
1

Abstract— This paper presents an approach for developing an

Extended Prediction Self-Adaptive Controller employing
graphical programming of industrial standard devices, for
controlling fast processes. For comparison purposes, the
algorithm has been implemented on three different FPGA (Field
Programmable Gate Arrays) chips. The paper presents research
aspects regarding graphical programming controller design,
showing that a single advanced control application can run on
different targets without requiring significant pro gram
modifications. Based on the time needed for processing the
control signal and on the application, one can efficiently an easily
select the most appropriate device. To exemplify the procedure, a
conclusive case study is presented.

Index Terms— Field programmable gate arrays, Predictive
control, Benchmark testing, Real-time systems.

I.INTRODUCTION

REDICTIVE control has been used successfully in control
applications in all fields of industrial activity, a fact that
has triggered an increasing interest in the methodology

during the last decade. The choice for predictive control,
rather than other modern control concepts, is based on some
series of important benefits such as: its intuitive principles,
performance oriented design parameters, the ability to handle
nonlinearities and its capability of taking into account various
constraints (such as actuator constraints, safety constraints,
quality constraints). Typically, predictive control has been
used in the control of slow dynamics processes, such as
thermal and chemical plants [1]. However, more and more
model predictive control applications are directed towards
dynamical systems with fast response times [2], [3], [4]. Until

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by the Romanian National Authority for
Scientific Research CNDI-UEFISCDI under project number PCCA 155/2012.

Silviu Folea, George Moiș, Cristina I. Muresan and Liviu Miclea are with
Technical University of Cluj-Napoca, Department of Automation, 26-28 Gh.
Baritiu st., Cluj-Napoca, Romania (e-mail: {Silviu.Folea, George.Mois,
Cristina.Pop, Liviu.Miclea} @aut.utcluj.ro).

Robin De Keyser is with Ghent University, Department of Electrical
Energy, Systems and Automation, Technologiepark, 913, 9052 Gent, Belgium
(e-mail: Robain.DeKeyser@UGent.be).

Marcian Cirstea is with Anglia Ruskin University, Department of
Computing and Technology, Cambridge, CB1 1PT, England, UK. (e-mail:
Marcian@ieee.org).

recently, the main model predictive control (MPC) limitation
resulted from the long computational time needed for
performing the optimization. The use of DSPs and FPGAs led
to the reduction of the time needed for solving the constrained
optimization problem with a period of tens or hundreds of
microseconds [5], [6]. The large real-time computational
complexity was managed until now by the use industrial
computers and the papers present especially results obtained
from personal computer implementations.

The purpose of this paper is to present an efficient and
robust control solution for fast dynamic systems, using FPGA
devices and the LabVIEWTM graphical programming
environment. The motivation for using this solution is based
on the fact that compared to hardware description languages
such as VHDL, graphical programming is a more user-friendly
configuration environment and offers a very short project
development time [7], [8]. An application for a DC motor was
chosen for validation and testing purposes. The DC motor
supports a wide range of command rates and of execution time
variations, without being damaged or broken. The particular
application here refers to the control of the DC motor, as a part
of the vacuum pumps used to maintain an efficient thermal
isolation in the vacuum jacket of a train of three carbon
isotopes separation columns. The efficiency of the isotope
separation process, occurring at very low temperatures, is
strongly dependent upon a strict operation of these vacuum
pumps. These need to be carefully controlled since a failure of
the vacuum leads to the compromise of the entire separation
process [9]. The efficiency of the proposed solution was
highlighted by comparing it to several different
implementations, a PC based control system, one implemented
on a real-time target and one on an ARM microcontroller, all
of them running the controller. Finally, the same predictive
control algorithm was implemented on three different FPGA
chips: a Virtex-II, a Spartan-6 and a Zynq. The comparison
between the three systems has shown that this type of complex
algorithms can operate on cheaper FPGA chips, such as the
Spartan-6 and Zynq, achieving not only the same levels of
computational performance as their more complex and more
expensive counterparts, but also important power savings.
This comparison regarding the implementation on various
FPGA targets and microcontrollers represents one of the main
contributions and original elements in comparison to previous
research [10], including also comparative tables and
benchmarks for resource allocation in FPGAs. The paper also

A Portable Implementation on Industrial
Devices of a Predictive Controller using

Graphical Programming

Silviu Folea Member IEEE, George Mois Member IEEE, Cristina I. Muresan, Liviu Miclea Member
IEEE, Robin De Keyser, Marcian Cirstea Senior Member IEEE

