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Abstract—This paper presents a novel security mechanism for 

sensitive data stored, acquired or processed by a complex 

electronic circuit implemented as System-on-Chip (SoC) on an 

FPGA reconfigurable device. Such circuits are increasingly used 

in embedded or cyber systems employed in civil and military 

applications. Managing security in the overarching SoC presents 

a challenge as part of the process of securing such systems. The 

proposed new method is based on encrypted and authenticated 

communications between the microprocessor cores, FPGA fabric 

and peripherals inside the SoC. The encryption resides in a key 

generated with Physically Unclonable Function (PUF) circuits and 

a pseudorandom generator. The conceptual design of the security 

circuit was validated through hardware implementation, testing 

and analysis of results. 

Keywords—physically unclonable functions, pseudorandm 

generators, security, system-on-chip, embedded system 

I.  INTRODUCTION 

The modern Field Programmable Gate Array (FPGA) 

combines the programmability of processors with the 

performance of custom hardware. Due to their advantages, 

FPGAs have become the primary computational element in 

many critical embedded systems. Face recognition systems, 

wireless networks, intrusion detection systems and 

supercomputers, all of which are employed in large security 

applications, also use FPGAs [1]. As most other circuits, 

systems implemented on FPGAs require secure operations and 

communications. Design outsourcing has become increasingly 

common over the past 15 years for Integrated Circuits (ICs) 

generally and in particular for SoCs. In particular, a tendency to 

outsource the design and verification of the Intellectual 

Property (IP) core circuits and the manufacturing of integrated 

circuits can be noticed. Because of the globalization of the 

semiconductor design and fabrication processes, ICs are 

becoming increasingly vulnerable to malicious activities and 

alterations. Even if the participants are reliable, attacks like 

reverse engineering the bitstream, side channels attacks, 

manipulating the design through JTAG, initiating single events 

upset to cause functional changes to the design and other 

security attacks against embedded systems could appear. An 

example of a general model of multibit Differential Power 

Analysis (DPA) attacks to precharged buses, with emphasis on 

symmetric-key cryptography algorithms, is discussed in [2].  

Modern computer systems are built on a foundation of 

software components from a variety of vendors. While critical 

applications may undergo extensive testing and evaluation 

procedures, the heterogeneity of software sources threatens the 

integrity of the execution environment for these trusted 

programs [3]. A similar case applies to SoCs: modern SoCs are 

built on a foundation of IP cores from a variety of vendors. 

Integration of untrusted third-party IPs into a SoC design is a 

major challenge in establishing trustworthiness of the entire 

SoC. 

The proposed method is based on hardware isolation of 

peripherals that process critical data from peripherals that 

process ordinary data and on an encrypted data transfer inside 

the SoC, between microprocessor(s) and peripherals. The 

isolation and encryption are implemented at the hardware layer.  

A range of countermeasures against embedded systems 

security attacks were developed and analyzed. Those 

mentioned further refer only to information encryption or 

application isolation at hardware level. A microprocessor 

designed for executing computer programs which are stored 

encrypted in memories to prevent software piracy is presented 

in [4].  Another architecture with execute-only code, which is 

stored in an encrypted form and may be decrypted by the 

instruction-loading path on the main processor chip, is 

introduced in [5].  In [6] the focus is on physical non-invasive 

attacks – or board level attacks – conducted on buses between 

the SoC and off-chip volatile memory or directly in the 

memory. The method presented ensures the confidentiality of 

the off-chip memory content during storage or execution in 

order to prevent the leakage of any sensitive information. It also 

ensures its integrity to forbid execution of intentionally altered 

data. The authors of [7] present a summary of the homomorphic 

encryption that consists of computations carried out on 

ciphertext, thus generating an encrypted result which, when 

decrypted, matches the result of operations performed on 

unencrypted data. However, these computations involve 

complex resources and high computing time, thus making them 



inappropriate for embedded systems or SoC. The concept 

presented in this paper takes security a step forward and 

encrypts the transferred data between peripherals inside a SoC.   

