reside on a physical server rather than a virtualised appliance. It
continues to be a valuable solution, however it has a reduced impact on cloud

infrastructures, unless it can be modified to operate within a VM.

2.9.4 A full-stack Cloud Management Solution

A different approach to the ones already discussed is presented by Feller et al. (2014).
It proposes a full-stack Cloud Management solution called Snooze. This would be
directly in charge of all hardware and virtual resources available within the cloud
infrastructure it manages. In other words, it is an IaaS application similar in nature to

the Xen Project and VMWare, but without some of the limitations.

36

“ Entry Point (EP) Entry Point (EP) “
Server Server

- Client layer

o Group Leader (GL)

Q

r>D‘ Server

-

c

Q

£

()

[@)]

©

S

S Group Manager (GM) Group Manager (GM)

v Server Server

e
= Y

3 Local Local Local Local

>

g' © Controller (LC) VM|VM Controller (LC) b Controller (LC) b [Controller (LC) VM"VM
8 Server | Server Server Server |

Figure 6 - Snooze high-level system architecture overview (Feller et al, 2014, Figure 1)

As can be seen in Figure 6, the proposed solution is highly flexible and scalable,
capable of managing over 10,000 system services. The design is modular in nature,
comprising clusters of masters and slaves, capable of managing cloud infrastructures
across continents, given the appropriate network connections, which the authors

assume to be available.

Overall this is a very capable solution, building on work done by many other similar
solutions (OpenStack, OpenNebula, Nimbus, etc.), utilising all of their strengths and

disregarding many of their drawbacks.

2.9.5 Queuing Methodology for Reducing Datacentre Power Consumption

The work by Fagci (2014) presents a client queuing methodology to be applied in a
cloud environment with the aim to reduce overall power consumption. This is to be
applied to existing cloud infrastructures as a VM management policy. The proposed
approach is comprised of two algorithms in charge of maintaining several queues

(logical clusters) of VMs, routing client requests on the fly to the least utilised cluster.

37

Active Servers
22 T T T T ' T l 1 l
Before Power Saving : : : : :
20 After Power Saving | """" _ : _
| —— J
16
73 I— s el

B koo ¢ L — : i _— al

1] s ; : b . : . : .

Z : : ; ? : : : : :

A 10 A Yl al
) PR A B (T GRS RN RN W AAAAAAAAAAAAAAAAAA J
6k gl
AR NS i v R TR e e S KT e
) | SEEPI SRR R G R S R LR T L S S 4
0 i i | i A i i | i
0 10 20 30 40 50 60 70 80 90 100

Time (minutes)

Figure 7 - Number of running servers before and after power saving algorithms (Bagci,

2014, Figure 4.1)

As can be seen in Figure 7, based on two algorithms discussed in the paper, the
author has managed to reduce overall power consumption by up to 25%. This is
achieved by employing different states as defined by the proposed solution, each with
their own variables and configuration. The algorithms define stages when VMs would

be added or removed from their managed queues.

Although initial results appear promising, the proposed solution heavily depends on
management functionality being made available for achieving its tasks. Should any
part of the required features not be available (e.g.: control over client request in real
time; administrative power over VMs <startup, shutdown>), then the algorithms

would become less than functional.

This concludes Chapter 2, A Review of State-of-the-Art in Cloud Computing. The
Research Methodology chapter now follows which discusses steps undertaken

towards answering the Research Scope and Objectives.

38

Chapter 3: Botnets and Botnet

Monitoring Techniques

39

Chapter 3: Botnets and Botnet Monitoring Techniques

Some underlying Botnet theoretical principles used in the current research will now

be presented, as well as some well-known Botnet detection techniques.

3.1 Botnets

The term bot is short for robot. Criminals distribute malicious software (also known
as malware) that can turn any personal computer into a bot (also known as a zombie).
When this occurs, the computer can perform automated tasks over the Internet,
without the user’s knowledge. Bots are typically used to infect large numbers of
computers. These computers form a network, or a botnet, and are used to send out
spam email messages, spread viruses, attack computers and servers, and commit

other kinds of crime and fraud (Microsoft).

3.1.1 Botnet Communication Architectures

Peer-2-Peer bots are split into two categories: Masters and Slaves. Each of these uses
secure channels to pass information between one another containing a command and
the originating control module. This allows the Bot Masters to issue commands to the
Bot Slaves. Once the control channel is established, it is used for communications that
employ two different channel operation architectures, the centralised architecture

and the decentralised architecture (Liu et al., 2008).

The centralised architecture has been used in the past by IRC-based (Internet Relay
Chat, communication protocol) botnets, which used IRC servers to issue commands to
all malware-infected machines. This mode has many different variations (Liu et al,,
2008) e.g. the final destination could contain a text document with a list of static IP

addresses and lists of URLSs, so that flexible IP addresses can utilised.

The decentralised architecture, on the other hand, is a newer communication
architecture that enables infected hosts to exchange information via distributed
networks such as Peer-2-Peer. This method may reduce the rate of firewall and

antivirus detection (Liu et al., 2008).

40

Regardless of the type of architecture, there are two types of command and control

channels, the Persistent Channel and the Periodic Channel (Liu et al., 2008).

The Persistent Channel maintains a direct connection with the Bot Master. This
connection type is normally employed by IRC bots. However, it is increasingly

becoming obsolete due to periodic channels (Liu et al., 2008).

The Periodic Channel, on the other hand, connects to the Bot Master periodically in
order to avoid detection. Typically, the destination has had no prior communication
with the host. This is normally used to throw network security devices and probes off

track (Liu et al., 2008).

—> IRC
—»| Centralized [—{ Protocols—
HTTP

3
E —> HTTP/S
S Web based
= Social VPN
3} » Peer-to-Peer
S Application | | KAZAA
fg’ software L Emule
o
m

Servant
L Hybrid —[:
Client

Figure 8 - Taxonomy of botnet architectures (Karim et al.,, 2014, Fig. 3)

Karim et al. (2014) also discusses the different architectures of botnets and also
presents a taxonomy of botnet architectures, as can be seen in Figure 8. In addition to
the already mentioned centralised and peer-to-peer architectures, Karim et al. (2014)
also discusses a third type - the hybrid botnet, comprising of several servants and
clients. “Servant bot acts as client and server simultaneously” and is configured with a
static IP address (routable), whereas the client bot does not listen for incoming

connections and is configured with a dynamic IP address (non-routable).

41

3.1.2 Botnet Exposure Techniques

Denial of Service (DoS) is a common cyber attack technique in which very a big
network data burst is sent to the target (virtual) server cluster, typically much greater
than the cluster network capacity. The result of this renders the target unable to
respond to client requests, which makes it appear offline. This can be done either in a
Cloud context or the outside world.

The outside world DoS consists of a network of physical Bots acting as one entity
against a single server or a cluster of servers, consisting of physical hardware. The
Cloud DoS consists of one or more infected VMs attacking other, one or more, VMs
from within the same datacentre. These attacks are known as Distributed Denial of

Service (DDoS) attacks.

Towards identifying and preventing such attacks, several detection and prevention

techniques have been proposed.

The counter-based detection method (Lee et al., 2011) counts all client URL requests.
It then compares them to the relatively frequent HTTP GET DDoS attack’s URL
requests, which tend to contain less data and display a higher rate. If these higher
frequency requests are in large volume over a pre-set period of time, then the data

packets they carry are dropped and logged for further analysis.

The access pattern-based detection method (Lee et al., 2011) looks at client behaviour
to differentiate a legitimate client from an infected one. This is based on the
assumption that a compromised client will, in most cases, operate in the same
manner as the bot that originally infected it. All network data is compared against

client profiles in an attempt to spot and block the compromised ones.

Zakarya et al. (2012) proposes a new Cloud Computing architecture that also features
a mechanism for detecting and preventing DDoS attacks. The entropy-based anomaly
detection method makes every data packet in a way that allows the client to trace its
source. Any malicious data packet can be confirmed on a second attempt by a
different or the same client node. Data is shared between clients and the detection
mechanism, allowing for quick malicious data packet blocking. This method does,

however, create many false positives.

42

Xu et al. (2012) presents a novel Peer-2-Peer botnet detection min-vertex cover
method that makes use of both session-based analysis and minimum vertex cover
theory when looking at data packets. This allows for only the packet header to be
included in the security analysis, thus reducing computation overhead. It is able to
learn from every malicious data packet, making its internal detection algorithm better
over time. This method tends to yield positive results even if the bots change their

behaviour and features.

At account creation, the Cloud vendor stores a template image of the client's VM.
These images are considered to have high integrity and valid. Meena et al. (2012)
presents a file allocation table Botnet detection technique that compares every
application instance that is due to run against the initial VM template stored on the

network. Any discrepancies found would immediately trigger an instance shutdown.

3.1.3 Botnet detection techniques

Karim et al. (2014) discusses several botnet detection techniques. It also presents a
taxonomy of such techniques, as can be seen in Figure 9. It presents the following
approaches:

* Honeynet - used to collect information on botnet activity for further analysis
in an attempt to discover more on what technology the botnet is using,
characteristics, and the intensity of the attack. However, this approach has
several drawbacks: limited scalability; can only discover threats if directly
interacting with them; can be taken over by attacker. (Karim et al.,, 2014)

* Intrusion Detection System (IDS) - “software application or hardware
machine”, used to monitor services for malicious activities and report findings
to a management entity. Even though it contains signatures of several known
botnets, it is not capable of coping with zero-day attacks and it also sometimes
“ignore|[s] identical bots with marginally different signatures”. (Karim et al.,

2014)

43

Anomaly
based

Network
behavior
Active
monitoring

Passive
monitoring

I_

Botnet detection techniques

Intrusion Signature
detection system [—
(IDS)

DNS based
IDS

Figure 9 - Taxonomy of botnet detection techniques (Karim et al.,, 2014, Fig. 4)

Based on the detection techniques described by Karim et al. (2014) and Xiaobo et al.
(2010), the author of this work has chosen to base the initial Botnet Detection module
design on the IRC based anomaly detection approach. This allows for a quick

implementation of a proof of concept application that would server as a platform for

future developments.

3.2 Botnet Monitoring Techniques and Tools for Use in a Virtual

Environment

This section describes various monitoring techniques and tools that could possibly be
used to detect botnets in virtual environments. Bot masters will use root-kits and

anti-VM static- DLL/binary code (Oh et. al., 2010) along with secure channels in order

to avoid detection.

3.2.1 NetFlow based Traffic Monitoring

According to Cisco!®>, NetFlow has been developed in-house initially to provide

improved packet switching capabilities to some of their network devices in 1990. It

Application

Abnormal
behavior

[Machinelearning][|

Graph
theory

Decision
trees

[Correlation] [DFT]
[cusuM | [DNS based]|
[Clustering | [Web based]
[_ DTS |[Entropy |

Mining
based

Neural
networks

Artificial immune system || |

Visualization

15 http://www.cisco.com/c/en/us/products/collateral /ios-nx-os-software/ios-netflow/prod_white_

paper0900aecd80406232.html

44

then has steadily grown into a more complex tool used in network operational

analysis.

As a network monitoring tool, NetFlow is capable of providing maximum network
awareness, and, if used as part of a complex cloud infrastructure, is capable of giving
insight into the different types of data packets flowing through the network at any
given time. It makes use of 5 to 7 IP packet attributes to generate traffic flow reports,
which can be later on analysed by system administrators or, for this current research,

by the AMDS.

NetFlow utilises the following information in its traffic flow caches: packet size, IP
addresses and ports (for both packet source and destination), class of service, device
interface, and protocol type. In addition, it also records flow timestamps, next hop IP
address, subnet mask, and TCP flags. All of these flow parameters aim to provide a
holistic network view used in many different scenarios, of which the one of interest is

detecting malicious behaviour in a cloud network infrastructure.

NetFlow Enabled Device

MIIIIIEIIIII

Inspect
Packet NetFlow Cache
Source IP address . Flow Information Packet Bytes/packet
Destination IP address | Address, ports... 11000 1528
Source port
Destination port
Layer 3 protocol Create a flow from
TOS byte (DSCP) the packet attributes
Input Interface

Figure 10 - NetFlow Flow Cache Generation®

As can be seen in Figure 10, upon enabling a device to utilise NetFlow, it then
proceeds with recording all traffic coming into the network. These recordings, after
undergoing NetFlow processing, are stored in a database entitled NetFlow Cache in
the form of a table, each row containing one data flow cache. These flows have a

shorter or longer lifetime as determined by the flow timestamp, depending on

16 http://www.cisco.com/c/dam/en/us/products/collateral /ios-nx-os-software/ios-netflow/prod_
white_paper0900aecd80406232.doc/_jcr_content/renditions/prod_white_paper0900aecd80406232-

ljpg
45

whether traffic has stopped flowing, a FIN signal has been received indicating the end

of the flow, or they have exceeded their pre-set lifetime.

The NetFlow Enabled Device (Figure 10) is, in this case, the NetFlow Exporter. Its
primary concern is capturing traffic data and transforming it into flows. This data is
then transferred over to a NetFlow Collector Database Flow Cache (Figure 11) where
it is analysed and converted into meaningful reports that present an overview of the

processed network data traffic.

1. Flow cache=The first unique packet creates a flow

Src | Sec Dst Bytes/
_m--HﬂllImIME

Fal/0 173100.21.2 Fa0/0 10022712 n a0 10 11000 162 24] B 100232 1528

Fa'/Q 12310032 Fal/0 10022712 6 40 0 N 15 126 196 3 74 15 0232 740 415
Fat/0 173.100.20.2 Fals0 10022712 1" 80 10 10000 161 /2¢ 180 10 e 15 10.0232 1428 NassS 3
Fal/Q 17310062 Fal/0 10.0227.12 6 40 o 2210 1% /30 180 13 24 15 10.0232 1040 2435

2. Flow Aging Timers

e Src Sec Dst Bytes/
- I S R R E R S R R

Fat/0 123100.21.2 Fals0 10022712 1" 10 11000 C0A2 22) 15 10.0232 1528

3. Flows packaged in export packet
Non-aggregated Flows—Export

4. Transport Flows to Reporting Server Export g Payload
Packet § (Flows) .
[—]

Figure 11 - Example NetFlow Cache!”

As can be seen in Figure 11, a typical NetFlow Cache database table contains many
different columns generated based on parameters both taken from the packet itself
and created by NetFlow in its flow generation. It keeps track of both new and old
flows by separating them into two different tables: one for active flows, another for
ended flows (either because they had exceeded their pre-set lifetime or the traffic had

stopped).

17 http://www.cisco.com/c/dam/en/us/products/collateral /ios-nx-os-software/ios-netflow/prod_
white_paper0900aecd80406232.doc/_jcr_content/renditions/prod_white_paper0900aecd80406232-

2.jpg
46

3.2.2 IPFIX based Traffic Monitoring

The IP Flow Information Export (IPFIX) format is an Internet Engineering Task Force
(IETF) protocol designed to be a universally accepted standard for capturing traffic
flow through network devices. IPFIX is responsible for defining the format of
captured flows as well as detailing the flow method of transfer between the exporter

and collector.

B ————— - -+
packet header capturing :
B —————— - - -+
v
L ——— +
timestamping :
B —————— - -+
v
S ——— > 4
v
B ————— - - -+
sampling Si (1:1 in case of no sampling)
B ——————————————————— - .
v
B ————— - -+
filtering Fi (select all when no criteria) ‘
B ————— - - -+
v
T ——— +
v
B ———————————— - B3
Flows :
L ——— +

Figure 12 - IPFIX Packet Selection Criterial®

IPFIX, similarly to NetFlow, is capable of breaking down data packets within the
observed network traffic according to their attributes. As such, the flow metering
process offers several configuration possibilities, which can be used to narrow down
the packets included in the flow. There can be defined different sampling and filtering

functions, each of which is dealing with a certain aspect of data selection.

18 https://tools.ietf.org/html/draft-ietf-ipfix-architecture-12

47

As can be seen in Figure 12, the packet selection process happens immediately after a
packet has had its header (addressing and destination information) examined and a

timestamp assigned.

First, the sampling functions are applied that determine whether the packet needs to
be included in the flow generation process through straightforward selection
preferences. A sample function’ duty might be to only select every 100t packet. If

there is no sampling function defined, then all packets are included.

Next, the filtering functions are applied that determine whether a packet needs to be
included based on selection patterns applied to its attributes. For example, a packet
could only be included in the flow generation process if its associated protocol is TCP
and destination port is less than 1024. If no filtering functions are defined, then all

packets are included.

3.2.3 Netflow vs. IPFIX — Why Netflow was chosen

From the author’s evaluation, there is little to no difference between Netflow and
IPFIX. Netflow has been developed by Cisco and is a closed source tool, while IPFIX is

a Netflow spin-off developed as an open source tool.

As such, the choice behind using Netflow as opposed to IPFIX is a purely practical one.
The test bed comprises mainly Cisco switches and routers and, as such, it was logical

to use a tool available by default on the test bed hardware.

In conclusion, this chapter has looked at what Botnets are and how they operate, as
well as discuss several detection techniques, defence strategies, and software tools
that could be used to detect and prevent malicious activity in a datacentre

environment.

48

Chapter 4: Research
Methodology

49

Chapter 4: Research Methodology

This chapter focuses on presenting the approach taken towards answering the
Research Questions. It describes the Cloud Test Bed that was installed and configured
by the author, from its initial design to implementation. It covers both the virtual
(network and software configuration) and the physical aspects (hardware, physical
parameters) of the infrastructure. It also describes the different approaches taken
towards answering the Research Questions by providing an overview of:

* The Autonomous Management Distributed System (AMDS) including what

techniques and technologies have been used in its development;
* The AMDS deployment strategy;

* The hijacking attempt identification strategy.

4.1 Software Package Review

The author has made extensive use of the NetBeans Integrated Development
Environment (NetBeans IDE) throughout the AMDS development process. There are
several reasons behind this decision, all of which will be presented further, with some

information summarised from the Netbeans.org website.

NetBeans, originally called Xelfi, is an established software development environment,
with its first release in 1997. It started as a student project, but over the course of two
years, in 1997, it had become the basis for what today is a complex IDE used in
creating applications using numerous programming languages, one of which utilised

for the current research is Scala.

NetBeans is inherently a modular platform that offers a stable and solid ground for
new features to be bolted on. These features range from small tools to fully fledged
programming language support. Such programming support generally adds features
such as syntax and semantic colouring, code folding, indentation and formatting, code
completion and refactoring, error capture through pre-compilation, etc. The Scala

NetBeans support used by the author in developing the AMDS is one such module.

One of the most critical features the Scala NetBeans module provides is code

completion. This feature enables real time code suggestions based on code currently

50

being typed. For example, in the AMDS context a part of the code that has been
heavily utilised is the Network module. After instantiating a variable with the
Network class (val network = new NetworkModule(cfg)), as can be seen in Figure 13,
upon typing network.(dot) a list of available Network module methods pops up, which
allows quick and easy code creation. This feature also pre-empts many programming
bugs that could potentially be introduced due to human error at the time of code

writing.

network |
© CheckNetwork(): Unit - AMDS.NetworkModule

cEaMdl € util AMDS.NetworkModule

Figure 13 - NetBeans Scala Code Completion

4.2 vSphere Java API Presentation

In order to effectively communicate with the VMWare infrastructure running on the
author’s test bed, a software package was selected to facilitate this need. Since
vSphere is at the centre of all VMWare decisions, the author has chosen the vSphere
Java API'? for several reasons:
i. Fully supports the Object Oriented Programming (OOP) paradigm, which
allows for extensible and maintainable software to be built.

ii. Being Java based, it can be easily integrated into the Scala project presented in
this thesis.

iii. It has been specifically designed to support and work with vSphere, which
helps reduce and, in some cases, entirely hide the complexity of interacting
with the VMWare infrastructure.

iv. Allows for easy development of web interfaces capable of interfacing with the
cloud network, while at the same time maintaining a very small system

footprint.

package com.vmware.vim25.mo.samples;

19 http://sourceforge.net/p/vijava/code/HEAD/tree/v5.1a/docs/Get%20started%20with%20V1%20Java%20
APL.pdf

51

import java.net.URL;
import com.vmware.vim25.%*;
import com.vmware.vim25.mo.*;
import com.vmware.vim25.mo.util.*;
public class HelloVM {
public static void main(String[] args) throws Exception {
CommandLineParser clp = new CommandLineParser (new
OptionSpec[]{}, args);
String urlStr = “https://esx-server/sdk”;
String username "username";
String password = "password";
ServiceInstance si = new Servicelnstance
(new URL(urlStr), username, password, true);

InventoryNavigator (rootFolder) .searchManagedEntities

("VirtualMachine") [0];

Folder rootFolder = si.getRootFolder();
VirtualMachine vm = (VirtualMachine) new
VirtualMachineConfigInfo vminfo = vm.getConfig();
VirtualMachineCapability vmc = vm.getCapability();
System.out.println("Hello " + vm.getName());
System.out.println ("GuestOS: "

+ vminfo.getGuestFullName ()) ;
System.out.println ("Multiple snapshots supported: " +
vmc.isMultipleSnapshotsSupported()) ;
si.getServerConnection () .logout () ;

Code Fragment 1 - Hello World VM interaction code?°

As can be seen in Code Fragment 1, the vSphere API provides a straightforward
method of interacting with the vSphere client. It allows for username and password
authentication by supplying the uriStr (vCentre/ESXi HTTP address), username and
password needed to reach and access vSphere. This particular example selects the
first of all Virtual Machines present on the system and displays some basic

information about it before terminating the connection.

The Servicelnstance seen in Code Fragment 1 is an object (OOP context). Once
authenticated access to the vSphere instance has been established, it can:
i. Provide information about the server itself, such as configuration, properties
and capabilities.
ii. Grant access to all information vSphere has direct access to, such as Virtual
Machines, Virtual and physical Networks, system and network settings, events
and alarms (EventManager), etc. through the rootFolder object, which contains

information on all system entities.

20 http://sourceforge.net/p/vijava/code/HEAD/tree/v5.1a/docs/Get%20started%20with%20VI%20Java%20
APL.pdf

52

iii. Allows for searching (Searchindex) the vSphere controlled entities by different
criteria and gain direct access and issue commands to and any one of them,
such as a signalling a Virtual Machine to shut down:

Task task = ((VirtualMachine)me).powerOffVM_Task();

The VMWare environment is extensive, so in order to fully take advantage of the
vSphere API the author made heavy use of the VI SDK API reference guide?!. This
provides information on and exact description of each available object and its
properties and methods. Also, the vSphere API software package itself comes with
several very useful code samples to help provide a starting point for any relevant

project.

—H ManagedObject K}

EnvironmentBrowser l_
Servicelnstance
HistoryCollector |ExtcnsibIeManaged0bjectl | View | IPropertyFiltar
/\ -—| HostLocalAccountManager I
—{Alarmvanagr
|TaskHIsloryCo|Iecxor|]EvontHIstoryColIector' (L HzationM:
AuthorizationManager

ManagedEntity I|m-ent°|ywew|| ListView ||Containchiew| T

|VirtualMachin [Datacenter ||| Folder | HostSystom |
B E—— | Alarm I Datastore
retonse] meero] e

=
]

nseManager

&
|clw“‘ puteRe: m-'l ostFirewallSystem

| [HostBootDeviceSystem |—

gl

ViewManager

IHostNetworkSystom —{—HostMemorySystom

HostDatastoreBrowser

|HostVMoﬁonSystem}— —|Host$torage$ysteml ScheduledTaskManager

HostDatastoreSystem
Searchindex

|Schadu|adrask]——| Task OptianMan

_-m (HostDiasnosﬁcSystem |— VirtualDiskManager

HostFirmwareSystem I

lVlrtuaIMachlneSnapshol I—-I HostServiceSystem |

=
2
=)
3
8
2

&
o
2

HostDateTimaSystem

4
g
g
=
g
=
i

PropertyCollector

i
|

HostShmpSystem
SessionManager
1
| HostCpuSchedulorSystem | Tesleroger]
HostHealthStatusSystem VirtualizationManager

Figure 14 - Object model of VI Java API??

2 https://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/
22 http://sourceforge.net/p/vijava/code/HEAD/tree/v5.1a/docs/Object%20model%200f%20VI%20Java%20
APL.pdf

53

The authors of the vSphere Java API package have provided an object model diagram
of the VI Java API seen in Figure 14, which helps with understanding the VMWare
infrastructure at an abstract software level. The Servicelnstance, which can also be
seen in Code Fragment 1, is present on the far right in the diagram provides direct
access to many different Manager objects that provide functionality for interacting
with the different areas vSphere manages. The ManagedEntity class facilitates
interaction with the different system entities found on the Virtual Interface client
inside vSphere, such as Virtual Machines, the Host System, Resource Pool, Datacentre,
etc. From here, the HostSystem class further provides support for accessing and
managing many different key aspects of the host system, such as the Firewall,

Memory, Storage, Network, etc.

ManagedObject

-serverConnection

ServerConnectio

-servicelnstance
-url
-userSession
-vimService

-servicelnstan

+getServiceContent()
+getServicelnstance()
+getSessionStr()
+getUrl()
+getUsername()
+getUserSession()
+getVimService()
+logout()
+setUserSession()

<>-mor

-serverConnection

+getMOR()
+getServerConnection()
#getVimService()
#setServerConnection()

ExtensibleManagedObject

#getCurrentProperty() q—

+getAvailableField()
+getValues()
+setCustomValue()

Servicelnstance

e

+retrieveServiceContent()
+currentTime()
+getRootFolder()
+getAboutinfo()
+getAccountManager()
+getAlarmManager()
+getAuthorizationManager()
+getCustomFieldsManager()
+getCustomizationSpecManager()
+getEventManager()
+getDiagnosticManager()
+getExtensionManager()
+getFileManager()
+getLicenseManager()
+getPerformanceManager()
+getPropertyCollector()
+getScheduledTaskManager()
+getSearchindex()
+getSessionManager()
+getTaskManager()
+getUserDirectory()
+getViewManager()
+getVirtualDiskManager()
+getOptionManager()

ManagedEntity

+destroy_Task()
+getConfiglssue()
+getConfigStatus()
+getCustomValue()
+getDeclaredAlarmState()
+getDisabledMethod()
+getEffectiveRole()
+getName()
+getOverallStatus()
+getParent()
+getPermission()
+getRecentTasks()
+String()
+getTriggeredAlarmState()
+reload()
+rename_Task()

Figure 15 - Partial UML diagram of the VI Java API?3

A UML diagram helps better understand the vSphere API software model (Figure 15).
It provides detailed information on different functionality available as part of each

major vSphere Object, seen in Figure 14.

3 http://sourceforge.net/p/vijava/code/HEAD/tree/v5.1a/docs/Object%20model%200f%20V1%20Java%20API.pdf

54

The ManagedObject class makes wuse of the private properties mor
(ManagedObjectReference - VI SDK managed object) and serverConnection
(authenticated server connection) and several public methods to provide instant

access to the mentioned entities.

The ServerConnection class contains information such as the url it used to contact the
server, the userSession active session information that contains data such as the
username used in the authentication process, as well as the vimService that provides

functionality through over 300 methods.

The ServerConnection also contains a reference to the Servicelnstance object, which is
the first of its type accessible to a developer. It facilitates the authentication process
by taking in information such as the url, username, and password or a url and

sessionID combination and creating a valid vSphere connection instance.

The Servicelnstance contains a ServiceContent object, which holds references to all

manager type objects attached.

Finally, the ManagedEntity object is the most important of its type because it provides
direct access to key vSphere entities such as the Virtual Machines, Host System, etc. It
allows for searching the vSphere inventory and provides direct access to each search

result entity.

4.3 Ubuntu Operating System Overview

The Ubuntu Server Operating System is a Linux system (also known as a
‘distribution’), based on the Debian distribution, offering a secure environment for
either production or development environments. It offers a wide range of software
packages (tools, services, libraries, frameworks, systems) designed to be used to
accomplish virtually any scenario. All packages are also generally open source,
meaning they can be altered to suit any need, provided there is relevant
programming knowledge, and also widely distributed without any legal implications.
Being based on the Debian distribution, an already highly efficient, stable and
powerful Operating System, Ubuntu has been developed to take advantage of all the

features and also incorporates numerous enhancements to help make system

55

development as streamlined as possible. This and the fact that it has datacentre
support out of the box, makes it ideal for data processing intensive systems, such as
the AMDS with its Control and Botnet modules, both running highly intensive
operations. Ubuntu is very lean and optimised, so much so that its minimum system
requirements are very low (192MB RAM, 300MHz single-core processor, 700MB

storage), thus allowing more breathing space for other tasks running on it.

Ubuntu also supports a wide range of database engines and source code compilers.
The ones that are of interest to the author are:
[. MongoDB, a NoSQL database engine capable of storing large amounts of data
without any noticeable performance drop,
[I. JavaVM, the service that powers all Java and Scala code and enables them to
run across all existing platforms, and
[II. ~ Scala, a highly optimised programing language, with multi-thread
management capabilities and simplified distributed application support out of

the box.

Ubuntu is also very well supported, having certain Long Term Support editions (LTS)
that receive updates for up to 5 years, thus making them very cost effective in the

long run.

4.4 Adopted Software Engineering Methodology

An outline of the software methodology flow adopted by the author in designing,

developing, deploying, testing, and maintaining the AMDS is now presented.

Figure 16 describes the workflow employed by this research in its approach to the
Software component. It starts with designing, implementing and simulating
components to achieve initial success confirmation. It then carries on with
deployment and results collection and analysis. If this final process does not confirm

initial simulation results, then the whole process starts over.

Conceptual Design is an objective of each and every activity, where issues relevant to
the research are discovered. It describes desired features and operations in detail,

including screen layouts, process diagrams, pseudocode and other documentation.

56

Software Development puts the Conceptual Design into code. Afterwards, Functional
Analysis brings all the pieces together into a special testing environment, and then
checks for errors, bugs and interoperability. Deploy to Hardware is the final stage of
initial development, where the software is put into production. Testing is an
important part of the software life cycle and it serves the purpose of discovering
design flaws. Testing results are then analysed for design improvements and the

whole process restarts.

Conceptual Design

Software Development

Functional Analysis

Deploy to Hardware

Results Analysis

Figure 16 - AMDS Development Methodology Workflow

As part of Objectives 1 and 4, a novel ‘Cloud-based’ solution for teaching computer
networks in an educational context has been configured. One key advantage of the
system is its ability to commission and decommission virtual infrastructures
comprised of routers, switches and virtual machines on demand. It makes use of
hardware located in different physical locations, VMWare software to manage the
virtual resources and NetLab+ to manage the configuration of multiple different

virtual scenarios.

57

As part of Objectives 2 and 3 an optimised and novel approach to an Autonomous
Virtual Server Management System in a ‘Cloud Computing’ environment has been
developed. One key advantage of this system is its ability to improve hardware power
consumption through autonomously moving virtual servers around a network to
balance out hardware loads. This has a potentially important impact on issues of
sustainability with respect to both energy efficiency and economic viability. Another
key advantage is the improvement of the overall end-user experience for services
within the Cloud. This has been investigated through the configuration of the Cloud

Computing test-bed rig.

4.5 Testing Principles

This section presents the underlying testing principles employed by the author in

their work with the AMDS.

- f 1 f
i LAccess Pointj N
Reader L1 Reader
—"| Custom Software |“—
1 7
rProprietary Cloud Systemj
T4 T4
[Server Ji[Server J
o %

Cloud Computing Infrastructure

Figure 17 - AMDS Overview

Figure 17 presents an overview of the AMDS’s position within a Cloud Computing
environment. The AMDS connects to the four most important components of the
cloud system: access point (connection to the outside world), power reading
hardware (monitors power consumption), network reading hardware (monitors
network flow), and the heart of the cloud system - the proprietary software (VMWare

ESXi) that makes decisions regarding the server and storage management.

