
QoSVisor: QoS Framework for SDN
Ronak Al-Haddad (1st)

Computing and Technology
Department

Anglia Ruskin University
Cambridge, United Kingdom

Ronak.al-haddad@pgr.anglia.ac.uk

Erika Sanchez Velazquez (2nd)
Computing and Technology

Department
Anglia Ruskin University

Chelmsford, United Kingdom
Erika.sanchez@anglia.ac.uk

Adrian Winckles (3rd)
Computing and Technology

Department
Anglia Ruskin University

Cambridge, United Kingdom
Adrian.winckles@anglia.ac.uk

Abstract—The increasing demand for network services and
quality across wide selections of digital applications in the
internet era has caused growing congestion and raised questions
about how to deal with prioritizing data in ways tailored to
particular uses of applications and managing peak congestion
times. Software Defined Network (SDN) in particular Slicing
Strategy, seems the best solution due to its new constitution
intelligently implemented through the SDN OpenFlow protocol.
However, Slicing Strategies specifically “FlowVisor” are limited
in certain mechanisms such as Traffic Engineering (TE), which
make it a requirement to find new ways to deliver Quality of
Service (QoS) for different applications. In this paper, QoSVisor
presented as an SDN extension action QoS Slicer based as an
enhancement to the standard FlowVisor operation slicing tools to
ensure the QoS for each Slice-based class of application.

Keywords—SDN; FlowVisor; QoS; OpenFlow; Traffic
Engineering

I. INTRODUCTION

At the IEEE, the 802 LAN/MAN Standards Committee has
recently started some activities to standardize SDN capabilities
on access networks based on IEEE 802 infrastructure through
the P802.1CF project for both wired and wireless technologies
to embrace new control interfaces[1], [2]. This work is based
on the recognized need to find new ways of delivering quality
and reliability as the new era applications became more varied,
more complex, connected to everything and accessible from
everywhere. Also, nowadays applications such as voice and
video conferencing, which are also delayed sensitive, are being
more in demand in addition to other applications, such as file
transfer, that are more concerned with the average transmission
rate. Network performance faces a significant growth potential
regarding dealing with network scalability, management,
monitoring, security, and quality of service. On the other hand,
the potential complexity of network equipment adds extra
effort which impacts on user experience. Software Defined
Networks (SDN) seems to be the best solution due to its new
constitution intelligently implemented through its new concept
separating the control plane and data plane, and allowing
centralized Traffic Engineering (TE) [3]. SDN is clearly a new
approach for network programmability (i.e., the ability to
access the network via APIs and open interfaces), which refers
to the ability to control, change, and manages network behavior
dynamically through the SDN controller [4]. OpenFlow
protocol comes as a communication protocol between the
controller and the switch; it is defined as a set of flow
instructions that comprise the forwarding behavior of the

switch [5] suggested by Stanford University [6] as one of the
most widely deployed testbeds which opened the gates to
innovations in network architectures and protocols.

Software Defined Network-OpenFlow (SDN-OF) Traffic
Management and Control, e.g., Centralized TE and control
with OF 1.2+ compliant controllers and capable switches are
the future of the Traffic Engineering evolution. Many TE tools
for SDN-OpenFlow have been proposed, but some of them
have limitations regarding TE and OpenFlow. At the moment,
it does not meet the need to separate traffic in a controlled and
isolated way by using Network Virtualization scheme as
required for SDN approaches. FlowVisor is proposed to be
deployed between OpenFlow controllers and switching devices
to slice the network and enforce isolation from topology and
traffic this tool is able to virtualize the modern network and
enable distinct virtual machines to share the same hardware
resources, [7]. Researchers use slicing tools in their proposals
without thinking whether the tool enables satisfactory
performance or not. Therefore, efficient new slicing tools are
urgently needed, or existing tools must be enhancing to
guarantee performance that is more precise. This paper
presents QoSVisor the new enhanced FlowVisor tool as a
model for the QoS, which deals with the new requirements and
current system limitations.

The rest of this paper is structured as follows: related work,
research background, and limitations were present in section II.
Section III presents the proposed design of QoSVisor. Finally,
Conclusion and Future work were present in section IV.