P

2

presents the diagrams implemented using LabVIEWTM.
The choice of using an FPGA instead of a processor-based

solution was motivated by several advantages. FPGAs have
already been used in industrial control systems, being capable
of providing an increased level of performance, while at the
same time reducing the cost, size and power consumption of
the actual implementation and improving reliability [11], [12],
[13], [14], [15]. The ever-increasing sophisticated control
algorithms can take advantage of the natural parallelism and
increased resource density of the FPGA chips [16]. Thus,
complex architectures, fully dedicated to the control algorithm
to implement, can be developed [17]. The design and real-time
implementation of control loops running at frequencies above
1 MHz is now possible with the use of these System-on-Chip
digital reconfigurable platforms. Although still more
expensive than DSPs and microcontrollers, they compensate
through their compactness, all the building parts of the
competitor solutions (CPU, RAM, bus) being placed inside a
single capsule. While DSPs are aimed at implementing signal
processing applications and can perform large amounts of
computations, FPGA chips offer higher flexibility levels and
transfer the printed circuit board complexity inside the device,
on-chip. The work in [18] presents a systematic comparison
between these two technologies along with their main
advantages and drawbacks when used in control applications.
FPGAs also provide the possibility of in-the-field
programming, which allows the addition of other features to
the controller, the implementation of further data post-
processing algorithms, etc. They can also be dynamically
reconfigured, enabling the controller to adapt to the needs of
the plant. Thus, adaptation to changes in environmental
conditions becomes possible.

A wide range of applications in the field of electrical
systems employ FPGAs [19], [20], [21]. The authors in [19]
developed a reliable low-complexity reusable digital
controller, by using an FPGA implementation. The work in
[20] presents an FPGA-based adaptive digital PI controller
and emphasizes the advantages provided by FPGAs in the
control of complex industrial processes. MPC was addressed
for the control of power converters [22] and electric drives
[23], FPGA-based solutions showing good control
performance [24], [25].

The rest of the paper is structured as follows. The second
section describes the EPSAC control principles, while Section
III shows the steps completed for finalizing the EPSAC design
and the methodology used for the FPGA implementation.
Then, section IV provides information regarding the details of
the hardware and of the software setup. The testing and
validation of the proposed solution along its performance
evaluation are synthesized in the section V and, finally, the
concluding remarks are outlined in section VI.

II. EPSAC CONTROL PRINCIPLES

The EPSAC methodology is a typical member of the Model
Based Predictive Control (MBPC) family. MBPC is a type of
control which uses an on-line process model (in the control
computer) for calculating predictions of the future plant output
and for optimizing future control actions. The two key
principles of model based predictive control consist in the
explicit on-line use of the process model for forecasting the

process output at future time instants and in the calculation of
an optimal control action based on the minimization of a cost
function [26]. The principle of the EPSAC control, presented
in [26], is based on the minimization of the error between the
specified reference trajectory and a future predicted process
output. A cost function having the form:

[] []∑∑
−

==

+∆λ++−+
1

0

22)/()/()/(
2

1

uN

k

N

Nk

tktutktytktr (1)

will be minimized. The design parameters of the cost function
are: N2 – the maximum prediction horizon, Nu – the control
horizon, N1 – the minimum prediction horizon, λ – the weight
parameter, y(t) – the (measured) process output, u(t) – the
process input, r(t) – the reference trajectory. The control signal
in (1) is given by:

)/1()/()/(tktutktutktu −+−+=+∆ , with (2)

0)/(≡+∆ tktu , for uNk ≥ . (3)

For minimizing (1), the choice of N2 and N1 plays an
important role, as well as the estimation of the process output,
y(t), over the prediction horizon N1 to N2. In the EPSAC
approach, the prediction of the process output is done based on
previous measurements of the process output and input signal,
as well as some future values of the input signal.

For predicting the output, the generic model in (4) can be
used:

)/()/()/(tktntktxtkty +++=+ , (4)

where x(t) represents the process model output, while n(t) is
the process/model disturbance.

To predict the process output y(t), x(t + k|t) is computed
based on an existing model of the process, while n(t + k|t) is
predicted using filtering techniques.

Assuming the process model for a single-input-single-
output system is given by:

)(
)(

)(
)(

1

1

tu
qA

qB
tx −

−
= , (5)

the output model x may be predicted k samples ahead using
previous values of the process model and of the control input
u, considering that polynomials B(q-1) and A(q-1) in (5) are
fully known.

The algorithm for computing the control signal required to
minimize (1), uses also the concepts of free and forced
response:

)t/kt(y)t/kt(y)t/kt(y forcedfree +++=+ (6)

The component)t/kt(y free + can be easily computed

using (4), by simply putting u(t/t)=...=u(t+N2-1/t)=u(t-1). The
component)t/kt(y forced + , however, is the effect of a

sequence of step inputs. In matrix notation, yforced may be
computed as:

UGG ⋅=
















−+∆

+∆
∆

=



















+

++
+

)t/1Nt(u
...

)t/1t(u
)t/t(u

)t/Nt(y
.....
.....

)t/1Nt(y
)t/Nt(y

u
2forced

1forced

1forced

 (7)

3

where





















=

+−−

+

−

1NN1NN

N1N

1NN

u222

11

11

g...gg
............
............
......gg
......gg

G and the

parameters kg are the coefficients of the unit step response.

