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Abstract 

 Single-letter visual acuity is impaired by nearby flanking stimuli, a phenomenon known as 

contour interaction. We showed previously that when foveal acuity is degraded by a reduction of 

letter contrast, both the magnitude and angular spatial extent of foveal contour interaction remain 

unchanged. In this study, we asked whether contour interaction also remains unchanged when 

foveal visual acuity is degraded by a reduction of the target‟s background luminance. 

Percent correct letter identification was measured for isolated, near-threshold black Sloan 

letters and for letters surrounded by 4 flanking bars in 10 normal observers, 5 at Anglia Ruskin 

University, UK (ARU) and 5 at Palacky University, Czech Republic (PU). A stepwise reduction 

in the background luminance over 3 log units resulted in an approximately three-fold increase in 

the near-threshold letter size. At each background luminance, black flanking bars with a width 

equal to 1 letter stroke were presented at separations between approximately 0.45 and 4.5 min 

arc (ARU) or 0.32 and 3.2 min arc (PU). 

The results indicate that the angular extent of contour interaction remains unchanged at 

approximately 4 min arc at all background luminances. On the other hand, the magnitude of 

contour interaction decreases systematically as luminance is reduced, from approximately a 50% 

reduction to a 30% reduction in percent correct. The constant angular extent and decreasing 

magnitude of contour interaction with a reduction of background luminance suggest foveal 

contour interaction is mediated by luminance-dependent lateral inhibition within a fixed angular 

region. 
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1. Introduction 

 Contour interaction is the reduction of performance on visual spatial tasks, such as letter 

acuity, that results from the presence of nearby flanking contours. Across observers, the lateral 

extent of contour interaction generally is scaled in proportion to the observer‟s visual acuity 

(Flom, Weymouth & Kahneman, 1963; Hess & Jacobs, 1979, Simmers, Gray, McGraw & Winn, 

1999, Stuart & Burian, 1962; for exceptions see Hess, Dakin, Tewfik & Brown, 2001). Within 

observers, the extent of contour interaction increases from the fovea to the peripheral retina, 

more rapidly than the worsening of non-foveal visual acuity (Bouma, 1970; Hess, Dakin, Kapoor 

& Tewfik, 2000; Jacobs, 1979; Latham & Whitaker, 1996; Leat, Li & Epp, 1999; Toet & Levi, 

1992). However, recent studies demonstrate that the extent of contour interaction measured at a 

specific retinal location does not scale with the size of the target, but remains essentially fixed 

(Danilova & Bondarko, 2007; Pelli, Palomares & Majaj, 2004; Siderov, Waugh & Bedell, 2013; 

Tripathy & Cavanagh, 2002). For example, Siderov et al. demonstrated that the lateral extent of 

foveal contour interaction, expressed in units of min arc, remains the same for targets of high and 

low contrast, for which foveal acuity differs by up to 2.5 times (0.4 log units). This study showed 

also that the magnitude of foveal contour interaction, i.e., the maximum reduction in percent 

correct letter identification compared to the condition with no flanking targets, remains the same 

for high- and low-contrast acuity targets. 

 The purpose of the present study was to examine how the magnitude and extent of contour 

interaction depend on the luminance of a foveal acuity target. Although acuity is highly 

dependent on target luminance (e.g., Mandelbaum & Sloan, 1947; Shlaer, 1937), the influence of 

luminance on contour interaction has hardly been addressed. Takahashi (1968) measured foveal 

contour interaction using a two-line resolution task. Her results for one observer revealed a 

decrease in the magnitude of contour interaction but no change in its angular extent, as the 

luminance was reduced from 178 to 1.3 mL (567 to 4.1 cd/m2). Matteucci, Maraini and Peralta 

(1963) reported that the magnitude of „separation difficulty‟ in amblyopic eyes, measured as the 

difference in visual acuity for lines of letters on a chart compared to isolated optotypes, is 

smaller for acuity charts presented at a mesopic (2 lux) compared to a photopic (120 lux) level of 

illuminance. Simunovic and Calver (2004) assessed contour interaction for scotopic Landolt C 

targets that were presented at an eccentricity of 10 deg. They found that contour interaction for 

different sized targets (range ≈ 1.2 to 1.9 deg) occurs within an approximately fixed spatial 
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extent, on the order of 0.25 deg. Simunovic and Calver noted that this value is smaller than the 

extent of contour interaction that has been reported using peripheral photopic targets (e.g., 

Bouma, 1970; Jacobs, 1979; Tripathy & Cavanagh, 2002), but did not present comparison data 

for their subjects using other target luminances.  

