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ABSTRACT 

 

FACULTY OF SCIENCE AND TECHNOLOGY 

 

CROWDING IN VISUAL ACUITY TESTS: UNRAVELLING THE 

RELATIVE ROLES OF OPTOTYPE SEPARATION, GAZE 

CONTROL AND ATTENTION IN CHILDREN AND ADULTS 

 

 
                            YVONNE NORGETT 

                          November 2015 
 

The measurement of visual acuity in children is important to detect 

visual anomalies including amblyopia. The use of visual acuity tests that 

induce ‘crowding’ are often recommended despite little standardization 

of the features in such tests. In addition, crowding in children’s foveal 

vision is known to be greater in extent than in adults and to be 

influenced by the nature of the flankers. This thesis presents new 

evidence that foveal crowding in children and amblyopic adults with 

strabismus is greater for letter acuity tests which require accurate gaze 

control and where the similarity of target and flankers imposes a greater 

attention demand. A slower maturation of crowded than single optotype 

acuity in young children is also shown. 

 

Using commercially available children’s acuity tests, the first study of 

this thesis showed that greater foveal crowding occurred with smaller 

inter-optotype spacing and with letter rather than picture optotypes. A 

decrease in crowding, resulting in improved visual acuity between the 

ages of 4 and 9 was also shown. In order to follow up these initial 

results, custom-designed visual acuity tests were produced to 

disentangle the contributions of contour interaction, eye movements and 

attention to the overall crowding effect. The second study in this thesis 

showed that crowding is greater with linear rather than single letter 
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presentation and with letter rather than bar flankers in young children 

(aged 4-6), but not in adult controls. In a further study using a sample of 

amblyopic adults with strabismus more crowding was observed with 

linear presentation of letters and letter rather than bar flankers, a result 

consistent with the results seen in young children.   

 

These findings improve our understanding of crowding in children and in 

strabismic amblyopia and can be used to improve the standardizing of 

crowded acuity measurement and have the potential to increase the 

sensitivity of visual screening for amblyopia. 

 

Key words: Children’s vision, visual crowding, vision screening, visual 

development, amblyopia 
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Chapter 1 

Literature Review 

1.1 Introduction 

1.1.1  Context of the research 

Screening programmes aim to identify individuals at risk of a treatable disease at an 

age where treatment is effective (Hall and Elliman, 2003). The primary aim of vision 

screening in children is to detect the presence of amblyopia and its risk factors 

(National  Screening Committee, 2013). Amblyopia is a relatively common 

developmental disorder of the visual system where early detection and intervention 

can prevent loss of visual function and binocularity. Amblyopia is associated with 

strabismus (mis-alignment of the visual axes), anisometropia (unequal refractive 

error) and visual deprivation (Holmes and Clarke, 2006). One aspect of vision which 

is often abnormal in amblyopia is crowding, or the ability to recognize an object in 

the presence of clutter (Flom, 1991, Levi, 2008). Much of the crowding research in 

recent years has focussed on the development of theories of crowding and has in 

large part used laboratory based studies of peripheral vision [for reviews see Pelli 

(2008), Levi (2008)]. In the context of vision screening, foveal crowding in a clinical 

context is of more interest. The increased crowding often seen in amblyopia can be 

exploited in screening programmes by using visual acuity tests with crowding 

features to amplify the difference in acuity between amblyopic and normal 

observers. The first study in this thesis provides corroborative evidence that in 

children, crowded visual acuity tests do not all give the same measurement of visual 

acuity for a give letter size because of variation in crowding features and stage of 

development of the child. The second study provides new evidence in the 

understanding of foveal crowding and its components (contour interaction, gaze 

control and attention) by demonstrating the impact on visual acuity of varying the 
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relative contributions of each of these components in normally sighted children and 

adults. The third study shows how the relative contributions of the components of 

crowding affect visual acuity in adults with strabismic amblyopia. The new evidence 

presented in these studies enables recommendations to be made for the design of 

screening tests to best detect amblyopia. 

 

1.1.2 Introduction to the literature review 

This chapter will review the literature relevant to this thesis. The first section, on 

vision screening will set the research in a clinical context, outlining the importance of 

visual acuity measurement as a screening tool for children. Unspecific national 

guidelines on which acuity test is best for screening children highlights the need for 

research into the suitability and comparability of different tests for different age 

groups (National  Screening Committee, 2013).  

 

Section 1.3 explains visual resolution and its limitations by optical and neural 

factors. Section 1.4 reviews how visual acuity is measured, showing why the 

traditional Snellen chart has been superseded, at least for research, by logMAR 

based tests, such as the Bailey-Lovie and ETDRS charts. Modifications to adult 

charts to improve testability in children led initially to use of single optotype tests, 

but these were found to lack sensitivity to detect amblyopia, so the section reviews 

commonly used crowded children’s tests. Full reviews are available (Fern and 

Manny, 1986, Friendly, 1978, Anstice and Thompson, 2014). The lack of 

standardization of crowding features in these tests is discussed.  

 

The next section, 1.5, reviews how vision develops in children, showing that letter 

recognition in more complex displays reaches maturity later than recognition of 
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single letters. It has been suggested that unsteady fixation or inaccurate saccadic 

eye movements may play a role in the slower maturation of line acuity, so the 

development of these eye movements is included. The section also reviews aspects 

of the development of attention, which affects a child’s ability to select a target from 

background distractors; for reviews, see Desimone and Duncan (1995) and 

Atkinson and Hood (1997). 

 

Section 1.6 introduces visual crowding and explains the use of the term in this 

thesis to include the effects of contour interaction, gaze control and attention and 

section 1.7 summarizes the theories of crowding; for reviews see Levi (2008) and 

Pelli (2008). Although many of the theories have been developed from studies of the 

adult peripheral retina, it is argued that the same theories could apply to the 

immature fovea. Section 1.8 looks at the specific case of foveal crowding in 

children; for review see Huurneman et al. (2012). The extent of crowding has been 

found to be greater in children than in adults; some young children are thought to 

have larger crowding because of immature control of eye movements and there is 

some evidence that attentional factors such as those seen in adult peripheral 

crowding are present in children’s foveal crowding. 

 

Amblyopia can result from an impairment of the developing visual system and 

features abnormally large crowding. Section 1.9 reviews the prevalence, definitions 

and implications of amblyopia and discusses the deficits at various levels of the 

visual system in the main types of amblyopia; for reviews, see Barrett et al. (2004), 

Kanonidou (2011), Wong (2012) and Birch (2013). Recent changes in treatment 

offer hope of improvement to not only visual acuity, but also stereopsis, and is now 

possible beyond the critical period of development. However, detection of amblyopia 

at a young age still remains important.  
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The research questions are stated in section 1.10. 

 

1.2 Vision Screening 

Screening is defined by the UK National Screening Committee as ‘a process of 

identifying apparently healthy people who may be at increased risk of a disease or a 

condition. They can then be offered information, further tests and appropriate 

treatment…’ (National  Screening Committee, 2015). The most common reasons for 

reduced vision in children are amblyopia and its principal risk factors, strabismus 

and significant refractive error, although other pathological conditions can result in 

reduced vision (Lola Solebo and Rahi, 2014, Simons, 1996). As amblyopia and 

refractive error are both treatable, screening can be worthwhile, if the screening 

tools are accurate. A basic criterion for a screening test, defined by Wilson and 

Jungner, is that it should be valid, repeatable, sensitive and specific (Wilson and 

Junger, 1968) 

 

Timely detection of reduced vision will optimise the effectiveness of intervention 

(Solebo et al., 2014, Holmes et al., 2011, Logan and Gilmartin, 2004, Birch, 2003, 

Stewart et al., 2004).  If amblyopia or strabismus is left undetected, or untreated, 

school performance can be affected, along with self-image and  fine motor skills and 

there is an increased risk of visual impairment in the event of damage to the fellow 

eye (Birch, 2013, Carlton and Kaltenthaler, 2011). Furthermore, career choices can 

be limited (Webber and Wood, 2005). 

 

 Although there has been some controversy regarding the cost-effectiveness of 

universal vision screening in childhood (Snowdon and Stewart-Brown, 1997, Hall 
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and Elliman, 2003), studies have demonstrated that screening with subsequent 

treatment is effective in terms of clinical outcome (Clarke et al., 2003, Williams et 

al., 2003, Kvarnström et al., 2002, Williams et al., 2002, Ohlsson et al., 2001). Two 

reviews of vision screening have concluded that lack of normative data in age 

appropriate tests, variable definitions of amblyopia and poor methodology in trials 

made it difficult to draw conclusions about the effectiveness of vision screening to 

detect amblyopia (Powell and Hatt, 2009, Schmucker et al., 2009). Therefore, in 

order for clinicians to argue successfully in favour of vision screening, the tests used 

need to be better understood, comparable and standardized.  

 

In 2013, the National Screening Committee, responsible for health screening 

programmes in the UK, rationalized the nationwide childhood screening programme. 

Although a range of clinical tests is necessary for diagnosis of most ocular 

conditions, current childhood vision screening guidelines in the UK rely only on 

measurement of visual acuity to distinguish those children for whom further tests are 

indicated (Lola Solebo and Rahi, 2014). Current guidelines recommend an 

orthoptist-led programme, whereby all children aged 4-5 should have a 

measurement of vision in each eye by using a crowded logMAR chart (National  

Screening Committee, 2013). There is no guideline on which test to use and the 

report cites a lack of evidence on ‘comparable precision between charts’.  

 

In the US, guidelines are more specific. The Paediatric Eye Disease Investigator 

Group (PEDIG) developed  the Amblyopia Treatment Study (ATS) protocol to 

enable visual development of children aged 3-6 to be measured using a 

standardized protocol- crowded HOTV optotypes in a staircase method (Holmes et 

al., 2001). The ATS protocol was found to have good testability and repeatability 

(Holmes et al., 2001), but to over-estimate vision by just under a line compared with 
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the ETDRS chart in children aged 5-12 (Rice et al., 2004). A recent article has 

proposed new best practice guidelines for vision screening in the US and 

recommends screening of 3-6 year old children based on either visual acuity testing 

or on instrument screening (autorefractor or photoscreening)(Cotter et al., 2015). 

The recommended visual acuity tests are single, surrounded HOTV letters or Lea 

symbols surrounded by crowding bars. Normative data are available for the HOTV 

test (Pan et al., 2009, Drover et al., 2008) and while not population based, there are 

some normative data for the Lea Symbols (Dobson et al., 2003, Becker et al., 

2002). 

 

So there is an established need for visual acuity tests in vision screening but some 

debate about the efficacy of their use. There is some evidence that screening 

children younger than the currently recommended age of 4-5 improves outcomes 

(Williams et al., 2003), but measuring visual acuity in younger children can be more 

problematic and amongst the age-appropriate tests available, there is much 

variability in design and features. More evidence about the effects of design and 

comparability of tests at different ages will make it easier to show that screening can 

improve the successful detection and timely treatment of amblyopia. These gaps in 

knowledge have led to the development of research questions 1 and 2 (section 

1.10) 

 

1.3 Visual acuity and its limitations 

1.3.1 Definitions 

Visual acuity may be defined as the detection, resolution and recognition ability of 

the visual system (Bennett and Rabbetts, 1998). Distinct from visual acuity, which 

reflects the ability to recognize components as separate, the visual system also has 
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the ability to localize components relative to one another, known as hyperacuity 

(Westheimer, 1975). Hyperacuity is applied in such tasks as Vernier acuity, 

bisection acuity, stereoacuity and displacement detection. Hyperacuity thresholds 

can be substantially lower than visual acuity thresholds, in the order of 5-10 

seconds of arc (Westheimer, 2009). It is, however, visual acuity and its limitations 

which are of interest in this thesis. 

 

1.3.2 Rayleigh’s criterion 

A point source of light is imaged on the retina as a ‘point spread function’, governed 

in its central part by diffraction and in its periphery by light scatter (Ginis et al., 

2012).  

 

 

Figure 1.1 after Kolb et al. (1995), showing 2 point sources and their point spread 
functions on the retina. 

 

For two points in the visual field to be just resolved as separate, the Rayleigh 

criterion needs to be satisfied (Figure 1.2). This states that for resolution of 2 points, 

the peak of one point spread function needs to be on the first trough of the second 

function.  
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Figure 1.2  Raleigh’s Criterion, after (Kolb et al., 1995), showing the overlap of 
the spread in light distribution from two point sources. For these to be perceived as 
separate, there needs to be a dip in the distribution equal to around half of its width. 

 

1.3.3 Retinal limitations to resolution 

Resolution is governed by both photoreceptor and ganglion cell density (Rossi and 

Roorda, 2010). Visual acuity is highest in the centre of the fovea, with a decline in 

resolution with eccentricity. This is because of a decrease in density of foveal cones 

as well as a change in post-receptor organization on moving away from the fovea  

(Green, 1970).  

 

To resolve a sine wave grating, it needs to be sampled at a minimum of 2 points on 

the cycle. The number of points per degree of visual angle which sample an image 

will therefore determine the spatial frequency that can be resolved (De Valois and 

De Valois, 1988). In a sample of 8 human enucleated eyes, Curcio et al. (1990) 

measured centre-to-centre cone spacing in the fovea to be 2.55μm on average. 

Peak foveal cone density was found to be very variable (98,000 to 324,000/mm2 ), 

but the total number of cones within 1 mm of fixation was found to be relatively 

constant between eyes, supporting a theory of variation in extent of lateral migration 
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of cones towards the foveal centre during development (Hendrickson and Yuodelis, 

1984, Yuodelis and Hendrickson, 1986). More recent in vivo studies using optical 

coherence tomography (OCT) have shown that, during development, central 

migration of cones together with their elongation increases central packing density 

without an overall increase in number of cells (Provis et al., 2013). 

 

A cone spacing of 2.5μm yields a theoretical maximum resolution of 66 

cycles/degree, which is higher than the 30-60 cycles/degree (Snellen acuity 6/6-6/3) 

found in most psychophysical studies (Sloan, 1968, Westheimer, 1981), suggesting 

limitations other than cone spacing. More recently, Rossi and Roorda (2010) used 

adaptive optics and psychophysical methods to compare cone spacing and 

resolution across the fovea. The adaptive optics minimized blur and aberrations to 

allow comparison of retinal limitations. They found that at the foveola centre, 

resolution was limited by cone spacing, but that immediately outside the centre, 

resolution was better predicted by sampling of retinal ganglion cells. 

 

1.3.4 Optical Limitations to resolution 

Other factors which limit resolution include aberrations, light scatter within the eye, 

pupil size, illumination and refractive error. Larger pupil sizes increase illumination 

but result in aberrations of greater magnitude, whilst smaller pupils reduce 

aberrations, but also reduce illumination and increase diffraction. A pupil size of 2-3 

mm is optimal for eyes corrected for refractive error, as it gives the optimal balance 

between these factors (Atchison et al., 1979). 
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Uncorrected refractive error causes a lateral spread of the point spread function, 

which reduces the eye’s ability to resolve two points as separate. The relationship 

between visual acuity and optical defocus is shown in Figure 1.3. 

Figure 1.3, after Westheimer (1975), showing the effect of optical defocus on visual 
acuity. 

 

For high contrast letters, visual acuity is relatively constant for levels of illuminance 

of around 10 cd/m2 and higher (Westheimer, 1975). Below levels of 1 cd/m2, rods 

take over from the cones and resolution falls to around 5 cycles/degree because of 

the relatively wider separation of rods than foveal cones and the greater spatial 

summation (De Valois and De Valois, 1988). 

 

1.4 Measurement of visual acuity 

1.4.1 Traditional measures of visual acuity 

Visual acuity (VA), is typically measured by recognition of black letters on a white 

background (Friendly, 1978, Sloan, 1951, Bennett, 1965). Standardized symbols for 

testing vision are known as optotypes. Traditionally, optotypes are arranged on a 

chart in rows with each subsequent row containing smaller letters. Many variants of 

the traditional chart, developed by Snellen in 1862, have emerged, including 
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presentation of letters on computer screens or tablets or in booklet form and with 

letters presented in isolation or in isolated rows. In addition, a large variety of non-

letter targets have been used as optotypes (Fern and Manny, 1986, Friendly, 1978, 

Keith et al., 1972).  

 

Alternatives to measuring visual acuity through ‘recognition acuity’ are gap 

resolution acuity, for example with the Landolt ring  or the Broken Wheel Test 

(Richman et al., 1984) or grating acuity with the Teller Acuity Cards (Mayer et al., 

1995, Drover et al., 2009). The Landolt ring is the reference optotype in the 

International Visual Acuity Standard (International Council of Ophthalmology, 1984) 

and its main advantage is that there is only one element of detail, the variation being 

in orientation of the optotype.  However, its legibility has been found to be lower 

than other letters (Grimm et al., 1994, Rassow and Wang, 1999, Latham et al., 

2014). The international standard also accepts Sloan letter optotypes for clinical 

visual acuity measurement. 

 

There are a number of limitations of measuring visual acuity with the Snellen chart 

that can impact the measurement (Sloan, 1980, Wick and Schor, 1984). The 

number of letters on each line and the spacing between the letters is not constant, 

thus creating varying levels of difficulty between the lines, other than the decreasing 

angular subtense of letters. Legibility of the letters is not standard, making 

incremental differences between the lines hard to measure. Furthermore, the 

progression of letter size between the lines does not change systematically, 

resulting in the lack of an accurate scoring system (McGraw et al., 1995) and poor 

repeatability (Gibson and Sanderson, 1980). 

 



12 
 

  

 

 

 

 

Figure 1.4 The Snellen chart  and the ETDRS chart (Ferris et al., 1982) 

 

 

 

1.4.2 Bailey-Lovie design principles for test charts 

In 1976, Bailey and Lovie developed new design principles for visual acuity 

measurement, namely that there should be the same number of optotypes of each 

size on each row and that the optotypes should have equal legibility; letter size 

should vary in a logarithmic manner and specified in logMAR (the log of the 

minimum angle of resolution); the spacing between optotypes and rows should be 

proportional to optotype size (Bailey and Lovie, 1976). In 1980, the Committee on 

Vision of the National Research Council also made recommendations for design 

principles of charts (National Academy of Sciences-National Research Council 

Committee on Vision, 1980). The relevant British standard, BS 4274-1 (2003) 

recommends the letter set C, D, E, F, H, K, N, R, P, U, V, Z constructed on a 5x5 

grid, and recommends an inter-letter spacing of one letter width (British Standards 

Institute, 2003). 

 

The Bailey-Lovie principles and some of those of the NAS-NRC were adopted in the 

development of the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart 

(Ferris et al., 1982), which is now widely recognized as the gold standard for VA 

measurement in research (Figure 1.4). Many of the inadequacies of the Snellen 
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chart have been overcome in the design of the ETDRS chart: letter-by-letter scoring 

allows accurate, standardized scoring; visual acuity can be measured in people with 

poor vision, as each line contains 5 letters. These are chosen from the Sloan letter 

set: C, D, H, K, N, O, R, S, V and Z, constructed on a 5x5 grid. A geometric 

progression of letter size (1.26x) and inter-letter spacing proportional to letter size 

increases repeatability (Ferris et al., 1982, Ricci et al., 1998, Raasch et al., 1998).  

Testing distance can be reduced if vision is poor with 0.3 logMAR added when the 

distance is halved. The ETDRS chart has been found to be accurate and repeatable 

in children from the age of 6 (Manny et al., 2003).  

 

1.4.3 Measurement of children’s vision 

Particular problems are encountered when measuring vision in children younger 

than 6 years (Fern and Manny, 1986, Friendly, 1978, Keith et al., 1972).  Pre-school 

children may not be able to name letters, especially in the upper case form found on 

most vision charts; they may lack the attention span needed to complete the test, or 

the motivation to co-operate (Anstice and Thompson, 2014, Friendly, 1978).  

 

In order to overcome some of these problems and improve the testability of young 

children, modifications to adult charts have been made. Letters can be presented 

singly, or in an isolated row in order to keep the child’s attention on a simpler task 

(McGraw et al., 2000). For pre-literate children, pictures can be used instead of 

letters and for infants, preferential looking can be used, whereby the child’s 

preference to look at a picture of a familiar object rather than a blank card of equal 

luminance is observed (Mayer and Dobson, 1982). A recognition task can be turned 

into a matching task, whereby the child is required to match the letter on a distant 

chart to one on a card in front of them (Hedin et al., 1979, Simons, 1983), although 
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a matching test relies on cognitive function, the variability of which can confound the 

results (Anstice and Thompson, 2014).  

 

Unfortunately, many of these modifications have led to children’s tests not fulfilling 

the Bailey-Lovie principles. The simplest modification, recommended by Keith et al. 

(1972), of presenting letters or symbols in isolation was found to over-estimate 

visual acuity, compared to Snellen acuity, especially in amblyopes (Hilton and 

Stanley, 1972, Youngson, 1975, Flom, 1991). Hilton and Stanley (1972) in a study of 

75 amblyopic children found better acuity with single letters than using a Snellen chart. 

The differences between single letter and Snellen acuity varied, averaging around 3 

lines, but reaching as much as 6 lines in some children. Clearly, single optotype 

acuity as a screening tool for amblyopia detection would generate many false 

negatives.   

 

Picture optotypes generate interest in young children but can be difficult to standardize 

(Simons, 1983, Fern and Manny, 1986). It can prove challenging to produce a set of 

pictures with equal legibility. Furthermore, pictures are often more complex in shape 

than letters and pictures can become antiquated and less recognizable as objects 

change, such as the telephone in the Allen pictures (Friendly, 1978, Allen, 1957).  



15 
 

 

 

 

Figure 1.5 shows example presentations of the Crowded Kay Pictures Test 

 the Lea Symbols and the Patti Pics Vision Testing System 

 

Three commonly used picture tests, available in crowded format, are the Kay Pictures 

Test (Kay, 1983), the Lea Symbols (Hyvärinen et al., 1980) the and Patti Pics Vision 

Testing System (Mercer et al., 2013) (Figure 1.5). The Kay Picture optotypes were 

based on objects that would be familiar to young children and were constructed with 

the same stroke width as the Snellen equivalent, but with variations in shape and 

intricacy. The size of the optotypes was derived empirically, each picture optotype 

being twice the equivalent Snellen letter size to account for the more intricate shapes 

of the pictures compared to letters. Several studies (Jones et al., 2003, Elliott and 

Firth, 2007) have shown the Kay Pictures Test to slightly over-estimate acuity 

compared with the logMAR Crowded Test. The Crowded Kay Pictures Test was also 

found to be less sensitive to detection of astigmatic blur than the logMAR Crowded 

Test (Little et al., 2012). The Lea Symbols use optotypes which can be readily 

recognized by young children (house, apple, square and circle), have contours more 

similar to letters and all blur to look like a circle below threshold acuity (Becker et al., 

2002).  Optotype size was  originally derived empirically, but later calibrated to the 

Landolt C test (Vision in Preschoolers Study Group, 2003). A comparison of the Lea 
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Symbols with the Bailey-Lovie Chart (Dobson et al., 2003) again indicates an over-

estimation of acuity by the picture optotypes of about one line. Grading of size is in 

logarithmic steps for both tests. The Patti Pics optotypes are similar to the Lea 

Symbols, but also contain a star. They are slightly smaller than the equivalent Lea 

Symbols and perhaps for this reason show better statistical agreement with Sloan 

letters (Mercer et al., 2013). However, Candy and colleagues showed greater 

variability of optotypes discrimination within the set of Patti Pics optotypes than within 

the Lea Symbols (Candy et al., 2011). 

 

Several letter tests have been designed to have greater testability than traditional 

charts and are available in logMAR form: the logMAR Crowded Test, formerly the 

Glasgow Acuity Cards (McGraw and Winn, 1993), the Sonksen logMAR Test, (Salt 

et al., 2007) and the HOTV Test (Holmes et al., 2001). Both the logMAR Crowded 

Test and the Sonksen logMAR Test comprise rows of letters surrounded by a bar of 

one stroke width, but the separation of letters varies between tests; for the logMAR 

Crowded test,  it is 0.5 letter-widths and for the Sonksen test, it is 1.0 letter-widths. 

The HOTV Test presents letters singly with bar surrounds, the bars being equal in 

length to the height and width of the letter and one letter width distant. The Sonksen 

Test comes with monocular and binocular age norm data in centile form (Sonksen 

et al., 2008), allowing practitioners to judge if acuity measured with this test is 

appropriate for a child’s age. Normative data are available for the HOTV Test (Pan 

et al., 2009). The logMAR Crowded Test has been shown to agree with the Bailey-

Lovie Chart in adult observers (McGraw et al., 2000) but has limited normative data 

for children (Langaas, 2011). 

 

Two electronic versions of the ETDRS Chart have been developed for use with 

children, the E-ETDRS (Beck et al., 2003) and the COMPLog Clinical Visual Acuity 
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Measuring System (Laidlaw et al., 2003). Both have adopted different presentations 

of letters in order that acuity should be comparable to the original chart: in the E-

ETDRS, the letters are presented singly with surrounding crowding bars placed one 

letter distant and in the COMPlog system, letters are presented in lines with an 

inter-letter spacing of half a letter width and a surrounding crowding box at 1 letter 

width distance, although these parameters can be varied. These different 

presentations of the target letters represent different levels of task difficulty which 

may be expected to produce different results in patients with amblyopia or other 

disorders, or in children (Bailey and Lovie-Kitchin, 2013). Table 1.1 overleaf shows 

the array of formats used in crowded children’s tests. 
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Table 1.1 compares design and format of 6 paediatric visual acuity tests which are 
available in crowded logMAR format, with the ETDRS Chart for comparison  

Test optotypes optotype 
size  

crowding spacing 
(optotype 
widths) 

Kay 
Pictures 

8 pictures 
 

2x ETDRS 
equivalent 

Line of 4 pictures 
box surround 

0.5  

Lea 
Symbols 

4 symbols 1.5 x 
ETDRS 
equivalent 

i) chart format- 5 
symbols/line 
ii) line of 4 
symbols- box 
surround 
iii) isolated 
symbols-bar 
surround 

i) 1.0 
 
ii)1.0 between 
symbols 0.5 to 
box 
iii) 0.5 

Patti Pics 5 symbols As ETDRS Chart format 
5 symbols/line 

1.3 

Crowded 
logMAR 

X V O H U Y 
letters 

As ETDRS Line of 4 letters  
box surround 

0.5 

Sonksen X V O H U T 
letters 

As ETDRS Line of 4 letters  
box surround 

1.0 

HOTV HOTV letters As ETDRS i) Linear chart-  
5 symbols/line 
ii)  line- box 
surround 
iii) isolated 
symbols-bar 
surround 

i) 1.0 
 
ii)1.0 between 
symbols 0.5 to 
box 
iii) 0.5 

ETDRS CDHKNORSVZ 
Sloan letters 

 Chart format  1.0 

 

 

A recent review of children’s acuity tests (Anstice and Thompson, 2014) cautions 

against comparing measurements between tests because observed acuity changes 

may reflect differences in chart design rather than true changes in visual function. 

The authors call for uniform principles to be adopted in paediatric test design. 

Research questions 3-5 arose from the need for greater understanding of the effect 

of crowding features on visual acuity measurement in children.  
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1.4.4 Repeatability of visual acuity measurements 

Estimation of visual acuity using a letter chart can be imprecise as an individual will 

often read some letters of a certain size correctly and misname others (Carkeet et 

al., 2001). The repeatability of a test will determine its ability to detect a change in 

visual acuity between measurements, a metric important to detecting pathology, 

monitoring the success of interventions, monitoring visual development and in 

determining the number of subjects needed in clinical trials (Hazel and Elliott, 2002, 

Reeves et al., 1987, Gordon et al., 1998). Studies of repeatability of visual acuity 

measurement in adults (Lovie-Kitchin and Brown, 2000, Siderov and Tiu, 1999, 

Arditi and Cagenello, 1993, Bailey et al., 1991, Hazel and Elliott, 2002) and children 

(McGraw et al., 2000, Manny et al., 2003) have yielded repeatability of around 1-2 

lines in normally sighted observers, although as Reeves et al. (1987) point out, 

there is less variation between subsequent measures in a population of normally 

sighted people than in those with an abnormality. Poorer repeatability has been 

found in an adult low vision population (Woods and Lovie-Kitchin, 1995) and in 

children with reduced vision (Kheterpal et al., 1996) and Flom (1986) found a 

shallower slope in the frequency-of-seeing curves of amblyopic than normal eyes, 

inferring poorer repeatability.  

 

Visual acuity tests which show better repeatability in normally-sighted adults are 

those with logarithmic progression of letter sizes, letter-by-letter scoring, and equal 

number of letters of each size presented (Raasch et al., 1998). Less is known about 

the effect of test design features on repeatability in children’s visual acuity tests, 

which has led to the development of research question 6.  
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1.5 Development of the Visual System 

1.5.1  Development of visual acuity  

Vision in the new-born human is blurred and indistinct but develops rapidly over the 

first six months (McCulloch, 1998, Atkinson and Braddick, 1982). It is difficult to 

know when vision becomes adult-like because its measurement generally demands 

a response from the child, which involves other developing mechanisms, such as 

attention, behaviour and communication (Leat et al., 2009). An objective technique, 

Pattern Visually Evoked Potential (VEP), uses electrodes placed on the scalp to 

measure acuity in children of any age by recording the response amplitude over a 

range of spatial frequencies. Acuity measured in this way is higher than that from 

behavioural methods such as preferential looking, until the age of about a year (Leat 

et al., 2009).   

 

After the first six months of rapid development, acuity then continues to develop 

more slowly, becoming adult-like at around 5-6 years if measured by preferential 

looking (Mayer and Dobson, 1982, Birch et al., 1983) or single optotype recognition 

(Simons, 1983, Sheridan, 1974, Smørvik and Bosnes, 1976, Woodruff, 1972). 

Acuity is worse if measured with surrounded optotypes, showing a later maturation 

of crowded acuity (Langaas, 2011, Pan et al., 2009, Sonksen et al., 2008, Drover et 

al., 2008, Morad et al., 1999, Fern and Manny, 1986, Simons, 1983, Hohmann and 

Haase, 1982), although see Kothe and Regan (1990). Table 1.2 shows suggested 

age of maturation of children’s vision. The variation in conclusions can be as a 

result of sample size, methodology and test used. Furthermore, the rate of change 

in acuity slows with age, making it difficult to define the point at which adult levels of 

vision are reached. 
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Table1. 2 shows studies of VA development in children, where letter or Landolt C 
targets were used. 

Author Test Age of maturation 
 

Atkinson and Braddick 
(1982) 
 

Crowded Landolt C Not adult-like at 5 years 

De Vries-Khoe and 
Spekreijse (1982) 
 

Landolt C Around 8-10 years 

Drover et al. (2008) 
 

Crowded HOTV Between 7 and 8-10 year 
old groups 

Langaas (2011) 
 

Crowded logMAR Around 9-10 years 

Pan et al. (2009) 
 

Crowded HOTV Beyond 6 years 

Sonksen et al. (2008) 
 

Sonksen logMAR test 
(binocular) 

Around 8 years 

Stiers et al. (2003) 
 

Landolt C Not adult-like at 5 years 

 

 

The limitations to visual acuity in the younger child could be accommodative, 

optical, retinal or cortical. Studies of the development of accommodation show that 

most children are able to accommodate accurately before 12 months of age 

(Haynes et al., 1965, Braddick et al., 1979, Banks, 1980, Howland et al., 1987). 

Furthermore, Carkeet has shown the optical quality of 4-6 year olds to be as good 

as adults (Carkeet et al., 2003), so continued improvement in vision beyond that 

age is likely to represent development in retinal or cortical areas.  

 

Morphological study of the human fovea at 45 months shows adult-like cone 

diameter but cone outer segment length and packing density of cones only half of 

the adult values (Yuodelis and Hendrickson, 1986). Continued development of 

single optotype acuity beyond this age could therefore reflect development at retinal 

level. 
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Continued improvement of crowded acuity beyond single optotype acuity may 

reflect maturation of higher levels of the visual system, as crowding is a cortical 

phenomenon (Flom et al., 1963a). Development of the visual cortex is hierarchical, 

with areas controlling basic functions, mediated by the deeper areas of the primary 

visual cortex (V1), reaching maturity first, followed by higher functions mediated by 

extra-striate areas beyond V1 (Kozma et al., 2001).  

 

Analysing a complex scene requires ‘grouping’ of objects by location, or similarity of 

properties, alongside the opposite process of perceptual analysis- dividing the visual 

scene to define objects for analysis (Treisman, 1982). This first process of grouping, 

or integration is thought to be mediated by long-range horizontal connections over 

the visual cortex, which have been shown to develop throughout childhood (Kovács 

et al., 1999, Kaldy and Kovacs, 2003). The inverse process of segregation is also 

thought to occur in extra-striate areas (Allen et al., 2009), with analysis of different 

image attributes having different timescales for maturation, for example luminance 

defined optotype recognition is adult-like by 12 years, whereas texture-defined 

recognition continues to develop beyond 12 years (Bertone et al., 2010). It follows 

that visual acuity measured using more complex targets which require higher level 

processing may be expected to show maturity later than is the case for simple 

targets.  

 

1.5.2 Development of eye movement control 

Saccades are the quick movements of the eyes that bring the object of attention 

onto the fovea. The latency in initiating a saccade decreases until around age 15 

(Irving et al., 2006, Luna et al., 2004, Fischer et al., 1997), although studies are not 
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consistent in their conclusions about changes in saccade accuracy or velocity with 

age (Luna et al., 2008). 

 

Fixation is the ability to keep a steady image on the fovea. It is not passive, but 

active, requiring constant, small corrective movements, or microsaccades (Luna et 

al., 2008). The ability to maintain steady fixation has been shown to improve 

between the ages of 4 and 15, with improvements stemming from longer fixation 

time around the target and fewer intruding saccades (Ygge et al., 2004, Aring et al., 

2007).  

 

As children learn to read, changes in their eye movement behaviour are noted: 

fixations per line are fewer in number and shorter in duration, saccades are longer 

and there are fewer regressive, or backwards saccades (Reichle et al., 2013, 

Rayner, 1986). Coupled with these findings, an improvement in the visual span (the 

number of characters read in one fixation) with age is noted (Kwon et al., 2007, 

Rayner, 1986).  

 

These findings showing the development of eye movements in school aged children 

suggest that younger children may not perform with the same degree of accuracy as 

older children and adults when performing acuity tasks near threshold; line acuity 

may be reduced by inaccurate saccades and even single letter acuity may be 

reduced by poor fixation. 
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1.5.3 Development of visual attention 

When we attend to an object in the visual field, we fixate, or foveate it, placing the 

image on the fovea, usually with a resultant eye movement.  A shift in attention can 

be driven by the appearance of an object (exogenous) or by internal motivation 

(endogenous) (Atkinson and Hood, 1997). The allocation of attention is driven by 

conscious, behaviour-led ‘top down’ control, coupled with a sub-conscious ‘bottom 

up’ mechanism driven by the appearance of stimuli in the visual field (Wang et al., 

2015, Desimone and Duncan, 1995). Improvements in visual search during 

childhood suggest development of top-down attentional control (Hommel et al., 

2004).  

 

Selective attention has been defined as the ability to select items for attention (He et 

al., 1996, Intriligator and Cavanagh, 2001). This ability to ignore distracting 

information improves with age and is thought not to mature before 7-10 years (Enns 

and Akhtar, 1989, Goldberg et al., 2001).  It is forced by limited capacity to process 

all the information in the visual field, resulting in some visual information being 

disregarded (Desimone and Duncan, 1995). The extent of this spatial resolution has 

been investigated using targets in the presence of flankers in tracking or reaction 

time paradigms and has been found to decrease continually throughout childhood 

(Pastò and Burack, 1997, Wolf and Pfeiffer, 2014, Enns and Girgus, 1985). Later 

maturation of visual attention has been found where the distractor and target differ 

by a conjunction of features, such as size or colour, than by a single feature and 

also in the ability to voluntarily shift attention from object to object  (Trick and Enns, 

1998).  
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An area of the visual system has been found to become active where strings of 

letters which could form words are grouped together in a chunk (Posner and 

Rothbart, 2000).  This cortical area is not activated by strings of consonants and is 

not present in early readers but is found to a limited degree in 10 year olds, another 

example of continued development of higher cortical areas well into childhood. 

 

The ability to guess correctly the number of items in a display without counting 

them, subitizing, is thought to be performed by a pre-attentive mechanism (Trick 

and Pylyshyn, 1993). It is present for small arrays in 2 year olds (Starkey and 

Cooper, 1995) and continues to improve throughout childhood (Halberda and 

Feigenson, 2008). Subitization may have a role in the success of reading a display 

of multiple optotypes. The magnitude of errors in fixation or saccades may be 

greater than the spacing of letters on a visual acuity test, causing foveation of a 

letter other than the intended one. The ability to quickly know how many target 

letters are present may help the individual to localize the intended letter (Bedell et 

al., 2015). 

 

In summary, the mechanisms which control crowded vision, or the ability to read 

letters in the presence of other visual information are strongly influenced by 

developmental factors which have varying rates of maturation, even into 

adolescence.  

 

1.6 Crowding - History and Definitions 

1.6.1 What is crowding? 

Crowding is the reduction in ability to recognize objects in the midst of clutter and is 

present in everyday vision (Levi, 2008, Flom, 1991). Here, we shall look specifically 
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at crowding in relation to letters or other target stimuli in the presence of distracting 

elements, or flankers.  

 

In the 1930s, Ehlers described the difficulty of reading closely spaced letters 

compared with those in isolation (Ehlers, 1936), often ascribed as the first reference 

to what we now call ‘crowding’. Yet Strasburger and Wade argue that a Newtonian, 

James Jurin (1684-1750) could have been describing crowding when he wrote in 

1738 that ‘the more complex an object, the more difficult it is to perceive its parts’ 

(Strasburger and Wade, 2015).  In 1962, Stuart and Burian in their ‘Study of 

Separation Difficulty’, proposed that the crowding seen in strabismic amblyopes is 

an exaggeration of a normal physiological phenomenon (Stuart and Burian, 1962). 

The following year, Flom and colleagues published their classic experiment in which 

they quantified the reduction in near threshold resolution of a Landolt C when 

flanked by bars at varying distances (Flom et al., 1963b), see Figure 1.6. 

 

 

 

 

 

 

 

Figure 1.6, after (Flom et al., 1963b) Percentage of correct responses plotted 
against the linear separation of flanking bars for one normal eye and each eye of an 
amblyope.  
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Flom named this specific reduction in percent correct performance in the presence 

of flanking bars, ‘contour interaction’ and went on to distinguish between contour 

interaction and a wider definition of ‘crowding’ to include the effects of i) contour 

interaction, ii) attentional effects and iii) eye movements (Flom, 1991). In the 

literature, the terms ‘crowding’ and ‘contour interaction’ are often used 

interchangeably. In this thesis, the term ‘contour interaction’ is used to describe the 

specific reduction in visual acuity caused by the presence of nearby contours (Flom 

et al., 1963b); ‘attentional effects’ refers to the perceptual difficulty in discriminating 

the target from the flanking  elements (Flom, 1991, Leat et al., 1999) and ‘eye 

movements’ includes both fixational instability and errors in saccades (Regan et al., 

1992). The term ‘crowding’ is used here to describe the overall reduction in visual 

acuity which may result from a combination of contour interaction and deficits of 

attention and eye movements. 

 

1.6.2  What are the properties that define crowding? 

Crowding can be quantified by 2 parameters: its extent, the maximum distance from 

the target that nearby objects, or flankers, reduce the ability to recognise the target, 

and its magnitude, the loss in performance that results (Flom, 1991). Crowding is 

much stronger in peripheral than central (foveal) vision (Jacobs, 1979, Bouma, 

1970) and the extent of the effect is broadly proportional to the eccentricity of the 

target (Bouma, 1970). The magnitude of the crowding effect depends on certain 

properties of the target and flanker - their spatial arrangement and orientation and 

also their similarity. There is stronger crowding in the adult periphery when flankers 

are from the same perceptual group, e.g. letters or pictures and are a similar size, 

colour and shape (Nazir, 1992, Strasburger et al., 1991, Kooi et al., 1994, Bernard 

and Chung, 2011, Reuther and Chakravarthi, 2014, Leat et al., 1999). Contour 

interaction in central (foveal) vision has a very small spatial extent, around 4 min of 
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arc (Flom et al., 1963b, Siderov et al., 2013), with the maximum magnitude at a 

distance from the target of 0.4 letter widths, or 24 seconds of arc (Flom et al., 

1963a).  

 

1.7 Theories of crowding 

1.7.1 Receptive fields  

Dichoptic experiments have shown that contour interaction still occurs when target 

and flanker are presented to different eyes, placing the locus of interaction at least 

at the level of the striate cortex (Flom et al., 1963a, Kooi et al., 1994). A number of 

authors have supported theories of contour interaction which predict that resolution 

of a target is impaired if target and flanker fall within the same excitatory cortical 

annular receptive field (Flom et al., 1963b, Latham and Whitaker, 1996). Larger 

targets require larger receptive fields for their detection, but the finding that the 

extent of contour interaction changes little with increasing target size in peripheral 

vision, suggests that this mechanism alone does not fully explain the effect (Tripathy 

and Cavanagh, 2002). Recent support for a receptive field hypothesis was 

suggested by Bedell et al. (2013), who showed the magnitude of contour interaction 

to decrease under mesopic light conditions, consistent with the known reduction of 

antagonistic surround of cortical receptive fields in these conditions. 

 

 

1.7.2  The physics of the stimulus 

Hess et al. (2000) proposed an explanation for the contour interaction from bars 

surrounding a Landolt C, based on the physical properties of the stimulus. They 

suggested that when the bars came close to the C, the spatial frequency of the 

surrounded target increased, causing the visual system to use a scale of analysis 

that was less sensitive to gap detection in the target letter. This theory is not 

supported by the dichoptic experiments discussed earlier (Flom et al., 1963a). 
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Furthermore, the predictions of this theory have been found not to hold true for 

different sized targets and reversed polarity flankers (Hariharan et al., 2005, Liu, 

2001) and for crowding by variously orientated Landolt Cs (Danilova and Bondarko, 

2007) and the theory has been largely discounted as being the only explanation for 

foveal contour interaction. 

 

1.7.3  Masking 

Masking is the phenomenon whereby a pattern, or mask, overlaid on a target in 

space or time reduces its detectability or discrimination, although in cases of low 

contrast masks, discrimination can sometimes be enhanced (Levi et al., 2002b). 

