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ABSTRACT  

CTCF is an evolutionally conserved 11-zinc finger protein. It controls multiple cellular 
functions and is itself partly regulated via poly (ADP-ribosyl)ation (PARylation). Recent 
evidence suggested that the hypo PARylated isoform was exclusively expressed in breast 
tumours and low expression levels was associated with worse prognostic features. It also 
possessed proliferative activity. The exact mechanism by which CTCF exerted its effects in 
breast cancer is not known. 

In order to define the interaction between CTCF and proliferation markers, Ki67 and PCNA, 
colocalisation studies were performed in a panel of five breast cancer cell lines which 
possessed different hormone receptor / invasive phenotypes. Following co-localisation, co-
immunoprecipitation assays and mass spectrometry were carried out to determine whether 
CTCF was physically bound to either Ki67 or PCNA.  To determine whether CTCF directly 
regulated ERα activity, CTCF plasmid overexpression and siRNA knockdown assays were 
performed in the hormone receptor positive MCF7 breast cancer cell line. Changes in 
endogenous expression of ERα were monitored by quantitative polymerase chain reaction 
(QPCR). 

CTCF, Ki67 and PCNA were all found to be strongly expressed in breast cancer cell lines 
though the strength of this expression for CTCF and Ki67 was antibody dependent. CTCF 
and Ki67 were shown to colocalise in the nucleoli of all breast cancer cell lines while CTCF 
and PCNA demonstrated nucleolar colocalisation only in the weakly invasive, hormone 
receptor positive cell lines. Despite colocalisation, there was no physical interaction detected 
between CTCF and Ki67 / PCNA on coimmunoprecipitation and mass spectrometry in all the 
cell lines studied suggesting that the proteins did not exist as a functional complex. Three 
novel CTCF - interacting protein partners (general transcriptional factor 2, glucose regulated 
protein 78 and the huntingtin interacting protein-1 related) were however discovered. These 
new protein partners, known to function at least in part via epidermal growth factor receptor 
(EGFR) signalling in cancer formation, were discovered only in ER positive breast cancer 
cell lines. Further investigation did not detect a direct regulatory effect of CTCF on ERα 
expression suggesting that the effect of CTCF on EGFR signalling in breast cancer cell lines 
did not involve an indirect action on ERα expression. 

Key words: CTCF, breast cancer, Ki67, PCNA, estrogen receptor, protein partners. 
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Chapter 1 

Introduction 

Breast cancer is a disease characterised by the malignant transformation of normal 

breast cells and in 2011 comprised 30% of new cancers in females in the United 

Kingdom (Office for National Statistics, Cancer Statistics Registrations, England [Series 

MB1]). Women in the United Kingdom have a 1 in 8 lifetime risk of developing the 

disease (Cancer Research UK, Stats Terminology and Calculations). Risk factors for 

breast cancer include early menarche, late menopause, reduced parity and lack of 

breast feeding which suggest that sustained and unopposed hyperestrogenism is 

important in breast cell proliferation and transformation (Jemal et al., 2011). Germ line 

mutations and family history of breast cancer also contribute to the risk of breast cancer 

and suggest the influence of primary gene disorders (Barrett, 2010). When people move 

from regions of deprivation to those of greater affluence and from countries of low risk to 

those of higher risk, then there is a higher chance of breast cancer occurring suggesting 

a significant environmental component (Maringe et al., 2013). The risk for breast cancer 

also increases with age, as 81% of women in England who develop the disease are 

diagnosed after the age of 50 years and about half of these diagnosed cases occur in 

women aged between 50 and 69 years (Barrett, 2010). The age-specific incidence of 

breast cancer is rising steadily as shown in figure 1.1 and may be attributable to 

population-wide screening and frequent self-breast examination leading to earlier 

diagnosis (Pocobelli and Weiss, 2014). Though breast cancer incidence is rising, 

survival rates have improved over the past four decades with 5-year survival rate 

improving from 50% in the 1970s to 85.8% (between 2008 and 2012) in English patients 

(Office for National Statistics, Cancer Statistics Registrations, England). This 

improvement in survival has been attributed not only to the earlier mentioned progress  
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Figure 1.1.  European age-standardised incidence rates per 100,000 
population, by age, females, Great Britain. The different colour-coded lines 

trace the incidence of breast cancer across all age groups from 1975 to 2011.  

Aside from the 15 to 39 age group there is a persistent rise in breast cancer 

incidence across all age groups in the period under study.  Source:  

Cancer Research UK, Stats Terminology and Calculations. 
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achieved in early diagnosis but also the evolution of multiple treatment options which 

include surgery, radiotherapy, chemotherapy, endocrine therapy and the application of 

new targeted biologic therapies (Bilal et al., 2013). With respect to treatment, local 

control of breast cancer involves surgery and radiotherapy. For those breast tumours 

treated by surgical removal, the target is to have clear surgical resection margins 

defined as ‘no ink on the surgical specimen’ which refers to the absence of cancerous 

cells at the margins of the excised tumour (Moran et al., 2014). Radiotherapy also offers 

tumour bed control further diminishing the risk of tumour recurrence (Moran et al., 2014). 

Systemic treatments involve the administration of medications and serve to destroy or 

inhibit cancer cells that have migrated from the local breast area of origin. They include 

chemotherapy, endocrine agents and targeted biologic therapies. There are multiple 

lines of chemotherapy treatment which could be used singly or in combination and 

include 5-fluorouracil, epirubicin, cyclophosphamide, docetaxel, paclitaxel and 

capecitabine (reviewed in Miller et al., 2014). Other systemic treatment options include 

endocrine drugs for those cancers that express the estrogen receptor (ER) and 

progesterone receptor (PR). These agents serve to inhibit hormone receptors and 

prevent the growth of the cancer and include agents like the anti-estrogen tamoxifen and 

aromatase inhibitors like anastrazole, letrozole, exemestane and fulvestrant (reviewed in 

Miller et al., 2014). As with chemotherapy, the anti-hormonal agents are used 

sequentially when there is evidence that the cancer has become resistant to a particular 

anti-hormonal drug. The more recent advent of targeted therapies like tyrosine kinase 

inhibitors and monoclonal antibodies has improved prognosis, prediction and survival for 

breast cancer patients. The tyrosine kinase inhibitor eribulin is now used as a third line 

systemic treatment in the metastatic breast cancer setting (Twelves et al., 2014). For 

breast cancers that overexpress the human epidermal receptor 2 (HER2), the 

monoclonal antibody, trastuzumab, has changed the prognosis of that group of breast 

cancers. In the adjuvant setting, it is recommended for use for a year after surgery and 

further decreases the risk of recurrence (Piccart-Gebhart et al, 2005). In the metastatic 
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setting, there is more recent evidence suggesting that the addition of another 

monoclonal antibody, pertuzumab, to the trastuzumab plus chemotherapy combination 

in patients with HER2 positive metastatic breast cancer, provided an additional 15.7 

months of overall survival on top of the 40 months achievable with trastuzumab plus 

chemotherapy alone (Swain et al., 2014).  

Despite these improvements breast cancer caused 519,000 deaths in 2004 and 460,000 

deaths in 2008 on a global scale confirming that mortality from this condition remained 

high (WHO Fact sheet number 297). In 2012, breast cancer was second only to lung 

cancer as a cause of cancer death in the UK with 11, 716 deaths and had a mortality 

rate of 36 for every 100, 000 female (Cancer Research UK, Stats Terminology and 

Calculations). The age-specific mortality rate for breast cancer in the UK shown in figure 

1.2 revealed a sustained rise in mortality with advancing age and breast cancer was 

also found to represent the commonest cause of cancer death in women aged 15 – 49 

years (Cancer Research UK, Stats Terminology and Calculations). Contributing to 

breast cancer morbidity and mortality is the triple negative subset that does not express 

hormone receptors or overexpress HER2 and represent 10% – 15% of breast cancers. 

They can only be treated with chemotherapy as they possess no clear biologic targets 

and demonstrate a higher recurrence and poorer survival rates when compared with 

other types of breast cancer at a similar stage of disease (reviewed in Miller et al., 

2014). On account of the immense burden of breast cancer and the lack of targeted 

therapeutics for some subsets, there is therefore the urgent and continuing need for new 

and innovative efforts in translational research to discover and further widen the pool of 

available agents and knowledge in the fight against the disease. In an effort to contribute 

to that pool of knowledge, the information laid out in this thesis described the 

investigation of the mechanistic involvement of a multivalent protein, the CCCTC-binding 

factor (CTCF), in breast cancer as it had previously been discovered to be relevant in 

the breast cancer phenotype (Butcher and Rodenhiser, 2007; Docquier et al., 2009). 
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Figure 1.2. Breast Cancer mortality: 2010 – 2012, United Kingdom. Average 

number of deaths per year and age-specific mortality rates per 100,000 populations. 

The bars represent absolute death rates for each age group. The line in violet tracks 

the increase in death rate with advancing age. Source: Cancer Research UK, Stats 

Terminology and Calculations. 



6 
 

1.1 Functional anatomy of the female breast 
 

The normal female breast is shown in figure 1.3 and comprises 15 to 20 functional lobes 

composed of fibrofatty tissue, gland lobules and ductal elements that coalesce to form 

the lactiferous ducts which terminate at the nipple (Jesinger, 2014). The lactiferous duct 

lumen is lined by columnar epithelium becoming squamous as the duct opens on the 

areola (Hoda, 2012). Shown in figure 1.4 are suprabasal cells scattered within the 

epithelial layer of the lactiferous ducts and between the epithelium and the basal lamina 

lie myoepithelial cells. Myoepithelial cells are specialized, contractile elements and are 

involved in the contractile responses of the breast during lactation. The lactiferous ducts 

are surrounded by smooth muscle which is in turn embedded in hormone - sensitive 

stroma and the ducts thin out as they extend from the nipple towards the chest wall 

(Hoda, 2012).  The relative composition of the breast with respect to fibrofatty tissue, 

gland lobules and ductal elements is dependent on age and functional state (for 

instance pregnancy). With increasing age, glandular tissue is replaced by fibrofatty 

material. Functionally, on account of the preponderance of glandular tissue in the young 

female, investigating the breast with mammography in this age group leads to a high 

rate of false results (Engelken et al., 2012). Any part of the normal breast - glandular 

lobules, ductal cells and stromal elements - could undergo malignant transformation. 

There are significant differences with respect to prevalence, prognosis and clinical 

behaviour between tumours arising from different parts of the breast (Melchor et al, 

2014). These differences characterise the heterogeneity of breast cancer and is rightly 

regarded as a group of diseases arising from the breast rather than a single clinical 

disease state. Breast cancer subdivision therefore reflects this heterogeneity.  
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Figure 1.3 Anatomy of the normal female breast.  The various components and 

anatomical boundaries of the female breast in sagittal section are shown. Source: Visvader, 2009. 
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Figure 1.4. Schematic representation of a transverse section through a 

normal breast duct.  A suprabasal cell sits on the myoepithelial layer but does not 

reach the lumen. Source: Visvader, 2009. 
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1.2 Classification of Breast Cancer 
 

There are multiple classifications for clinical human breast cancer. Based on histology, 

breast cancer could be pre-invasive or invasive. Pre-invasive forms describe cellular 

transformation in the ductal or lobular cells with the basement membrane of transformed 

cells still intact and are termed ductal carcinoma in-situ (DCIS) or lobular carcinoma in-

situ (LCIS) respectively (Geyer et al., 2012; Rakha and Ellis, 2012). The histology of 

these forms of breast cancer are shown in figure 1.5 and reveal a form of DCIS with 

papillary extensions of tumour cells that project into the duct lumen while LCIS shows 

lobules infiltrated with round monochromatic tumour cells. In this Figure both ductal and 

lobular basement membranes remain intact. It is important to identify and treat 

preinvasive forms of breast cancer, as they are the harbinger of the invasive forms but 

possess better prognoses (Geyer et al., 2012; Rakho and Ellis, 2012). The histologies of 

invasive ductal (A) and invasive lobular (B) breast carcinoma are shown in figure 1.6. 

This figure reveals pleomorphic tumour cells, extensive infiltration of the stroma, 

absence of an intact basement membrane and the generally disordered cellular 

architecture that distinguishes invasive from non-invasive breast cancers. Further 

classification of breast cancer can be based on the possible anatomic origin of the 

transformed cell in breast tissue. Figure 1.7 shows the presumed hierarchical 

association between breast cancer groups and their normal breast epithelial counterpart. 

Further summarised in table 1.1 are the different types of breast cancer, their anatomic 

origin in the breast and the prevalence of the different types in patients with breast 

cancer. The exact breast cell of origin of breast cancer however is not always clear as 

exemplified by the tubular, medullary cell and adenoid cystic forms (table 1.1). The 

medullary class of breast cancer is usually identified histologically where the tumour is 

clearly demarcated from normal breast tissue; while the tubular forms lack a 

myoepithelial layer but possess well-formed tubules directly in contact with the stroma 

(Debnath and Brugge, 2005). This anatomic classification nevertheless is important as 



10 
 

the tubular and lobular forms have better prognoses than the ductal type and need to be 

clearly identified (Debnath and Brugge, 2005). Further differentiation between classes of 

breast cancer based on gene expression analyses is provided in table 1.2. This table 

also shows the hormone receptor profile of each breast cancer group and their clinical 

characteristics. The hormonal profile refers to the expression of estrogen and 

progesterone receptors and the human epithelial receptor (HER) 2 by the tumour. As 

noted in table 1.2, the clinical characteristic of each tumour, a product of the aggregate 

hormone receptor profile, is extremely important, as it could be predictive for response 

to treatment options. 
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Figure 1.5. Histology of breast ductal carcinoma in situ (DCIS) and lobular 

carcinoma in situ (LCIS). Hematoxylin and eosin stained cross-section of breast 

cancer showing (A) micropapillary form of DCIS with projections of papillary structures 

of different shapes bearing tumour cells. Cellular debris and detached clusters of 

tumour cells that show high nuclear grade are scattered in the ductal lumen. (B) LCIS 

with round uniform and monochromatic tumour cells in the breast lobule. The 

basement membranes in both A and B are intact. Source: WebPathology: Visual 

survey of surgical pathology. 
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Figure 1.6. Histology of invasive ductal (IDC) and invasive lobular carcinoma (ILC). 

Hematoxylin and eosin stained cross-section of breast cancer showing (A) high grade IDC 

with highly pleomorphic tumour cells and mitotic figures; (B) extensive ILC with concentric 

stromal infiltration by tumour cells around a duct uninvolved with cancer. Ductal and 

lobular basements membranes cannot be demonstrated. Source: WebPathology: Visual 

survey of surgical pathology.  
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Figure 1. 7. Human breast tumour subtypes and possible link to normal breast 

epithelial hierarchy.  Shown is the possible origin of breast cancer subtypes from 

specific parts of the human breast.  Stem cells appear to give rise to the claudin-low 

group; luminal progenitor cells to basal subtype; while different stages of maturation 

leading to a fully mature ductal cell transform to the Luminal B, HER2 and Luminal A 

subgroups.  Source: Visvader, 2009. 
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Table 1.1 Anatomical classification and prevalence of breast cancer 

subtypes (worldwide).  Modified from Dabbs, 2012.  
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Breast 
cancer 

Classification 

Hormone 
receptor 
profile 

Clinical characteristics Example of 
breast cancer 

cell line 

Luminal A ER+ PR+ 

HER2- 

Responsive to 

chemotherapy and 

hormonal manipulation; low 

Ki67 expression (< 14%) 

MCF7 

T47D 

 

Luminal B ER+ PR+ 

HER2+ 

Moderate chemotherapy 

response; high Ki67 

expression (> 14%); 

response to trastuzumab 

BT474 

Basal  ER-  PR-  

HER2- 

Good chemotherapy and 

trastuzumab response; high 

ki67 expression (>14%); no 

response to hormones; 

EGFR overexpressed 

MDA MB 468 

Claudin low ER-  PR-  

HER2- 

Moderate chemotherapy 

response; low Ki67 

expression <14%), claudin-

3; no hormone response 

MDA MB 231 

HER2 ER-  PR-  

HER2+ 

Good response to 

chemotherapy and 

trastuzumab; No response 

to hormones; high Ki67 

expression (> 14%) 

SKBR3 

Table 1.2. Classification of breast cancer based on gene expression profile.  

Modified from Prat et al., 2010; Holliday and Speirs, 2011; Park et al., 2012; 

Maciejczyk, 2013.  Key: ER - estrogen receptor; PR – progesterone receptor; HER2 

– human epidermal receptor 2. 
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Taken together, the importance of breast cancer classification lies in the identification of 

particular subtypes that could stratify patients into specific treatment groups (Park et al., 

2012). The stratification allows the delivery of specific therapies to particular types of 

breast cancers and is partly responsible for the significant improvement in survival 

relating to breast cancer over the past four decades (Barrett, 2010; Park et al., 2012). 

The anatomic type and gene expression profile of a breast tumour further contribute in 

building a profile for a given patient that could define management strategies. There are 

other prognostic factors that are also considered in deciding treatment options in breast 

cancer. 

1.3 Prognostic factors in breast cancer 
 

Prognostic factors for breast cancer can be classified into three broad categories based 

on their relative importance and frequency of application in clinical practice. These 

factors are shown in table 1.3 and include category 1 factors which have been clearly 

validated with good clinical evidence supporting their role in breast cancer 

prognostication; category 2 factors used by some groups in deciding treatment but not 

yet in general clinical practice while category 3 factors are still at various stages of 

research. With respect to category 1 factors, the ‘tumour, node, metastasis’ (TNM) class 

combines the size and extent of the tumour, involvement of axillary lymph glands and 

presence or absence of distant metastasis, to define the stage of disease and assigns a 

prognostic evaluation to it. Perhaps the earliest evidence for the utility of TNM as a 

prognostic factor came from a large scale study of breast cancer prognostic factors 

which involved 24,740 women drawn from the Surveillance, Epidemiology and End 

Result (SEER) Program of the National Institutes of Health of the United States of 

America (Carter et al., 1989). This report showed that breast cancer survival ranged 

from 45.5% in patients with tumour size of 50mm or more with involvement of axillary 

lymph glands to 96.3% in those patients with tumours less than 20mm and no lymph 

node involvement. Indeed both the size of the tumour and nodes in this report, served 
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as independent prognostic factors whose effects were also additive. Further work 

identified a subset of node negative patients based on tumour type and size with 

relapse-free survival rate of 91% at 10 years and 87% at 20 years (Rosen et al., 1993). 

The authors of this latter report suggested that these patients might not need adjuvant 

therapy and reinforced the utility of TNM staging as powerful prognosticators of outcome 

in breast cancer. The TNM classification has been updated (Sobin et al., 2009) to 

include the effect of such factors as lymph gland micrometastases (<2.0 mm) which 

were detected in 15.9% of 3887 patients previously assigned as node negative (Weaver 

et al., 2011). The presence of micrometastasis in the latter study was found to be an 

independent prognostic factor in those patients initially thought to be node negative. 

Other category 1 prognostic factors such as hormone receptor (HR) status has been 

shown to possess predictive power for response to therapeutic and adjuvant hormonal 

treatment while mitotic count, a major component of histologic grading, could indicate 

how aggressive a tumour is, as the less differentiated it is, the more aggressive and 

therefore of worse prognosis (Fitzgibbons et al., 2000; Tang and Gui, 2012).  Another 

category 1 prognostic factor also is in routine clinical use is the human epidermal 

receptor (HER) 2 status. Amplification of the HER2 gene is present in about 20% - 30% 

of breast cancers and is associated with overexpression of p185 – a transmembrane 

protein – whose expression leads to reduced survival but greater response to 

doxorubicin chemotherapy and trastuzumab, a monoclonal antibody (Fitzgibbons et al., 

2000; Tang and Gui, 2012). On account of the improved response to these agents, 

acquisition of HER2 amplification has changed those tumours that harbour it from poor 

prognosis breast cancers to better prognosis breast cancers with improved survival. 
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Category 1  Category 2  Category 3  

 

Tumour, node, metastasis 

(TNM)  

Proliferation markers 

(Ki67)  

DNA ploidy analysis  

 

Grade  Lymphatic invasion  Microvessel density  

 

Histologic type  P53  EGFR  

 

Hormone receptor (HR) 

status  

 Transforming growth factor  

 

Mitotic figure count   pS2, cathepsin  

 

HER2 status   Multidrug resistance 

proteins  

 

  Markers of tumour 

progression (CA15.3, uPA, 

PAI-1, CA 27.29  

 

 
 

 

 

 

 

 

 

Table 1.3. Prognostic factors in breast cancer. The categories define the relative 

importance and application of prognostic factors in clinical practice. Category 1 factors are 

the most frequently used in prognostication and deciding therapy while category 3 factors 

are still being validated. Adapted from Fitzgibbons et al., 2000; Maciejczyk, 2013; Patani 

et al., 2013. 
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Regarding category 2 factors, there is much research work in progress with regards to 

the impact of proliferation markers like Ki67 on breast cancer outcome and it is 

proposed that Ki67 expression levels may serve to identify potentially chemo-responsive 

patients (Wang et al., 2011; Dowsett et al., 2011). It is not clear however what the best 

cutoff point for Ki67 protein expression should be and as shown in table 1.2 it is far from 

certain that a certain Ki67 cutoff would determine chemotherapy response. The potential 

prognostic factors listed in category 3 are all subjects of intense research. Of note is the 

epidermal growth factor receptor (EGFR) whose suppression in the triple negative 

breast cancers (TNBC) that overexpress it, has been shown to render those cells more 

susceptible to cell death with the erlotinib - doxorubicin drug combination (Lee et al., 

2012). The authors of this latter report have therefore suggested that EGFR expression 

could be a prognostic factor in that breast cancer subtype. As more research findings 

emerge, the number of prognostic factors relevant to clinical management might 

increase and could become more tailored to specific breast cancer subgroups. Aside 

from the molecular factors discussed above, primary gene defects contribute to breast 

cancer onset and can also impact on the management strategy for a given patient. 

1.4 Genetic alterations in breast cancer 

Breast cancer can be familial (inherited) or sporadic (no known cause) and the primary 

mechanisms that drive the disease could be genetic, epigenetic, environmental or a 

combination of all three factors. Whatever the mechanism, the underlying genetic 

alteration in familial breast cancer is invariably mutations and the genes that undergo 

mutations can be divided into high penetrance and low penetrance genes (reviewed in 

Bogdanova and Dörk, 2012).  Penetrance refers to the probability that a particular gene 

defect would lead to cancer formation in an age-specific manner when other competing 

causes are ruled out (Chen et al., 2006). If the probability is high, then that gene defect 

is said to have high penetrance and vice versa. Of particular interest is the germ line 

affection of BRCA 1 and BRCA 2 genes which is seen in about 30% of familial cases but 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bogdanova%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24052749
http://www.ncbi.nlm.nih.gov/pubmed?term=D%C3%B6rk%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24052749
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present in less than 5% of the general population of breast cancer cases and represent 

the main high penetrance genes (Siegel et al., 2013). BRCA1 mutation is common 

(~80%) in women who have a family history of both breast and ovarian cancer but the 

incidence of this mutation falls to about 15-20% in women with a family history of only 

breast cancer (Chen and Parmigiani, 2007). BRCA1 mutation carriers have a 60% - 

80% (35% – 60% for BRCA2) lifetime risk of developing breast cancer with variable 

penetrance which however is highly dependent on the population studied (Chen and 

Parmigiani, 2007). Breast cancer patients that harbour the BRCA gene are usually 

younger at diagnosis (34.5 versus 37 years) and generally possess hormone receptor / 

HER2 negative and worse grade tumours compared to non-carriers (Nilsson et al., 

2014). The main mechanism responsible for the predisposition to cancerous 

malformation in this genetic condition resides in the loss of error-free homologous 

recombination in DNA double strand break (dsb) repair mediated by BRCA 1 and BRCA 

2 proteins (Schlacher et al., 2011). Cells that lack these proteins are forced to repair 

DNA via nonhomologous end joining, an error – prone process that leads to genomic 

instability. The importance of identifying gene defects in breast cancer with respect to 

patient management lies in the potential for personalised treatment. In patients with 

BRCA gene mutations, the defect in double strand break repair mechanisms was found 

to render breast tumour cells particularly susceptible to destruction by poly ADP-ribose 

polymerase (PARP) inhibitors via the process of synthetic lethality (Bryant et al., 2005). 

In this process, the combined effect of mutation in both BRCA1 and BRCA2 genes 

(rather than the effect of a mutation in only one of the genes) is lethal to cells (Bryant et 

al., 2005). PARPs repair DNA nicks via base excision processes and on inhibition is 

trapped at sites of single strand DNA breaks so that repair cannot proceed. With 

subsequent cell division, the single strand break is converted to a double stranded break 

rendering the cell particularly sensitive to destruction (Tutt et al., 2010). In these BRCA 

gene carriers, normal cells are relatively spared because the tumour cells invariably 

possess both the mutant allele and a deleted or mutated wild type within the tumour. 
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Also the cancer cells are presumably cycling faster and possess a higher DNA damage 

load. On account of its potential effect, much research is currently in progress clarifying 

the role of PARP inhibitors in human breast cancer among BRCA mutation carriers 

(Bryant et al., 2005; Tutt et al., 2010). Further impact of BRCA germ line defects with 

respect to patient management options resides with the utility of prophylactic 

mastectomy. This surgical treatment modality reduced the risk for breast cancer in 

BRCA gene carriers by more than 95% consequently reducing breast cancer-specific 

mortality by about 90% in this group of breast cancer patients (Rebbeck et al., 2004; 

Domchek et al., 2010). Regarding the low penetrance genes, there are suggestions that 

they could function by modifying the phenotypic expression of the high penetrance 

genes and include the androgen receptor (AR) and HRAS1 genes which modify the 

phenotype of the BRCA1 gene leading to variable expression of the high penetrance 

gene (reviewed in Bogdanova and Dörk, 2012). 

1.5 Epigenetic alterations in breast cancer 

Epigenetics describes a complex network of heritable traits that do not involve a change 

in the DNA sequence itself but revolve around methylation patterns, covalent 

modification of histone, and nucleosome remodelling (Jovanovic et al., 2010). 

Methylation in turn describes the addition of a methyl group to the cytosine residue of a 

CpG island, a modification that effectively leads to the silencing of that gene and is 

observed in phenomena like genetic imprinting (Li, 2002; Jovanovic et al., 2010). When 

methylation occurs at a tumour suppressor gene (TSG) promoter the effect could be 

loss of cellular control at that point and induction of cancerous change (Recillas-Targa et 

al., 2006; Minning et al., 2014). The mechanisms behind cellular transformation here 

could relate to the induction of point mutations; activation of proto-oncogenes; and 

genomic instability resulting from an imbalance in general methylation profiles (De Smet 

et al., 2004). Histone modification (including acetylation, phosphorylation, methylation, 

SUMOylation, ADP ribosylation, deamination, ubiquitination) has an impact on 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bogdanova%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24052749
http://www.ncbi.nlm.nih.gov/pubmed?term=D%C3%B6rk%20T%5BAuthor%5D&cauthor=true&cauthor_uid=24052749


22 
 

epigenetic regulation via the maintenance or alteration of binding sites for several 

factors involved in the DNA machinery (Esteller, 2007; Jovanovic et al., 2010). Active 

chromatin is characterised by a histone hyperacetylation status and the activity of 

deacetylases therefore leads to heterochromatin formation and effectively gene 

silencing (Jovanovic et al., 2010). Such changes in the histone code can lead to 

dysregulation and tumorigenesis since those interactions are necessary for DNA repair 

and cell division (Esteller, 2007; Jovanovic et al., 2010). As mentioned previously, 

changes in methylation status (hyper– or hypo-) can also increase the risk of 

tumorigenesis via disregulation of imprinting processes (Reik et al., 2004; Girardot et al., 

2012). The mechanisms that contribute towards the increased risk of tumorigenesis on 

dysregulation of imprinting processes include unregulated cell proliferation from 

augmentation of gene expression and aberrant expression of those imprinted sites with 

resultant deletion of a monoallelically active gene (Reik et al., 2004; Recillas-Targa, 

2006). With respect to clinical utility, the methylation pattern of some cell cycle 

regulatory genes such as CDKNA2 / p16 and CCNA1 has been found to be potential 

predictive markers for response to the anthracycline / mitomycin chemotherapy 

combination in some breast cancer patients (Klajik et al., 2014). Regarding acetylation 

modification, the effect of histone deacetylation could be reversed with histone 

deacetylase inhibitors (HDACi) like vorinostat which has shown promise in combination 

therapy in a phase 1 / 2 trial in breast cancer patients (Ramaswamy et al., 2012). Other 

important factors that could augment the risk for cancer development in this setting 

include the possible associated lack of chromatin components like the CCCTC-binding 

factor (CTCF), a deficiency that results in altered chromatin structure and insulator 

activity (Reik et al., 2004; Recillas-Targa, 2006; Girardot et al., 2012). The CCCTC-

binding factor is thought to work via epigenetic mechanisms and an increasing body of 

evidence suggests that it is involved in the breast cancer phenotype. The following 

sections focus on this important protein and its involvement in breast cancer. 
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1.6 The CCCTC-binding factor (CTCF) 
 

1.6.1 History, discovery and conservation of CTCF  
 

In the search for nuclear factors involved in regulating the c-myc oncogene, a specific 

region about 200 base pairs (bp) upstream to the transcription start site (TSS) of this 

gene, was found to harbour two proteins (Lobanenkov et al., 1990; Eilers and Eisenman, 

2008). The first protein was similar to Sp1 (a transcription factor involved in cell growth, 

apoptosis and differentiation) and the second protein was bound to repeats of CCCTC in 

a regular fashion and was named CTCF (Lobanenkov et al., 1990). The authors further 

discovered that removal of a nucleic acid sequence that bound both proteins (Sp1 and 

CTCF) led to a multi-fold rise in transcription of a stably transfected c-myc oncogene in 

chicken embryonic fibroblasts. They therefore suggested that CTCF was among other 

proteins probably involved in gene regulation at the chicken c-myc gene, specifically 

gene repression (Lobanenkov et al., 1990). In further exploring the involvement of CTCF 

in transcription, Klenova et al. (1993) spontaneously induced specific mutations in three 

out of fifteen purines involved in CTCF binding using a polymerase chain reaction 

mediated site-directed mutagenesis procedure. In so doing they eliminated CTCF 

binding while other nuclear factors remained normally bound. On introducing a c-myc 

sequence bound to a reporter CAT gene, they discovered a 10 - and 3 - fold decrease in 

transcription in stably transfected erythroid and myeloid chicken cell lines respectively, 

suggesting a CTCF activator role. This possible function of CTCF as a gene activator is 

further supported by evidence from work on the mouse H19 and Tsix genes as well as in 

the human HLA-DRB1 and HLA-DQA1 genes (Engel et al., 2006; Donohoe et al., 2007; 

Majumder et al., 2008). The same characteristic binding to repeats of CCCTC was 

further discovered downstream of two conserved alternative transcription start sites 

(TSS) in the human / mouse c-myc gene suggesting among other things that CTCF was 

ubiquitously expressed in the genome (Filippova et al., 1996). These findings raised 

speculation that CTCF could be important in cell replication.  
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The importance of this observation was magnified by evidence suggesting that a 

reduction in the CTCF gene product before fertilization prevented the development of 

the blastocyst and complete absence of CTCF gene expression was linked with death in 

the early embryonic phase in mouse (Fedoriw et al., 2004; Splinter et al., 2006). 

Moreover, evidence in a mammalian leukaemia cell line confirmed that when CTCF is 

overexpressed or knocked down then there are measurable effects that lead to changes 

in cell proliferative activities (Torrano et al., 2005). There is further evidence linking 

oocyte transcription anomalies and problems with cycling of T lymphocytes in the 

thymus on account of CTCF depletion (Heath et al., 2008; Wan et al., 2008). Taken 

together it would appear that changes in CTCF gene expression affected multiple 

aspects of cellular activity. The structure and function of CTCF is well conserved across 

species from invertebrates like Drosophila to humans (Moon et al., 2005).  

1.6.2 CTCF structure  
 

Structurally, CTCF is made up of three domains (C terminus, N terminus and the zinc 

binding domain) as shown in figure 1.8 and composed of a total of 727 amino acids with 

the DNA binding domain comprising 11 zinc finger (ZF) units (Klenova et al., 1993). The 

zinc finger units shown in figure 1.9 incorporate zinc ion into a complex of cysteine and 

histidine residues and are classified into fold groups depending on the shape of the 

protein backbone (Razin et al., 2012). The Cys2His2 fold group is the best characterised 

and possesses a beta-beta-alpha fold helix configuration (Razin et al., 2012). The alpha 

helix of the ZF is the recognition sequence for DNA binding sites and each recognition 

sequence can bind in a sequence-specific pattern to four or more DNA bases. Binding of 

a zinc finger can overlap with other zinc fingers and in this manner CTCF could make 

multiple simultaneous DNA contacts (Razin et al., 2012). CTCF has 10 Cys2His2 units 

and one Cis2HysCys unit (Klenova et al., 1993). Only four of the 11 ZFs bind strongly to 

DNA and have been identified as ZF 4 to 8, the 8th becoming more important in the 

absence of the fourth and thought to have more non-sequence specific activity 
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compared to ZF 4 to 7 (Renda et al., 2007). Flanking the ZF domain are the amino (N) - 

and carboxyl (C) - terminal domains (figure 1.7). These are polypeptide chains 265 and 

148 residues in length respectively and are monomeric, unordered and without domains 

(autonomously folding units of stable secondary structure) (Martinez and Miranda, 

2010). This flanking region of CTCF has been shown to interact with histones, the large 

subunit of polymerase 2 and other proteins involved in DNA interactions (Martinez and 

Miranda, 2010). The N terminal end of the ZF middle portion is the transcriptional start 

(Renda et al., 2007) and there are suggestions that CTCF based on this structure might 

also function as a scaffold or adaptor that facilitates DNA interactions (Martinez and 

Miranda, 2010). 
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Figure 1.8. Structural features of CTCF. The complete amino acid sequence of the wild-

type human CTCF protein shows the DNA-binding domain, which is composed of ten 

C2H2-class ZFs (ZFs 1–10) and one C2HC-class ZF (C-terminal ZF11). The 3
rd
 and 7

th
 

zinc finger (ZF) domains containing zinc ion (Zn) are identified. The red lines at the C-

terminus represent amino acid (aa) sequence of functionally significant sites for 

phosphorylation and the green line the aa sequence for pol-II interacting domain. Source: 

Ohlsson et al., 2001. 
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α helix 

Cysteine 
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Figure 1.9. Schematic structure of the classic Cys2 His2 zinc finger 

(ZF). Showing α helix, β sheet, and the cysteine and histidine residues 

in relation to zinc ion. The zinc ion offers stability to the zinc finger unit. 

Adapted from Laity et al., 2001; Renda et al., 2008. 
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1.6.3 CTCF functions  
 

CTCF has been implicated in an array of important functions such as gene regulation, 

intra and inter-chromosomal looping, imprinting, insulation and X chromosome 

inactivation. It is thought that the many ZF domains are capable of simultaneously 

binding multiple DNA sequences and that the resultant varied conformational states 

might be responsible in a large part for its involvement in extensive cellular activities. 

These activities are described below. 

1.6.3.1 Genome organiser and long-range chromatin interaction role  
 

The understanding of gene function and regulation is changing. The extensive review of 

Phillips and Corces (2009), noted that up until recently a linear model involving a 

straightforward sequence of events between enhancers, promoters and enzymes on 

one chromosome led to gene expression. There is evidence now suggesting that the 

location of chromosomes in the nucleus is not static with further evidence favouring the 

presence of transcription pits, which are factories containing RNA polymerase II, 

enhancers, locus control elements, and promoters necessary for gene transcription 

(Osborne et al., 2004; Lanctôt et al., 2007). CTCF has been found to mediate chromatin 

interaction activity at the H19 / Igf2 gene locus, an interaction that placed regions of the 

chromosome naturally far apart, in close proximity (Murrell et al., 2004). It is thought that 

the mechanism behind this long-range interaction could revolve around the ability of the 

C terminus of CTCF and its ZF domain to induce conformations that allowed looping out 

of the intervening DNA (Ling et al., 2006). This activity could therefore bring relatively far 

flung cellular factors to transcription pits and mediate gene activity. In order to verify 

whether the CTCF long range chromatin interaction activity was on a genome-wide 

scale, chromatin immunoprecipitation experiments followed by paired end tag extraction 

and sequencing (CHIA-PET) were performed on mouse embryonic stem (ES) cells 

(Handoko et al., 2011). The paired end tag extraction and sequencing is a chromosome 
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conformation capture (3C) (which studies spatial organisation of long genomic regions) 

– based assay that permits sequencing of interactions associated with an 

immunoprecipitated factor. The results of the CHIA-PET assay analysed in the report of 

Handoko et al. (2011) compared quite favourably with the results of traditional chromatin 

immunoprecipitation – sequencing (ChIP - Seq) tests performed by the same authors 

but the CHIA-PET assay needs verification by other authors to assess reproducibility 

and therefore reliability. The Handoko et al. (2011) report identified CTCF binding sites 

(PETs with two ends within 10kb on a single chromosome), intrachromosomal 

interacting PETS (where the two ends are on the same chromosome but more than 

10kb apart) and interchromosomal interacting PETS (where the PET tags were mapped 

to different chromosomes). The CTCF interactome map created by the forementioned 

PETs contained multiple loops that encompassed different genes, connected multiple 

promoters and also specifically confirmed the Igf2 DMR – H19 ICR interaction locus as 

previously suggested by other authors (Murrell et al., 2004).  In effect, Handoko et al. 