Separation and isolation are fundamental to the design of 

cryptographic devices. They may be found in many forms, from 

hardware to application at the architecture level. The authors of 

[8] present an approach which achieves information flow 

isolation between trusted and untrusted IP cores. Their method 

- , Gate-level information-flow tracking (GLIFT) - uses 

additional logic to monitor the security level of every bit in the 

system as they flow through Boolean gates. GLIFT associates a 

single-bit security label to each data-bit and tracks this 

information as it flows through the system [8]. Another 

mechanism based on isolation, physical isolation this time, is 

presented in [9]. They proposed a spatial isolation mechanism 

called a moat and a controlled sharing mechanism called a 

drawbridge. A moat surrounds a core with a channel in which 

routing is disabled; drawbridges allow signals to cross moats, 

letting the cores communicate with the outside world. The aim 

of this physical isolation is to counteract some attacks against 

SoC security.  

The concept presented in this paper uses logical isolation 

between microprocessors and peripherals according to the 

sensitivity of transferred information. The security protocol 

introduced is based on data encryption/decryption with a 

symmetric cryptographic algorithm, trying to maintain the 

performance and the latency of the system. The symmetric 

algorithm is a pseudorandom generator (PRG) one, starting 

with a unique device value generated with physically 

unclonable functions (PUF) circuits and computing pseudo 

random cryptographic keys with Salsa20/20. An overview of 

the most important implementation details and experimental 

results for the PUFs is presented in [21], whereas the Salsa20/20 

is introduced in [22].  

II. SOC THREAT MODEL 

Generally, cryptography applications or security 

mechanisms involve computations based on one or more secret 

keys. The security of a cryptosystem is only as strong as the 

secrecy of the key. Thus, some of the most effective attacks on 

a cryptosystem are based on finding flaws in the protocol that 

manages the keys. Attacks that may be thwarted by the 

introduced method are shown bellow.  

One threat model for SoC is represented by physical attacks. 

Physical attacks against ICs assume the physical investigation 

of IC in order to obtain some sensitive information. Physical 

investigation of an IC refers to researching the parts of the IC 

that are not available through normal input/output pins. For 

example, attackers may inspect the IC layout in order to obtain 

the secret key. Those types of attacks are hard to achieve due to 

high equipment costs. Even so, there are companies specialized 

in reverse engineering that analyze the circuits and structure of 

semiconductors and electronic systems that may lead to 

disclosure of secrets -one of them is Chipworks.  

Bus monitoring attacks are another type of security threat 

against SoC. The bus between the SoC and memory is one of 

the most vulnerable points in the system: an adversary may 

easily listen on bus in order to extract information from the 

system. Bus monitoring attacks could also reveal access 

patterns to memories which may reveal sensitive information. 

For example, AES implementations use table of precomputed 

values. The order in which the table entries are accessed can 

reveal secret information [10]. Andrew “bunnie” Huang shows 

in [11] an attack against Xbox video game console from 

Microsoft, demonstrating that the bus is one of the weakest 

points in an embedded system. Although the code is stored 

encrypted in memory, the instructions are transferred in clear 

on the bus. Thus, code can be easily intercepted and the high 

speed of the bus is not a security protocol against bus snooping 

attacks.  

In modern embedded systems, cores communicate with each 

other via shared bus. Unfortunately, the shared nature of 

traditional bus architecture raises several security issues. 

Malicious cores can obtain secrets by snooping on the bus. In 

addition, the bus can be used as a covert channel to leak secret 

data from one core to another. One of the IP cores (for example, 

the Ethernet controller) may contain a malicious hardware 

modification, a Trojan hardware that could leak information 

and secret keys that are being transferred between peripherals 

via bus. A hardware Trojan is a malicious modification of 

hardware during design or fabrication which causes an IC to 

have altered functional behavior with security consequences. A 

possible example of hardware Trojan insertion is presented in 

[12]. Israeli jets bombed a suspected nuclear installation in 

northeastern Syria. It was not long before military and 

technology bloggers concluded that this was an incident of 

electronic warfare. Post after post speculated that commercial 

off-the-shelf microprocessors in the Syrian radar might have 

been purposely fabricated with a hidden “backdoor”. By 

sending a preprogrammed code to those chips, an unknown 

antagonist had disrupted the chips’ function and temporarily 

blocked the radar.  

III. SOC THREAT MODEL 

The security concept of this paper consists of an analysis 

between computer networks and SoCs. Due to their complexity 

and possible attacks, SoCs may be viewed as a computer 

network: the SoC microprocessors represent the computer 

network servers, and the SoC peripherals represent the 

computer network clients. In terms of security threats, SoC is 

also similar with some computer networks attacks: spoofing 

attacks, when a malicious IP core can impersonate another one, 

covert channel to leak secret data from one core to another, or 

memory attacks for reading or overwriting the critical data. The 

newly introduced method aims to experimentally validate and 

analyze the use of cryptographic- based operations 

(encryption/decryption, authentication) inside SoCs with 

minimum costs in terms of hardware resources or performance. 

