
A Novel Autonomous Management Distributed 
System for Cloud Computing Environments 

 

Razvan-Ioan Dinita, George Wilson, Adrian Winckles, Marcian Cirstea, Tim Rowsell 
Computing and Technology 
Anglia Ruskin University 

Cambridge, United Kingdom 
{razvan.dinita, george.wilson, adrian.winckles, marcian.cirstea, tim.rowsell}@anglia.ac.uk 

 
Abstract—This paper describes a novel modular design of an 

autonomous management distributed system (AMDS) for cloud 
computing environments and it presents its implementation with 
the Scala programming language. The AMDS was designed from 
the ground up with distributed deployment, modularity and 
security in mind, using a full object oriented approach. A key 
feature of this system is the ability to gather and store 
information from various networking and monitoring devices 
from within the same computing cluster. Another key feature is 
the ability to intelligently control VMWare vSphere local 
instances based on analysis of collected data and predefined 
parameters. vSphere in turn, once it receives commands from the 
AMDS, proceeds to issue instructions to multiple locally 
monitored ESXi severs in order to maximize energy efficiency, 
reduce the carbon footprint and minimize running costs. The 
predefined parameters are based on results from a previous 
paper written by the authors. The AMDS has been deployed on 
the authors’ test bed and is currently running successfully. Test 
results show highly potential industrial applications in datacenter 
energy management and lowering of operating costs. 

Keywords—cloud; distributed; energy; optimisation; software 

I. INTRODUCTION 
Cloud computing is an emerging technology that devolves 

computing resources to the Internet [1]. The term “cloud” is 
commonly used to describe a cluster of computing hardware 
linked through a series of networking devices. Each 
computing component has a Hypervisor installed on it. The 
Hypervisor has been classified into two categories: type 1, 
which runs directly on the host’s hardware, and type 2, which 
runs within a conventional operating system [2]. 

This paper focuses on presenting a novel design of an 
autonomous management distributed system. It continues the 
initial conceptual work done by the authors [3] and makes use 
of type 1 Hypervisors, which are capable of running multiple 
virtualized machines (VM) simultaneously, all controlled by 
an independent software package. VMWare, through their 
Academic Program, has supplied the solution currently 
deployed on the authors’ test bed. The package is comprised 
of two main components: ESXi, a type 1 Hypervisor, and the 
vSphere Client, a complete cluster management solution. 

Also, as presented by [4] energy efficient management of 
cloud infrastructures is still a very active and current issue in 
research, more so in the industry where better energy 

management usually brings lower datacenter operating costs. 
The authors have already covered this aspect in an earlier 
paper [3]. 

The authors have considered two approaches to optimising 
the energy management within the VMWare cluster. The first 
one looked at using the features provided by the software 
solution to set different parameters to achieve the desired 
results. Unfortunately, there were no relevant parameters 
available to be set within the vSphere client. The second 
approach, and the one presented in this paper, was to design a 
custom distributed software solution to interface with the 
vSphere client. 

The use of distributed systems has its roots in operating 
system architectures that were initially studied in the 1960s 
[5]. The first widespread distributed systems were invented in 
the 1970s [6] and implemented on an Ethernet infrastructure. 
[7] also presents a well designed modular system of a SOA 
based architecture (also invented in the 1960s) for use in 
Cloud Computing environments. The authors have based their 
software solution design on the above presented architectures 
due to their tried and tested reliability for over 40 years. 

II. DESIGN OF THE AMDS 
For the benefit of the reader Fig. 1 presents an overview of 

the AMDS’s position within a Cloud Computing environment. 
The AMDS connects to the four most important components 
of the cloud system: access point (connection to the outside 
world), power reading hardware (monitors power 
consumption), network reading hardware (monitors network 
flow), and the heart of the cloud system – the proprietary 
software (VMWare ESXi) that makes decisions regarding the 
server and storage management. 

A. Design Goals 
The AMDS was designed from the ground up with three 

main goals in mind: 1) security, 2) modularity, and 3) parallel 
processing. 