58

The AMDS is running from within a custom built Linux based Virtual Machine. The
VM itself has direct access to the entire internal physical cloud network as well as a
range of internal virtual networks that link up several other VMs together. This setup
gives the AMDS the possibility of coordinating itself with other AMDS instances,

allowing it to spread traffic load between them in time of high network usage.
The Autonomous Management Distributed System (AMDS) - The Software chapter

will continue with presenting the design, development, and implementation

approaches undertaken by the author in creating the AMDS.

59

Chapter 5: Autonomous
Management Distributed

System (AMDS) - The Software

60

Chapter 5: Autonomous Management Distributed

System (AMDS) - The Software

This chapter focuses on the design, development, and the implementation of the

AMDS.

In depth, it describes:

* the network optimization technique that serves as basis for the software
implementation;

* the design of all system components and the relationship between them -
analysis of the system design diagram;

* the development strategy, detailing the steps undertaken towards its
implementation;

* the implementation process, detailing the choice in programming language

and what specific features were utilised.

As part of Objectives 3 and 5 presented in section 1.1, a novel modular design of an
Autonomous Management Distributed System (AMDS) for Cloud Computing
environments has been developed. It has been implemented using the Scala
programming language because of its unique way of dealing with data structures, a
topic more thoroughly discussed in the Programming Language Considerations

subchapter.

The AMDS design considerations that underpinned the author’s software approach

will be presented.

5.1 AMDS Design Considerations

The AMDS has been designed from the ground up with distributed deployment,
modularity and security in mind, using a full object oriented approach. A key feature
of this system is the ability to gather and store information from various networking
and monitoring devices from within the same computing cluster. Another key feature
is the ability to intelligently control any number of Hypervisor instances (as long as
an appropriate module is developed to enable communication) based on analysis of

collected data and predefined parameters. The Hypervisor in turn, once it receives

61

commands from the AMDS, proceeds to issue instructions to monitored servers in
order to maximise energy efficiency, reduce the carbon footprint and minimize

running costs.

5.2 AMDS Design Specifications

The AMDS was designed from the ground up with three main aims in mind: 1)

security, 2) modularity, and 3) parallel processing.

To address security the author has based their design on existing work in order to
introduce an appropriate authentication component. As such, each system component

is required to authenticate each time it interacts with any other component.

Modularity has been achieved through implementing sound Object Oriented
programming principles. Some core principles relevant to this work have been
applied to the design. Every task the system is required to accomplish is split down

into independent, fully reusable modules.

As can be seen in Figure 11, a typical NetFlow Cache database table contains many
different columns generated based on parameters both taken from the packet itself
and created by NetFlow in its flow generation. It keeps track of both new and old
flows by separating them into two different tables: one for active flows, another for
ended flows (either because they had exceeded their pre-set lifetime or the traffic had

stopped).

62

Autonomous Management Distributed System

ttsubsystem®
bb, Commands —I
#subsystem# —
6¢. Readings (subsystem®
Ga, Status
6. User = *subsystem?
Interface | _ - I-J‘ T 5a. GetData
- § |
| D | 4&Conn
| M 1 I l
| I —— .l
Hsubsystemy |
1a Initiate | |
1, Core #subsystem®
B ': 5b. Analyse
| | |
=~ : | |
Hsubsystem» | ' I_ _> -
1b. Authenticate : | 5., Control
I AV l tsubsystem»
| I 5¢, Command
Lo o —— e
2, Config ||
||
| T || |
——— ||
| |, tsubsystem’
—————— . r 4d. vSphere
3. Auth — |____> p
l 4, Conn
#subsystem»
subsystem? 4c. SNMP
da, AMDS Comm
Hisubsystem®
4b. Storage

Figure 18 - UML Design Diagram of the AMDS

63

Figure 18 presents a UML diagram of the AMDS design. It is composed of 19 different

parts, each designed for a specific task and fully reusable. The main features of these

component parts will now be described:

1.

3.

Core: (Figure 18, 1.) Main system module. The entry point for the AMDS. From
there the system accesses the configuration parameters (Figure 18, 2.) and starts
its internal tasks (Figure 18, 5.) and the User Interface (Figure 18, 6.). It is
responsible for facilitating communication between the different modules
attached to it.
a) Initiate: (Figure 18, 1a.) Module entry point. Achieves most of the module
functionality. Initialises modules and establishes connections between them.
b) Authenticate: (Figure 18, 1b.) Helper module. Undertakes the initial system
authentication. This helps with detection of possible hijack attempts by

making sure a current instance remains valid and genuine.

Config: (Figure 18, 2.) Helper module. Responsible for maintaining and providing
access to the system configuration parameters. It interacts with the connection
module (Figure 18, 4.) in order to gain access to the Storage component (Figure 18,
4b.), Config database. It is active throughout the lifespan of the system instance,

facilitating on-the-fly parameter alteration.

Auth: (Figure 18, 3.) Key system module. Manages task and connection
authentication. It performs checks against the initial determined instance validity
and genuineness in an attempt to discover potential system hijack attempts and
prevent them. It locks down any connection or task that does not pass the

validation step and makes a log entry with relevant details on the security issue.

Conn: (Figure 18, 4.) Main system module. Facilitates all system connections

between the modules themselves or between the modules and the computing

cluster. It is the main access route to specialised mini-modules as well as attempt

to authenticate each connection passing through it by calling upon the Auth

module (Figure 18, 3.).

a) AMDS Comm: (Figure 18, 4a.) Critical mini-module. Manages communication
between instances of the AMDS including the passing of data between them.
Acts as a load balancer by creating a bridge between current instance and one

other instance. On each connection attempt it calls upon the Auth module to

64

verify the integrity of the outside instance before allowing any kind of
information exchange.

b) Storage: (Figure 18, 4b.) Main mini-module. Keeps track of internal databases
for each system module that deals with data. It stores information for the
Config and Control modules.

c) SNMP: (Figure 18, 4c.) Specialised mini-module. Facilitates passing of
information between current system instance and devices that understand the
Simple Networking Management Protocol (SNMP). This protocol allows data
to pass both ways, making it possible to issue commands and receive results
between different devices that use it.

d) vSphere: (Figure 18, 4d.) Critical specialised mini-module. Interfaces the
VMWare vSphere client to allow issuing commands and retrieving results. This
module bridges the gap between the custom designed AMDS and the

proprietary software solution provided by VMWare

5. Control: (Figure 18, 5.) Main module. Initiates data collection, storing and analysis
tasks, as well as initiate commands to the vSphere Client through the Conn
module (Figure 18, 4d.). This allows for data to be collected from monitoring
devices across the computing cluster, stored, analysed and actions to be taken
based on the results and the configuration parameters.

a) GetData: (Figure 18, 5a.) Main mini-module. Deals with raw data retrieval. It
initiates connections to the SNMP mini-module (Figure 18, 4c.), retrieves and
stores collected information using the Storage mini-module (Figure 18, 4b.),
Raw Data database.

b) Analyse: (Figure 18, 5b.) Main mini-module. Retrieves chunks of raw data from
the Storage mini-module (Figure 18, 4b.), Raw Data database, and come up
with data capable of being compared to the configuration parameters. It then
stores the analysis results using the same mini-module, but in the Results
database.

c) Command: (Figure 18, 5c.) Main mini-module. Compares analysis results with
the configuration parameters and make intelligent decisions that maximise
energy efficiency. After it stores issued commands in the Commands database,
it then proceeds to send them to the correct interfacing mini-module from

within the Conn module (Figure 18, 4.).

6. User Interface: (Figure 18, 6.) Noncritical system module. Facilitates system

65

monitoring by presenting information stored on the system in human readable

form.

a) Status: (Figure 18, 6a.) Main mini-module. Provides an overview of the current
system state as well as global statistics, including access to security logs and
top level information on database disk usage.

b) Readings: (Figure 18, 6b.) Main mini-module. Provides an in-depth view of
each individual database currently utilised by the system instance. All
databases maintained by the Conn module (Figure 18, 4.) are included. It
makes use of data filtering and table display.

c) Commands: (Figure 18, 6¢.) Main mini-module. Provides an in-depth view of
all command decisions the current system instance has taken as well as the

accompanying results received from all the commanded systems.

5.3 AMDS Implementation

This section discusses the necessary steps the author has undertaken towards
implementing the AMDS. This process and its outcome both reflect the AMDS design

presented in chapter 5.2.

5.3.1 Programming Language Considerations

In the implementation stage the author considered many programming languages
capable of initiating remote connections, including Ruby, PHP, Java, Scala, C++, C#.
The main criterion to be considered was portability i.e. make the system so that it can
be deployed on as many different operating systems as possible. Only two of the

considered languages met the required criteria: Java and Scala.

Java is an established programming language making its first appearance in 1995. It is
able to function on any operating system running the Java Virtual Machine (JavaVM).
All major systems, including Unix, Linux and Windows are currently capable of
running the JavaVM. However whilst the language functionality continues to evolve it

does not handle running multithreaded tasks well.

Scala is a relatively new language. In spite of only making its first appearance in 2003,

66

it has grown in popularity very quickly due to its multithreading capabilities as well
as its concise way of expressing common programming patterns. This has helped to
drastically reduce development time on projects. One major advantage and the main
reason why it has gained popularity so quickly is its seamless integration with Java.
Java support in Scala, for example, can be provided by importing an appropriate
library, and all Scala programs also run on the JavaVM, which means that these can be

deployed on all the major systems.

5.3.2 Implementation Process

Scala has a unique way of dealing with data structures - there are mutable (can be
changed - e.g. var) and immutable (cannot be changed - e.g. val) variable types. Scala
creators recommend using the immutable types because this minimises the risk of

random or unintentional data corruption during runtime.

Scala also allows for almost out-of-the-box distributed code implementations through
the use of Actors. Scala Actors are capable of independent and asynchronous
operation, operating by passing messages from one to another. They function under a
command hierarchy and also allow for quick error recovery. Since each actor
operates independently of each other, if one encounters a fatal error, the message is
cascaded up the chain of command until it reaches an actor programmed to handle
that type of issue. It can then proceed to take further actions as necessary e.g. restart

the failed actor.

In the development process the author has used the Eclipse Integrated Development
Environment (IDE) to assist with code completions and debugging as necessary. Each
module has been implemented using inheritance based Object Oriented programming
principles. Figure 19 shows a few lines of Scala code (part of the Conn module
implementation). Java libraries have been used to facilitate remote connections and
Actors have been used to operate as message transporters. The code in Figure 19 is
set to receive remote connections and take different actions based on the type of

result.

67

5] NetworkModule.scala 82

package DNA

= class ConnHodule(cfg: Map[String, Map[String, Map[String, String]]]) {

import akka.actor._
import akka.util.ByteString
import java.net.InetSocketAddress

val util = new UtilitiesModule

class Server(port: Int) extends Actor {

override def preStart {

}

try {
I0Manager(context.system) listen new InetSocketAddress(port)
println("Started listening on port " 4+ port)

} catch {
case e:Exception => println("Exception:

}

+ e.getMessage)

def receive = {

case I0.Listening(server, address) =»
println("The server is listening on socket " + address + ".")

case I10.Connected(socket, address) =»
println("Successfully connected to

+ address)

case I0.NewClient(server) =»
println("New incoming connection on server from.")
val socket = server.accept()

socket write util.ToBytes(cfg("app")("info")("name") + " " + cf
case I10.Read(socket, bytes) =»

val sw = socket.asWritable

val string = util.ToString(bytes)

println("Received incoming data from socket: " 4+ string + ".")

Figure 19 - AMDS Part of Network Module written in Scala

68

“config”: |
“self”: {

“log”: |
“decription”: “Custom log function.”,
“file”: “logs/log file.log”

bo

“info”: |
“is master”: true,
“address”: “127.0.0.17,
“port”: “23422”

by
tapp”: |
“info”: |
“name”: “Autonomous Management Distributed
System”
}
by
“master”: {
“info”: |
“address”: “192.168.1.12",
“port”: “23422”

Code Fragment 2 - AMDS configuration file JSON layout

The databases have been implemented using the MongoDB database storage engine.
It is a NoSQL storage engine, which allows for big amounts of data to be stored
without the need to account for or worry about data fragmentation or database
design. As can be seen in Code Fragment 2, the MongoDB engine uses the standardised
JSON data format to store information in different shapes and sizes. As such, one
distinct advantage of this NoSQL engine is that data structure can change at any time
and it will still store all information exactly the same, as long as there is at least a key

reference found in each new piece of data added.

69

def connect () {

import reactivemongo.api.
import scala.concurrent.ExecutionContext.Implicits.global

// gets an instance of the driver

// (creates an actor system)

val driver = new MongoDriver

val connection = driver.connection(List ("localhost"))

// Gets a reference to the database "plugin"
val db = connection ("amds")

// Gets a reference to the collection "acoll"
// By default, you get a BSONCollection.
val collection = db("config")

Code Fragment 3 - AMDS Scala MongoDB connection code?*

In Code Fragment 3, the code used by the author to initiate a connection through Scala
to the MongoDB database engine is presented. It makes use of the Scala Akka actor
system to control the connection and, at the same time, provide fault tolerance at the
highest level. The process is straightforward; all that is needed is the location
(address) of the MongoDB server instance, along with the name of the database and

tables of interest.

** http://reactivemongo.org/#step-by-step-example

70

import reactivemongo.api.
import reactivemongo.bson.
import scala.concurrent.ExecutionContext.Implicits.global

def listDocs () = {

// Select only the documents that have an address of 127.0.0.1
val query = BSONDocument ("self.info.address" -> "127.0.0.1")
// select only the field 'master'
val filter = BSONDocument (

"master" -> 1

)

/**

* Let's run this query then enumerate the

* response and print a readable

* representation of each document in the response

*/
collection.find(query, filter).cursor[BSONDocument]
.enumerate () .apply(
Iteratee.foreach {
doc =>
println ("found document: " +

BSONDocument.pretty (doc))

// Or, the same with getting a list
val futurelList: Future[List[BSONDocument]] =
collection.
find (query, filter).
cursor [BSONDocument] .
collect[List] ()

futurelist.map { list =>

list.foreach { doc =>
println ("found document: " + BSONDocument.pretty (doc))

Code Fragment 4 - AMDS Scala MongoDB data retrieval code?®

The author has chosen a MongoDB Scala framework named ReactiveMongo to help
manage all database interactions. It provides scalable functionality capable of dealing
with large data sets simultaneously, which keeps in tune with the author’s AMDS

system.

In Code Fragment 4, the method used by the author of this thesis to retrieve data from
the MongoDB database is presented. The find() method takes a query object as a
parameter, which it then uses to match all existing data against. This can return none,
one or more results, depending on whether the sought after data already exists in the

database table. In this case, the author is looking inside the config database for AMDS

% http://reactivemongo.org/#step-by-step-example

71

instances running on the IP address 127.0.0.1. Next, a filter is used to only retrieve the
master information of each row of data identified by the find() method. Finally, the
query is then run against the collection (table) defined in Code Fragment 3 and all
results, if any, are printed to screen for testing purposes.

In this particular case, this code is used by other AMDS instances to identify the AMDS

master instance in order to establish a connection for load balancing purposes.

Another important component of the AMDS is the vSphere mini-module. In its
development the author has made heavy use of the vSphere API for Java. This set of
Application Programmable Interfaces (APIs) facilitates message exchanges between
the Control module and the vSphere Clients currently in the computing cluster. Still in
its preview stages, it allows for much interaction between third party programs and

the vSphere client itself.

5.3.3 AMDS Virtual Machine Setup

The author has configured a Virtual Machine, going from design to implementation,
using the Ubuntu Linux v12.10 Operating System distribution. It is configured using
primarily default settings, however there are several customised software
installations:
* Scalaversion 2.10.4.
o It is used to execute the AMDS code and keep it running in the
background.
* Customised system start-up scripts.
o These are put in place to set up the needed environment for the AMDS.
They are responsible for starting, maintaining, and checking the AMDS
throughout its software lifetime.
o They also check, maintain, and optimise the database and log files for

the duration of the AMDS software lifetime.

The customised scripts have been created to ensure correct AMDS operation during

its software lifetime, as follows:

72

#!/bin/bash

APPLICATION PATH=/opt/amds

start () {
echo -n "Starting"
sudo start-stop-daemon --start --background --pidfile
${APPLICATION_PATH}/RUNNING_PID -d ${APPLICATION_PATH}
--exec target/start -- -Dhttp.port=4200
RETVAL=$?
if [SRETVAL -eq O]; then
echo " - Success"
else
echo " - Failure"
fi
echo
}
stop () A
echo -n "Stopping"
sudo start-stop-daemon --stop --pidfile
${APPLICATION_PATH}/RUNNING_PID
RETVAL=$?
if [SRETVAL -eq O]; then
echo " - Success"
else
echo " - Failure"
fi
echo

case "S$S1" in
start)
start
stop)
stop
restart)
stop
start
*)
echo "Usage: play-server {start|stoplrestart}"
exit 1
esac
exit SRETVAL

Code Fragment 5 - AMDS Bash Management Script

Code Fragment 5, partly based on the script found here?¢, presents the script amds,
the AMDS instance management script. As can be seen, a typical bash process
management script consists of two main functionality blocks:

e start() - deals with starting the process; and

* stop() - deals with gracefully stopping a process.

26 http://www.whiteboardcoder.com/2013/06/creating-startup-script-for-your-play.html

73

The start function is in charge of making sure the AMDS has successfully started up
and has begun its programmed tasks, such as reading configuration files, generating
encryption certificate, initialising modules, etc. It then outputs a message according to
whether the task has been a success or not. On the other hand, the stop function is in
charge of making sure the AMDS has gracefully stopped its operations. It monitors the
situation after initiating a shutdown and reports back on whether it has been

successful or not.

The script shown in Code Fragment 5 also comes with two more functionality
features as possible use cases:
* restart - runs the stop and start functions in sequence and reports back on
these tasks’ success; and
e * . deals with incorrect user input when using the script, alerting the user

when an invalid option has been requested.

#!/bin/bash
ps cax | grep amds > /dev/null
if [$? -eq 0]; then
echo "'date’ - Process is running."
>> /opt/amds/logs/operations.log
else
service amds script start
echo "'date® - Process is was not running. It has been started."
>> /opt/amds/logs/operations.log
fi
Code Fragment 6 - AMDS Bash status check script.

The script called amds_check.sh is used to check for the local AMDS instance and
start the instance if it is not running. This script runs after the initial operating system
boot-up sequence has completed. As can be seen in Code Fragment 6, the
amds_check.sh script is in charge of checking whether the amds process is still
running and performing its duties. In case it has unexpectedly stopped, a start option
is attempted. Regardless of the process’ state, this script saves current check status to
an operations.log file for later viewing. This helps with debugging potential

situations when the AMDS might inadvertently crash.
The scripts presented in Code Fragment 5 and Code Fragment 6 interact with each

other in the case the AMDS crashes and it requires restarting. Then Code Fragment 6

makes use of Code Fragment 5 in an attempt to resume AMDS’s operations.

74

5.3.4 AMDS Setup on the Virtual Machine

All AMDS Scala and Database files and folders are located in the folder /opt/amds on
the Operating System. This is the location from where AMDS will carry out its

operation throughout its software lifetime.

Initial AMDS configuration lies within the Database, containing operational constants
as well default operation settings that can be internally changed throughout its

software lifetime as more network and operation data is gathered.

5.3.5 Autonomous Virtual Machine Management

The author has created a Snapshot of the Virtual Machine once optimal operation was
insured. It is stored directly on the Network Storage Drive and can be used at a later

date as backup.

This Virtual Machine has then been converted into a Virtual Machine Template that is
actively used by the VMWare vSphere Client to spawn and start up new Virtual

Machines as network loads escalate.

The AMDS is responsible for monitoring network operations and relaying commands
to the vSphere accordingly. In current context and based on network data flow, these

commands can be one of the following:

¢ Use the AMDS VM Snapshot to spawn a new Virtual Machine and start it up.

* Graciously stop a particular AMDS Virtual Machine.

Stopping an AMDS instance is performed once the following steps have been taken:

1. Check that all the latest Database information has been synchronised
successfully across all other currently running AMDS instances.

2. Check that the AMDS instance that is about to be shut down has no current
standing operations. If it does, transfer all operational parameters relevant to
those current operations over to the master AMDS instance. The master AMDS
then allocates the jobs to other running AMDS instances or acts upon them

itself if no other instances are available or other instances are currently busy.

75

This final stage ends the AMDS management procedure.

5.4 AMDS lifetime operational logic flow

The AMDS master instance is the first one to run within the network. It is responsible
for checking and making sure its own internal operations are functioning at optimal

efficiency as well as manage other slave instances.

As can be seen in Figure 20, upon start, the AMDS creates a security fingerprint that it
will then use throughout its software lifetime to sign every decision it makes or action
it takes. This design feature ensures that only authorised AMDS instances are able to
issue commands. It helps prevent its own hijacking or interference from outside

entities.

Security Check Confi ti - :
~p Create Sec eck Configuration (P
Fingerprint — Database ~————3»- Load Configuration

Contact AMDS S Connect to vSphere
Master Instance -~ |pnitialise Modules = P

M‘;’:‘i;?;;:"oga-taa"d ——3w- Create Decisions ———— 3 Issue Commands

Figure 20 - AMDS lifetime operational logic flow.

It then checks the configuration Database and loads its initial parameters from it.
Once successful, it continues to initialise its internal modules. If no errors are
encountered, it then proceeds with establishing connection to any other AMDS

instances currently running on the network.

Once this start-up procedure has taken place without any issues, the AMDS then

76

proceeds with establishing connections to any configured VMWare vSphere Client (or

any other provider for which a connection module is present).

Finally, its internal modules begin their monitoring, logging, and analysing incoming
network data and vSphere (or any other provider for which a connection module is
present) status. Based on recorded data it proceeds with making optimisation
decisions according to its internal algorithms and forwards them to the virtualisation

clients.

77

Chapter 6: AMDS System

Enhancement - Botnets

78

Chapter 6: AMDS System Enhancement - Botnets

This chapter makes use of the results analysis presented in Cloud Computing Test Bed
— Software Deployment on Hardware by utilising them in the context of Network
Hijacking. It presents a novel prevention strategy that has been implemented as a
module of the AMDS, and discusses a proposed abstract software model for use in

other computing environments.

6.1 Detection of Successful Network Hijacking Attempts - An Abstract
Model

This section focuses on detailing the abstract hijacking detection software model
developed by the author, in particular the botnet heuristic detection algorithm
adaptation. The author has chosen to employ an anomaly-based heuristic algorithm

based on the work carried out by (Binkley et al., 2006).

The algorithm consists of two main detection components: an Internet Relay Chat
(IRC) mesh, and a Transmission Control Protocol (TCP) scan detection heuristic. The
author has made use only of the TCP heuristic component and adapted it as necessary

into the AMDS botnet detection module.

An algorithm requirement is that a scanner actively samples network flow and
collects information on a percentage of observed data packets. This scanner would
store, as a tuple set, the following data flow information: IP source address, SYNS,

SYNACKS, FINSSENT, FINSBACK, RESETS, PKTSSENT, and PKTSBACK.

The IP address serves as a logical key for the entire stored packets waiting to be
analysed. The SYNS are counts of SYN packets, while SYNACKS are SYN packets sent
with the ACK flag set. FINS sent both are counted, and RESETS are only counted when
sent back to the IP source. The PKTSSENT represents the total number of packets sent
by the IP source, and the PKTSBACK is the total number of packets sent back to the [P
source. This information helps in providing an approximate network-based indication

of the kind of exploit in use at the time (Binkley et al., 2006).

79

w = (Ss+Fs+Ryr)/Tsr
Equation 1 - TCP work weight (percentage) (Binkley et al., 2006)

The algorithm makes use of a metric defined by Equation 1, also called a work weight,
expressed in percentage, which when calculated as being close to 100% generally
indicates the presence of an anomaly. This percentage is calculated by dividing the
sum of SYNS and SYNACKS (Ss), FINS (Fs), and RESETS (R:) to the total number of
packets (Ts:). This is intended to be used as a tool by the analysing entity to create a

ranked list of possible botnet activities.

Another detection algorithm the author has based his work on is discussed by
(Xiaobo et al.,, 2010), which presented a TCP Botnet detection algorithm through
measuring the “quasi-periodicity degree and packet average size of IRC [type]

conversations based on ukkonen algorithm”.

The ukkonen algorithm traverses a given character string in steps, going through it
from left to right, one step per character, with each step potentially being composed
of several operations. Its end goal is to deconstruct the string into a series of

character suffixes.

As presented by the authors, the algorithm only analyses a group of packets’ size,
defined as a “Conversation Content Sequence (CCS)” and viewed as a string of
characters; it attempts to employ the ukkonen algorithm to search for re-duplicate
substrings within the communication flows. Each CCS consists of 100 packets, not
including the initial 20 packets used to establish communication between IRC client

and server.

This algorithm’s pseudo code can be seen in Figure 21. The variables that form its
basis are as follows (Xiaobo et al., 2010):
- S =average packet size of CSS;

o This is to be calculated repeatedly during the lifetime of each
experiment by looking at the total size of captured flow sample, in bytes,
and dividing that by the actual number of packets present within the
sample.

- S’ =threshold of average packet size;

o This is to be set at the beginning of experiment based on readings

80

performed on legitimate network traffic outside of the experiment.
- P =quasi-periodicity degree of CCS;
- @ =threshold of the quasi-periodicity degree.

Thus, the communication will end up being classified as IRC botnets only if the

conditions P > @ and S < S’ are simultaneously satisfied.

Algorithm: IRC botnet detection algorithm
Begin Initialize String S«—IRC CCS
Step 1: Compute the average packet size of CCS denoted by S
If S > S"', then not IRC botnet and goto Begin
Step 2: Create the suffix tree of S based on ukkonen algorithm.
1 fori=1:100
2 read the packet i’s size denoted by b
3 map b into character S[i]
4 add S[i] into the suffix tree of S[O ... i-1]
5 end
Step 3: Let P be the proportion of the non-overlapping reduplicate substring R
to string S and search for the maximum value of P under different step distances

d.

6 for d=3:10

7 Search for the substring with length d of most frequent occurrence.
Denote it by R4 and denote its occurrence time by Cag.

8 if (P >thelastP), then P=dxC,/100

9 end

Step 4: Determine whether it’s an IRC botnet or not based on the threshold ¢
of quasi-periodicity.
10 if P> ¢ thenit’s an IRC botnet and goto Begin

11 else it’s not an IRC botnet and goto Begin
End

Figure 21 - IRC Botnet Detection Algorithm (Xiaobo et al, 2010, Table 1)

81

6.2 AMDS Botnet Detection Module - Design

This section focuses on the design and implementation of the malicious activity

detection module, based on the abstract model discussed in section 6.1.

AMDS CONN module
BOTNET DETECTION MODULE
2
1 GET NETWORK STORE FLOW /
FLOW ANALYSIS RESULT
Flow friom 1 6
NetFlow/IPFIX
through
e 3 FLOW REPORTING .
FLOW a
BREAKDOWN FLOW ANALYSIS

Figure 22 - Botnet Detection Module Design

As can be seen in Figure 22, the Botnet Detection software module design specifies
the logical position of its five major components and the information flow between
them, illustrated by the numbered yellow arrows. The data flow direction is given by
the yellow arrows, while the sequence in which it takes place is indicated by the
numbers 1 to 7, 1 being the data entry point and 7 being the data exit point, both of
which being facilitated by the AMDS Connection module. For more information on the

Connection module’s design, please see Chapter 5.

This new module’s major components are all designed to each fulfil a specific function,
thus feeding into the AMDS modular design concept. They will now be described at an
overview level, as follows:
[. Get Network Flow. This component, as its label suggests, is responsible for
requesting and accepting network data flows from the NetFlow/IPFIX setup

through the AMDS Connection module. It first initiates the request, which is

82

then forwarded by the Conn module using an appropriate communication
interface, and it then awaits a response in the form of a Network Flow. Once it
receives this information, it passes it on to both the storage and breakdown
components.

[I. Store Flow / Analysis Result. This part of the Botnet module is responsible with
storing, as a long-term solution, raw Network Flows as forwarded by the
previously discussed component and analysis results as transmitted by the
Flow Analysis component, described below. It uses an internal storage system
rather than relying on the other AMDS modules for security considerations.
Another responsibility it carries refers to passing on the analysis results to the
Flow Reporting component.

[I. ~ Flow Breakdown. This element is charged with extracting key bits of
information from the raw network flows, as required by the detection
algorithm, and forwarding them to the Flow Analysis component. Generally, it
looks for packet size, IP addresses and ports (for both packet source and
destination), class of service, device interface, and protocol type.

IV. Flow Analysis. This block performs the most complex and key functional tasks
of the module. It is the embodiment of the detection algorithm and, as such, is
charged with utilising the information extracted from the raw network flows.
The main purpose of this component is to attempt to detect malicious botnet
activities by comparing current findings with past findings. This is achieved
through querying the Store Flow / Analysis Result component for old records of
previously analysed data and comparing healthy flows with current, yet
unidentified flows. In the event of an inconclusive analysis result, it flags the
current flow as such. Finally, it forwards its findings to the storage component.

V. Flow Reporting. This element’s main responsibility is to retrieve analysis
results and forward them to the User Interface AMDS module for review
purposes. It also is charged with forwarding analysis statistics based on past

results, which helps provide an overview of this module’s activities.

In conclusion, this chapter has presented in detail the theory, design, and
functionality of a Botnet detection module for the AMDS. Next, the hardware used by
the author to create the test bed, as well as the tests the author ran and their results

will be presented.

83

Chapter 7: Cloud Computing
Test Bed - Software

Deployment on Hardware

84

Chapter 7: Cloud Computing Test Bed - Software

Deployment on Hardware

This chapter describes how the AMDS was installed on a Virtual Machine and what
steps have been undertaken to achieve interconnectivity between the Virtual

Network interfaces and the underlying physical hardware.

7.1 Cloud Test Bed Hardware

The author, as previously detailed in Dinita et al. (2012), has access to a small but
powerful test bed comprising seven physical servers (mix of HP Proliant, Dell R710
and Viglen brands), three Storage Area Networks (HP) and multiple routers and
switches (CISCO and HP), and HP ILOs (TaBte 1) located within the Department of
Computing and Technology (Ficure 23 and FiGure 24 are illustrating the structure of

these systems) across four rooms (Bry015, Mel205, Datacentre, Bry101).

Two of the servers are ‘public’-facing (that is, they are utilised for teaching purposes),
whilst the others are ‘private’-facing (i.e. they are utilised for research - not yet
implemented). The private-facing resource is isolated from the Internet and only
accessible from departmental computers via an appropriate security protocol. All of
the networking cards have Gigabit type interfaces (>=1Gbps, Gigabit per second,
transfer rate) and the link between the Servers and the Filer (FiGure 24) is one of
10Gbps, which facilitates rapid data movement to and from the Filer across the

network (Dinita et al.,, 2012).

The described test bed allows for the possibility of testing unique and complex
scenarios such as simulating a global infrastructure, where each room is considered

to be a remote location in a different country/part of the world (Dinita et al., 2012).

The author also has access to several items of test hardware that allow simple power
consumption readings to be taken through proprietary User Interfaces: HP Integrated
Lights-Out (ILO), APC Power Distribution Unit (PDU) and APC Uninterrupted Power
Supply (UPS) devices. These devices are directly connected to the physical servers

and as such produce relevant power metrics.