Using matrix notation, replacing the result in (7) into (6),
gives:

UGYYYY ⋅+=+= freeforcedfree (8)

The cost function in (1) can be written in matrix notation as:

UUGU])Y[(RGU])Y[(R

UUY)(RY)(R
T

free
T

free

TT

λ+−−−−

=λ+−−
 (9)

Minimizing (9) with respect to U leads to the optimal
solution:

)Y(RGI)G(GU T1T
free−λ+= −∗ (10)

The first element,)t/t(u∆ , in U* is then used to update the

control signal:

)t/t(u)1t(u)t(u ∆+−= (11)

The procedure is then repeated at the next sampling instant,
when u(t+1) is computed based on the new measurement
y(t+1). A pseudo-code of the EPSAC algorithm is given in
Fig. 1.

Fig. 1. Pseudo-code of the EPSAC control algorithm

III. EPSAC DC MOTOR CONTROLLER

The EPSAC predictive algorithm can be used for
controlling various types of electrical systems [22], [27]. The
DC motor provided the possibility of building a flexible stand
for running the tests and of achieving rapid performance
comparisons. This is just a case study for testing and for
validating the FPGA-based implementation, which clearly
demonstrates that the EPSAC predictive controller can be used
in a wide range of applications. The block diagram of the
system, including the controller, the driver, the signal
processing module, the DC motor and the load implemented
using a generator and a controlled resistive load, is presented
in Fig. 2.

The CompactRIOTM embedded system used for

implementation is a reconfigurable control and acquisition
system providing high performance and reliability, and is
programmable with LabVIEWTM. The device includes a
PowerPC real time controller running at 400 MHz and an
extension module with digital input-output lines. Three
different systems were used, one having a chassis with a
Virtex-II FPGA, one having a chassis with a Spartan-6 device
and another one with a Zynq programmable system on chip,
including a real time dual core processor running at 667 MHz.

Fig. 2. System block diagram

The special architecture of the embedded system is built
around two chips: the first one, on which a real-time operating
system runs, and the second, the FPGA.

A. Extraction of DC motor parameters for finalizing EPSAC
design

The EPSAC control strategy implemented in the FPGA has
been tested in the closed loop trajectory control of a DC
motor. The first step in the FPGA implementation of the
EPSAC consists in determining a mathematical model of the
process, that is the polynomials A(q

−1
) and B(q

−1
) in (5). To

determine these polynomials, experimental identification
techniques were employed.

Fig. 3. Experimental data for process identification – speed rises

Fig. 4. Experimental data for process identification – speed decreases

Figures 3 and 4 present the experimental data used for
identification of the DC motor model and the output of the
identified process model compared to experimental data, when

4

the speed increases and decreases, respectively.
The DC motor output is its rotation speed, represented as

experimental data in these figures, while the control input is
the DC voltage supplied to the rotor. Prior to the experiment,
the input voltage supplied was 70%. A step input of +10% was
then applied to the rotor. For the speed decreasing, a -10%
step was applied to the input.

Based on the shape of the step response, a transfer function
was selected to model the process. The gain, as well as the
time constants, are determined through identification
techniques.

Using the determined transfer function, the polynomials
A(q-1) and B(q-1) are computed based on a zero-order hold
discretization, considering the sampling time Ts = 0.015sec,
chosen according to Shannon theorem:

11 94.01)(−− −= qqA , 11 54.1)(−− = qqB . (12)

In the EPSAC controller design, the maximum prediction
horizon is chosen in order for the predicted signal to capture
around 60% of the process dynamics [26]. Since there is no
process time delay, the minimum prediction horizon may be
chosen N1 =1 sample, while N2 = 10 samples, λ =0 and
Nu = 1.With this choice of the prediction horizons, the
controller designed was firstly tested in the MATLAB®
simulation environment, using the transfer function of the
model as the mathematical representation of the DC motor.

The controller designed and tested in the simulation
environment was further implemented in a FPGA module,
using the guidelines given in Sections IV and V, and
employed in the closed loop control of the DC motor
previously described.

B. FPGA implementation of EPSAC

This subsection shows the methodology that can be used for
achieving the FPGA implementation of different types of
control algorithms through graphical programming. The steps
that have to be followed for reaching an optimal
implementation method on the FPGA of the various control
methods, realized using specific analysis and simulation
environments, are briefly described below:

1) Rewriting the code used for simulation in the LabVIEWTM
environment on the PC or on the real-time target;

2) Program testing using control vectors that were generated
during simulation, for the control and for the controlled
unit;

3) Data conversion from floating-point format to fixed-point
format (FXP) or integer (INT);

4) The comparative testing of the implementations using the
control vectors and the data available in the second step;

5) Go through steps 3 and 4 again until the stationary errors
are acceptable; in the case of this paper it is assumed that a
small error is acceptable.

The use of MATLAB® sequences of code using MathScript
was avoided because it is not supported on the FPGA target.

IV. HARDWARE AND SOFTWARE SETUP

Setting up the hardware and the software for implementing
real-life control systems can be a troublesome task. On one
hand, the hardware part requires taking into account various

parameters including component compatibility, signal
conditioning, placing and routing problems, while, on the
other hand, the software part must consider the architecture of
the equipment. However, in this case, the software application
takes advantage of the facilities provided by graphical
programming [28]. The following two subsections will present
how the hardware and software had been developed in the case
of the example application.