(2011) confirmed that CTCF mediated long-range interactions and emphasised that 

enhancers, promoters and their cognate genes did not have to be in close proximity to 

work together. Using non - supervised clustering algorithms, they further discovered that 

CTCF interactions divided the genome into five domains which were defined by CTCF 

loops and based on specific histone modification patterns as shown in table 1.4. In 

effect, the domain in which the CTCF interaction occurred would determine whether that 

interaction would be activating (domain 1) or repressive (domain 2). Not all domains 

however possessed clear activating or repressive features and more work needs to be 

done to clarify this model of genome partitioning. Furthermore, what decides the 

partitioning of some interactions into one domain or the other is by no means clear but 

could speculatively relate to the effect of posttranslational modifications and / or protein 

partners.  
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 Frequency Activating 
histone marks 

Repressive 
histone marks 

Miscellaneous 
features 

Domain 1 

(activating) 

12% Enriched in loops 

(H3K4me1 and 

me2 and 

H3K36me3) 

Depleted 

K9, K20, K27 

methylation 

marks 

 

Domain 2 

(repressing) 

11% Under-

represented 

Extensively 

represented 

 

Domain 3 19% 1 and 2 within 

loop regions; 3 at 

boundaries; 

H3K36me3 

outside of loops 

  

Domain 4 31% At one side of 

loop 

At opposite site 

of loop 

Possibly domain 

barriers 

Domain 5 27%   No specific pattern 

of histone 

modification seen 

Table 1.4. Categories of CTCF chromatin loop domains. Based on the clustering of 

histone modifications (unique epigenetic states) maintaining the 3-dimensional 

structure of chromatin. The domains generally partition the genome into unique 

activating or inhibiting regions. Adapted from Handoko et al., 2011.  
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1.6.3.2 CTCF regulation of gene expression  
 

While CTCF may function as a gene repressor or gene activator (Lobanenkov et al., 

1990; Klenova et al., 1993; Filippova et al., 1996) it is not clear whether these activities 

are a result of CTCF acting as a transcriptional factor (TF). What is clear however, 

judging by activity at the major histocompatibility complex class II (MHCII) locus is that 

CTCF binding and looping between upstream sequences occured before transcriptional 

activation at that gene locus (Majumder and Boss, 2010). In effect, via long-range 

interactions, CTCF is able to bring gene promoters and enhancers together and mediate 

transcriptional activity. Furthermore, evidence from 3C-Seq confirmed the involvement 

of CTCF in genome wide long range interactions in limiting interactions at the 

immunoglobulin Κ (IgK) enhancers with resultant control of gene expression at that 

locus (de Almeida et al., 2011). There are suggestions also that these processes might 

be responsible for CTCF effect on transcriptional regulation at the protocadherin-α 

cluster of genes and the angiogenin (ANG) and ribonuclease 4 (RNASE4) superfamily 

(Hirayama et al., 2012; Sheng et al., 2014). Disruptions of these genes have been 

shown to lead to problems with neuronal development, neurodegenerative disorders and 

some cancers such as breast and prostate cancer (Hirayama et al., 2012; Sheng et al., 

2014). It would appear therefore that CTCF–induced DNA loop formation might be part 

of the basis for the involvement of CTCF in gene activation or repression. The result of 

that involvement might depend on the context of the tissue-specific chromatin 

organization (activation or repression) as suggested by Handoko et al. (2011). 

1.6.3.3 CTCF insulation and genomic imprinting role 
 

Insulation refers to the ability to prevent interaction between two adjacent gene regions 

in a position-dependent manner (Ishii and Laemmli, 2003). Insulators therefore are DNA 

sequences that act to maintain the physical integrity of transcriptional domains by 

inhibiting interference from repressive heterochromatin (barrier) or activating signals 



32 
 

emanating from gene enhancers to promoters (enhancer blocking) (Ishii and Laemmli, 

2003). The ability to effect insulation appears also to revolve round DNA looping 

processes (Kurukuti et al., 2006; Zhang et al., 2011). In order to establish the 

involvement of CTCF in insulation, a genome-wide study using ChIP-Seq found a small 

but statistically significant proportion of CTCF-binding sites concentrated at boundaries 

between active and repressive domains marked by histone H2A lysine 5 acetylation 

(H2AK5Ac) and histone H3 lysine 27 trimethylation (H3K27me3), respectively 

(Cuddapah et al., 2009). These authors reported that the CTCF binding sites were 

mostly intergenic in location and though they found considerable overlap between 

binding sites in the three cell types studied (HeLa, CD4+ and Jurkat), there was 

minimum overlap between those CTCF marked domains in HeLa and CD4+ cells. While 

confirming the importance of CTCF in barrier function, they suggested that the link 

between CTCF and domain boundaries could be cell type- specific. The most important 

relevance of CTCF as an insulator however may relate to imprinting wherein certain 

genes are expressed in a parent-of-origin-specific manner (mono-allelic expression) 

(Singh et al., 2012). The best example for this phenomenon in vertebrate cells is 

probably at the mouse imprinted Igf2 - H19 locus (Fedoriw et al., 2004; Wallace and 

Felsenfeld, 2007). This site, shown in figure 1.10, has the imprint control region (ICR) 

lying between the Igf2 gene and downstream enhancers. The H19 gene locus is also 

downstream to the ICR. The ICR possesses four CTCF binding sites and is 

unmethylated in the maternally derived allele (Wallace and Felsenfeld, 2007; Singh et 

al., 2012). CTCF is therefore able to bind this region and loop out the intervening DNA in 

such a manner that the DNA methylated region 1 (DMR 1) which is upstream to the Igf2 

gene comes into contact with the ICR as shown in figure 1.10. In that way it blocks the 

transcription of the Igf2 gene which is now held in a loop while at the same time allowing 

expression of the H19 gene. The opposite happens in the paternally derived allele 

where due to methylation at the ICR, CTCF cannot bind therefore downstream  

 

http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Parent
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Figure 1.10. CTCF and imprinting at the Igf2 / H19 gene locus via loop formation. 

Monoallelic expression at the Igf2-H19 locus is regulated by binding of CTCF to the 

imprinted control region (ICR). On the maternal allele, CTCF mediates interactions 

between ICR and DNA methylated region 1 (DMR1) that also involves joining of the 

DNA strands by cohesin, insulating Igf2 from the influence of downstream enhancers. 

Methylated ICR sequences prevent CTCF from binding to the ICR on the paternal 

allele, allowing downstream enhancers to switch on Igf2 transcription. Source: Ong and 

Corces, 2009. 
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enhancers are able to switch on transcription of the Igf2 gene while inhibiting the H19 

gene. In effect the Igf2 gene is paternally expressed while the H19 gene is maternally 

expressed. Strict control of insulation at this imprint site appears to be essential for 

normal development as mice that acquired mutations at the CTCF ICR or had biallelic 

expression at this site developed phenotypic abnormalities and humans could develop 

clinical syndromes like the Silver – Russell syndrome characterised by dwarfism (Szabó 

et al., 2004; Singh et al., 2012).   

1.6.3.4 X Chromosome inactivation 
 

Further support for the role of CTCF in chromosomal organisation comes from its 

involvement in X chromosome inactivation. The female possesses two X chromosomes 

but one of them is silenced to equalise the contents of this chromosome between males 

and females. This entirely random process (X chromosome inactivation) involves 

counting, choice and mutually exclusive silencing and is coordinated from the X 

inactivation centre (Xic) which has been shown to have many binding sites for CTCF (Xu 

et al., 2006; Xu et al., 2007; Tsai et al., 2008). The exact mechanism governing this 

whole process is still debated. However the involvement of CTCF is clear as CTCF 

knockout was associated with deregulation of the process which required homologous X 

chromosome pairing and associated intra- and inter-chromosomal loop formation 

(Donohoe et al., 2007; Xu et al., 2007).  

In summary, it would appear that a major impact of CTCF on cellular function revolved 

around its ability to organise chromatin into domains of activation or inhibition. Also on 

account of its ability to reach out (via loop formation) across considerable distances it is 

able to bring nuclear factors together and in so doing determine the nature of nuclear 

processes like transcription. From the literature, it is also clear that the effect of CTCF 

could be completely opposite (as with transcription activation versus repression) 

suggesting that other factors like CTCF binding sites, post translational modifications 
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and protein partners might presumably play a role in the resultant effect of CTCF binding 

(Phillips and Corces, 2009; Zlatanova and Caiafa, 2009). 

1.7 CTCF DNA – binding sites  
 

The functional effect of protein binding might depend on the characteristic of the DNA 

binding site itself. It has been suggested that the majority of vertebrate transcription 

factor–binding sites were better divided up into multiple classes since prediction of 

binding could be better made based on multiple DNA binding classes rather than a 

single all-encompassing DNA binding sequence (Hannenhalli and Wang, 2005). The 

section below describes CTCF DNA binding sites and their impact on CTCF action.  

1.7.1 Distribution and characteristics of CTCF DNA - binding sites  
 

In a bid to explore the association between CTCF and insulation in the vertebrate 

genome, an extensive effort using ChIP assays to localise CTCF DNA binding sites, 

followed up with genome tiling micro arrays, confirmed 13804 sites in the human IMR90 

fibroblasts (Kim et al., 2007). Using a discriminatory motif enumerator, a bioinformatics 

tool that applied position weight matrices, the authors also confirmed the presence of a 

consistent 20 base pair (bp) DNA - sequence motif for three quarters of identified CTCF 

binding sites. The remaining CTCF DNA binding sites did not fit into this consensus 

sequence suggesting that CTCF was capable of other DNA interactions and possibly 

implicated the effect of multiple zinc finger binding combinations. The ChIP and high 

throughput DNA sequencing (ChIP-Seq) method is recognised to be of particular utility 

in identifying DNA-protein interactions and was used to detect 20,262 CTCF binding 

sites in human CD4+ T cells; 39,609 sites in the mouse embryonic stem (ES) cells; 

19308 sites in HeLa and 19,572 in Jurkat cells (Chen et al., 2008; Cuddapah et al., 

2009). In effect, there appeared to be differences in the number of CTCF binding sites in 

different cell types and it would not be surprising that the pleuripotent undifferentiated 

embryonic stem (ES) cells would possess a greater number of binding sites. While the 
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great number of binding sites churned out by ChIP-Seq is impressive, it is not clear 

whether they are all of biologic significance. This experimental method first 

immunoprecipitates a protein-DNA fragment using specific antibody to the protein in 

question, then subjects the captured DNA fragment to sequencing and computational 

analysis (Bailey et al., 2013). The analysis that involves extensive bioinformatics is 

fraught with pitfalls as reproducibility, cross-correlation, and metrics quality cut-offs 

determine the significance of identified sequences (Bailey et al., 2013). On account of 

the infancy of this method at the time of the reports of Kim et al. (2007), Chen et al. 

(2008) and Cuddapah et al. (2009), it is not clear whether the rigorous standards of 

Bailey et al. (2013) were followed. The ChIP-Seq nevertheless remains the method of 

choice for unravelling genome-wide protein – DNA interaction and in IMR90 fibroblasts 

(derived from fetal lung with characteristics of smooth muscle), the location of CTCF 

binding sites was reported as 46% intergenic, 22% intronic, 12% exonic, and 20% within 

2.5 kb of promoters (Kim et al., 2007). More detailed computational analysis of the data 

from the human CD4+ T cells employing a more sophisticated algorithm which possibly 

had a higher sensitivity and specificity showed a total of 26,814 binding sites with 45% 

intergenic, 7% 5′UTR, 3% exonic, 29% intronic, 2% 3′UTR, and 13% of sites within 5kb 

of the transcription start site (Jothi et al., 2008). The majority of CTCF binding sites are 

therefore some distance from TSS lending support to the observation that its activity in 

transcriptional activity may be somewhat different from traditional transcriptional factors 

(see section 1.6.3.2). Also, the intergenic location of most CTCF binding sites supported 

the idea that it was involved in significant insulation activity confirming the initial 

hypothesis of Kim et al. (2007). Regarding the consensus DNA binding site sequence, 

there are two conserved cores in the 20 base pair (bp) motif: the first between the 4th 

and 8th bases inclusive and the second between the 10th and 18th bases (Essien et al., 

2009). Further work on the consensus DNA binding site narrowed the most important 

area for binding to a 12bp core site bound with high affinity by CTCF ZF 4 to 8, ZF 4 

interacting with the 3’ end and ZF 8 with the 5’ end of DNA (Renda et al., 2007).  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Renda%20M%22%5BAuthor%5D
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1.7.2 Classification and functional effect of CTCF binding sites  
 

On account of the extensive distribution and involvement of CTCF in cellular processes 

and its potential as a transcriptional factor (TF), Essien et al. (2009) investigated 

whether the TF DNA binding site classification of Hannenhalli and Wang (2005) was 

also applicable to CTCF. They employed positional weight matrix (PWM) indices to 

represent the CTCF motif and used a scan tool to get the best possible match between 

the sites studied and the consensus binding site in the over 26000 CTCF binding sites 

identified in human CD4+, HeLa, Jurkat and IMR90 cells. Based on their results they 

confirmed that CTCF binding sites were grouped into low occupancy, medium 

occupancy, and high occupancy reflecting an increasing degree of homology between 

sites screened and the consensus site (Essien et al., 2009). They showed that this 

classification translated into different functional effects: low occupancy sites were more 

cell-type specific, had a greater concentration of active histone marks (H3K27me1) and 

in effect behaved like euchromatin, and had less evolutionary change between mouse 

and human. High occupancy sites on the other hand were more associated with gene 

co-expression and repressive histone marks (H3K27me2 and H3K27me3) or 

heterochromatin. While PWM is used extensively in bioinformatics to characterise motifs 

in nucleotide sequences, there are few statistical tests available to evaluate the 

significance of PWM output and results based on this method may be subject to dispute 

(Xia, 2012). Though it is not clear how accurately the PWM predicted the CTCF motif, 

the report of Essien et al. (2009) served to reinforce the previously described activity of 

CTCF in chromatin organisation (Kim et al., 2007; Handoko et al., 2011) and that 

transcription factor binding sites could have multiple classes (Hannenhalli and Wang, 

2005). CTCF target sites would therefore appear to be a heterogeneous group of DNA 

sequences. The biological significance of this heterogeneity is not yet clear however 

alterations in the DNA binding sequence could affect CTCF activity as single nucleotide 

mutations at CTCF binding sites can result in completely different CTCF binding affinity 
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and effects. For instance, CTCF binding could be reversed by a mutation in a single 

nucleotide contact region (outside of the consensus motif) in the myc-A CTCF binding 

site (Payer and Lee, 2008). Furthermore non-experimental single nucleotide mutations 

like the C-43-A mutation in the Xist gene abrogates CTCF binding while C-43-G 

mutation does the complete reverse (Pugacheva et al., 2005). It might therefore be 

surmised that alterations at these sites could render cells more susceptible to malignant 

transformation. It would therefore appear that a complicated interaction between the 

primary CTCF binding sequence, the resultant ZF combination and the context within 

which the particular CTCF binding site functioned would determine the functional effect 

of CTCF binding (Ohlsson et al., 2010). Though about a quarter of CTCF binding sites 

detected in vivo do not conform to the 20bp consensus motif shown by Kim et al. (2007), 

CTCF is nevertheless able to bind these DNA sequences suggesting either a direct 

effect or a possible association with protein partners.  

 

1.8 CTCF protein partners 
 

The functional effect of CTCF - DNA interaction could be modified by protein partners. It 

is not clear however whether CTCF recruits a protein to interact with or whether it 

facilitates the action of a native protein at a given location (El-Kady and Klenova, 2005). 

According to the extensive review of Zlatanova and Caiafa (2009), CTCF protein 

partners can be broadly divided into four groups namely chromatin proteins, DNA 

binding proteins, multifunctional proteins, and a miscellaneous group without any 

particular distinguishing group feature. The different CTCF protein partner groups are 

shown in figure 1.11 and individual protein partners with possible links to cancerous 

malformation (especially breast cancer) are discussed below.  
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Figure 1.11. Schematic representation of classes of CTCF protein partners. Key: 

Top II- topoisomerase II; RNA pol II – RNA polymerase II; PARP 1 – poly ADP ribose 

polymerase 1; Yy1 – Yin and Yang 1. Source: Zlatanova and Caiafa, 2009 
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1.8.1 Chromatin CTCF - protein partners 
 

Chromatin CTCF protein partners (as shown in Figure 1.11) include cohesin, a protein 

involved in chromosome segregation during mitosis and necessary for homologous 

recombination-dependent DNA repair (Wendt et al., 2008). It has been shown via 

chromatin immunoprecipitation that 70% of identified CTCF binding sites are co-

occupied by both CTCF and cohesion and both proteins are involved in regulating 

transcription at the Igf2 / H19 imprinted site (Parelho et al., 2008). The exact relationship 

between these protein interactions is still unclear because while cohesin interferes with 

CTCF, the latter has no effect with regards to the activity of cohesin during mitosis 

(Parelho et al., 2008; Wendt et al., 2008). This observation could be in keeping with a 

proposal identifying two different pools of cohesin activity, the first an immobile fraction 

bound to chromatin and needed for cellular cohesion and then a more mobile fraction 

that might mediate interaction with DNA binding proteins like CTCF (Zlatanova and 

Caiafa, 2009). With regard to cellular transformation and tumorigenesis it is possible that 

on account of the need for cohesin in homologous-recombination-dependent DNA repair 

and much like the action of the BRCA genes, disruption of the CTCF - cohesin 

interaction could impair cellular ability to repair DNA damage and therefore render them 

susceptible to cancerous malformation. 

1.8.2 DNA-binding CTCF protein partners 
 

Some of the DNA binding proteins that partner with CTCF are shown in figure 1.11. 

Kaiso, a zinc finger protein, was found to bind CTCF bait through the CTCF C-domain in 

a yeast two-hybrid screen and co-immunoprecipitated CTCF with specific anti-Kaiso 

monoclonal antibodies (Defossez et al., 2005). The involvement of Kaiso in breast 

cancer had previously not been described but a recent report described the interrogation 

of Kaiso expression and linked this expression to molecular subtypes and pathologic 

indices in human invasive breast cancer (Vermuelen et al., 2012). This work found an 
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association between nucleus-bound Kaiso and aggressive breast cancer phenotype 

(high histologic grade, ERα negativity, HER-2 positivity and EGFR overexpression). The 

partnering of CTCF with Kaiso might therefore indicate a functional involvement of 

CTCF in breast tumorigenesis. Other DNA partner proteins include the Yin and Yang 1 

transcription factor (Yy1), a 4-zinc finger factor necessary for embryogenesis but also 

involved in X-chromosome inactivation mediated by CTCF (Gordon et al., 2006). Both 

proteins (CTCF and Yy1) have many paired binding sites at the Tsix region of the X-

chromosome inactivation centre and the Yy1 protein binds the N terminal of CTCF to 

trans activate Tsix, an activity that is thought to be more potent than either acting alone 

(Donohoe et al., 2007). Yy1 has been shown to associate with cell cycle signalling 

pathways in ER+ breast cancers and that interaction contributed to G1-phase 

progression and proliferation activation in estrogen responsive breast cancers (Cicatiello 

et al., 2004). The co-expression of CTCF and YY1 could therefore also reinforce the 

previously suggested involvement of CTCF in the breast cancer phenotype. 

1.8.3 Multifunctional CTCF protein partners 
 

Within the multifunctional protein group in figure 1.11, PARP 1 and CTCF were 

discovered to form functional complexes through single and serial chromatin 

immunoprecipitation assays in mouse DNA (Farrar et al., 2010). In this paper, PARP1 

was overexpressed and it is not clear whether the effect of an artificially exaggerated 

quantity of PARP1 in the cell would be of biologic significance. PARP 1 is also involved 

with CTCF in gene imprinting and ribosomal gene expression (Yu et al., 2004; Torrano 

et al., 2006). With respect to cancer, PARP 1 plays a key role in cellular DNA repair 

processes and inhibition of this enzyme limits cell DNA repair and augments the 

susceptibility of cells that already possess repair defects as observed in BRCA deficient 

breast cancer cells, to destruction (Tutt et al., 2010). This characteristic is currently 

being tested in Phase 1 and 2 human breast cancer trials and provides continuing 

evidence for the possible role of CTCF in breast cancer (Tutt et al., 2010). 
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1.8.4 Miscellaneous CTCF protein partners 
 

Among the miscellaneous group of protein partners (figure 1.11), the large subunit of the 

RNA polymerase II (RNA pol II) was found to interact directly with CTCF during serial 

chromatin immunoprecipitation assays in proliferating HD3 cells (Chernukhin et al., 

2007).  RNA pol II is part of the core cellular transcription machinery and aberrations of 

Pol II and its multiple interactions at this site clearly could lead to malignant 

transformation. The complexing of CTCF with this protein would therefore suggest that 

CTCF integrity was needed to maintain normal cellular homeostatic mechanisms.  

1.8.5 Summary 

In summary, there appears to be a complicated network of proteins involved in CTCF 

action, made even more so by extensive protein-protein and protein–CTCF crosstalk. 

For instance, as noted by Zlatanova and Caiafa (2009), nucleophosmin interacts with 

PARP1, which is a known partner of Yy1, and both in turn interact with CTCF. Clearly 

more work needs to be done to tease out the strings that bind these proteins to 

themselves and to CTCF so as to among other things determine the relative contribution 

of CTCF binding site homology on the one hand and protein partners on the other to 

CTCF function at any given site.  

 

1.9 Regulation of CTCF activity 
 

The extensive effects of CTCF in the cell are controlled by normal cellular mechanisms 

and include methylation and post translational modification (PTM) processes (El-Kady 

and Klenova, 2005; Wallace and Felsenfeld, 2007; MacPherson et al., 2009; Witcher 

and Emerson, 2009). These control processes are important since a loss of balance 

between gene activator and inhibitor signals could lead to malignant transformation and 

are described below. 
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1.9.1 Methylation  
 

Methylation refers to the transfer of a methyl group to CpG dinucleotides, a process that 

effectively silences activity at that site (Fedoriw et al., 2004; Wallace and Felsenfeld, 

2007). Regulation of CTCF activity could be achieved with methylation occurring in and 

around CTCF binding sites. A previously mentioned important example is the Igf2 / H19 

gene locus where paternal-specific methylation of the imprint control region (ICR) 

determined monoallelic CTCF binding which results in maternal-specific allele gene 

expression (Fedoriw et al., 2004; Wallace and Felsenfeld, 2007). The presence or 

absence of methylation at this locus then clearly determines CTCF binding and thereby 

regulates monoallelic gene expression at that site. As previously noted in section 

1.6.3.3, a disruption of this regulatory process could lead to cell transformation. Further 

support for the effect of methylation on CTCF activity away from the Igf2/H19 locus was 

provided using BRCA1-methylated breast cancer cell lines - UACC3199 and HCC38 (Xu 

et al., 2009). This paper studied the effect of methylation at the BRCA1 gene promoter 

and noted that CTCF binding to this promoter occurred only in the unmethylated state 

(unlike Sp1 whose binding was unaffected by methylation status). The authors therefore 

concluded that methylation processes regulated CTCF binding at this locus.  

1.9.2 Post translational modifications (PTM) 
 

Posttranslational modification of CTCF is involved in CTCF regulation and could be a 

strong contributor to its activity. These processes which include poly (ADP-ribosyl) ation 

(PARylation), phosphorylation and SUMOylation serve to place certain boundaries on 

the CTCF protein and by so doing regulate the extent of its interactions. 

1.9.2.1 PARylation  
 

PARylation is the addition of poly-ADP ribose (PAR) groups to chromatin proteins, a 

process catalysed by poly-ADP ribose polymerases (PARPs) (Beneke, 2012). The PAR 

groups transfer negative charges to the proteins they bind and alter their interaction with 
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other proteins including DNA (Beneke, 2012). CTCF PARylation, lost on PARP 

inhibition, is associated with loss of insulation activities including gene imprinting at the 

H19 ICR (Yu et al., 2004; Jothi et al., 2008) and also has effects on cell proliferation and 

tumorigenesis (Docquier et al., 2009; Witcher and Emerson, 2009). These effects are 

discussed more extensively in chapter 3 of this thesis. Other functions of CTCF possibly 

regulated by PARylation include transcription of ribosomal RNA (Torrano et al., 2006). 

This latter report showed that transfection of UR61 cells (a cell line derived from 

phaechromocytoma of the rat adrenal medulla) with GFP-CTCF led to cessation of 

nucleolar transcription compared to controls as detected by 5’fluorouridine (5’-FU) 

incorporation assays. Conversely, treatment of these transfected cells with 3-

aminobenzamide (a PARP inhibitor) led to the restoration of 5-FU incorporation 

suggesting that CTCF PARylation directly controlled ribosomal RNA transcription and 

therefore regulated CTCF activity. 

1.9.2.2 SUMOylation 
 

The process of SUMOylation involves the covalent addition of a Small Ubiquitin-like 

Modifier (SUMO) to a protein factor. This binding alters protein stability, nuclear-

cytoplasmic transport, cell cycle progression, transcriptional inhibition, and protein 

interaction with binding partners (Gill, 2005; MacPherson et al., 2009; Yang and Chiang, 

2013). Less than 10% of CTCF protein is SUMOylated however this modification of 

CTCF has been shown to lead to transcriptional repression at the c-myc P2 promoter 

(MacPherson et al., 2009). Furthermore, CTCF-induced chromatin opening is prevented 

by SUMO-3 modification suggesting that this modification could be involved in insulation 

activities (Kitchen and Schoenherr, 2010). In effect, SUMO modification regulates CTCF 

processes such as transcription and insulation and aberration of these processes could 

present a template for cellular transformation. 

 
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yang%20XJ%5BAuthor%5D&cauthor=true&cauthor_uid=24273646
http://www.ncbi.nlm.nih.gov/pubmed?term=Chiang%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=24273646
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1.9.2.3 Phosphorylation  
 

An extensive review of protein phosphorylation noted that phosphate groups associated 

with transcription factors (TFs) by regulating the amount of time the factors spent in the 

nucleus; initiated TF degradation; and interfered with TF binding to DNA by changing 

chromatin structure (Abrantes et al., 2014). Specific phosphorylation of CTCF has been 

mapped to four serine residues in the C terminal region namely positions 604, 609, 610 

and 612 with the critical site at the 612 residue (Klenova et al., 2001). It has been shown 

that phosphorylation at these residues and especially at the 612 residue converted 

CTCF from gene repressor to a gene activator suggesting that CTCF was associated 

with both transcriptional repression and activation depending on the presence or 

absence of phosphorylated residues (El-Kady and Klenova, 2005). It is possible that a 

switch of CTCF depending on the context could lead to an imbalance in cellular function 

that could be tumour inducing. The functional effect of this modification with respect to 

breast cancer however is yet to be elucidated. 

 

1.10 CTCF and tumour suppression 
 

CTCF could be a gene activator (usually after modification) as alluded to in the previous 

section but its repressor activity with respect to carcinogenesis appears to predominate.  

The mechanisms described in this section could serve to explain the possible general 

action of CTCF in suppressing tumour formation and some of the evidence for this view 

is described below. 

1.10.1 CTCF induces transcriptional repression of hTERT in tumours 
 

Tumours are characterised by the ability to grow indefinitely partly because some 

tumours are able to generate telomerase, an enzyme involved in maintaining telomere 

length enabling those tumours to sustain high proliferation rates and bypass senescence 
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(Elenbaas et al., 2001).  In normal cells however, telomerase is expressed at low levels 

and with each division, the length of the telomere decreases up to a point that division is 

no longer possible and cells enter into senescence (Masutomi et al., 2003). Telomerase 

is made up of an RNA component and the human telomerase reverse transcriptase 

(hTERT) which is expressed by only TERT positive cells and whose production is 

controlled by positive (for instance, estrogen receptor) and negative (for instance, Ap1 

and p53) regulators (Mason et al., 2011; Gómez et al., 2013). It has been shown that 

CTCF binding inhibited hTERT transcription in cancer cell lines (Choi et al., 2010; 

Meeran et al., 2010). To prove that this effect of CTCF on hTERT occurred via 

methylation, HCT116 and breast cancer cell lines were treated with trichostatin and 

sulforaphane, agents that inhibit histone deacetylase (HDAC) and DNA 

methyltransferase 1 (Choi et al., 2010; Meeran et al., 2010). With the resultant 

demethylation at the hTERT promoter, CTCF was bound to hTERT and induced 

telomerase repression (Choi et al., 2010; Meeran et al., 2010). It is thought that this 

ability to suppress telomerase via epigenetic mechanisms might be one of the 

mechanisms through which CTCF played a role in tumour suppression in cancer 

including breast cancer. 

1.10.2 CTCF maintains retinoblastoma protein (pRb) and p53 gene promoter  

epigenetic status and tumour repression 
 

Further evidence for the role of CTCF in tumour suppression revolved around its 

interaction with the retinoblastoma protein (pRb). The protein product of the Rb gene 

negatively regulates cellular activities including differentiation and senescence via E2F 

target genes; it is a well-established tumour suppressor and most human tumours are 

associated with down regulation of this gene (Khidr and Chen, 2006). There are 

suggestions that CTCF might be involved in the regulation of the Rb gene via 

maintaining it in an epigenetically regulated state (La Rosa-Vela´zquez et al., 2007). La 

Rosa-Vela´zquez and colleagues showed that CTCF bound to Rb gene promoters in 
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HeLa cells. They also found associated decreased Rb promoter activity on site-directed 

mutagenesis of the CTCF binding site suggesting that CTCF was an activator at the Rb 

gene promoter. Further still, they showed that methylation of the CTCF binding site at 

the Rb promoter abrogated CTCF binding confirming that the effect of CTCF at that site 

was via an epigenetic mechanism. 

The role of CTCF in tumour suppression is also supported by its association with p53 

gene which encodes the p53 tumour suppressor protein and is central to the cellular 

metabolism of the body; indeed 50% of all tumours have a mutation of this gene while a 

significant proportion of the remainder have some dysregulation in the gene’s signalling 

pathways (Zuckerman et al., 2009). CTCF binding has been demonstrated at the 

promoter of the p53 gene where that binding stopped the spread of repressive histone 

marks like H3K9me3, H3K27me3 and H4K20me3 (Soto-Reyes and Recillas-Targa, 

2010). These latter authors also demonstrated that CTCF depletion was associated with 

the acquisition of repressive histone marks and consequent p53 promoter gene 

silencing in glioma cell lines (Soto-Reyes and Recillas-Targa, 2010). In preserving Rb-

mediated negative regulation and maintaining p53-activated status, CTCF in part, 

contributed to a tumour suppressive role. 

1.10.3 CTCF maintains epigenetic balance at the cyclin-dependent kinase inhibitor  

2A locus (CDKN2A)  
 

The cyclin-dependent kinase inhibitor 2A (CDKN2A) locus encodes two proteins, p14ARF 

and p16INK4a, which respectively stabilise p53 and prevent the inactivation of Rb proteins 

(Ouelle et al., 1995; Ozenne et al., 2010). Both p14ARF and p16INK4a have important 

actions in cell cycle arrest and cell senescence and their inactivation is associated with 

cell transformation (Ouelle et al., 1995; Ozenne et al., 2010). CTCF has been shown to 

bind to the promoter of p14ARF but this binding was abrogated by methylation in a p14ARF 

– negative osteosarcoma cell line (Rodriguez et al., 2010). Demethylation with 5’-aza-2’-

deoxycytidine (AZA) successfully reversed the lack of CTCF binding and furthermore 
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CTCF depletion prevented the re-activation of p14ARF after AZA treatment suggesting 

that CTCF was indispensable in the transcriptional activation of the p14ARF promoter 

(Rodriguez et al., 2010). With respect to p16INK4a, CTCF has been shown to possess 

barrier function ~2kb upstream to the transcriptional start site of the p16 gene and is 

associated with the transcriptionally active p16 gene but not the inactive gene (Witcher 

and Emerson, 2009). CTCF knockdown induced by shRNA caused the spread of 

repressive histone marks to the p16 promoter with subsequent silencing of that gene 

(Witcher and Emerson, 2009). Furthermore, both DNA methylation and loss of CTCF 

PARylation were found to be factors associated with loss of CTCF binding at the 

boundary region and subsequent p16 gene silencing confirming the impact of epigenetic 

mechanisms at this gene locus (Witcher and Emerson, 2009). Taken together therefore, 

the action of CTCF at the promoters of the CDKN2A locus served to further stabilise and 

keep them activated to prevent cellular deregulation. 

 

1.11 CTCF and the clinical breast cancer phenotype 
 

CTCF has been linked CTCF to various forms of clinical breast cancer. With respective 

to high penetrance breast cancer genes, excessive methylation of the BRCA1 promoter 

is seen in up to 20% of sporadic forms of breast cancer and is associated with a 

decrease in BRCA1 gene expression and tumorigenesis (Matros et al., 2005). CTCF is 

known to have binding sites in the region of the BRCA1 promoter and is possibly 

involved in insulator functions in that area and in conjunction with specific protein 1 

(Sp1) keeps that gene free of methylation in the normal breast (Butcher et al., 2004). 

Deletion and mutations at the chromosomal locus of the CTCF gene, in conjunction with 

cytoplasmic location of CTCF (as opposed to nuclear) and absent CTCF barrier 

elements around the BRCA1 gene could result in an epigenetic hit and tumour formation 

(Aulmann et al., 2003; Rakha et al., 2004). Further evidence in support of the impact of 
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CTCF on BRCA genes was presented by Butcher and Rodenhiser (2007), who 

interrogated the relationship between CTCF, a DNMT3b methyltransferase and BRCA1 

gene on the one hand and BRCA1 promoter methylation on the other hand. They found 

that alterations in methylation patterns were critical events in BRCA1 gene inactivation 

and sporadic breast tumours suggesting that epigenetic mechanisms could be the link 

between CTCF and BRCA 1 dysregulation in breast cancer.  

Contrary to this conclusion however is a recent effort that determined CTCF promoter 

methylation status and the associated CTCF mRNA expression in sporadic breast 

cancer patients (Wang and Zhang, 2014). The authors used methylation-specific PCR, 

bisulfite sequencing PCR, and quantitative real-time PCR and found that CTCF gene 

methylation was surprisingly lower in breast cancer tissue compared to normal breast 

tissue. Furthermore they discovered that CTCF mRNA expression was lower in breast 

cancer tissue compared to normal breast tissue suggesting that malignant 

transformation in this setting was probably not directly linked to methylation processes at 

the CTCF promoter itself. The data from this report is not straightforward as promoter 

hypermethylation is generally associated with gene silencing and therefore decreased 

gene expression. That pattern was not seen in this report where though CTCF promoter 

methylation was lower in cancer tissue, CTCF mRNA expression was not higher in 

those transformed cells compared to normal breast tissue. Generalisable conclusions 

obviously cannot be drawn from this study as the sample size was small (62 patients) 

and cancerous malformation is a multifactorial process. Moreover, the impact of CTCF 

protein on breast cancer may not be directly related to the extent of its mRNA and 

protein expression as multiple PTMs together with protein partners could alter the 

resultant phenotype. In comparison to the findings of Butcher and Rodenhiser (2007), it 

is possible that the mechanisms of CTCF-associated tumour malformation in 

conjunction with BRCA1 gene defects may be different to those breast cancers without 
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BRCA1 gene alteration. The conflicting reports point to the need for more research in 

this area. 

In the case of familial breast cancer Zhou et al. (2004) investigated 153 cases with 

familial non-BRCA1 / BRCA2 breast cancer for germ line mutations in the CTCF gene. 

This case control study, using denaturing high-performance liquid chromatography 

followed by cycle sequencing found only two sequence variants in five cases but the 

sequences occurred at the same frequency between cases and controls. They 

suggested therefore that CTCF gene mutations did not appear be important sources of 

dysregulation associated with familial breast cancer. With such a small sample size, the 

study of Zhou et al. (2004) could only serve to point towards an area for further 

research. Taken together however, these studies (Zhou et al., 2004; Butcher and 

Rodenhiser 2007; Wang and Zhang, 2014) suggested that whether breast cancer is 

familial or sporadic, the mechanism by which CTCF impacts on the breast cancer 

phenotype could partially revolve around epigenetic processes. 

Loss of chromosomal material at Chromosome 16q is common in breast cancer and the 

centromeric part of this chromosome commonly deleted in breast cancer also harbours 

the gene for CTCF (Rakha et al., 2005; Rakha et al., 2006). Evidence from studies 

involving loss of heterozygosity (LOH) and comparative genomic hybridization (CGH) 

suggested that chromosomal loss at this locus occurred at about the same frequency in 

lobular cancer in situ, and in low and intermediate ductal carcinoma in situ (DCIS) but 

the frequency of this loss is generally thought to be lower in invasive ductal carcinoma 

(Rhakha et al., 2006). Using breast tissue from normal and lobular carcinoma in situ, 

Green et al. (2009), applied real time polymerase chain reaction (RT-PCR) and 

immunohistochemistry and confirmed that CTCF expression was significantly reduced in 

the LCIS samples compared to normal breast tissue, lending support to the fact that loss 

of genetic material at this locus could be an early event in breast tumorigenesis starting 

from the in situ stages (Green et al., 2009). It is not clear however how reliable the RT-
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PCR results in this paper are as RT-PCR data have proved to be non-reproducible 

leading to the development of guidelines for publication of RT-PCR data (Bustin et al., 

2009). Regarding the more invasive forms of breast cancer, there appears to be 

conflicting data. Some studies using immunohistochemistry, DNA amplified probes, 

allelic studies and mutation screen of the CTCF gene found no loss of CTCF protein and 

no direct correlation between CTCF expression and tumour type in invasive breast 

cancer samples (Aulmann et al., 2003; Rakha et al., 2005). Another report however 

using western blotting and anti-CTCF monoclonal antibodies that detected a PARylated 

form of CTCF, found an association between low expression level of a CTCF isoform 

and worse breast cancer prognostic indices in invasive ductal carcinoma (Docquier et 

al., 2009). This report while suggesting that CTCF could be a proliferation factor based 

on its behaviour in primary cultures also speculated that a possible evolutionary 

functional change could be responsible for the association between high CTCF 

expression and better breast cancer prognostic indices. It is difficult to reconcile CTCF 

expression levels and breast cancer outcome in this paper. Taken together, differences 

in methodology and the detection of particular forms of modified CTCF protein could be 

responsible for the disparate results noted in these studies that have investigated the 

general association between CTCF expression and breast cancer type. 