85

All hardware presented is fully network enabled and as such has been provided with
unique IP addresses to which connections can be made. The specialised hardware
relevant to this point all support the SNMP protocol (communication protocol that

allows two way data connections).

Table 1 - Test Bed Components (Dinita et al., 2012)

Make Specifications Quantity

HP Proliant 108GB RAM 4
2 x Intel Six-Core Xeon 2.4GHz
10 Gbit NICs

Dell R710 38GB RAM 2
2 x Intel Quad-Core Xeon 2.4GHz
Gbit NICs
Viglen 16GB RAM 1
2x Intel Dual-Core Xeon 2.2GHz
Gbit NICs
HP Filer 8TB HDD 1
10 Gbit NICs
Dell Storage Area Network 1.5TB 3
HP Integrated Lights Out Gbit NICs 4
Cisco 4948 Switch Gbit NICs 1
Cisco 3560 Switch Gbit NICs 1
Cisco 5510 Adaptive Security | Gbit NICs 1
Appliance (ASA)
NetLab Pod N/A, proprietary appliance 4

86

Cisco 4948 Switch

Servers

Servers

Mel205

NetLab

Cloud
Servers

vCentre
Servers

bps

Cisco 5510 ASA

N N

Computing
VLAN

Figure 23 - Test Bed - Custom design infrastructure (Dinita et al, 2012)

87

Cisco 4948
Research Switch

Management
Network
10.141.0.0/24
VLAN 972

1Gbps Management 1Gbps
Network

10.22.170.0/24
VLAN 970

Figure 24 - Test Bed - Datacentre View (Dinita et al, 2012)

88

CLASS NAME LEAD INSTRUCTOR(S) # ENROLLED START DATE END DATE LABS LAB HOURS
Adrian Winckles

© Commercial CCNA (L T Fellowship) Chris Holmes 5 None None 0 0.0
Adrian Winckles

© Computer Network Principles 2009-10 Cam|Chris Holmes 36 None None 556 1113.5
Peter Cousins
Adrian Winckles

© Computer Network Principles 2010-11 Cam|Chris Holmes 66 None None 63 128.0
Ed Deacon
Adrian Winckles

© Computer Network Principles 2011-12 Cam|Chris Holmes 69 None None 18 19.4
Ed Deacon

© EJ315013S Network Management 2011 | ~drian Winckles 14 None None 32 53.4
Chris Holmes

© Internet and Network Security Cam 2011 | Adrian Winckles 16 None None 1100 257.1
Chris Holmes

O IT Infrastructures Cambidge 2011 Acrisn Winoides 28 None None | 42 738
Chris Holmes ’

© Miscellaneous 2010 it 19 None Nome | 71 10858
Chris Holmes

© Network Fundamentals ILM 2012 Adien Winckiea 2 None None 0 0.0
Chris Holmes

© Standard Class Adrian Winckles 2 None None 6 6.0
Chris Holmes
Adrian Winckles

© VMware Demo Training Class Chris Holmes 1 None None 2 21

Peter Cousins
Total 900 1762.1

Figure 25 - NetLab+ Testing Results (Dinita et al, 2012)

As can be seen in Figure 25 (Dinita et al,, 2012), there already have been 900 Labs
and over 1700 hours of lab work put into testing the described test bed by over 260

students, all of which have run without any issues.

7.2 Deployment of the AMDS on the Cloud Test Bed

The AMDS is currently deployed and running on the author’s test bed. An Ubuntu
Linux based Virtual Machine was chosen to run the application due to the high
reliability of the Operating System. The VM has is connected to the ESXi Servers via a
closed Virtual Network. This ensures seamless connectivity between virtual and
physical hardware, thus allowing the AMDS to receive information from the ILOs and

the vSphere Client and to send commands back.

This section provides an in-depth description of three different experiments executed

on the author’s test bed.

89

7.2.1 Experiment 1: Ensure Correct AMDS Operation

This first experiment involves the AMDS running on the Cloud Test Bed as described
in sections 5.3.3 and 5.3.4. Its scope is limited to verifying correct system operation

within the cloud network.

This experiment has several key points it is trying to achieve:
[. Debug every AMDS module in an attempt to identify software flaws
introduced at the point of creation.
II. Verify ASA-VLAN-AMDS network flow.
III. Verify AMDS-vSphere connectivity and command compatibility.
IV. Verify AMDS-ILO connectivity and command compatibility.
V. Test AMDS’ analysis capabilities.

Details of the experiment are as follows.
The AMDS is deployed on a Virtual Machine Instance (VMI), which has been created

based on the already defined VM Template through the VMWare vSphere Client. This

VMI is connected to the internal Cloud Network as shown in Figure 26.

External Traffic

VLAN #2 ‘VLAN #1
— ‘ ¢ VLAN #3
\ / \ \
Netwo? Readings Power Consumpt?)n Readings
{ vSphere ’ Network Flow ILO J

- ‘ -
Internal Traffic

Figure 26 - AMDS Experiment Logical Layout - Ensure Correct AMDS Operation

90

The experimental parameters are the default ones set out in the configuration files.
The impact and evolution of these parameters are out of the scope of this experiment

and are presented in section 7.2.2.

At a logical overview level, the Cloud Infrastructure is composed of a Cisco ASA
Router (Adaptive Security Appliance), three VLANs (Virtual Local Area Network), the
vSphere Client, the ESXi Server, a group of [LOs (Integrated Lights Out), and the AMDS.
Each of these components is underpinned by a series of physical network cables,
switches, and routers that facilitate interconnectivity between them. The ESXi Server

is comprised of multiple independent VMs interconnected by the three VLANs.

The network operational flow is expressed through two different arrow colours in
Figure 26, both relevant to the AMDS:

* GREEN reflects network traffic flowing towards the AMDS, while

* ORANGE reflects network traffic flowing from the AMDS towards all other

infrastructure components.

Green traffic is composed of data the AMDS requires when performing the
infrastructure logical analysis from the points of view of processor loads, power
consumption, and network flow, from the following sources:
* Processor load data is retrieved from the vSphere Client;
* Power consumption data is retrieved from the ILO group; and
* Network flow data is obtained from the various switches and routers spread
across the infrastructure.
Orange traffic is composed of commands the AMDS issues post-analysis. This includes:
* VM moving commands to the ESXi Servers through vSphere;
* Physical server shut-down / start-up commands to various ESXi Servers
through vSphere;
* Network flow restriction requests to the Cisco ASA router; and
* Load balancing requests across the infrastructure to other AMDS running

instances.

Even though all infrastructure components are located within the same physical
network, the VLANs allow splitting it up into smaller logical groups which can be

more easily maintained and controlled. Each VLAN is created and maintained by the

91

vSphere Client and only has direct access to the logical component in its immediate
vicinity. This allows for the formation of highly compartmented and self-contained/-

managed logical groups.

Since the AMDS has direct access to all VLANS, it is capable of interfering with regular
network data flow based on its post-analysis results. This gives it the power to
control every aspect of a physical infrastructure through controlling its logical groups.
Once AMDS collects several hours worth of data, it is then capable of issuing
commands to vSphere, which in turn will forward these, as needed, to other

Components under its control.

Example commands that can be issued are among the following:

* If any servers are available, meaning underutilised (less than 75% processor
load), attempt to split active VMs from one server among all the other ones in a
similar position, and shut it down once this operation has completed.

e If all active servers are reaching peak efficiency (close to 100% processor

load), start up a new server and add it to the active cluster.

In order to technically achieve all of this experiment’s points, the author has put
together a special Linux Virtual Machine template capable of performing server load
stress tests. This is achieved by having the VM push the Virtual Processor to loads of
up to 100%.

The VM comprises of the latest Ubuntu Linux operating system as well as the latest
versions of the Apache Web Server and the Tsung open source multi-protocol

distributed load-testing tool.

Apache is a web service that upon start it listens on a predefined port (usually 80) on
the server. It is capable of delivering multiple web pages to millions of clients
simultaneously. A simple web page has been created and put in place for the purpose

of these tests.

Tsung?’ is a complex application that is capable of creating millions of simultaneous

connections (also known as virtual clients) to any given web service. The

27 http://tsung.erlang-projects.org/

92

configuration file allows fine control over the length of each connection time wise as
well as how fast the number of simultaneous connections grows over a predefined
time frame. This allows measurement of server power consumption while the
processor load ranges from 0% to 100%. Other features of Tsung are beyond the

scope of this research.

Upon launch the VM starts up both Apache and Tsung. Apache is set up to listen on
port 80 for connections from anywhere on the network (in this case, from within the
same location - localhost or 127.0.0.1). Tsung is set up to create virtual clients for
Apache every 0.5 milliseconds over a time frame of 15 minutes. By the end of the
given time frame the number of simultaneous connections will mount up to 1.8
million. This forces the Virtual Processor to slowly go through the needed loads.

For the purpose of these tests the authors have deployed 40 VMs based on the
original template VM and have launched them all at the same time to achieve the

desired effect.

The second AMDS experiment, designed to test AMDS network sampling capabilities,

will now be presented.

7.2.2 Experiment 2: AMDS Network Sampling

This second experiment involves the AMDS running on the Cloud Test Bed as
described in sections 5.3.3 and 5.3.4, as well as building upon the parameters of
Experiment 1. The scope of this experiment is limited to AMDS network sampling

through the use of NetFlow and IPFix open source software.

This experiment has several key points it is trying to achieve:

[. Sample 10% of all network data flow using IPFix / NetFlow. See below

for an explanation of why this percentage was chosen.
[I. Sort collected samples into logical groups based on parameters such as

data packet Size, Source, Destination, and Commands.
[II. Test the AMDS’ ability to query stored data packets and analyse their
respective groups in an attempt to discover unusual network behaviour.
IV. Construct an operational model based on packet analysis results

capable of detecting suspicious client behaviour.

93

External Traffic

VLAN #2 VLAN #3

NetFlow .

| y |
\— —_— \—

Netwo? Readings Net%rk Flow Power ConsumptTJn Readings

vSphere P ILO
I | \ r
ESXi ‘
N o

Internal Traffic

Figure 27 - AMDS Experiment Logical Layout - AMDS Network Sampling

In Figure 27 a new logical node has been created and inserted in-between existing
logical network nodes (VLAN #1-3, and the ASA). This allows for potentially all data
packets, the ones coming into the network as well as the ones going outside the
network, to be stored in a local database and inspected at a very low level. Every
packet has the option of being grouped up with other similar packets for easier

comparison.

The IPFix / NetFlow logical node is capable, through outside (other locally networked
devices) interference, to sample random data packets passing through them.
Although it is capable of sampling 100% of the data, this is not recommended as it
would slow down network flow as well as increase power consumption on the
network hardware node it resides. For these reasons only 10% of all data is sampled,

stored, and grouped up in the local IPFix/NetFlow database.

The local data packet database has the ability to be queried for small portions of data
at a time for easier analysis. Also, the AMDS has the capability of achieving this task
through one of its built for purpose modules. Once retrieved, the AMDS creates a

graph of data packets by comparing their Size, Source, Destination, and Commands

94

they carry. The more regular data it analyses, the higher the chance of it detecting

unusual behaviour on the network, and the lower number of false positives.

After several data sets have been analysed, a model is then created which is used to
test all future packet samples, while at the same time still keeping graph records used

to continuously improve the data model.

7.2.3 Experiment 3: AMDS Performance Measurements

This third experiment involves the AMDS running on the Cloud Test Bed as described
in sections 5.3.3 and 5.3.4, as well as building upon the parameters of the Experiment
1: Ensure Correct AMDS Operation chapter. The scope of this experiment is limited to
AMDS performance measurements through self produced logs detailing each action
and connection undertaken by the AMDS, together with the time in milliseconds each

task has taken to complete.

The current setup also has the AMDS Botnet Module activated, which analyses
NetFlow / IPFix network samples. This helps accurately determine the AMDS

production performance on a live datacentre infrastructure.

This experiment has several key points it is trying to achieve:
[. Record execution time of each action and connection undertaken by the
AMDS with the Botnet Module enabled.
[I. Group all tasks into logical groups and calculate an average execution

time for each task type.
In Figure 28 a new logical node (Botnet Module) has been created and attached to an

existing logical node (AMDS). This allows for an accurate performance assessment in

a fully operational datacentre environment.

95

External Traffic

g P
VLAN #2 3 NetFlo ¢ VLAN #3

Netwo?t Readings Ne »&rk Flow Power Consump%n Readings

vSphere J panae L ILO J

.(_

3

%
E

v

Internal Traffic

Figure 28 - AMDS Experiment Logical Layout - AMDS Performance Measurements

By default, the AMDS records all actions undertaken during its lifetime. These contain
information on what triggered each action, the evaluated data, the result of the
evaluation and the command issued to the action initiator, such as vSphere, an ILO, a

switch or a router.

Ttotal = Tend - Tstart

Equation 2 - Operation running time

In addition to this, for the purpose of this experiment the AMDS logging functionality
has been extended to also record the start time of when an action has been triggered
and the time of when said action has completed, in milliseconds. Then, a simple
subtraction operation is applied to both recorded times according to Equation 2 and

the final operation running time is attached to the current operation log entry.

After several log data sets have been analysed, a performance report is generated that

provides an overall view on the AMDS operational timings.

96

7.2.4 Experiment 4: AMDS Botnet Module Detection Capabilities

This fourth experiment involves the AMDS running on the Cloud Test Bed as
described in sections 5.3.3 and 5.3.4, as well as building upon the parameters of
Experiments 1 and 2. The scope of this experiment is limited to further testing the
AMDS Botnet Module’s detection capabilities through a bigger, more standardised set

of infected network packets.
In addition to the existing setup, the author has also added an external Botnet-like
attacker using the botnet code written by Charles Leifer?8. This is a simple program

that allows a master machine to control other, infected machines through IRC

commands. This experiment assumes said machines are already infected.

. 5 - Botnet
-—

External Traffic

IPFix /

Netwo* Readings Net%rk Flow Power ConsumptT:n Readings

vSphere J PR ILO J

Internal Traffic

Figure 29 - AMDS Experiment Logical Layout - AMDS Botnet Module Detection
Capabilities

28 https://github.com/coleifer/irc/tree /master/botnet

97

This experiment has several key points it is trying to achieve:

[. Further test AMDS’ ability to query stored data packets and analyse
their respective groups in an attempt to discover unusual network
behaviour.

[I. Refine and test existing operational model based on packet analysis

results capable of detecting suspicious client behaviour.

In Figure 29 a new logical node has been created and made available to the existing
infrastructure by interfacing with the ASA and becoming part or regular network
traffic. This new logical node is a very simple Botnet application, consisting of a
master and several workers. This allows for infected data packets to be randomly

introduced into the system alongside regular, healthy data packets.

The botnet master resides outside the system, while the botnet workers all reside
somewhere inside running Virtual Machines inside the datacentre. The biggest
implication of this is that all infected traffic will need to pass through the ASA, as well
as the NetFlow/IPFix sampling node. All traffic going between these two parties is, for

the purpose of this experiment, considered infected.

The packets used in this experiment vary in size, but are typically between 100 and
500 bytes. Regular user traffic is typically around the 500 byte mark, which should

give the existing model ample leeway to adapt.

The previous detection rate found in Experiment 2 stands at 43% while using simple
infected packets automatically generated through a simple program written by the
author. The existing user activity model created based on said packets is now tested

against near-real world botnet packets in an attempt to test and refine it.

7.3 Deployment Results Analysis

The AMDS has been designed to keep track of all incoming/outgoing data. As such, it
keeps detailed logs of every activity that takes place within its boundaries. This

section focuses on presenting the logs the AMDS has produced over a period of

several months and on the analyses of the results.

98

7.3.1 Ensure Correct AMDS Operation Experiment Results

This section presents and discusses the results obtained from running Experiment 1,

discussed in section Experiment 1: Ensure Correct AMDS Operation.

Since the AMDS has been deployed it has produced a great number of data stored
within several databases. The data come from queries performed by the AMDS on the
different networking hardware operating within the cloud environment (Switches,

Routers, [LOs, ESXi).

The author has merged and analysed all generated data, the results of which have

been expressed in Table 2 and Figure 30.

Prise = Pcurrent/Pidle

Equation 3 - Power Consumption Rise Percentage

E:L/Prise

Equation 4 - Server Operation Efficiency

The system efficiency was calculated by using the formulas from Equation 3 and
Equation 4. In Equation 3 Piise is the power consumption rise percentage calculated
by dividing Pcurrent (Server power consumption at any other time - processor load >
0%) by Piqie (server power consumption when idle - 0% processor load). In Equation

4 E (server operating efficiency) is calculated by dividing L (server load) by Prise.

300
250
200
150
100 - - - Idle State
50 — ' ' P | ' “w/o AMDS
0 — - — -
w/ AMDS
(%) (Watts / (%) (%)
Hour)
Processor Power Power Efficiency
Load Consumption |Consumption
Rise

Figure 30 - AMDS Running Results - Graph View

99

Table 2 - AMDS Running Results — Table View

Processor Power Power Efficiency
Load Consumption | Consumption (%)
(%) (Watts / Rise
Hour) (%)
Idle state 0 124 N/A N/A
w/o AMDS 25 168 35.5 70
w/ AMDS 100 239 92 108

In the second row of Table 2 labelled “Baseline” the data have been recorded on a
machine in an idle state i.e. no other processes or applications running on it apart
from the base system services. The Processor Load is at 0%, with a Power
Consumption of 124 Watts / Hour. In this idle state, there are no Power Consumption

Rise or Efficiency calculations to be done.

In the third row of Table 2 labelled “w/o AMDS” the data have been recorded before
the AMDS has been enabled (decision making module was disabled). The system
Efficiency stabilized at 70% due to the fact that several servers operating at 25% of
their potential hardware load. The server power consumption at this stage was 168

Watts / Hour, an increase of 35.5% from system idle state.

In the fourth row of Table 2 labelled “w/ AMDS” the data have been recorded after the
AMDS has been enabled (decision making module was enabled). Almost immediately
all system traffic had been redirected towards one of the active servers while the
others had been shut down to conserve power, thus bringing the system efficiency up
to 108%. Power consumption at this stage was 239 Watts / Hour, an increase of 92%

from system idle state.

The readings gathered from both the relevant hardware devices have been put side
by side in Table 3 and Table 4, with the corresponding graphical representation
shown in Figure 31, Figure 32, and Figure 33. Estimates of power consumption over
longer periods of time have been generated in Table 5 with associated data graphed

in Figure 34.

100

Table 3 - Processor Loads VS Watt Server Power Consumption

Watts Power

Efficiency (PL /
Watts / Hour Consumption Rise
WPCR) (%)
(WPCR) (%)

0% Processor

124 N/A N/A
Load (PL) (Idle)
25% Processor

168 35.5 70
Load (PL)
50% Processor

191 54 92
Load (PL)
75% Processor

217 75 100
Load (PL)
100% Processor

239 92 108
Load (PL)

Table 4 - Amps Server Power Readings vs Processor Loads
Amps Power . .
Amps Consumption Rise Eff1c1en((:)y (PL /
(APCR) (%) APCR) (%)

0% Processor

1.2 N/A N/A
Load (PL) (Idle)
25% Processor

1.55 29.1 86
Load (PL)
50% Processor

1.8 50 100
Load (PL)
75% Processor

1.95 62.5 120
Load (PL)
100% Processor

2.2 83 120.4
Load (PL)

101

300
250
e=fmsWatts / Hour
200
150
e=Watts Power
100 Consumption Rise
50 (WPCR) (%)
ew=Efficiency (PL / WPCR)
0 (%)
0% 25% 50% 75% 100%
Processor Processor Processor Processor Processor
Load (PL) Load (PL) Load (PL) Load (PL) Load (PL)
(Idle)
Figure 31 - Processor Loads VS Power Consumption - Graph View
140
o 120
Ep lgg /7
g 60 /
2 y 4 @ Amps Power
40 . .
=¥ Consumption Rise
20 - (APCR) (%)
0 T T T T 1
~N N ~N ~N > es=Efficiency (PL / APCR)
¢ ¢ ¢ ¢ F (%)
> > & & N
o Q o o)
&\) ‘\‘ &\,‘ &\) &
o o o Q <
& & & & <©
& & & & 3
<O <© <© <O S
R < S R
QQ\Q <OQ\Q QQ N <o°\° N
YV) A

Figure 32 - Amps Server Power Readings vs. Processor Loads (PL) - Rise and Efficiency

Percentages

Amps measurements

2 ——

2
£
s = =
0 T T T T

0% 25% 50% 75% 100%
Processor Processor Processor Processor Processor
Load (PL) Load (PL) Load(PL) Load(PL) Load (PL)

(Idle)

Figure 33 - Amps Server Power Readings vs. Processor Loads (PL) - Amps measurements

102

The results show that the higher the Processor Load is, the more efficient the Watt
Consumption becomes. At 100% Processor Load there is only a 92% increase in Watt
Consumption, resulting in an 8% power consumption reduction. The same applies for
Processor Load percentages and Amps Consumption percentages. For 100%
Processor Load there is only an 83% increase in Amps Consumption. For optimal

efficiency it appears to be desirable that the Processor Load be kept over 75% for the

best Power Consumption efficiency.

Table 5 - Over time Power Consumption estimates with variable Uptime

1 Month 3 Months 6 Months 12 Months
(£732h) (£2196h) (£4392h) (£8784h)
(Megawatts) | (Megawatts) | (Megawatts) | (Megawatts)
0% PL (124 Wh) 0.91 0.272 0.545 1.09
25% PL (168 Wh) 0.123 0.369 0.738 1.48
50% PL (191 Wh) 0.14 0.42 0.839 1.68
75% PL (217 Wh) 0.159 0.477 0.953 1.9
100% PL (239 Wh) 0.175 0.524 1.05 2.1
2.5
2
15 e=0=»1 Month (x732h) (MW)

«ii=3 Months (+2196h) (MW)
6 Months (+4392h) (MW)

Megawatts (MW)

@=12 Months (+8784h) (MW)

O >
0%PL 25%PL 50%PL 75%PL 100% PL
(124 Wh) (168 Wh) (191 Wh) (217 Wh) (239 Wh)
Figure 34 - Over time Megawatt (MW) Power Consumption estimates with variable

Uptime

From the perspective of datacentres it is more cost effective to maximise the
Processor Load on each server and running fewer servers rather than having a higher
number of servers but with lower Processor Load percentages. Furthermore, using
the results presented in Table 5 and Figure 34, the cost of operation from an energy
efficiency point of view can be calculated for the following Datacentre use case

scenarios:

103

- Case 1 (UC1): one server running at 100% PL (AMDS not running), operating
cost estimation projected in Figure 35;

VS.
- Case 2 (UC2): four servers running at 25% PL each (AMDS running), operating

cost estimation projected in Figure 35.

Table 6 - Cost estimates for two Use Case scenarios

2.1 Megawatts (See Table 5)
*£88.45 / Megawatt =
£186

Use Case 1 (UC1) One
Server @ 100% PL

One Server: 1.48 Megawatts (See Table 5)

* —
Use Case 2 (UC2) Four £88-45é11\§(igawatt =
Servers @ 25% PL Four Servers: £131 *4 =
£524
£338
luc1-uez| UC2 shows a 181.72% cost increase compared to UC1
600
,, 500
=
£ 400
~
G 300 e===1C1 Cost (£)
:E 200 e=D=UC2 Cost (£)
100 —
0

1 Month 3 6 12
Months Months Months

Figure 35 - Use Case 1 and 2 monthly operating costs over one year

Both use cases assume an operation time span of one year and the price used in the
calculations is £88.45 / Megawatt 2°. As can be seen in Table 6, operating one server
at 100% capacity for one year costs approximately £186 (UC1), while operating four
servers at 25% capacity for the same period of time costs approximately £524 (UC2),

£131 per server, resulting in a significant 181.72% increase over UC1.

29 Price taken from http://www.businesselectricityprices.com/kwh.php on 27th November 2012.
Multiplied by 10 to get to £ / MWh (Megawatt per hour).

104

The results presented above demonstrate how the AMDS is capable of minimising the
cloud system power consumption by up to 8%, since at 100% Processor Load there is
only a 92% increase in Watt Consumption, and at the same time generating an
important operating cost reduction. They also show highly potential industrial
applications in datacentre energy management and the lowering of datacentre
operating costs, as follows:

i. Green Datacentre. The proposed system is capable of reducing overall
energy consumption by intelligently turning physical servers on and off
based on data collection from throughout the computing cluster.

ii. Lower Datacentre operating costs. This is a direct consequence of the
previous statement. Overall lower energy consumption leads to reduced
operating costs. This in turn allows for higher profits and more
investments to be made.

iii. Set-and-forget scenarios. The AMDS, due to its autonomous nature and
modular design, is capable of on-the-fly self-reconfiguration based on
analysis results of gathered data. This flexibility makes it ideal for set-and-

forget situations as well as low cost maintenance schedules.

7.3.2 AMDS Network Sampling Experiment Results

This section presents and discusses the results obtained from running Experiment 2,

discussed in section 7.2.2.

The experiment has run over an extensive period of time and it has produced a great
deal of log data. An overview of this data, along with some of the experiment

parameters, can be seen in Table 7.

The experiment has been run using the following parameters:
A. 1Gbps network connection speed between the clients and the AMDS, which
allows a maximum of 1 billion bytes per second.
B. Data packet sample size was set at 10% of all traffic at the point of
collection. The reason for choosing this percentage is twofold:
a. Although the IPFix / NetFlow logical node is capable of sampling
100% of the data, this is not recommended as it would slow down

network flow as well as increase power consumption on the node

105

they reside.

b. The heuristic algorithm only looks at average packet sizes in order
to detect malicious network activity and, as such, 10% is enough to
perform this task.

C. Average data packet size ranged between 500 and 1000 bytes of data. An
average packet size of 500 bytes (S’ from the heuristic algorithm presented
in Chapter 6.1) has been derived from measurements performed prior to
running the experiment on legitimate network traffic, generated with the
help of the Botnet software3? by configuring it as such. The Botnet software
employed to generate the malicious traffic automatically set the difference
in infected packet size between 1 and 500 bytes, resulting in a total packet
size of between 500 and 1000 bytes (legitimate + malicious commands).

D. Infected (Botnet) packets have been used randomly starting with Sample
#500. This threshold was chosen in order to give the detection heuristic
algorithm a chance to create a healthy packet model to compare infected

packets against.

Table 7 - Packet Analysis Results

Sample #50 Sample #250 Sample #500 Sample #1000

of Packets

200 200 133 100
(1000s)
~ Packet Size

500 500 750 1000
(Bytes)
Infected

0 0 18 28
(1000s)
Detected

0 0 5 12
(1000s)
Detection Rate

0 0 28 43
(%)

For the first half of the experiment, as can be seen in Table 7, regular packets with an
average size of 500 bytes have been filtered through the AMDS Botnet Detection
Module. This has been used as a training mechanism for the heuristic algorithm
exemplified the Botnets chapter, so it would later on have a healthy packet model to

compare infected packets against.

30 https://github.com/coleifer/irc/tree /master/botnet

106

N -
§ < 200
= § 150 — - # of Packets (1000s)
% £ 100
g2 i # Infected (1000s)
0 - - - - # Detected (1000s)
Sample #50 Sample #250 Sample #500 Sample
#1000

Figure 36 - Data Packet Distribution per 10% Sample

As can be seen in Figure 36, using a 1Gbps network link has translated into
approximately 2 million data packets, 500 bytes each, as can be seen in Figure 37. Of
those, 200 thousand packets (10% according to the experiment parameters) have
been captured at each of the initial 500 sample readings and stored for analysis. From
the point when Botnets packets were introduced into the Experiment (starting with
sample #500), due to the Botnet packets increasing the overall size of each healthy
packet (extra malicious commands accompany healthy packets), the total number of
packets flowing each second through the network has been reduced. As such, these
infected samples were made up of only between 100 thousand and 133 thousand

packets on average.

~ Packet Size (Bytes)

500 —-— [— ~ Packet Size (Bytes)
0 T
Sample Sample Sample Sample
#50 #250 #500 #1000

Figure 37 - Average Data Packet size in Bytes throughout Experiment lifetime

For the second half of the experiment, a random percentage of Botnet generated data
packets have been introduced alongside the regular data packets used in the first half
of the experiment. This had a direct impact on the data packet size as this has
increased the average packet size of the samples by as much as 50%, from 500 to 750
bytes each, as can be seen in Figure 37. The Botnet packets have been created by
combining botnet and client commands in one single packet, resulting in a data

packet with an average size of 1000 bytes.

107

Detection Rate (%)

50
40
30
20 : - : - Detection Rate (%)
10
0 (I
Sample #50 Sample #250 Sample #500 Sample #1000

Percentage

Figure 38 - Infected Data Packet Detection Rate

As can be seen in Figure 38, the AMDS, through the use of its Botnet Detection
heuristic algorithm, has managed to detect approximately 28% of all infected packets
at the start of the Botnet attack. This detection rate has steadily increased up until the

end of the experiment to approximately 42% of all infected packets.

The implications of the results shown in Figure 38 go beyond just detecting a
potential botnet attack in a datacentre. Although this fact alone gives these results
meaning, it also allows for an abstract software model to be defined, discussed in the
AMDS System Enhancement - Botnets chapter, which can then be implemented using

different programming languages in a multitude of different computing environments.

The results presented above give a clear indication of the potential of the AMDS
having its Botnet Detection Module activated. Applying the heuristic algorithm to
more and more data packet samples allows the AMDS Botnet Detection module to
better understand what Botnet data packets look like, and detect more similar

packets or even unknown Botnet packet types in the future.

Furthermore, since a 1Gbps connection can only handle 1 billion bytes worth of data
every second, whenever botnet communication is in progress it typically uses up part
of that connection, which in turn slows down legitimate user’s access to the
datacentre’s resources. Having the AMDS Botnet Module in place means that the ASA
(Adaptive Security Appliance), responsible for potentially filtering out external traffic,
can receive instructions to block all communication from the outside coming from the
detected infected devices, thus allowing only trustworthy data packets to pass

through, and as such improving the overall system accessibility for legitimate clients.

108

7.3.3 AMDS Performance Measurements Experiment Results

This section presents and discusses the results obtained from running Experiment 3,

covered in section 7.2.3.

The data presented in Table 8 is an extract from the AMDS operational log produced
throughout the AMDS lifetime. In order to remain within this experiment’s
boundaries, several irrelevant columns have been stripped out. The data represent
several steps undertaken by two AMDS modules, the Botnet and the Control modules

respectively, when processing both external and information.

The trigger column contains information on the source of the current request, the
type of the operation, the operation start and end times, as well as the total execution

time, also known as latency, expressed in milliseconds.

The AMDS Botnet module is responsible for determining whether incoming external
network traffic is a botnet threat or not. In order to achieve this, it performs several
steps in order to fully process a network flow. First, it retrieves the raw flow data.
Next, it stores the data for historical and analytical purposes. Then, it proceeds with
breaking it down into relevant chunks, such as IP source/destination,
source/destination port/service, etc. Afterwards, the resulting data set is analysed by
employing the algorithm described in section 6.1 of this thesis. Finally, the analysis
results are stored in the local flow analysis database. An additional step would be
taken based on whether a threat has been detected, not encountered during the

lifetime of this experiment but evidenced by Experiment 4.