A. Hardware setup

For interfacing the DC motor, two printed circuit boards
(PCBs) have been developed. The first PCB performs the
processing of the signal received from the speed transducer,
implying the amplification of the signal from the encoder
(speed transducer) and signal filtering and its formatting for
obtaining rectangular pulses. The board also includes the
power driver for commanding the motor. The second PCB
represents the load of the DC motor and consists of a digitally
controlled resistive load. It is, in fact, a motor acting as a
generator, with the same characteristics as the DC motor used,
connected to a controlled resistive load. The stand used for
verification consists in the embedded system, a power supply,
the DC motor and the components described above (Fig. 5).

Fig. 5. The experimental stand

B. Software Setup

The FPGA implementation of EPSAC consists of three
different while loops: the first loop is used for measuring the
speed of the motor; the second loop is used for generating the
PWM that changes the speed of the motor using a digital
output line; the third loop represents the main loop, where the
control algorithm is implemented.

The first loop measures the speed of the motor using a
digital input line and can run at different speeds depending on
the sensors that are used. This feature is made possible by
including a time delay function, the implementation being
based on a sequence of functions, which forces the execution
order: two rising edges determine the time period.

The while loop is specific to LabVIEWTM FPGA
implementations and is used for representing the continuous
operation mode of the circuit to be realized.

The application running on the real-time target implies the
opening of a connection to the FPGA program. The values of
the parameters are set using property and method nodes, while
the measured values are read inside a loop. Data are not
transferred between the real-time target and the FPGA through
DMA FIFO because only a small amount is transmitted, only
for the graphical representation of the involved values, the
entire control algorithm being implemented in the FPGA.

 5

Fig. 6. The third loop -EPSAC control with fixed point data (upper part) and floating-point data (lower part)

The loop that implements the EPSAC method can be seen
in Fig. 6. The part below the diagonal of the picture shows the
virtual instrument using floating-point values, while the part
above the diagonal shows the program using fixed-point data.
The scope presents some of the special fixed point functions,
high throughput multiplication and addition. Fig. 6 includes
the blocks from Fig. 1, where the pseudo-code for the EPSAC
control algorithm is presented, and the occupied FPGA
resources, listed in Table II.

V. TESTING AND VALIDATION

The testing and validation of the design represent an
important step in the development of FPGA-based systems
and are usually performed using simulator-specific
environments. In the case of this paper, several benchmark
programs were developed and run on various targets for
comparing the computation performances achieved.

LabVIEWTM provides functions that access the real-time
timers of the systems that were tested, offering resolutions in
the order of milliseconds, microseconds or tens of
nanoseconds for execution time or jitter measurement. Special
frameworks, inside which the application could be tested,
were developed. In the end, histograms including the
execution time and jitter were realized for analysis.

First, a comparison between different platforms running the
controller was done: a PC, a real-time controller, an FPGA, an
FPGA including DSP blocks, a dual-core ARM and an ARM
microcontroller. After this, the different implementation
options offered by the graphical programming environment in
the case of FPGA devices were studied. In the end, a parallel
between the performances offered by three different FPGA
technologies used for implementing the controller was made: a
more expensive, but relatively old Virtex-II device and
cheaper and newer Spartan-6 and Zynq chips. For the first
benchmark, the EPSAC algorithm code was compiled on a PC
and run locally.

In the second test, the benchmark was transferred and run
on the real-time target. For the third set of tests, the
benchmarks ran on the FPGA and finally, the same program
was downloaded to a microcontroller. The first limitation of

this solution consists of the data representation. In the case of
the simulation and for the implementations on the PC, on the
real-time target or on the microcontroller, the data are
represented on floating-point, double type. When the FPGA is
used, the data representation is fixed-point, using different
formats, such as 14 bits for the integer word length and 32 bits
for the entire word length.

The computational performance differs depending on the
tested platform and the jitter is different than the data sheet
value, depending on the implementation. The results,
presented in Fig. 7, are the maximum reachable values and
lead to the conclusion that the FPGA-based EPSAC controller
can be used for fast dynamic processes.

Fig. 7. Execution time and jitter for all targets (µs)

The FPGA target is more than 5 times faster than the PC,
for the same control performance parameters. Another
important parameter tested here is the variation on the loop
execution time (jitter). In the case of the PC, the jitter varies
depending on the tasks that run in parallel with the application
at a specific point of time. The minimum resolution of the
function used to measure the execution time in the case of the
FPGA is 25 ns. For achieving maximum execution speed, the
FPGA program includes mathematical operations specially
designed for the FPGA target, allowing the specification of the
data representation and its configuration, for both the input
and output. The difficulty here consists in the computations
involving arrays and in choosing the proper format for the data
in fixed-point representation (integer word length and entire
word length).

Compute predict model output
First FOR loop

Prediction of process disturbance
Second FOR loop

Reverse Array

G Matrix

Process mathematical
model

Filtered noise
Vector multiply FOR

Setpoint

Initialize the EPSAC
controller and filter
parameters

Predicted
process output

Compute output

 6

The use of reentrant or non-reentrant virtual instruments
(VIs) in the control loop leads to different percentages in the
FPGA resource utilization, in the case of the multiplier blocks,
as it can be seen in Table I.