 

1.12 CTCF and the estrogen receptor (ER) α 
 

In a bid to further explain the role of CTCF in breast cancer pathogenesis, efforts have 

been geared towards defining the relationship between CTCF, estrogen and ERα. Most 

breast cancers are driven by estrogen and exogenous estrogen (E2) has been shown to 

downregulate CTCF mRNA expression in the ER positive MCF7 breast cancer cell line 

(Del Campo et al., 2014). These authors confirmed basal CTCF mRNA expression in 

this cell line and noted that the downregulating effect of exogenous estrogen became 

http://www.nature.com/bjc/journal/v91/n8/full/6602144a.html%23bib2
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statistically significant at higher E2 concentrations. Using the LASAGNA-Search 

software they confirmed the presence of a consensus sequence for the estrogen 

response element (ERE) on the CTCF promoter suggesting that the CTCF promoter 

could be a target for ERα. These findings tend to support the earlier report of Ross-Ines 

et al. (2011) who analysed ER / CTCF binding data, generated by ChIP-Seq in MCF7 

cells, overlapped with a previously published dataset that identified genes upregulated 

or downregulated on E2 stimulation. The authors found that estrogen-downregulated 

gene regions were more likely to be co-bound by CTCF and ER than by either alone. 

They also found that CTCF and ER binding events colocalised and that there was 

significant ERE and CTCF motif enrichment in those colocalised regions. While 

suggesting that CTCF could influence ER binding to chromatin they confirmed a 

previous report that suggested that CTCF partitioned the genome into blocks that may 

or may not contain ERα binding regions and ER-regulated genes (Chan and Song, 

2008). Furthermore, the forkhead protein (FOXA1 / HNF3α) which modulates ERα – 

chromatin interactions and is an absolute requirement for ERα binding to ER promoters 

(even in the absence of E2 binding) is itself negatively regulated by CTCF (Hurtado et 

al., 2011). More evidence linking CTCF to ERα involved epigenetic mechanisms. They 

include the activity of histone deacetylase (HDAC), a protein that is recruited by both 

CTCF and ERα, which via the epigenetic mechanism of histone deacetylation leads to 

repression of gene expression (Lutz et al., 2000; Kawai et al., 2003). Moreover, E2 

stimulation not only downregulated the expression of CTCF, it also lead to CTCF 

recruitment to the CDKN1c promoter and a phenomenon that epigenetically induced 

gene silencing possibly via methylation (Rodriguez et al., 2011). While there appears to 

be substantial evidence describing the effects of ERα activity on CTCF, there is very 

little information regarding how alterations in CTCF gene expression impacts ERα 

expression in breast cancer cells. In effect, the functional role of CTCF on ER biology 

and specifically ER gene expression is yet to be clearly explored. Further elucidation of 
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the activity of CTCF with respect to ER regulation could augment the manipulation ERα 

and E2 in breast cancer treatment. 

 

1.13 Conclusion 
 

Breast cancer has evolved over the years and in many patients is now considered a 

chronic disease. This has been made possible by the improvement in management 

strategies available for patients with the condition. This situation resulted from extensive 

research work that has led to the identification of breast cancer as a heterogeneous 

disease with distinct clinical types that possess different management strategies. 

Despite this improvement it is still associated with considerable suffering and death. This 

emphasised the need to continue with research effort in the field to widen the pool of 

knowledge and tools available for patient management. Recent work discovered that the 

11 zinc finger protein, CTCF, could modify the clinical phenotype of breast cancer 

(Docquier et al., 2009). This protein is evolutionally conserved from invertebrates to man 

and is ubiquituously expressed in the genome. It is involved in an array of cellular 

processes including but not limited to gene expression, genome organisation, imprinting 

and X-chromosome inactivation.The exact mechanisms that governed its activity are not 

clear but could involve protein partners. It is thought to have significant general tumour 

suppressor role and acts in concert with p53, pRb and hTERT. Furthermore, it 

possesses an impact on breast cancer phenotype but the relationship between CTCF 

gene status, mRNA and protein expression profile in relation to different phenotypic 

expression of human breast cancer is not known. Also, CTCF has a complicated 

relationship with the estrogen receptor which drives the majority of breast cancer cases. 

There is however no information regarding the direct effect of CTCF on ER expression. 

In effect, the mechanism(s) through which CTCF exerted its effect in breast 

tumorigenesis is / are not known. As epigenetic mechanisms alone do not seem to 
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explain how CTCF is involved in human breast cancer, there is therefore a pressing 

need for further research in the area of mechanisms especially the involvement of 

protein partners in the association between CTCF and breast cancer. This question was 

investigated in this thesis via two related projects. 

 

1.14 Aims and Objectives 
 

The main objective of the work presented in this thesis was therefore to study the 

mechanistic involvement of CTCF in human breast cancer via its protein partners in a 

panel of five breast cancer cell lines derived from different forms of human breast cancer 

and possessing different hormonal phenotype and invasive potential. Two related 

projects were undertaken. The first project, drawing on the possible involvement of 

CTCF with proliferation, investigated the association of CTCF with known proliferation 

factors in breast cancer namely, Ki67 and the proliferating cell nuclear antigen (PCNA). 

The second project, a continuation of the first, noting that majority of human breast 

cancers are estrogen receptor positive, investigated a possible regulatory relationship 

between CTCF and the estrogen receptor (ER) in an estrogen receptor - positive breast 

cancer cell line. 
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Chapter 2   

MATERIALS AND METHODS 

2.1 MATERIALS 
 

2.1.1 Breast cancer cell (BCC) cell lines 
 

The breast cancer cell lines used in this thesis were selected to represent the major 

classes of human breast cancer possessing different hormone / HER2 phenotype and 

invasive potential as described in section 1.2 and are shown in Table 2.1. The hormone 

receptor profile, source and storage of the cell lines are also shown in Table 2.1. The 

immortalized normal luminal cell line 226LDM was generated in-house at Essex 

University using viral constructs carrying the modified T antigen, Tag (U19dl89-97), and 

hTERT (O’Hare et al., 2001; Docquier et al., 2009) and was a kind gift from Prof 

Klenova, Essex University, Colchester, United Kingdom. Cells were used for 

experiments on achieving no more than 70% - 80% confluence on incubation. 

2.1.2 Culture media  
 

2.1.2.1 Culture medium for MCF7, T47D and BT474 cells 
 

MCF7, T47D and BT474 were grown and propagated in Dulbecco’s Modified Eagle’s 

Medium (DMEM) / Ham’s F12)  (Life Technologies, UK). It was supplemented with 2.1 

mM L-Glutamine (Lonza, Switzerland), 10% v/v fetal bovine serum (GIBCO, UK) and 

gentamicin (PAA, Austria) at a final concentration of 50 μg / ml and was stored at 4oC. 

2.1.2.2 Culture medium for SKBR3 and MDA MB 231  
 

SKBR3 and MDA MB 231 cells were grown and propagated in Dulbecco’s Modified 

Eagle’s Medium (DMEM) with low glucose (Life Technologies, UK). The medium was 

supplemented with L- glutamine (2.1 mM final concentration) (Lonza, Switzerland), 10% 
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v/v fetal bovine serum (GIBCO, UK) and gentamicin (PAA, Austria) at a final 

concentration of 50 μg / ml. It was stored at 4oC. 

2.1.2.3 Culture medium for LDM226 breast cells 
 

This cell line was grown in DMEM / F-12 (Lonza, Switzerland) supplemented with 5 μg / 

mL insulin, 1 μg / mL hydrocortisone, 20 ng / mL epidermal growth factor, 20 ng / mL 

cholera toxin (all from Sigma), 10% v/v fetal bovine serum (GIBCO, UK), and 50 μg / mL 

gentamicin (PAA, Austria) (Docquier et al., 2009). It was stored at 4oC. 

2.1.2.4 Luria Bertani broth (LB) and Luria agar (LA)  
 

This broth was prepared with 0.1% NaCl (Fisher, UK), 1% Bactotryptone (Fisher, UK) 

and 0.5% yeast extract (Fisher, USA) in distilled water. To prepare Luria agar, 2% 

bactoagar (Fisher, USA) was added to LB. The broth was stored at room temperature 

while the cast Luria agar was stored at 4oC. 

2.1.3 Reagents and Buffers /gels / solutions    
All reagents and buffers together with their composition used in this thesis are detailed 

in appendix sections 1 and 2. 

2.1.4 Antibodies 
Primary and secondary antibodies together with the experiments in which they were 

used are listed in appendix section 3. 

2.1.5 Plasmids, siRNA and biologic agents 
CTCF and empty vector (EV) cytomegalovirus-driven plasmid expression vectors were a 

kind gift from Prof Klenova’s laboratory, University of Essex, Colchester. They are listed 

in appendix section 3.4. 

2.1.6 QPCR primers 
Primers used in QPCR experiments were designed with the kind help of Prof Klenova’s 

laboratory, University of Essex, Colchester. They were obtained from ThermoScientific 

(UK) and stored at -20oC. The technical datasheet is attached in the appendix section 4. 
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Table 2.1 Tabular annotation of breast cancer cell lines used in this thesis. Also 

indicated are their original source, hormone recptor and HER2 profile, storage and 

invasive potential. 

 

 

 

 

 

Cell line Original 
Derivation 

Hormone 
receptor 
profile 

Source Storage 

 

Invasion 
in 

Matrigel 

References 

MCF7 Metastatic 

pleural fluid 

 

ER+/PR + 

HER2 - 

European 

cell bank 

-80oC Weak Soule et al., 

1973; Brookes 

et al., 1973 

T47D Metastatic 

pleural fluid 

 

ER+/PR + 

HER2 - 

European 

cell bank 

-80oC Weak Savouret et 

al., 1991; 

Lacroix and 

Leclercq, 2004 

BT474 Breast 

invasive 

ductal 

carcinoma.  

ER+/PR + 

HER2 + 

Prof E 

Klenova, 

UniEssex 

-80oC Moderate Lasfargues et 

al., 1979; 

Lacroix and 

Leclercq, 2004 

SKBR3 Metastatic 

pleural fluid 

 

ER -/ PR - 

HER2 + 

European 

cell bank 

-80oC Moderate Cailleau et al., 

1978; Lacroix 

and Leclercq, 

2004 

MDA 
MB 231 

Metastatic 

pleural fluid 

 

ER -/PR - 

HER2 - 

European 

cell bank 

-80oC High Cailleau et al., 

1978; Lacroix 

and Leclercq, 

2004 

LDM 
226 

Generated 

in-house 

ER- PR- Prof E 

Klenova, 

UniEssex 

-80oC Unknown Docquier et 

al., 2009 
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2.2 METHODS 
 

2.2.1. Cell culture procedures 
 

2.2.1.1 Reviving cells from storage 
 

Frozen breast cancer cells were rapidly thawed, diluted in appropriate medium and spun 

(Eppendorf centrifuge 5810 R, Germany) at 453x g for 5 minutes. The pellet was 

resuspended in 15 ml of appropriate complete growth medium, transferred to a 75cm2 

flask (LabMart, USA) and placed in a 5% CO2 incubator at 37oC.  

2.2.1.2 Cell passaging and cell count  
 

Cells were passaged when they reached 70% - 80% confluence by first discarding the 

growth medium and washing with 2ml of 2mM ethylene diamine tetra acetic acid (EDTA) 

(Acros Organics, Belgium) to chelate calcium ions. Adherent cells were then released 

with 1ml 0.05 v/v trypsin (PAA, Austria) – 0.02 v/v EDTA solution after 5 minutes 

incubation at 37oC. Cells were spun (Eppendorf centrifuge 5810 R, Germany) at 453x g 

in complete medium for 5 minutes and the pellet resuspended in 10ml complete 

medium. Cells were counted using a haemocytometer (Neubauer chamber – 

MansfieldTM, Germany) and 1x106 cells seeded per 75cm2 flask, diluted with 10-15ml 

complete medium and incubated in 5% CO2 at 37oC. Cells used for experiments were 

passaged a maximum of three times, discarded and replaced by fresh cells from the 

frozen stored stock. 

2.2.1.3 Freezing down cells  
 

For storage, 106 to 109 cells were placed in a 1.5 ml cryovial with an equal volume of 

freezing solution consisting 10% dimethylsulphoxide (DMSO), 40% fetal bovine serum 

(FBS) and 50% complete medium. The cryovial was kept at -80oC in a cryovial freezing 

container which allowed the temperature to drop off 1oC per hour for 24 hours and then 

transferred to a liquid nitrogen drawer (CryoService, UK) for long term storage.  
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2.2.2 Trypan blue test for cell viability 
 

A cell suspension was prepared from frozen as described in section 2.2.1. 200 µl of this 

suspension was placed in an Eppendorf tube containing 500 µl of 0.4% trypan blue 

solution (Sigma, UK) and 300 µl of Hanks’ Balanced salt solution (GIBCO, UK). The 

solution was mixed thoroughly and allowed to stand for 10 minutes at room temperature. 

10 µl of the solution was introduced into a counting chamber and cells counted using a 

haemocytometer (Neubauer chamber – Marienfeld TM, Germany).  

2.2.3 Breast cancer cell lysates  
 

2.2.3.1 Cell lysate for Western blot analysis 
 

Adherent breast cancer cells were trypsinised as previously described, counted using a 

haemocytometer (Neubauer chamber – Marienfeld TM, Germany) and placed in 1.5 ml 

Eppendorf tubes. They were centrifuged at 453x g for 5 minutes, resuspended in 

medium and counted as previously described. 20 µl of 2x lysis / loading buffer was 

mixed with 1 x105 cells and the solution immediately vortexed (Whitimixer TM, 

Fisherbrand) to resuspend the cell pellet.  Heating at 95oC with a heating block 

(TECHNE, USA) for 5 minutes was done to disrupt hydrogen and ionic bonds and 

further augment the activity of mercaptoethanol in the lysis buffer by linearizing the 

proteins. Lysates were used immediately or frozen at -20oC for use at a later date. 

2.2.3.2 Cell extract for immunoprecipitation  
 

Cancer cell lines cells were allowed to achieve 70% - 80% single layer confluence in a 

75cm2 flask and washed with ice cold PBS x 1 twice. Adherent cells were then scraped 

off with a cooled plastic cell scraper (Fisher, Mexico) in 2 ml ice cold PBS x 1. The 

suspension was placed into an Eppendorf tube and spun (Eppendorf 5415R, Germany) 

at 453x g for 5 minutes at 4oC. The supernatant was discarded and 0.4 ml of freshly 

prepared immunoprecipitation (IP) lysis buffer added to the pellet, which was vortexed 
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and placed on ice for 15 minutes. It was subsequently spun at 15700x g for 15 min at 

4oC (Eppendorf 5415R, Germany). The supernatant was aspirated into another 

Eppendorf tube and kept on ice for immediate use while the pellet was discarded.  

2.2.4 Bovine serum albumin protein assay 
 

Aliquoted and frozen concentrations (200, 100, 50, 25, 12.5, 6.25, 3.175 mg/ml) of BSA 

(Sigma, USA) standard, prepared with the buffer used to make cell lysate samples to be 

tested, were allowed thawed at room temperature and 10µl of each pipetted at the 

bottom of a labelled 96 well microtitre plate (BioRad, USA) in duplicate. A further 10 µl of 

distilled water and an equal volume of the buffer used to prepare lysates were pippetted 

to the bottom of the 8th and 9th wells in duplicate to serve as negative controls. 

Furthermore, 10 µl each of a 1:1 and 1:2 dilution of the cell lysate sample to be tested 

was placed at the bottom of the 10th and 11th wells also in duplicate. One part of the dye 

reagent concentrate (Bio-Rad, USA) was diluted with four parts of deiodised water (Bio-

Rad, USA) and 200µl of the solution pipetted to each of the eleven wells in duplicate and 

mixed gently by pipetting up and down. The plate was allowed to stand at room 

temperature for 30 minutes. It was subsequently placed in a spectrophotometer 

(BioRad, USA) and absorbance measured at 595nm. A graph plotting absorbance 

versus BSA standard concentrations was created and a best fit line drawn to determine 

protein concentration. 

2.2.5 Indirect Immunofluorescence procedure 
 

Growing breast cancer cells at 70% - 80% confluence were plated on sterilised round 

coverslips (Thermo Scientific, USA) in a well of a 12-well plate (SPL, Korea) in the 

appropriate growth medium. This step served to attach cells to a stable support to 

enhance handling. They were incubated in 5% CO2 at 37oC overnight. Following 

removal of growth medium, cells were fixed by placing 0.5ml of 4% paraformaldehyde 

(PFA) (Sigma, UK) diluted in PBS onto coverslips and left to stand for 15 minutes at 
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room temperature. They were washed three times in 100 mM glycin solution seven 

minutes each time. Permeabilisation was achieved by incubating with 1 ml of 0.25% v / v 

Triton X-100 solution (ACROS Organics, Belgium) for 20 minutes at room temperature 

with gentle rocking. This step served to increase the interaction of antibody with 

intracellular contents while maintaining the integrity of the cell membrane (Khanna et al., 

2006). In order to achieve epitope / antigen retrieval, coverslips were first anchored unto 

a slide with a sealant (HENKEL TM, Germany) and immersed in 100 ml of 10mM citrate 

buffer (10 mM citric acid pH 6.0) and heated in a microwave (DeLonghi TM, Italy) at 900 

watts for 5 minutes. They were cooled in tap water for a few seconds and washed in 

PBS x 1 for 10 minutes. The heat served to unfold proteins making epitopes more 

accessible to antibodies while the buffer solution ensured that the unfolded proteins 

retained that conformation (Fowler et al., 2011).  

Secondary antibodies were anti-mouse or anti-rabbit and all derived from goat (refer to 

materials in appendix section 3.2). Coverslips were initially blocked in 2% goat serum 

(Vector, USA) in PBS / 0.05% Tween / 1% bovine serum albumin (BSA) solution 

(Sigma, UK) with gentle shaking for two hours at room temperature. Overnight 

incubation of coverslips was done with primary antibody in PBS / 0.05% Tween / 1% 

BSA solution. Negative control coverslips were incubated in PBS / 0.05% Tween / 1% 

BSA solution with no primary antibody. Incubated coverslips were each washed three 

times, seven minutes each time with PBS / 0.05% Tween / 1% BSA solution. In the dark, 

each coverslip underwent further two hour incubation with secondary antibody 

conjugated to a fluorochrome. Cells were counterstained with 4', 6-diamidino-2-

phenylindole (DAPI) (Invitrogen, USA) at a final concentration of 5 µg / ml to identify the 

cell nuclei. Following three washes each lasting seven minutes, coverslips were 

mounted unto microscope slides in glycerol-based mounting medium (Vector, USA) for 

fluorescence. Mounted cells were inspected under fluorescence imaging with the 

Olympus IX71 microscope (Olympus, Japan) using the Q imaging digital camera and 8 
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bit monochrome setting. The blue filter was used to identify cell nuclei stained by DAPI 

(excitation and emission wavelength cut-off of 341nm and 452nm respectively); the 

green filter identified fluorescein-tagged regions with an excitation and emission 

wavelength cut-off of 437nm and 515nm respectively; while the red filter detected 

rhodamine conjugation with excitation and emission wavelength cut-off of 555nm and 

627nm respectively. Image merging was performed with the ADOBE Photoshop CS2 

software (Adobe, USA). Cell protein expression – by immunofluorescence - was 

calculated as the number of cell nuclei expressing the protein in a given high power field 

relative to the total number of cell nuclei in that field and expressed as a percentage.  

2.2.6 Sodium Dodecyl Sulphate (SDS) – PolyAcrylamide Gel Electrophoresis 
(PAGE) and western blot analysis 

 

2.2.6.1 Gel preparation and electrophoresis 
 

Resolving buffer (6-8%) was poured between the glass plates of the electrophoresis 

equipment (ThermoFisher, USA) with 0.5 ml distilled water placed on top to remove air 

bubbles and allow a uniform straight gel to form. It was left to polymerise for 15 minutes. 

Stacking buffer was poured after inserting a 9-well comb and left to stand for another 15 

min. Combs were removed and wells (covered with running buffer) washed and then 

loaded with lysates. Electrophoresis was performed at 125 volts - 40 milliAmperes (mA) 

- 5 watts for two hours via the electrophoretic power supply (Amersham Biosciences, 

Sweden) for one gel. After electrophoresis the gel was incubated in running buffer plus 

1% methanol for fifteen minutes prior to semi-dry transfer. 

2.2.6.2 Semi-dry transfer 
 

Proteins were transferred from gels to polyvinylidene fluoride (PVDF) membrane 

(Millipore, USA) via sandwich. The sandwich consisted of PVDF membrane (soaked for 

10 seconds in 100% methanol and thoroughly washed in water) placed under the gel 

and both bordered on top and below by squares of Whatman paper soaked in transfer 
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buffer. Methanol in the transfer buffer served to keep the gel at the same size as the gel 

has a propensity to absorb water; it also served to remove SDS from the proteins in the 

gel and improved the ability of the proteins to bind to PVDF membrane. The transfer 

was run at 100mA - 35 volts for 2 hours for one gel and 200mA – 35 volts (2 hours) for 

two gels. After blotting, the membrane was washed in TRIS-buffered saline. 

2.2.6.3 Blocking, primary and secondary antibody incubations 
 

To minimise non-specific interaction between the PVDF membrane and incubating 

antibodies, the membrane was incubated with blocking buffer (3% non-fat fresh milk 

[Marvel] in PBS x 1) with gentle rocking for 2 hours. It was subsequently incubated with 

primary antibody dissolved in blocking buffer for two hours at room temperature or 

overnight at 4oC with gentle shaking. Washing was then performed with wash buffer 

(PBS / 0.05% Tween) three times for 10 minutes each time and further incubation with 

secondary antibody - horseradish peroxidase (HRP) labelled was done for two hours at 

room temperature with shaking.  The membrane was again washed three times for 10 

minutes each time with wash buffer (PBS / 0.05% Tween). 

2.2.6.4 Blot development 
 

Detection of the signal was performed by incubating the PVDF membrane in 800 µl of 

enhanced chemiluminescence (ECL) solution A and an equivalent amount of ECL 

solution B (Uptima, France) for three minutes and the excess drained off. It was placed 

inside a cellulose acetate plastic folder, inserted into a cassette (Kiran TM, India) and 

exposed to an X ray film (Kodak, Japan) for an appropriate length of time in a dark 

room. While still in the dark room, the film was extracted and immersed in developer 

solution (Sigma, USA) until bands were visible, rinsed off in cool water for 30 seconds 

and placed in a fixer solution (Sigma, USA) for a further one minute. It was rinsed off 

again with water and allowed to dry.  
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2.2.6.5 Stripping blot membranes 
 

Antibodies in blotted membranes were removed by placing the membrane in 100 ml of 

warm (55oC) strip buffer composite solution (4g SDS, 1.4ml β-mercaptoethanol, 1.51g 

TRIS in 200ml distilled water) and the container sealed with SaranR cling film (UK). The 

container was dipped in a warm (55oC) water bath for 15 minutes to maintain the 

temperature of container contents and was rocked every 5 – 10 minutes. The membrane 

was subsequently washed for 10 minutes with PBS containing 0.1% Tween-20 (PBS-T 

pH 7.5) and the incubation and wash steps repeated one more time. Finally the 

membrane was subjected to the western blotting procedure starting with the blocking 

phase. 

2.2.6.6 Silver staining 
 

The SDS-PAGE gel was placed in 100ml of a solution containing 10% acetic acid / 10% 

methanol and incubated at 4oC with shaking overnight. Further incubations at room 

temperature were performed in 100ml solution of 5% acetic acid / 50% methanol for 30 

minutes and finally a further 30 minutes in 100ml of 50% methanol solution only. The gel 

was then washed in ultrapure water three times, 10 minutes each time with shaking, at 

room temperature. After washing, it was incubated with 100ml of sensitizer solution for 

30 minutes at room temperature with shaking. Further washing at room temperature with 

ultrapure water consisting four washes of 10 minutes each was performed. Subsequent 

incubation with 100ml of 0.1% silver nitrate (0.1%) solution for 30 minutes at room 

temperature was carried out. Following three quick washes, 10 seconds each with 

ultrapure water, the gel was immersed fully in 100ml of developer, changed every three 

to four minutes until bands appeared or the background became too high. The reaction 

was stopped with destain after spots had fully developed. 
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2.2.6.7 Coomassie blue staining 
 

Gels post-electrophoresis and post-transfer were washed in distilled water for 5 minutes. 

They were incubated in colloidal Coomassie blue solution (Fisher, UK) at room 

temperature with shaking for 5 minutes and then washed in distilled water every 5 – 10 

minutes for about 30 minutes. They were then left in fresh distilled water overnight with 

shaking to display protein bands clearly. 

 

2.2.7 Immunoprecipitation assay (IP) 
 

The contents of one vial of Protein A Sepharose beads (Sigma, USA) were mixed with 

500µl of 20% v/v ethanol. A 50µl aliquot of mixed Protein A Sepharose beads was then 

washed with 1ml of PBS x 1 and quickly spun (Eppendorf centrifuge 5415R, Germany) 

for 20 sec at 2300x g. The supernatant was removed and the beads washed and spun a 

total of three times at 2300x g for 20 seconds. Washed beads were incubated with 

primary antibody (20µg antibody / 20µl beads) for three hours on a rotor shaker at 4oC. 

The IP cell lysates were then prepared as described previously (section 2.2.3.2). 50µl of 

the IP lysate was collected as input for subsequent western blot analysis. In order to 

eliminate the effect of protein-bead interaction, the remaining cell lysate was incubated 

with washed protein A Sepharose beads for 30min at 4oC on a rotary shaker (Stuart TM, 

UK). It was spun (Eppendorf centrifuge 5415R, Germany) at 100x g for 2 minutes at 

4oC. The cleared cell lysate was collected and beads stored / discarded. A further 50µl 

of the cleared cell lysate was drawn and kept for western blot analysis to test the 

efficiency and specificity of the co-IP experiment. The cleared cell extract was place in 

the antibody – beads mix and incubated overnight on a rotor shaker at 4oC. Post 

incubation, the IP reaction was spun at 100x g for 2 minutes at 4oC. The supernatant 

was removed and beads washed at 400x g for 1 minute at 4oC three times. The pelleted 

beads were lysed in 60µl of 2x SDS lysis / loading buffer. In order to check the efficiency 
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of the IP reaction, 10µl each of input; precleared cell lysate; IP reaction supernatant; and 

first, second and third washes of IP beads supernatant respectively was added to an 

equal volume of 2x SDS lysis buffer in separate microcentrifuge tubes. Together with the 

IP beads they were vortexed and boiled at 95oC for 5 minutes. They were subsequently 

loaded unto 6% - 8% gels for SDS-PAGE followed by western blotting.  

2.2.8 RNA – based procedures 
 

2.2.8.1 RNA extraction from cells 
 

To lyse and release RNA from incubated cells, culture medium was discarded and 1ml 

of TRIsure (Bioline, UK) placed into each well of a 12 well plate and incubated at room 

temperature for 5 minutes with gentle rocking and pipetting to detach cells. In order to 

separate the three different phases into which lysed cells partition, samples were 

transferred to Eppendorf tubes and 0.2 ml of chloroform added. Tubes were shaken 

vigorously by hand for 15 seconds and then incubated at room temperature for 3 

minutes. Centrifugation at 12000x g (Eppendorf centrifuge 5415R, Germany) for 15 

minutes at 4oC was subsequently performed. The colourless upper aqueous phase 

(containing RNA) was transferred to another tube while avoiding the interphase. To 

precipitate RNA out of solution 0.5ml of ice cold isopropanol was added to the aqueous 

phase and this solution was incubated at room temperature for 10 minutes. It was then 

centrifuged at 12000x g (Eppendorf centrifuge 5415R, Germany) for 15 minutes at 4oC. 

The supernatant was removed and pellet washed in 1ml of 75% ethanol by inverting the 

tube multiple times. This served to remove remaining traces of guanidinium, an 

antiribonuclease. Further centrifugation at 7500x g (Eppendorf centrifuge 5415R, 

Germany) for 5 minutes at 4oC was done, supernatant was then drawn and discarded 

while the pellet was allowed to air dry for at least 10 minutes. The pellet were then 

dissolved in 45µl of RNAse free water (Fisher, USA) and incubated for 10 minutes at 

55oC. To remove contaminating DNA, 5µl of 10x Turbo DNAse buffer (1x final) (Ambion, 
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USA) and 1 µl of Turbo DNAse (2U/µl) (Ambion, USA) were added, mixed and 

incubated at 37oC for 30 minutes. 0.1 (10%) volume DNAse inactivation agent (Ambion, 

USA) was added and incubation done for 2 minutes at room temperature (RT). It was 

centrifuged at 10,000x g (Eppendorf centrifuge 5415R, Germany) for 2 minutes at 4oC. 

The supernatant was drawn and placed in a new tube and frozen at -20oC.  

2.2.8.2 RNA quality assessment using the AGILENT 6000 Bioanalyser 
 

The quality of isolated RNA was assessed with the RNA 6000 LabChip kit (Agilent TM, 

Germany). Before use, the ladder (which acts as the reference for data analysis) was 

denatured for 2 minutes at 70°C, aliquoted into 1 μl samples and stored at -80°C. For 

regular use, the gel mix reagents were equilibrated to room temperature for 30 minutes 

then 550 μl of RNA 600 Nano gel was placed in spin columns provided by the kit and 

centrifuged for 10 minutes at 1500x g. Aliquots of 65 μl were prepared and stored at 4oC 

to be used within one month. 1 μl of RNA 6000 Nano dye concentrate was then added 

to the 65 μl aliquot of filtered gel, vortexed thoroughly and centrifuged for 10 minutes at 

13000x g while protecting it from light. After cleaning the Bioanalyzer 2100 electrodes – 

according to manufacturer’s instructions, the RNA Nano chip was placed on the chip 

priming station and 9 μl of the gel-dye mix pipetted at the bottom of the well marked ‘G’. 

Using the plunger on the priming station the gel was dispersed across the chip. A further 

9 μl of the gel-dye mix was added into two other marked wells. 5 μl of the RNA 6000 

Nano marker was subsequently pipetted in the well that is marked with a ladder symbol 

and into each of the 12 sample wells (numbered 1-12). 1 μl of the RNA ladder was 

pipetted to the well, marked with the ladder symbol and 1 μl of RNA samples was placed 

in each sample well. The chip was then vortexed (Vortexer, Agilent, Germany) for 60 

seconds at 2400 rpm (vortex “set point”) and immediately inserted into the Bioanalyzer 

2100. The selected program to run the chip was “Eukaryotic RNA nano series II.” A 

successful ladder run has seven sharp peaks namely, one marker and six RNA peaks in 
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the electropherogram. A successful total RNA run was characterized by one marker 

peak and two ribosomal peaks (18S and 28S).  

 

2.2.9 Plasmid DNA procedures 

2.2.9.1 Bacterial cell transformation using DH5αTM competent cells 
 

A tube of DH5αTM E. coli bacterial cells was retrieved from -80oC and thawed on ice. For 

each transformation reaction, 50µl of DH5αTM cells was placed in a 1.5 ml 

microcentrifuge tube and 1ng – 10ng (1 µl – 5 µl) of DNA added. The solutions were 

mixed and then placed on ice for 30 minutes. It was subsequently heated at 42oC for 20 

seconds without shaking and then placed on ice for 2 minutes. 950 µl of pre-warmed 

Luria broth was added to the tube and was incubated at 37oC for one hour with shaking 

at 225 rpm. Two different volumes of the transformation reaction were collected and 

spread on two separate prepared agar plates (with the appropriate antibiotic) and left to 

dry in a hood for 20 minutes. The agar plates – wrapped to prevent desiccation - were 

incubated overnight at 37oC.  

2.2.9.2 Preparation of bacterial culture 
 

In order to make bacterial broth, 5ml Luria broth (and 5 µl of appropriate antibiotic – 100 

µg / µl for both kanamycin and ampicillin) was placed in a 10ml GrainerR tube. A single 

colony of bacteria growing on the agar plate was picked with a sterile yellow tip and the 

tip placed in the Grainer tube. This tube was then incubated with shaking (225 rpm) 

(MaxQ, ThermoScientific, USA) overnight at 37oC. Bacterial growth was evidenced by a 

cloudy medium. 

2.2.9.3 Plasmid DNA minipurification 
 

1.5ml of bacterial culture was placed in a centrifuge tube and spun at 16,100x g 

(Centrifuge 5415R, Germany) for I minute. The supernatant was discarded and dry 
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pellet resuspended in 200 µl of ice cold Solution 1 (Tris-HCl, pH 8; 10mM EDTA; 100 µg 

/ ml RNAse A) and vortexed vigorously. In order to release chromosomal DNA, 200 µl of 

solution 2 (200 mM NaOH; 1% SDS) was added; the tube inverted four to six times to 

mix contents gently and placed on ice for 5 minutes. Chilled solution 3 (3M potassium 

acetate, pH 5.5) was then placed in the tube to precipitate chromosomal DNA, proteins 

and carbohydrates. The tube was centrifuged (Centrifuge 5415R, Germany) for 10 

minutes at 16,100 x g and the supernatant - containing plasmid DNA – retrieved. To 

precipitate plasmid DNA, 600 µl of isopropanol was added to the supernatant and 

incubated at room temperature - after vigorous mixing - for 20 minutes. The tube was 

then centrifuged for 10 minutes at 16,100x g. The supernatant was discarded and pellet 

resuspended in 200 µl of sterile water with vigorous vortexing and the tube placed on 

ice. To further remove contaminants from the plasmid DNA, 200 µl of phenol was added 

to the tube and vortexed vigorously. To achieve partitioning, the tube was centrifuged at 

16,100x g for 5 minutes at room temperature (Centrifuge 5415R, Germany). The 

aqueous phase was removed into a new tube into which was placed 200 µl of 

chloroform. This stage served to further partition impurities into the lower fraction. In 

order to remove cellular and histone proteins bound to DNA, the aqueous phase was 

transferred to a fresh tube and 50 µl of 3M sodium acetate (pH 5.5) and 350 µl of 100% 

ethanol added. The sodium acetate also helped preserve a somewhat alkaline pH, 

maintaining the solubility of DNA. A 10-minute centrifugation (room temperature) at 

16,100x g was done and the supernatant removed and discarded. 400 µl of 70% ethanol 

was added to the pellet to wash it, vortexed and centrifuged (Centrifuge 5415R, 

Germany) at 16,100x g for 5 minutes. The supernatant was discarded and the pellet air-

dried for about 10 minutes. It was then resuspended in 30 µl of sterile water and stored 

at -20oC. 
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2.2.9.4 DNA quantitation with ultraviolet (UV) spectrophotometry (Nanodrop) 
 

In order to assess the quantity of DNA present in the material obtained from plasmid 

minipreparation, the Nanodrop spectrophotometer was first blanked with 1.5 µl of 

RNAse free water. Subsequently 1.5 µl of each sample was placed on the cuvette and 

DNA concentration read off the spectrophotometer. The procedure ended with another 

blank reading to clean out the cuvette. 

2.2.9.5 Plasmid restriction enzyme digestion and agarose gel electrophoresis  
 

Agarose (1%) solution was prepared in TAE buffer. The bottle was covered loosely and 

heated in a microwave until agarose was well dissolved. It was cooled and while still 

liquid was poured into a gel-casting tray (ThermoFisher, USA) with combs already 

inserted and allowed to stand for 30 minutes. The tray was transferred to a horizontal 

electrophoresis tank (ThermoFisher, USA) and covered with TAE buffer solution. 

Samples (including loading buffer) already treated with digestion enzymes and SYBR 

green were loaded into the wells and electric field of 100V applied for one hour - in the 

dark. Nucleic acid bands post electrophoresis were visualised with the Odyssey infrared 

scanner (Licor, UK). 

2.2.9.6 Plasmid extraction using the Endofree plasmid Maxiprep kit (QIAGEN TM) 
 

After confirming the plasmids via minipreparation, enzyme digest and gel 

electrophoresis, large scale (maxi) preparation of the plasmids was performed with the 

endofree plasmid maxi kit (Qiagen TM). First, 250 ml of LB containing 250 µl of the 

appropriate selective antibiotic was prepared. It was then inoculated with 500 µl of 

bacterial broth obtained during the minipreparation stage and incubated at 37oC 

overnight for 12 hours with shaking at 300 rpm. Cells were then harvested by 

centrifugation at 6000x g for 15 minutes at 4oC and resuspended in 10 mls of buffer P1. 

A further 10 ml of buffer P2 was added to the tube and mixed thoroughly by inversion 

and the solution incubated for 5 minutes at room temperature. The incubated cell lysate 
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was further mixed with 10ml of chilled Buffer P3 and poured into the barrel of a prepared 

QIA filter Cartridge. The lysate was incubated in the barrel of the cartridge at room 

temperature for 10 minutes and then filtered into another tube by applying the plunger. 