 Our study examined the extent and magnitude of contour interaction produced by flanking 

bars on dark Sloan letters, presented at the fovea for a range of background luminances. Similar 

experiments were conducted concurrently at Anglia Ruskin University, Cambridge, UK (ARU) 

and at Palacky University, Olomouc, Czech Republic (PU). The results of both experiments 

indicate that the lateral extent of foveal contour interaction remains unchanged, but the 

magnitude of contour interaction decreases systematically as the background luminance of the 

acuity target is reduced.   

 

2. Methods 

 A total of 10 observers participated in this study, 5 at ARU (3 female and two male, age 

range = 21 - 64 years old) and 5 at PU (5 women, age range = 22 - 24 years old). All of the 

observers had normal eye movement control, were free from ocular pathology, and had better 

than 6/6 corrected visual acuity in each eye. The research was conducted in accordance with the 

tenets of the Declaration of Helsinki. Appropriate institutional review board approval was 

obtained at each institution and written informed consent was obtained from each observer 

before participation. When required, the observers wore appropriate lens correction during 

testing. 

 The methods used in both labs were similar to those described previously by Siderov et al. 

(2013). Dark Sloan letters (C D H K N O R S V Z) with a Weber contrast of -89% were 

presented one at a time on a bright background, either in isolation or surrounded by 4 flanking 

bars with the same contrast, length, and stroke width as the surrounded letter. The stimuli were 

generated using Test Chart 2000Pro software (Thomson Software Solutions, Herts, UK) and 

displayed on a PC monitor. The display monitor at ARU measured 19 inches diagonally, with 

1024 x 768 pixel resolution, a refresh rate of 100 Hz, and an unattenuated luminance of 108 

cd/m2. A 22-inch monitor was used at PU, with 1680 x 1050 pixel resolution, a frame rate of 60 

Hz, and an unattenuated luminance of 195 cd/m2. Ambient illumination in the experimental room 

at both experimental venues (produced primarily by luminance from the display monitor) 
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remained dim. Testing was performed monocularly and each letter was presented until the 

observer made a verbal response. 

 Percent correct letter identification was determined in the absence of flanking bars and for 5 

edge-to-edge separations between the letter and the surrounding flanking bars. The same 5 

angular flanking separations were used for each observer for all background luminances, which 

spanned a range of 3 log units (see below). These letter-to-flanking-bar separations corresponded 

to 0.5, 1, 2, 3 and 5 stroke widths of the Sloan letters that were presented in the highest 

luminance condition, designated 0 ND. In the 0 ND condition, the letter size and viewing 

distance were selected for each observer to achieve approximately 80% correct when the letters 

were presented without flanking bars (range of angular letter sizes across observers = 3.2 to 4.75 

min arc; range of viewing distances = 10 – 12 m). As the background luminance was reduced, 

the physical size of the targets on the display screen was increased to maintain approximately 

80% correct identification in the no-flank condition. On average, a reduction of the background 

luminance by 3 log units (3 ND) required an increase in the angular letter size corresponding to 

0.56 logMAR for the observers at ARU and 0.53 logMAR for the observers at PU (Table 1). 

Because of the increase in letter size as the background luminance was reduced, the edge-to-edge 

separations of the flanking bars at the lowest luminance, when expressed in multiples of the letter 

stroke width, were approximately 3.5 times smaller than the values listed above for the 0 ND 

condition (average values listed in Table 1).  

 For each observer, percent correct letter identification was determined from a total of 100 – 

200 presentations per condition, presented in blocks of 25 for each combination of background 

luminance and flanking-bar separation. For all observers, the data for the 0 ND condition were 

collected first. The order of the other 3 background luminances varied pseudo-randomly among 

the observers tested at each site, with the trials for all 5 flanking-bar separations for one 

background luminance completed before the next luminance condition was begun. Observers 

were provided at least 10 min to adapt before the start of data collection at the two lowest 

luminance levels. 