To address security the authors have based their design on 
work done by [8] in order to introduce an appropriate 
authentication component. As such, each system component is 
required to authenticate each time it interacts with any other 
component. 



Modularity has been achieved through implementing 
sound Object Oriented programming principles. Some core 
principles relevant to this work outlined by [9] have been 
applied to the design. Every task the system is required to 
accomplish is split down into independent, fully reusable 
modules. 

The third goal, parallel processing, is achieved through the 
deployment of several instances of the AMDS across the test 
bed. The system has been designed to be deployed on a VM 

and, through its configuration parameters, locates other system 
instances in order to establish a live communication link. 
From thereon, the linked instances coordinate each other’s 
tasks in order to ease the hardware load and maximise 
efficiency, making the AMDS highly scalable. The system’s 
distributed design takes into account key points presented by 
the authors of [10]. 

 

 

 

Fig.  1. Overview diagram of the AMDS’s position within a Cloud Computing environment 

 

 
Fig.  2. UML Design Diagram of the AMD



B. Design Breakdown 
Fig. 2 presents a UML [11] diagram of the AMDS design. At 
the time of writing it is composed of 19 different parts, each 
designed for a specific task and fully reusable. The main 
features of these component parts will now be described: 

1) Core: Main system module. The entry point for the 
AMDS. From there the system accesses the configuration 
parameters (Fig. 2, 2. Config) and starts its internal tasks (Fig. 
2, 5. Control) and the User Interface (Fig. 2, 6. User Interface). 
It is responsible for facilitating communication between the 
different modules attached to it. 

a) Initiate: Module entry point. Achieves most of the 
module functionality. Initialises modules and establishes 
connections between them. 

b) Authenticate: Helper module. Undertakes the initial 
system authentication. This helps with detection of possible 
hijack attempts by making sure a current instance remains 
valid and genuine. 

2) Config: Helper module. Responsible for maintaining 
and providing access to the system configuration parameters. 
It interacts with the connection module (Fig. 2, 4. Conn) in 
order to gain access to the Storage component (Fig. 2, 4. Conn 
:: Storage), Config database. It is active throughout the 
lifespan of the system instance, facilitating on-the-fly 
parameter alteration. 

3) Auth: Key system module. Manages task and 
connection authentication. It performs checks against the 
initial determined instance validity and genuineness in an 
attempt to discover potential system hijack attempts and 
prevent them. It locks down any connection or task that does 
not pass the validation step and makes a log entry with 
relevant details on the security issue. 

4) Conn: Main system module. Facilitates all system 
connections between the modules themselves or between the 
modules and the computing cluster. It is the main access route 
to specialised mini-modules as well as attempt to authenticate 
each connection passing through it by calling upon the Auth 
module (Fig. 2, 3. Auth). 

a) AMDS Comm: Critical mini-module. Manages 
communication between instances of the AMDS including the 
passing of data between them. Acts as a load balancer by 
creating a bridge between current instance and one other 
instance. On each connection attempt it calls upon the Auth 
module to verify the integrity of the outside instance before 
allowing any kind of information exchange. 

b) Storage: Main mini-module. Keeps track of internal 
databases for each system module that deals with data. It 
stores information for the Config and Control modules. 

c) SNMP: Specialised mini-module. Facilitates passing 
of information between current system instance and devices 
that understand the Simple Networking Management Protocol 
(SNMP). This protocol allows data to pass both ways, making 

it possible to issue commands and receive results between 
different devices that use it. 

d) vSphere: Critical specialised mini-module. Interfaces 
the VMWare vSphere client to allow issuing commands and 
retrieving results. This module bridges the gap between the 
custom designed AMDS and the proprietary software solution 
provided by VMWare. 

