
Scalable Level Generation for 2D Platforming
Games

Neall Dewsbury1, Aimie Nunn2, Matthew Syrett*3, James

Tatum2, and Tommy Thompson†3
1University of Derby, Derby, UK

2Table Flip Games Ltd, UK
3Anglia Ruskin University, Cambridge, UK

Proceedings of 1st International Joint Conference of DiGRA and FDG

©2016 Authors. Personal and educational classroom use of this paper is allowed, commercial use requires

specific permission from the author.

ABSTRACT

In this paper we present a model for procedural generation of 2D platforming levels, with the

aim to ensure content can be scaled as players progress. Levels are generated through use of

a two-phased generate and test approach, with the first reliant upon a grammar for generation

of activities, while the latter is focussed on the positioning of geometry. These methods are

made scalable courtesy of a budget-driven approach that limits the expressiveness of each

component. We investigate the effectiveness of this approach and the playable levels it can

generate for a 2D ‘infinite runner’ video game.

Keywords

procedural content generation, games, levels, 2D platformers

INTRODUCTION

In recent years procedural content generation (PCG) - the practice of asset and content cre-

ation through algorithmic processes - has found new purchase as an academic pursuit for

artificial intelligence algorithms. This new-found academic influence has placed emphasis

on the quality of content generated as well as the flexibility of the systems prescribed. Early

PCG research focussed on building systems that could create large amounts of content but

without real consideration for whether this content would prove of value or interest to a

player as their overall skills matured over time.

The issue of quality assurance for a generative system is paramount, given that generative

systems left to create content unsupervised may result in products that are incongruous to

the setting. This is even more pertinent when generated content is critical to the structure

of the game and may result in designers expressing specific constraints on the system. This

can be seen when considering the likes of levels in Spelunky (Mossmouth, 2009) in contrast

with ‘item drops’ in games such as Borderlands 2 (Gearbox, 2012) or level textures in Tiny

Wings (Andreas Illiger, 2011). Should a procedurally generated item or level texture prove

discordant with players expectations, they can decide to ignore them provided the game

maintains the promise of ‘better’ content in the future1. However, dysfunctional or discor-

dant levels may prove detrimental to a players overall gameplay experience, given that it

could inhibit a player’s progression and their enjoyment along with it.

*matthew.syrett@anglia.ac.uk
†tommy@t2thompson.com
1We adopt the term ‘better’ as representative of the subjective opinions of a typical player, rather than any

consensus of the authors derived from established metrics.



Quality assurance is not a solved problem by any means, but efforts have been taken to ad-

dress this through a variety of methods: assessing the levels of interaction between players

and generated content [8], extrapolating rules of human design to be used as part of the

generative process [4] and crafting autonomous critics based upon expected player perfor-

mance [11]. While this research is largely focussed on establishing player-driven and/or

modelled metrics, the focus of this paper is interested in managing these issues - initially

- from the generative system itself: managing not only the need to ensure a range of func-

tional, high-quality content but to also address the notions of variability and scale. This

allows not only for variety in the generative system, but content that can subsequently in-

crease in difficulty when placed within a games defined rules. This is particularly relevant

when dealing with the creation of gameplay spaces such as platformer or adventure games:

where we may wish for levels, dungeons, puzzles or monsters to be varied in their design

but gradually increase in challenge the longer we play - all the while ensuring they are func-

tionally sound. By managing scale - and in-turn challenge - in the generator, we can aim to

provide a sense of progression to the player while continuing to address the issues of variety

and functionality as expected.

To address these concerns, we focussed on the creation of a generative system for an in-

finite runner: a sub-genre of two-dimensional platforming games. Infinite runners, as the

name implies, require a generative system to continually make new content as the player

progresses. This content must also become increasingly challenging for players over time

and thus proves an excellent domain to initially explore our research interests. This paper

explores the creation of content for 2D platformers that can be constrained by designers

but without significantly impacting variability of the generated product. This is achieved

courtesy of adopting existing theories in level-generation: finding inspiration in research for

platformer-style games by Dahlskog & Togelius detailed in [4, 5] alongside work by Smith

and Whitehead in [19]. We adopt the grammar-driven generative approach of these works

and de-couple a given levels design or intent from its spatial construction: modelling the the

actions we wish for players to complete independent of how those same actions manifest

within the game world. The contributions of this paper are found within this multi-phase

approach, as it addresses our concerns regarding variability and scale by managing the to-

tal resource or ‘budget’ each component of the generative system has available to it. Thus

influencing the outcome of each phase of the generation process.

