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Abstract — The hardware implementation of an Artificial Neural 
Network (ANN) using field-programmable gate arrays (FPGA) is 
a research field that has attracted much interest and attention. 
With the developments made, the programmer is now forced to 
face various challenges, such as the need to master various 
complex hardware-software development platforms, hardware 
description languages and advanced ANN knowledge. Moreover, 
such an implementation is very time consuming. To address these 
challenges, the paper presents a novel neural design methodology 
using a holistic modelling approach. Based on the end user 
programming concept, the presented solution empowers end users 
by means of abstracting the low-level hardware functionalities, 
streamlining the FPGA design process and supporting rapid ANN 
prototyping. A case study of an ANN as a pattern recognition 
module of an artificial olfaction system trained to identify four 
coffee brands is presented. The recognition rate versus training 
data features and data representation was analysed extensively.  

Keywords — FPGA; Artificial Neural Networks; End User 
Programming; HW / SW co-design and co-simulation; e-Nose; 

I. INTRODUCTION 
Hardware implementation of an ANN using field programmable 

gate arrays (FPGA) has been an interesting research field with 
applications in various domains since early nineties. At the 
beginning, the only generally accepted method was to design the 
application by means of Hardware Description Languages for 
VLSI (very large-scale integration) circuits, in particular VHDL or 
Verilog. Nowadays, engineers use modern Electronic Design 
Automation tools to create, simulate and verify a design, and, 
without committing to hardware, can quickly evaluate complex 
systems with high confidence in the “right first time” correct 
operation of the final product.  

The FPGA reconfiguration capability and its parallel 
processing power are “hot topics”, recognised in many papers 
focused in industrial applications: hardware implemented polar 
decoders [1], FPGA embedded controller of an n-Level DC–
DC–AC inverter [2] or hardware implementation of predictive 
control algorithms for power converters [3] 

With the newly emerged development environments for All 
Programmable Systems-on-Chip (SoCs) and multiprocessor 
Systems-on-Chip (MPSoCs) complex algorithms are now 
implemented in FPGA embedded processors [4]: FPGA/DSP-
based digital controller with self-reconfiguration property for 
power quality compensation [5], FPGA embedded 
multiprocessor PLC that provides high execution speed, 
multiprocessing programming [6]. Despite ANNs being 
implemented in hardware for more than 25 years [7], it remains 
in the centre of attention for many researchers and a variety of 
methods to develop hardware implemented ANNs have been 
reported in the literature in the past decade [8, 9]. An overview 

of these achievements is given in [10] where the ANN theory and its 
hardware implementation are discussed extensively. 

  The main advantage in using the above methods is given by 
the fact that now the functional description of the design (the 
mathematical model) and its hardware implementation has been 
brought closer but the gap between them still exists. The 
pressing need to master different environments calls for a 
holistic approach in which the mathematical description and the 
electronic design implementation are simultaneously addressed 
in a unique environment. According to [11] the benefits of the 
holistic modelling approach are given by the possibility to 
evaluate increased system complexity at an early design stage 
in a unique platform. The time to market will be shortened, the 
use of automatic processes for hardware implementing the 
ANNs will be facilitated and therefore investigating different 
system topologies (ANN topologies) will be more eased. 
Combining the above-enumerated holistic modelling 
advantages with hardware description languages and FPGA 
capabilities, more complex neural networks can be modelled, 
simulated and implemented with an increased use of resource 
efficiency [12]. In this sense, an interesting approach is taken in 
[13] where the VHDL code of a Multilayer Perceptron ANN 
topology is generated by mean of a graphical user interface 
(GUI) designed in Matlab. The tool lifts the VHDL design 
burden from the user’s shoulders, making the CAD 
environment to be more user-centred. Similar approaches are 
reported in the literature where automatic tools are developed 
to help the designer to exploit the dynamic partial 
reconfiguration of the FPGAs circuits [14] or to generate the 
VHDL code of complex fuzzy-logic systems [15]. 

This paper takes these steps further and presents a 
methodology based on the end user programming [16] concept, 
where end users are shielded from the need to know low-level 
technical hardware description languages. This is achieved by 
providing different layers of abstractions to represent in 
hardware the application functionality, such that end users are 
empowered by simply manipulating the abstractions via an 
intuitive and interactive GUI to support rapid prototyping. The 
system was tested as a pattern recognition module in an 
artificial olfaction system for identifying different coffee 
brands. An extended analysis regarding the recognition rates 
versus data representation has been carried out.    