 To vary the luminance of the acuity and background stimuli, the observers viewed through 

glass neutral density filters (Thorlabs; http://www.thorlabs.com/) with nominal values of 1, 2 and 

3 ND, mounted in a pair of light-tight goggles that also included an opaque shield to occlude the 

non-viewing eye. The measured luminances of the background field without (0 ND) and with the 



Bedell et al., Foveal contour interaction & luminance 
Page 6 

neutral density filters (1, 2 and 3 ND) were 108, 12.1, 0.82 and 0.09 cd/m2 at ARU and 195, 

19.7, 1.46 and 0.21 cd/m2 at PU. A difference between the testing conditions at the two 

institutions is that the observers at PU viewed the acuity targets through a 2.5 mm artificial pupil, 

whereas the observers at ARU viewed using their natural pupil. All observers were asked to 

centrally fixate the acuity targets at all luminance levels.   

 Because of the difference in the testing conditions, the percent correct letter-identification 

data obtained at ARU and PU were analyzed using separate repeated-measures ANOVAs. Where 

necessary, the levels of statistical significance reported in section 3, below, include a Huynh-

Feldt correction for departures from sphericity. 

 [Insert Table 1 near here] 

 

3. Results 

 The two panels of Figure 1 show the average values of percent correct letter identification for 

the observers at ARU (top) and PU (bottom) as a function of the edge-to-edge flanking-bar 

separation in min arc. Contour interaction is revealed by the reduced values of percent correct for 

flank separations less than approximately 3 to 4.5 min arc. A significant main effect of 

separation exists in both data sets (for the ARU data, Fdf=5,20 = 17.61, p = 0.0021; for the PU data, 

Fdf=5,20 = 47.88, p = 1.1 x 10-8). Although there is no main effect of background luminance, the 

interaction between luminance and flank separation is significant for both groups of observers 

(for the ARU data, Fdf=15,60 = 3.97, p < 0.0001); for the  PU data, (Fdf=15,60 = 2.89, p = 0.0018). 

This interaction reflects a systematic reduction in the magnitude of contour interaction as the 

background luminance is reduced. Specifically, in the 0 ND condition, the introduction of 

flanking bars produced a maximum reduction of percent correct letter identification from 79% to 

32% (ARU) and from 91% to 36% (PU). In contrast, the maximum reduction of percent correct 

in the 3 ND luminance condition was only from 78% to 52% (ARU) and from 90% to 59% (PU). 

 Recall that the flanking bars were presented at the same angular separations from the acuity 

target for all background luminances. It is therefore possible that a larger magnitude of contour 

interaction would be found for low luminance condition if the range of flank-to-target 

separations were increased. To address this possibility, the 5 observers from ARU were re-tested 

using acuity targets with a background luminance of 0.09 cd/m2 and edge-to-edge separations of 

the flanking bars equal to 0.5, 1, 3 and 5 stroke widths; i.e., between approximately 3.3 and 16.3 
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min arc, averaged across observers. The resulting variation in percent correct is in close 

agreement with the data for the 3 ND luminance condition in Figure 1A. As shown in Figure 2, 

the magnitude of contour interaction for low-luminance foveal targets remains small for the 

entire range of flanking-bar separations that were tested.  

 

[Insert Figures 1& 2 near here] 

 

 Whereas the magnitude of contour interaction decreases when the background luminance of 

the acuity targets is reduced, Figure 1 illustrates that the lateral extent of contour interaction, in 

min arc, remains essentially unchanged. For example, in the PU data percent correct letter 

identification for a flanking-bar separation of 3.2 min arc is similar to that obtained using 

unflanked letters at all 4 background luminances. A comparable result is evident in the data from 

ARU, except that the percent correct letter identification for a background luminance of 0.09 

cd/m2 is slightly poorer when the average flanking-bar separation is 4.5 min arc than in the 

unflanked condition. If the data in Figure 1 are replotted with the flanking-bar separations 

expressed as multiples of the letter-stroke width, it is clear that the extent of contour interaction 

does not scale with the size of the threshold acuity target (Figure 3). 

 

[Insert Figure 3 near here] 

 

 Previous reports demonstrated that letter confusions can differ for crowded vs. uncrowded 

testing conditions (Liu & Arditi, 2001; Wolford & Hollingsworth, 1974). We therefore 

investigated whether unique letter confusions occurred when the flanking bars were present in 

our low- and high-luminance background conditions. Specifically, we constructed letter-

confusion matrices to compare the observers‟ responses in the 0 and 3 ND conditions for letter 

presentations without flanking bars and when the letter-to-flanking-bar separation was ~0.8 min 

arc, i.e., the condition that produced the greatest magnitude of contour interaction. Figure 4 

presents confusion matrices based on 1000 letter presentations for these 4 conditions, constructed 

by averaging the responses of the observers at ARU and PU. In each matrix, the rows specify the 

letter that was presented and the columns indicate the proportion of the aggregate responses 

corresponding to each of the 10 possible Sloan letters. As expected, the highest values in each 
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matrix fall principally along the main diagonal, which gives the proportion of trials on which the 

observers correctly reported each letter. Values off the main diagonal represent letter confusions, 

which are color coded from light blue to pink to represent low vs. high proportions of 

confusions. The blank cells in each matrix indicate combinations of presented letters and 

responses for which no confusions occurred.  

