
An End User Platform for FPGA-based Design and Rapid
Prototyping of FeedForward Artificial Neural Networks with on-

chip Back Propagation learning
Alin Tisan, Member, IEEE and Jeannette Chin, Member, IEEE

Abstract — The hardware implementation of an Artificial Neural
Network (ANN) using field-programmable gate arrays (FPGA) is
a research field that has attracted much interest and attention.
With the developments made, the programmer is now forced to
face various challenges, such as the need to master various
complex hardware-software development platforms, hardware
description languages and advanced ANN knowledge. Moreover,
such an implementation is very time consuming. To address these
challenges, the paper presents a novel neural design methodology
using a holistic modelling approach. Based on the end user
programming concept, the presented solution empowers end users
by means of abstracting the low-level hardware functionalities,
streamlining the FPGA design process and supporting rapid ANN
prototyping. A case study of an ANN as a pattern recognition
module of an artificial olfaction system trained to identify four
coffee brands is presented. The recognition rate versus training
data features and data representation was analysed extensively.

Keywords — FPGA; Artificial Neural Networks; End User
Programming; HW / SW co-design and co-simulation; e-Nose;

I. INTRODUCTION
Hardware implementation of an ANN using field programmable

gate arrays (FPGA) has been an interesting research field with
applications in various domains since early nineties. At the
beginning, the only generally accepted method was to design the
application by means of Hardware Description Languages for
VLSI (very large-scale integration) circuits, in particular VHDL or
Verilog. Nowadays, engineers use modern Electronic Design
Automation tools to create, simulate and verify a design, and,
without committing to hardware, can quickly evaluate complex
systems with high confidence in the “right first time” correct
operation of the final product.

The FPGA reconfiguration capability and its parallel
processing power are “hot topics”, recognised in many papers
focused in industrial applications: hardware implemented polar
decoders [1], FPGA embedded controller of an n-Level DC–
DC–AC inverter [2] or hardware implementation of predictive
control algorithms for power converters [3]

With the newly emerged development environments for All
Programmable Systems-on-Chip (SoCs) and multiprocessor
Systems-on-Chip (MPSoCs) complex algorithms are now
implemented in FPGA embedded processors [4]: FPGA/DSP-
based digital controller with self-reconfiguration property for
power quality compensation [5], FPGA embedded
multiprocessor PLC that provides high execution speed,
multiprocessing programming [6]. Despite ANNs being
implemented in hardware for more than 25 years [7], it remains
in the centre of attention for many researchers and a variety of
methods to develop hardware implemented ANNs have been
reported in the literature in the past decade [8, 9]. An overview

of these achievements is given in [10] where the ANN theory and its
hardware implementation are discussed extensively.

 The main advantage in using the above methods is given by
the fact that now the functional description of the design (the
mathematical model) and its hardware implementation has been
brought closer but the gap between them still exists. The
pressing need to master different environments calls for a
holistic approach in which the mathematical description and the
electronic design implementation are simultaneously addressed
in a unique environment. According to [11] the benefits of the
holistic modelling approach are given by the possibility to
evaluate increased system complexity at an early design stage
in a unique platform. The time to market will be shortened, the
use of automatic processes for hardware implementing the
ANNs will be facilitated and therefore investigating different
system topologies (ANN topologies) will be more eased.
Combining the above-enumerated holistic modelling
advantages with hardware description languages and FPGA
capabilities, more complex neural networks can be modelled,
simulated and implemented with an increased use of resource
efficiency [12]. In this sense, an interesting approach is taken in
[13] where the VHDL code of a Multilayer Perceptron ANN
topology is generated by mean of a graphical user interface
(GUI) designed in Matlab. The tool lifts the VHDL design
burden from the user’s shoulders, making the CAD
environment to be more user-centred. Similar approaches are
reported in the literature where automatic tools are developed
to help the designer to exploit the dynamic partial
reconfiguration of the FPGAs circuits [14] or to generate the
VHDL code of complex fuzzy-logic systems [15].

This paper takes these steps further and presents a
methodology based on the end user programming [16] concept,
where end users are shielded from the need to know low-level
technical hardware description languages. This is achieved by
providing different layers of abstractions to represent in
hardware the application functionality, such that end users are
empowered by simply manipulating the abstractions via an
intuitive and interactive GUI to support rapid prototyping. The
system was tested as a pattern recognition module in an
artificial olfaction system for identifying different coffee
brands. An extended analysis regarding the recognition rates
versus data representation has been carried out.

The paper is structured as follows: Section II – End User
Programming on ANN Design Approach; Section III – Neural
Libraries Design; Section IV – ANN Abstraction and EUP;
Section V – Application and discussions; Section VI – Conclusions.

