

A Novel PUF-Based Encryption Protocol for

Embedded System On Chip

Alexandra Stanciu, Florin Dumitru Moldoveanu

Department of Automatics and Information Technology

Transilvania University of Brasov

Brasov, Romania

ale.stanciu@gmail.com

Marcian Cirstea

Department of Computing and Technology

Anglia Ruskin University

Anglia

marcian.cirstea@anglia.ac.uk

Abstract—This paper presents a novel security mechanism for

sensitive data stored, acquired or processed by a complex

electronic circuit implemented as System-on-Chip (SoC) on an

FPGA reconfigurable device. Such circuits are increasingly used

in embedded or cyber systems employed in civil and military

applications. Managing security in the overarching SoC presents

a challenge as part of the process of securing such systems. The

proposed new method is based on encrypted and authenticated

communications between the microprocessor cores, FPGA fabric

and peripherals inside the SoC. The encryption resides in a key

generated with Physically Unclonable Function (PUF) circuits and

a pseudorandom generator. The conceptual design of the security

circuit was validated through hardware implementation, testing

and analysis of results.

Keywords—physically unclonable functions, pseudorandm

generators, security, system-on-chip, embedded system

I. INTRODUCTION

The modern Field Programmable Gate Array (FPGA)

combines the programmability of processors with the

performance of custom hardware. Due to their advantages,

FPGAs have become the primary computational element in

many critical embedded systems. Face recognition systems,

wireless networks, intrusion detection systems and

supercomputers, all of which are employed in large security

applications, also use FPGAs [1]. As most other circuits,

systems implemented on FPGAs require secure operations and

communications. Design outsourcing has become increasingly

common over the past 15 years for Integrated Circuits (ICs)

generally and in particular for SoCs. In particular, a tendency to

outsource the design and verification of the Intellectual

Property (IP) core circuits and the manufacturing of integrated

circuits can be noticed. Because of the globalization of the

semiconductor design and fabrication processes, ICs are

becoming increasingly vulnerable to malicious activities and

alterations. Even if the participants are reliable, attacks like

reverse engineering the bitstream, side channels attacks,

manipulating the design through JTAG, initiating single events

upset to cause functional changes to the design and other

security attacks against embedded systems could appear. An

example of a general model of multibit Differential Power

Analysis (DPA) attacks to precharged buses, with emphasis on

symmetric-key cryptography algorithms, is discussed in [2].

Modern computer systems are built on a foundation of

software components from a variety of vendors. While critical

applications may undergo extensive testing and evaluation

procedures, the heterogeneity of software sources threatens the

integrity of the execution environment for these trusted

programs [3]. A similar case applies to SoCs: modern SoCs are

built on a foundation of IP cores from a variety of vendors.

Integration of untrusted third-party IPs into a SoC design is a

major challenge in establishing trustworthiness of the entire

SoC.

The proposed method is based on hardware isolation of

peripherals that process critical data from peripherals that

process ordinary data and on an encrypted data transfer inside

the SoC, between microprocessor(s) and peripherals. The

isolation and encryption are implemented at the hardware layer.

A range of countermeasures against embedded systems

security attacks were developed and analyzed. Those

mentioned further refer only to information encryption or

application isolation at hardware level. A microprocessor

designed for executing computer programs which are stored

encrypted in memories to prevent software piracy is presented

in [4]. Another architecture with execute-only code, which is

stored in an encrypted form and may be decrypted by the

instruction-loading path on the main processor chip, is

introduced in [5]. In [6] the focus is on physical non-invasive

attacks – or board level attacks – conducted on buses between

the SoC and off-chip volatile memory or directly in the

memory. The method presented ensures the confidentiality of

the off-chip memory content during storage or execution in

order to prevent the leakage of any sensitive information. It also

ensures its integrity to forbid execution of intentionally altered

data. The authors of [7] present a summary of the homomorphic

encryption that consists of computations carried out on

ciphertext, thus generating an encrypted result which, when

decrypted, matches the result of operations performed on

unencrypted data. However, these computations involve

complex resources and high computing time, thus making them

inappropriate for embedded systems or SoC. The concept

presented in this paper takes security a step forward and

encrypts the transferred data between peripherals inside a SoC.