5) Control: Main module. Initiates data collection, storing 
and analysis tasks, as well as initiate commands to the vSphere 
Client through the Conn module (Fig. 2, 4. Conn :: vSphere). 
This allows for data to be collected from monitoring devices 
across the computing cluster, stored, analysed and actions to 
be taken based on the results and the configuration parameters. 

a) GetData: Main mini-module. Deals with raw data 
retrieval. It initiates connections to the SNMP mini-module 
(Fig. 2, 4. Conn :: SNMP)., retrieves and stores collected 
information using the Storage mini-module (Fig. 2, 4. Conn :: 
Storage), Raw Data database. 

b) Analyse: Main mini-module. Retrieves chunks of raw 
data from the Storage mini-module (Fig. 2, 4. Conn :: 
Storage), Raw Data database, and come up with data capable 
of being compared to the configuration parameters. It then 
stores the analysis results using the same mini-module, but in 
the Results database. 

c) Command: Main mini-module. Compares analysis 
results with the configuration parameters and make intelligent 
decisions which maximise energy efficiency. After it stores 
issued commands in the Commands database, it then proceeds 
to send them to the correct interfacing mini-module from 
within the Conn module (Fig. 2, 4. Conn). 

6) User Interface: Noncritical system module. Facilitates 
system monitoring by presenting information stored on the 
system in human readable form. 

a) Status: Main mini-module. Provides an overview of 
the current system state as well as global statistics, including 
access to security logs and top level information on database 
disk usage. 

b) Readings: Main mini-module. Provides an in-depth 
view of each individual database currently utilised by the 
system instance. All databases maintained by the Conn 
module (Fig. 2, 4. Conn) are included. It makes use of data 
filtering and table display. 

c) Commands: Main mini-module. Provides an in-depth 
view of all command decisions the urrent system instance has 
taken as well as the accompanying results received from all 
the commanded systems. 

III. IMPLEMENTATION 

A. Language Considerations 
In the implementation stage the authors considered many 

programming languages capable of initiating remote 



connections, including Ruby, PHP, Java, Scala, C++, C#. The 
main criteria to be considered was portability i.e. make the 
system so that it can be deployed on as many different 
operating systems as possible. Only two of the considered 
languages met the required criteria: Java and Scala. 

Java is an established programming language making its 
first appearance in 19951. It is able to function on any 
operating system running the Java Virtual Machine (JavaVM). 
All major systems, including Unix, Linux and Windows are 
currently capable of running the JavaVM. However whilst the 
language functionality continues to evolve it does not handle 
running multithreaded tasks well. 

Scala [12] is a relatively new language. In spite of only 
making its first appearance in 2003, it has grown in popularity 
very quickly due to its multithreading capabilities as well as 
its concise way of expressing common programming patterns2. 
This has helped to drastically reduce development time on 
projects. One major advantage and the main reason why it has 
gained popularity so quickly is its seamless integration with 
Java. Scala support in Java for example can be provided by 
importing an appropriate library, and all Scala programs also 
run on the JavaVM which means that these can be deployed 
on all the major systems. 

B. Implementation Process 
Scala has a unique way of dealing with data structures – 

there are mutable (can be changed – e.g. var) and immutable 
(cannot be changed – e.g. val) variable types. Scala creators 
recommend using the immutable types because this minimises 
the risk of random or unintentional data corruption during 
runtime. 

Scala also allows for almost out-of-the-box distributed 
code implementations through the use of Actors. Scala Actors 
are capable of independent and asynchronous operation, 
operating by passing messages from one to another. They 
function under a command hierarchy and also allow for quick 
error recovery. Since each actor operates independently of 
each other, if one encounters a fatal error, the message is 
cascaded up the chain of command until it reaches an actor 
programmed to handle that type of issue. It can then proceed 
to take further actions as necessary e.g. restart the failed actor. 

In the development process the authors have used the 
Eclipse Integrated Development Environment (IDE) to assist 
with code completions and debugging as necessary. Each 
module has been implemented using inheritance based Object 
Oriented programming principles. Fig. 3 shows a few lines of 
Scala code (part of the Conn module implementation). Java 
libraries have been used to facilitate remote connections and 
Actors have been used to operate as message transporters. The 
code in Fig. 3 is set to receive remote connections and take 
different actions based on the type of result. 
  