The mechanism consists of the following methodology: 



A. Dividing SoC peripherals into domains 

The security protocol is based on logical isolation of sensitive 

IP cores and non-sensitive IP cores. Sensitive IP cores refer to 

IP cores that process sensitive information like passwords, 

information involved in cryptographic operations that may lead 

to disclosure of critical data. It is required to divide the SoC 

peripherals in critical and non-critical domains. The critical 

domain contains information flow which processes sensitive 

data. The processor and peripherals from the non-critical 

domain process trivial information. In this way, information 

level isolation is carried out. The division of IP cores into 

critical IP cores and non-critical IP cores is performed by a trust 

person such as the architecture system. 

B. Generating PUF secret keys 

The secret key is generated using PUF circuits. A PUF is a 

circuit that measures the inherent and random manufacturing 

variations presented in a device in order to generate a unique 

signature/cryptographic key in response to an input (challenge). 

PUF circuits are implemented as hard macros, this meaning that 

every instance is built identically: the gates are placed on the 

same locations and the propagation times between the gates are 

identical for any two instances. Theoretically, the responses of 

the PUF circuits have the same value, even if the instances are 

placed on different FPGAs/ICs or on the same FPGA/IC but in 

different locations. Practically, there will be differences 

between the responses of PUF circuits due to process variations. 

To instantiate multiple PUF circuits, a cryptographic key 

unique to each FPGA/IC due to uniqueness of process 

variations may be created. The FPGA or IC may be divided in 

a convenient number of sub-circuits, and for each sub-circuit a 

PUF secret key may be generated. One sub-circuit with one 

PUF secret key is associated with one domain from Section A. 

An integrated circuit may be seen as several smaller integrated 

circuits.  

C. Encryption and Decryption 

This step involves the addition of a wrapper beside 

peripherals and microprocessors containing the necessary 

mechanism to encrypt and decrypt sensitive data inside the 

critical domain. The wrapper contains a cryptographic key, 

pseudorandom generator, and the control logic in order to 

encrypt or decrypt the data transmitted or received. The 

microprocessor from the critical domain must also have the 

possibility to encrypt or decrypt the data stored in memories. 

The transfer between peripherals inside the SoCs or 

embedded systems is quickly made during a few clock cycles 

(generally one clock cycle). In order to maintain the 

performance of the system, the encryption/decryption 

operations should not alter the transfer time between the IP 

cores. In order to define an efficient protocol, (running in 

one/two clock cycles), a stream cipher was used, where the 

plaintext digits are combined with a pseudorandom cipher digit 

stream (keystream). The key is a pseudo random bit string as 

long as the message. The message is XORed with the key, 

which assumes a very fast encryption and decryption algorithm. 

The security mechanism must offer the possibility to generate 

the same key both at the transmitter and the receiver: each 

peripheral has a wrapper that contains the key generation 

mechanism. Furthermore, the mechanisms inside one domain 

are synchronized. With this mechanism, the messages 

transferred on shared bus are encrypted. When one encrypted 

message is transferred on the system bus, all the peripherals 

inside the domain have the possibility to generate the decrypted 

key using PUF circuits. Fig. 1 shows the general encrypted 

mechanism between the microprocessor and one peripheral 

inside a domain.  

D. Data transfer between domains 

It is possible to have information that must be exchanged 

between different critical domains. In this case, it is necessary 

to generate a common key between two domains. 

 
 

Fig. 1. Encryption Scheme between Microprocessor and Peripherals. 

Another key with the same length as the transferred messages 

may be generated using PUF circuits, in both domains. The 

PUF circuits may be chosen from the ones used to generate the 

input data for PRG. Considering that the keys are generated 

using the PUF circuits and according to experimental results, 

obtained by [17, 21] regarding the Hamming inter-distance, it 

may be considered that the difference in bits between the two 

keys is around 50%. Thus, an error correcting code to correct 

the n/2-1 bits from the total length of n bits may be applied for 

each key. The scheme of generating a common cryptographic 

key from two binary sequences with 49% different bits is 

described below. The BCH error correcting code consisting of 

two steps has been used: 

a) The helper data phase. This phase, illustrated in Fig. 