II. END USER PROGRAMMING (EUP) ON ANN DESIGN
APPROACH

End user programming is characterised by the use of
techniques that allow end users of an application to create
“programs” themselves without needing to write any code [16].
A common way to achieve this goal is to create propriety types
of “scripting languages”; abstracting conventional
programming algorithms into some form of representations
(e.g. graphical objects) and then to provide a platform for the
users to manipulate these representations as the basis of
learning how to create a program. Earlier work in this area was
primarily focused on single desktop computing, allowing end
users to create programs by manipulating abstract graphical
objects. Recent developments have moved away from desktop
computing systems to technology-rich ubiquitous environments
where the EUP approach is no longer restricted to a single PC
but leverages objects as a means to interact with the system
[17]. Consequently, whilst some approaches still employ
traditional graphical user interfaces on a single PC [18], others
have been ported on mobile devices [19].

The technique adopted in this paper follows earlier published
work on Pervasive Interactive Programming [20] that employs
a show-me-by-example approach via natural interactions. The
method further extends the use of modern EDA tools for the
design, simulation and hardware implementation of an artificial
neural network aiming to change the way in which user
applications are defined. Instead of a classical solution, in
which the application is defined using hardware description
languages, it is more efficient (in terms of performances vs.
hardware resource utilisation) and user friendly (the user does
not need to know the neural algorithm or how to implement it
in hardware) to create a pattern recognition system, in our case
an ANN, by means of providing layers of abstractions to
represent configurable modules, which are grouped into
specific libraries that interface with the hardware. The
abstractions are presented on an intuitive and interactive
configurable graphical user interface (GUI), which end users
can interact with and easily manipulate. The manipulations can
be achieved by simple gestures such as pressing, tapping and
“drag and drop”. The GUI “listens” and “learns” the user’s
interactions on the screen and composes the program at the
same time based on the desired requirements. For ambiguous
actions detected,

Fig. 1. Proposed method for hardware implemented ANN design

the system will help by providing suggestions. The immediate
advantages of this approach are (1) to speed up the early phases
of different ANNs’ design and development process, (2) to
allow the end users, who may not be familiar with the
technologies, to create their programs without enduring a steep
learning curve (Fig. 1).

The outcome is a configurable neural component library
embedded into a design environment that allows considering
simultaneously all the aspects of the system design. In this way,
operational performance is maximized enabling high
efficiency, which means high processing speed and minimum
hardware resource utilization.

III. NEURAL LIBRARY DESIGN
The ANN performance is heavily influenced by the topology

chosen and its correlation with the application remains crucial.
In this paper the neural network chosen to be modelled is the
feed forward with back-propagation learning algorithm
network (FFBP). As the main FFBP characteristics, such as the
network topology, are selected by repetitive modifications,
simulations and implementations of the project code, the
availability of a hardware ready implementable ANN library
would bring a plus in the effort to rapid design reliable pattern
recognition systems in hardware.

The created neural network library, described in the next
sections, contains extendable modules that comply with a
generic FFBP architecture. It consists of processing units
(neurons) organized in successive layers: one input layer, one
or more intermediate hidden layers and one output layer. The
network is fully connected, i.e. all the outputs of a layer are
connected by synapses to all inputs of the following layer. Only
the hidden and the output layers include processing units,
whereas the input layer is used just for data feeding. The
network uses the feedforward algorithm to push information
forward from one layer to the next one and the back-
propagation training algorithm for determining its weights: a
repetitive algorithm that finds the minimum of the error
function (the derivative of the sum-of-squares error with
respects to the weights). The proposed software-hardware
platform, underpinned by the ANN library and user interface,
represents a viable way of designing and FPGA implement
FFBP network topologies with on-chip learning as
demonstrated in the Application section.

A. The FFBP neural network algorithm
The neural algorithm that emulates the FFBP ANN behaviour

is described through equations (1)-(4). It starts with the
computation of the output vector: MAC (multiply and
accumulate) of all inputs with their corresponding weights (the
net values) and fires the results with an activation function f,
equation (1):

 (1)
The goal of the algorithm is to minimize the error function
calculated in (2) by means of weights adjustment.

 (2)
For this, a corresponding partial derivative error with respect to
its net output value is computed (3).

1

K

k k
k

o f bias w y
=

 
← + 

 
∑

 (3)
Next, an update stage follows, in which all the weights, hidden
and output ones, will be adjusted (4).

 (4)
The FFBP network will follow these computation steps until the
calculated error will be less than a given threshold value.
In (1) to (4) were used the following abbreviations: net is the
fired neuron output; wk is the weight vector of neuron k from
the output layer; i, j, k are the neuron’s indexes (number); I, J,
K are the number of neurons of the input, hidden and output
layer, E is the error function, o is the output vector of the output
layer; y is the output vector of the hidden layer, δok, δyj are the
gradient of the error signals of neuron k of the output layer and
respectively neuron j from the hidden layer, νj is the weight vector
of the neuron j from a hidden layer.