The other module present in Table 8 is the AMDS Control module. It is responsible for
interfacing with the datacentre infrastructure from a power consumption efficiency
point of view. To achieve this, it first retrieves raw power output from an ILO and
stores it for historical and analytical purposes. Next, it also retrieves the CPU status of
all servers under vSphere’s command and stores this as well. Then, it performs an
analysis on the recently stored data to determine if there is a need to send
instructions to vSphere and stores the results. Finally, if required, it proceeds with
contacting vSphere with relevant Virtual Machine commands, such as powering them

down and shutting down the server they are hosted on, or powering up a server,

109

depending on the case.

Table 8 - AMDS Operational Log Extract

Triggered by Operation Started at Ended at Total

time

(ms)

AMDS _botnet | networkFlow_retrieve 05/08/2014 05/08/2014 | 108
13:06:11.433 13:06:11.541

AMDS _botnet | networkFlow_storeRa 05/08/2014 05/08/2014 44
w 13:06:11.541 13:06:11.585

AMDS _botnet | networkFlow_breakdo 05/08/2014 05/08/2014 26
wn 13:06:11.585 13:06:12.011

AMDS _botnet | networkFlow_analyse 05/08/2014 05/08/2014 | 4259
13:06:12.011 13:06:16.270

AMDS _botnet | networkFlow_storeAn 05/08/2014 05/08/2014 49
alysis 13:06:16.270 13:06:16.319

AMDS _control | power_retrieve 05/08/2014 05/08/2014 32
13:07:12.113 13:07:12.145

AMDS_control | power_storeRaw 05/08/2014 05/08/2014 43
13:07:12.145 13:07:12.188

AMDS _control | cpu_retrieve 05/08/2014 05/08/2014 27
13:07:12.188 13:07:12.215

AMDS_control | cpu_storeRaw 05/08/2014 05/08/2014 47
13:07:12.215 13:07:12.262

AMDS _control | efficiency_analyse 05/08/2014 05/08/2014 | 1921
13:07:12.262 13:07:14.183

AMDS _control | efficiency_storeAnalysi 05/08/2014 05/08/2014 62
s 13:07:14.183 13:07:14.245

AMDS_control | vsphere_sendComman 05/08/2014 05/08/2014 13
d 13:07:14.245 13:07:14.258

Each operation latency is calculated by employing Equation 2 (Ttotal = Tend - Tstart) ON

the recorded start and end times. Each operation represents a small part (method) of

their parent module (Control, Botnet, etc.) and it is started internally through a chain
of commands controlled by their parent. Depending on the flow at a given time, the
operation may call upon another module’s operation to perform some task for it. Each
time this happens, the start and end times are recorded by each method, just before it
begins and just after it finishes its intended task, and stores it in a log file. As can be
seen in Table 8, the total execution time of one Botnet initiative, defined as the
collection of operations needed to retrieve, assess and react to a network flow, is
approximately 4,486 milliseconds. The flow analysis has taken the most time to
complete due to the numerous comparisons it needs to make with the existing user

activity model, as well as previous flows with ambiguous threat status.

Also from Table 8, the total execution time of one Control initiative, defined as the
collection of operations needed to retrieve, assess and react to server CPU and Power
readings, is approximately 2,145 milliseconds. The efficiency analysis has taken the
longest to complete due to numerous comparisons it needs to make with the existing
server activity model. The reason behind it taking less time to complete when
compared with a Botnet initiative is the more complex nature of a network flow when

compared with CPU and Power readings.

Table 9 - AMDS Average Module Operation Times (ms)

Botnet Module (ms) Control Module (ms)
Initial readings 4486 2145
End of Experiment

3855 2117

Average Time
Change vs. Initial readings
-14% -1.3%
(%)
Period of time Observed
05/08/2014 13:00 - 05/08/2014 16:00
(approx.)

The results presented in Table 9 are average execution times of each of the more
important AMDS modules: Botnet, Control, Auth, and Conn modules, respectively.
These latency timings have been observed over approximately 3 hours of

uninterrupted AMDS operational lifetime.

The Initial Readings table row represents the very first time each of the observed

111

modules has completed one task. The End of Experiment Average Times table row
have been calculated as averages of the time it has taken each module to start and

complete subsequent tasks, until the end of the experiment.

The two main AMDS helper modules, Auth and Conn, both have very low average
latencies (approximately 4ms, and 28ms respectively) due to the fact that they mainly
deal with internal connections, both inside AMDS as well as the datacentre. Auth is
slightly faster on average because all operations are handled in-house, while the Conn
module is constantly dealing with external entities - vSphere, switches, routers, etc.,
and as such is dependant on network conditions as well as each device's
programming features, current load or other factors. Due to their low latency times
and the fact that they are constantly in use by all other AMDS modules, they were not

included in the analysis.

As can be seen in Figure 39, the Botnet module average latency has declined by
approximately 14% during the lifetime of this experiment, caused by the fact that
with each new network flow the user activity model improves, and as such it is able to
determine the flow threat level slightly faster each time. This is a significant latency
reduction, which can only improve over time as the user activity model becomes

better refined.

5000

4500

4000

3500

3000

2500 | i i Initial
2000 | [| | & Average
1500 i I ! I

1000 1 - y -
500 - e I

Botnet Module Control Module

Milliseconds

Figure 39 - Experiment 4 Results Latency Comparison

Also in Figure 39, the Control module average latency has also declined by
approximately 1.3%. The most likely cause of this is the different latency expressed
by the network devices it interfaces with, which are influenced mostly by external

traffic fluctuations.

112

7.3.4 AMDS Botnet Module Detection Capabilities Experiment Results

This section presents and discusses the results obtained from running Experiment 4,

covered by section 7.2.4.

The experiment has run over an extensive period of time and it has produced a large
amount of log data. An overview of this data, along with some of the experiment

parameters, can be seen in Table 10.

The experiment has been run using the following parameters:

A. 1Gbps network connection speed between the clients and the AMDS, which
allows a maximum of 1 billion bytes per second.

B. Data packet sample size was set at 10% of all traffic at the point of
collection. The reason for choosing this percentage is twofold:

a. Although the IPFix / NetFlow logical node is capable of sampling
100% of the data, this is not recommended as it would slow down
network flow as well as increase power consumption on the node
they reside.

a. The heuristic algorithm only looks at average packet sizes in order
to detect malicious network activity and, as such, 10% is enough to
perform this task.

C. Average data packet size ranged between 400 and 555 bytes of data. The
Botnet application3! used in this experiment was configured to generate
healthy packets (calculated an average based on this - S’ from the heuristic
algorithm presented in Chapter 6.1) as well as infected packets throughout
the lifetime of the experiment, in random amounts at random intervals,
with the infected packets only appearing after sample #3000 was made.

D. Infected (Botnet) packets have been used randomly starting with Sample

#3000.

31 https://github.com/coleifer/irc/tree /master/botnet

113

Table 10 - Data Packet Analysis Results

Sample #500 | Sample #1500 | Sample #3000 | Sample #5000

of Packets

181 189 207 247
(1000s)
~ Packet Size

552 529 483 405
(Bytes)
Infected

0 0 85 128
(1000s)
Detected

0 0 29 67
(1000s)
Detection

0 0 34.1 52.3
Rate (%)

For the first half of the experiment, as can be seen in Table 10, regular packets with

an average size of 529-552 bytes have been filtered through the AMDS Botnet

Detection Module. This has been used as a training mechanism for the heuristic

algorithm exemplified in the Botnets chapter, so it would later on have a healthy

packet model to compare infected packets against.

As opposed to Experiment 2, the number of packet samples used has been increased

in an attempt to give the heuristics algorithm leeway to adapt to real botnet

conditions. Also, the average packet size of 483 bytes starting with Sample #3000, the

sample when random botnet traffic has been introduced, is well below the equivalent

Sample #500 from Experiment 2, where the average packet size was 750 bytes. The

300

200

100

Data Packets
(thousands)

Sample #500

Figure 40 - Data Packet Distribution per 10% Sample

Sample
#1500

Sample
#3000

114

of Packets (1000s)

& # Infected (1000s)

Sample
#5000

Detected (1000s)

implication here is that the existing model was not tuned for detecting IRC Botnet
communications, however, the detection rate has risen to just over 50%, which is

better than in Experiment 2 where the detection rate was 43%.

As can be seen in Figure 40, using the 1Gbps network link has evaluated into
approximately 1.81 million data packets, of which 181 thousand of the 500 initial
readings for analysis have been sampled. The total number of data packets has slowly
risen during the course of the experiment, at first due to random healthy traffic and
towards the end due to random infected botnet packets. Having a reduced average
packet size has impacted the samples containing infected Botnet packets in addition
to the regular packets by having a reduced total number. These samples were made

up of between 207 thousand and 247 thousand packets on average.

~ Packet Size (Bytes)

200 ; - - - ' ' ' ' ~ Packet Size (Bytes)

0 I [} [IR [I

Sample #500 Sample Sample Sample
#1500 #3000 #5000

Figure 41 - Average Data Packet size in Bytes throughout Experiment lifetime

For the second half of the experiment, a random percentage of Botnet generated data
packets have been introduced through the use of actual botnet code alongside the
regular data packets used in the first half of the experiment. This had a direct impact
on the data packet size as this has decreased the average packet size of the samples
by as much as 24%, from 529 to 405 bytes each, as can be seen in Figure 41. The
Botnet packets generated by the master and workers are a combination of general
IRC commands as well as custom built attack commands, resulting in a data packet
with an average size of 330 bytes. This value comes from measurements performed
on the Botnet application outside the experiment for the purpose of calibrating the

experiment parameters.

The heuristic algorithm attempts to detect malicious packets by comparing
potentially infected packets to the healthy network traffic model it has built prior to

the introduction of infected packets starting with packet #3000.

115

Detection Rate (%)

60
)
gn
S 40
=
8
E 20 Detection Rate (%)
0 I S
Sample #500 Sample Sample Sample
#1500 #3000 #5000

Figure 42 - Botnet Packet Detection Rate

As can be seen in Figure 42, the AMDS, through the use of its Botnet Detection
heuristic algorithm, has managed to detect approximately 34.1% of all infected
packets at the start of the Botnet attack. This detection rate has steadily increased up

until the end of the experiment to approximately 52.3% of all infected packets.

Since this experiment has made use of a real world botnet system, the implications of
the results shown in Figure 42 go beyond just detecting a potential botnet attack in a
datacentre. Although this fact alone gives meaning to these results, it also allows for
the abstract software model to be refined, as discussed in Chapter 6: AMDS System
Enhancement - Botnets, which can then be implemented using different

programming languages in a multitude of different computing environments.

The results presented above reinforce the results obtained in Experiment 3 (AMDS
Performance Measurements Experiment Results) and again give a clear indication of
the potential of the AMDS having its Botnet Detection Module activated. Applying the
heuristic algorithm to more and more data packet samples allows the AMDS Botnet
Detection module to better understand what real world Botnet data packets look like,

and detect more similar packets or even unknown Botnet packet types in the future.

Furthermore, since a 1Gbps connection can only handle 1 billion bytes worth of data
every second, whenever botnet communication is in progress it typically uses up part
of that connection, which in turn slows down legitimate user’s access to the
datacentre’s resources. Having the AMDS Botnet Module in place means that the ASA,
responsible for potentially filtering out external traffic, can receive instructions to

block all communications from the outside coming from the detected infected devices,

116

thus allowing only trustworthy data packets to pass through, and as such improving

the overall system accessibility for legitimate clients.

117

Chapter 8: AMDS in Comparison

with Alternative Solutions

118

Chapter 8: AMDS - Operational Performance and

Efficiency Evaluation

This chapter presents the summary of the test results from all AMDS experiments

presented in chapters 7.3.1, 7.3.2, 7.3.3 and 7.3.4.

8.1 Experiment 1 Results Summary

In chapter 7.3.1, entitled Ensure Correct AMDS Operation Experiment Results, the main
focus is on the main AMDS software package. This experiment has been designed to
test the network and hardware loads sampling features built into the AMDS, as well
as provide insight into how energy efficient a datacentre can become while employing

its capabilities.

Initially, manual power consumption readings were taken by the author of the
datacentre servers in order to establish a point of reference for the experimental
results. The author found that while idling (0% utilisation), the servers were using
124 Watts / Hour. Once the datacentre had reached a stable operations status,
servers were operating at approximately 25% capacity by default, thus only achieving
70% efficiency (168 Watts / Hour). From a power consumption point of view, this
represents a fairly low efficiency within a datacentre.

Next, the AMDS was installed on a new Virtual Machine on one of the active servers
and was left running for an extended period of time, while at the same time producing
operation logs. Towards the end of the experiment, the logs were inspected and the
findings proved the immediate positive impact of the AMDS on the datacentre: some
of the servers that were active at the start of the experiment were shut down, while
the Virtual Machines operating on them were moved to the other servers left running,
thus increasing their load to close to 100% capacity. This allowed them to achieve
108% efficiency (239 Watts / Hour) when compared to an idle server, this also
representing 38% increased efficiency when compared to a server operating at only

25% capacity, presented in the previous paragraph.

Furthermore, it also generated a significant operations cost reduction of 262%.

119

8.2 Experiment 2 Results Summary

In chapter 7.3.2, entitled AMDS Network Sampling Experiment Results, the main focus
is on the data flow sampling and Botnet module features of the AMDS. This
experiment has been designed to test the correctness of network sampling as well as

measure the success rate of the Botnet module.

The experiment involved the NetFlow/IPFIX setup sampling network data
approximately 1000 times, extracting 10% of the active network flow each time. The
Botnet module has successfully passed the initial stage of retrieving, storing and

breaking down the raw flow data.

The second stage, also named the training stage, involved creating a regular user
activity model by observing normal network activity. To achieve this first activity
model, 500 healthy samples were used with an average packet size of 500 bytes.

In the third and final stage, the model was used to compare another 500 samples of
network data also containing malicious communications, generated by a simple
custom script written by the author and containing approximately 750-1000 bytes of

data per packet.

Initial results revealed a steady increase in the detection rate, rising from 28% after
the first 250 infected samples to 43% after another 250 infected samples, thus

validating the Botnet detection design proof of concept.

The implications of these results go beyond just detecting a potential botnet attack in
a datacentre. Although this fact alone give these results meaning, it also allows for an
abstract software model to be defined, as discussed in the AMDS System
Enhancement - Botnets chapter, which can then be implemented using different

programming languages in a multitude of different computing environments.

8.3 Experiment 3 Results Summary

In chapter 7.3.3, entitled AMDS Performance Measurements Experiment Results, the
main focus is the performance efficiency, measured in latency times in milliseconds,

of the AMDS software package. This experiment has been designed to record and

120

provide an overview of the speed with which the AMDS performs under live

datacentre conditions.

The findings of this experiment were positive, with the two main components that
were tested, the Control and Botnet modules, operating well within expected
parameters. The Control module achieved an initial operation latency average of
2,145 milliseconds, dropping to approximately 2,117 milliseconds by the end of the
experiment, while the Botnet module achieved an initial operation latency average of
4,486 milliseconds, dropping to approximately 3,855 milliseconds. The results reflect
the design and implementation approach taken by the author in developing the AMDS,
which have allowed it to reduce its operational latency times by up to 14% during its
lifetime through self-reconfiguration. Due to its asynchronous nature, this has
virtually no impact on day-to-day datacentre operations, while at the same time
having a positive impact on the energy management and security aspects of the

infrastructure.

8.4 Experiment 4 Results Summary

In chapter 7.3.4, entitled AMDS Botnet Module Detection Capabilities Experiment
Results, the main focus is the AMDS Botnet module. This experiment has been
designed to further test the module’s capabilities by making use of a simple, real-

world Botnet software to generate malicious communication.

This experiment has been set up in a similar way to the experiment presented in
chapter 7.3.2. However, this time, instead of a simple custom script, a real-world
botnet software was used. To achieve the experimental parameters, a Botnet master
has been set up outside of the datacentre and several Botnet slaves on Virtual

Machines inside the network.

For the purpose of this experiment, the previous user activity model had been erased
and the AMDS allowed to retrain itself with a new model. The reason behind this is
the fact that the Botnet software used in this experiment generated smaller network
data packets as opposed to the much larger custom generated packets from the other
mentioned experiment. The initial healthy packets all had on average 552 bytes of

data, while the infected ones had dropped the average to around 405 bytes per packet

121

towards the end of the experiment. These numbers were derived from calculating the
average size of healthy data packets while only legitimate traffic was used, while the
average size of infected packets was calculated from packets containing both
legitimate as well as malicious commands. These calculations were done for every

network flow sample recorded throughout the lifetime of the experiment.

Once infected packets had started flowing through the network, after approximately
3000 flow samples, the initial results revealed an average detection rate of 34.1%;
this is much higher than in the previous experiment. Towards the end of this test,
after approximately 5000 flow samples, the detection rate had risen to 52.3%, which

again is much higher than the previous results.

These final test results have once again confirmed the effectiveness of the Botnet

design and validated the proof of concept software.

In conclusion, this chapter has reiterated the results of the four experiments
performed by the author and discussed the impact of each one. All four sets of results
confirm the importance of the work as well as validate the impact on datacentre day-

to-day operations that AMDS would have.

122

Chapter 9: Conclusions and

Further Work

123

Chapter 9: Conclusions and Further Work

This thesis shows how energy costs can be driven down, operational efficiency
improved and security enhanced by deploying the AMDS on any Cloud environment.
The proof of concept was developed on a VMWare backed test bed. This chapter
reiterates the initial Research Objectives by relating them to the findings of this
research and then concludes the work by identifying and formulating the significant

original contributions to knowledge resulting from this work.

9.1 Reflection on aims and objectives

Looking at Objective 1 (Critically evaluate pattern of disruption across a Cloud
infrastructure as a result of an overloaded service request), the overall accessibility for
legitimate clients has been evaluated through the experiments carried out by the
author.

Since typically datacentre’s access points have limited traffic capacity (1Gbps = 1
billion bytes, 10Gbps = 10 billion bytes), there can only ever be approximately 2
million concurrent connections (assuming an average of 500 bytes per connection),
be it either incoming or outgoing. As such, whenever illegitimate (disruption) traffic
takes place, it uses up part of the overall available bandwidth, thus limiting access for
legitimate clients. For a DDoS (Distributed Denial of Service) attack, the datacentre
access point is typically flooded with many more connections than it can handle, thus

preventing authorised access to the entire infrastructure.

As for Objectives 2 (Conceptually develop a software optimization technique by which a
Cloud could autonomously manage the workloads placed on that infrastructure) and 3
(Implement and test a software application to achieve Objective 2 for a specific Cloud
scenario (VMWare Hypervisors)), the AMDS software has been designed and
developed from the ground up to be capable of interfacing with any existing
datacentre infrastructure (VMWare in the author’s case) for optimisation purposes.

The AMDS has been designed with modularity, security, and scalability in mind,
allowing for any number of features to be added as needed, while at the same time
keeping itself entirely secure by authenticating every single communication request

in real time and dropping any unauthorised operations.

124

The built in functionality allows the AMDS to interface with network appliances (ILO,
Switch, Router) via its SNMP module, VMWare vSphere appliance via its vSphere sub-
module within the Connection module, and other instances of itself for load balancing
purposes, for times sustained high network traffic. Another important feature is its
ability to reconfigure itself on the fly, thus making it highly adaptable to new
situations. Also, its Control and Botnet modules enable the analysis of current
network and server conditions, as well as incoming network traffic, which allows it to
cover all parts of the datacentre that are susceptible to optimisation and security
threats. The AMDS is written using Scala, a highly optimised and feature-filled
programming language, running on the Java Virtual Machine (JVM). Since JVM is
capable of being run on all existing operating systems (Windows, Linux, Unix, and

their variations), this makes AMDS a highly portable and versatile software.

In terms of Objective 4 (Innovatively develop metrics that quantify Cloud vs. centralized
service provision in terms of environmental sustainability), Experiment 1 presents two
fundamental equations used to calculate an active server’s efficiency, the latter being
the quantifying metric. The author discovered that the higher a server’s current
processor load is, the more efficient it becomes to keep it active, so much that running
near 100% load increases a server’s power consumption efficiency by as much as 8%

compared to a server operating at 75% load.

Objective 5 (Conceptually develop an application that will identify virtualised system
hijacking and undertake a range of appropriate activities from simple notification to
service suspension) has been tackled through the AMDS Botnet Module. This allows
the AMDS to also assume networking monitoring responsibilities and help existing
firewall filters detect malicious threats. The AMDS is capable of interfacing with flow
capturing and sampling systems like NetFlow and IPFix to look at incoming network
traffic and classify each data packet into either malicious or not malicious categories.
It makes use of both a heuristic algorithm and a TCP weight equation to analyse said
packets and assign a rating for each one. Higher ratings generally mean some kind of
unusual activity taking place. Being an AMDS module, it has access to all of AMDS’
features and capabilities, such as interfacing with any network or virtualisation
appliance, which gives it real-time threat response abilities such as lock down the
entire datacentre, or just move an infected Virtual Machine to a secured, sandboxed

area inside the datacentre.

125

Looking at Objective 6 (Test the method/software and compare against other
alternatives, e.g. FPGA/hardware and other software systems), the AMDS results have
been discussed alongside existing datacentre optimisation techniques.

First of all, existing solutions are difficult to configure and extend with new
functionality, due to either not being modularly designed or being embedded on
hardware. That makes them rigid and makes them become rapidly out of date.

Second of all, none of the evaluated solutions are capable of reconfiguring themselves
on the fly as the environment changes. This also makes them go rapidly out of date
unless they receive new programming, thus making them expensive solutions.

Finally, none of the evaluated solutions have true real-time network and datacentre
monitoring techniques. This makes them incomplete solutions and, as such, less

relevant to entire datacentre infrastructures.

9.2 Original contributions to knowledge

The overall contribution to knowledge resulting from this research work resides in
the formulation of a method to increase the efficiency of energy management and
botnet detection and the conceptual design of a relevant prototype software package

validated through experimental testing.

9.2.1 A novel method of optimising cloud networks in terms of energy

consumption and system operation (AMDS)

The novelty consists of the software’s ability to reconfigure itself on the fly based on
live network readings. This ability is evidenced in chapter 7.3.1, where the datacentre

power consumption has been monitored before and after the AMDS was enabled.

Initially, the datacentre stabilised at 168 Watts / Hour with several servers operating
at 25% capacity, which resulted in 70% operational efficiency when compared with
power usage of an idle server. Once the AMDS was activated, it had an immediate
impact on the datacentre configuration through consolidating active Virtual Machines
on only a few servers, allowing them to run at 100% capacity, while shutting the
other ones down in order to conserve power. This translated into the remaining

running servers operating at 108% efficiency, consuming 239 Watts / Hour, resulting

126

in only a 92% increase in power consumption when compared to an idle server. As
such, the AMDS had improved the datacentre energy efficiency through reducing
power consumption by as much as 8% and, based on several use cases used to

calculate server operating costs, helped reduce operating costs by as much as 262%.

A key outcome of these results is that it is more cost effective to maximise a few

server loads than it would be to maintain several servers at less than peak loads.

These results also show highly potential industrial applications in datacentre set-and-

forget scenarios, energy management and the lowering of operating costs.

9.2.2 A novel method to prevent, detect and stop network intrusions and

malicious behaviour in a cloud infrastructure

This developed method applies, in particular, to detecting Botnet behaviour and

stopping it from propagating throughout the datacentre, discussed in chapters 6.1.

The method employed uses an anomaly-based heuristic algorithm employing a
Transmission Control Protocol (TCP) scan detection heuristic. The main algorithm
requirement is that a scanner actively samples network flow and collects information
on a percentage of observed data packets. This scanner would store, as a tuple set, the
following data flow information: IP source address, SYNS, SYNACKS, FINSSENT,
FINSBACK, RESETS, PKTSSENT, and PKTSBACK. The TCP part of the algorithm
translates this flow information into a percentage. The closer this is to 100%, the

probability of indication/detection of network anomalies increases.

This algorithm has taken the form of a Botnet Detection module bolted on the existing
AMDS software, discussed in detail in chapter 6.2. At overview level, this module
retrieves network information from a NetFlow/IPFix sampling setup, breaks it down
into its basic components as required by the detection algorithm and compares it

against a regular user activity model constructed through historic network flow data.

As can be seen in chapters 7.3.2 and 7.3.4, the malicious activity detection success
rate has grown steadily over time up to 52.3% of all infected network

communications. The main driver of this increase over time is the system’s ability to

127

reconfigure itself on the fly based on changes happening within and around the
virtual environment it resides in. These initial results serve as a proof of concept of
what can be achieved using a purely software approach to an existing datacentre
hardware infrastructure.

Furthermore, the most significant advantage of this approach resides in this Botnet
module’s ability of directly interfacing with existing datacentre management utilities
through the AMDS, thus having near real-time threat response capabilities. An
example of a response is: upon the detection of malicious behaviour, the suspected
Virtual Machines could be moved to a secure location within the datacentre until the
threat has been neutralised, or even the entire datacentre is put on lock down until

the situation has been resolved.

Finally, this novel approach also allows for an abstract software model to be defined,
as discussed in Chapter 6: AMDS System Enhancement — Botnets, which can then be
implemented using different programming languages in a multitude of different
computing environments. This serves as an initial platform upon which more

malicious behaviour detection algorithms could be developed in the future.

9.2.3 A flexible solution to a general communications/networking problem

The AMDS’ software design approach has traditionally has been tackled through rigid
hardware solutions. This design offers a completely modular software approach to
enhancing existing datacentre systems for the purpose of acquiring and analysing
network traffic, hardware loads and power consumption of a cloud infrastructure and
redistributing them for efficient energy management and optimal data
communication parameters (security, data transfer speed, access wait times, power

consumption).

Although hardware based solutions tend to offer the best performance, they are often
rigid and require manual intervention to help them tackle new problems. The AMDS,
even as software running within a Virtual Machine, offers very low operational

latency, as evidenced in chapter 7.3.3.

This experiment focuses on the two main AMDS components, the Control and Botnet

modules. They have been designed to operate asynchronously in order to provide

128

maximum efficiency, and as such have managed an average operational task latency
of 4,486 milliseconds for the Botnet module and 2,145 milliseconds for the Control
module. Compared with initial readings, as expected, both modules have gradually
reduced latency times over the experiment lifetime by up to 14%, mainly due to the

reconfiguration capabilities of the AMDS during its lifetime.

These results reinforce the potential of this software design as a datacentre
enhancement and security utility, with virtually no impact on day-to-day operations

due to the asynchronous nature of the implementation.

Bringing this thesis to a close, potential future research projects that could be based

on the author’s work are discussed.

9.3 Future Work

This chapter presents several ideas that could be part of future research projects.
Such projects would utilise and expand the AMDS to further benefit a Cloud

Computing environment.

One such idea is the creation of a module capable of monitoring individual Virtual
Machines in an attempt to provide an even finer control over the optimisation
process. This module would be capable of remotely accessing active Virtual Machines
and retrieving information on processor loads, memory and storage usage, running
processes, etc. This would allow the master AMDS Control and Botnet modules to
make even better decisions regarding their individual tasks of optimising energy

efficiency and detecting and blocking malicious threats.

Another idea is expanding the Botnet module to include more detection algorithms to
help with analysing network traffic, as well as gain other monitoring capabilities, such
as accessing active individual Virtual Machines and looking at running processes and
processor load and perhaps comparing them to the VMs profile (eg. VM only used for

static web pages, high processor load may indicate unusual activities).

129

List of Figures

Figure 1 - vSphere and vCenter Cost Savings Representation.........eenseeneeseennens 31
Figure 2 - Xen Project Architecture Diagramoeeneeneenesnesssessssessssssessesssessessssssnees 32
Figure 3 - Web tools structure - Analys and SimWeb (Ramos-Paja et al.,, 2010, Figure
) P 34
Figure 4 - VCL high-performance computing physical network setup (Vouk et al., 2009,
FIGUTE 4) ettt s st s e s e 35
Figure 5 - Design of HyperShield (Tsutomu et al., 2010, Figure 3).....cccoconneneermeereereennens 36
Figure 6 - Snooze high-level system architecture overview (Feller et al., 2014, Figure
3 PN 37
Figure 7 - Number of running servers before and after power saving algorithms
(BAGCi, 2014, FIGUIE 4.1 cerrereereereeeesreeeessessessesssessesssessssssssssessssssssssssssssssssssssessss s ssssssesssssssssssssssanees 38
Figure 8 - Taxonomy of botnet architectures (Karim et al., 2014, Fig. 3) .ccooveeerereerreennen. 41
Figure 9 - Taxonomy of botnet detection techniques (Karim et al., 2014, Fig. 4) 44
Figure 10 - NetFlow Flow Cache GENeration ... eeeneemesnsesssessssessssssessesssessessssssnees 45
Figure 11 - Example NetFIOW CaChe ... seesse s ssnsssssees 46
Figure 12 - IPFIX Packet Selection Criteria ... eeeeeseeeessessessesssessesssssssessssssesssssssssnees 47
Figure 13 - NetBeans Scala Code COMPIELTIONceeereeceureereereereeeesseesesseesssesesssessessesssessesssssssees 51
Figure 14 - Object model of VI JaVa AP ... sesssesessssssessssssessssssssnees 53
Figure 15 - Partial UML diagram of the VI Java APL.......ceeseeseeseesesseessesseesseseees 54
Figure 16 - AMDS Development Methodology Workflow.........eoneeineennerneenseeseeseeeens 57
FIgUTE 17 - AMDS OVEIVIEWceueereeeeueeresseessesseessssssessessssssssssssssssssssessssssssssssssssssssssssssssssssssssssesssesanees 58
Figure 18 - UML Design Diagram of the AMDS ... ecseseseeseesesssssessessssssessssssnees 63
Figure 19 - AMDS Part of Network Module written in Scalacooonneneenseseesneeneeseennens 68
Figure 20 - AMDS lifetime operational 108ic floOW.....ocrerreenreneeseereeeeeeeeeesee s 76
Figure 21 - IRC Botnet Detection Algorithm (Xiaobo et al,, 2010, Table 1)ccceeeerrunnee. 81
Figure 22 - Botnet Detection MOAUIE DESIGNoeeereeneeseensesneesesssessssssesssesessssssssssssssssssssssanes 82
Figure 23 - Test Bed - Custom design infrastructure (Dinita et al., 2012).....cccccvereereunnee. 87
Figure 24 - Test Bed - Datacentre View (Dinita et al., 2012)ooooreneeermeneereeneerseeseeseesseenens 88
Figure 25 - NetLab+ Testing Results (Dinita et al., 2012).....cnmnreneenreeneeseeneerseessesseesseeseees 89
Figure 26 - AMDS Experiment Logical Layout - Ensure Correct AMDS Operation........ 90
Figure 27 - AMDS Experiment Logical Layout - AMDS Network Sampling........ccccccouueunee. 94

Figure 28 - AMDS Experiment Logical Layout - AMDS Performance Measurements...96
Figure 29 - AMDS Experiment Logical Layout - AMDS Botnet Module Detection

06 1o F=1 03 1 110 1= OO 97
Figure 30 - AMDS Running Results — Graph VIEWnnncneeseeseeseesessesssessessseseees 99
Figure 31 - Processor Loads VS Power Consumption - Graph View ... 102
Figure 32 - Amps Server Power Readings vs. Processor Loads (PL) - Rise and
EffiCIENCY POICENTAZES. ..ccuieereeeeereeceseereeseessee et s et s s 102
Figure 33 - Amps Server Power Readings vs. Processor Loads (PL) - Amps
00T R DD) 1013 0 1 102
Figure 34 - Over time Megawatt (MW) Power Consumption estimates with variable
L8000 0o L= TP 103
Figure 35 - Use Case 1 and 2 monthly operating costs over one year-..........coeeeneenn. 104
Figure 36 - Data Packet Distribution per 10% Sample ... 107
Figure 37 - Average Data Packet size in Bytes throughout Experiment lifetime......... 107
Figure 38 - Infected Data Packet Detection Rateoonereenseneensesseesesseesesseessesseeseenns 108
Figure 39 - Experiment 4 Results Latency COmMPAariSONoorereeneesseessesseessesseessesssesseenns 112
Figure 40 - Data Packet Distribution per 10% Sample ... 114
Figure 41 - Average Data Packet size in Bytes throughout Experiment lifetime......... 115
Figure 42 - Botnet Packet Detection Rateereeneeneenseeneeseeseeseeeessesssssesssesesssesssessseans 116

vi

List of Tables

Table 1 - Test Bed Components (Dinita et al., 2012)ooreneeoreenseneesesseesesseesseesesseesseeseenns 86
Table 2 - AMDS Running Results — Table VIEW.......oonnreneeeeseeseesessesseseesseseesseenns 100
Table 3 - Processor Loads VS Watt Server Power ConsSumptionc.oeeeseeseesseeseenne 101
Table 4 - Amps Server Power Readings vs Processor Loads......eeneeneeneenseeneenne 101
Table 5 - Over time Power Consumption estimates with variable Uptime.................. 103
Table 6 - Cost estimates for two Use Case SCENATIOSuirmrereessermesssessssssssssesssssssssssssans 104
Table 7 - Packet ANalysiS RESUILSccrecrieeereeseeeeseesesseeseseesseessssesssssesssesssssssssssssssssssssssssans 106
Table 8 - AMDS Operational LOg EXIact.......oeneneemeeneeseesesseessessesssesssssssssssssssessssssssans 110
Table 9 - AMDS Average Module Operation Times (IMS)coerereereessersmessesssesseessesssesseenns 111
Table 10 — Data Packet Analysis RESUILSoreecereenreereereeseeseeseeseeseeesssessessssssessesssessssssseans 114

vii

List of Code Fragments

Code Fragment 1 - Hello World VM interaction COAeenenmeeneeneennesseesessesssesseees 52
Code Fragment 2 - AMDS configuration file JSON [ay0ut......comneneenmeeneeneenserseeseeseesseeneens 69
Code Fragment 3 - AMDS Scala MongoDB connection codeeoeeneeseeseeseesseennens 70
Code Fragment 4 - AMDS Scala MongoDB data retrieval code.......ooeneneenneeneeseennens 71
Code Fragment 5 - AMDS Bash Management SCriPt. ... oeeenesneeneeseessesssesseessessesssesseees 73
Code Fragment 6 - AMDS Bash status check SCript.....connncneeseeseeseesesseesessessseseees 74

viii

List of Equations

Equation 1 - TCP work weight (percentage) (Binkley et al., 2006)ccoccoreunrerreerrerreerreennens 80
Equation 2 - Operation runNning tiMe........oeeeneensessisssssssssesesessessssssssssssssssssssssssssessesssssssss 96
Equation 3 - Power Consumption Rise Percentage ... 99
Equation 4 - Server Operation EffiCIENCY ... seessesesssessessesssessesssessees 99

ix

References

Anderson, J. Q.; Rainie, L. (2010) “The future of Cloud Computing - Pew Internet &
American Life Project”. Schubert, L., Jeffery, K. and Neidecker-Lutz, B. (Eds.)
Analysis, 1, 1-26, European Commission. Available at:
http://pewinternet.org/Reports/2010/ the-future-of-CloudComputing.aspx

Andrews, G. R. (2000) “Foundations of Multithreaded, Parallel, and Distributed
Programming”, Published by Addison-Wesley, ISBN 0-201-35752-6.

Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D. (2009) “Above the Clouds: A Berkeley
View of Cloud Computing”. Science, 53 (UCB/EECS-2009-28), 07-013, Citeseer.

Armbrust, M.; Fox, A, Griffith, R;; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.;
Pattersonm D.; Rabkin, A.; Stoica, [.; Zaharia, M. (2010) “Above the Clouds: A
Berkeley View of Cloud Computing”. Communications of the ACM, 53(4), pp.
50-58.

Arora, P.; Wadhawan, R. C.; Ahuja, Er. S. P. (2012) “Cloud Computing Security Issues in
Infrastructure as a Service”. International Journal of Advanced Research in
Computer Science and Software Engineering, Vol. 2, Iss. 1, Jan. 2012, ISSN:
2277 128X.

B. Bloom (1956) “Taxonomy of Educational Objectives”. Longmans Green, New York.

Bagci, F. (2014) "Towards Performance and Power Management of Cloud Servers".
Information Technology: New Generations (ITNG), 2014 11th International
Conference on, pp. 599-604, 7-9 April 2014, doi: 10.1109/ITNG.2014.70

Barnatt, C. (2012) “Cloud Computing”. Available at: http://explainingcomputers.
com/cloud.html

Baun, C; Kunze, M.; Nimis, J.; Tai, S. (2011) “Cloud Computing”. Berlin: Springer-
Verlag.

Berl, A.; Gelenbe, E.; Di Girolamo, M.; Giuliani, G.; De Meer, H.; Quan Dang, M.;
Pentikousis, K. (2009) “Energy-Efficient Cloud Computing”. The Computer
Journal, 53(7): 1045-1051 first published online August 19 2009.

Binkley, J. R; Singh, S. (2006) “An algorithm for anomaly-based botnet detection”.
Proceedings of USENIX Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI), pp. 43-48.

Bornico, L.; Walden, 1. (2011) “Ensuring competition in the clouds: the role of
competition law?”. ERA Forum, 12(2), pp- 265-285.

Breeding, M. (2012) “Cloud Computing for Libraries”. Chicago: ALA TechSource.

Burns, R. C.; Khan, O.; Plank,]. S.; Pierce, W.; Huang, C. (2012) “Rethinking erasure

X

codes for cloud file systems: minimizing [/O for recovery and degraded reads”.
FAST, p. 20.

Caragiozidis, M.; Mouratidis, N.; Kavadias, C.; Loupis, M.; Berger, M. (2008) “Design
Methodology for a Modular Component Based Software Architecture”.
Computer Software and Applications, COMPSAC '08. 32nd Annual IEEE
International on, pp. 1122-1127, July 28 2008-Aug. 1 2008.

Carroll, M., Kotzé, P.; Van Der Merwe, A. (2012) “Securing virtual and cloud
environments”. Cloud Computing and Services Science, pp. 73-90, Springer
New York.

Chandrashekar, J., Orrin, S., Livadas, C., Schooler, E. M. (2009) “The Dark Cloud:
Understanding and Defending Against Botnets and Stealthy Malware”. Intel
RTechnology Journal, 13(2).

Chen, X.; Wills, G. B; Gilbert, L.; Bacigalupo, D. (2010). “Using cloud for research: a
technical review”. TeciRes Project, University of Southampton. Available at:
http://www.jisc.ac.uk/media/documents/programmes/research_infrastructu
re/tecires_technical_report%20100608.pdf

Chou, D. C.; Chou, A. Y. (2011) “Seeking Sustainable Computing: The role of Cloud
Computing”. Southwest Decision Sciences Institute Conference.

Cirstea, M.N. (2003) “Problem Based Learning in Microelectronics”. Int. Journal of Eng.
Education, Vol. 19, No.5, 2003, pp.738-741, ISSN:0949-149X.

Cisco I0S NetFlow. Available at: http://www.cisco.com/c/en/us/products/collateral/
ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html

Cloud Security Alliance (2010) “Top Threats to Cloud Computing V1.0”. Available at:
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf.

CORDIS (2013) “Providing a platform for a coordinated response to cloud
cybercrime”. Available at: http://cordis.europa.eu/news/rcn/36249_en.html

Corrado, E.M.; Moulaison, H.L. (2011) “Getting Started with Cloud Computing”.
London: Facet Publishing.

Dinita, R. I., Wilson, G., Winckles, A., Cirstea, M., Jones, A. (2012) “A cloud-based virtual
computing laboratory for teaching computer networks”. Optimization of
Electrical and Electronic Equipment (OPTIM), 2012 13t International
Conference on, pp. 1314-1318, doi: 10.1109/0PTIM.2012.6231992.

DMTF (Distributed Management Task Force) (2011) “Open Virtualization Format
OVF”. Available at: http://www.dmtf.org/standards/ovf

xi

Feller, E.; Simonin, M.; J'egou, Y.; Orgerie, A.-C.; Margery, D; et al. (2014) “Snooze: A
Scalable and Autonomic Cloud Management System”. [Research Report] RR-
8649, Inria Rennes, 2014, pp.31.

Geada, D.; Dave, D. (2011) “The case for the heterogeneous cloud”. Cloud Comput J,
11(3),521-525.

Hamdaqa, M.; Tahvildari, L. (2012) “Cloud computing uncovered: a research
landscape”. Advances in Computers, 86, 41-85.

Hinkle, M. (2010) “Eleven Open-Source Cloud Computing Projects to Watch”.
SocializedSoftare. com, January, 10.

IETF (2009) “Architecture for IP Flow Information Export”. Available online:
https://tools.ietf.org/html/draft-ietf-ipfix-architecture-12

Irani, G.N.H.; Tawosi, V. (2011) “AAMA: A new Authentication and Authorization
architecture for modular information systems, a robust object oriented
approach”. Application of Information and Communication Technologies
(AICT), 2011 5th International Conference on, pp. 1-5, 12-14 Oct. 2011.

JISC (2010) “JISC Strategy for 2010-2012". Available at: http://www jisc.ac.uk/
media/documents/aboutus/strategy/strategy1012.pdf

Joint Task Force for Computing Curricula (JTFCC) (2005) “Computing Curricula 2005
- The Overview Report”. ACM, ISBN 1-59593-359-X, Available at:
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf

Junyoung, H.; Jiman, H.; Yookun, C. (2009) “EARQ: Energy Aware Routing for Real-
Time and Reliable Communication in Wireless Industrial Sensor Networks”.
2009 IEEE Transactions on Industrial Informatics, vol. 5, no. 1, pp. 3-11, Feb.
20009.

Karim, A.; Salleh, R. B.; Shiraz, M.; Shah, S. A. A,; Awan, I; Anuar, N. B. (2014) “Botnet
detection techniques: review, future trends, and issues”. Journal of Zhejiang
University SCIENCE C, 15(11), pp. 943-983.

Ke, A;; Yu, Y.; Chen, Y.; Zhao, E;; Xie, Y.; Yu, F.; Gillum, Q. (2009) “BotGraph: large scale
spamming botnet detection”. Proceedings of the 6th USENIX symposium on
Networked systems design and implementation (NSDI'09), USENIX
Association, Berkeley, CA, USA, p321-334.

Kolb, D. A. (1984) “Experiential Learning: experience as the source of learning and
development”. Prentice-Hall, New-]ersey.

Kumar, K.;; Weiqing, S.; Pratik, R.; Tianning, L.; Sekar, R. (2005) “V- NetLab: A Cost-
Effective Platform to Support Course Projects in Computer Security”. 9th

Annual Colloquium for Information Systems Security Education (CISSE 05),

xii

June 2005.

Lee, Y.; Kang, W.,; Lee, Y. (2011) “A hadoop-based packet trace processing tool”.
Springer Berlin Heidelberg.

Liu, Z., Chen, F., Chen, Z.,, Xiang, L.; Yuan, Z. (2008) “Decentralized formation control of
mobile agents: a unified framework”. Physica A: Statistical Mechanics and its
Applications, 387(19), 4917-4926.

Livenson, I.; Laure, E. (2011) “Towards transparent integration of heterogeneous
cloud storage platforms”. Proceedings of the fourth international workshop on
Data-intensive distributed computing (pp. 27-34), ACM.

Maffei, A.; Hofmann, A. (2010) “From flexibility to true Evolvability: An introduction
to the basic requirements”. Industrial Electronics (ISIE), 2010 IEEE
International Symposium on, vol., no., pp.2658,2663, 4-7 July 2010.

Mahmood (2013) “Software Engineering Frameworks for the Cloud Computing
Paradigm”. Springer London, ISBN 978-1-4471-5031-2, Chapter 13, pp. 283-
301.

Matalon, S.; Klein, R.; Walls, C. (2011) “Embedded System Power Consumption: A
Software or a Hardware Issue?”. Mentor Graphics, Available at:
http://www.mentor.com/resources/techpubs/upload/mentorpaper_68962.p
df.

McKendrick, J. (2011) “Cloud computing’s vendor lock-in problem: Why the industry
is taking a step backward”. Forbes, November.

Mell, P.; Grance, T. (2011) “The NIST Definition of Cloud Computing”. NIST Special
Publication 800-145.

Minas, L.; Ellison, B. (2009) “The Problem of Power Consumption in Servers”. Dr.
Dobb’s Journal, May 2009.

Mirashe, S. P.; Kalyankar, N. V. (2010) “Cloud Computing”. Communications of the
ACM, 51 (7), pp- 9.

Mohammad, H. (2012) “Cloud Computing Uncovered: A Research Landscape”.
Elsevier Press. pp. 41-85., ISBN 0-12-396535-7.

Mora, D.; Taisch, M.; Colombo; A. W. (2012) “Towards an energy management system
of systems: An industrial case study”. [ECON 2012 - 38th Annual Conference on
IEEE Industrial Electronics Society, pp. 5811-5816, 25-28 Oct. 2012.

Moretti, C.; Bulosan, J.; Thain, D.; Flynn, P.J. (2008) “All-pairs: An abstraction for data-
intensive Cloud Computing”. Parallel and Distributed Processing, 2008, IPDPS
2008, [EEE International Symposium, vol., no., pp.1-11, 14-18 April 2008.

Murakami, J. (2008) “A hypervisor IPS based on hardware assisted virtualisation

xiil

technology”. Black Hat USA 2008.

OGF (Open Grid Forum) (2011) “Open Cloud Computing Interface OCCI”. Available at:
http://occi-wg.org/

Oh, J. H,, Jeong, H. C; Im, C. T. (2010) “Malware auto-analysis system and method
using kernel callback mechanism”. U.S. Patent Application 12/942,700.

Popek, G.].; Goldberg, R. P. (1974) “Formal Requirements for Virtualisable Third
Generation Architectures”. Communications of the ACM, 17 (7), pp- 412-421.

Prieto-Blazquez,]J.; Arnedo-Moreno, |.; Herrera-Joancomarti, J. (2008) “An Integrated
Structure for a Virtual Networking Laboratory”. IEEE Transactions on
Industrial Electronics, Vol. 55, No. 6, June 2008.

Ramos-Paja, C.A.; Scarpetta, J. M. R, Martinez-Salamero, L. (2010) “Integrated
Learning Platform for Internet-Based Control-Engineering Education”. IEEE
Trans. on Industrial Electronics, vol. 57, no. 10, pp. 3284 - 3296, Oct 2010.

Renesse, R. van; Birman, K.P (2006) “Autonomic computing - a system-wide
perspective”, Autonomic Computing: Concepts, Infrastructure, and
Applications, pp. 1-11.

Rutkowska,].; Tereshkin, A. (2008) “Bluepilling the Xen Hypervisor”. Black Hat USA
2008.

Scala Programming Language, http://www.scala-lang.org.

Sotomayor, B.; Montero, R.S.; Llorente, I.M.; Foster, [. (2009) “An open source solution
for Virtual Infrastructure Management in Private and Hybrid Clouds”. IEEE
Internet Computing, 13(5), pp. 1-11.

Staten,]., Alvarez, V.; McKee,]. (2012) “Assess Your Cloud Maturity: The Cloud
Computing Playbook”. Forrester Research, Inc, Cambridge.

Tsutomu, N.; Yoshihiro, O.; Hideki, E.; Takahiro, S.; Kazuhiko, K. (2010) “Using a
Hypervisor to Migrate Running Operating Systems to Secure Virtual Machines”.
IEEE 34th Annual Computer Software and Applications Conference
(Proceedings), p37- 46.

Unified Modelling Language. Available at: http://www.uml.org.

Vada, E. T. (2012) “Creating flexible heterogeneous cloud environments”. Available at:
https://www.duo.uio.no/bitstream/handle/10852 /34153 /thesis.pdf

Vicente, A. G.; Mufi, Oz; I. B, Galilea; J. L. L; del Toro, P. A. R. (2010) “Remote
Automation Laboratory Using a Cluster of Virtual Machines”. IEEE Trans. on
Industrial Electronics, vol. 57, no. 10, pp. 3276 - 3283, Oct 2010.

VMWare ESXi. Available at: http://www.vmware.com/uk/products/esxi-and-

esx/overview.html

Xiv

VMWare vCenter Operations Management. Available at: http://www.vmware.
com/uk/products/vrealize-operations/features.html

VMWare vSphere with Operations Management. Available at: http://www.vmware.
com/uk/products/vsphere-operations-management/

VMware vSphere SDK for Java. Available at: http://communities.vmware.
com/community/vmtn/developer/forums/java_toolkit.

Vouk, M. et al; (2009) “Using VCL Technology to implement distributed
reconfigurable datacentres and computational service for educational
institutes”. ACM Digital.

Wang, L.; Laszewski, G.V.; Kunze, M.; Tao,]. (2008) “Cloud Computing: a perspective
study”. New Generation Computing, 28(2), pp.137-147.

Warkozek, G.; Drayer, E.; Debusschere, V.; Bacha, S. (2012) “A new approach to model
energy consumption of servers in datacenters”. 2012 IEEE International
Conference on Industrial Technology (ICIT), pp.211-216, 19-21 March 2012.

Weiqing, S.; Varun, K; Kumar, K, Sekar, R. (2008) “V-NetLab: an approach for
realizing logically isolated networks for security experiments”. Proceedings of
the conference on Cyber security experimentation and test (CSET'08), USENIX
Association, Berkeley, CA, USA, Article 5, 6 pages.

Williams, D.; Weatherspoon, H.; Jamjoom, H.; Liu, Y. (2011) “Overdriver: Handling
memory Overload in an Oversubscribed Cloud”. VEE '11 Proceedings of the 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments.

Winckles, A.; Spasova, K.; Rowsell, T. (2011) “Remote Laboratories and Reusable
Learning Objects in a Distance Learning Context”. Networks, Issue 14, January
2011.

Xen Project Hypervisor. Available at: http://wiki.xenproject.org/wiki/Xen_
Overview#What_is_the_Xen_Project_Hypervisor.3F

Xiaobo, M.; Xiaohong, G.; Jing, T.; Qinghua, Z.; Yun, G.; Ly, L.; Shuang, Z. (2010) “A
Novel IRC Botnet Detection Method Based on Packet Size Sequence”.
Communications (ICC), 2010 IEEE International Conference on, vol., no., pp.1,5,
23-27 May 2010, doi: 10.1109/1CC.2010.5502092.

Zeidanloo, H.; Shooshtari, M.; Amoli, P.; Safari, M.; Zamani, M. (2010) “A taxonomy of
Botnet detection techniques”. Computer Science and Information Technology

(ICCSIT), 2010 3rd IEEE International Conference v2, p158-162. IEEE.

XV

Zhang, Q.; Cheng, L.; Boutaba, R. (2010) “Cloud Computing: state-of-the-art and
research challenges”. Journal of Internet Services and Applications, 1(1), pp. 7-

18.

XVi

Publications Based on this Work (see Appendix B)

1)

2)

3)

4)

5)

Dinita, R. I, Winckles, A., Wilson, G., (2014) “Use of NetFlow/IPFIX Botnet
Detection Tools to Determine Placement for Autonomous VMs”. Cybercrime
Forensics Education and Training (CFET), 2014 7th International Conference on,

ISBN 97801909067158

Dinita, R. I, Wilson, G., Winckles, A., Cirstea, M., Rowsell, T. (2013) “A Novel
Autonomous Management Distributed System for Cloud Computing
Environments”. Industrial Electronics Conference (IECON), 2013 39t Annual

Conference of

Dinita, R. [., Wilson, G., Winckles, A., Cirstea, M., Jones, A. (2013) “Hardware Loads
and Power Consumption in Cloud Computing Environments”. International
Conference on Industrial Technology (ICIT), 2013, pp. 1291-1296, ISBN 978-1-
4673-4568-2

Dinita, R. I., Wilson, G., Winckles, A., Cirstea, M., Jones, A. (2012) “A cloud-based
virtual computing laboratory for teaching computer networks”. Optimization
of Electrical and Electronic Equipment (OPTIM), 2012 13t% International
Conference on, pp. 1314-1318, doi: 10.1109/0PTIM.2012.6231992

Dinita, R. I, Wilson, G., Winckles, A., Jones, A. (2012) “Cloud Computing and

Hardware Loads”. Anglia Ruskin University Research Student Conference, 6t

Annual

xvii

List of Appendices

Appendix A - Research Management Gantt Chart
Page: xviii

Appendix B - Research Publications based on this Work
Page: xx

xviii

Appendix A - Research Management Gantt Chart

o Can measures of sustainability (¢.g. carbon-footprint) be developed and effectively applied to Cloud vs. ... 12

o Cana new set of tools be developed to enable Cloud Administrators to re-configure hardware loadings ... 3

Yk .._29“ @b o o] B2 Wb BB B BRE™M BB Desiodmemd
Name ’ hegndate Enddat Sep |Oct lNov lDec IJan |Feb IMar |Apr |May |Jun |]uI IAug |Sep |Oct |Nov lDec |Jan |Feb |Mar IApr [May |Jun |JuI |Aug ISep]0ct |Nov |Dec |Jan |Feb |Mar |Apr |May IJun IJul |Aug |Sep |0c1 |Nov IDec |Jan [Feb
¥ o Qptimisation, Security, and Sustainabilty issues related to Cloud Computing O/19/11 21715 ——
o Literature Review o9l 1181 =
v o Objective L Critically evaluate the pattern of disruption across a Cloud infrastructure as a result of an overlo...2/17/12 ~ 6/21/12 Pr—
o What are the effects on the network infrastructure of a Cloud (not just the senvice tsel) that s overloade... 2/17/12 6/21/12 [—
v o Qbjective 2: Conceptually design a theoretical strateqy by which a Cloud could autonomously manage the wo...6/22/12 12/6/12 !_|
o Cana theoretical strateqy be developed by which a virtualised operating system could autonomously opti...6/22/12 9/13/12 \Eﬁ
o Can a simple software application be developed to establish the proof-of-principle that an optimization ... 9/14/12 12/6/12 Eh
¥ o Objective 3: Implement and test a software application to achieve Objective 2 for a specific Cloud scenario (... 12/7/12 ~ 8/15/13 !_!
/ /
/
/

/
0 s the developed solution a viable and easy to use alternative to existing FPGA solutions? 5/24
116/

o Objective 4: Innovatively develop metrics that quantify Cloud vs. centralized service provision in terms of en... 8/16/13 12/19/13 E‘l
o Objective 5: Conceptually develop an application that will identify virtualised system hijacking and undertak... 12/20/13 4/24/14 E
o Objective 6: Test the method /software and compare against other alternatives, e.g, FPGA/hardware and ot.. 4/25/14 82814 [—
vo Thesis and Dofumemalion 9/]9,11 2/17/15 —
o Prepare and Submit RDI Form o9 100 =
o Prepare and Submit Confirmation of Candidature Documents 5/6/13 53113 O
o Chapter 1: Itroduction 10/17/11 10/28/11 B
o Chapter 2: A Review of State-of-the-Art in Cloud Computing 1R YB3 E;
o Chapter 3: Cloud Principles of Operation and Botnet Monitoring Techniques 1/16/12 3/9/12 E;L
o Chapter 4: Research Methodology 3212 611 E;
o Chapter 5: Autonomos Management Distributed System (AMDS) - The Software 642 223 ——
o Chapter 6: Cloud Computing Test Bed - Software Deployment on Hardware 225013 111513 E;L
o Chapter 7: AMDS System Enhancement - Botnets 11/18/13 3)21/14 E;
o Chapter : AMDS in Comparison with Aermatie Solutions 324014 72514 —)
o Chapter 9: Conclusions and Further Work 7)28/14 9/5/14 E
0 Thesis First Full Draft 8/29/14 8/29/14 ¢
o Thesls re-gdit and finalise 9/15/14 2/17/15 | I—
o Submit Thesis 218/15 2/18/15 ‘

Xix

Appendix B - Research Publications based on this Work

XX

A Cloud-based Virtual Computing Laboratory for
Teaching Computer Networks

Razvan I. Dinita, Member, IEEE, George Wilson, Adrian Winckles, Marcian Cirstea, Senior Member, IEEE, Aled
Jones
Anglia Ruskin University, Cambridge, UK
razvan.dinita@anglia.ac.uk, george.wilson@anglia.ac.uk, adrian.winckles@anglia.ac.uk, marcian.cirstea@anglia.ac.uk,

aled.jones@anglia.ac.uk

Abstract-This paper presents a novel ‘Cloud-based’ solution
for teaching computer networks in an educational context. One
key advantage of the system is its ability to comission and
decomission virtual infrastructures comprised of routers,
switches and virtual machines on demand. It makes use of
hardware located in different physical locations, VMWare
software to manage the virtual resources and NetLab+ to
manage the configuration of multiple different virtual scenarios.
The key features of the cloud infrastructure are described and
evaluated.

I. INTRODUCTION

Nowadays, students are increasingly attracted to
computers, the internet and all networking involved in fully
exploiting the increasingly larger computing resources
available through the internet. Students are coming with a
wide wvariety of technical and cultural background,
motivation, age, experience and learning styles and all of
these must be taken into account either by course extension —
in order to establish a common foundation, or by lecturers in
higher education adapting their expectations and the
programmes they offer.

As the first method normally requires extra resources,
such as extra teaching staff hours, availability of rooms,
technical support, etc., it is the last one which is normally
preferred because it is cost and time effective [1]. Therefore,
the necessity arises to reconsider the teaching and learning
strategies, and to adapt them to the learning styles and
constraints of modern university environments.

Cloud computing is an emerging technology that devolves
computing resources to the Internet [2]. The traditional
teaching of computer networking in a higher educational
institution is very much dependent on local hardware
resources. The student experience of different computer
networks will often be limited to the local hardware
infrastructure currently available. That architecture cannot be
easily changed because of the resource issues involved.

At the university the authors are affiliated with, there are
multiple IT infrastructures and software solutions put in place
that aim to assist and provide study platforms for students. A
few examples are the VLE (Virtual Learning Environment)
built using Microsoft products, Moodle (Modular Object-
Oriented Dynamic Learning Environment), which is an open
source platform, WebCT (Course Tools) etc. However, all

these systems only provide basic means of interaction such as
file sharing, discussion boards, questionnaires, blogs and
access to course materials. These systems lack the means to
allow students to conduct experiments, test taught theories
and create innovative applications in the context of their
chosen modules.

This paper focuses on presenting a cloud-computing
solution for teaching computer networks, in which the
network teaching resource is itself virtualised. A similar
approach has already been researched [3], having a proven
track record with over 80% positive student feedback. This
paper aims to pick up where that solution left off and take it
one step further through development of the underlying
infrastructure and expansion of the overlying software
platform.

This kind of solution is not meant to replace the traditional
hands-on student experience, but rather provide a useful and
cost-effective supplementary educational tool to support the
teaching of computer networks (including by distance
learning).

There have been other similar attempts at using NetLab+ in
an Academic context as illustrated and described by [4], [5]
and [6]. Although the software solutions used are similar, the
test bed it has been deployed on makes the solution proposed
by the authors of this paper a novel approach, which allows
for implementation and testing of complex networking and
security scenarios.

There have even been other similar attempts using clusters
of Virtual Machines (VMs) [7] to virtualise automation
learning topics based on the Moodle platform. The issue with
that approach was that it was put together using multiple bits
of technologies which could potentially allow a number of
security breaches. It is also quite difficult to maintain, when
it comes to expanding the infrastructure by adding more VMs
or updating the Moodle platform.

Another virtual learning implementation was attempted by
the authors of [8] through the implementation of four
different virtual environments, each specialised in a different
area of control-engineering. It makes use of a mix of open
source Linux software and Matlab licensed software to
provide the students with the means to implement and test
different scenarios. Again, this kind of solution is difficult to
maintain since it makes use of completely different software
packages which have not been specifically designed to work
together.

TABLE I
TEST BED COMPRISING HARDWARE
Make Specifications Quantity
HP Proliant 108GB RAM 4
2 x Intel Six-Core Xeon 2.4GHz
10 Gbit NICs
Dell R710 38GB RAM 2
2 x Intel Quad-Core Xeon 2.4GHz
Gbit NICs
Viglen 16GB RAM 1
2x Intel Dual-Core Xeon 2.2GHz
Gbit NICs
HP Filer 8TB HDD 1
10 Gbit NICs
Dell Storage | 1.5TB 3
Area
Network
HP Gbit NICs 4
Integrated
Lights Out
Cisco 4948 | Gbit NICs 1
Switch
Cisco 3560 | Gbit NICs 1
Switch
Cisco 5510 | Gbit NICs 1
Adaptive
Security
Appliance
(ASA)
NetLab Pod | N/A, proprietary appliance 4
1L OBJECTIVES IN A PEDAGOGICAL THEORY CONTEXT

From a business perspective there are three well-known
technologies associated with Cloud Computing, namely
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS). The current research
aims to promote another cloud service technology in
providing an educational resource that will focus on delivery
of simulated network hardware resources (the concept of
Laboratory-as-as-Service (LaaS)). This distinguishes the
work from traditional virtual learning environments in
common use in educational establishments today.

The development of this lab setup is taking into account
Kolb’s well established descriptive model of the Adult
learning process, consisting of four stages [9]: Concrete
Experience is followed by Reflective Observation which
generates Abstract Conceptualisation; this leads to Active
Experimentation which will generate a new Concrete
Experience. Abstract Conceptualisation can be stimulated
better in lecture sessions, addressing the cognitive type of
objectives (such as memory, interpretation) in accordance
with Bloom’s taxonomy [10].

On the other hand, the Active Experimentation, Concrete
Experience and Reflective Observation are better addressed
in interactive laboratory sessions, which concentrate more on
the other cognitive components identified by Bloom
(Translation, Application, Analysis, Evaluation) and the
Affective aspects of learning (Responding, Valuing and
Organization in particular).

The paper is presenting research work which led to a new
teaching and learning method that addresses this second
aspect, by the development of a novel style Laboratory setup,
based on cloud computing, providing a modern educational
resource.

NETLAE Pod

ees 7978 S @

=

A
— NETLAB
o (e G (ere)
I @ D
[~~~ Cloud Servers
! \ \/ Bry101
1
1 o SAN
! AR =) s
1
I
1
1
1
Cisco 5510 ASA m

Fig. 1. Cloud Computing Test Bed — custom design and built infrastructure.

Teaching and Research

Cisco 4948 Switch

\ - A
\ v \ ! 1Gbps
Lo \\ o \ o
P \
A v !
\

HP Switch

1
1
1
1
1
1
1
1
{0 1
I
. 10 Gbps
1
1
1
1
1
1
1
1
1
1
1
1

e

Management Card

Management Card

Fig. 2. Cloud Computing Test Bed — Datacentre view.

111 METHODOLOGY
A. Hardware Infrastructure

The authors currently have a small but powerful test bed
comprising seven physical servers (mix of HP Proliant, Dell
R710 and Viglen brands), three Storage Area Networks (HP)
and multiple routers and switches (CISCO and HP), and HP
ILOs (Table I) located within the Department of Computing
and Technology (Figs. 1 and 2 are illustrating the structure of
these systems) across four rooms (Bry0l15, Mel205, Data
Center, Bryl101).

