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Abstract 86 
To develop more ecologically valid models of the neurobiology of obesity, it is critical to 87 determine how the neural processes involved in food-related decision-making translate 88 into real-world eating behaviours. We examined the relationship between goal-directed 89 valuations of food images in the MRI scanner and food consumption at a subsequent ad 90 libitum buffet meal. We observed that 23 lean and 40 overweight human participants 91 showed similar patterns of value-based neural responses to health and taste attributes 92 of foods. In both groups, these value-based responses in the ventromedial PFC were 93 predictive of subsequent consumption at the buffet. However, overweight participants 94 consumed a greater proportion of unhealthy foods. This was not predicted by in-scanner 95 choices or neural response. Moreover, in overweight participants alone, impulsivity 96 scores predicted greater consumption of unhealthy foods. Overall, our findings suggest 97 that, while the hypothetical valuation of health of foods is predictive of eating behaviour 98 in both lean and overweight people, it is only the real-world food choices that clearly 99 distinguish them. 100 
Significance statement 101 
Do overweight people make unhealthier food choices than lean people because they 102 value the healthiness of foods less than lean people do? We show that fMRI markers of 103 valuation of healthiness of foods do not differ between the lean and overweight groups. 104 While these markers do predict healthy food choices at an ad libitum buffet, they do not 105 account for an overall greater selection of unhealthy food choices in the overweight 106 group. This suggests that a fundamental shift in obesity may lie in how the presence of 107 food overcomes prior value-based decision-making. 108 
 109 
 110 



 