B. FFBP neural library design
Designing the neuron of a multilayer feed-forward neural
network with on-chip learning must consider not only the
requested computations in the propagation phase, when the
neural network is already trained and performs the recognition
task (1), but also the learning phase, when the neural weights
are updated according with the error minimization, as in (2) to
(4). The neuron designed by the authors is built using Xilinx
System Generator library blocks and consists of MAC unit,
RAM memory module, multiplexor and a register for bias
values initialization, and one firing function block. When
designing the MAC unit two approaches may be adopted:
using distributed resources, (Fig. 2), or dedicated modules that
can replace the accumulator, multiplier and multiplexor
components such as XtremeDSP or BRAM blocks. The
number of dedicated modules (which ensure the best neuronal
processing performances) differs from one FPGA family to
another. Therefore for finding the neuron with the highest
performance, related to the hardware resources available in the
targeted FPGA, four possible optimization scenarios were
considered:
- DL_AO: optimized for minimizing the occupied area and

multiplications are done using distributed logic resources;

Fig. 2. Hardware architecture of the neuron

Table I
Hardware resources utilization for neuron implementation

Model Slices LUTs Frequency (MHz)
DL_AO 36 49 151,676
DL_SO 36 49 154,369

DSP_AO 5 0 253,485
DSP_SO 5 0 267,237

- DL_SO: optimized for speed processing and multiplications

are done using distributed logic resources;
- DSP_AO: optimized for minimizing the occupied and

multiplications are done using dedicated resources
- DSP_SO: optimized for speed processing and

multiplications are done using dedicated resources.

The synthesis of the maximum processing frequency and the
hardware resources utilization were generated with the ISE
Xilinx report generator tool and are presented in Table I.
The results analysis shows that the neuron based on the
XtremeDSP block has the highest processing frequency and uses
the fewest hardware resources in terms of slices or LUTs (as
expected). Nevertheless, as the XtremeDSP blocks are limited,
(128 for 4VSX35), to extend the number of neurons
implemented, distributed logic can be used instead.

Another component of the neuronal library is the activation
function. Its role is to map the neuron output values to a range
of values given by the function chosen as a firing function, in
this case the sigmoid function (5).

 (5)
Implementing the sigmoid function in hardware requires
advanced hardware description language knowledge.
Moreover, once implemented, it acts as a bottleneck for the
neuron speed performance demanding considerable hardware
resources in the same time. In order to reducing the hardware
cost, different approximations of the sigmoid function can be
adopted. The main classical methods to digitally implement an
activation function are Look-up tables and truncation of the
Taylor series expansion. Taylor expansion can further be
implemented in various ways: sum-of-steps, piece-wise linear,
combination of the previous, or others. The best results reported
in the literature show errors of 8% to 13.1% for sum-of-steps
approximations and ± 2.45% to ± 1.14% for piece-wise linear
approximation. Also, there are approximations with smaller
errors, but they use floating-point multiplications, thus practical
implementation becomes too complex [30].

The firing function library, created by the authors, consists
of ready hardware implementable modules of functions chosen
to approximate the sigmoid function: A-low (F1), Allipi (F2),
PLAN (F3) and Zhang (F4) [21]. Their mathematical and
hardware implementation are summarised in Table II and their
hardware resources utilization in Table III. As shown, the
approximation functions were implementing using minimum of
the hardware resources.

Table IV shows the resources utilized by the entire neuron
using different approximation functions, revealing that each of
them has drawbacks and strengths in terms of speed processing
and hardware utilisation.

()

2

1

1 ()
2

(1)

(1)

k k
k k

ok
k k k k

ok k k k k

K

yj j j ok kj
k

t o
E o o
o net o net

d o o o

y y w

δ

δ

δ δ
=

 ∂ − ∂ ∂ ∂ = − = − ⇒
∂ ∂ ∂ ∂

= − −

= −

∑

∑

, for 1,2,...,K and 1,2,...,J

, for 1,2,...,I and 1,2,...,J
kj kj ok j

ji ji yj i

w w y k j
v v x i j

ηδ

ηδ

← + = =

← + = =

1

1()

1

N

k k
k

bias w x
output net

e =

 
 − + 
 

=
∑

+

Table II
MATHEMATICAL AND HARDWARE IMPLEMENTATION OF THE APPROXIMATION

FUNCTIONS

x y
-8 0
-4 0.0625
-2 0.12
-1 0.25
1 0.75
2 0.87
4 0.937
8 1

X PLAN(X)
|X| ≥ 5 1

2,375 ≤ |X| < 5 0,03125 ∙ |X| + 0,84375
1≤ |X| < 2.375 0,0125 ∙ |X| + 0,625

0 ≤ |X| < 1 0,25 ∙ |X| + 0,5

Table III
RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF DIFFERENT

FIRING FUNCTION WITH DIFFERENT BITS REPRESENTATION

Func LUT DSP BRAM
(32,16) (16,8) (8,4) (32,16) (16,8) (8,4) (32,16) (16,8) (8,4)