We begin by providing a general overview of the ‘infinite runner’ genre in an effort to fa-

miliarise readers with our problem space, followed by a short overview of relevant literature

in the areas of level generation and more specifically platforming levels. We provide an in-

depth description of the framework established that yields our scalable generative system as

well as some of the individual generators that are used within the system. This is followed

with an extensive analysis of the expressivity of the system under specific constraints and

parameter ranges and a discussion of the types of levels this system can produce.

INFINITE RUNNERS

Infinite runners are a sub-genre of platformer video games that adopt many core principles

while also introducing constraints both in terms of level design as well as gameplay me-

chanics. Platforming games, as typified by the likes of Super Mario Bros. (Nintendo EAD,

1985) and Sonic the Hedgehog (Sonic Team, 1991), challenge players to navigate an envi-

–2–



(a) Canabalt (Adam Saltsman,

2009)

(b) Jetpack Joyride (Halfbrick

Studios, 2011)

(c) Temple Run (Imangi Studios,

2011)

(d) Spider-Man: Unlimited

(Gameloft, 2014)

Figure 1: Examples of the ‘infinite runner’ adopting a side-scrolling (1a, 1b) or over-the-

shoulder (1c, 1d) perspective in which a player must run continually until failure.

ronment comprised largely of walkways, platforms and gaps built in a tiled fashion using

existing art assets. These are typically configured allowing for specific geometric features

such as valleys, stairs and chasms that challenge the player.

However, infinite runners distinguish themselves from traditional platforming games in two

key areas. Firstly, the number of actions and/or control axis available to players is reduced;

with a specific constraint in players not being in control of forward movement. This requires

players to time actions to avoid obstacles and gaps between platforms. Infinite runners typi-

cally adopt a side-scrolling or over-the-shoulder perspective in accordancewith the available

control axis. In the first instance (Figures 1a and 1b), players typically only need to time

jump actions, whereas in the latter (Figures 1c and 1d) the emphasis is on jumping as well as

left, right and down actions to dodge or slide underneath obstacles. A second key distinction

of infinite runners is that levels do not typically ‘end’. Instead the game world will continue

to expand so long as the player is still alive: increasing in challenge and providing smaller

periods of respite over time. Typically, a players final score is related to the distance they

have travelled. Given that we do not know in advance how long a player will continue to

progress, there is a requirement to automate this process.

For the purposes of this research, we adopt the use of Sure Footing (Figure 2) : a side-

scrolling infinite runner game developed by the authors using the Unity3D engine. Players

must navigate the generated terrain whilst avoiding an enemy that is chasing them from

behind. Atop these platforms are either items for the player to collect or obstacles that will

hinder player progress.

–3–



Figure 2: A screenshot of Sure Footing: an infinite runner game that acts as the problem

domain for this research.

RELATED WORK

There is a significant body of research that exists in the area of level generation in compu-

tational intelligence (CI) and artificial intelligence (AI) research. Within this considerable

amount of literature, the application of generative systems within platforming games is ar-

guably the most prominent. As such, we present a series of works that have inspired this

current phase of research, alongside some more prominent publications in the field. This is

aimed at establishing not only the inspirations for this research, but also to establish where

this work sits within this field of study.

Themost prominent body of research in platforming generation is associatedwith the game Su-

per Mario Bros. This has been achieved in a variety of forms, having achieved momentum

courtesy of the Mario AI Competition [21, 23] and the introduction of the level generation

track hosted between 2010 and 2012 [16]. The range of work contributed to the competition

varies between ‘classical’ artificial intelligence methods to more machine-learning driven

computational intelligence pursuits. In each instance, the system is reliant on a series of

metrics recording a players initial playthrough of a sample level. This data allows for the

system to tailor its output with respect to the perception of the players ability that the metrics

can afford. One area of growing interest in recent years is an emphasis on understanding

how to interpret interesting or sound design decisions for the purposes of level generation.