 5

Introduction 111 
It is recognised that a major driver of excess weight gain operates at the higher cognitive 112 levels that control eating behaviour rather than at the level of metabolic regulation. It is 113 important therefore to develop a more sophisticated understanding of the neural bases 114 of food valuation and choice. Data from epidemiological and laboratory studies suggest 115 that obesity is associated with a greater consumption of foods with high sugar and/or 116 fat content (Hooper et al., 2012; Malik et al., 2013; Morenga et al., 2013), or high energy 117 density (Johnson et al., 2009), all of which are widely perceived as unhealthy (National 118 Obesity Observatory, 2011). This does not seem to be driven by differences in the 119 perception of foods’ healthiness between lean and overweight people (O’Brien and 120 Davies, 2007). This raises a key question: is obesity associated with a fundamental 121 change in the processes of valuation, such that the consideration of healthiness of foods 122 plays a smaller role in their valuation in people who are overweight than in people who 123 are lean?  124 
There is robust evidence for the existence of food-related goal value signals in the brain 125 (Bartra et al., 2013; Clithero and Rangel, 2013), but there are two key limitations of this 126 data. First, there is no evidence that neural responses associated with subjective 127 valuation of foods presented in the experimental setting of the MRI scanner correlate 128 with real-world eating behaviour outside the scanner.  This is necessary to demonstrate 129 if we are to use within-scan measures as surrogates of real-world food valuation, and as 130 predictors of eating behaviour. Second, it is not known if this valuation process differs in 131 relation to weight status. 132 
Alternatively, maladaptive eating in people who are overweight might not be driven by 133 reduced valuation of foods’ healthiness. This would be consistent with large-scale 134 surveys that report a high importance attached to the goal of healthy eating for the vast 135 majority of the population, but persistent discrepancies between food intake and dietary 136 
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recommendations for health (The UK Food Standards Agency, 2009). Maladaptive food 137 choices and the susceptibility to develop obesity have been linked to the personality 138 trait of impulsivity (French et al., 2012), characterised by a reduced ability to inhibit 139 prepotent responses, and a greater tendency to act without forethought, potentially 140 leading to behaviours that might be in conflict with our goals and values. 141 
Distinguishing between these possibilities will contribute to a fuller understanding of 142 the neurobiology of obesity and may identify new targets for intervention. In this study, 143 we set out to explore whether the extent to which subjective ratings of food’s 144 healthiness contributes to the neural computation of goal value of foods (health 145 valuation) is predictive of food choices in a buffet lunch served after the scanning 146 session. We predicted that overweight participants would choose fewer healthy, and 147 more unhealthy foods at the buffet, and we sought to investigate whether neural indices 148 of value predicted choice behaviour and distinguished between lean and overweight 149 people.  150 
Materials and Methods 151 
Participants 152 
We recruited 69 healthy, right-handed participants (age M = 30.1, SD = 6.1, range 18-40; 153 BMI M = 27.9, SD = 5.9, range 19.9–44.5 kg/m2; 39 females) in two groups: lean (BMI 154 <25 kg/m2) and overweight (BMI >25 kg/m), matched for age, gender, education, 155 income, and IQ. All participants had normal or corrected to normal vision, had no history 156 of psychiatric or other significant medical history and reported no contraindications to 157 MRI scanning. Engaging in high intensity workout more than three hours per week was 158 also one of the exclusion criteria; the reason for including the limit of weekly exercise 159 was to exclude athletes whose BMI would, due to increased muscle mass, falsely classify 160 them as overweight. Furthermore, we excluded vegetarians and people with any other 161 
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specific dietary preferences or allergies relating to the food items used in the study. 162 Particular effort was invested to make the sample of participants representative of the 163 UK population and participants were recruited from the wider community rather than 164 exclusively from the [Author University]. Specifically, given that greater prevalence of 165 overweight and obesity is found in lower socioeconomic groups (Department of Health 166 Public Health Research Consortium et al., 2007; National Obesity Observatory, 2012), 167 effort was made to recruit groups of lean and overweight people with an overall 168 comparable variability of education levels and yearly incomes (in order to dissociate the 169 adiposity-linked differences in food choices and valuation from the potential confound 170 of socioeconomic status).  171 
The study was approved by the [Author University] Psychology Research Ethics 172 Committee and was conducted at two departments of [Author University]. It was carried 173 out in accordance with the principles of the Declaration of Helsinki. All participants 174 provided written, informed consent.  175 
Six participants were excluded from the analysis: three of them did not complete the 176 study and the behavioural data were inadvertently not saved for two participants, which 177 prevented the analysis of their fMRI data. One participant was involved in rigorous 178 physical training (bodybuilding), which was not detected during the screening process. 179 The demographics of the remaining 63 participants (23 lean and 40 overweight), whose 180 data were processed and analysed, are presented in Table 1. 181 
 182 
Study design 183 
Before coming to take part in the study, participants were instructed to eat their 184 standard breakfast at home before 8am. All aspects of the study were conducted on a 185 single day in the same order (Figure 1.A). The study session started at 9am, after which 186 
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the health and taste ratings of the scanner task foods were collected, the scanner tasks 187 were thoroughly explained and practiced, and additional cognitive measures were 188 collected. These included tasks that examined response inhibition (Stop Signal Reaction 189 Time (SSRT) (Logan, 1994), Stroop interference (SI) (Golden and Freshwater, 2002)), a 190 self-report questionnaire assessing impulsivity (BIS-11) (Patton et al., 1995)), and an 191 eating behaviour questionnaire (Dutch Eating Behaviour Questionnaire (van Strien et 192 al., 1986)). The scanning session started at 10:30am, and the buffet lunch was served 193 from 1 to 1:30pm. After lunch, subjects rated the healthiness and taste of the foods 194 offered to them in the buffet, and completed an IQ test (test of G (Cattell and Cattell, 195 1950)). 196 
The food choice task 197 
The task used to explore food valuation was based on Hare et al. (2009). Prior to the 198 scanning session, participants rated 50 food items (common snack foods), presented on 199 a computer screen, on a five-point scale for their healthiness (Very Unhealthy’, 200 ‘Unhealthy’, ‘Neutral’, ‘Healthy’, and ‘Very Healthy’, coded in the behavioural and fMRI 201 analysis as 1, 2, 3, 4, 5, respectively) and tastiness (‘Very Bad’, ‘Bad’, ‘Neutral’, ‘Good’, 202 and ‘Very Good’, coded in the behavioural and fMRI analysis as 1, 2, 3, 4, 5, respectively). 203 This was conducted in two separate blocks, the order of which was counter-balanced 204 across participants (Figure 1.B). Before the taste-rating block, participants were 205 instructed to ‘rate the tastiness of each food item without regard for its healthiness’, and 206 correspondingly, before the health-rating block they were instructed to ‘rate the 207 healthiness of each food item without regard for its tastiness’.  208 
Following the two rating blocks, one item that was rated as neutral on both health and 209 taste scales was selected as the reference food item for that participant (for participants 210 who did have an item rated as neutral on both scales, we selected an item that was rated 211 neutral on the taste scale and healthy on the health scale as the reference item). Given 212 
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that the reference item was kept consistent throughout for each participant, the 213 valuation was ultimately expressed with reference to this individually specific constant. 214 
Participants were shown a picture of the reference food item at the beginning of the task 215 and told that on each trial they would have to choose between the food item shown on 216 that trial and the reference food item (Figure 1.C). They were told to imagine that each 217 offered swap constitutes a real food choice, and to treat each swap as if it was the only 218 one offered. We note, that in contrast to the task used by Hare et al. (2009), due to our 219 overall study design that included a buffet lunch, our in-scanner food choices were 220 completely hypothetical. To indicate how willing they would be to accept the swap, 221 participants selected (on a sliding scale below the picture of the offered food) between 222 five options: ‘Strong No’, ‘No’, ‘Neutral’, ‘Yes’, ‘Strong Yes’, which was taken as a 223 behavioural measure of goal value, and coded in the behavioural and fMRI analysis as 1, 224 2, 3, 4, 5, respectively.  225 