F1 185 74 23 0 0 0 0 0 0
F2 127 67 36 0 0 0 0 0 0
F3 109 44 24 0 0 0 0 0 0
F4 93 29 18 1 1 1 0 0 0

Table IV

RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF ARTIFICIAL
NEURON WITH DIFFERENT FIRING FUNCTION USING (3,10) BITS REPRESENTATION

Resources
distribution

Neuron
Lookup

table

Neuron
Zhang

Neuron
Allipi

Neuron
A-low

Neuron
PLAN

Slices 5 28 59 29 12
LUTs 0 25 89 31 10

RAMBs 2 1 1 1 1
DSPs 1 2 1 1 1

Max frequency
(MHz) 227.790 255.860 290.613 268.168 234.467

It can be concluded that the best approximation method, in
terms of resources utilized and errors introduced, is the PLAN
function, when the number of the neurons that use sigmoid
function is larger than the number of the BRAM blocks
available in the FPGA circuit. When the number of neurons is
lower than the total BRAM blocks available in the FPGA
circuit, the best way to approximate the sigmoid function is the
Lookup Tables method. The resolution used was (3,10) where
3 bits were allocated for the integer part and 10 bits for binary
part. The errors introduced by the implemented functions are
summarized in Table V.

Table V
ERRORS AND RESOURCE UTILIZATION OF THE 4VSX35 FPGA CIRCUIT FOR

HARDWARE IMPLEMENTATION OF THE SIGMOID APPROXIMATION
Approximation

function
Maximum
error (%)

Mean
error (%)

Total equivalent gates
count for design

Lookup Table 0 0 131.072
A-low 5.63 0.63 411
Allipi 1.89 1.11 877
Plan 1.89 0.63 351

Zhang 2.16 1.10 314

C. The control neural library with on-chip learning
 The control of the neuronal processing components is done

through specialised blocks designed by the authors. These units
are designed to accommodate the on-chip BP learning
algorithm and the parallelism at the neuron level, all the neurons
within the same layer are controlled at the same time (in
parallel), taking advantage of the massive parallel processing
supported by the FPGAs.

The blocks that control the ANN processing units consist of
a general counter, used to provide the time base for the entire
neural network according to the ANN’s phase: propagation
(when the network is already trained and performs recognition)
or learning (when the network is on-chip trained to recognize
the patterns) and ANN layer specific command signal generator
blocks (two in the example given: one for each neuronal layer),
Fig. 3.
The General counter block calculates, function of neurons
architecture, network topology and processing phase
(propagation or learning), the counter’s maximum value and
generates the reference time to set/reset the neuronal control

Allipi

Zhang

A-low

signals. Eq (6) gives the algorithm for calculating the number
of clock cycles necessary to complete the processing and
weights updating tasks (the counter max value), clk_cycles, and
where n1, n2 are the neurons in the input and respectively
output layer; t is the tth layer of network and ceil is the Matlab
function that approximates a real number up to the next integer.
Eq 6 gives also the ANN processing speed in the learning (PL
= 1) or propagation (PL = 0) phase.

clk_cycles = [n1+n2+6t-2]+PL[14+n2+(t-1)(n2ceil(((n1+n2)+
+6t+12)/n2)-((n1+n2)+6t+12)+3+n2)] (6)

The Command signals generator block generates the controlling
signals for all the processing elements of the neurons at specific
moments (counter values). For this, the block calculates the
values at which commands have to be given using (7), according
to the neuron’s architecture, where t: the layer number; n: the
number neurons in layer t; set_rst_acc: the counter’s value at
which the accumulator’s reset signal is set (the neuron’s
accumulator is reset); en_acc_start: the counter value at which
the accumulator enable signal is set (the neuron accumulator is
enabled); en_acc_stop: the time at which the accumulator enable
signal is reset (the accumulator is disable); propag_start: the
counter’s value at which the neuron’s propagation phase starts;
propag_stop: the counter’s value at which the propagation
phase stops; update_layer(t)_start: counter’s value at which the
tth layer weights start to be updated (the memory write enable
signal is set); update_layer(t)_stop: counter’s value at which the
weights of the tth layer updating process is stopped (the memory
write enable signal is reset).

 (7)

The blocks are described using VHDL language and
implemented using Black box modules, a block that converts a
VHDL design into a System Generator block. The
computational tasks from eq. (2) to (4), which describe the
algorithms for updating on-chip the ANN weights, have been
implemented with three computing blocks: i) the errors
computing block, ii) the output layer weights computing block
and iii) the hidden layer weights computing block. The errors
and layer weights computing blocks calculate the accumulated
error, the gradient of the error (δ) and the value that the weights
should be changed with (∆w) to decrease the accumulated error,
fig. 4

The weights of the hidden layer are calculated last (due to
back propagation error algorithm). For this, a series of
processing blocks that calculate according to (3) the new weights
were designed, fig. 5. The processing time, expressed in clock
cycles, is given in (8) and is used in delaying the weights
updating task (the delay introduced to permit the calculation of
the new weights to be completed).