Whilst crowding and masking share some properties, such as spatial frequency 

specificity (Chung et al., 2001, Legge and Foley, 1980), the effects of crowding in 

the periphery are much stronger than would be predicted by simple masking, so 

masking alone cannot account for crowding. In addition, the appearance of masked 

and crowded targets are not the same; in masking, the target disappears, whereas 

in crowding it becomes part of a jumbled percept (Pelli et al., 2004). It has been 

proposed that foveal crowding is distinct from that in the periphery and can be 

accounted for by a masking theory because of observations that the extent of 

crowding scales with stimulus size (Levi et al., 2002b, Song et al., 2014). However, 

different test paradigms have resulted in the opposite conclusion being drawn, that 

the extent of crowding in foveal vision has a fixed angular extent (Danilova and 

Bondarko, 2007, Siderov et al., 2013), giving weight to a dual mechanism of foveal 

crowding, with masking forming part of the explanation (Siderov et al., 2014).  

 

1.7.4 Feature binding/pooling 

 As visual information moves to higher cortical areas, it is processed by receptive 

fields which are larger than those in V1. As the higher visual areas combine, or pool, 

information from lower areas, features become integrated and elements of target 
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and flanker can become jumbled, or inappropriately ‘bound’ together (Parkes et al., 

2001, Pelli et al., 2004, Greenwood et al., 2009). It is thought that the pooling of 

background features competes with the recognition of valid features (Nandy and 

Tjan, 2007). This explanation of crowding is supported by experiments such as that 

by Parkes et al. (2001), where observers were able to judge the average tilt of 

Gabor patches in peripheral vision, where tilt of individual patches was not able to 

be accurately discriminated. Thus, crowding can be thought of as part of the visual 

system’s tendency to ‘group’ similar features into a texture. Where flankers are 

‘ungrouped’ from one another, by making them a different colour or shape, for 

example, crowding is reduced (Nazir, 1992, Kooi et al., 1994).  

 

This model does not explain the greater crowding where flankers and target are 

from the same categorical group, despite similar features or the greater crowding 

caused by unfamiliar than familiar symbols (Reuther and Chakravarthi, 2014, 

Huckauf et al., 1999). 

 

 

1.7.5 Attention models 

Intriligator and Cavanagh (2001) adopted the term ‘attentional resolution’ to 

describe the smallest separation of two objects which allows them to be perceived 

as separate. They found this to be coarser than spatial resolution and suggested 

that crowding represented an attentional limit to visual resolution, a notion 

supported by others (He et al., 1996, Strasburger et al., 1991). Tripathy and 

Cavanagh went on to suggest that crowding was governed by attention receptive 

fields of a fixed size for each eccentricity (Tripathy and Cavanagh, 2002). 

Strasburger proposed a mechanism whereby top-down attentional control could 

over-ride bottom-up processing and that this theory could complement masking 

theories (Strasburger, 2005). 
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1.7.6 Two stage model 

There is growing support for a two stage model of object recognition, where features 

are first detected, independent of each other and then integrated at a higher cortical 

level to allow object recognition to occur (Levi, 2008, Pelli et al., 2004, Chung et al., 

2001, Parkes et al., 2001). Crowding could then occur at multiple levels of the visual 

system, depending on the nature of the object and flankers (Whitney and Levi, 

2011, Manassi et al., 2013, Anderson et al., 2012). This model does not necessarily 

exclude the limited attentional resolution theory and could be an alternative 

description of the same mechanism (Hariharan et al., 2005). 

 

 

Figure 1.7 after Manassi et al. (2013), showing the hierarchy of visual processing, 
whereby simple contours like lines and edges are processed in V1 and more 
complex features are processed in higher visual areas, with larger receptive fields. 
 

1.7.7 Recent grouping theory 

Certain findings such as the reduction in crowding which occurs when flankers 

group together are difficult to explain with the theories above and have led Herzog 

and colleagues to propose a model which contradicts the hierarchical model of 

visual processing. They suggest that grouping is paramount and that high and low 

level processing interact with crowding determined at the final stage, along with 

overall appearance (Herzog et al., 2015). 
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1.8 Crowding in children 

If maturation of crowded acuity is slower than that of single letter acuity, as 

discussed in section 1.4.1, what is known about the relative maturation of the 

various contributors to the overall crowding effect: the influence of contour 

interaction, the effect attentional factors and eye movements?  

 

1.8.1 Extent and magnitude of contour interaction 

There is evidence from several studies (Matsumoto et al., 1999, Semenov et al., 

2000, Jeon et al., 2010) that the critical spacing for foveal contour interaction is up 

to twice as large in children as in adults. The age at which the critical spacing 

reaches adult levels was found by Semenov et al. (2000) to be 9 years for Landolt C 

targets and by Bondarko and Semenov (2005) to be around 12 years of age for 

Landolt C and E targets, whereas Jeon et al. (2010) found that at age 11, the critical 

spacing was still greater than in adults for E targets (Figure 1.8). Differences in 

experimental methods and targets used have led to these different conclusions 

being drawn about when the extent of contour interaction is adult-like.  

 

 

 

 

 

 

Figure 1.8 Left panel after Jeon et al. (2010) and right panel after Semenov et al. 
(2000) showing extent of crowding against age. E targets with sets of 3 flanking 
bars were used in the study by Jeon et al. (2010) and contour interaction was found 
to be not adult-like at 11 years of age. In the study by Semenov et al. (2000), C 
targets with tangential flanking bars were used and contour interaction was judged 
to be adult-like at 9 years. 
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It is uncertain if the magnitude of contour interaction in children is different to adults. 

Manny et al. (1987) investigated contour interaction in foveal vision using a Landolt 

C target with tangential bars. They concluded that there was no significant 

difference in the magnitude or extent of contour interaction between adults and 

children aged 3 and 4, although data from only 12 children were included and 

individual variations were noted. Atkinson and Braddick (1982) drew a different 

conclusion regarding the magnitude of contour interaction. They used a Landolt C 

target surrounded by a circular array of Cs and Os at a fixed inter-optotype spacing 

to compare ‘crowded’ with single optotype acuity. In normal 5 year olds, the 

resultant ‘crowded’ acuity, with a fixed level of contour interaction, was found to be 

only 58% that of adults. Furthermore, Atkinson et al. (1988) used a target letter 

surrounded by four other letters, again at a fixed inter-letter spacing and found the 

ratio between the surrounded letters and the single letters in 5-7 year olds was 

similar to adults, but significantly greater in 3-4 year olds. In a recent study, Doron et 

al. (2015) showed a reduction in the magnitude of crowding up until the age of 6-7 

years, after which adult-like levels were reached. Variation in targets and flanking 

elements could contribute to the different results in these studies, as differently 

sized and shaped targets may not be processed by the same cortical receptive 

fields. 

 

1.8.2 Effect of attention 

In adult foveal vision, the main variable which affects crowding is the proximity of 

the flanking elements (Atkinson, 1991), or contour interaction; the structural 

similarity of target and flanker has been found not to matter (Leat et al., 1999).   
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Figure 1.9, after Atkinson (1991). In adults, poorest vision was in format 3, a box 
surround at 0.25 letter widths from the target, whereas in children, poorest vision 
was in format 1, letter flankers at 0.5 letter-widths from the target. 
 

 
There is some evidence, however, that in children’s foveal vision, target-flanker 

similarity does reduce a child’s ability to recognize a target letter. In a study by 

Atkinson (1991), in adults, worse vision resulted from format 3 (Figure 1.9), a box 

surround at 0.25 letter widths from the target, whereas in children, worst vision was 

in format 1, letter flankers at 0.5 letter-widths from the target. In children, the letters 

seem to crowd the target more than a box, because the task of separating the target 

letter from flanking letters adds a level of difficulty not experienced by the adults. 

This influence of target-flanker similarity could reflect the development of visual 

attention;  the ability to select the target from the non-target information in the visual 

field is made easier when the target is dissimilar to the surrounding features 

(Desimone and Duncan, 1995). Atkinson’s study suggests an effect of attention on 

the magnitude of the crowding effect, which warrants further investigation as 

support for such an effect in the literature is sparse. 

 

A recent study using a visual search paradigm showed an influence of target-

distractor similarity on visual search in children aged 4-8, with children making more 

fixations when target-distractor similarity is high (Huurneman and Boonstra, 2015).  
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1.8.3 Effect of eye movements 

Immature development of eye movement control may also contribute to foveal 

crowding in children. Kothe and Regan (1990) found reduced Snellen acuity in 

some young children who had good acuity in a repeat letter chart (Figure1.10). They 

attributed this to a delayed control of gaze selection, a notion supported from direct 

measurement of children’s fixational eye movements. An increase in the variability 

of fixational eye movements in young children has been reported (Figure 1.11) 

(Aring et al., 2007, Kowler and Martins, 1982) but it is not clear whether, or to what 

extent such fixational instability is sufficient to interfere with visual acuity (Flom, 

1991, Aslin and Ciuffreda, 1983). Recently, Bedell and colleagues have argued for 

an eye-movement contribution to foveal crowding based on poorer identification of 

long compared to short letter strings (Bedell et al., 2015). 

 
 

 
 
 
 
 

 

 

 

 

 

Figure 1.10 The repeat letter and Snellen charts used by Kothe and Regan (1990). 
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Figure 1.11, after Kowler and Martins (1982), showing eye movement recordings 
from a 5 year old child and an adult, during steady fixation and saccadic tracking. 
Top traces show horizontal movements and bottom traces, vertical movements. 
 
 
Whilst there has been a significant amount of research into crowding in recent 

years, much of it has concentrated on trying to ascertain what crowding is, its 

properties and likely mechanisms. As the effect is more evident in peripheral vision, 

most studies have focused on the adult periphery. Levi’s review of crowding 

highlights the need for more research into the development of crowding (Levi, 2008) 

and Leat’s review points out that the age at which children’s vision becomes adult-

like is not fully known (Leat et al., 2009).  

 

1.9 Amblyopia 

1.9.1. Definitions and prevalence 

Amblyopia is a developmental syndrome, whereby neuroplasticity at birth drives 

structural and functional changes. It is characterized by deficits in visual acuity, 

contrast sensitivity, spatial localization, fixation, ocular motility, accommodation, 

crowding, attention, motion perception and temporal processing (Asper et al., 2000). 

Traditionally, it has been thought to be caused by interruption to visual input 

child 

 

 

adult 

Steady   Saccadic 

fixation   tracking 
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because of strabismus, anisometropia, high refractive error or form deprivation 

(McKee et al., 1992) and it is on the basis of these associations that amblyopia is 

classified, the most common types being strabismic and anisometropic amblyopia. 

However, there is now some evidence that anisometropia and strabismus may also 

arise as an effect of amblyopia, rather than the primary cause (Barrett et al., 2004, 

Barrett et al., 2013). Differences in the structure and function of the visual systems 

of strabismic and anisometropic amblyopes have been described, suggesting 

different neural mechanisms (Hess et al., 1983). 

 

The prevalence of amblyopia in the UK, defined as visual acuity of worse than 0.2 

logMAR or an inter-ocular difference of 0.2 logMAR, in the absence of ocular 

pathology, is around  3.6% (Williams et al., 2008). Other recent studies have 

estimated prevalence in the US to be 2.5% (Arnold, 2013) or 7.7% (Pascual et al., 

2014) and 1.9% in Australia (Pai et al., 2012). Variations in the data can be 

accounted for in the lack of a standardized definition of amblyopia, by ethnic 

differences and access to screening and treatment. For review see Solebo et al. 

(2014). The prevalence of amblyogenic risk factors (e.g. strabismus, anisometropia, 

hypermetropia) is estimated around 21%, although not all individuals with the risk 

factors go on to develop amblyopia (Arnold, 2013). 

 

1.9.2 Implications of amblyopia 

The implications to quality of life of amblyopia and its risk factors and treatment 

have been described in the literature; for review see Carlton and Kaltenthaler (2011) 

and Grant and Moseley (2011). It is often difficult to differentiate the effects of 

amblyopia from those related to treatment and strabismus. In addition, in studies 

parents are often asked about impact on children, which may not be a true reflection 

on what the children themselves believe and experience.  Factors which have been 

reported to be caused (at least in part) by amblyopia are - anxiety, negative 
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interactions with peers, impact on activities and education, self-esteem and self-

image (Carlton and Kaltenthaler, 2011).  

 

In a population-based questionnaire study, Wen et al. (2011) found no differences in 

General Health Related Quality of Life (GHRQoL) in pre-schoolers with amblyopia 

to those without, but found GHRQoL to be significantly worse in pre-schoolers with 

strabismus. One of the studies to question the children themselves about self-

perception of social acceptance was that of Webber et al. (2008). Children aged 9 

with history of patching had lower scores than age matched controls, but no 

difference was found between those with a history of strabismus or spectacle wear 

and normals. In addition, significant differences in subjective and psychological 

functions have been found between amblyopic and non-amblyopic teenagers (Sabri 

et al., 2006).  

 

 

In addition to quality of life issues, other potential difficulties which amblyopes may 

face are occupational vision requirements and implications of injury to the fellow 

eye. There are a number of occupations in the UK where a minimum vision 

requirement in the poorer eye is specified (Carlton and Kaltenthaler, 2011), thus 

excluding some people with untreated or residual amblyopia that persists into 

adulthood due to poor response to or compliance with treatment. Perhaps the 

strongest reason for screening for and treating amblyopia is the risk of vision loss in 

the non-amblyopic eye. A study in the UK determined the lifetime risk of impairment 

to or loss of vision in the fellow eye to be 1.2% (Rahi et al., 2002), whilst a Finnish 

study reported a risk of vision loss in the fellow eye to be 0.175%, which is 

significantly higher than the rest of the population  (Tommila and Tarkkanen, 1981). 
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1.9.2. Neural plasticity and critical periods 

Pioneering work by Hubel and Wiesel showed the effect of monocular deprivation 

on the ocular dominance of cells in the primary visual cortex of first cats then 

monkeys (Hubel et al., 1977, Wiesel and Hubel, 1963). They described a critical 

period as the time during which deprivation can cause change. Plasticity refers to 

the ability of the brain to reorganize its connections in response to environmental 

stimuli; high levels of plasticity are present at birth and decline during the critical 

period (Wong, 2012). If the amblyogenic factors of strabismus, anisometropia or 

deprivation occur in adult humans, amblyopia does not result (Kiorpes, 2002). It is 

now thought that there are 3 sub periods - the period of normal development, the 

period during which amblyopia can occur and the period during which treatment can 

be effective (Daw, 1998, Lewis and Maurer, 2005). The period of time during which 

amblyopia can occur in humans is a matter for some debate, and is different for 

different visual functions, higher levels of the visual system having longer critical 

periods. It is generally thought to include the first 8 years of life, although the period 

of time during which improvements can be made to visual function continues 

beyond 8 years, into teenage years and even adulthood (Daw, 1998, Pediatric Eye 

Disease Investigator Group, 2004, Pediatric Eye Disease Investigator Group, 2005). 

 

The implications for clinicians are that treatment is more effective when commenced 

early in the critical period and that visual functions with a shorter critical period 

should be treated first (Daw, 1998). This does not reflect the traditional approach to 

amblyopia treatment, but supports the view that after surgical correction of 

strabismus and  improvement to visual acuity, a full rehabilitation programme could 

include treatments to improve stereoacuity (Xi et al., 2014), Vernier acuity (Snell et 

al., 2015), contrast sensitivity (Li et al., 2015) and reading speed (Chung, 2011). 
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1.9.3  Visual deficits in amblyopia 

Psychophysical experiments show several distinctions between visual function in 

anisometropic, strabismic and mixed strabismic/anisometropic amblyopia. Contrast 

sensitivity is affected across the entire visual field in anisometropic amblyopia, 

whereas losses are confined to the central field in strabismic and mixed 

strabismic/anisometropic amblyopia (Gstalder and Green, 1971, Hess and Howell, 

1977). Furthermore, strabismic amblyopes show positional uncertainty, not shown in 

anisometropic amblyopia (Levi et al., 1987, Hess and Holliday, 1992). In Vernier 

acuity and bisection acuity tasks (both cortical functions) performance of 

anisometropic amblyopes resembles blurred normal vision i.e. it scales with grating 

acuity, whereas performance of strabismic amblyopes resembles the normal 

periphery – it is disproportionately reduced compared with grating acuity (Levi and 

Klein, 1985, Levi et al., 1987). These findings infer either a reduction in cortical 

sampling because of a loss of binocular neurones (Levi et al., 1987), scrambled 

connections between cortical cells (Hess et al., 1999) or some other sort of 

anomalous mapping (Sireteanu and Fronius, 1989, Lagreze and Sireteanu, 1991). 

Using contour integration experiments, Hess and colleagues proposed that 

positional uncertainty can be explained by the relative difference in the cortical 

maps formed by the two eyes and not solely by anomalous connections in the 

amblyopic eye (Hess et al., 1997) and Kiorpes and McKee (1999) have suggested 

that topographic disarray exists at a higher level.  Barrett et al. (2003) have 

proposed a model whereby reduced neural representation in the primary visual 

cortex of the amblyopic eye results in a percept which resembles a combination of 

two differently-orientated gratings. This model is supported by a close resemblance 

to reported misperceptions by amblyopic participants.  

 

Deficits at higher levels of the visual systems of amblyopes have been reported, 

such as perception of entire scenes (Mirabella et al., 2011), number processing 
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(Mohr et al., 2010), and tasks involving higher order attention (Sharma et al., 2000, 

Ho et al., 2006). 

 

It is likely that a combination of neural undersampling and abnormal connection 

models may explain the experimental data, or a more complex theory involving 

abnormal temporal processing and difficulty in directing attention to information from 

the amblyopic eye (Asper et al., 1999).  

 

 

1.9.4  Oculomotor deficits in amblyopia 

The loss of, or reduction in binocularity in amblyopia causes impairment of tasks 

such as hand-eye co-ordination, reaching, grasping and driving (Grant and Moseley, 

2011, Niechwiej-Szwedo et al., 2011). Of relevance here are the potential eye 

movement and reading deficits as they relate to visual acuity measurement.  

 

Disruption of fusion during development gives rise to gaze instability; unsteady 

fixation in adult amblyopes has been characterized by a slow nasal drift with 

saccadic intrusions, or microsaccades (Schor and Hallmark, 1978, Schor, 1975, 

Ciuffreda et al., 1991, Zhang et al., 2008), although given the instruction to hold 

gaze steady, there is evidence that intrusive saccades can be controlled (González 

et al., 2012). The drift movements could move the image to an extra-foveal location 

resulting in poorer or variable visual acuity (Flom, 1991) and microsaccades have 

the potential to reduce vision through position variability (Chung and Bedell, 1995).  
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Figure 1.12 after González et al. (2012). Horizontal (X) and vertical (Y) eye 
movement recordings from an adult strabismic amblyope given the instruction to 
look straight ahead at a fixation target. The amblyopic eye was occluded for viewing 
with the fellow eye and the fellow eye was occluded for viewing with the amblyopic 
eye. Black lines represent the fellow eye and grey lines the amblyopic eye. Poor 
fixation stability is demonstrated by the amblyopic eye. 
 
 
Whether fixational instability can cause a reduction in acuity is a matter for debate;  

Subramanian et al. (2013) and Chung et al. (2015) have found a correlation 

between fixational stability and visual acuity, not found by González et al. (2012). 

Nevertheless, the existence of a correlation does not tell us whether poor fixation 

causes reduced acuity or vice versa.  

 

Abnormalities have also been reported in saccadic and smooth pursuit movements 

of amblyopes. Strabismic amblyopes make more saccades in reading (Kanonidou et 

al., 2010) and can show inaccurate and asymmetric smooth pursuit movements 

(Bedell et al., 1990). In anisometropic amblyopes, latency of saccades is longer and 

saccades are less accurate (Niechwiej-Szwedo et al., 2010). 
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Fixation instability has also been reported in amblyopic children (Carpineto et al., 

2006, Subramanian et al., 2013, Birch et al., 2013) and found to be greater than that 

in amblyopic adults (Subramanian et al., 2013). It often presents as fusion 

maldevelopment nystagmus syndrome (FMNS), characterized by slow nasal drifts 

followed by temporal corrective ‘flicks’ (Tychsen et al., 2010). Abnormal fixation is 

thought to arise as a consequence of decorrelation of input from the two eyes, 

central suppression and poor visual acuity. Where there is decorrelation only, in the 

case of strabismus without amblyopia, fixation instability is noted, but is less than 

when amblyopia is also present (Subramanian et al., 2013). Birch and colleagues 

noted a strong correlation of fixation instability with poor stereopsis (Birch et al., 

2013). 

 
 

1.9.5 Treatment of amblyopia 

Traditionally, amblyopia has been treated with the concurrent use of spectacles and 

occlusion therapy with patching or pharmacological penalization (Moseley, 2002). 

Penalization or patching of the fellow eye degrades or removes its image, forcing 

use of the amblyopic eye (Taylor et al., 2012, Birch, 2013). Following the publication 

of two large studies, the Monitored Occlusion of Treatment of Amblyopia Study 

(MOTAS) (Stewart et al., 2004) and the Amblyopia Treatment Studies carried out by 

the Paediatric Disease Investigator Group (PEDIG) (Repka and Holmes, 2012, 

Pediatric Eye Disease Investigator Group, 2005, Pediatric Eye Disease Investigator 

Group, 2004),  there has been a general move to part-time rather than full-time 

patching (Fresina and Campos, 2014). Furthermore, there is evidence that 

significant improvements in visual acuity can be made in some cases with spectacle 

wear alone (Cotter et al., 2007, Steele et al., 2006, Moseley et al., 2002, Chen et al., 

2007).  Recent Cochrane reviews conclude that for strabismic amblyopia, occlusion 

and refractive correction provide a better outcome that refractive correction alone 
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(Taylor and Elliott, 2014) and in refractive amblyopia, occlusion can help if reduced 

acuity persists after spectacle correction alone (Taylor et al., 2012). 

 

Problems with patching include variable compliance (Simonsz et al., 1999, Loudon 

et al., 2002) and loss of self-esteem (Webber and Wood, 2005) and use of atropine 

sulphate for penalization can cause allergic, toxic and systemic effects (Tejedor and 

Ogallar, 2008). Furthermore, regression of visual acuity after cessation of patching 

and/or pharmacological penalization can occur (Mohan et al., 2004, Rutstein and 

Fuhr, 1992, Kaye et al., 2002, Pediatric Eye Disease Investigator Group, 2007) and 

both patching and penalization interfere with binocularity (McKee et al., 2003, 

Holmes and Clarke, 2006). Birch found correspondence in the risk factors for poor 

stereoacuity and persistent amblyopia and concluded that insufficient attention to 

binocularity during treatment contributes to incomplete treatment success, gaze 

instabilities and recurrent acuity decline (Birch, 2013).  

 

Recent advances in amblyopia treatment have seen improvements in the less 

plastic visual systems of amblyopic older children or adults through perceptual 

learning. Perceptual learning involves practising a challenging task to gain 

improvements in performance and in the context of amblyopia therapy, the gains in 

performance should be transferrable to improvements in visual acuity (Birch, 2013, 

Levi and Li, 2009). Tasks which have shown improvements include contrast 

detection (Polat et al., 2004, Chen et al., 2008, Huang et al., 2009), position 

discrimination (Li et al., 2008) and Vernier acuity (Levi et al., 1997). Results could 

be attributed to better control of eye movement or accommodation or to harnessing 

higher level attention to improve cortical efficiency at reducing noise (Levi and Li, 

2009). Further improvements to techniques have led to the use of video games to 

improve compliance and attentional stimulation (Li et al., 2011, Jeon et al., 2012, To 

et al., 2011). 
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In many cases, perceptual learning is carried out in conjunction with patching, which 

does not address the suggestion that treating amblyopia should first tackle 

suppression (Hess et al., 2010b). Consequently, Hess and colleagues have 

developed a dichoptic system which presents images of different contrasts to the 2 

eyes (Hess et al., 2010a). The relative contrast between the 2 eyes is changed as 

the amblyopic eye improves and after a few weeks of daily 1 hour practice, 

improvements in VA were recorded in a few strabismic adults. Other researchers 

have found gains to stereovision in children and adults with perceptual learning 

(Knox et al., 2012, Xi et al., 2014), a finding which gives hope for avoiding persistent 

amblyopia (Birch, 2013).  

 

In summary, there is evidence that new forms of treatment can bring improvements 

even beyond the critical period of development and can also improve stereopsis, 

which offers better long-term visual function for people with amblyopia (Levi et al., 

2015). Nevertheless, young children remain most amenable to improvement 

through treatment, so identifying amblyopia in young children remains a priority 

(Kulp et al., 2014).  

 

1.9.6 Crowding in amblyopia 

Foveal crowding has been found to be greater in extent in amblyopic eyes than in 

normal eyes and has been likened to crowding in the normal periphery (Flom, 1991, 

Levi and Klein, 1985). Is this increased crowding as result of greater contour 

interaction, poorer control of eye movements, or attention deficits?  This question is 

addressed in research questions 7 and 8.  

 

Some authors have reported that when scaled to individual resolution threshold, 

contour interaction was similar for amblyopic and normal eyes (Simmers et al., 
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1999, Flom et al., 1963b), yet others have reported that in amblyopic vision, the 

extent of crowding is greater than even the reduced acuity would predict (Hess et 

al., 2001, Levi et al., 2002a, Hariharan et al., 2005). Several studies, in children 

(Greenwood et al., 2012) and in adults (Bonneh et al., 2004), found both features, 

where excessive contour interaction was found in the strabismic and mixed 

strabismic/anisometropic groups but not in the anisometropic group. Possible 

mechanisms for increased contour interaction in amblyopia include abnormal lateral 

interactions (Polat et al., 1997), excessive feature integration (Levi et al., 2002a) or 

extended pooling (Hariharan et al., 2005). 

 

Regan and colleagues proposed a theory for the excessive crowding seen in some 

amblyopes based on defective selection or control of gaze (Regan et al., 1992). 

They compared Snellen acuity with that from repeat letter charts in amblyopic 

children and adults and found a proportion whose repeat letter acuity was 

significantly better than their Snellen acuity, despite greater contour interaction in 

the repeat letter chart. This they attributed to poor control of gaze or inaccurate 

fixation. 

 

Kanonidou and colleagues measured reading speed and tracked eye movements of 

strabismic amblyopic and normal observers and found that strabismic amblyopes 

made more saccades per line than controls (Kanonidou et al., 2010). In contrast to 

the conclusions of Levi et al. (2007) that reduced reading speeds in amblyopes can 

be explained fully by crowding effects (contour interaction), Kanonidou concluded 

that slower reading speeds of amblyopes could not be accounted for solely by 

spacing. The study by Levi et al used Rapid Serial Visual Presentation (RSVP) to 

eliminate the effect of eye movements, so it could be that oculomotor deficits add a 

hindrance to amblyopic reading in addition to contour interaction.  
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As discussed earlier, (section 1.7.5), attentional theories of crowding suggest that 

features are detected but there is not enough attentional resolution to resolve them. 

Deficits in visual attention have been proposed in people with amblyopia and fMRI 

studies have shown high level cortical processing abnormalities in strabismic 

amblyopes compared to controls (Secen et al., 2011). Popple and Levi (2008) 

showed an altered time course of attention in amblyopic eyes in the ‘attentional 

blink’ paradigm, where to targets are presented in rapid succession; Ho et al. (2006) 

used a tracking task to show attentional deficits in both strabismic and 

anisometropic children and Sharma et al. (2000) showed deficits in counting 

elements by strabismic amblyopes, thought to be a higher level limitation in the 

ability to individuate objects. In measuring visual acuity, we are more concerned 

with the spatial than the temporal domain, which forms the basis of some of these 

studies. Nevertheless, in a complex visual acuity chart, the ability to select and 

name a target letter from the midst of other letters, then identify and move to the 

next letter and so on could be impaired in an individual with deficient visual 

attention. 

 

1.10 Research Questions 

There is much about foveal crowding which is not well understood and it is likely 

that it is not governed by a single mechanism.  Visual acuity tests where optotypes 

are used as flanking elements are likely to deploy different mechanisms than those 

that use simple bars, and tasks that involve reading a line of letters require eye 

movements other than the steady fixation required to look at an isolated letter. 

Crowded acuity tests with different features have been judged to be equivalent to 

each other because they give a similar result, even though the crowding may arise 

from different combinations of contour interaction, eye movements and attention, 

e.g. Stager et al. (1990). The danger here is that they may not give an equivalent 
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result in groups with abnormal crowding, e.g. young children or amblyopes (Flom, 

1991). 

 

The purpose of my experiments is therefore to disentangle and broaden our 

understanding of the contributions of contour interaction, eye movements and 

attention to foveal crowding in developing children and people with amblyopia.  

 

The first study in this thesis, described in Chapter 2, used 3 crowded logMAR 

charts, each in common use in the UK, to measure vision in a population of school 

children aged 4-9. The research questions are: 

1. What is the effect of chart design on measured acuity in children aged 4-9? 

2. What is the effect of age on crowded acuity? 

 

Chapter 3 describes the development of custom-designed tests, which allow the 

crowding features in the tests to be controlled and manipulated to establish their 

relative effects. These tests are used in a study, described in Chapter 4, to compare 

crowding in children of different ages, with adult controls. The effect of target-flanker 

similarity was explored by comparison of threshold logMAR for recognition of a letter 

or line of letters with either bar or letter flankers. The effect of eye movement control 

was explored through comparison of threshold logMAR in single letter and linear 

letter recognition. In addition, an analysis of errors compared mis-named letters in 

the linear charts. Adjacent errors occurred when the named letter was immediately 

adjacent to the target letter. Other errors were defined as random errors. Poor eye 

movement control was predicted to cause a higher proportion of adjacent errors. 

Errors were compared across the age groups and in the two linear flanking 

conditions- letter and line flankers.  
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In addition, information from the youngest group and the adults was pooled for two 

of the crowded charts (showing the least and the most crowding) and the 

psychometric functions were derived, as described in Chapter 5. Comparison of the 

slopes of the psychometric functions enabled predictions to be made regarding the 

effect of crowding on the repeatability of the tests. 

 

The research questions are: 

3. What is the effect of spacing between a flanking bar and target letter on 

acuity in children and adults? 

4. What are the relative contributions of contour interaction, gaze control and 

attention to crowded acuity in children and adults? 

5. Can mis-naming errors point to any differences between reading behaviour 

of line charts in children and adults? 

6. What is the effect of crowding on the slopes of psychometric functions 

derived from acuity charts in adults and children? 

 

In the final study, described in Chapter 6, the effect of crowding on amblyopic adult 

vision was explored. Using similar charts to the second experiment enabled 

comparison with the normal, developing fovea. 

The research questions are: 

7. What are the relative contributions of contour interaction, gaze control and 

attention to crowded acuity in adults with strabismic or mixed 

strabismic/anisometropic amblyopia? 

8. Can mis-naming errors point to any differences between reading behaviour 

of crowded visual acuity tests in the amblyopic and fellow eyes of 

participants with strabismic or mixed strabismic/anisometropic amblyopia?  
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Chapter 2 

Crowding in children's visual acuity tests - effect of test 

design and age 

 

2.1  Purpose 

As discussed in Chapter 1, section 1.4.3, visual acuity measurement in young 

children was traditionally made easier by using single optotypes (letter or picture) 

(Keith et al., 1972); however, such tests were found to over-estimate visual acuity 

as they do not take account of the crowding phenomenon (Youngson, 1975, Hilton 

and Stanley, 1972, Flom et al., 1963b, Manny et al., 1987). Use of picture optotypes 

can also improve testability in young children, but issues with variable legibility, 

complexity of shape and empirical sizing can reduce comparability with adult charts 

(Fern and Manny, 1986, Friendly, 1978, Little et al., 2012, Candy et al., 2011, 

Simons, 1983).  

 

In order to avoid the over-estimation of acuity which arises from single optotype 

tests and to make acuity tests more sensitive to amblyopia detection, children’s 

visual acuity tests have been designed to induce crowding. A number of such tests 

have been produced using letter or picture/symbol optotypes. However, the overall 

level of crowding may differ between tests because of the lack of standardisation of 

the individual components of crowding. For example, surrounding a single letter with 

flanking bars close to the optotype induces contour interaction, thereby impairing 

recognition, but may not require the same level of gaze control accuracy required to 

read a series of letters along a line.  Also the separation of optotypes from each 

other and from the surround bar is not standard, and could result in variable levels 
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of contour interaction. The ETDRS Test uses a separation of 1.0 letter width (Early 

Treatment Diabetic Retinopathy Study Group, 1985), which has also been used in 

the Sonksen Test, but the LogMAR Crowded Test uses a separation of 0.5 letter 

widths. In the Sonksen test the distance between the letters and the box surround 

below and to the sides is the width of the optotypes in the display being shown 

whilst the distance to the box at the top is the width of a letter in the preceding larger 

display.  

 

The purpose of this study was to look for an effect on visual acuity resulting from the 

variation in design of commercially available acuity tests in children of different ages 

and to answer the following: 

1. What is the effect of chart design on measured acuity in children aged 4-9? 

o using different inter-optotype and optotype-flanker separations 

o using a picture optotype test rather than a letter optotype test 

2. What is the effect of age on crowded acuity in children? 

 

Visual acuity was measured in a sample of primary school children using the 

following tests: the logMAR Crowded Test (Keeler Ltd, Windsor, UK), the Sonksen 

logMAR Test (Haag-Streit, Harlow, UK), the Kay Picture Crowded logMAR (Kay 

Pictures Ltd, Tring, UK) and the Kay Picture Single logMAR Tests (Kay Pictures Ltd, 

Tring, UK) and the Revised Sheridan Gardiner Test (Keeler Ltd, Windsor, UK).  

These tests were chosen as they are in common use in the UK (Wickham et al., 

2002) and contain a range of features: the two letter tests with linear presentation 

have different letter-flanker separations and the Kay Pictures test has larger, 

empirically sized optotypes. Single letter and picture tests were included with which 

to normalize the results from the crowded tests. Our results showed that there is an 
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age effect of crowding, based on separation of optotypes and type of optotype used 

(letter or picture).  

 

2.2 Methods 

2.2.1 Participants 

School children, aged 4-9, were recruited from a primary school in Cambridgeshire, 

UK. For analysis, the children were considered in two groups. Children in the 

younger group (39 participants) were aged between 4 years 10 months and 6 years 

9 months, mean 5 years 9 months.  Children in the older group (64 participants) 

were aged between 7 years 9 months and 9 years 8 months, mean 8 years 7 

months. The number of participants in each group was sufficient to obtain a power 

of 80% at the 5% level (two-tailed) for an effect size of 0.1 logMAR.  An equal 

number of children in each age group were invited to participate in the study, but a 

greater number from the older group responded and for reasons of equity, were 

included. Although the number of children in each group were not equal, the age 

range represented in each group were approximately equal, i.e. around 2 years. 

Children’s development is a continuous process and one approach would have 

been to treat age as a continuous variable, rather than to group the children into age 

bands. In looking at the relative development of crowded and uncrowded acuity, age 

was used as a continuous variable, but I was also interested in whether there was a 

significant difference in crowding between the tests in the youngest children, in 

primary level ‘Key Stage 1’, who were learning to read and those more practised 

readers in ‘Key Stage 2’. It was originally decided to sample a third group of children 

aged 10-12, but initial results showed that the 7-9 year group showed similar results 

to the adult controls, so it was decided that there would be little additional 

information gained from testing a third group.  
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 Written informed consent from the children’s parents or guardians and verbal 

assent from the children was obtained before any data were collected.  All children 

with a completed consent form who were available on the day of testing 

participated, the only exclusions from the results were children unable to co-operate 

with the testing protocol (3 did not comply).  Approval of the study protocol was 

given by our Institutional Research Ethics Committee and the study followed the 

tenets of the Helsinki Declaration.   

 

 

Table 2.1   Summary of the features of the 5 children’s acuity tests used in the 
study. 

 logMAR 
Crowded 

LMC 

Sonksen 
 

S 

Sheridan 
Gardiner 

SG 

Crowded 
Kay 
CK 

Single 
Kay 
SK 

Optotypes used X V O H U Y X V O H U T X V O H U T A 8 Kay 

pictures 

8 Kay 

pictures 

optotypes/row 4 4 1 4 1 

inter-optotype 
spacing 
(optotype 
widths) 

 

0.5 

 

1.0 

 

none 

 

0.5 

 

none 

optotype-box 
spacing 
(optotype 
widths) 

 

0.5 

Above - 1.0x the 
next larger 
optotype size. 
Below and sides 
1.0 

 

none 

 

0.5 

 

none 

testing distance 
used 
in study 

 

3m 

 

3m 

 

6m 

 

6m 

 

6m 

range of 
acuities 
(logMAR) 

0.8 to -0.3 0.8 to -0.3 1.0 to -0.3 

(Snellen 6/60-

6/3) 

0.7 to -0.4 0.7 to -0.3 

size 
progression 

0.1 logMAR 0.1 logMAR traditional 

Snellen 

progression 

0.1 logMAR 0.1 logMAR 
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Figure 2.1. The five tests used in the study. The left column from top to bottom 
shows the logMAR Crowded Test, the Sonksen logMAR Test and the Crowded Kay 
Picture Test. The Sheridan Gardiner Test is shown in the top part of the right 
column and the Single Kay Picture Test below. 

 

2.2.2 Visual Acuity Tests: design and scoring 

The tests used in the study are depicted in Figure 2.1 and a summary of their main 

features is shown in Table 2.1. Each of the 3 crowded tests comes in flip-book form 

with 4 optotypes presented horizontally on each page enclosed in a surrounding 

box. The 2 single optotype tests are also in flip books with 1 optotype per page and 

no surrounding box.  To facilitate comparisons between the tests, the following 

modifications to the recommended testing protocols were introduced: 

• Scores for the Sheridan Gardiner Test were converted to the nearest 

logMAR and letter-by-letter scoring was used.   
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• The orthoptic version of the Sheridan Gardiner test was used as this 

measures acuity to 6/3, whereas the highest acuity able to be measured with 

the standard version is 6/6.  

• Where only 3 different optotypes of a given size were available in the single 

optotype tests, the first optotype was shown a second time.  Thus, for every 

test, children were presented with 4 optotypes of any one size.   

• To score the crowded logMAR test in a clinical setting a modified logMAR 

scale is recommended by the manufacturers, where the score is 1 - the log 

of the minimum angle of resolution, such that 6/6 has a score of 1 and 6/60, 

a score of 0. For the purposes of our study, we used conventional logMAR 

scoring, where 6/6 has a score of 0 and acuities better than 6/6 are negative. 

• Both Kay Picture Tests are designed for use at a 3m test distance, but a 

floor effect was possible as the smallest optotype size is logMAR -0.1 in the 

crowded test and 0.0 in the single optotype test. Accordingly, the test 

distance was increased to 6m and the visual acuity scores modified 

accordingly, allowing logMAR to -0.4 and -0.3 to be measured, respectively. 

Thus, the LogMAR Crowded and the Sonksen Tests were viewed directly at 

a 3m test distance and the Sheridan Gardiner and the 2 Kay Pictures Tests 

were viewed at a 6m test distance through a front-surface optical quality 

mirror.  
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Figure 2.2 Experimental set-up for direct viewing of the 3m tests. 

 

2.2.3 Protocol 

Testing took place in the children’s school hall under illumination adequate for visual 

acuity testing, approximately 100 lux (National Academy of Sciences-National 

Research Council Committee on Vision, 1980).  Before testing, the children were 

familiarized with the Kay Picture optotypes and matching cards were given to the 4 

and 5 year old children showing the Kay pictures and letters used in the tests; these 

were retained by the children during testing. Initial screening included visual acuity 

measurement of both eyes using a conventional Snellen chart, and assessment of 

ocular alignment with cover test, but no children with strabismus were identified. 

Refraction was not performed.   
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The 5 tests were shown in a random order and participants were allowed unlimited 

viewing time. The right eye of each child was tested, using occluding glasses for the 

left, and spectacles were worn if they had been prescribed for distance use. For 

each test a starting point of logMAR 0.2 (6/9.5) was used and the children were 

asked to name the letters or picture optotypes presented.  Where children were 

unable to name a letter or picture optotype, they pointed to it on the matching card. 

For the line tests, children were asked to name each optotype in order from left to 

right.  If all 4 logMAR 0.2 optotypes were not read correctly on initial presentation, 

larger optotypes were presented until all 4 optotypes were read correctly. Smaller 

optotypes were then presented and testing continued until 3 or more optotypes at a 

single acuity level were named incorrectly.  If a child was hesitant, they were 

encouraged once to guess. Pointing at the letters by the examiner was not used 

under any test condition. 

 

Each child was assessed in a single session and testing was carried out by 3 

optometrists experienced in the examination of children and the tests used 

(including the author). Each examiner used standardized instructions and a strict 

protocol for testing. An analysis to look for inter-examiner variability was not carried 

out. Five children whose measured acuity was worse than logMAR 0.2 (6/9.5) in 

one or both eyes were referred for a full eye examination; however, data from these 

children were included in the study.   

 

2.2.4 Data Analysis 

Visual acuity data were converted into logMAR with each correctly read optotype 

assigned a score of 0.025. Each optotype incorrectly named, regardless of the level, 

resulted in the addition of 0.025 to the overall score. Mean logMAR was calculated for 
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each group and test and data were normalized, to highlight the crowding effect, by 

subtracting the unflanked single optotype logMAR results (either Sheridan Gardiner 

Test or Single Kay Pictures Test, as appropriate) from the logMAR results of the 

respective crowded tests. The data were subject to one-way repeated measures 

ANOVA and post-hoc testing was performed, where appropriate, using the Tukey 

test (Statistica™, Statsoft, Tulsa USA).  Mean data were used in the analysis, to 

look for a difference in crowding between the tests. The data from individuals may 

contain bias from the test order, loss of concentration and variability in the effort 

made with each of the tests. 

 

In addition, an analysis using the method of Bland and Altman (1986) was carried 

out to look at the comparability of the 2 crowded letter tests, the logMAR Crowded 

Test and the Sonksen Test.  

 

 

2.3 Results 

Table 2.2 shows the mean logMAR and standard deviation for each test separated 

into the younger and older age groups. The results are plotted in Figure 2.3 where 

normalized logMAR is shown for each test and logMAR values greater than zero are 

indicative of crowding. The top panel shows results for the younger children and the 

bottom panel the older children.  