Separation and isolation are fundamental to the design of

cryptographic devices. They may be found in many forms, from

hardware to application at the architecture level. The authors of

[8] present an approach which achieves information flow

isolation between trusted and untrusted IP cores. Their method

- , Gate-level information-flow tracking (GLIFT) - uses

additional logic to monitor the security level of every bit in the

system as they flow through Boolean gates. GLIFT associates a

single-bit security label to each data-bit and tracks this

information as it flows through the system [8]. Another

mechanism based on isolation, physical isolation this time, is

presented in [9]. They proposed a spatial isolation mechanism

called a moat and a controlled sharing mechanism called a

drawbridge. A moat surrounds a core with a channel in which

routing is disabled; drawbridges allow signals to cross moats,

letting the cores communicate with the outside world. The aim

of this physical isolation is to counteract some attacks against

SoC security.

The concept presented in this paper uses logical isolation

between microprocessors and peripherals according to the

sensitivity of transferred information. The security protocol

introduced is based on data encryption/decryption with a

symmetric cryptographic algorithm, trying to maintain the

performance and the latency of the system. The symmetric

algorithm is a pseudorandom generator (PRG) one, starting

with a unique device value generated with physically

unclonable functions (PUF) circuits and computing pseudo

random cryptographic keys with Salsa20/20. An overview of

the most important implementation details and experimental

results for the PUFs is presented in [21], whereas the Salsa20/20

is introduced in [22].

II. SOC THREAT MODEL

Generally, cryptography applications or security

mechanisms involve computations based on one or more secret

keys. The security of a cryptosystem is only as strong as the

secrecy of the key. Thus, some of the most effective attacks on

a cryptosystem are based on finding flaws in the protocol that

manages the keys. Attacks that may be thwarted by the

introduced method are shown bellow.

One threat model for SoC is represented by physical attacks.

Physical attacks against ICs assume the physical investigation

of IC in order to obtain some sensitive information. Physical

investigation of an IC refers to researching the parts of the IC

that are not available through normal input/output pins. For

example, attackers may inspect the IC layout in order to obtain

the secret key. Those types of attacks are hard to achieve due to

high equipment costs. Even so, there are companies specialized

in reverse engineering that analyze the circuits and structure of

semiconductors and electronic systems that may lead to

disclosure of secrets -one of them is Chipworks.

Bus monitoring attacks are another type of security threat

against SoC. The bus between the SoC and memory is one of

the most vulnerable points in the system: an adversary may

easily listen on bus in order to extract information from the

system. Bus monitoring attacks could also reveal access

patterns to memories which may reveal sensitive information.

For example, AES implementations use table of precomputed

values. The order in which the table entries are accessed can

reveal secret information [10]. Andrew “bunnie” Huang shows

in [11] an attack against Xbox video game console from

Microsoft, demonstrating that the bus is one of the weakest

points in an embedded system. Although the code is stored

encrypted in memory, the instructions are transferred in clear

on the bus. Thus, code can be easily intercepted and the high

speed of the bus is not a security protocol against bus snooping

attacks.

In modern embedded systems, cores communicate with each

other via shared bus. Unfortunately, the shared nature of

traditional bus architecture raises several security issues.

Malicious cores can obtain secrets by snooping on the bus. In

addition, the bus can be used as a covert channel to leak secret

data from one core to another. One of the IP cores (for example,

the Ethernet controller) may contain a malicious hardware

modification, a Trojan hardware that could leak information

and secret keys that are being transferred between peripherals

via bus. A hardware Trojan is a malicious modification of

hardware during design or fabrication which causes an IC to

have altered functional behavior with security consequences. A

possible example of hardware Trojan insertion is presented in

[12]. Israeli jets bombed a suspected nuclear installation in

northeastern Syria. It was not long before military and

technology bloggers concluded that this was an incident of

electronic warfare. Post after post speculated that commercial

off-the-shelf microprocessors in the Syrian radar might have

been purposely fabricated with a hidden “backdoor”. By

sending a preprogrammed code to those chips, an unknown

antagonist had disrupted the chips’ function and temporarily

blocked the radar.

III. SOC THREAT MODEL

The security concept of this paper consists of an analysis

between computer networks and SoCs. Due to their complexity

and possible attacks, SoCs may be viewed as a computer

network: the SoC microprocessors represent the computer

network servers, and the SoC peripherals represent the

computer network clients. In terms of security threats, SoC is

also similar with some computer networks attacks: spoofing

attacks, when a malicious IP core can impersonate another one,

covert channel to leak secret data from one core to another, or

memory attacks for reading or overwriting the critical data. The

newly introduced method aims to experimentally validate and

analyze the use of cryptographic- based operations

(encryption/decryption, authentication) inside SoCs with

minimum costs in terms of hardware resources or performance.