                                                             
1 http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-
198355.html 
2 http://www.scala-lang.org/node/25 

 
Fig.  3. Conn Module implementation, screenshot taken from Eclipse IDE  

 
Fig.  4. Part of the Storage Module, Config database, screenshot taken from 
Eclipse IDE 

 

The databases have been implemented using the 
eXtensible Markup Language (XML). Fig. 4 shows part of the 
Storage module, specifically part of the method that deals with 
parsing the Config database information. The code uses Scala 
libraries for dealing with XML data structures and builds up a 
Config type object (first line, after the colon, signifies the 
return type). Exception handling is implemented in every 
module as a safety measure to prevent unexpected program 
termination due to unexpected or corrupt data. 



Another important component of the ASDM is the vSphere 
mini-module. In its development the authors have made heavy 
use of the vSphere SDK for Java [13]. This set of Application 
Programmable Interfaces (APIs) facilitates message exchanges 
between the Control module and the vSphere Clients currently 
in the computing cluster. Still in its preview stages, it allows 
for much interaction between third party programs and the 
vSphere client itself. 

IV. RESULTS 
The ASDM is currently deployed and running on the 

authors’ test bed. An Ubuntu Linux based Virtual Machine 
was chosen to run the application due to the high reliability of 
the Operating System. The VM has is connected to the ESXi 
Servers via a closed Virtual Network. This ensures seamless 
connectivity between virtual and physical hardware, thus 
allowing the AMDS to receive information from the ILOs and 
the vSphere Client and to send commands back. 

At the moment, data is being collected and analysed for 
debugging purposes. As seen in Fig. 5, the program is running 
successfully. The core initializes and authenticates as 
expected; Conn, SNMP and Control modules are being 
activated, and raw data starts to be collected for storing and 
analysis. 

 
Fig.  5. Output from ASDM, console view 

 

Since the AMDS has been deployed it has produced a great 
number of data stored within several databases. The data 
comes from queries performed by the AMDS on the different 
networking hardware operating within the cloud environment 
(Switches, Routers, ILOs, ESXi). The authors have merged 
and analysed all generated data, the results of which have been 
expressed in Table I and Fig. 6. 

The system efficiency was calculated by using the 
formulas (1) and (2). In formula (1) Prise is the power 
consumption rise percentage calculated by dividing Pcurrent 
(server power consumption at any other time – processor load 
> 0%) by Pidle (server power consumption when idle – 0% 

processor load). In formula (2) E (server operating efficiency) 
is calculated by dividing L (server load) by Prise. 

   Prise = Pcurrent / Pidle  (1) 

   E  = L / Prise   (2) 

TABLE I.  COMPARISON BETWEEN NORMAL SYSTEM OPERATION 
(WITHOUT AMDS) AND OPTIMIZED SYSTEM OPERATION (WITH AMDS) 

 Before 
AMDS 

During AMDS 
operation 

Processor Load (%) 25 100 

Power Consumption 

(Watts / Hour) 

168 239 

Power Consumption 
Rise (Watts / Hour) 

35.5 92 

Efficiency (%) 70 108 
 

0

50

100

150

200

250

Processor
Load (%)

Power
Consumptio
n (Watts /
Hour)
Efficiency
(%)

 
Fig.  6. Comparison between normal system operation (without AMDS) and 
optimized system operation (with AMDS) 
 

In the second column of Table I the data has been recorded 
before the AMDS has been enabled (decision making module 
was disabled). The system efficiency stabilized at 70% due to 
the fact that several servers operating at 25% of their potential 
hardware load. The server power consumption at this stage 
was 168 Watts / Hour, an increase of 35.5% from system idle 
state. 

In the third column of Table I the data has been recorded 
after the AMDS has been enabled (decision making module 
was enabled). Almost immediately all system traffic had been 
redirected towards one of the active servers while the others 
had been shut down to conserve power, thus bringing the 
system efficiency up to 108%. Power consumption at this 
stage was 239 Watts / Hour, an increase of 92% from system 
idle state. 

The results presented above demonstrate how the AMDS is 
capable of minimising the cloud system power consumption 



by up to 8%, thus generating an important operating cost 
reduction. 

V. CONCLUSIONS 
The development of ASDM is an ongoing process. The 

authors are constantly tweaking and changing the code in 
pursuit of better performance. The proposed system has 
several key industrial applications: 

1) Green Datacetre. The proposed system is capable of 
reducing overall energy consumption by intelligently turning 
physical servers on and off based on data collection from 
throughout the computing cluster. 