Since each trial presented a food stimulus (offered to be swapped for the reference food) 226 and therefore entailed a number of perceptuomotor components, we included control 227 trials (in keeping with previous work (Medic et al., 2014; Plassmann et al., 2007)). In the 228 control task, the same 50 foods were presented in ‘forced’ trials (as opposed to the ‘free’ 229 trials), in which participants were instructed to select one out of five responses that 230 were randomly shown on the screen (‘Please select “Strong 231 No”/”No”/”Neutral”/’”Yes”/”Strong Yes” ‘). These trials required participants to engage 232 in all the processes involved in the free trials with the critical difference of requiring no 233 subjective valuation. Thus, the aim was to match the free and forced trials as closely as 234 possible, with the exception that the former required participants to indicate the 235 relative value of the food by indicating how willing they were to swap it for the 236 reference item.  237 
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Altogether, 50 trials of each trial type (free and forced), of duration 8 seconds, were 238 presented in a randomised order. The picture of the food was presented throughout the 239 entire 8-second duration of the trial. The initial position of the cursor on the sliding scale 240 varied randomly between all of the five positions of the scale. Participants made 241 responses using a standard button box, with the first and second buttons serving to 242 move the cursor down or up the sliding scale, and the third button serving to confirm 243 their response. Once the confirmation button had been pressed, the cursor could not be 244 moved further until the next trial. When the 8-second trial was over, a feedback screen 245 showing the final decision was presented. If the response was not confirmed within 8 246 seconds, the feedback screen stated ‘Not quick enough’. In the analysis, these trials were 247 considered missed trials.  248 
Buffet 249 
Following the scanning session, participants were provided with an ad libitum buffet 250 lunch consisting of a range of sweet and savoury foods that were previously rated as 251 healthy and unhealthy by an independent panel and pair-matched for energy densities 252 (Table 2). After participants had finished eating, the remaining food was weighed.  253 
fMRI analysis 254 
fMRI data were analysed in spm8, using three models to examine distinct experimental 255 questions. First, we sought to identify brain circuitry involved in valuation of the 256 presented food; second, we explored the relationship between pre-scan health and taste 257 ratings and the neural responses related to valuation. Additionally, in the third model, 258 we investigated group differences in the BOLD signal during food valuation. 259 
In model 1, separate regressors were created for free and forced trials. Free and forced 260 behavioural measures of value, i.e. willingness to accept the swap, were used as 261 parametric modulators of these regressors. To examine processes specifically associated 262 
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with valuation, we calculated the first-level contrasts as the difference between the free 263 and forced parametric modulators. To determine which brain regions are involved in 264 valuation across all participants, at the second-level analysis, we computed a one-265 sample t-test on the single-participant contrast coefficients from all participants.  266 
In model 2, we investigated the extent to which the health and taste ratings contributed 267 to neural activity underlying goal value computation. We therefore restricted our 268 analysis to the value-coding cluster established in the previous analysis (goal-value 269 coding functional ROI). Health and taste ratings of the foods were used as parametric 270 modulators of the free trial regressors. To determine the contribution of each 271 individual’s health and taste ratings to their pattern of neural activity associated with 272 goal value computation, we extracted individual-level health and taste betas from the 273 individual peak goal-value coding voxels within the value-coding functional ROI. To 274 validate the results of this fMRI analysis, we additionally estimated the degree to which 275 each participant’s health and taste ratings contributed to the behavioural measure of 276 value inferred from food swaps.  277 
In model 3, we explored the group differences in the BOLD response during food 278 valuation. To examine BOLD response specifically related to valuation, we calculated the 279 first-level contrast as the difference in BOLD responses between the free and forced 280 trials. To examine the differences between lean and overweight participants, we 281 conducted two t-tests (lean < overweight, overweight >lean) on the first-level contrast 282 estimates. We restricted our analysis to the previously defined goal-value coding 283 functional ROI, and also explored the existence of significant clusters across the whole 284 brain. 285 
 286 
 287 
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Statistical analyses and model visualisation 288 
Behavioural data were analysed using linear models (lm package in R) and linear mixed 289 effects models (nlme package (Pinheiro et al., 2013)), in which participants were 290 modelled as a random effect. To perform stepwise linear model selection, we used the 291 stepAIC function, available in the MASS package (Venables and Ripley, 2002). Fitted 292 linear multiple regression models (Figure 4) were visualised using the visreg function 293 (package visreg). Cross-validation of the multiple regression models was performed 294 using the CVlm function (package DAAG). 295 
Results 296 
Behavioural results 297 
Food choice task 298 
Lean and overweight participants did not differ in their health ratings for the food items 299 (t(61) = -1.47, p = 0.15a), suggesting a similar perception of healthiness of these foods. 300 They also did not differ in their taste ratings for the same food items (t(61) = 1.22, p = 301 0.23b). Based on individual health and taste ratings, foods were classified as healthy or 302 unhealthy (health factor), and as tasty or nontasty (taste factor), resulting in four food 303 categories (healthy-tasty, healthy-nontasty, unhealthy-tasty, unhealthy-nontasty); given 304 that the categorisation of foods was done separately per each participant, based on their 305 individual ratings, foods representing each category differed across participants. Per 306 each participant, foods were designated as tasty if the tastiness of the food was rated as 307 ‘Very Good’ or ‘Good’; or non-tasty, if the participant rated the tastiness of food as 308 ‘Neutral’, ‘Bad’ or ‘Very Bad’. Analogously, based on the health ratings, each food was 309 designated as either healthy, if the healthiness of the food was rated as ‘Very Healthy’ or 310 ‘Healthy’; or unhealthy, if the participant rated the healthiness of that food as ‘Neutral’, 311 ‘Unhealthy’ or ‘Very Unhealthy’. We estimated a linear mixed effects model to explore 312 
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the effect of the health and taste factors, and group (lean and overweight), on the 313 proportion of swaps accepted (‘Yes’ or ‘Strong Yes’). The analysis revealed a single main 314 effect of the taste factor (F(1,180) = 309.11, p < 0.0001c), with participants accepting 315 more swaps for tasty than nontasty foods (Figure 2.A). An analogous analysis of the time 316 taken to decide about the swap as a function of the health and taste factors, and group, 317 found no significant main or interaction effectsd. 318 
Neurocognitive measures of impulsivity 319 
We examined the differences between lean and overweight participants for three 320 measures of impulsivity, namely SSRTe, SIf, and the self-report questionnaire BIS-11g. 321 None of these measures differed between lean and overweight participants (Table 3). 322 
Buffet consumption 323 
To increase specificity, per each participant, buffet foods were categorised based on 324 individual health and taste ratings, and following the same protocol as with the scanner 325 foods, into healthy and unhealthy, and tasty and nontasty (the participants’ health and 326 taste ratings were overall closely aligned with the panel’s ratings). For each participant, 327 we summed consumption (in grams) for each of the four food categories. We then 328 estimated a linear mixed effects model to explore the effect of the health and taste 329 factors, and group (lean and overweight), on the weight of food consumed. This analysis 330 revealed a main effect of taste factor (F(1,169) = 219.13, p < 0.0001h), and a smaller, but 331 significant effect of health factor (F(1,169) = 4.35, p = 0.04h) on consumption (Figure 332 2.B). The group factor did not affect consumption (F(1,60) = 0.29, p = 0.59h), 333 demonstrating that overall, lean and overweight participants did not differ in their total 334 consumption. However, they differed in their food choices within the buffet: 335 consumption was significantly influenced by a three-way interaction between the health 336 and taste of foods, and group (F(1,169) = 9.29, p = 0.003h). This interaction was driven 337 