 

2.3.1 Younger children 

There was a significant main effect of test on acuity (F=63.92, df=4, p<0.001). Mean 

acuity was poorest with the logMAR Crowded Test and best with the single optotype 
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tests with the mean from the Sonksen Test falling in-between. Mean acuity using 

the Crowded Kay Picture Test was poorer than the single optotypes tests, but better 

than the crowded letter tests.  Post-hoc testing showed that the logMAR Crowded 

Test gave significantly different results to all the other tests (p<0.001), as did the 

Sonksen Test (p<0.05) and the Crowded Kay Picture Test (p<0.05). There was no 

difference between the Sheridan Gardiner and Single Kay Picture Tests results in 

this age group (p=0.93) (Figure 2.3).  

 

2.3.2 Older children 

In the older children, there was also a significant main effect of test on acuity 

(F=63.59, df=4, p<0.001). Mean acuity was poorest with the logMAR Crowded Test 

(p<0.001).  Mean acuity was best with the single optotype tests, which were not 

significantly different from each other. The mean acuity with the Sonksen Test fell 

between the logMAR Crowded Test and the single optotype tests and was 

significantly different to all the other tests (p<0.001). In the older children, mean 

acuity with the Crowded Kay Picture Test was no different to that from the single 

optotype tests (Figure 2.3), p=0.24. 

 

Table 2.2 Mean visual acuity for each test (logMAR), with standard deviation in 
brackets LMC, logMAR Crowded; S, Sonksen; SG, Sheridan Gardiner; CK, 
Crowded Kay Picture; SK, Single Kay Picture  

 

 LMC S SG CK SK 

Younger 
children 

0.00 (0.08) -0.07 (0.09) -0.18 (0.08) -0.10 (0.09) -0.15 (0.11) 

Older 
children 

-0.04 (0.11) -0.11 (0.11) -0.17 (0.14) -0.17 (0.11) -0.18 (0.13) 
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Figure 2.3 Normalized logMAR is plotted for each of the visual acuity tests to show 
the crowding effect. The unflanked single optotype logMAR results (either Sheridan 
Gardiner or Single Kay Pictures Tests as appropriate) were subtracted from the 
logMAR result of the respective crowded tests. The top panel shows data for the 
younger age group and the bottom panel for the older age group. Error bars 
represent ±1SE. 
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2.3.3 Entire group analysis 

 A scatterplot of the difference in acuity score against the mean acuity score was 

plotted to analyse the agreement between the logMAR Crowded Test and the 

Sonksen test, Figure 2.4  (Bland and Altman, 1986). 

 

 

Figure 2.4  Scatterplot showing the difference in logMAR against the mean acuity 
for the crowded logMAR and Sonksen Tests for the 2 groups of children combined. 

 

The mean difference in scores across all the children was 0.075 logMAR, with the 

Sonksen Test having better acuity than the logMAR Crowded Test. The confidence 

intervals plotted show that for these 2 tests, 95% of children would be expected to 

have just under 0.3 logMAR, or 3 lines difference between the tests. The scatterplot 

does not show any systematic bias towards either test with increasing logMAR. 
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Figure 2.5 plots the logMAR for each of the tests as a function of age. The straight 

lines represent linear regression fits to each data set (acuity test). Figure 2.5a 

shows results of the letter tests: Sheridan Gardiner Test (closed symbols and solid 

line), the Sonksen (open squares and dashed line) and the logMAR Crowded Tests 

(cross symbols and dotted line). For ease of viewing, data have been offset on the 

y-axis as follows: Sonksen shifted up by 0.2 logMAR and LMC shifted up by 0.4 

logMAR. Figure 2.5b shows the results of the picture tests: Single Kay Pictures Test 

(closed symbols and solid line) and the Crowded Kay Pictures Test (open symbols 

and dotted line). For ease of viewing, data from the Crowded Kay Pictures Test 

have been shifted up by 0.2 logMAR. The slopes of the regression lines for both the 

uncrowded, single optotype tests were not significantly different from zero (letter 

tests, p=0.71; picture tests, p=0.15). However, the slopes were significantly different 

from zero for all three crowded tests (LMC p<0.05, S p<0.05, CK p<0.01). 
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Figure 2.5a.  LogMAR is plotted as a function of age in months for the 3 letter tests: Sheridan Gardiner Test, SG, (closed symbols and solid 
line), Sonksen, S, (open squares and dashed line) and the logMAR Crowded Tests, LMC, (cross symbols and dotted line).  The straight lines 
represent linear regression fits to each data set (acuity test). For ease of viewing, data have been offset on the y-axis as follows: Sonksen 
shifted up by 0.2 logMAR and LMC shifted up by 0.4 logMAR. 
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Figure 2.5b  LogMAR is plotted as a function of age in months for the 2 picture tests: Single Kay Pictures Test, K, (closed symbols and solid 
line) and the Crowded Kay Pictures Test, CK, (open symbols and dotted line). The straight lines represent linear regression fits to each data set 
(acuity test). For ease of viewing, data from the CK test have been offset on the y-axis by adding 0.2 logMAR. 
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2.4 Discussion 

2.4.1 Comparison of letter tests 

The general level of visual acuity in our sample is consistent with published age 

norms (Sonksen et al., 2008) and despite not screening for refractive error, the 

mean Sheridan Gardiner (i.e. single letter) acuity in both younger and older groups 

of children was better than 6/5 (logMAR -0.1, Table 2.2). Our results are also 

consistent with previous studies reporting that children perform better in uncrowded 

than crowded visual acuity tests (Simmers et al., 1997, Youngson, 1975, Hilton and 

Stanley, 1972, Morad et al., 1999)  Although visual acuity was poorest with the 

logMAR Crowded Test in both younger and older children, younger children 

exhibited a greater loss in visual acuity relative to the Sheridan Gardiner Test 

results. There was also a significant difference in visual acuity between the Sonksen 

and Sheridan Gardiner Tests for both groups (albeit not as large) and once again 

the younger children exhibited a greater loss with the Sonksen Test relative to the 

Sheridan Gardiner Test results. These results show that while both groups of 

children exhibited poorer visual acuity with the crowded visual acuity tests, the two 

crowded letter tests used were not equally effective at inducing crowding and the 

crowding effect was greater in the younger group of children suggesting an age 

dependent effect.  

 

Using the method of Bland and Altman (1986), it was shown that across both 

groups of children, there is a 95% confidence interval of agreement of around 3 

lines between the logMAR Crowded Test and the Sonksen Test. Clinically, 

comparability between 2 similar tests would ideally be closer than these findings. 
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2.4.2 Comparison of picture tests 

Results using the Kay Picture optotypes were generally similar; the Crowded Kay 

Picture Test resulted in poorer visual acuity when compared to the Single Kay 

Picture Test, but only for the younger children. There was no significant difference in 

visual acuity between the Crowded Kay Picture Test and the Single Kay Picture 

Test in the older children, indicating that in older children the Crowded Kay Picture 

Test did not induce significant crowding (Figure 2.3).  

 

2.4.3 Viewing distance 

We used two different viewing distances, 3m and 6m, depending on the test. In 

testing young children, the closer 3m distance enhances rapport and helps maintain 

attention (Salt et al., 2007, Sheridan, 1970, Atkinson et al., 1988); however, as our 

6m viewing distance used a mirror, the examiner could stand beside the child and 

hence maintain the advantages of proximity to the child. There is some evidence 

that a nearer testing distance yields slightly better acuity, (Rozhkova et al., 2005, 

Lippmann, 1971) although Atkinson et al. (1988) found no significant difference in 

either single or multiple letter acuity, or in the crowding effect when measured at 3m 

and 6m in 3-4 year olds. It is possible that for some of our participants, the 3m 

testing distance conferred a small advantage for the LogMAR Crowded Test and the 

Sonksen Test. Had a 6m viewing distance been used, measured VA could have 

been worse, hence increasing the difference between these crowded tests and the 

Sheridan Gardiner Test. So the greater crowding effect we found in the LogMAR 

Crowded Test and the Sonksen Test cannot be explained by the decreased viewing 

distance used. 
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2.4.4 Effect of age 

Our single optotype results, showing no effect of age in the range used (4-9 years), 

suggest that uncrowded acuity is mature at an earlier age than crowded acuity. This  

accords with the conclusions of Jeon et al. (2010) and Semenov et al. (2000)  

However, the age at which maturity of single optotype acuity occurs differs between 

the studies. We found no improvement in uncrowded acuity between our younger 

and older children, whereas Jeon et al found a significant improvement from the 

ages of 5 to 8. 

 

 

Figure 2.6, after Jeon et al. (2010), showing single letter acuity as a function of age 
for E targets.  

 

Comparison of acuity results showed that our younger children had better acuity 

than those similarly aged children in the study by Jeon et al, where the mean 

logMAR of their 5 year olds was around 0, for E targets (reproduced above as 

Figure 2.6), compared to our -0.18 (Sheridan Gardiner Test). Differences in the 

targets between the current study and theirs could be a possible explanation, and 

the fact that all the children in our study were at school and used to reading letters, 

whereas the orientation discrimination of the letter E in the Jeon et al study may 

represent a more difficult task.  Bondarko and Semenov (2005) showed the E target 

to be generally more difficult for children compared to the Landolt C. Our results 
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also suggest that crowded and uncrowded acuity do not develop in parallel (Fig. 

2.5). Although this appears to conflict with the conclusions of Kothe and Regan 

(1990) (see Chapter 1, section 1.4.1), the linear letter acuity tests in our study have 

more contour interaction, because of closer inter-letter and letter-surround box 

separation, than the Snellen test used by Kothe and Regan (1990), therefore 

making our line tests harder. 

 

The improvement in crowded visual acuity with age (Figure 2.5) is likely to reflect 

the development of underlying factors that contribute to the total crowding effect; the 

influence of contour interaction, the effect of gaze instability and/or attentional 

factors (Flom, 1991). On this basis, the decrease in crowding with age could result 

from a change in the magnitude and/or extent of contour interaction, better control 

of gaze, or a maturation of attention and general cognitive abilities with age or some 

combination of all three factors. 

 

2.4.5 Contour interaction and age 

There is evidence that the shape of the contour interaction function in young 

children is similar to that of adults, with the maximum effect occurring at a similar 

target-flanker separation distance in children and adults (Manny et al., 1987).  

Studies which investigated the furthest distance of flanker from target at which an 

effect can be measured (Semenov et al., 2000, Jeon et al., 2010), have shown that 

contour interaction occurs over larger distances in children than in adults. This 

finding helps to explain differences in acuity between the two crowded letter tests 

used in our study. The LogMAR Crowded test which resulted in the poorest acuity 

has the closer inter-optotype separation (0.5 letter widths) and, therefore, more 

contour interaction than the Sonksen Test which has an inter-optotype spacing of 
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one letter width.  The mean difference of 0.07 logMAR between these two tests (in 

both age groups) is greater than the mean difference in visual acuity found in adults 

when the inter-letter separation is changed from 1.0 to 0.5 letter- widths (Shah et al., 

2010). Our finding thus supports the hypothesis that contour interaction has a 

greater effect (magnitude) in children than in adults. A surprising outcome was that 

the Crowded Kay Pictures Test resulted in significantly better mean acuity than the 

LogMAR Crowded Test, despite a similar inter-optotype spacing of 0.5 optotype 

widths. It is possible that the Kay Picture optotypes do not induce as much contour 

interaction as letters for the same inter-optotype separation, which may also explain 

previous results where Crowded Kay Pictures were found to be slightly easier than 

letter acuity tests (Elliott and Firth, 2007, Jones et al., 2003). The sizing of the Kay 

Picture optotypes was developed empirically to give an acuity equivalent to that of a 

Snellen chart (Kay, 1983). However, presumably because of their relative 

complexity or unfamiliarity, the Kay Picture optotypes are twice the size of the 

corresponding letter optotype at a given acuity level. As their spacing in the crowded 

test is a proportion of the optotype size, the angular separation between optotypes 

will be larger than in the letter tests in this study. If foveal contour interaction occurs 

within a fixed angular zone, as is argued by Siderov et al. (2013), the greater 

separation of the Kay picture optotypes in arc minutes could be a contributing factor 

to the reduced contour interaction in this test. Thus, a clinician using a picture test 

with 0.5 optotype-widths’ separation should not make the assumption that the 

contour interaction will be equivalent to a letter test with 0.5 letter-widths’ 

separation.  

 

One of the factors governing the extent to which optotypes induce contour 

interaction has been shown to be their similarity with the target optotype (Kooi et al., 

1994) and it could be that the Kay picture optotypes are dissimilar enough from 
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each other not to exhibit contour interaction in the same way as letter optotypes.  

Additionally, contour interaction is governed by the leading edge of a distracter 

(Flom, 1991, Takahashi, 1968) and in using pictures as optotypes, there will be 

variation in the shape of the edge of the picture; not all will have a strong leading 

edge, such as a vertical line. Contour interaction in picture optotypes was 

successfully demonstrated by Mayer and Gross (1990) who modified the Allen 

Pictures optotypes by adding distraction bars and demonstrated crowding in 

isolated, surrounded pictures. However, they used a separation between optotype 

and distracter of between 0.1 and 0.2 times the picture size, a closer separation 

than used in the Crowded Kay Pictures Test.   

 

2.4.6 Eye movements and age 

Based on recent evidence that there is no significant change in the extent of contour 

interaction across an age range similar to one we used (Jeon et al., 2010), the 

difference in mean acuity between the LogMAR Crowded Test and the Sonksen 

Test may be explained by contour interaction; however, an alternative explanation is 

needed for the age-related improvement in crowded line acuity. In the study by Jeon 

et al, recognition of the target did not require sequential fixation from one optotype 

to the next along a line (single optotypes were used) (Jeon et al., 2010). On this 

basis, the decrease in crowding found with the acuity tests in our study might be 

explained by the underlying development of more accurate gaze control in children 

and the development of fixational eye movements. There is some evidence from 

direct measurement of children’s eye movements that fixational stability is immature 

in young children (Kowler and Martins, 1982, Aring et al., 2007); however this does 

not constitute evidence that the retinal smear from poor fixation is the cause of 

reduced acuity.  Kothe and Regan (1990) proposed that failure of some normally 

sighted young children to achieve adult levels of line acuity may be attributable to a 
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delayed development of gaze selection rather than cognitive factors or contour 

interaction. Their evidence came from the finding that some 4-5 year olds had better 

acuity measured on a repeat letter chart, which minimizes the requirement for 

accurate gaze control, than on a Snellen chart.   

 

The influence of gaze control may provide another possible explanation for the 

relatively lower levels of crowding found using the Crowded Kay Pictures Test. The 

Kay picture optotypes by virtue of their relative size, subtend a greater angular 

extent for the same stated acuity than the letter charts. Therefore, Kay Pictures 

spaced at 0.5 inter-optotype separation will have twice the angular separation as 

letter optotypes measured in units of arc mins at the same acuity level. A young 

child reading a row of optotypes just above their threshold acuity and near their 

physiological limit of gaze control may find the picture test easier than the equivalent 

letter one because of the greater angular separation of the optotypes.  

 

2.4.7  Attention and age 

The findings of our study are consistent with the hypothesis that the reduction in 

crowding with age is attributable to either improving oculomotor control or to a 

maturation in cognitive or attentional factors. Whilst the contribution of attention to 

crowding has been shown to be less with foveal compared to peripheral viewing 

(Leat et al., 1999), the mechanisms of selective attention in children are thought to 

be less mature in children than in adults (Bondarko and Semenov, 2005). The 

behavioural response of children when faced with a recognition task near their 

threshold of acuity may also vary with age. When a test is perceived as being more 

difficult, a child may refuse to respond, whereas an adult may attempt the task 

thereby improving their score.  
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2.4.8  Possible truncation 

Despite ensuring that the optotype sizes of all of our tests extended to logMAR -0.3 

(6/3), a possible truncation effect may still have occurred. Where a smaller line 

(-0.4) was available in the Crowded Kay Pictures Test, some of the children 

achieved one or more optotypes of this size. Therefore it is possible that truncation 

of acuity could have occurred for some children with exceptionally good acuity. In 

those cases, in the tests where there may have been a truncation effect, the 

Sheridan Gardiner Test and the two Kay Pictures Tests, we re-analysed the data 

after assigning an additional two optotypes to any child who correctly named 1 or 

more optotypes on the lowest acuity level. Our re-analysed results of the linear 

regression still showed that the slopes of the two single optotype tests were not 

significantly different from zero, as depicted in Figure 2.3, whilst for all three 

crowded tests the slopes were significantly different from zero (p<0.05). ANOVA 

and post-hoc testing gave similar results to before, the only difference with the 

remodelled data being that in the younger children, acuity from the Crowded Kay 

Pictures Test was not significantly different to the Sonksen Test  (p= 0.10).  

Therefore, it was judged that any truncation effect present was small and does not 

alter our main findings and conclusions. 

 

2.4.9 Effect of inclusion of data from all participants 

Data from all participants were included in the study to look for a difference in 

crowding between the crowded tests. By normalizing data to the respective 

uncrowded test, the presence of a few participants with uncorrected refractive error 

did not matter. However, in the analysis of logMAR against age (Figure 2.5), a 

greater number of uncorrected myopes in the older group might have masked 

improvement in logMAR with age. The data were therefore remodelled with the 
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exclusion of any participants whose logMAR on the Sheridan Gardiner test was 0.15 

or worse. Five participants were excluded and the data were plotted in Figure 2.7 

and fit with linear regressions. The overall conclusion that crowded and uncrowded 

acuity do not develop in parallel still held, with a slower development of uncrowded 

than crowded acuity.
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Figure 2.7a.  LogMAR is plotted as a function of age in months for the 3 letter tests, with the exclusion of 5 participants: Sheridan Gardiner 
Test, SG, (closed symbols and solid line), Sonksen, S, (open squares and dashed line) and the logMAR Crowded Tests, LMC, (cross symbols 
and dotted line).  The straight lines represent linear regression fits to each data set (acuity test). For ease of viewing, data have been offset on 
the y-axis as follows: Sonksen shifted up by 0.2 logMAR and LMC shifted up by 0.4 logMAR 
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Figure 2.7b  LogMAR is plotted as a function of age in months for the 2 picture tests, with the exclusion of 5 participants: Single Kay Pictures 
Test, K, (closed symbols and solid line) and the Crowded Kay Pictures Test, CK, (open symbols and dotted line). The straight lines represent 
linear regression fits to each data set (acuity test). For ease of viewing, data from the CK test have been offset on the y axis by addition of 0.2 
logMAR. 
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2.4.10 Conclusions 

In conclusion, our results are consistent with the literature, showing that, in general, 

single, unflanked optotype tests, letter or picture, overestimate visual acuity 

compared to crowded acuity tests. However, crowding in the Crowded Kay Pictures 

Test is less robust than in letter optotype tests with a similar format, which may 

reduce sensitivity of the Crowded Kay Pictures Test compared to letter optotype 

tests particularly if used in older aged children. The results show poorer mean acuity 

using the crowded tests in the younger children and, given that less change in the 

single optotype acuity was shown across the age range, this indicates that in 

normally sighted children, there is still maturation of line acuity taking place between 

the ages of 4 and 10. This maturation is likely to be a result of an improvement in 

gaze control or a maturation of selective attention or cognitive factors.  As crowded 

tests are used to measure progress of amblyopia treatment, it is important to 

understand whether improvement in visual acuity over time is as a result of the 

treatment or merely because of an age-related reduction in crowding.  
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Chapter 3 

Test chart design considerations 

 

3.1.1 The need for custom-designed tests 

The results of the study described in Chapter 2 showed an age-related reduction in 

the magnitude of crowding with age. They also showed a greater crowding effect in 

the LogMAR Crowded Test than the Sonksen logMAR Test presumably because of 

the closer spacing of letters. Crowding was found to be less robust in the Crowded 

Kay Pictures Test, particularly in the older children, presumably because size and 

spacing of the optotypes is not the same as in the equivalent sized letter tests. 

 

A goal of this thesis is to disentangle the effects of contour interaction, eye 

movements and divided attention and their relative contributions to the overall 

crowding effect. This is important because the design and format of a crowded test 

will determine whether the ‘crowding’ is simple contour interaction with bars or a box 

surrounding a single target letter, or a crowding effect which includes an eye 

movement component, and/or divided attention (Flom, 1991, Atkinson, 1991). 

Maturation of these components of the crowding effect may have different 

timescales in children, so judgements regarding ‘normal crowded acuity’ at any 

particular age need to be underpinned by an understanding of how the chart 

features interact and contribute to the overall crowding effect. 

 

Using fixed, commercially available visual acuity tests limits the types of 

comparisons that can be made between different tests and can limit the ability to 

test more specific hypotheses. For example, the tests with single optotype 

presentation had no crowding features and the linear tests had both contour 
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interaction from neighbouring features as well as requiring fixation between 

optotypes. Moreover, the central letters in the line tests were flanked by the 

surround box top and bottom and by other optotypes on either side and the end 

optotypes by a box on 3 sides and an optotype on one side (see Figure 2.1). These 

issues did not allow us to separate 

• the effects of target-flanker separation in a single flanked optotype from a 

linear presentation and 

• the effect of using a bar or box vs other optotypes to crowd the target 

optotype. 

As a result of these types of limitation, a number of custom designed tests were 

created. These new test designs allowed the following to be varied independently: 

• contour interaction- by the presence and spacing of nearby contours  

• optotype presentation- single or linear 

• target-flanker similarity- use of bars or other letters as crowding features. 

This will enable the relative contributions of contour interaction, eye movements and 

attention to the overall crowding effect to be determined.  

 

3.1.2 Choice of optotype 

The Sloan letter set (Sloan, 1959) was chosen to create the custom letter tests. The 

Sloan letters are recognised as an alternative to the Landolt C for the specification 

of visual acuity standards (National Academy of Sciences-National Research 

Council Committee on Vision, 1980) and are commonly used in visual acuity testing 

and feature extensively in the literature, e.g. (Alexander et al., 1997, Raasch et al., 

1998, Ravikumar et al., 2003, Miller et al., 2001, Carkeet et al., 2008). The 10 letters 

in the set are C, D, H, K, N, O, R, S, V and Z and they are constructed in a 5x5 

format, with the height and the width of each letter 5x times the stroke width. 
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Individual relative legibility of each Sloan letter differs by no more than 12% from the 

mean relative legibility of the set (Sloan et al., 1952). 

 

3.2 Design of tests 

3.2.1 Extent of contour interaction 

To investigate simple contour interaction, test presentations were designed using 

single optotypes surrounded by 4 flanking bars at different optotype to flanker 

separations. The length and width of flanking bar used is discussed later in this 

chapter. The edge-to-edge target-flanker separations were 0.25, 0.5, 1.0 and 1.5x 

optotype size to encompass critical spacing found in other studies (Manny et al., 

1987, Flom et al., 1963b, Jeon et al., 2010, Semenov et al., 2000) (Figure 3.1).   

Although it is known from the literature that critical spacing is greater in children 

than adults (Jeon et al., 2010, Semenov et al., 2000, Matsumoto et al., 1999), its 

extent depends on experimental design and targets used, so the letter target with 

simple bar flankers at varying distances from the letter was included to evaluate the 

extent of contour interaction within the current study design. Visual acuity measured 

using unflanked letters was included to normalize subsequent results and minimize 

a potential confound between optotype size and letter-flanker spacing (Levi, 2008). 

The study was designed in the context of clinical visual acuity measurement, in 

which crowded visual acuity tests use crowding elements at a distance proportional 

to optotype size.  

 

A participant with poor gaze control may foveate one of the flanking bars rather than 

the letter, but as the flanking bar does not resemble any of the 10 Sloan letters, it is 

assumed that the participant will continue to look for the target letter. Thus, the main 

contribution to crowding is this target/flanker configuration is contour interaction. 
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Figure 3.1 Example presentations of a Sloan letter C with flanking bars at edge-to-
edge separations of 0.25, 0.5, 1.0 and 1.5 letter-widths. 

 

3.2.2 Effect of gaze control 

Commercially available crowded visual acuity tests present optotypes either singly 

or in linear format (Anstice and Thompson, 2014, Friendly, 1978).  In linear tests 

which display a single line of letters with a box surround, such as the logMAR 

Crowded Test or the Sonksen Test, any resultant crowding is presumably derived 

from a number of factors including the influence of adjacent neighbouring letters, the 

need to read the letters correctly from one to another and the influence of the 

surrounding box. In order to investigate the effect of linear presentation on 

crowding, without the confound of mixed flanking elements, a linear format test was 

produced which retained the crowding bars between letters. Edge-to-edge letter-

flanker separation was 0.5 letter widths, so in this presentation, the distance 

between neighbouring letters was 6 stroke widths (5 stroke widths plus the flanker 

thickness). For this and the other tests produced for the different experimental 

conditions, the edge to edge separation of letter and flanker was kept constant at 

0.5 letter-widths, a separation where contour interaction has previously been 

demonstrated in both adults and children (Semenov et al., 2000, Jeon et al., 2010, 

Manny et al., 1987, Flom et al., 1963b). This will enable the depth, or magnitude of 

crowding to be compared between conditions, based on a fixed contour interaction. 
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Figure 3.2 Example presentation of a display of 5 Sloan letters in linear format, with 
flanking bars. Letter-flanker separation is 0.5 letter-widths.  

 

3.2.3 Effect of attention (letter-flanker similarity) 

Atkinson (1991) showed more crowding in children’s foveal vision when letters 

rather than a box were used to crowd the target letter. Her results may be explained 

by an influence of attention which was more pronounced when letter flankers were 

used instead of a surrounding box.  In order to explore this effect more fully, test 

presentations were designed using letter instead of bar flankers, in both single and 

linear format (Figure 3.3). The letter flankers represent an increased attentional 

demand over the bar flankers because letter flankers are categorically similar to the 

target letters. The task for the first presentation is to name the middle letter only and 

in the second presentation, to read the middle line of letters from left to right. Only 

the central 5 letters are scored as the end letters are flanking letters. Because the 

task requires the participants to name the end letters of the linear presentation all 

letters on the middle line are Sloan letters. Non-Sloan letters are used for the other 

flanking letters.  

 

 

 

Figure 3.3 Example presentation of single and linear displays with letter flankers. 
Edge-to-edge separation of letters was 0.5 letter-widths.  
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Figure 3.4 shows examples of the custom designed tests with the contribution of each 
format to the overall crowding effect. Linear formats require sequential fixation from 
letter to letter, while letter flankers represent a greater attentional demand than bar 
flankers. 

 

3.3 Scoring 

The acuity range of the tests was logMAR 0.4 to logMAR -0.4, the smallest size 

being included to avoid truncation. For each level of acuity, 5 letters were scored in 

each test. In the single letter presentations, 5 different letters of the same size were 

shown consecutively.  A 0.05 logMAR progression between lines was adopted and 

letter by letter scoring used in order to increase sensitivity to differences between 

the tests (Arditi and Cagenello, 1993, Bailey et al., 1991). A score of 0.01 log unit 

was therefore assigned to each correctly named letter. Three out of 5 letters named 

correctly was chosen as the criterion for progressing. Carkeet (2001) compared 

Contour interaction 

Saccadic eye movements 

Mainly contour interaction 

Uncrowded 

Contour interaction 

Increased attentional demand 

Contour interaction 

Increased attentional demand 

Saccadic eye movements 
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variability of visual acuity measurement in logMAR charts using various termination 

rules and found the lowest standard deviation with termination after 4 errors. For 

this study, the disadvantage of increased testing time for the 4 errors criterion was 

judged to outweigh the possible advantage.  

 

A results spreadsheet was produced, whereby for each test, all the correct 

responses were displayed with the option for the examiner to either mark these as 

read correctly or to record the incorrect response. As the results were entered, an 

indication was given when the termination criterion had been reached and logMAR 

was calculated for each test. 

 

3.4 Other presentation formats considered 

Previous studies have deployed other strategies to separate the effects of gaze 

control from contour interaction. Repeat letter charts present the target letter 

multiple times in a square matrix, surrounded by several lines of assorted letters 

(Regan et al., 1992, Kothe and Regan, 1990). Use of repeat letter charts was 

considered for the current study as it excludes any disadvantage of poor fixation. 

Another possible strategy is Rapid Serial Visual Presentation (RSVP), where words 

or letters are presented individually at one place in the visual field, again eliminating 

the need for saccades (Gilbert, 1959). However, the single and linear formats 

described above more closely resemble test formats commonly used clinically and 

may more easily highlight the effect of test chart format in a clinical context. The 

chosen formats were able to answer the specific research questions posed. Use of 

an eye tracker was also considered to measure saccades and fixation directly, but 

the available instrumentation does not have sufficient accuracy to enable the 

saccades between letters at threshold size to be measured.  
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3.5  Production and display of tests 

The tests were produced using Adobe Illustrator CS5 (Adobe Systems 

Incorporated) and the Sloan font was downloaded (Pelli et al., 1988). The 

production of each test began with the 0.0 logMAR letter. The size of the letter was 

determined as follows: for a 6m viewing distance, each limb should subtend 1’ of arc 

and the letter should subtend 5’of arc. The height of the letter is therefore tan (5’) x 

6000 = 8.73mm. The viewing distance used was 4m, so the size of the 0.0 logMAR 

letter is 8.73 x 4/6 = 5.82mm. Figure 3.5 shows a screenshot of the Adobe Illustrator 

programme, where a Sloan letter R of height and width 5.82mm has been created. 

The stroke width is one fifth of the letter height. Subsequent features on the display 

can be accurately placed using a series of ‘guides’, shown in blue in Figures 3.6 and 

3.7. Any of the guides can be assigned as the origin and subsequent guides can be 

placed at a defined distance away, horizontally or vertically. Figure 3.6 shows an 

example of the Sloan letter ‘R’ with a horizontal guide placed along its top edge and 

assigned as the origin. Another guide, shown in darker blue has been positioned at 

half a letter width (2.91mm) above the origin to mark the position of lower edge of 

the top flanking bar. This value, in mm, can be specified to 2 decimal places. Figure 

3.7 shows the display with a Sloan letter and 4 flanking bars. Guides were removed 

when the display elements had been placed. 
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Figure 3.5 shows a screenshot of the Adobe Illustrator programme showing a Sloan letter ‘R’. The red oval indicates the font and size of the 
letter.  
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Figure 3.6 shows another screenshot of the Adobe Illustrator programme showing how an upper flanking bar can be placed accurately at a 
given distance from the letter. The darker blue guide has been placed a distance of 2.91 mm above the top of the letter. The red circle indicates 
the distance of the dark blue guide from the origin, which has been set as the top of the letter.  
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Figure 3.7 shows a screenshot of the Adobe Illustrator programme showing a Sloan letter ‘R’ with flaking bars placed half a letter-width from the 
edges of the letter. Blue lines are ‘guides’ which are not shown in the final display.  
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Having created the initial logMAR 0.0 display, 4 similar displays with different letters 

were produced and other sizes were created by magnification using an appropriate 

scaling factor. Other test configurations were created in the same way. A total of 8 

tests were produced, unflanked letters plus the configurations shown in Figures 3.1, 

3.2 and 3.3.  

 

Initially, the tests were printed in booklet form, with spiral binding. However, pilot 

trials with 2 adult subjects indicated that the total testing time for the 8 tests would 

be too long and certainly too long for young children. Another presentation solution 

was sought whereby the tests could be presented more rapidly. The iPad (Apple 

inc. Cupertino, California) has been shown to be an appropriate platform for visual 

acuity testing, as long as glare can be eliminated (Black et al., 2013). Initial trials 

with 2 adults and 2 children of my experimental tests displayed on an iPad proved to 

be successful in reducing testing time. A testing distance of 4m was chosen to 

minimize any possible increase in acuity from shorter testing distance (Lippmann, 

1971, Rozhkova et al., 2005). One researcher sat beside the participant, recording 

all responses, whilst another changed the iPad displays.   

 

3.6 Crowding bars- pilot study 

3.6.1 Background  

Most, if not all, crowded visual acuity tests use flanking bars such that the 

dimensions of the bars are in proportion to the height and stroke width of the 

optotypes that they surround, typically the same height and single stroke width of 

the optotype (e.g. 5 stroke widths in length and 1 stroke width in width). It is not 

clear how this configuration arose; however, it is likely that the seminal work on 

contour interaction by Flom and colleagues (Flom et al., 1963b) was a significant 



89 
 

influence. Nevertheless, such a configuration is almost ubiquitous in clinical studies 

using crowded visual acuity tests, for example, the surrounded HOTV letters in the 

Amblyopia Treatment Study (Holmes et al., 2001). An example of one of the 

optotypes used is shown in Figure 3.8.  

 

 

Figure 3.8 Appearance of a single surrounded HOTV letter from the Amblyopia 
Treatment Study, after Holmes et al. (2001). 

 

What is notable is that while the edge-to-edge letter-to-flanker separation is held 

constant, the interaction influence of the vertical flanking bars may be different to 

the influence of the horizontal flanking bars simply because the extent of the 

interaction may depend on the relative ‘contact’ of the respective edges. In an early 

study of contour interaction, Takashi showed that foveal contour interaction is 

governed by the leading edge of the next nearest contour (Takahashi, 1968). 

Therefore in order to be assured that the average length of contour adjacent to the 

target letter was the same when we use letter or bar flankers, the length of the 

flanking bars was equated to the average length of the edges of the Sloan letters. 

The average length of the flanking edge from the Sloan letters was calculated and 

found to be 3 stroke widths. In Figure 3.9a, below, the nearest edge of the letter Y to 



90 
 

the target letter C contributes one stroke width, the F, 5 stroke widths and so on. In 

Figure 3.9b, the C is surrounded by 4 bars, each 3 stroke widths in length. In this 

way, the length of contour near to the target letter was on average the same, 

regardless of whether the target letter was flanked by other letters or by bars of 3 

stroke widths in length. 

 

 

 

 

                            

 

Figure 3.9 the letter C surrounded by 4 letters and 4 flanking bars of length 3 stroke 
widths. 

 

Decreasing the size of the flanker would decrease its contrast energy (the product 

of the area and the squared contrast), so this may decrease the contour interaction 

(Pelli et al., 2004). Malania et al. (2007), in a Vernier alignment task with different 

lengths of flanking bars, showed strongest reduction in performance with flanking 

bars equal in length to the target bars, with both shorter and longer lines having less 

effect. In a peripheral vision crowding experiment using letters with bar flankers, 

Pelli et al found the size of the flanker had very little effect on the spatial extent of 

crowding (Pelli et al., 2004). However, in that study, the smallest flankers used were 

the same size as the target. 

  

 

a) b) 
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Figure 3.10 shows stimuli used by Leat et al. (1999) to measure contour interaction 
in foveal viewing. Significantly less crowding was found with the first configuration 
than with the others.  

 

Leat et al. (1999) measured logMAR with the stimuli shown in Figure 3.10 in foveal 

viewing. When unflanked logMAR was subtracted from crowded logMAR with each 

of these stimuli, there was significantly less contour interaction from the ‘I’ 

distractors in the leftmost configuration than all the others, which were not 

significantly different to each other. This evidence infers a possible contribution for 

the amount of ‘edge’ closest to the target in determining the contour interaction, 

although the distance of the horizontally placed ‘I’ distractor from the target appears 

to be further away than the edge of the other distractors. 

 

In view of the limited evidence as to the effect of reducing the size of the flanking 

bar next to a letter in foveal viewing, a pilot study was undertaken to ascertain if the 

depth of crowding was affected by reducing the length of the flanking bar. 

 

Substitution theories of crowding (see Chapter 1) argue that in the integration phase 

of object recognition, flankers present in the zone of integration can be 

inappropriately integrated with the target features, causing a mis-perception of the 

object. If such a mechanism operated in the fovea, a short, dot flanker, the same 

size as the gap in the Landolt C, should more greatly reduce recognition than if the 

target was a Sloan letter. Therefore in addition to reducing the length of the flanking 

bars we also included a short ‘dot’ flanker condition to address this hypothesis. 
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3.6.2 Purpose 

This pilot study had 2 specific aims: 

i. to test whether a square ‘dot’ flanker results in more crowding for a Landolt 

C than a Sloan letter target  

ii. to investigate the relative crowding resulting from differences in flanking bar 

lengths  

 

3.6.3 Methods 

Participants 

Three adult observers with normal or corrected to normal visual acuity participated 

in the experiment. The research followed the tenets of the Declaration of Helsinki 

and approval of the experimental protocol was obtained from Anglia Ruskin 

University Research Ethics Committee. Informed consent was obtained before the 

experiments were conducted and after the nature and consequences of the study 

were explained. 

 

Stimuli 

Stimuli were generated on a PC monitor using a commercially available programme 

(Test Chart 2000Pro; Thomson Software Solutions, Herts, UK). The monitor was 

viewed through an optical quality mirror, resulting in a testing distance of 10.5m. 

The screen resolution was 1024 x 768 pixels (refreshed at 100 Hz) with a 

background luminance of 100 cd/m2. Target stimuli were single flanked or unflanked 

black on white Landolt C optotypes or Sloan letters (including the letter C) 

presented at high contrast  (-99% Weber). When present, the 4 flanking bars 
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surrounding the optotypes were 1, 3 or 5 stroke widths in length and 1 stroke width 

wide, presented at the same polarity and contrast as the optotypes (Figure 3.11).   

           

  

 

 

   

 

     

 

Figure 3.11 Example presentations of a C target with ‘dot’ and bar flankers, for the 2 
conditions 

 

Procedures 

Participants viewed the targets monocularly with appropriate spectacle lenses in 

place and were required to name the Sloan letter or the orientation of the Landolt C 

(up, down, left or right) depending on the condition being tested.  The fellow eye 

was occluded. Participants were allowed unlimited viewing time. The percentage of 

correct responses was recorded for each run of 50 trials. For each participant, initial 

trials were carried out using unflanked optotypes (both Sloan and Landolt C) to find 

the size of optotype where performance was consistently between 80 and 95% 

correct. Data shown in the figures are the mean of runs of 50 trials averaged across 

participants.  

 

In the first condition, (i), performance as a function of flanker stroke length (1 or 5 

stroke widths in length) was investigated as a function of the edge-to-edge 

separation of flanker and optotype for each of the following separations: 10, 20, 40, 

(i) (ii) 
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60, and 100% of optotype size. Displays with the 5 values of separation were 

presented randomly. 

 

In the second condition (ii), performance as a function of flanker stroke length (3 

stroke widths in length) was investigated for an edge-to-edge separation of flanker 

and optotype of 20%, where maximum reduction in performance from (i) occurred. 

This second condition was tested for 2 of the participants.
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3.6.4 Results 

 

 
  

Figure 3.12 Percent correct responses as a function of edge-to-edge flanker-to- 
optotype separation, averaged across 3 participants, of Sloan letters (top panel) and 
Landolt C orientation (bottom panel) in the presence of dot (1 stroke width long) or 
bar (5 stroke widths long) flankers. U is unflanked. Error bars represent ±1 SE. 

 

For both letter and Landolt C targets, the bar flanker had little or no effect on 

performance at flanker to optotype separations of one letter width (100% 
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separation) and greater. Closer separations of letter and bar caused progressively 

poorer recognition up to the maximum effect (25% correct) at a separation of 20%. 

Performance improved slightly when the bar was closer than 1 stroke width (Figure 

3.12).  

 

The presence of the 1 stroke width flanking ‘dot’ reduced performance for both 

targets to a much lesser extent than the 5 stroke width bar flanker. Performance 

was unimpaired with the flanking dot at a distance of 60% or greater. Closer 

separations reduced performance slightly, but unlike the longer flanking bar 

conditions, there was no improvement in performance at the closest separation 

(Figure 3.12).  

 

 
Figure 3.13 Percent correct performance, averaged across 2 participants, for Sloan 
letters flanked by bars of length 1, 3 and 5 stroke widths. Error bars represent ±1 
SE. 

 

Figure 3.13 shows the effect of length of flanking bar on letter recognition for bars of 

length 1, 3 and 5 stroke widths. The 5 stroke width flanking bar resulted in the most 

reduced performance and the 1 stroke width ‘dot’ impaired performance the least; 

0

10

20

30

40

50

60

70

80

90

100

1 3 5

pe
rc

en
t c

or
re

ct

length of flanking bar (stroke widths)



97 
 

the 3 stroke width flanking bar fell between, but was closer to the 5 stroke widths 

bar.  

 

3.6.5 Conclusions 

In the first condition (i), percentage correct performance gradually reduced as the 

flanking bars were brought closer to the optotype, an effect consistent with previous 

reports describing contour interaction (Flom et al., 1963b). The position of the 

flanker which caused maximum interaction was similar to that found by Flom et al. 

(1963b). Both the magnitude and extent of contour interaction from the square ‘dot’ 

flanker on both targets was much less than the bar flanker. The effect of the ‘dot’ 

flanker on the Landolt C and Sloan letter targets was similar, so the hypothesis that 

the ‘dot’ may be substituted into the gap in the Landolt C was not proved for foveal 

viewing.  

 

In pilot experiment (ii), the effect of flanker bars of length 5, 3 and 1 stroke width on 

the recognition of Sloan letters was investigated. The magnitude of contour 

interaction increased with length of the flanking bar, possibly reflecting the greater 

contrast energy or longer edge of the larger flankers.  

 

Having demonstrated contour interaction with a bar of 3 stroke widths in length, it 

was decided to use flanking bars of this length in the experiments to follow. 
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Chapter 4 

Foveal crowding differs in children and adults 
 

 

 

4.1 Purpose 

Chapter 1, section 1.8, reviewed evidence from the literature that aspects of foveal 

crowding in children differ from that in adults. Foveal crowding in children displays a 

larger critical spacing than in adults, which becomes adult-like possibly as late as 

the early teen years (Jeon et al., 2010, Semenov et al., 2000), target-flanker 

similarity may have an effect on foveal crowding in children that is not present in 

adult foveal viewing (Atkinson, 1991), and linear presentation of optotypes requiring 

multiple fixations may produce poorer visual acuity in young children than single, 

similarly crowded optotypes due to an increase in fixational instability, or relatively 

poorer saccadic accuracy (Aring et al., 2007).  

 

The study described in Chapter 2 found that both spacing and type of optotype 

influenced crowding in children’s visual acuity measurement and that the magnitude 

of crowding decreased between the ages of 4 and 10. Closer spaced optotypes 

induce more contour interaction, which adds to the overall crowding effect, and 

could explain the difference in measured vision between 2 letter tests with different 

spacing. But there could be a number of reasons why the Crowded Kay Picture Test 

induced less crowding than the letter tests. Part of the explanation may lie in the 

larger angular spacing of optotypes: nearby optotypes or the surround box may be 

further towards the outside of the zone of contour interaction than in letter tests of 

the equivalent acuity level, or fewer fixation errors may be made by a child naming 
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more widely spaced optotypes in linear format. An alternative explanation could 

involve attentional factors such as target-flanker similarity. 