The paper is structured as follows: Section II – End User 
Programming on ANN Design Approach; Section III – Neural 
Libraries Design; Section IV – ANN Abstraction and EUP; 
Section V – Application and discussions; Section VI – Conclusions. 



II. END USER PROGRAMMING (EUP) ON ANN DESIGN 
APPROACH 

End user programming is characterised by the use of 
techniques that allow end users of an application to create 
“programs” themselves without needing to write any code [16]. 
A common way to achieve this goal is to create propriety types 
of “scripting languages”; abstracting conventional 
programming algorithms into some form of representations 
(e.g. graphical objects) and then to provide a platform for the 
users to manipulate these representations as the basis of 
learning how to create a program. Earlier work in this area was 
primarily focused on single desktop computing, allowing end 
users to create programs by manipulating abstract graphical 
objects. Recent developments have moved away from desktop 
computing systems to technology-rich ubiquitous environments 
where the EUP approach is no longer restricted to a single PC 
but leverages objects as a means to interact with the system 
[17]. Consequently, whilst some approaches still employ 
traditional graphical user interfaces on a single PC [18], others 
have been ported on mobile devices [19].  

The technique adopted in this paper follows earlier published 
work on Pervasive Interactive Programming [20] that employs 
a show-me-by-example approach via natural interactions. The 
method further extends the use of modern EDA tools for the 
design, simulation and hardware implementation of an artificial 
neural network aiming to change the way in which user 
applications are defined. Instead of a classical solution, in 
which the application is defined using hardware description 
languages, it is more efficient (in terms of performances vs. 
hardware resource utilisation) and user friendly (the user does 
not need to know the neural algorithm or how to implement it 
in hardware) to create a pattern recognition system, in our case 
an ANN, by means of providing layers of abstractions to 
represent configurable modules, which are grouped into 
specific libraries that interface with the hardware. The 
abstractions are presented on an intuitive and interactive 
configurable graphical user interface (GUI), which end users 
can interact with and easily manipulate. The manipulations can 
be achieved by simple gestures such as pressing, tapping and 
“drag and drop”. The GUI “listens” and “learns” the user’s 
interactions on the screen and composes the program at the 
same time based on the desired requirements. For ambiguous 
actions detected, 

 
Fig. 1. Proposed method for hardware implemented ANN design 

the system will help by providing suggestions. The immediate 
advantages of this approach are (1) to speed up the early phases 
of different ANNs’ design and development process, (2) to 
allow the end users, who may not be familiar with the 
technologies, to create their programs without enduring a steep 
learning curve (Fig. 1). 

The outcome is a configurable neural component library 
embedded into a design environment that allows considering 
simultaneously all the aspects of the system design. In this way, 
operational performance is maximized enabling high 
efficiency, which means high processing speed and minimum 
hardware resource utilization. 

III. NEURAL LIBRARY DESIGN 
The ANN performance is heavily influenced by the topology 

chosen and its correlation with the application remains crucial. 
In this paper the neural network chosen to be modelled is the 
feed forward with back-propagation learning algorithm 
network (FFBP). As the main FFBP characteristics, such as the 
network topology, are selected by repetitive modifications, 
simulations and implementations of the project code, the 
availability of a hardware ready implementable ANN library 
would bring a plus in the effort to rapid design reliable pattern 
recognition systems in hardware.  

The created neural network library, described in the next 
sections, contains extendable modules that comply with a 
generic FFBP architecture. It consists of processing units 
(neurons) organized in successive layers: one input layer, one 
or more intermediate hidden layers and one output layer. The 
network is fully connected, i.e. all the outputs of a layer are 
connected by synapses to all inputs of the following layer. Only 
the hidden and the output layers include processing units, 
whereas the input layer is used just for data feeding. The 
network uses the feedforward algorithm to push information 
forward from one layer to the next one and the back-
propagation training algorithm for determining its weights: a 
repetitive algorithm that finds the minimum of the error 
function (the derivative of the sum-of-squares error with 
respects to the weights). The proposed software-hardware 
platform, underpinned by the ANN library and user interface, 
represents a viable way of designing and FPGA implement 
FFBP network topologies with on-chip learning as 
demonstrated in the Application section.  