II. RELATED WORK, RESEARCH BACKGROUND AND
CURRENT LIMITATIONS

A. FlowVisor and QoS
Network virtualization roots back in the 90’s when it start

been used, for example, the Tempest project is one of the first
initiatives to introduce this technology [8]. In modern computer
network platforms it has been adopted as a consolidated
technology in the research community to refer to the process
of inserting an abstract layer or virtual resources to enable
sharing the same hardware resources, reflecting a huge cost
reduction, greater agility and more flexibility than the physical
network equipment; this is possible by the use of the virtual
machines defined as a software implementation of a machine
with a completely independent operating system [1], [9]. A
network virtualization layer called “FlowVisor” has been
proposed by Sherwood et al., at Stanford University [10] for

slicing the network; they proposed the establishment of a
hypervisor sitting between software and hardware of a PC.

FlowVisor uses OpenFlow as a hardware abstraction layer
to sit logically between control and forwarding paths on a
network device, it creates virtual slices in wired and wireless
networks, offering transparency to the controller, strong
isolation between slices and a modifiable slice policy [11]. As
mentioned above FlowVisor introduces a new mechanism as a
software Slicing layer between the forwarding and control
planes on network devices [12], to this end, the main
contributions of FlowVisor are:

Possibility to Slice any control plane message format
implemented with OpenFlow (OF); it is the first slicing
mechanism that allows a user-defined control plane to control
the forwarding in deployed production hardware. Network
resources are sliced according to bandwidth, topology, forward
table entries, and device CPU.

A policy language that maps flows to slices giving the user
flexibility to try new services so that users can precisely decide
their level of involvement in an experiment. Also, the network
users can signal to the network administrator to randomly add
(opt-in) and remove (opt-out) their flows from a slice’s
flowspace at any time.

Transparency to both data and control planes and can easily
transparent inter-ability between the traditional network and
sliced network.

Ability to blocks and rewrite control messages as they cross
the slicing layer. Thus, it enforces strong isolation between
slices; this allows the experimenters to get along safely without
affecting real production traffic.

To successfully operate on deployed networks in Stanford
University with 20+ users, 40+ network devices, a production
traffic slice, and four standing experimental slices [12].

Fig. 1: Shows the internal operation of FlowVisor and the
communication between the controller and the switch. The
operation starts when the command is sent by the controller to
the OpenFlow switch. The controller commands are first
received by a Slicer element (1), which is responsible for
managing commands and messages from/to the OpenFlow
controller. There is one Slicer for each virtual network
controller. The Slicer then confirms if the received command
corresponds to the virtual network definition (2), using its flow
space rules, and amends the command when necessary. The
output command is then sent to the OpenFlow switch (3) using
the respective Classifier element, responsible for managing
commands and messages to/from the OpenFlow switch. There
is one Classifier for each OpenFlow switch.

Fig. 1. The current internal operation of FlowVisor. [13]

B. Improvements and Contributions to FlowVisor
A number of researchers have made useful contributions to

address the issues of networks functions, but there are
limitations to the current approaches, for example, FlowVisor
has been extended to include an action slicing mechanism, that
allowed it to limit which actions can be used by each virtual
network controller [13]. Similarly, in [14], another
enhancement has been done to FlowVisor to implement
admission control and minimum bandwidth guarantee scheme,
their tests focused only on the transmission performance of
QoS on Video streams. Another proposal is GiroFlow [15] a
tool model to manage slices and policies within the network
infrastructure focusing on the properties of the application
running on the controller.

ADVisor [16] is an architecture that builts on top of
FlowVisor to include additional functions such as Virtual links
and Virtual ports management. The major purpose of ADVisor
is the ability to establish complex and bandwidth-guaranteed
virtual topologies completely decoupled from the underlying
physical topology, providing flexibility in the adoption of an
adequate L2 header space to identify virtual topologies in the
network. However, this proposal makes no changes to the
OpenFlow protocol which would enable FlowVisor to
configure the data paths, such as defining schedules and the
allocation queue. In [10], [14] both propose traffic scheduling
by using VLAN (Priority Code Point) PCP field with relating
databases which varies from (0 to 7) for marking packets to

solve the bandwidth allocation needs. As shown in Fig. (2) The
command for QoS slice creation is extended by adding
required bandwidth at the basic slice creation command.