TABLE I. FPGA, DEVICE UTILIZATION

Virtex-II
Total
Slices

(14336)

Slice
Regs

(28672)

Slice
LUTs

(28672)

MULT
18X18
(96)

Exec.
Time

Clock
(MHz)

R VIs, FXP 14.32 49.8% 29.2% 41.0% 86% 5 µs 40.0
N-R VIs, FXP 14.32 49.5% 37.2% 41.0% 57% 9 µs 40.0

Spartan-6
Total
Slices
(6822)

Slice
Regs

(54576)

Slice
LUTs

(27288)

MULT
18X18
(58)

Exec.
Time

Clock
(MHz)

R VIs, FXP 14.32 Could not compile because not enough multipliers available

N-R VIs, FXP 14.32 42.2% 18.9% 33.9% 89.7% 8.975µs 40.0

Zynq 7010
Artix-7

Total
Slices
(4400)

Slice
Regs

(35200)

Slice
LUTs

(17600)

DSP48
s (80)

Exec.
Time

Clock
(MHz)

only R VIs, FXP 14.32 Could not compile because not enough multipliers available

only N-R VIs, FXP14.32 Could not compile because not enough multipliers available

R & N-R VIs, FXP14.32 79.0% 46.8% 79.5% 80.0% 7.775µs 40.0

The conclusion that can be drawn from Table I is that it is
difficult to predict which of the methods will always occupy
less hardware resources, but, in general, as can be deduced
from the presented cases, non-reentrant VIs lead to overall
implementations requiring less area, that could be compiled
successfully. Certainly, reentrant VIs lead to FPGA
implementations offering faster execution speeds, as can be
seen in this table.

In the case of the Zynq 7010 Artix-7 FPGA, which belongs
to a more recent generation and for which a compiler from the
year 2014 was used, a new situation emerged: the VI could be
compiled only after a part of the VIs were configured experi-
mentally as non-reentrant and the others as reentrant. Here, the
occupied resources are far from the limit, and many possible
configuration cases were obtained. The execution time repre-
sents a median value when compared with the one in the other
cases, where the other 2 types of FPGAs were used and where
all the VIs were set up to be either reentrant or non-reentrant.
Other types of implementations on Artix-7 FPGA were not
possible to be compiled due to an increase of the number of
slices or DSP48s multipliers above the maximum limit.

The execution time can be improved by choosing reentrant
VIs and preallocating clones for each instance of the blocks, in
this way instantiating each one of them. In Table I, R stands
for reentrant and N-R for non-reentrant VIs. The use of non-
reentrant subVIs (subroutines) requires less multipliers, but
more other FPGA resources are needed in this case, leading to
an increase in the overall program execution time. The amount
of occupied resources in the FPGA are specific to the
LabVIEWTM implementation and can be different than that of
a VHDL implementation.

Furthermore, the area occupied by the controller can differ
depending on the device and software version. However, the
advantage of the approach used in this paper lies in the short
project completion time [29]. Experiments indicate that the
system used for algorithm implementation allows clock speeds
between 3 and 40 MHz. Therefore, if the process dynamics
permits it, the clock frequency can be decreased, so that power
savings can be achieved. This is also the case of the example
application, where the execution time can be extended without

affecting the control.
Table II presents the resource requirements and the

execution time of some of the functions used in the control
algorithm written in the FPGA. Based on data presented in this
table, optimization can be performed regarding the resources
in the FPGA that are used and regarding the execution time.

TABLE II. FPGA FUNCTIONS, RESOURCES USED AND EXECUTION TIMES

Virtex-II
Total
Slices

(14336)

Slice
Regs

(28672)

Slice
LUTs

(28672)

MULT 18X18
(96)

Exec.
Time

Vect. Scalar Multiply 11.9% 7.7% 7.0% 41% 0.125µs
Vect. Multiply For 12.9% 10.2% 5.8% 4% 1.125µs
Add Vectors 14.4% 9.7% 7.6% 33-bit adder 10 0.125µs
Subtract Vectors 14.8% 9.7% 7.9% 33-bit sub. 10 0.125µs
Reverse Array 9.3% 6.3% 5.7% – 0.1µs
1st For Loop 19.2% 13.9% 14.4% 8% 2.6µs
2nd For Loop 17.0% 12.8% 11.4% 41% 3.375µs

Spartan-6
Total
Slices
(6822)

Slice
Regs

(54576)

Slice
LUTs

(27288)

MULT 18X18
(58)

Exec.
Time

Vect. Scalar Multiply 9.6% 4.2% 4.1% 69% 0.125µs
Vect. Multiply For 12.2% 5.6% 5.9% 6.9% 1.125µs
Add Vectors 11.5% 5.3% 7.9% 33-bit adder 10 0.125µs
Subtract Vectors 11.2% 5.3% 8.1% 33-bit sub. 10 0.125µs
Reverse Array 7.7% 3.5% 4.9% – 0.1µs
1st For Loop 16.3% 7.6% 10.1% 13.8% 2.6µs
2nd For Loop 14.7% 7.0% 10.3% 69% 3.375µs