A. The FFBP neural network algorithm 
The neural algorithm that emulates the FFBP ANN behaviour 

is described through equations (1)-(4).  It starts with the 
computation of the output vector: MAC (multiply and 
accumulate) of all inputs with their corresponding weights (the 
net values) and fires the results with an activation function f, 
equation (1): 

  (1) 
The goal of the algorithm is to minimize the error function 
calculated in (2) by means of weights adjustment.  

  (2) 
For this, a corresponding partial derivative error with respect to 
its net output value is computed (3).  
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  (3) 
Next, an update stage follows, in which all the weights, hidden 
and output ones, will be adjusted (4).  

  (4) 
The FFBP network will follow these computation steps until the 
calculated error will be less than a given threshold value. 
In (1) to (4) were used the following abbreviations: net is the 
fired neuron output; wk is the weight vector of neuron k from 
the output layer; i, j, k are the neuron’s indexes (number); I, J, 
K are the number of neurons of the input, hidden and output 
layer, E is the error function, o is the output vector of the output 
layer; y is the output vector of the hidden layer, δok, δyj are the 
gradient of the error signals of neuron k of the output layer and 
respectively neuron j from the hidden layer, νj is the weight vector 
of the neuron j from a hidden layer. 

B. FFBP neural library design 
Designing the neuron of a multilayer feed-forward neural 
network with on-chip learning must consider not only the 
requested computations in the propagation phase, when the 
neural network is already trained and performs the recognition 
task (1), but also the learning phase, when the neural weights 
are updated according with the error minimization, as in (2) to 
(4). The neuron designed by the authors is built using Xilinx 
System Generator library blocks and consists of MAC unit, 
RAM memory module, multiplexor and a register for bias 
values initialization, and one firing function block. When 
designing the MAC unit two approaches may be adopted: 
using distributed resources, (Fig. 2), or dedicated modules that 
can replace the accumulator, multiplier and multiplexor 
components such as XtremeDSP or BRAM blocks. The 
number of dedicated modules (which ensure the best neuronal 
processing performances) differs from one FPGA family to 
another. Therefore for finding the neuron with the highest 
performance, related to the hardware resources available in the 
targeted FPGA, four possible optimization scenarios were 
considered:  
- DL_AO: optimized for minimizing the occupied area and 

multiplications are done using distributed logic resources; 
 

 
Fig. 2. Hardware architecture of the neuron 

Table I 
Hardware resources utilization for neuron implementation 

Model Slices LUTs Frequency (MHz) 
DL_AO 36 49 151,676 
DL_SO 36 49 154,369 

DSP_AO 5 0 253,485 
DSP_SO 5 0 267,237 

 
- DL_SO: optimized for speed processing and multiplications 

are done using distributed logic resources;  
- DSP_AO: optimized for minimizing the occupied and 

multiplications are done using dedicated resources 
- DSP_SO: optimized for speed processing and 

multiplications are done using dedicated resources.  
 

The synthesis of the maximum processing frequency and the 
hardware resources utilization were generated with the ISE 
Xilinx report generator tool and are presented in Table I. 
The results analysis shows that the neuron based on the 
XtremeDSP block has the highest processing frequency and uses 
the fewest hardware resources in terms of slices or LUTs (as 
expected). Nevertheless, as the XtremeDSP blocks are limited, 
(128 for 4VSX35), to extend the number of neurons 
implemented, distributed logic can be used instead.  

Another component of the neuronal library is the activation 
function. Its role is to map the neuron output values to a range 
of values given by the function chosen as a firing function, in 
this case the sigmoid function  (5).  

 (5) 
Implementing the sigmoid function in hardware requires 
advanced hardware description language knowledge. 
Moreover, once implemented, it acts as a bottleneck for the 
neuron speed performance demanding considerable hardware 
resources in the same time. In order to reducing the hardware 
cost, different approximations of the sigmoid function can be 
adopted. The main classical methods to digitally implement an 
activation function are Look-up tables and truncation of the 
Taylor series expansion. Taylor expansion can further be 
implemented in various ways: sum-of-steps, piece-wise linear, 
combination of the previous, or others. The best results reported 
in the literature show errors of 8% to 13.1% for sum-of-steps 
approximations and ± 2.45% to ± 1.14% for piece-wise linear 
approximation. Also, there are approximations with smaller 
errors, but they use floating-point multiplications, thus practical 
implementation becomes too complex [30]. 

