EXPERT SYSTEMS WITH APPLICATIONS, 2014

Adaptive 3D Facial Action Intensity Estimation and

Emotion Recognition

Yang Zhang', Li Zhang' and Mohammed Alamgir Hossain’

1Computational Intelligence Research Group
Department of Computer Science and Digital Technologies
Faculty of Engineering and Environment
Northumbria University
Newcastle, NE1 8ST, UK

2Anglia Ruskin IT Research Institute, Faculty of Science and Technology,
Anglia Ruskin University
Cambridge, CB1 1PF, UK

Abstract: Automatic recognition of facial emotion has been widely studied for various computer vision tasks (e.g. health
monitoring, driver state surveillance and personalized learning). Most existing facial emotion recognition systems, however,
either have not fully considered subject-independent dynamic features or were limited to 2D models, thus are not robust
enough for real-life recognition tasks with subject variation, head movement and illumination change. Moreover, there is also
lack of systematic research on effective newly arrived novel emotion class detection. To address these challenges, we present
a real-time 3D facial Action Unit (AU) intensity estimation and emotion recognition system. It automatically selects 16
motion-based facial feature sets using minimal-redundancy-maximal-relevance criterion based optimization and estimates
the intensities of 16 diagnostic AUs using feedforward Neural Networks and Support Vector Regressors. We also propose a
set of six novel adaptive ensemble classifiers for robust classification of the six basic emotions and the detection of newly
arrived unseen novel emotion classes (emotions that are not included in the training set). A distance-based clustering and
uncertainty measures of the base classifiers within each ensemble model are used to inform the novel class detection.
Evaluated with the Bosphorus 3D database, the system has achieved the best performance of 0.071 overall Mean Squared
Error (MSE) for AU intensity estimation using Support Vector Regressors, and 92.2% average accuracy for the recognition of
the six basic emotions using the proposed ensemble classifiers. In comparison with other related work, our research
outperforms other state-of-the-art research on 3D facial emotion recognition for the Bosphorus database. Moreover, in on-
line real-time evaluation with real human subjects, the proposed system also shows superior real-time performance with 84%
recognition accuracy and great flexibility and adaptation for newly arrived novel (e.g. ‘contempt’ which is not included in the
six basic emotions) emotion detection.

Keywords: Facial Emotion Recognition, Action Unit Intensity Estimation, Adaptive Ensemble Classifiers, Complementary
Neural Networks, Support Vector Regression, and Support Vector Classification.

1 INTRODUCTION

Facial expressions play important roles in indicating people’s
intentions, feelings and other internal states. The existing re-
search on automatic perception of human emotions not only
opened up a new era for Human-Computer Interaction research,
but also showed great potential to benefit a wide variety of ap-
plications, such as computer assisted learning (D’Mello &
Graesser, 2010), driver state surveillance (Vural et al., 2008),
health monitoring (Lucey et al., 2009), anomalous event detec-
tion (Ryan et al., 2009), and interactive computer games
(G’Mussel & Hewig, 2013).

Moreover, Facial Action Coding System (FACS) (Ekman et
al., 2002) is widely used for facial emotion research in both
psychology and computer science fields. It is an objective and
comprehensive system based on the research of experimental
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psychologists, which aims to provide human expert observers
with objective measures of facial activities. In the field of be-
havioral science, FACS represents the most recognized standard
for facial emotion measurement. A total of 46 facial Action
Units (AUs) is defined to represent all possible subtle changes
in muscle activations caused by emotional expressions, conver-
sational and other facial behaviors. The original coding rules
are generated based on visually discernible facial appearance
changes observed from a large amount of images. According to
FACS, every facial expression can be decomposed and repre-
sented by one AU or a combination of AUs. The intensity of an
AU can be scored on a five-point ordinal level, from A to E (see
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Figure 1. The five levels for AU intensity scores (Ekman et al., 2002)
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Figure 1). The definitions of these levels are provided in the

following. Level A refers to a trace of an action. Level B indi-

cates slight evidence. Level C describes pronounced or marked
evidence. Level D represents severe or extreme actions with

Level E indicating maximum evidence. Each intensity level

refers to a range of appearance changes.

However, due to the subtleness of facial expressions and ex-
tensive coding rules defined in FACS, the AU annotation is a
tedious and time consuming task and requires certified human
annotators. Thus, automatic AU intensity estimation as well as
emotion recognition have drawn increasing attention. The last
decade has witnessed significant progress in the related areas
(e.g. Cohn et al., 2009; Bartlett et al., 2006; Tian, 2002; Wen &
Huang, 2003; Sorci & Thiran, 2010; Kappas, 2010; Pantic &
Patras, 2006; Tsalakanidou & Malassiotis, 2010; Zhang, 2011;
Valstar & Pantic, 2012; Chang et al., 2004; Koelstra et al.,
2010; Antonini et al., 2006, Savran et al., 2012; Wang et al.,
2006; Mpiperis, 2008; Zhang et al., 2013; Owusu et al., 2014;
Rao et al., 2011). Currently, a number of systems have been
developed to detect six basic emotions and their most associa-
tive AUs from images or video sequences. Many existing sys-
tems, however, either only considered static facial features, or
were limited to 2D facial models. Therefore, such systems tend
to lose dynamic information of facial movements that may play
a critical role in interpreting emotion, and are often not robust
enough against subject variation and illumination changes.
Moreover, a good facial emotion recognition system is also
expected to be well capable of detecting the arrival of novel
emotion classes (e.g. compound emotions or other new emo-
tions that do not belong to the six basic emotion categories
mentioned in the training set). However, there is lack of sys-
tematic research for the effective detection of novel emotions.

In this paper, we present a fully automatic system for real-
life 3D AU intensity estimation and facial emotion recognition.
An automatic feature selection optimization algorithm is pro-
posed to extract dynamic motion-based facial features. Neural
Networks and Support Vector Regressors are then used to esti-
mate the intensities of 16 selected Action Units with the corre-
sponding automatically selected feature set for each AU as in-
puts. We also propose a set of six novel adaptive ensemble clas-
sifiers for robust recognition of the six basic emotions (i.e. hap-
piness, surprise, fear, anger, sadness, and disgust (Ekman &
Friesen, 1971)) and novel emotion detection. This research has
the following distinctive contributions:

1. We extract dynamic motion-based facial features (e.g. the
elongation of mouth) rather than static features (e.g. the
width of mouth) to estimate AU intensities because of the
following. Static features could change a lot between dif-
ferent subjects, whereas the motion-based features are
caused by underlying facial muscle movements which
bear anatomically similar muscle tension behavior among
different subjects for the expression of the six basic emo-
tions [Ekman et al., 2002], and thus are relatively univer-
sal and subject-independent, and contain comparatively
richer emotional information. Therefore they are em-
ployed in this research for facial representations.

2. An automatic feature selection method based on minimal-
redundancy-maximal-relevance criterion (mRMR) is pro-
posed to identify the most discriminative and informative
feature sets for AU intensity estimation. Compared with

TABLE 1
AUS, ASSOCIATED FACIAL MUSCLES, AND CORRESPONDING EX-
PRESSIONS (EKMAN ET AL., 2002)

AU Number and  Facial possible samples.
Name. Muscles. expressions.
AUI Inner Brow Frontalis, Sadness-
Raiser- Pars Medialis-
AU2 Quter Brow | Frontalis, Anger,.
Raiser- Pars Lateralis.  Surprise-
AU4 Brow Procerus- Anger,-
Lowerer- Anxiety,
Pain-

AUS Upper Lid Levator Fear,
Raiser: Palpebrae Surprise,»

Superiorise Anger-
AU6 Cheek Orbicularis Happiness.
Raiser- Oculi, Pars

Orbitalis-
AUIO Upper Lip | Levator Labii  Disgust.
Raiser- Superioris-
AUI2 Lip Corner | Zygomaticus  Happiness-
Puller: Major-
AUIS5 Lip Corner | Triangularis.  Sadness,.
Depressor- Unsatisfyin

ge

AU20 Lip Risorius- Fear-
Stretcher-
AU23 Lip Orbicularis Anger
Tightner: Orise (Very).
AU24 Lip Orbicularis Anxiety-
Pressor- Orise
AU26 Jaw Drop. | Masetter. Surprise-

the manual feature selection conducted based on facial
muscle anatomical and FACS knowledge, the mRMR-
based optimization yields comparable performance for the
intensity estimation of the 16 selected AUs.

We also propose a set of six novel adaptive ensemble clas-
sifiers to robustly differentiate between the six basic emo-
tions and identify newly arrived unseen novel emotion
categories. Each ensemble model employs a special type
of Neural Network, i.e. Complementary Neural Network,
as the base classifier, which is able to provide uncertainty
measure of its classification performance. We consider the
following idea for novel class detection. Instances within
the same emotion categories should be close to each other
whereas those from different categories should indicate
great distinction to each other. Therefore, a distance-based
clustering and the uncertainty measures of the base Com-
plementary Neural Network classifiers are used to inform
the arrival of novel unseen emotion classes. The proposed
ensemble models achieve 92.2% average accuracy and
consistently outperform other single Support Vector Ma-
chine classifiers employed in this research and other relat-
ed research reported in the literature when evaluated with
the Bosphorus database.



EXPERT SYSTEMS WITH APPLCATIONS

4. The proposed system is also evaluated with real-time
emotion detection tasks contributed by real human sub-
jects. The system achieves comparable accuracy (84%) in
comparison to the results gained from the evaluation using
database images. It also shows great adaptation and ro-
bustness for newly arrived novel emotion class detection
with =70% accuracy. The system is therefore proved to
be effective in dealing with challenging real-life emotion
recognition tasks.

The rest of the paper is organized as follows. Section 2 in-
troduces Facial Action Coding System and discusses existing
work in the related fields. We describe the methodology and
implementation of the system, including facial geometric fea-
ture tracking, mRMR-based feature selection, AU intensity
estimation and facial emotion recognition, in Section 3. The
experiments and both on-line and off-line evaluations for AU
intensity estimation and emotion recognition are discussed in
Section 4. Finally, we draw conclusions and identify future
work in Section 5.

2 RELATED WORK

In this section, we first of all introduce some essential FACS
domain knowledge. We then discuss existing research work in
the related field and conduct a concise survey on representative
developments.

2.1 FACS and Related Facial Muscle Anatomy

In the Facial Action Coding System, a total of 46 unique Action
Units, which are anatomically related to the contraction and
relaxation of one or a specific set of facial muscles, is defined.
There are 17 facial muscles, which attach to each other or to
facial skin. They are innervated by facial nerve, and generate
every subtle change of Action Units and facial expressions.

Moreover, according to FACS, each muscle contributes to
one or a number of AU(s), while a single AU can also be asso-
ciated with more than one muscles. These muscles are related to
each other dynamically and spatially, enabling a coherent and
consistent facial expression (Ekman et al., 2002). Table 1 sum-
marizes some AU examples, their associated facial muscles and
corresponding emotions. The possible interpretations of emo-
tions pertaining to each AU are also provided. By noticing spe-
cific changes of corresponding AUs, one can visually perceive
and recognize each subtle facial expression.