 (8)

Fig. 3. Control block architecture

Fig. 4. Output layer errors and

weights calculus blocks

 An overall view of the main blocks involved in designing an
ANN architecture with a 7-7-4 topology (7 neurons in the input
layer, 7 neurons in the hidden layer and 4 neurons in the output
layer) is shown in Fig.6

Fig. 5. The weights of the hidden layer calculus blocks

Fig. 6. Architecture of the 7-7-4 FFBP neural network topology

()()
()()
()()
()()
()()

()
()

_ _ 1 6 2
_ _ 1 6 4
_ _ 1 6 4 1

_ 1 6
_ 1 6 1

_ () _ 6 12
_ () _ 6 12 1

set rst acc t n
en acc start t n
en acc stop t n n
propag start t n
propag stop t n n
update layer t start t n
update layer t stop t n n

= − + +
= − + +
= − + + + −
= − +
= − + + −

= + +
= + + + −

IV. ANN ABSTRACTION AND EUP
The idea behind the ANN abstraction is to shield the complexity
from the end user while allowing them to create their own
desired ANN program without incurring a steep learning curve,
thus promote rapid prototyping. To achieve this goal we
employed rule-based technique that often found in many AI
systems. Rules are first created according to the design and
requirement of each of ANN blocks (Fig 7) and store in the
“End User Programs and Semantics” component (i.e. the
knowledge space) (Fig 1). These rules are then used as the basis
of ANN programming abstraction presented as graphical
representations. The relationships between each rule are
described in a form of semantic manner. The end user will then
create their own ANN programs by simply manipulating the
graphical “Rules” representations and develop their own new
“Rules” via an interactive GUI (Fig 7). The GUI is implemented
using event-based architecture. Using JavaScript API, various
UI events (such as drag, drop, move and click) have been
developed mapping the rules requirements that store in the main
knowledge space (thus can “trigger” other events based on
those rules) to “listen” to the user’s activities that is happening
on this panel. To understand the user interactions, a learning
feature is implemented such that each activity will be captured
and interpreted/inference according to the rules store in rule-
based or be learned as new rule. Based on rules, an “expert
system” is implemented to guide the end user to create their
ANN program via a series of dialogs. User is able to configure
the “rule” by simply clicking the graphical representations. The
newly created “Rules” will be recorded as instances and stored
back in knowledge space, which can retrieve and amend later.
The contributions of this paper in terms of software design are:
(1) the semantic rules based on ANN design, (2) the
abstractions and representations, (3) the expert system
including the learning feature and (4) GUI event-based
architecture. The EUP GUI is implemented using Python
language and JavaScript, together with a pre-installed
MATLAB Engine that enable Simulink functions to be called
through the provided APIs.

Fig. 7. ANN Design EUP GUI

V. APPLICATION AND ANALYSIS
The developed FFBP neural network library was used to

create a pattern recognition module for an artificial olfactory
system trained to recognize different types of coffee. The
olfactory system consists of: seven gas sensors chosen to react
to a wide spectrum of odours (TGS842, TGS826_1, TGS826_2,
TGS2600, TGS2601, TGS2602, TGS2620), temperature sensor
(LM35), humidity sensor (SY-HS-230), mounted into a gas test
chamber, test chamber, three gas pumps, circuits for sensors
conditioning and pumps command, data acquisition board,
pattern recognition module hardware implemented in FPGA
(Virtex-4 SX 4VSX35), user interface.

A. Data acquisition and processing
The data acquisition module was customized to control the gas
pumps (used to transport the smell to and from the test chamber),
acquire data generated by all 9 sensors and pre-process the
acquired signals (filtering, drift cancellation). The data has been
extracted from the measurement over a defined absorption/
desorption time of the voltage drop on sensors resistance when
the enriched odour is applied/removed. Data acquired
constitutes the fingerprint of the smell and to process it,
dimensional reduction techniques are applied. In most cases, this
is performed by extracting a single parameter (e.g. steady-state,
final or maximum response) from each sensor, disregarding the
initial transient response, which may be affected by the
dynamics of the odour delivery system. In some situations,
transient analysis may significantly improve the performance of
the gas sensor arrays and should be taken in consideration.
Considering the feature extraction methods reported in literature
[22], a heuristic method has been adopted with the following
selected features: average value (A1), maximum value (A2),
function integral (A3), integral of the absorption time (A4),
maximum slope of the absorption (A5), maximum slope of the
desorption function (A6), time at which maximum slope of
absorption function occurs (A7) and time at which maximum
slope of desorption function occurs (A8).