Subsequently, 10% (2.0 ml) of Buffer ER was added to the filtered lysate, mixed by 

inversion and incubated at room temperature for 30 minutes. During this period, running 

10ml of Buffer QBT through the column by gravity equilibrated the Qiagen-tip 500. The 

filtered lysate was then poured into the QIAGEN-tip and allowed to flow through the 

embedded resin by gravity. Subsequently the QIAGEN-tip was washed two times with 

Buffer QC to remove impurities and DNA trapped in the resin was eluted with Buffer QN. 

DNA was then precipitated out of the eluate by mixing with room-temperature 

isopropanol and centrifuging at 15000x g for 30 minutes at 4oC. The supernatant was 

decanted and DNA pellet washed in 70% ethanol (room-temperature) with further 

centrifugation at 15 000 x g for 10 minutes. The resultant pellet was air dried, 

redissolved in 500 µl of Buffer TE and stored at -80oC. 

2.2.10 Transfection assays 

2.2.10.1 Transfection assays with plasmid expression vectors 
 

Incubated cells on achieving 40% – 80% single layer confluence were trypsinised and 

counted. An appropriate density of cells was diluted in antibiotic-rich medium and placed 

into each well of a 12 well plate. The cells were incubated with 5% CO2 overnight at 

37oC. Transfection was performed on achieving 40% to 70% cell confluence. To prepare 

the transfection complexes, plasmid vector and transfection reagent (Attractene, 

Qiagen) suspensions were prepared individually using antibiotic - free medium and left 

to stand for 5 minutes at RT. The plasmid solution was mixed with attractene 

transfection reagent and incubated for a further 20 minutes at room temperature. 

Complete medium was added to make a final volume of 1000 µl for each well of a 12 

well plate. Culture medium from the incubated cells was removed and 1000 µl of 

prepared transfection complexes placed in each well. The cells were incubated with 5% 
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CO2 at 37oC for a total of 48h and transfection complexes removed and replaced with 

fresh medium after 12 hours of incubation. At the end of incubation, transfected cells 

were either lysed for SDS-PAGE and subsequent western blotting or underwent RNA 

extraction for QPCR. 

2.2.10.2 Transfection assays with small interfering RNA (siRNA)  
 

Incubated cells on achieving 60% – 80% single layer confluence were trypsinised and 

counted. An appropriate density of cells was diluted in antibiotic-free medium and placed 

into each well of a 12 well plate. The cells were incubated with 5% CO2 overnight at 

37oC. Transfection was performed on achieving 40% to 70% cell confluence. To prepare 

the transfection complexes, siRNA (Dharmacon, ThermoScientific) and transfection 

reagent (DharmaFECT 1, ThermoScientific) suspensions were prepared individually 

using serum - and antibiotic - free media and left to stand for 5 minutes at room 

temperature. The medium was serum-free since complexing of siRNA and transfection 

reagent in serum lowers the efficiency of that process. The siRNA dilution was then 

mixed with the transfection reagent and incubated for a further 20 minutes at room 

temperature. Antibiotic-free medium (to limit cell cytotoxicity) was added to make a final 

volume of 1000µl for each well of a 12 well plate. Culture medium from the incubated 

cells was removed and 1000µl of prepared transfection complexes placed in each well. 

The cells were incubated with 5% CO2 at 37oC for a total of 48h – 72h and transfection 

complexes removed and replaced with fresh medium (antibiotic-free for siRNA) after 12 

hours of incubation. At the end of incubation, transfected cells were either lysed for 

SDS-PAGE and subsequent western blotting or underwent RNA extraction for QPCR.  
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2.2.11 Reverse transcription – polymerase chain reaction for (RT-PCR; QPCR) 
procedures  

 

2.2.11.1 Complimentary DNA (cDNA) synthesis 
 

1µg of RNA was denatured by heating at 70oC for 5 minutes and placed immediately on 

ice. It was mixed with 4 µl of 5 x cDNA synthesis buffers, 2 µl of 500 uM dNTP mix, 1 µl 

of anchored oligodT primers (500ng / µl), 1 µl of 0.5 µM Verso enzyme mix and 1 µl of 

reverse transcriptase enhancer, all from the Verso cDNA kit (ThermoScientific, UK). The 

reaction mixture was made up to 20 µl with RNAse free water and incubated in a PCR 

machine (Genestorm, England) at settings consistent with the manufacturer’s 

instructions. The cDNA sample was saved at -20oC for subsequent applications. 

2.2.11.2 Preparing primers for quantitative PCR (QPCR) 
 

To prepare 100 µM solution of primer pair, the vial containing the dry primer powder was 

spun down and the recommended amount of RNAse free water (from technical sheet – 

see appendix) was placed in the tube and mixed by inverting several times. The tube 

was kept on ice for 20 minutes, centrifuged again and stored at -20oC. 

2.2.11.3 Standard curve determination for QPCR efficiency 
 

A serial log dilution of cDNA for QPCR was obtained from 1 x 102 through to 1 x 106 

concentrations. QPCR was then performed as with the procedure in section 2.2.7.4 

below. A standard curve was automatically generated by the thermal cycler (CFX 

Connect TM, Bio-Rad, USA). 

2.2.11.4 Quantitative polymerase chain reaction (QPCR) 
 

To obtain enough samples for two wells (duplicate) of a 96 well plate, 5 µl of Kapa 

mastermix was mixed with 3 µl of diluted (1:5) cDNA, 3 µl of RNAse – free water and 1µl 

of 10 µM concentration of the relevant primer. 5 µl of this solution was pipetted to the 
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bottom of each of two wells of a 96 well plate. The plate was labelled accordingly, 

centrifuged for one minute and placed in the thermal cycler (CFX Connect TM, Biorad, 

USA). The settings for the thermal cycler corresponded to the manufacturer’s 

instructions for optimum temperatures for the Kapa mastermix (see appendix section 5).  

2.2.12 Liquid chromatography – mass spectrometry (LC – MS / MS) 
 

In order to perform LC – MS / MS, breast cancer lysates already subjected to 

immunopuification via immunoprecipitation, underwent SDS PAGE together with an IgG 

negative control. The gel was then stained with Commassie blue and was subjected to 

in-gel digestion. Gel digestion, preparation of samples and the actual mass spectrometry 

process was kindly carried out at the regional proteomics centre in the department of 

Biological Sciences, Essex University by Dr Metodi Metodiev and colleagues and as 

described in Alldridge et al. (2008). 
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CHAPTER 3 

 

RESULTS - Investigating CTCF protein partners in a panel of five breast 
cancer cell lines 

 

3.1 Background 
 

3.1.1 Cell proliferation and breast cancer 
 

The rate of proliferation of a cancer cell could determine its invasive and metastatic 

potential and in turn could be directly linked to its prognosis (Stuart-Harris et al., 2008). 

A major part of invasive breast cancer research has focused on proteins that could 

define the rate of proliferation of a tumour and therefore suggest its malignancy potential 

(Van Diest et al., 2004). Determining the aggressiveness of a tumour helps in the 

stratification of patients with regards to treatment options. Some of the techniques / 

factors that might have a role as markers of cell proliferation linked to prognostic 

outcome have been reviewed in Fitzgibbons et al. (2000) and Patani et al. (2013) and 

were summarised in table 1.3. 

 3.1.2 CTCF and proliferation 
 

CTCF is a protein involved in an array of cellular activities including regulation of cell 

proliferation (section 1.6.3.2). An early study investigating the effect of CTCF on cellular 

proliferation in HEK 239 cells, a human embryonic kidney cell line, found that 

overexpression of CTCF markedly inhibited cell growth (Rasko et al., 2001). These 

authors also found that cells of the 293 cell line which lacked functional p53 and 

retinoblastoma (Rb) genes, when expressing CTCF, remained viable and either divided 

slowly or not at all, for up to a week. Since functional p53 and retinoblastoma (Rb) 

genes are prerequisites for growth, they concluded that CTCF was an important part of 

the complex network of genes critical for proliferation and growth in these cells. 
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Furthermore, evidence for the involvement of CTCF in proliferation was presented in 

both normal cells and in breast cancer cells / tissue. With respect to normal cells, Heath 

et al. (2008) worked on T cells directly isolated from healthy mice thymus and showed 

that absent CTCF expression was associated with decreased αβ T cell differentiation 

and a block in the cell cycle that led to the production of small T cells. Associated with 

this proliferation block was an increased expression of p21 and p27, which are major 

cell cycle inhibitors. Further evidence for the involvement of CTCF in proliferation in 

normal cells related to the findings of Li and Lu (2005) who investigated the functional 

role of PAX6, a transcription factor important in ocular development, in epithelial growth 

factor (EGF) - induced corneal cell proliferation. They discovered that increased CTCF 

expression, induced by EGF, led to an augmentation of corneal cell proliferation. The 

rise in CTCF expression was thought to be due to a rise in Erk signalling and the 

observed down regulation of pax6 activity was linked to the action of CTCF at the pax6 

P0 promoter. Conversely, the authors observed that abolition of CTCF mRNA 

expression via siRNA knockdown resulted in the upregulation of pax6 expression with 

subsequent decrease in corneal epithelial cell proliferation. This latter activity was 

observed irrespective of changes in EGF signalling suggesting that CTCF involvement 

in corneal cell proliferation was essential and probably not dependent on EGF. Taken 

together these reports showed that CTCF served to regulate cell proliferation in normal 

and immortalised cells though the exact mechanisms are still not clear. 

In breast cancer cells, CTCF protein expression was shown to be partly regulated by 

poly (ADP-ribosyl)ation (PARylation) where poly ADP-ribose (PAR) groups imparted a 

negative charge on the CTCF protein, a change that altered its interaction with DNA 

(Farrar et al., 2010). Another publication, linked loss of CTCF PARylation with breast 

cancer phenotype and cell proliferation (Docquier et al., 2009). This latter paper, 

previously mentioned in section 1.11, interrogated the differential expression of two 

isoforms of CTCF protein – 180kDa and 130 kDa - in breast tumour tissue, a breast 
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cancer cell line and a normal breast epithelial cell line generated in-house (LDM 226). 

The authors discovered that both CTCF isoforms, CTCF-180 (poly ADP-ribosylated) and 

CTCF-130 (hypo ADP-ribosylated) were present in normal breast tissue but only the 

CTCF-130 isoform was expressed in breast tumours. They also found that when cells 

from normal breast tissue were cultured and divided in vitro the expression of CTCF 

transited from the CTCF-180 isoform to the CTCF-130. Conversely, the CTCF-180 

isoform appeared following growth arrest in breast cell lines. On account of this 

characteristic, the authors suggested that the CTCF-130 isoform could be a proliferation 

marker. Furthermore, they showed that 87% of breast tumour tissue samples studied 

expressed the CTCF-130 variety and a reduction in the absolute expression level of this 

isoform was associated with worse breast cancer prognostic indices. Since the main 

difference between normal and cancer tissue is disregulation of cellular proliferation, the 

authors concluded that the transition from the poly-ribosylated to hypo-ribosylated forms 

of CTCF could mark the onset of disregulation of cellular proliferation and the breast 

cancer phenotype. Proliferation markers including Ki67, as shown in table 1.3, could 

have an evolving role in breast cancer prognostication and a suggestion that CTCF and 

the proliferation marker, Ki67, may colocalise in breast cancer tissue warranted further 

investigation as the Ki67 antigen is a proliferation marker that has prognostic 

significance in breast cancer (Stuart-Harris et al., 2008). 

3.1.3 Ki67 protein and proliferation 
 

The Ki67 protein was initially discovered as two isoforms (320kDa and 359kDa) derived 

from alternative splicing (Schlüter, 1993). Any difference in action between the two 

isoforms is not known. The fraction of Ki67 positive cells (Ki67 labelling index) in a 

tumour sample can indicate the degree of proliferation of the tumour and the greater the 

number of Ki67 positive cells the worse the clinical prognosis (Urruticoechea et al., 

2005). Ki67 protein expression has been shown by immunocytochemistry to be present 

only in active phases of the cell cycle (G1, S, G2, M) but not in the resting (G0) phase 
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(Scholzen and Gerdes, 2000; Yerushalmi et al., 2010). The absence of Ki67 in resting / 

quiescent cells has been challenged by Bullwinkel et al. (2006) who detected low levels 

of Ki67 at sites linked to ribosomal RNA (rRNA) synthesis. Ki67 expression has been 

shown to be required for progression through cell division as evidenced by the halting of 

proliferation when its expression is inhibited by antisense nucleotides (Schlüter, 1993). 

The exact function of Ki67 is still unknown but there are suggestions that it could be 

involved in organising DNA; have architectural or structural roles in the nucleolus; or be 

involved in ribosomal RNA synthesis (MacCallum and Hall, 2000; Bullwinkel et al., 2006; 

Rahmanzadeh et al., 2007).  

The prognostic role of this protein was studied in a meta-analysis based on 43 out of 85 

studies and covering 15790 out of a total of 32,835 patients with breast cancer (Stuart-

Harris et al., 2008). The study revealed a strong correlation between high Ki67 

expression levels and worse patient survival. Concerning the possible predictive role of 

Ki67 labelling index, two trials (International Breast Cancer Study Group [IBCSG] VIII 

and IX), assessed the impact of this index on response to adjuvant chemoendocrine 

therapy in patients with endocrine responsive tumours. While confirming that high Ki67 

expression levels was associated with poor prognostic features, the trials did not 

however reveal a predictive role for the Ki67 index for chemoendocrine therapy relative 

to endocrine therapy alone in node negative patients (Viale et al., 2008). An international 

clinical trial (POETIC – Trial of Perioperative Endocrine Therapy – Individualising Care) 

closed patient recruitment at the end of October 2013 and will among other issues 

assess whether Ki67 could be a predictor for relapse free survival (RFS) in individual 

breast cancer patients (Smith et al., 2011). The results of this trial are yet to be 

published. In the neo-adjuvant setting, Yerushalmi et al. (2010), retrieved and analysed 

data from 12 neoadjuvant breast cancer trials involving chemotherapy and on account of 

evidence from this meta-analysis concluded that high expression levels of Ki67 was 

generally found to be a predictor for good response to chemotherapy regimens. This is 
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possibly because more rapidly dividing cells (which generally express high levels of 

Ki67) are more sensitive to chemotherapy (Wang et al., 2011). Other proliferation factors 

like the proliferating cell nuclear antigen (PCNA) have also been evaluated and could 

have some impact on breast cancer prognostication (Stuart-Harris et al., 2008).  

3.1.4 Proliferating cell nuclear antigen (PCNA), proliferation and cancer  
 

PCNA is the molecular coordinator in the core DNA synthesis machinery and its 

association with cell proliferation is primarily genetic (Majka and Burgers, 2004). The 

main genetic mechanism of PCNA involvement with proliferation relates to its function 

as a DNA sliding clamp which via attachment to replication factor C, tethers 

polymerases to DNA (Majka and Burgess, 2004). This attachment increases the speed 

and efficiency of DNA polymerases and the processing and joining of the Okazaki 

fragment during DNA synthesis (Moldovan et al., 2007). PCNA activity in turn is 

regulated by posttranslational modifications including ubiquitination (Fox et al., 2011). 

PCNA monoubiquitination is associated with the ability to bypass a DNA lesion while 

polyubiquitination prepares PCNA for degradation (Fox et al., 2011). There is an 

association between PCNA and breast cancer prognosis as data sourced from eleven 

publications involving 2677 patients found that breast cancer tumours overexpressing 

PCNA were invariably associated with shorter overall survival (OS) and disease free 

survival (DFS) (Stuart-Harris et al., 2008). Concerning its interactions, PCNA has 

multiple protein partners (Moldovan et al., 2007) including PARP1, a known partner of 

CTCF (Frouin et al., 2003; Farrar et al., 2010). Moreover, unpublished data suggested 

that the two proteins (CTCF and PCNA) could colocalise in the MCF7 breast cancer cell 

line warranting confirmation. It is therefore possible that both CTCF and PCNA could 

directly interact in breast tumorigenesis. 
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3.2 Knowledge gap and hypothesis 
 

The exact mechanism(s) through which CTCF is involved in breast cancer is / are not 

known. To determine the mechanism of action of CTCF in breast cancer a study of 

possible protein interacting partners was undertaken. The activity of a protein could be 

derived from its interaction with another protein whose functions are better known (Bolte 

and Cordelieres, 2006). In deriving a hypothesis, it was considered that Ki67 and PCNA 

are known proliferation factors. CTCF could also be a proliferation factor (Docquier et 

al., 2009). Next, CTCF and PCNA are known partners of PARP1. Lastly, CTCF might 

colocalise with PCNA in a breast cancer cell line. This chapter therefore hypothesized 

that CTCF may directly interact with Ki67 and PCNA in breast cancer cells.  

 

3.3 Objectives of this chapter 
 

The main objective of this part of this chapter was to elucidate further the mechanistic 

role of CTCF in breast cancer via a possible interaction with two well-known breast 

cancer proliferation markers, Ki67 and PCNA. The first objective involved co-localisation 

studies of CTCF with Ki67 and PCNA performed via indirect immunofluorescence in a 

panel of five breast cancer cell lines possessing different hormone receptor and invasive 

phenotypes. Following co-localisation, co-immunoprecipitation assays and mass 

spectrometry were performed to determine whether CTCF was physically bound to 

either Ki67 or PCNA in the different breast cancer cell lines studied.  
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3.4 Results: Novel CTCF protein partners in five breast cancer cell lines 
 

3.4.1 Confirmation of estrogen receptor (ER), progesterone receptor (PR) and 
HER2 receptor expression status in breast cancer cell lines 
 

There are numerous breast cancer cell lines now available from the American and 

European cell banks for use in research. In order to better understand the action of 

CTCF in relation to breast cancer, five different breast cancer cell lines were selected to 

reflect differences in the hormone receptor expression profile and invasive potential of 

the disease. To determine whether the hormone receptor (ER and PR) and HER2 

expression profile of the cell lines used in this thesis matched the expected in the 

American Type Culture Collection (ATCC) cell bank, western blot analysis of total 

protein expression of hormone receptors (ER, PR) and HER2 in the five breast cancer 

cell lines was performed. Lysates (50 µg) of MCF7, T47D, BT474, SKBR3 and MDA MB 

231 breast cancer cell lines were generated and resolved by SDS PAGE. The blotted 

membranes were probed sequentially with antibodies to estrogen receptor (ER) α, 

progesterone receptor (PR), human epidermal receptor (HER) 2 and actin, the latter to 

determine protein loading. The results in figure 3.1 show MCF7 cells with moderate ER 

and relatively weak PR expression while being HER2 negative. ER expression in T47D 

cells was weak with very strong PR levels and negative HER2 expression. BT474 cells 

showed weak ER expression, moderate PR and strong HER2 levels. The same strong 

HER2 expression is observed with SKBR3 cells that also demonstrate negative ER and 

PR expression. MDA MB 231 is negative for both hormone receptors and HER2.  Actin 

loading was shown to be uniform confirming equal protein loading across all cell lines. 

All cell lines revealed expected hormone receptor and HER2 expression (American 

Tissue Type Collection). 
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Figure 3.1: Hormone receptor (ER and PR) and HER2 expression profile of five 

breast cancer cell lines. Cell lysates (50µg) were prepared from MCF7, T47D, 

BT474, SKBR3 and MDA MB 231 cells. Protein expression levels of ER, PR, HER2 

and actin were assessed by SDS-PAGE and western blotting. The concentrations of 

primary and secondary antibodies are stated in appendix section 7.2. The Figure 

shows ER and PR expressed as expected in the MCF7, T47D and BT474 cell lines 

while they were negative in SKBR3 and MDA MB 231 cell lines. HER2 expression 

was identified in BT474 and SKBR3 also as expected. Actin loading was uniform 

across all cell lines.   
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3.4.2 Total CTCF protein expression in different breast cancer cell lines  
 

To date there are no comprehensive comparative studies looking at the expression of 

CTCF in breast cancer cell lines that possess different hormone receptor / HER2 and 

invasive phenotypes. Cell lysates (50µg) of MCF7, T47D, BT474, SKBR3 and MDA MB 

231 breast cancer cell lines and of a normal epithelial breast cell line, LDM 226 (a kind 

gift from Prof Klenova, Essex University), were therefore generated to assess total 

CTCF protein expression. The lysates were resolved by SDS PAGE and blotted 

membranes probed with three commercially available antibodies to CTCF and one anti-

CTCF [N terminal] antibody (a kind gift, generated from Prof Klenova’s laboratory, Essex 

University). These antibodies to CTCF were chosen as CTCF is thought to exist in two 

main isoforms (180kDa and 130kDa) (Docquier et al., 2009) and data not published 

(personal communication with F. Docquier) suggested that the anti CTCF (N terminal) 

antibody might distinguish between the two isoforms. The results shown in figure 3.2A 

and 3.2B revealed near uniform CTCF protein expression (somewhat lower in SKBR3 

and MDA MB 231 cell lines), detected with the monoclonal anti CTCF antibodies 

(Millipore and BD Biosciences), at the manufacturers’ published molecular weight of 

140kDa. The antibody from BD Biosciences also revealed faint protein bands between 

100kDa and 130kDa in the ER positive cell lines that could be artefactual. The 

polyclonal antibodies (N-terminal and Abcam, figures 3.2D and 3.2E) identified two 

CTCF isoforms. These were the ~160kDa present in all cell lines though expressed less 

in BT474 and SKBR3 cells and the ~130kDa which has variable expression in the 

hormone receptor positive cell lines but no expression in the hormone receptor negative 

and LDM 226 cell lines. Taken together, the disparate isoforms identified pointed 

towards the ability of polyclonal anti CTCF antibodies to detect more CTCF isoforms and 

confirmed the findings of Zhang et al. (2004) who suggested that there were multiple 

CTCF isoforms in HeLa cells whose expression was dependent on the phase of the cell 

cycle. The results in figure 3.2 in addition suggested that CTCF isoform expression 
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might also be cell type-dependent seeing that the lower molecular weight isoform 

detected by the polyclonal antibodies were not present in SKBR3, MDA MB 231 and 

LDM226 cells. Interestingly, there was no protein expression band at or above 170kDa 

in all the cell lines. There was also almost no CTCF expression in the normal epithelial 

cell line (LDM226) suggesting that CTCF expression is more preponderant in breast 

cancer cells compared to normal breast cells. Furthermore, the finding of a strongly 

expressed higher molecular weight CTCF isoform (~160kDa) in MCF7 cells is at 

variance with report of Docquier et al. (2009) who suggested that MCF7 cells 

predominantly expressed the 130kDa isoform. On account of its ability to detect CTCF 

protein (~140kDa) across the cell lines almost uniformly, the anti-CTCF antibody from 

BD Biosciences was used in all aspects of western blotting in this thesis. 
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3.4.3 Differential expression of proliferation markers, Ki67 and PCNA, in a panel of 
different breast cancer cell lines 
 

The proliferation status of a cell can be assessed by the expression level of proliferation 

markers such as Ki67 (Urruticoechea et al., 2005). Ki67 protein expression is often 

assessed by immunohistochemistry (IHC) but there is limited data regarding its total 

expression using western blotting (WB) and certainly no information on its differential 

expression in breast cancer cell lines via IHC or western blotting. PCNA is important in 

DNA transcription and cellular proliferation where it functions as a DNA clamp 

(Moldovan et al., 2007). While it is clear that different breast cancer types could have 

different proliferation rates, it is not known whether PCNA expression varies among 

these cell lines and if that expression has a temporal relationship to CTCF and / or Ki67 

expression. As with Ki67, there is no information on the differential expression of PCNA 

in breast cancer cell lines via western blotting. Experiments were therefore performed to 

determine Ki67 and PCNA expression on western blotting in a panel of five breast 

cancer cell lines and a normal breast epithelial cell line. Since the anti-Ki67 antibodies 

available are mostly optimised for IHC, three different anti Ki67 antibodies were used to 

determine Ki67 expression via western blotting in this thesis. Of the three, only the Sp6 

antibody epitope is characterised and is located within the C terminus of the Ki67 protein 

(anti–Ki67 antibody [Sp6]). One commercial antibody to PCNA, which has been well 

optimised for PCNA detection, was used to determine PCNA expression. The results of 

Ki67 protein expression revealed relatively similar protein expression across the breast 

cancer cell lines using the antibody from Vector (figure 3.3A). The Abcam anti Ki67 

antibody detected moderate expression levels in MCF7 and BT474 cells (figure 3.3B). 

This expression is stronger in MDA MB 231 cells and even more so in the LDM 226 cell 

line suggesting a higher cell proliferation rate. The expression in T47D and SKBR3 cell 

lines is minimal compared to the other cell lines suggesting that the epitope to this 

antibody may be masked. Also shown in figure 3.3B are two protein bands running 

http://jco.ascopubs.org/search?author1=Ander+Urruticoechea&sortspec=date&submit=Submit
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closely together which might represent the better-known 342kDa and 395kDa isoforms 

of Ki67 protein. The Sp6 antibody detected a similar pattern of Ki67 expression to the 

Abcam antibody where low expression levels were observed in the T47D and SKBR3 

cell lines (figure 3.3C). The LDM 226 cell line, immortalised from normal breast epithelial 

cells, is expected to have a relatively lower proliferation rate compared with the breast 

cancer cell lines and therefore lower Ki67 expression (Gerdes et al., 1991). It was 

surprising to observe that Ki67 expression level in this cell line was greater than in the 

cancer cell lines. For PCNA, the results in figure 3.3E showed that it is strongly 

expressed in all cell lines but to a lesser level in MDA MB 231 and LDM 226 cells. 

Looking at figure 3.3 as a whole, there appeared to be a generally higher Ki67 

expression together with a lower PCNA expression in the MDA MB 231 and LDM 226 

cell lines. It is not clear whether there is a mutual association between Ki67 and PCNA 

proteins in these two cell lines. 
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Figure 3.3: Expression of proliferation markers Ki67 and PCNA in a panel of 

five different breast cancer cell lines and one normal breast epithelial cell 

line. 50µg cell lysate of MCF7, T47D, BT474, SKBR3, MDA MB 231 breast cancer 

cells and the normal LDM 226 epithelial cell line cells were reduced on a 6.5% (for 

Ki67) and 8% (for PCNA) acrylamide gel for SDS PAGE and western blotting.  

Shown are uniform Ki67 expression bands (lower in T47D cells) detected with the 

monoclonal anti-Ki67 antibody from Vector but variable Ki67 expression across cell 

lines with the polyclonal antibodies from Abcam and Enzo. 
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3.4.4 CTCF localisation in relation to breast cancer phenotype and anti-CTCF 
antibody type  
 

Localisation and colocalisation studies are useful in hinting at the function of a protein 

through its cellular mapping with other proteins of known function (Bolte and 

Cordelieres, 2006). The nuclear location of CTCF in HeLa cells, breast cancer tissue 

and MCF7 cells is known (Zhang et al., 2004; Rakha et al., 2004; Torrano et al., 2006) 

but it is not clear whether that localisation varies with breast cancer phenotype or the 

anti-CTCF antibody used to detect the protein. To establish whether there are any 

differences in CTCF localisation in breast cancer cell lines possessing different HR, 

HER2 and invasive profiles, the breast cancer cell lines used in this study underwent 

single immunofluorescence staining using different anti CTCF antibodies. The 

antibodies were the commercial product from BD Biosciences (also used in the western 

blotting of figure 3.2B) and N-terminal antibody (a kind gift from Prof Klenova of Essex 

University). The commercial antibody is marketed as detecting one CTCF isoform 

(140kDa), however as shown in figure 3.2B it may detect more isoforms by western blot. 

The in-house antibody is believed to detect two CTCF isoforms (180kDa and 130kDa) 

on western blotting (Docquier et al., 2009). The primary antibodies were counterstained 

with an appropriate secondary antibody conjugated to TRITC (red) or FITC (green). 

Immunostaining with the monoclonal (BD Biosciences) anti CTCF antibody revealed a 

strong and predominantly nucleolar CTCF expression across all cell lines (figure 3.4A). 

The N-terminal polyclonal antibody showed a more diffuse, speckled nucleoplasmic 

expression and also some nucleolar expression across all cell lines (figure 3.4B). The 

MDA MB 231 cells revealed a completely diffuse nucleoplasmic expression with the 

polyclonal antibody (figure 3.4B, MDA MB 231). The diffuse nucleoplasmic expression of 

CTCF is supported by previous work in HeLa cells, breast cancer tissue and MCF7 cells 

(Zhang et al., 2004; Rakha et al., 2004; Torrano et al., 2006). It is as yet not possible to 

confirm whether the nucleoplasmic CTCF distribution detected in figure 3.4 (A and B) is 
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from the 180kDa isoform as there is no specific antibody (commercial or in-house) able 

to identify the 180kDa isoform in immunofluorescence assays. Moreover, the N terminal 

anti-CTCF antibody went out of production and was not used in further experiments in 

this thesis. Taken together it would appear that different antibodies might detect CTCF 

to different extent in nucleoplasmic and nucleolar locations. 
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Figure 3.4. Single indirect immunofluorescence staining of five breast cancer 

cell lines with CTCF primary antibodies. (A) showing strong nucleolar localisation 

of CTCF protein in all cell lines, detected with the monoclonal antibody from BD 

Biosciences; and (B) indicating diffuse nucleoplasmic and nucleolar CTCF expression 

with the polyclonal anti-CTCF antibody.  
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          Figure 3.4 continued.  

 

 

CTCF 
polyclonal 

(N terminal) 

MCF7 

DAPI 

T47D 

BT474 

SKBR3 

MDA MB 
231 

B 



93 
 

3.4.5 Ki67 protein localisation in a panel of five breast cancer cell lines using two 
different anti Ki67 antibodies 
 

To confirm the localisation of Ki67 protein and determine possible differences in 

expression profile in a panel of five breast cancer cell lines with varying hormone 

receptor and invasive potential, single indirect immunofluorescence studies were 

performed. The experiment was carried out to also assess staining patterns of Ki67 

protein using anti Ki67 antibodies derived from different animal species, as these 

antibodies would be used in further co-immunofluorescence studies. The five breast 

cancer cell lines were incubated with anti-Ki67 antibody (Vector VP K-452 [mouse 

monoclonal] and Abcam 833 [rabbit polyclonal]) at 1:200 dilutions respectively. They 

were counterstained with an appropriate secondary antibody conjugated to TRITC (red) 

or FITC (green). As shown in figure 3.5 (A – Ki67 monoclonal; and B – Ki67 polyclonal), 

there was a distinct nucleolar Ki67 protein expression with both the monoclonal and 

polyclonal antibodies and in all cell lines. In addition, MCF7 cells showed a perinucleolar 

(with the polyclonal antibody) and a punctate nucleoplasmic (with both antibodies) Ki67 

expression profile. The nucleolar and nucleoplasmic distribution of Ki67 protein is 

supported by previous work (Bullwinkel et al., 2006). The percentage Ki67 expression 

across all cell lines is shown in table 3.1. The two antibodies revealed markedly 

disparate Ki67 expression rates for T47D and BT474 cells. The relative expression 

percentages however are in general agreement with the western blot results in figures 

3.3 A-C where Ki67 expression was shown to be variable across the cell lines. This 

would suggest that Ki67 expression was high in MCF7 cells (at variance with table 1.2) 

but low in both T47D (in agreement with table 1.2) and SKBR3 cell lines (at variance 

with table 1.2). 
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Figure 3.5. Single immunofluorescence staining of five breast cancer cell lines 

with Ki67 primary antibodies. Showing (A and B) strong nucleolar expression of 

Ki67 with both monoclonal and polyclonal anti Ki67 antibodies in all cell lines. MCF7 

cells also showed nucleoplasmic Ki67 expression with the monoclonal antibody from 

Vector (A). 
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        Figure 3.5 contd 
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Breast cancer 

classification 

Hormone 
receptor / HER2 

expression 

Breast 
cancer 

cell line 

Ki67 expression level 

From fig. 3.5 A and B 

(Immunofluorescence) 

Monoclonal    Polyclonal 

Luminal A ER+ PR+ HER2- MCF7 

 

T47D 

  80%                   100% 

 

  43%                     90% 

Luminal B ER+ PR+ HER2+ BT474   76%                     38% 

HER2 ER- PR- HER2+ SKBR3   75%                      50% 

Claudin low ER- PR- HER2- MDA MB 231   90%                      75% 

Table 3.1. Relative expression levels of Ki67 protein in five breast cancer cell 

lines. Five breast cancer cell lines were subjected to single immunofluorescence 

using two different anti Ki67 antibodies. The percentage Ki67 expression was 

calculated by counting the number of cell nuclei that were stained with Ki67 relative 

to the total number of cells identified by DAPI in each field. The two anti Ki67 

antibodies showed differential staining most evident for T47D and BT474 cell lines. 

The average percentages calculated from three different experiments are shown. 
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3.4.6 PCNA protein localisation localisation in breast cancer cell lines  
 

The proliferation marker PCNA functions as a DNA clamp and is involved in DNA 

transcription and DNA repair mechanisms (Moldovan et al., 2007). It has been shown to 

reside in the nucleus by immunofluorescence in cells of the CV-1 cell line, a monkey 

kidney cell line and has different subnuclear localisation in transformed human amnion 

cells depending on the cell cycle stage (Celis and Celis, 1985; Waseem and Lane, 

1990). To determine the pattern of PCNA expression in breast cancer cells with different 

invasive potential / hormone receptor status, single indirect immunofluorescence (IF) 

was performed. Cells were stained with an anti PCNA primary antibody and 

counterstained with secondary antibody conjugated to TRITC (red). As shown in figure 

3.6, PCNA protein expression was diffusely nucleoplasmic in all cell lines. It also 

appeared to be nucleolar in the weakly invasive, hormone receptor positive MCF7 and 

T47D breast cancer cells as indicated by arrows in figure 3.6. These findings in breast 

cancer cell lines are in agreement with previous reports in other cell lines (Celis and 

Celis, 1985; Waseem and Lane, 1990). A summary of localisation patterns for CTCF, 

Ki67 and PCNA in all the breast cancer cell lines is shown in table 3.2. 
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Figure 3.6. Single immunofluorescence staining of five breast cancer 

cell lines with PCNA primary antibody. Shown is the diffuse 

nucleoplasmic expression of PCNA in all cells lines. Also indicated by 

arrows is the nucleolar PCNA expression in the MCF7 and T47D cells. 
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Aggressive  

CTCF 
monoclonal 
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nucleoplas

mic 

Nucleolar 

+Minimally 
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Nucleolar 

+Minimally 
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+Minimally 

nucleoplas

mic 

CTCF  

N terminal 
polyclonal  

Nucleoplasmic 
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mic 
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Nucleoplasmic 
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Nucleoplasmic 

+minimally 
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mic  

Ki67 
monoclonal 

Nucleolar + 

nucleoplasmic 

Nucleolar  Nucleolar  Nucleolar  Nucleolar  

Ki67 
polyclonal 

Nucleolar 

(perinucleolar 

Nucleolar  Nucleolar  Nucleolar  Nucleolar  

PCNA 
monoclonal 

Nucleoplasmic 

+ Nucleolar  

Nucleoplas

mic + 

Nucleolar  

Nucleoplasmic  Nucleoplasmic  Nucleoplas

mic  

Table 3.2. Tabular annotation of expression patterns of CTCF, Ki67 and PCNA 

proteins by single immunofluorescence in breast cancer cell lines. Five breast cancer 

cell lines (MCF7, T47D, BT474, SKBR3 and MDA MB 231) possessing different hormone 

phenotype and invasive potential were subjected to single immunofluorescence using anti-

CTCF, anti-Ki67 and anti-PCNA primary antibodies. The subnuclear distribution of each 

protein in each cell line is shown. 
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3.4.7 Assessment of immunofluorescence bleed through  
 

Secondary antibodies display spectral overlaps and can bleed through into a different 

channel on microscopy. Bleed through could confound results obtained in two-colour co-

localisation experiments. In order to confirm the absence of significant bleed through 

from respective fluorophore-conjugated secondary antibodies, single indirect 

immunofluorescence staining (IF) of MCF7 was performed. MCF7 cells were stained 

with mouse IgG1 monoclonal antibody to CTCF (BD Biosciences, 0.125 µg/ml, A), the 

rabbit polyclonal antibody to Ki67 (Abcam 833, 0.025 µg/µl, B), mouse monoclonal 

antibody to Ki67 (Vector, VP K-452, 1:100 dilution, C) and the mouse monoclonal 

antibody to PCNA (Abcam 29, 0.25µg/µl, D). They were respectively counterstained with 

goat anti-mouse secondary IgG1-specific antibody conjugated to FITC at (Southern 

Biotech, 5µg/µl, green colour), goat anti-rabbit secondary antibody conjugated to FITC 

(Abcam 6717, 5µg/µl, green colour), goat anti-mouse secondary antibody conjugated to 

TRITC (Southern Biotech, 5µg/µl, red colour) and goat anti-mouse IgG2a-specific 

secondary antibody conjugated to TRITC (Southern Biotech, 5µg/µl, red colour). DAPI 

was used to identify the nuclei at a concentration of 5µg/ml (blue colour). Cells were 

inspected via both red and green channels. As shown in figure 3.7A, B and D, the 

punctate, discrete, nucleolar or nucleoplasmic expression of proteins were identified 

only when viewed through the colour channel corresponding to the correct secondary 

antibody - fluorophore conjugate. There is however some bleedthrough for figure 3.7C 

wherein Ki67 tagged with TRITC secondary (red) was also visualised though minimally 

in the green channel. Given the low to no bleedthrough, immunofluorescence 

experiments demonstrated sufficient optimisation and results could be interpreted 

correctly. 
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Figure 3.7. Assessment of fluorophore-conjugated secondary antibody 

bleedthrough. Showing no significant bleedthrough with anti CTCF antibody (A), 

polyclonal anti Ki67 antibody from Abcam (B), monoclonal anti Ki67 antibody from Vector 

(C) and the monoclonal anti PCNA antibody (D). There is minimal bleedthrough with the 

monoclonal anti Ki67 antibody from Vector (C).  
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3.4.8 CTCF protein co-localisation with Ki67 protein in breast cancer cell lines  
 

The presence of proteins in the same vicinity (colocalisation) in a cell compartment may 

suggest a functional link (Leclerq and Lacroix, 2004). To determine whether there was 

colocalisation of CTCF and Ki67 proteins in a panel of five breast cancer cell lines and 

to confirm the previously suggested colocalisation of these proteins (F. Docquier, 

personal communication), double indirect immunofluorescence staining of cells was 

performed. CTCF protein was identified with the mouse monoclonal anti-CTCF antibody 

(0.125 µg/ml) and goat anti-mouse secondary antibody Ig H+L conjugated to TRITC 

(Southern Biotech, 5µg/µl, red colour). Ki67 protein was detected with the rabbit 

polyclonal anti-Ki67 antibody (Abcam 833, 0.025 µg/µl) and goat anti-rabbit secondary 

antibody conjugated to FITC (Abcam 6717, 5µg/µl, green colour). DAPI (5μg/ml) was 

used to stain and identify the nuclei (blue colour). For control, cells were processed 

without incubation with primary antibody in order to rule out non-specific staining due to 

secondary antibodies. The results, seen in figure 3.8, revealed nucleolar colocalisation 

of CTCF and Ki67 proteins across all cell lines evidenced by the yellow colour change in 

the merge images (figures 3.8, 3, merge, arrowed). Some quiescent cells (identified by 

the absence of Ki67 expression) can be identified in BT474 and SKBR3 cells (figure 3.8 

BT474C2; 3.8 SKBR3, D2). As these cells expressed CTCF (figures 3.8, BT474, C1; 

3.8, SKBR3, D1) it might suggest that CTCF was significantly expressed in the 

quiescent state (G0 phase of the cell cycle) in these cell lines. This pattern of expression 

is not observed in all the cell lines studied and it could be speculated that it was a cell 

type – specific effect. Though these experiments were not designed to assess 

cytoplasmic expression of CTCF, the MDA MB 231 cells revealed no expression of 

CTCF protein in their well-defined cytoplasmic regions (figure 3.8, MDA MB 231). This 

finding agrees with that of Zhang et al. (2004) and Torrano et al. (2006) but differs from 

the cytoplasmic expression of CTCF in HeLa cells observed by Rakha et al. (2004) and 

supports the need for further investigation.  
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Figure 3.8.  A – E. Double immunofluorescence of CTCF protein  with Ki67 protein 

in a panel of five breast cancer cell lines. Showing mainly nucleolar CTCF (1) and 

Ki67 (2) protein expression. Colocalisation of CTCF and Ki67 proteins is indicated by an 

arrow in the merge images (3) across all cell lines. 
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Figure 3.8 continued 
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Figure 3.8 continued 
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3.4.9 CTCF protein colocalisation with PCNA protein in breast cancer cell lines 
with different hormone receptor / HER2 and invasive properties 
 

To confirm previously suggested colocation of CTCF and PCNA (in MCF7 cells) and to 

determine this colocalisation in other breast cancer cell lines with different HR / HER2 

and invasive potential, double indirect immunofluorescence staining was performed with 

anti CTCF and anti PCNA antibodies. CTCF protein was identified with the mouse 

monoclonal anti-CTCF antibody (BD Biosciences, 0.125 µg/ml) and goat anti-mouse 

IgG1-specific secondary antibody conjugated to FITC (Southern Biotech, 5 µg/µl, green 

colour). PCNA protein was detected with the mouse monoclonal antibody (Abcam 29, 

0.25µg/µl) and goat anti-mouse IgG2a-specific secondary antibody conjugated to TRITC 

(Soutern Biochem, 5 μg/ml, red colour). DAPI (5μg/ml) was used to stain and identify the 

nuclei (blue colour). For control, cells were processed without incubation with primary 

antibody in order to rule out non-specific binding of secondary antibodies. CTCF 

expression was shown to be primarily nucleolar in all cell lines (figure 3.9, A –E, 1). 