The mechanism consists of the following methodology:

A. Dividing SoC peripherals into domains

The security protocol is based on logical isolation of sensitive

IP cores and non-sensitive IP cores. Sensitive IP cores refer to

IP cores that process sensitive information like passwords,

information involved in cryptographic operations that may lead

to disclosure of critical data. It is required to divide the SoC

peripherals in critical and non-critical domains. The critical

domain contains information flow which processes sensitive

data. The processor and peripherals from the non-critical

domain process trivial information. In this way, information

level isolation is carried out. The division of IP cores into

critical IP cores and non-critical IP cores is performed by a trust

person such as the architecture system.

B. Generating PUF secret keys

The secret key is generated using PUF circuits. A PUF is a

circuit that measures the inherent and random manufacturing

variations presented in a device in order to generate a unique

signature/cryptographic key in response to an input (challenge).

PUF circuits are implemented as hard macros, this meaning that

every instance is built identically: the gates are placed on the

same locations and the propagation times between the gates are

identical for any two instances. Theoretically, the responses of

the PUF circuits have the same value, even if the instances are

placed on different FPGAs/ICs or on the same FPGA/IC but in

different locations. Practically, there will be differences

between the responses of PUF circuits due to process variations.

To instantiate multiple PUF circuits, a cryptographic key

unique to each FPGA/IC due to uniqueness of process

variations may be created. The FPGA or IC may be divided in

a convenient number of sub-circuits, and for each sub-circuit a

PUF secret key may be generated. One sub-circuit with one

PUF secret key is associated with one domain from Section A.

An integrated circuit may be seen as several smaller integrated

circuits.

C. Encryption and Decryption

This step involves the addition of a wrapper beside

peripherals and microprocessors containing the necessary

mechanism to encrypt and decrypt sensitive data inside the

critical domain. The wrapper contains a cryptographic key,

pseudorandom generator, and the control logic in order to

encrypt or decrypt the data transmitted or received. The

microprocessor from the critical domain must also have the

possibility to encrypt or decrypt the data stored in memories.

The transfer between peripherals inside the SoCs or

embedded systems is quickly made during a few clock cycles

(generally one clock cycle). In order to maintain the

performance of the system, the encryption/decryption

operations should not alter the transfer time between the IP

cores. In order to define an efficient protocol, (running in

one/two clock cycles), a stream cipher was used, where the

plaintext digits are combined with a pseudorandom cipher digit

stream (keystream). The key is a pseudo random bit string as

long as the message. The message is XORed with the key,

which assumes a very fast encryption and decryption algorithm.

The security mechanism must offer the possibility to generate

the same key both at the transmitter and the receiver: each

peripheral has a wrapper that contains the key generation

mechanism. Furthermore, the mechanisms inside one domain

are synchronized. With this mechanism, the messages

transferred on shared bus are encrypted. When one encrypted

message is transferred on the system bus, all the peripherals

inside the domain have the possibility to generate the decrypted

key using PUF circuits. Fig. 1 shows the general encrypted

mechanism between the microprocessor and one peripheral

inside a domain.

D. Data transfer between domains

It is possible to have information that must be exchanged

between different critical domains. In this case, it is necessary

to generate a common key between two domains.

Fig. 1. Encryption Scheme between Microprocessor and Peripherals.

Another key with the same length as the transferred messages

may be generated using PUF circuits, in both domains. The

PUF circuits may be chosen from the ones used to generate the

input data for PRG. Considering that the keys are generated

using the PUF circuits and according to experimental results,

obtained by [17, 21] regarding the Hamming inter-distance, it

may be considered that the difference in bits between the two

keys is around 50%. Thus, an error correcting code to correct

the n/2-1 bits from the total length of n bits may be applied for

each key. The scheme of generating a common cryptographic

key from two binary sequences with 49% different bits is

described below. The BCH error correcting code consisting of

two steps has been used:

a) The helper data phase. This phase, illustrated in Fig.

2a, is used only once per domain. It takes the

cryptographic key generated by PUF circuits and

generates helper data. The helper data will be available

in the non-critical domain in order to reconstruct the

common secret key. This stage corresponds to the

encoding stage.

b) The secret key generation phase. This stage,

summarized in Fig. 2b, involves the reconstruction of

the common cryptographic key. The common

cryptographic key from the non-critical domain is

generated using the key generated with PUF circuits

Periferic Wrapper

Microprocesor
Peripheral

PRG_Salsa_based PRG_Salsa_based

xor xor

Plaintext

data

Plaintext

data

Crypto_data

Crypto_

key
Crypto_

key

Address Signals

Control Signals

Microprocessor Wrapper

PUF 128b

Nonce 64b

from the non-critical domain and the helper data from

the critical domain. This stage corresponds to BCH

decoding algorithm.