There is significant work in this area found within the Mario domain: ranging from estab-

lishing grammars representative of good tenets or patterns of design [14, 5] to more recent

approaches adoptingmachine learning techniques to either guide generators through training

data in the form of levels [20] or gameplay videos [7]. Thankfully, research of platform-

ing games is not confined solely to the Super Mario domain: with work detailed in [19]

focussed on the creation of adaptive, grammar-driven methods for procedural generation of

levels for a generic platforming game. This work subsequently adopts user-interactions to

allow for mixed-initiative design of levels.

In addition, this paper continues a body of work by one of our authors that places empha-

–4–



Figure 3: An overview of our level generation framework: a two-phase generate-and-test

system that builds the action sequence followed by a ‘physical’ instantiation to be used in-

game.

sis on de-coupling the context or purpose of generated content from the final product, with

previous work exploring dungeon construction within The Legend of Zelda [10]. This gen-

erative system focussed on the construction of the gameplay space of ‘Zelda’ dungeons that

replicate the gameplay experience expected of these interactive spaces [9]. This adopted ex-

isting research in formal grammars detailed in [6] that de-coupled the ‘mission’ or structure

of the players experience from the physical layout of the actual dungeon. This two-phase

approach permits a relative flexibility in the potential dungeons it can create even though

this preliminary body of work was reliant on a limited number of room types and puzzles.

Furthermore, prior work by one author detailed in [24] addresses the encapsulation of scale

in generated content. A problem domain focussed on the construction of robots to fight in

a small combat domain explored the challenges of scaling resource usage against available

‘budget’ afforded to the system. While this prototype implementation could yield a sig-

nificantly large amount of content, a budget system is introduced that limits the potential

topology of robot construction. The introduction of cost metrics to each component based

on its attributes also helped to limit the systems output should a designer wish to do so.

LEVEL GENERATION OVERVIEW

The level generation framework is focussed on creating a finite segment of gameplay to

be placed within the game world. This system, as shown in Figure 3 is broken down into

two distinct generative phases. First the action generation phase crafts sequence of actions

for players to complete given a set of constraints and an allocated budget. This is achieved

courtesy of a generative grammar approach using an alphabet and production rules crafted by

a human designer. Secondly, the geometry generation phase translates the action sequence

into assets placed within the game’s virtual environment but is again governed by its own

constraints and budgetary requirements.

The design of the framework is such that the inner workings of each generative system can

be treated as a ‘black box’: allowing for a variety of permutations of actions sequences and

their subsequent realisation in game space. Furthermore, specific components related to the

pseudo-random nature of the generative process are shared between each of the generative

systems. This ensures that the framework can be configured to reproduce desired gameplay

–5–



sequences should a designer deem this practical. This is of particular importance given the

emphasis of this research on the ability to maintain an element of control over the generated

artefacts whilst ensuring an element of creative freedomwithin each generator. Such control

over generative system outputs has been adopted previously in PCG-driven video game

design, with a notable example being the challenge mode found within platforming rogue-

like Spelunky (Mossmouth, 2009).

Arguably the most important factor in this system is that each component is governed largely

by the constraints set upon it. This is driven largely by the notion of a budget: a fixed unit

of measurement that is passed as a parameter to each generator. We adopt the use of the

term budget as an allusion to a system forced to work with limited resource. As discussed

in the subsequent sections, how each generator operates ‘within budget’ is based on how it

interprets budget with respect to its designated task.

ACTION GENERATOR

As shown in Figure 3, action generation is the first phase of the scaled level generation

framework. The focus of action generation is to devise the action sequence of the generated

level, with the work detailed in [19] in establishing a lexicon for individual segments of

gameplay adopted as a starting point. However, we apply a further layer of abstraction to

the action-annotation process by adopting platforming design-patterns akin to that discussed

in [4]. This results in a collection of actions detailed in Table 1. The value of each action

in relation to the previously discussed budget is dependant on the action generator’s inter-

pretation. Each action generator is built to act as a form of generative grammar: a formal

language to encapsulate the design of levels. This is reliant upon the use of a fixed alphabet

in conjunction with a finite set of production rules that transform non-terminal symbols in

the alphabet into final, terminal symbols [12]. The terminal symbols expressed within the

alphabet represent the actions previously defined in Table 1. For reference, we provide the

terminal symbols used for these actions within the table.