PCNA expression appeared to be diffusely nucleoplasmic across all cell lines but was 

also nucleolar in MCF7 and T47D cells (figure 3.9, A – E, 2). Nucleolar colocalisation of 

CTCF and PCNA proteins was demonstrated in the minimally invasive, hormone 

receptor positive MCF7 and T47D cell lines (figures 3.9 A-3 and 3.9 B-3, merge, 

arrowed) but not in BT474, SKBR3 and MDA MB 231 cell lines. Though CTCF 

expression in MCF7 cells was also nucleoplasmic, there was no colocalisation with 

nucleoplasmic PCNA protein whose expression in that compartment was extensive. The 

colocalisation patterns of CTCF with Ki67 and PCNA is summarised in table 3.3. 
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A. MCF7 (ER+ / PR+ / HER2-)        
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3 

PCNA   CTCF   Merge   
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4    5 

Figure 3.9 A - E. Double indirect immunofluorescence of CTCF with PCNA in a 

panel of five breast cancer cell lines. Demonstrated is the predominant nucleolar 

expression of CTCF in all cell lines (CTCF panel, 1). Extensive nucleoplasmic expression 

of PCNA is shown in all cell lines (PCNA panel, 2). In addition, A (MCF7) and B (T47D), 

revealed nucleolar PCNA presence. Colocalisation of CTCF and PCNA proteins is 

indicated by an arrow in the merge images (3) in A and B. 
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       Figure 3.9 continued 
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       Figure 3.9 continued 

 

    D. SKBR3 (ER-/PR-/HER2+)       

   E. MDA-MB-231 (ER-/PR-/HER2-)       

 

DAPI 

PCNA 

  

CTCF  

  

Secondary only 

Merge 
1 

  

3 2 

  

4 

  

5 

  

1 2 3 

4 

  

5 

  

PCNA  Merge  CTCF   

  

Secondary only  

  

DAPI  

  



110 
 

 

 

 

 

 

 

 

 

 

 

 

   MCF7 

(ER+/PR+) 
HER2- 

Non-invasive 

T47D 

(ER+/PR+) 
HER2- 

Non-invasive 

BT474 

(ER+/PR+) 
HER2+ 

Moderately 

invasive 

SkBr3 

(ER-/PR-) 
HER2+ 

Moderately 

Invasive 

MDA MB 231 

(ER- / PR-) 
HER2- 

Aggressive 

CTCF 
/ 

Ki67 

CTCF- nucleolar 

Ki67- nucleolar 

Colocalisation 

CTCF- nucleolar 

Ki67- nucleolar 

Colocalisation 

CTCF- nucleolar 

Ki67  - nucleolar 

Colocalisation 

CTCF- nucleolar 

Ki67- nucleolar 

Colocalisation 

CTCF- nucleolar 

 Ki67-nucleolar 

Colocalisation 

CTCF 
/ 

PCNA 

CTCF- nucleolar 

PCNA- 

nucleoplasmic, 

nucleolar 

Colocalisation 

CTCF - 

nucleolar 

PCNA -

nucleoplasmic,  

nucleolar 

Colocalisation 

CTCF- nucleolar 

PCNA- 

nucleoplasmic, 

diffuse 

No 
colocalisation 

CTCF- nucleolar 

PCNA- 

nucleoplasmic 

No 
colocalisation 

CTCF- nucleolar 

PCNA- 

nucleoplasmic 

No 
colocalisation 

Table 3.3. Summary of colocalisation of CTCF with Ki67 and PCNA in a panel of five 

breast cancer cell lines. Tabulated summary of colocalisation patterns between CTCF and 

Ki67 / PCNA proteins in a panel of five breast cancer cell lines. CTCF and Ki67 colocalised 

in the nucleolus of all five breast cancer cell lines. CTCF and PCNA colocalised only in the 

hormone receptor positive, weakly invasive MCF7 and T47D breast cancer cell lines. 
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3.4.10 CTCF immunoprecipitation (IP) and coimmunoprecipitation (co-IP) with 
Ki67 and PCNA in MCF7 breast cancer cells using a high stringency IP buffer 
 

Protein colocalisation suggests that colocalising proteins could be functionally linked 

(Leclerq and Lacroix, 2004). In order to assess whether colocalising proteins observed 

in Figures 3.8 and 3.9 were physically bound in a functional complex, CTCF was 

immunoprecipitated from MCF7 cells and then probed for Ki67 and PCNA co-

immunoprecipitation. A successful protein immunoprecipitation experiment is critically 

dependent on the IP lysis buffer solution (Klenova et al., 2002). As CTCF 

immunoprecipitation experiments in breast cancer cells have not previously been 

optimised, a high stringency IP lysis buffer was therefore first used to perform CTCF IP 

experiments. CTCF immunoprecipitation from MCF7 cell lysate was performed using 

20µl (20µg – 60µg) of anti CTCF antibody (Millipore, monoclonal) and a high stringency 

buffer (buffer 1) containing Tween-20 as detergent and a high salt concentration (see 

appendix section 8.2 for composition). An equivalent concentration of IgG antibody was 

used for IP in MCF7 cells and served as non-specific IP control. To determine the 

efficiency of the immunoprecipitation process, silver staining of an SDS PAGE resolved 

gel was performed (figure 3.10A). The silver stained gel revealed a smear of protein 

bands in the input lane as expected in a complex mixture of proteins in a cell lysate 

(figure 3.10A). The precleared lysate lane revealed a less dense smear of protein 

suggesting clearing of nonspecific protein binding from the input by the beads. There are 

distinct protein bands displayed in the eluted CTCF IP lane that are quite different from 

the control eluted IgG IP lane.  

To confirm the specificity of the interaction, two CTCF antibodies raised from different 

species recognising different epitopes were used to assess CTCF IP. The blot of the 

CTCF IP was therefore probed with the rabbit monoclonal antibody to CTCF (Millipore, 

1:5000 dilution) and the mouse monoclonal antibody to CTCF (0.5 µg/ml; BD 
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Biosciences). As shown in figure 3.10B, both antibodies detected the 

immunoprecipitated (IPed) CTCF protein though to varying extent. 

The blot of the CTCF IP reaction shown in figure 3.10C (top panel), revealed a strong 

protein band in the input. This was obtained with 5% (20µl) of total cell lysate volume 

(400µl). There was a decrease in this expression level in the precleared lysate lane in 

agreement with Figure 3.11A (~5.7% of lysate volume used: 20µl of 350µl). It may not 

be unexpected to observe a relatively higher protein level in the IP reaction supernatant 

lane as ~7% volume (20µl of 300µl IP reaction supernatant lysate volume) was loaded 

for SDS PAGE. In the CTCF IP elution lane a strong band of CTCF is shown to be 

successfully IPed, an expression almost double that of the input. About 16.6% of the IP 

eluate (10µl of 60µl total elution volume) was used for western blot analysis.  

On assessing for coimmunoprecipitation by probing the blotted CTCF IP membrane 

sequentially with mouse monoclonal antibody to Ki67 (Vector, V K452, 1:1000 dilution) 

and mouse monoclonal antibody to PCNA (Ab29, 1:3000 dilution), the pattern of Ki67 

and PCNA protein expression in the control lanes was noted to be similar to CTCF 

expression (figure 3.10C, middle and bottom panels). There was however no co-IP with 

Ki67 or PCNA demonstrated as no protein expression band was observed in the ‘eluted 

CTCF IP’ lane (figure 3.10C, middle and bottom panels). The IgG IP negative control 

lane as expected demonstrated no protein bands.  
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3.4.11 CTCF co-immunoprecipitation with Ki67, PCNA and known protein partners 
(RNA pol II and PARP 1) in MCF7 breast cancer cells using a medium stringency 
buffer. 
 

The lack of CTCF coIP with Ki67 and PCNA shown in figure 3.10 might be due to the 

high stringency of the IP lysis buffer and / or a non-optimal experimental process 

(including number of washes in the IP process). To further determine whether Ki67 / 

PCNA could co-IP with CTCF IP and to assess the adequacy of the experimental set up, 

a medium strength IP lysis buffer with less stringency was used and further CTCF co-IP 

with known partners, RNA pol II and PARP 1 also performed (Chernukhin et al., 2007; 

Farrar et al., 2010). CTCF protein was immunoprecipitated in MCF7 cell lysate using 

20µl (20µg – 60µg) of CTCF (Millipore) antibody and a medium stringency buffer (buffer 

2) containing NP-40 as detergent and a medium salt concentration (see appendix 8.2 for 

composition). An equivalent concentration of irrelevant IgG antibody was used to 

perform IP on MCF7 cells and served as negative control. As shown in figure 3.11A, 

CTCF protein expression decreased progressively as expected in the control lanes and 

is successfully IPed in the eluted IP beads lane. The IgG control was negative. To 

assess coimmunoprecipitation, the blotted membrane was serially probed with mouse 

monoclonal antibody to Ki67 (Vector, VP K452, 1:1000 dilution, B), mouse monoclonal 

antibody to PCNA (Ab29, 0.3 µg/µl, C), rabbit polyclonal antibody to RNA pol II (sc 899, 

0.2 µg/ml, D), and mouse monoclonal antibody to PARP 1 (Enzo, 1:2000 dilution, E). 

There was no co-IP demonstrated with Ki67 and PCNA (figures 3.11 B and C). There 

was also no co-IP with known partners RNA pol II and PARP1 demonstrated (figure 3.11 

D and E).  

IP experiments performed with two anti Ki67 antibodies (Vector VP K452 and Abcam 

833) using the same buffer composition and in MCF7 cell lysates did not demonstrate 

Ki67 immunoprecipitation (data not shown). 
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Figure 3.11. CTCF co-IP with Ki67, PCNA, RNA pol II, and PARP 1 in 

MCF7 breast cancer cells using a medium stringency IP buffer. Shown in 

the Figure is immunoprecipitated CTCF in the ‘CTCF IP elution lane (A). 

While Ki67, PCNA, RNA pol II and PARP1 were all detected in the control 

lanes, there was no coimmunoprecipitation demonstrated in the elution lane 

as no protein band bands were observed in that lane (B - E).  
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3.4.12. CTCF immunoprecipitation and coprecipitation with Ki67, PCNA and 
known protein partners (RNA pol II and PARP 1) in MCF7 breast cancer cells 
using a low stringency buffer.    
 

The continuing inability to co-IP Ki67, PCNA and known CTCF partners, RNA pol II and 

PARP1 shown in Figure 3.11, may suggest that the IP process itself was still not fully 

optimised. To increase the ability of CTCF to pull down its protein partners, further 

experiments were performed using a low stringency buffer. This buffer, while denaturing 

and able to release nuclear protein would not disrupt native protein conformation and 

would have minimal denaturing effect on antibody binding sites and therefore better 

preserve CTCF native interactions. CTCF protein was therefore immunoprecipitated in 

MCF7 cell lysates using 20µl (20 µg – 60µg) of CTCF (Millipore) antibody and a low 

stringency IP lysis buffer containing NP-40 as detergent and a low salt concentration 

(buffer 3). An equivalent concentration of IgG antibody was used for IP in MCF7 cells 

and served as negative control. As shown in figure 3.12 A, B and C, CTCF was 

successfully IPed with mouse monoclonal antibody to CTCF (BD Biosciences, 0.5 µg/ml, 

A) but there was no co-IP demonstrated on probing the blot membrane with mouse 

monoclonal antibody to Ki67 (Vector, V P K452, 1:1000 dilution, B) and mouse 

monoclonal antibody to PCNA (Ab29, 0.3 µg/µl, C). Further assessment for 

coimmunoprecipitation with the rabbit polyclonal antibody to RNA pol II (sc 899, 0.2 

µg/ml) however, demonstrated a protein band coprecipitated in the IP elution lane as 

shown in figure 3.12 D. This band of protein is noted to be heavier than the bands 

detected in the input, precleared and IP reaction supernatant control lanes. It is quite 

possible that on account of hyperphosphorylation, complexing of CTCF with a pre-

peptide form of RNA pol II or indeed other post translational modifications, the size of 

RNA pol II could be somewhat different as shown in this result. To determine whether 

this result was spurious or not, reverse IP was performed by immunoprecipitating RNA 

pol II protein in MCF7 cell lysates using 20µg of RNA pol II antibody. Though RNA pol II 

was successfully IPed, there was no co-IP demonstrated with CTCF (data not shown). 
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With regards to the results in Figure 3.12, further probing of the IP blot membrane with 

mouse monoclonal antibody to PARP 1 (Enzo, 1:2000 dilution, E) did not demonstrate 

coimmunoprecipitation with PARP1 (figure 3.12 E).  

The anti Ki67 antibodies (Vector VP K452 and Abcam 833) did not IP Ki67 protein using 

the same buffer composition in MCF7 cells (data not shown). On account of the fact that 

this low stringency buffer was successful in immunoprecipitating CTCF in MCF7 cells 

and having a lower tendency to disrupt native protein interactions, all other subsequent 

IPs in this thesis were performed with IP buffer 3.  
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Figure 3.12. CTCF IP and co-IP with Ki67 / PCNA and known protein partners 

RNA pol II / PARP 1, in MCF7 breast cancer cells using a low stringency buffer.  

Immunoprecipitated CTCF is shown in the CTCF IP elution lane in (A), but no 

coimmunoprecipitated protein bands are demonstrated in that lane for Ki67, PCNA 

and PARP1. A protein band heavier that the band in control lanes is shown in the 

CTCF elution lane for the RNA pol II (D) panel. 
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3.4.13. PCNA immunoprecipitation and coprecipitation with CTCF and Ki67 in the 
MCF7 breast cancer cell line using a low stringency IP lysis buffer.  
 

Proteins differ in their ability to immunoprecipitate out of a complex lysate (Klenova et 

al., 2002). Empirical testing is needed to verify the response of a particular protein to the 

immunoprecipitation process. While CTCF coIP with PCNA was not demonstrated in the 

previous Figures, it is possible that PCNA might exist in complexes more amenable to 

co-immunoprecipitation than CTCF.  To further investigate whether CTCF and PCNA 

proteins are physically bound in a complex in the cell nucleus, PCNA protein 

immunoprecipitation and coprecipitation with CTCF and Ki67 was performed. PCNA 

protein was immunoprecipitated from MCF7 cell lysates using 20µg of anti PCNA 

antibody (Abcam 29) and the low stringency IP lysis (buffer 3). An equivalent 

concentration of IgG antibody was used to IP MCF7 cells and served as negative 

control. The results shown in figure 3.13 (PCNA panel) revealed that PCNA was 

successfully IPed as demonstrated in the elution steps. On assessing for 

coimmunoprecipitation by probing the IP blot membrane with mouse anti CTCF (BD 

Biosciences; 0.5 µg/ml) and mouse monoclonal antibody to Ki67 (Vector VP-K452, 

1:1000 dilution, Ki67), no coimmunoprecipitation with these proteins was demonstrated 

(figure 3.13, CTCF and Ki67 panels).  
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Figure 3.13. PCNA immunoprecipitation and coprecipitation with CTCF / Ki67 in 

MCF7 breast cancer cells using a low stringency IP lysis buffer. PCNA protein was 

immunoprecipitated in MCF7 cell extracts using 20μg of mouse monoclonal antibody to 

PCNA (Abcam 29) and a low stringency buffer (Buffer 3). The immunoprecipitated 

PCNA is shown as a protein band in the ‘PCNA IP elution lanes 1 and 2.’ There was no 

PCNA coimmunoprecipitation demonstrated with CTCF and Ki67. 
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3.4.14 Immunoprecipitation of CTCF and coprecipitation with Ki67 / PCNA using a 
cross-linker and a magnetic commercial kit 
In order to ensure that the lack of CTCF co-IP with Ki67 / PCNA was not due to 

technical issues (including multiple washes and centrifugation) associated with the 

traditional immunoprecipitation process, further CTCF IP and coIP were performed using 

a commercial co-IP kit incorporating magnetic beads and an antibody – bead cross 

linker (Crosslink magnetic IP / co-IP kit, Pierce). The need for centrifugation was 

eliminated by the use of a magnet to pull the magnetic beads to the side of the tube. 

Also the addition of a cross linker eliminated possible antibody fragment interference. 

CTCF (Millipore) antibody (20µl = 20 µg – 60µg) was covalently bound to magnetic 

beads with disuccinimidyl suberoside (DSS) and the IP process performed first with the 

IP lysis buffer supplied with the magnetic kit and then later with the low stringency IP 

lysis (buffer 3) in MCF7 lysates. An equivalent concentration of IgG antibody was used 

to IP IgG from MCF7 cells and served as negative control experiment.  CTCF IP 

performed with the lysis buffer supplied with the magnetic kit did not detect CTCF in the 

input and other control lanes (data not shown). On using the low stringency IP lysis 

(buffer 3) and the rest of the magnetic kit, the input and flowthrough (IP reaction 

supernatant) showed roughly equivalent levels of CTCF protein as shown in figure 3.14. 

CTCF was not IPed as there were no protein bands detectable in both elution lanes 

(figure 3.14). To determine whether protein bands were stuck to the magnetic beads and 

possibly uneluted, the magnetic beads were boiled in SDS elution buffer and loaded for 

SDS PAGE. As shown in Figure 3.14, there are protein bands shown in the ‘magnetic 

beads lane’ corresponding to the molecular weight of CTCF. The elution process 

performed with other elution buffers was also not successful in demonstrating any 

possibly immunoprecipitated CTCF protein. In effect, the commercial magnetic kit 

together with a crosslinker was not superior to the traditional IP process in 

immunoprecipitating CTCF demonstrating that the traditional IP experimental process 

was probably not responsible for the lack of CTCF co-IP observed. 
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Figure 3.14. CTCF immunoprecipitation (IP) and co-immunoprecipitation (co-IP) 

in MCF7 cells using a magnetic co-IP kit incorporating a crosslinker. Shown are 

protein bands for CTCF in the control lanes (input and flow through) but no 

immunoprecipitated protein in the elution lanes. The loaded magnetic beads appear 

to reveal some protein bands in the CTCF panel. This commercial kit could not 

immunoprecipitate CTCF in MCF7 cell lysates. 
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3.4.15 RNA pol II immunoprecipitation and coprecipitation with CTCF in the HeLa 
cervical cancer cell line cell using a low stringency IP lysis buffer (buffer 3) 
 

The results in figures 3.11C to figure 3.14 have shown a lack of CTCF coIP with both 

Ki67 / PCNA and also known CTCF partners RNA pol II and PARP1 in the MCF7 breast 

cancer cell line. The interaction between CTCF and RNA pol II however was discovered 

in HeLa cells, a cervical cancer cell line (Chernukhin et al., 2006). It is not clear whether 

the absence of CTCF coIP with RNA pol II in the MCF7 breast cancer cell line is a cell-

type specific difference or due to inefficiency of the coIP process. In order to answer this 

question, HeLa cell lysates, prepared with a low stringency IP lysis buffer (buffer 3) were 

subjected to immunoprecipitation. RNA pol II was immunoprecipitated with 10µg of RNA 

pol II (sc 899) antibody from these cells while CTCF was immunoprecipitated with 20µl 

(20 µg – 60µg) of CTCF (Millipore) antibody. An equivalent concentration of IgG 

antibody was used to IP immunoglobulin G from the HeLa cells and served as negative 

control.  The blotted membrane was probed serially with rabbit polyclonal anti RNA pol II 

antibody (sc 899, 0.2µg/ml) and mouse monoclonal antibody to CTCF (BD Biosciences, 

0.5µg/ml). As shown in figure 3.15, RNA pol II was successfully IPed from the HeLa cell 

line extract and co-IPed CTCF. This confirmed a previous finding (Chernukhin et al., 

2007) and suggested that the IP set up was efficient and that the RNA pol II / CTCF 

interaction might be cell type specific, restricted to HeLa cells and not present in the 

MCF7 breast cancer cell line. 
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Figure 3.15. RNA pol II and CTCF coimmunoprecipitation in HeLa cell extracts. 

The immunoprecipitated RNA pol II and coprecipitated CTCF bands are shown in 

the respective elution lanes. The IgG IP elution (negative control) as expected was 

negative. 
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3.4.16 Breast cancer cell line - specific differences in CTCF coprecipitation with 
Ki67 and PCNA in breast cancer cell lines 
 

Immunofluorescence studies shown in this thesis revealed that CTCF colocalised with 

Ki67 in all breast cancer cell lines studied and with PCNA in MCF7 and T47D breast 

cancer cells (figures 3.8 and 3.9) however no physical interaction between these 

proteins could be demonstrated by co-immunoprecipitation in MCF7 cells. Seeing that 

CTCF protein interaction could be cell type – specific as shown in the CTCF interaction 

with RNA pol II in HeLa cells (figure 3.15), and in order to further assess cell type-

specific differences in breast cancer cell lines, CTCF immunoprecipitation and co-

immunoprecipitation was performed with T47D, BT474, SKBR3 and MDA MB 231 

breast cancer cell lysates. CTCF protein was immunoprecipitated from each of the cell 

lines using 20µl (20 µg - 60µg) of CTCF (Millipore) antibody and a low stringency IP lysis 

buffer (buffer 3). An equivalent concentration of IgG antibody was used to IP 

immunoglobulin G from the cells and served as negative control. The blotted membrane 

for each cell line was serially probed with mouse monoclonal antibody to CTCF (BD 

Biosciences, 0.5µg/ml, A – D top panels), mouse monoclonal antibody to Ki67 (Vector, 

VP K452, 1:1000 dilution, A – D middle panels) and mouse monoclonal antibody to 

PCNA (Ab29, 0.3 µg/µl, A - D, bottom panels). As shown in figures 3.16 A – D, CTCF 

was successfully IPed in all cell lines but no co-IP with Ki67 and PCNA was 

demonstrated.  There was also no coprecipitation with RNA pol II and PARP 1 

demonstrated (data not shown). 
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Figure 3.16. A - D. CTCF IP and co-IP with Ki67 / PCNA in T47D, BT474, 

SKBR3 and MDA MB 231 breast cancer cell lines. Figures A to D show 

immunoprecipitated CTCF band at the expected molecular weight of 140kDa in 

the CTCF IP elution lane in all cell lines. No coimmunoprecipitated proteins are 

demonstrated however in the elution lanes of the Ki67 and PCNA panels in all 

cell lines.  
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          Figure 3.16 continued 
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3.4.17 CTCF protein interaction with Ki67 / PCNA assessed by Liquid 
Chromatography - Mass Spectrometry (LC – MS / MS) in breast cancer cell lines 
 

Protein interactions need to be tested by at least two independent methods to be valid 

(Lacroix and Leclercq, 2004). In order to confirm the findings on coimmunoprecipitation 

and use the most current experimental methods to date for protein interaction 

assessment, liquid chromatography – mass spectrometry (LC–MS/MS) was performed. 

CTCF protein was immunoprecipitated with 20μg of Rb mab to CTCF (Millipore, USA) 

and a low stringency buffer (Buffer 3) in the panel of five breast cancer cell lines. The 

negative control IgG IP was also subjected to the same process for each cell line. Dr 

Metodi Metodiev and colleagues performed the mass spectrometry procedure at the 

regional proteomics centre in Essex University. Briefly, IP lysates for each cell line were 

first run on a gel and proteins bands were cut out and digested with trypsin. The digests 

were subjected to liquid chromatography as described in the materials and methods. 

Open label mass spectrometry was then performed with resultant mass spectra was 

compared to a protein database. The spectral count indicates the relative abundance of 

the protein (Lundgren et al., 2010) and as shown in figure 3.17, CTCF was identified in 

all of the breast cancer cell lines except SKBR3 with spectral count ranging from one for 

MDA MB 231 to four for BT474. The result supported the bias of CTCF for ER positive 

breast cancer cell lines considering the spectral count of one in MDA MB 231 and the 

fact that it was not identified in SKBR3 cells both of which are ER negative breast 

cancer cell lines. The lack of identifiable CTCF in SKBR3 cells on mass spectrometry 

while it was abundantly evident on IP and western blotting points to a possible limitation 

of this mode of investigating protein interactions. This observation provided further 

evidence for the need to confirm protein interactions with at least two methods. The total 

number of proteins identified for each cell line and the corresponding spectral counts are 

shown in table 3.4. Since the mass spectrometric assay was open-label, only proteins 

demonstrating a spectral count of four or more were regarded as specific CTCF 
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interacting partners (Lundgren et al., 2010). A detailed inspection of the mass 

spectrometry data across all cell lines did not identify Ki67 or PCNA as CTCF interacting 

partners. Interestingly also, neither RNA pol II nor PARP 1 were identified as CTCF - 

binding partners. Furthermore, no physical binding between CTCF and ER or PR was 

observed. These findings agree with the results of co-immunoprecipitation assays in 

figures 3.11 – 3.15 and further confirmed that the interaction between CTCF, RNA pol II 

and PARP1 discovered in HeLa cells and lymphocytes respectively, was not present in 

breast cancer cell lines. Vimentin, a marker of breast cancer cell invasiveness (Mendez 

et al., 2010), was also not identified as an interacting partner of CTCF across all breast 

cancer cell lines.  
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Breast 
cancer cell 
line 

Total 
number of 
proteins 

 

Number of 
proteins 
with 
spectral  
count of 4 
and over  

Number of 
proteins 
with 
spectral 
count of 3 

 

Number of 
proteins 
with 
spectral 
count of 2  

 

Number of 
proteins 
with 
spectral 
count of 1   

 

 

MCF7 

 

430 

 

- 

 

66 

 

106 

 

258 

 

T47D 

 

492 

 

3 

 

11 

 

28 

 

461 

 

BT474 

 

515 

 

1 

 

3 

 

17 

 

494 

 

MDA MB 
231 

 

493 

 

- 

 

34 

 

98 

 

363 

Table 3.4. Distribution of total number of CTCF-interacting proteins identified on 

label-free mass spectrometry. Each breast cancer cell line together with the total 

number of proteins and the corresponding spectral counts are shown. The vast 

majority of proteins in all cell lines have a spectral count of 1 and were regarded as 

non-specific. Only those proteins showing a spectral count of 4 and over were 

considered for further analysis. 
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3.4.18 Novel CTCF-interacting partners in breast cancer cell lines 
 

For this thesis, a spectral count of 4 and over was regarded as significant interaction 

(Lundgren et al., 2010). Three proteins satisfied these criteria and are listed in table 3.5. 

Together with the associated spectral counts, Table 3.5 also shows the main cell line(s) 

in which the interacting proteins were identified. All three proteins were identified in ER 

positive cell lines. It is interesting that though the MCF7 and T47D cell lines share the 

same HR and HER2 biology, none of the three CTCF-interactors identified obtained up 

to 4 spectral counts in the MCF7 cell line. This emphasised the fact that these two cell 

lines might represent different disease entities. Looking at the role of these novel CTCF-

interacting partners in cancer (table 3.5), there appears to be a unifying connection 

through epithelial growth factor signalling (EGFR) which is a well-known signalling 

pathway in cancer biology (Brand et al., 2013) 

To further determine whether there was a breast cancer cell - type related difference in 

CTCF-interacting proteins with respect to abundance across the panel of breast cancer 

cell lines studied, interacting proteins that were identified in all cell lines are shown in 

figure 3.18. The appended spectral counts indicate the relative abundance of the 

interacting proteins in the cell lines. There is a general low abundance of CTCF 

interacting partners in the triple negative MDA MB 231 cell line with most of the proteins 

having a spectral count of 1 and thus probably non-specific. The ER positive cell lines 

(MCF7, T47D and BT474) as a group demonstrated a greater association with the 

identified proteins possessing spectral counts ranging from one to fourteen. Among the 

ER positive cell lines, the T47D cell line showed the most numerous spectral counts. 

The picture as a whole might suggest ER-related differences and a possible bias of 

CTCF expression for ER positive breast cancer cell lines and lends support to the result 

in figure 3.17.  
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Table 3.5 Tabular annotation of novel CTCF interacting partners detected by mass 

spectrometry. Also shown is the spectral counts in the breast cancer cell lines where 

the new partners were discovered, known protein partners of the new proteins and their 

possible role(s) in cancer formation 

 

 Gene 
name / 
Uniprot 

MCF7 

 

T47D 

 

 

BT474 

 

MDA 
MB 
231 

 

Known 

protein 

partners 

Role in 
cancer 

General 
transcriptio
nal factor 2 
(GTF2) 

GTF21_hu
man 

P78347 

3 6 4 1 Interacts 
with SRF 
and 
PHOX1. 

Part of BHC 
histone 
deacetylase 
complex  

Transcription 
factor. 
Regulates PI-
3K and TGFβ 
signalling 
(Segura-
Puimedon et 
al., 2013 

Huntington 
interacting 
protein-1 
related 
protein 
(HIP1r) 

HIPR_hum
an 

2 14 1 1 Interacts 
with actin, 
CLTB and 
HIP1. 

Endocytic 
protein. 
Stabilises 
EGFR and 
increases 
EGFR 
phosphorylatio
n on ligand 
binding (Ames 
et al., 2013) 

Glucose 
regulated 
protein 
(GRP) 78 

HSPA5 1 14 1 1 Interacts 
with 
DNAJC1 

Endoplasmic 
reticulum 
chaperone. 
Modulates 
EGFR 
signalling (Luo 
and Lee, 
2013) 
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Figure 3.18. CTCF-interacting proteins identified across all cell lines. Lysates of 

breast cancer cell lines after undergoing immunoprecipitation with anti CTCF antibody 

(Millipore, USA) were subjected to label – free mass spectrometry. The histogram shows 

CTCF protein interactors identified in all cell lines and their corresponding spectral counts. 

The spectral counts for the ER positive cell lines for each identified protein compared to 

the ER negative one is shown. In all cases the negative controls were consistently 

negative. KEY: GRP78 – glucose related protein 78; GTF2 – General transcriptional factor 

2; HIP1r – Huntingtin interacting - protein 1 related. 
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3.4.19 CTCF interacting protein network map in breast cancer cell lines 
 

CTCF protein interacting network across human breast cancer cell lines has not 

previously been described. In order to show this network and how it compared to other 

CTCF protein interactions, identified breast cancer protein partners were loaded into the 

Search Tool for the Retrieval of Interacting Genes / Proteins (STRING) software to 

generate a map (Franceschini et al., 2013). The STRING tool is a database that sources 

information from previous knowledge in published articles including high throughput 

experiments and is able to display known and predicted (including physical and 

functional) protein interactions in over 1100 organisms (Franceschini et al., 2013). 

Those CTCF interacting proteins with a spectral count of at least two and identified in 

two cell lines or more were mapped using STRING and the map is shown in figure 3.19. 

The STRING-generated map of published CTCF protein interactors in homo sapiens is 

shown in figure 3.20. Looking at both figures, the interaction between CTCF and 

nucleophosmin is shown and the bold connecting line (edge) between both proteins 

(nodes) (figures 3.19 and 3.20) suggested a functional interaction. The reproduction of 

this known CTCF - nucleophosmin interaction supported the validity of the results in this 

thesis.  The breast cancer cell line – specific protein network maps generated by 

STRING are shown in figure 3.21 A - D. The MCF7 map (figure 3.21A) revealed CTCF 

bound to structural maintenance of chromosome 3 (SMC3), a member of the cohesin 

complex. This subunit of cohesin is a known CTCF protein interactor in a human T 

(Jurkat) cell line (Rubio et al., 2008). The bold edge between CTCF and SMC3 

suggested that this interaction in the MCF7 cell line could be functional and a further 

look at the map suggested that this connection might represent the link for other CTCF 

protein associations in this cell line. This interaction is not seen in the other cell lines and 

could represent a cell line specific effect. The CTCF – SMC3 interaction further 

augmented the validity of the results in this thesis. Regarding T47D cells, the edge 

between CTCF and upstream binding transcription factor (UBTF) indicating physical 
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binding has not been previously described and seems to be the only link between CTCF 

and other proteins including GTF2 in figure 3.21 B. The CTCF proteome maps for 

BT474 and MDA MB 231 cell lines have also not previously been described and are 

shown in figures 3.21 C and D. Though the maps identify binding interaction between 

isoforms of GTF2, no edges between CTCF and identified protein interactors are shown 

demonstrating the lack of published data in this area.  
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Figure 3.20. STRING output of known and predicted CTCF interacting protein 

partners in homo sapiens. Action view showing edges (predicted functional links) 

in colour. Nodes represent each labelled protein. Yellow edges depict expression 

interaction, blue edges depict predicted binding interaction, and pink edges are 

those interactions that do not fall into a clear category (WSB1 and CHD8). Map 

generated with a confidence score of at least 0.7. KEY: NPM1: nucleophosmin 1; 

see appendix section 7.2 for full key. 
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CHAPTER 4  

 

Discussion: Novel CTCF interacting partners 

 

CTCF is a transcriptional regulator with 11 highly conserved zinc finger domains and 

has been shown to control multiple cellular functions (see section 1.6.3) and undergoes 

posttranslational modification including poly (ADP-ribosyl) ation (PARylation) (section 

1.9.2). There is evidence suggesting that while the poly-PARylated CTCF (CTCF-180) 

isoform is found in both healthy and cancerous breast tissue, the hypo-PARylated form 

(CTCF-130) is exclusively present in breast tumours (Docquier et al., 2009). Moreover, a 

transition from CTCF-180 to CTCF-130 occurs when cells from normal breast tissues 

are cultured and divide in vitro; conversely, CTCF-180 appears following growth arrest in 

breast cell lines (Docquier et al., 2009). Taken together, this could suggest that the 

130kDa CTCF isoform may function as a proliferation marker in breast cancer (Docquier 

et al., 2009). Other proliferation markers, such as Ki67 and proliferating cell nuclear 

antigen (PCNA), are valuable as proliferation indicators in breast cancer (Stuart-Harris 

et al., 2008). Personal communication from F. Docquier suggested that CTCF, Ki67 and 

PCNA may colocalise in the nucleus of MCF7 breast cancer cells (unpublished data). 