The firing function library, created by the authors, consists 
of ready hardware implementable modules of functions chosen 
to approximate the sigmoid function: A-low (F1), Allipi (F2), 
PLAN (F3) and Zhang (F4) [21]. Their mathematical and 
hardware implementation are summarised in Table II and their 
hardware resources utilization in Table III. As shown, the 
approximation functions were implementing using minimum of 
the hardware resources.  

Table IV shows the resources utilized by the entire neuron 
using different approximation functions, revealing that each of 
them has drawbacks and strengths in terms of speed processing 
and hardware utilisation. 
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Table II 
MATHEMATICAL AND HARDWARE IMPLEMENTATION OF THE APPROXIMATION 

FUNCTIONS 

 

 

 

 

x y 
-8 0 
-4 0.0625 
-2 0.12 
-1 0.25 
1 0.75 
2 0.87 
4 0.937 
8 1 

 

 
 

X PLAN(X) 
|X| ≥ 5 1 

2,375 ≤ |X| < 5 0,03125 ∙ |X| + 0,84375 
1≤ |X| < 2.375 0,0125 ∙ |X| + 0,625 

0 ≤ |X| < 1 0,25 ∙ |X| + 0,5 

 

Table III 
RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF DIFFERENT 

FIRING FUNCTION WITH DIFFERENT BITS REPRESENTATION 

Func  LUT DSP BRAM 
(32,16) (16,8) (8,4) (32,16) (16,8) (8,4) (32,16) (16,8) (8,4) 

F1 185 74 23 0 0 0 0 0 0 
F2 127 67 36 0 0 0 0 0 0 
F3 109 44 24 0 0 0 0 0 0 
F4 93 29 18 1 1 1 0 0 0 

 
Table IV 

RESOURCE DISTRIBUTIONS FOR HARDWARE IMPLEMENTATION OF ARTIFICIAL 
NEURON WITH DIFFERENT FIRING FUNCTION USING (3,10) BITS REPRESENTATION 

Resources 
distribution 

Neuron 
Lookup 

table 

Neuron 
Zhang 

Neuron 
Allipi 

Neuron 
A-low 

Neuron 
PLAN 

Slices 5 28 59 29 12 
LUTs 0 25 89 31 10 

RAMBs 2 1 1 1 1 
DSPs 1 2 1 1 1 

Max frequency 
(MHz) 227.790 255.860 290.613 268.168 234.467 

 
It can be concluded that the best approximation method, in 
terms of resources utilized and errors introduced, is the PLAN 
function, when the number of the neurons that use sigmoid 
function is larger than the number of the BRAM blocks 
available in the FPGA circuit. When the number of neurons is 
lower than the total BRAM blocks available in the FPGA 
circuit, the best way to approximate the sigmoid function is the 
Lookup Tables method. The resolution used was (3,10) where 
3 bits were allocated for the integer part and 10 bits for binary 
part. The errors introduced by the implemented functions are 
summarized in Table V. 

Table V 
ERRORS AND RESOURCE UTILIZATION OF THE 4VSX35 FPGA CIRCUIT FOR 

HARDWARE IMPLEMENTATION OF THE SIGMOID APPROXIMATION 
Approximation 

function 
Maximum 
error (%) 

Mean 
error (%) 

Total equivalent gates 
count for design 

Lookup Table 0 0 131.072 
A-low 5.63 0.63 411 
Allipi 1.89 1.11 877 
Plan 1.89 0.63 351 

Zhang 2.16 1.10 314 

C. The control neural library with on-chip learning 
 The control of the neuronal processing components is done 

through specialised blocks designed by the authors. These units 
are designed to accommodate the on-chip BP learning 
algorithm and the parallelism at the neuron level, all the neurons 
within the same layer are controlled at the same time (in 
parallel), taking advantage of the massive parallel processing 
supported by the FPGAs.  