2a, is used only once per domain. It takes the 

cryptographic key generated by PUF circuits and 

generates helper data. The helper data will be available 

in the non-critical domain in order to reconstruct the 

common secret key. This stage corresponds to the 

encoding stage. 

b) The secret key generation phase. This stage, 

summarized in Fig. 2b, involves the reconstruction of 

the common cryptographic key. The common 

cryptographic key from the non-critical domain is 

generated using the key generated with PUF circuits 
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from the non-critical domain and the helper data from 

the critical domain. This stage corresponds to BCH 

decoding algorithm.  

Both stages are run by both domains. The first stage is run only 

once and the results (helper data from the first domain and 

helper data from the second domain) will be stored in registers. 

In each domain, an n-bit sequence is generated. The difference 

between the two sequences on the same FPGA/IC is around 

50%. With the help of BCH encoding, a binary sequence named 

helper data, and capable of correcting 49% bits from the total 

length of cryptographic key, is generated in each domain. By 

changing helper data between the two domains, and applying 

BCH decoding, each domain may regenerate the same binary 

sequence starting from the domain cryptographic key and the 

helper data of the other one – for the first critical domain it is 

the PUF cryptographic key with half of the bits corrected and 

for the second critical domain it is the domain PUF 

cryptographic key with half of the bits corrected. The maximum 

number of different bits between the two cryptographic keys is 

half of the total number of bits. The same binary sequence 

inside each domain will therefore be obtained.  

 
Fig. 2a. First Phase: BCH Encoding. 

 
Fig. 2b. Second Phase: BCH 

Decoding.  

Fig. 3 presents the general mechanism applied on a general 

SoC, which may be a complex system with one or n 

microprocessors. According to the application goals, the 

microprocessors, along with peripherals, may be grouped in 

more domains. Each domain consists of one microprocessor 

and at least one peripheral. A cryptographic key is generated for 

each domain and available to microprocessor and peripherals 

belonging to that domain. The domains considered with 

sensitive data are featured with the wrapper summary presented 

in point c). A simple example of SoC is presented in Fig. 4. The 

system may be used to remotely monitor a private space: the 

owner or a trusted person authenticates through the 

authentication module and receives images through an Ethernet 

connection. Even if the system is provided with an 

authentication module, the system is susceptible to security 

attacks both from software or hardware. One attack scenario 

may imply leakage of sensitive information that may be 

triggered by possible hidden hardware mechanisms inserted in 

IP cores or software deliberate vulnerabilities. Also, both 

processors have access to public key cryptography module and 

DRAM memory. If microprocessor 2 is compromised, it may 

read sensitive information and send it through Ethernet. Also, 

one of the IP cores (for example, the Ethernet controller) may 

contain a malicious hardware modification and the Trojan could 

leak confidential information and secret keys which are 

transferred between peripherals via the shared bus. 

Unfortunately, the shared nature of traditional bus architecture 

raises several security issues. Malicious cores can obtain secrets 

by snooping on the bus. Bus monitoring attacks are also 

possible. The attacks attach bus monitoring to the memory bus 

and wait for the secret data to be loaded from RAM into the 

CPU or vice versa. Considering the attacks and the application 

of the system presented in Fig. 4, the peripherals (processor 1, 

processor2 public key cryptography module, DRAM memory, 

Ethernet controller, ADC controller) may be classified into two 

domains.  The first domain is composed of processor 1, ADC 

controller, DRAM memory, and public key criptography 

module. The second domain contains processor 2, Ethernet 

controller, DRAM memory, and public key cryptography 

module. The first domain may be considered the critical 

domain, in which data will be exchanged considering the 

encryption set of rules.   

IV. SECURITY PROTOCOL 

The concept presented in the above Section aims to 

counteract the attacks presented in the SoC Threat Model 

Section. 

The physical attacks that aim to reveal secret information 

such as cryptographic keys or sensitive data are counteracted 

with the introduced mechanism. First of all, the cryptographic 

keys are embedded in the structure of FPGA/IC and any attempt 

to disclose their values lead to disruption of FPGA/IC and 

implicitly the SoC or embedded system. This is the most 

valuable property of PUF circuits. Second of all, the sensitive 

information is stored as a crypto text inside the memories or 

local peripheral registers due to the encryption/decryption 

mechanism. The second type of attacks based on bus 

monitoring or snooping may also be counteracted. Even if an 

attack leaks sensitive information, the informarion is encrypted 

using a pseudorandom generator based on PUF circuits. 