FlowVisor stores this configuration information in an XML
file, which is used to update the database. On the other hand,
the database of FlowVisor has been enhanced and implemented
for slice and topology information; the information in this
database is required for admission control and OpenFlow GUI,
but this proposal was a temporary solution and required a
specific QoS control.

Fig. 2. Command for QoS slice creation [14]

C. Other Slicing Technologies
Architecturally FlowVisor can slice any data plane/control

plane communication channel. Therefore, FlowVisor is built on
top of OpenFlow protocol [12]. Similarly to FlowVisor there is
OpenVirteX [17], [18]. A Network Virtualization Platform, the
main aim of the proposal is to provide virtual SDNs (vSDNs).
Each vSDN is customizable in terms of topology as well as
addressing scheme, and control function virtualization, using
multiple controllers, one per slice, and in terms of slicing using
virtual flow table per slice, but it does not support QoS in the
current OpenFlow protocol.

Another proposal is AutoSlice [19], which targets
scalability aspects of network hypervisors by optimizing
resource utilization and by mitigating the flow-table limitations
through a precise monitoring of the flow traffic statistics,
having a single third party to control the mapping of vSDN
topologies. It has multiple controllers one per slice, the
proposal used VLAN tags for slicing, but also doesn’t provide
QoS guarantees. AutoSlice has been used over OpenFlow
protocol only. FlowN [20], [21] is analogous to a container-
based virtualization, i.e., a lightweight virtualization approach.

FlowN was also primarily conceived to address
multitenancy in the context of cloud platforms. FlowN lets
tenants write arbitrary controller software that has full control
over the address space and can target an arbitrary virtual
topology. They used a shared controller platform (NOX3)
rather than running a separate controller for each tenant whilst
also using a modern database technology to perform the
mapping between the virtual and physical address space. The
solution proposed uses VLAN tags for slicing and no QoS
guarantees, and it has been used over OpenFlow protocol only.

From comparing the available slicing tools as shown in
table (1) FlowVisor seems to be the ideal tool which will help
to improve the performance of the production network, because
FlowVisor mainly virtualizes the network control and separates
the traffic, be able to have access to resources for the
experimental network without affecting the network in a
parallel way with the real user within the flow space [22] the
argument in [22] goes to compare the FlowVisor to a full
virtualization technology solutions such as FlowN [21], they

conclude that FlowN has higher Latency due to the database
but scales better than FlowVisor, therefore QoSVisor proposal
the main aim is considering enhancing the performance of the
FlowVisor to ensure more precise Quality of Service in
Centralized architecture.

TABLE I. SUMMARY OF THE AVAILABLE SLICING TECHNOLOGIES

Proposals Slicing Technology QoS Architecture
Multiple
Controllers

Open
VirteX

To provide (vSDNs)
and virtual Flow table
per slice.

No Yes,
one per slice

Auto Slice

Target the scalability
aspects of network
hypervisors using
VLAN tags.

No Yes,
one per slice

Flow N Shared controller
platform (NOX3). No

No,
shared
controller

FlowVisor
Slice data/control
plane communication
channel.

Yes, can guarantees
QoS by using
VLAN Priority
Code Point bits
(PCP)

yes

Enhanced
FlowVisor
-QoSVisor
(proposal)

Slice data/control
plane communication
channel.