The blocks that control the ANN processing units consist of 
a general counter, used to provide the time base for the entire 
neural network according to the ANN’s phase: propagation 
(when the network is already trained and performs recognition) 
or learning (when the network is on-chip trained to recognize 
the patterns) and ANN layer specific command signal generator 
blocks (two in the example given: one for each neuronal layer), 
Fig. 3.  
The General counter block calculates, function of neurons 
architecture, network topology and processing phase 
(propagation or learning), the counter’s maximum value and 
generates the reference time to set/reset the neuronal control 

Allipi 

Zhang 

A-low 



signals. Eq (6) gives the algorithm for calculating the number 
of clock cycles necessary to complete the processing and 
weights updating tasks (the counter max value), clk_cycles, and 
where n1, n2 are the neurons in the input and respectively 
output layer; t is the tth layer of network and ceil is the Matlab 
function that approximates a real number up to the next integer. 
Eq 6 gives also the ANN processing speed in the learning (PL 
= 1) or propagation (PL = 0) phase. 
 

clk_cycles = [n1+n2+6t-2]+PL[14+n2+(t-1)(n2ceil(((n1+n2)+ 
+6t+12)/n2 )-((n1+n2 )+6t+12)+3+n2)] (6) 

 

The Command signals generator block generates the controlling 
signals for all the processing elements of the neurons at specific 
moments (counter values). For this, the block calculates the 
values at which commands have to be given using (7), according 
to the neuron’s architecture, where t: the layer number; n: the 
number neurons in layer t; set_rst_acc: the counter’s value at 
which the accumulator’s reset signal is set (the neuron’s 
accumulator is reset); en_acc_start: the counter value at which 
the accumulator enable signal is set (the neuron accumulator is 
enabled); en_acc_stop: the time at which the accumulator enable 
signal is reset (the accumulator is disable); propag_start:  the 
counter’s value at which the neuron’s propagation phase starts; 
propag_stop:  the counter’s value at which the propagation 
phase stops; update_layer(t)_start: counter’s value at which the 
tth layer weights start to be updated (the memory write enable 
signal is set); update_layer(t)_stop: counter’s value at which the 
weights of the tth layer updating process is stopped (the memory 
write enable signal is reset).  

 (7) 

The blocks are described using VHDL language and 
implemented using Black box modules, a block that converts a 
VHDL design into a System Generator block. The 
computational tasks from eq. (2) to (4), which describe the 
algorithms for updating on-chip the ANN weights, have been 
implemented with three computing blocks: i) the errors 
computing block, ii) the output layer weights computing block 
and iii) the hidden layer weights computing block. The errors 
and layer weights computing blocks calculate the accumulated 
error, the gradient of the error (δ) and the value that the weights 
should be changed with (∆w) to decrease the accumulated error, 
fig. 4  

The weights of the hidden layer are calculated last (due to 
back propagation error algorithm). For this, a series of 
processing blocks that calculate according to (3) the new weights 
were designed, fig. 5. The processing time, expressed in clock 
cycles, is given in (8) and is used in delaying the weights 
updating task (the delay introduced to permit the calculation of 
the new weights to be completed). 

 (8) 

 
 

 

 

 
Fig. 3. Control block architecture 

 
Fig. 4. Output layer errors and 

weights calculus blocks 

 An overall view of the main blocks involved in designing an 
ANN architecture with a 7-7-4 topology (7 neurons in the input 
layer, 7 neurons in the hidden layer and 4 neurons in the output 
layer) is shown in Fig.6 