2.2 Related Applications for Facial Emotion Detection
There has been extensive research focusing on automatic facial
emotion recognition. Current approaches in the area can be
categorized into two groups: static and dynamic feature based.
The static feature based systems usually focused on recogniz-
ing emotional facial expressions by observing representative
facial geometric (e.g. points or shapes of facial components) or
appearance features (e.g. facial wrinkles, furrows or bulges)
statically and directly from the image data. For example, Soyel
& Demirel (2007) extracted six characteristic distance features
from the distribution of 11 facial feature points in a 3D facial
model, and then employed them as inputs to a Neural Network
classifier for the recognition of the six basic emotions. Rao et
al. (2011) extracted grey pixel features from eye and mouth
regions, and then used Auto-Associative Neural Network
(AANN) models to capture the distribution of the extracted

features. Their system achieved an 87% average accuracy for
emotion recognition from video inputs. Tang & Huang (2008)
utilized 96 distance and slope features extracted from a cropped
3D face mesh model with 87 landmark points, and achieved an
87.1% average accuracy for the recognition of the six basic
emotions by using multi-class Support Vector Machines
(SVMs). Mahoor et al. (2011) employed Gabor coefficients
transformed from 45 facial landmark points based on Active
Appearance Model (Lucey et al., 2006), and classified AU
combinations using a Sparse Representation (SR) classifier.
Whitehill et al. (2011) detected 19 AUs by feeding 72 complex-
valued Gabor filtered features to a separate linear SVM, and
recognized six basic emotions using multivariate Logistic Re-
gression (MLR) from the detected AUs. There are also some
other facial action and emotion recognition approaches using
static features that have been investigated, such as Local Binary
Patterns (Shan et al., 2009) and Haar features (Whitehill & Om-
lin, 2006), etc.

The use of only static features, however, faces a drawback,
i.e. the dynamic information of facial movements has been ig-
nored and also the static features tend to vary a lot between
different subjects (e.g. the shapes of eyes and the width of
mouth). Thus it may lead to the inadequacy of generalization
ability and efficiency. In order to address this issue, recently
some research has made efforts in capturing dynamic facial
features or making use of temporal variation of facial measure-
ments. For example, Besinger et al. (2010) tracked 26 facial
feature points from five facial image regions (eyebrows, eyes
and mouth), and used displacements of them to recognize three
basic emotions. Valstar et al. (2012) used Gabor-feature-based
boosted classifiers and particle filtering with factorized likeli-
hoods to track 20 facial points through a sequence of images.
These facial geometric points were then used as inputs to a hy-
brid classifier composed of Gentle Boost, SVMs, and hidden
Markov models (HMMs) to recognize 22 AUs. Wang & Lien
(2009) employed 3D motion trajectories of 19 facial feature
points as inputs to SVMs and HMMs for the recognition of
seven AU combinations. Kotsia et al. (2008) recognized 17 AUs
and seven emotions by the fusion of displacements of 104 Can-
dide grid nodes and texture information features using SVMs
and Median Radial Basis Functions (MRBFs) Neural Networks.
Tsalakanidou & Malassiotis (2010) proposed a rule-based au-
tomated AU and emotion recognition system based on facial
geometric, appearance, and surface curvature features extracted
from 2D+3D images. The results demonstrated good accuracy
rates for the recognition of 11 selected AUs and four types of
emotions. Srivastava & Roy (2009) used spatial displacements
(or residues) of 3D facial points and SVM classifiers to recog-
nize the six basic emotions, and demonstrated better recognition
accuracies in comparison to the employment of pure static faci-
al features (91.7% for dynamic features vs 78.3% for static fea-
tures).

Although the above dynamic feature based systems showed
noticeable improvements on recognition accuracy, and over-
came some of the inherent defects in typical static feature based
methods, many state-of-the-art AU and emotion recognition
systems still suffered from the following difficulties. First of all,
automatic AU intensity measurement posed great challenges to
automated recognition systems since the differences between
some AUs’ intensity levels could be subtle and subjective, and
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Figure 2. The overall system architecture and data processing pipeline

the physical cues of one AU might vary greatly when it occurs
simultaneously with other AUs. Furthermore, FACS only de-
fines a five point ordinal scale to describe the intensity of an
AU. It does not define a quantifiable standard to measure the
strength of corresponding facial changes. Hence, although there
is substantial research concentrating on automatic AU recogni-
tion (e.g. Sorci & Thiran, 2010; Pantic & Patras, 2006; Tong et
al., 2007; Li et al., 2013), the companion problem of accurately
estimating the AU intensity levels has not been much investi-
gated. There were only limited applications in the literature on
AU intensity estimation. For instance, Kaltwan et al. (2012)
realized continuous AU intensity estimation based on facial
landmarks and appearance features by using a set of independ-
ent regression functions, but the work only focused on 11 speci-
fied AUs that are related to shoulder pain expressions. Bartlett
et al. (2006) found that in AU classification tasks, distances
between samples to SVM separating hyperplanes were correlat-
ed with AU intensities. Based on this finding, Savran et al.
(2012) realized intensity estimation of 25 AUs from still images
on both 2D and 3D modalities using appearance features and
regression based methods. They claimed that the proposed ap-
proach for AU intensity estimation performed better than other
state-of-the-art methods.

Furthermore, in contrast to AU detection, robust facial emo-
tion recognition using AU intensities is still largely unexplored.
Current approaches mainly focused on rule-based and statisti-
cal-based methods. For example, Valstar & Pantic (2006) ex-
plored both a formulated rule-based method and an Artificial
Neural Network (ANN) based method to predict emotions from
AUs. However, their recognition accuracies still required fur-
ther improvements. It could be attributed to the fact that the
former, i.e. the rule-based reasoning, was not robust enough to
deal with noises and errors, while the latter, i.e. directly using
machine learning techniques, relied on extensive training data
to accommodate possible AU combinations for each emotion
category. Chang et al. (2009) proposed a hidden conditional
random fields (HCRFs) based method to map various combina-
tions of 15 most frequently occurring AUs to underlying emo-
tions, but extensive annotation work was required prior to map-

ping.

This paper aims to overcome these challenges discussed
above, and develop a practical, robust and person-independent
solution for facial Action Unit intensity estimation and emotion
recognition. This research employs motion-based facial features
with a strong psychological background to estimate the intensi-
ties of the 16 AUs closely associated with the expression of the
six basic emotions. Subsequently, the 16 AUs are ranked for
each emotion according to their discriminative power. The de-
rived intensities of the most discriminative AU combinations
are then employed as inputs to robustly recognize the six basic
emotions regardless of errors and noises involved in the input
AU intensities. The proposed system is discussed in detail in
the following.

3 INTELLIGENT AU INTENSITY ESTIMATION AND
FAcCIAL EMOTION RECOGNITION

In this section, we provide an overall description of the pro-

posed facial emotion recognition system, which is composed of:

facial geometric data tracking, mRMR-based feature selection,

Action Unit intensity estimation using Neural Networks (NN)

and Support Vector Regressors (SVR) and emotion recognition

with ensemble classifiers. Figure 2 shows our system’s overall
architecture and dataflow.

1. The real-time facial geometric data tracking is implement-
ed based on a Microsoft Kinect sensor (Webb & Ashley,
2012) and a variant of Candide-3 model (Ahlberg, 2001).
The Kinect’s facial analysis API is able to localize a total
of 121 3D facial landmarks and perform continuous track-
ing at a frame rate of 25~30 fps.

2. We extract motion-based facial features for AU intensity
estimation, which are calculated based on facial wireframe
node displacements. We then apply both manual and
mRMR based automatic feature selection methods to se-
lect 16 sets of informative features from the complete pool
of candidate features for the 16 diagnostic AUs.

3.  The feature sets selected by the mRMR based optimiza-
tion are respectively employed as inputs to 16 AU intensi-
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Camera
space

Figure 3. The Kinect 3D coordinate system (left), 3D surface reconstruction
with depth data (middle) and a tracked 3D facial wireframe (right)

ty estimators, with each estimator dedicated to each AU.

We employ Neural Networks and Support Vector Regres-

sors for AU intensity estimation.

4.  For robust emotion recognition, the 16 diagnostic AUs are
first ranked and filtered according to the AU-Emotion re-
lationships with intention to identify the most discrimina-
tive AU combinations for each emotion category. We then
propose six novel adaptive ensemble models for robust
classification of the six basic emotions and novel emotion
detection, with each ensemble dedicated to each emotion

category.

3.1 Facial Geometric Feature Tracking

Regarding to 3D facial geometric feature extraction, a number

of well-known methods have been examined, such as the

Kanade-Lucas-Tomasi (KLT) tracker (Bouguet, 1999) and the

Vukadinovic-Pantic facial point detector (Vukadinovic &
Pantic, 2005). Both of them can generate good tracking results
with static input images, but limitations rise up when deal with

real-time 3D streams. In our system, the 3D face geometric data

are acquired through a Kinect and its embedded face tracking
engine (Webb & Ashley, 2012). The Kinect is an effective re-
search tool that physically integrates a color camera with up to
1280 x 960 resolutions, a depth-sensing camera with up to 640
x 480 resolutions, and an array of four microphones. It provides
efficient real-time 3D tracking capabilities in a relatively inex-
pensive package.

When emotions are being expressed by a subject, the facial
elements change their shapes and positions accordingly. These
geometric changes caused by facial muscles contain rich mo-
tion-based facial features. Once completing parameter adjust-

Neutral

Surprise

Happiness Sadness

Figure 4. Examples of tracked 3D facial wireframes for each expression
(The green lines represent facial wireframes, while the red rectangles indicate
detected facial areas)

ments and successfully detecting a user’s face, the Kinect face
tracking engine performs fitting and subsequently tracks a 3D
variant of the Candide-3 model with 121 grid nodes. The facial
tracking algorithm makes use of both color and depth image
data streams to reconstruct salient facial models, enabling better
robustness against variations in illumination, scaling, skin color
and especially head poses. In good lighting conditions, it is able
to track a face reliably when the user’s head pitch, roll and yaw
are respectively less than 10, 45 and 30 degrees (Webb & Ash-
ley, 2012).

The tracked facial wireframe is able to automatically fit to
the detected face in the Kinect 3D coordinate space and evolves
through the video sequence (see Figure 3). It is able to reach up
to 30 fps on i7 quad-core CPUs with 8GB RAM. If required,
the loss or error of tracked wireframes could be handled by a
model deformation algorithm, which is able to add mesh fitting
at the intermediate steps of tracking. Such a procedure increases
robustness against node losses and ensures tracking effective-
ness. An essential normalization procedure is also performed
afterwards, where the information of head orientation and dis-
tance to the sensor is employed to adjust the tracked facial grid
model. Figure 4 shows a neutral state plus facial expressions for
the six basic emotions associated with generated corresponding
3D facial wireframes.