The adoption of the budget system for the action generator works in relation to the generative

grammar. In the event that there is still budget provided, then the execution of one or more

production rules is permitted. The production rules for each grammar are tagged with a cost

defined by the designer. As such, execution of production is a decision process constrained

by the available remaining budget. In the event that no production rules are possible, each

action generator may either adopt a local-search optimisation of the currently constructed

string or run the production rules that reduce any non-terminal symbol to the empty string,

and thus end the action generation process.

The action generator adopts a combination of context-free and regular grammar systems,

allowing for designers to maintain a variety of interpretations of the action space such as

those in Figures 4 and 5. Figure 4 is a simple random generator which enforces small con-

straints on which actions can follow specific gameplay segments. While Figure 5 splits the

level generation into two phases: first a gain in ‘intensity’ by using actions that will increase

player elevation, followed by a subsequent reduction in elevation. Once the sentence of the

grammar has been defined by executing production rules until budget is exhausted, we then

move towards translating these actions into a playable gameplay space.

–6–



Table 1: The ‘action’ patterns adopted for the purposes of the level generators ‘action gen-

erator’ component. Each action also notes the corresponding alphabet symbol used as part

of the action generator grammar systems.

Action Generator Terms

Action Description

Run (r) A flat section of terrain which the player must run across.

Ramp-Up (ru) A slopped section of terrain with a gradual incline.

Ramp-Down (rd) A slopped section of terrain with a gradual decline.

Stair-Up (su) A series of short platforms closely placed that gradually increases

in height.

Stair-Down (sd) A series of short platforms closely placed that gradually decrease

in height.

Spring (sp) A segment with a non-negotiable requirement for players to land

on a spring object that will launch them to a platform beyond the

reach of a normal jump.

Two-Path (tp) A temporary split in the terrain that will force players to take a

higher or lower route.

HopScotch (hp) A series of short platforms designed to force players to quickly

hop between them.

The ‘Safe-Random’ Grammar:

S → rS S → hpS S → ε
S → tpA S → sdS A → ε
S → ruA S → suA

S → spA A → rS

Figure 4: The production rules of the ‘Safe Random’ action generator grammar. This starts

with the non-terminal symbol S to start the level generation, with adoption of non-terminal A

to enforce specific constraints.

The ‘Height Intensity’ Grammar:

S → GF G → ε F → ε
G → suG G → hpG G → spG G→ ruG

F → sdF F → rdF F → rF

Figure 5: The production rules of the ‘Height Intensity’ grammar. Starting with non-

terminal symbol S, it migrates between the ‘intensity gain’ (G) and ‘intensity fall’ (F) phases.

–7–



GEOMETRY GENERATOR

Once the action generator has derived an expression of intended gameplay activity, the

geometry generator is tasked with translating the actions contained within into a playable

gameplay segment. What is of paramount importance is not only must each terminal sym-

bol expressed within the action generator translate into a specific physical2 permutation of

in-game assets, it must also retain an element of flexibility in how this can be achieved.

For the purposes of this paper - and indeed retaining an element of scope to our initial re-

search investigation - only one geometry generator is adopted for purposes of evaluation

within this paper. Each generator is responsible for solving the constraint satisfaction prob-

lem of ensuring there is a permutation of the action sequence within the provided geometry

budget. This budget limits the flexibility of the system in terms of how much resource can

be used to bring each individual action into the game space.

The geometry generator discussed in this paper adopts a local search optimisation approach

by utilising an asset database provided by the generation framework. This database main-

tains a collection of platforms and other pieces of fixed geometry developed by 3D artists

to be used in the game. Each asset is tagged with the possible actions it can be used to rep-

resent and the associated budgetary cost of that item. Following our previous discussion of

the inspiration of design patterns for platforming games in [4, 19, 5], this approach allows

for designers to craft as many unique permutations of the same design pattern as they see

fit. Furthermore, the level of abstraction denoted for a given asset can vary in scale, with

the use of individual platforms and geometric shapes to more complex collections hand-

crafted to represent specific activities much akin to the works detailed in [4]. This can be

seen in Figure 6 as a collection of pre-built platforming sequences all aimed to satisfy the

same core ‘two-path’ design pattern: allowing for two paths for players to navigate within a

short gameplay segment. Each permutation has it’s own budgetary cost dictated by the per-

ceived difficulty. As such, given that ‘cheaper’ platforming segments are easier to navigate,

an increased budget being provided to the same action sequence will yield more complex

levels.