Moreover, both CTCF and PCNA are known partners of PARP 1 (Frouin et al., 2003; 

Moldovan et al., 2007; Farrar et al., 2010). It is therefore possible that CTCF and these 

more established proliferation markers, Ki67 and PCNA, may be linked in breast 

tumorigenesis. One of the aims of this chapter was therefore to investigate the role of 

CTCF in breast cancer via its association with known proliferation markers – Ki67 and 

PCNA. Five breast cancer cell lines exhibiting different hormone receptor / HER2 

profiles and with different invasive potentials were studied. The possible interaction 

between the proteins was studied via indirect immunofluorescence, immunoprecipitation 
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and co-immunoprecipitation. The findings were then confirmed by liquid chromatography 

/ mass spectrometry. 

The results described in Chapter 3 showed that CTCF protein is significantly expressed 

in the five breast cancer cell lines studied (though less in SKBR3 and MDA MB 231) 

irrespective of hormone receptor / HER2 status and invasive potential. However multiple 

CTCF protein bands detected on western blotting with monoclonal and polyclonal anti-

CTCF antibodies suggest that different cell lines may express different isoforms of 

CTCF. Not surprisingly, the isoforms detected appear to be dependent on the antibody 

as antibodies differ in their ability to detect corresponding proteins due to the variability 

of their complementarity determining regions (CDRs), which dictates the specificity, and 

affinity of the antibody for the epitope on the antigen (Fischer, 2014). Using the anti 

CTCF N-terminal rabbit polyclonal antibody, 160kDa and 130kDa isoforms were 

detected by western blot across all cell lines with the 160kDa particularly higher in MCF7 

cells while SKBR3 cells lacked the 130kDa isoform. The predominant isoform detected 

with monoclonal anti-CTCF antibodies from BD Biosciences and Millipore had a 

molecular weight of 140kDa (in agreement with the manufacturers) and was uniformly 

expressed across all cell lines. The monoclonal anti CTCF antibody from BD 

Biosciences was also able to detect in addition 100kDa and 110kda isoforms especially 

in the hormone receptor positive cell lines (T47D, BT474). The finding of multiple CTCF 

isoforms in this thesis is in agreement with Zhang et al. (2004), who used two-

dimensional (2D) gel electrophoresis to study synchronised HeLa cells and identified 

many isoelectric variants of CTCF. They suggested that their finding could represent a 

range of PTMs of CTCF protein within different cell cycle stages.  Looking at the multiple 

CTCF isoforms detected in this thesis, it is surprising that no CTCF protein band at 

180kDa was identified and is at variance with Docquier et al. (2009), who identified this 

CTCF isoform in MCF7 cells using the same polyclonal anti N Terminal CTCF antibody 

used in this thesis. It is possible that different batches of the anti N terminal antibody 
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initially made in chicken and then in rabbit could be responsible for the disparity. Also, 

the MCF7 cells used for the findings of Docquier et al. (2009), may not represent the 

same cells as cultured cells acquire mutations and change over time (Del Campo et al., 

2014). Interestingly, the expressed 160kDa isoform was more abundant than the 

130kDa isoform in MCF7 cells and is again in contrast to Docquier et al. (2009), who 

suggested that the predominant isoform in MCF7 cells on western blotting was the 

130kDa. Though the same polyclonal antibody to the N terminal region of CTCF was 

used in both studies, the disparity in the identified CTCF isoforms could be due to the 

previously mentioned difference in antibody batches, the animal source and changing 

characteristics of cultured MCF7 cells. Lastly, the significantly lower expression of the 

160kDa in the other breast cancer cell lines compared to MCF7 might be due to cell 

type-specific differences, a factor that might also be responsible for the absence of the 

130kDa isoform in the SKBR3 cell line. Taken together, this result showed that there 

may indeed be multiple CTCF isoforms whose expression could be breast cancer cell 

line - specific. 

To gain insight into the distribution of CTCF in the cell nucleus, immunofluorescence 

experiments were performed. Biological systems are functionally compartmentalised 

and the presence of an uncharacterised protein in a compartment of known function 

generally might give an idea about the function of the uncharacterised protein (Bolte and 

Cordellieres, 2006). The experiments in this thesis showed that CTCF detected with the 

monoclonal antibody from BD Biosciences (which identified a 140kDa isoform) though 

expressed in the nucleoplasm, is particularly expressed in the nucleolus of all cell lines 

studied irrespective of hormone receptor status and invasive potential. Previous work in 

the K562 leukaemia and MCF7 breast cancer cell lines noted the accumulation of CTCF 

in the cell nucleolus only when the cells were drug treated (Torrano et al., 2006). This 

immunofluorescence-based report did not detect nucleolar CTCF in untreated K562 

leukaemia cells using anti-CTCF antibody from BD Biosciences (monoclonal) nor in 



146 
 

MCF7 cells using a polyclonal anti-CTCF antibody (Abcam). On western blotting 

however, they showed that purified nucleolar fractions of untreated MCF7 cells 

demonstrated CTCF expression suggesting that lack of CTCF detection in untreated 

MCF7 using IF was not due to the absence of CTCF in the nucleoli of those cells. 

Results in this thesis showed abundant nucleolar CTCF detected by IF using the same 

cell line (MCF7) and without any drug treatment. The experimental procedure for IF 

(including microwaving) in Torrano et al. (2006), was the same as in this thesis 

suggesting that the same antigen epitopes may have been exposed and to the same 

degree. The disparity between the work of Torrano et al. (2006) and this thesis might 

therefore reside with the monoclonal anti-CTCF antibody from BD Biosciences, which 

was not used to stain untreated MCF7 cells in the Torrano et al. (2006) report. The 

conclusion that CTCF nucleolar accumulation might be linked to growth arrest 

(treatment with sodium butyrate) in breast cancer cells as alluded to by Torrano et al. 

(2006), may therefore not be the case if more sensitive and specific anti CTCF 

antibodies have since been generated. This finding of nucleolar CTCF enrichment could 

suggest specific nucleolus-associated activity of CTCF in breast cancer cells.  

The Ki67 protein, a marker of cellular proliferation, has prognostic significance in breast 

cancer (Urruticoechea et al., 2005). Most studies of Ki67 protein expression levels have 

utilised immunohistochemistry (IHC) and employed a cut off of ~14% to define high and 

low expression levels (Stuart-Harris et al., 2008; Wang et al., 2011). There have not 

however been internationally agreed standards for methodology including the area(s) of 

the tumour to sample for microscopy in IHC (Dowsett et al., 2011). If a similar detection 

rate between immunofluorescence and IHC is assumed, then a 14% cut off for Ki67 

expression would mean that all the breast cancer cell lines studied in this thesis 

possessed a ‘high’ Ki67 proliferation index as the lowest expression level was 38% 

(table 3.1). Based on proliferation rates defined by Ki67 expression it would then appear 

that CTCF expression was not dependent on breast cancer cell line phenotype as all the 
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cell lines in this study demonstrated high proliferation rates. Adding to the debate is the 

somewhat surprising marked Ki67 expression in 226LDM cells. This immortalised 

normal mammary luminal cell line was generated using retroviruses that transduced 

SV40 large T antigen in addition to the activity of the catalytic subunit of the human 

telomerase reverse transcriptase (hTERT) enzyme (O’Hare et al., 2001). The high Ki67 

expression in this immortalised cell line might be due to the presence of two drivers 

(virus and telomerase) of proliferation. Further explanation for the difference in Ki67 

expression pattern among the five breast cancer cell lines studied might relate to the 

immunoreactivity of the anti-Ki67 antibodies used. It is recommended that the Molecular 

Immunology Borstel 1 (MIB1) and Sp6 anti-Ki67 antibodies be used for IHC since they 

are able to detect a 16-time repeat Ki67-unique epitope motif at the C-terminus 

(Scholzen and Gerdes, 2000; Dowsett et al., 2011). It is not clear whether this statement 

is applicable to IF and WB. This thesis however showed that whether the antibody 

epitopes are identified (Sp6) or not (Ab833 and VP K452 antibodies), Ki67 protein 

expression is readily identifiable by immunofluorescence and western blotting.  

The results in chapter 3 of the thesis sought to determine the relationship between 

CTCF and proliferation factors, Ki67 / PCNA, in breast cancer cell lines of different 

immune phenotype and invasive potential. The basic assumption of most studies linking 

proliferation and invasiveness is that increasing proliferation rate raises mutagenic risk 

that directly feeds into the inverse relationship between differentiation and proliferation in 

somatic cells (Zhu and Skoultchi, 2001). In effect, the greater the cycling rate of a 

tumour the likelier an accumulation of mutations that lead to less differentiated tumour 

phenotypes which are typically more aggressive. The results presented in this thesis 

however do not support this hypothesis. Of the five breast cancer cell lines studied, 

MDA MB 231 is known to be the most aggressive, followed by SKBR3, BT474, and then 

T47D / MCF7 which are non-invasive based on evidence from migration on Matrigel 

(Lacroix and Leclerq, 2004). In this thesis, based on proliferation rates determined by 
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Ki67 expression, the most proliferative cell line was MDA MB 231, followed by BT474, 

MCF7, SKBR3 and then T47D (table 3.1). In effect the non-invasive MCF7 cell line is 

equally proliferative as the SKBR3 cell line. This lack of a parallel relationship between 

proliferation and invasiveness in breast tumours is supported by the findings of Prat et 

al. (2010), who reported that the claudin-low group of breast cancers (for instance, 

SKBR3) expressed Ki67 more than the HER2 group (for instance, MDA MB 231) though 

SKBR3 cells are known to be less invasive than MDA MB 231 cells. Though the findings 

in this thesis suggested that MDA MB 231 cells were more proliferative than SKBR3 

cells as expected (table 3.1), MCF7 cells were equally as proliferative as SKBR3 cells, a 

finding that was not expected.  

A possible explanation for this non-parallel relationship between proliferation and 

invasiveness might relate to the migration-proliferation dichotomy phenomenon (Fedotov 

et al., 2011). This phenomenon, for which mathematical models have been developed, 

has it that for some tumour types including gliomas, tumour cell proliferation and 

migration are mutually exclusive phenotypes. In effect, increased cell cycling rates 

suppress migration / invasiveness and vice versa. A putative biochemical basis for this 

interaction has been linked to the epidermal growth factor receptor (Wells, 1999; Brand 

et al., 2013). It was suggested that the balance between activated cascades of the 

epithelial growth factor receptor (EGFR) intermediates could determine which direction a 

cell proceeds at a given time point namely either the erk / MAPK pathway for 

proliferation (Osaki et al., 2011) or the phospholipase C (PLCỳ) pathway for motility (Xie 

et al., 2010). Attempts have been made to prove or otherwise refute this assumption. 

Working on the same lung cancer cell line (A549) one study detected cell proliferation 

on EGF stimulation (Hou et al., 2011), while another study did not (Lauand et al., 2013). 

The latter report showed that not only did EGF stimulation have no effect on 

proliferation, but also that there was increased cell motility assayed by wound healing 

and time lapse analysis. Taken together, these studies seemed to suggest indeed that 
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whether a cell would proceed to proliferation or invasion might depend on the EGFR 

cascade of intermediates activated. Though EGFR is overexpressed only in the claudin-

low subgroup of breast cancer cells (BCC), its expression in other BC cell lines (higher 

in the more invasive cell lines) is significant enough to be involved in cell regulation (Zhi 

et al., 2012). With relation to this thesis, it might be surmised that different breast cancer 

cell lines, possessing different biologic phenotypes, might observe different proliferation 

/ migration laws. MDA MB 231 and T47D cells could obey the classical positive 

correlation between proliferation and migration; while MCF7 and SKBR3 might be the 

prototype exemplifying the proliferation – migration dichotomy. Taken together, Ki67 

protein expression, while accepted as a surrogate for proliferation, may not be directly 

linked to invasive potential in breast cancer cell lines. 

The proliferative cell nuclear antigen (PCNA) has clearly defined activities as a sliding 

clamp at the DNA replication fork enhancing DNA proliferation and mediating DNA 

repair (Moldovan et al., 2007). The results in this thesis regarding PCNA cellular 

distribution revealed a diffuse nucleoplasmic expression in all cell lines and also a 

nucleolar accumulation in the weakly invasive, hormone receptor positive MCF7 and 

T47D cell lines. Nucleoplasmic and nucleolar localisation of PCNA have been previously 

described however the functional utility of this protein in the nucleolus is not known and 

there are no recent reports regarding the cellular distribution of PCNA (Celis and Celis, 

1985; Wasseem and Lane, 1990). In this thesis, nucleolar localisation of PCNA 

appeared to be cell type specific. It could be argued that the absence of nucleolar PCNA 

in the BT474, SKBR3 and MDA MB 231 cell lines in this study might relate to cell cycle 

phase. As breast cancer cells in this thesis were not synchronised and would therefore 

be in different phases of the cell cycle in any spread on a coverslip, the lack of a 

detectable nucleolar form of PCNA would suggest that cell type-specific differences 

rather than cell cycle phase was responsible for the differences observed. The cell type - 

specific difference might in turn be related to estrogen receptor (ER) status. Evidence 
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was recently presented showing that ERα regulated MCF7 cell proliferation by inhibiting 

p21 / p53 expression while upregulating PCNA and Ki67 protein expression in MCF7 

cells (Liao et al., 2014). In effect, the basal state of PCNA expression in ER positive 

breast cancer cells (BCCs) was thought to be significantly higher than the ER negative 

ones. As there is a constant flux of proteins between nuclear sub compartments it is 

theorised that the excess PCNA protein in ER positive cells may simply be non-

functionally sequestered in the nucleolus as has been found with the nucleolar 

accumulation of excess H2B histone which served no clear cut functional purpose in that 

compartment (Dundr et al., 2000; Leung and Lamond, 2003; Musinova et al., 2011). The 

lack of nucleolar PCNA in the ER positive BT474 cell line may not be surprising as the 

HER2 overexpression status in this cell line may diminish to some extent the effect of 

ER activation (Marchio et al., 2008). 

PCNA undergoes posttranslational modifications (PTMs) that can affect its residence in 

nuclear compartments (Moldovan et al., 2007). Among the post-translational 

modifications of human PCNA is the EGFR-mediated phosphorylation at tyrosine (Y) 

211 which interferes with E3 - PCNA interaction and stabilises PCNA (Wang et al., 

2006). The EGFR-dependent control over PCNA stability and the more recently 

discovered interaction of PCNA with c-Abl which is dependent on tyrosine (Y) 211 

phosphorylation is thought to be the essential contribution of the PCNA clamp to cell 

proliferation via DNA synthesis (Zhao et al., 2011). EGFR on the other hand is 

associated with estrogen-induced MAPK-activation in MCF7 cells and it is possible that 

ER signalling could be routed through EGFR which amongst other activities aids the 

phosphorylation of PCNA, a PTM that could affect its intranuclear transport and location 

(van Agthoven et al., 1994; Zhao et al., 2011). This sequence of events would not be 

expected in ER negative cells and could explain the pattern of PCNA expression shown 

in this thesis. With respect to hormone receptor status and colocalisation patterns in 

breast cancer cell lines, Tan et al. (2009), worked with three ER+ breast cell lines 
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(MCF7, T47D, and ZR75-1), and noted that the estrogen receptor (ER) colocalised with 

the proliferation factor Ki67 in all of the cell lines. Furthermore, Qiu et al. (2005), working 

with the rat mammary gland discovered that a significant proportion of the cells were ER 

positive and that they showed a 37% colocalisation with PCNA in the nuclei. There is 

also evolving evidence showing that CTCF can colocalised with ER and might influence 

the binding of ER to chromatin (Ross-Innes et al., 2011).  Taken together, it is possible 

that the colocalisation noted in our study between CTCF and both PCNA and Ki67 might 

be mediated partly through an as yet undefined effect of the estrogen receptor. This 

might also be part of the reason why colocalisation between CTCF and PCNA was not 

observed in the ER / PR negative cell lines (SKBR3 and MDA MB 231). Clearly complex 

mechanisms are operative and there may not be a single unifying mechanism relating 

CTCF to both Ki67 and PCNA. 

Biological systems are functionally compartmentalised and the presence of an 

uncharacterised protein in a compartment of known function generally gives an idea 

about the function of the uncharacterised protein (Bolte and Cordellieres, 2006). Co-

localisation can be described as complete, complete with different intensities or partial 

(Bolte and Cordellieres, 2006). Qualitative double immunofluorescence, using a 

standard wide field fluorescence microscope was used in this study to determine protein 

colocalisation and has been used extensively in cellular research to assess protein 

colocalisation (Zhang et al., 2004; Farrar et al., 2005; Torrano et al., 2006; Docquier et 

al., 2009). The results from this thesis showed a distinct pattern of nucleolar 

colocalisation of CTCF and Ki67 proteins in all cell lines studied irrespective of hormone 

status and invasive potential. There was also nucleolar colocalisation of CTCF and 

PCNA proteins in the hormone receptor positive, weakly invasive cell lines – MCF7 and 

T47D. Though there was expression of CTCF, Ki67 and PCNA in the nucleoplasmic 

compartment of all cell lines there was no colocalisation in this region. The nucleolus is 

known to be active in ribosomal RNA synthesis; cell cycle regulation; storage of nuclear 
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factors; regulation of tumour suppressor and oncogene activities; and processing of 

telomerase RNA (Torrano et al., 2006). CTCF is localised to the dense fibrillar and 

granular regions of the nucleolus (Torrano et al., 2006) while Ki67 is at the nucleolar 

cortex (Bullwinkel et al., 2006). The exact subnucleolar location of PCNA is unknown. It 

is possible to speculate that some nucleolus – specific function might link the Ki67 and 

PCNA proteins to CTCF in breast cancer cells. 

While the location of proteins in the same vicinity could suggest a functional link 

between them a physical connection between those proteins needs to be established to 

prove that they are part of a functional protein complex. Co-immunopreciptiation (coIP) 

assays were therefore performed to decide whether the colocalisation of CTCF and Ki67 

/ PCNA actually meant that they were physically bound. The results in this thesis did not 

demonstrate a physical interaction between CTCF and Ki67 / PCNA, in the breast 

cancer cell lines assessed via co-immunoprecipitation. Protein immunoprecipitation (IP) 

has been extensively used to purify CTCF protein in complex cell lysates (Klenova et al., 

2002; Chernukhin et al., 2006). In the IP experiments carried out for this study, a well 

characterised anti CTCF antibody for IP (Millipore, USA) was used to pull out CTCF 

from breast cancer cell lysates. In all cell lines, the IPed CTCF was identified on western 

blots and the control IgG IP was negative. The IP process demonstrated verifiable 

robustness as the silver stained SDS PAGE gels loaded with CTCF IP samples showed 

distinct protein bands in the IP elution lanes. Also, the anti PCNA antibody successfully 

immunoprecipitated PCNA in MCF7 cells while the anti RNA pol II antibody IPed RNA 

pol II in HeLa cells and demonstrated coIP with CTCF as found in a previous report 

(Chernukhin et al., 2006). The absence of this same RNA pol II interaction in MCF7 cells 

suggested cell type-specific differences. Furthermore, it had been demonstrated that 

CTCF copurified with PARP 1 in coIP assays (Farrar et al., 2010). The results in this 

thesis have not reproduced that finding likely because a different cell line (B4 cells, 

generated by a stable transfection of 293T cells with a luciferase-neomycin resistance 
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construct) was used in the Farrar et al. (2010) report and the cells were transfected to 

overexpress PARP1. It is doubtful that the CTCF / PARP1 interaction in the Farrar et al. 

(2009) report is physiologically relevant as the transfected protein in an elevated and 

distorted concentration in the cell could possibly mediate interactions that would be 

absent in more physiological concentrations (Klenova et al., 2002; Trinkle-Mulcahy, 

2012). With regards to the findings in this thesis, the lack of coIP between CTCF and 

Ki67 / PCNA might also be related to the marked difference in their molecular weights. It 

is thought that protein coIP is more successful when proteins within a smaller range of 

molecular weights are assessed (Klenova et al., 2002). With CTCF at 140kDa, Ki67 

greater than 300kDa and PCNA at 36kDa, the interaction could be missed.  

The negative coimmunoprecipitation results could have been due to peculiar issues 

surrounding IP processes. Liquid chromatography and mass spectrometry (LC – 

MS/MS) was therefore performed to verify the results of coprecipitation experiments and 

to identify any novel CTCF binding proteins. The combination of immunoaffinity 

purification and mass spectrometry is possibly the current gold standard method of 

choice for detecting and resolving protein interactions (Gingras et al., 2007; Lundgren et 

al., 2010; Kaake et al., 2010; Paul et al., 2011; Trinkle-Mulcahy, 2012). The method is 

particularly powerful as one experiment could potentially identify multiprotein complexes 

and because it is quite sensitive - a common pitfall - the use of appropriate negative 

controls is very important (Kaake et al., 2010). A mass spectrometer typically comprises 

an ion source, a mass analyser, a detector and a data system and in this thesis, sample 

ionisation was achieved with liquid chromatography–coupled ionisation electrospray 

(ESI) (Alldridge et al., 2008). Peptide ion fragmentation on the other hand was 

performed with the higher energy C-trap dissociation (HCD) and data generated was 

used to calculate the molecular weight and relative abundance of peptides in the sample 

and they were identified against a protein database (Alldridge et al., 2008). Mass 

spectrometry could be isotope-based or label-free. The latter is relatively easy to 
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perform and results obtained with it compared favourably with the isotope labelled 

processes (Lundgren et al., 2010). In this thesis, open label method of LC MS / MS was 

used and in order to eliminate non-specific interactions, a minimum spectral count of 

four identified novel CTCF - interacting partners with a high degree of certainty 

(Hendrickson et al., 2006; Lundgren et al., 2010; Kaake et al., 2010). LC – MS / MS 

confirmed that neither Ki67 nor PCNA was a CTCF binding partner. Both RNA pol II and 

PARP 1 were not identified as physically bound to CTCF. These observations confirmed 

the immunoprecipitation results earlier described. Furthermore, no physical interaction 

between CTCF and ER or PR was demonstrated. 

With a spectral count of at least four and IgG controls that showed no spectra, three 

novel CTCF-interacting proteins were however identified from mass spectrometry data 

(Table 3.5). The first of the three is the general transcriptional factor 2 (GTF2), a 

multifunctional transcription factor which relocates to the nucleus upon growth factor 

binding and tyrosine phosphorylation, an event critical for its downstream activities (Roy, 

2007; Segura-Puimedon et al., 2013). GTF2 physically interacts with Erk / MAPK 

intermediates and recent evidence suggested that GTF2 regulated target genes in 

EGFR1, PI-3K / AKT and TGF-beta signalling pathways (Roy, 2007; Segura-Puimedon 

et al., 2013). These pathways are components of EGFR signalling and are prominent in 

breast cancer cell proliferation, tumorigenesis, cancer cell invasion and metastasis 

(Masuda et al., 2012). The second identified CTCF-interacting partner is the huntingtin-

interacting protein 1 – related (HIP1r), an endocytic protein, which through stabilising 

receptor tyrosine kinases and binding to inositides enhances EGFR phosphorylation and 

alters cellular growth (Hyun et al., 2004). More recent evidence identified a conserved 

group of four tyrosine residues in HIP1r whose phosphorylation was mediated by EGFR 

(Ames et al., 2013). The exact contribution of HIP1r to oncogenesis is still unknown. The 

third identified CTCF interacting partner, is the glucose regulated protein 78 (GRP78), 

an endoplasmic reticulum chaperone, which was found to be upregulated in breast 
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cancer where it protected against stress-induced apoptosis, increased angiogenesis and 

via PI3K / AKT signalling, an EGFR pathway, enhanced cell proliferation and survival 

(Dong et al., 2008; Luo and Lee, 2013). Further evidence suggested that GRP78 was 

upregulated by GTF2 in prostate cancer cells (Misra et al., 2009). It is therefore 

remarkable that CTCF strongly interacted with both proteins in breast cancer cell lines 

and specifically in the estrogen – receptor positive cell lines as shown in this thesis. 

CTCF expression is known to increase the resistance of MCF7 cells to apoptosis 

(Docquier et al., 2005). This function ties in with a similar effect of GRP78 which 

protected against apoptosis further suggesting a strong link between these proteins 

(Dong et al., 2008; Luo and Lee, 2013). 

To the best of current knowledge this thesis is the first to demonstrate evidence 

identifying GTF2, HIP1r and GRP78 as novel CTCF - interacting partners in breast 

cancer cell lines. The discovery of these three new CTCF protein partners represented a 

significant leap / contribution to knowledge in this area. A very recent publication also 

discovered the physical association between CTCF and GTF2 in a melanoma cell line 

(Peña-Hernández et al., 2015). These authors immunopurified CTCF from extracts of 

the MDA MB 435 melanoma cell line and subjected the lysates to mass spectrometry. 

They identified GTF2 as a protein partner of CTCF and validated the observation via 

coprecipitation, reverse immunoprecipitation and colocalisation of the two proteins in this 

cell line. Furthermore, using coprecipitation they also identified the CTCF–GTF2 

interaction in two other cancer cell lines - HCT116 (colorectal cancer) and WEHI (B cell 

lymphoma) - suggesting that the interaction was not specific to melanoma. Using GTF2 

knockdown MDA MB 435 melanoma cells via chromatin immunoprecipitation, Peña-

Hernández and colleagues further showed that GTF2 was a key regulator of metabolic 

processes, an activity that was mediated at least in part by targeting CTCF to promoter 

regions of genes involved with metabolism. Both proteins also interacted to augment 

CDK8 recruitment and Pol II phosphorylation on serine 5 (Peña-Hernández et al., 2015) 
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and it is possible to speculate that sum of these effects on metabolism could serve in 

some yet to be defined way to maintain cellular transformation. The authors did not 

however investigate whether this interaction also occurred in noncancerous normal cells 

of the skin, large bowel or lymph glands to determine whether it was a cancer-specific 

effect. The paper of Peña-Hernández et al. (2015) clearly validated the CTCF-GTF2 

interaction in three different cancer cell lines and would provide proof that the discovery 

of the CTCF-GTF2 interaction in breast cancer cell lines as shown in this thesis was 

real. Since CTCF-140 protein expression in normal breast cells is essentially non-

existent as shown in LDM226 normal breast cells in figure 3.2, this interaction with GTF2 

is likely to be specific for breast cellular transformation.  

The discovery of the CTCF-GTF2 interaction in ER positive (and not ER negative) 

breast cancer cell lines in this thesis is intriguing. The very low spectral count achieved 

for CTCF in MDA MB 231 cells might suggest that CTCF was of low abundance in this 

cell line. It is not clear whether this would explain the lack of copurification with the three 

new protein partners in this cell line. The ER status of the melanoma, colorectal cancer 

and lymphoma cell lines used in the report of Peña-Hernández et al. (2015) is not 

known. It is therefore not possible to determine the influence or not of estrogen receptor 

status on the CTCF-GFT2 interaction in the cell lines used by Peña-Hernández et al. 

(2015). While acknowledging the import of the findings in this thesis and discovering that 

other authors had independently discovered and validated the physical association 

between CTCF and one of the protein partners (GTF2) discovered in BC cell lines in this 

thesis, the thrust of this thesis however revolved around the collective evidence 

suggested by the three new CTCF protein partners identified (GTF2, HIP1r and GRP78) 

regarding how CTCF exerted its effects in breast cancer. As with GTF2, further work 

would involve validating the relationship between CTCF and both HIP1r and GRP78.  

A careful inspection of the mass spectrometry results revealed a clear bias of CTCF 

expression and protein interaction for ER-positive breast cancer cell lines and this 
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supported the report of Ross-Innes et al. (2011). Furthermore, since published reports 

showed that the novel CTCF interacting proteins exhibited an extensive and specific 

involvement with EGFR signalling as their predominant mode of action in oncogenesis 

(Table 3.5) it could therefore be surmised that the mechanistic involvement of CTCF in 

breast tumorigenesis could be mediated at least in part via EGFR signalling. As noted 

previously, the three CTCF- interacting proteins were identified in estrogen receptor 

(ER) positive breast cancer cell lines and the literature indicated that there was an 

extensive interaction between estrogen and EGFR signalling. For example, estrogen via 

ERα regulated cellular migration through direct effects on EGFR signalling (Xie et al., 

2010). Though there appeared to be an inverse relationship between EGFR and ERα 

expression in breast cancer cells, both ERα and EGFR remained functional whether one 

was dominantly expressed or not (van Agthoven et al., 1994; Zhi et al., 2012; Tsonis et 

al., 2013). Further evidence suggested that uterine DNA synthesis mediated by EGF 

was abolished in ERα – knockout mice even with wild type levels of EGF and EGFR 

(Skandalis et al., 2013). Taken together, it would appear that ERα was needed in some 

EGF-mediated activities and might further suggest that ERα was some kind of centre 

around which some EGF / EGFR mediated activities revolved. It is therefore not exactly 

clear whether the three CTCF protein interacting partners discovered in this thesis point 

to a direct CTCF - EGFR interaction or an indirect interaction involving ERα. It would 

appear that interaction in ER positive breast cancer cell lines was a common 

denominator among the new protein partners found in this thesis and there was no 

direct physical binding between CTCF and ER demonstrated with the mass 

spectrometry results in this thesis. A possible direct regulatory effect by CTCF on ERα 

expression has not previously been described. 
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CHAPTER 5  

 

Regulatory relationship between CTCF and ERα 

 

5 Background 

The previous sections in this thesis explored the mechanisms through which CTCF was 

involved in the breast cancer phenotype via investigating a protein interaction with other 

known proliferation factors in breast cancer. Immunofluorescence, immunoprecipitation, 

western blotting and open label mass spectrometry were used to investigate this 

association. The results presented in chapter 3 and discussed in chapter 4 showed that 

though CTCF colocalised with Ki67 in all cell lines and with PCNA in the ER positive 

weakly invasive cell lines, there was no physical binding demonstrated between these 

proteins using immunoprecipitation assays and confirmed by mass spectrometry. New 

CTCF-interacting proteins were however identified with a high degree of certainty and 

were seen only in the estrogen receptor positive breast cancer cell lines. Interrogation of 

these novel protein partners revealed that they interfered with EGFR signalling 

cascades in cancer formation. As shown in figure 5.1 there is a close relationship 

between EGFR signalling and the estrogen receptor and as pointed out in section 1.12, 

CTCF has extensive interactions with ER.  It is therefore not clear whether the 

interaction of CTCF with EGFR (via novel protein partners) is direct or an indirect activity 

through the estrogen receptor. This section of the thesis addresses whether there was a 

direct regulatory effect of CTCF on ER expression. 

5.1 Role of estrogen in breast cancer initiation  
 

Breast cancer develops more frequently in situations of prolonged estrogen stimulation 

as occurs with early menarche and late menopause (Barrett, 2010).  A direct causal link 

between estrogen exposure and breast cancer was demonstrated by the transformation  
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Figure 5.1. Inter-relation of estrogen, ER and EGFR receptor signalling 

cascades. Demonstrated is the link between estrogen and EGFR signalling 

cascades in cellular cytosol and nucleus. Also shown are the points of 

inhibition by MoAb, TKI and AI. Key: E2 - estrogen; MoAb- monoclonal 

antibodies; AI – aromatase inhibitors; TKI – tyrosine kinase inhibitors; PI3K – 

phosphatidyl inositol 3 kinase. Source: Prat and Baselga, 2008.  
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of MCF-10F cells which are immortalised estrogen – and progesterone - receptor 

negative, normal breast epithelial cells (Russo and Russo, 2006). In this paper, MCF-

10F cells were transformed on exposure to estrogen as evidenced by the loss of their 

usual duct pattern, acquisition of anchorage-independent growth and by becoming 

invasive on Matrigel. The authors also noted that the transformed cells induced palpable 

tumours when injected into severe combined immunodeficient (SCID) mice. The report 

gave no suggestions on how E2 gained entry into the estrogen receptor (ER) negative 

MCF-10F cells but attributed estrogen-induced neoplastic transformation to direct 

genotoxic effects. This study supported the results of previous work performed on MCF-

10A cells, another immortalised estrogen – and progesterone - receptor negative, breast 

epithelial cell line which were also transformed on estrogen stimulation (Liu and Lin, 

2004). A more recent report seeking to define further the impact of estrogen and its 

metabolites on breast cancer risk assessed 277 postmenopausal patients in a 

prospective case – control study (Fuhrman et al., 2012). Using liquid chromatography – 

tandem mass spectrometry, they measured serum levels of parent estrogens (estradiol, 

estrone) and their metabolites, and confirmed a statistically significant association 

between unconjugated estradiol and breast cancer risk. Furthermore, they showed that 

high 2-hydroxylation of parent estrogen was associated with lower breast cancer risk 

while the greater the methylation levels in the 4-hydroxylation pathway, the higher the 

risk for breast cancer. This study corroborated the cell line work previously mentioned 

(Liu and Lin, 2004; Russo and Russo, 2006) and though not generalizable seeing that 

premenopausal women were not included, it served to augment the body of knowledge 

directly linking estrogen to breast cancer risk. Fuhrman et al. (2012) also supported the 

previously held view that estrogen had both a direct mitogenic effect whereby it 

augmented proliferation of breast cells and also served as a precursor to a potent 

mutagen – namely excessively methylated 4-hydroxylation products (Yager and 

Davidson, 2006; Fuhrman et al., 2012). While these reports suggested a clear role for 
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estrogen in breast cancer initiation, they do not give any answers as to how estrogen 

gained entry into ER negative cells. 

 

5.2 ER structure and activation 
 

The effects of estrogen on breast cancer development are mediated via its actions at the 

estrogen receptor on the cell membrane (Acconcia and Marino, 2011). The estrogen 

receptor is a transcriptional factor that has two main subtypes – ERα and ER β – which 

have 96% amino acid homology at their DNA binding domain (figure 5.1) but only 53% 

amino acid similarity in their ligand binding regions (Yager and Davidson, 2006; Nasu et 

al., 2008). The difference in the ligand binding domain might be responsible for the 

difference in ERβ activity which includes an inhibition of both ERα-mediated 

transcription and estrogen-induced proliferation in breast cancer cells (Strom et al., 

2004). Aside from the DNA (C) binding domain which mediates receptor dimerization, 

ERα also possesses other domains including the N terminal domain which is involved in 

protein-protein interactions; D domain, the heat shock protein (HSP) binding site; C-

terminal domain which binds estrogen and is involved in gene transcription; and the F 

domain which is involved in ER transcriptional activity (reviewed in Ascenzi et al., 2006). 

The classification of breast cancer had been based primarily on nuclear ER status 

determined by immunohistochemistry (Park et al., 2012). As previously mentioned 

elsewhere, this classification served to identify tumour biology and clinical behaviour and 

thus stratified patients into specific treatment and surveillance groups. Recent evidence 

indicated however that the estrogen receptor is not only nucleus-bound but also 

membrane-bound and cytoplasmic (Ford et al., 2011; Acconcia and Marino, 2011). This 

could explain why traditionally ER negative breast cancer cell lines have been found to 

be ER positive on flow cytometry and western blotting since whole cell lysates were 

tested with these methods (Ford et al., 2011). On estrogen ligand binding to ERα there  
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Figure 5.2. Structure and comparison of estrogen α and β receptor domains. 

The estrogen receptor consists of six functional domains. The numbers in the 

boxes indicate numbers of amino acids. Homology between the distinct domains 

of the receptors is noted as percentages. TAF: transcription activating function. 

Source: Nasu et al., 2008.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160006/
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are distinct immediate (extranuclear) and late (nuclear bound) effects. The extranuclear 

effects are observed within seconds to minutes of binding and include the activation of 

signalling pathways shown in figure 5.2. These intermediate signals are known 

toregulate proliferation, survival and apoptosis in transformed cells. The nuclear effects, 

noticed after about two hours of estrogen ligand binding, result from receptor 

translocation to the nucleus where it binds DNA at the estrogen response element 

(ERE) and induces gene transcription (Acconcia and Marino, 2011).  The observed 

consequence of estrogen binding is the sum total of both membrane and nuclear bound 

ER effects and alteration in rapid ER-induced signalling and / or delayed ER-induced 

nuclear transcription could lead to dysregulation in cellular control mechanisms and 

subsequent malignant transformation. Seeing that ERα in involved in many cellular 

processes, its activity undergoes cellular regulation. 

5.3 ERα regulation  
 

The activity of ERα is itself regulated by multiple mechanisms including posttranslational 

modifications (PTMs) like palmitoylation and phosphorylation, activity of coactivators and 

corepressors, and epigenetic mechanisms like methylation and histone modifications 

(Marino and Ascenzi, 2008; Anbalagan et al., 2011). Palmitoylation, by localizing ERα to 

the cell membrane plays an important role in ER-associated downstream physiological 

processes (Marino and Ascenzi, 2008).  Phosphorylation occurs at multiple sites on the 

ERα including serine, threonine and lysine residues (Murphy et al., 2011). 

Phosphorylation is associated with multiple roles including transcription, nuclear 

localization, and co-activator recruitment (Anbalagan et al., 2011; Murphy et al., 2011). 