 It is clear that the confusion matrices for the 0 and 3 ND conditions without flanking bars are 

similar. On the other hand, when flanking bars are presented at a separation of ~0.8 min arc, the 

matrix for 0 ND condition includes a number of letter confusions that did not occur in the 

absence of flanking bars, e.g., responses of “D” for C, “O” for H, “D” for K, “O” for R, “Z” for 

O, “H” for S, and “V” for D. Some of these unique confusions, such as “D” for C and “H” for S, 

may be accounted for by the overall increase in the number of response errors that occurs when 

nearby flanking bars are introduced. However, some of these other confusions, such as “O” for 

R, “Z” for O, and “V” for D, are not typical miscalls and may result from interactions between 

the test letter and the flanking bars (Liu & Arditi, 2001). The confusion matrix obtained in the 3 

ND condition with flanking bars at a separation of 0.8 min arc appears to be intermediate 

between the matrix in the 0 ND condition with flanking bars, and the confusion matrices 

generated in the absence of flanking bars.  

 

[Insert Figure 4 near here] 

 

4. Discussion 

 The similar extent of contour interaction for foveal acuity targets with different background 

luminances is consistent with previous reports that the lateral extent of foveal contour interaction 

occurs within a fixed angular extent, regardless of the size of the acuity target (Danilova & 

Bondarko, 2007; Siderov et al., 2013). For example, Siderov et al. demonstrated that the extent 

of contour interaction for high- and low-contrast Sloan letters remains between 3 and 5 min arc, 

despite a 0.4 logMAR difference in the size of the high- and low-contrast acuity targets. 

Similarly, for targets presented at a fixed eccentricity from the fovea, the extent of contour 

interaction or crowding was reported to be essentially independent of the target size (Chung, 

Levi & Legge, 2001, Hariharan, Levi & Klein, 2005, Pelli et al., 2004, Simunovic & Calver, 

2004; Tripathy & Cavanagh, 2002). These results indicate that the lateral extent of contour 
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interaction does not scale with the size of the acuity target and suggest that this extent is a 

property of the specific retinal location tested. An implication of this result is that the tight 

relationship between the acuity threshold and the extent of crowding that occurs, for example, 

when the retinal location of the acuity stimulus is changed (Latham & Whitaker, 1996; Toet & 

Levi, 1992) breaks down when visual acuity at a single retinal location is altered by varying the 

parameters of the stimulus.  

 

[Insert Figure 4 near here] 

 

 In contrast to the constant lateral extent of foveal contour interaction, the data presented here 

show clearly that the magnitude of contour interaction decreases systematically as the 

background luminance of the acuity target is reduced. This result is consistent with the limited 

previous observations about the magnitude of contour interaction at different luminances, made 

by Takahashi (1968) and Matteucci et al. (1963). The reduced magnitude of contour interaction 

found at low luminance cannot be attributed to the change in visual acuity when luminance is 

decreased, as Siderov et al. (2013) showed that a similar reduction of foveal visual acuity, 

produced by reducing the letter contrast, leaves the magnitude of contour interaction unchanged.  

 Two competing explanations for contour interaction dominate current research. The first is 

that the spatial frequency components of the flanking bar stimuli are responsible for contour 

interaction by reducing the detectability of critical spatial frequency components in the target 

(Hess, Dakin, Kapoor, 2000; Hess, Dakin, Kapoor & Tewfik, 2000; Levi, Klein & Hariharan, 

2002). As pointed out previously (Chung, Levi & Legge, 2001; Danilova & Bondarko, 2007; 

Simunovic & Calver, 2004), this explanation predicts that the extent of contour interaction 

should scale with the size of the acuity target. However, both the present and previous results 

indicate that scaling is not observed when the size of the acuity target changes, either in foveal 

(Danilova & Bondarko, 2007; Siderov et al., 2013) or non-foveal (Pelli et al., 2004; Simunovic 