The subsequent placement of these platforms is reliant upon an understanding of finding

the ‘connecting’ points and establishing a small gap between them for the player to jump

across. While not pertinent to the focus of this paper, it is important to acknowledge that

upon completion of the placement of these platforms, a secondary process considers the

placement of both collectable coins as well as obstacles to these platforms. The current

geometry generator once again places control of this outcome in the hands of designers, by

allowing for a platform to be considered or ignored for coin or obstacle placement.

CREATING PLAYABLE LEVELS

The generative process discussed in the previous section proves a sufficient model for the

purposes of level generation: given that it crafts complete, finite and verified segments

of play. Through use of the budget and constraint systems previously discussed, we can

introduce an element of progression throughout gameplay. The Sure Footing game treats

each generated segment of play as a sprint and is representative of the next ‘phase’ of the

2We use the term ‘physical’ to represent the playable manifestation of a desired action sequence.

–8–



(a) Budget Cost: 1 (b) Budget Cost: 2

(c) Budget Cost: 4 (d) Budget Cost: 5

Figure 6: A collection of hand-crafted adaptations of a ‘two path’ design pattern adapted

from [4]. The budget costs are hand-tuned based on perceived difficulty to navigate each

segment and will only be selected should the system have the available budget.

Figure 7: A collection of generated sequences placed into the Sure Footing game using the

same budgetary constraints. Each generated sprint is bookended by a ‘rest piece’ designed

to give players a small respite.

infinite running experience. This is segregated courtesy of in-game assets that are simple

flat geometric planes: allowing the player a brief moment of respite from the challenges of

the generated sprints. A collection of short generated sprints between rest-pieces is shown

in Figure 7.

–9–



Table 2: Our collection of eight metrics adopted for expressivity analysis. These metrics are

a combination of those adapted from existing research as well as some of our own design.

Level Generation Metrics

Metric Description

Leniency A designer-defined model of the perceived ‘difficulty’ of a sprint.

Linearity A linear-regression plotted against the generated sprint.

Length The horizontal length of the sprint.

Verticality The y-differential of the sprint with respect to its length.

Pattern Density Number of actions generated with respect to action budget.

Geometric Density Gameplay space between start and end points used by platforms.

Pattern Variation The distribution of actions selected with respect to action budget.

Base Rhythm The required jumps to navigate the actions generated.

Given the fixed camera orientation obscuring future gameplay, new sprints are constructed

at runtime upon reach the end of the current sprint. The flexible nature of the generators

parameters allow for designers to tailor the constraints, action and geometry budgets and

the currently active action and geometry generators at runtime. This permits a large amount

of flexibility in not only the types of sequences a designer may choose to generate, but also

retains an element of variability in the sequences crafted. There is evidence of this in the

sprints shown in Figure 7, given that each permutation is the result of the same action and

geometry budgets but yielding unique outcomes.

EVALUATION

Given we have established a framework for managing the scale whilst retaining variability,

we need to appropriately evaluate the current state of the system such that we can state

these assertions with confidence. As such, we look to the existing literature on quantitative

analysis of generated platforming levels in an effort to identify the possibilities of the current

system. We address this through the use of several metrics that reflect the variability and

quality of the generated content.

We adopt the principle of ‘expressive range’ analysis first detailed in [18]: in which the

authors comprise 2d histograms that identify the range of content that could be expressed.

In order to achieve this we rely on a series of metrics found in Table 2, with the leniency and

linearity metrics adopted from [18]. In addition, we looked at a number of additional metrics

that can be adopted to quantify properties of the level generated detailed in [2]. As a result,

all remaining metrics with exception of ‘Geometric Density’ are derived from that discussed

in [2]3. With our metrics defined, we aimed to quantify the expressivity of the system. For

the purposes of this paper, we focus solely on the budgets afforded and generated 5,000

levels using the following configurations of the framework:

3However, it is worth noting that the ‘Geometric Density’ metric could be considered an inverse of the

‘Negative Space’ metric defined in [2].