The association of ERα with coactivators and corepressors also partly regulates its own 

activity. Through their leucine – rich motifs, coactivators bind and induce ER-induced 

signalling via chromatin remodelling, RNA pol II induction or by involving the basal 

transcriptional machinery (O’Malley and Kumar, 2009); while corepressors such as 

histone deacetylase (HDAC), prevent this activity (Kawai et al., 2003; O’Malley and 
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Kumar, 2009). In some cases of breast cancer, ER is not expressed and there are 

suggestions that epigenetic processes including hypermethylation and posttranslational 

histone modification (PTM) (methylation, phosphorylation or acetylation of histone lysine 

residues) could be responsible for the lack of ER expression (Hervouet et al., 2013). 

Ramos et al. (2010) noted that 41% of sporadic breast cancer samples demonstrated 

ER gene promoter methylation. They confirmed that increasing gene methylation was 

associated with progressive decline of the ERα gene product. Histone modification 

including lysine acetylation has also been shown to regulate ER expression in breast 

cancer cells. Overexpression of the histone deacetylase 1 (HDAC1) abolished ESR1 

expression in MCF7 cells (Kawai et al., 2003; O’Malley and Kumar, 2009) and 

conversely, HDAC inhibitors restored both ERα expression and sensitivity of ER 

negative breast cancer cells to the aromatase inhibitor, letrozole (Sabnis et al., 2011).  
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5.4 Knowledge gap and hypothesis 
 

There is a body of evidence linking ERα expression to CTCF. It is known that ERα 

regulates MCF7 cell proliferation by inhibiting p21 / p53 expression while CTCF binding 

has been demonstrated at the promoter of the TP53 gene where it stops the spread of 

repressive histone PTMs (Soto-Reyes and Recillas-Targa, 2010; Liao et al., 2013).  

Also, as mentioned previously, CTCF is known to negatively regulate the forkhead 

protein (FOXA1 / HNF3α), which is required by ERα for chromatin binding (Hurtado et 

al., 2011). Furthermore, CTCF and ER binding regions colocalise and both proteins 

recruit HDAC to repress gene expression (Lutz et al., 2000; Kawai et al., 2003). Finally, 

there is evidence suggesting a bias of CTCF interaction for ER positive breast cancer 

cell lines (Ross-Ines et al., 2011) an observation supported by the findings of this thesis 

in the results described in chapter 3. There is however no information directly relating 

CTCF to ERα and this chapter therefore hypothesized that CTCF may directly regulate 

ER gene expression in ER-positive breast cancer cells. 

 

5.5 Objectives of this chapter 
 

The main objective of this chapter was to determine whether a direct regulatory 

relationship existed between CTCF and the estrogen receptor (ER) α.  In order to 

establish whether the expression of ERα product in breast cancer cells was dependent 

on CTCF, ER+ / PR+ MCF7 breast cancer cells were transfected with either CTCF 

expression vectors or siRNA against CTCF. Following CTCF over-expression and 

knockdown, changes in endogenous expression of ER and PR gene and protein 

expression were monitored by quantitative polymerase chain reaction (QPCR) and 

western blot analysis. 
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5.6 Results 
 

5.6.1 Restriction enzyme digest of CTCF plasmid expression vectors  
 

CTCF overexpression experiments were performed to assess the effect on ER 

expression of overexpressed CTCF. First, molecular weights (MW) of plasmid vectors 

used in overexpression experiments were assessed by Xho1 restriction enzyme digest 

to determine whether they matched the expected. Digested and undigested samples of 

plasmid DNA vectors were run on 1% TAE gel for 90 minutes at 120volts. The samples, 

impregnated with SYBR green, underwent electrophoresis and the gels viewed under 

ultraviolet light to detect DNA bands (see materials and methods, section 2.2.9.5). 

Shown in Figure 5.3A is the plasmid map for the CTCF pCI expression vector while 

Figure 5.3B revealed the restriction enzyme digest of the vector bearing the CTCF 

insert. Two bands running at >10kb and ~4kb were observed in the ‘undigested plasmid 

lane’ of the CTCF pCI gel run while the digested plasmid was observed at about 7kb in 

the ‘digested plasmid lane’. Figure 5.3C indicates that the expected molecular weight of 

the digested plasmid is 6.6kb while the observed weight is ~7kb. With respect to the pCI 

empty vector (EV), Figure 5.4A shows the plasmid map for the pCI EV while Figure 5.4B 

revealed the restriction enzyme digest of the vector. There are two bands, a faint one at 

~6kb and the second ~2.5kb in the ev pCI run in the ‘undigested plasmid lane’, while the 

‘digested plasmid lane’ revealed a band at ~5kb in keeping with the expected weight of 

5.47kb (figure 5.4C). These bands observed with the undigested plasmid are not 

unexpected as an uncut plasmid can assume multiple conformations ranging from the 

uncoiled to a supercoiled form that can migrate faster than a linear (cut) plasmid (Turner 

et al., 2005). It will therefore reveal different molecular weights on electrophoresis. 

Taken together, the observed values are in line with the expected molecular weights. 

The ~1.5kb difference in observed molecular weight between the digested products of 

the CTCF pCI and EV pCI vectors reflect the additional molecular weights of CTCF and 
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His tag on the CTCF pCI vector. In confirming that the molecular weights of the plasmids 

matched the expected, results were confidently attributed to the right plasmid.  
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Figure 5.4. Restriction enzyme digest of the pCI empty vector (EV). (A) Plasmid 

map of pCI EV; (B) restriction enzyme digest gel; (C) Expected and observed digest 

products. Molecular weights of the digested and undigested plasmid DNA are shown 

in (B) while the comparison of the observed and expected molecular weights of the 

digest product is annotated (C). 
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5.6.2 Optimisation of CTCF plasmid DNA overexpression assays in MCF7 cells 
 

To show the effect of CTCF alteration on ERα expression levels, CTCF plasmid DNA 

overexpression experiments were performed. It is essential to optimise all the steps in 

the transfection process as successful plasmid DNA transfection is dependent on cell 

type, DNA concentration, and transfection reagent type / volume and incubation periods. 

To determine effective plasmid DNA transfection conditions for MCF7 cells, performing 

multiple transfection assays using varying concentrations of plasmid DNA and 

transfection reagent volumes optimised CTCF overexpression assays. The incubation 

period post transfection remained constant at 48h according to the manufacturer’s 

instructions. 2.0 x 104 cells / ml of MCF7 cells were plated in each well of a 12-well plate 

and incubated to achieve at about 50 – 60% confluence. They were transfected with 

0.4µg, 0.8µg, 1.2µg and 1.6µg of CTCF pCI and negative control pCI empty vector (EV). 

Varying volumes (2µl to 4.5µl) of attractene transfection reagent were used for each 

plasmid DNA amount and cells were incubated for 48 hours in 5% CO
2
 at 37oC. Lysates 

were prepared after 48h incubation and proteins separated by SDS PAGE. Blotted 

membranes were probed serially with anti - CTCF (BD Biosciences, 0.5µg/ml), anti-ERα 

(MA 310, ThermoScientific, 5 µg/ml), anti ERα (Abcam, 2647, 1µg/ml) and mouse 

monoclonal anti-actin (1:2000 dilution) antibodies. A representative panel of CTCF 

overexpression using 0.4 to 1.2 µg of plasmid DNA and 2µl to 3µl of attractene is shown 

in figure 5.5. The figure revealed ~80% CTCF protein overexpression using 1.2 µg of 

plasmid DNA and 3µl of attractene. Shown also are extra protein bands at ~120kDa in 

the lanes with overexpressed CTCF which could suggest that the extra CTCF protein 

produced by the cell on CTCF overexpression included isoforms with different molecular 

weights. There was similar overexpression level obtained with 1.6µg of plasmid DNA 

and 3µl of attractene (data not shown). Following CTCF overexpression, ERα 

expression was assessed using the two different anti ERα antibodies mentioned above 

and at up to three times the recommended concentrations. No ERα expression was 
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detected however at any of the CTCF transfection conditions. As protein expression was 

not achievable, further experiments studying gene expression were performed to 

determine whether CTCF overexpression had an effect on ER gene expression. Since 

higher quantities of transfected DNA can lead to unwanted activity at other gene loci 

(off-target effects) 1.2 µg of plasmid DNA (as opposed to 1.6 µg) transfected with 3µl of 

attractene and incubated for 48 hours, yielded the best transfection conditions with least 

potential toxicity for CTCF plasmid overexpression in MCF7 cells (figure 5.5). These 

conditions were used for further overexpression assays. 
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5.6.3 Assessment of siRNA transfection efficiency and experimental set up with 
the positive control cyclophillin siRNA 
 

Assessment of the effect of CTCF on ERα expression involved knockdown studies with 

siRNA. As with overexpression studies, successful RNA interference (RNAi) 

experiments are dependent on cell type, siRNA concentration, and transfection reagent 

type / volume and incubation periods. First however, adequacy of the experimental 

process had to be confirmed. To test siRNA delivery and RNA knockdown efficiency in 

MCF7 cells, siRNA knockdown assays were performed using the positive control 

cyclophillin B siRNA. The cyclophillin B gene is a reference gene and the siRNA 

targeting it is validated and guaranteed to knockout the gene. The absence of knockout 

using this siRNA would suggest a faulty experimental set up. MCF7 cells were plated at 

1.33 x 10 5 cells / well in a 12 well plate and transfected with cyclophillin B siRNA at 50 

pmol and 250 pmol concentrations using 2.66µl of DharmaFECT 1 as transfection 

reagent. Transfected cells were incubated over 48h and 72h to determine the best 

incubation period. As shown in Figure 5.6A, compared to the non target control, MCF7 

cells revealed about 40% - 50% knockdown in cyclophillin B protein expression at 48h 

compared to about 80% knockdown at 72 hours noted in figure 5.6B. There is upwards 

of about 20-30% decrease in cyclophillin protein expression with the nontarget siRNA 

compared to untreated cells. Actin loading appeared uniform across the lanes. The 

findings confirmed that the transfection efficiency was high and that the experimental set 

up was optimal. 
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MCF7 
(48h)

MCF7 
(72h)

Cyclophillin B 
25kDa

42kDa

Cyclophillin B 
25kDa
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A

B

C

Figure 5.6. CTCF siRNA transfection efficiency in MCF7 cells with 

cyclophillin B positive control. Transfection efficiency assessed by extent of 

CTCF protein knockdown effect at is shown revealing about 40% - 50% CTCF 

protein knockdown at 48h incubation and ~80% knockdown at 72 hours 

incubation. Actin loading appears similar. 



175 
 

5.6.4 Optimisation of CTCF siRNA knockdown assays in MCF7 cells 
 

Having shown high transfection efficiency for MCF7 cells using cyclophillin siRNA and 

confirming the adequacy of the experimental set up (figure 5.6), siRNA optimisation 

experiments were performed using different CTCF siRNA concentrations and incubation 

periods to determine optimum siRNA transfection conditions for CTCF in MCF7 cells. 

Transfection reagent type and volume was limited to the manufacturer’s 

recommendation for the MCF7 cell line. siRNA knockdown assays were performed with 

50, 100 and 250 pmol respectively of CTCF siRNA and negative control non target 

siRNA using 2.66µl of DharmaFECT 1 transfection reagent for each well of a 12 well 

plate. Cells were incubated over 48h and 72h respectively. Lysates were prepared and 

proteins separated by SDS PAGE and blotted membranes probed serially with anti-

CTCF (BD Biosciences, 0.5µg/ml dilution), anti-ER (MA 310, ThermoScientific, 5µg/ml), 

anti ER (Abcam 2647, 1µg/ml) and mouse monoclonal anti-actin (1:2000 dilution) 

antibodies. The results in figure 5.7 A, showed virtually no knockdown effect using 

50pmol and 100pmol of CTCF siRNA at 48h incubation. When the experiments were 

repeated and incubation extended to 72h, there was about 90% knockdown of CTCF 

protein expression compared to the nontarget and untreated MCF7 cells (figure 5.7 B). 

Blotted membranes were repeatedly probed with anti-ER antibody – as also done with 

the overexpression studies in section 5.6.2 - to determine whether the demonstrated 

CTCF protein knockdown effect had any impact on ERα protein expression. 

Surprisingly, no bands were visualised despite using up to three times the 

manufacturer’s recommended anti-ER antibody concentrations and with upwards of 

50µg of cell lysate. This lack of visualisation was evident for both siRNA and nontarget 

control samples.  As protein expression was not achievable due to possible technical 

issues with the anti ER antibodies, further experiments studying gene expression were 

performed to determine whether CTCF knockdown had an effect on ER gene 

expression. The combination of 250pmol of CTCF siRNA, 2.66 µl of DharmaFECT 1 
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transfection reagent, and 1.33 x 10
5 
MCF7 cell density in a single well of a 12 well plate, 

incubated for 72 hours, therefore served as the optimal conditions for CTCF siRNA 

knockdown experiments. 
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5.6.5 Effect of transfection agents and reagents on MCF7 cell growth and viability 
 

In a monolayer, progressively increasing cell confluence indicates cell growth and 

viability (Baydoun, 2010). Growth in turn is important in gene expression studies, as 

cells need to be dividing to take up nucleic material and respond appropriately to its 

internalisation. CTCF is essential to cell function and alterations in the expression levels 

could affect cell viability.  To determine therefore that MCF7 cells were viable at the end 

of the transfection assays, cells were incubated with pCi CTCF, EV pCi, siRNA, and 

transfection reagents and observed over 48h to 72h. Using the transfection reagent 

manufacturer’s recommendations, MCF7 cells were plated at 2.0 x 10
4
 density for 

overexpression studies in four wells each of a 12 well plate and incubated overnight at 

37oC. On achieving 70 - 80% confluence, cells were respectively incubated with 1.2µg of 

CTCF pCI together with 3 µl of attractene (figure 5.8A), 1.2 µg of EV pCI with 3µl of 

attractene (figure 5.8B), 3 µl attractene only (figure 5.8C), and no treatment (figure 

5.8D). Transfection complexes and reagents were discarded at 12 h and replaced with 

complete medium. They were incubated for a total of 48 hours. The results in figure 5.8 

revealed considerable cell death manifested by cell rounding and loss of confluence 

(Baydoun, 2010) with the CTCF pCI (figure 5.8A) and somewhat less so with the EV pCi 

vector (figure 5.8B). There was no significant effect on cell confluence with attractene 

only (figure 5.8C) and about 90% cell confluence was observed with untreated MCF7 

cells at 48h (figure 5.8D). It is not clear why the empty vector pCi is associated with cell 

loss. Ectopic expression of CTCF has previously been shown to profoundly inhibit cell 

growth with and without apoptosis (Rasko et al., 2001; Qi et al., 2003).  

 

Further experiments to show the effect of CTCF siRNA and siRNA tranfection reagents 

on MCF7 cells were performed with cells plated at 1.33x10
5
 densities. Four wells of a 

12-well plate had MCF7 cells transfected respectively with 250 pmol of CTCF siRNA 
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plus 2.66 µl of DharmaECT 1 (figure 5.9A), 250 pmol of non target siRNA plus 2.66 µl of 

DharmaFECT 1 (figure 5.9B), 2.66 µl DharmaFECT1 only (figure 5.C) and no treatment 

(figure 5.9D). They were incubated for 72h at 37oC and had transfection complexes and 

reagents replaced with antibiotic-free medium at 12h. Results shown in figure 5.9 

demonstrated considerable cell death manifested by cell rounding and loss of 

confluence with CTCF siRNA with resultant 40% – 50% cell confluence at 72 hours 

(figure 5.9A).  The cells incubated with DharmaFECT 1 transfection reagent and non-

target siRNA only showed minimal cell rounding and about 80% confluence (figure 5.9B 

and C) while complete cell confluence was observed with untreated MCF7 cells at 72h 

(figure 5.9D).  

 

In order to assess the viability of transfected cells still stuck to the bottom of the well, the 

trypan blue cell viability assay was performed. There was a 96.4% and 95.7% viability 

detected for MCF7 cells after 48h and 72h transfection incubation respectively. These 

numbers suggested that cells remained viable post transfection allowing further 

downstream processes. 
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A) 1.2µg CTCF 
pCI

B) 1.2 µg 
pCI EV

C) 3µl    
Attractene

D) Untreated

MCF7

Overexpression
assays (48h)

Figure 5.8. MCF7 cell response to expression vectors and attractene 

transfection reagent. Shown are MCF7 cells transfected with 1.2µg of CTCF pCi plus 3 

µl attractene (A), 1.2µg of EV pCi plus 3 µl attractene (B), 3 µl attractene alone (C) and no 

treatment (D). The panels show the extent of cell confluence and cell rounding (indicating cell 

death) on treatment with significant cell loss in cells transfected with plasmid expression 

vectors. 
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C) 2.66µl 
DharmaFECT 1

A) CTCF siRNA 250 pmol

B) NonTarget siRNA 250 
pmol

MCF7

Knockdown 

assays (72h)

D) Untreated

Figure 5.9. MCF7 cell response to siRNA and DharmaFECT transfection 

reagent. Shown are MCF7 cells transfected with 250 pmol of CTCF siRNA using 2.66 µl 

DharmaFECT 1 (A); 250 pmol of non target siRNA using 2.66 µl DharmaFECT 1 (B); 2.66 µl 

DharmaFECT 1 only (C); and no treatment (D). The panels indicate the extent of cell 

confluence and cell rounding (indicating cell death) on treatment. 



182 
 

5.6.6 QPCR measurements of CTCF and ERα gene expression following plasmid 
overexpression and siRNA knockdown assays in MCF7 cells 
 

The previous sections of this chapter showed results obtained from CTCF 

overexpression and knockdown studies in MCF7 cells.  The results provided optimal 

conditions for CTCF overexpression and knockdown in MCF7 cells. Though sufficient 

CTCF protein overexpression and knockdown was achieved, the effect of that change 

on expression levels on ERα protein could not be determined by western blot analysis 

despite the use of various concentrations of different anti-ERα antibodies. In order to 

further assess the effect of CTCF on ER α, gene expression studies were performed 

using QPCR following transfection of MCF7 cells with plasmid expression vectors and 

siRNA.  

It has recently been identified that there was significant issue with the quality of some 

QPCR data published in the literature with respect to reproducibility and accuracy. 

These concerns led to the development of the Minimum Information for Publication of 

Quantitative Real-Time PCR experiments (MIQE) guidelines to direct and define 

minimum data required to publish reliable QPCR results (Bustin et al., 2009). The 

accuracy and thoroughness of the processes upstream in the QPCR process all affect 

the quality and reproducibility of results. These upstream processes include RNA 

quantity and quality verification, primer secondary structure assessment, replicate 

consistency, standard curve calculation of primer efficiency, single peak melting curves 

of primers and linear range estimates of cDNA dilutions. The sections below described 

results of these experiments starting from the quality of RNA extracted from CTCF 

overexpressed and knockdown MCF7 cells through assessment of the adequacy of 

primer structure, melting points, standard curves to the actual QPCR experiments.  
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5.6.6.1 Bioanalyser and Nanodrop estimation of RNA quality and concentrations 
 

RNA quality is one of the many determinants of reproducible and dependable QPCR 

assays. RNA is extremely fragile, degrades easily and is also readily contaminated 

(Fleige and  Pfaffl, 2006; Bustin et al., 2009). Using optimised conditions for CTCF 

overexpression and siRNA transfection summarised in sections 5.6.2 and 5.6.4, MCF7 

cells were transfected. In order to determine CTCF and ERα mRNA expression following 

plasmid overexpression and siRNA knockdown by QPCR, transfected cells first 

underwent RNA extraction, were treated with DNAse to remove possible contaminating 

genomic DNA and analysed for RNA concentration and quality. Aliquots of 1.5 µl and 1 

µl of extracted RNA were used to determine concentration and quality according to the 

manufacturer’s instructions using the Nanodrop spectrometric machine and Agilent 

Bioanalyser hardware respectively.  As shown in figure 5.10, using the Agilent 

bioanalyser two clear bands that represent the 18S and 28S ribosomal proteins were 

apparent. There were no extra bands suggesting that there were no contaminating 

nucleic acids in the samples. Figure 5.11 showed the electropherograms from the 

bioanalyser and confirmed the18S and 28S RNA by having only two peaks in all the 

samples. The electropherograms are generated by the bioanalayser by plotting the 

intensity of fluorescence with size / migration time of the RNA in each sample. The 

bioanalyser was also used to estimate the RNA integrity number (RIN) of the samples. 

RNA integrity number (RIN) of 8 and over is taken as good quality with a value of 10 the 

highest possible quality (Schroeder et al., 2006). Table 5.1 showed that the lowest RIN 

in the extracted RNA samples was 9.4 in the knockdown sample with CTCF siRNA. 

Indeed the untreated MCF7 cell sample achieved the maximum of 10. This result 

suggested that RNA used for the QPCR experiments were of pure quality with no 

significant contamination or degradation. This conclusion was further confirmed by the 

260 / 280 absorbance ratio determined by the Nanodrop spectrometer (table 5.1) where 

the lowest absorbance ratio for this study was 1.93 in the sample with EV pCi. A reading 

http://www.refworks.com/refworks2/?r=references|MainLayout::init
http://www.refworks.com/refworks2/?r=references|MainLayout::init
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of between 1.8 and 2.0 is considered a pure nucleic acid material (Fleige and  Pfaffl, 

2006). Finally, RNA concentrations were estimated using the Nanodrop spectrometer 

and are also listed in table 5.1. 
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Figure 5.10. Densitometry plot of RNA quality assessment using the Agilent 

Bioanalyser.  Representative Figure showing RNA quality assessment performed with the 

Agilent Bioanalyser. CTCF pCI (lanes 1 and 2), EV pCI (3 and 4), attractene only (lanes 5 

and 6) and untreated cells (lanes 7 and 8) were assessed for RNA quality. 1µl of extracted 

RNA for each treatment was subjected to analysis using the Agilent Bioanalyser and 

samples were loaded in duplicate (see materials and methods, section 2.2.8.2). Sample 

lanes 1 to 8 show only two clear bands that represent the 18S and 28S ribosomal protein 

fractions. A lane with only two bands indicate pure uncontaminated and un-degraded RNA 

sample. The green band at the bottom of all the lanes represents an internal standard used 

to align data from the ladder and the sample lanes. The alignment compensates for drift 

effects associated with a chip run. 

      1                   2                   3                 4                   5                   6                 7              8 
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EV pCiCTCF pCi

Untreated  cells

CTCF siRNA Non target siRNA

Ladder 

Figure 5.11. Spherograms of RNA quality assessment using the Agilent 

Bioanalyser. Spherograms of RNA quality assessment of treated (CTCF pCI, EV 

pCI, CTCF siRNA and non target siRNA) and untreated MCF7 cells shown in 

Figure 5.10 are represented here. The RNA fragment peaks (first peak from the left 

is 18S and second peak 28S) in the graphs represented the ribosomal bands noted 

in the densitometry plot of Figure 5.10.  
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Sample identity RNA concentration 

ng / µl 

Nanodrop 

260 / 280 ratio 

Nanodrop 

RIN 

Bioanalyser 

CTCF pCi  840  1.94  9.90  

EV pCi  881  1.93  9.80  

CTCF siRNA  355.4  1.97  9.40  

Non target 
siRNA  

360.6  1.98  9.90  

Untreated MCF7 
cells  

880.9  1.99  10.0  

Table 5.1. Bioanalyser and Nanodrop spectrometric estimation of RNA 

concentrations and purity.  Bioanalyser estimate of RNA quality is shown by the RNA 

integrity number (RIN) for each sample. Also shown is the Nanodrop estimation of RNA 

purity and RNA concentration. A pure RNA sample is acceptable as having a 260 / 280 

OD ratio of 1.7 to 2 and a RIN of at least 8 out of 10.  
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5.6.6.2 DINAmeltR prediction of secondary structures of primer pairs for QPCR 
 

Correct primer annealing is essential for QPCR processes and efficient primer 

amplification can be prevented by extended nucleic acid secondary structures (Shipley, 

2013). In order to determine the extent of secondary structures in the primers (kindly 

generated by F Docquier, Essex University) used for QPCR, two state melting 

(hybridization) prediction was performed using the DINAmelt software. The software 

assesses nucleic acid interactions and predicts melting, folding and hybridisation. 

Forward and reverse sequences of all primers used for QPCR were entered into the 

Two-state melting (folding) section of the DINAmelt software and assessed at 

temperature = 55C, magnesium = 5nH, sodium (Na) = 50nH for RNA folding pattern 

(Markham and Zuker, 2005). As shown in figures 5.12 and 5.13, none of the primers 

possessed an exaggerated secondary structure. This result predicted that there would 

be minimal primer interference in qPCR assays. 
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CTCF primer pair 
        

ERα primer pair  

Figure 5.12. Nucleic acid primer pair fold pattern for CTCF and ERα primer pairs.  

Forward and reverse primers for CTCF and estrogen receptor (ER) α primers were 

assessed for fold pattern using the DINAmelt
R 

software. The simulated fold pattern was 

assessed at a temperature of 55C with 5nH magnesium level and sodium at 50nH. The 

predicted secondary protein structures are shown and indicate that there is minimal 

secondary structure formation between the primer pairs. 
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TBP primer 
 

GAPDH primer 
  

Figure 5.13. Nucleic acid primer pair fold pattern for TBP and GAPDH primer 

pairs. Forward and reverse primers for the reference genes Tata box protein (TBP) 

and glyceraldehyde 3 phosphate dehydrogenase (GAPDH) were assessed for fold 

pattern using the DINAmelt
R 

software. The simulated fold pattern was assessed at a 

temperature of 55C with 5nH magnesium level and sodium at 50nH. The predicted 

secondary protein structures are shown and suggest that there is minimal secondary 

structure formation between the pairs. 
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5.6.6.3 QPCR assay optimisation: linear range and dilution factor for cDNA 
 

The level of cDNA dilution for QPCR amplification is important as it determines the 

shape of the amplification curve and has an impact on Cq values. The Cq level refers to 

the cycle number at which the doubling of cDNA template goes past a threshold and 

enters the logarithm phase. If a cDNA sample is too dilute, it could give spuriously high 

Cq values as the cDNA template concentration would be iatrogenically low and would 

need more doubling cycles to achieve a level that would go past the threshold and enter 

the logarithm phase. To achieve uniformity, the same dilution factor was applied across 

all cDNA samples. To determine the best cDNA dilution for qPCR assays, the linear 

range (cDNA dilution factor) for MCF7 cells was therefore assessed. Untreated MCF7 

cDNA reverse transcribed from 1µg of RNA was serially diluted to achieve 1:1, 1:5, 1:25 

and 1:125 dilutions. A GAPDH primer pair was used for amplification. In the 

amplification plot shown in figure 5.14, there was a sequential increase in Cq value 

indicating a progressively diminishing amount of starting material as expected with 

increasing sample dilution. The shape of the amplification curve determines the best 

cDNA dilution factor and as seen in figure 5.14, the 1:5 dilution represented the best fit 

as samples which are too concentrated have S shapes while the overdilute samples 

may have no shape at all. A dilution factor of 1:5 for all cDNA samples was therefore 

used for the QPCR experiments. The melt peak curves in figure 5.14 revealed single 

peaks indicating that the QPCR assay demonstrated specificity. Table 5.2 showed that 

the change in Cq (ΔCq) value for respective fold dilution was 1.21, 1.78 and 2.16.  A 

perfect biological system with 5-fold dilutions would show a consistent ΔCq of 2.23 

(2n=5). 
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Cell 
line 

Primer  Dilution 
factor 

Cq values 
(duplicate) 

Cq mean + SD Melting 
temp 
(C) 

MCF7  GAPDH  1:1  16.05  16.10 + 0.07  82.00  

MCF7 GAPDH 1:1  16.15    

MCF7 GAPDH 1:5  17.30  17.315 + 0.02  81.50  

MCF7 GAPDH 1:5  17.33    

MCF7 GAPDH 1:25  19.03  19.095 + 0.092  81.50  

MCF7 GAPDH 1:25  19.16    

MCF7 GAPDH 1:125  21.21  21.255 + 0.063  81.50  

MCF7 GAPDH 1:125  21.30    

Table 5.2. Tabular annotation of Cq values of amplification plots for linear range. 

The Table shows Cq values expressed as mean + SD together with the difference in Cq 

values between duplicates as shown in figure 5.14. The narrow differences in 

duplicates suggested accurate pipetting. Also shown is the single DNA melting DNA 

temperature at different cDNA dilutions indicating that the nucleic acid material was not 

contaminated. 
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5.6.6.4 QPCR optimisation: standard curves and melting curves. 
 

An accurately validated QPCR assay is determined by the combination of a linear 

standard curve with an amplification efficiency of 90 – 105%, slope of -3.9 to -3.0 and 

R^2 value >0.98  (all influenced by replicate consistency) and single peak melting 

curves (Bustin et al., 2009). The standard curve is a tool used to assess efficiency and 

sensitivity of QPCR assays. In effect, it tests the ability of the QPCR set up to 

consistently double nucleic material with each temperature cycle. Efficiency is 

mathematically calculated from the slope of the curve. The R^2 value assessed the fit 

between experimental data and the regression line of the standard curve and shed light 

on the variability between sample replicates. It also gave an indication as to whether 

different starting template numbers possessed similar amplification efficiency. 

The standard curve for QPCR experiments performed in this thesis was determined 

using serial log dilutions (1:1, 1:10, 1:100, and 1:1000) of untreated MCF7 cDNA. Using 

CTCF, ERα, GAPDH and TBP primer pairs the associated cDNA was amplified in 

untreated MCF7 cells. Figure 5.15 showed that the standard curve for the CTCF primer 

pair (A) was linear and demonstrated a slope of -3.369, R^2 of 0.986 and efficiency of 

98.1%. The ERα primer pair demonstrated a slope of -3.406, R^2 of 0.996 and efficiency 

of 96.6%; GAPDH primer pair had a slope of -3.343, R^2 of 0.996 and an efficiency of 

95.5%; and TBP primer pair showed a slope of -3.367, R^2 of 0.987 and efficiency of 

98.2%. These values were within expected limits of an accurately optimised QPCR 

assay. Further inspection of Cq values for each log dilution of the GAPDH primer pair, 

revealed absolute Cq values of 18.5, 22.25, 25.89 and 28.73 respectively for the neat, 

1:10, 1:100 and 1:1000 dilutions. These values represented Cq difference of 3.75, 3.64 

and 2.82 between the log dilutions. Perfect biological systems would generate a 

constant Cq difference of 3.2 (2n=10) between respective log dilutions (10 fold). As 

previously observed in section 5.6.6.3 using 5-fold dilutions, the results shown here 
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however confirmed that the fidelity for each replication is not consistently 100% perfect 

for each cycle emphasising that these systems are not perfect. Values obtained with the 

slope, efficiency and R^2 in the standard curve which all fell within normal limits in this 

thesis represented a rigorously and accurately optimised QPCR assay. Standard curves 

were subsequently performed for each experimental sample that underwent QPCR.   

Further validation of the reliability of the QPCR assays was provided by the peak melting 

point. This factor described the temperature at which double stranded DNA (dsDNA) 

dissociates into single stranded DNA (ssDNA) and is associated with a fall in 

fluorescence. Nucleic acids of different lengths and sequences produce different peak 

melt points. Therefore a single melt peak indicates the presence of a specific nucleic 

acid product from a specific primer pair and therefore tests the specificity of the QPCR 

reaction. The results in the melt peak plots of figure 5.16 confirmed that only the specific 

CTCF, ERα, TBP and GAPDH cDNA were amplified by their respective primer pairs and 

that there was no contamination with other nucleic acid material. Taken together, the 

results shown in Figures 5.15 and 5.16 indicated that the primers, QPCR hardware, 

cDNA dilution factor and pipetting accuracy for the set of QPCR experiments were of 

optimum standard and met MIQE guidelines (Bustin et al., 2009). 
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A. CTCF 

B. TBP 

B.  ERα 

Figure 5.15. Standard curves for QPR efficiency. MCF7 cDNA was reverse 

transcribed from 1µg of RNA and serially diluted 10 fold from neat to 1:10, 1:100 and 

1:1000. Samples were amplified by QPCR with (A) CTCF, (B) ERα and (C) GAPDH 

and (D) TBP primer pairs using Kapa mastermix. The reaction efficiency, slope and 

R^2 values for each primer is indicated in the box for each graph. The values were 

within expected ranges for an accurately optimised QPCR assay. 
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      Figure 5.15 continued 
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CTCF 

Estrogen Receptor α (ERα) 

Figure 5.16. Assessment of QPCR replicate consistency and melting curves. MCF7 

cDNA (reverse transcribed from 1µg of RNA) at 1:5 dilution was amplified in duplicates by 

QPCR using CTCF, estrogen receptor (ER) α, TATA box protein (TBP) and GAPDH primer 

pairs respectively. The amplification curve indicating replicate consistency for each primer 

pair is shown. Also shown is the single peak melting point for each primer pair indicating the 

absence of nucleic acid contamination.  

TBP 

GAPDH 
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5.6.6.5 Variation in CTCF mRNA expression and ERα expression response in 
MCF7 breast cancer cells 
 

As mentioned by Ross-Innes et al. (2011) and suggested by the mass spectrometry 

results in chapter 3 of this thesis, CTCF appeared to possess greater interaction in ER 

positive breast cancer cell lines compared to ER negative breast cells. While higher 

levels of exogenous estrogen downregulated CTCF expression (Del Campo et al., 

2014), it is not clear what direct effect changes in CTCF gene expression levels may 

have on ERα gene expression in ER positive breast cancer cell lines. In order to 

determine the impact of CTCF gene expression level on ERα expression, MCF7 cells 

(ER / PR positive) were subjected to CTCF plasmid overexpression and siRNA 

knockdown. For overexpression assays, MCF7 cells were transfected with the 

expression vector CTCF pCI and an empty vector negative control (ev pCI). cDNA was 

transcribed from 1ug of RNA extracted from overexpressed MCF7 cells and subjected to 

QPCR. The results in table 5.3 and figure 5.17 showed that CTCF overexpression fold 

change (that is, the difference between CTCF pCI and EV pCi) of 16.08 was associated 

with a fold change of -0.52 in ERα gene expression. Further experiments were 

performed with CTCF siRNA and nontarget siRNA controls on MCF7 cells, which were 

incubated for 72 hours. The results in tables 5.4 and figures 5.18 showed that a CTCF 

knockdown fold change of 4.54 was associated with just -0.029 fold change in ERα 

mRNA expression level. The expression of reference genes GAPDH and TBP remained 

constant for both test material and controls in each set of experiments which indicated 

that the change(s) identified in CTCF and ERα expression were not due to variations in 

the general expression of RNA in the cells. 
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 Cq ±SD 

CTCF pCI 

Cq ± SD 

EV pCI 

Cq 
change  

Fold 
change  

CTCF  17.005 ± 0.0495  21.015 ± 0.0353  4.01  16.08  

ERα  21.5 ± 0.071  20.78 ± 0.0283  -0.72  -0.52  

GAPDH  17.425 ± 0.106  17.175 ± 0.064  0.25   

TBP  23.34 ± 0.14  22.745 ± 0.191  0.59   

Table 5.3: QPCR of plasmid vector overexpression assays, Cqs and fold 

change. Tabular annotation of Cq levels for mRNA expression and fold changes for 

CTCF and estrogen receptor (ERα) genes on MCF7 cells treated with CTCF 

expression vectors (CTCF pCI and empty vector pCI). The Cqs for reference genes 

GAPDH and TBP are also noted and the Cq change indicated whether the Cq 

difference between test sample (CTCF pCI) and control (EV pCI) was due to 

possible changes in cellular protein levels. A Cq change of less than 0.8 in 

reference genes is acceptable as no difference in gene expression levels. 



-2

0

2

4

6

8

10

12

14

16

18



202 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Cq ± SD 

CTCF siRNA 

Cq ± SD 

Non target 
siRNA 

Ct change Fold change 

 

CTCF 

 

24.06 ± 0.014 

 

21.945 ± 0.078 

 

2.11 

 

4.45 

 

ERα 

 

20.835 ± 0.219 

 

21.005 ± 0.007 

 

-0.17 

 

-0.029 

 

GAPDH 

 

18.45 ± 0.1697 

 

18.52 ± 0.0567 

 

0.07 

 

 

TBP 

 

23.68 ± 0.106 

 

23.455 ± 0.0778 

 

0.22 

 

Table 5.4: Cq values and fold change for CTCF siRNA knockdown assays. Tabular 

annotation of Cq levels for mRNA expression and fold changes for CTCF and estrogen 

receptor (ER) on MCF7 cells treated with CTCF siRNA and Non target siRNA. The Cqs 

for reference genes GAPDH and TBP indicated whether the Cq difference between test 

sample (CTCF pCI) and control (EV pCI) was due to possible changes in cellular protein 

levels. A Cq change of less than 0.8 in reference genes is acceptable as no difference in 

gene expression levels. 
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CHAPTER 6 

 

Discussion – Regulatory effect of CTCF on ERα expression 

There is a growing body of evidence suggesting a connection between CTCF and ERα 

with some publications reporting that CTCF and ER colocalised at estrogen response 

elements and that they both recruited similar corepressors such as HDAC to suppress 

gene transcription (Lutz et al., 2000; Kawai et al., 2003; Ross-Innes et al., 2011).  There 

also appeared to be a certain bias of CTCF interactions for ER positive breast cancer 

cells as opposed to the ER negative ones (Ross-Innes et al., 2011). This latter finding 

was supported by results described in chapter 3 of this thesis. This chapter therefore 

hypothesized that CTCF may directly regulate the function of ERα in ER-positive breast 

cancer cells. CTCF protein and gene expression levels were assessed following 

transfection with an overexpression vector carrying CTCF or by silencing CTCF gene 

expression using siRNA. Western blot analysis and QPCR were employed to monitor 

the effect of CTCF overexpression or knockdown on ERα expression at the mRNA and 

protein levels. If changes were observed, chromatin immunoprecipitation (ChIP) assays 

using anti-CTCF antibodies were to be performed and amplification of ER and PR genes 

would then be tested to check whether CTCF proteins bound directly to ER and PR 

promoters in vivo. If demonstrated, identification of the precise CTCF binding sites on 

ER and PR gene promoters was to be investigated by electrophoretic mobility shift 

assay (EMSA).  