Provide Soft QoS
by using (DiffServ)
architecture; this
includes packet
classification
functionality based
class of application
(Voice, video, and
data transfer)

yes

D. OpenFlow
OpenFlow [6], [23], [24], [25] is an open standard based on

an Ethernet switch, with an internal flow-table, and a
standardized interface to add and remove flow entries to enable
the researchers to control directly the packets are directed
within the network, as shown in Fig. (3). When a packet arrives
at a switch or router, the device checks the packet against the
flow table. Each flow entry contains a set of instructions that
are executed when a packet matches the entry, but if the packet
does not match any entry, the packet is queued, and a new flow
event is sent across the network to the OpenFlow controller.
The controller responds by adding a new rule to the flow table
to handle the queued packet. The following packet in the same
flow will be treated without contacting the controller, in other
words, the external controller is contacted only for the first
packet in a flow; the following packets are forwarded at the
switch’s full line rate. However, the controller itself can be
implemented as a distributed system, which enables rapid
network application development [26], [27], [28], [29], [30].

Another advantage of OpenFlow is that it enables
researchers to experiment with new network protocols on
deployed hardware, but only a single researcher can use/control
an OpenFlow-enabled network at a time. As a conclusion,
without using the FlowVisor, the OpenFlow-based research is
limited to isolated testbeds, limiting its scope and realism.
Accordingly, FlowVisor’s capability to slice a production
network is an orthogonal and independent contribution to
OpenFlow-like software-defined networks [12].

Network devices generate OpenFlow protocol messages,
which go to the FlowVisor special controller and are then
routed by the network slice to the appropriate researcher(s)
OpenFlow messages from researcher controllers are checked
by the FlowVisor to ensure that the isolation between slices is
maintained before being forwarded to switches [31].

At the time of writing this paper there are a number of
improvements that are beening proposed for FlowVisor; the
0.10 version treated the type enqueue messages, enabling the
creation of queues along the flowspaces, by defining new
parameters for input streams. Output type actions can also be
resetted as enqueue type actions. However, still a clear
limitation is that the data path queue definitions must be
manually configured by external applications [32].

The authors of GiroFlow [15] considered a new model in
their architecture for the management of the slices focusing on
the properties of the application running on the controller,
using automated interfaces to the network controller, and
FlowVisor to create and adjust the slices and policies inside a
network managed by FlowVisor. However, this model still
uses manual configuration to deploy the rule for routing the
packets together with the OpenFlow controller and datapaths.

Fig. 3. Packet flow over multiple flow table pipelines [41]

E. QoS in OpenFlow
The TE Techniques to enhance the performance and

guarantee the Quality of Service (QoS) are the main objectives
of long lists of research proposals based on SDN, and
highlighted by the IEEE in the P802.1CF. The explosion of the
internet and the different use of its applications made this
fundamental challenge crucial, more complex to achieve and
made the search for more solutions more urgent; many
researches, for example (Kreutz et al., 2015)(Lara et al., 2014)
(Jarraya et al., 2014) summarise and discuss the capabilities,
applications, deployments and challenges of SDN/OpenFlow-

based networks, they also researched the advantage of using
OpenFlow-based applications such as, Traffic Engineering,
simplify network management, adding security and
dependability features, virtualized networks and data centers
networking, mobility and wireless and also proposed solutions
in measurement and monitoring applications [33], [23], [3].

These applications run on top of networking operating
systems such as Nox, Beacon, Maestro, Floodlight, Trema or
NodeFlow, FlowVisor, POX, Ethan controller, NMS. These
central controllers have full visibility of the network and its
vendors to enable the network traffic management [34]. QoS
frameworks are needed within the operation systems to handle
the applications requirement and slice the network accordingly.
Authors Egilmez et al. [35] proposed OpenQoS, a novel
OpenFlow controller design for multimedia delivery with end-
to-end QoS based on dynamic QoS routing for multimedia
applications using video delivery, the research is based on
Floodlight controller and OpenFlow protocols; their
contribution minimizes adverse effects like latency and packet
loss on other types of flows while other flows (data) remain on
their shortest path. Although they successfully grouped the
incoming traffic as data flows and multimedia flows, where the
multimedia flows are dynamically placed on QoS traditional
shortest-path, their research did not show support for traffic
shaping.