 
Fig. 5. The weights of the hidden layer calculus blocks 

 
Fig. 6. Architecture of the 7-7-4 FFBP neural network topology 
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IV. ANN ABSTRACTION AND EUP 
The idea behind the ANN abstraction is to shield the complexity 
from the end user while allowing them to create their own 
desired ANN program without incurring a steep learning curve, 
thus promote rapid prototyping. To achieve this goal we 
employed rule-based technique that often found in many AI 
systems. Rules are first created according to the design and 
requirement of each of ANN blocks (Fig 7) and store in the 
“End User Programs and Semantics” component (i.e. the 
knowledge space) (Fig 1). These rules are then used as the basis 
of ANN programming abstraction presented as graphical 
representations. The relationships between each rule are 
described in a form of semantic manner. The end user will then 
create their own ANN programs by simply manipulating the 
graphical “Rules” representations and develop their own new 
“Rules” via an interactive GUI (Fig 7). The GUI is implemented 
using event-based architecture. Using JavaScript API, various 
UI events (such as drag, drop, move and click) have been 
developed mapping the rules requirements that store in the main 
knowledge space (thus can “trigger” other events based on 
those rules) to “listen” to the user’s activities that is happening 
on this panel. To understand the user interactions, a learning 
feature is implemented such that each activity will be captured 
and interpreted/inference according to the rules store in rule-
based or be learned as new rule. Based on rules, an “expert 
system” is implemented to guide the end user to create their 
ANN program via a series of dialogs. User is able to configure 
the “rule” by simply clicking the graphical representations. The 
newly created “Rules” will be recorded as instances and stored 
back in knowledge space, which can retrieve and amend later. 
The contributions of this paper in terms of software design are: 
(1) the semantic rules based on ANN design, (2) the 
abstractions and representations, (3) the expert system 
including the learning feature and (4) GUI event-based 
architecture. The EUP GUI is implemented using Python 
language and JavaScript, together with a pre-installed 
MATLAB Engine that enable Simulink functions to be called 
through the provided APIs.      

 

 
Fig. 7. ANN Design EUP GUI  

V. APPLICATION AND ANALYSIS 
The developed FFBP neural network library was used to 

create a pattern recognition module for an artificial olfactory 
system trained to recognize different types of coffee. The 
olfactory system consists of: seven gas sensors chosen to react 
to a wide spectrum of odours (TGS842, TGS826_1, TGS826_2, 
TGS2600, TGS2601, TGS2602, TGS2620), temperature sensor 
(LM35), humidity sensor (SY-HS-230), mounted into a gas test 
chamber, test chamber, three gas pumps, circuits for sensors 
conditioning and pumps command, data acquisition board, 
pattern recognition module hardware implemented in FPGA 
(Virtex-4 SX 4VSX35), user interface. 

A. Data acquisition and processing 
The data acquisition module was customized to control the gas 
pumps (used to transport the smell to and from the test chamber), 
acquire data generated by all 9 sensors and pre-process the 
acquired signals (filtering, drift cancellation). The data has been 
extracted from the measurement over a defined absorption/ 
desorption time of the voltage drop on sensors resistance when 
the enriched odour is applied/removed. Data acquired 
constitutes the fingerprint of the smell and to process it, 
dimensional reduction techniques are applied. In most cases, this 
is performed by extracting a single parameter (e.g. steady-state, 
final or maximum response) from each sensor, disregarding the 
initial transient response, which may be affected by the 
dynamics of the odour delivery system. In some situations, 
transient analysis may significantly improve the performance of 
the gas sensor arrays and should be taken in consideration.  
Considering the feature extraction methods reported in literature 
[22], a heuristic method has been adopted with the following 
selected features: average value (A1), maximum value (A2), 
function integral (A3), integral of the absorption time (A4), 
maximum slope of the absorption (A5), maximum slope of the 
desorption function (A6), time at which maximum slope of 
absorption function occurs (A7) and time at which maximum 
slope of desorption function occurs (A8). 

B. ANN performance analysis 
For determining the best FFBP network implementable with 

a minimum of resources, a series of different FFBP NN 
topologies have been tested. In addition, for each topology, 
fixed-point binary representation with different resolutions 
have been investigated. Fig 8 shows the recognition rate vs. data 
representation for a topology of 56-56-4 neurons, which 
processes an input vector with 56 components: 8 features per 
sensors (A1 to A8) and 7 sensors. The recognition rate varies 
from 100%, for (16,16) bits representation (16 bits for integer 
part and 16 bits for binary part), to 50% for (7,8) bits 
representation and 0% for (2,3) bits representation. A major 
drop of the recognition rate occurs, 96% to 49%, when one bit 
of the integer part: (8,8) → (7,8) is changed. The recognition rate 
remains constant for a major drop of data resolution (16,16) → 
(8,8). These observations may be very useful when choosing 
the data representation resolution. Fig 9 and 10 are plotted in 
order to highlight the influence of data representation resolution 
over the recognition rate for a given training set. First, a training 
set with features (A1, A2, A3) is shown in Fig 9 and (A2) in Fig 
10. It can be concluded, there is no perfect FFBP network 