3.2 Facial Action Unit Intensity Estimation

In literature, most recent research work employed either image
driven or prior model-based methods for automatic AU recogni-
tion. The former (e.g. Chang et al., 2004) performed recognition
based on static image data directly while the latter was devel-
oped to extract the relationships and spatial-temporal infor-
mation of AUs using prior models (e.g. Tong et al., 2010;
Valstar & Pantic, 2007). However both required a considerable
amount of reliable training data, which sometimes could be
difficult and expensive to acquire. More importantly, generaliz-
ing a model trained on one database to other databases could
still be a challenging issue, especially for real-life applications
(Li et al., 2013; Torralba & Efros, 2011). In order to overcome
these challenges, we propose and employ motion-based facial
features, which are supported by psychological studies and fa-
cial anatomy, and thus are more pertinent for AU intensity esti-
mation. The 16 AUs we focus on in this research are AU1 (In-
ner Brow Raiser), AU2 (Outer Brow Raiser), AU4 (Brow Low-
erer), AUS (Upper Lid Raiser), AU6 (Cheek Raiser), AU10
(Upper Lip Raiser), AU12 (Lip Corner Puller), AU13 (Cheek
Puffer), AU1S (Lip Corner Depressor), AU17 (Chin Raiser),
AU18 (Lip Puckerer), AU20 (Lip Stretcher), AU23 (Lip Tight-
ner), AU24 (Lip Pressor), AU26 (Jaw Drop) and AU27 (Mouth
Stretch).
®  We propose dynamic motion-based facial features (e.g. the
elongation of mouth) for AU intensity estimation, which
can be measured through the displacement of facial points
between natural and expressive frames. As discussed ear-
lier, such features are caused by underlying facial muscle
movements, and thus are relatively universal and subject-
independent.
®  We apply both manual and automatic methods to select a
unique subset of informative features for each AU respec-
tively. The manual feature selection is guided by FACS
domain knowledge, while the automatic feature selection
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Figure 5. Facial feature points defined in MPEG-4 (Pandzic & Forchheimer,
2012)

is performed based on mRMR based optimization (Peng et
al., 2005). Their performance and comparison are present-
ed in Section 4.2.

3.2.1 Extraction of Motion-based Facial Features

As a part of MPEG-4 FBA [ISO14496] International Stand-
ard, the MPEG-4 face animation framework (Pandzic & Forch-
heimer, 2012) is designed to deal with face animation applica-
tions, including reproduction of facial shape, texture, subtle
expressions, as well as speech pronunciation. MPEG-4 defines
84 facial feature points to best reflect the facial anatomy and
movement mechanics, which are learned from subtle facial
actions and are closely related to muscle actions, as illustrated
in Figure 5 (Pandzic & Forchheimer, 2012). Based on this
knowledge, we derive a series of 3D distance features between
key facial points, and then use dynamic changes of these dis-
tances for AU intensity estimation.

When reliably detecting a user’s face, the face tracking
component continuously outputs a sequence of normalized 3D
facial wireframes (compatible with MPEG-4 standard) in a real-
world 3D coordinate system. Each wireframe consists of 121
grid nodes, including 16 nodes for eyes (i.e. 8 nodes for each
eye contour), 20 nodes for eyebrows (i.e. 10 for each eyebrow),
12 nodes for the upper lip, 16 nodes for the lower lip, 16 for the
nose, and others for making up the rest of the mesh model. The
tracking process of 3D geometrical feature points is also robust
to head rotations up to 10, 45 and 30 degrees in pitch, roll and
yaw as discussed above.

We first acquire reference measurements of the neutral facial
expression of each subject. Rather than requiring subjects to
deliberately pose an initial calibration expression of the neutral
state (which is often unreliable), we record the first 50-100
frames (typically 2-4 seconds, when subjects are naturally in
their neutral states), and then compute the median data of these
neutral frames to form a set of reference measurement vectors
{R;} for the representation of neutral faces.

The motion-based facial features can be computed through
facial point displacements between natural and expressive
frames. Equations (1) and (2) define the calculation of any mo-
tion-based facial feature in the 3D Euclidean space.

2 2 2 2
dij = J(’Ci %) +i-¥) +(z-2) m
Ad = d; j(expressive) — d; ;(neutral) ?)

In Equation (1), d; ; is the distance between node; (i.e. a 3D
facial point i) and node; (i.e. a 3D facial point j) among the
generated 121 3D facial wireframe nodes, and in Equation (2),
Ad defines the change of distance feature d; ; between the ref-
erence (neutral) frame and any expressive frame. Such distance
features are computed based on a real-world 3D coordinate
system. As discussed earlier, the facial tracking engine of the
Kinect is able to perform face fitting with high accuracy and is
also able to identify the distances of different facial regions to
the camera using depth images obtained from its depth camera
to deal with facial point extraction with head rotations. Thus,
our facial tracking component developed based on such a plat-
form is capable of providing robust fitting and geometrical 3D
feature extraction to deal with head pose variations and move-
ments in real-life applications.

However, n number of facial feature points will result in a
large number of C? unique distance features (e.g. 121 facial
points will produce C3%,= 7260 distance features). Intuitively,
not all of the distance features are informative for the detection
of a specific AU. Thus, rather than applying the distance fea-
tures between entire facial points for all AUs without distinction
(e.g. Kotsia et al., 2008), we next step focus on generating a
subset of informative discriminating features from the candidate
feature pool for each AU respectively, which may lead to opti-
mized performance.

3.2.2 Feature Selection for AU Intensity Estimation

Manual feature selection

In typical manual feature selection, the features are derived
based on sufficient domain knowledge. We extract a total of 24
representative facial motion-based features (i.e. Ad distance
changes) using 22 key facial feature points out of the whole 121
points, as illustrated in Table 2. According to Ekman & Friesen
(1983) and Ekman et al. (2002), these features are believed to
play an important role in determining the level of AU intensi-
ties. As shown in Table 2, each AU is associated with a subset
of features composed of only a small number of relevant fea-
tures (typically 2 to 6 dimensions). Such features are derived
according to FACS domain knowledge, and we especially focus
on analyzing the movement of facial muscles underlying each
AU for subsequent AU intensity estimation.

Moreover, we provide two examples for manual feature se-
lection in the following. For example, when AU1 (Inner Brow
Raiser) is occurring for a specific facial emotion expression, the
inner portion of the eyebrows is pulled upwards by muscle 1,
see Figure 6 (Ekman et al., 2002). This causes an inevitable
increase in the distance between inner eyebrow corner and inner
eye corner. Thus, the distance variation Ad between the neutral

Figure 6. Muscles associated with upper facial Action Units (Ekman et al.,
2002)
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TABLE 2
EXAMPLES OF MANUALLY SELECTED FEATURES AND MEASURE-
MENTS REPRESENTED BY LINES OF DIFFERENT COLORS

AU. Measurement Distance Features  Distance Features
nodes. (Neutral). (Expressive).
AUI Inner | Inner eyebrow ‘ [
Brow CoIner,« [
Raiser Inner eye corner-
AU 2 Outer | Outer eyebrow .
Brow corner,.
Raiser- Outer eye corner,-
Middle top of
eyebrow.
AU 4 Brow | Eyebrow corners,.
Lowerer- Inner/outer eye
corner,
Middle top of
eyebrow.
AUS Middle eyelid top,-
Upper Lid | Middle eyelid
Raiser- Bottom-
AU6 Middle eyelid top,.
Cheel Middle eyelid
Raisers Bottom. y i
AU 10 Inner eye corner,.
Upper Lip | Right top of upper
Raiser- lip,- {
Left top of upper
lip- g
AU 12 Lip Outer eye corner,. | 1 B
Corner Right/Left mouth
Puller- corner-
AU 15 Lip | Inner eye corner,-
Corner Mouth corners,.
Depressor- | Middle bottom of
lower lip,.
Middle top of
upper lip-
AU 18 Lip | Right mouth
Pucker- corner, -
Left mouth corner-
AU 20 Lip | Right mouth
Stretcher- corner,.
Left mouth corner-
AU 23 Lip | Right/Left top of
Tightener- | upper lip,
Right/Left bottom
of lower lip-
AU 26 Jaw | Middle bottom of
Drop- upper lip,
Middle top of
lower lip-

and this expressive frame may contribute to the estimation of
the occurrence and intensity of AU1.

Furthermore, the following indicates a slightly more compli-
cated example. AU12 (Lip Corner Puller) and AU13 (Sharp Lip
Puller) are often accompanied by a smile or a joyful facial ex-
pression. These AUs are caused by pulling the corners of the
lips back and upwards to form a ~ shape of the mouth. But it is
unlikely that we can directly use some intuitive distance fea-
tures, such as the elongation of the mouth, to distinguish these
AUs (although the mouth is indeed elongated). The reason is
that there are other AUs that can also cause mouth elongation,
such as AU20 (Lip Stretcher). Thus the extraction of distance
features becomes challenging. However by analyzing these
facial movements from the perspective of anatomy, we can see
there are two underlying muscles related to these AUs - Zygo-

Figure 7. Locations of muscles underlying lower facial oblique Action
Units (Ekman et al., 2002)

maticus Major (12) and Caninus (13), as shown in Figure 7
(Ekman et al., 2002). Both originate on the upper cheek bone
and attach with the corner (angle) of the lips. When contracted,
they will pull the corners of the mouth naturally up towards the
upper cheek. Thus, the distances between mouth corners and
outer eye corners are reduced synchronically. Therefore, we
select eye corners as reference points because their positions are
relative fixed and can be reliably tracked for AU12 or AU 13.

Note that, in this research, Ad can be either positive or nega-
tive. For instance, AU1 (Inner Brow Raiser) may cause a posi-
tive Ad which means an increase in distance between inner eye
corners and eyebrow corners. When Ad becomes negative, it
indicates the eyebrow is lowered, which means AU4 (Brow
Lowerer) occurs. Table 2 summarizes some AUs and their cor-
responding manually selected features, and gives a clear illus-
tration on how they change synchronically with the occurrence
of each AU (for clarity, all samples showed in Table 2 are in 2D
although in the real system, 3D facial points are extracted as
discussed in Section 3.1). The above FACS domain knowledge-
based manual feature selection provides an efficient and robust
approach against facial shape variations of different subjects.

Automatic feature selection based on mRMR

Although equipped with appropriate domain knowledge,
manual feature selection is often time consuming and requires
endless trial-and-error process. There are also extensive optimi-
zation algorithms and boosting techniques devoted to automatic
feature selection and feature dimensionality including Principle
Component Analysis (PCA), Fisher Linear Discriminant (FLD),
genetic and evolutionary algorithms, and AdaBoost etc. PCA
has been widely used for feature selection for face and facial
expression recognition for decades (Jong et al., 2009). Accord-
ing to Swets & Weng (1996), PCA derives most expressive
features but may not embed sufficient discriminating power.
FLD is another commonly used feature reduction technique
which is claimed to provide comparatively more class separa-
bility by maximizing the mean between classes and minimizing
the variation within a class (Chavan & Kulkarni, 2013; Gu et
al., 2012). However, it requires a wide coverage of face/class
variations at the training stage in order to get more superior
recognition performance.

As the most common form of evolutionary optimization,
conventional genetic algorithms evolve a large population of
candidate solutions by mimicking the process of natural selec-
tion (Sikora & Piramuthu, 2007). Other commonly used evolu-
tionary algorithms include Particle Swarm Optimization (Wang
et al., 2007) and Genetic Programming (Davis et al., 2006), etc.
However, applying such algorithms in a large search space (e.g.
thousands of dimensions) may tend to be very computationally
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TABLE 3
COMPARISON OF MANUALLY SELECTED FEATURES WITH THOSE AU-
TOMATICALLY SELECTED BY MRMR

Manually Selected Automatically
Features Selected Features
AUI Inner ”ﬁ’ ‘;i'\i
Brow Raiser = Ve
L
AU2 Outer
Brow Raiser N y
> .
AU 18 Lip - ‘J
Conner
Puller

Etm'»; ]

exhaustive and time consuming. Furthermore, inappropriate
parameter configuration may easily lead to premature conver-
gence to a local extremum. On the contrary, mutual information
(MI) is information based feature selection that is not limited to
linear dependencies, and is able to maximize information in a
class. Research on the performance improvement of MI has
brought to the development of minimal-redundancy-maximal-
relevance criterion (i.e. mRMR), which is a variant of MI. In
this research, since a large proportion of the raw facial distance
features could be less informative or considerably redundant
with each other, it is reasonable to apply information theory
based methods for automatic feature selection, which could
well reflect relevance between features and outputs and within
features comprehensively. Moreover, such methods also have
relatively lower computational complexity and better generali-
zation of the selected features on different classifiers. Thus, we
are motivated by mRMR to propose an attractive alternative for
automatic feature selection.