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by significant health-by-taste (F(1,169) = 8.23, p = 0.005h) and health-by-group 338 interactions (F(1,169) = 13.09, p <0.001h). Tukey post-hoc tests within the four food 339 categories revealed that lean participants consumed significantly more healthy-tasty 340 foods than the overweight participants (p = 0.005), while the overweight participants 341 consumed significantly more unhealthy-tasty foods than the lean participants (p < 342 0.001). Similar results were seen when consumption was examined separately for solid 343 foodsi and drinksj .  344 
Additionally, we conducted a linear mixed effects analysis of the energy intake at the 345 buffet, analogously to the analysis of weight of consumed foods. Similarly as with the 346 analysis of consumed weight, this analysis revealed main effects of taste of foods 347 (F(1,169) = 137.84, p < 0.0001k) and health of foods (F(1,169) = 16.2, p = 0.0001k) on 348 energy intake. The group factor on its own did not affect energy intake (F(1,60) = 0.26, p 349 = 0.61k). However, energy intake was significantly influenced by a three-way interaction 350 between the health and taste factors, and group (F(1,169) = 9.98, p = 0.002k). This 351 interaction was driven by significant health-by-taste (F(1,169) = 4.76, p = 0.03k) and 352 health-by-group interactions (F(1,169) = 11.86, p < 0.001k). Tukey post-hoc tests within 353 the four food categories revealed that the lean participants consumed significantly more 354 energy from healthy-tasty foods than the overweight participants (p = 0.004), while the 355 overweight participants consumed significantly more calories from unhealthy-tasty 356 foods than the lean participants (p < 0.001). 357 
fMRI results 358 
As described above, three analyses were performed. The first analysis sought to identify 359 regions involved in the computation of goal value. In the second analysis, we examined 360 the extent to which taste and health attributes contributed to the neural computation of 361 goal value. In the third analysis, we explored group differences in BOLD signal during 362 food valuation. 363 
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Model 1: Brain circuitry involved in goal valuation 364 
As expected from previous work (Bartra et al., 2013; Clithero and Rangel, 2013), the 365 strongest goal value signal was detected in the activity of the ventromedial prefrontal 366 cortex (vmPFC)(p < 0.05, FWE corrected for multiple comparisons at the cluster level, 367 Figure 3.A). Further, activity correlating with goal value was found in the regions of the 368 posterior cingulate cortex and cuneus (Table 4). For completeness, we conducted two 369 additional analyses. Firstly, we explored the correlation of neural activity with free and 370 forced decisions separately. Whereas the neural activity correlating with free decision 371 strength in free trials mimicked the pattern of neural activity in the main contrast, there 372 was no region, even at a liberal threshold of p < 0.001 uncorrected, whose activity 373 correlated with forced decision strength in forced trials. This confirms that the effects 374 established in the main contrast were not driven by activity associated with forced 375 trials. Secondly, we investigated whether there was a region whose activity tracked the 376 mismatch between free decision and the randomly ascribed forced decision for the same 377 food item during forced trials. In other words, we examined whether being forced to 378 make decisions that deviated from how one would normally decide in relation to a given 379 food item was associated with enhanced responses. However, no such region was 380 detected, even at a liberal threshold of p < 0.001 uncorrected. 381 
Model 2: The contribution of health and taste attributes to goal value computation 382 
In the second analysis, the value-coding cluster in the vmPFC established in the previous 383 analysis was used as a functional ROI, given its most consistent association with goal 384 value computation in the literature. To determine the contribution of health and taste 385 attributes to the neural activity associated with goal value computation, we extracted 386 individual-level health and taste betas from the individual peak goal-value coding voxels 387 within the vmPFC functional ROI.  388 
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Individual-level taste betas for this sample were significantly greater than zero (t(62) = 389 6.42, p < 0.0001l, Figure 3.B) indicating a significant contribution of taste rating to the 390 neural activity in the vmPFC. In contrast, foods’ health ratings on average did not predict 391 neural activity in the vmPFC (t(62) = 0.88, p = 0.38m, Figure 3.B), though there was 392 considerable inter-individual variability (coefficient of variation (CV) = 800, compared 393 to CV of 123.68 for the taste betas). Furthermore, in a linear mixed effects model 394 exploring the effect of attribute (health and taste) and group (lean and overweight) on 395 the magnitude of neural betas, a significant main effect of attribute was established (F(1, 396 61) = 23.24, p < 0.0001n), with neural taste betas being significantly greater than neural 397 health betas in both lean and overweight participants. No main effect of group (F(1,61) = 398 0.21, p = 0.65n) or attribute-by-group interaction (F(1,61) = 1.54, p = 0.22n) was 399 detected. A separate, single-attribute analysis revealed that neither health (t(61) = -1.69, 400 p = 0.09o) nor taste betas (t(61) = 0.45, p = 0.66p) differed between the groups. 401 Additionally, given the significant interaction between BIS-11 measure of impulsivity 402 and food consumption in the buffet (see below), we expanded the current model of 403 neural betas by including BIS-11 scores. While the attribute remained a significant 404 predictor of neural betas (F(1,59) = 22.5, p < 0.0001q), no other main or interaction 405 effects were detectedq. 406 
To validate the analysis of neural betas, the contributions of health and taste attributes 407 of foods to the behavioural measure of food’s goal value, i.e. the behavioural health and 408 taste betas, were extracted separately for each participant. Across all the participants, 409 the mean taste beta was significantly greater than zero (t(62) = 21.53, p < 0.0001r), 410 whereas the mean health beta was not significantly different from zero (t(62) = 1.92, p = 411 0.06s). The behavioural analysis therefore replicated the results of the fMRI analysis in 412 showing that the taste attribute, but not the health attribute, was a significant 413 contributor to goal valuation of foods. Furthermore, in a linear mixed effects model 414 exploring the effect of attribute (health, taste) and group (lean, overweight) on the 415 
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magnitude of behavioural betas, results analogues to the analysis of the neural betas 416 were obtained:  a significant main effect of attribute was established (F(1, 61) = 100.92, 417 p < 0.0001t), with behavioural taste betas significantly greater than health betas in both 418 lean and overweight participants. No main effect of group (F(1,61) = 0.52, p = 0.47t) or 419 attribute-by-group interaction (F(1,61) = 0.01, p = 0.94t) were detected. A separate, 420 single-attribute analysis revealed that neither health (t(61) = -0.39, p = 0.69u) nor taste 421 betas (t(61) = -0.73, p = 0.47v) differed between the groups. Similarly as in the case of 422 neural betas, the inclusion of BIS-11 as an additional predictor did not explain more 423 variance in behavioural betas: the attribute remained a significant predictor of 424 behavioural betas (F(1,59) = 100.9, p < 0.0001w), while no other main or interaction 425 effects were detectedw.  426 
Model 3: Exploring group differences in BOLD response during valuation 427 
Additionally, we investigated the group differences in the BOLD response during 428 valuation. We conducted an ROI-based analysis in the vmPFC functional ROI, and 429 explored the existence of significant clusters at the whole brain level.  T-tests, exploring 430 the difference between lean and overweight participants (lean > overweight, overweight 431 > lean) failed to a find significant activation in the vmPFC (p, 0.025, FWE small volume 432 correction, Bonferroni-corrected for 2 tests), or any significant clusters at the whole 433 brain level (p<0.025, FWE corrected for multiple comparisons at the cluster level, 434 Bonferroni-corrected for 2 tests). 435 
Model of healthy food consumption 436 
Finally, we explored whether the pattern of food consumption in the buffet could be 437 predicted by the individual-level neural betas, and if this relationship was modulated by 438 group. Further, we examined whether the inclusion of measures of impulsivity in such a 439 model would capture more variance of the buffet food consumption.  440 
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Given that the greatest variability in food consumption across all participants was 441 driven by the health attribute of foods, we used the proportion of healthy foods 442 consumed in the buffet as our main outcome variable (i.e. the consumed weight of foods 443 individually perceived as healthy out of the total consumption of all foods). We 444 conducted a linear multiple regression analysis in two stages, performing a stepwise 445 model selection at each stage. We used the stepAIC function implemented in the MASS 446 package in R, which selects the best model fit by minimising the Akaike’s information 447 criterion (AIC) (Venables and Ripley, 2002). Both a forward and backward model 448 selection were used, allowing for interactions between variables. To reduce colinearity, 449 all of the continuous predictors were mean-centred. 450 