Both stages are run by both domains. The first stage is run only

once and the results (helper data from the first domain and

helper data from the second domain) will be stored in registers.

In each domain, an n-bit sequence is generated. The difference

between the two sequences on the same FPGA/IC is around

50%. With the help of BCH encoding, a binary sequence named

helper data, and capable of correcting 49% bits from the total

length of cryptographic key, is generated in each domain. By

changing helper data between the two domains, and applying

BCH decoding, each domain may regenerate the same binary

sequence starting from the domain cryptographic key and the

helper data of the other one – for the first critical domain it is

the PUF cryptographic key with half of the bits corrected and

for the second critical domain it is the domain PUF

cryptographic key with half of the bits corrected. The maximum

number of different bits between the two cryptographic keys is

half of the total number of bits. The same binary sequence

inside each domain will therefore be obtained.

Fig. 2a. First Phase: BCH Encoding.

Fig. 2b. Second Phase: BCH

Decoding.

Fig. 3 presents the general mechanism applied on a general

SoC, which may be a complex system with one or n

microprocessors. According to the application goals, the

microprocessors, along with peripherals, may be grouped in

more domains. Each domain consists of one microprocessor

and at least one peripheral. A cryptographic key is generated for

each domain and available to microprocessor and peripherals

belonging to that domain. The domains considered with

sensitive data are featured with the wrapper summary presented

in point c). A simple example of SoC is presented in Fig. 4. The

system may be used to remotely monitor a private space: the

owner or a trusted person authenticates through the

authentication module and receives images through an Ethernet

connection. Even if the system is provided with an

authentication module, the system is susceptible to security

attacks both from software or hardware. One attack scenario

may imply leakage of sensitive information that may be

triggered by possible hidden hardware mechanisms inserted in

IP cores or software deliberate vulnerabilities. Also, both

processors have access to public key cryptography module and

DRAM memory. If microprocessor 2 is compromised, it may

read sensitive information and send it through Ethernet. Also,

one of the IP cores (for example, the Ethernet controller) may

contain a malicious hardware modification and the Trojan could

leak confidential information and secret keys which are

transferred between peripherals via the shared bus.

Unfortunately, the shared nature of traditional bus architecture

raises several security issues. Malicious cores can obtain secrets

by snooping on the bus. Bus monitoring attacks are also

possible. The attacks attach bus monitoring to the memory bus

and wait for the secret data to be loaded from RAM into the

CPU or vice versa. Considering the attacks and the application

of the system presented in Fig. 4, the peripherals (processor 1,

processor2 public key cryptography module, DRAM memory,

Ethernet controller, ADC controller) may be classified into two

domains. The first domain is composed of processor 1, ADC

controller, DRAM memory, and public key criptography

module. The second domain contains processor 2, Ethernet

controller, DRAM memory, and public key cryptography

module. The first domain may be considered the critical

domain, in which data will be exchanged considering the

encryption set of rules.

IV. SECURITY PROTOCOL

The concept presented in the above Section aims to

counteract the attacks presented in the SoC Threat Model

Section.

The physical attacks that aim to reveal secret information

such as cryptographic keys or sensitive data are counteracted

with the introduced mechanism. First of all, the cryptographic

keys are embedded in the structure of FPGA/IC and any attempt

to disclose their values lead to disruption of FPGA/IC and

implicitly the SoC or embedded system. This is the most

valuable property of PUF circuits. Second of all, the sensitive

information is stored as a crypto text inside the memories or

local peripheral registers due to the encryption/decryption

mechanism. The second type of attacks based on bus

monitoring or snooping may also be counteracted. Even if an

attack leaks sensitive information, the informarion is encrypted

using a pseudorandom generator based on PUF circuits.