Two of the servers are ‘public’-facing (that is, they are
utilised for teaching purposes), whilst the others are ‘private’-
facing (i.e. they are utilised for research — not yet
implemented). The private-facing resource is isolated from
the Internet and only accessible from departmental computers
via an appropriate security protocol. All of the networking
cards have Gigabit type interfaces (>=1Gbps, Gigabit per
second, transfer rate) and the link between the Servers and the
Filer (Fig. 2) is one of 10Gbps, which facilitates rapid data
movement to and from the Filer across the network.

The described test bed allows for the possibility of testing
unique and complex scenarios such as simulating a global
infrastructure, where each room is considered to be a remote
location in a different country/part of the world.

B. Software Administration

Both commercially available and Open Source software is
used to manage both the underlying physical network
infrastructure and the virtualized appliances running on that
physical network.

The Test Bed resource is currently being developed in two
ways:

i) Proprietary off-the-shelf remote laboratory systems such
as NDG’s NetLab are being used to offer complex IT systems
(such as VMware vSphere/vCentre/ESXi courses) which can
be easily deployed as virtual based solutions on demand
(solution currently fully implemented).

ii) Configuration of an Open Source Apache Virtual
Computing Laboratory (VCL) in a network distributed
environment to support commissioning of reusable operating
resources, as described by Vouk [11]. This provides a cloud
computing based solution for network security laboratory
teaching scenarios (solution still in development).

VMWare products such as the ESXi Hypervisor and
vCentre are used to manage the physical infrastructure and
run the VMs, while NDG’s NetLab+ software is used to
manage virtual appliances ranging from simple VMs to
CISCO Routers and Switches, commissioning them on
demand.

The reasoning behind choosing VMWare and NDG’s
proprietary software is that they have a proven track record of
performing well and exceeding expectations in academic
environments. According to [3] the majority of students
responded very positive to the virtual labs they had the
opportunity of installing, configuring and managing. They
also believed that it has enhanced their learning experience

through hand-on virtual sessions said software

solutions.

using

C. NDG'’s NetLab+

NetLab+ is able to commission and decommission entire
virtual laboratories containing any number and combination
of simple VMs, Routers and Switches (Fig. 3, 4, 5). This
makes it an ideal environment for testing a great range of
scenarios from simple networking to complex security

configurations.
NetLab+ gives access to the virtual resources based on
username/password combinations assigned by the

Administrator account. These are made available to students
on different network and security modules as needed.

One key advantage of this solution is instant access and
high availability at any hour of the day, account holders being
able to connect to NetLab+ via the public Computing VLAN
(Fig. 1).

The Computing VLAN provides public access to numerous
internal services and other networks, including the proposed
virtual infrastructure. The front-end server makes use of
several NICs to interconnect the various internal networks.
The internal networks have the following IP classes:
169.x.x.x for NetLab+, 10.141.x.x for the VMWare solution
and 10.x.x.x for the rest of the university services (VLE,
Moodle, eVision etc.). Each individual network makes use of
its own authentication framework, almost all of which allow
login using a single university set of credentials handed out to
every student and staff member.

Once authenticated, the students can proceed to reserve a
Lab session (Fig. 6), choosing one of the many available
virtual configurations (Fig. 3, 4, 5).

CUATRO ROUTER POD LAN SWITCHING POD

) & NETWORK
G 4routers PCs = 3 ?‘g{;‘&’:s] FUNDAMENTALS
- - - J -/ PC Support o — POD

Cuatro Router Pod 1 LAN SWITCHING POD 2

Fig. 3. NetLab+ Lab setups: 4 Routers, PCs; 3 Switches, 1 Router, PCs;
Network Fundamentals setup (2 Routers, 1 Switch, PCs).

Network Fundamentals Pod

* MULTI-PURPOSE
:A: ACADEMY POD

o 3 Routers, 3 Switches

* MULTI-PURPOSE NETWORK
:A: ACADEMY POD ‘T'_E] FUNDAMENTALS

? 3 Routers, 3 Switches | =l POD

Multi-Purpese Academy Pod -
1

Network Fund Pod 2 Multi-Purpese Pod 2

Fig. 4. NetLab+ Lab setups: 3 Routers, 3 Switches; Network Fundamentals
setup (2 Routers, 1 Switch, PCs).

@0 vimware | gaz vimware gac vimware
LI ICM POD == ICM POD = = ICM POD
ICM Master Pod

Fig. 5.NetLab+ Lab setups: ICM (Install, Configure, Manage) Master and
Standard Pods.

VMware ICM Pod 1 VMware ICM Pod 2

LAB RESERVATIONS

1D DATE / TIME DESCRIPTION POD
1418 NOW db Razvan Dinita {razvandinita) Multi-Purpose Academy Pod - 1
2:33AM - 4.00AM % MULTI-PURPOSE
oA+ ACADEMYPOD

K 3 Routers, 3 Switches

Fig. 6. NetLab+ reservation of a virtual Multi-purpose Academy Pod.

System Web Browser Version Status
@ Mozilla Firefox 3.6.15 Supported
% Internet Explorer 8.0.6 Supported
O Windows
@ Apple Safari 5.0.2 “, Beta
& Google Chrome 7.0.517 -, Beta
@ Mozilla Firefox 3.6.15 Supported
& Mac
@ Apple Safari 5.0.2 “, Beta
S Linux @ Mozilla Firefox 3.6.15 Supported

Fig. 7. NetLab+ web browser support.

Lab Access
MyNETLAB Logout

Topology

(i) razvandinita

Action Status Connections

EO0

FCB

Multi-purpose Academy Pod (MAP)

Click on a router, switch or PC for remote access

Fig. 8. Layout of a NetLab+ virtual Multi-purpose Academy Pod.

Many of the popular browsers (Fig. 7) can be used to fully
interact with any part of the commissioned Virtual Lab setup.
It makes heavy use of JavaVM to offer a rich GUI interface
which allows easy management and configuration of any of
the virtual appliances. For example the user can simply click
R1/2/3 or S1/2/3 or PC A/B/C (Fig. 8) to bring up a
completely interactive Console Window.

Every Lab configuration also offers the possibility of either
remembering changes made each session or running fresh
configurations every time. It even allows easy export of
configuration progress at any time during its operation.

© CCNA Exploration 1 - Network Fundamentals

© CCNA Exploration 2 - Routing Protocols and Cencepts
© CCNA Exploration 3 - Switching and Wireless

© CCNA Exploration 4 - Accessing the WAN

© CCNA Exploration V4.0 CCNA 1 Network Fundamentals

© CCNA Security V1

© CCNA Security v1.1

© CCNP - BSI Building Scalable Internetworks - V5.0

© CCNP - BSMN - Builing Switched Multimedia Metworks - V5.0

© CCNP - ICSW- Implementing Secure Converged Wide Area Networks - V5.0
© CCNP - Optimising Converged Networks - V5.0

Fig. 9. NetLab+ available Labs.

CLASS NAME LEAD INSTRUCTOR(S) # ENROLLED START DATE END DATE LABS LAB HOURS
© Commercial CONA (LT Fellowship) ~ Adian Winckles 5y Inne 0 00
Chris Holmes
Adrian Winckles
© Computer Network Principles 2008-10 Cam Chris Holmes 36 |None None 556 11135
Peter Cousins
Adrian Winckles
© Computer Network Principles 2010-11 Cam Chris Holmes 66 |None None 83 128.0
Ed Deacen
Adrian Winckles
© Computer Network Principles 2011-12 Cam Chris Holmes 69 |None None 18 19.4
Ed Deacon
0 3150136 Network Management 2011 dian Winckles 14 |None [None | 32 534
Chris Holmes
© Inteme! and Network Security Cam 2011 Adian Winckles 16 Nore None 110 2574
Chris Holmes
. Adrian Winckles
© [T Infrastructures Cambidge 2011 Chris Holmes 28 |Nene Nene 42 738
0 Miscellaneous 2010 pconWmchce 19 |Noe [None | 71 1088
Chris Holmes
© Network Fundamentals ILM 2012 Adr!an Winddos 2 Nene Nene 0 0.0
Chris Holmes
© Standard Class Adr!an inckizs 2 Nene Nene 6 6.0
Chris Holmes
Adrian Winckles
© VMware Demo Training Class Chris Holmes 1 None None 2 21
Peter Cousins

Total 900 1762.1

Fig. 10. NetLab+ module classes with instructors, number of enrolled
students and number of Labs and Lab Hours completed.

1V. RESULTS

Since there are a large number of Labs (training courses
and materials) available as part of the NetLab+ solution,
students have been granted access to the NetLab+ setup from
the very beginning of its first deployment on the previously
described test bed. Students enrolled on a wide variety of
Network and Security modules have been testing the setup
and at the same time learning how to install, configure and
manage a wide range of Cisco appliances.

As it can be seen in Fig. 10, there already have been 900
Labs and over 1700 hours of lab work put into testing the
described NetLab+ solution by over 260 students, all of
which have ran without any issues.

At university level, there is an academic process called
Module Evaluation, which is a simple survey presented to
enrolled students. This gives students the opportunity to
comment anonymously on various aspects of their modules.
Student feedback plays an important role in quality
enhancement. The findings of these surveys informs of both
successful and unsuccessful teaching and learning practices.

In current context, the students who took part in testing of
the proposed virtual infrastructure were enlisted on the
following modules: Computer Network Principles, Network
Technologies and Network Management.

Recently, they have been presented with a Module
Evaluation survey for each of the mentioned modules. The
survey results have exceeded all expectations, as almost all
students believe that they have had their study experience
enhanced by the proposed virtual infrastructure.

The students, however, have expressed several ideas for
improvement:

e Better mobile access. Currently, since the NetLab+
solution is written almost entirely in Java there is
almost no mobile support as of this writing. Of
course, having better mobile access would increase

student satisfaction levels as this would allow them to
quickly login and check on projects running on
commissioned VLabs, or simply continue a previously
started Lab.

e Access to more physical networking hardware.
Currently, there is only one rack containing
networking hardware available to students to interact
with. Having access to physical hardware allows
students to better understand the Labs they have access
to through much needed hand-on experience with
cabling and configuring real-world networking
equipment. This would ultimately improve their
chances of getting employed once completing their
course.

V. FUTURE WORK

Future work will involve development of the system
administration of the Cloud Computing Test Bed, including:

e Expansion of the private-facing hardware (addition of
more PCs — some are already available).

e Development of new software modules to manage
disparate hardware and operating systems across a
network.

Currently, as already mentioned, only the teaching side
solution of this proposed solution has been fully
implemented. The authors will implement the research
solution in due course, which will provide even more
flexibility by supporting fully customised virtualised
appliances to be deployed and tested.

One proposed use of the Test Bed will be to develop
optimization software which would improve energy
sustainable cloud based solutions. Such software would be
capable of autonomous decision making based on hardware
loads, ultimately perhaps resulting in the movement of VMs
across the network, be it to another server in the local cluster
or one located in a different geographical location.

VI CONCLUSIONS

Both VCL and NetLab+ solutions are capable of delivering
an automated and self-maintained virtualised remote
computing environment to cater for students’ need, with very
little ongoing administration.

Whilst VCL provides a highly scalable, flexible and very
cost effective solution, it is limited in terms of the complexity
of the solutions potentially offered. NetLab+ provides a more
managed solution, better able to provide the complexity and
flexibility that more advanced computer science courses may
require, a premise supported by the setup shown in Fig. 10.

Also, in the long run, a NetLab+ setup will be easy to
maintain and expand as NetLab+ has been specifically been
designed to work with the VMWare vCentre/ESXi solutions,
as opposed to using other virtualisation platforms alongside
different open source software [7], [8].

REFERENCES

[1] Cirstea, M.N., (2003), “Problem Based Learning in Microelectronics”,
Int. Journal of Eng. Education, Vol. 19, No.5, 2003, pp.738-741,
ISSN:0949-149X.

[2] Mirashe, S. P., and Kalyankar, N. V. (2010), “Cloud Computing,”
[Communications of the ACM], 51(7), 9.

[3] Winckles, A., Spasova, K., Rowsell, T. (2011), “Remote Laboratories and
Reusable Learning Objects in a Distance Learning Context”, Networks,
Issue 14, January 2011.

[4] Prieto-Blazquez, J., Arnedo-Moreno, J., Herrera-Joancomarti, J. (2008),
“An Integrated Structure for a Virtual Networking Laboratory”, /[EEE
Transactions on Industrial Electronics, Vol. 55, No. 6, June 2008.

[5] Kumar, K., Weiqing, S., Pratik, R., Tianning, L., Sekar, R. (2005), “V-
NetLab: A Cost-Effective Platform to Support Course Projects in
Computer Security”, 9th Annual Colloquium for Information Systems
Security Education (CISSE 05), June 2005.

[6] Weiqing, S., Varun, K., Kumar, K., Sekar, R. (2008), “V-NetLab: an
approach for realizing logically isolated networks for security
experiments”, Proceedings of the conference on Cyber security
experimentation and test (CSET'08), USENIX Association, Berkeley,
CA, USA, , Article 5, 6 pages.

[7] Vicente, A.G., Mui, Oz, 1.B., Galilea, J.L.L., del Toro, P.A.R. (2010),
"Remote Automation Laboratory Using a Cluster of Virtual Machines",
IEEE Trans. on Industrial Electronics, vol. 57, no. 10, pp. 3276 - 3283,
Oct 2010.

[8] Ramos-Paja, C.A., Scarpetta, J.M.R., Martinez-Salamero, L. (2010),
"Integrated Learning Platform for Internet-Based Control-Engineering
Education", [EEE Trans. on Industrial Electronics, vol. 57, no. 10, pp.
3284 - 3296, Oct 2010.

[9] Kolb, D.A. (1984), “Experiential Learning: experience as the source of
learning and development”, Prentice-Hall, New-Jersey.

[10] B. Bloom, (1956), “Taxonomy of Educational Objectives”, Longmans
Green, New York.

[11] Vouk, M. et al. (2009). “Using VCL Technology to implement
distributed reconfigurable data centres and computational service for
educational institutes”, ACM Digital, [Online].

Faculty of Science & Technology's 2" Annual Research and Scholarship Conference

23 May 2012

Cloud Computing and Hardware Loads

Razvan-loan Dinita, Dr. George Wilson, Adrian Winckles, Dr. Aled Jones
Department of Computing and Technology, Faculty of Science and Technology

Abstract — This paper describes an optimised and novel approach to an Autonomous Virtual
Server Management System in a ‘Cloud Computing’ environment. One key advantage of this
system is its ability to improve hardware power consumption through autonomously moving
virtual servers around a network to balance out hardware loads. This has a potentially important
impact on issues of sustainability with respect to both energy efficiency and economic viability.
Another key advantage is the improvement of the overall end-user experience for services within
the Cloud. This is currently being investigated through configuration of a cloud-computing test-
bed rig. The key features of this and some predictions of what may be achieved are described and

evaluated.

Keywords: Cloud Computing, Hardware Loads, Optimisation

1. Introduction

Cloud computing is an emerging technology that
devolves computing resources to the Internet [6]. This
paper focuses on conceptually presenting an innovative
approach to the resilience and optimization of
Internet/network usage via mobility of virtualized
servers within a cloud. The optimised running of a cloud
will be investigated through the use of a virtual
networking laboratory to develop new metrics that can
be tested to quantify the processing efficiency (and
therefore carbon footprint) of an optimised cloud
network compared to a non-optimised cloud network
and to a non-cloud infrastructure [1][2].

The background to the objectives of this work will
now be discussed. The protocols that enable current
network topologies to interface in such a way as to
support Cloud functionality are well established,
however the effect of an unanticipated amount of people
trying to access the same file/service is poorly
understood [11]. Whilst management tools are available
to enable Cloud Administrators to re-configure
hardware loadings according to service demands the
approach is largely by-trial-and-error [7]. One
consequence of the adoption of Cloud Computing in the
commercial sector is that companies do not need to
invest in their own hardware infrastructure. This has
environmental consequences and their quantification is
important for developing strategies for a sustainable
environment [4]. A final area of interest concerns
security. A botnet is a group of compromised computers
connected to the Internet. Each compromised computer
is called a bot, and could include individual virtual bots
within a virtualised system. Whilst there are tools to
protect a Cloud from such malware attacks, a very
poorly researched area is how a successful hijacking of
a Cloud’s virtual operating system could be identified

[3105118][01[12].

II. Objectives

This research will focus on the optimization and
security of Internet/network usage via mobility of
virtualized servers within a cloud. At least one cloud-
resident application-specific prototype utility such as a
virtual networking laboratory will be developed.
Potential applications of such a virtual laboratory will
allow suitable metrics to be proposed and tested that can
quantify the reduction in the carbon footprint of the IT
sector compared to a non-cloud infrastructure.

Objective 1: To critically evaluate the pattern of
disruption across a Cloud infrastructure as a result of an
overloaded service request. The effects on the network
infrastructure of a Cloud (not just the service itself) that
is overloaded by a service request will be studied. The
results will be logged and analysed.

Objective 2: To conceptually design a theoretical
strategy by which a Cloud could autonomously manage
the workloads placed on that infrastructure, and
implement and test a software application to achieve
this aim for a specific Cloud scenario. Ideally a
theoretical strategy will be developed by which a
virtualised operating system can autonomously optimize
the location of virtualized servers within a network. A
simple software application to establish this proof-of-
principle will be built.

Objective 3: To innovatively develop metrics that
quantify Cloud vs. centralized service provision in
terms of environmental sustainability. Measures of
sustainability (e.g. carbon-footprint) will be developed
and effectively applied to Cloud vs. non-Cloud
scenarios.

Objective 4: To develop an application that will
identify virtualized system hijacking and undertake a
range of appropriate activities from simple notification
to service suspension. Parameters indicative of the
successful hijacking of a Cloud will be identified. A

R.-I. Dinita, Dr. G. Wilson, A. Winckles

software tool will be developed to monitor the activities
of a Cloud in such a way as to be able to identify the
successful hijacking of the virtualized servers, and to
mitigate the presence of a compromised Cloud.

III. Methodology

The authors currently have a small test bed
comprising seven physical servers (mix of HP Proliant,
Dell R710 and Viglen brands), three Storage Area
Networks (HP) and multiple routers and switches
(CISCO and HP), and HP ILOs located within the
Department of Computing and Technology' (Fig. 1 and
Fig. 2). Two of the servers are ‘public’-facing (that is,
they are utilised for teaching purposes) whilst the others
are ‘private’-facing (i.e. they are utilised for research).
The private-facing resource is isolated from the Internet
and only accessible from departmental computers via an
appropriate security protocol. All of the networking
cards have Gigabit type interfaces (>=1Gbps, Gigabit
per second, transfer rate).

NETLAB Pod

Teaching Servers Data Centre

e/

Research Servers

5OS

Mel205

Cisco 3560 Switch A

(5D
aiy

/

55

Y

Cloud Servers

%
\

SAN

7 £
S 2
& =

vCentre Servers

1 Gbps

Bry101

~

Cisco 5510 ASA ca _— j

I

I

I

I
Computing VLAN

Fig. 1 Cloud Computing Test Bed — custom designed and built
infrastructure.

The indicative research methods will focus on
development of this resource, including:

* Expansion of the private-facing hardware (addition
of more PCs — some are already available).

* Development of new software modules to manage
disparate hardware and operating systems across a
network.

' Anglia Ruskin University, East Rd, Cambridge CB1 1PT, UK

* Building of cloud optimization strategies via a top-
down approach wusing a proprietary software
virtualization product (VMWARE) [10].

* Building of cloud optimization techniques via a
bottom-up approach using an appropriate mainstream
programming language (such as Java due to its library
support tools for building bespoke network
applications).

* Development of a software tool to detect and
manage malware attacks on the virtualized servers.

Objective 1: To be achieved through heavy use of the
test bed. Multiple virtual Machines (VMs) will be
created on all four servers. Simultaneous requests will
be made to all VMs to simulate a memory overload.
Both hardware and network loads will be monitored,
logged and analysed.

Objective 2: To be achieved through socket
programming using the Java programming language.
Sockets locally bind to specific port numbers, which
allows direct communication to other (virtual) machines
over a (virtual) network. The resulting software
application will be installed on each server included in
the test bed. It will be capable of directly
communicating with other instances of itself and
relaying information across the (virtual) network. The
software application will have a modular design. As
such, each task it will be capable of performing will
represent one module. This design will allow easy
expansion of its capabilities to allow it to perform more
complex operations within a cloud network. It will also
allow easy maintenance of each module and of the
software application as a whole. The software
application will also be capable of autonomously
making decisions based on current hardware and
network loads to move VMs around from one physical
location to another within the same virtual network.

Teaching and Research

i 1 : : ﬁ ﬁ ﬁ : : : l:Cisco49483witch
- - - - - - - - - - - - - iiii.:

&=\

=

HP Switch

e Filer (HP)

Management Card

7 = \i
Management Card

Fig. 2 Cloud Computing Test Bed — Data Centre view.

R.-I. Dinita, Dr. G. Wilson, A. Winckles

Another way of implementing objective 2 is by
looking at currently available software such as the
VMWare vMotion technology to achieve the same end
result - either by using a pure VMWare solution or by
creating a hybrid solution comprised of VMWare
technologies and a set of custom built technologies.

Moving a VM across a network to a different
physical location raises the following concerns that will
be addressed:

1) Maintaining and Updating the IP address tables
across the network so that loss of service is avoided.

2) Ensuring the MAC addresses of the VMs are
unique at the new physical location, refreshing them if
clashes occur.

3) Refreshing the VM’s Domain Name so that it
matches the one at the new physical location.

Objective 3: To be achieved by measuring server and
network hardware power consumption and logging the
results. The analysis of these results will enable the
authors to take steps towards developing the required
metrics. An attempt will also be made towards
identifying what levels of efficiency savings can be
achieved through optimization of the cloud network.
This will be a natural consequence of the
aforementioned analysis.

Objective 4: To be achieved through testing of
different approaches to service hijacking as presented
here [14]. An approach to overcoming these security
issues is presented here [13]. This will be investigated
and, if relevant, a solution based on the Public Key
Infrastructure will be built. Otherwise, alternative
approaches to the aforementioned security issues will be
researched and developed.

IV. Practical view

Power consumption is directly influenced by a great
deal of factors [15][16]. The factors that this paper will
focus on are the Processor, RAM and Hard Disk. These
are the most relevant in the context of cloud computing
because the Processor does calculations, stores the
results in the RAM and it finally, if necessary, commits
them to the Hard Disk. According to [15] the Processor
(“CPU Quadcore”) and the RAM (“Memory”) have the
highest power consumption of all the hardware types in
an actively used server system. There is also a strong
relation between hardware loads and power
consumption [15][16]. The less hardware load on a
system, the more efficiently the server operates and the
less power it consumes.

Thus, the approach this work takes will help reduce
the hardware loads by attempting to move ‘hot’ data
(data actively used at any given time) from a highly
active server (many user service requests) to a less
active server (few user service requests). This approach
aims to balance out the hardware loads across the same
virtual network and at the same reduce the overall

power required to achieve the same results as before the
move.

2,500

2,075
2,000 4

N nw

W omiPs

A9 R4
ARM Cortex

http:/iwww.mentor.com/resources/techpubs/upload/mentorpaper_
68962.pdf

Fig. 3 Relation between miliWatts (mW) and the Millions of
Instructions/Second (DMIPS). Data taken from [16].

V. Future work

Since the research is in its early stages, future work is
mainly based on the conceptual ideas presented in this
paper. Causes of disruption will be examined to
investigate whether solutions can be implemented to
ensure the resilient operation of a cloud network.

According to Fig. 3, processors consume four times
as much power running at full speed (GHz) as running
at half speed. Thus, another approach might be to
attempt to reduce the Processor clock speed in addition
to moving virtual Machines across the network. This
however would depend on whether the VMWare
Hypervisor (operating system running on the servers)
gives direct access to this type of setting. Another issue
is that reducing the processor clock speed in order to
reduce the power consumption by a factor of at least 3x
is only practical in an environment where speed is not
mission-critical.

VI. Conclusions

This paper has described conceptual means and ideas
of optimising and improving the resilience of cloud
computing environments. The authors have discussed
how cloud computing networks can be improved to help
reduce the carbon footprint of the associated hardware
through implementing an autonomous solution to help
manage the hosted virtual machines.

R.-I. Dinita, Dr. G. Wilson, A. Winckles

References

[1] Anderson, J. Q. (2010), “The future of cloud
computing,” Schubert, L., Jeffery, K. and
Neidecker-Lutz, B. (Eds.) Analysis, 1, 1-26,
European Commission.

[2] Armbrust, M., Fox, A., Griffith, R., and Joseph, A.
D. (2009), “Above the Clouds: A Berkeley
View of Cloud Computing,” Science, 53
(UCB/EECS-2009-28), 07-013, Citeseer.

[3] Chandrashekar, J. (2009), “The Dark Cloud:
Understanding and Defending Against Botnets
and Stealthy Malware,” Intel RTechnology
Journal, 13(2).

[4] Chou, D. C. and Chou, A. Y. (2011), “Seeking
Sustainable Computing: The role of Cloud
Computing,” Southwest Decision Sciences
Institute Conference.

[5] Ke, A., Yu, Y., Chen, Y., Zhao, E., Xie, Y., Yu, F.
and Gillum, Q. (2009), “BotGraph: large scale
spamming botnet detection,” [Proceedings of
the 6th USENIX symposium on Networked
systems design and implementation
(NSDI'09)], USENIX Association, Berkeley,
CA, USA, p321-334.

[6] Mirashe, S. P., and Kalyankar, N. V. (2010), “Cloud
Computing,” [Communications of the ACM],
51(7), 9.

[7] Moretti, C., Bulosan, J., Thain, D., Flynn, P.J.
(2008), “All-pairs: An abstraction for data-
intensive cloud computing,” Parallel and
Distributed Processing, 2008, IPDPS 2008.
[IEEE International Symposium, vol., no.,
pp-1-11, 14-18 April 2008].

[8] Murakami, J. (2008), “A hypervisor IPS based on
hardware assisted virtualization technology,”
[Black Hat USA 2008].

[91 Rutkowska, J. and Tereshkin, A. (2008),
“Bluepilling the Xen Hypervisor,” [Black Hat
USA 2008].

[10] Tsutomu, N., Yoshihiro, O., Hideki, E., Takahiro,
S. and Kazuhiko, K. (2010), “Using a
Hypervisor to Migrate Running Operating
Systems to Secure Virtual Machines,” [2010
IEEE 34th Annual Computer Software and
Applications Conference (Proceedings) p37-
46].

[11] Williams, D., Weatherspoon, H., Jamjoom, H. and
Liu, Y. (2011), “Overdriver: Handling memory
Overload in an Oversubscribed Cloud,” [VEE
'11 Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments].

[12] Zeidanloo, H., Shooshtari, M., Amoli, P., Safari,
M., and Zamani, M. (2010), “A taxonomy of
Botnet detection techniques,” Computer
Science and Information Technology
(ICCSIT), [2010 3rd IEEE International
Conference v2, p158-162. IEEE].

[13] Arora, P., Wadhawan, R. C., Ahuja, Er. S. P.
(2012), “Cloud Computing Security Issues in
Infrastructure as a Service,” [International
Journal of Advanced Research in Computer
Science and Software Engineering] Vol. 2, Iss.
1, Jan. 2012, ISSN: 2277 128X.

[14] Cloud Security Alliance (2010), “Top Threats to
Cloud Computing V1.0,” Available at:
https://cloudsecurityalliance.org/topthreats/csat
hreats.v1.0.pdf

[15] Minas, L., Ellison, B. (2009), “The Problem of
Power Consumption in Servers,” [Dr. Dobb’s
Journal, May 2009].

[16] Matalon, S., Klein, R., Walls, C. (2011),
“Embedded System Power Consumption: A
Software or a Hardware Issue?,” Mentor
Graphics, Available at:
http://www.mentor.com/resources/techpubs/upl
oad/mentorpaper_68962.pdf

Hardware Loads and Power Consumption in Cloud
Computing Environments

Razvan I. Dinita, Member, IEEE, George Wilson, Adrian Winckles, Marcian Cirstea, Senior Member, IEEE, Aled
Jones
Anglia Ruskin University
Cambridge, UK

razvan.dinita@anglia.ac.uk, george.wilson@anglia.ac.uk, adrian.winckles@anglia.ac.uk, marcian.cirstea@anglia.ac.uk,

aled.jones@anglia.ac.uk

Abstract-This paper describes an optimised and novel approach
to an Autonomous Virtual Server Management System in a
‘Cloud Computing’ environment and it presents a set of
preliminary test results. One key advantage of this system is its
ability to improve hardware power consumption through
autonomously moving virtual servers around a network to
balance out hardware loads. This has a potentially important
impact on issues of sustainability with respect to both energy
efficiency and economic viability. Another key advantage is the
improvement of the overall end-user experience for services
within the Cloud. This has been investigated through the
configuration of a cloud-computing test-bed rig. The key
features of this rig and some predictions of what may be
achieved with it are described and evaluated.

L. INTRODUCTION

Cloud computing is an emerging technology that devolves
computing resources to the Internet [1]. This paper focuses on
presenting a conceptually innovative approach to the
resilience and optimization of Internet/network usage via
mobility of virtualized servers within a cloud. The optimised
running of a cloud has been investigated through the use of a
virtual networking laboratory, developing new metrics that
can be tested to quantify the energy efficiency (and therefore
carbon footprint) of an optimised cloud network compared to
a non-optimised cloud network and to a non-cloud
infrastructure [2-3].

Although the protocols that enable current network
topologies to interface in such a way as to support Cloud
functionality are well established the effect of an
unanticipated amount of people trying to access the same
file/service is not yet well understood [4]. The authors of one
study break down the energy consumption in a data centre
and suggest different ways of reducing it overall [5]. Whilst
management tools are available to enable Cloud
Administrators to re-configure hardware loadings according
to service demands, the approach is largely by-trial-and-error
[6].

One consequence of the adoption of Cloud Computing in
the commercial sector is that companies do not need to invest
in their own hardware infrastructure. This has environmental
consequences and their quantification is important for

developing strategies for a sustainable environment [7].
Security is also a relevant issue. A botnet is a group of
compromised computers connected to the Internet. Each
compromised computer is called a bot, and could include
individual virtual bots within a virtualised system. Whilst
there are tools to protect a Cloud from such malware attacks,
a less widely researched area is that of methods of
identification of a successful hijacking of a Cloud’s virtual
operating system [8-9-10]. These and other relevant works
[11-12] also discuss the hypervisor architecture and the
possible vulnerabilities within them.

II. RESEARCH Focus

This research focuses on the optimization and security of
Internet/network usage via mobility of virtualized servers
within a cloud. A cloud-resident application-specific
prototype utility such as a virtual networking laboratory has
been developed. Potential applications of such a virtual
laboratory will allow suitable metrics to be proposed and
tested that can quantify the reduction in the carbon footprint
of the IT sector compared to a non-cloud infrastructure.

Objective 1: Critically evaluate the pattern of disruption
across a Cloud infrastructure as a result of an overloaded
service request. The effect on the network infrastructure of a
Cloud (not just the service itself) that is overloaded by a
service request is of particular interest here.

Objective 2: Conceptually design a theoretical strategy by
which a Cloud could autonomously manage the workloads
placed on that infrastructure, and implement and test a
software application to achieve this aim for a specific Cloud
scenario. A theoretical strategy has been developed by which
a virtualised operating system can autonomously optimize the
location of virtualized servers within a network. A simple
software application to establish this proof-of-principle is
currently being built.

Objective 3: Innovatively develop metrics that quantify
Cloud vs. centralized service provision in terms of
environmental sustainability. Measures of sustainability (e.g.
carbon-footprint) are currently being developed and
effectively applied to Cloud vs. non-Cloud scenarios.