 

Chapter 3 described the development of custom-designed tests to allow crowding 

features to be varied independently. The aim of this chapter is to describe a study 

which uses these tests to determine the effects of foveal crowding on visual acuity 

in normally sighted children at various ages as a function of target-flanker 

separation, single versus linear presentation of optotypes and target-flanker 

similarity.   

 

The research questions are: 

3. What is the effect of spacing between a flanking bar and target letter on 

acuity in children and adults? 

4. What are the relative contributions of contour interaction, gaze control and 

attention on crowded acuity in children and adults? 

5. Can mis-naming errors point to any differences between reading behaviour 

of line charts in children and adults? 

 

4.2 Methods 

4.2.1 Participants 

Seventy five children were recruited from a local primary school in Cambridge, UK, 

and a control group of 27 adults was recruited from the local community. Written, 

informed consent was obtained from the children’s parents or guardians and from 

the adult participants and verbal assent from the children, after all the procedures 

were explained to them. Ethical approval for the study was obtained from the 

University Research Ethics Panel and the study followed the tenets of the 
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Declaration of Helsinki. All participants were screened and excluded from the study 

if any one of the following criteria were met: visual acuity worse than 6/9 Snellen 

chart; significant hyperopia, defined as visual acuity of 6/12 or better when viewing 

through a +2.00D lens; presence of strabismus on cover test or no stereopsis 

measured on the Lang II Stereotest (Lang-Stereotest, Küsnacht, Switzerland), and 

an inability to co-operate with the experimental protocol. Four children who failed 

the screening were referred to an optometrist for a full eye examination and 4 other 

children did not complete all of the tests. None of these children were included in 

the study. A further 5 children were not available on the test days. Therefore data 

from a total of 62 children were used in the study. 

 

For analysis, participants were grouped into 3 age bands, 4-6 years (32 participants, 

mean age 5yrs, 9 months), 7-9 years (30 participants, mean age 8 yrs, 7 months) 

and adults over 18 years (27 participants, mean age 25 yrs, 0 months). The number 

of participants in each group was sufficient to obtain a power of 80% at the 5% level 

(two tailed) for an effect size of 0.1 logMAR. 

 

4.2.2 Tests 

A series of letter tests was produced comprising single letters and lines of letters, 

with bar and letter flankers to create a number of conditions where the influence of 

contour interaction, eye movements and attention could be inferred (Table 4.1).  

The tests used the Sloan letter set, constructed in a 5x5 format, with the height and 

the width of each letter 5 times the stroke width. Individual relative legibility of each 

Sloan letter differs by no more than 12% from the mean relative legibility of the set 

(Sloan et al., 1952). The tests were produced using Adobe Illustrator CS5 (Adobe 

Systems Incorporated). Non-Sloan letters, except the letter I, were used as flanking 

letters and were constructed in the same way using the same software (Pelli et al., 
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1988). Sloan letters were not used as flankers in order that naming of the flanking 

letters was not an option in the 10AFC task. In the case of a flanking letter being 

named in error, the examiner directed the participant back to the target letters. In a 

later experiment, it was decided to use Sloan letter flankers as an additional 

condition, so that naming a letter above or below the intended letter (vertical errors) 

could be analysed.  

 

Tests were displayed, black letters on a white background, on an iPad 2 (Apple Inc. 

Cupertino, California) with a resolution of 1024-by-768 at 132 pixels per inch, so 1 

pixel subtended 0.17’ of arc at a test distance of 4m.  The iPad’s auto-brightness 

function was disabled and the brightness set to maximum. Background luminance of 

the display was 310 cd/m2, resulting in a letter Weber contrast of -99%.  

 

The acuity range of the tests was logMAR 0.4 to logMAR -0.4 in steps of 0.05 

logMAR and for each level of acuity, 5 letters were scored on each test. In the single 

letter presentations, 5 different letters of the same size were shown consecutively. 

Each set of  5 letters was selected to have a similar combined relative legibility of 

4.8 or 4.9 (Strong and Woo, 1985). Tests were constructed with edge-to-edge 

separations between flankers and optotypes ranging from 0.25 to 1.5 letter widths 

and including an unflanked condition (Table 4.1). The length of the bar flankers was 

0.6 times letter height, or 3 stroke widths, based on maintaining a constant average 

length of flanking edge nearest to the target.  A bar of this length was shown in 

Chapter 3 to impair the recognition of a letter target slightly less than a bar of 5 

stroke widths height. The line tests were constructed so that letters broadly 

composed of straight lines (e.g. H, N, V, K, Z) alternated with round shaped letters 

(O, D, C, S, R).   
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Table 4.1 Tests used in the study. Letters were presented in single (S) or linear 
(L) format with bar (B) or character (C) flankers. The edge-to-edge separation 
measured as a proportion of letter size is denoted by the subscript. The red line at 
the left edge of the linear chart denotes the side from which reading should begin. 

 

Test Letter target Flanker type Flanker 
spacing 

Example 
display 

S0 single no flanks  
 

SB0.25 single bars 0.25 
 

SB0.5 single bars 0.5 
 

SB1.0 single bars 

 

1.0  

 

SB1.5 single bars 

 

1.5  

 

LB0.5 linear bars 0.5 
 

SC0.5 single characters 0.5 
 

LC0.5 linear characters 0.5 
 

 

 

Table 4.1 shows the tests used in the study, with an example presentation of each. 

Baseline data using test S0 (unflanked logMAR), were used to normalise 

subsequent results to minimise any potential confound between letter size and inter-

letter spacing for different acuity sizes (Levi, 2008).  
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The following between test comparisons were made: 

1.  SB0.25, SB0.5, SB1.0 and SB1.5 to determine the magnitude and extent of contour 

interaction 

2. SB0.5  with LB0.5  and SC0.5 with LC0.5, to determine the effect of linear presentation, 

with controlled contour interaction 

3. SB0.5 with SC0.5 and LB0.5 with LC0.5 to determine the effect of letter rather than bar 

flankers (increased attention demand), with controlled contour interaction 

 

In LB0.5, the bar flanker in between letters was retained so that the next nearest 

contour to each letter would always be a bar at 0.5 letter widths separation from the 

target letter, as in SB0.5.  

 

 

4.2.3 Procedure 

 

Children were tested in a school classroom with lighting adequate for visual acuity 

testing (National Academy of Sciences-National Research Council Committee on 

Vision,1980),  approximately 100 lux. The experimental tests were viewed by the 

right eye of eligible participants and spectacles were worn if habitually used. 

Participants sat 4m from the iPad, which was mounted on a tripod stand directly in 

front of them in a position where reflections from the screen were not evident (Black 

et al., 2013). Participants held a card showing the ten Sloan letters. Where children 

were unable to name a letter, they pointed to it on the card. The 8 experimental 

tests, S0, SB0.25, SB0.5, SB1.0, SB1.5 LB0.5, SC0.5 and LC0.5 were shown in a random 

order, different for different individuals. Participants were allowed unlimited viewing 

time. Testing began using a letter size 0.1 logMAR larger than the acuity found from 

initial screening. Smaller letter sizes were presented in steps of 0.05 logMAR until 
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the termination point was reached, at which 3 or more letters of one size were 

named incorrectly. If any letters at the starting level were named incorrectly, the 

next largest size was presented until a size was found where all 5 responses were 

correct. When a participant was not sure of a letter, they were encouraged once to 

guess. For the single letter test with letter flankers, SC0.5, participants were asked to 

read the middle letter only.  For the line test with letter flankers, LC0.5, participants 

were asked to read all the letters on the middle row but only the central 5 letters 

were scored.  A red line on the left hand side of the two line tests LB0.5 and LC0.5 

indicated the side where reading should commence. Pointing at the letters by the 

examiner was not used under any test condition. 

 

All responses were recorded on a spreadsheet by the examiner and letter-by-letter 

scoring was used, such that a missed letter at any acuity level resulted in an 

increase to the score of 0.01 logMAR. For the line tests, LB0.5 and LC0.5, if a 

participant read the incorrect number of letters in a line, without indicating that they 

were leaving one out, the responses were recorded in the order and position they 

were read. The procedure for testing the adults was the same as for children except 

testing was carried out in our laboratory with equivalent illumination. For comparison 

adult participants also had their visual acuity measured using an internally 

illuminated ETDRS chart (Precision Vision Inc, La Salle, IL) (Ferris et al., 1982).  

 

4.2.4 Data Analysis 

Data were analysed using a repeated measures ANOVA with a Greenhouse-

Geisser correction for violation of sphericity applied, when necessary (Keppel, 

1982). Post-hoc analyses with Tukey HSD correction were also performed as 

required (Statistica StatSoft, Ltd, Tulsa). Letter naming errors were also analysed in 
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the two line tests, LB0.5 and LC0.5 to investigate any difference in pattern between 

the age groups and tests. Errors were defined as either ‘adjacent’ if the response 

letter was adjacent horizontally to the target letter (either left or right), or ‘random’ if 

any other letter was named. In the line test with bar flankers, LB0.5, errors pertaining 

to just the central 3 letters were analysed, as the end letters only had one possible 

adjacent option. In the line test with letter flankers, LC0.5, errors pertaining to the 

central 5 letters were analysed. Two analyses were carried out. The first one looked 

for a difference in proportion of adjacent and random errors between the two line 

tests and the second looked for a difference in the proportion of right and left errors. 

Chi square tests were performed to assess statistical significance. 

 

4.3 Results 

Mean unflanked acuity was better than 6/6 (logMAR 0.0) in all 3 age groups (Figure 

4.1). There was no significant difference in acuity in the adults between the ETDRS 

chart and our single letter test with bars at one letter-width from the target (SB1.0), 

p=0.66, indicating that potential reflections from the iPad did not interfere with the 

acuity measurements (Black et al., 2013). Mean unflanked logMAR was 0.07 worse 

in the younger children (4-6yrs) than in the older children (7-9 yrs) (p<0.05) and 0.1 

worse in the younger children than the adults (p<0.01).  

 

4.3.1 Extent of foveal contour interaction 

Figure 4.1 plots logMAR using the single letter flanked tests (SB 0.25-1.5) as a function 

of letter and flanker separation for the younger children (diamonds and dotted line); 

older children (squares and dashed line) and adults (triangles and solid line).  For 

each of the age groups, maximum contour interaction occurs at the nearest letter-

flanker separation (0.25 letter widths). For all groups, and consistent with previous 
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results, (Jeon et al., 2010, Semenov et al., 2000, Fern and Manny, 1986, Manny et 

al., 1987), logMAR improves as letter-flanker separation increases.   

 

 

 

Figure 4.1 shows logMAR plotted as a function of target and flanker separation for 
the single letter flanked tests for the 3 age groups; younger children (4-6 yrs): 
diamond symbols, dotted line; older children (7-9 yrs): square symbols, dashed line 
and adults: triangle symbols, solid line.  The horizontal dotted line shows logMAR 0, 
or 6/6. Error bars represent ±1 SE. 

 

A separate one-way ANOVA (repeated measures) comparing logMAR as a function 

of letter-flanker separation was performed for each age group and showed a 

significant effect of separation in each: 4-6 yrs F(4,124)=84.7, p<0.001; 7-9 yrs 

F(4,120)=96.2, p<0.001, adults F(4,104)=73.1, p<0.001. Post-hoc testing (Tukey 

test) showed that unflanked logMAR was not significantly different to the widest 

letter-flanker separation of 1.5 in both groups of children: 4-6 yrs p=0.066, 7-9 year 

olds p=0.668, indicating no contour interaction at this separation. For all other letter-

flanker separations, contour interaction was evident as the logMAR was significantly 

greater than the unflanked condition (4-6 year olds p<0.001, 7-9 year olds p=0.001). 
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In contrast, the adults’ results showed that unflanked logMAR was not significantly 

different to the flanked conditions for the 1.5 (p=1.0) and 1.0 letter-flanker (p=0.096) 

conditions, consistent with previous results of the extent of foveal contour interaction 

in adults (Simmers et al., 1999, Flom et al., 1963b). This shows the extent of 

contour interaction to be less in adults than in children. 

 

 

 

 

Figure 4.2 shows mean, normalized logMAR plotted as a function of target and 
flanker separation for the single letter flanked tests for the 3 age groups; younger 
children (4-6 yrs): diamond symbols, dotted line; older children (7-9 yrs): square 
symbols, dashed line and adults: triangle symbols, solid line. Error bars represent 
±1 SE. 

 

The data from the single letter tests with bar flankers (SB0.25-1.5) were normalized to 

the uncrowded condition S0 (Figure 4.2). On average, the depth of crowding for the 

single letter, bar surround condition was significantly greater in the younger children 

(4-6 yrs) than in the adults (p<0.05). There was no significant difference between 
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the depth of crowding on average between either the older children and the younger 

children (p=0.3) or the older children and the adults (p=0.5). 

 

4.3.2 Effect of flanker type and single versus linear letter targets  

 

 

Figure 4.3 shows mean logMAR for each group, normalized to the unflanked acuity, 
for the four crowding conditions: single letter with bar or letter flankers and line of 
letters with line or letter flankers.  Dotted bars show younger children (4-6 yrs), 
cross-hatched bars show older children (7-9 yrs), and solid bars show adults. Edge-
to-edge target-flanker separation was 0.5 letter-widths. Error bars represent ±1 SE. 

 

A 3 (age) by 4 (tests) ANOVA (repeated measures) yielded a significant main effect 

of age F(2,87)=18 (p<0.001), a significant main effect of test F(2.76, 240.6)= 22.38 

(p<0.001), and a significant interaction between age and test  F(5.53,240.6)=13, 

p<0.001. Crowding varied across tests in the two groups of children, but not in the 

adults, for whom there was no significant difference in logMAR across the tests. 
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Further analysis of the interaction showed that similar to the adult group, the group 

of older children (7-9 yrs) showed no significant difference in logMAR between the 

single letter tests with bar or letter flankers, SB0.5 or SC0.5 or the line of letters with 

bar flankers, LB0.5. However, a significant difference in logMAR was found for the 

most complex test, the line test with letter flankers, LC0.5 (p<0.001), with acuity 

around 0.05 logMAR poorer in this test than in the other 3 tests. 

 

The younger children (4-6 yrs), in the single letter condition, showed more crowding 

(0.05 logMAR) with letter flankers (SC0.5) than bar flankers (SB0.5), p<0.001. They 

also showed more crowding (0.05 logMAR) in the linear test with bar flankers (LB0.5) 

than in the single letter test with bar flankers (SB0.5), p=0.003. These results show 

that using letter rather than bar flankers and using a linear rather than single 

optotype presentation both present a similar level of increased crowding for the 

younger children. In addition, for the linear test with letter flankers (LC0.5), there is a 

further increased level of crowding, resulting in a mean worsening of visual acuity of 

0.12 logMAR compared to the single letter with bar flankers (SB0.5), p<0.001. 
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4.3.3 Error analysis 

 

Figure 4.4 shows the relative percentages of the different error types in the line 
tests, LB0.5 and LC0.5 for the three age groups. Light grey shading shows random 
errors, dark shading shows adjacent left errors and diagonally striped shading 
shows adjacent right errors. Error bars represent ±1 SE. 

 

 

Figure 4.4 shows the relative percentages of the different error types in the line tests 

LB0.5 and LC0.5 for the three age groups. Light grey shading shows random errors, 

dark shading shows adjacent left errors and diagonally striped shading shows 

adjacent right errors.  

 

Two error analyses were conducted comparing LB0.5 and LC0.5. As expected, most 

of the errors made were random errors. The first analysis compared the proportion 

of adjacent and random errors between the two line tests. On average, more 

adjacent errors were made in the test with letter flankers (LC0.5), compared to the 

test with bar flankers (LB0.5), (χ2=14.0, p<0.001).  
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The second analysis examined the frequency of right and left adjacent errors in the 

line tests. In the line test with bar flankers, LB0.5, the numbers of right and left errors 

were not different (χ2=2.22, p=0.329). However, when letter flankers were used 

(LC0.5), there were more right than left errors in each age group and the proportion 

of right: left increased with age (χ2=46.09, p <0.001). 

 

4.4 Discussion 

4.4.1 Summary of results 

We used a series of custom designed visual acuity tests to infer the relative 

influence of target-flanker distance, linear versus single presentation and target-

flanker similarity on visual acuity (logMAR) in children and adults. Unflanked acuity 

was on average, better than logMAR 0.0 (6/6) in each of the 3 groups although a 

developmental trend was evident. Averaged unflanked acuity was worse in the 4-6 

year old group than in the 7-9 year olds and adults, consistent with reports that have 

showed maturation of unflanked acuity between 4 and 6 years of age (Leat et al., 

2009, Simons, 1983).  The slightly poorer acuity in the youngest age group may 

reflect continuing development of the retinal mosaic (Yuodelis and Hendrickson, 

1986). In our study reported in Chapter 2 (Norgett and Siderov, 2011), we found no 

change in unflanked acuity in a different sample of children, but over the same age 

range, which may reflect a sampling issue in the age bands used, or the greater 

variance in the 7-9 year olds in our previous study as a result of different inclusion 

criteria.   
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4.4.2 Extent of contour interaction 

Consistent with previous reports (Semenov et al., 2000, Jeon et al., 2010, Bondarko 

and Semenov, 2005), contour interaction was greater in extent in both groups of 

children than in the adults. On average, our results suggest that the age at which 

the critical spacing becomes adult-like is at least beyond 9 years. Although retinal 

changes are potentially ongoing in the younger children (Yuodelis and Hendrickson, 

1986, Simons, 1983), the larger zone of contour interaction we observed in both 

groups of children probably reflects underlying cortical rather than retinal 

development, as crowding is known to reflect cortical processes (Flom et al., 1963a, 

Pelli, 2008). Kozma showed that integration of contours is probably mediated by 

long-range neuronal connections and that visual spatial integration is still developing 

between 5 and 14 years of age (Kozma et al., 2001). In addition, Huttenlocher et al. 

(1982) showed changes in synaptic density in the cortex which continued until 

around 11 years. Such results support the notion of ongoing visual maturation 

contributing to the development of crowding. 

 

4.4.3 Magnitude of contour interaction 

In the normalized single letter bar surround condition (SB0.5-1.5), we found the depth 

(or magnitude) of contour interaction, on average, to be larger in the children than 

the adults (see Figure 4.2). This difference, albeit small, was significant between the 

youngest children (4-6 yrs) and the adults, showing recognition of letters in the 

presence of flanking bars at a particular distance to be impaired more in young 

children than in adults. Similar to section 4.4.2, this finding infers that the 

mechanism governing contour interaction is not fully mature in younger children- 

that some tuning of inhibitory interaction zones, or focussing of spatial attention is 

still taking place.  
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4.4.4 Effect of Attention 

Our findings support the view that in young children, crowded visual acuity is 

determined not only by the resolution potential of the eye and by the distance of 

nearby objects to the target, but also by the attention demand in disregarding the 

nearby objects in favour of the target.  

 

Comparing single letters flanked by letters, (SC0.5), to single letters flanked by bars, 

(SB0.5), observers were required to preferentially process the target letter whilst 

ignoring the flanking letters; the young children (4-6 yrs) had more difficulty ignoring 

the letter flankers than bar flankers at the same distance from the target (SB0.5), 

resulting in a logMAR reduction of 0.05, or half a line of letters. The letter flankers 

were categorically similar to the target, so selecting the target letter and ignoring the 

flanking letters represents a greater demand on attention than naming a letter with 

bar flankers.  This stronger crowding where there is more similarity of the target and 

flankers is consistent with the results of Atkinson (1991), and is similar to findings in 

the adult periphery (Leat et al., 1999, Kooi et al., 1994, Zhang et al., 2009, Nazir, 

1992, Bernard and Chung, 2011), but not in adult foveal viewing (Leat et al., 1999, 

Atkinson, 1991, Song et al., 2014) . 

 

Theories of visual attention propose competition for processing of information in the 

visual system where there is limited capacity, a ‘bottom up’ mechanism, coupled 

with a ‘top-down’ selection of the target (Desimone and Duncan, 1995). Studies 

which explore the development of visual attention show children to be less efficient 

at allocating attentional resources than adults rendering them less able to ignore 

task irrelevant stimuli (Enns and Akhtar, 1989, Pastò and Burack, 1997). 
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A recent study using a tracking paradigm with a target and distractors at varying 

distances showed that young children were able to process relevant information in 

the presence of competing stimuli as effectively as adults, until the separation of 

target and nearby objects became small (Wolf and Pfeiffer, 2014). It was shown that 

the spatial extent of this ‘attentional focus’ decreased significantly between 7 and 9 

years, but was not yet mature at 13 years.  

 

4.4.5 Letter strings- effect of eye movements 

These results show that in the youngest children (4-6 yrs), recognising a string of 5 

letters with surrounding bar contours (LB0.5) is harder than similarly flanked single 

letters (SB0.5), resulting in a logMAR reduction of 0.05, or half a  line of letters. At 

this age, children are learning to read, but are not sufficiently practised to have 

reached their maximum reading speeds (Curtis, 1980, Aghababian and Nazir, 

2000), so development of line acuity could be linked to learned patterns of reading. 

Unpractised readers could make less accurate saccades, or poor fixation could lead 

to loss of positional information. Beginning readers have also been shown to make 

more ‘regressions’ or re-fixations when reading (Rayner and Duffy, 1986). This 

behaviour could contribute to the younger children losing their place when reading 

along the line tests in our study. Even in adults, Popple and Levi (2005) showed that 

compared to widely spaced letters, crowded letters lead not only to recognition 

errors, but also to loss of position information in the periphery. A similar mechanism 

may operate to a lesser extent in foveal viewing in children. Furthermore, looking at 

a line of letters rather than a single, flanked letter represents more information in the 

respective cortical receptive field, so poorer performance in children may also be as 

a result of divided visual attention.  
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In older children (7-9 yrs), neither linear presentation nor increased letter-flanker 

similarity alone was sufficient to make mean, normalized logMAR different from 

adults. However, in the linear test with letter flankers, LC0.5, the resulting increased 

crowding caused logMAR for this test to be significantly poorer than the mean adult 

logMAR. We suggest that, reading along the line of letters, the letter flankers 

caused more difficulty than the bar flankers in children because of the requirement 

for accurate eye movements and the increased attention demand, described above. 

 

It is difficult to separate visual attention and eye movements as they are very closely 

linked (Flom, 1991, Hoffman and Subramaniam, 1995). Nevertheless, our analysis of 

errors made when reporting the letters, showed that when bar flankers are used, the 

resulting naming errors have a similar pattern across the age groups causing a 

combination of common letter confusions, and random guessing. However, when 

letter flankers are used, more adjacent errors occurred, suggesting that participants 

were at times losing their place as they read the line of letters. Furthermore, the way 

in which participants lost their place in the line changed with age. In adults, the 

majority of the adjacent errors were ‘right’ errors, caused presumably by omitting a 

letter on reading from left to right. In the younger children, although there were more 

‘right’ than ‘left’ errors, the proportion of right: left errors was lower, suggesting that 

the younger children were also getting lost on reading the line, but as well as missing 

letters they also made re-fixations in the right to left, or backwards direction. We infer 

that this is evidence in support of an immature control of gaze in the younger children, 

as previously suggested (Kothe and Regan, 1990). Although the nearest contour to 

the letter being read was the same in both line tests (LB0.5 and LC0.5), the centre-to-

centre separation of letters was less in the test with letter flankers (LC0.5), putting a 

greater demand on accurate fixation of the letters near threshold. Of the two 

differences in the line tests: the inter-letter separation and the flanker type (letter or 
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bar), we consider the flanker type to be the more significant.  The difference in 

logMAR between SC0.5  and SB0.5 - using letter rather than bar flankers found in the 

single letter condition (0.05 logMAR) accounts for most of the difference observed 

between the 2 linear tests, LC0.5  and LB0.5  (0.07 logMAR). 

 

 An alternative explanation for errors in the line tests could be that the participants 

became muddled in the stage of rehearsing the letters mentally after visualizing 

them and before speaking them. We do not consider this explanation to be the 

primary cause of errors, as participants were given unlimited time to read the lines 

of letters and there was no requirement to look at all five letters before naming 

them.  

 

The ability to subitize, or know the number of objects in an array without counting 

them, increases throughout childhood (Halberda and Feigenson, 2008). This may 

be linked to a child’s ability to accurately read longer strings of letters; a child may 

struggle to find their place if they are unsure how many letters are in the line they 

are reading.  In the linear test with letter flankers (LC0.5), seven letters were read, 

whilst in the linear test with bar flankers (LB0.5), only 5 letters were read. This 

difference gives more opportunity for placement errors in the 7 letter test.  

 

4.4.6  Conclusions 

These results show a greater extent of contour interaction in children than adults, 

which is still not mature by 9 years of age. Two other factors are also likely to 

contribute to the overall crowding effect in children younger than 7: the greater 

attention demand of increased letter-flanker similarity and the more precise eye 
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movement control required to read a string of letters. The data suggest that both 

attention and eye movement factors mature individually by around 7 years of age, 

but can have a cumulative effect which extends beyond age 7. These results have 

implications for the design and use of visual acuity tests for screening of vision in 

young children. 
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Chapter 5 

Effect of crowding on the slope of the psychometric function 

 

5.1 Purpose 

 

The repeatability of a visual acuity test will describe its ability to detect a change in 

visual acuity between measurements, a metric important to detecting ocular 

pathology, monitoring the success of interventions, monitoring visual development 

and in determining the number of subjects needed in clinical trials in eye care 

(Hazel and Elliott, 2002, Reeves et al., 1987, Gordon et al., 1998). The repeatability 

of visual acuity measurements is influenced by a number of factors including relative 

legibility of optotypes, test chart design, scale increment and scoring criteria and  

may be expected to be greater where there is a smaller confidence interval for the 

obtained threshold e.g. where more letters are used to define the threshold. (Bailey 

et al., 1991, Raasch et al., 1998, Carkeet, 2001). Letter-by-letter scoring with a 

smaller scale-increment increases a test’s sensitivity to reliably detect smaller 

degrees of change (Bailey et al., 1991). Furthermore, repeatability has been found 

to decrease in the presence of optical blur (Rosser et al., 2004, Carkeet et al., 

2001). 

 

Repeatability of a visual acuity test is often described by the 95% confidence limits 

of the test-retest variability, TRV (Rosser et al., 2004). This is the range of acuity in 

which there is 95% certainty that 2 measurements made from the same individual in 

the absence of any change will lie. The TRV is calculated as 1.96 x the standard 
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deviation of the difference between test and retest data (Rosser et al., 2004, Bland 

and Altman, 1986).    

 

Table 5.1 summarizes studies which report 95% ranges of TRV for the ETDRS 

chart, Bailey-Lovie, or similar charts. There are a number of methodological 

variations between studies which have been proposed to explain the variability in 

TRV range, including the length of time between repeated measures, use of multiple 

examiners, the presence of ocular pathology, amblyopia or uncorrected refractive 

error and number and age of participants (Rosser et al., 2003, Reeves et al., 1993).  

 

Table 5.1 shows previous published ranges for 95% test-retest variation (TRV) with 
the ETDRS or Bailey-Lovie charts. Unless otherwise stated, best corrected VA was 
measured. 

 

Study Chart Participants TRV 
(logMAR) 

Arditi and Cagenello 
(1993) 

 

ETDRS Adults with normal 
vision 

±0.09 

Bailey et al. (1991) 

 

ETDRS Adults with normal 
vision 

±0.10 

Beck et al. (2003) ETDRS Children and adults 
with normal vision and 
pathology 

±0.14 

 

Laidlaw et al. (2008) ETDRS Adults with normal 
vision and pathology 

 

±0.12 

 

 

Amblyopic children ±0.12 

Manny et al. (2003) ETDRS Children with normal 
vision 

±0.15 
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Rosser et al. (2001) 

 

ETDRS Adults with pathology ±0.18 

Rosser et al. (2003) ETDRS Adults with normal 
vision  

±0.11 

Vanden Bosch and 
Wall (1997)  

ETDRS Adults with pathology ±0.07 

Hazel and Elliott 
(2002)  

ETDRS Adults with normal 
vision 

±0.14 

Bailey-Lovie ±0.12 

Lovie‐Kitchin (1988)  Bailey-Lovie Children and adults 
with normal vision 

±0.16 

Reeves et al. (1993) 

 

Bailey-Lovie Adults with normal or 
moderately reduced 
vision 

±0.19 

Kheterpal et al. 
(1996) 

LogMAR chart Children with            RE 
reduced vision          LE 
uncorrected 

±0.21  
±0.25 

Siderov and Tiu 
(1999) 

LogMAR chart Adults normal vision, 
corrected and 
uncorrected vision 

±0.15 

Elliott and Sheridan 
(1988) 

Ferris logMAR Adults with normal 
vision 

±0.07 

Adults with cataract ±0.09 

 

 

The highest TRV range in Table 5.1 is from the study of Kheterpal et al. (1996), 

where the participants were children with reduced vision, whose visual acuity was 

measured without correction. Despite the findings of that study, the evidence of 

others does not support a general assertion that children’s visual acuity 

measurements are less repeatable than adults (Manny et al., 2003, Beck et al., 

2003, Laidlaw et al., 2008).  
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Some of the lower TRV ranges are seen in studies of adults with normal vision 

(Bailey et al., 1991, Hazel and Elliott, 2002, Rosser et al., 2003), and  Beck et al. 

(2003)  found slightly greater variability in participants with poorer vision compared 

to the group with better vision. Reeves et al. (1987) made the suggestion that 

studies where participants have good vision may show less variability because 

variability is constrained if vision is within 2 lines from the end of the chart, although 

that does not account for the low values of TRV in cataract patients obtained by 

Elliott and Sheridan (1988).  

 

Of interest in this thesis is whether variability is less in visual acuity tests with a 

more crowded format.  Table 5.2 summarizes studies which report 95% ranges of 

TRV for logMAR visual acuity tests with a format other than that of the ETDRS 

chart.  Comparison between these studies is difficult for the same reasons as are 

outlined above for Table 5.1.  The 2 formats with most crowding in Table 5.2 are the 

logMAR Crowded Test (McGraw et al., 2000) and the COMPlog system (Laidlaw et 

al., 2008), which both have a line of letters with 0.5 letter-widths separation and a 

surround box at the same separation. These both have comparatively low values of 

TRV, but a similar TRV is reported for the Lea Symbols chart (Chen et al., 2006) 

which has wider separation. Also, the study which compares TRV in several chart 

formats (Laidlaw et al., 2008) found the same TRV range in amblyopic children with 

the ETDRS chart and the COMPlog system, with closer spacing. Lovie‐Kitchin 

(1988) found a higher TRV in the Snellen chart (±0.26) than the Bailey-Lovie chart 

(±0.16). One of the possible explanations here could be the greater consistency of 

crowding in the Bailey-Lovie chart. So, there is some indication that repeatability of 

visual acuity measurements is lower in more crowded tests, but the evidence is not 

conclusive. 
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Table 5.2 shows previous published ranges for 95% test-retest variation (TRV) for 
logMAR test formats other than those of the ETDRS or Bailey-Lovie Tests. Unless 
otherwise stated, best corrected VA was measured. 

 

Study Test format Inter-
optotype 

separation 

(edge-to-
edge) 

Surround 
box-to- 
letter 

separation 

Participants TRV 

McGraw 
et al. 

(2000) 

LogMAR 
Crowded 

Line of 4 letters 
in a box 

0.5 0.5 Children with 
normal, 

uncorrected 
vision 

±0.10 

 

Laidlaw et 
al. (2008) 

COMPlog 

Line of 5 letters 
in a box 

0.5 0.5 Amblyopic 
children 

±0.12 

 

Adults with 
normal vision 
and pathology 

±0.10 

 

eETDRS 

single letter in 
a box 

 0.5 Adults with 
normal vision 
and pathology 

±0.16 

Beck et 
al. (2003) 

eETDRS 

single letter in 
a box 

 0.5 Children and 
adults with 
normal vision 
and pathology 

±0.14 

 

Bourne et 
al. (2003) 

Reduced 
logMAR (RLM) 
E chart- 3 ‘E’ 
optotypes/line 

1.0 0.5 Adults with 
pathology 

±0.15 

Chen et 
al. (2006) 

Lea symbols in 
ETDRS-style 
chart 

1.0 none Normal and 
amblyopic 
children 

±0.10 

 

Laidlaw et 
al. (2003) 

Compact 
Reduced 
logMAR 
(cRLM) chart 
with 3 
letters/line 

0.5 none Amblyopic 
children 

±0.17 

Rosser et 
al. (2001) 

Reduced 
logMAR (RLM) 

chart with 3 
letters/line 

1.0 0.5 Adults with 
pathology 

±0.24 
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5.1.1  The psychometric function 

In measuring visual acuity on a letter chart, there will usually be several lines where 

the participant is able to read some letters, but not others. This reflects the fact that 

visual acuity is not a sharp step function. Fluctuations in the optical and 

neurophysiological systems cause the relation between the percent correct 

performance in naming a letter and the letter size to vary around the threshold 

(Carkeet et al., 2001, Tinning and Bentzon, 1986, Wichmann and Hill, 2001).  This 

relationship can be plotted as a sigmoid curve, known as the psychometric function 

(Figure 5.1). Two statistical parameters are of interest: the threshold acuity and the 

slope of the function. The threshold acuity is the point on the horizontal axis which 

corresponds to the value on the vertical axis which lies halfway between 100% 

correct and the level of random guessing.  

 

Figure 5.1 Example of a psychometric function, representing performance as 
percent correct responses plotted against logMAR. The straight line shows 
threshold estimation for a 5 AFC task, where the guess rate is 20%.  

 

The steepness of the slope of the psychometric function shows how the percentage 

of correct responses increases with increasing letter size. In a visual acuity test, if 

correct and incorrect responses are spread over a large number of acuity levels, the 

derived psychometric function will have a shallow slope and less confidence can be 

placed in the accuracy of the threshold (Horner et al., 1985). Take 2 hypothetical 



124 
 

visual acuity tests, test A and test B. Because of their different design features, the 

psychometric function derived from test A has a steep slope, whereas that from test 

B has a shallow slope. In reading chart A, a given variation in performance by the 

patient will cause a small change in the measured logMAR, whereas the same 

variation in performance in chart B will cause a greater change in logMAR. On 

average, then, the SE of estimate for acuity thresholds should be smaller for the 

chart that produces the steeper psychometric function and the repeatability of the 

measurements using that chart (which can be predicted from the SE) should be 

better (McKee et al., 1985). Figure 5.2 helps visualize how a given change in 

response corresponds to a smaller difference in logMAR where the slope is steeper 

(in the right panel) than shallower (in the left panel).   

 

Figure 5.2 shows examples of 2 psychometric functions with different slopes; the 
function in the right panel has a steeper slope than that in the left panel. The shaded 
area shows how, when the slope is steeper, a given change in response 
corresponds to a smaller difference in logMAR.  

 

Slopes of psychometric functions have been found to be fairly constant over wide 

ranges of acuity levels, but tend to be shallower when uncorrected astigmatism, or 

amblyopia are present (Horner et al., 1985, Prince and Fry, 1956, Davidson and 

Eskridge, 1977). Psychometric functions for individual Sloan letters have been 
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published by Raasch et al. (1998) Alexander et al. (1997) and Plainis et al. (2007). 

(Alexander et al., 1997) derived psychometric functions for Sloan letters of different 

sizes by varying the contrast. They found that slopes are steeper for large letters 

than small ones. Further, the slopes of individual letters cross each other, showing 

that relative difficulty of letters within the set changes with letter size (Alexander et 

al., 1997, Raasch et al., 1998). Improved repeatability has been found where a 

smaller increment between lines is used, e.g. 0.05 logMAR rather than 0.1 logMAR 

i.e. using a finer scale of measurement (Arditi and Cagenello, 1993), or by doubling 

the number of letters used per line (Raasch et al., 1998). Carkeet et al. (2001) used 

frequency-of-seeing data to calculate probit size under different conditions of optical 

blur and found greater reliability under conditions of optical focus than defocus. The 

authors also recommended letter-by-letter scoring, particularly in cases of optical 

defocus where the psychometric function slope is shallower. 

 

It has been shown that crowding affects the measured threshold (Chapters 2 and 4). 

So here I am interested in whether crowding also influences the slope of the 

psychometric function. The research question is: 

What is the effect of crowding on the psychometric functions derived from 

visual acuity measurements in adults and children? 

In reading down a letter chart, performance declines as threshold is approached. 

Where the derived psychometric function of a chart has a steep slope, performance 

on reading down the chart will decline more rapidly than in a chart where the 

derived psychometric function has a shallow slope. The rate of decline of 

performance should differ between crowded and uncrowded conditions. It may be 

that in the crowded conditions, the difficulty caused by the crowding features in 

addition to decreasing optotype size would cause a more rapid decline in 

performance than if resolution were the only variable. This leads to the hypothesis 
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that more crowding causes a steeper slope. An alternative hypothesis may be that 

the crowding features serve to increase the variability of response at more supra-

threshold acuity levels than in the uncrowded conditions. This would have the effect 

of a slower decline in performance and a shallower slope. While it is acknowledged 

that there are differences in steepness of slope in psychometric functions derived 

from different individuals (Bach, 2006), the purpose here was to look for mean 

differences in average slope across several crowding conditions. 

 

5.2 Methods 

5.2.1 Tests and participants 

I analysed data from some of the tests in Chapter 4: S0 (isolated letters), SB0.5 

(single letters with flanking bars at 0.5 optotype separation) and LC0.5 (line of letters 

with letter flankers at 0.5 optotype separation), see Table 5.3 and Chapter 4, section 

4.2.2 for more detail. The two crowded tests were chosen as the tests with the 

simplest and most complex crowding features, representing the extremes of the 

crowded conditions. Only data from the adults (27 participants) and the younger 

children (32 participants) were included in the analysis as results from the older 

children tended to fall between the older and younger groups and would therefore 

not add to the outcomes.  
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Table 5.3 Tests used in this analysis. For more detail, see section 4.2.2 

 

 

5.2.2 Procedure  

The procedure has been described previously (Chapter 4, section 4.2.3). Briefly, the 

visual acuity tests were presented on an iPad in a random order and participants 

were asked to report the letters seen. Viewing was monocular with unlimited viewing 

time. The acuity range of the tests was logMAR 0.4 to logMAR -0.4 in steps of 0.05 

logMAR and for each level of acuity, 5 letters were scored on each test. In the single 

letter presentations, S0 and SB0.5, 5 different letters of the same size were shown 

consecutively. Testing began using a letter size 0.1 logMAR larger than the acuity 

found from initial screening. Smaller letter sizes were presented in steps of 0.05 

logMAR until the termination point was reached, i.e. when 3 or more letters of one 

size were named incorrectly. If any letters at the starting level were named 

incorrectly, the next largest size was presented until a size was found where all 5 

responses were correct. When a participant was not sure of a letter, they were 

encouraged once to guess. For the line test with letter flankers, LC0.5, participants 

were asked to read all the letters on the middle row but only the central 5 letters 

Test Description of crowding Example presentation 

 

S0 

 

uncrowded 

 

 

SB0.5 

 

bar flankers 

 

 

 

 

LC0.5 

 

letter flankers and  

linear presentation 
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were scored. Pointing at the letters by the examiner was not used under any test 

condition. 

 

5.2.3 Data analysis 

For each participant, the number of correct responses (0-5) was recorded for each 

acuity level, from the supra-threshold level at which testing began, to the termination 

point, where 3 or more letters were named incorrectly. Data were pooled across 

participants to build up psychometric functions for each test. Stimulus size data 

were normalized to each participant’s threshold on that chart (Raasch et al., 1998). 

In this way, letter size was adjusted according to each participant’s threshold for that 

test. Threshold values were taken from the letter-by-letter scoring method, not from 

the psychometric functions subsequently plotted. A ‘scaled size’ value was 

calculated by subtracting each participant’s threshold logMAR acuity from the 

logMAR presented. Thus the scaled size at the participant’s acuity level was zero 

and each subsequent larger line was 0.05 larger than the previous size. The scaled 

size of the line lower than the participant’s acuity was -0.05, the next -0.1 etc. Table 

5.4 shows an example of data from 3 participants. Thus, rather than plotting 

individual slopes for each participant, data were pooled across participants and the 

psychometric functions were determined from the pooled data set. 

 

 

 

 

 

 



129 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4 (overleaf) shows data from 3 participants from one of the tests. The top 
panel shows the number of letters named correctly for each acuity level shown. The 
scaled size is calculated by subtracting the participant’s threshold logMAR from the 
logMAR presented. The bottom left panel shows collation of data across 
participants. Only one level was included with all 5 letters seen. The bottom right 
panel shows percent correct and scaled size for the 3 participants (i.e. the first and 
third columns from the bottom left panel), sorted by value of percent correct. These 
data were then combined with those from the remaining participants in the group, 
plotted and fit with a Weibull function.  
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presented participant 1 participant 2 participant 3 
 logMar number 

correct 
scaled 
size 

number 
correct 

scaled 
size  

number 
correct 

scaled 
size 

       
0.30 5 0.30 5 0.52 5 0.28 
0.25 5 0.25 5 0.47 5 0.23 
0.20 5 0.20 5 0.42 5 0.18 
0.15 5 0.15 5 0.37 3 0.13 
0.10 5 0.10 5 0.32 3 0.08 
0.05 5 0.05 5 0.27 4 0.03 
0.00 3 0.00 5 0.22 4 -0.02 

-0.05 2 -0.05 5 0.17 3 -0.07 
-0.10   4 0.12 1 -0.12 
-0.15   4 0.07   
-0.20   3 0.02   
-0.25   4 -0.03   
-0.30   2 -0.08   
-0.35       
-0.40       

threshold 
logMAR 

0.00  -0.22  0.02  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

percent 
correct 

scaled 
size 

100 0.05 
100 0.17 
100 0.18 
80 0.12 
80 0.07 
80 -0.03 
80 0.03 
80 -0.02 
60 0.00 
60 0.02 
60 0.13 
60 0.08 
60 -0.07 
40 -0.05 
40 -0.08 
20 -0.12 

participant percent 
correct 

number 
correct 

scaled 
size 

     
1 100 5 0.05 
 60 3 0.00 
 40 2 -0.05 
    

2 100 5 0.17 
 80 4 0.12 
 80 4 0.07 
 60 3 0.02 
 80 4 -0.03 
 40 2 -0.08 
    

3 100 5 0.18 
 60 3 0.13 
 60 3 0.08 
 80 4 0.03 
 80 4 -0.02 
 60 3 -0.07 
 20 1 -0.12 
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Results were combined for all participants within a group, although for each 

participant, only 1 level was included with all 5 letters seen so as not to include a 

large amount of supra-threshold data. The number of letters correct was converted 

to a percent correct and plotted against scaled size. Scaled logMAR was averaged 

for each of the 5 percent correct points (20%, 40%, 60%, 80% and 100%) and the 

data were entered into Igor Pro Software (Wavemetrics, Lake Oswego, Oregon, 

USA) and fitted with a Weibull function (Pelli et al., 1988) defined as: 

p=1-(1-g) exp[-10b(x-t)] 

 

where  p is the percent correct for a given letter size, x, in logMAR units, g is the 

percentage of correct responses equal to 1/n, where n is the number of letters used, 

i.e.10 and b and t represent the slope and threshold (approx. 60%) respectively. 