Practically, it is hard to generate keys with perfect secrecy. This

implies that the total length of generated keys (the space of the

keys) must be grater than the total length of the messages (the

space of messages). To practically achieve this, a

pseudorandom key generator is used. A pseudorandom

generator (PRG) for a class of statistical tests is a deterministic

procedure that maps a random seed to a longer pseudorandom

string such that no statistical test in the class can distinguish

between the output of the generator and the uniform

distribution. The PRG and the seed generated with PUF circuits

make theoretically impossible to decrypt the crypto text

captured through bus monitoring. The same explanation is valid

for IP cores information leakage due to hardware trojans

insertion or software malicious modifications. Salsa20/20

starting with values generated with PUF circuits was used as a

pseudorandom generator. The problem with using the Salsa

PRG for encryption and decryption in System on Chip is that

the length of the stream cipher is
702 bytes =

732 bits and the

length of the messages is 32 bits =
52 . It is possible to encrypt

5

73

2

2 =
682 messages. This is a large number of messages but

256 PUF key

MPSoC peripherals from first

Domain

256 PUF key

MPSoC peripherals from first

Domain

PUF_D1[127:0]

HD_PUF_D2[127:0]

128b HD_PUF_D2

128b HD_PUF_D1

PUF_D2[127:0]

HD_PUF_D1[127:0]

(1)

(2)

(3)

(4)

BCH_ENCODING

(128,63)

256 PUF key1

MPSoC peripherals from first

Domain

256 PUF key2

MPSoC peripherals from

second Domain

PUF_D1[127:0]

HD_PUF_D2[127:0]

128b HD_PUF_D2

128b HD_PUF_D1

PUF_D2[127:0]

HD_PUF_D1[127:0]

(2)

(1)

(1)

(2)

BCH_DECODER

(128,63)

128 shared secret key

for domain 1

128 shared secret key

for domain 2

still small for a system on chip running continuously for

decades or more. In order to increase the size of the output space

of the original PRG, it is possible to build new PRGs out of old

PRGs. For a fixed key and a nonce there are
682 pseudorandom

keys of 32 bits length generated with Salsa20/20 PRG. It is

possible to use those pseudorandom keys as a nonce input or

key input into another Salsa20/20 PRG. However, the sequence

of the PRG is different between devices and between domains

due to differences in PRG inputs: the PUF cryptographic keys.

Fig. 3. General System on Chip.

Fig. 4. System on Chip.

V. RESULTS AND DISCUSSION

The results are correlated with the methodology presented in

Section III. All the implementations were done on Spartan 3E

FPGA, XC3S500E and Virtex 4, XC4VFX20.

A. Dividing SoC peripherals into domains

The Spartan 3E is a small FPGA family with limited

hardware resources. However, the FPGA may be divided in

small areas, one for each SoC domain. In each area, the PUF

circuits and the IP cores may be manually placed and routed

using Xilinx Planahead or Xilinx FPGA Editor. Placing and

routing may be controlled using Xilinx Synthesis Constraints.

In case of complex designs, larger FPGAs may be considered.

B. Generating PUF secret keys

This subject was widely discussed in [15 16, 17, 18] and a

brief description is presented below. Despite many PUF circuits

presented in scientific literature, few of them are suitable for

FPGA implementations due to routing complexity and

limitations. After analyzing most Silicon circuits, two of them

were found to be appropriate for FPGA implementations: the

Ring Oscillator PUF and the Latch Based PUF. Instantiating

more PUF circuits from the same type, a cryptographic key is

generated based on process variations and embedded in

physical FPGA structure. The main properties of PUF circuits

(randomness and uniqueness) were analyzed in [15, 16, 17]

which considered 30 identical Spartan 3E devices. The use of

the Ring Oscillator PUF and the latch based PUF to generate a

unique identifier for FPGA devices are validated through the

results obtained. Moreover, it has been demonstrated that

distinct IDs on the same FPGA and distinct IDs for each domain

or IP cores may exist on the same device. This will allow the

implementation of the presented security protocol where IP

cores are divided into different security level domains, and each

domain has a different PUF ID.

C. Encryption and Decryption

The security protocol assumes to adjoin a wrapper that has

access to the sequence generated with PUF for one domain and

contains a pseudorandom generator. The chosen pseudorandom

generator is Salsa20/20. Mathematical details and

implementation are presented in [19]. Salsa20 generates the

stream in 64-byte (512) blocks. It maps a 256-bit key, a 64-bit

nonce, and a 64-bit stream position to a 512 bit output. The key

is generated using 128 PUF circuits and the value is

concatenated two times in order to obtain 256-bit key. Each

block is an independent hash of the key, the nonce, and a 64-bit

block number; there is no chaining from one block to the next.