topology for every purpose, but it can be adapted to fulfil the 
most important requirements of a given application. For 
example, if the chip area occupation is an important issue, then 
a 21-21-4 FFBP network with a (5,5) bits representation and a 
theoretically recognition rate of 90% could be more than 
acceptable. However, for obtaining a higher recognition rate, a 
56-56-4 FFBP network with a (16,16) bits representation might 
be a better option. Consequently, as demonstrated in the above 
discussion, the accuracy of the ANN is massively determined 
by the data representation adopted. Similar reports are shown in 
[10]. 

C. ANN hardware implementation results 
To implement in FPGA the above ANN topologies requires 

specific hardware resources, which can be priory calculated. 
Having a formula to estimate the hardware resources needed for 
implementing a specific ANN topology would let the user 
choose the right ANN size and FPGA circuit.  

By analysing the hardware implementation reports presented 
in Table VI, where HL denotes the hidden layer and OL the 
output layer, it can be concluded that: 
• each neuron added to the hidden layer increases by 32 LUTs 

and 1 multiplier the overall resource utilization.  
• each neuron added to the output layer increases by 40 LUTs 

and 4 multipliers the output neurons weights computation 
block and with 49 LUTs and 1 multiplier the hidden neurons 
weights computation block; 

 
Fig. 8. Recognition rates vs. data representation for 56-56-4 FFBP  

 
Fig. 9. Recognition rate vs. data representation for 21-21-4 FFBP 

 
Fig. 10. Recognition rate vs. data representation for with 7-21-4 FFBP  

Table VI 
DSP, SLICES (SL) AND RAM DISTRIBUTION OVER FFBP COMPONENT BLOCKS 

FOR DIFFERENT ANN TOPOLOGIES 

ANN  
Neuronal  

block 
HL 

 block 
OL  

block 
Control 
 block 

DSP SL RAM DSP SL RAM DSP SL RAM DSP SL RAM 
1-1-1 1 5 4 5 64 0 4 24 0 12 105 0 
7-2-4 6 76 12 9 190 0 12 100 0 12 114 0 
7-7-7 14 105 28 17 256 0 28 215 0 12 108 0 

 

Based on the reports presented, 3 equations have been 
generated to estimate the hardware resources utilized to 
implement a given FFBP topology, prior to an actual hardware 
implementation, (9) - (11). These permit choosing the right 
FPGA circuit for a given ANN topology/size in the very early 
ANN design stages, saving time and costs. 
 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 2(𝑁𝑁ℎ + 𝑁𝑁𝑜𝑜)  (9) 
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 15 + 2𝑁𝑁ℎ + 6𝑁𝑁𝑜𝑜 (10) 
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 200 + 89𝑁𝑁𝑜𝑜 + 32𝑁𝑁ℎ (11) 
where:  - No is the number of neurons in the output layer, 

- Nh is the number of neurons in the hidden layer. 
Applying (9)-(11) to the circuit targeted in this paper, a 

Virtex4 with 15.360 slices, 30.720 LUTs, 192 BRAMs, 192 
DSPs, the maximum number of neurons that can be 
implemented using strictly the dedicated BRAMs and 
XtremeDSP blocks (for ensuring the maximum processing 
speed) is 60, organized as: 45 in the hidden layer and 15 in the 
output layer. However, using the distributed multipliers and 
BRAMs available in the circuit, 26 more neurons, 20 in the 
hidden layer and 6 in the output layer, can be implemented. 
These will utilize 6878 LUTs and 76 BRAMs, leaving 22657 
LUTs unused. The unused LUTs can be further converted into 
20 neurons in the hidden layer and 10 in the output layer. 
Therefore, the maximum number of neurons that can be 
hardware implemented (on the expense of the processing speed) is 
approximated to 120 (double than the number of neurons that use 
only dedicated BRAMs and XtremeDSP blocks). 

To illustrate the FPGA implementation performance, a report 
in terms of hardware resources utilization, and maximum 
processing frequency is presented in Table VII.   