Data from each of the 2 age groups and 3 charts were processed in this way. 
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5.3 Results  

Figure 5.3 shows the averaged data and respective Weibull fits. For ease of 

viewing, the fitted lines are shown separated horizontally by the difference in mean 

logMAR between the relevant charts for the age groups (Table 5.5). 

 

Table 5.5 shows mean logMAR (and SE) for the 2 age groups and 3 tests in this 
analysis.  

 

 

age 

 

S0 

 

SB0.5 

 

 

LC0.5 

 
4-6 -0.09 

(0.02) 
 

0.03 

(0.01) 

 
 

0.14 

(0.04) 

adults -0.18 

(0.02) 

-0.10 
(0.01) 

-0.11 

(0.01) 
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Figure 5.3 (previous page) shows percent correct plotted against mean scaled 
logMAR for the 3 letter tests in the children (top panel) and adults (bottom panel). 
The curves represent the fitted Weibull functions: red shows the unflanked 
condition; green, the single letter with bar surrounds; blue, the line of letters with 
letter surround. For clarity, the curves have been shifted horizontally by the 
difference in mean logMAR between the relevant charts for the age groups. Error 
bars represent ±1SE. 

 

 

 

 

Figure 5.4 compares the slopes of the psychometric functions for the 3 tests in 
adults and children. Error bars represent ±1SE.  
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Table 5.6 shows the slopes of the psychometric functions ±1 SD 

  

S0 

 

 

SB0.5 

 

 

LC0.5 

 

children 6.6±1.3 9.3±1.9 10.8±2.4 

adults 6.2±1.4 7.1±1.4 9.3±2.6 

 

In both age groups, the slopes of the functions increase with increasing crowding 

features (Table 5.4 and Figures 5.2 and 5.3). Student’s t-tests were performed 

comparing the slopes of the psychometric functions across the 3 crowding 

conditions and 2 age groups (Soper, 2014), using the Bonferroni correction. There 

were significant differences between all the 3 slopes for the children and the adult 

groups (p<0.001) (Tables 5.5 and 5.6). In comparing adults to children, the 

differences in slopes were significant in the 2 crowded conditions (p<0.001), but not 

in the unflanked condition. 

 

Table 5.7 shows results of t-tests of inter-test comparisons of the slopes of the 
psychometric functions for the 3 tests in children and adults. Using the Bonferroni 
correction, significance becomes 0.05/n =0.006 

 

Tests children adults 

Uncrowded vs single bar t=15.64 

p<0.001 

t=4.97 

p<0.001 

Single bar vs line letters t=5.18 

p<0.001 

t=7.64 

p<0.001 

Line letters vs uncrowded t=15.88 

p<0.001 

t=10.83 

p<0.001 

 



136 
 

 

Table 5.8 shows results of t-tests comparing the slopes of the psychometric 
functions for adults and children for the 3 tests. Using the Bonferroni correction, 
significance becomes 0.05/n =0.006 

 

Children vs adults 

Uncrowded t=2.69     p=0.008     NS 

Single bar t=11.67   p<0.001 

Line letters t=4.10    p<0.001 

 

 

5.4 Discussion 

Psychometric functions describing percentage of correct responses as a function of 

letter size were determined in 2 groups of participants, young children and adults, 

using 3 different visual acuity tests with various levels of crowding. Slopes were 

comparable to published data. Alexander et al. (1997) plotted Weibull functions of 

percent correct vs logMAR for the Sloan letter set. Mean values for the slopes of 

single Sloan letters were in the range of 6.8-10 for 3 participants. 

 

5.4.1 Comparison of tests 

In both the young children and adult groups, psychometric functions became 

steeper as more crowding features were introduced to the tests. In the crowded 

tests, the slopes were steeper in the sample of children than the adults, probably 

reflecting greater crowding in children of this age than in adults (Atkinson et al., 

1988, Atkinson and Braddick, 1982). In the adults, the 2 crowded tests had similar 

thresholds (mean logMAR), yet the linear test had a steeper slope. On the basis that 
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a steeper slope may infer better repeatability, these findings would suggest that due 

to the crowding, the linear test should have better repeatability (smaller TRV). 

 

Raasch et al. (1998) studied repeatability of visual acuity measurements with 3 

different letter separation conditions, 0.8x, 1.0x and 1.25x letter width and found no 

difference in test-retest discrepancy. This would not be expected under our 

hypothesis that more crowding leads to better repeatability, but it is likely that any 

increase in crowding due to changes in letter separation were too small for the adult 

subjects in Raasch’s study, where the smallest spacing was greater than our 

separation (0.5x letter width). 

 

Despite the plethora of studies showing repeatability of visual acuity tests, no 

published studies were found which compared the slopes of psychometric functions 

between visual acuity tests, although some support for our finding was found in a 

conference abstract (Reich and Hoyt, 2002). In several studies (Greenwood et al., 

2009, Parkes et al., 2001), psychometric functions were plotted, the slopes of which 

became shallower in crowded conditions compared to uncrowded. In these studies, 

size of the target was not varied and the effect of flankers was to cause increased 

uncertainty.  In our study, a reduction in size of the targets caused a reduction in 

performance towards the limit of resolution, which was confounded with closer 

flanking elements, so a different result might be expected from a study in which size 

was not a variable. We found that crowded targets caused an increased level of 

difficulty in addition to resolution as the letters became smaller, thus causing 

performance to deteriorate more quickly than with uncrowded targets.  
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5.4.2 Comparison of age groups 

The slopes of the psychometric functions were steeper for the children than the 

adults and these findings were statistically significant for the 2 crowded tests. These 

results appear to be inconsistent with those of Jeon et al. (2010), who used a boot-

strapping technique to create frequency of seeing curves for single letter acuity in 

children and adults. They found a shallower slope in the measurements from the 

youngest children (aged 5) than in those from the older children and adults. In the 

current study, there was no significant difference in the slopes between young 

children and adults in the unflanked condition. As commented previously (section 

2.5.4), the mean visual acuity was worse for the 5 year olds in the study by Jeon et 

al than in our youngest group, possibly reflecting a more difficult visual task in their 

study and consequently, more variable responses. 

 

The current findings of steeper slopes in children than adults in the crowded tests 

but not the uncrowded test provides indirect evidence that crowding is the factor 

which is causing the slopes to be steeper in young children. We know that there is a 

greater depth of crowding in young children than adults in the configurations tested 

here (Chapter 4).  

 

5.4.3 Conclusions 

This study provides new evidence regarding the effect of crowding on the slopes of 

the psychometric functions underlying visual acuity measurements. Average group 

data shows that slopes become significantly steeper with increasing crowding 

features for both young children and adults with normal vision. Slopes for individual 

subjects were not measured. The slopes were steeper for the group of young 

children than the adults, probably reflecting the greater crowding in the young 
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children. Based on the argument that a steeper slope will reduce the variability of 

repeated measurements, it may be possible to infer from these results that the test-

retest repeatability of visual acuity measurements could be enhanced through the 

use of more crowded visual acuity tests in clinical practice. However, a conclusion 

cannot be drawn without a further study to measure repeatability directly between 

crowded and uncrowded tests in children and adults.  
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Chapter 6 
 

Foveal crowding in strabismic and mixed strabismic-
anisometropic amblyopes 

 

6.1 Purpose 

 

As described in Chapter 1, crowding which does not scale with acuity is found in 

some amblyopic eyes (Stuart and Burian, 1962, Flom et al., 1963b, Levi and Klein, 

1985). This elevated crowding could be as a result of abnormal contour interaction, 

deficits in gaze control or attention or a combination of these (Asper et al., 2000). In 

anisometropic amblyopia, contour interaction is thought to scale with unflanked 

acuity, whereas in strabismic amblyopia, disproportionate contour interaction may 

be expected (Hess et al., 2001, Levi et al., 2002a, Bonneh et al., 2004, Hariharan et 

al., 2005). Abnormal gaze control may reduce acuity in line charts, or reading long 

strings of letters, where accurate fixation is required (Regan et al., 1992, Giaschi et 

al., 1993, Bedell et al., 2015). Attention deficits have been found in amblyopic 

observers in studies involving tracking paradigms (Ho et al., 2006, Secen et al., 

2011, Huurneman and Boonstra, 2015) and enumeration of objects in an array 

(Sharma et al., 2000) or presented in rapid succession (Popple and Levi, 2008). In 

normally sighted adults, attention is not thought to contribute to foveal crowding 

(Atkinson, 1991, Norgett and Siderov, 2014, Leat et al., 1999), but in amblyopic 

adults, it is possible that these higher level attention deficits could influence the 

ability to select the target from distractor in a static visual acuity test. 

 

Here, visual acuity was measured in both eyes of amblyopic adults using some of 

the custom designed tests from Chapter 4 to look for the relative contributions of 

contour interaction, gaze control and attention to the overall crowding effect. 
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Amblyopic children were not recruited to avoid the confound between 

developmental changes in crowding and abnormal crowding due to amblyopia. 

 

The research questions are: 

1.  What are the relative contributions of contour interaction, gaze control and 

attention on crowded acuity in adults with strabismic or mixed 

strabismic/anisometropic amblyopia? 

2. Can mis-naming errors explain any differences between results of crowded 

visual acuity tests in the amblyopic and fellow eyes of participants with 

strabismic or mixed strabismic/anisometropic amblyopia? 

 

6.2  Methods 

6.2.2 Participants 

Adult participants with amblyopia were recruited from the local community. 

Amblyopia was defined as at least 2 lines difference in visual acuity between the 2 

eyes in the absence of structural abnormality of the eye or visual pathway. 

Anisometropia was defined as greater than 1D difference between the eyes in the 

most anisometropic meridian with no manifest ocular deviation or history of surgery. 

All participants underwent a detailed assessment prior to testing with the 

experimental tests, including fundus check, refraction, logMAR acuity (Thompson 

logMAR chart, Thomson Software Solutions, Hatfield, Hertfordshire, UK), stereopsis 

using the Lang II Stereotest (Lang-Stereotest, Küsnacht, Switzerland) and cover 

test for distance and near fixation. Any heterophoria or heterotropia found was 

measured by prism cover test. History of previous treatment was also recorded. 

Clinical details of the participants are given in Table 6.1. Written, informed consent 

was obtained from all participants after all the procedures were explained to them.  
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Ethical approval for the study was obtained from the University Research Ethics 

Panel and the study followed the tenets of the Declaration of Helsinki. 

 

Five participants with strabismic amblyopia and 6 participants with mixed 

strabismic/anisometropic amblyopia were recruited, but it proved difficult to recruit 

participants with pure anisometropic amblyopia; only 2 were recruited. The number 

of participants with strabismic amblyopia or mixed strabismic/anisometropic 

amblyopia was sufficient to obtain a power of 80% at the 5% level (one tailed) for an 

effect size of 0.15 logMAR. 
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Table 6.1 shows participant clinical details. Esot: esotropia; exot: exotropia; hypot: 
hypotropia; hypert: hypertropia; micro: presumed mictrotropia - no movement 
detected on cover test; ^: prism dioptres 

 

  

Initial Age/ 
gender 

Eye/type Surgery/ 
patching 

Alignment Stere-
opsis 

Refractive error logMAR 

KW 56/F R strab No/Yes Micro 600” R +2.50 
L +2.50/-0.50 x 90 

 0.62 
-0.14 

FD 39/F R strab Yes/Yes Micro 
 

200” R -1.00/-1.00 x 180 
L -0.50/-0.75 x 140 

 0.44 
-0.08 

MP 40/M L strab No/ Yes 8^ esot none R +0.50/-0.50 x 
170 
L plano 

-0.20 
 

 0.80 
BS 75/F R strab No/Yes 12^ esot none R +2.50/-0.25 x 

110 
L +2.25/-0.25 x 70 

 0.36 
 0.10 

JP 62/M L strab No /Yes 3^ esot 
2^ hypot 

none R +2.00/-1.25 x 
170 
L +1.75 

 0.00 
 0.56 

JB 61/F R strab/ 
mixed 

Yes/Yes 5^ esot none R +3.75/-0.50 x 80 
L +1.00/-1.25 x 95 

 0.60 
 0.00 

PD 49/F L strab/ 
mixed 

No/No 4^ esot none R -2.50/-1.00 x 160 
L +0.75/ -0.50 x 10 

-0.08 
 0.44 

PG 69/M L strab/ 
mixed 

Yes/Yes 6^ esot none R plano/-1.25 x 80 
L +2.50/-1.25 x 10 

 0.02 
 0.66 

LM 23/F R strab/ 
mixed 

Yes/Yes 40^ accom 
esot 
Micro with 
Rx 

none R +7.00/-2.00 x 40 
L +6.50/-0.50 x 140 

 0.10 
-0.10 

TW 43/M R strab/ 
mixed 

Yes/Yes 4^ R hypot 
and 10^ 
esot 

none R +1.50 
L plano 

  0.92 
  0.02 

MOL 37/F L strab/ 
mixed 

No/Yes 24^ accom 
esot. 
Micro with 
Rx 

none R +5.00/-3.50 x157 
L +6.50/-5.00 x 20 

  0.20 
  0.78 

MR 62/M aniso No/No 3^ esop 200” R +4.50/-1.50 x 85 
L +5.50/-1.25 x 110 

-0.1 
   0.34 

HK 21/F aniso No/Yes ortho 1200” R +0.50 
L +1.25/-0.25 x 105 

-0.04 
 0.28 
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6.2.2 Tests 

The letter tests, SB0.5, SC0.5, LB0.5 and LC0.5 from Chapter 4 were used with an 

additional 3 tests (Table 6.2). It was recognized in Chapter 4 that although there 

were 5 scored letters in each of the 2 linear tests, the task in LC0.5 was to read 7 

letters and only 5 in LB0.5.  An additional test, LB7 was created in the same way as 

LB0.5, with 7 Sloan letters rather than 5, although only the central 5 are scored. This 

enabled comparison between flanker types in linear tests with 7 letters. In addition, 

2 tests were created in the same way as SC0.5 and LC0.5, but with the use of Sloan 

letter flankers rather than non-Sloan letters- SCsl and LCsl. This was to allow further 

error analyses because when non-Sloan flankers were used, the 10 AFC procedure 

did not allow for non-Sloan letter responses. As all the tests in this chapter have the 

same edge-to-edge separation of letters and flankers of 0.5 letter widths, the 

subscript 0.5 will no longer be used.  
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Table 6.2. shows the tests used in the study, with an example presentation of each. 
Letters were presented in single (S) or linear (L) format with bar (B) or character (C) 
flankers. The edge-to-edge separation was 0.5 letter widths in each of the crowded 
tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Letters were constructed in a 5x5 format, with the height and the width of each letter 

5 times the stroke width and each test was produced using Adobe Illustrator CS5 

(Adobe Systems Incorporated) as previously described (Chapter 4, section 4.2.2). 

Tests were displayed on an Apple iMac 21.5 inch screen (Apple Inc. Cupertino, 

California) with a resolution of 1920x1080 at 102.46 pixels per inch, so 1 pixel 

subtended 0.2’ of arc at a test distance of 4m. Background luminance of the display 

was 266 cd/m2, resulting in a letter Weber contrast of -92%. The acuity range of the 

tests was logMAR 0.6 to logMAR -0.4 in steps of 0.05 logMAR and for each acuity 

Test Sloan letter 
target 

Flanker type Example 
display 

S0 single no flanks 
 

SB single bars 
 

 
LB 

linear 
5 letters 

 

bars 
 

 

 
LB7 

 
linear 

7 letters 
 

 
bars 

 

 
SC 

 
single 

  
non-Sloan 
characters 

 
 

SCsl 
 

single 
 

Sloan 
characters 

 
 

LC 
 

linear 
 

non- Sloan 
characters 

 
 

LCsl 
 

linear 
 

Sloan 
characters 
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level, 5 letters were scored in each test. In the single letter presentations, 5 different 

letters of the same size were shown consecutively.  Edge-to-edge spacing between 

letters and flankers was 0.5 letter widths for all tests. 

 

6.2.3 Procedure 

Testing was carried out in a room with lighting adequate for visual acuity testing 

(National Academy of Sciences-National Research Council Committee on 

Vision,1980),  approximately 100 lux. Following refraction and screening tests, the 

experimental tests were viewed by each eye of eligible participants wearing best 

corrective lenses. For each participant, the non-amblyopic eye was tested first. 

Participants sat 4m from the screen and held a card showing the ten Sloan letters. A 

4m testing distance was chosen to maximize the size of the largest letter size within 

the confines of the screen size and test room. The 8 experimental tests were shown 

in a random order, different for different individuals and participants were allowed 

unlimited viewing time. Testing began using a letter size 0.1 logMAR larger than the 

acuity measured following refraction. Smaller letter sizes were presented in steps of 

0.05 logMAR until the termination point was reached, at which 3 or more letters of 

one size were named incorrectly. If any letters at the starting level were named 

incorrectly, the next largest size was presented until a size was found where all 5 

responses were correct. Where the logMAR 0.6 letters were not all read correctly at 

4m, viewing distance was decreased to 2m, with the participant’s refractive 

correction and the logMAR score adjusted appropriately. For the single letter tests 

with letter flankers, (SC and SCsl), participants were asked to read the middle letter 

only.  For the line tests, (LC and LCsl), participants were asked to read all the letters 

on the middle row but only the central 5 letters were scored.  For the 7 letter line 

with bar flankers, LB7, again, only the central 5 letters were scored. When a 

participant was not sure of a letter, they were encouraged once to guess, or in tests 
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SC or LC, if they named a non-Sloan letter, they were directed to retry from the 

Sloan letter set. Pointing at the letters by the examiner was not used under any test 

condition. 

 

All responses were recorded on a spreadsheet by the examiner and letter-by-letter 

scoring was used. For the line tests, if a participant read the incorrect number of 

letters in a line, without indicating that they were leaving one out, the responses 

were recorded in the order and position they were read. Baseline data using test S0 

(unflanked logMAR), were used to normalise subsequent results to minimise any 

potential confound between letter size and inter-letter spacing for different acuity 

sizes (Levi, 2008).  

 

6.2.4 Data analysis 

Data were analysed using paired t-tests and repeated measures ANOVA with a 

Greenhouse-Geisser correction for violation of sphericity applied (Keppel, 1982). 

Thus, an increase in Type I errors is avoided where the differences across tests are 

not the same for each of the age groups. Post-hoc analyses with Tukey HSD 

correction were performed as required (Statistica StatSoft, Ltd, Tulsa). Letter 

naming errors were also analysed in the two line tests, LB and LC and in the single 

letter test, SCsl, to investigate any difference in pattern between tests and 

amblyopic or fellow eyes. Errors were defined as either ‘adjacent’ if the response 

letter was adjacent horizontally to the target letter (either left or right, top or bottom), 

or ‘random’ if any other letter was named. In the line tests with bar flankers, LB and 

LB7, errors pertaining to just the central 3 or 5 letters respectively were analysed, as 

the end letters only had one possible adjacent option. In the line tests with letter 

flankers, LC and LCsl, errors pertaining to the central 5 letters were analysed. Four 
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analyses were carried out. The first one examined whether the adjacent errors in 

the line tests LB, LB7 and LC were anything other than random;  the second 

examined the frequency of right and left adjacent errors in the line tests LB and LC; 

the third examined whether the adjacent errors in the single letter test, SCsl were 

anything other than random and the fourth looked for a difference in frequency of 

adjacent and random errors between amblyopic and fellow eyes in SCsl. Chi square 

tests were performed to assess statistical significance. 

 

6.3 Results 

6.3.1  Individual participants 

Figure 6.1 shows logMAR in each of the crowded tests for the individual participants 

with strabismic or mixed strabismic/anisometropic amblyopia, normalized to the 

unflanked acuity. Visual acuity in the amblyopic eye, as shown from the initial 

screening is displayed in the top right hand side of each panel in order of increasing 

depth of amblyopia. In this data set, a general trend towards an increase in 

crowding with depth of amblyopia is evident.  
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Figure 6.1 (previous page) shows logMAR for the amblyopic (dotted bars) and 
fellow (black bars) eyes for each of 11 strabismic and mixed 
strabismic/anisometropic adults, normalized to the uncrowded logMAR for each of 
the crowded conditions. LogMAR in the amblyopic eye as derived from initial 
screening is shown in the top right corner. An example of each display is shown in 
the key below Figure 6.3. 

 

 

Figure 6.2  shows logMAR for the amblyopic (dotted bars) and fellow (black bars) 
eyes for each of 2 anisometropic adults, normalized to the uncrowded logMAR for 
each of the crowded conditions. LogMAR in the amblyopic eye as derived from 
initial screening is shown in the top right corner. An example of each display is 
shown in the key below Figure 6.3. 

 

Figure 6.2 shows normalized logMAR in each of the crowded tests for each of the 2 

participants with anisometropic amblyopia. Neither of these participants showed 

crowding in their amblyopic eye in any of the crowded conditions. There is evidence 

in the literature that with high contrast, letter or letter-like stimuli in foveal viewing, 

the crowding in the amblyopic eye of anisometropic amblyopic observers scales 

with acuity (Bonneh et al., 2004, Greenwood et al., 2012, Song et al., 2014). The 

analysis was therefore conducted only on the strabismic/ mixed 

strabismic/anisometropic group. 
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6.3.2 Strabismic and mixed strabismic/anisometropic amblyopes  

For the participants in this group, mean logMAR was better than 0.00 (6/6) in their 

non-amblyopic eye in all the tests. Before normalizing the results,  paired t-tests 

were performed to look for a difference between the uncrowded condition, S0 , and 

the single letter condition with bar flankers, SB. There was a significant difference 

between these 2 tests for both amblyopic and fellow eyes, p<0.05, showing an 

effect of contour interaction in each. When logMAR was normalized to the unflanked 

condition, there was no significant difference between amblyopic and fellow eyes in 

SB, p=0.43, showing no additional contour interaction in the amblyopic eyes than 

the fellow eyes in this condition.
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Figure 6.3 shows mean logMAR for the amblyopic (dotted bars) and fellow (black 
bars) eyes of 11 strabismic and mixed strabismic/anisometropic amblyopic adults, 
normalized to the uncrowded logMAR for each of the crowded conditions. An 
example of each display is shown in the key below the chart. Edge-to-edge target-
flanker separation is 0.5 letter-widths in each test. Error bars represent ±1SE.  

Table 6.3 shows mean, normalized logMAR (and SE) for the 7 crowded conditions 
for the fellow and amblyopic eyes of the strabismic participants.  

 SB LB LB7 SC SCsl LC LCsl 

Fellow 
eyes 

0.05 
(0.02) 

0.05 
(0.02) 

0.03 
(0.02) 

0.04 
(0.03) 

0.05 
(0.02) 

0.05 
(0.02) 

0.07 
(0.02) 

 
Amblyopic 
eyes 

0.09 
(0.03) 

0.27 
(0.07) 

0.35 
(0.09) 

0.24 
(0.06) 

0.29 
(0.07) 

0.43 
(0.10) 

0.42 
(0.09) 

 
 

Figure 6.3 and Table 6.3 show mean, normalized logMAR across the crowding 

conditions for amblyopic and fellow eyes. A one-way repeated measures ANOVA for 

 

 

 

 

 

 

 

SB                LB         LB7                     SC        SCsl          LC                LCsl 
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the group of amblyopic eyes yielded a significant main effect of test F(2.18, 21.84) = 

13.23, p<0.001. Post-hoc analysis (Tukey test) showed mean, normalized logMAR 

in the amblyopic eyes in SB to be different to all the other tests p<0.05. Mean, 

normalized logMAR in the amblyopic eyes in LC was also different to all the other 

tests, apart from LCsl. There was no difference in mean normalized logMAR in the 

non-amblyopic eyes across the tests F(2.50, 24.97)=0.52,  p=0.67. 

 

6.3.3 Effect of single vs linear presentation 

In the amblyopic eyes, there was more crowding in the linear than the single letter 

conditions. Mean, normalized logMAR was significantly higher in both the linear tests 

with bar flankers, LB and LB7, than in the single letter test with bar flanker, SB, 

(p<0.01). The 7 letter test, LB7 showed a trend towards more crowding than the 5 

letter version, LB, but the difference between LB7 and LB was not significant p=0.51. 

Mean, normalized logMAR was also significantly higher in the linear tests with letter 

flankers, LC and LCsl than in the single letter test with letter flankers, SC, (p<0.05).  

 

6.3.4 Effect of letter vs bar flankers 

In the amblyopic eyes, there was more crowding in the tests with letter - rather than 

bar - flankers. For the single letter tests, mean logMAR was significantly poorer in 

both the single letter tests with letter flankers, SC and SCsl, than the single letter test 

with bar flankers, SB (p<0.05). Mean, normalized logMAR was 0.05 worse in SCsl 

than SC, but the difference was not significant. In the linear tests, there was also 

more crowding with letter than bar flankers.  Mean, normalized logMAR was 

significantly worse in LC and LCsl than LB (p<0.05). 
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6.3.5 Error analysis 

LCsl was created so that top and bottom errors could be counted in addition to right 

and left errors. However, there were too few vertical errors to allow a chi square test 

to be performed, so errors from LCsl were not included in the following analysis.  

Figure 6.4 shows the relative percentages of the different error types in the line tests 

LB, LB7 and LC in the amblyopic and fellow eyes of the strabismic and mixed 

strabismic/anisometropic amblyopes. Light grey shading shows random errors, dark 

shading shows adjacent left errors and diagonally striped shading shows adjacent 

right errors.  

 

 

Figure 6.4 shows the relative percentages of the different error types in the line tests, 
LB, LB7 and LC for the amblyopic and fellow eyes of the strabismic and mixed 
strabismic/anisometropic amblyopes. Light grey shading shows random errors, dark 
shading shows adjacent left errors and diagonally striped shading shows adjacent 
right errors. Error bars represent ±1 SE. 
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The first analysis examined whether the adjacent errors were anything other than 

random in the 3 line tests. As there were 2 adjacent letters from 10 possible Sloan 

letters, the probability of naming an adjacent letter correctly by chance was 0.2. For 

LB and LB7, for the fellow eye, on average, the adjacent errors were not 

significantly different to chance (LB: χ2=2.56, p=0.10; LB7: χ2=1.44, p=0.23) but for 

the amblyopic eyes, more adjacent errors occurred than would be expected by 

chance (LB: χ2=12.36, p<0.001; LB7: χ2=26.10, p<0.001). In the line test with letter 

flankers, LC, on average, more adjacent errors occurred than would be expected by 

chance for both amblyopic (χ2=44.24, p<0.001) and fellow eyes (χ2=6.51, p<0.05).  

 

The second analysis examined the frequency of right and left adjacent errors in the 

line tests LB and LC. In LB7, Figure 6.4 shows a large proportion of right errors in the 

amblyopic eyes, although the number of some error types was too low to enable a chi 

square analysis. In LB the proportion of right and left errors was not different for 

amblyopic (χ2=0.07, p=0.80) or fellow eyes (χ2=0.33, p=0.56). However, in LC, there 

were more right than left errors for both amblyopic (χ2=6.24, p<0.05) and fellow eyes 

(χ2=5.14, p<0.05).  
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Figure 6.5 shows the relative percentage of error types, adjacent (horizontal and 
vertical) and random, for amblyopic and fellow eyes of the strabismic amblyopes for 
test SCsl, an example presentation of which is shown on the right of the chart. Light 
grey shading shows random errors and dark grey shading shows adjacent errors. 

 

The third analysis examined whether the adjacent errors in the single letter test, 

SCsl were anything other than random. Figure 6.5 shows the relative proportions of 

adjacent and random errors in the single letter test, with Sloan letter flankers, SCsl. 

Here, adjacent errors corresponded to one of the surrounding 4 letters, while any 

other error was deemed random. The probability of an adjacent error occurring by 

chance was 0.4. On average, there were more adjacent errors named than would 

be expected by chance for both amblyopic (χ2=14.64, p<0.001) and fellow eyes 

(χ2=6.72, p<0.05). 

 

The fourth analysis looked for a difference in frequency of adjacent and random 

errors between amblyopic and fellow eyes in the single letter test, SCsl. There was 
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no difference in proportion of random and adjacent errors in the amblyopic (χ2=0.19, 

p=0.67) or fellow eyes (χ2=0.23, p=0.63). 

 

6.4 Discussion 

6.4.1 Summary of findings 

A series of custom designed visual acuity tests was used to infer the relative 

influence of contour interaction, linear versus single presentation and target-flanker 

similarity on visual acuity (logMAR) in the amblyopic and fellow eyes of a group of 

amblyopic participants.  In common with other reports, there was marked variability 

of crowding amongst amblyopic participants (Polat et al., 2004, Bonneh et al., 2004, 

Regan et al., 1992). Due to the difficulty in recruiting purely anisometropic 

participants, the 2 recruited were not included in the analysis but these showed no 

elevation of crowding across any of the tests in their amblyopic eyes. As illustrated 

in Figure 6.6, the pattern of crowding in the group of strabismic and mixed 

strabismic/anisometropic amblyopic eyes in the experimental tests shows a similar 

pattern to the results arising from young children. There is an elevation of crowding 

seen with letter rather than bar flankers and with linear rather than single letter 

presentations. There is also an additive effect, with highest crowding occurring in 

the linear presentation with letter flankers. This similarity between performance of 

strabismic amblyopic eyes and that of the young children lends strength to the view 

of amblyopia as a poorly matured visual system. Levi and Carkeet (1993) compared 

a range of visual functions in strabismic amblyopes and young children. They found 

that some functions, such as peak contrast sensitivity and retinal functions, which 

develop early, were normal in the strabismic amblyopes, whereas Vernier acuity 

and grating acuity which develop later were impaired in the strabismic amblyopes. 

Thus the timeframe in which strabismus exerts its influence on the developing visual 
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system can be inferred. The findings of this study show that in strabismic amblyopia, 

the visual system is affected before the maturation of crowding is complete.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 compares Figure 4.3 from Chapter 4 (top panel) with the same 4 tests 
from Figure 6.3: SB, LB, SC and LB (lower panel). The top panel shows mean 
logMAR, normalized to the unflanked acuity, for the four crowding conditions for 
younger children, 4-6 yrs (dotted bars), older children, 7-9 yrs, (cross-hatched bars), 
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and adults (solid bars). The bottom panel shows mean logMAR, normalized to the 
unflanked acuity, for the four crowding conditions for amblyopic (grey bars) and 
fellow eyes (black bars) of strabismic and mixed strabismic/anisometropic adults. 
Error bars represent ±1 SE. 

 

 

6.4.2 Magnitude of contour interaction 

In the group of strabismic and mixed strabismic/anisometropic amblyopes, mean 

logMAR in test SB was significantly higher than unflanked logMAR in the amblyopic 

and fellow eyes, showing an effect of contour interaction. The mean normalized 

logMAR for the strabismic and mixed strabismic/anisometropic group in SB was not 

significantly different between the amblyopic and fellow eyes. This result shows that 

for the single letter presentation with bar flankers, on average, contour interaction 

scaled with acuity in this group. As reported previously (Hess et al., 2001), some 

individuals showed more contour interaction with their amblyopic eye than their 

fellow eye whilst for others, elevated crowding was not seen, and the flanked acuity 

scaled with unflanked acuity (Figure 6.1) (Flom et al., 1963b). This reflected in the 

inhomogeneity of the group of amblyopes. 

 

6.4.3 Effect of eye movements 

In the amblyopic eyes of the strabismic and mixed strabismic/anisometropic group, 

most of the individual participants showed poorer mean logMAR in the line tests 

than in the corresponding single letter tests (Figure 6.1) and the same was true for 

the group means (Figure 6.3). This finding may not be surprising given the extra 

oculomotor demand in the line tests and both the oculomotor deficits and positional 

uncertainty experienced in amblyopia (Levi et al., 1987, Hess and Holliday, 1992, 

Chung et al., 2015, Ciuffreda et al., 1980). Also, see section 1.9.4.  Positional 
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uncertainty can lead to a degraded sensory signal, causing increased saccadic drift 

(González et al., 2012). Kanonidou et al. (2014) showed that strabismic amblyopes 

made more saccades per line when reading small print with their amblyopic eye. 

The scoring system used in the current study required letters to be read in order 

from left to right and responses were scored as incorrect if read in the wrong order. 

Thus, the positional uncertainty or oculomotor errors may cause the strabismic 

amblyope to lose their place when reading the line of letters and increase the 

probability of making an incorrect regression.  Performance in the single letter test 

with bar flankers, SB, should be least affected by positional uncertainty/ oculomotor 

errors as there is only one letter in the display. Observers viewing the single letter 

with letter flankers, SC, and the line of letters with letter flankers, LC, may be 

expected to show increasingly poor performance with increased positional 

uncertainty/ oculomotor errors, because of the task demands of identifying the 

target letter to be read and the number of possible letters in the displays. Figure 6.3 

shows that this was indeed the case for the amblyopic eyes. 

 

The error analysis showed more adjacent errors in the amblyopic than fellow eyes in 

all the line tests, (Figure 6.4), inferring the pressure of increased positional 

uncertainty and/or oculomotor demands, and in the tests where 7 letters were to be 

read, LB7 and LC, there was a greater proportion of right than left errors than in the 

5 letter test, LB, inferring that participants were missing a letter out as they read the 

longer string. Such results are consistent with findings in observers with normal 

vision where more errors were made when participants read long rather than short 

letter strings (Bedell et al., 2015). 
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The current study showed more crowding in the participants with deeper amblyopia 

(Figure 6.1). Regan et al. (1992) compared single letter acuity, Snellen acuity and 

repeat letter acuity in amblyopic children and adults and found most individuals had 

poorer Snellen (line) than single letter acuity, similar to our findings. They also 

identified individuals with errors of gaze control, whose repeat letter acuity was 

better than their Snellen acuity. In the top panel of Figure 6.7, the ratio of repeat 

letter/Snellen against Snellen acuity (decimal) is plotted for the group of amblyopic 

adults in Table 5 of Regan et al. (1992).  A high value of the repeat letter/Snellen 

ratio denotes poorer gaze control. Figure 6.7, top panel, shows that individuals 

identified as having poor gaze control tended to have poorer VA. For comparison, 

Figure 6.7, bottom panel, shows data from the current study. Normalized logMAR 

scores were derived from 3 of the tests by subtracting unflanked logMAR from 

crowded logMAR. These are plotted against logMAR derived from the initial 

screening. Paired t-tests with Bonferroni correction show that the slopes of these 

lines are all significantly different to each other (p<0.01). These data also show the 

individuals with deepest amblyopia display most crowding. The steepest slope is 

from data derived from the line test with letter flankers, LC, showing the strongest 

relationship between crowding from this test and depth of amblyopia.  
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Figure 6.7 The top panel shows data from Regan et al. (1992), plotted from their 
Table 5. The ratio of repeat letter acuity/Snellen acuity is plotted against Snellen 
acuity for a group of adult amblyopes. The grey line is the straight line of best fit. 
The bottom panel shows initial logMAR from screening plotted against logMAR from 
3 tests in the current study, normalized to unflanked logMAR, with straight lines of 
best fit: SB (blue triangles, dashed line), SC (red circles, dotted line) and LC (green 
squares, solid line) 

 

Greater positional uncertainty (Barbeito et al., 1988) and greater fixational 

unsteadiness (Schor and Flom, 1975) have been reported with greater depth of 
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amblyopia and Chung et al. (2015) found a correlation between acuity and fixation 

stability. In the current study, the exact eccentricity of fixation in the amblyopes was 

not measured. This information may have enabled the relationship between 

performance of individual amblyopes on the line charts and eccentricity of fixation 

locus to be explored, although locus of fixation has been found to account for only 

some of the acuity loss in the amblyopic eyes of strabismics (Kirschen et al., 1981, 

Kirschen and Flom, 1978).  

 

6.4.4 Effect of attention 

Grouping theories of crowding predict that there is more peripheral crowding when 

the flanker and target are from the same perceptual group i.e. all letters, rather than 

a target letter with bar flankers (Nazir, 1992, Kooi et al., 1994). Could a similar 

process be operating in foveal or extra-foveal viewing in strabismics? Fixation in a 

strabismic child is driven by the non-strabismic eye (Wang et al., 2015).  It has been 

suggested that the strabismic eye may be less able to drive attention because of 

lower acuity during the critical period impairing the ability of the amblyopic eye to 

select the target from other distracting information (Wang et al., 2015). In the 

amblyopic eyes of the strabismic group, poorer mean logMAR was found in the 

tests with letter flankers rather than bar flankers i.e. logMAR was lower in SC than 

SB and also lower in LC than LB. Identifying a letter target from among letter 

flankers represents an increased attention demand compared to identifying a letter 

among bar flankers. So the poorer performance in LC than LB could be evidence of 

an attention deficit in these amblyopes.  However, it is difficult to separate attention 

and eye movements, as they are closely linked, with attention determining the 

location for an eye movement (Flom, 1991, Hoffman and Subramaniam, 1995). The 

poorer performance in the 7 than 5 letter version of the line test with bar flankers, 

LB, infers that in LC, the line test with letter flankers, the longer letter string 



164 
 

contributes to the poorer performance as well as the greater attention demand 

caused by the letter flankers, see Bedell et al. (2015).  

 

Eye movements cannot be discounted in a comparison of the single letter tests with 

bar and letter flankers. For a patient with strabismus and amblyopia given the task 

of naming the central letter in test SCsl, poor fixation would impair recognition of the 

target letter, as fixation can drift between letters such that the participant is unsure 

whether or not he is reading the intended letter. The error analysis of SCsl (Figure 

6.5) showed that near threshold, participants were naming the flanking letters at a 

frequency greater than predicted by chance, but crucially, the proportion of adjacent 

errors was not greater in amblyopic eyes than fellow eyes, suggesting that poor 

fixation in the amblyopic eyes is not the main factor in the greater crowding 

measured in the single letter test with letter flankers.  Therefore, our results infer 

that vision of strabismic amblyopes, like young children, is determined in part by the 

attention demand in disregarding the nearby objects in favour of the target. 

 

6.4.5 Fellow eyes 

Mean logMAR of fellow eyes in this study was good and elevated crowding was not 

seen in the crowded test conditions. However, it is of interest to compare the error 

analysis of the fellow eyes in Figure 6.4 with that of the adult participants with 

normal vision from the study reported in Chapter 4. Figure 4.4 shows adjacent right, 

adjacent left and random errors for tests LB and LC for two groups of children and 

adult controls. In LB, the adult controls made mostly random errors with adjacent 

errors below a level that would be expected by chance. A similar pattern is seen in 

Figure 6.6 for the fellow eyes of strabismic amblyopes in test LB.  Yet, interestingly, 

a comparison of test LC in Figures 4.4 and 6.6 yields a different pattern. Figure 4.4 
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shows the adult participants made errors in LC at a level similar to that which would 

be expected by chance, whereas the fellow eyes of the amblyopic adults (Figure 

6.4) made more adjacent errors than would be expected by chance. This 

comparison infers that the greater attention demand of the letter flankers in the line 

chart forces ‘letter order’ errors in the fellow eyes of amblyopes but not in normal 

adult controls. 

 

Previous reports have shown deficits in the fellow eyes of amblyopes in motion 

perception (Ho et al., 2005, Ho and Giaschi, 2006, Simmers et al., 2003, Giaschi et 

al., 1992) and contrast sensitivity (Chatzistefanou et al., 2005). On the other hand, 

oculomotor control in the fellow eye of amblyopes was found to be no different to 

normal control eyes (Chung et al., 2015), although see Bedell and Flom (1985). The 

deficits in motion perception imply abnormality in areas of the parietal cortex which 

contain large numbers of binocular neurones and which mediate visual attention (Ho 

et al., 2006). Our finding of a potential influence of attention in the fellow eyes of 

strabismic amblyopes in crowded reading tasks warrants further investigation.   

 

6.4.6 Conclusions and recommendations 

These results show that similar to young children, crowding in strabismic and mixed 

strabismic/anisometropic amblyopic eyes is dependent on stimulus and task 

demands. The more precise eye movement control required to read a string of 

letters and the greater attention demand of increased letter-flanker similarity 

increase crowding in this group. These two factors can have an additive effect with 

the poorest performance being in the test with linear presentation with letter 

flankers. More crowding was evident in participants with deeper amblyopia.  
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Scrutiny of the individual results of participants shows that whilst some show poorer 

logMAR in the line tests than the single letter tests, not all do. Furthermore, two of 

the participants with the same logMAR from initial screening (PD and FD) performed 

very differently across the tests. This variability in results probably reflects the 

variety of clinical presentation in the group. As well as a range of depth of amblyopia 

and mixed treatment history, some participants had anisometropia as well as 

strabismus, whilst others had no anisometropia. Some had a degree of stereopsis, 

whilst most had none and there was variation in habitual fixation of the participants. 

To improve detection of amblyopia, my results indicate that, rather than a single 

visual acuity test, a set of tests could help determine amblyopia type and inform 

treatment options. Measurement of unflanked logMAR as well as crowded logMAR 

would enable the depth of crowding to be calculated. In addition, 2 crowded tests 

could be used, a linear 7 letter test, with letter flankers, like LC, and a single letter 

test, also with letter flankers, like SC. Most amblyopic participants had poorest 

scores on the line test with letter flankers, implying high sensitivity as a screening 

test. For some participants, the difference in crowding between SC and LC was 

much greater than others. The participants who showed greater difficulty with a 

linear test compared to a similarly flanked single letter test were presumably those 

with poorer gaze control. Persistent amblyopia has been linked to poor gaze control 

(Birch, 2013), so treatment for children showing a large difference between single 

and linear tests could focus on strategies which minimize the disruption to binocular 

input (Subramanian et al., 2013) 
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Chapter 7  

 

Summary and conclusions 

 
7.1  Contribution to knowledge 

In this series of experiments, it has been shown that the design of crowded visual 

acuity tests influences the resulting logMAR. Using custom-designed tests, an effect 

of both attention and eye movements in crowding has been shown: in both young 

children and adult strabismic amblyopes, the use of linear rather than single 

optotypes and use of letter rather than bar flankers has been shown to increase 

crowding. These two factors have an additive effect, with most crowding resulting 

from linear letter presentation with letter flankers. A decrease in crowding with age 

in children has also been shown.  Between the ages of 4 and 9, both the extent and 

magnitude of crowding has been shown to decrease.  