The Salsa20 encryption function is a long chain of three

simple operations on 32-bit words: 32-bit additions, 32-bit

exclusive-or and constant-distance 32 bit rotation. Salsa20/20

starts with an initial state, first applies the operations for

columns and then for rows. It repeats this 20 times and the final

phase adds the initial state to the final result. The Salsa20

algorithm computes the pseudorandom value; 512 bits are

generated in 21 clock cycles. The messages transferred on the

system are presented in Fig. 1 and are 32 bits in length. In order

to experimentally analyze the security concept, each peripheral

was featured with this wrapper. The implementation of

Salsa20/20 core was made on a Spartan 3E board and the

summary of device utilization may be seen in Fig. 5. The

frequency after synthesis is 139.451 MHz.

Fig. 5 Hardware resources for Salsa20/20.

The proposed theoretical security concept was validated

using a SoC implemented on Spartan 3E FPGA, XC3S500E

and Virtex 4, XC4VFX20, using IP cores from the rich library

Bus System

Up1_1
Ip1_1 Ip1_n

Up2_1
Ip2_1 Ip2_n

Up1_1
Ip1_1 Ip1_n

Up2_1
Ip2_1 Ip2_n

PUF_1 PUF_2

PUF_3

PUF_4

Upm_1
Ipm_1 Ipm_n

PUF_m

Encryption/

Decryption

Authentication

Key Generation

Encryption/

Decryption

Authentication

Key Generation

Processor1

Processor2

ADC

DRAM Public Key

Cryptography
Ethernet

User input

Data from external

world

HDMI

User output

available in the Xilinx IP Catalog. The security mechanism

introduced in this paper may be used inside SoCs implemented

with both IP cores imported from different libraries or in-house

developed custom IP cores. The experimental implementation

has two approaches. The first approach uses the simulation

model of Xilinx IP Cores and attaches a wrapper besides

peripherals and microprocessor and it corresponds to the case

when access to the input/output interface and to the logic

implementation is allowed. The first approach may be applied

when IP core designers implement the security mechanism. The

second approach uses a coprocessor together with processor in

order to encrypt/decrypt the data. The second approach

corresponds to the case where access to the input/output

interfaces or to the logic implementation is not allowed. In the

second approach, the system architecture (which uses the IP

Cores from third parties) integrates both the peripherals and the

security mechanism. Both approaches were implemented in

Xilinx EDK and simulated using Isim Simulator in order to

validate the results. The values obtained from PUF generators

are missing in the simulation. Their values may be used only in

the hardware implementations.

1) The First approach

In order to show that the security concept may be

implemented in a real application, a simple SoC was created

with Xilinx IP Cores: Microblaze microprocessor, a custom

cryptographic (crypto) peripheral with two read/write registers

and a GPIO configured for LEDs. The communication inside

SoC between peripherals is made through Xilinx PLB bus. The

system is presented in Fig. 6. The microprocessor runs a simple

C program that reads the value from register 0 of the crypto

peripheral, increments the value, and writes back to the register

and to the GPIO for LEDs. The communication between

microprocessor and crypto peripheral must be encrypted

involving that both the microprocessor and crypto peripheral

need the encryption/decryption mechanism. In order to adjoin

the wrapper it is necessary to understand the PLB bus protocol

and the Microblaze architecture. The signals used for data

transfer in case of PLB bus, Microblaze microprocessor and

crypto peripheral are presented in Fig. 7, Fig. 8 and Fig. 9.

Because of its instruction set architecture, Microblaze is similar

to the RISC-based architecture described in [13]. In general,

most Microblaze instructions are executed in one clock cycle,

maintaining single-cycle throughput [14]. In order to encrypt

and decrypt the data sent or received by Microblaze two

instructions are important: LW and SW. LW rA, rB, RD loads

a word from the word aligned memory location that results from

adding the contents of register rA and rB. The data is placed in

register rD. SW rA, rB, rD stores the contents of register rD,

into the word aligned memory location that results from adding

the contents of registers rA and rB [14].

Fig. 6. System on Chip implemented on FPGA.

Fig. 7. PLB signals.

Fig. 8. Microblaze signals.

Fig. 9. Custom peripheral signals.

The sequence of signals corresponding to a write operation

executed by Microblaze is described further. Crypto peripheral

register 0 is loaded with the decimal value “10” through the SW

assembly instruction. The pseudorandom cryptographic key is

active 4 clock cycles. This timing was chosen in order to

synchronize the microprocessor pseudo random generator with

the peripheral pseudo random generator. The choice was made

based on instruction execution latency and the number of cycles

necessary for a bus transfer. In the case of crypto peripheral, the

pseudo generator mechanism is delayed with one clock cycle in

order to synchronize the data transfer which has one clock cycle

latency. For example, the data transferred between Microblaze

and crypto peripheral has the value 0x0000000a and the pseudo

random cryptographic key used for encryption/decryption has

the value 0x1e68c1ce. Therefore the encrypted value sent on

the PLB bus has the value 0x1e68c1c1.