Practically, it is hard to generate keys with perfect secrecy. This 

implies that the total length of generated keys (the space of the 

keys) must be grater than the total length of the messages (the 

space of messages). To practically achieve this, a 

pseudorandom key generator is used. A pseudorandom 

generator (PRG) for a class of statistical tests is a deterministic 

procedure that maps a random seed to a longer pseudorandom 

string such that no statistical test in the class can distinguish 

between the output of the generator and the uniform 

distribution. The PRG and the seed generated with PUF circuits 

make theoretically impossible to decrypt the crypto text 

captured through bus monitoring. The same explanation is valid 

for IP cores information leakage due to hardware trojans 

insertion or software malicious modifications. Salsa20/20 

starting with values generated with PUF circuits was used as a 

pseudorandom generator. The problem with using the Salsa 

PRG for encryption and decryption in System on Chip is that 

the length of the stream cipher is 
702  bytes = 

732 bits and the 

length of the messages is 32 bits = 
52 . It is possible to encrypt 

5

73

2

2 =
682  messages. This is a large number of messages but 
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still small for a system on chip running continuously for 

decades or more. In order to increase the size of the output space 

of the original PRG, it is possible to build new PRGs out of old 

PRGs. For a fixed key and a nonce there are 
682  pseudorandom 

keys of 32 bits length generated with Salsa20/20 PRG. It is 

possible to use those pseudorandom keys as a nonce input or 

key input into another Salsa20/20 PRG. However, the sequence 

of the PRG is different between devices and between domains 

due to differences in PRG inputs: the PUF cryptographic keys. 

 
Fig. 3. General System on Chip.  

 

 
Fig. 4. System on Chip. 

 

V. RESULTS AND DISCUSSION 

The results are correlated with the methodology presented in 

Section III. All the implementations were done on Spartan 3E 

FPGA, XC3S500E and Virtex 4, XC4VFX20.  

A. Dividing SoC peripherals into domains 

The Spartan 3E is a small FPGA family with limited 

hardware resources. However, the FPGA may be divided in 

small areas, one for each SoC domain. In each area, the PUF 

circuits and the IP cores may be manually placed and routed 

using Xilinx Planahead or Xilinx FPGA Editor. Placing and 

routing may be controlled using Xilinx Synthesis Constraints. 

In case of complex designs, larger FPGAs may be considered.  

B. Generating PUF secret keys 

This subject was widely discussed in [15 16, 17, 18] and a 

brief description is presented below. Despite many PUF circuits 

presented in scientific literature, few of them are suitable for 

FPGA implementations due to routing complexity and 

limitations. After analyzing most Silicon circuits, two of them 

were found to be appropriate for FPGA implementations: the 

Ring Oscillator PUF and the Latch Based PUF. Instantiating 

more PUF circuits from the same type, a cryptographic key is 

generated based on process variations and embedded in 

physical FPGA structure. The main properties of PUF circuits 

(randomness and uniqueness) were analyzed in [15, 16, 17] 

which considered 30 identical Spartan 3E devices. The use of 

the Ring Oscillator PUF and the latch based PUF to generate a 

unique identifier for FPGA devices are validated through the 

results obtained. Moreover, it has been demonstrated that 

distinct IDs on the same FPGA and distinct IDs for each domain 

or IP cores may exist on the same device. This will allow the 

implementation of the presented security protocol where IP 

cores are divided into different security level domains, and each 

domain has a different PUF ID.  

C. Encryption and Decryption 

The security protocol assumes to adjoin a wrapper that has 

access to the sequence generated with PUF for one domain and 

contains a pseudorandom generator. The chosen pseudorandom 

generator is Salsa20/20. Mathematical details and 

implementation are presented in [19]. Salsa20 generates the 

stream in 64-byte (512) blocks. It maps a 256-bit key, a 64-bit 

nonce, and a 64-bit stream position to a 512 bit output. The key 

is generated using 128 PUF circuits and the value is 

concatenated two times in order to obtain 256-bit key. Each 

block is an independent hash of the key, the nonce, and a 64-bit 

block number; there is no chaining from one block to the next.  