Moreover, Tang and Huang (2008) proposed a novel method
based on maximizing the average relative entropy of marginal-
ized class-conditional feature distributions, and successfully
applied it to 3D facial distance feature selection tasks. Their
automatically selected features achieved higher recognition
accuracies than their manually devised features for the six basic
emotions (about 2% - 5% improvements). However, their
method is difficult to be applied to regression problems as the
lack of effective relevant calculation method for continuous
values. Thus, we introduce a modified mRMR-based feature
selection method to deal with the case where both features and
outputs are continuous data.

We introduce the mRMR optimization algorithm in the fol-
lowing. mRMR is introduced by Peng et al. (2005) and aims to
minimize the mutual information between the selected features
(i.e. redundancy), and to maximize the mutual information be-
tween the selected features and the desired output (i.e. rele-
vance). Let x; denote a feature and S, = {x;}/Z, be an instance
consisting of M features. / denotes the mutual information with
v indicating the desired output, and p(x,), p(y), p(x; x;), and p(x;
y) representing the probabilistic density functions. Then the
traditional mRMR measure can be described as follows:

)__ Z 1(xi, x 1)

XGES v jE (3)

mRMR(1) = 1(x;,y

where

3= X))
6,0 = D, > pla ylog( S0

xeX; yet (4)

Since both the features and AU intensities in our system are
continuous values, their mutual information is often hard to
compute. Le. it is difficult to compute the integral in the contin-
uous space using a relatively limited number of samples. One
solution is to perform a uniform data discretization processing
in advance of the estimation of the mutual information value.
However, this may lead to considerable information loss.

An alternative solution is to use linear correlations to approx-
imate the mutual information, as suggested by Metallinou et al.
(2013). Here, by replacing the traditional mutual information
metric with the Pearson correlation coefficient (CORR), the
mRMR measure can be well adapted to continuous values. The
CORR represents the linear relationship between a pair of val-
ues, defined as follows:

CORR(x,y) = covixy} _
Ox Oy

(X)) vi=y)
Jﬁ;&x:—f)ﬁi&gm—@z

(5)
where COV stands for the covariance, and o stands for the
standard deviation, while ~ symbolizes the mean.

Specifically, let CORR(x;, x;) and CORR(x; y) denote the lin-
ear correlations between two selected features, x;, x;, and be-
tween a feature x; and the desired output y, respectively. The
linear correlation based mRMR measure can be defined as fol-
lows:

mRMR( z)_\come(x,,y)| Z |CORR (x1, x,)|

XES 1 JEE ( 6)
Then we perform a ranking of features according to their
mRMR values. A higher value is preferred and it indicates that a
specific feature contains more discriminating information, i.e. it
has higher correlation with the desired output and lower corre-
lation with other features. We try different numbers of top rank-
ing features as the inputs for AU intensity estimation, and those
leading to the best performance are determined as the optimal
features for each AU regression, respectively. Table 3 illustrates
some examples of the automatically selected features. Evalua-
tion results indicate that the proposed mRMR-based feature
selection yields comparable results for AU intensity estimation
when compared with the manual feature selection process.

3.2.3 AU Intensity Estimation using Motion-based
Features

For the construction of automatic AU intensity estimation, we
notice the following challenges. First, because of individual
differences among subjects, overlapping between intensity lev-
els (Savran et al., 2012) and annotators’ subjectivity are inevi-
table. Second, the relationship between AU intensity levels and
the scale of evidence might be nonlinear. To solve these prob-
lems, we employ two widely accepted algorithms, feedforward
Neural Network with Backpropagation (Hecht-Nielsen, 1989)
and Support Vector Regression (Vapnik, 1995) for AU intensity
estimation, because of their effective handling of data compris-
ing noises and non-linear relations. We also aim to examine the
effectiveness of the mRMR based optimization in comparison
to the manual feature selection, and to determine whether the
features selected by mRMR are effective enough for discrimi-
nating between different levels of AU intensities.
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ALGORITHM 1
THE TRAINING ALGORITHM OF THE NEURAL NETWORKS FOR AU
INTENSITY ESTIMATION

® (Create a feed-forward network with { input units, h hidden layer
units, and one output unit o..
®  Set all unit weights w,, using initial random values ( e.g. decimals
between -1 to +1).
®  Seta proper small learning rate value r, ranging from 0 to 1 (e.g. 0.1).
® Until the termination condition (error < a set threshold value or
reaching the number of the maximum iterations) 1s fulfilled, do.
For each training dataset. do.
Propagate the input forward through the network:.
1) Input each Ad; to the network and compute the
output o, of every unit u of the network..
Propagate the errors backward through the network:.
2)  For the network output unit o, calculate its error e,-
e = —0)+g'(0):
3) For each hidden unit h. calculate their error values
€p-
en = g'(op) * (Win * €g).
iEoutputs
where g’ is the first derivative of the sigmoid function

4) Update each network weight W -
Wi = Wi + Aw; e
Awjj =1 % € % Xj -

Feedforward Neural Networks for Regression
A feedforward Backpropagation Neural Network (BPNN)
has the following two characteristics well suitable to our appli-
cation:
® [t is robust to the noise and errors involved in training
data, which may be inevitable in many supervised applica-
tions as mentioned above (Mitchell & Hill, 1997).
® It needs some training costs, which depend heavily on the
sample size, the dimensions of the training data, and the
accuracy requirements. Once the model trained, however,
it is extremely fast to be applied to the subsequent test in-
stances. This would be beneficial to our real-time applica-
tion.
A continuous value ranging from 0 to 1 is used as the single
output to cover the whole interval of AU intensity levels (‘0’
represents absence with ‘1’ indicating maximum AU intensity).

Input Layer Hidden Layer

Output Layer

Input |

Input 2

Input 3

Input m

Figure 8. A typical topology of a feedforward Neural Network (Hecht-
Nielsen, 1989)

In this way, we can preserve sufficient AU intensity information
for subsequent emotion recognition. Thus, we have the training
data format as follows:

dataset, = {Ad,,Ad,,Ads, ..., Ad;, I}

where the inputs Ad are the informative motion-based facial
features for each AU selected by either the manual process or
the mRMR-based optimization, and the output, 7, is the ground
truth intensity of that AU. Both the training and testing datasets
are scaled using the same procedure before applied into Neural
Networks in order to achieve the best performance (i.e. linearly
scaling each attribute to the range of [-1; +1] or [0; 1]).

We implement 16 three-layer feedforward Neural Networks.
Each of them has an input layer, a hidden layer with 3 - 6 nodes
based on the complexity of the input layer, and an output layer.
We also adjust the learning rate, the momentum and the termi-
nation error parameters to modest values (e.g. respectively 0.1,
0.8, and 0.01) to best achieve a balance between accuracy,
speed and generalization performance. Figure 8 illustrates an
example topology of the applied feedforward Neural Network.
Algorithm 1 lists the learning mechanism of the Backpropaga-
tion algorithm.

Support Vector Machines for Regression

Support Vector Machine (SVM) is a powerful machine learn-
ing algorithm based on minimizing the generalization error
bound (structural risk) rather than minimizing the observed
training error (empirical risk), so as to achieve better perfor-
mance. The basic idea of Support Vector Regression (SVR) is
to compute a linear regression function in a higher dimensional
feature space where the lower dimensional input data are
mapped using a kernel function (Basak et al., 2007).

Given training dataset as:

‘{(3‘71,?}1), ) (m%?/f)} CX xR

where x; and y; indicate the attribute and target values respec-
tively, and X denotes the space of the input patterns (e.g. X =
R%). In epsilon-SVR, the goal is to find a function f{x) that has
at most ¢ deviation from the actually obtained targets y; for all
the training data, and at the same time as flat as possible. In
simple linear case, f{x) has the form as:

flz)={(w,z) + bwithw e X, b€ R )

where <-, -> denotes the dot product in X, and b indicates a
bias value. Flatness in (7) means seeking a small vector w. To
ensure this, one way is to minimize the Euclidean norm i.e.
||a) ||2 = <w, w>. By introducing slack variables &, 5,-* to cope
with infeasible constraints in some practical cases or allow for
some errors, this problem can be written as the following for-
mulation (8):
£

minimize 3 |lw|]®* + C 3 (& + &)
i=1
yi —(wyxi) —b < e+ &
subject to (w,a) +b—y < e+&
§in & > 0

®)
where &, fi* denote the allowed upper and lower error bound
respectively and the constant C > 0 determines the tradeoff be-
tween the flatness of f and the amount up to which deviations
larger than ¢ are tolerated. This corresponds to dealing with the
e-intensive loss function described by (9) (Vapnik, 2001):
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0
|f‘€ = -

By constructing a Lagrange function and utilizing Lagrange
multipliers, the original problem can be solved. The objective
function can be rewritten as follows (Vapnik, 2001):

fla) = Z(a-,, —a;)(zi ) + b

i=1

iflgl<e
otherwise.

(10)

where a;, a;" are computed Lagrange multipliers. Here, by using

a nonlinear kernel function & (x; x) satisfying Mercer’s condi-

tion instead of the dot product <x; x> in (10), SVR can be em-

ployed for nonlinear regression.

As advances in statistical learning theory, Support Vector Re-
gression shows two capabilities that well meet our require-
ments:

1. SVR is especially suitable for the regression problems for
a small sample size. The establishment of facial databases,
especially the manual annotation is an expensive process,
therefore it is necessary to maximize the use of limited
amount of data.

2. The structural risk minimization principle endows SVR
with good generalization capability for unseen data, thus
the robustness and adaptation to different subjects of the
system are enhanced.

We employ the established LibSVM Library (Chang & Lin,
2011) for the SVR implementation. We apply 16 epsilon-SVRs
for the regression of the 16 selected AUs respectively, using the
same input/output data format as discussed above. A scaling
procedure is also performed before applying SVRs to achieve
the best performance.

Kernel selection plays a key role for SVR model, since using
different kernels may significantly influence the performance
when dealing with the same problem. For this research, we
consider the non-linear radial basis function (RBF) kernel as a
reasonable choice, because:

1. RBF nonlinearly maps inputs into a higher dimensional
space, thus it can well handle the case that the relation be-
tween facial features and AU intensity levels is nonlinear.

2. RBF has fewer number of hyperparameters than other
nonlinear kernels (e.g. polynomial kernel), which may re-
duce the complexity of model selection (Hsu et al., 2010).

3. RBF usually has lower computational complexity, which
in turn indicates better real-time computational perfor-
mance.

Please note that when the dimensions of features are very high

(e.g. thousands), the RBF kernel may become not suitable in

comparison to a linear kernel (Hsu et al., 2010). However, it is

not the case in this application.