The sequence of signals corresponding to a read operation

executed by Microblaze is described further. It is a SW

assembly instruction: the Microblaze copies the value from

register 0 of crypto peripheral into one of its data registers. Fig.

10 indicates that the data read by Microblaze from the crypto

peripheral has the value 0x00000014 and the pseudo random

cryptographic key used for encryption/decryption has the value

0x391d1ea3.

2) The Second approach

A coprocessor in order to encrypt/decrypt the received or

transmitted data by or from microprocessor had been added.

This version with IP cores from Xilinx IP Catalog may also be

tested both on simulation and hardware. The coprocessor is a

custom IP core that connects to the microprocessor through

special buses. The software application has special functions in

order to use the coprocessor. For the security protocol the

coprocessor contains the PUF generated cryptographic key and

the Salsa20/20 pseudorandom generator. In case of Microblaze

and coprocessor, there is a special bus named FSL (Fast

Simplex Link) available in the IP Catalog. The coprocessor is

connected to Microblaze as can be seen in Fig. 10. In order to

send data to coprocessor and to read data from processor, two

software instructions are implemented: write_into_fsl(value)

and read_from_fsl(value). Each of the two instructions has a

latency of 5 clock cycles. After 10 clock cycles, Microblaze has

the encrypted data and it can start the data transfer to another

peripheral. The total cycle for transfer and encryption of the

data between Microblaze and a peripheral is 19 clock cycles.

Fig. 10. Coprocessor connected to Microblaze.

The details regarding the sequence of signals for data transfer

between Microblaze and a peripheral was presented in the first

approach. Considering that each of the two operations of

reading and writing have a latency of 19 clock cycles, the

encryption and decryption are made combinational. Given that

the Salsa20/20 (based on PUF circuits) generates the PRG key

in 21 clock cycles, the mechanisms from Microblaze and

peripheral are sychronized; one instance of Salsa20/20 was

used. The hardware resources occupied by the SoC with

coprocessor for crypotgraphic operations, on Virtex 4,

xc4vfx20, are presented in Fig. 11.

Fig. 11 Hardware resources.

The validation of the proposed method is achieved through

implementation results. The encryption\decryption mechanism

does not affect the system’s performance or the system’s

latency. There is a cost of hardware resources for

implementation of this method, which is worth paying when it

comes to application security. However, in most designs, the

cost of hardware resources is preferable to the cost of

performance or speed.

D. Data transfer between domains

In the case presented in this paper, the data width is 32 bits

length. This means that a shared key between two domains with

32 bits width length is needed. In this case, in each domain, 32

bits may be considered from the total 128 bits generated with

PUF circuits. From these 32 bits, a 32 bits length shared key

may be obtained using the methodology with BCH encoding

and decoding. The shared key may be used to encrypt the data

using combinational operations to scramble the bits between the

data and the shared key.

VI. CONCLUSION

The paper presents a theoretical concept for a complex SoC

with more than one microprocessor and validates

experimentally its significant benefits through a simple

implementation of cryptographic operations in a SoC. The

hardware implementation can easily be extended to

accommodate a more complex SoC.

The method presented in this paper uses symmetric key

algorithms in order to thwart some security issues against SoC.

Considering other research results reported in this field, it can

be stated that the encryption/decryption mechanism is for the

first time introduced at the SoC level, between IP cores. The

typical disadvantage of using symmetric key algorithms –

obtaining the same cryptographic key for both encryption of

plaintext and decryption of ciphertext - was eliminated by the

use of PUF circuits and Salsa20/20 PRG. Adding the PUF

circuits at the core of a PRG increases the randomness in the

generator. The experimental results show that the

performance/speed of symmetric key algorithms may be used

to construct a security mechanism at hardware level between

the IP cores.

Given that a hardware implementation is much faster than a

software one, the concept presented is based on hardware

layers: PUF circuits are implemented on the physical layer,

whereas the wrapper is added on soft or hard IP cores

implemented in hardware description languages.

REFERENCES

[1] T. Huffmire, B. Brotheron, T. Sherwood, R. Kastner, “Managing Security
in FPGA-Based Embedded Systems”, IEEE Design & Test of Computers,
vol. 25, no. 6, pp. 509-598, Nov. 2008.