–10–



Action Budget: 25 - Geometry Budget: 25

(a) Random (b) ‘Safe Random’

(c) Intensity (d) Height-Intensity

Figure 8: Expressivity models of linearity (x-axis) and leniency (y-axis) on the four action

generators when operating under fixed action and geometry budgets.

Fixed Action Budget, Fixed Geometry Budget (Figure 8):

Recording the expressivity within a fixed action budget and geometry budget4

Increasing Action Budget, Fixed Geometry Budget (Figure 9):

Moving from a small to gradually increasing action budget but with a fixed (mini-

mum) geometry budget.

Fixed Action Budget, Increasing Geometry Budget (Figure 10):

Maintaining a fixed action budget but gradually increasing the geometry budget per-

mitted to the system.

The resulting measurement of linearity and leniency highlights a number of satisfying out-

comes with respect to our level generation frameworks design. Firstly, the de-coupling of

the action space with respect to the geometric construction of the sprint results in a large

variations in the expressivity of the system. If we compare the use of the Random versus

Safe-Random generators - Figures 8a, 9a and 10a versus Figures 8b, 9b, and 10b - there

are distinct similarities, but the introduction of a handful of additional constraints forces the

Safe-Random generator to be slighter more restrictive in the range of content that it creates.

By contrast, the introduction of the Intensity and Height-Intensity based generators in Fig-

ures 8c, 9c, 10c and Figures 8c, 9c, 10c respectively, show a completely different expressive

range. This is rather satisfying given that this is driven solely by changes made to how the

4The geometry budget was fixed at 50% between the the minimum requirement and the maximum possible

given the generated action set.

–11–



Action Budget: 1-25 (x200) - Geometry Budget: 25

(a) Random (b) ‘Safe Random’

(c) Intensity (d) Height-Intensity

Figure 9: Expressivity models of linearity (x-axis) and leniency (y-axis) on the four action

generators when operating under an increasing action budget, but with a fixed geometry

budget.

action space is modelled. These results show that while these generators push the linear-

ity to a more restricted range, it enforces what could be potentially more demanding levels

given the leniency is scoped in the high-positive range.

While the results in Figure 8 provide sufficient evidence of the variability based upon action

models, there is still need to consider whether the use of budgets influences the expressivity

of the system. This is brought to our attention courtesy of Figures 9 and 10. In the former,

the action generator budget is slowly increasing from 1 to 25. This has an influence on

the amount of actions (and subsequently the generated space) the system will adopt. This is

reflected in the expressive range of the system, which in many cases shows similar results in

to Figure 8, but within a separate area of the expressive range. This would be expected given

that the gradual adoption of more action budget would permit the system not only to create

larger and more diverse levels, but also is influenced by the ability to use specific actions

which may be beyond budgetary constraints on previous iterations. One notable issue that is

apparent however is the relative similarities between the data presented in Figures 8 and 10.

In the latter case, the action generation is operating on the same budget throughout, with

the geometry generator receiving an increasingly larger budget. The resulting linearity and

leniency is very similar, but with some fluctuations in the final outcome.

With this previous outcome in mind, we consider the results detailed in Figure 11 which

highlights the expressive range of each configuration set with respect to the sprint length

(x) and verticality (y) of the generated levels. It is clear from this set that the action budget

–12–



Action Budget: 25 - Geometry Budget: 25-75 (x200)

(a) Random (b) ‘Safe Random’

(c) Intensity (d) Height-Intensity

Figure 10: Expressivity models of linearity (x-axis) and leniency (y-axis) on the four ac-

tion generators when operating under a fixed action budget, but with gradually increasing

geometry budget.

has a large influence on the length of the levels created, with the verticality being influenced

largely by the action generators unique behaviour. This is to be expected, given that as action

budgets increase, the potential length of the level with increase as more actions can now be

added. The increasing action budget ranges shown in Figures 11e through 11h reflect the

range of these systems during gameplay, given the intention is to increase the budget over

time as the player continues to progress. Meanwhile, the collection of results that highlight

the increase of the geometry budget (Figures 11i to 11l) indicate that a larger quantity of

content is generated within a fixed area. While at present we are only running on one sole

geometry generator, it is still carrying an influence on the outcome of the generated content

simply by modifying its permitted budget.