Another approach was used in PolicyCop [36], which is a
QoS policy management framework. The authors used a
Floodlight controller-based OpenFlow protocol too; it provides
an interface for specifying QoS-based Service Level
Agreements (SLAs) and enforces them using the OpenFlow
API; the major purpose is to monitor the network using an
autonomic QoS policy enforcement framework for SDN by
implementing three planes: data/control/management planes.
They developed a few control applications that provide
different control functions to the management plane, which
consists of the Policy Validator and Policy Enforcer, which are
responsible for validating and enforcing QoS policies and are
the foundation of the route decision in the control layer. They
showed the possibility of developing new proposals been
benefit from the new architecture of SDN.

The authors Ishimori, A., et al. proposed QoSFlow to
improve QoS which performs with bandwidth guarantees and
by a well-known FIFO scheduling; QoSFlow uses multiple
packet schedulers of Linux kernel to perform Routing and
Traffic Engineering to extend the standard software switch
(datapath) of OpenFlow version 1.0.; this new extension
included Traffic Shaping, Packet Schedulers, and Enqueueing.
Thus, the QoS module opens a channel with the kernel through
Netlink and Packet socket families to connect both user and
kernel space. The authors indicate that the solution supports
only eight queues per switch port as maximum using the
slicing mechanism, whereas FlowVisor can slice the flow
space into an any desired number of separate slices [37], [38].

III. PROPOSED DESIGN OF QOSVISOR

To build on the work already done and manage the
limitations outlined above, QoSVisor proposed as an
architecture to develop a solution that enhances the QoS in
FlowVisor. This research focuses on developing and enhances

the FlowVisor and produce new FlowVisor controller, which
will ensure slicing the production network with guaranteed and
more precise QoS for different applications to continue running
even during peak congestion times with agreed priorities. The
proposed design is based on gathering four main technologies
together: Traffic Engineering (TE), SDN, Network
Hypervisors and Network Slicing strategies. To address the
limitations outlined in section II, a new modification model
proposed to enhance the current FlowVisor to meet the
requirements of improving the QoS classification within a
sliced SDN. The objective of the proposed QoS model, which
we have called “Action QoS Slicer,” is to extend the current
internal operation of FlowVisor. As shown in Fig. (4)

Fig. 4. (Proposed design of QoSVisor)

The new model will map the data path to different
multimedia applications traffic such as voice, video, and data
to identify and route each application individually into classes
with a relational database; as shown in Fig. 4. Currently, there
is no QoS architecture successfully implements and guarantees
99.9% of the required specifications of the networks the recent
developments of the various types of applications proved that
[39]. Moreover, in QoSVisor model Differentiated Services
(DiffServ) architecture has chosen to provide soft QoS
guarantees by the use of scheduling/priority queueing to enable
routers to have packet classification functionality, then the core
routers can forward the packets based on their priorities [40].
The main components and the workflow of the proposed QoS
model are shown in Fig. (5):

Fig. 5. Workflow of QoSVisor

A. Traffic Monitoring: This module represents the gate to
monitor the network traffic and does the operation of
analyzing, reviewing, and managing network traffic for any
oddity or process that can affect network performance,
availability and/or security. This operation can be done
using different tools and techniques to examine the
computer network-based communication, data and packet
traffic. In order to measure performance and to provide an
house mechanism to provide the ability to assess
availability and security, the use of IPFIX flow collection
would be useful. The ability to use the internal and
external element nature of IPFIX templates [42] would
allow more streamlined monitoring functions through an
IPFIX exporter/collector embedded in the traffic
monitoring function.

B. Packet Schedulers: This component is responsible for
enforcing resource allocation to individual flows, and when
queues start to build up in the routers the packet scheduler
will decide which packet should get the resources.

C. Enqueueing: This component is responsible for operating
messages of the OpenFlow protocol and will modify the
state of the flow table. In this stage, each entry contains
header field, counters, and actions for matching flow
packets, these following component mechanisms maps
flows to queues of kernels data structures, before the next
component which is called, the Policy & Priority checker.

D. Policy checker: Policy checker will deal with the Traffic
Monitor and the Policy DataBase (DB) for each queue to
collect data and identify the Policy violation.

E. Action filter classifier: In the data path, the classifier
divides an incoming packet stream into multiple groups on
predefined rules. In the proposed model, Behavior
Aggregate (BA) is going to be used, which is the simplest
Differentiated Service classifier in the Behavior Aggregate
(BA) classifier, and this will select packets based solely on
the DSCP values in the packet header.