Once the RBF kernel is selected, an essential step is to find
optimized sets of cost (C), gamma (g) and epsilon (¢) parame-
ters. We perform a “grid search” procedure on those parameters
using the cross-validation technique, since it is regarded as one
of the most effective methods to prevent over-fitting. In v-fold
cross-validation, the overall dataset is firstly divided into v
groups with equal number of samples in each group, then we
use v-1 groups of the data for training and the remaining group
for testing. This process is repeated v times so that each group
can be tested in turn. Specifically, various combinations of pa-
rameter values (i.e. exponentially growing values: C =27, 27,
oy 2 g= B gt 20 e =210 00 2'1) are conducted

AUL
AUZ
AU4
AU5
AUG
AU10
AU12
AU13
AU15
AUL7
AU1Z
AUZ0
AU23
AU24
AUZ6
AU27

Sadness

Anger Disgust Fear Happiness Surprise

Figure 9. The AU-Emotion relation confusion matrix (lighter color indicating

higher Influence Power with darker color representing lower Influence Power)
and the one with the lowest Mean Squared Error (MSE) under
5-fold cross-validation is selected. The MSE evaluates the pre-
diction results by taking into account the squared error of the
predicted value from the ground truth and can be computed as
follows (DeGroot & Schervish, 2011):

MSE =2 3 (3 - )’

L (11)
where y; is the predicted value, and y;” is the ground truth.
Moreover, the Pearson correlation coefficient is also employed
to evaluate the linear relationship between the prediction and
the ground truth, i.e. how they change together.

Thus, 16 Neural Networks and 16 SVRs are developed to es-
timate the intensity for each AU respectively. Both manually
and automatic selected features are used as inputs respectively
to NNs and SVRs to measure the intensities of 16 AUs. 729 3D
facial scans extracted from the Bosphorus database (Savran et
al., 2008) from 56 subjects are used for performance evaluation.
The databases, experiments and evaluations are detailed in Sec-
tion 4.

3.3 Facial Emotion Recognition using AU intensities

The mapping between AU intensities and emotions could be a
challenging task. For example, a ‘surprised’ facial expression
may indicate the presence of {AUI, AU2, AUS, AU26}, or the
physical cues of {AUL, AU2, AU26} in different cases. The
intensities of these present AUs could be also variable. These
practical issues make deterministic rule-based techniques less
effective (e.g. using translating formula: surprise = AUI+AU2+
AUS5+AU26 (Ekman et al., 2002)). Likewise, directly applying
machine learning algorithms could be still very challenging,
since extensive training data are needed to accommodate vari-
ous possible combinations of AUs for emotional expressions.
There are, however, more than thousands of possible AU com-
binations in spontaneous facial expressions (Ekman & Friesen,
1983), which are far beyond the data available in any existing
databases. In order to deal with such challenges, we propose a
novel method to robustly map AU intensities to the six basic
emotions using a limited number of samples, which consists of
two steps: (1) AU-Emotion relationship mining and ranking; (2)
facial expression recognition using the identified discriminative
AU combinations.

3.3.1 Mining and Ranking AU-Emotion Relationships

Rather than using the full set of 16 AUs for emotion interpreta-
tion indiscriminately, we first derive AU-Emotion relationship,
and then identify the most effective combination of AUs as the
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Figure 10. Average classification accuracies using SVMs and top ranking AUs
(N=1{2,3,4,5,6}) as inputs for the six basic emotions

discriminative AU set for each emotion category for subsequent
emotion recognition. The AU-Emotion relationship is derived
through statistical analysis of sufficient amount of valid sam-
ples with AU intensity and emotion annotations provided by the
extended Cohn Kanade (CK+) (Lucey et al., 2010) and Bospho-
rus databases (Savran et al., 2008).

A new concept, Influence Power, is proposed to describe the
weights of the AU-Emotion relationship, as defined in Equation
(12):

P= (Z?zolntensityx_i)/n (12)
where n is the number of examples belonging to a given emo-
tion category, Intensity, donates the intensity value of AUx
occurred corresponding to the given emotion, and the magni-
tude of P quantifies the Influence Power of AUx for that emo-
tion category. A higher Influence Power represents a closer
connection between an AU and an emotion, while a lower value
may indicate the weak association between them. 1200 samples
(equally distributed to the six basic emotions) collected from
the CK+ (Lucey et al., 2010) and Bosphorus databases (Savran
et al., 2008) have been taken into account for AU-Emotion rela-
tionship identification. After normalizing P across all of the 16
AUs for each emotion, we draw the relation confusion matrix
between the 16 AUs and the six basic emotions in Figure 9.
Thus, a set of association weights between AUs and emotions is
established.

Having obtained the relation confusion matrix, we then se-
lect the top V AUs with the highest Influence Power for the
recognition of each emotion. On the positive aspect, this may
significantly reduce the potential negative impact of those non-
dominant or haphazard AUs and improve classification accura-
cy. For example, ‘happy’ expressions have AU6, AU12 as high-
ly weighted associations with AU2 as a comparatively lower
weighted association, while AU2 is also served as a key physi-
cal cue and thus has a higher association weight for ‘surprise’

TABLE 4
IDENTIFIED DISCRIMINATIVE AU SETS FOR THE SIX EMOTIONS

Emotions. discriminative AU Sets.
Anger. | AU 4. AU 5. AU 17. AU 23. AU 24.
Disgust. | AU 4. AU10. AU17. . y
Fear. | AU 1. AU 4. AU 10. AU 20. AU 26.
Happy. | AU 6. AU 12 . .
Sadness. | AU 1. AU 4. AU 15. AU 17. : ‘
Surprise. | AU 1. AU 2 AU 26. AU 27.

expressions. However, on the negative aspect, over-filtering
those AUs with lower Influence Power may also increase the
risk of information loss. Thus, in order to optimize the selection
of the N number of AUs, we perform a series of experiments
with different N number of AUs (i.e. using different numbers of
top ranking AUs as inputs) for each emotion category. The AU
combinations with the best recognition accuracy will be final-
ized for subsequent emotion classification. The details are dis-
cussed in the following.

3.3.2 Selection of the Most Discriminative AU
Combination for Each Emotion

We employ six SVM classifiers for the recognition of the six

basic emotions, with each classifier dedicated to one emotion

category and employing a unique set of discriminative AUs as

inputs. The selection of the discriminative AU combinations is

detailed as follows:

We first perform emotion recognition using different num-
bers of top ranking AUs (i.e. N = {2, 3, 4, 5, 6}) as inputs, and
record the recognition accuracies in each round. Specifically,
for each classifier, we collect 120 samples in total, 50 from the
CK+ database (Lucey et al., 2010) and 70 from the Bosphorus
database (Savran et al., 2008), covering both positive and nega-
tive cases (presence/absence of that emotion) with roughly
equal quantities. We also apply a 5-fold cross-validation scheme
depending on the sample size. The average cross-validation
accuracies obtained by SVM classifiers are summarized in Fig-
ure 10 (the other classifiers yield very similar patterns, thus are
omitted in the Figure).

Based on the results shown in Figure 10, the AU combina-
tion leading to the best recognition accuracy is determined as
the most discriminative AU combination for each emotion.
These AU combinations are summarized in Table 4 and em-
ployed respectively as the finalized inputs for the six emotion
classifiers. For example, in Figure 10, since the highest recogni-
tion accuracy for ‘anger’ is achieved when N equals to 5, we
select the top five ranking AUs as the discriminative AU com-
bination, i.e. AU4, AUS5, AU17, AU23 and AU24. Thus, the
derived intensities of these five AUs are subsequently used as
inputs to the ‘anger’ emotion classifier. The discriminative AU
combinations for other emotion categories are also determined
as above. The experimental results and evaluations are present-
ed in Section 4.

3.3.3 Emotion recognition using adaptive ensemble
classifiers

In this research, we propose an adaptive ensemble scheme for

the detection of six expressions and any newly arrived novel

emotion classes. In this scheme, there are six ensemble classifi-

Ensemble
Strategy

@

Ensemble
Output

Input Pattern

Figure 11. An example of an ensemble learning model
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Figure 12. Flow chart of the generation of the proposed ensemble model

ers with each ensemble robustly differentiating the pres-
ence/absence of each emotion. We also employ single Support
Vector Machines (C-SVC) classifiers to conduct the same ex-
pression recognition tasks, and their results will be used as the
benchmark for comparison with those achieved by the ensemble
classifiers.

Ensemble learning generally refers to approaches that gener-
ate several base models that are combined to make a prediction,
as illustrated in Figure 11. Compared to traditional single mod-
el-based methods, ensembles have the advantages of improved
robustness and increased accuracy (Garcia-Pedrajas et al.,
2005). For an exhaustive review of ensemble approaches, read-
ers may refer to Rokach (2010).

In the field of facial emotion recognition, many ensemble ap-
proaches have been proposed. For example, Whitehill & Omlin
(2006) employed AdaBoost algorithm for AU recognition using
Haar features. More recently, Zavaschi et al. (2013) created a
pool of base SVM classifiers with features extraction conducted
by Gabor filters and Local Binary Patterns, and then applied a
multi-objective genetic algorithm to find the best ensemble by
minimizing both the error rate and the size of the ensemble.
Although ensemble models have been used for facial expression
recognition, few of them are developed to detect novel emotion
classes. Moreover, in the field of data stream mining, most of
the existing ensemble algorithms integrated with novel class
detection employed classic decision tree (e.g. Farid et al., 2013)
or k-nearest neighbor (e.g. Masud et al., 2011) classifiers as
their base models. In our research, we employ a special type of
Neural Network, i.e. Complementary Neural Network, as the
base classifier and propose a novel mechanism to further im-
prove the performance of the 6-class emotion recognition and

novel emotion detection. The details of our approach are dis-
cussed as follows.

Each of the proposed ensemble classification models consists
of two phases: ensemble model generation (training) and classi-
fication with novel class detection (testing). Figure 12 illus-
trates the work flow of the generation of an ensemble classifier.
It starts with the weight initialization procedure for each train-
ing instance based on the posterior probability, as detailed in
Section 3.3.3.1. Afterwards, the ensemble model generates a
new training subset from the original training set using instanc-
es with higher weights. Then, a base model is trained using the
newly generated training subset. Here, we employ a novel
Complementary Neural Network (CMTNN) as the base classi-
fier, because of its ability to estimate the vagueness level of
classification results. The CMTNN is introduced in Section
3.3.3.2. A weight is subsequently calculated and assigned to the
current base CMTNN classifier based on its classification accu-
racy rate for the original training dataset. We also update the
weights of the original training instances with the goal of in-
creasing the weights of those misclassified instances. The
weight calculation and update methods are discussed in Section
3.3.3.3. The generated training subset is also clustered based on
the similarities and differences of the instances, as discussed in
Section 3.3.3.4. We employ the following idea for novel emo-
tion class detection. A distance-based clustering technique and
the vagueness measure of the classification results obtained by
CMTNN will be employed to identify the arrival of novel emo-
tion class (i.e. unseen expressions absent from the training set).
Overall, the above procedures iterate three times, thus three
weighted base models are generated (considering a balance
between performance and computational complexity). The final
ensemble classification results can be obtained by using majori-
ty of weighted votes of the three base models.

Moreover, Figure 13 shows the flow chart of classification
and novel emotion class detection. As mentioned above, the
proposed ensemble scheme is expected to effectively detect
novel emotional expressions. Such capability is achieved by the
analysis of both the vagueness values of the based models and
the corresponding similarity-based clustering results. More
specifically, once a testing instance arrives, the three base mod-
els for each ensemble respectively output both the individual
classification results and the vagueness/uncertainty estimation
values of the results. If any of the three vagueness values is
greater than a threshold and the instance does not belong to any
existing data clusters, then the instance is identified as a poten-
tial novel emotion class and will be stored in a separate dataset.
Finally, if this instance is identified as a potential novel emotion
by more than half of the ensemble classifiers of the six basic
emotions (e.g. more than three ensembles), then it is determined
as a newly arrived novel emotion.