[2] M. Alioto, M. Poli, S. Rocchi, “Differential Power Analysis Attacks to
Precharged Buses: A General Analysis for Symmetric-Key Cryptography
Algorithms”, IEEE Trans. On Dependable and Secure Computing, vol. 7,
no. 3, pp. 226-239, Aug. 2010.

[3] M.S. Kirkpatrick, H. Ghinita, E. Bertino, „Resilient Authenticated
Execution of Critical Applications in Untrusted Environments“, IEEE
Trans. On Dependable and Secure Computing, vol.9, no.4, pp.597-609,
May 2012.

[4] R.M. Best, “Crypto Microprocessor for Executing Enciphered Programs”,
U.S. Patent No. 4 278 837, July 1981.

[5] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell et al,
“Architectural Support for Copy and Tamper Resistant Software” in Proc.
Of the 9th Int’1 Conference on Architectural Support for Programming
Languages and Operating Systems, Nov.2000, pp. 168-177.

[6] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet, A.
Martinez, “Block-Level Added Redundancy Explicit Authentication for
Parallelized Encryption and Integrity Checking of Processor – Memory
Transactions”, Trans. On Computational Science X LNCS, pp. 231-260,
2010.

[7] R.A. Popa, N. Zeldovich, “How to compute with data you can’t see – Web
applications couls increase security by keeping data encrypted even
during computations”, IEEE Spectrum [Online], 2015.

[8] J. Oberg, R. Kastner, “Eliminating Timming Information Flows in a Mix-
Trusted System on Chip”, IEEE Design & Test, pp. 55-62, June 2013.

[9] T. Huffmire, B. Brotherton, N. Callegari, “Designing Secure Systems on
Reconfigurable Hardware”, ACM Trans. On Design Automation of
Electronic Systems,vol. 13, no. 3, July 2008.

[10] P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj et al,
“Protecting Data on Smartphones and Tablets from Memory Attacks”,
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, March 2015.

[11] Andrew “bunnie” Huang, “Keeping Secrets in Hardware: the Microsoft
Xbox Case Study”, MIT, May 26, 2002

[12] S. Adee, ”The Hunt for the Kill Switch –Are chip makers building
electronic trapdoors in key military hardware? The Pentagon is making its
biggest effort yet to find out”, IEEE Spectrum [Online], May 2008.

[13] D.A. Patterson, J.L. Hennessy, “A survey of RISC Architecture for
Desktop, Server and Embedded Computers” in Computer Organization
and Design: The Hardware/Software Interface, 3rd Ed., San Francisco,
2005.

[14] Xilinx Microblaze Reference Guide, Online.

[15] A. Stanciu, M.Tudorancea, F. Moldoveanu, “A chip ID generation circuit
– latch based”, in Proc. Of the Intl. Conf. on Ad. In Info. Proc. And Com.
Tech – IPCT, pp. 58-64, June 2014.

[16] A. Stanciu, A. Craciun, “Generating an Unique Identifier for FPGA
Devices”, in 14th International Conference on Optimization of Electrical
and Electronic Equipment, pp. 802-808, Brasov, May, 2014.

[17] A. Stanciu, M. Cirstea, F.D. Moldoveanu, “A Novel FPGA Based on
Latch Based Function With Security Applications”, IEEE Trans. on
Industrial Electronics, Accepted.

[18] A. Stanciu, A.V. Craciun, F.D. Moldoveanu, “Pseudo-random generator
using PUF circuits and Salsa stream cipher”, in Design and Technology
in Electronic Packaging (SIITME), 2015 IEEE 21st International
Symposium for, pp. 345-348, Brasov, Oct. 2015.

[19] H.P. Rosinger, “Connecting Customized IP to the Microblaze Soft
Processor Using the Fast Simplex Link (FSL) Channel”, Xilinx
Application Note, May 2004.

[20] A. Stanciu, T. Ciocoiu, F.D. Moldoveanu, “A method to handle
BCH(n,k,t) algorithm over large GF(n) in practical hardware
implementations”, Bulletin of the Transilvania University of Brasov,
Vol.8(57), No 1-2015.

[21] A.R. Sadeghi, D. Naccache, Towards Hardware Intrinsic Security, 1st ed,
ser. Information Security and Cryptography, Springer Berlin Heidelberg,
Oct. 2010, ch. 1, pp. 3-37.

[22] D. J. Bernstein, „The Salsa20 family of stream cipher“, submitted to
eStream, 2005.