F. Check Application Type: This component will put the
packet headers into classes: Class1, for Voice application,
Class2, for Video application, and Class3, for data
application. When each class has been identified then, each
class will have the required QoS Action needs to be
forwarded to Action Quality Manager (AQM) to check the
action individually against the designed-in policies and then
forward to the DataBase (DB) for user access according to
control rules in Permission Data Base.
After treating the network traffic in this Action QoS Slicer

each class is send to the FlowVisor FlowSpace as a (Slice 1),
(Slice 2), and (Slice 3) to be ready to be send as an output
command for the OpenFlow Switch, as in figure (4) and (5).
Currently, the QoSVisor model is in the implementation stage,
the set of QoSVisor performance tests and evaluation will be
addressed in the next version of QoSVisor research paper.

IV. CONCLUSION AND FUTURE WORK

Due to the increasing use of internet of things/applications
and the congestions caused by its demand, currently, there is
no QoS architecture successfully implements and guarantees
99.9% of the required specifications of the networks, therefore
in this paper, QoSVisor is a contribution to the search for ways
of maintaining and improving quality of service and gives
users the ability to control, specify and prioritize traffic
management in an increasingly congested and complex
information world. The proposal uses QoS Framework for
SDN based on enhancing the current FlowVisor to provide a
special-purpose controller to ensure QoS for each Slice-based
class of application and bring more precise Quality of Service
(QoS). Also, the proposal provides a Soft QoS by using
(DiffServ) architecture; this includes packet classification
functionality based class of application (Voice, Video, and
Data transfer). The new model will map the data path to
different multimedia applications to identify and route each

application individually into classes with a relational database.
The proposed enhancement represented by adding the
following extensions to the current FlowVisor:

1) The Action QoS Slicer: which contains Traffic Monitor,
Packet Scheduler, Enqueueing, and Policy & Priority Checker.

2) The Action Filter Classifier.
3) Action QoS Manager.
The work presented in this paper is based on the

preliminary research. The major issues regarding how
QoSVisor performs and how it is best implemented will be
addressed in our ongoing and future research.

REFERENCES
[1] Kreutz, D., Ramos, F.M., Esteves Verissimo, P., Esteve Rothenberg, C.,

Azodolmolky, S. and Uhlig, S., 2015. Software-defined networking: A
comprehensive survey. Proceedings of the IEEE, 103(1), pp.14-76.

[2] IEEE.2014.Cooperation for OmniRAN P802.1CF. [ppt]: Publisher:
IEEE Available at: http://slidegur.com/doc/5953095/presentation

[3] Jarraya, Y., Madi, T. and Debbabi, M., 2014. A survey and a layered
taxonomyofsoftware-defined networking. Communications Surveys &
Tutorials,IEEE,16(4),pp.1955-1980

[4] Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D.C. and Gayraud, T.,
2014. Software-defined networking: Challenges and research
opportunities for future internet. Computer Networks, 75, pp.453-471.

[5] Marschke, D., Doyle J., and Moyer P., 2015. Software Defined
Networking (SDN): Anatomy of OpenFlow. UK:Lulu Publishing
Service.

[6] Hu, F., Hao, Q. and Bao, K., 2014. A survey on software-defined
network and openflow: from concept to implementation. IEEE
Communications Surveys & Tutorials, 16(4), pp.2181-2206.

[7] Sherwood, R., Chan, M., Covington, A., Gibb, G., Flajslik, M.,
Handigol, N., Huang, T.Y., Kazemian, P., Kobayashi, M., Naous, J. and
Seetharaman, S., 2010. Carving research slices out of your production
networks with OpenFlow. ACM SIGCOMM Computer Communication
Review, 40(1), pp.129-130.

[8] Van der Merwe, J.E., Rooney, S., Leslie, I. and Crosby, S., 1998. The
Tempest-a practical framework for network programmability. Network,
IEEE, 12(3), pp.20-28.