2) Lower Datacentre operating costs. This is a direct 
consequence of the previous statement. Overall lower energy 
consumption leads to reduced operating costs. This in turn 
allows for higher profits and more investments to be made. 

3) Set-and-forget scenarios. The AMDS, due to its 
autonomous nature and modular design, is capable of on-the-
fly self reconfiguration based on analysis results of gathered 
data. This flexibility makes it ideal for set-and-forget 
situations as well as low cost maintenance schedules. 

Next, the authors have started looking at intrusion 
detection in an attempt to develop a successful method of 
hijack detection. Data collected from running ASDM, 
including the Databases and Logs, is collected at the same 
time as an attempt at hijacking the system is in progress. All 
data is continuously monitored and analysed for signs of the 
hijack process on the system. 

REFERENCES 
[1] Mirashe, S. P.; Kalyankar, N. V.; (2010), “Cloud Computing”, 

Communications of the ACM, 51 (7), 9. 

[2] Popek, G. J.; Goldberg, R. P.; (1974). "Formal Requirements for 
Virtualizable Third Generation Architectures", Communications of the 
ACM, 17 (7), pp. 412 –421, doi:10.1145/361011.361073. 

[3] Dinita, R. I.; Wilson, G.; Winckles, A.; Cirstea, M.; Jones, A., 
“Hardware Loads and Power Consumption in Cloud Computing 
Environments”, ICIT 2013 – 2013 IEEE International Conference on 
Industrial Technology, pp. 1291-1296, 25-27 Feb. 2013, ISBN: 978-1-
4673-4568-2. 

[4] Mora, D.; Taisch, M.; Colombo, A. W., “Towards an energy 
management system of systems: An industrial case study,” IECON 2012 
- 38th Annual Conference on IEEE Industrial Electronics Society, pp. 
5811-5816, 25-28 Oct. 2012. 

[5] Andrews, G. R. (2000), “Foundations of Multithreaded, Parallel, and 
Distributed Programming”, p. 348, Published by Addison–Wesley, 
ISBN 0-201-35752-6. 

[6] Andrews, G. R. (2000), “Foundations of Multithreaded, Parallel, and 
Distributed Programming”, p. 32, Published by Addison–Wesley, ISBN 
0-201-35752-6. 

[7] Karnouskos, S.; Colombo, A.W.; Bangemann, T.; Manninen, K.; Camp, 
R.; Tilly, M.; Stluka, P.; Jammes, F.; Delsing, J.; Eliasson, J., “A SOA-
based architecture for empowering future collaborative cloud-based 
industrial automation,” IECON 2012 - 38th Annual Conference on IEEE 
Industrial Electronics Society, pp.5766-5772, 25-28 Oct. 2012. 

[8] Irani, G.N.H.; Tawosi, V., “AAMA: A new Authentication and 
Authorization architecture for modular information systems, a robust 
object oriented approach,” Application of Information and 
Communication Technologies (AICT), 2011 5th International 
Conference on, pp. 1-5, 12-14 Oct. 2011. 

[9] Caragiozidis, M.; Mouratidis, N.; Kavadias, C.; Loupis, M.; Berger, M., 
“Design Methodology for a Modular Component Based Software 
Architecture,” Computer Software and Applications, 2008. COMPSAC 
'08. 32nd Annual IEEE International, pp. 1122-1127, July 28 2008 - 
Aug. 1 2008. 

[10] Maffei, A.; Hofmann, A., "From flexibility to true Evolvability: An 
introduction to the basic requirements," Industrial Electronics (ISIE), 
2010 IEEE International Symposium on , vol., no., pp.2658,2663, 4-7 
July 2010. 

[11] Unified Modeling Language, http://www.uml.org. 
[12] Scala Programming Language, http://www.scala-lang.org. 
[13] VMware vSphere™ SDK for Java, http://communities.vmware.com/ 

community/vmtn/developer/forums/java_toolkit 
 

 