In the first stage of this analysis, the neural health beta and group (overweight minus 451 lean) were included as predictors of the proportion of healthy foods consumed. The 452 stepwise procedure returned a model in which the neural health beta and group were 453 identified as independent, non-interacting predictors of the proportion of healthy foods 454 consumed (model 1 in Table 5). The model captured 22.09% of the variance of healthy 455 food consumption (F(2,59) = 9.65, p < 0.001); the 10-fold cross-validation of the model 456 returned a mean square of prediction error (ms) of 0.0596. The neural health beta 457 positively predicted the proportion of healthy foods consumed across all participants (β 458 = 0.26, p = 0.03x), however, over and above this association, the overweight participants 459 consumed a significantly smaller proportion of healthy foods (i.e. a greater proportion of 460 unhealthy foods) than the lean participants (β = - 0.37, p = 0.002x). 461 
In the second stage of the analysis, in addition to the predictors above, we included the 462 three measures of impulsivity: SSRT, SI and BIS-11 scores. In this case, the stepwise 463 procedure revealed a best fitting-model that explained 43% of the variance of healthy 464 food consumption (F(4,55) = 12.12, p < 0.0001) (model 2 in Table 5, Figure 4.A and 4.B), 465 with the cross-validation ms = 0.0451. The neural health beta (β = 0.22, p = 0.03y) and 466 
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group (β = -0.47, p < 0.0001y) remained as significant independent predictors of the 467 proportion of healthy food consumed (Figure 4.A). Only the BIS-11 remained as a 468 measure of impulsivity in the best fitting model, and there was a significant interaction 469 between BIS-11 impulsivity scores and group (β = -0.43, p = 0.02y). In overweight 470 participants, increasing BIS-11 impulsivity was predictive of a smaller proportion of 471 healthy foods consumed (i.e. greater consumption of unhealthy foods), but there was no 472 such association in the lean participants (Figure 4.B).  473 
To validate the above models, the same model procedures were repeated substituting 474 the neural health betas with the behavioural health betas, and these resulted in 475 analogous best-fitting models, with similar parameter estimatesz,α (Table 6). The 476 analogous analysis for the proportion of tasty food consumption, with neural or 477 behavioural taste betas, and all other predictors as above, failed to find a significant 478 model of tasty food consumption predicted by any combination of these variables. 479 
Discussion 480 
Our findings in lean and overweight people offer intriguing insights into food valuation; 481 its relationship to neural signals and the impact on decision-making. To summarise, we 482 confirmed that value-based decision-making is related to vmPFC activity, with activity in 483 this region reflecting the goal value of presented foods. The degree to which the health 484 and taste attributes of foods contributed to this vmPFC activity (the neural health and 485 taste ‘betas’) did not differ between lean and overweight participants. Importantly, the 486 contribution of health attributes to the neural value signal was predictive of the 487 proportion of healthy foods consumed in the buffet, demonstrating its validity as a 488 measure of real-world valuation and choice. In both lean and overweight groups, those 489 with higher health betas chose a greater proportion of healthy foods, and critically, this 490 relationship did not differ between the groups. This is demonstrated by the similar 491 slopes for the two groups in the graph (Figure 4.A). However, the overall proportion of 492 
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healthy foods consumed in the buffet was significantly greater in lean participants, i.e., 493 overweight participants consumed a significantly greater proportion of unhealthy foods.  494 This is demonstrated by the differing intercepts for the two groups (Figure 4.A). Our 495 results therefore indicate that the increased real-world consumption of unhealthy foods 496 by people who are overweight is not driven by reduced valuation of food’s healthiness, 497 as assessed by subjective or neural responses. Rather, for a given level of such value 498 placed upon health, there is less actual consumption of healthy food in the overweight 499 people. Intriguingly, in the overweight participants, the proportion of healthy foods 500 consumed was further modulated by impulsivity scores:  participants who were 501 overweight and who were highly impulsive consumed the largest proportion of 502 unhealthy foods in the buffet. Below, we consider the implications of these findings. 503 
At the group level, the taste attribute significantly contributed to the neural computation 504 of goal value of foods (in line with previous work by Hare et al. (2009)), and was also a 505 major factor affecting food choices at the buffet. It is important to note that while in the 506 scanner food choice task, participants made binary forced choices, in the buffet lunch, 507 they freely selected foods to consume, and unsurprisingly, predominantly chose foods 508 that they rated as tasty. In other words, there was practically no inter-individual 509 variability in the proportion of tasty foods consumed in the buffet, which explains why 510 the contribution of the taste attribute to the goal valuation of foods in the vmPFC at the 511 individual level did not predict individual consumption of tasty foods in the buffet 512 lunch.  513 
In contrast, the health attribute was not, at the group level, a significant contributor to 514 the goal value computation of foods in the vmPFC in either lean or overweight 515 participants. This was because there was, as might be expected, appreciable inter-516 individual variability in the contribution of the health attribute to the goal value 517 computation within each group, with no differences between the groups. Capitalising on 518 
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this variability, we show that, in both groups, it predicted the proportion of healthy 519 foods consumed in the buffet. In other words, the neural signal of health valuation – the 520 weight given to the health attribute in the goal value computation of foods – predicts 521 real-world choices. This provides support for the use of such measures in studying goal 522 valuation in relation to eating choices.  523 
However, while the hypothetical choice offered in the scanner produced a neural signal 524 for health valuation that was strongly predictive of subsequent individual-level eating 525 behaviour, it did not predict differences between lean and overweight people (as 526 demonstrated by parallel slopes on Figure 4A). Importantly, however, overweight 527 participants ate a significantly smaller proportion of foods they individually regarded as 528 healthy, compared to their lean counterparts (as demonstrated by the difference in 529 intercepts on figure 4A). This suggests that over and above the effect of hypothetical 530 health valuation, which doesn’t differ between the groups, and equally affects their real-531 world behaviour, a real-world bias towards unhealthy foods is present in people who 532 are overweight. 533 
What might drive this effect? One possibility is that a different behavioural construct - 534 other than goal-directed valuation – may mediate the differences between lean and 535 overweight participants in real-world food choices. It is relevant, in this respect, that 536 impulsivity scores showed their effects only in the overweight individuals in the context 537 of actual consumption. In children, impulsivity scores have been linked to greater BMI 538 and greater food consumption, however this relationship is less clear in adults (French 539 et al., 2012), where several studies suggest that greater impulsivity scores per se do not 540 confer risk to maladaptive eating or obesity. More often, impulsivity scores have been 541 reported to interact with implicit measures of motivation for foods in predicting food 542 intake and obesity (Epstein et al., 2014; Hofmann et al., 2009; Nederkoorn et al., 2010; 543 Rollins et al., 2010). This suggests that the combination of a high motivation for food and 544 
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a reduced capacity to inhibit prepotent responses act together in raising the risk of over-545 eating and obesity.  546 