[9] Hill, R., Hirsch, L., Lake, P. and Moshiri, S., 2012. Guide to cloud
computing: principles and practice. Springer Science & Business Media.

[10] Sherwood, R., Gibb, G., Yap, K.K., Appenzeller, G., Casado, M.,
McKeown, N. and Parulkar, G., 2009. Flowvisor: A network
virtualization layer. OpenFlow Switch Consortium, Tech. Rep, pp.1-13.

[11] Blenk, A., Basta, A., Reisslein, M. and Kellerer, W., 2015. Survey on
Network Virtualization Hypervisors for Software Defined Networking.

[12] Sherwood, R., Gibb, G., Yap, K.K., Appenzeller, G., Casado, M.,
McKeown, N. and Parulkar, G.M., 2010, October. Can the production
network be the testbed?. In OSDI (Vol. 10, pp. 1-6).

[13] Costa, V.T., and Costa, L.H.M., 2015. Vulnerabilities and solutions for
isolation in FlowVisor-based virtual network environments. Journal of
Internet Services and Applications, 6(1), pp.1-9.

[14] Min, S., Kim, S., Lee, J., Kim, B., Hong, W. and Kong, J., 2012,
February. Implementation of an OpenFlow network virtualization for
multi-controller environment. In Advanced Communication Technology
(ICACT), 2012 14th International Conference on (pp. 589-592). IEEE.

[15] Do Nascimento Araujo, T. and Moreira Salles, R., 2014, November.
GIROFLOW: Openflow virtualized infrastructure management tool. In
Network and Service Management (CNSM), 2014 10th International
Conference on (pp. 434-437). IEEE.

[16] Salvadori, E., Doriguzzi Corin, R., Broglio, A. and Gerola, M., 2011,
December. Generalizing virtual network topologies in OpenFlow-based
networks. In Global Telecommunications Conference (GLOBECOM
2011), 2011 IEEE (pp. 1-6). IEEE.

[17] Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Snow, W.
and Parulkar, G., 2014. Openvirtex: A network hypervisor. In Open
Networking Summit 2014 (ONS 2014).

[18] Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Parulkar, G.,
Salvadori, E. and Snow, B., 2014, August. OpenVirteX: Make your
virtual SDNs programmable. In Proceedings of the third workshop on
Hot topics in software defined networking (pp. 25-30). ACM.

[19] Bozakov, Z. and Papadimitriou, P., 2012, December. Autoslice:
automated and scalable slicing for software-defined networks. In
Proceedings of the 2012 ACM conference on CoNEXT student
workshop (pp. 3-4). ACM.

[20] Drutskoy, D., Keller, E. and Rexford, J., 2013. Scalable network
virtualization in software-defined networks. Internet Computing, IEEE,
17(2), pp.20-27.

[21] Drutskoy, D.A., 2012. Software-Defined Network Virtualization with
FlowN. Master's Thesis, Princeton University.

[22] Benamrane, F. and Benaini, R., 2015. Performances of OpenFlow-based
software-defined networks: an overview. Journal of Networks, 10(6),
pp.329-337.

[23] Lara, A., Kolasani, A. and Ramamurthy, B., 2014. Network innovation
using OpenFlow: A survey. Communications Surveys & Tutorials,
IEEE, 16(1), pp.493-512.

[24] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson,
L., Rexford, J., Shenker, S. and Turner, J., 2008. OpenFlow: enabling
innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2), pp.69-74.

[25] Hegr, T., Bohac, L., Uhlir, V. and Chlumsky, P., 2013. OpenFlow
deployment and concept analysis. Advances in Electrical and Electronic
Engineering, 11(5), p.327.

[26] Bari, M.F., Roy, A.R., Chowdhury, S.R., Zhang, Q., Zhani, M.F.,
Ahmed, R. and Boutaba, R., 2013, October. Dynamic controller
provisioning in software defined networks. In Network and Service
Management (CNSM), 2013 9th International Conference on (pp. 18-
25). IEEE.

[27] Hassas Yeganeh, S. and Ganjali, Y., 2012, August. Kandoo: a
framework for efficient and scalable offloading of control applications.
In Proceedings of the first workshop on Hot topics in software defined
networks (pp. 19-24). ACM.