 

The study described in Chapter 2 showed that in commercially available crowded 

children’s visual acuity tests, logMAR was better in the Sonksen logMAR Test than 

in the logMAR Crowded Test (mean difference 0.07 logMAR), presumably because 

of the greater inter-optotype spacing and slightly larger distance to the surround box 

superiorly in the Sonksen Test. Crowding in the Crowded Kay Pictures Test was 

shown to be less robust than in the crowded letter tests, particularly in older 

children, probably because of the greater angular separation of the optotypes and 

surround bar. A decrease in crowding with age was also evident between the ages 

of 4-6 and 7-9 (mean difference 0.04 logMAR for the letter tests), showing crowded 

acuity to develop more slowly than single letter acuity.  
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Chapter 3 described the design and production of a series of visual acuity tests to 

follow up these results by measuring the relative contributions of various 

components of crowding. A pilot study demonstrated the effect of length of flanker 

bar on logMAR.  

 

The second main study, described in Chapter 4, used custom-designed tests to 

disentangle the contributions of contour interaction, eye movements and attention to 

the crowding effect. A greater extent of contour interaction was found in children 

than adults, which was not mature by 9 years and the depth of contour interaction 

was greater in young children (aged 4-6) than adults. Both linear presentation of 

letters (showing the effect of eye movements) and use of letter rather than bar 

surrounds (showing the effect of attention) caused more crowding in the younger 

children (aged 4-6) than in the older children (aged 7-9) or adults and together, 

linear presentation and letter surrounds had an additive effect. Error analysis of the 

linear tests showed that use of letter rather than bar flankers resulted in more errors 

in the order of letters being read and a greater proportion of backward regressions 

in young children than adults. Psychometric functions showing mean percent correct 

against optotype size were plotted for unflanked letters and two of the crowded 

conditions (Chapter 5). The slopes of the functions increased as more crowding 

features were introduced. The test with linear presentation and letter flankers had 

the steepest slope, which infers greater repeatability of such a test over a less 

crowded one.  

 

The third study (Chapter 6) used custom-designed tests, similar to those in Chapter 

4, in a group of strabismic and mixed strabismic/anisometropic amblyopes to infer 

the relative influence of contour interaction, linear versus single presentation and 
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target-flanker similarity on visual acuity (logMAR) in the amblyopic and fellow eyes. 

Similar to the group of young children in Chapter 4, the amblyopic eyes showed an 

elevation of crowding with letter rather than bar flankers and with linear rather than 

single letter presentations. There was also an additive effect, with highest crowding 

occurring in the linear presentation with letter flankers. Error analysis showed a 

pattern of errors in the longer letter strings (when 7 letters were read) that implied 

letters were being missed out. This happened with greater frequency in the 

amblyopic eyes than the fellow eyes, inferring an inaccuracy of eye movements. 

Error analysis of the single letter test with letter flankers showed a pattern of errors 

similar in amblyopic and fellow eyes, inferring that the poorer performance in the 

single letter test with letter flankers than the single letter test with bar flankers was a 

result of the greater attention demand of the letter flankers.  

 

7.2  General Discussion 

7.2.1 What makes a good screening test? 

A good screening test should be easy to administer, valid and reliable (Herman, 

2006). The Bailey-Lovie principles (see section 1.3.2), adopted in the Bailey-Lovie, 

ETDRS  and other charts have led to accurate and reliable visual acuity tests which 

most adults and children over the age of 6 are able to perform (Bailey and Lovie-

Kitchin, 2013, Manny et al., 2003). Some manufacturers of children’s tests have 

adopted the Bailey-Lovie principles rather loosely in their chart designs and a range 

of tests is commercially available where acuity levels which are nominally the same, 

comprise optotypes of different height, width, complexity and number of available 

choices (Bailey and Lovie-Kitchin, 2013). It also appears that children’s visual acuity 

test chart designers have different goals.  The Sonksen test was designed to have 

similar features to the ETDRS chart, but with greater testability than the full ETDRS 
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chart (Salt et al., 2007).  This principle has the advantage of longitudinal continuity 

of visual acuity measurement as children progress onto adult charts. However, the 

ETDRS test has an inter-optotype spacing of 1 letter width, a separation where 

there is little, if any, contour interaction in adults (Flom et al., 1963b, Levi, 2008). 

Should not crowding be exploited in children’s acuity charts, knowing that abnormal 

crowding could reveal strabismic amblyopia (Simons, 1983) and potentially also 

reading difficulties (Kwon et al., 2007, Atkinson, 1991)?  The logMAR Crowded Test 

(McGraw and Winn, 1993) uses half a letter width spacing to increase the sensitivity 

of amblyopia detection and has also maintained many of the features of the ETDRS 

test with logMAR scoring to improve reliability. The Amblyopia Treatment Study 

Visual Acuity Testing Protocol (Holmes et al., 2001) comprises a single H, O, T or V 

letter with surround bar at half a letter width. The single letter presentation was 

chosen for better testability in younger children and the half letter width flanker 

spacing to increase sensitivity to amblyopia detection (Holmes et al., 2001). The 

Cambridge Crowded test was designed to improve on the Sheridan Gardiner test 

and uses letter flankers at half an optotype distance to crowd the target letter 

(Atkinson et al., 1988). However, this test is not available in logMAR format and 

there is no published normative data.  

 

7.2.2 Recommendations for design of children’s visual acuity tests 

Most screening programmes in the UK and abroad use visual acuity as the main 

means of identifying children who would benefit from a fuller eye examination, yet 

specificity of visual acuity measurement in detection of amblyopia could be 

improved (Birch, 2013).  The best test to use is one whose results will have greatest 

difference between the normal and abnormal populations. The results reported in 

this thesis suggest that a good visual acuity screening test will comprise the 

following: 
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• Letter targets with flankers at 0.5 letter widths or closer, to ensure flankers are 

within the zone of contour interaction 

• Letter flankers to increase attention demand 

• Linear presentation to reveal disorders of eye movements.  

• For children who perform poorly on linear, crowded tests, testing with isolated and 

single letters crowded with letters, to identify abnormal crowding. 

 

Recent US guidelines for vision screening (Cotter et al., 2015) recommend either 

auto- or photorefraction or visual acuity testing. Auto- or photorefraction only detects 

refractive error. Recommended visual acuity tests comprise either single HOTV 

optotypes or Lea symbols surrounded by crowding bars as best practice and linear 

presentation with a rectangular surround bar as acceptable practice. Greater 

testability in young children is the justification for use of single rather than linear 

presentation as best practice. The report of the Maternal and Child Health Bureau 

and the National Eye Institute Task Force on Vision Screening (Hartmann et al., 

2000), referenced by Cotter, recommends HOTV optotypes or Lea symbols in full 

chart format or as single surrounded optotypes. The Amblyopia Treatment Study 

Visual Acuity Testing Protocol (Holmes et al., 2001) uses single HOTV optotypes 

surrounded by crowding bars, citing a study by Sprague et al. (1989) as evidence to 

support the rationale for single optotype presentation. The methodology used by 

Sprague and colleagues involved presentation of a full letter chart to children, with 

use of a mask to isolate letters when children could not identify 4 of the 6 symbols 

on a line. The percentage of children who required this isolation of optotypes was 

used as an indicator of testability of line charts. However a confound is evident here 

between children for whom the linear task was just too complex and those who were 

experiencing elevated crowding.  
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In Sweden, a full HOTV chart is used in vision screening (Kvarnström et al., 2002), 

whilst in New Zealand, uncrowded Sheridan Gardiner test is used (Anstice et al., 

2012). No specific visual acuity tests are recommended for screening in the UK 

(National  Screening Committee, 2013) or Australia (Hopkins et al., 2013). So, whilst 

the U.S. vision screening guidelines appear to be some of the most specific, there is 

limited evidence to support the choice of test format. A simple format chosen for 

high testability may not have the greatest sensitivity and specificity for amblyopia 

detection. Further studies are indicated. 

 

The recommendations arising from this thesis concur with many of those of Song et 

al. (2014), who suggest use of letter rather than bar flankers to increase crowding 

and closer letter-flanker separation than the 1.0 optotype width used in most 

commercially available tests.  In addition, my results also suggest that linear 

presentation will increase sensitivity to amblyopia detection. Use of linear 

presentation as well as letter flankers like in my LC (Table 4.1) format has a 

potential trade-off with testability (Egan and Brown, 1984).  Although some authors 

recommend single optotypes in young children (Keith et al., 1972, Simons, 1983), 

the literature shows that linear presentation can have good testability in children 

from 3 years old. The Vision in Preschoolers Study Group (2004) and the Vision in 

Preschoolers Study Group (2010) found good testability (>95%) of children aged 3-

5 with single line crowded HOTV and Lea Symbols tests and Kvarnström and 

Jakobsson (2005) found around 83% of children age 3 and 96% of children age 4 

are able to be tested with same tests. Salt et al. (2007) found over 80% 3 year olds 

and over 90% 4 year olds able to be tested with the Sonksen logMAR Test (also in 

single line format).   
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Very few of the 4-6 year olds in the study reported in Chapter 4 were not able to 

complete all the testing, but the complex appearance of the linear chart with letter 

flankers, LC, (Table 4.1), together with the instruction to read only the middle line 

from left to right could reduce testability in children younger than 4.  

 

7.2.3  Recommendations for scoring of children’s visual acuity tests 

A strict protocol is required when measuring visual acuity for research purposes and 

I would also advocate the use of a strict scoring protocol in clinical visual acuity 

measurement. Participants in my studies were asked to read the linear 

presentations in order from left to right, but the amblyopic participants had to 

overcome a temptation to pick out letters which to them were more visible, such as 

the less crowded end letters. In paediatric clinical practice, the difficulties posed for 

an amblyopic child reading a linear presentation of letters would be masked if the 

clinician were to allow the letters to be read in any order and interpret the intended 

position in the line. A protocol should therefore require children to read the letters in 

order as presented. Score sheets for a linear children’s acuity test could be provided 

with the test, such as those provided with colour vision tests. The score sheet could 

contain standardized instructions as well as means to record which letters were 

read correctly, highlight the termination rule and calculate a logMAR score. There 

should also be rules to encourage guessing and to prohibit pointing at letters by the 

clinician in order to improve standardization.  

 

An alternative to manual scoring would be a computer based system, such as that 

used in the Amblyopia Treatment Study Visual Acuity Testing Protocol (Holmes et 

al., 2001), the COMPlog System (Laidlaw et al., 2003) or the E-ETDRS test (Beck et 

al., 2003). Computer based protocols provide quick and accurate results in a 
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consulting room, with the ability for results to be recorded and acuity scores 

calculated.  However, unless they are portable, computer-based systems are less 

practical if vision screening takes place in schools, or community centres.  

 

7.2.4 Age norms 

Monocular and binocular normative data should be available for an ideal crowded 

children’s visual acuity test. Where more crowding features are used to increase the 

sensitivity to amblyopia detection, the logMAR may be lower than clinicians expect 

so normative data, perhaps in the format of centile charts, like for example that of 

the Sonksen Test (Sonksen et al., 2008) will enable sound referral judgements to be 

made. 

 

7.3 Limitations 

Children in my first two studies were recruited from a school population of age 4 and 

above. Vision screening is often carried out between the ages of 3 and 5, so, 

although developmental crowding trends in younger children could be deduced from 

the current data, further research on testability with younger children would be 

needed before specific test formats could be recommended for this age group. 

 

Because children were tested in their schools, refraction was not performed before 

testing. In the study described in Chapter 2, children were screened by visual acuity 

measurement, but data from all children who completed the testing were included. 

This was done in order to compare measurement across all the VA tests in a 

population of children. However, if there were more uncorrected myopes in the older 

group of children (5-8 yrs) than the younger (4-6yrs), an improvement in logMAR 
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over time could be masked. The data were remodelled (section 2.5.9) with the 

exclusion of 5 participants.  

 

There were enough children in the studies to show statistical significance between 

tests, but the age groups into which they were divided were fairly broad, which 

limited the conclusions that could be drawn about age of maturation of acuity with 

the various tests.  

 

Children in the UK start school between the ages of 4 and 5. The data presented in 

this thesis show an improvement in crowded acuity in the first 4 years of primary 

school, which coincides with the years that children are learning and practising 

reading. If children in other countries learn to read at a different age, then to 

generalize these findings to other countries may not be valid. 

 

There was variation in crowding amongst the amblyopic participants, although taken 

as a group, the number of strabismic and mixed strabismic/anisometropic 

participants was sufficient to show statistically significant differences between single 

letter and linear presentation (in both bar and letter flanker conditions) and between 

letter flankers and bar flankers (in both linear and single letter conditions). More 

amblyopic participants would have enabled analysis between 3 groups of amblyopic 

participants: anisometropic, strabismic and mixed strabismic/anisometropic. More 

participants would also enable horizontal and vertical error analysis in tests SCsl 

and LCsl (Table 6.2).  
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7.4 Future research 

The results presented in this thesis open up possibilities for further research as 

discussed below: 

 

7.4.1 Testability of a line test with letter or letter-like flankers in pre-school children 

There is a challenge in developing a test which maximises the crowding differences 

between normal and amblyopic children, but presents a task which a 3 year old 

child will understand and be able to complete. A future study could assess testability 

and reliability of such a test in comparison with available tests. 

 

7.4.2 Multi-regional study of development of visual crowding 

Unflanked and crowded visual acuity could be measured across several cultures 

where reading skills are taught and practised at different ages. A hypothesis could 

be that maturation of crowded acuity takes place at an earlier age where children 

are taught to read earlier.  

 

7.4.3 Repeatability of crowded visual acuity tests 

Chapter 5 showed that the psychometric functions derived from tests with more 

crowding features had steeper slopes than those from tests with fewer or no 

crowding features. Repeatability could be measured directly in normal and 

amblyopic eyes with these tests. The hypothesis would be that tests with more 

crowding features show greater repeatability than those with fewer or no crowding 

features.  
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7.4.4 Repeatability of crowded visual acuity tests in amblyopic observers 

Flom (1986) derived frequency-of-seeing curves from S-charts in amblyopic and 

normally sighted observers and found shallower slopes from the amblyopic 

observers. A further study could use various formats of crowded acuity test in 

amblyopic observers to compare repeatability across different test formats.   

 

7.4.5 Substitution of a ‘dot’ flanker in peripheral viewing 

In Chapter 3, I was not able to support the hypothesis that a square ‘dot’ flanker 

results in more crowding for a Landolt C than a Sloan letter target. This experiment 

could be repeated in peripheral viewing, where substitution of the ‘dot’ into the C 

may occur. The hypothesis would be that in peripheral vision, a square ‘dot’ flanker 

results in more crowding for a Landolt C than a Sloan letter target.  

 

7.5  Concluding remarks 

Currently available children’s crowded visual acuity tests lack standardization and 

can be chosen and used by clinicians with little appreciation for how or why they 

differ from each other or what acuity to expect in children of different ages. The 

results presented in this thesis infer that acuity measured in crowded tests depends 

on the age of the child, the presence or absence of amblyopia, the inter-optotype 

separation, the types of optotype used (letter or picture), the type of flanking 

element (letter, or bar) and the format of optotype presentation (single or linear). As 

measurement of visual acuity remains the mainstay of children’s screening 

programmes, recommendations are made by which crowding from several test 

formats could be compared to improve referral of children for appropriate treatment 

and monitoring of treatment success.   



178 
 

Publications and acknowledgement of financial funding 

 

Chapter 2 

This chapter has been published in part as: Norgett, Y. & Siderov, J. 2011. 

Crowding in Children's Visual Acuity Tests-Effect of Test Design and Age. 

Optometry & Vision Science, 88, 920-927.  

 

This chapter was presented, in part, Norgett Y, Siderov J. Crowding in children’s 

visual acuity measurement: the importance of gaze control and contour interaction. 

American Academy of Optometry, San Francisco, 17 Nov 2010 - 20 Nov 2010 

 

Figure 2.5 was published in Chen, AH, Siderov J 2015, Visual Development, in 

Chen A-H; Leat SJ (ed.), Paediatric Vision Care: Current Practice and Future 

Challenges, McGraw-Hill Education (Asia), p.25. 

 

Chapter 4 

This chapter has been published, in part as Norgett, Y. & Siderov, J. (2014). Foveal 

crowding differs in children and adults. Journal of Vision, 14, 23. 

 

This paper was presented, in part, at the American Academy of Optometry Meeting, 

Seattle, October 24, 2013. 

 

The Sloan font was downloaded from http://psych.nyu.edu/pelli/software.html (Pelli 

et al., 1988). 

http://psych.nyu.edu/pelli/software.html


179 
 

 

Chapter 5  

This chapter was presented in part at the American Academy of Optometry Meeting 

in Denver, 12-15th November, 2014, supported in part by a College of Optometrists 

travel grant awarded October 2014: Norgett, Y and Siderov, J Effect of crowding on 

the slopes of the psychometric functions in visual acuity measurements Optometry 

& Vision Science 2014;91: 145153 

 

Student’s t-test values to test for the significance of the difference between slopes 

used the following calculator: 

http://www.danielsoper.com/statcalc3/calc.aspx?id=103 

 

 

  



180 
 

References 
Aghababian, V. & Nazir, T. A. 2000. Developing Normal Reading Skills: Aspects of the Visual 

Processes Underlying Word Recognition. Journal of Experimental Child Psychology, 
76, 123-150. 

Alexander, K. R., Xie, W. & Derlacki, D. J. 1997. Visual Acuity and Contrast Sensitivity for 
Individual Sloan Letters. Vision Research, 37, 813-819. 

Allen, H. A., Humphreys, G. W., Colin, J. & Neumann, H. 2009. Ventral Extra-Striate Cortical 
Areas Are Required for Human Visual Texture Segmentation. Journal of Vision, 9, 2. 

Allen, H. F. 1957. Testing of Visual Acuity in Preschool Children: Norms, Variables and a 
New Picture Test. Pediatrics, 19, 1093. 

Anderson, E. J., Dakin, S. C., Schwarzkopf, D. S., Rees, G. & Greenwood, J. A. 2012. The 
Neural Correlates of Crowding-Induced Changes in Appearance. Current Biology, 
22, 1199-1206. 

Anstice, N., Spink, J. & Abdul‐Rahman, A. 2012. Review of Preschool Vision Screening 
Referrals in South Auckland, New Zealand. Clinical and Experimental Optometry, 
95, 442-448. 

Anstice, N. S. & Thompson, B. 2014. The Measurement of Visual Acuity in Children: An 
Evidence‐Based Update. Clinical & Experimental Optometry, 97, 3-11. 

Arditi, A. & Cagenello, R. 1993. On the Statistical Reliability of Letter-Chart Visual Acuity 
Measurements. Investigative ophthalmology & visual science, 34, 120-129. 

Aring, E., Grönlund, M. A., Hellström, A. & Ygge, J. 2007. Visual Fixation Development in 
Children. Graefe's Archive for Clinical and Experimental Ophthalmology, 245, 1659-
1665. 

Arnold, R. W. 2013. Amblyopia Risk Factor Prevalence. Journal of Pediatric Ophthalmology 
and Strabismus, 50, 213-217. 

Aslin, R. N. & Ciuffreda, K. J. 1983. Eye Movements in Preschool Children [Letter]. Science, 
222, 74–75. 

Asper, L., Crewther, D. & Crewther, S. 1999. Strabismic Amblyopia. Part 2. Neural 
Processing. Clinical & Experimental Optometry, 83, 200-211. 

Asper, L., Crewther, D. & Crewther, S. G. 2000. Strabismic Amblyopia: Part 1: 
Psychophysics. Clinical and Experimental Optometry, 83, 49-58. 

Atchison, D. A., Smith, G. & Efron, N. 1979. The Effect of Pupil Size on Visual Acuity in 
Uncorrected and Corrected Myopia. American Journal of Optometry and 
Physiological Optics, 56, 315-323. 

Atkinson, J. 1991. Review of Human Visual Development: Crowding and Dyslexia. Vision and 
Visual Dyslexia Ed. J Stein (Boca Raton: CRC Press) pp, 44-57. 

Atkinson, J., Anker, S., Evans, C., Hall, R. & Pimm-Smith, E. 1988. Visual Acuity Testing of 
Young Children with the Cambridge Crowding Cards at 3 and 6 M. Acta 
Ophthalmologica, 66, 505-508. 

Atkinson, J. & Braddick, O. 1982. Assessment of Visual Acuity in Infancy and Early 
Childhood. Acta Ophthalmol Suppl, 157, 18-26. 

Atkinson, J. & Hood, B. 1997. Development of Visual Attention. Attention, Development, 
and Psychopathology, 31-54. 

Bach, M. 2006. The Freiburg Visual Acuity Test-Variability Unchanged by Post-Hoc Re-
Analysis. Graefe's Archive for Clinical and Experimental Ophthalmology, 245, 965-
971. 

Bailey, I. L., Bullimore, M. A., Raasch, T. W. & Taylor, H. R. 1991. Clinical Grading and the 
Effects of Scaling. Investigative ophthalmology & visual science, 32, 422. 

Bailey, I. L. & Lovie-Kitchin, J. E. 2013. Visual Acuity Testing. From the Laboratory to the 
Clinic. Vision Research, 90, 2-9. 



181 
 

Bailey, I. L. & Lovie, J. E. 1976. New Design Principles for Visual Acuity Letter Charts. 
American Journal of Optometry and Physiological Optics, 53, 740. 

Banks, M. S. 1980. The Development of Visual Accommodation During Early Infancy. Child 
Development, 646-666. 

Barbeito, R., Bedell, H. & Flom, M. 1988. Does Impaired Contrast Sensitivity Explain the 
Spatial Uncertainty of Amblyopes? Investigative Ophthalmology and Visual Science, 
29, 323-326. 

Barrett, B. T., Bradley, A. & Candy, T. R. 2013. The Relationship between Anisometropia and 
Amblyopia. Progress in Retinal and Eye Research, 36, 120-158. 

Barrett, B. T., Bradley, A. & McGraw, P. V. 2004. Understanding the Neural Basis of 
Amblyopia. The Neuroscientist, 10, 106-117. 

Barrett, B. T., Pacey, I. E., Bradley, A., Thibos, L. N. & Morrill, P. 2003. Nonveridical Visual 
Perception in Human Amblyopia. Investigative Ophthalmology and Visual Science, 
44, 1555-1567. 

Beck, R. W., Moke, P. S., Turpin, A. H., Ferris Iii, F. L., Sangiovanni, J. P., Johnson, C. A., Birch, 
E. E., Chandler, D. L., Cox, T. A. & Blair, R. C. 2003. A Computerized Method of 
Visual Acuity Testing: Adaptation of the Early Treatment of Diabetic Retinopathy 
Study Testing Protocol. American Journal of Ophthalmology, 135, 194-205. 

Becker, R., Hübsch, S., Gräf, M. H. & Kaufmann, H. 2002. Examination of Young Children 
with Lea Symbols. British Journal of Ophthalmology, 86, 513. 

Bedell, H., Yap, Y. & Flom, M. 1990. Fixational Drift and Nasal-Temporal Pursuit 
Asymmetries in Strabismic Amblyopes. Investigative ophthalmology & visual 
science, 31, 968-976. 

Bedell, H. E. & Flom, M. C. 1985. Bilateral Oculomotor Abnormalities in Strabismic 
Amblyopes: Evidence for a Common Central Mechanism. Documenta 
Ophthalmologica, 59, 309-321. 

Bedell, H. E., Siderov, J., Formankiewicz, M. A., Waugh, S. J. & Aydin, S. 2015. Evidence for 
an Eye-Movement Contribution to Normal Foveal Crowding. Optometry & Vision 
Science. 

Bedell, H. E., Siderov, J., Waugh, S. J., Zemanová, R., Pluháček, F. & Musilová, L. 2013. 
Contour Interaction for Foveal Acuity Targets at Different Luminances. Vision 
Research. 

Bennett, A. G. 1965. Ophthalmic Test Types. A Review of Previous Work and Discussions on 
Some Controversial Questions. British Journal of Physiological Optics, 22, 238. 

Bennett, A. G. & Rabbetts, R. B. 1998. Bennett and Rabbetts' Clinical Visual Optics, Elsevier 
Health Sciences. 

Bernard, J. B. & Chung, S. T. L. 2011. The Dependence of Crowding on Flanker Complexity 
and Target-Flanker Similarity. Journal of Vision, 11. 

Bertone, A., Hanck, J., Guy, J. & Cornish, K. 2010. The Development of Luminance-and 
Texture-Defined Form Perception During the School-Aged Years. Neuropsychologia, 
48, 3080-3085. 

Birch, E., Gwiazda, J., Bauer Jr, J., Naegele, J. & Held, R. 1983. Visual Acuity and Its 
Meridional Variations in Children Aged 7–60 Months. Vision Research, 23, 1019-
1024. 

Birch, E. E. 2003. Binocular Sensory Outcomes in Accommodative Et. Journal of AAPOS: 
Journal of American Association for Pediatric Ophthalmology and Strabismus, 7, 
369-373. 

Birch, E. E. 2013. Amblyopia and Binocular Vision. Progress in Retinal and Eye Research, 33, 
67-84. 



182 
 

Birch, E. E., Subramanian, V. & Weakley, D. R. 2013. Fixation Instability in Anisometropic 
Children with Reduced Stereopsis. Journal of AAPOS: Journal of American 
Association for Pediatric Ophthalmology and Strabismus, 17, 287-290. 

Black, J., Jacobs, R., Phillips, G., Chen, L., Tan, E., Tran, A. & Thompson, B. 2013. An 
Assessment of the Ipad as a Testing Platform for Distance Visual Acuity in Adults. 
British Medical Journal Open, 3. 

Bland, J. M. & Altman, D. G. 1986. Statistical Methods for Assessing Agreement between 
Two Methods of Clinical Measurement. The Lancet, 327, 307-310. 

Bondarko, V. M. & Semenov, L. A. 2005. Visual Acuity and the Crowding Effect in 8-to 17-
Year-Old Schoolchildren. Human Physiology, 31, 532-538. 

Bonneh, Y. S., Sagi, D. & Polat, U. 2004. Local and Non-Local Deficits in Amblyopia: Acuity 
and Spatial Interactions. Vision Research, 44, 3099-3110. 

Bouma, H. 1970. Interaction Effects in Parafoveal Letter Recognition. Nature, 226, 177-178. 
Bourne, R., Rosser, D., Sukudom, P., Dineen, B., Laidlaw, D., Johnson, G. & Murdoch, I. 

2003. Evaluating a New Logmar Chart Designed to Improve Visual Acuity 
Assessment in Population-Based Surveys. Eye, 17, 754-758. 

Braddick, O., Atkinson, J., French, J. & Howland, H. C. 1979. A Photorefractive Study of 
Infant Accommodation. Vision Research, 19, 1319-1330. 

British Standards Institute 2003. Visual Acuity Test Types- Part 1: Test Charts for Clinical 
Determination of Distance Visual Acuity – Specification. BS 4274-1. London. 

Candy, T. R., Mishoulam, S. R., Nosofsky, R. M. & Dobson, V. 2011. Adult Discrimination 
Performance for Pediatric Acuity Test Optotypes. Investigative ophthalmology & 
visual science, 52, 4307-4313. 

Carkeet, A. 2001. Modeling Logmar Visual Acuity Scores: Effects of Termination Rules and 
Alternative Forced-Choice Options. Optometry & Vision Science, 78, 529. 

Carkeet, A., Gerasimou, D. F., Parsonson, L. R., Biffin, K. L. & Fredericksen, B. J. 2008. 
Thresholds for Sampled Sloan Letters Are Smaller Than Sample Spacing. Optometry 
& Vision Science, 85, 1142-1150. 

Carkeet, A., Lee, L., Kerr, J. R. & Keung, M. M. 2001. The Slope of the Psychometric Function 
for Bailey-Lovie Letter Charts: Defocus Effects and Implications for Modeling Letter-
by-Letter Scores. Optometry & Vision Science, 78, 113. 

Carkeet, A., Leo, S.-W., Khoo, B.-K. & Eong, K.-G. A. 2003. Modulation Transfer Functions in 
Children: Pupil Size Dependence and Meridional Anisotropy. Investigative 
ophthalmology & visual science, 44, 3248-3256. 

Carlton, J. & Kaltenthaler, E. 2011. Amblyopia and Quality of Life: A Systematic Review. Eye, 
25, 403-413. 

Carpineto, P., Ciancaglini, M., Nubile, M., Di Marzio, G., Toto, L., Di Antonio, L. & 
Mastropasqua, L. 2006. Fixation Patterns Evaluation by Means of Mp-1 
Microperimeter in Microstrabismic Children Treated for Unilateral Amblyopia. 
European Journal of Ophthalmology, 17, 885-890. 

Chatzistefanou, K. I., Theodossiadis, G. P., Damanakis, A. G., Ladas, I. D., Moschos, M. N. & 
Chimonidou, E. 2005. Contrast Sensitivity in Amblyopia: The Fellow Eye of 
Untreated and Successfully Treated Amblyopes. Journal of AAPOS: Journal of 
American Association for Pediatric Ophthalmology and Strabismus, 9, 468-474. 

Chen, P.-L., Chen, J.-T., Tai, M.-C., Fu, J.-J., Chang, C.-C. & Lu, D.-W. 2007. Anisometropic 
Amblyopia Treated with Spectacle Correction Alone: Possible Factors Predicting 
Success and Time to Start Patching. American Journal of Ophthalmology, 143, 54-
60. 

Chen, P. L., Chen, J. T., Fu, J. J., Chien, K. H. & Lu, D. W. 2008. A Pilot Study of Anisometropic 
Amblyopia Improved in Adults and Children by Perceptual Learning: An Alternative 
Treatment to Patching. Ophthalmic and Physiological Optics, 28, 422-428. 



183 
 

Chen, S. I., Chandna, A., Norcia, A. M., Pettet, M. & Stone, D. 2006. The Repeatability of 
Best Corrected Acuity in Normal and Amblyopic Children 4 to 12 Years of Age. 
Investigative ophthalmology & visual science, 47, 614-619. 

Chung, S. T. 2011. Improving Reading Speed for People with Central Vision Loss through 
Perceptual Learning. Investigative ophthalmology & visual science, 52, 1164-1170. 

Chung, S. T. & Bedell, H. E. 1995. Effect of Retinal Image Motion on Visual Acuity and 
Contour Interaction in Congenital Nystagmus. Vision Research, 35, 3071-3082. 

Chung, S. T., Kumar, G., Li, R. W. & Levi, D. M. 2015. Characteristics of Fixational Eye 
Movements in Amblyopia: Limitations on Fixation Stability and Acuity? Vision 
Research [Online]. Available: http://dx.doi.org/10.1016/j.visres.2015.01.016. 

Chung, S. T. L., Levi, D. M. & Legge, G. E. 2001. Spatial-Frequency and Contrast Properties of 
Crowding. Vision Research, 41, 1833-1850. 

Ciuffreda, K. J., Kenyon, R. V. & Stark, L. 1980. Increased Drift in Amblyopic Eyes. British 
Journal of Ophthalmology, 64, 7-14. 

Ciuffreda, K. J., Levi, D. M. & Selenow, A. 1991. Amblyopia: Basic and Clinical Aspects, 
Butterworth-Heinemann. 

Clarke, M., Wright, C., Hrisos, S., Anderson, J., Henderson, J. & Richardson, S. 2003. 
Randomised Controlled Trial of Treatment of Unilateral Visual Impairment 
Detected at Preschool Vision Screening. British Medical Journal, 327, 1251. 

Cotter, S. A., Cyert, L. A., Miller, J. M. & Quinn, G. E. 2015. Vision Screening for Children 36 
to< 72 Months: Recommended Practices. Optometry & Vision Science, 92, 6. 

Cotter, S. A., Edwards, A. R., Arnold, R. W., Astle, W. F., Barnhardt, C. N., Beck, R. W., Birch, 
E. E., Donahue, S. P., Everett, D. F. & Felius, J. 2007. Treatment of Strabismic 
Amblyopia with Refractive Correction. American Journal of Ophthalmology, 143, 
1060-1063. 

Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. 1990. Human Photoreceptor 
Topography. Journal of Comparative Neurology, 292, 497-523. 

Curtis, M. E. 1980. Development of Components of Reading Skill. Journal of Educational 
Psychology, 72, 656. 

Danilova, M. V. & Bondarko, V. M. 2007. Foveal Contour Interactions and Crowding Effects 
at the Resolution Limit of the Visual System. Journal of Vision, 7, 25.1. 

Davidson, D. W. & Eskridge, B. J. 1977. Reliability of Visual Acuity Measures of Amblyopic 
Eyes. Optometry & Vision Science, 54, 756-766. 

Daw, N. W. 1998. Critical Periods and Amblyopia. Archives of Ophthalmology, 116, 502-505. 
De Valois, R. L. & De Valois, K. K. 1988. Spatial Vision, Oxford University Press. 
De Vries-Khoe, L. & Spekreijse, H. 1982. Maturation of Luminance and Pattern Eps in Man. 

Doc Ophthalmol Proc Ser, 31, 461-75. 
Desimone, R. & Duncan, J. 1995. Neural Mechanisms of Selective Visual Attention. Annual 

Review of Neuroscience, 18, 193-222. 
Dobson, V., Maguire, M., Orel-Bixler, D., Quinn, G. & Ying, G. S. 2003. Visual Acuity Results 

in School-Aged Children and Adults: Lea Symbols Chart Versus Bailey-Lovie Chart. 
Optometry & Vision Science, 80, 650. 

Doron, R., Spierer, A. & Polat, U. 2015. How Crowding, Masking, and Contour Interactions 
Are Related: A Developmental Approach. Journal of Vision, 15, 5-5. 

Drover, J. R., Felius, J., Cheng, C. S., Morale, S. E., Wyatt, L. & Birch, E. E. 2008. Normative 
Pediatric Visual Acuity Using Single Surrounded Hotv Optotypes on the Electronic 
Visual Acuity Tester Following the Amblyopia Treatment Study Protocol. Journal of 
AAPOS: Journal of American Association for Pediatric Ophthalmology and 
Strabismus, 12, 145-149. 

Drover, J. R., Wyatt, L. M., Stager, D. R. & Birch, E. E. 2009. The Teller Acuity Cards Are 
Effective in Detecting Amblyopia. Optometry & Vision Science, 86, 755. 

http://dx.doi.org/10.1016/j.visres.2015.01.016


184 
 

Early Treatment Diabetic Retinopathy Study Group 1985. ETDRS Manual of Operations. In: 
ETDRS Coordinating Center University of Maryland. Baltimore, M. (ed.). Baltimore:: 
National Technical Information Service Publication. 

Egan, D. F. & Brown, R. 1984. Vision Testing of Young Children in the Age Range 18 Months 
to 4½ Years. Child: care, health and development, 10, 381-390. 

Ehlers, H. 1936. V: The Movements of the Eyes During Reading. Acta Ophthalmologica, 14, 
56-63. 

Elliott, D. B. & Sheridan, M. 1988. The Use of Accurate Visual Acuity Measurements in 
Clinical Anti‐Cataract Formulation Trials. Ophthalmic and Physiological Optics, 8, 
397-401. 

Elliott, M. C. & Firth, A. Y. 2007. The Logmar Kay Picture Test and the Logmar Acuity Test: A 
Comparative Study. Eye, 23, 85-88. 

Enns, J. T. & Akhtar, N. 1989. A Developmental Study of Filtering in Visual Attention. Child 
Development, 1188-1199. 

Enns, J. T. & Girgus, J. S. 1985. Developmental Changes in Selective and Integrative Visual 
Attention. Journal of Experimental Child Psychology, 40, 319-337. 

Fern, K. D. & Manny, R. E. 1986. Visual Acuity of the Preschool Child: A Review. American 
Journal of Optometry and Physiological Optics, 63, 319. 

Ferris, F. L., Kassoff, A., Bresnick, G. H. & Bailey, I. 1982. New Visual Acuity Charts for 
Clinical Research. American Journal of Ophthalmology, 94, 91. 

Fischer, B., Gezeck, S. & Hartnegg, K. 1997. The Analysis of Saccadic Eye Movements from 
Gap and Overlap Paradigms. Brain Research Protocols, 2, 47-52. 

Flom, M. 1986. Frequency-of-Seeing Curves and Contour Interaction. American Orthoptic 
Journal, 36, 19-28. 

Flom, M. C. 1991. Contour Interaction and the Crowding Effect. Problems in Optometry, 3, 
237-257. 

Flom, M. C., Heath, G. & Takahashi, E. 1963a. Crowding Interaction and Visual Resolution: 
Contralateral Effects. Science, 142, 979–980. 

Flom, M. C., Weymouth, F. W. & Kahneman, D. 1963b. Visual Resolution and Contour 
Interaction. Journal of the Optical Society of America, 53, 1026-1032. 

Fresina, M. & Campos, E. C. 2014. A 1-Year Review of Amblyopia and Strabismus Research. 
The Asia-Pacific Journal of Ophthalmology, 3, 379-387. 

Friendly, D. S. 1978. Preschool Visual Acuity Screening Tests. Transactions of the American 
Ophthalmological Society, 76, 383. 

Giaschi, D., Regan, D., Kraft, S. & Hong, X. 1992. Defective Processing of Motion-Defined 
Form in the Fellow Eye of Patients with Unilateral Amblyopia. Investigative 
ophthalmology & visual science, 33, 2483-2489. 

Giaschi, D. E., Regan, D., Kraft, S. P. & Kothe, A. C. 1993. Crowding and Contrast in 
Amblyopia. Optometry & Vision Science, 70, 192. 

Gibson, R. & Sanderson, H. 1980. Observer Variation in Ophthalmology. British Journal of 
Ophthalmology, 64, 457-460. 

Gilbert, L. C. 1959. Speed of Processing Visual Stimuli and Its Relation to Reading. Journal of 
Educational Psychology, 50, 8. 

Ginis, H., Pérez, G. M., Bueno, J. M. & Artal, P. 2012. The Wide-Angle Point Spread Function 
of the Human Eye Reconstructed by a New Optical Method. Journal of Vision, 12, 
20. 

Goldberg, M. C., Maurer, D. & Lewis, T. L. 2001. Developmental Changes in Attention: The 
Effects of Endogenous Cueing and of Distractors. Developmental Science, 4, 209-
219. 



185 
 

González, E. G., Wong, A. M., Niechwiej-Szwedo, E., Tarita-Nistor, L. & Steinbach, M. J. 
2012. Eye Position Stability in Amblyopia and in Normal Binocular Vision. 
Investigative ophthalmology & visual science, 53, 5386-5394. 

Gordon, M. O., Schechtman, K. B., Davis, L. J., Mcmahon, T. T., Schornack, J., Zadnik, K. & 
Group, C. L. E. O. K. S. 1998. Visual Acuity Repeatability in Keratoconus: Impact on 
Sample Size. Optometry & Vision Science, 75, 249-257. 

Grant, S. & Moseley, M. J. 2011. Amblyopia and Real-World Visuomotor Tasks. Strabismus, 
19, 119-128. 

Green, D. G. 1970. Regional Variations in the Visual Acuity for Interference Fringes on the 
Retina. The Journal of Physiology, 207, 351-356. 

Greenwood, J. A., Bex, P. J. & Dakin, S. C. 2009. Positional Averaging Explains Crowding with 
Letter-Like Stimuli. Proceedings of the National Academy of Sciences, 106, 13130-
13135. 

Greenwood, J. A., Tailor, V. K., Sloper, J. J., Simmers, A. J., Bex, P. J. & Dakin, S. C. 2012. 
Visual Acuity, Crowding, and Stereo-Vision Are Linked in Children with and without 
Amblyopia. Investigative ophthalmology & visual science, 53, 7655-7665. 

Grimm, W., Rassow, B., Wesemann, W., Saur, K. & Hilz, R. 1994. Correlation of Optotypes 
with the Landolt Ring-a Fresh Look at the Comparability of Optotypes. Optometry & 
Vision Science, 71, 6-13. 

Gstalder, R. & Green, D. 1971. Laser Interferometric Acuity in Amblyopia. Journal of 
Pediatric Ophthalmology, 8, 251-256. 

Halberda, J. & Feigenson, L. 2008. Developmental Change in the Acuity of the" Number 
Sense": The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds and Adults. 
Developmental Psychology, 44, 1457. 

Hall, D. M. B. & Elliman, D. 2003. Health for All Children, Oxford University Press Oxford:. 
Hariharan, S., Levi, D. M. & Klein, S. A. 2005. “Crowding” in Normal and Amblyopic Vision 

Assessed with Gaussian and Gabor C’s. Vision Research, 45, 617-633. 
Hartmann, E. E., Dobson, V., Hainline, L., Marsh-Tootle, W., Quinn, G. E., Ruttum, M. S., 

Schmidt, P. P. & Simons, K. 2000. Preschool Vision Screening: Summary of a Task 
Force Report. Am Acad Pediatrics. 

Haynes, H., White, B. L. & Held, R. 1965. Visual Accommodation in Human Infants. Science, 
148, 528-530. 

Hazel, C. A. & Elliott, D. B. 2002. The Dependency of Logmar Visual Acuity Measurements 
on Chart Design and Scoring Rule. Optometry & Vision Science, 79, 788-792. 

He, S., Cavanagh, P. & Intriligator, J. 1996. Attentional Resolution and the Locus of Visual 
Awareness. Nature, 383, 334-337. 

Hedin, A., Nyman, K. & Derouet, B. 1979. A Modified Letter Matching Chart for Testing 
Young Children's Visual Acuity. Journal of Pediatric Ophthalmology and Strabismus, 
17, 114-118. 

Hendrickson, A. E. & Yuodelis, C. 1984. The Morphological Development of the Human 
Fovea. Ophthalmology, 91, 603-612. 

Herman, C. 2006. What Makes a Screening Exam Good? Virtual Mentor, 8, 34-37. 
Herzog, M., Sayim, B., Chicherov, B. & Manassi, M. 2015. Crowding, Grouping, and Object 

Recognition: A Matter of Appearance. Journal of Vision, 15. 
Hess, R., Bradley, A. & Piotrowski, L. 1983. Contrast-Coding in Amblyopia I. Differences in 

the Neural Basis of Human Amblyopia. Proceedings of the Royal Society of London. 
Series B. Biological Sciences, 217, 309-330. 