According to the theory of incentive salience, such implicit motivation, or ‘wanting’, can 547 be dissociated from the explicit valuation of rewards, and is induced upon encountering 548 rewards, or their associated stimuli, that have previously been experienced as pleasant, 549 or liked (Berridge, 2007). Highly palatable foods – which are often perceived as 550 unhealthy – are thus likely to induce the strongest implicit motivation. In line with these 551 theoretical perspectives, there is evidence that such motivation is most strongly induced 552 in the physical presence of rewards (Bushong et al., 2010; Mischel and Moore, 1973; 553 Woelbert and Goebel, 2013), consequently affecting our decisions and often promoting 554 divergence from our goals in many decision-making scenarios, including eating. For 555 example, the expression of such motivation might explain the effects of food cues to 556 increase appetite (Ferriday and Brunstrom, 2008). Critically, its dependence on the 557 physical presence of rewards provides a good conceptual fit to our data, where 558 differences in food choices between lean and overweight participants were only 559 observed in the buffet, i.e. once participants were presented with foods to choose for 560 immediate consumption. 561 
Several studies indicate that the effects of physical presence of foods on consumption, 562 and motivation for foods, might be more pronounced in overweight than in lean 563 participants. Schachter (Schachter and Rodin, 1974) argued that overweight 564 participants are more sensitive to external cues of food proximity than lean participants. 565 More recently, it was demonstrated that overweight participants express a 566 comparatively greater motivation/desire for food following exposure to food cues 567 (Ferriday and Brunstrom, 2011; Tetley et al., 2009). Studies exploring the effects of food 568 cues on eating behaviour in children demonstrated that overweight children, upon 569 smelling food (Jansen et al., 2003) or watching food TV commercials (Halford et al., 570 
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2004), increase their consumption to a greater extent than lean participants. 571 Furthermore, it has been reported that overweight participants are willing to work 572 harder to obtain food rewards (Saelens and Epstein, 1996; Temple et al., 2008). Overall 573 then, the between-group difference in food choices in the real versus hypothetical 574 condition, which we observed here, could reflect group differences in health valuation 575 across the two conditions, as well as differences in the implicit motivation for food, and 576 the extent to which trait impulsivity manifests in the presence of food. 577 
Another possibility that we should consider is that it is differential valuation that drives 578 differing choices across groups. Indeed, it is known that different choices may be made 579 in the hypothetical compared to the real condition. Despite the demonstration that the 580 same neural circuitry encodes both hypothetical and real decisions (Kang et al., 2011), a 581 number of studies have described a hypothetical bias, i.e. the tendency to overstate 582 hypothetical valuations (List and Gallet, 2001; Little and Berrens, 2004; Murphy et al., 583 2005). In the study by Kang et al. (2011), while the indifference curves for hypothetical 584 and real choices had the same shape (reminiscent of the parallel slopes in Fig 4A), the 585 indifference point in the hypothetical condition was shifted towards a larger value. The 586 reported existence of such a bias provides one way of interpreting our data: while we 587 have demonstrated the predictive validity of hypothetical valuation, we acknowledge 588 the possibility that overweight participants might have attributed greater weight to 589 food’s healthiness in the hypothetical than in the real-world condition. We note that, 590 compared to the hypothetical scanner condition, in the buffet, participants were not 591 constrained by limited time to make choices, and were also in a hungrier state, all of 592 which could have been factors that contributed to a change in health valuation in the 593 real condition. Such an account is in line with sequential sampling models of decision-594 making, which describe valuation as a sequential process, in which the recollection of 595 new information or a change in conditions can gradually modify the initial value 596 estimate (Otter et al., 2008). 597 
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We were only able to study a limited range of foods and it is not possible to study eating 598 behaviour in this detail in naturalistic settings. We cannot be certain how the scanner or 599 the buffet meal affected individual behavior, despite our efforts to create a relaxed 600 eating environment for the latter. One thing is clear, while fMRI signals were meaningful 601 and predictive of real-world behaviours, it was only with the presentation of real food 602 choices that the group differences emerged. The study thus provides an important 603 indication that, while fMRI experiments offer precise and predictive measures of key 604 processes related to value, choice and consumption, they must be complemented by 605 other, more naturalistic measures. 606 
In summary, we show that the individual variability in the weights given to health 607 attributes in goal value computation of foods in the vmPFC predicts food choices in a 608 buffet lunch. More specifically, we demonstrated that people who are overweight make 609 fewer real-world healthy food choices compared to their lean counterparts, in contrast 610 to the hypothetical condition, where their health valuations of foods are 611 indistinguishable from those of lean participants. While impulsivity did not fully account 612 for these differences, it was striking that, in overweight participants only, increased 613 impulsivity scores were associated with a greater proportion of unhealthy foods 614 consumed. Importantly, these results suggest that the bias towards consumption of 615 unhealthy foods among participants who are overweight is expressed primarily in the 616 presence of readily available foods. They add further weight to existing evidence that 617 interventions to reduce food consumption in those who are overweight are more likely 618 to be effective when targeted at the processes, often automatic and non-conscious, that 619 get activated by the omnipresence of highly palatable unhealthy foods in our everyday 620 environments. 621 
 622 
 623 
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Figure legends 728 
Figure 1. Study design and experimental task. A. Study design. B. Before the scanner 729 session, participants rated 50 foods for their healthiness and tastiness, in two separate 730 ratings blocks, the order of which was counterbalanced across participants.  For each 731 participant, the health- and taste-neutral food was selected as the reference food for the 732 scanner task. C. The scanner food choice task featured the same 50 items presented as 733 part of free and forced trials. Free and forced trials, of duration 8s, were presented in a 734 randomised order. After the decision trial was over, a 1s feedback screen presented the 735 decision that was made. This was followed by a 0.5s blank screen. On 30 random 736 occasions during the course of the task, a 6s null trial with a fixation cross was 737 presented after the blank screen. 738 
Figure 2. Food choices in the scanner task and in the buffet lunch. A. The proportion 739 of acceptance of food swaps (selecting ‘yes’ or ‘strong yes’) in the scanner food choice 740 task, across four categories of foods, in lean (n = 23) and overweight participants (n = 741 40). B. Buffet consumption (expressed as weight of consumed foods) across four food 742 categories, in lean and overweight participants. ** p <0.01, *** p < 0.001. Error bars 743 represent SEM. 744 
Figure 3. Neural measures of food’s goal value. A. The neural representation of goal 745 value in the vmPFC. The results of the fMRI analysis were rendered onto a standard 746 SPM8 T1 template image, with corronal and sagittal sections presented at the 747 coordinates appropriate for displaying the vmPFC cluster (pFWE < 0.05, corrected at the 748 cluster level, p < 0.001 uncorrected threshold). B. Health and taste betas extracted from 749 the vmPFC activity, in lean and overweight participants. Error bars represent SEM.  750 
Figure 4. Model of healthy food consumption. Visual depiction of the multiple linear 751 regression model 2 (Table 2). A. A partial residual plot of the proportion of healthy foods 752 consumed as a function of the neural health beta, in lean and overweight participants. B. 753 
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A partial residual plot of the proportion of healthy foods consumed as a function of BIS-754 11 impulsivity scores, in lean and overweight participants. Each dot represents one 755 participant. 756 
  757 
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Table legends 758 
Table 1. Study sample demographics 759 Table 2. Foods comprising the buffet lunch 760 Table 3. Mean scores of neurocognitive measures of impulsivity in lean and overweight 761 participants 762 Table 4. Brain regions correlated with goal value 763 Table 5. Regression coefficients and corresponding p-values of the best-fitting models of 764 healthy food consumption in the buffet, as a function of neural health betas, group and 765 impulsivity scores 766 
Table 6. Regression coefficients and corresponding p-values of the best fitting models of 767 healthy food consumption in the buffet, as a function of behavioural health betas, group 768 and impulsivity scores 769 
Table 7. Statistical table 770  771  772  773  774  775  776  777  778  779  780  781  782  783  784  785 
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Table 1  
  