B. ANN performance analysis
For determining the best FFBP network implementable with

a minimum of resources, a series of different FFBP NN
topologies have been tested. In addition, for each topology,
fixed-point binary representation with different resolutions
have been investigated. Fig 8 shows the recognition rate vs. data
representation for a topology of 56-56-4 neurons, which
processes an input vector with 56 components: 8 features per
sensors (A1 to A8) and 7 sensors. The recognition rate varies
from 100%, for (16,16) bits representation (16 bits for integer
part and 16 bits for binary part), to 50% for (7,8) bits
representation and 0% for (2,3) bits representation. A major
drop of the recognition rate occurs, 96% to 49%, when one bit
of the integer part: (8,8) → (7,8) is changed. The recognition rate
remains constant for a major drop of data resolution (16,16) →
(8,8). These observations may be very useful when choosing
the data representation resolution. Fig 9 and 10 are plotted in
order to highlight the influence of data representation resolution
over the recognition rate for a given training set. First, a training
set with features (A1, A2, A3) is shown in Fig 9 and (A2) in Fig
10. It can be concluded, there is no perfect FFBP network

topology for every purpose, but it can be adapted to fulfil the
most important requirements of a given application. For
example, if the chip area occupation is an important issue, then
a 21-21-4 FFBP network with a (5,5) bits representation and a
theoretically recognition rate of 90% could be more than
acceptable. However, for obtaining a higher recognition rate, a
56-56-4 FFBP network with a (16,16) bits representation might
be a better option. Consequently, as demonstrated in the above
discussion, the accuracy of the ANN is massively determined
by the data representation adopted. Similar reports are shown in
[10].

C. ANN hardware implementation results
To implement in FPGA the above ANN topologies requires

specific hardware resources, which can be priory calculated.
Having a formula to estimate the hardware resources needed for
implementing a specific ANN topology would let the user
choose the right ANN size and FPGA circuit.

By analysing the hardware implementation reports presented
in Table VI, where HL denotes the hidden layer and OL the
output layer, it can be concluded that:
• each neuron added to the hidden layer increases by 32 LUTs

and 1 multiplier the overall resource utilization.
• each neuron added to the output layer increases by 40 LUTs

and 4 multipliers the output neurons weights computation
block and with 49 LUTs and 1 multiplier the hidden neurons
weights computation block;

Fig. 8. Recognition rates vs. data representation for 56-56-4 FFBP

Fig. 9. Recognition rate vs. data representation for 21-21-4 FFBP

Fig. 10. Recognition rate vs. data representation for with 7-21-4 FFBP

Table VI
DSP, SLICES (SL) AND RAM DISTRIBUTION OVER FFBP COMPONENT BLOCKS

FOR DIFFERENT ANN TOPOLOGIES

ANN
Neuronal

block
HL

 block
OL

block
Control
 block

DSP SL RAM DSP SL RAM DSP SL RAM DSP SL RAM
1-1-1 1 5 4 5 64 0 4 24 0 12 105 0
7-2-4 6 76 12 9 190 0 12 100 0 12 114 0
7-7-7 14 105 28 17 256 0 28 215 0 12 108 0

Based on the reports presented, 3 equations have been
generated to estimate the hardware resources utilized to
implement a given FFBP topology, prior to an actual hardware
implementation, (9) - (11). These permit choosing the right
FPGA circuit for a given ANN topology/size in the very early
ANN design stages, saving time and costs.
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 2(𝑁𝑁ℎ + 𝑁𝑁𝑜𝑜) (9)
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 15 + 2𝑁𝑁ℎ + 6𝑁𝑁𝑜𝑜 (10)
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 200 + 89𝑁𝑁𝑜𝑜 + 32𝑁𝑁ℎ (11)
where: - No is the number of neurons in the output layer,

- Nh is the number of neurons in the hidden layer.
Applying (9)-(11) to the circuit targeted in this paper, a

Virtex4 with 15.360 slices, 30.720 LUTs, 192 BRAMs, 192
DSPs, the maximum number of neurons that can be
implemented using strictly the dedicated BRAMs and
XtremeDSP blocks (for ensuring the maximum processing
speed) is 60, organized as: 45 in the hidden layer and 15 in the
output layer. However, using the distributed multipliers and
BRAMs available in the circuit, 26 more neurons, 20 in the
hidden layer and 6 in the output layer, can be implemented.
These will utilize 6878 LUTs and 76 BRAMs, leaving 22657
LUTs unused. The unused LUTs can be further converted into
20 neurons in the hidden layer and 10 in the output layer.
Therefore, the maximum number of neurons that can be
hardware implemented (on the expense of the processing speed) is
approximated to 120 (double than the number of neurons that use
only dedicated BRAMs and XtremeDSP blocks).

To illustrate the FPGA implementation performance, a report
in terms of hardware resources utilization, and maximum
processing frequency is presented in Table VII.