Objective 4: Develop an application that will identify
virtualized system hijacking and undertake a range of
appropriate activities from simple notification to service

suspension. Parameters indicative of the successful hijacking
of a Cloud will be identified. A software tool is currently
being developed to monitor the activities of a Cloud in such a
way as to be able to identify the successful hijacking of the
virtualized servers, and to mitigate the presence of a
compromised Cloud.

I11. METHODOLOGY

There is very little current literature in the public domain as
to how load balancing is achieved in data centres. So far,
none of the most recent papers have explored the connection
between processor loads, power consumption and VM
migration. The authors of this work propose an original
methodology to deal with this issue.

A small test bed has been constructed comprising seven
physical servers (mix of HP Proliant, Dell R710 and Viglen
brands), three Storage Area Networks (HP) and multiple
routers and switches (CISCO and HP), and HP ILOs located
within the Department of Computing and Technology' (Fig. 1
and Fig. 2). Two of the servers are ‘public’-facing (that is,
they are utilised for teaching purposes) whilst the others are
‘private’-facing (i.e. they are utilised for research). The
private-facing resource is isolated from the Internet and only
accessible from departmental computers via an appropriate
security protocol. All of the networking cards have Gigabit
type interfaces (>=1Gbps, Gigabit per second, transfer rate).

Cisco 4948 Switch

Mel205

NetLab

Computing
VLAMN

Figure 1 - Cloud Computing Test Bed — custom designed and built
infrastructure.

In the context of the present research the development of
this resource has focussed on the following:

! Anglia Ruskin University, East Rd, Cambridge CB1 1PT, UK

e Expansion of the private-facing hardware (addition of
more PCs — some are already available).

e Development of new software modules to manage
disparate hardware and operating systems across a
network.

¢ Building of cloud optimization strategies via a top-down
approach using a proprietary software virtualization
product (VMWARE) [13].

¢ Building of cloud optimization techniques via a bottom-
up approach using an appropriate mainstream
programming language (Scala due to its library support
tools for building bespoke network applications).

e Development of a software tool to detect and manage
malware attacks on the virtualized servers.

An appraisal of the extent to which the given objectives
have been met will now be discussed.

Objective 1: Has been achieved through experimental work
using the test bed. Multiple virtual Machines (VMs) have
been created on all four servers. Simultaneous requests have
been made to all VMs to simulate a memory overload. Both
hardware and network loads have been monitored (using a
wide range of hardware appliances such as ILOs, PDUs and
UPSes), logged (using Microsoft Excel spreadsheets) and
analysed. Relevant methodology presented by the authors of
paper [5] has also been taken into account which specifically
describes issues related to increasing hardware loads on a few
servers while at the same time shutting down unneeded ones
to save power.

The authors have access to several test hardware that allow
simple power consumption readings to be taken through
proprietary User Interfaces: HP Integrated Lights-Out (ILO),
APC Power Distribution Unit (PDU) and APC Uninterrupted
Power Supply (UPS) devices. These devices are directly
connected to the physical servers and as such produce
relevant power metrics. The power consumption readings will
be correlated with processor utilisation readings taken from
within the VMWare vSphere Client. Tables will be produced
detailing the connection between processor utilisation and
power consumption.

Another way of gathering power consumption readings is
through the SNMP protocol. All hardware presented in this
paper is fully network enabled and as such have been
provided with unique IP addresses to which connections can
be made. The specialised hardware relevant to this point all
support the SNMP protocol (communication protocol that
allows two way data connections). A software module is
currently being built using the Scala programming language
capable of taking advantage of this feature. It is capable of
retrieving real time power readings through the SNMP
protocol and store them in a database. All collected data is
analysed and the results are ultimately be presented in tables.
The module also allows sorting and comparing the different
results gathered up to and including the most recent ones.
This allows a history of readings to be generated relevant to
future research.

Objective 2: Achieved through socket programming using
the Scala programming language. Sockets locally bind to
specific port numbers, which allows direct communication to

other (virtual) machines over a (virtual) network. The
resulting software application is able to communicate with
each server included in the test bed. It is also be capable of
directly communicating with other instances of itself and
relaying information across the (virtual) network.

The software application has a modular design. As such,
each task it is capable of performing represents one module.
This design allows easy expansion of its capabilities to allow
it to perform more complex operations within a cloud
network. It also allows easy maintenance of each module and
of the software application as a whole.

The software application will also be capable of
autonomously making decisions based on current hardware
and network loads to move VMs around from one physical
location to another within the same virtual network. The main
goal of the application is to reduce the overall power
consumption of the cluster of computers it is directly
overseeing.

Another approach to objective 2 is by looking at currently
available commercial software such as the VMWare vMotion
technology to achieve the same end result - either by using a
pure VMWare solution or by creating a hybrid solution
comprised of VMWare technologies and a set of custom built
technologies.

Cisco 4948

Research teh
€ 101 Trunk 1 e Management
Network
10.141.0.0/24
VLAN 972
1 Gbps Management 1 Gbps
Network
10.22.170.0/24
VLAN 970
Motion
’ LO—
Server 1 Server 2
O
(10 Gbps 10 Gbps ™

HP Switch

10 Gbps

Storage Network
10.141.1.0/24

Filer (HP)

Figure 2 - Cloud Computing Test Bed — Datacentre view.

Moving a VM across a network to a different physical
location raises the following difficulties concerns that are
currently being addressed:

1) Maintaining and Updating the IP address tables across
the network so that loss of service is avoided.

2) Ensuring the MAC addresses of the VMs are unique at
the new physical location, refreshing them if clashes occur.

3) Refreshing the VM’s Domain Name so that it matches
the one at the new physical location.

Objective 3: Achieved by measuring server and network
hardware power consumption and logging the results. The
analyses of these results form the basis for developing the
required metrics. An attempt is also being made towards
identifying what levels of efficiency savings can be achieved
through optimization of the cloud network.

Objective 4: To be achieved through testing of different
approaches to service hijacking as presented here [14]. Some
previous work on overcoming relevant security issues has
been done [15]. That work will be investigated and, if
relevant, a solution based on Public Key Infrastructure will
be built. Otherwise, alternative approaches to the
aforementioned security issues will be researched and
developed.

2,500

2075

2,000

1,500

B mw
1,000

W DMiPs

500

ARM Cortex
http:/fwww.mentor. com/resources/techpubs/upload/mentorpaper_
68962.pdf

Figure 3 - Relation between miliWatts (mW) and the Millions of
Instructions/Second (DMIPS). Data taken from paper [16]

1V. TEST RESULTS

A. Practical View

Power consumption is directly influenced by a great deal of
factors [16], and [17]. The factors that this paper will focus
on are the Processor, RAM and Hard Disk. These are most
relevant in the context of cloud computing because the
Processor does calculations, stores the results in the RAM and
if applicable commits them to the Hard Disk. Network power
consumption is also relevant but since it is necessary and

cannot be efficiently controlled its’ effects have not been
included in this work.

TABLE I. WATT SERVER POWER READINGS VS PROCESSOR LOADS

Processor Load (PL) 0% (Idle) | 25% | 50% | 75% | 100%
Watts / Hour 124 168 191 217 239
Watts Power 0 35.5 54 75 92

Consumption Rise
(WPCR) (%)
Efficiency 0 70 92 100 108
(PL / WPCR) (%)
250 1 i DWatts 7 Hour
200 1
a]
150 1
100 DWatkks Power
Consumption Rise
50 - Iﬂ; {WPCR) (%)
0 T OFfficiancy (P 7
(% S0% 10086 WPCR) (86)
(Idle)

Figure 4 - Watt Server Power Readings vs. Processor Loads

TABLE II. AmPs SERVER POWER READINGS VS PROCESSOR LOADS

Processor Load (PL) 0% (Idle) 25% | 50% | 75% 100%
Amps 1.2 1.55 1.8 1.95 22
Amps Power 0 29.1 50 62.5 83
Consumption Rise
(APCR) (%)
Efficiency 0 86 100 120 120.4
(PL / APCR) (%)
150 1 OAmps
100 A
B Amps Power
50 1 Consurnption Rise
{APCR) (%)
o DEfhciency (PL /
iency
(m) 50% 100% APCR) (%)

Figure 5 - Amps Server Power Readings vs. Processor Loads (PL)

According to [17] the Processor (“CPU Quadcore”) and
the RAM (“Memory”) have the highest power consumption of

all the hardware types in an actively used server system.
There is also a strong relation between hardware loads and
power consumption according to papers [16] and [17]. The
less hardware load on a system, the more efficiently the
server operates and the less power it consumes. Furthermore,
paper [18] discusses the importance of CPU loads and takes
the approach of making the distinction between the server’s
own CPU load and application generated CPU load. Thus, the
approach this work takes helps reduce the hardware loads by
attempting to move ‘hot’ data (data actively used at any given
time) from a highly active server (many user service requests)
to a less active server (few user service requests). This
approach aims to balance out the hardware loads across the
same virtual network and at the same reduce the overall
power required to achieve the same results as before the
move.

A second approach currently being considered is moving
data from less active servers to highly active servers,
maximising processor loads. This approach aims to reduce
the number of active servers and as such cut down the overall
power consumption of idle to moderately used servers.

A similar technique of energy efficient data transfer across
a set of network nodes has been investigated by the authors of
paper [19]. It describes a set of energy efficient rules that
comprise the EARQ protocol which are being followed
whenever the control application needs to decide which node
to transmit the data next. These rules have been abstracted
and considered for Objective 2’s application logic.

B. Hardware Stress Tests

In order achieve Objective 1 the authors have put together
a special Linux Virtual Machine template capable of
performing server load stress tests. This is achieved by having
the VM push the Virtual Processor to loads of up to 100%.

The VM comprises of the latest Ubuntu Linux operating
system as well as the latest versions of the Apache Web
Server and the Tsung open source multi-protocol distributed
load testing tool.

Apache is a web service that upon start it listens on a
predefined port (usually 80) on the server. It is capable of
delivering multiple web pages to millions of clients
simultaneously. A simple web page has been created and put
in place for the purpose of these tests.

‘Tsung’ is a complex application that is capable of creating
millions of simultaneous connections (also known as virtual
clients) to any given web service. The configuration file
allows fine control over the length of each connection time
wise as well as how fast the number of simultaneous
connections grows over a predefined time frame. This allows
measurement of server power consumption while the
processor load ranges from 0% to 100%. Other features of
Tsung are beyond the scope of this research.

Upon launch the VM starts up both Apache and Tsung.
Apache is set up to listen on port 80 for connections from
anywhere on the network (in this case, from within the same
location — localhost or 127.0.0.1). Tsung is set up to create
virtual clients for Apache every 0.5 milliseconds over a time
frame of 15 minutes. By the end of the given time frame the

TABLE III. POwER CONSUMPTION ESTIMATES WITH 100% UPTIME

Period of Time 1 3 6 12
(Months) *732h) | (£2196h) | (£4392h) | (£8784h)
100% PL 0.175 0.524 1.05 2.1

(239 Watts / Hour)
MW)
75% PL 0.159 0.477 0.953 1.9
(217 Watts / Hour)
MW)
50% PL 0.14 0.42 0.839 1.68
(191 Watts / Hour)
MW)
25% PL 0.123 0.369 0.738 1.48
(168 Watts / Hour)
MW)
0% PL 0.91 0.272 0.545 1.09
(124 Watts / Hour)
MW)
2.5 1
q [©100%PL (239
2 - Watts / Hour)
(MW)
@75% PL (217
1.5 Watts / Hour)
(MW)
O50% PL (191
1 Watts / Hour)
(MW)
m25% PL (168
0.5 Watts / Hour)
(MW)
mO0% PL (124
0 A Watts / Hour)
1 12 MW
(£732h) (£8784h)

C. Results

The readings gathered from both the VMWare vSphere
client and the relevant hardware devices have been put side
by side in the Tables I and II and graphs have been generated
based on them in Figures 4 and 5. Estimates of power
consumption over longer periods of time have been generated
in Table III with associated data graphed in Figure 6. The
results show that when

When taking Processor Load percentages are compared
with Watt Consumption Rise percentages the higher the
Processor Load gets, the more efficient the Watt
Consumption becomes. At 100% Processor Load there is only
a 92% increase in Watt Consumption. The same applies for
Processor Load percentages and Amps Consumption
percentages. For 100% Processor Load there is only an 83%
increase in Amps Consumption.

For optimal efficiency it appears to be desirable that the
Processor Load be kept over 75% for the best Power
Consumption efficiency.

From the perspective of Data Centres it appears to be more
cost effective to maximise the Processor Load on each server
and running less servers rather than having a higher number
of servers but with lower Processor Load percentages.
Furthermore, using the results presented in Table III the cost
of operation from the energy efficiency point of view can be
calculated. This was for the following Data Centre use case
scenarios; Case 1 (UC1): one server running at 100% PL
(based on new findings) versus Case 2 (UC2): four servers
running at 25% PL each (original theory). Both use cases
assume an operation time span of one year and the price per
Kwh used in the calculations is 111.1 Euros / MW * (current
at the time of writing). The calculated costs are presented in
Table IV.

TABLE IV. CoSTESTIMATES FOR TWO USE CASE SCENARIOS

Use Case 1
(UCh) 2.1 MW * 111.1 Euros / MW = 233.3 Euros
One Server @
100% PL
Use Case 2 One Server: 1.9 MW * 111.1 Euros / MW =211.1
uc2) Euros
Four Servers Four Servers: 211.1 Euros * 4 = 844.4 Euros
@ 25% PL
| UC1-UC2 | 611.1 Euros
(Euros) UC2 shows a 261.9% cost increase compared to UC1

Figure 6 - Power Consumption estimates (100% Uptime) vs. Processor
Loads (PL)

number of simultaneous connections will mount up to 1.8
million. This forces the Virtual Processor to slowly go
through the needed loads.

For the purpose of these tests the authors have deployed 40
VMs based on the original template VM and have launched
them all at the same time to achieve the desired effect.

Table IV shows that UC2 exhibits a 261.9% operational
cost increase compared to UC1. This is consistent with the
results presented in Table III, which show a substantial
economic benefit in Data Centre operation costs.

? Price taken from http://www.businesselectricityprices.com/kwh.php on
27th November 2012. Original price was shown in British Pence / KWh.
http://www.xe.com/ucc/ was used to convert the price to Euro Cents / KWh.
Result was then multiplied by 10 to get to Euros / MWh.

V. CONCLUSIONS

This paper has described novel development based on
original concepts and ideas which optimise and improve the
resilience of cloud computing environments. The authors
have discussed how cloud computing networks can be
improved to help reduce the carbon footprint of the associated
hardware through implementing an autonomous solution to
help manage the hosted virtual machines. The authors have
also provided clear test results related to Power Consumption
reduction at different Processor Load percentages and
provided solutions, as well as calculated potential operation
cost differences between two use cases.

According to Fig. 3, processors consume four times as
much power running at full speed (GHz) as running at half
speed. Thus, another approach might be to attempt to reduce
the Processor clock speed in addition to moving virtual
Machines across the network. This however would depend on
whether the VMWare Hypervisor (operating system running
on the servers) gives direct access to this type of setting.
Another issue is that reducing the processor clock speed in
order to reduce the power consumption by a factor of at least
3x is only practical in an environment where speed is not
mission-critical.

Some future work can be explored on the causes of and
whether solutions can be implemented to ensure the resilient
operation of a cloud network.

Following to the results presented in this paper the authors
have already started development of the aforementioned
software application.

REFERENCES

[1] Mirashe, S. P., and Kalyankar, N. V. (2010), “Cloud Computing,”
[Communications of the ACM], 51(7), 9.

[2] Anderson, J. Q. (2010), “The future of cloud computing,” Schubert, L.,
Jeffery, K. and Neidecker-Lutz, B. (Eds.) Analysis, 1, 1-26, European
Commission.

[3] Armbrust, M., Fox, A., Griffith, R., and Joseph, A. D. (2009), “Above
the Clouds(): A Berkeley View of Cloud Computing,” Science, 53
(UCB/EECS-2009-28), 07-013, Citeseer.

[4] Williams, D., Weatherspoon, H., Jamjoom, H. and Liu, Y. (2011),
“Overdriver: Handling memory Overload in an Oversubscribed Cloud,”
[VEE '11 Proceedings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments].

[5] Berl, A., Gelenbe, E., Di Girolamo, M, Giuliani, G., De Meer, H., Quan
Dang, M., Pentikousis, K. (2009), “Energy-Efficient Cloud
Computing”, The Computer Journal (2010) 53(7): 1045-1051 first
published online August 19 2009, doi: 10.1093/comjnl/bxp080,
Available at:
http://comjnl.oxfordjournals.org/content/53/7/1045.full.pdf+html

[6] Moretti, C., Bulosan, J., Thain, D., Flynn, P.J. (2008), “All-pairs: An
abstraction for data-intensive cloud computing,” Parallel and
Distributed Processing, 2008, IPDPS 2008. [IEEE International
Symposium, vol., no., pp.1-11, 14-18 April 2008].

[7] Chou, D. C. and Chou, A. Y. (2011), “Seeking Sustainable Computing:
The role of Cloud Computing,” Southwest Decision Sciences Institute
Conference.

[8] Chandrashekar, J. (2009), “The Dark Cloud: Understanding and
Defending Against Botnets and Stealthy Malware,” Intel RTechnology
Journal, 13(2).

[91 Ke, A, Yu, Y., Chen, Y., Zhao, E., Xie, Y., Yu, F. and Gillum, Q.
(2009), “BotGraph: large scale spamming botnet detection,”
[Proceedings of the 6th USENIX symposium on Networked systems
design and implementation (NSDI'09)], USENIX Association,
Berkeley, CA, USA, p321-334.

[10] Zeidanloo, H., Shooshtari, M., Amoli, P., Safari, M., and Zamani, M.
(2010), “A taxonomy of Botnet detection techniques,” Computer
Science and Information Technology (ICCSIT), [20/0 3rd IEEE
International Conference v2,p158-162. IEEE].

[11] Murakami, J. (2008), “A hypervisor IPS based on hardware assisted
virtualization technology,” [Black Hat USA 2008)].

[12] Rutkowska, J. and Tereshkin, A. (2008), “Bluepilling the Xen
Hypervisor,” [Black Hat USA 2008).

[13] Tsutomu, N., Yoshihiro, O., Hideki, E., Takahiro, S. and Kazuhiko, K.
(2010), “Using a Hypervisor to Migrate Running Operating Systems to
Secure Virtual Machines,” [2010 IEEE 34th Annual Computer Software
and Applications Conference (Proceedings) p37-46].

[14] Cloud Security Alliance (2010), “Top Threats to Cloud Computing
V1.0,” Available at:
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

[15] Arora, P., Wadhawan, R. C., Ahuja, Er. S. P. (2012), “Cloud Computing
Security Issues in Infrastructure as a Service,” [International Journal of
Advanced Research in Computer Science and Software Engineering]
Vol. 2, Iss. 1, Jan. 2012, ISSN: 2277 128X.

[16] Minas, L., Ellison, B. (2009), “The Problem of Power Consumption in
Servers,” [Dr. Dobb’s Journal, May 2009].

[17] Matalon, S., Klein, R., Walls, C. (2011), “Embedded System Power
Consumption: A Software or a Hardware Issue?,” Mentor Graphics,
Available at:
http://www.mentor.com/resources/techpubs/upload/mentorpaper_68962
-pdf

[18] Warkozek, G., Drayer, E., Debusschere, V., Bacha, S. (2012), “A new
approach to model energy consumption of servers in data centers”,
2012 IEEE International Conference on Industrial Technology (ICIT),
pp.211-216, 19-21 March 2012, doi: 10.1109/ICIT.2012.6209940,

URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6209940&is
number=6209899

[19] Junyoung, H., Jiman, H., Yookun, C. (2009), “EARQ: Energy Aware
Routing for Real-Time and Reliable Communication in Wireless
Industrial Sensor Networks”, 2009 IEEE Transactions on Industrial
Informatics, vol. 5, no. 1, pp. 3-11, Feb. 2009, doi:
10.1109/TI1.2008.2011052, URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4799339&is
number=4799331

A Novel Autonomous Management Distributed
System for Cloud Computing Environments

Razvan-loan Dinita, George Wilson, Adrian Winckles, Marcian Cirstea, Tim Rowsell
Computing and Technology
Anglia Ruskin University
Cambridge, United Kingdom
{razvan.dinita, george.wilson, adrian.winckles, marcian.cirstea, tim.rowsell} @anglia.ac.uk

Abstract—This paper describes a novel modular design of an
autonomous management distributed system (AMDS) for cloud
computing environments and it presents its implementation with
the Scala programming language. The AMDS was designed from
the ground up with distributed deployment, modularity and
security in mind, using a full object oriented approach. A key
feature of this system is the ability to gather and store
information from various networking and monitoring devices
from within the same computing cluster. Another key feature is
the ability to intelligently control VMWare vSphere local
instances based on analysis of collected data and predefined
parameters. vSphere in turn, once it receives commands from the
AMDS, proceeds to issue instructions to multiple locally
monitored ESXi severs in order to maximize energy efficiency,
reduce the carbon footprint and minimize running costs. The
predefined parameters are based on results from a previous
paper written by the authors. The AMDS has been deployed on
the authors’ test bed and is currently running successfully. Test
results show highly potential industrial applications in datacenter
energy management and lowering of operating costs.

Keywords—cloud; distributed; energy; optimisation; software

L INTRODUCTION

Cloud computing is an emerging technology that devolves
computing resources to the Internet [1]. The term “cloud” is
commonly used to describe a cluster of computing hardware
linked through a series of networking devices. Each
computing component has a Hypervisor installed on it. The
Hypervisor has been classified into two categories: type 1,
which runs directly on the host’s hardware, and type 2, which
runs within a conventional operating system [2].

This paper focuses on presenting a novel design of an
autonomous management distributed system. It continues the
initial conceptual work done by the authors [3] and makes use
of type 1 Hypervisors, which are capable of running multiple
virtualized machines (VM) simultaneously, all controlled by
an independent software package. VMWare, through their
Academic Program, has supplied the solution -currently
deployed on the authors’ test bed. The package is comprised
of two main components: ESXi, a type 1 Hypervisor, and the
vSphere Client, a complete cluster management solution.

Also, as presented by [4] energy efficient management of
cloud infrastructures is still a very active and current issue in
research, more so in the industry where better energy

management usually brings lower datacenter operating costs.
The authors have already covered this aspect in an earlier

paper [3].

The authors have considered two approaches to optimising
the energy management within the VMWare cluster. The first
one looked at using the features provided by the software
solution to set different parameters to achieve the desired
results. Unfortunately, there were no relevant parameters
available to be set within the vSphere client. The second
approach, and the one presented in this paper, was to design a
custom distributed software solution to interface with the
vSphere client.

The use of distributed systems has its roots in operating
system architectures that were initially studied in the 1960s
[5]. The first widespread distributed systems were invented in
the 1970s [6] and implemented on an Ethernet infrastructure.
[7] also presents a well designed modular system of a SOA
based architecture (also invented in the 1960s) for use in
Cloud Computing environments. The authors have based their
software solution design on the above presented architectures
due to their tried and tested reliability for over 40 years.

II. DESIGN OF THE AMDS

For the benefit of the reader Fig. 1 presents an overview of
the AMDS’s position within a Cloud Computing environment.
The AMDS connects to the four most important components
of the cloud system: access point (connection to the outside
world), power reading hardware (monitors power
consumption), network reading hardware (monitors network
flow), and the heart of the cloud system — the proprietary
software (VMWare ESXi) that makes decisions regarding the
server and storage management.

A. Design Goals

The AMDS was designed from the ground up with three
main goals in mind: 1) security, 2) modularity, and 3) parallel
processing.

To address security the authors have based their design on
work done by [8] in order to introduce an appropriate
authentication component. As such, each system component is
required to authenticate each time it interacts with any other
component.

Modularity has been achieved through implementing
sound Object Oriented programming principles. Some core
principles relevant to this work outlined by [9] have been
applied to the design. Every task the system is required to
accomplish is split down into independent, fully reusable
modules.

The third goal, parallel processing, is achieved through the
deployment of several instances of the AMDS across the test
bed. The system has been designed to be deployed on a VM

and, through its configuration parameters, locates other system
instances in order to establish a live communication link.
From thereon, the linked instances coordinate each other’s
tasks in order to ease the hardware load and maximise
efficiency, making the AMDS highly scalable. The system’s
distributed design takes into account key points presented by
the authors of [10].

A

/

| Access Point |

Power
Reader

1 1

Network

Reader

—'>| Custom Software T‘—

1 7

[Proprietary Cloud System]

T

o

| Server |—| Server |

T

/

Cloud Computing Infrastructure

Fig. 1. Overview diagram of the AMDS’s position within a Cloud Computing environment

1

«subsystem>»

1

Autonomous Management Distributed System

«subsystem>»
AMDS Comm

Commands —1
«subsystem>» [—
Readings «subsystem>»
Status
6. User f - — J_ «subsystem»
Interface | _ _ _ _ m—s GetData
i
T - _>‘| a. conn :
i : d l
«subsystem>» 1 ! - — =
Initiate L
1. Core «subsystem»
[~ Analyse
i
T T i
i 1 i]
[1 1
i 1 i
«subsystem» 1 ! L |
Authenticate , | 5. Control
i 1
S ! «subsystem»
1 H Command

2. Config ' H
i
! 1
— . . —
. | i
__________ , RN Lo «subsystem>»
3. Auth H vSphere
K——————— P e > !
, 4. conn
«subsystem»
SNMP

T

«subsystem>»
Storage

Fig. 2. UML Design Diagram of the AMD

B. Design Breakdown

Fig. 2 presents a UML [11] diagram of the AMDS design. At
the time of writing it is composed of 19 different parts, each
designed for a specific task and fully reusable. The main
features of these component parts will now be described:

1) Core: Main system module. The entry point for the
AMDS. From there the system accesses the configuration
parameters (Fig. 2, 2. Config) and starts its internal tasks (Fig.
2, 5. Control) and the User Interface (Fig. 2, 6. User Interface).
It is responsible for facilitating communication between the
different modules attached to it.

a) Initiate: Module entry point. Achieves most of the
module functionality. Initialises modules and establishes
connections between them.

b) Authenticate: Helper module. Undertakes the initial
system authentication. This helps with detection of possible
hijack attempts by making sure a current instance remains
valid and genuine.

2) Config: Helper module. Responsible for maintaining
and providing access to the system configuration parameters.
It interacts with the connection module (Fig. 2, 4. Conn) in
order to gain access to the Storage component (Fig. 2, 4. Conn

- Storage), Config database. It is active throughout the
lifespan of the system instance, facilitating on-the-fly
parameter alteration.

3) Auth: Key system module. Manages task and
connection authentication. It performs checks against the
initial determined instance validity and genuineness in an
attempt to discover potential system hijack attempts and
prevent them. It locks down any connection or task that does
not pass the validation step and makes a log entry with
relevant details on the security issue.

4) Conn: Main system module. Facilitates all system
connections between the modules themselves or between the
modules and the computing cluster. It is the main access route
to specialised mini-modules as well as attempt to authenticate
each connection passing through it by calling upon the Auth
module (Fig. 2, 3. Auth).

a) AMDS Comm: Critical mini-module. Manages
communication between instances of the AMDS including the
passing of data between them. Acts as a load balancer by
creating a bridge between current instance and one other
instance. On each connection attempt it calls upon the Auth
module to verify the integrity of the outside instance before
allowing any kind of information exchange.

b) Storage: Main mini-module. Keeps track of internal
databases for each system module that deals with data. It
stores information for the Config and Control modules.

¢) SNMP: Specialised mini-module. Facilitates passing
of information between current system instance and devices
that understand the Simple Networking Management Protocol
(SNMP). This protocol allows data to pass both ways, making

it possible to issue commands and receive results between
different devices that use it.

d) vSphere: Critical specialised mini-module. Interfaces
the VMWare vSphere client to allow issuing commands and
retrieving results. This module bridges the gap between the
custom designed AMDS and the proprietary software solution
provided by VMWare.

5) Control: Main module. Initiates data collection, storing
and analysis tasks, as well as initiate commands to the vSphere
Client through the Conn module (Fig. 2, 4. Conn :: vSphere).
This allows for data to be collected from monitoring devices
across the computing cluster, stored, analysed and actions to
be taken based on the results and the configuration parameters.

a) GetData: Main mini-module. Deals with raw data
retrieval. It initiates connections to the SNMP mini-module
(Fig. 2, 4. Conn :: SNMP)., retrieves and stores collected
information using the Storage mini-module (Fig. 2, 4. Conn ::
Storage), Raw Data database.

b) Analyse: Main mini-module. Retrieves chunks of raw
data from the Storage mini-module (Fig. 2, 4. Conn ::
Storage), Raw Data database, and come up with data capable
of being compared to the configuration parameters. It then
stores the analysis results using the same mini-module, but in
the Results database.

¢) Command: Main mini-module. Compares analysis
results with the configuration parameters and make intelligent
decisions which maximise energy efficiency. After it stores
issued commands in the Commands database, it then proceeds
to send them to the correct interfacing mini-module from
within the Conn module (Fig. 2, 4. Conn).

6) User Interface: Noncritical system module. Facilitates
system monitoring by presenting information stored on the
system in human readable form.

a) Status: Main mini-module. Provides an overview of
the current system state as well as global statistics, including
access to security logs and top level information on database
disk usage.

b) Readings: Main mini-module. Provides an in-depth
view of each individual database currently utilised by the
system instance. All databases maintained by the Conn
module (Fig. 2, 4. Conn) are included. It makes use of data
filtering and table display.

¢) Commands: Main mini-module. Provides an in-depth
view of all command decisions the urrent system instance has
taken as well as the accompanying results received from all
the commanded systems.

III. IMPLEMENTATION

A. Language Considerations

In the implementation stage the authors considered many
programming languages capable of initiating remote

connections, including Ruby, PHP, Java, Scala, C++, C#. The
main criteria to be considered was portability i.e. make the
system so that it can be deployed on as many different
operating systems as possible. Only two of the considered
languages met the required criteria: Java and Scala.

Java is an established programming language making its
first appearance in 1995. It is able to function on any
operating system running the Java Virtual Machine (JavaVM).
All major systems, including Unix, Linux and Windows are
currently capable of running the JavaVM. However whilst the
language functionality continues to evolve it does not handle
running multithreaded tasks well.

Scala [12] is a relatively new language. In spite of only
making its first appearance in 2003, it has grown in popularity
very quickly due to its multithreading capabilities as well as
its concise way of expressing common programming patternsz.
This has helped to drastically reduce development time on
projects. One major advantage and the main reason why it has
gained popularity so quickly is its seamless integration with
Java. Scala support in Java for example can be provided by
importing an appropriate library, and all Scala programs also
run on the JavaVM which means that these can be deployed
on all the major systems.

B. Implementation Process

Scala has a unique way of dealing with data structures —
there are mutable (can be changed — e.g. var) and immutable
(cannot be changed — e.g. val) variable types. Scala creators
recommend using the immutable types because this minimises
the risk of random or unintentional data corruption during
runtime.

Scala also allows for almost out-of-the-box distributed
code implementations through the use of Actors. Scala Actors
are capable of independent and asynchronous operation,
operating by passing messages from one to another. They
function under a command hierarchy and also allow for quick
error recovery. Since each actor operates independently of
each other, if one encounters a fatal error, the message is
cascaded up the chain of command until it reaches an actor
programmed to handle that type of issue. It can then proceed
to take further actions as necessary e.g. restart the failed actor.