The aim of this chapter was to determine protein and gene expression to establish 

whether CTCF regulated ERα expression. CTCF protein expression was readily 

demonstrated in all batches of untreated and transfected whole – cell MCF7 lysates by 

western blot. It was therefore somewhat surprising that while protein expression levels 

for ERα were determined for whole cell lysates as shown in figure 3.1, the same was not 

reproducible when cells underwent transfections. Anti ER antibodies obtained from 
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Abcam and ThermoScientific were used in this series of experiments. The monoclonal 

antibody to ERα obtained from Abcam was raised against a synthetic peptide 

corresponding to estrogen receptor alpha, amino acid 247-261, internal sequence 

EVGMMKGGIRKDRRG while the anti ERα antibody from ThermoScientific was also 

raised against a synthetic peptide corresponding to the residues E (247) V G M M K G G 

I R K D R R G (261) of the ERα DNA binding domain. The manufacturers confirmed that 

the antibodies were able to detect the corresponding antigen in MCF7 whole lysates a 

claim that was confirmed in figure 3.1.  Though the same quantity of cell lysate (25µg - 

50µg) recommended by the manufacturers was tested, the anti-ERα antibodies were not 

able to detect ERα protein on western blots after cells were transfected. The reasons 

behind this finding are not clear but could relate to poor antibody quality. Antibody 

quality however, would not fully explain the disparity in ERα detection between untreated 

and transfected whole cell MCF7 lysates as the antibodies detected ERα in untreated 

whole MCF7 lysates. It is interesting that transfection can result in unexpected 

morphologies and abnormalities in target cells and a possible result of those changes 

could be epitope masking. Masking of an epitope occurs due to a change in the 

conformation or electrostatic charge of an antigen, a situation that could supervene 

when cells are transfected. In support of epitope masking being a consequence of cell 

transfection is a report that studied the downregulating effect of a membrane-bound 

glycoprotein (GP) and described results obtained with its transfection in human 

embryonic kidney 293 (HEK293T) cells (Reynard et al., 2009).  In this paper, cells 

transfected with pCMLTrkA-GFP alone, showed a good correlation between the 

abundance of TrkA and GFP on flow cytometry. The authors, in effect, regarded GFP 

expression as a surrogate for TrkA presence and abundance. Next, in those cells 

cotransfected with phCMVGP and pCMLTrkA-GFP, about half of them while 

overexpressing GP and showing abundant GFP, revealed little TrkA expression on flow 

cytometry. Using confocal microscopy, the authors found that cells overexpressing GP 

revealed very low TrkA surface staining though high levels of TrkA-GFP remained 
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evident. Importantly, for those cells with moderate to no expression of GP, there was no 

effect on TrkA staining. The authors therefore concluded that epitope masking by 

overexpressed GP prevented the recognition of TrkA by its antibody. They however did 

not investigate the effect of protein knockdown to decide whether it was just the 

excessive amounts of protein present on overexpression or the non-specific effect of 

transfection that resulted in epitope masking. In agreement with the findings of Reynard 

et al. (2009), it could therefore be speculated that epitope masking was responsible for 

the lack of ERα detection on western blotting of transfected MCF7 cells noticed in the 

results described in chapter 5 of this thesis.  

On account of the inability to demonstrate ERα protein expression changes after cells 

were transfected, QCPR assays were performed to determine whether changes in 

CTCF gene expression affected ERα gene expression. As noted previously, accurate 

and reproducible QPCR results are highly reliant on adequate optimisation of such 

processes as RNA extraction, primer structure, and sensitivity and specificity of the 

reaction via standard curves and melting points. In this section of the thesis, plasmid 

expression vectors were carefully studied via maxipreparation and agarose gels 

electrophoresis. The plasmids were found to have a similar molecular weight to the 

expected. RNA extracted from transfected MCF7 cells was carefully assessed for quality 

and results fell well within acceptable levels as assessed by RIN using the Bioanalyser 

and the 260 / 280 ratio generated by spectrophotometry. All primers used in the 

experiments were tested to establish optimum performance with regards to their 

secondary structures. Using a bioinformatics tool, the primers were studied for 

secondary structures and found to have minimal folding confirming that there would be 

no primer interference with the annealing process. Careful pipetting was performed and 

the narrow difference between replicates (<0.8 Cq change) was evidence for replicate 

consistency. Linear range was determined to give guidance on the cDNA dilution range 

optimum for the experiments. The standard curves showed good efficiency for QPCR 
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doubling of template material as reactions were within the recommended range using 

CTCF and ERα primer pairs. Also of importance was the consistently single peak 

melting curves that showed a high degree of specificity for particular nucleic acid and 

primer pair combinations. Taken together, the results conformed to recommended MIQE 

guidelines and therefore gave a high degree of robustness to the data generated.  

It is well recognised that there is often a disparity between protein expression and 

mRNA levels for many proteins as translation and post translational modifications could 

affect the total amount of protein generated for each mRNA (Gygi et al., 1999; Newman 

et al., 2006). In this thesis, an increase in mRNA expression for CTCF (table 5.3) was 

associated with a rise in CTCF protein expression (figure 5.5). Conversely, a fall in 

CTCF mRNA (Table 5.4) was reflected in low CTCF protein levels (figure 5.7B). This 

pattern of mRNA and protein expression levels is in agreement with Newman et al. 

(2006) who used DNA microarrays to detect changes in mRNA levels in yeast cells 

grown in different media. The authors noted that both mRNA and protein expression 

level changes occurred in the same direction and even in those cases in their report, in 

which mRNA expression did not tally with protein expression, further experiments with 

QPCR found that there had been errors in the DNA microarray data. Noteworthy in 

thesis however, is the discrepancy in the extent of CTCF mRNA fold change relative to 

the protein expression change. As shown in figure 5.5, a ~70% CTCF protein 

overexpression was associated with a 16.08-fold mRNA upregulation (table 5.3). 

However, ~80% - 90% CTCF protein knockdown (figure 5.7) was apparently due to only 

a 4.54 fold decrease in CTCF mRNA expression (table 5.4). While it may seem 

surprising, this apparent discrepancy in the extent of mRNA knockdown relative to the 

associated protein expression change is not without precedent. Taiguchi et al. (2011) 

quantified mRNA levels with single molecule fluorescence in situ hybridization (smFISH) 

and RNA sequencing (RNA-seq) and constructed an imaging algorithm with a 

microfluidics device to determine single cell protein concentrations in E. coli. In 
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explaining the near-zero correlation between mRNA and protein expression levels in 

their results, they observed that mRNA and protein possess different life spans, with 

protein levels reflecting an accumulation of activity over cell cycles while mRNA levels 

reflecting minute to minute changes. This could explain the disparity in the extent of 

CTCF mRNA knockdown fold change relative to the protein expression knockdown. 

The results obtained however indicated that there was no direct regulatory effect of 

CTCF mRNA expression on ERα gene expression as neither a 16.08-fold 

overexpression of CTCF mRNA nor a 4.54-fold knockdown of CTCF mRNA had any 

discernible effect on ERα mRNA expression levels. To the best of current knowledge, 

this is the first study that has attempted to determine a possible direct regulatory effect 

of CTCF gene expression change on ERα gene expression. Despite the previously 

described mutual interactions between CTCF and ERα (section 5.3), it is interesting, 

based on the results of chapter 5 in this thesis, that CTCF did not directly regulate ERα 

activity in the ER-positive MCF7 breast cancer cell line. This disparity could relate to the 

fact that the report of Ross-Ines et al. (2011) was based on bioinformatics and may not 

reflect biologically significant endogenous interactions. Also the report of Kawai et al. 

(2003) involved overexpression of HDAC1 that could result in nonbiological interactions 

as the protein in question is grossly exaggerated in the cell. Moreover, the latter authors 

did not examine the opposite effect (HDAC1 knockdown) to determine whether the 

converse was true for the interaction they found and they did not investigate a direct 

endogenous effect of CTCF on ERα expression.  

Clearly, as shown in section 1.13 there is a complicated network of communication 

between CTCF and ERα. This network as suggested by the results described in this 

thesis including the mass spectrometry data analysed in Chapter 3 appeared to be 

indirect possibly mediated by EGFR signalling. 
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CHAPTER 7 

 

Final discussion and conclusions 

CTCF is a protein factor possessing 11 zinc fingers and capable of binding multiple DNA 

domains and in this way is able to exert an extensive array of intracellular effects. A 

130kDa isoform had previously been discovered to be present in breast cancer tissue 

but not in normal breast tissue and a lower expression level of this isoform in patients 

with breast cancer was associated with worse prognostic indices (Docquier et al., 2009). 

The mechanism(s) through which this CTCF isoform exerted its effects in breast cancer 

however is not known. There had previously been a suggestion that CTCF could be a 

proliferation factor based on its activity in primary cultures (Docquier et al., 2009) 

therefore one of the aims of this thesis was to study the mechanistic involvement of 

CTCF in breast cancer via a possible association with other proliferation factors (Ki67 

and PCNA) implicated to varying extents in the breast cancer phenotype. Furthermore, 

based on the predilection of CTCF for ER+ breast cancers, the thesis explored a 

possible direct regulatory relationship between CTCF and the estrogen receptor α. 

Breast cancer cell lines possessing different hormone receptor (ER / PR) and HER2 

profiles and different invasive potential and representing different biologic forms of the 

human disease were used to assess the mechanisms that governed CTCF action. The 

cells were investigated via indirect immunofluorescence to determine whether CTCF 

and the Ki67 / PCNA colocalised in the nuclei of breast cancer cell lines. Further 

experiments using immunoprecipitation, co-immunoprecipitation and western blotting 

were performed to assess physical binding between colocalising proteins. The findings 

from immunoprecipitation experiments were then confirmed with open label liquid 

chromatography / mass spectrometry (LC – MS / MS) assay. Based on previously 

published association between CTCF and estrogen receptor, and in combination with 

results from mass spectrometry in this thesis, further experiments were performed to 
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determine whether CTCF had a direct regulatory effect on ERα expression. Cells of an 

ER+ breast cancer cell line (MCF7) were transfected with a CTCF plasmid expression 

vector and CTCF siRNA to overexpress and knockdown CTCF expression respectively. 

Western blotting was performed to determine ERα expression in relation to variation in 

cellular CTCF protein expression. Furthermore, CTCF plasmid and siRNA transfected 

MCF7 cells were subjected to QPCR after reverse transcribing cDNA from extracted 

RNA. ERα gene expression change was then determined. 

The results in this thesis revealed that CTCF-140 isoform, detected with a monoclonal 

antibody from BD Biosciences, was primarily expressed in the nucleolus of all the breast 

cancer cell lines studied. There was also some nucleoplasmic expression in the cell 

lines. Ki67 expression was mainly expressed in the nucleolus in all cell lines and PCNA 

expression though diffusely nucleoplasmic in all cell lines was also nucleoplasmic in the 

weakly invasive MCF7 and T47D cell lines. A clear nucleolar colocalisation between 

CTCF and Ki67 was observed in all breast cancer cell lines studied while colocalisation 

(also nucleolar) between CTCF and PCNA was seen in only the weakly invasive ER+ 

MCF7 and T47D cell lines. It is noteworthy that though all three proteins demonstrated 

nucleoplasmic expression, there was no colocalisation observed in this cellular 

compartment. The results pointed to a specific nucleolus-based activity for CTCF. Using 

western blotting and the monoclonal anti CTCF antibody from BD Biosciences, CTCF 

was found to be uniformly expressed in all cell lines studied though somewhat lower in 

the ER negative SKBR3 and MDA MB 231 cell lines. It was virtually not expressed in the 

normal luminal breast cell line LDM226. Indeed while Ki67 was expressed to a greater 

extent in the ER negative MDA MB 231 and LDM226 cell lines, PCNA expression was 

found to be less in these cell lines. It was not clear whether there was a reciprocal 

relationship between Ki67 and PCNA in these two cell lines. Though CTCF was 

successfully immunoprecipitated in all cell lines, there was no co-immunoprecipitation 

demonstrated with Ki67 and PCNA. Immunoprecipitated PCNA also demonstrated no 
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coprecipitation with CTCF or Ki67. In effect these experimental processes did not 

identify CTCF as being physically bound to either Ki67 or PCNA in these breast cancer 

cell lines. Furthermore and in contrast to previous reports, there was also no physical 

binding demonstrated between CTCF and both RNA pol II and PARP1 in breast cancer 

cell lines.  Confirmation of these results was provided by open label liquid 

chromatography - mass spectrometry which further showed no physical binding between 

CTCF and ER / PR. It would appear therefore that the involvement of CTCF in breast 

cancer may not be explained via mechanisms through which Ki67 and PCNA mediated 

the breast cancer phenotype. 

Careful inspection of the LC – MS / MS results however showed that CTCF bound with a 

high degree of certainty to three novel protein factors namely, general transcriptional 

factor 2 (GTF2), glucose related protein 78 (GRP78) and huntingtin interacting protein 1 

related (HIP1r). A rently published worked confirmed the CTCF–GTF2 interaction in a 

melanoma cell line. Examination of published work on these novel interacting proteins in 

tumorigenesis revealed that they had clear and extensive actions in epidermal growth 

factor receptor (EGFR) signalling. The association between CTCF and PI3K signalling 

(an EGFR signalling pathway) had previously been shown in a leukaemia cell line 

(Manavathi et al., 2012) and lent strong support to the findings in this thesis. This thesis 

is probably the first to demonstrate an association in breast cancer cell lines between 

CTCF and EGFR signalling through novel interacting protein factors. The general 

transcriptional factor 2 is a component of the core transcriptional machinery in the cell 

and this physical binding demonstrated with CTCF suggested that the function of CTCF 

as a possible transcriptional factor could be through a protein partnership with GTF2. 

The results in this thesis are the first to demonstrate this association.  

Further scrutiny of the mass spectrometry results showed that the novel CTCF protein 

partners were discovered in ER positive breast cancer cell lines. There is a known 

association between ERα and EGFR signalling and since mass spectrometry results 
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showed that CTCF was not physically bound to ERα, a possible direct regulatory effect 

of CTCF on ERα was therefore investigated. Overexpression and knockdown of CTCF 

in the hormone receptor positive MCF7 cells was associated with significant cell death 

confirming previous findings. Furthermore, both mRNA and protein expression moved in 

the same direction that is, a rise in mRNA was associated with an increase in protein 

expression and vice versa. Also, for some unclear reason, it appeared that CTCF 

transfection processes in MCF7 cells affected the ability to detect ERα protein 

expression on western blot assays. Importantly however, variation in CTCF mRNA 

expression did not reveal a change in ERα mRNA expression levels suggesting that 

CTCF did not directly regulate ERα mRNA expression in MCF7 cells. Again, this thesis 

could be the first to demonstrate this lack of direct regulatory effect of CTCF action on 

ERα expression.  

The findings in this thesis would suggest that CTCF mediated the breast cancer 

phenotype specifically in ER positive cell lines not through an indirect effect at ERα 

signalling but via direct interaction with novel partners that have clear activities on EGFR 

signalling. The results would also suggest that exploitation of the interaction between 

CTCF and these novel protein interacting partners in ER positive breast cancer could 

extend the impact of the subclassification of breast cancer.  

Much research and clinical trials have been performed trying to translate EGFR 

signalling interactions into druggable targets in breast cancer treatment but without 

much success (Masuda et al., 2012). The results in this thesis provided a specific 

direction for further investigation regarding how CTCF mediated the breast cancer 

phenotype and provided another direction in the search for druggable targets in the 

EGFR pathway for breast cancer management. Further research would therefore 

involve interrogating the exact relationship between CTCF and the multiple 

intermediates involved in EGFR signalling. 
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FUTURE DIRECTIONS 

 

Cancer cell lines represent a model for experimental investigation and do not resemble 

the de novo cancer environment as the impact and influence of tissue stroma and an 

individual’s innate immunity and psychological profile are lacking. This study needs to be 

performed on breast cancer tissue with different hormone receptor and HER2 

phenotypes to confirm these novel CTCF protein partners.  

 

The GTF2 – CTCF interaction with respect to EGFR signalling needs further 

investigation. There are multiple signalling pathways that stream from EGFR. It is 

needful to determine which particular path(s) the CTCF-GTF2 resides to further define 

that relationship.  
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APPENDIX 
1. Reagents 

Reagents Source Batch / lot number 

RPMI with L Glutamine Lonza E84010-1918 

Gentamicin PAA P00510-0560 

Fetal Bovine Serum (FBS) GIBCO 40F1043F 

TRIS Sigma 123K0181 

Urea Harnstoff 0918498 

2 beta Mercaptoethanol Sigma 34396CK 

Protogel 30 (Acrylamide) National Diagnostics 11 – 09 – 19 

TEMED Sigma 103K0656 

Ammonium persulphate Sigma 113K0656 

Sodium dodecyl sulphate (SDS) ACROS Organics A0271956 

Di-Sodium phosphate Sigma 108K0174 

Methanol Fisher 1012778 

Skimmed milk Marvel         - 

Tween-20 Sigma  038K0091 
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Citric acid Sigma 058K0033 

Dimethysulfoxide (DMSO) Sigma 034K0600 

Bovine serum albumin (BSA) fraction V Sigma A9647-10G 

Protein A Sepharose  Sigma 100M1421 

HEPES Fisher 074346 

NaCl Fisher 1153531 

Na*EDTA Fisher 1005265 

PMSF Sigma 054K2608 

RNAsin Fermentas 00082378 

NP-40 (Igepal) Sigma Batch 034K0005 

Sodium deoxycholate Sigma Batch 117K0124 

EDTA Acros Organics A016735801 

Pepstatin A Sigma 010M8610V 

PBS (phosphate buffered saline) Fisher 096292 

Glycin Fisher  1086538 

Coomasise blue Fisher Batch 9081 

NaOH Sigma Batch 034K0109 

Methanol Fisher 1154574 

Acetic acid Fisher Batch 1060086 

Triton X Acros Organics  A018186601 
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Sodium carbonate Fisher 1141962 

Formaldehyde Sigma F8775-25ML 

Silver nitrate Fisher Batch 1007845 

Sodium thiosulphate   Fisher Batch 086602 

Sodium acetate Fisher Batch 0890458 

DMSO Sigma 034K0600 

HiMark prestained protein standard Invitrogen 931966 

Low molecular weight prestained protein 

ladder 

NEB  P7703 

4',6-diamidino-2-phenylindole (DAPI) Thermo Scientific Product # 622428 

Developer (for Xray film) Sigma  011M1091 

Fixer (for Xray film) Sigma 120M1129V 

DharmaFECT 1 ThermoScientific  130820T 

Attractene Qiagen Lot 142358039 

RNA 6000 Nano dye Agilent Technologies 1345 

RNA 6000 Nano ladder Agilent Technologies 1345 

RNA 6000 gel matrix gel  Agilent Technologies 1345 

96 – well plate Applied Biosystems 4306737 

Turbo DNAse buffer (10x)  Ambion, USA 1202027 

Turbo DNAse (2U/µl)  Ambion, USA 1202019 

Kapa mastermix KapaBiosystems KM4101 
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RNAse - free water Fisher 127399 

DNase inactivation reagent Ambion, USA Lot 1202053 

Verso cDNA kit ThermoScientific 

(USA) 

00179194 

Trisure Bioline BIO-38033 

CTCF siRNA ThermoScientific 140324 

Non Target siRNA ThermoScientific 1534236 

Crosslink magnetic IP / co-IP kit  Pierce NE 1742 

Trypan blue (0.4%) Life technologies 
Cat 15250-061 

Hanks Balanced Salt solution (HBSS) Life technologies Cat 14025092 

 

 

 

 

 

 

 

 

 

 

 

http://www.lifetechnologies.com/order/catalog/product/14025092
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2. Buffers / Gels / solutions 

 

Buffers Composition 

Citrate buffer 10 mM citric acid  pH 6.0 (adjusted with NaOH) 

PBS / Glycin solution PBS x1 (Fisher 096292) + 100 mM Glycin (Fisher 1086538) 

2x lysis / loading buffer 

(1) 

0.1M Tris / HCl pH 6.8; 7M Urea; 4% SDS;  Phenol red dye (a 

pinch), 10% 2 β-mercaptoethanol 

2x lysis buffer (2) 1M TRIS / HCL pH 6.8, 10% SDS, glycerol, pinch of brilliant blue, 

1M dithiothreitol (DTT) 

Resolving buffer 1M Tris-HCl pH 6.8, 8.1%  Acrylamide / Bis solution, 0.1% SDS; 

10% ammonium persulphate (APS), TEMED 20ul for a 10ml gel 

solution. 

Stacking buffer 0.1 M Tris-HCl pH 6.8, 4%  Acrylamide / Bis solution, 0.1% SDS;   

10% Ammonium Persulfate 50ul for a 10ml gel; TEMED 20ul for a 

10ml gel solution 

Running Buffer 3g TRIS, 15g Glycin, 10ml 10% SDS 

Transfer Buffer 20 mM di-Sodium Phosphate pH 10-10.4; 0.05% SDS; 2% 

methanol 

Blocking Solution 5% Tween; 1% BSA (optional); 50mM Tris pH 8.5 (buffered with 

citric acid) 
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Washing Buffer PBS; Tween 0.05% 

PBS / Milk PBS, 3% dry milk powder 

High stringency IP 

buffer  

(IP lysis BUFFER 1) 

 BF1: 25 mM Tris/Hepes pH 8.0, 2 mM EDTA, 0.5% Tween, 

1mM PMSF, 10mM pepstatin 

 

BF2: 25 mM Tris/Hepes pH 8.0, 2 mM EDTA, 0.5% Tween, 

1mM PMSF, 10mM pepstatin, 0.5 M NaCl 

Medium stringency IP 

buffer 

(IP lysis BUFFER 2) 

LB-0.5: 50mM Tris/hepes pH 8.0, 0.5M NaCl, 2mM Na*EDTA, 1% 

NP-40, 1mM PMSF, 5 U/ml RNAsin. 

LB-0: 50mM Tris/hepes pH 8.0, 2mM Na*EDTA, 1mM PMSF, 5 

U/ml RNAsin 

IB: 50mM Tris/hepes pH 8.0, 0.2M NaCl, 2mM Na*EDTA, 0.5% NP-

40, 1mM PMSF, 5 U/ml RNAsin 

Low stringency IP 

buffer  

(IP lysis BUFFER 3) 

1M TRIS-HCL pH 7.4, 1% NP-40, 150 mM NaCl, 0.1M EGTA  pH 8, 

0.1M EDTA pH8, 1 mM PMSF, 2µg / µl Leupeptin, 2µg  /µl 

aprotinin, Na Fluoride,  

Na4P2O2 – sodium pyrophosphate, Na2VO3 – sodium orthovanadate  

Sensitizer for silver 

staining 

Sodium thiosulphate 2g; Sodium acetate 34g made up in IL of 

solution with ice cold ultrapure water. 

Silver nitrate 0.1% 1g silver nitrate in 1L of solution with ice cold ultrapure water 

Developer for silver 

staining 

Sodium carbonate 25g; Formaldehyde 37% - 200 µl; in 1L of 

solution with ice cold ultrapure water 
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Destain 40% methanol, 10% acetic acid, made up with distilled water 

1% Agarose in Tris-

Acetate-EDTA (TAE) 

1g of agarose powder in 100ml TAE buffer 

Luria broth (LB) 0.1% NaCl (Fisher, UK), 1% Bactotryptone (Fisher, UK) and 0.5% 

yeast extract (Fisher, USA) in distilled water.  

Luria agar 2% bactoagar (Fisher, USA) in LB. 

strip buffer composite 

solution  

4g SDS, 1.4ml β-mercaptoethanol, 1.51g TRIS in 200ml solution 

with distilled water 

Solution 1  Tris-HCl, pH 8; 10mM EDTA; 100 µg / ml RNAse A 

Solution 2  200 mM NaOH, 1% SDS 

Solution 3  3M potassium acetate, pH 5.5 
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3. Antibodies 

3.1 Primary antibodies 

Primary Antibody Supplier / 

Product number 

Application 

Rabbit polyclonal anti-Nter (N 

terminal) CTCF (CTCF Nter) 

In-house IF, WB 

Mouse monoclonal anti-human 

Ki67  

Vector VP-K452 

6001937 

IF, WB, IP 

Mouse monoclonal anti-PCNA Abcam 29 

960918 

IF, WB, IP 

Mouse monoclonal anti CTCF 

(CTCF BD) 

BD Biosciences,  

83171  

IF, WB, IP 

Rabbit polyclonal anti Ki 67 Abcam 833  

GR29500-1 

IF, WB, IP 

Rabbit polyclonal anti-CTCF 

antibody 

Millipore  

DAM 1772428 

IP, WB, IP 

Mouse monoclonal antibody to 

beta actin 

Abcam 8224 

GR14272-2 

WB 

Alpha RNA Pol II (N20) antibody Santa Cruz , SC-899 WB 
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Mouse anti PARP 1 antibody Enzo    ALX-210-302-R100 WB 

3.2 Secondary antibodies 

 

Secondary antibody Supplier / product number Application 

Goat anti-rabbit secondary 

antibody conjugated to FITC  

Abcam 6717 IF 

Goat anti-mouse secondary 

antibody (Ig H+L) conjugated to 

TRITC 

Southern Biotech 

K2007-Y957B 

IF 

Goat anti-mouse secondary 

conjugated to TRITC 

Southern biotech 1080-03 

A0011-Q141 

IF 

Goat anti-mouse secondary 

conjugated to FITC 

Southern Biotech 1070-02 

J5306 VM57 

IF 

Goat anti-rabbit (H &L) 

secondary antibody Horse 

Radish peroxidise (HRP) 

conjugated  

Ab 6721 

 

WB 

Goat anti-mouse secondary 

HRP conjugated 

Ab 6789 

GR23382-2 

WB 
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3.4 Biologic agents 

 

 

 

Biologic agent Supplier / product number Application 

Plasmids In - house Cell transfection 

E coli   DH5αTM  cells Life technologies Bacterial 

transformation 

siRNA  

(CTCF and Non target) 

ThermoScientific Cell transfection 
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4. QPCR primers 
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7.1 CTCF interacting partners identified in at least 2 breast cancer lines 

possessing 2 SC or more 

CASP14 caspase 14, apoptosis-related cysteine peptidase;  

GAPDH glyceraldehyde-3-phosphate dehydrogenase;  

C3 complement component 3; C3 plays a central role in the 

activation of the complement system 

HIP1R huntingtin interacting protein 1 related; Component of clathrin-

coated pits and vesicles, that may link the endocytic 

machinery to the actin cytoskeleton. Binds 3- 

phosphoinositides (via ENTH domain).  

ACLY ATP citrate lyase;  

DNAJC13 DnaJ (Hsp40) homolog, subfamily C, member 13  

PPP1R12A protein phosphatase 1, regulatory (inhibitor) subunit 12A 

CTCF CCCTC-binding factor (zinc finger protein);  

MCM6 minichromosome maintenance complex component 6;  

TF transferrin;  

GTF2H2 general transcription factor IIH, polypeptide 2, 44kDa; 

Component of the core-TFIIH basal transcription factor 

involved in nucleotide excision repair (NER) of DNA and, 

when complexed to CAK, in RNA transcription by RNA 

polymerase II. The N-terminus interacts with and regulates 

XPD whereas an intact C- terminus is required for a 

successful escape of RNAP II form the promoter (395 aa) 
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EIF4A1 eukaryotic translation initiation factor 4A, isoform 1;  

NPM1 nucleophosmin (nucleolar phosphoprotein B23, numatrin);  

UBTF upstream binding transcription factor, RNA polymerase I;  

TBC1D10C TBC1 domain family, member 10C; Inhibits the Ras signaling 

pathway through its intrinsic Ras GTPase-activating protein 

(GAP) activity.  

PABPC1 poly(A) binding protein, cytoplasmic 1;  

SNX18 sorting nexin 18;  

A2M alpha-2-macroglobulin;  

HSPA5 heat shock 70kDa protein 5 (glucose-regulated protein, 

78kDa);  

CAPRIN1 cell cycle associated protein 1 

CTNNB1 catenin (cadherin-associated protein), beta 1,  

FN1 fibronectin 1;  

NUMA1 nuclear mitotic apparatus protein 1;  

BSCL2 Berardinelli-Seip congenital lipodystrophy 2 (seipin) (462 aa) 

BAG2 BCL2-associated athanogene 2 

SERBP1 SERPINE1 mRNA binding protein 1 

COLEC12 collectin sub-family member 12;) 

Sep-09 septin 9; Filament-forming cytoskeletal GTPase (By similarity 
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 7.2 KEY to CTCF - interacting proteins in homo sapiens generated by STRING 

(Figure 3.19)  

SUZ12 suppressor of zeste 12 homolog (Drosophila); Polycomb group (PcG) protein, 

PARP1 poly (ADP-ribose) polymerase 1; Involved in the base excision repair (BER) 

pathway.  

NPM1 nucleophosmin (nucleolar phosphoprotein B23, numatrin); Involved in diverse 

cellular processes   

POLR2A polymerase (RNA) II (DNA directed) polypeptide A, 220kDa; DNA-dependent 

RNA polymerase]   

SIN3A SIN3 homolog A, transcription regulator (yeast); Acts as a transcriptional 

repressor.   

YBX1 Y box binding protein 1; Binds to splice sites in pre-mRNA and regulates splice 

site selection. 

POU5F1 POU class 5 homeobox 1 (360 aa) 

Oct-04 POU domain, class 5, transcription factor 1 (Octamer-binding transcription 

factor 3) 

PARG poly (ADP-ribose) glycohydrolase  

PARG99 Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) 

RAD21 RAD21 homolog (S. pombe); Cleavable component of the cohesin complex. 

SMAD3 SMAD family member 3; Transcriptional modulator activated by TGF-beta  

GATA1 GATA binding protein 1 (globin transcription factor 1) 

KCNQ5 potassium voltage-gated channel, KQT-like subfamily, member 5;  
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SYT8 synaptotagmin VIII; Not known.) 

ZMYND10 zinc finger, MYND-type containing 10  

SUMO2 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae) 

SMC3 structural maintenance of chromosomes 3; Involved in chromosome cohesion 

during cell cycle. 

CHD8 chromodomain helicase DNA binding protein 8; DNA helicase that acts as a 

chromatin remodelling 

SMC1A structural maintenance of chromosomes 1A; Involved in chromosome cohesion 

during cell cycle  

YY1 YY1 transcription factor; Multifunctional transcription factor  

WSB1 WD repeat and SOCS box-containing 1; Probable substrate-recognition 

component of a SCF-like ECS [...] (421 aa) 

KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1); Functions in nuclear 

protein import  

HIST2H2AC histone cluster 2, H2ac; Core component of nucleosome.  
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7.3 MCF7-specific protein partners with spectral count of 2 and over 

 DLD                                    dihydrolipoamide dehydrogenase;  

 HIP1R                                 huntingtin interacting protein 1 related 

 CDH1                                  cadherin 1, type 1, E-cadherin (epithelial);  

LGALS3BP                           lectin, galactoside-binding, soluble, 3 binding protein;   

MAPK3                                 mitogen-activated protein kinase 3;  

CTCF                                   CCCTC-binding factor (zinc finger protein 

ATP6V1A                             ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A;  

GTF2H2                               general transcription factor IIH, polypeptide 2, 44kDa;  

SLC25A4                              solute carrier family 25 (mitochondrial carrier; adenine 

nucleotide translocator  

HSPA4                                 heat shock 70kDa protein 4 (840 aa)  

CDKN2AIP                           CDKN2A interacting protein 

PCBP1                                 poly(rC) binding protein 1 

TBC1D10C                          TBC1 domain family, member 10C 

SNX18                                 sorting nexin 18 

PKM2                                   pyruvate kinase, muscle;  

CALR                                   calreticulin; Molecular calcium binding chaperone promoting 

folding 

MDH2                                   malate dehydrogenase 2,  

http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=976033&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=977940&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=978794&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=979033&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=979087&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=979298&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=980231&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=980301&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=980679&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=982610&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=kYOAjtAIUrko&node=982719&targetmode=proteins
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SRPR                                   signal recognition particle receptor (docking protein);  

XRCC5                                  X-ray repair complementing defective repair in Chinese 

hamster cells 5  

ROBO                                   Rho GTPase activating protein 1;  

SMARCA4                             SWI/SNF related, matrix associated, actin dependent 

regulator of chromatin  

VCP                                      valosin-containing protein;  

NCKAP1                                NCK-associated protein 1 

SMC3                                    structural maintenance of chromosomes 3  

DHX9                                    DEAH (Asp-Glu-Ala-His) box polypeptide 9 

RFC3                                    replication factor C (activator 1) 3, 38kDa;  

PFKP                                       phosphofructokinase, platelet (784 aa)  

EWSR1                                 Ewing sarcoma breakpoint region 1 

LDHA                                    lactate dehydrogenase A (332 aa)  

MDM2                                   Mdm2 p53 binding protein homolog (mouse);  
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7.4 T47D - specific protein partners with spectral count of 2 and over 

MAZ                                      MYC-associated zinc finger protein (purine-binding 

transcription factor);  

C3                                        complement component 3;  

HIP1R                                   huntingtin interacting protein 1 related;  

 APC                                     adenomatous polyposis coli; Tumor suppressor 

CDH1                                    cadherin 1, type 1, E-cadherin (epithelial);  

AXIN1                                   axin 1; Controls dorsoventral patterning via two opposing 

effects;  

CTCF                                    CCCTC-binding factor (zinc finger protein 

TF                                        transferrin 

LEF1                                    lymphoid enhancer-binding factor 1;  

CDH2                                   cadherin 2, type 1, N-cadherin (neuronal) 

GTF2H2                               general transcription factor IIH, polypeptide 2 

ERCC3                                 Excision repair cross-complementing rodent repair 

deficiency,  

NCSTN                                 nicastrin; Essential subunit of the gamma-secretase 

complex  

UBTF                                    upstream binding transcription factor, RNA polymerase I;  

TBC1D10C                           TBC1 domain family, member 10C 
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JUP                                      junction plakoglobin; Common junctional plaque protein.  

SNX18                                  sorting nexin 18; May be involved in several stages of 

intracellular trafficking  

GSK3B                                 glycogen synthase kinase 3 beta; Participates in the Wnt 

signaling pathway.  

HSP90AB1                            heat shock protein 90kDa alpha (cytosolic), class B 

member 1 

PSEN1                                  presenilin 1; Probable catalytic subunit of the gamma-

secretase complex,  

CDH5                                    cadherin 5, type 2 (vascular endothelium) 

CTNNB1                               catenin (cadherin-associated protein), beta1  

TFRC                                    transferrin receptor (p90, CD71);  

LONP1                                  lon peptidase 1, mitochondrial; Required for 

intramitochondrial proteolysis 

TCF7L2                                 transcription factor 7-like 2 (T-cell specific, HMG-box 

BTRC                                    beta-transducin repeat containing;  

CTNNBIP1                             catenin, beta interacting protein 1;  

KIF20A                                  kinesin family member 20A;  

CTNND1                               catenin (cadherin-associated protein), delta 1;  
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7.4 BT474 - specific protein partners with spectral count of 2 and over 

CASP14                                 caspase 14, apoptosis-related cysteine peptidase;  

C3                                          complement component 3  

HIP1R                                    huntingtin interacting protein 1 related  

LACRT                                   lacritin; Modulates secretion by lacrimal acinar cells (138 

aa)  

GTF2H4                                 general transcription factor IIH, polypeptide 4, 52kDa (462 

aa)  

CTCF                                     CCCTC-binding factor (zinc finger protein 

GRIA2                                    glutamate receptor, ionotropic, AMPA 2; Ionotropic 

glutamate receptor 

GTF2H2                                 general transcription factor IIH, polypeptide 2, 44kDa 

GGCT                                     gamma-glutamyl cyclotransferase 

GSDMA                                 gasdermin A; Induces apoptosis (445 aa)  

TBC1D10C                            TBC1 domain family, member 10C  

SNX18                                   sorting nexin 18;  

CR2                                       complement component (3d/Epstein Barr virus) receptor 2 

CFH                                       complement factor H 

CFI                                        complement factor I 
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7.5 MDA MB 231 - specific protein partners with spectral count of 2 and over 

GAPDH                                 glyceraldehyde-3-phosphate dehydrogenase 

C3                                        complement component 3;  

HIP1R                                  huntingtin interacting protein 1 related;  

GTF2H4                               general transcription factor IIH, polypeptide 4, 52kDa (462 

aa)  

THBS1                                 thrombospondin 1 

MED15                                 mediator complex subunit 15;  

CTCF                                   CCCTC-binding factor (zinc finger protein);  

GC                                       group-specific component (vitamin D binding protein);  

CTDP1                                 CTD (carboxy-terminal domain 

PAIP1                                  poly(A) binding protein interacting protein 1;  

PABPC1                              poly(A) binding protein, cytoplasmic 1;  

GLS                                    glutaminase 

G3BP1                                GTPase activating protein (SH3 domain) binding protein 1 

TGM2                                  transglutaminase 2   

SERBP1                              SERPINE1 mRNA binding protein 1 

PGK1                                  phosphoglycerate kinase 1  
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