Table VII
FPGA implementation reports

Resource distribution FF(1-1-1) FF(7-7-7) FF(7-2-4)
LUTs 322 1167 612

RAMB16s 4 28 12
DSP48s 23 71 43

Max frequency (MHz) 122.489 96.516 106.09

D. ANN performance comparisons
A direct comparison of the data presented in table VII with

others reported in the literature is not always relevant due to the
lack of common referencing in reporting the hardware
resources per ANN performances. These depend on the type of
the resources available in the FPGA (4 or 6 inputs LUTs,
multipliers or XtremeDSPs, etc.) the depths of the ANN
parallelism adopted (synapse, neuron or layer), the firing
function (sigmoid, hardlim, etc.) processing speed, data
representation, use of dedicated or distributed resources, on or
off chip learning, number of hidden layers to nominate the most
important ones. In [10] for implementing the 10-3-1 FFBP
topology with a synaptic parallelism, 70 DSPs and 8043 LUTs
were used. In [11] the hardware utilization is reported per neuron with

1299 LUTs / neuron. In [23] for a 2-5-1 topology 11 DSPs and 6384
LUTs were consumed. In this paper for a similar topology of 7-2-4,
43 DSPs and 412 LUTs were used.

As shown above, the hardware utilisation depends on factors
which vary from one ANN topology, and FPGA, to another but
they are all reflected in the recognition rate (RR) and processing
speed (PS) supported by the chosen FPGA. Hence, reporting
RR and PS, along with the hardware utilisation, would indicate
better the level of success in using a particular ANN topology
in a specific FPGA circuit.

Choosing the right FPGA circuit for a given ANN or the
ANN size for a given FPGA circuit is not straightforward. As
shown in [10] for selecting the right FPGA circuit, the designer
is forced to implement the design first and then interpret the
hardware resources used vs. the ANN topology. Therefore,
being able to estimate the hardware resources needed for
implementing an ANN before to an actual implementation
would shorten the development time and consequently save
costs. This is addressed for a given FPGA family by the
equations (9)-(11).

VI. CONCLUSIONS AND FUTURE WORK
A novel neural design strategy has been developed, which

benefits of reduced design time over classical field orientation
approaches, leading to a low complexity and easy to implement
pattern recognition module. A particular application of the
pattern recognition system for an olfactory system is
investigated and results presented show efficient hardware
implementation in FPGA circuit. The achievement presented in
this paper refers to a holistic modelling / design method, using
modules created into hardware-software co-design
environment (Matlab-System Generator–ISE) and grouped in a
specific NN library. These modules emulate in hardware any
FFBP network topology behaviour, giving the opportunity to
design hardware implementable FFBP neural networks, at a
higher level, via an intuitive and interactive EUP interface.

The proposed methodology takes advantage of the FPGA
parallel processing power preparing the ground for an auto-
adaptive reconfigurable device ready to respond - read auto-
reconfigure - to any pattern recognition challenge. It is hoped that,
through the proposed method, it would be possible to make steps
towards a “more like brain” computational machine, in terms of
adaptability and quick response, a system that makes its own
choices (upon an implemented algorithm), i.e. intelligence.

As the components are entirely designed using System
Generator blocks, the created library is technology dependent to
the software used. For increasing the portability, future work will
consider having the blocks designed using hardware description
languages, generated from System Generator.

In conclusion, the paper shows that any FFBP topology may
be built using predefined neural blocks with the following
characteristics: i) holistic modelling and optimisation, ii)
behavioural analysis, and iii) easy hardware prototyping on an
FPGA development platform via an intuitive EUP interface. In
addition, it has been developed a set of equations to estimate: i)
the hardware resources needed to implement an FFBP ANN
with on-chip learning in a given FPGA circuit (eq. 9-11) and ii)
the processing speed of the implemented ANN topology (eq. 6).
Moreover, design concepts introduced in [20] and [24] are

brought further with contributions in developing an ANN design
platform based on semantic rules, abstractions and representations,
expert system and GUI event-based architecture.

VII. REFERENCES
[1] P. Giard, G. Sarkis, C. Thibeault and W.J. Gross, Electronics Letters Vol.

51 No. 10 pp. 762–763, 2015
[2] B. Dastagiri Reddy, Anish N. K., et al, Embedded Control of n-Level DC–

DC–AC Inverter, IEEE Trans. on Power Electronics, 30(7), 2015
[3] Z. Zhang, He Xu, et all, Predictive Control with Novel Virtual-Flux

Estimation for Back-to-Back Power Converters, IEEE Transactions on
Industrial Electronics, vol. 62, no. 5, 2015

[4] A. Malinowski, Y. Hao, Comparison of embedded system design for
industrial applications, Trans. Ind. Informatics 7 (2), pp 244-254, 2011.