The Salsa20 encryption function is a long chain of three 

simple operations on 32-bit words: 32-bit additions, 32-bit 

exclusive-or and constant-distance 32 bit rotation. Salsa20/20 

starts with an initial state, first applies the operations for 

columns and then for rows. It repeats this 20 times and the final 

phase adds the initial state to the final result. The Salsa20 

algorithm computes the pseudorandom value; 512 bits are 

generated in 21 clock cycles. The messages transferred on the 

system are presented in Fig. 1 and are 32 bits in length. In order 

to experimentally analyze the security concept, each peripheral 

was featured with this wrapper. The implementation of 

Salsa20/20 core was made on a Spartan 3E board and the 

summary of device utilization may be seen in Fig. 5. The 

frequency after synthesis is 139.451 MHz. 

 
Fig. 5 Hardware resources for Salsa20/20. 

The proposed theoretical security concept was validated 

using a SoC implemented on Spartan 3E FPGA, XC3S500E 

and Virtex 4, XC4VFX20, using IP cores from the rich library 
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available in the Xilinx IP Catalog. The security mechanism 

introduced in this paper may be used inside SoCs implemented 

with both IP cores imported from different libraries or in-house 

developed custom IP cores. The experimental implementation 

has two approaches. The first approach uses the simulation 

model of Xilinx IP Cores and attaches a wrapper besides 

peripherals and microprocessor and it corresponds to the case 

when access to the input/output interface and to the logic 

implementation is allowed. The first approach may be applied 

when IP core designers implement the security mechanism. The 

second approach uses a coprocessor together with processor in 

order to encrypt/decrypt the data. The second approach 

corresponds to the case where access to the input/output 

interfaces or to the logic implementation is not allowed. In the 

second approach, the system architecture (which uses the IP 

Cores from third parties) integrates both the peripherals and the 

security mechanism. Both approaches were implemented in 

Xilinx EDK and simulated using Isim Simulator in order to 

validate the results. The values obtained from PUF generators 

are missing in the simulation. Their values may be used only in 

the hardware implementations.  

1) The First approach 

In order to show that the security concept may be 

implemented in a real application, a simple SoC was created 

with Xilinx IP Cores: Microblaze microprocessor, a custom 

cryptographic (crypto) peripheral with two read/write registers 

and a GPIO configured for LEDs. The communication inside 

SoC between peripherals is made through Xilinx PLB bus. The 

system is presented in Fig. 6. The microprocessor runs a simple 

C program that reads the value from register 0 of the crypto 

peripheral, increments the value, and writes back to the register 

and to the GPIO for LEDs. The communication between 

microprocessor and crypto peripheral must be encrypted 

involving that both the microprocessor and crypto peripheral 

need the encryption/decryption mechanism. In order to adjoin 

the wrapper it is necessary to understand the PLB bus protocol 

and the Microblaze architecture. The signals used for data 

transfer in case of PLB bus, Microblaze microprocessor and 

crypto peripheral are presented in Fig. 7, Fig. 8 and Fig. 9.  

Because of its instruction set architecture, Microblaze is similar 

to the RISC-based architecture described in [13]. In general, 

most Microblaze instructions are executed in one clock cycle, 

maintaining single-cycle throughput [14]. In order to encrypt 

and decrypt the data sent or received by Microblaze two 

instructions are important: LW and SW. LW rA, rB, RD loads 

a word from the word aligned memory location that results from 

adding the contents of register rA and rB. The data is placed in 

register rD. SW rA, rB, rD stores the contents of register rD, 

into the word aligned memory location that results from adding 

the contents of registers rA and rB [14].  

 
Fig. 6. System on Chip implemented on FPGA. 

 
Fig. 7. PLB signals. 

 
Fig. 8. Microblaze signals. 

 
Fig. 9. Custom peripheral signals. 

The sequence of signals corresponding to a write operation 

executed by Microblaze is described further. Crypto peripheral 

register 0 is loaded with the decimal value “10” through the SW 

assembly instruction. The pseudorandom cryptographic key is 

active 4 clock cycles. This timing was chosen in order to 

synchronize the microprocessor pseudo random generator with 

the peripheral pseudo random generator. The choice was made 

based on instruction execution latency and the number of cycles 

necessary for a bus transfer. In the case of crypto peripheral, the 

pseudo generator mechanism is delayed with one clock cycle in 

order to synchronize the data transfer which has one clock cycle 

latency. For example, the data transferred between Microblaze 

and crypto peripheral has the value 0x0000000a and the pseudo 

random cryptographic key used for encryption/decryption has 

the value 0x1e68c1ce. Therefore the encrypted value sent on 



the PLB bus has the value 0x1e68c1c1.  