Lean Overweight/Obese

    (n=23) (n=40) 

Measure Mean (SD)/n Mean (SD)/n t/χ2 p 

BMI 21.88 (1.3) 30.84 (4.82)  8.70  <0.001  

Age 29.78 (6.00) 29.85 (5.75)  0.04  0.97  

Gender 

   Female 13 23  0.01  0.99  

   Male 10 17 

Education 

   University degree 13 21  0.01  0.96  

   No university degree 10 19 

Average yearly income (£) 

   ≤ 9,999 7 11  2.41  0.49  

   10,000 – 19,999 10 13 

   20,000 – 29,999 3 12 

   30,000 – 39,999 3 3 

Ethnicity 

   White 20 35  0.90  0.82  

   Black 1 2 

   Asian 2 2 

   Other 0 1 

IQ 107.45 (12.78) 111.28 (17.45)  0.90  0.37  
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DEBQ 

  Restraint 22.86 (8.35) 26.58 (5.87)  2.05  0.05  

  Emotional 27.23 (8.15) 31.58 (9.58)  1.80  0.08  

  External 30.73 (4.58) 32.45 (6.15)  1.15  0.26  
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Table 2  
Food kcal/100g 

Fat 

/100g 

 Sat fat/ 

100g  

Weight/Volume 

as served 

Calories 

available 

Cheddar 

crackers 

509  27.7  16.0  200g 1018 

Oatcake 

crackers 

449  21.8  8.4  200g 898 

Chocolate mini 

bites 

440  19.8  3.5  200g 880 

Eat natural 

cereal bar 

456  24.7  16.4  200g 912 

Fruit pastille 

sweets 

330 Trace  -   100g 330 

Dried mixed 

fruit 

280  0.6  0.2  100g 280 

Scotch eggs 235  15.3  8.0  400g 940 

Broccoli and 

tomato quiche 

215  13.2  4.3  400g 860 

BLT sandwich 225  10.0  2.2  354g 797 

Chicken salad 

Sandwich 

195  7.5  1.0  400g 780 

Trifle 160  5.4  3.4  600g 960 

Strawberry 

yoghurt 

111  2.6  1.7  600g 666 

Coke 42  -    -   1 litre 420 
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Orange juice 48  -    -   1 litre 480 

Diet coke -  -    -   1 litre  -  

Water -  -    -   1 litre  -   
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Table 3 
 
  Lean Overweight     

Measure Mean (SD) Mean (SD) t p 

SSRT (n = 61) 161.09 (39.5) ms 172.1 (58) ms  -0.80 0.43e 

SI  (n = 62) 229.03 (231.07) ms 243.71 (249.23) ms  0.23 0.82f 

BIS-11 (n=63) 66.74 (7.79) 62.3 (9.11)   1.96 0.06g   
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Table 4 
 
      Peak MNI coordinates Peak Scores 

Region Side 
Cluster size 

(voxels) 
x y z T Z 

Medial Frontal 

Gyrus 
L/R 1556 -8 44 -4 6.3 5.55 

Cuneus R 663 18 -92 20 5.25 4.78 

Posterior Cingulate L/R 544 -8 -46 36 4.48 4.16 

p<0.05 whole-brain FWE correction for multiple comparisons at the cluster-level (p<0.001 

uncorrected threshold). 
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Table 5 
  Predictor β p 

Model 1x 
Neural health beta 0.26 0.03 

Group (Overweight - Lean) -0.37 0.002 

Model 2y 

BIS-11 0.04 0.83 

Neural health beta 0.22 0.03 

Group (Overweight - Lean) -0.47 < 0.001

BIS-11:Group (Overweight - Lean) -0.43 0.02 

x   F(2,59) = 9.65, p < 0.001; R2 = 0.22, ms = 0.0596 

y F(4,55) = 12.12, p < 0.000; R2 = 0.43, ms = 0.0451  
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Table 6 
  Predictor β p 

Model 1z 
Behavioural health beta 0.44 < 0.0001

Group (Overweight - Lean) -0.4 < 0.001 

Model 2α 

BIS-11 0.04 0.81 

Behavioural health beta 0.26 0.03 

Group (Overweight - Lean) -0.47 < 0.001 

BIS-11:Group (Overweight - Lean) -0.41 0.02 

z F(2,59) = 17.61, p < 0.0001, R2 = 0.35, ms = 0.0521 

α  F(4,55) = 12.3, p < 0.0001, R2 = 0.43, ms = 0.0457  



 

 

 1 Table 7 2 
Test Data structure Type of test Test statistic p-value 

[Confidence 

intervals]/Power 

a: Overweight - 

Lean 

Normal 

distribution 

Linear mixed-

effects model 

t(61) = -1.47 0.15 [-0.25, 0.04] 

b: Overweight - 

Lean 

Normal 

distribution 

Linear mixed-

effects model 

t(61) = 1.22 0.23 [-0.09, 0.37] 

c: Main effect of 

Taste 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 309.11 < 0.0001 1 

c: Main effect of 

Health 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 2.78 0.1 0.39 

c: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1, 61) = 0.74 0.39 0.14 

c: Health x Taste 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.51 0.48 0.11 

c: Health x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.2 0.66 0.07 

c: Taste x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.03 0.87 0.05 

c: Health x Taste 

x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.17 0.68 0.07 

d: Main effect of 

Taste 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 1.88 0.17 0.28 

d: Main effect of 

Health 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.96 0.33 0.17 

d: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 1.74 0.19 0.27 

d: Health x Taste 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.37 0.54 0.09 

d: Health x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.61 0.43 0.12 

d: Taste x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 2.19 0.14 0.32 
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Test Data structure Type of test Test statistic p-value 