[5] Man-Chung Wong, Yan-Zheng Yang, Chi-Seng Lam et all, Self-
Reconfiguration Property of a Mixed Signal Controller for Improving
Power Quality Compensation During Light Loading, IEEE Transactions
On Power Electronics, vol. 30, no. 10, 2015

[6] Z. Hajduk, B. Trybus and J. Sadolewski, Architecture of FPGA
Embedded Multiprocessor Programmable Controller, IEEE Transactions
on Industrial Electronics, vol. 62, no. 5, 2015

[7] J. Misra, I. Saha, Artificial neural networks in hardware: A survey of two
decades of progress, Neurocomputing 74, pp 239-255, 2010.

[8] A. Gomperts, A. Ukil and F. Zurfluh, Development and Implementation
of Parameterized FPGA-Based General Purpose Neural Networks for
Online Applications, IEEE Transactions On Industrial Informatics, Vol.
7, No. 1, February 2011

[9] F. Ortega-Zamorano, J. M. Jerez and L. Franco, FPGA Implementation of
the C-Mantec Neural Network Constructive Algorithm, IEEE Trans. on
Ind.Informatics, vol. 10, No. 2, May 2014.

[10] A. Omondi, R. Amos, J. Rajapakse, FPGA Implementations of Neural
Networks, Edided by Springer, ISBN-10 0-387-28485-0, 2006.

[11] M. Cirstea, A. Dinu, A VHDL Holistic Modeling Approach and FPGA
Implementation of a Digital Sensorless Induction Motor Control Scheme,
IEEE Trans. on Ind. Electronics, vol. 54, (4), 1853 - 1864, 2007

[12] A. Dinu, M.N. Cirstea, S.E. Cirstea: Direct Neural Networks Hardware
Implementation Algorithm, IEEE Trans. on Ind. Electronics, vol. 57, no.
5, pp.1845-1848, May 2010.

[13] A. Rosado-Muñoz, E. Soria-Olivas et al., An IP Core and GUI for
Implementing Multilayer Perceptron with a Fuzzy Activation Function on
Configurable Logic Devices, J. of Universal Comp. Sc. vol. 14, no10. pp
1678-1694, 2008.

[14] E. Vansteenkiste et all, TPaR: Place and Route Tools for the Dynamic
Reconfiguration of the FPGA’s Interconnect Network, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 3, pp 370-383, 2014

[15] M. Brox et all, CAD Tools for Hardware Implementation of Embedded
Fuzzy Systems on FPGAs, IEEE Transactions on Industrial Informatics,
vol. 9, vo. 3, pp 1635-1644, 2013

[16] A, Cypher Halbert DC, Kurlander D, et al, “Watch What I Do:
Programming by Demonstration” The MIT Press, England 1993.

[17] N,.Elumeze, et all Serious Programming Made Cuddly: A Fully End-
User-Programmable Stuffed Toy, Digital Game and Intelligent Toy
Enhanced Learning, Third IEEE Int. Conf., pp.146-150, 2010

[18] J.,Lincke, , Krahn, R., et al, Lively Fabrik A Web-based End-user
Programming Environment, Creating, Connecting and Collaborating
through Computing, 7th International Conference on , pp.11-19, 2009

[19] Mateo, C.; Brunete, A.; et al, Hammer: An Android based application for
end-user industrial robot programming, Mechatronic and Embedded
Systems and Applications,10th Int. Conference on , pp.1,6, Sept. 2014

[20] Chin, V. Callaghan, G. Clarke, End-user Customisation of Intelligent
Environments". In the handbook of Ambient Intelligence and Smart
Environments, Springer, 2010, Spring, pp. 371-407,

[21] M.T. Tommiska: Efficient digital implementation of the sigmoid function
for reprogrammable logic, IEE Proceedings – Computers and Digital
Techniques, number 6, pp. 403-411, 2003.

[22] R. Gutierrez-Osuna, H. T. Nagle, and S.,S Schiffman, Transient response
analysis of an electronic nose using multi-exponential models, Sensors
and Actuators B, 1999, 61(1-3), 170-182.

[23] A.N. Pérez-García1 et all, Multilayer perceptron network with integrated
training algorithm in FPGA, 11th Int. Conf. on Electrical Engineering,
Computing Science and Automatic Control, pp 1-6, 2014.

[24] A. Tisan, M. Cirstea, S. Oniga, A. Buchman, Artificial olfaction system
with hardware on-chip learning neural networks, 12th International
Conference on Optimization of Electrical and Electronic Equipment
(OPTIM), pp884-889, 2010.

	I. Introduction
	II. End User Programming (EUP) on ANN Design Approach
	III. Neural Library Design
	A. The FFBP neural network algorithm
	B. FFBP neural library design
	C. The control neural library with on-chip learning

	IV. ANN Abstraction and EUP
	V. Application and analysis
	A. Data acquisition and processing
	B. ANN performance analysis
	C. ANN hardware implementation results
	D. ANN performance comparisons

	VI. CONCLUSIONS AND FUTURE WORK
	VII. References