Zynq 7010
Artix-7

Total
Slices
(4400)

Slice
Regs

(35200)

Slice
LUTs

(17600)

DSP48s
(80)

Exec.
Time

Vect. Scalar Multiply 52.5% 29.2% 50.7% 50% 0.125µs
Vect. Multiply For 24.4% 31.2% 52.7% 5.0% 1.125µs
Add Vectors 20.5% 30.8% 53.2% – 0.125µs
Subtract Vectors 20.5% 30.8% 53.3% – 0.125µs
Reverse Array 19.4% 26.0% 45.8% – 0.1µs
1st For Loop 29.0% 34.4% 62.7% 10.0% 2.6µs
2nd For Loop 53.2 % 33.5% 59.9% 50% 3.375µs

The blocks presented in Table II can be seen in Figure 6,
and can be found in the EPSAC implementation and in the
algorithm presented as pseud-code in Fig. 1.

The operations performed on vectors occupy more FPGA
resources as the ones performed on scalars, and the loops, in
the current case for loops, significantly increase the execution
time. The information in this table allows the user to perform
optimization actions in case the achievement of an application
that requires less FPGA resources is desired, which compiles
faster or which provides shorter execution times. Although
different technologies, with release dates separated by several
years, are compared, the differences between the results are
relatively small. The reasons for choosing the newer
technology, Spartan-6 or Zynq, consist in the reduced cost and
power consumption of the FPGA, but the industrial equipment
embedding these state of the art devices is still expensive.

Two data vectors, one for command and one for speed,
generated through simulations, were used for evaluating the
correctness of the proposed solution. The closed loop
experimental results are presented in Figs. 8 and 9 together
with the simulation results.

The simulated EPSAC controller reaches the new
prescribed setpoint within 0.4 seconds with no overshoot,
while the experimental results with the FPGA based EPSAC
controller show that a similar performance is obtained with a
settling time of 0.5 seconds and zero overshoot. The DC motor

 7

rotation speed is given in Fig. 8, while the corresponding
control input, required to drive the DC motor to its new
prescribed position, is presented in Fig. 9.

Fig. 8. Comparison between simulation and experimental data - Output
amplitude (rot/min)

Fig. 9. Comparison between simulation and experimental data - Input (%)

The validation of the proposed implementation, first on the
PC, then on the real-time target and, finally, on the FPGA, was
made possible by using the data vectors generated through
simulation. The validation step was important, especially for
the FPGA implementation, because additional changes in the
behaviour of the controller, caused by the translation from
DBL to FXP representation, occurred. Taking into account the
fact that the program compilation time lasts for
approximatively 10 minutes, the simulation of the FPGA
program was also an important action.

The behaviour of the FPGA-based solution and the
robustness of the controller are emphasized through using
three different DC motors from the same power class (Fig.
10). Fig. 11 shows that the command varies in different ways,
because of the differences between the motors’ parameters.

The execution time and jitter on the targets that were used
are presented in Fig. 7. The execution time of the control loop
(sampling time) in the FPGA or running on the real-time
target has a constant value, 15 ms, while a variation of ±200
µs appears on the real time target. The PC implementation has
loop execution time variations which can reach up to tens of
milliseconds. The performance is higher when the execution
time is shorter, but in the same time the jitter should be as low
as possible.

In the vast majority of cases, for a numerical control system
or for a “time critical” process, a better control system is
obtained when the jitter is at its minimum. The PC does not
belong to this category, having a short execution time, but a
rather large jitter value. A jitter value which is hundreds of
times smaller than the value of the execution time does not
affect the control system, but a jitter having the same
magnitude as the execution time negatively affects the entire

system.

Fig. 10. Closed loop experimental results obtained using three different
motors - Output amplitude (rot/min)

Fig. 11. Closed loop experimental results obtained using three different
motors - Input (%)

VI.CONCLUSIONS

For the case of the EPSAC control strategy, the paper
demonstrates the feasibility of the graphical programming
controller design methodology as a fairly elegant, effective
and user friendly method. Different implementations were
compared against each-other regarding speed, hardware
resources, real-time performance and programming aspects,
under the following circumstances: graphical programs
portability on as many industrial standard devices as possible,
program scalability providing the possibility of running on
resource limited and relatively cheap devices or on high
performance systems. The results show that the FPGA
solution offers a good compromise considering computational
speed, hardware resource usage, power consumption and real-
time performance. These advantages provide the possibility of
using predictive control for fast dynamic processes. The
results obtained justify the use of a graphical programming
environment in industry for realizing fast synthesis of control
algorithms and for shortening time to market of dedicated
solutions.

REFERENCES
[1] Ridong Zhang; Anke Xue; Furong Gao, “Temperature Control of

Industrial Coke Furnace Using Novel State Space Model Predictive
Control,” in Industrial Informatics, IEEE Transactions on , vol.10, no.4,
pp.2084-2092, Nov. 2014.