Hess, R. & Howell, E. 1977. The Threshold Contrast Sensitivity Function in Strabismic 
Amblyopia: Evidence for a Two Type Classification. Vision Research, 17, 1049-1055. 



186 
 

Hess, R., Mansouri, B. & Thompson, B. 2010a. A New Binocular Approach to the Treatment 
of Amblyopia in Adults Well Beyond the Critical Period of Visual Development. 
Restorative Neurology and Neuroscience, 28, 793-802. 

Hess, R. F., Dakin, S. C. & Kapoor, N. 2000. The Foveal ‘Crowding’effect: Physics or 
Physiology? Vision Research, 40, 365-370. 

Hess, R. F., Dakin, S. C., Tewfik, M. & Brown, B. 2001. Contour Interaction in Amblyopia: 
Scale Selection. Vision Research, 41, 2285-2296. 

Hess, R. F. & Holliday, I. E. 1992. The Spatial Localization Deficit in Amblyopia. Vision 
Research, 32, 1319-1339. 

Hess, R. F., Mansouri, B. & Thompson, B. 2010b. A Binocular Approach to Treating 
Amblyopia: Antisuppression Therapy. Optometry & Vision Science, 87, 697-704. 

Hess, R. F., Mcilhagga, W. & Field, D. J. 1997. Contour Integration in Strabismic Amblyopia: 
The Sufficiency of an Explanation Based on Positional Uncertainty. Vision Research, 
37, 3145-3161. 

Hess, R. F., Wang, Y.-Z., Demanins, R., Wilkinson, F. & Wilson, H. R. 1999. A Deficit in 
Strabismic Amblyopia for Global Shape Detection. Vision Research, 39, 901-914. 

Hilton, A. F. & Stanley, J. C. 1972. Pitfalls in Testing Children's Vision by the Sheridan 
Gardiner Single Optotype Method. The British Journal of Ophthalmology. 

Ho, C., Paul, P., Asirvatham, A., Cavanagh, P., Cline, R. & Giaschi, D. 2006. Abnormal Spatial 
Selection and Tracking in Children with Amblyopia. Vision Research, 46, 3274-3283. 

Ho, C. S. & Giaschi, D. E. 2006. Deficient Maximum Motion Displacement in Amblyopia. 
Vision Research, 46, 4595-4603. 

Ho, C. S., Giaschi, D. E., Boden, C., Dougherty, R., Cline, R. & Lyons, C. 2005. Deficient 
Motion Perception in the Fellow Eye of Amblyopic Children. Vision Research, 45, 
1615-1627. 

Hoffman, J. E. & Subramaniam, B. 1995. The Role of Visual Attention in Saccadic Eye 
Movements. Perception & Psychophysics, 57, 787-795. 

Hohmann, A. & Haase, W. 1982. Development of Visual Line Acuity in Humans. Ophthalmic 
Research, 14, 107-112. 

Holmes, J. M., Beck, R. W., Repka, M. X., Leske, D. A., Kraker, R. T., Blair, R. C., Moke, P. S., 
Birch, E. E., Saunders, R. A. & Hertle, R. W. 2001. The Amblyopia Treatment Study 
Visual Acuity Testing Protocol. Archives of Ophthalmology, 119, 1345-1353. 

Holmes, J. M. & Clarke, M. P. 2006. Amblyopia. The Lancet, 367, 1343-1351. 
Holmes, J. M., Lazar, E. L., Melia, B. M., Astle, W. F., Dagi, L. R., Donahue, S. P., Frazier, M. 

G., Hertle, R. W., Repka, M. X. & Quinn, G. E. 2011. Effect of Age on Response to 
Amblyopia Treatment in Children. Archives of Ophthalmology, 129, 1451-1457. 

Hommel, B., Li, K. Z. & Li, S.-C. 2004. Visual Search across the Life Span. Developmental 
Psychology, 40, 545. 

Hopkins, S., Sampson, G. P., Hendicott, P. & Wood, J. M. 2013. Review of Guidelines for 
Children's Vision Screenings. Clinical and Experimental Optometry. 

Horner, D., Paul, A., Katz, B. & Bedell, H. 1985. Variations in the Slope of the Psychometric 
Acuity Function with Acuity Threshold and Scale. American Journal of Optometry 
and Physiological Optics, 62, 895-900. 

Howland, H. C., Dobson, V. & Sayles, N. 1987. Accommodation in Infants as Measured by 
Photorefraction. Vision Research, 27, 2141-2152. 

Huang, C.-B., Lu, Z.-L. & Zhou, Y. 2009. Mechanisms Underlying Perceptual Learning of 
Contrast Detection in Adults with Anisometropic Amblyopia. Journal of Vision, 9, 
24. 

Hubel, D. H., Wiesel, T. N. & Levay, S. 1977. Plasticity of Ocular Dominance Columns in 
Monkey Striate Cortex. Philosophical Transactions of the Royal Society of London. 
B, Biological Sciences, 278, 377-409. 



187 
 

Huckauf, A., Heller, D. & Nazir, T. A. 1999. Lateral Masking: Limitations of the Feature 
Interaction Account. Perception & Psychophysics, 61, 177-189. 

Huttenlocher, P. R., De Courten, C., Garey, L. J. & Van Der Loos, H. 1982. Synaptogenesis in 
Human Visual Cortex—Evidence for Synapse Elimination During Normal 
Development. Neuroscience Letters, 33, 247-252. 

Huurneman, B. & Boonstra, F. N. 2015. Target–Distractor Similarity Has a Larger Impact on 
Visual Search in School-Age Children Than Spacing. Journal of Vision, 15, 23. 

Huurneman, B., Boonstra, F. N., Cox, R. F., Cillessen, A. H. & Van Rens, G. 2012. A 
Systematic Review on ‘Foveal Crowding’in Visually Impaired Children and 
Perceptual Learning as a Method to Reduce Crowding. BMC Ophthalmology, 12, 27. 

Hyvärinen, L., Näsänen, R. & Laurinen, P. 1980. New Visual Acuity Test for Pre-School 
Children. Acta Ophthalmol, 58, 507-511. 

International Council of Ophthalmology 1984. Visual Acuity Measurement Standard. 
Intriligator, J. & Cavanagh, P. 2001. The Spatial Resolution of Visual Attention. Cognitive 

Psychology, 43, 171-216. 
Irving, E. L., Steinbach, M. J., Lillakas, L., Babu, R. J. & Hutchings, N. 2006. Horizontal 

Saccade Dynamics across the Human Life Span. Investigative Ophthalmology and 
Visual Science, 47, 2478-2484. 

Jacobs, R. J. 1979. Visual Resolution and Contour Interaction in the Fovea and Periphery. 
Vision Research, 19, 1187-1195. 

Jeon, S. T., Hamid, J., Maurer, D. & Lewis, T. L. 2010. Developmental Changes During 
Childhood in Single-Letter Acuity and Its Crowding by Surrounding Contours. 
Journal of Experimental Child Psychology, 107, 423-37. 

Jeon, S. T., Maurer, D. & Lewis, T. L. 2012. The Effect of Video Game Training on the Vision 
of Adults with Bilateral Deprivation Amblyopia. Seeing and Perceiving, 25, 493-520. 

Jones, D., Westall, C., Averbeck, K. & Abdolell, M. 2003. Visual Acuity Assessment: A 
Comparison of Two Tests for Measuring Children's Vision. Ophthalmic and 
Physiological Optics, 23, 541-546. 

Kaldy, Z. & Kovacs, I. 2003. Visual Context Integration Is Not Fully Developed in 4-Year-Old 
Children. Perception, 32, 657-666. 

Kanonidou, E. 2011. Amblyopia: A Mini Review of the Literature. International 
Ophthalmology, 31, 249-256. 

Kanonidou, E., Gottlob, I. & Proudlock, F. A. 2014. The Effect of Font Size on Reading 
Performance in Strabismic Amblyopia: An Eye Movement Investigation. 
Investigative Ophthalmology and Visual Science, 55, 451-459. 

Kanonidou, E., Proudlock, F. A. & Gottlob, I. 2010. Reading Strategies in Mild to Moderate 
Strabismic Amblyopia: An Eye Movement Investigation. Investigative 
Ophthalmology and Visual Science, 51, 3502-3508. 

Kay, H. 1983. New Method of Assessing Visual Acuity with Pictures. British Journal of 
Ophthalmology, 67, 131-133. 

Kaye, S. B., Chen, S. I., Price, G., Kaye, L. C., Noonan, C., Tripathi, A., Ashwin, P., Cota, N., 
Clark, D. & Butcher, J. 2002. Combined Optical and Atropine Penalization for the 
Treatment of Strabismic and Anisometropic Amblyopia. Journal of American 
Association for Pediatric Ophthalmology and Strabismus, 6, 289-293. 

Keith, C. G., Diamond, Z. & Stansfield, A. 1972. Visual Acuity Testing in Young Children. 
British Journal of Ophthalmology, 56, 827. 

Keppel, G. 1982. Design and Analysis: A Researcher's Handbook, Prentice-Hall, Inc. 
Kheterpal, S., Jones, H. S., Auld, R. & Moseley, M. J. 1996. Reliability of Visual Acuity in 

Children with Reduced Vision. Ophthalmic and Physiological Optics, 16, 447-449. 
Kiorpes, L. 2002. Sensory Processing: Animal Models of Amblyopia, Oxford, Butterworth-

Heinemann. 



188 
 

Kiorpes, L. & McKee, S. P. 1999. Neural Mechanisms Underlying Amblyopia. Current Opinion 
in Neurobiology, 9, 480-486. 

Kirschen, D. & Flom, M. C. 1978. Visual Acuity at Different Retinal Loci of Eccentrically 
Fixating Functional Amblyopes. American Journal of Optometry and Physiological 
Optics, 55, 144-150. 

Kirschen, D., Kendall, J. & Riesen, K. 1981. An Evaluation of Accommodation Response in 
Amblyopic Eyes. American Journal of Optometry and Physiological Optics, 58, 597-
602. 

Knox, P. J., Simmers, A. J., Gray, L. S. & Cleary, M. 2012. An Exploratory Study: Prolonged 
Periods of Binocular Stimulation Can Provide an Effective Treatment for Childhood 
Amblyopia. Investigative Ophthalmology and Visual Science, 53, 817-824. 

Kolb, H., Fernandez, E. & Nelson, R. 1995. Visual Acuity--Webvision: The Organization of the 
Retina and Visual System [Online]. Available: 
http://www.ncbi.nlm.nih.gov/pubmed/21413375 [Accessed 06/11/2015. 

Kooi, F. L., Toet, A., Tripathy, S. P. & Levi, D. M. 1994. The Effect of Similarity and Duration 
on Spatial Interaction in Peripheral Vision. Spatial Vision, 8, 255-279. 

Kothe, A. C. & Regan, D. 1990. The Component of Gaze Selection/Control in the 
Development of Visual Acuity in Children. Optometry & Vision Science, 67, 770. 

Kovács, I., Kozma, P., Fehér, Á. & Benedek, G. 1999. Late Maturation of Visual Spatial 
Integration in Humans. Proceedings of the National Academy of Sciences of the 
United States of America, 96, 12204. 

Kowler, E. & Martins, A. J. 1982. Eye Movements of Preschool Children. Science, 215, 997. 
Kozma, P., Kovács, I. & Benedek, G. 2001. Normal and Abnormal Development of Visual 

Functions in Children. Acta Biologica Szegediensis, 45, 23-42. 
Kulp, M. T., Cotter, S. A., Connor, A. J. & Clarke, M. P. 2014. Should Amblyopia Be Treated? 

Ophthalmic and Physiological Optics, 34, 226-232. 
Kvarnström, G. & Jakobsson, P. 2005. Is Vision Screening in 3-Year-Old Children Feasible? 

Comparison between the Lea Symbol Chart and the Hvot (Lm) Chart. Acta 
Ophthalmologica Scandinavica, 83, 76-80. 

Kvarnström, G., Jakobsson, P. & Dahlgaard, J. Visual Screening in Sweden. Effectiveness in 
the Reduction of Amblyopia and Costs, in De Faber Jt (Ed). Progress in 
Ophthalmology.  9th Meeting of the International Strabismological Association, 
Sydney, Australia, 2002. 17-20. 

Kwon, M., Legge, G. E. & Dubbels, B. R. 2007. Developmental Changes in the Visual Span for 
Reading. Vision Research, 47, 2889. 

Lagreze, W.-D. & Sireteanu, R. 1991. Two-Dimensional Spatial Distortions in Human 
Strabismic Amblyopia. Vision Research, 31, 1271-1288. 

Laidlaw, D. a. H., Abbott, A. & Rosser, D. A. 2003. Development of a Clinically Feasible 
Logmar Alternative to the Snellen Chart: Performance of the “Compact Reduced 
Logmar” Visual Acuity Chart in Amblyopic Children. British Journal of 
Ophthalmology, 87, 1232. 

Laidlaw, D. a. H., Tailor, V., Shah, N., Atamian, S. & Harcourt, C. 2008. Validation of a 
Computerised Logmar Visual Acuity Measurement System (Complog): Comparison 
with ETDRS and the Electronic ETDRS Testing Algorithm in Adults and Amblyopic 
Children. British Journal of Ophthalmology, 92, 241-244. 

Langaas, T. 2011. Visual Acuity in Children: The Development of Crowded and Single Letter 
Acuities. Scandinavian Journal of Optometry and Visual Science, 4, 20-26. 

Latham, K., Katsou, M. F. & Rae, S. 2014. Advising Patients on Visual Fitness to Drive: 
Implications of Revised DVLA Regulations. British Journal of Ophthalmology, 
bjophthalmol-2014-306173. 

http://www.ncbi.nlm.nih.gov/pubmed/21413375


189 
 

Latham, K. & Whitaker, D. 1996. Relative Roles of Resolution and Spatial Interference in 
Foveal and Peripheral Vision. Ophthalmic and Physiological Optics, 16, 49-57. 

Leat, S. J., Li, W. & Epp, K. 1999. Crowding in Central and Eccentric Vision: The Effects of 
Contour Interaction and Attention. Investigative Ophthalmology and Visual Science, 
40, 504. 

Leat, S. J., Yadav, N. K. & Irving, E. L. 2009. Development of Visual Acuity and Contrast 
Sensitivity in Children. Journal of Optometry, 2, 19-26. 

Legge, G. E. & Foley, J. M. 1980. Contrast Masking in Human Vision. Journal of the Optical 
Society of America, 70, 1458-1471. 

Levi, D. M. 2008. Crowding--an Essential Bottleneck for Object Recognition: A Mini-Review. 
Vision Research, 48, 635-654. 

Levi, D. M. & Carkeet, A. D. 1993. Amblyopia: A Consequence of Abnormal Visual 
Development. Early visual development, normal and abnormal, 391-408. 

Levi, D. M., Hariharan, S. & Klein, S. A. 2002a. Suppressive and Facilitatory Spatial 
Interactions in Amblyopic Vision. Vision Research, 42, 1379-1394. 

Levi, D. M. & Klein, S. A. 1985. Vernier Acuity, Crowding and Amblyopia. Vision Research, 
25, 979-991. 

Levi, D. M., Klein, S. A. & Hariharan, S. 2002b. Suppressive and Facilitatory Spatial 
Interactions in Foveal Vision: Foveal Crowding Is Simple Contrast Masking. Journal 
of Vision, 2, 2. 

Levi, D. M., Klein, S. A. & Yap, Y. L. 1987. Positional Uncertainty in Peripheral and Amblyopic 
Vision. Vision Research, 27, 581-597. 

Levi, D. M., Knill, D. C. & Bavelier, D. 2015. Stereopsis and Amblyopia: A Mini-Review. Vision 
Research, 114, 17-30. 

Levi, D. M. & Li, R. W. 2009. Perceptual Learning as a Potential Treatment for Amblyopia: A 
Mini-Review. Vision Research, 49, 2535-2549. 

Levi, D. M., Polat, U. & Hu, Y.-S. 1997. Improvement in Vernier Acuity in Adults with 
Amblyopia. Practice Makes Better. Investigative ophthalmology & visual science, 
38, 1493-1510. 

Levi, D. M., Song, S. & Pelli, D. G. 2007. Amblyopic Reading Is Crowded. Journal of Vision, 7, 
21. 

Lewis, T. L. & Maurer, D. 2005. Multiple Sensitive Periods in Human Visual Development: 
Evidence from Visually Deprived Children. Developmental Psychobiology, 46, 163-
183. 

Li, J., Spiegel, D. P., Hess, R. F., Chen, Z., Chan, L. Y., Deng, D., Yu, M. & Thompson, B. 2015. 
Dichoptic Training Improves Contrast Sensitivity in Adults with Amblyopia. Vision 
Research, 114, 161-172. 

Li, R. W., Klein, S. A. & Levi, D. M. 2008. Prolonged Perceptual Learning of Positional Acuity 
in Adult Amblyopia: Perceptual Template Retuning Dynamics. The Journal of 
Neuroscience, 28, 14223-14229. 

Li, R. W., Ngo, C., Nguyen, J. & Levi, D. M. 2011. Video-Game Play Induces Plasticity in the 
Visual System of Adults with Amblyopia. PLoS biology, 9, e1001135. 

Lippmann, O. 1971. Vision Screening of Young Children. American Journal of Public Health, 
61, 1586-1601. 

Little, J. A., Molloy, J. & Saunders, K. J. 2012. The Differing Impact of Induced Astigmatic 
Blur on Crowded and Uncrowded Paediatric Visual Acuity Chart Results. 
Ophthalmic and Physiological Optics, 32, 492-500. 

Liu, L. 2001. Can the Amplitude Difference Spectrum Peak Frequency Explain the Foveal 
Crowding Effect? Vision Research, 41, 3693-3704. 



190 
 

Logan, N. S. & Gilmartin, B. 2004. School Vision Screening, Ages 5-16 Years: The Evidence-
Base for Content, Provision and Efficacy. Ophthalmic and Physiological Optics, 24, 
481-492. 

Lola Solebo, A. & Rahi, J. S. 2014. Vision Screening in Children: Why and How? Ophthalmic 
Epidemiology, 21, 207-209. 

Loudon, S., Polling, J. & Simonsz, H. 2002. A Preliminary Report About the Relation between 
Visual Acuity Increase and Compliance in Patching Therapy for Amblyopia. 
Strabismus, 10, 79-82. 

Lovie-Kitchin, J. E. & Brown, B. 2000. Repeatability and Intercorrelations of Standard Vision 
Tests as a Function of Age. Optometry & Vision Science, 77, 412-420. 

Lovie‐Kitchin, J. E. 1988. Validity and Reliability of Visual Acuity Measurements. Ophthalmic 
and Physiological Optics, 8, 363-370. 

Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A. & Sweeney, J. A. 2004. Maturation of 
Cognitive Processes from Late Childhood to Adulthood. Child Development, 75, 
1357-1372. 

Luna, B., Velanova, K. & Geier, C. F. 2008. Development of Eye-Movement Control. Brain 
and cognition, 68, 293-308. 

Malania, M., Herzog, M. H. & Westheimer, G. 2007. Grouping of Contextual Elements That 
Affect Vernier Thresholds. Journal of Vision, 7, 1. 

Manassi, M., Sayim, B. & Herzog, M. H. 2013. When Crowding of Crowding Leads to 
Uncrowding. Journal of Vision, 13, 10. 

Manny, R. E., Fern, K. D. & Loshin, D. S. 1987. Contour Interaction Function in the Preschool 
Child. American Journal of Optometry and Physiological Optics, 64, 686. 

Manny, R. E., Hussein, M., Gwiazda, J. & Marsh-Tootle, W. 2003. Repeatability of ETDRS 
Visual Acuity in Children. Investigative Ophthalmology and Visual Science, 44, 3294. 

Matsumoto, F., Wakayama, A., Omure, K., Tanoue, K., Otori, T. & Kusube, T. 1999. A Study 
of the Crowding Phenomenon Using the Landolt Ring Crowded Card in Normal 
Adults and Children. Jpn Orthopt J, 27, 241-245. 

Mayer, D., Beiser, A., Warner, A., Pratt, E., Raye, K. & Lang, J. 1995. Monocular Acuity 
Norms for the Teller Acuity Cards between Ages One Month and Four Years. 
Investigative Ophthalmology and Visual Science, 36, 671-685. 

Mayer, D. L. & Dobson, V. 1982. Visual Acuity Development in Infants and Young Children, 
as Assessed by Operant Preferential Looking. Vision Research, 22, 1141-1151. 

Mayer, D. L. & Gross, R. D. 1990. Modified Allen Pictures to Assess Amblyopia in Young 
Children. Ophthalmology, 97, 827-832. 

McCulloch, D. L. 1998. The Infant Patient. Ophthalmic and Physiological Optics, 18, 140-
146. 

McGraw, P., Winn, B. & Whitaker, D. 1995. Reliability of the Snellen Chart. British Medical 
Journal, 310, 1481-1482. 

McGraw, P. V. & Winn, B. 1993. Glasgow Acuity Cards: A New Test for the Measurement of 
Letter Acuity in Children. Ophthalmic and Physiological Optics, 13, 400-400. 

McGraw, P. V., Winn, B., Gray, L. S. & Elliott, D. B. 2000. Improving the Reliability of Visual 
Acuity Measures in Young Children. Ophthalmic and Physiological Optics, 20, 173-
184. 

McKee, S. P., Klein, S. A. & Teller, D. Y. 1985. Statistical Properties of Forced-Choice 
Psychometric Functions: Implications of Probit Analysis. Perception & 
Psychophysics, 37, 286-298. 

McKee, S. P., Levi, D. M. & Movshon, J. A. 2003. The Pattern of Visual Deficits in Amblyopia. 
Journal of Vision, 3, 5. 

McKee, S. P., Schor, C., Steinman, S., Wilson, N., Koch, G., Davis, S., Hsu-Winges, C., Day, S., 
Chan, C. & Movshon, J. 1992. The Classification of Amblyopia on the Basis of Visual 



191 
 

and Oculomotor Performance. Transactions of the American Ophthalmological 
Society, 90, 123. 

Mercer, M. E., Drover, J. R., Penney, K. J., Courage, M. L. & Adams, R. J. 2013. Comparison 
of Patti Pics and Lea Symbols Optotypes in Children and Adults. Optometry & Vision 
Science, 90, 236-241. 

Miller, J. M., Teodoro, M. R., Lane, L., Schwiegerling, J. & Guyton, D. L. Detection of Sloan 
Crowded Single Letters (Scsl) in the Presence of Induced Refractive Error.  Vision 
Science and Its Applications, 2001. Optical Society of America, FC3. 

Mirabella, G., Hay, S. & Wong, A. M. 2011. Deficits in Perception of Images of Real-World 
Scenes in Patients with a History of Amblyopia. Archives of Ophthalmology, 129, 
176-183. 

Mohan, K., Saroha, V. & Sharma, A. 2004. Successful Occlusion Therapy of Amblyopia in 11-
to 15-Year-Old Children. American Journal of Ophthalmology, 138, 517-518. 

Mohr, H. M., Mues, H. T., Robol, V. & Sireteanu, R. 2010. Altered Mental Number Line in 
Amblyopia—Reduced Pseudoneglect Corresponds to a Decreased Bias in Number 
Estimation. Neuropsychologia, 48, 1775-1781. 

Morad, Y., Werker, E. & Nemet, P. 1999. Visual Acuity Tests Using Chart, Line, and Single 
Optotype in Healthy and Amblyopic Children. Journal of AAPOS: Journal of 
American Association for Pediatric Ophthalmology and Strabismus, 3, 94-97. 

Moseley, M. 2002. Amblyopia: Treatment and Evaluation, Oxford, Butterworth Heinemann. 
Moseley, M. J., Neufeld, M., Mccarry, B., Charnock, A., Mcnamara, R., Rice, T. & Fielder, A. 

2002. Remediation of Refractive Amblyopia by Optical Correction Alone. 
Ophthalmic and Physiological Optics, 22, 296-299. 

Nandy, A. S. & Tjan, B. S. 2007. The Nature of Letter Crowding as Revealed by First-and 
Second-Order Classification Images. Journal of Vision, 7, 5. 

National  Screening Committee. 2013. The UK Nsc Policy on Vision Defects Screening in 
Children [Online]. Available: http://www.screening.nhs.uk/vision-child [Accessed 
22/10/15 2015]. 

National  Screening Committee 2015. Screening in the UK: Making Effective 
Recommendations. Public Health England. 

National Academy of Sciences-National Research Council Committee on Vision 1980. 
Recommended Stardard Procedures for the Clinical Measurement and Specification 
of Visual Acuity. Report of Working Group 39. . Adv Ophthalmol., 41, 103-48. 

Nazir, T. A. 1992. Effects of Lateral Masking and Spatial Precueing on Gap-Resolution in 
Central and Peripheral Vision. Vision Research, 32, 771-777. 

Niechwiej-Szwedo, E., Goltz, H. C., Chandrakumar, M., Hirji, Z., Crawford, J. D. & Wong, A. 
M. 2011. Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: 
Visually Guided Reaching. Investigative Ophthalmology and Visual Science, 52, 795-
803. 

Niechwiej-Szwedo, E., Goltz, H. C., Chandrakumar, M., Hirji, Z. A. & Wong, A. M. 2010. 
Effects of Anisometropic Amblyopia on Visuomotor Behavior, I: Saccadic Eye 
Movements. Investigative Ophthalmology and Visual Science, 51, 6348-6354. 

Norgett, Y. & Siderov, J. 2011. Crowding in Children's Visual Acuity Tests-Effect of Test 
Design and Age. Optometry & Vision Science, 88, 920-927. 

Norgett, Y. & Siderov, J. 2014. Foveal Crowding Differs in Children and Adults. Journal of 
Vision, 14, 23. 

Ohlsson, J., Villarreal, G., Sjöström, A., Abrahamsson, M. & Sjöstrand, J. 2001. Visual Acuity, 
Residual Amblyopia and Ocular Pathology in a Screened Population of 12–13‐Year‐
Old Children in Sweden. Acta Ophthalmologica Scandinavica, 79, 589-595. 

http://www.screening.nhs.uk/vision-child


192 
 

Pai, A. S.-I., Rose, K. A., Leone, J. F., Sharbini, S., Burlutsky, G., Varma, R., Wong, T. Y. & 
Mitchell, P. 2012. Amblyopia Prevalence and Risk Factors in Australian Preschool 
Children. Ophthalmology, 119, 138-144. 

Pan, Y., Tarczy-Hornoch, K., Cotter Susan, A., Wen, G., Borchert, M. S., Azen, S. P. & Varma, 
R. 2009. Visual Acuity Norms in Preschool Children: The Multi-Ethnic Pediatric Eye 
Disease Study. Optometry & Vision Science, 86, 607. 

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A. & Morgan, M. 2001. Compulsory Averaging 
of Crowded Orientation Signals in Human Vision. Nature Neuroscience, 4, 739-744. 

Pascual, M., Huang, J., Maguire, M. G., Kulp, M. T., Quinn, G. E., Ciner, E., Cyert, L. A., Orel-
Bixler, D., Moore, B. & Ying, G.-S. 2014. Risk Factors for Amblyopia in the Vision in 
Preschoolers Study. Ophthalmology, 121, 622-629. e1. 

Pastò, L. & Burack, J. A. 1997. A Developmental Study of Visual Attention: Issues of Filtering 
Efficiency and Focus. Cognitive Development, 12, 523-535. 

Pediatric Eye Disease Investigator Group 2004. A Prospective, Pilot Study of Treatment of 
Amblyopia in Children 10 to< 18 Years Old. American Journal of Ophthalmology, 
137, 581-583. 

Pediatric Eye Disease Investigator Group 2005. Randomized Trial of Treatment of 
Amblyopia in Children Aged 7 to 17 Years. Archives of Ophthalmology, 123, 437. 

Pediatric Eye Disease Investigator Group 2007. Stability of Visual Acuity Improvement 
Following Discontinuation of Amblyopia Treatment in Children 7 to 12 Years Old. 
Archives of Ophthalmology, 125, 655. 

Pelli, D. G. 2008. Crowding: A Cortical Constraint on Object Recognition. Current Opinion in 
Neurobiology, 18, 445-451. 

Pelli, D. G., Palomares, M. & Majaj, N. J. 2004. Crowding Is Unlike Ordinary Masking: 
Distinguishing Feature Integration from Detection. Journal of Vision, 4. 

Pelli, D. G., Robson, J. G. & Wilkins, A. J. 1988. The Design of a New Letter Chart for 
Measuring Contrast Sensitivity,  . Clinical Vision Sciences, 187-199. 

Plainis, S., Tzatzala, P., Orphanos, Y. & Tsilimbaris, M. K. 2007. A Modified ETDRS Visual 
Acuity Chart for European-Wide Use. Optometry & Vision Science, 84, 647-653. 

Polat, U., Ma-Naim, T., Belkin, M. & Sagi, D. 2004. Improving Vision in Adult Amblyopia by 
Perceptual Learning. Proceedings of the National Academy of Sciences of the United 
States of America, 101, 6692-6697. 

Polat, U., Sagi, D. & Norcia, A. M. 1997. Abnormal Long-Range Spatial Interactions in 
Amblyopia. Vision Research, 37, 737-744. 

Popple, A. V. & Levi, D. M. 2005. The Perception of Spatial Order at a Glance. Vision 
Research, 45, 1085-1090. 

Popple, A. V. & Levi, D. M. 2008. The Attentional Blink in Amblyopia. Journal of Vision, 8, 
12. 

Posner, M. I. & Rothbart, M. K. 2000. Developing Mechanisms of Self-Regulation. 
Development and psychopathology, 12, 427-441. 

Powell, C. & Hatt, S. R. 2009. Vision Screening for Amblyopia in Childhood. Cochrane 
Database Syst Rev, 3. 

Prince, J. H. & Fry, G. A. 1956. The Effect of Errors of Refraction on Visual Acuity*. 
Optometry & Vision Science, 33, 353-373. 

Provis, J. M., Dubis, A. M., Maddess, T. & Carroll, J. 2013. Adaptation of the Central Retina 
for High Acuity Vision: Cones, the Fovea and the Avascular Zone. Progress in Retinal 
and Eye Research, 35, 63-81. 

Raasch, T. W., Bailey, I. L. & Bullimore, M. A. 1998. Repeatability of Visual Acuity 
Measurement. Optometry & Vision Science, 75, 342-348. 



193 
 

Rahi, J. S., Logan, S., Timms, C., Russell-Eggitt, I. & Taylor, D. 2002. Risk, Causes, and 
Outcomes of Visual Impairment after Loss of Vision in the Non-Amblyopic Eye: A 
Population-Based Study. The Lancet, 360, 597-602. 

Rassow, B. & Wang, Y. 1999. [Correlation of Letter Optotypes with Landholt Ring for 
Different Degrees of Visual Acuity]. Klinische Monatsblatter fur Augenheilkunde, 
215, 119-126. 

Ravikumar, S., Bradley, A., Thibos, L. & Cheng, X. 2003. Letter Discrimination and 
Confusions within the Sloan Letter Set. Investigative Ophthalmology and Visual 
Science, 44, 2783. 

Rayner, K. 1986. Eye Movements and the Perceptual Span in Beginning and Skilled Readers. 
Journal of Experimental Child Psychology, 41, 211-236. 

Rayner, K. & Duffy, S. A. 1986. Lexical Complexity and Fixation Times in Reading: Effects of 
Word Frequency, Verb Complexity, and Lexical Ambiguity. Memory & Cognition, 14, 
191-201. 

Reeves, B., Hill, A. & Aspinall, P. 1987. The Clinical Significance of Change. Ophthalmic and 
Physiological Optics, 7, 441-446. 

Reeves, B. C., Wood, I. & Hill, A. R. 1993. Reliability of High‐and Low‐Contrast Letter Charts. 
Ophthalmic and Physiological Optics, 13, 17-26. 

Regan, D., Giaschi, D. E., Kraft, S. P. & Kothe, A. C. 1992. Method for Identifying Amblyopes 
Whose Reduced Line Acuity Is Caused by Defective Selection and/or Control of 
Gaze. Ophthalmic and Physiological Optics, 12, 425-432. 

Reich, L. & Hoyt, K. 2002. Crowding Can Steepen the Psychometric Function for Visual 
Acuity.: Poster# 58. Optometry & Vision Science, 79, 233. 

Reichle, E. D., Liversedge, S. P., Drieghe, D., Blythe, H. I., Joseph, H. S., White, S. J. & Rayner, 
K. 2013. Using Ez Reader to Examine the Concurrent Development of Eye-
Movement Control and Reading Skill. Developmental Review, 33, 110-149. 

Repka, M. X. & Holmes, J. M. 2012. Lessons from the Amblyopia Treatment Studies. 
Ophthalmology, 119, 657-658. 

Reuther, J. & Chakravarthi, R. 2014. Categorical Membership Modulates Crowding: 
Evidence from Characters. Journal of Vision, 14, 5. 

Ricci, F., Cedrone, C. & Cerulli, L. 1998. Standardized Measurement of Visual Acuity. Neuro-
Ophthalmology, 5, 41-53. 

Rice, M. L., Leske, D. A. & Holmes, J. M. 2004. Comparison of the Amblyopia Treatment 
Study Hotv and Electronic-Early Treatment of Diabetic Retinopathy Study Visual 
Acuity Protocols in Children Aged 5 to 12 Years. American Journal of 
Ophthalmology, 137, 278-282. 

Richman, J., Petito, G. & Cron, M. 1984. Broken Wheel Acuity Test: A New and Valid Test for 
Preschool and Exceptional Children. Journal of the American Optometric 
Association, 55, 561-565. 

Rosser, D., Laidlaw, D. & Murdoch, I. 2001. The Development of a “Reduced Logmar” Visual 
Acuity Chart for Use in Routine Clinical Practice. British Journal of Ophthalmology, 
85, 432-436. 

Rosser, D. A., Cousens, S. N., Murdoch, I. E., Fitzke, F. W. & Laidlaw, D. A. 2003. How 
Sensitive to Clinical Change Are ETDRS Logmar Visual Acuity Measurements? 
Investigative Ophthalmology and Visual Science, 44, 3278-3281. 

Rosser, D. A., Murdoch, I. E. & Cousens, S. N. 2004. The Effect of Optical Defocus on the 
Test–Retest Variability of Visual Acuity Measurements. Investigative 
Ophthalmology and Visual Science, 45, 1076-1079. 

Rossi, E. A. & Roorda, A. 2010. The Relationship between Visual Resolution and Cone 
Spacing in the Human Fovea. Nature Neuroscience, 13, 156-157. 



194 
 

Rozhkova, G. I., Podugolnikova, T. A. & Vasiljeva, N. N. 2005. Visual Acuity in 5–7‐Year‐Old 
Children: Individual Variability and Dependence on Observation Distance. 
Ophthalmic and Physiological Optics, 25, 66-80. 

Rutstein, R. P. & Fuhr, P. S. 1992. Efficacy and Stability of Amblyopia Therapy. Optometry & 
Vision Science, 69, 747-754. 

Sabri, K., Knapp, C. M., Thompson, J. R. & Gottlob, I. 2006. The Vf-14 and Psychological 
Impact of Amblyopia and Strabismus. Investigative Ophthalmology and Visual 
Science, 47, 4386-4392. 

Salt, A. T., Wade, A. M., Proffitt, R., Heavens, S. & Sonksen, P. M. 2007. The Sonksen 
Logmar Test of Visual Acuity: I. Testability and Reliability. Journal of AAPOS: Journal 
of American Association for Pediatric Ophthalmology and Strabismus, 11, 589-596. 

Schmucker, C., Grosselfinger, R., Riemsma, R., Antes, G., Lange, S., Lagrèze, W. & Kleijnen, J. 
2009. Effectiveness of Screening Preschool Children for Amblyopia: A Systematic 
Review. BMC Ophthalmology, 9, 3. 

Schor, C. 1975. A Directional Impairment of Eye Movement Control in Strabismus 
Amblyopia. Investigative ophthalmology & visual science, 14, 692-697. 

Schor, C. & Flom, M. 1975. Eye Position Control and Visual Acuity in Strabismus Amblyopia, 
New York. 

Schor, C. & Hallmark, W. 1978. Slow Control of Eye Position in Strabismic Amblyopia. 
Investigative Ophthalmology and Visual Science, 17, 577-581. 

Secen, J., Culham, J., Ho, C. & Giaschi, D. 2011. Neural Correlates of the Multiple-Object 
Tracking Deficit in Amblyopia. Vision Research, 51, 2517-2527. 

Semenov, L. A., Chernova, N. D. & Bondarko, V. M. 2000. The Measurement of Visual Acuity 
and the Crowding Effect in Children from the Age of 3 to 9. Fiziologiia Cheloveka, 
26, 21. 

Shah, N., Laidlaw, D. a. H., Graham, B. & Chloe, R. 2010. Effect of Letter Separation on 
Computerised Visual Acuity Measurements: Comparison with the Gold Standard 
Early Treatment Diabetic Retinopathy Study (ETDRS) Chart. Ophthalmic and 
Physiological Optics, 30, 200-203. 

Sharma, V., Levi, D. M. & Klein, S. A. 2000. Undercounting Features and Missing Features: 
Evidence for a High-Level Deficit in Strabismic Amblyopia. Nature Neuroscience, 3, 
496-501. 

Sheridan, M. D. 1970. Sheridan-Gardiner Test for Visual Acuity. British Medical Journal, 2, 
108. 

Sheridan, M. D. 1974. What Is Normal Distance Vision at Five to Seven Years? 
Developmental Medicine & Child Neurology, 16, 189-195. 

Siderov, J. & Tiu, A. L. 1999. Variability of Measurements of Visual Acuity in a Large Eye 
Clinic. Acta Ophthalmologica Scandinavica, 77, 673. 

Siderov, J., Waugh, S. J. & Bedell, H. E. 2013. Foveal Contour Interaction for Low Contrast 
Acuity Targets. Vision Research, 77, 10-13. 

Siderov, J., Waugh, S. J. & Bedell, H. E. 2014. Foveal Contour Interaction on the Edge: 
Response to ‘Letter-to-the-Editor’by Drs. Coates and Levi. Vision Research, 96, 145-
148. 

Simmers, A. J., Gray, L. S., McGraw, P. V. & Winn, B. 1999. Contour Interaction for High and 
Low Contrast Optotypes in Normal and Amblyopic Observers. Ophthalmic and 
Physiological Optics, 19, 253-260. 

Simmers, A. J., Gray, L. S. & Spowart, K. 1997. Screening for Amblyopia: A Comparison of 
Paediatric Letter Tests. British Journal of Ophthalmology, 81, 465-469. 

Simmers, A. J., Ledgeway, T., Hess, R. F. & McGraw, P. V. 2003. Deficits to Global Motion 
Processing in Human Amblyopia. Vision Research, 43, 729-738. 



195 
 

Simons, K. 1983. Visual Acuity Norms in Young Children. Survey of Ophthalmology, 28, 84-
92. 

Simons, K. 1996. Preschool Vision Screening: Rationale, Methodology and Outcome. Survey 
of Ophthalmology, 41, 3-30. 

Simonsz, H., Polling, J., Voorn, R., Van Leeuwen, J., Meester, H., Romijn, C. & Dijkstra, B. 
1999. Electronic Monitoring of Treatment Compliance in Patching for Amblyopia. 
Strabismus, 7, 113-123. 

Sireteanu, R. & Fronius, M. 1989. Different Patterns of Retinal Correspondence in the 
Central and Peripheral Visual Field of Strabismics. Investigative Ophthalmology and 
Visual Science, 30, 2023-2033. 

Sloan, L. L. 1951. Measurement of Visual Acuity: A Critical Review. AMA Archives of 
Ophthalmology, 45, 704-725. 

Sloan, L. L. 1959. New Test Charts for the Measurement of Visual Acuity at Far and near 
Distances. American Journal of Ophthalmology, 48, 807-813. 

Sloan, L. L. 1968. The Photopic Acuity-Luminance Function with Special Reference to 
Parafoveal Vision. Vision Research, 8, 901-911. 

Sloan, L. L. 1980. Needs for Precise Measures of Acuity: Equipment to Meet These Needs. 
Archives of Ophthalmology, 98, 286-290. 

Sloan, L. L., Rowland, W. M. & Altman, A. 1952. Comparison of Three Types of Test Target 
for the Measurement of Visual Acuity. Quarterly Review of Ophthalmology, 8, 4-16. 

Smørvik, D. & Bosnes, O. 1976. Assessment of Visual Acuity in Preschool Children. 
Scandinavian Journal of Psychology, 17, 122-124. 

Snell, N., Kattner, F., Rokers, B. & Green, C. S. 2015. Orientation Transfer in Vernier and 
Stereoacuity Training. PloS one, 10, e0145770. 

Snowdon, S. K. & Stewart-Brown, S. L. 1997. Preschool Vision Screening. Health technology 
assessment (Winchester, England), 1. 

Solebo, A. L., Cumberland, P. M. & Rahi, J. S. 2014. Whole-Population Vision Screening in 
Children Aged 4–5 Years to Detect Amblyopia. The Lancet. 

Song, S., Levi, D. M. & Pelli, D. G. 2014. A Double Dissociation of the Acuity and Crowding 
Limits to Letter Identification, and the Promise of Improved Visual Screening. 
Journal of Vision, 14, 3. 

Sonksen, P. M., Wade, A. M., Proffitt, R., Heavens, S. & Salt, A. T. 2008. The Sonksen 
Logmar Test of Visual Acuity: Ii. Age Norms from 2 Years 9 Months to 8 Years. 
Journal of AAPOS: Journal of American Association for Pediatric Ophthalmology and 
Strabismus, 12, 18-22. 

Soper, D. 2014. Significance of the Difference between Two Slopes Calculator [Software]. 
Sprague, J. B., Stock, L. A., Connett, J. & Bromberg, J. 1989. Study of Chart Designs and 

Optotypes for Preschool Vision Screening--I. Comparability of Chart Designs. 
Journal of Pediatric Ophthalmology and Strabismus, 26, 189. 

Stager, D. R., Everett, M. E. & Birch, E. E. 1990. Comparison of Crowding Bar and Linear 
Optotype Acuity in Amblyopia. Am Orthoptic J, 40, 51-6. 

Starkey, P. & Cooper, R. G. 1995. The Development of Subitizing in Young Children. British 
Journal of Developmental Psychology, 13, 399-420. 

Steele, A. L., Bradfield, Y. S., Kushner, B. J., France, T. D., Struck, M. C. & Gangnon, R. E. 
2006. Successful Treatment of Anisometropic Amblyopia with Spectacles Alone. 
Journal of AAPOS: Journal of American Association for Pediatric Ophthalmology and 
Strabismus, 10, 37-43. 