Table VII  
FPGA implementation reports 

Resource distribution FF(1-1-1) FF(7-7-7) FF(7-2-4) 
LUTs 322 1167 612 

RAMB16s 4 28 12 
DSP48s 23 71 43 

Max frequency (MHz)  122.489 96.516 106.09 

D. ANN performance comparisons 
A direct comparison of the data presented in table VII with 

others reported in the literature is not always relevant due to the 
lack of common referencing in reporting the hardware 
resources per ANN performances. These depend on the type of 
the resources available in the FPGA (4 or 6 inputs LUTs, 
multipliers or XtremeDSPs, etc.) the depths of the ANN 
parallelism adopted (synapse, neuron or layer), the firing 
function (sigmoid, hardlim, etc.) processing speed, data 
representation, use of dedicated or distributed resources, on or 
off chip learning, number of hidden layers to nominate the most 
important ones. In [10] for implementing the 10-3-1 FFBP 
topology with a synaptic parallelism, 70 DSPs and 8043 LUTs 
were used. In [11] the hardware utilization is reported per neuron with 



1299 LUTs / neuron. In [23] for a 2-5-1 topology 11 DSPs and 6384 
LUTs were consumed.  In this paper for a similar topology of 7-2-4, 
43 DSPs and 412 LUTs were used.  

As shown above, the hardware utilisation depends on factors 
which vary from one ANN topology, and FPGA, to another but 
they are all reflected in the recognition rate (RR) and processing 
speed (PS) supported by the chosen FPGA. Hence, reporting 
RR and PS, along with the hardware utilisation, would indicate 
better the level of success in using a particular ANN topology 
in a specific FPGA circuit. 

Choosing the right FPGA circuit for a given ANN or the 
ANN size for a given FPGA circuit is not straightforward. As 
shown in [10] for selecting the right FPGA circuit, the designer 
is forced to implement the design first and then interpret the 
hardware resources used vs. the ANN topology. Therefore, 
being able to estimate the hardware resources needed for 
implementing an ANN before to an actual implementation 
would shorten the development time and consequently save 
costs. This is addressed for a given FPGA family by the 
equations (9)-(11). 

VI. CONCLUSIONS AND FUTURE WORK 
A novel neural design strategy has been developed, which 

benefits of reduced design time over classical field orientation 
approaches, leading to a low complexity and easy to implement 
pattern recognition module. A particular application of the 
pattern recognition system for an olfactory system is 
investigated and results presented show efficient hardware 
implementation in FPGA circuit. The achievement presented in 
this paper refers to a holistic modelling / design method, using 
modules created into hardware-software co-design 
environment (Matlab-System Generator–ISE) and grouped in a 
specific NN library. These modules emulate in hardware any 
FFBP network topology behaviour, giving the opportunity to 
design hardware implementable FFBP neural networks, at a 
higher level, via an intuitive and interactive EUP interface.  

The proposed methodology takes advantage of the FPGA 
parallel processing power preparing the ground for an auto-
adaptive reconfigurable device ready to respond - read auto-
reconfigure - to any pattern recognition challenge. It is hoped that, 
through the proposed method, it would be possible to make steps 
towards a “more like brain” computational machine, in terms of 
adaptability and quick response, a system that makes its own 
choices (upon an implemented algorithm), i.e. intelligence.  

As the components are entirely designed using System 
Generator blocks, the created library is technology dependent to 
the software used. For increasing the portability, future work will 
consider having the blocks designed using hardware description 
languages, generated from System Generator.   

In conclusion, the paper shows that any FFBP topology may 
be built using predefined neural blocks with the following 
characteristics: i) holistic modelling and optimisation, ii) 
behavioural analysis, and iii) easy hardware prototyping on an 
FPGA development platform via an intuitive EUP interface. In 
addition, it has been developed a set of equations to estimate: i) 
the hardware resources needed to implement an FFBP ANN 
with on-chip learning in a given FPGA circuit (eq. 9-11) and ii) 
the processing speed of the implemented ANN topology (eq. 6). 
Moreover, design concepts introduced in [20] and [24] are 

brought further with contributions in developing an ANN design 
platform based on semantic rules, abstractions and representations, 
expert system and GUI event-based architecture. 
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