[2] Xu, F.; Chen, H.; Gong, X.; Mei, Q., “Fast Nonlinear Model Predictive
Control on FPGA Using Particle Swarm Optimization,” in Industrial
Electronics, IEEE Transactions on, vol.63, no.1, pp.310-321, Jan. 2016.

[3] Guzman, H.; Duran, M.J.; Barrero, F.; Zarri, L.; Bogado, B.; Gonzalez
Prieto, I.; Arahal, M.R., “Comparative Study of Predictive and Resonant
Controllers in Fault-Tolerant Five-Phase Induction Motor Drives,” in
Industrial Electronics, IEEE Transactions on , vol.63, no.1, pp.606-617,
Jan. 2016.

[4] S. Chai, L. Wang, and E. Rogers, “A cascade MPC control structure for a

 8

PMSM with speed ripple minimization,” IEEE Transactions on
Industrial Electronics, vol. 60, pp. 2978 – 2987, Aug. 2013.

[5] M. A. Stephens, C. Manzie, and M. C. Good, “Model predictive control
for reference tracking on an industrial machine tool servo drive,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 2, 2013.

[6] Can Wang; Ming Yang; Weilong Zheng; Jiang Long; Dianguo Xu,
“Vibration Suppression with Shaft Torque Limitation Using Explicit
MPC-PI Switching Control in Elastic Drive Systems,” in Industrial
Electronics, IEEE Transactions on, vol.62, no.11, pp.6855-6867, 2015.

[7] M. Kaminski and T. Orlowska-Kowalska, “FPGA implementation of
ADALINE-Based speed controller for the drive system with elastic
joint,” IEEE Transactions on Industrial Informatics, vol.PP, no.99, 2012.

[8] L. Gomes, E. Monmasson, M. Cirstea, and J. J. Rodriguez-Andina,
“Industrial electronic control: FPGAs and embedded systems solutions,”
in IECON 2013 Conference Proceedings, pp. 60 – 65, 2013.

[9] C.I. Muresan, E.H. Dulf, R. Both, R., “Comparative analysis of different
control strategies for a train of cryogenic 13C separation columns”,
Chemical Engineering and Technology, vol. 38, pp. 619-631, 2015.

[10] Folea, S.; Mois, G.; Muresan, C.I.; Miclea, L.; De Keyser, R.; Cirstea,
M., “Implementation of an extended prediction self-adaptive controller
using LabVIEWTM,” in Industrial Informatics (INDIN), 2015 IEEE 13th
International Conference on , vol., no., pp.883-888, 22-24 July 2015.

[11] Ricco, M.; Manganiello, P.; Monmasson, E.; Petrone, G.; Spagnuolo,
G., “FPGA-Based Implementation of Dual Kalman Filter for PV MPPT
Applications,” in Industrial Informatics, IEEE Transactions on , vol.PP,
no.99, pp.1-1, 2015.

[12] E. Monmasson, L. Idkhajine, and M. Naouar, “FPGA-based contro-
llers,” IEEE Industrial Electronics Magazine, vol. 5, pp. 14-26, 2011.

[13] Jamshidpour, E.; Poure, P.; Saadate, S., “Photovoltaic Systems
Reliability Improvement by Real-Time FPGA-Based Switch Failure
Diagnosis and Fault-Tolerant DC–DC Converter,” in Industrial Electro-
nics, IEEE Transactions on , vol.62, no.11, pp.7247-7255, Nov. 2015.

[14] M. Shahbazi, P. Poure, S. Saadate, and M. R. Zolghadri, “FPGA-based
reconfigurable control for fault-tolerant back-to-back converter without
redundancy,” IEEE Transactions on Industrial Electronics, vol. 60, pp.
3360 – 3371, Aug. 2013.

[15] E. Monmasson and M. Cirstea, “Guest editorial special section on
industrial control applications of FPGAs,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 3, pp. 1250 – 1252, 2013.

[16] L. Idkhajine, E. Monmasson, and A. Maalouf, “Fully FPGA-based
sensorless control for synchronous AC drive using an extended
Kalmanfilter,” IEEE Transactions on Industrial Electronics, vol. 59, pp.
3908 – 3918, Oct. 2012.

[17] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M.
W. Naouar, “FPGAs in industrial control applications,” IEEE
Transactions on Industrial Informatics, vol. 7, no. 2, pp. 224–243, 2011.

[18] C. Sepulveda, J. Munoz, J. Espinoza, M. Figueroa, and F. C. Baier,
“FPGA v/s DSP performance comparison for a VSC-based STATCOM
control application,” IEEE Transactions on Industrial Informatics, vol.
PP, no. 99, 2012.

[19] A. Dinu, M. N. Cirstea, and S. E. Cirstea, “Direct neural-network
hardware-implementation algorithm,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 5, pp. 1845 – 1848, 2010.

[20] J. Rodriguez-Araujo, J. Rodriguez-Andina, J. Farina, F. Vidal, J. Mato,
and M. A. Montealegre, “Industrial laser cladding systems: FPGA-based
adaptive control,” IEEE Industrial Electronics Magazine, vol. 6, pp. 35
– 46, Dec. 2012.