CONCLUSION

This paper presents amethod for the creation of gameplay content that can be scaled courtesy

of budget-driven components. The framework described in this paper is evaluated through

its implementation as a level generator for an infinite runner video game. The two-phase

nature of the generative system, combined with the use of budgets to curtail the generation

process, provides for a wide variety of generated content that can be scaled by designers.

This is not to say that the work is without flaws or limitations: given that the generative

processes are still markedly constrained despite their expressive nature. While some con-

sideration need be given to the problem domain the framework has been tested within, there

is still significant scope for further experimentation. The generative systems adopted largely

–13–



Action Budget: 25 - Geometry Budget: 25

(a) Random (b) ‘Safe Random’ (c) Intensity (d) Height-Intensity

Action Budget: 1-25 (x200) - Geometry Budget: 25

(e) Random (f) ‘Safe Random’ (g) Intensity (h) Height-Intensity

Action Budget: 25 - Geometry Budget: 25-75 (x200)

(i) Random (j) ‘Safe Random’ (k) Intensity (l) Height-Intensity

Figure 11: Expressivity models of the sprint length (x-axis) and verticality (y-axis) of the

three level generation configurations.

adhere to the generate-and-test or constructive approaches of procedural generation as dis-

cussed in [22]. At this formative phase, the emphasis was on establishing the variety of

generative approaches that could be mustered and how to maintain the scalability. As such,

search-based generation was considered early on as an element of future work and is cur-

rently in development. One area ripe for future experimentation is the geometry generation

component: given that its potential impact on the expressive range has not yet been ex-

plored. The results of our previous section would be influenced even more by the adoption

of generators that manifest the actions in a variety of different forms. There is certainly

work to be considered in level generation we referred to in our literature review, mostly

notably those that adopt ‘good design’ principles to guide generation such as that found

in [5, 20]. The authors are presently working on some expansions to the geometry genera-

tor that allows for greater freedom of expression. This is achieved through the combination

of search-based procedural generation techniques, in conjunction with the introduction of

new in-game assets that can yield more modular level constructions.

Furthermore, one as-yet unexplored aspect of this level generation framework is the oppor-

tunity for dynamic adjustment of parameters within the system. Considering the number of

unique aspects of the generator that can be used to manage the scale and complexity of con-

tent, there is potential for a study in player modelling within the game. The notion of player

modelling and analysis being used to influence content creation is well established within

games research literature [3, 1, 17, 13], with notable works found in [15, 16] approaching

–14–



this in platforming games. While the level generator within the Sure Footing game aims

to ensure a continued progression of difficulty and scale, the initial budget, the constraints

employed and the rate at which budgets are increased and constraints relaxed would allow

for a more adaptive and accommodating gameplay experience.

ACKNOWLEDGEMENTS

The authors wish to thank Rob Watling for his work on the level generation prototype and

Molly Freeman for her significant contributions towards the art assets used in this project.

References

[1] Sander Bakkes and Joris Dormans. “Involving Player Experience in Dynamically

Generated Missions and Game Spaces”. In: Eleventh International Conference on

Intelligent Games and Simulation (Game-On’2010). 2010, pp. 72–79.

[2] Alessandro Canossa andGillian Smith. “Towards a Procedural Evaluation Technique:

Metrics for Level Design”. In: Proceedings of the 2015 Workshop on Procedural

Content Generation. 2015, p. 8.

[3] Darryl Charles et al. “Player-Centred Game Design: Player modelling and Adaptive

Digital Games”. In: Proceedings of the Digital Games Research Conference. 2005.

[4] Steve Dahlskog and Julian Togelius. “Patterns and procedural content generation:

revisiting Mario in world 1 level 1”. In: Proceedings of the First Workshop on Design

Patterns in Games. ACM. 2012, p. 1.