Stewart, C. E., Moseley, M. J., Stephens, D. A. & Fielder, A. R. 2004. Treatment Dose-
Response in Amblyopia Therapy: The Monitored Occlusion Treatment of Amblyopia 
Study (Motas). Investigative Ophthalmology and Visual Science, 45, 3048-3054. 



196 
 

Stiers, P., Vanderkelen, R. & Vandenbussche, E. 2003. Optotype and Grating Visual Acuity in 
Preschool Children. Investigative Ophthalmology and Visual Science, 44, 4123-
4130. 

Strasburger, H. 2005. Unfocussed Spatial Attention Underlies the Crowding Effect in 
Indirect Form Vision. Journal of Vision, 5, 8. 

Strasburger, H., Harvey, L. O. & Rentschler, I. 1991. Contrast Thresholds for Identification of 
Numeric Characters in Direct and Eccentric View. Perception & Psychophysics, 49, 
495-508. 

Strasburger, H. & Wade, N. J. 2015. James Jurin (1684–1750): A Pioneer of Crowding 
Research? Journal of Vision, 15, 9. 

Strong, G. & Woo, G. C. 1985. A Distance Visual Acuity Chart Incorporating Some New 
Design Features. Archives of Ophthalmology, 103, 44. 

Stuart, J. A. & Burian, H. M. 1962. A Study of Separation Difficulty. Its Relationship to Visual 
Acuity in Normal and Amblyopic Eyes. American Journal of Ophthalmology, 53, 471. 

Subramanian, V., Jost, R. M. & Birch, E. E. 2013. A Quantitative Study of Fixation Stability in 
Amblyopia. Investigative ophthalmology & visual science, 54, 1998-2003. 

Takahashi, E. S. 1968. Effects of Flanking Contours on Visual Resolution at Foveal and near-
Foveal Loci. University of California, Berkeley. 

Taylor, K. & Elliott, S. 2014. Interventions for Strabismic Amblyopia. Cochrane Database 
Syst Rev, 7. 

Taylor, K., Powell, C., Hatt, S. R. & Stewart, C. 2012. Interventions for Unilateral and 
Bilateral Refractive Amblyopia. Cochrane Database Syst Rev, 4. 

Tejedor, J. & Ogallar, C. 2008. Comparative Efficacy of Penalization Methods in Moderate to 
Mild Amblyopia. American Journal of Ophthalmology, 145, 562-569. 

Tinning, S. & Bentzon, M. 1986. A New Method for Exact Measurements of Visual Acuity. 
Determination of Threshold Curves for the Resolving Power of the Eye by 
Computerized Curve Fitting. Acta Ophthalmologica, 64, 180-186. 

To, L., Thompson, B., Blum, J. R., Maehara, G., Hess, R. F. & Cooperstock, J. R. 2011. A Game 
Platform for Treatment of Amblyopia. Neural Systems and Rehabilitation 
Engineering, IEEE Transactions on, 19, 280-289. 

Tommila, V. & Tarkkanen, A. 1981. Incidence of Loss of Vision in the Healthy Eye in 
Amblyopia. British Journal of Ophthalmology, 65, 575-577. 

Treisman, A. 1982. Perceptual Grouping and Attention in Visual Search for Features and for 
Objects. Journal of Experimental Psychology: Human Perception and Performance, 
8, 194. 

Trick, L. M. & Enns, J. T. 1998. Lifespan Changes in Attention: The Visual Search Task. 
Cognitive Development, 13, 369-386. 

Trick, L. M. & Pylyshyn, Z. W. 1993. What Enumeration Studies Can Show Us About Spatial 
Attention: Evidence for Limited Capacity Preattentive Processing. Journal of 
Experimental Psychology: Human Perception and Performance, 19, 331. 

Tripathy, S. P. & Cavanagh, P. 2002. The Extent of Crowding in Peripheral Vision Does Not 
Scale with Target Size. Vision Research, 42, 2357-2369. 

Tychsen, L., Richards, M., Wong, A., Foeller, P., Bradley, D. & Burkhalter, A. 2010. The 
Neural Mechanism for Latent (Fusion Maldevelopment) Nystagmus. Journal of 
Neuro-Ophthalmology, 30, 276-283. 

Vanden Bosch, M. E. & Wall, M. 1997. Visual Acuity Scored by the Letter-by-Letter or Probit 
Methods Has Lower Retest Variability Than the Line Assignment Method. Eye, 11, 
411-417. 

Vision in Preschoolers Study Group 2003. Visual Acuity Results in School-Aged Children and 
Adults: Lea Symbols Chart Versus Bailey-Lovie Chart. Optometry & Vision Science, 
80, 650. 



197 
 

Vision in Preschoolers Study Group 2004. Preschool Visual Acuityscreening with Hotv and 
Lea Symbols: Testability and between-Test Agreement. Optometry & Vision Science, 
81, 678-683. 

Vision in Preschoolers Study Group 2010. Effect of Age Using Lea Symbols or Hotv for 
Preschool Vision Screening. Optometry & Vision Science, 87, 87. 

Wang, H., Crewther, S. G. & Yin, Z. Q. 2015. The Role of Eye Movement Driven Attention in 
Functional Strabismic Amblyopia. Journal of Ophthalmology, 2015. 

Webber, A. L. & Wood, J. 2005. Amblyopia: Prevalence, Natural History, Functional Effects 
and Treatment. Clinical and Experimental Optometry, 88, 365-375. 

Webber, A. L., Wood, J. M., Gole, G. A. & Brown, B. 2008. Effect of Amblyopia on Self-
Esteem in Children. Optometry & Vision Science, 85, 1074-1081. 

Wen, G., Mckean-Cowdin, R., Varma, R., Tarczy-Hornoch, K., Cotter, S. A., Borchert, M., 
Azen, S. & Group, M.-E. P. E. D. S. 2011. General Health-Related Quality of Life in 
Preschool Children with Strabismus or Amblyopia. Ophthalmology, 118, 574-580. 

Westheimer, G. 1975. Visual Acuity and Hyperacuity. Investigative Ophthalmology, 14, 570-
572. 

Westheimer, G. 1981. Visual Hyperacuity. Progress in Sensory Physiology. Springer. 
Westheimer, G. 2009. Hyperacuity, Oxford, Oxford Academic Press. 
Whitney, D. & Levi, D. M. 2011. Visual Crowding: A Fundamental Limit on Conscious 

Perception and Object Recognition. Trends in cognitive sciences, 15, 160-168. 
Wichmann, F. A. & Hill, N. J. 2001. The Psychometric Function: I. Fitting, Sampling, and 

Goodness of Fit. Perception & Psychophysics, 63, 1293-1313. 
Wick, B. & Schor, C. 1984. A Comparison of the Snellen Chart and the S-Chart for Visual 

Acuity Assessment in Amblyopia. Journal of the American Optometric Association, 
55, 359-361. 

Wickham, L., Stewart, C., Charnock, A. & Fielder, A. 2002. The Assessment and 
Management of Strabismus and Amblyopia: A National Audit. Eye, 16, 522-529. 

Wiesel, T. N. & Hubel, D. H. 1963. Single-Cell Responses in Striate Cortex of Kittens 
Deprived of Vision in One Eye. Journal of Neurophysiology, 26, 1003-1017. 

Williams, C., Northstone, K., Harrad, R., Sparrow, J. & Harvey, I. 2003. Amblyopia Treatment 
Outcomes after Preschool Screening V School Entry Screening: Observational Data 
from a Prospective Cohort Study. British Journal of Ophthalmology, 87, 988-993. 

Williams, C., Northstone, K., Harrad, R. A., Sparrow, J. M. & Harvey, I. 2002. Amblyopia 
Treatment Outcomes after Screening before or at Age 3 Years: Follow up from 
Randomised Trial. British Medical Journal, 324, 1549. 

Williams, C., Northstone, K., Howard, M., Harvey, I., Harrad, R. & Sparrow, J. 2008. 
Prevalence and Risk Factors for Common Vision Problems in Children: Data from 
the Alspac Study. British Journal of Ophthalmology, 92, 959-964. 

Wilson, J. & Junger, G. 1968. Principles and Practice of Screening for Disease. Who 
Chronical Geneva: World Health Organization. 22 (11): 473. Public Health Papers, 
34. 

Wolf, K. & Pfeiffer, T. 2014. The Development of Attentional Resolution. Cognitive 
Development, 29, 62-80. 

Wong, A. M. 2012. New Concepts Concerning the Neural Mechanisms of Amblyopia and 
Their Clinical Implications. Canadian Journal of Ophthalmology/Journal Canadien 
d'Ophtalmologie, 47, 399-409. 

Woodruff, M. E. 1972. Observations on the Visual Acuity of Children During the First Five 
Years of Life. American Journal of Optometry & Archives of American Academy of 
Optometry. 

Woods, R. & Lovie-Kitchin, J. 1995. The Reliability of Visual Performance Measures in Low 
Vision. Vision Science and Its Applications, 1, 246-9. 



198 
 

Xi, J., Jia, W.-L., Feng, L.-X., Lu, Z.-L. & Huang, C.-B. 2014. Perceptual Learning Improves 
Stereoacuity in Amblyopia. Investigative Ophthalmology and Visual Science, 55, 
2384-2391. 

Ygge, J. E., Aring, E., Han, Y., Bolzani, R. & Hellstrom, A. 2004. Fixation Stability in Normal 
Children. Investigative Ophthalmology and Visual Science, 45, 2512. 

Youngson, R. M. 1975. Anomaly in Visual Acuity Testing in Children. British Journal of 
Ophthalmology, 59, 168. 

Yuodelis, C. & Hendrickson, A. 1986. A Qualitative and Quantitative Analysis of the Human 
Fovea During Development. Vision Research, 26, 847-855. 

Zhang, B., Stevenson, S. S., Cheng, H., Laron, M., Kumar, G., Tong, J. & Chino, Y. M. 2008. 
Effects of Fixation Instability on Multifocal Vep (Mfvep) Responses in Amblyopes. 
Journal of Vision, 8, 16. 

Zhang, J. Y., Zhang, T., Xue, F., Liu, L. & Yu, C. 2009. Legibility of Chinese Characters in 
Peripheral Vision and the Top-Down Influences on Crowding. Vision Research, 49, 
44-53. 

 

  



199 
 

Appendix 1 

Abstract:  American Academy of Optometry, San Francisco, Nov 2010  

CROWDING IN CHILDREN’S VISUAL ACUITY MEASUREMENT: THE 
IMPORTANCE OF GAZE CONTROL AND CONTOUR INTERACTION 

Authors: Yvonne Norgett and John Siderov 
Anglia Ruskin University, UK 

 

   
 

Crowding features in children’s vision tests are necessary to avoid an over-estimation of 
acuity. However within available tests, the three elements of crowding: contour 
interaction, gaze control and attention are present to varying degrees. Our aim was to 
investigate the relative effect of the crowding components on measured acuity. 

Monocular, habitual visual acuity was measured in 103 school children, using each of 
the following tests: logMAR Crowded, Crowded Kay Picture, Sonksen logMAR, Single 
logMAR Kay Picture and Sheridan Gardiner. Tests were presented in a random order 
using standardized instructions. For each test, 4 optotypes were presented at each 
acuity level. Testing continued until 3 or more errors were made at any level. Results 
were analysed in 2 age groups, younger (4-6 years) and older (7-9 years). 

Visual acuity data were converted into logMAR and each correctly read optotype was 
scored. A one-way, repeated measures ANOVA was performed on the data. In the older 
children, there was a significant main effect of test on acuity (F=63.59, df=4, p<0.001). 
An effect of crowding was evident in the two crowded letter tests but not in the crowded 
picture test. In the younger children there was also a significant main effect of test on 
acuity (F=63.92, df=4, p<0.001). However, in this group, an effect of crowding was seen 
in all three crowded tests. In both groups, mean acuity was lowest with the logMAR 
Crowded Test, (inter-optotype spacing 0.5), slightly higher with the Sonksen Test 
(spacing 1.0) and highest with the single optotype tests (no crowding). 

Our results show that the logMAR Crowded Test which induces contour interaction and 
requires accurate gaze control gives the lowest measured acuity. The Sonksen Test, 
despite having more widely spaced letters, still measures lower acuity than a single 
letter test. This implies that both contour interaction and gaze control are important in 
visual acuity measurement. 

This work was funded in part by a College of Optometrists iPRO Small Grants Award.  
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Appendix 2 

Abstract:  American Academy of Optometry Meeting, Seattle, October 24, 2013. 

Foveal crowding differs in children and adults 

Yvonne Norgett and John Siderov 

Anglia Ruskin University, UK 

Purpose 

Laboratory based studies showed the extent of crowding to be greater in children than 
adults. This study used custom designed charts in a clinical setting to investigate 
crowded letter recognition in school children aged 4-9 in a variety of conditions. 

Methods 
Acuity was compared using charts with bar vs letter flankers to assess the influence of 
target-flanker similarity and using single letter and linear formats to evaluate the 
contribution of eye movement control. High contrast Sloan letter charts were presented 
monocularly on an iPad (Apple inc.) at 4m using standardized instructions.  Edge-to-
edge separation of letter to flanker was 0.5 letter widths.   Five letters of each size were 
shown and testing continued until 3 letters were named incorrectly.  Crowded logMAR 
was normalized to unflanked logMAR and results were analysed in 3 groups – younger 
children aged 4-6 (n=32), older children aged 7-9 (n=30) and adult controls (n=27).  

Results 
Repeated-measures ANOVA revealed that the adults showed no difference in 
performance in these charts and there was no significant difference in the single letter, 
bar flanker condition across the groups. Letter flankers and linear presentation 
individually caused poorer performance in the younger children (mean normalized 
logMAR 0.17 sd 0.08 in each case) and together had an additive effect (mean 0.24 sd 
0.10). Crowding in the older children was adult-like except in the case of a linear 
presentation with letter flankers (mean normalized logMAR 0.15 sd. 0.08 cf adults mean 
0.06 sd.0.06). 

Conclusions 
These results indicate that both target-flanker similarity and eye movements contribute 
more to foveal crowding in young children than in adults.  
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Appendix 3 

Abstract:  American Academy of Optometry Meeting, Denver, Nov 2014 

Effect of crowding on the slopes of the psychometric functions in visual acuity 
measurements 

Yvonne Norgett and John Siderov 

Anglia Vision Research 

Anglia Ruskin University, UK 

Purpose 
Clinical measurement of visual acuity involves a determination of a visual threshold. The 
repeatability of this threshold is likely to be improved if the underlying psychometric 
function has a steep rather than a shallow slope. The aim of this study was to compare 
the slopes of psychometric functions derived from measurements of visual acuity in 
children and adults under different crowding conditions.  

Methods 
Visual acuity was measured on a group of young children (aged 4-6 yrs., n=32) and an 
adult control group (n=27) with normal vision using 3 different custom-designed visual 
acuity charts, comprising high contrast black-on-white Sloan letters presented as 
uncrowded single letters (uncrowded), single letters flanked with a bar (single flanked) 
and a line of letters flanked with letters (linear flanked). The charts were presented on 
an iPad (Apple inc.) and viewed monocularly at 4m.  Edge-to-edge separation of letter 
to flanker was 0.5 letter widths for the 2 crowded charts.  For each chart, 5 letters of 
each size were shown using standardized instructions and testing continued until 3 
letters were named incorrectly.  Percent correct responses for each letter size were 
pooled for each group for the 3 chart conditions. The means of the resulting data were 
separately fit with Weibull functions to derive the psychometric functions.  

Results 

The slopes of the psychometric functions for the uncrowded, the single flanked and the 
linear flanked conditions for the children were respectively: 6.6, 9.3 and 10.8 and for the 
adults: 6.2, 7.1 and 9.3. For both groups, the slopes of the psychometric functions 
became steeper with increasing crowding features, with the slope of the most crowded 
chart significantly different from the uncrowded chart in both groups p<0.05. 

Conclusions 
The slopes of the psychometric functions underlying visual acuity measurements 
become steeper with increasing crowding features for both young children and adults 
with normal vision, although more so for children. The results suggest that visual acuity 
measured with charts that have crowding features should be more repeatable and 
therefore adds further support for the use of crowded visual acuity charts in clinical 
practice.   
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Appendix 4  Information letter to parents for study described in Chapter 2 

 

Research Project - The assessment of visual acuity in young children – which test 
is best? 

 

I am a registered optometrist and lecturer in Optometry at Anglia Ruskin University.  I 
have been awarded a grant by the College of Optometrists (UK) to conduct a study to 
compare new children’s vision charts and recommend which one works best. I am seeking 
your consent for your child to be included in the study. 

 

A lazy eye in a child may not be obvious to either the child or parents if the other eye is 
normal, yet if not treated before the age of around 8 years of age, may lead to permanently 
reduced vision in that eye.  Optometrists and other healthcare professionals need tools 
to test children’s vision that are sufficiently sensitive to detect a reasonably small 
difference in function between the two eyes.  Several new vision charts have recently 
been developed which include features designed to work better than the traditional letter 
chart.   

 

I shall be coming to your child’s school on date and spending about ten minutes with each 
of the eligible children in your child’s class.  Each child will be asked if they wish to 
participate in the project. If they agree, I will conduct a number of short tests to measure 
vision. I will ask them to read letters or recognize symbols on the vision charts we are 
comparing. Be assured that all of the tests and procedures employed in this research are 
not experimental and are used in routine practice. The project has been approved by the 
appropriate Anglia Ruskin University Research Ethics Committee. 

 

The tests which I will be doing are not a full eye examination and do not screen for all 
abnormalities of the eyes.  If however I do suspect a problem with vision in your child’s 
eyes I will send you a letter recommending a full eye examination. Throughout the project 
your child’s name will be protected and confidentiality is ensured. 

 

If you are happy for your child to participate, please sign the enclosed consent form and 
return to the class teacher by date.  Participation in the study is voluntary, but your child 
is likely to find the procedures interesting and fun and they will be contributing to some 
valuable research. 

 

Thank you for your support. Please contact me if you have any other questions.  

 

Yvonne Norgett BSc(Hons) MCOptom 

Contact 0845 196 2671 

Email: yvonne.norgett@anglia.ac.uk 

  

mailto:yvonne.norgett@anglia.ac.uk
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Appendix 5 Information letter to children for study described in Chapter 2 

Pupil Information Sheet 
 

Eye Test Chart Project 
 

Hello!  

We will be coming to your school soon to test your eyes using letters and pictures.  The 

charts we will use look like this: 
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Questions which you may have: 

    

      

   

. 

 

 

   
 

 

 

 

  

What will I have to do?      You will be asked to read some letters and 

name some little pictures on charts like the ones in the pictures on the 

other side. If you are able to see them easily, you may be asked to read 

some smaller ones.  

Who will do the testing?  Two optometrists will come along 

with some university students and can answer any questions you 

may have. 

What happens if I can’t see the letters and pictures? 

This is usually nothing to worry about.  Most children won’t be able to read 

some of the small ones.   

If I wear glasses, will I have to take them off? 

No, the team would like to see what you can see with the help of 

your glasses. 

How long will it take?  

About 5 minutes per child 
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Appendix 6  Information letter to parents for study described in Chapter 4 

Anglia Ruskin University 
Department of Vision and Hearing Sciences 

 
 

Research Project – Development of Visual Crowding in Children 
 

I am a registered optometrist and lecturer in Optometry at Anglia Ruskin University.  I am 
conducting a study which explores the development of various aspects of children’s 
vision. I am seeking your consent for your child to be included in the study. 
 
‘Visual crowding’ refers to a normal phenomenon whereby it is more difficult to see an 
object when it is surrounded by other objects rather than if it is seen in isolation. Some of 
our earlier research and that of others, has shown that this ‘crowding’ is greater in younger 
primary school children than in older children. The goal of our research is to investigate 
the factors which contribute to crowding and look at how they change with age in normally 
sighted children. This will help to determine whether an improvement in a child’s vision is 
as a result of treatment or merely an age-related change. 
 
I shall be coming to your child’s school on date and spending about twenty minutes with 
each of the eligible children in your child’s class.  Each child will be asked if they wish to 
participate in the project. If they agree, I will conduct a number of short tests to measure 
eye alignment, focussing power and vision. When measuring focussing power I will use 
a small device that looks like a video camera. The child will be asked to look into the lens 
of the instrument while the measurement is taken. I will then ask them to read letters or 
recognize symbols on the vision charts we have designed. The project has been approved 
by the appropriate Anglia Ruskin University Research Ethics Committee. 
 
The tests which I will be doing are not a full eye examination and do not screen for all 
abnormalities of the eyes.  If however I do suspect a problem with vision in your child’s 
eyes I will send you a letter recommending a full eye examination. Throughout the project 
your child’s name will be protected and confidentiality is ensured. 
 
If you are happy for your child to participate, please sign the enclosed consent form and 
return to the class teacher by date.  Participation in the study is voluntary, but your child 
is likely to find the procedures interesting and fun and they will be contributing to some 
valuable research. 
 
Thank you for your support. Please contact me if you have any other questions.  
 
 
Yvonne Norgett BSc(Hons) MCOptom 
Contact 0845 196 2671 
Email: yvonne.norgett@anglia.ac.uk 
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Appendix 7 Information letter to children for study described in Chapter 4 

Pupil Information Sheet 
Eye Test Chart Project 

 

Hello!  

We will be coming to your school soon to test your eyes using letters and pictures.  The 

charts we will use look something like this: 

 

 
 

 

 
 
  

S 

A 

X B 

E 

Z D K O V 

Z D K O V 

T 

M 

U 

F 

X 

J  L P 

A B 

E Y 
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Questions which you may have: 
 

    

 

      

   

. 

 

 

 

   

 

 

 

 

 

 

  

What will I have to do?      You will be asked to read some letters on 

charts like the ones in the pictures on the other side. If that is hard for you 

to do, you can point to the letters you see on a card. If you are able to see 

them easily, you may be asked to read or match some smaller ones.  

Who will do the testing?  Two optometrists will come along 

with some university students and can answer any questions you 

may have. 

What happens if I can’t see the letters? 

This is usually nothing to worry about.  Most children won’t be able to read 

some of the small ones.   

If I wear glasses, will I have to take them off? 

No, the team would like to see what you can see with the help of 

your glasses. 

How long will it take?  

About 20 minutes per child 
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Appendix 8  Information letter to participants in study described in Chapter 6 

Anglia Ruskin University 
Department of Vision and Hearing Sciences 

Participant information 
Research Project: Visual Crowding in Amblyopia (lazy eye) 

 

Optometrists measure vision using a visual acuity chart. This is usually the familiar letter 
chart with rows of letters of decreasing size. It has been found that it is more difficult to 
read a letter if it is surrounded by other letters rather than seen on its own.  This 
phenomenon is called visual crowding.  

Visual crowding is known to affect the vision of a lazy eye more than an eye with normal 
vision. I am conducting a research project to identify the best design of visual acuity 
chart to detect lazy eye in young children. Early detection of this condition gives a child 
a better chance of early treatment leading to better vision. 

As part of my study, I require adults with a lazy eye to look at a series of letter charts 
displayed on a computer screen. These charts will have letters either presented on their 
own or in rows. They may also be surrounded by other letters or by lines. The testing 
will take place in the University Eye Clinic on Bradmore St, Cambridge, just off East 
Road and should last for around 90 minutes. The maps below show the location of the 
campus and the University Eye Clinic on the campus.  

I would like to invite you to take part in this study. If you are happy to do so, or would 
like to find out more about the work, please email me on the address below. The data 
which I collect during the study will form part of my PhD thesis and may be presented at 
conferences and published in academic journals.  Throughout the project, your name 
will be protected and confidentiality is ensured. The project has been approved by the 
Faculty of Science and Technology Research Ethics Panel.  

 If you agree to participate in the study, you will be helping us to better understand the 
development of amblyopia (lazy eye) and improve its detection in children. These 
experimental tests are not the same as a full eye examination and can not replace one. I 
will not carry out any tests which involve contacting your eyes or looking into them. 
Participation in the project is on a voluntary basis and regrettably, travel or other 
expenses cannot be refunded. 
Thank you for your support 
 
Yvonne Norgett BSc (Hons), MCOptom, FHEA 
Department of Vision and Hearing Sciences, 
Anglia Ruskin University, 
East Rd 
Cambridge 
CB1 1PT 
Email: yvonne.norgett@anglia.ac.uk 
  

mailto:yvonne.norgett@anglia.ac.uk
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Appendix 9 Data from chapter 2 
age 7-9 Age (months) LMC Sonksen SG CK SK 
001SG 100 -0.05 -0.2 -0.225 -0.075 -0.075 
002AR 95 -0.2 -0.225 -0.225 -0.25 -0.25 
003RG 112 -0.05 -0.1 -0.125 -0.15 -0.175 
004JMcN 98 -0.05 -0.1 -0.175 -0.175 -0.175 
005EB 94 -0.1 -0.1 -0.2 -0.175 -0.225 
006JC 102 -0.025 -0.1 -0.175 -0.075 -0.175 
007JR 103 -0.05 -0.075 -0.1 -0.15 -0.15 
008CT 97 0 -0.2 -0.175 -0.125 -0.275 
009AS 105 -0.2 -0.175 -0.225 -0.2 -0.25 
010FS 95 0.05 0 -0.15 -0.25 -0.15 
011AMcL 106 -0.075 -0.175 -0.25 -0.2 -0.1 
012ML 112 -0.1 -0.2 -0.275 -0.3 -0.25 
013SH 114 -0.05 -0.15 -0.15 -0.175 -0.225 
014AK 98 -0.125 -0.175 -0.225 -0.225 -0.2 
015JC 94 -0.175 -0.175 -0.15 -0.225 -0.1 
016EP 107 0 -0.05 -0.25 -0.175 -0.175 
017PC 104 -0.025 -0.125 -0.225 -0.225 -0.2 
018CC 98 -0.025 -0.2 -0.25 -0.2 -0.2 
019EP 97 -0.15 -0.1 -0.225 -0.1 -0.225 
020AW 97 0.05 0.025 0.075 -0.125 0.025 
021JP 103 -0.1 -0.175 -0.3 -0.175 -0.275 
022JS 100 -0.075 -0.1 -0.225 -0.175 -0.275 
023SB 113 0 0 -0.075 -0.15 -0.2 
024AB 109 0.025 -0.125 -0.275 -0.15 -0.25 
025RN 108 -0.025 -0.15 -0.2 -0.15 -0.125 
026OS 93 0.025 -0.1 -0.175 -0.125 -0.1 
027GB 108 -0.05 -0.125 -0.225 -0.275 -0.275 
028CB 105 -0.1 -0.25 -0.25 -0.2 -0.25 
029GO 112 -0.1 -0.2 -0.225 -0.225 -0.25 
030DJ 112 -0.1 -0.075 0.2 0.15 0.225 
031HN 101 -0.05 -0.125 -0.225 -0.275 -0.225 
032AY 93 0.05 -0.125 -0.2 -0.125 -0.125 
033RT 112 -0.05 -0.1 -0.225 -0.225 -0.225 
034GT 95 -0.025 -0.175 -0.175 -0.3 -0.275 
035SS 110 -0.15 -0.1 -0.275 -0.35 -0.275 
036KM 112 -0.15 -0.2 -0.2 -0.2 -0.275 
037ZN 95 0.075 -0.1 -0.25 -0.175 -0.225 
038CS 110 -0.075 -0.15 -0.2 -0.25 -0.25 
039MT 99 0.025 -0.15 -0.175 -0.15 -0.15 
040EW 110 -0.075 0 0.2 -0.05 0.025 
041KS 96 -0.025 -0.15 -0.15 -0.2 -0.225 
042JM 95 0.3 0.225 0.2 0.075 0.1 
043TP 96 -0.15 -0.2 -0.25 -0.25 -0.225 
044RMcG 102 -0.175 -0.125 -0.225 -0.2 -0.275 
045GL 106 0 -0.125 -0.225 -0.25 -0.225 
046SL 100 -0.125 -0.25 -0.275 -0.225 -0.225 
047OH 110 -0.075 -0.2 -0.225 -0.3 -0.2 
048MHT 111 -0.1 -0.225 -0.25 -0.325 -0.275 
049ML 108 -0.075 -0.15 -0.2 -0.2 -0.225 
050RC 107 0.15 0.1 0.15 0 -0.05 
051JH 107 -0.05 -0.075 -0.225 -0.225 -0.25 
052SC 116 -0.25 -0.15 -0.225 -0.2 -0.2 
053EC 105 -0.05 -0.1 -0.25 -0.25 -0.225 
054MC 98 0.075 -0.15 -0.25 -0.075 -0.225 
055RH 103 -0.075 -0.125 -0.25 -0.225 -0.25 
056MG 113 0.075 -0.125 -0.15 -0.15 -0.2 
057HHM 104 -0.05 -0.1 -0.25 -0.15 -0.275 
058KB 101 0.025 -0.175 -0.2 -0.3 -0.275 
059MF 100 0.1 0.025 -0.15 -0.2 -0.15 
060OC 98 -0.075 -0.2 -0.225 -0.2 -0.225 
061RW 110 0.425 0.375 0.375 0.3 0.375 
062HH 94 -0.1 -0.2 -0.275 -0.325 -0.275 
063CM 108 0.125 0.075 0.075 0.05 0.225 
064ImcN 114 -0.025 -0.15 -0.2 -0.2 -0.275 
mean  -0.038 -0.114 -0.169 -0.175 -0.178 
sd  0.108 0.105 0.135 0.110 0.129 
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age 4-6 Age (months) LMC Sonksen SG CK UCK 
065JE 60 -0.075 -0.1 -0.225 -0.05 -0.2 
066SC 58 -0.025 -0.1 -0.175 -0.15 -0.2 
067TC 64 0.075 -0.125 -0.225 -0.175 -0.2 
068CRC 63 0.1 -0.1 -0.175 -0.125 -0.075 
069AAA 66 0.075 0.025 -0.05 -0.025 0.175 
070KS 62 0 0.05 -0.025 0.05 0.075 
071AT 58 0.1 0.075 -0.025 0 0.05 
072HS 64 -0.025 -0.15 -0.225 -0.075 -0.075 
073LS 62 0.075 -0.125 -0.125 -0.05 -0.05 
074CA 60 0.075 -0.025 -0.2 -0.125 -0.225 
075AH 63 0.05 -0.05 -0.25 -0.175 -0.25 
076MR 67 0.05 0.075 -0.225 -0.05 -0.15 
077ES 65 0.075 -0.05 -0.15 -0.075 -0.125 
078JB 72 -0.175 -0.225 -0.225 -0.2 -0.275 
079AC 66 0.025 -0.1 -0.2 -0.15 -0.225 
080PB 68 0.075 -0.05 -0.225 -0.025 -0.2 
081EL 77 0.025 -0.075 -0.225 -0.125 -0.175 
082TF 70 0 -0.1 -0.175 -0.2 -0.075 
083EH 70 0 -0.1 -0.2 -0.15 -0.25 
084BM 72 -0.1 -0.1 -0.225 -0.2 -0.225 
085RL 66 0.025 -0.025 -0.125 0.025 -0.1 
086AOM 65 0.15 0.125 0 0.175 0 
087DM 76 0 0.025 -0.125 -0.125 -0.125 
088OW 68 -0.05 -0.1 -0.275 -0.175 -0.225 
089CS 70 -0.05 -0.175 -0.25 -0.075 -0.2 
090DP 69 0.175 0.05 -0.1 0 -0.025 
091JS 81 -0.175 -0.275 -0.275 -0.275 -0.275 
092CC 80 -0.175 -0.2 -0.275 -0.225 -0.225 
093LC 79 -0.025 -0.05 -0.2 -0.125 -0.2 
094MMcN 75 0.05 0 -0.075 -0.125 -0.125 
095MW 77 -0.05 0 -0.2 -0.15 -0.2 
096PS 78 0.025 -0.025 -0.025 -0.025 -0.225 
097KH 76 -0.05 -0.025 -0.125 -0.175 -0.2 
098RP 76 -0.1 -0.175 -0.2 -0.225 -0.175 
099RMcG 72 -0.075 0 -0.225 -0.1 -0.25 
100CC 71 -0.075 -0.15 -0.2 -0.175 -0.2 
101EN 71 0.075 -0.05 -0.175 -0.075 0 
102YG 74 0.025 -0.15 -0.2 -0.025 -0.1 
103HW 77 0 -0.2 -0.25 -0.125 -0.275 
Mean  0.003 -0.071 -0.176 -0.104 -0.149 
sd  0.083 0.090 0.075 0.089 0.106 
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Appendix 10 Data from chapter 4 

 

  

adults S0 SB0.25 SB0.5 SB1.0 SB1.5 LB0.5 SC0.5 LC0.5 
001NK -0.20 0.06 0.03 -0.11 -0.12 -0.05 -0.08 -0.06 

002TS -0.07 0.08 -0.05 -0.05 -0.11 0.06 0.02 0 

003HW -0.1 -0.03 -0.09 -0.07 -0.12 -0.06 -0.11 -0.12 

004LP -0.02 0.17 0.04 0.01 0.05 0.05 0.01 0.02 

005MN 0.02 0.1 0.04 0.01 0.02 0 -0.04 0.09 

006EJ -0.2 -0.07 -0.14 -0.17 -0.26 -0.12 -0.11 -0.08 

007JH -0.09 0.02 0.01 -0.07 -0.06 -0.09 0.01 -0.11 

008RN -0.11 -0.07 -0.09 -0.05 -0.14 -0.08 -0.02 -0.08 

009DG -0.04 0.10 -0.08 -0.08 -0.11 -0.07 -0.05 -0.09 

010JR -0.32 -0.22 -0.18 -0.3 -0.3 -0.28 -0.26 -0.24 

011JT -0.25 -0.13 -0.21 -0.24 -0.32 -0.25 -0.25 -0.26 

012NT -0.34 -0.2 -0.22 -0.36 -0.3 -0.26 -0.27 -0.24 

013AE -0.18 0.14 -0.08 -0.1 -0.12 -0.03 -0.01 -0.01 

14CF -0.32 -0.12 -0.14 -0.28 -0.26 -0.17 -0.22 -0.21 

15SW -0.16 -0.05 -0.11 -0.2 -0.23 -0.09 -0.1 -0.1 

016MG -0.13 0.03 -0.01 -0.14 -0.10 -0.03 0 -0.07 

017ST -0.23 -0.06 -0.16 -0.21 -0.19 -0.09 -0.11 -0.17 

018TS -0.29 -0.1 -0.11 -0.23 -0.27 -0.12 -0.19 -0.14 

019AB -0.2 -0.06 -0.07 -0.06 -0.2 -0.1 -0.11 -0.18 

020IP -0.13 -0.07 -0.14 -0.21 -0.22 -0.14 -0.13 -0.12 

021MK -0.12 0.02 -0.05 -0.02 -0.17 -0.02 -0.07 -0.08 

022LM -0.1 -0.04 -0.08 -0.15 -0.16 -0.06 -0.03 -0.03 

023AS -0.24 -0.05 -0.15 -0.2 -0.24 -0.11 -0.16 -0.18 

024MC -0.28 -0.06 -0.15 -0.24 -0.2 -0.16 -0.15 -0.15 

025AS -0.33 -0.09 -0.25 -0.29 -0.25 -0.21 -0.21 -0.19 

025JS -0.24 -0.05 -0.11 -0.18 -0.24 -0.17 -0.13 -0.14 

026EO -0.20 -0.06 -0.11 -0.16 -0.22 -0.13 -0.14 -0.16 

         
mean -0.19 -0.03 -0.10 -0.16 -0.19 -0.11 -0.11 -0.12 

sd 0.10 0.09 0.08 0.10 0.09 0.09 0.09 0.08 
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age 4-6 S0 SB0.25 SB0.5 SB1.0 SB1.5 LB0.5 SC0.5 LC0.5 
         
105OU 0.02 0.20 0.12 0.13 0.06 0.29 0.19 0.4 

125LP 0.1 0.22 0.1 0.16 0.19 0.23 0.2 0.29 

127TP -0.05 0.26 0.1 0.08 0 0.12 0.2 0.19 

128FC -0.2 -0.03 -0.04 -0.05 -0.19 0.05 0.05 0.02 

102EH 0.05 0.21 0.13 0.18 0.02 0.17 0.19 0.21 

106HM -0.10 0.06 0.06 -0.02 -0.12 0.05 0.01 0.2 

108HT 0.09 0.23 0.21 0.11 0.13 0.24 0.25 0.32 

117DE -0.02 0.25 0.12 0.03 0.04 0.17 0.15 0.21 

120MP -0.1 0.08 0.05 -0.03 -0.09 0.19 0.21 0.34 

107AB -0.08 0.08 0.02 -0.03 0.02 0.01 0.09 0.1 

119ZWW -0.17 0.09 0.01 -0.04 -0.13 0.05 -0.02 0.09 

104LR -0.09 0.08 0.01 -0.06 -0.11 0.25 0.13 0.3 

118RL 0.04 0.13 0.08 0.09 -0.08 0.11 0.17 0.12 

101AC 0.00 0.14 0.10 0.01 0.03 0.07 0.1 0.14 

103SQ -0.22 0.10 -0.01 -0.09 0.02 0.11 0.1 0.26 

109CO 0.00 0.18 0.10 0.06 0.01 0.15 0.19 0.26 

111RL 0.1 0.18 0.1 0.06 -0.01 0.08 0.22 0.2 

121EC -0.15 0.01 -0.05 -0.07 -0.15 -0.05 0.05 0.06 

129AT -0.11 0.06 0.08 -0.02 -0.05 0.02 0.05 0.15 

124TS -0.3 -0.02 -0.04 -0.09 -0.12 -0.04 -0.05 0.03 

112IJ -0.1 0.04 -0.12 -0.04 0.01 0.1 -0.05 0.05 

115TI -0.15 0.01 -0.03 -0.11 -0.09 0 -0.04 0.05 

123HP -0.01 0.18 0.13 -0.03 0.02 0.14 0.34 0.26 

132WO -0.26 0.03 -0.03 -0.06 -0.16 -0.05 -0.01 -0.01 

116BM -0.08 0.13 0.07 0 -0.06 0 0.13 0.14 

126JD -0.21 -0.01 -0.06 -0.08 -0.14 -0.01 -0.03 -0.03 

110PW -0.04 0.02 -0.02 0.02 -0.13 -0.05 -0.01 0.03 

113CL -0.14 0.07 -0.1 -0.15 -0.19 0 -0.03 0 

122MM -0.15 -0.04 -0.08 -0.21 -0.19 -0.06 -0.04 0.01 

114IT -0.09 0 -0.01 -0.03 -0.12 0.06 0.04 0.11 

131HP -0.24 0.05 -0.02 -0.14 -0.18 -0.05 -0.11 0.01 

130 TS -0.17 0.06 -0.04 -0.08 -0.13 -0.06 -0.1 0.01 

         
mean -0.09 0.10 0.03 -0.02 -0.06 0.07 0.08 0.14 

sd 0.11 0.09 0.08 0.09 0.10 0.10 0.11 0.12 
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age7-9 S0 SB0.25 SB0.5 SB1.0 SB1.5 LB0.5 SC0.5 LC0.5 
225KG -0.12 0.11 0.06 0.01 -0.07 0.08 0.02 0.09 

227IH -0.13 -0.05 -0.06 -0.15 -0.16 -0.07 -0.08 0.03 

226ZP -0.12 0.06 -0.04 -0.09 -0.09 0.06 -0.02 0.06 

224ACK -0.27 -0.09 -0.15 -0.20 -0.20 -0.12 -0.15 -0.12 

211NW -0.22 0.16 -0.08 -0.18 -0.18 -0.05 -0.09 -0.06 

221LS -0.24 -0.05 -0.13 -0.08 -0.19 -0.07 -0.08 -0.05 

228DB -0.23 0.03 -0.11 -0.16 -0.19 -0.08 -0.07 0.09 

230JBM -0.11 0.06 -0.01 -0.06 -0.15 -0.03 -0.04 0 

219GB -0.23 0.01 -0.03 -0.13 -0.19 -0.09 -0.08 -0.08 

223AC -0.12 -0.02 -0.05 -0.10 -0.15 -0.02 -0.11 -0.01 

229PM -0.20 -0.04 -0.13 -0.08 -0.14 -0.08 -0.11 -0.11 

218TL -0.05 0.00 -0.04 -0.07 -0.07 -0.08 0 0.1 

220AJ -0.28 -0.09 -0.02 -0.25 -0.22 -0.01 -0.13 -0.01 

222PW -0.14 0.03 -0.04 -0.11 -0.12 0.01 -0.01 -0.05 

202JSH -0.25 0.01 -0.08 -0.15 -0.22 -0.07 -0.09 0 

207SK -0.21 -0.05 -0.15 -0.20 -0.17 -0.11 -0.13 -0.08 

205SF -0.09 0.02 -0.05 -0.08 -0.13 -0.06 -0.05 0.04 

201LK -0.27 -0.05 -0.19 -0.21 -0.26 -0.25 -0.23 -0.24 

216GS -0.23 -0.01 -0.1 -0.12 -0.14 -0.07 -0.02 0.1 

210WD -0.06 0.05 0.00 -0.04 0.00 -0.01 -0.05 0.08 

204KV -0.05 0.09 -0.02 -0.02 -0.06 0.03 0.03 0.13 

212NR -0.2 -0.08 -0.13 -0.2 -0.19 -0.12 -0.18 -0.18 

209SM -0.17 -0.03 -0.09 -0.14 -0.18 -0.09 -0.09 -0.02 

200OW -0.16 -0.01 -0.10 -0.13 -0.16 -0.08 -0.08 -0.08 

214DM -0.19 0.04 -0.07 -0.11 -0.17 -0.04 -0.01 -0.04 

217RW -0.04 0.04 -0.04 -0.15 -0.1 0.03 -0.08 0.08 

203JB -0.06 -0.07 -0.07 -0.17 -0.20 -0.13 -0.11 -0.13 

206OR -0.12 0.04 -0.06 -0.11 -0.12 -0.05 -0.05 -0.02 

208CG -0.15 0.14 0.04 -0.01 -0.11 -0.04 -0.08 -0.06 

213SG -0.03 0.06 0.07 -0.04 -0.06 0.06 0.1 0.18 

215ED -0.24 0.02 -0.12 -0.17 -0.17 -0.06 -0.11 -0.08 

         
mean -0.16 0.01 -0.06 -0.12 -0.15 -0.05 -0.07 -0.01 

sd 0.08 0.06 0.06 0.06 0.06 0.07 0.06 0.10 
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