3.3.3.1 Weight Initialization for Training Instances
First of all, we present the method on how to initialize the
weight of each training instance based on naive Bayes (NB)
classifier. Although traditional ensemble approaches (e.g.
boosting algorithms) normally initialize the weight of each
training instance with an equal value, assigning appropriate
weights using non-equal values has been also proved to im-
prove the performance of ensemble classifiers (e.g. Farid et al.,
2013).

In this research, the weight of each training instance is initial-
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Figure 13. Flow chart of classification with novel emotion detection

ized based on the posterior probability obtained by a NB classi-
fier. Specifically, we first estimate the prior probability P(C;)
for each class C;, by calculating how often each class occurs in
the given training dataset. Similarly, for each attribute 4; and
each class C,, the class conditional probability P(4,;/C;) can be
obtained by counting how often each attribute value occurs in
each class. Given an instance x;, assuming all attributes are in-
dependent, the conditional probability P(x;|C;) can be estimated
by combining the effects of each different attribute as shown in
the following equation:

n
P(xi|C;) = [ [P(A|C)
=1 (13)
Then, the posterior probability P(C;|x;) can be calculated ac-
cording to Bayes’ theorem as:
Pxi|G;) P(G)

P(Ch) =

(14)
Thus, the posterior probability is obtained for each class. We
then assign a weight for the instance x; using the highest poste-
rior probability. The weights of the rest instances are initialized
using the same method. Once the weights of all instances are
initialized, their weights will be normalized so that their sum
equals to 1.

3.3.3.2 Base Model Generation (CMTNN)

Having initialized the weight for each training instance, we
focus on the generation of each base model. Here, we introduce
a Complementary Neural Network (CMTNN) as the base clas-
sifier, which is not only especially suitable for binary classifica-
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Figure 14. Topology of a Complementary Neural Network (Kraipeerapun,
2008)

tion problems, but also able to provide vagueness estimation of
the classification results.

CMTNN, originally proposed by Kraipeerapun (2008), con-
sists of a pair of opposite feedforward Neural Networks with
the same architecture (i.e. a truth Neural Network and a falsity
Neural Network). The truth Neural Network is trained by origi-
nal training data to predict the degree of the truth membership
values, and the falsity Neural Network is trained to predict the
degree of the false membership values using the same inputs
but the complement of target outputs of the original training
instances (as illustrated in Figure 14). For instance, if the target
output of original training data is 1, the complement of this
target output used to train the falsity Neural Network should be
0.

For each test pattern, a CMTNN outputs both the truth and
false membership values, and they are supposed to be comple-
mentary to each other ideally (i.e. if the truth membership value
is 1 then the false one is supposed to be 0, or vice-versa). In
practice, however, both membership values predicted may not
always be informative enough for the final classification. For
example, both the truth and false membership values are around
0.5. Thus, an uncertain classification occurs. Empirically, the
greater proximity of the truth and false membership values, the
higher the degree of vagueness exists. Given a testing pattern,
let y; be the output. 7(y;) denotes the truth membership output,
and F(y;) denotes the false membership output, then the vague-
ness value of the prediction V(y;) can be estimated as:

Vo) =1-1T) - Fool 15)
By combining 7T(y;) and the complement of F(y;) using a simple
equal weighted method, the final output O(y,) for the pattern
can by calculated as:
T(y)+ A -Fy))
z (16)
A threshold value is applied to Equation (16) to classify the

0y =
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output into binary classes (generally, the most common thresh-
old value is 0.5). An output pattern is classified as 1 (true) if
O(y;) is greater than the threshold value, otherwise, it is classi-
fied as 0 (false). Compared to other traditional methods which
solely apply truth membership values, CMTNN has two out-
standing features: improved classification accuracy for binary
problems and the ability to assess uncertainty of classification
using the vagueness value (Jeatrakul & Wong, 2009).

3.3.3.3 Weight Calculation and Update

We then introduce the weight calculation methods for both of
the base classifiers and training instances. First, once a base
classifier is generated, a weight will be assigned based on its
classification accuracy rate for the original training instances.
Once all the three classifiers are generated, their weights will be
normalized so that their sum equals to 1.

Moreover, for training instances, we follow the following
steps to update their weights, with the intention to increase the
weights of those instances which are more difficult to classify
(i.e. those with higher error rates). We first assign an error rate
for each training instances x; by
1, if misclassified

error (xi) = {0, if correctly classified

17)
We then calculate the overall error rate for all instances as fol-
lows:

errotyperail = w; x error(x;)

! (18)
where w; is the current weight for instance x;. Afterwards, the
weights of the correctly classified instances will be decreased as
follows:

n

L

T 0 pverall

Wiupdatea = Wi *
Hupdate ' 1- €rT0Tgverail

19)

Thus, the weights of correctly classified instances are de-
creased and the weights of those misclassified ones become
increased comparatively. Once the weights of all instances are
updated, their weights will be normalized, so that their sum
remains the same as it was before.

3.3.3.4 Distance-Based Data Clustering

Clustering is a widely-used unsupervised learning technique. It
is a main task of exploratory data mining, and has been applied
to many application domains such as image analysis, pattern
recognition, information retrieval, medicine, and bioinformat-
ics. It is a form of learning by observation, and aims to deter-
mine the intrinsic grouping for a set of unlabeled data based on
the principle that instances in the same group (called a cluster)
are similar (or related) to each other and different from (or unre-
lated to) the instances in other groups. The greater the differ-
ence between clusters, and the greater the similarity within a
cluster, the better the clustering.

In the distance-based clustering, we use the Euclidean dis-
tance as the matric to determining the similarity (or differences)
of two instances. For a given instance x;, if we can find any
instance x; in an existing cluster NV that fulfills: 1. the Euclidean
distance D; ; between x; and x; is minimum, and 2. D, ; < a pre-
determined threshold, the instance x; is assigned to N. Other-
wise, x; is assigned to a newly generated or any other cluster.
During the training phase, the distance-based clustering is em-

ployed to specially measure the distribution of the training in-
stances. During the testing phase, if the output uncertainty level
(i.e. the vagueness value of a CMTNN) of an instance is greater
than a predetermined threshold, this instance will be further
determined by the distance-based clustering. If the instance
does not belong to any existing clusters, it is confirmed as a
potential novel class.

4 EVALUATIONS AND DISCUSSION

In this section, we perform two types of evaluations of the pro-
posed system: static off-line and real-time on-line evaluations.
The off-line evaluation is purely based on annotated facial im-
ages borrowed from the Bosphorus database, for which we con-
duct exhaustive experiments for both AU intensity estimation
and emotion classification to evaluate the system performance.
The on-line testing mainly focuses on the assessment of the
system’s real-time performance and newly arrived novel emo-
tion class detection, where we use the system trained with the
database images to recognize facial expressions of real human
subjects in real time.

4.1 Databases

In this research, we employ two facial expression image data-
bases. The first database employed is the CK+ database (Lucey
et al., 2010), which is based on 2D facial images but provides
rich AU intensity and expression annotations. However, this
database is only used for the statistical computation of the dis-
criminative AU sets for each emotion as discussed in Section

3.3. The second database employed for this research is the Bos-

phorus 3D Database (Savran et al., 2008), which contains both

3D facial scans and manually labeled landmarks, as well as a

large variety of Action Unit and expression annotation. This

database is used for the evaluation of both AU regression and
emotion classification. The introduction of these two databases
is provided in the following.

1. The Extended Cohn-Kanade Database consists of 593
image sequences across 123 subjects with each image se-
quence starting from a neutral expression and ending in a
peak frame emotional expression. Among 593 image se-
quences, the annotations of the six basic emotions and fa-
cial AUs are provided for 327 peak frame images. The AU
annotations in the CK+ database have been provided with
a numbered scale from 1 to 5 and hence the target intensi-
ty values in the range levels of A — E are accordingly
scaled. These AU intensity and expression data are used
only for the AU-Emotion Relationship analysis and dis-
criminative AU Set selection, as detailed in Section 3.3.

2. The Bosphorus 3D Database includes a rich set of 4652
3D facial scans and corresponding manually labeled facial
landmarks collected from 105 subjects (including 60 men
and 45 women; 29 of them are professional ac-
tors/actresses). Both Action Units (25 out of the 44 de-
fined in FACS) and the six basic emotions are annotated
specifically for the purposes of facial expression analysis.
The 3D facial scans are acquired by Inspeck Mega Cap-
turor II 3D, with about 0.3mm depth resolution in x, y, and
z dimensions and 1600x1200 pixels high color texture
resolution (Savran et al., 2008). In this study, excluding
occlusion facial scans, a subset of the database containing
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clear annotation for both AU intensity and the six basic
emotions is considered. The subset includes 729 facial
scans covering 56 subjects, and we extract a total of 960
samples for the evaluation of the intensity estimation of
the 16 AUs (a scan can contain more than one AUs).
These scans contain both frontal and non-frontal head
poses with yaw rotations from 0 to 30 degrees and pitch
rotations ranging from slight upwards, neutral, to slight
downwards.

4.2 Off-line Evaluation

In off-line evaluation, we assess the system’s performance by

using database sample images with AU intensity and emotion

annotations. All the results are obtained using the cross-

validation technique. The setting of the off-line evaluation is

described in the following.

®  For the off-line evaluation, both the training and testing
phases were purely based on database images. Therefore,
we did not use the Kinect for this evaluation.

®  We apply n-fold cross-validation to evaluate the perfor-
mance of both AU intensity estimation and emotion classi-
fication, which embeds training and testing phases of the
system together. As detailed in Section 3.2, the cross-
validation process uses # -1 groups of the data for training
and the remaining group for testing. This process is re-
peated n times. There are overall 729 FACS coded emo-
tional facial images across 56 subjects borrowed from the
Bosphorus 3D Database employed for the cross-validation
evaluation for both AU intensity estimation and emotion
classification. Specifically, we employ 5-fold cross-
validation in our work according to the sample size.

®  The computational cost of the learning stage in each round
of the cross-validation process is approximately 2-5 sec-
onds for AU intensity estimators on average, and 4-6 sec-
onds for emotion classifiers (such as ensemble classifiers)
on average. The computational cost of the test stage in
each round of cross-validation process is approximately
100-200 milliseconds.

4.2.1 Evaluation on AU Intensity Estimation

As mentioned before, a total of 729 FACS coded emotional
facial scans across 56 subjects extracted from the Bosphorus 3D
Database (Savran et al., 2008) is used for the evaluation of AU
intensity estimation and subsequent emotion classification. The
features we used for AU intensity estimation are solely based on
the differences of the extracted Euclidean distance features be-
tween the neutral and any expressive frames. They are either
generated by the manual selection or the mRMR based optimi-
zation. For each AU, we have collected around 60 samples,
covering both positive cases, i.e. AU presence at any intensity
levels (approximately 75%) and negative cases, i.e. AU absence
(approximately 25%). A single output value ranging from 0 to 1
is used to represent AU absence through maximum intensity.
We apply the 5-fold cross-validation as described above to
evaluate the prediction accuracy and generalization capability
for each AU. The output AU intensities are subsequently com-
pared against the ground truth to calculate the MSE and CORR
for each AU.