[28] Heller, B., Sherwood, R. and McKeown, N., 2012, August. The
controller placement problem. In Proceedings of the first workshop on
Hot topics in software defined networks (pp. 7-12). ACM.

[29] Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu,
M., Ramanathan, R., Iwata, Y., Inoue, H., Hama, T. and Shenker, S.,
2010, October. Onix: A Distributed Control Platform for Large-scale
Production Networks. In OSDI (Vol. 10, pp. 1-6).

[30] Tootoonchian, A. and Ganjali, Y., 2010, April. HyperFlow: A
distributed control plane for OpenFlow. In Proceedings of the 2010
internet network management conference on Research on enterprise
networking (pp. 3-3).

[31] Sherwood, R., Chan, M., Covington, A., Gibb, G., Flajslik, M.,
Handigol, N., Huang, T.Y., Kazemian, P., Kobayashi, M., Naous, J. and
Seetharaman, S., 2010. Carving research slices out of your production
networks with OpenFlow. ACM SIGCOMM Computer Communication
Review, 40(1), pp.129-130.

[32] Liao, L., Shami, A. and Leung, V.C., 2015. Distributed FlowVisor: a
distributed FlowVisor platform for quality of service aware cloud
network virtualisation. IET Networks, 4(5), pp.270-277.

[33] Kreutz, D., Ramos, F.M., Esteves Verissimo, P., Esteve Rothenberg, C.,
Azodolmolky, S. and Uhlig, S., 2015. Software-defined networking: A
comprehensive survey. Proceedings of the IEEE, 103(1), pp.14-76.

[34] Haldar, K., and Agrawal, D., 2014. QoS ISSUES IN OPENFLOW/SDN
In F.FEI, ed. 2014. Network Innovation through OpenFlow and SDN/
Principles and Design. United State: CRC Press.Ch.11.

[35] Egilmez, H.E., Dane, S.T., Bagci, K.T. and Tekalp, A.M., 2012,
December. OpenQoS: An OpenFlow controller design for multimedia
delivery with end-to-end Quality of Service over Software-Defined
Networks. In Signal & Information Processing Association Annual
Summit and Conference (APSIPA ASC), 2012 Asia-Pacific (pp. 1-8).
IEEE.

[36] Bari, M.F., Chowdhury, S.R., Ahmed, R. and Boutaba, R., 2013,
November. PolicyCop: an autonomic QoS policy enforcement
framework for software defined networks. In Future Networks and
Services (SDN4FNS), 2013 IEEE SDN for (pp. 1-7). IEEE.

[37] Ishimori, A., Farias, F., Cerqueira, E. and Abelém, A., 2013, October.
Control of multiple packet schedulers for improving QoS on
OpenFlow/SDN networking. In Software Defined Networks (EWSDN),
2013 Second European Workshop on (pp. 81-86). IEEE.

[38] Raza, M., Samineni, V. and Robertson, W., 2016, November. Physical
and logical topology slicing through SDN. In Electrical and Computer
Engineering (CCECE), 2016 IEEE Canadian Conference on (pp. 1-4).
IEEE.

[39] FU,X., HU,F., 2014.QoS-ORIENTED DESIGN IN OPENFLOW In
F.FEI, ed. 2014. Network Innovation through OpenFlow and SDN/
Principles and Design. United State: CRC Press.Ch.12

[40] Wang, Z., 2001. Internet QoS Architectures and Mechanisms for Quality
of Service. United States of America: MORGAN KAUMANN
PUBLISHERS

[41] Akyildiz, I.F., Lee, A., Wang, P., Luo, M. and Chou, W., 2014. A
roadmap for traffic engineering in SDN-OpenFlow networks. Computer
Networks, 71, pp.1-30.

[42] Graham, M., Winckles, A. and Sanchez-Velazquez, E., 2016. Practical
Experiences of Building an IPFIX Based Open Source Botnet Detector.
Le journal de la cybercriminalité & des investigations numériques, 1(1),
pp.21-28.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