In the development process the authors have used the
Eclipse Integrated Development Environment (IDE) to assist
with code completions and debugging as necessary. Each
module has been implemented using inheritance based Object
Oriented programming principles. Fig. 3 shows a few lines of
Scala code (part of the Conn module implementation). Java
libraries have been used to facilitate remote connections and
Actors have been used to operate as message transporters. The
code in Fig. 3 is set to receive remote connections and take
different actions based on the type of result.

' http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-
198355.html
? http://www.scala-lang.org/node/25

[5) NetworkModule.scala 23
package DNA
class (onn}{odule(cfg: Map[String, Map[String, Map[String, String]]]) {
import akka.actor._
import akka.util.ByteString
import java.net.InetSocketAddress

val util = new UtilitiesModule

class Server(port: Int) extends Actor {

a override def preStart {
try {
I0Manager(context.system) listen new InetSocketAddress(port)
println("Started listening on port " + port)
} catch {
case e:Exception => println("Exception: " + e.getMessage)
}
}
a def receive = {
case I0.Listening(serv ess) =>
println("The server i tening on socket " + addre +
case 10.Connected(socket, address) =»
println("Successfully connected to " + ad
case I0.NewClient(server) =»
println("New incoming connection on server from.")
val socket = server.accept()
ket write util.ToBytes(cfg("app")("info")("name") + " " + cf
case 10.Rea t, bytes) =>
val sy asWritable
val s util.ToString(bytes)
println("Received incoming data from socket: " + string + ".")

Fig. 3. Conn Module implementation, screenshot taken from Eclipse IDE

//3tier Map

def Get(): Config = {

//imports

import scala.xml.{XML, Utility}|

try {

val nonTrimDoc = XML loadFile filePath
val doc = Utility trim nonTrimDoc

val returnList = new Config

c match {
case <config>{topElems @ _*}</config> => //root
for (t em <- topElems) { //1st tier
topElem.nonEmptyChildren foreach(//2nd tier
elem => {

elem.nonEmptyChildren foreach(//3rd tier
innerElem => {
~eturnList + (topElem.label, elem.label,
innerElem.label, innerElem.text)

D)

elem @ _ => println("Error, unmatched element found: " +
Llw: n.toString)

~eturnList

} catch {
case e:Exception =>
on = new Config
("Error", "Info", "Message", e.getMessage)

Fig. 4. Part of the Storage Module, Config database, screenshot taken from
Eclipse IDE

The databases have been implemented using the
eXtensible Markup Language (XML). Fig. 4 shows part of the
Storage module, specifically part of the method that deals with
parsing the Config database information. The code uses Scala
libraries for dealing with XML data structures and builds up a
Config type object (first line, after the colon, signifies the
return type). Exception handling is implemented in every
module as a safety measure to prevent unexpected program
termination due to unexpected or corrupt data.

Another important component of the ASDM is the vSphere
mini-module. In its development the authors have made heavy
use of the vSphere SDK for Java [13]. This set of Application
Programmable Interfaces (APIs) facilitates message exchanges
between the Control module and the vSphere Clients currently
in the computing cluster. Still in its preview stages, it allows
for much interaction between third party programs and the
vSphere client itself.

IV. RESULTS

The ASDM is currently deployed and running on the
authors’ test bed. An Ubuntu Linux based Virtual Machine
was chosen to run the application due to the high reliability of
the Operating System. The VM has is connected to the ESXi
Servers via a closed Virtual Network. This ensures seamless
connectivity between virtual and physical hardware, thus
allowing the AMDS to receive information from the ILOs and
the vSphere Client and to send commands back.

At the moment, data is being collected and analysed for
debugging purposes. As seen in Fig. 5, the program is running
successfully. The core initializes and authenticates as
expected; Conn, SNMP and Control modules are being
activated, and raw data starts to be collected for storing and
analysis.

Distributed Network Application v@.1 Alpha
Core/Run Initialising...

Initialising Config Module...

Done.

Authenticating...

Done.

Initialising Conn Module...

Done.

Initiating SNMP module...

Done.

Initiating Control Module...

Done.

Running GetData from Control Module...
Connection established...

Waiting for data...
Nane

Fig. 5. Output from ASDM, console view

Since the AMDS has been deployed it has produced a great
number of data stored within several databases. The data
comes from queries performed by the AMDS on the different
networking hardware operating within the cloud environment
(Switches, Routers, ILOs, ESXi). The authors have merged
and analysed all generated data, the results of which have been
expressed in Table I and Fig. 6.

The system efficiency was calculated by using the
formulas (1) and (2). In formula (1) P, is the power
consumption rise percentage calculated by dividing P yen
(server power consumption at any other time — processor load
> 0%) by Py (server power consumption when idle — 0%

processor load). In formula (2) E (server operating efficiency)
is calculated by dividing L (server load) by P,

Prise = Pcurrent / Pidle (1)

E=L/P,, 2

TABLE I. COMPARISON BETWEEN NORMAL SYSTEM OPERATION
(WITHOUT AMDS) AND OPTIMIZED SYSTEM OPERATION (WITH AMDS)

Before During AMDS
AMDS operation
Processor Load (%) 25 100
Power Consumption 168 239
(Watts / Hour)
Power Consumption 355 92
Rise (Watts / Hour)
Efficiency (%) 70 108
[Processor
250 - Load (%)
200 1
150 1 I Power
Consumptio
100 n (Watts /
50 1 Hour)
0 O Efficiency
(%)

Fig. 6. Comparison between normal system operation (without AMDS) and
optimized system operation (with AMDS)

In the second column of Table I the data has been recorded
before the AMDS has been enabled (decision making module
was disabled). The system efficiency stabilized at 70% due to
the fact that several servers operating at 25% of their potential
hardware load. The server power consumption at this stage
was 168 Watts / Hour, an increase of 35.5% from system idle
state.

In the third column of Table I the data has been recorded
after the AMDS has been enabled (decision making module
was enabled). Almost immediately all system traffic had been
redirected towards one of the active servers while the others
had been shut down to conserve power, thus bringing the
system efficiency up to 108%. Power consumption at this
stage was 239 Watts / Hour, an increase of 92% from system
idle state.

The results presented above demonstrate how the AMDS is
capable of minimising the cloud system power consumption

by up to 8%, thus generating an important operating cost
reduction.

V. CONCLUSIONS

The development of ASDM is an ongoing process. The
authors are constantly tweaking and changing the code in
pursuit of better performance. The proposed system has
several key industrial applications:

1) Green Datacetre. The proposed system is capable of
reducing overall energy consumption by intelligently turning
physical servers on and off based on data collection from
throughout the computing cluster.

2) Lower Datacentre operating costs. This is a direct
consequence of the previous statement. Overall lower energy
consumption leads to reduced operating costs. This in turn
allows for higher profits and more investments to be made.

3) Set-and-forget scenarios. The AMDS, due to its
autonomous nature and modular design, is capable of on-the-
fly self reconfiguration based on analysis results of gathered
data. This flexibility makes it ideal for set-and-forget
situations as well as low cost maintenance schedules.

Next, the authors have started looking at intrusion
detection in an attempt to develop a successful method of
hijack detection. Data collected from running ASDM,
including the Databases and Logs, is collected at the same
time as an attempt at hijacking the system is in progress. All
data is continuously monitored and analysed for signs of the
hijack process on the system.

REFERENCES

[1] Mirashe, S. P.; Kalyankar, N. V.; (2010), “Cloud Computing”,
Communications of the ACM, 51 (7), 9.

[10]

[11]
[12]
[13]

Popek, G. J.; Goldberg, R. P.; (1974). "Formal Requirements for
Virtualizable Third Generation Architectures", Communications of the
ACM, 17 (7), pp. 412 —421, doi:10.1145/361011.361073.

Dinita, R. I.; Wilson, G.; Winckles, A.; Cirstea, M.; Jones, A.,
“Hardware Loads and Power Consumption in Cloud Computing
Environments”, ICIT 2013 — 2013 IEEE International Conference on
Industrial Technology, pp. 1291-1296, 25-27 Feb. 2013, ISBN: 978-1-
4673-4568-2.

Mora, D.; Taisch, M.; Colombo, A. W., “Towards an energy
management system of systems: An industrial case study,” JECON 2012
- 38th Annual Conference on IEEE Industrial Electronics Society, pp.
5811-5816, 25-28 Oct. 2012.

Andrews, G. R. (2000), “Foundations of Multithreaded, Parallel, and
Distributed Programming”, p. 348, Published by Addison-Wesley,
ISBN 0-201-35752-6.

Andrews, G. R. (2000), “Foundations of Multithreaded, Parallel, and
Distributed Programming”, p. 32, Published by Addison-Wesley, ISBN
0-201-35752-6.

Karnouskos, S.; Colombo, A.W.; Bangemann, T.; Manninen, K.; Camp,
R.; Tilly, M.; Stluka, P.; Jammes, F.; Delsing, J.; Eliasson, J., “A SOA-
based architecture for empowering future collaborative cloud-based
industrial automation,” JECON 2012 - 38th Annual Conference on IEEE
Industrial Electronics Society, pp.5766-5772, 25-28 Oct. 2012.

Irani, G.N.H.; Tawosi, V., “AAMA: A new Authentication and
Authorization architecture for modular information systems, a robust
object oriented approach,” Application of Information and
Communication — Technologies (AICT), 2011 5th International
Conference on, pp. 1-5, 12-14 Oct. 2011.

Caragiozidis, M.; Mouratidis, N.; Kavadias, C.; Loupis, M.; Berger, M.,
“Design Methodology for a Modular Component Based Software
Architecture,” Computer Software and Applications, 2008. COMPSAC
'08. 32nd Annual IEEE International, pp. 1122-1127, July 28 2008 -
Aug. 1 2008.

Maffei, A.; Hofmann, A., "From flexibility to true Evolvability: An
introduction to the basic requirements," Industrial Electronics (ISIE),
2010 IEEE International Symposium on , vol., no., pp.2658,2663, 4-7
July 2010.

Unified Modeling Language, http://www.uml.org.

Scala Programming Language, http://www.scala-lang.org.

VMware vSphere™ SDK for Java, http://communities.vmware.com/
community/vmtn/developer/forums/java_toolkit

Use of NetFlow/IPFIX Botnet Detection Tools to Determine
Placement for Autonomous VMs

Razvan-loan Dinita, razvan.dinita@anglia.ac.uk
Adrian Winckles, adrian.winckles@anglia.ac.uk
George Wilson, george.wilson@anglia.ac.uk
Anglia Ruskin University, Cambridge, UK

ABSTRACT

This paper describes a novel method of autonomously detecting malicious Botnet behaviour within a Cloud
datacentre, while at the same time managing Virtual Machine (VM) placement in accordance to its findings,
and it presents its implementation with the Scala programming language.

A key feature of this method, using output from NetFlow/IPFIX, both of which are capable of producing
detailed network traffic logs, is its capability of detecting unusual Client behaviour through the analysis of
individual data packet information. It has been implemented as a module of an Autonomous Management
Distributed System (AMDS) presented in [Dinita, R. L. et al., 2013], giving it direct access to all the VMs
and Hypervisors on the Cloud network.

Another key feature is that it can have an immediate and effective impact on network security in a Botnet
attack context by issuing lockout commands to every networked VM through the AMDS. It possesses the
ability to intelligently control VMWare vSphere local instances based on analysis of collected data and
predefined parameters. vSphere in turn, once it receives commands from the AMDS, proceeds to issue
instructions to multiple locally monitored ESXi severs in order to ensure continuous security.

A proof of concept has been developed and is currently running successfully on the authors’ test bed.

Keywords: botnet, software, security, detection, autonomous

1. INTRODUCTION

This paper sets out to describe one potential design and implementation of a Botnet Detection software
module. This module is aimed at analysing portions of live network traffic in an attempt to detect
unauthorised and malicious activity within a Cloud Computing infrastructure. The work presented is
building upon previous research undertaken by the authors into autonomous datacentre management and
supervision software by bolting the aforementioned botnet module onto the Autonomous Management
Distributed System (AMDS) [1].

The botnet detection algorithm used is based on the access pattern-based detection method [2], which looks
at client behaviour to differentiate a legitimate client from an infected one. This is based on the assumption
that a compromised client will, in most cases, operate in the same manner as the bot that originally infected
it. All network data is compared against existing, legitimate client profiles, continuously refined over time,
in an attempt to spot and block the compromised ones.

It also makes use of an anomaly-based heuristic algorithm based on the work carried out by [3]. The
algorithm comprises of two main detection components: an Internet Relay Chat (IRC) mesh, and a
Transmission Control Protocol (TCP) scan detection heuristic. The author has made use only of the TCP
heuristic component and adapted it as necessary into the AMDS botnet detection module.

1.1. Botnets Background

The term bot is short for robot. Criminals distribute malicious software (also known as malware) that can
turn your computer into a bot (also known as a zombie). When this occurs, your computer can perform
automated tasks over the Internet, without you knowing it. Bots are typically used to infect large numbers
of computers. These computers form a network, or a botnet, and are used to send out spam email messages,
spread viruses, attack computers and servers, and commit other kinds of crime and fraud.

Peer-2-Peer bots are split into two categories: Masters and Slaves. Each of these uses secure channels to
pass information between one another containing a command and details on the originating control module.
This allows the Bot Masters to issue commands to the Bot Slaves. Bot masters will use root-kits and anti-
VM static- DLL/binary code [4] along with secure channels in order to avoid detection. Once the control
channel is established, it is used for communications that employ two different channel operation
architectures, the centralised architecture and the decentralised architecture.

The centralised architecture has been used in the past by IRC-based (Internet Relay Chat, communication
protocol) botnets, which used IRC servers to issue commands to all malware-infected machines. This mode
has many different variations [5] e.g. the final destination could contain a text document with a list of static
IP addresses and lists of URLSs, so that flexible IP addresses can utilised. The decentralised architecture, on
the other hand, is a newer communication architecture that enables infected hosts to exchange information
via distributed networks such as Peer-2-Peer. This method may reduce the rate of firewall and antivirus
detection [5].

Regardless of the type of architecture, there are two types of command and control channels, the Persistent
Channel and the Periodic Channel. The Persistent Channel maintains a direct connection with the Bot
Master. This connection type is normally employed by IRC bots, however, it is increasingly becoming
obsolete due to periodic channels. The Periodic Channel, on the other hand, connects to the Bot Master
periodically in order to avoid detection. Typically, the destination has had no prior communication with the
host. This is normally used to throw network security devices and probes off track.

1.2. AMDS / Botnet Detection Module Network Logical Layout

The Botnet Detection module is a critical part of the AMDS [1] in the context of malicious behaviour
detection. It is charged with storing and analysing output network data flows, as produced by the
NetFlow/IPFIX setup, in an attempt to internally construct and continuously iterate on a generic botnet
detection model. It hopes to achieves this through always going back and forth between new, unidentified
flows and past, already analysed flows and comparing specific elements from each with aim to brand the
new flows as either healthy of infected.

As it can be seen in Figure I below, the AMDS is deployed on a Virtual Machine Instance (VMI) on the
authors’ Cloud Test Bed, which has been created based on a VM Template through the VMWare vSphere
Client and connected to the internal Cloud Network.

At a logical overview level, the Cloud Infrastructure is composed of a Cisco ASA Router (Adaptive
Security Appliance), three VLANs (Virtual Local Area Network), the vSphere Client, the ESXi Server, a
group of ILOs (Integrated Lights Out), and the AMDS. Each of these components is underpinned by a
series of physical network cables, switches, and routers that facilitate interconnectivity between them. The
ESXi Server is comprised of multiple independent VMs interconnected by the three VLANS.

External Traffic

VLAN #2 VLAN #1
— < VLAN #3
Netwo? Readings Power Consumpt?)n Readings
‘ vSphere J Network Flow ILO ’

{ = [:]
Internal Traffic

Figure I — AMDS/Botnet Module Network Logical Layout

The network operational flow is expressed through two different arrow colours in Figure I, both relevant to
the AMDS: GREEN reflects network traffic flowing towards the AMDS, while ORANGE reflects network
traffic flowing from the AMDS towards all other infrastructure components.

Green traffic is composed of data the AMDS requires when performing the infrastructure logical analysis
from the points of view of processor loads, power consumption, and network flow, from the following
sources:

I. Processor load data is retrieved from the vSphere Client;

II. Power consumption data is retrieved from the ILO group; and
III. Network flow data is obtained from the various switches and routers spread across the
infrastructure.

Orange traffic is composed of commands the AMDS issues post-analysis. This includes:
I. VM moving commands to the ESXi Servers through vSphere;
II. Physical server shut-down / start-up commands to various ESXi Servers through vSphere;
I11. Network flow restriction requests to the Cisco ASA router; and
IV. Load balancing requests across the infrastructure to other AMDS running instances.

Even though all infrastructure components are located within the same physical network, the VLANSs allow
splitting it up into smaller logical groups which can be more easily maintained and controlled. Each VLAN
is created and maintained by the vSphere Client and only has direct access to the logical component in its
immediate vicinity. This allows for the formation of highly compartmented and self-contained/-managed
logical groups.

A direct consequence of the information presented above, the Botnet Detection module, which is an
inherent part of the AMDS, has direct access to all VLANs. This makes it capable of interfering with
regular network data flow based on its post-analysis results. This gives it the power to control every aspect
of a physical infrastructure through controlling its logical groups. Once AMDS collects several hours worth
of data, it is then capable of issuing commands to vSphere, which in turn will forward these, as needed, to
other Components under its control.

2. NETFLOW /IPFIX BACKGROUND

2.1. NetFlow Based Traffic Monitoring

NetFlow has been developed in-house initially to provide improved packet switching capabilities to some of
their network devices in 1990. It then has steadily grown into a complex network operational analysis' tool.

NetFlow is capable of providing maximum network awareness, and, if used as part of a complex cloud
infrastructure, it is able of giving insight into the different types of data packets flowing through the
network at any given time. It makes use of 5 to 7 IP packet attributes to generate traffic flow reports, which
can be later on analysed by system administrators.

NetFlow utilises the following information in its traffic flow caches: packet size, IP addresses and ports for
both packet source and destination, class of service, device interface, and protocol type. In addition, it also
records flow timestamps, next hop IP address, subnet mask, and TCP flags. All of these flow parameters
aim to provide a holistic network view used in many different scenarios, of which the one of interest is
detecting malicious behaviour in a cloud network infrastructure.

As it can be seen in Figure 2, upon enabling a device to utilise NetFlow, it then proceeds with recording all
traffic coming into the network. These recordings, after undergoing NetFlow processing, are stored in a
database entitled NetFlow Cache in the form of a table, each row containing one data flow cache. These
flows have a shorter or longer lifetime as determined by the flow timestamp, depending on whether traffic
has stopped flowing, a FIN signal has been received indicating the end of the flow, or they have exceeded
their pre-set lifetime.

The NetFlow Enabled Device (Figure 2) is, in this case, the NetFlow Exporter. Its primary concern is
capturing traffic data and transforming it into flows. This data is then transferred over to a NetFlow

! http://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white
paper0900aecd80406232.html

Collector Database Flow Cache (Figure 3) where it is analysed and converted into meaningful reports that
present an overview of the processed network data traffic.

NetFlow Enabled Device
BIIIII@-IIII
Inspect
Packet NetFlow Cache
Source IP address Flow Information Packet Bytes/packet
Destination IP address Address, ports... 11000 1528
Source port
Destination port
Layer 3 protocol Create a flow from
TOS byte (DSCP) the packet attributes
Input Interface

Figure 2 - NetFlow Flow Cache Generation’

1. Flow cache—The first unique packet creates a flow

- — Src JC Bv‘ms/
124 15

Fal/0 173.100.21.2 FaQ/Oo 10022712 10 11003 1862 & 10.0.232 1523

Faljo 17310032 Fal/O 10022712 s 40 o 4 15 126 196 Ja 15 100232 740 41 5 2
Falfo 173100.20.2 Fals0 10022712 1t ac 10 10000 161 124 180 e 15 100232 1428 t1as5s 3
Fal/0 173.1006.2 Fal/O 10.0227.12 s 40 o z210 1% 30 180 13 4 15 10.0.232 1040 245

2. Flow Aging Timers

] Src Sn: Dst E!vmsl

Faijo 1231700.21.2 Faly0 10022772 LA 10 171000 COA2 22 e 18 10.0232 1528

3. Flows packaged in export packet
Non-aggregated Flows—Export

4. Transport Flows to Reporting Server Export
Packet

7;,'0
1
]
A 4

Figure 3 - Example NetFlow Cache’

? http://www.cisco.com/c/dam/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_
white_paper0900aecd80406232.doc/_jcr_content/renditions/prod_white paper0900aecd80406232-1.jpg
3 http://www.cisco.com/c/dam/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_
white_paper0900aecd80406232.doc/_jecr_content/renditions/prod_white paper0900aecd80406232-2.jpg

As it can be seen in Figure 3, a typical NetFlow Cache database table contains many different columns
generated based on parameters both taken from the packet itself and created by NetFlow in its flow
generation. It keeps track of both new and old flows by separating them into two different tables: one for
active flows, another for ended flows (either because they had exceeded their pre-set lifetime or the traffic
had stopped).

2.2. IPFIX Based Traffic Monitoring

On the other hand, the IP Flow Information Export (IPFIX) format is an Internet Engineering Task Force
(IETF) protocol designed to be a universally accepted standard for capturing traffic flow through network
devices. IPFIX is responsible for defining the format of captured flows as well as detailing the flow method
of transfer between the exporter and collector.

IPFIX, similarly to NetFlow, is capable of breaking down data packets within the observed network traffic
according to their attributes. As such, the flow metering process offers several configuration possibilities,
which can be used to narrow down the packets included in the flow. There can be defined different
sampling and filtering functions, each of which is dealing with a certain aspect of data selection.

B o e e 4
packet header capturing
B o o 4
v
S ——— +
timestamping
B e 4
v
B o > &
v
U ——— 4
sampling Si (1l:1 in case of no sampling)
B o e e o e e 4
v
B o o 4
filtering Fi (select all when no criteria)
e ——— +
v
F o e e &
v
T e e -+
Flows
S ——— +

Figure 4 - IPFIX Packet Selection Criteria’

As it can be seen in Figure 4, the packet selection process happens immediately after a packet has had its
header (addressing and destination information) examined and a timestamp assigned.

* http://www.rfc-editor.org/rfc/rfc5470. txt

First, the sampling functions are applied that determine whether the packet needs to be included in the flow
generation process through straightforward selection preferences. A sample function’s duty might be to
only select every 100™ packet. If there is no sampling function defined, then all packets are included.

Next, the filtering functions are applied that determine whether a packet needs to be included based on
selection patterns applied to its attributes. For example, a packet could only be included in the flow
generation process if the its associated protocol is TCP and destination port is less than 1024. If no filtering
functions are defined, then all packets are included.

3. BOTNET DETECTION MODULE DESIGN

As it can be seen in Figure 5 below, the Botnet Detection software module design specifies the logical
position of its five major components and the information flow between them, illustrated by the numbered
yellow arrows. The data flow direction is given by the yellow arrows, while the sequence in which it takes
place is indicated by the numbers 1 to 7, 1 being the data entry point and 7 being the data exit point, both of
which being facilitated by the AMDS Connection module. For more information on the Connection
module’s design, please see [1].

AMDS CONN module
BOTHET DETECTION MODULE
2
1 GET NETWORK ' STORE FLOW /
FLOW ANALYSIS RESULT
Flow friom 1 6
NetFlow/IPFIX
through
R 3 FLOW REPORTING 5
FLOW 4
BREAKDOWN - FLOW ANALYSIS

Figure 5 - Botnet Detection Module Design

This new module’s major components are all designed to each fulfil a specific function, thus feeding into
the AMDS modular design concept. They will now be described at an overview level, as follows:

I. Get Network Flow. This component, as its label suggests, is responsible for requesting and
accepting network data flows from the NetFlow/IPFIX setup through the AMDS Connection

IL.

I1I.

Iv.

module. It first initiates the request, which is then forwarded by the Conn module using an
appropriate communication interface, and it then awaits a response in the form of a Network Flow.
Once it receives this information, it passes it on to both the storage and breakdown components.
Store Flow / Analysis Result. This part of the Botnet module is responsible with storing, as a long-
term solution, raw Network Flows as forwarded by the previously discussed component and
analysis results as transmitted by the Flow Analysis component, described below. It uses an internal
storage system rather than relying on the other AMDS modules for security considerations. Another
responsibility it carries refers to passing on the analysis results to the Flow Reporting component.
Flow Breakdown. This element is charged with extracting key bits of information from the raw
network flows, as required by the detection algorithm, and forwarding them to the Flow Analysis
component. Generally, it looks for packet size, IP addresses and ports for both packet source and
destination, class of service, device interface, and protocol type.

Flow Analysis. In this part is where the bulk of the module functionality exists. It is the
embodiment of the detection algorithm and, as such, is charged with utilising the information
extracted from the raw network flows. The main purpose of this component is to attempt to detect
malicious botnet activities by comparing current findings with past findings. This is achieved
through querying the Store Flow / Analysis Result component for old records of previously
analysed data and comparing healthy flows with current, yet unidentified flows. In the event of an
inconclusive analysis result, it flags the current flow as such. Finally, it forwards its findings to the
storage component.

Flow Reporting. This element’s main responsibility is to retrieve analysis results and forward them
to the User Interface AMDS module for review purposes. It also is charged with forwarding
analysis statistics based on past results, which helps provide an overview of this module’s activities.

4. EXPERIMENTAL SETUP

The scope of this experiment is limited to AMDS network sampling through the use of NetFlow and IPFIX
open source software by the Botnet Detection Module. It has several key points it is achieving:

L
II.

III.

Iv.

Sample 10% of all network data flow using IPFIX / NetFlow.

Sort collected samples into logical groups based on parameters such as data packet Size, Source,
Destination, and Commands.

Test AMDS’ ability to query stored data packets and analyse their respective groups in an attempt
to discover unusual network behaviour.

Aid with constructing an operational model based on packet analysis results capable of detecting
suspicious client behaviour.

The experiment has employed the following parameters:

A.

B.
C.
D

1Gbps network connection speed between the clients and the AMDS, which allows a maximum of
1 billion bytes per second.

Data packet sample size was set at 10% of all traffic at the point of collection.

Average data packet size ranged between 500 and 1000 bytes of data.

Infected (Botnet) packets have been used randomly starting with Sample #500.

In Figure 6 below, a new logical node has been created and inserted in-between existing logical network
nodes (VLAN #1-3, and the ASA). This allows for potentially all data packets, the ones coming into the
network as well as the ones going outside the network, to be stored in a local database and inspected at a
very low level. Every packet has the option of being grouped up with other similar packets for easier
comparison.

The IPFIX / NetFlow logical node is capable, through outside (other locally networked devices)
interference, to sample random data packets passing through them. Although they are capable of sampling

100% of the data, this is not recommended as it would slow down network flow as well as increase power
consumption on the node they reside. For these reasons only 10% of all data is sampled, stored, and
grouped up in the local IPFIX / NetFlow database.

The local data packet database has the ability to be queried for small portions of data at a time for easier
analysis. Also, the AMDS has the capability of achieving this task through one of its built for purpose
modules. Once retrieved, the AMDS creates a graph of data packets by comparing their Size, Source,
Destination, and Commands they carry. The more regular data it analyses, the higher the chance of it
detecting unusual behaviour on the network, and the lower number of false positives.

External Traffic

VLAN #2 VLAN #3

Netwo? Readings Net*rl{'lflow Power ConsumptT)n Readings

vSphere ML ILO
| T

Internal Traffic

Figure 6 - AMDS Traffic Sampling Network Layout

5. EXPERIMENTAL RESULTS

The experiment has run over an extensive period of time and it has produced a great deal of log data. This
data, along with some of the experiment parameters, can be seen in Table 1 below.

For the first half of the experiment, as it can be seen in Table 1, regular packets with an average size of 500
bytes have been filtered through the AMDS Botnet Detection Module. This has been used as a training
mechanism for the heuristic algorithm, so it would later on have a healthy packet model to compare infected
packets against.

As it can be seen in Figure 7, using the 1Gbps network link has evaluated into approximately 2 million data
packets, of which 200 thousand have been sampled at each of the 500 initial readings for analysis. Having
an increased average packet size has impacted the samples containing infected Botnet packets in addition to
the regular packets by having a reduced size. These samples were made up of between 100 thousand and
133 thousand packets on average.

For the second half of the experiment, a random percentage of Botnet generated data packets have been
introduced instead of the regular data packets used in the first half of the experiment. This had a direct
impact on the data packet size as this has increased the average packet size of the samples by 50%, from
500 to 750 bytes each. The Botnet packets have been created by combining botnet and client commands in
one single packet, resulting in a data packet with an average size of 1000 bytes.

50 200 500 0 0 0
250 200 500 0 0 0
500 133 750 18 5 28

1000 100 1000 28 12 43

Table I - Packet Analysis Results

1200

1000

800 —
& # of Packets (1000s)

600 W # Infected (1000s)

400 B Avg. Packet Size (Bytes)

200 —

50 250 500 1000

Figure 7 - Packet Distribution per 10% Sample

As it can be seen in Figure 8, the AMDS, through the use of its Botnet Detection heuristic algorithm, has
managed to detect approximately 28% of all infected packets at the start of the Botnet attack. This detection
rate has steadily increased up until the end of the experiment to approximately 42% of all infected packets.

100

80

60 & # Infected (1000s)

40 & # Detected (1000s)
Detection Rate (%)

20

0 [—) i s—

500 1000

Figure § - Botnet Packet Detection Rate

6. CONCLUSION

The implications of the results shown in Figure 8§ go beyond just detecting a potential botnet attack in a
datacentre. Although this fact alone give these results meaning, it also allows for an abstract software model
to be defined, which can then be implemented using different programming languages in a multitude of
different computing environments.

The main value of this experiment is apparent and will become even more so in time, when after several
more data sets have been analysed, a comprehensive detection model will be created and continuously
refined, which can used to test all future packet samples in an attempt to discover new, zero-day malicious
activities.

The results presented above give a clear indication of the potential of the AMDS having its Botnet
Detection Module activated. Applying the heuristic algorithm to more and more data packet samples allows
the AMDS Botnet Detection module better understand what Botnet data packets look like, and detect more
similar packets or even unknown Botnet packet type in the future.

REFERENCES

[1] Dinita, R. 1., Wilson, G., Winckles, A., Cirstea, M., Rowsell, T. (2013). A Novel Autonomous
Management Distributed System for Cloud Computing Environments. In Industrial Electronics Conference
(IECON), 2013 39" Annual Conference of. IEEE.

[2] Zeidanloo, H. R., Shooshtari, M. J. Z., Amoli, P. V., Safari, M., & Zamani, M. (2010, July). A
taxonomy of botnet detection techniques. In Computer Science and Information Technology (ICCSIT), 2010
3rd IEEE International Conference on (Vol. 2, pp. 158-162). IEEE.

[3] Binkley, J. R., & Singh, S. (2006, July). An algorithm for anomaly-based botnet detection.
In Proceedings of USENIX Steps to Reducing Unwanted Traffic on the Internet Workshop (SRUTI) (pp. 43-
48).

[4] Jeong, H. C., Im, C. T., & Oh, J. H. (2010). U.S. Patent Application 12/942,700.

[5] Liu, L., Chen, S., Yan, G., & Zhang, Z. (2008). Bottracer: Execution-based bot-like malware detection.
In Information Security (pp. 97-113). Springer Berlin Heidelberg.

	BBD2460F-9275-4B4F-A3E3-9DA3ADE1AF2C: Off