The sequence of signals corresponding to a read operation 

executed by Microblaze is described further. It is a SW 

assembly instruction: the Microblaze copies the value from 

register 0 of crypto peripheral into one of its data registers. Fig. 

10 indicates that the data read by Microblaze from the crypto 

peripheral has the value 0x00000014 and the pseudo random 

cryptographic key used for encryption/decryption has the value 

0x391d1ea3.  

2) The Second approach 

A coprocessor in order to encrypt/decrypt the received or 

transmitted data by or from microprocessor had been added. 

This version with IP cores from Xilinx IP Catalog may also be 

tested both on simulation and hardware. The coprocessor is a 

custom IP core that connects to the microprocessor through 

special buses. The software application has special functions in 

order to use the coprocessor. For the security protocol the 

coprocessor contains the PUF generated cryptographic key and 

the Salsa20/20 pseudorandom generator. In case of Microblaze 

and coprocessor, there is a special bus named FSL (Fast 

Simplex Link) available in the IP Catalog. The coprocessor is 

connected to Microblaze as can be seen in Fig. 10. In order to 

send data to coprocessor and to read data from processor, two 

software instructions are implemented: write_into_fsl(value) 

and read_from_fsl(value). Each of the two instructions has a 

latency of 5 clock cycles. After 10 clock cycles, Microblaze has 

the encrypted data and it can start the data transfer to another 

peripheral. The total cycle for transfer and encryption of the 

data between Microblaze and a peripheral is 19 clock cycles. 

 
Fig. 10. Coprocessor connected to Microblaze. 

The details regarding the sequence of signals for data transfer 

between Microblaze and a peripheral was presented in the first 

approach. Considering that each of the two operations of 

reading and writing have a latency of 19 clock cycles, the 

encryption and decryption are made combinational. Given  that 

the Salsa20/20 (based on PUF circuits) generates the PRG key 

in 21 clock cycles, the mechanisms from Microblaze and 

peripheral are sychronized; one instance of Salsa20/20 was 

used. The hardware resources occupied by the SoC with 

coprocessor for crypotgraphic operations, on Virtex 4, 

xc4vfx20, are presented in Fig. 11. 

 
Fig. 11 Hardware resources. 

The validation of the proposed method is achieved through 

implementation results. The encryption\decryption mechanism 

does not affect the system’s performance or the system’s 

latency. There is a cost of hardware resources for 

implementation of this method, which is worth paying when it 

comes to application security. However, in most designs, the 

cost of hardware resources is preferable to the cost of 

performance or speed.  

D. Data transfer between domains 

In the case presented in this paper, the data width is 32 bits 

length. This means that a shared key between two domains with 

32 bits width length is needed. In this case, in each domain, 32 

bits may be considered from the total 128 bits generated with 

PUF circuits. From these 32 bits, a 32 bits length shared key 

may be obtained using the methodology with BCH encoding 

and decoding. The shared key may be used to encrypt the data 

using combinational operations to scramble the bits between the 

data and the shared key. 

VI. CONCLUSION 

The paper presents a theoretical concept for a complex SoC 

with more than one microprocessor and validates 

experimentally its significant benefits through a simple 

implementation of cryptographic operations in a SoC. The 

hardware implementation can easily be extended to 

accommodate a more complex SoC.   

The method presented in this paper uses symmetric key 

algorithms in order to thwart some security issues against SoC. 

Considering other research results reported in this field, it can 

be stated that the encryption/decryption mechanism is for the 

first time introduced at the SoC level, between IP cores. The 

typical disadvantage of using symmetric key algorithms – 

obtaining the same cryptographic key for both encryption of 

plaintext and decryption of ciphertext - was eliminated by the 

use of PUF circuits and Salsa20/20 PRG. Adding the PUF 

circuits at the core of a PRG increases the randomness in the 

generator. The experimental results show that the 

performance/speed of symmetric key algorithms may be used 

to construct a security mechanism at hardware level between 

the IP cores.  

Given that a hardware implementation is much faster than a 

software one, the concept presented is based on hardware 

layers: PUF circuits are implemented on the physical layer, 

whereas the wrapper is added on soft or hard IP cores 

implemented in hardware description languages.  
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