& Calver, 2004; Tripathy & Cavanagh, 2002) vision. A second explanation, used to account 

primarily for the contour interaction at non-foveal retinal locations, is that the features 

comprising the target and flanks are grouped inappropriately, such that the visual features of the 

flanking targets are assigned incorrectly to the acuity stimulus (Dakin, Cass, Greenwood & Bex, 

2010; Freeman, Chakravarthi & Pelli, 2012; Greenwood, Bex & Dakin, 2009; 2010) and vice 
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versa (Zhang, Zhang, Liu & Yu, 2012). In the current study, changes in the background 

luminance should have exerted comparable effects on the visibility of the acuity targets and 

surrounding flanking bars. Although an inappropriate-grouping explanation can account for 

some aspects of non-foveal crowding, it is difficult to see why an inappropriate grouping of 

letters and flanking bars should decrease when the background luminance is reduced. The 

grouping explanation therefore provides no ready explanation for our observation that the 

magnitude of foveal contour interaction is reduced substantially at low luminance.   

 A number of investigators favored an explanation for contour interaction based on 

antagonistic neural interactions between stimuli that are imaged within a common neural 

receptive field (Flom, Weymouth & Kahneman, 1963; Latham & Whitaker, 1996; Wolford & 

Chambers, 1984). The observation that contour interaction occurs under dichoptic viewing 

conditions, i.e., when the acuity target is presented to one eye and flanking bars are presented to 

the other eye (Flom, Heath & Takahashi, 1963; Kooi, Toet, Tripathy & Levi, 1994; Taylor & 

Brown, 1972) indicates that these interactions can occur at the level of the visual cortex. It is 

well known that the contribution of the antagonistic retinal receptive-field surround to the output 

of a retinal ganglion cell decreases during dark adaptation (Powers & Green, 1990). Although an 

initial report suggested that the receptive field surround of retinal ganglion cells disappears 

during dark adaptation, leading to an effective increase in the receptive-field diameter (Barlow, 

FitzHugh & Kuffler, 1957), subsequent studies concluded that the effect of dark adaptation is to 

reduce the relative weighting of stimuli imaged within the receptive-field surround compared to 

the center, without any change in the receptive field dimensions (Cleland & Enroth-Cugell, 

1968; Derrington & Lennie, 1982). A reduction in the relative weighting of the receptive-field 

surround compared to the center has been shown to occur also during dark adaptation in lateral-

geniculate (Kaplan, Marcus & So, 1979; Virsu, Lee & Creutzfeldt, 1977) and cortical receptive 

fields (Ramoa, Freeman & Macy, 1985). Both the reduction in the magnitude of contour 

interaction and the more-or-less fixed extent of interaction that we observed for dim foveal 

stimuli appear to be consistent with the changes in receptive-field structure that have been 

observed to occur at low light levels. 
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Table 1. Average letter sizes and minimum and maximum flanker separations (gaps) for each of 

the luminance conditions for the two groups of observers.  

  ARU    PU  

 0 ND 1 ND 2 ND 3 ND  0 ND 1 ND 2 ND 3 ND 

Average Letter 

Size (min arc) 
4.5 5.4 9.1 14.5 

 
3.2 3.2 4.6 11.0 

Min Gap Size (% 

letter size) 
10% 8% 5% 3% 

 
10% 10% 7% 3% 

Max Gap Size (% 

letter size) 
100% 83% 50% 31% 

 
100% 100% 69% 29% 

 

 

Figure Legends. 

Figure 1. Percentage correct responses averaged across the observers at Anglia Ruskin 

University (ARU, top) and Palacky University (PU, bottom) and plotted as a function of flanker 

separation in min arc for the 4 luminance conditions. Error bars represent ±1 SE. Data at „INF‟ 

on the abscissa represent the unflanked condition.  

Figure 2. Percentage correct responses averaged across observers at Anglia Ruskin University  

and plotted as a function of flanker separation for the 3 ND luminance condition. Filled symbols 

replot the data for this luminance condition from the top panel of Figure 1. Unfilled symbols 

show the results for flanker separations equal to 10, 20, 40, 60 and 100% of the letter size. As in 

Figure 1, the error bars represent ±1 SE and „INF‟ on the abscissa indicates the unflanked 

condition.  