[21] Oliveri, A.; Cassottana, L.; Laudani, A.; Riganti Fulginei, F.; Lozito, G.;
Salvini, A.; Storace, M., “Two FPGA-Oriented High Speed Irradiance
Virtual Sensors for Photovoltaic Plants,” in Industrial Informatics, IEEE
Transactions on , vol.PP, no.99, pp.1-1, 2015.

[22] Amin; Bambang, R.T.; Rohman, A.S.; Dronkers, C.J.; Ortega, R.;
Sasongko, A., “Energy Management of Fuel Cell/Battery/Supercapacitor
Hybrid Power Sources Using Model Predictive Control,” in Industrial
Informatics, IEEE Transactions on, vol.10, no.4, pp.1992-2002, 2014.

[23] Vazquez, S.; Leon, J.I.; Franquelo, L.G.; Rodriguez, J.; Young, H.A.;
Marquez, A.; Zanchetta, P., “Model Predictive Control: A Review of Its
Applications in Power Electronics,” in Industrial Electronics Magazine,
IEEE , vol.8, no.1, pp.16-31, March 2014.

[24] Damiano, A.; Gatto, G.; Marongiu, I.; Perfetto, A.; Serpi, A.,
“Operating Constraints Management of a Surface-Mounted PM
Synchronous Machine by Means of an FPGA-Based Model Predictive
Control Algorithm,” in Industrial Informatics, IEEE Transactions on ,
vol.10, no.1, pp.243-255, Feb. 2014.

[25] Zhixun Ma; Saeidi, S.; Kennel, R., “FPGA Implementation of Model
Predictive Control With Constant Switching Frequency for PMSM
Drives,” in Industrial Informatics, IEEE Transactions on , vol.10, no.4,
pp.2055-2063, Nov. 2014.

[26] R. De Keyser, “Model based predictive control,” UNESCO Encyclopae-
dia of Life Support Systems (EoLSS), vol. 83, 2003. article 6.43.16.1,
Eolss Publishers Co Ltd, Oxford, ISBN 0 9542 989 18-26-34.

[27] C. S. Lim, N. A. Rahim, W. P. Hew, and E. Levi, “Model predictive
control of a two-motor drive with five-leg-inverter supply,” IEEE
Transactions on Industrial Electronics, vol. 60, pp. 54 – 65, Jan. 2013.

[28] T. Orlowska-Kowalska and M. Kaminski, “FPGA implementation of
the multilayer neural network for the speed estimation of the two-mass
drive system,” IEEE Transactions on Industrial Informatics, vol. 7, pp.
436 –445, Aug. 2011.

[29] A. Hace and M. Franc, “FPGA implementation of sliding mode control
algorithm for scaled bilateral teleoperation,” IEEE Transactions on
Industrial Informatics, vol. PP, no. 99, 2012.

Silviu C. Folea received the degree in Control Systems in
1995, and the Ph.D in 2005 from Technical University of
Cluj-Napoca, Romania. He is currently associated
professor within the Automation Department of the same
university. His research interests include: embedded and
reconfigurable systems, data acquisition systems, wireless
sensor networks, and graphical programming.

George Mois received the degree in Control Systems in
2008, and the Ph.D. in 2011 from Technical University of
Cluj-Napoca, Cluj-Napoca, Romania. He is currently
lecturer within the Automation Department of the same
university. His research interests include embedded
system design, digital design, and wireless sensor
networks.

Cristina I. Muresan received the degree in Control
Systems in 2007, and the Ph.D. in 2011 from Technical
University of Cluj-Napoca, Romania. She is currently
lecturer within the Automation Department of the same
university. Her research interests include modern control
strategies, such as predictive algorithms, fractional order
control, time delay compensation methods and
multivariable systems.

Liviu Miclea received the Ph.D. in Automatic Systems in
1995 from Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. He holds a currently professor position
in the Department of Automation within the same
university. His research interests include: design for
testability, automatic testing, computer aided design,
distributed systems, agent systems, CPSs, cloud
computing.

Robin De Keyser received the M.Sc. degree in electro-
mechanical engineering in 1974 and the Ph.D. in control
engineering in 1980 from Ghent University, Belgium. He
is currently senior professor of Control Engineering at the
Faculty of Engineering, Ghent University. His research
activities include model predictive control, autotuning and
adaptive control, modeling and simulation, and system
identification.

Marcian N. Cirstea (M'97-SM'04) received the degree in
electrical engineering in 1990 from Transilvania
University of Brasov, Romania, and the Ph.D. (1996)
from Nottingham Trent University, Nottingham, UK. He
is currently Professor of Industrial Electronics and Head
of the Computing and Technology Department at Anglia
Ruskin University, Cambridge, UK, after having worked
previously for De Montfort University, UK. His research
is focused on digital controllers for power electronics. He
has published over 135 works in this field and has
delivered a number of international tutorials/presentations.
In January 2016 his achievements were celebrated through
the prestigious award of the Doctor Honoris Causa title by
Transilvania University of Brasov, Romania.