[Confidence 

intervals]/Power 

d: Health x Taste 

x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,180) = 0.04 0.85 0.05 

e: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(1,59) = -0.8 0.43 [-38.4, 16.4] 

f: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(1,60) = -0.24 0.81 [-156, 122] 

g: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(1,61) = 1.96 0.06 [-0.09, 8.97] 

h: Main effect of 

Taste 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 219.13 <0.0001 1 

h: Main effect of 

Health 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 4.35 0.04 0.56 

h: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,60) = 0.29 0.59 0.08 

h: Health x Taste 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 8.23 0.005 0.83 

h: Health x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169 = 13.09 0.0004 0.96 

h: Taste x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 0.13 0.72 0.07 

h: Health x Taste 

x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 9.29 0.003 0.87 

i: Main effect of 

Taste 

Normal 

distribution 

Linear mixed-

effects model 

F(1,162) = 135.05 < 0.0001 1 

i: Main effect of 

Health 

Normal 

distribution 

Linear mixed-

effects model 

F(1,162) = 6.2 0.01 0.71 

i: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,60) = 0.01 0.97 0.05 

i: Health x Taste 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,162) = 0.48 0.49 0.11 

i: Health x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,162 = 8.04 0.005 0.82 
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Test Data structure Type of test Test statistic p-value 

[Confidence 

intervals]/Power 

i: Taste x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,162) = 0.04 0.84 0.05 

i: Health x Taste x 

Group interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,162) = 7.06 0.009 0.77 

j: Main effect of 

Taste 

Normal 

distribution 

Linear mixed-

effects model 

F(1,92) = 59.26 < 0.0001 1 

j: Main effect of 

Health 

Normal 

distribution 

Linear mixed-

effects model 

F(1,92) = 41.04 < 0.0001 1 

j: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,60) = 1.1 0.29 0.19 

j: Health x Taste 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,92) = 1.52 0.22 0.24 

j: Health x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,92) = 3.21 0.08 0.44 

j: Taste x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,92) = 0.59 0.44 0.12 

j: Health x Taste x 

Group interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,92) = 2.52 0.12 0.36 

k: Main effect of 

Taste 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 137.84 <0.0001 1 

k: Main effect of 

Health 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 16.2 0.0001 0.98 

k: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,60) = 0.26 0.61 0.08 

k: Health x Taste 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 4.76 0.03 0.59 

k: Health x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169 = 11.86 0.0007 0.94 

k: Taste x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 0.05 0.83 0.06 

k: Health x Taste 

x Group 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,169) = 9.98 0.002 0.89 
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Test Data structure Type of test Test statistic p-value 

[Confidence 

intervals]/Power 

l Normal 

distribution 

One-sample t-

test 

t(62) = 6.42 <0.0001 [0.26, 0.5] 

m Normal 

distribution 

One-sample t-

test 

t(62) = 0.88 0.38 [-0.04, 0.12] 

n: Main effect of 

Attribute 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 23.24 <0.0001 0.99 

n: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 0.21 0.65 0.07 

n: Attribute x 

Group interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 1.54 0.22 0.24 

o: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(61) = -1.69 0.09 [-0.03, 0.3] 

p: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(61) = 0.45 0.66 [-0.3, 0.19] 

q: Main effect of 

Attribute 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 22.5 <0.0001 0.99 

q: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.2 0.65 0.07 

q: Main effect of 

BIS-11 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) =0.01 0.83 0.06 

q: Attribute x 

Group interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 1.5 0.23 0.24 

q: Attribute x BIS-

11 interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.1 0.75 0.06 

q: Group x BIS-11 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.01 0.93 0.05 

q: Attribute x 

Group x BIS-11 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.01 0.93 0.05 

r Normal 

distribution 

One-sample t-

test 

t(62) = 21.53 < 0.0001 [0.51, 0.61] 

s Normal 

distribution 

One-sample t-

test 

t(62) = 1.92 0.06 [0, 0.15] 
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Test Data structure Type of test Test statistic p-value 

[Confidence 

intervals]/Power 

t: Main effect of 

Attribute 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 100.92 < 0.0001 1 

t: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 0.47 0.47 0.11 

t: Attribute x 

Group interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,61) = 0.01 0.94 0.05 

u: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(61) = - 0.39 0.69 [-0.13, 0.19] 

v: Overweight - 

Lean 

Normal 

distribution 

Two-sample t-

test 

t(61) = -0.73 0.47 [-0.07, 0.15] 

w: Main effect of 

Attribute 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 100.9 < 0.0001 1 

w: Main effect of 

Group 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.5 0.47 0.11 

w: Main effect of 

BIS-11 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.4 0.54 0.1 

w: Attribute x 

Group interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.01 0.94 0.05 

w: Attribute x BIS-

11 interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 3.2 0.08 0.44 

w: Group x BIS-11 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.2 0.65 0.07 

w: Attribute x 

Group x BIS-11 

interaction 

Normal 

distribution 

Linear mixed-

effects model 

F(1,59) = 0.2 0.67 0.07 

x: Neural beta Normal 

distribution 

Linear model t(1,59) = 2.24 0.03 [0.02, 0.43] 

x: Overweight - 

Lean 

Normal 

distribution 

Linear model t(1,59) = -3.24 0.002 [-0.35, -0.08] 

y: BIS-11 Normal 

distribution 

Linear model t(1,55) = -0.21 0.83 [-0.01, 0.01] 

y: Neural beta Normal 

distribution 

Linear model t(1,55) = 2.21 0.03 [0.02, 0.36] 
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Test Data structure Type of test Test statistic p-value 

[Confidence 

intervals]/Power 

y: Overweight - 

Lean 

Normal 

distribution 

Linear model t(1,55) = -4.35 < 0.0001 [-0.39, -0.15] 

y: BIS-11 x 

(Overweight - 

Lean) interaction 

Normal 

distribution 

Linear model t(1,55) = -2.45 0.02 [-0.03, 0] 

z: Behavioural 

beta 

Normal 

distribution 

Linear model t(1,59) = 4.25 < 0.0001 [0.2, 0.57] 

z: Overweight - 

Lean 

Normal 

distribution 

Linear model t(1,59) = -3.9 0.0003 [-0.36, -0.11] 

α: BIS-11 Normal 

distribution 

Linear model t(1,55) = 0.24 0.81 [-0.01, 0.01] 

α: Behavioural 

beta 

Normal 

distribution 

Linear model t(1,55) = 2.29 0.03 [0.03, 0.43] 

α: Overweight – 

Lean 

 

Normal 

distribution 

Linear model t(1,55) = -4.35 < 0.0001 [-0.39, -0.15] 

α: BIS-11 x 

(Overweight –

Lean) interaction 

Normal 

distribution 

Linear model t(1,55) = -2.34 0.02 [-0.03, 0] 

       3  4 