In the existing research of AU recognition, the accuracy tends
to heavily depend on the training sample size. Typically, most
of them required a large number of training images (e.g. thou-
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Figure 15. Average cross-validation MSE for AU regression in relation to
the data sample size used

sands) with good diversity and coverage to maintain sufficient
accuracy and robustness (e.g. Koelstra et al., 2010; Whitehill et
al., 2011; Savran et al., 2012). In order to deal with such chal-
lenges, we employ the most discriminative motion-based facial
features which enable a significant reduction of training data for
AU intensity estimation and in the meantime provide an im-
pressive performance. As shown in Figure 15, the average MSE
for SVR based AU intensity estimation remains stably below
0.1 once the sample size reaches approximately 50.

Using manually selected features

First, Table 5 shows the results obtained by the feedforward
Neural Networks (BPNNs) and Support Vector Regressors
(SVRs) for AU intensity estimation using manually selected
features. For both BPNNs and SVRs, the lowest MSEs (below
0.05) are observed for AU13 (Cheek Puffer), AU2 (Outer Brow
Raiser), AU26 (Jaw Drop), AU10 (Upper Lip Raiser), AU12
(Lip Corner Puller) and AU17 (Chin Raiser) followed by AU1
(Inner Brow Raiser), AU15 (Lip Corner Depressor), AU20 (Lip
Stretcher), AU18 (Lip Puckerer), AU4 (Brow Lowerer), AU23
(Lip Tightner) and AU27 (Mouth Stretch), which also obtain
fairly low MSEs below 0.1. These results demonstrate the effec-
tiveness and robustness of the extracted motion-based facial
features for AU intensity regression.

In contrast, relative higher MSE (above 0.1) are also ob-

TABLE 5
RESULTS FOR AU INTENSITY ESTIMATION USING MANUALLY SE-
LECTED FEATURES (BPNN= BACKPROPAGATION NEURAL NET-
WORK, SVR=SUPPORT VECTOR REGRESSION)

AUs MSE CORR
BPNN SVR BPNN SVR
AU I3 0.011 0.020 0.952 0.957
4U2 0.013 0.027 0.970 0.978
AU 26 0.025 0.031 0.954 0.976
AU 10 0.036 0.033 0.924 0.939
AU 12 0.042 0.039 0.939 0.930
AU 17 0.043 0.041 0.896 0.923
4U1 0.047 0.051 0.957 0.960
AU 15 0.056 0.060 0.890 0.892
AU 20 0.058 0.046 0.878 0.913
AU 18 0.064 0.056 0.955 0.947
AU 4 0.066 0.059 0.893 0.824
AU 23 0.092 0.099 0.921 0.925
AU 27 0.097 0.104 0.931 0.969
AUG6 0.119 0.107 0.841 0.859
AU 5 0.134 0.123 0.881 0.895
AU 24 0.149 0.126 0.790 0.863
Overall 0.065 0.063 0.911 0.921
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served for the intensity estimation of some AUs, such as AU6
(Cheek Raiser), AUS5 (Upper Lid Raiser) and AU24 (Lip Pres-
sor). These results can be explained by the fact that the facial
movements of these AUs are very subtle. Especially for AU24,
which has the highest MSE and lowest CORR. It could be at-
tributed to the reason that both AU23 and AU24 can cause simi-
lar lip boundary changes (e.g. the red parts of lips are nar-
rowed), which may lead to ambiguous annotations even for
expert coders. On average, BPNNs and SVRs yield similar per-
formances for AU intensity estimation. However, SVRs are
found to perform slightly better than BPNNs for more subtle
AUs, in term of both MSE and CORR measurements (e.g. AUS,
AUG6 and AU24).

Using automatically selected features

Next, we employ the automatically selected features obtained
by using the mRMR-based optimization to estimate the intensi-
ties of the 16 selected AUs. The results obtained are summa-
rized in Table 6. Empirically, a few informative features with
great discrimination power (i.e. 10 to 20 features in general) are
sufficient to yield good results. On average, the automatically
selected features achieve comparable performance in compari-
son to the manually selected features for the intensity estima-
tion for many AUs (e.g. AU2, AU13, AU1S5, AU26, and AU27).
For some AUs, such as AU2 and AU13, the automatic features
generate even lower MSE values when SVRs are used. Howev-
er, for some other AUs, such as AU4, AU20 and AU24, the
performance drops slightly in comparison to the manual feature
selection. Overall, the mRMR-based feature selection yields a
very close performance to the manually devised features in
terms of both averaged MSE and CORR values. Thus, the AU
intensities obtained by SVRs with the corresponding automati-
cally selected features as inputs will be used for subsequent
emotion recognition.

Furthermore, since all the results are obtained in the form of
continuous AU intensity levels, they reflect more physical truth
of facial expressions in comparison to other applications that
only performed presence or absence binary-classifications (e.g.
Tsalakanidou & Malassiotis, 2010; Li et al., 2013). Such AU
intensity measurements may also indicate effective physical

TABLE 6
RESULTS FOR AU INTENSITY ESTIMATION USING AUTOMATICALLY

SELECTED FEATURES (BPNN= BACKPROPAGATION NEURAL NET-
WORK, SVR=SUPPORT VECTOR REGRESSION)

AUs MSE CORR
BPNN SVR BPNN SVR
AU 2 0.013 0.017 0.937 0953
AU 13 0.021 0.014 0.919 0.975
AU 26 0.032 0.031 0.923 0.975
AU 10 0.039 0.041 0.885 0.938
AU 12 0.059 0.053 0.895 0.926
AU 17 0.057 0.059 0.873 0.900
AUl 0.066 0.060 0.906 0.936
AU 15 0.066 0.062 0.874 0.891
AU 20 0.059 0.064 0.875 0.912
AU 18 0.077 0.069 0911 0.936
AU 4 0.080 0.078 0.897 0.805
AU 23 0.095 0.094 0.893 0.905
AU 27 0.102 0.097 0.886 0.963
AU6 0.120 0.117 0.822 0.838
AU S 0.136 0.133 0.831 0.878
AU 24 0.152 0.142 0.787 0.857
Overall 0.073 0.071 0.882 0.912

cues to contribute to the sequent emotion classification.

4.2.2 Evaluation on Facial Emotion Recognition

The 729 facial scans used for AU intensity estimation above are
then applied for the evaluation of the facial emotion recogni-
tion. As mentioned before, the intensities of the 16 diagnostic
AUs generated by SVRs with mRMR based feature selection
are subsequently used as inputs to the six ensemble classifiers
for expression recognition. Six single SVM classifiers are also
used to perform facial expression recognition for the compari-
son with the ensemble classifiers. We also apply a 5-fold cross-
validation to measure the accuracy performance of each emo-
tion recognition classifier. We measure the performance of the
proposed emotion recognition approaches in term of the accura-
cy confusion matrix and Fl-measure. A confusion matrix is a
n * n matrix, where the row labels are ground-truth emotion
annotations and the column labels are the classification results.
The diagonal entries indicate the correct classifications, while
the off-diagonal entries correspond to misclassifications. The
Fl-measure is a harmonic mean of precision and recall rate,
which is considered to be a more comprehensive metric.

Table 7 shows the recognition accuracy confusion matrices
for the six basic emotions obtained by SVMs and the proposed
ensemble classifiers. By using SVMs for emotion classification,
we achieve an overall recognition accuracy rate of 90.5%
(shown in Table 7 (a)), while by using ensemble models, we
obtain a higher overall accuracy of 92.2% (see Table 7 (b)).
More specifically, for either approach, the best performances
are achieved for the recognition of ‘happy’ and ‘surprised’ faci-
al expressions, with recognition accuracies beyond 95%. For
‘anger’ and ‘fear’, slightly lower recognition accuracies are
observed for both approaches with the ensembles (92.8% for
‘anger’ and 92.1% for ‘fear’) outperforming the SVM classifi-
ers (91.3% for ‘anger’ and 91.1% for ‘fear’). For ‘disgust’, a
lower recognition accuracy of 85.6% is observed when using
the SVMs, and 88.6% when using the ensembles. A possible
explanation is that those emotions with comparatively lower
recognition accuracies often entangled with more complicated
and subtle facial changes than the ones with higher recognition
accuracies, and thus more challenging to recognize. The lowest
recognition rates are observed for ‘sadness’ (82.7% by SVM
and 86.6% by the ensemble classifier). This could be due to the
fact that in some facial scans, subjects inaccurately express
‘sadness’ using the combination of AU20 (Lip Stretcher) and
AU1S (Lip Corner Depressor), rather than solely using AU15 as
indicated by FACS (Ekman et al., 2002). But AU20 is also
served as a key physical cue for ‘fear’, which may lead to mis-
classification of ‘sadness’ as ‘fear’.

We subsequently compare our work with other state-of-the-
art developments such as Salahshoor & Faez (2012) and Ujir
(2013) in Table 8. These related applications are chosen because
of their focus on a similar research challenge of 3D facial emo-
tion recognition and the employment of the same Bosphorus 3D
database and similar evaluation strategies. Salahshoor & Faez
(2012) proposed a novel dynamic mask to automatically seg-
ment the regions of face which were less sensitive to expres-
sions and applied a modified nearest neighbor classifier for the
recognition of the six basic emotions. Moreover, Ujir (2013)
decomposed a face into six distinct regions and extracted their
3D facial surface normals instead of raw 3D points as the fea-
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TABLE 7
CONFUSION MATRICES OF FACIAL EMOTION RECOGNITION ACCURACIES

Anger Disgust Fear Happy Sadness Surprise
a.  Recognition accuracy (average 90.5%) using SVM classifiers
Anger 91.3 6.7 0 0 13.6 0
Disgust 11.1 85.6 4.3 0 0 0
Fear 0 0 91.1 0 0 11.8
Happy 0 0 0 95.6 0 8.8
Sadness 5.8 3.1 9.8 0 82.7 0
Surprise 0 0 0 7.9 0 96.5
b.  Recognition accuracy (average 92.2%) using the proposed ensemble classifiers
Anger 92.8 33 0 0 9.3 0
Disgust 9.8 88.6 2.3 0 0 0
Fear 0 0 92.1 0 0 9.9
Happy 0 0 0 96.1 0 8.9
Sadness 4.7 0 73 0 86.6 0
Surprise 0 0 0 7.3 0 96.7

ture vectors. Then Support Vector Machines were employed to
recognize facial expressions for the six regions independently.
A weighted voting scheme was also applied to make the final
classification. The comparison in Table 8 indicates that our
proposed facial emotion recognition system outperforms both
of the above related developments. Specifically, the ‘surprised’
facial expression has been well recognized by all the three sys-
tems (accuracies > 90%). However, the two related systems also
respectively show some limitations for the recognition of some
of the other emotion categories. For example, the system of
Salahshoor & Faez (2012) performed poorly for the recognition
of ‘happy’ and ‘disgust’ (accuracies < 80%) emotions, whereas
the work of Ujir (2013) also indicated very unstable classifica-
tion performance for ‘fear’ (only 21.5%) and ‘disgust’ (43.1%)

TABLE 8
COMPARISON OF RECOGNITION ACCURACIES FOR THE SIX BASIC
EMOTIONS
Aceuracy | Accuracy | Salahshoor Ujir
_SVM | _Ensemble & Faez (2013)
(2012)

Surprise 96.5 96.7 91.4 90.8
Happy 95.6 96.1 74.3 100.0
Fear 91.1 92.1 929 215
Anger 91.3 92.8 873 75.4
Disgust 85.6 88.6 78.3 431
Sadness 827 86.6 95.5 67.7
Overall 90.5% 92.2% 86% 66.4%
TABLE 9

F1-MEASURES FOR THE SIX BASIC EMOTIONS

F1_SVM FI_ F1_Sandbach
Ensemble etal. (2012)

Surprise 0.889 0.897 0.826
Happy 0.94 0.945 0.812
Fear ‘ 0.888 0.913 0.462
Anger 0.877 0.895 0.500
Disgust ‘ 0.876 0.923 0.644
Sadness 0.843 0.884 0.625
Overall | 0.89 0.91 0.65

expressions. In comparison to these state-of-the-art applica-
tions, our system is proved to be more stable for the recognition
of all of the six emotion categories and achieves the highest
overall recognition accuracy among the related applications.