Figure 3. Percentage correct responses averaged across the observers at Anglia Ruskin 

University (ARU, top) and Palacky University (PU, bottom) for the 4 luminance conditions re-

plotted from Figure 1, with flanker separation expressed as a percentage of the letter size. Error 

bars represent ±1 SE. Data at „INF‟ on the abscissa represent the unflanked condition.  
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Figure 4. Letter confusion matrices for the 0 and 3 ND luminance conditions (top and bottom, 

respectively), without flanking bars (left) and with flanking bars at a separation of ~0.8 min arc 

(right). Each matrix was constructed by averaging the proportions of responses made by the 

observers at ARU and PU for each of the 10 presented Sloan letters. Blank cells indicate that the 

specified letter-response combination did not occur. Color coding of the values in the off-

diagonal cells indicates relatively low (blue) to high (pink) proportions of the individual letter 

confusions.     

 

 



Figure 1



Figure 2
Click here to download high resolution image

http://ees.elsevier.com/vr/download.aspx?id=252044&guid=043f486d-893a-44e5-a9a4-b529ceb1214c&scheme=1


Figure 3



0 ND, No Flanks 0 ND, 0.8 min Gap

C D H K N O R S V Z C D H K N O R S V Z

C 0.92 0.01 0.04 0.03 C 0.41 0.19 0.03 0.06 0.02 0.09 0.05 0.06 0.02 0.09

D 0.02 0.81 0.01 0.12 0.02 0.02 D 0.30 0.06 0.04 0.07 0.04 0.34 0.05 0.02 0.02 0.05

H 0.87 0.01 0.09 0.02 H 0.03 0.04 0.52 0.12 0.12 0.06 0.02 0.03 0.05

Letter K 0.01 0.89 0.01 0.01 0.01 0.01 0.05 K 0.07 0.10 0.05 0.45 0.04 0.02 0.13 0.08 0.01 0.05

Presented N 0.11 0.03 0.85 0.01 N 0.02 0.09 0.29 0.04 0.19 0.12 0.08 0.10 0.06 0.02

O 0.08 0.08 0.01 0.80 0.01 0.02 O 0.16 0.12 0.05 0.08 0.03 0.15 0.14 0.08 0.06 0.12

R 0.02 0.02 0.15 0.76 0.05 R 0.05 0.03 0.22 0.07 0.13 0.05 0.21 0.17 0.05 0.01

S 0.02 0.10 0.05 0.04 0.69 0.09 S 0.05 0.08 0.11 0.05 0.02 0.08 0.16 0.29 0.09 0.05

V 1.00 V 0.02 0.10 0.03 0.09 0.08 0.08 0.01 0.51 0.07

Z 0.01 0.01 0.01 0.01 0.01 0.95 Z 0.01 0.06 0.04 0.03 0.04 0.03 0.02 0.09 0.03 0.63

Color Key

0.001 - 0.049

0.05 - 0.099

0.10 - 0.199

0.20 - 0.299

3 ND, No Flanks 0.30 - 0.399 3 ND, 0.8 min Gap

C D H K N O R S V Z C D H K N O R S V Z

C 0.82 0.04 0.07 0.02 0.03 0.02 C 0.51 0.10 0.01 0.04 0.05 0.19 0.01 0.05 0.01 0.03

D 0.04 0.73 0.01 0.02 0.17 0.03 D 0.17 0.40 0.01 0.02 0.28 0.04 0.02 0.05

H 0.83 0.03 0.13 H 0.76 0.04 0.11 0.03 0.03 0.01 0.03

Letter K 0.01 0.88 0.04 0.02 0.01 0.02 0.02 K 0.08 0.01 0.71 0.08 0.01 0.06 0.02 0.03

Presented N 0.01 0.02 0.92 0.02 0.01 0.02 N 0.07 0.05 0.74 0.01 0.05 0.03 0.02 0.03

O 0.12 0.15 0.69 0.03 O 0.22 0.16 0.02 0.02 0.03 0.38 0.03 0.05 0.08

R 0.06 0.04 0.12 0.71 0.05 0.01 0.02 R 0.02 0.14 0.11 0.17 0.01 0.36 0.13 0.04 0.02

S 0.01 0.03 0.01 0.07 0.02 0.05 0.79 0.01 0.01 S 0.11 0.09 0.03 0.04 0.06 0.08 0.07 0.46 0.02 0.04

V 0.01 0.99 V 0.02 0.06 0.06 0.03 0.06 0.71 0.04

Z 0.01 0.03 0.01 0.95 Z 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.90

Response Response

Figure 4