[5] Steve Dahlskog and Julian Togelius. “Patterns as Objectives for Level Generation”.

In: Proceedings of the 2013 Workshop on Procedural Content Generation.

[6] Joris Dormans. “Adventures in Level Design: Generating Missions and Spaces for

Action Adventure Games”. In: Proceedings of the 2010 Workshop on Procedural

Content Generation in Games. ACM. 2010, p. 1.

[7] Matthew Guzdial and Mark O Riedl. “Toward game level generation from gameplay

videos”. In: Proceedings of the 2015 Workshop on Procedural Content Generation

in Games. 2015.

[8] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. “Evolving Content in the

Galactic Arms Race Video Game”. In: Proceedings of the 2009 Symposium on Com-

putational Intelligence and Games (CIG 2009). IEEE. 2009, pp. 241–248.

[9] Becky Lavender and TommyThompson. “AGenerativeGrammarApproach forAction-

Adventure Map Generation in The Legend of Zelda”. In: Proceedings of the 2016

Conference on Artificial Intelligence, Simulation & Behaviour. 2016.

[10] Becky Lavender and Tommy Thompson. “Adventures in Hyrule: Generating Mis-

sions & Maps For Action Adventure Games”. In: Proceedings of the 10th Interna-

tional Conference on Foundations of Digital Games. Playable Experiences Track.

2015.

[11] Antonios Liapis et al. “Procedural Personas as Critics for Dungeon Generation”. In:

Applications of Evolutionary Computation. Springer, 2015, pp. 331–343.

[12] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies in

Common LISP. Morgan Kaufmann, 1992.

–15–



[13] Noor Shaker, Georgios N Yannakakis, and Julian Togelius. “Towards Player-Driven

Procedural Content Generation”. In: Proceedings of the 9th conference on Computing

Frontiers. ACM. 2012, pp. 237–240.

[14] Noor Shaker et al. “Evolving Levels for Super Mario Bros using Grammatical Evolu-

tion”. In: Computational Intelligence and Games (CIG), 2012 IEEE Conference on.

IEEE. 2012, pp. 304–311.

[15] Noor Shaker et al. “Evolving PersonalizedContent for SuperMario BrosUsingGram-

matical Evolution.” In: Eighth Artificial Intelligence and Interactive Digital Enter-

tainment Conference. 2012.

[16] Noor Shaker et al. “The 2010 Mario AI championship: Level generation track”. In:

Computational Intelligence and AI inGames, IEEETransactions on 3.4 (2011), pp. 332–

347.

[17] Adam M Smith et al. “An Inclusive View of Player Modeling”. In: Proceedings of

the 6th International Conference on Foundations of Digital Games. ACM. 2011,

pp. 301–303.

[18] Gillian Smith and JimWhitehead. “Analyzing the Expressive Range of a Level Gen-

erator”. In: Proceedings of the 2010 Workshop on Procedural Content Generation in

Games. ACM. 2010, p. 4.

[19] Gillian Smith et al. “Rhythm-based Level Generation for 2D Platformers”. In: Pro-

ceedings of the 4th International Conference on Foundations of Digital Games. ACM.

2009, pp. 175–182.

[20] Adam James Summerville, Shweta Philip, and Michael Mateas. “MCMCTS PCG 4

SMB: Monte Carlo Tree Search to Guide Platformer Level Generation”. In: Eleventh

Artificial Intelligence and Interactive Digital Entertainment Conference. 2015.

[21] Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. “The 2009 Mario AI

Competition”. In: Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE.

2010, pp. 1–8.

[22] Julian Togelius et al. “Search-based Procedural Content Generation: A Taxonomy

and Survey”. In: Computational Intelligence and AI in Games, IEEE Transactions

on 3.3 (2011), pp. 172–186.

[23] Julian Togelius et al. “The Mario AI Championship 2009-2012”. In: AI Magazine

34.3 (2013), pp. 89–92.

[24] Michele Vinciguerra and Tommy Thompson. “A Procedural Generation Framework

for a Robot Construction Game”. In: Proceedings of the 7th IEEE Computer Sci-

ence & Electronic Engineering Conference. Special Session on Computational Intel-

ligence and Games. IEEE. 2015.

–16–