Since the classification accuracy rate could be less informa-
tive sometimes, especially when the data is unbalanced, the F1-
measure for each emotion category is also presented in Table 9.
We also compare our system with the work by Sandbach et al.
(2012) because of their state-of-the-art performance and the
employment of the same performance metric (i.e. the F1-
measure). In their work, hidden Markov models (HMMs) were
used to recognize the six basic emotions from facial expressions
based on 3D modality. F1-measure was also produced for each
emotion category. Based on the comparison of the F1-measure
results, it is noticed that the performance of our system signifi-
cantly outperforms those of the work by Sandbach et al. (2012).
Although their HMM based approach also generated good re-
sults for the recognition of ‘happy’ and ‘surprised’ facial ex-
pressions, our system performs more stably for the detection of
each emotion category. Overall, the above results demonstrate
that the proposed system is consistently an efficient and robust
solution for AU intensity estimation and emotion recognition.

Furthermore, facial expressions sometimes may contain a
mixture of emotions, thus it is possible that two (or more) emo-
tional states occur simultaneously in one emotional facial scan.
This research also shows great potential to detect such combi-
nation of emotions (e.g. happy + surprise) by deriving recogni-
tion results for each emotion category separately.

4.3 On-line Evaluation

The facial emotion recognition system has also been applied
to real-time emotion detection tasks contributed by test human
subjects. The facial feature point localization of our system is
able to integrate both color and 3D depth image data so that it
provides great robustness against illumination changes and pose
variations. It thus lays solid foundations for subsequent AU
intensity measurement and emotion recognition. Moreover, the
computational complexity of the face tracking and landmark
localization requires 20-30 milliseconds under normal lab light-
ing conditions. The mRMR-based feature selection, AU regres-
sion, and emotion classification take an averaged run time of 3-
5 milliseconds (which may change slightly depending on differ-
ent types of regressors and classifiers used). Overall, the system
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Figure 16. Snapshots of the six basic emotions plus ‘contempt’ and ‘excitement’ posed by two test subjects in the on-line evaluation
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Figure 17. Examples of real-time detection of ‘surprise’. The bold black line indicates the ground-truth (presence/absence), and the six color lines respec-
tively indicate the real-time outputs of the six ensemble classifiers

is able to perform efficiently for facial emotion recognition at a
frame rate of 25~30 fps on 17 quad-core CPUs with 8GB RAM.
For the on-line evaluation, our system has been trained with

database images first and then is used to recognize human sub-

jects’ facial expressions in real time. The setting of the online

testing is provided in the following.

®  For the online evaluation, our system has been trained
with database images first. Then the Kinect is used in the
testing phase to track human subjects’ facial landmarks.
Based on the tracked facial landmarks, the system subse-
quently performs mRMR-based feature selection, AU in-
tensity estimation and emotion recognition.

® For the on-line evaluation, the above 729 FACS coded
database images from 56 subjects employed for the off-
line evaluation are entirely used for training of both the
AU intensity estimators and emotion classifiers. For test-
ing, we recruit eleven real human subjects to further eval-
uate the system’s efficiency.

® In this real-time evaluation, the training computational
cost of the system is approximately 4-5 seconds for AU
intensity estimators while 5-7 seconds for emotion classi-
fiers. For on-line testing, we recruit eleven participants
with five females and six males aging from 25 to 40 years
old. Majority of them are postgraduate students and all the
test subjects are non-experts in the field. The computa-
tional cost of the system in the real-time testing is about 3-
5 milliseconds.

As mentioned above, we recruit eleven participants for real-
time system testing. In order to ensure effective tracking of

facial geometric features, the distance between the participants
and the Kinect was controlled within the range of 2 (£0.5) me-
ters. The participants were required to display a series of emo-
tional clips. Each clip lasts approximately 10-15 seconds (i.e.
300450 frames). It starts from a short neutral state period (4-5
seconds) and followed by a posed facial expression period.
Both the neutral state and expression periods were manually
labeled in each clip by an expert annotator. In addition to the six
basic emotions (happiness, sadness, disgust, surprise, fear and
anger) that are collected from the test subjects and used to test
the system, we also evaluate the system with some novel emo-
tional expressions (e.g. contempt and excitement) contributed
by the test subjects.

In our experiment, the expressions of ‘contempt’ emotion
require a subject to show the facial behavior of dimpler (AU14)
while the expressions of ‘excitement’ emotion require the com-
bination of ‘surprise’ and ‘happy’ expressions with the upper
face showing inner and outer brow raiser and upper lid raiser
and the lower face indicating cheek raiser and lip corner puller.
We use the above guidance for the posing and collection of
these two novel emotion classes for testing. Figure 16 shows
examples of the six basic emotions plus ‘contempt’ and ‘ex-
citement’ expressions posed by two test subjects during testing.
Eventually, the system was evaluated with a total of 136 emo-
tional clips. The detailed results and discussions are presented
as follows.

Figure 17 shows an example of real-time detection of a
‘surprise’ emotional clip using the six ensemble classifiers. The
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TABLE 10
REAL-TIME RECOGNITION ACCURACIES FOR THE SIX BASIC
EMOTIONS AND NOVEL EMOTION CLASSES

Recognition Accuracy
(average 84%)
Surprise 93.2
Happy 88.1
Fear 81.6
Anger 79.4
Disgust 83.7
Sadness 77.9
Classified as a novel
emotion (average 72.2%)
Contempt 77.2
Excitement 67.1

vertical axis indicates the emotion detection results from ab-
sence (0) to maximum presence (1) of the ‘surprise’ expression,
and the horizontal axis marks the timeline (in frames). As illus-
trated in Figure 17, for the recognition of ‘surprise’, ideally,
only the corresponding ensemble classifier for ‘surprise’ gener-
ates an output curve consistent with the ground truth. The out-
puts of the other five ensemble classifiers consistently remain in
a much lower level. Overall, the average classification accuracy
rate for this emotion clip is 93.2%.

Table 10 summarizes the real-time recognition accuracy
rates for the six basic emotions and novel emotion detection
rates for ‘contempt’ and ‘excitement’. Generally, the on-line
system yields comparable results to that were obtained in off-
line evaluation. Except for ‘anger’ and ‘sadness’, the recogni-
tion accuracy rates for the other four basic emotions are con-
sistently beyond 80%. Moreover, 77.2% of ‘contempt’ and
67.1% of ‘excitement’ expressions are successfully identified as
novel emotion classes, which demonstrate that the proposed
ensemble classifiers are well capable of detecting newly arrived
novel emotion categories.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a fully automatic system for real-
time 3D AU intensity estimation and emotion recognition. We
first realized real-time 3D face tracking and facial landmark
extraction based on the Kinect platform. Then 16 sets of mo-
tion-based facial features containing rich person-independent
emotional information were extracted and selected by using
both manual and mRMR-based automatic feature selection
methods. These feature sets were subsequently employed as
inputs to an array of Neural Networks and Support Vector Re-
gressors respectively to estimate the intensities of the 16 diag-
nostic AUs. Experimental results indicated that the mRMR
based optimized feature selection yields comparable results in
comparison to the manually selected features when using either
Neural Networks or SVRs for AU intensity measurement.
Moreover, the SVR-based AU intensity estimation slightly out-
performed the Neural Network based method. This is probably
caused by the fact that the grid search with cross validation has
been conducted for optimal parameter selection for the SVR
models. By using the automatically selected features and SVRs,
we have achieved an averaged MSE of 0.071 and an averaged

CORR of 0.912 for the intensity estimation of the 16 AUs. The
intensities of AU2 (Outer Brow Raiser), AU10 (Upper Lip
Raiser), AU13 (Cheek Puffer) and AU26 (Jaw Drop) were well
estimated with lowest errors (MSE < 0.05), whereas more sub-
tle AUs, such as AU5 (Upper Lid Raiser), AU6 (Cheek Raiser),
and AU24 (Lip Pressor) were estimated with relatively higher
estimation errors (MSE > 0.1). The above results also demon-
strated the extracted motion-based facial features are very effi-
cient and robust for AU intensity estimation.

We subsequently used the derived AU intensities to recognize
the six basic emotions using the identified discriminative AU
combinations and dedicated ensemble classifiers for each emo-
tion category. The proposed novel adaptive ensemble classifiers
show great robustness and flexibility for not only the recogni-
tion of six basic emotions but also the detection of newly ar-
rived unseen novel emotion categories. The off-line evaluation
results using the Bosphorus database indicated that the pro-
posed ensemble models consistently outperform the SVM-
based classification, and have achieved an averaged recognition
accuracy of 92.2% and an averaged F1-measure of 91% for the
recognition of the six basic emotions. The best recognition ac-
curacies were obtained for ‘happy’ and ‘surprise’ facial expres-
sions (> 96%) with ‘fear’, ‘anger’ and ‘disgust’ reasonably rec-
ognized (>88%). The lowest recognition accuracy rate was ob-
served for ‘sadness’ (86.6%). The system also outperforms oth-
er state-of-the-art research on 3D facial emotion recognition
tasks based on the comparison of both the recognition accuracy
and F1-measure results.

We also conducted an on-line evaluation with real human
subjects to assess the system’s real-time performance and the
efficiency for novel emotion class detection. Overall, the pro-
posed system is able to perform facial emotion recognition effi-
ciently with a frame rate of 25~30 fps on i7 quad-core CPUs
with 8GB RAM. We obtained an impressive average recogni-
tion accuracy rate of 84% for the detection of the six expres-
sions when tested with real human subjects (only slightly lower
than those achieved in off-line evaluation). Moreover, the pro-
posed ensemble classifiers also show superior ability to detect
the arrival of novel emotion classes with 72.2% detection rate
on average.

In future work, the facial anatomy and FACS domain
knowledge that closely related to facial muscle movements and
subtle facial expressions will be further studied so that we can
identify more effective dynamic facial features to recognize a
wider variety of emotions, especially compound emotions (e.g.
happy surprise and angry surprise). We will also further validate
the system’s performance using more challenging spontaneous
facial expressions in real-life interactions, since in such sponta-
neous expressions, AUs usually occur with relatively lower
intensities in more subtle combinations comparing to the posed
ones. Furthermore, other state-of-the-art 3D facial image data-
bases and layered cascade optimization techniques for feature
dimensionality will also be employed to further improve the
robustness and efficiency of the proposed system. Finally, we
also aim to incorporate each weak affect indicator embedded in
body language (e.g. gestures) with emotional facial expression
recognition to draw more reliable affect interpretation. We be-
lieve these are crucial aspects for the development of personal-
ized effective human-like agent-based interfaces.
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