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Abstract 

Contrast-modulated (CM) stimuli are processed by spatial mechanisms that operate 

at larger spatial scales than those processing luminance-modulated (LM) stimuli and 

may be more prone to deficits in developing, amblyopic and aging visual systems.   

Understanding neural mechanisms of contour interaction or crowding will help in 

detecting disorders of spatial vision.  In this study, contour interaction effects on 

visual acuity for luminance-modulated (LM) and contrast-modulated (CM) C and bar 

stimuli are assessed in normal foveal vision.  In Experiment 1, visual acuity is 

measured for all-LM and all-CM stimuli, at ~3.5x above their respective modulation 

thresholds.  In Experiment 2, visual acuity is measured for Cs and bars of different 

type (LM C with CM bars, and vice versa).  Visual acuity is degraded for CM 

compared to LM Cs (0.46+0.04 logMAR versus 0.18+0.04 logMAR).  With nearby 

bars, CM acuity is degraded further (0.23+0.01 logMAR or ~2 lines on an acuity 

chart), significantly more than LM acuity (0.11+0.01 logMAR, ~1 line).  Contour 

interaction for CM stimuli extends over greater distances (arcmin) than it does for LM 

stimuli, but extents are similar with respect to acuities (~3.5x the C gap width).  

Contour interaction is evident when the C and bars are defined differently: it is 

stronger when a LM C is flanked by CM bars (0.17+0.03 logMAR) than when a CM C 

is flanked by LM bars (0.08+0.02 logMAR).  Our results suggest that contour 

interaction for foveally viewed acuity stimuli involves feature integration, such that 

the outputs of receptive fields representing C and bars are combined.   Contour 

interaction operates at LM and CM representational stages, can occur across stage, 

and is enhanced at the CM stage.  Greater contour interaction for CM Cs and bars 

could hold value for visual acuity testing and earlier diagnosis of conditions for which 

crowding is important, such as in amblyopia. 

 

Key Words: visual acuity; contour interaction; crowding; luminance-modulated; 

contrast-modulated; Landolt C 
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1. Introduction 

The discriminability of a target localised in space is influenced by the 

presence of surrounding objects.  Influence can be either facilitatory, where 

detectability is enhanced (e.g. Polat & Sagi, 1993, 1994), or inhibitory, where 

discriminability is degraded (e.g. Ehlers, 1936; Flom, Weymouth & Kahneman, 1963; 

see Levi, 2008 for review).  Stationary targets may be differentiated from their 

backgrounds because of first-order cues such as luminance and colour, or second-

order cues such as contrast, texture or depth.  Whereas there are many studies 

investigating the nature of lateral facilitation (Polat & Sagi, 1993; Yu, Klein & Levi, 

2002; Petrov, Verghese, & McKee, 2006) and crowding (e.g. Chung, Levi & Legge, 

2001; Levi, Klein & Hariharan, 2002b; Pelli, Palomares & Majaj, 2004) for first-order, 

in particular, luminance-modulated (LM) stimuli, few have investigated facilitation and 

crowding using second-order stimuli,  specifically contrast-modulated (CM) stimuli 

(Ellemberg, Allen & Hess, 2004; Wong, Levi & McGraw, 2005; Chung, Li & Levi, 

2007; Hairol & Waugh, 2010a, b).    

Visual detection responses to second-order stimuli such as contrast-

modulated (or CM) stimuli are valuable to study because they are thought to be 

processed by separate streams from first-order or luminance-modulated (LM) stimuli 

(Schofield & Georgeson, 1999; Allard & Faubert, 2006, 2007), albeit with cross-links 

between them (Ellemberg et al, 2004; Chung et al, 2007; Hairol & Waugh, 2010a,b).  

Mechanisms that detect CM stimuli are thought to be based on larger underlying 

receptive fields with larger spatial summation areas than those that detect LM stimuli 

(Sukumar & Waugh, 2007), in line with lower high-frequency cut-off values from 

modulation sensitivity profiles for CM stimuli (Schofield & Georgeson, 1999).  

Objects defined by modulations of contrast require additional or later stages of 

processing to be detected, above early linear filtering required to detect objects 

defined by modulations of luminance (Chubb & Sperling, 1988; Derrington, Badcock 

& Henning, 1993).  Since visual processes that involve higher levels of the visual 

pathway mature later in life than those at the lower levels (Daw, 1998), second- or 

higher-order processing mechanisms may take longer to develop and may, due to 

their additional complexity, be more susceptible to disease than those that process 

only first-order information.  Indeed there is evidence to suggest that in amblyopia, 

where visual acuity is degraded due to discordant binocular input to the visual cortex 
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during development, spatial detection of CM spatial stimuli is selectively affected 

(Wong et al, 2001,2005). Furthermore, sensitivity to resolving large CM letters 

(Bertone, Hanck, Guy & Cornish, 2010) appears to develop later in childhood; and 

with aging, sensitivity to detecting CM gratings deteriorates earlier (Tang & Zhou, 

2009) and threshold elevation is greater for CM than for LM stimuli (Habak & 

Faubert, 2000).  This potentially means that the use of second-order, for example, 

contrast-modulated (CM) stimuli in a well-designed clinical tool, may serve to more 

sensitively detect certain kinds of degraded spatial vision. 

When the target stimulus is clearly visible, i.e., above detection threshold, 

spatial discrimination judgements about it are impaired by nearby objects, a 

phenomenon generally known as crowding.  Crowding has been used to describe 

the interference effects of surrounding letters on letter identification under foveal and 

peripheral viewing conditions (e.g. Ehlers, 1936; Stuart & Burian, 1962; Levi et al, 

2002b; Pelli et al, 2004) but is also used to describe effects on other spatial tasks, 

(e.g., Westheimer & Hauske, 1975; Levi, Klein & Aitsebaomo, 1985; Parkes, Lund, 

Angelucci, Solomon & Morgan, 2001).  Clinically, crowding is a key feature to 

consider in visual acuity chart design, in part due to a longstanding belief that in 

amblyopia, crowding is greater than in normal vision (e.g. Hess, Dakin, Tewfik & 

Brown, 2001; Levi, Hariharan & Klein, 2002a; but see Stuart & Burian, 1962; Flom et 

al, 1963; Hess & Jacobs, 1979) and that if visual acuity is measured with a 

“crowded” visual acuity chart, it will show greater degradation, allowing for earlier or 

more sensitive diagnosis.   

Contour interaction is a component of crowding and was first described by 

(Flom et al., 1963; Flom, 1991).  Specifically, Flom et al. (1963) found that the foveal 

resolution of the gap in a Landolt C is impaired when bars are placed near the four 

sides of it.  When flanking elements are complex, e.g., letters, spatial impairment 

may be considered as crowding.  Classical contour interaction is observed in both 

normal and amblyopic foveae (Flom et al., 1963; Hess & Jacobs, 1979; Levi et al, 

2002a, Hess et al, 2000, 2001), and at different retinal eccentricities where like 

crowding, the effect is greater than at the fovea (Jacobs, 1979; Wolford & Chambers, 

1984; Hess, Dakin, Kapoor & Tewfik, 2000a).  The underlying mechanisms of 

contour interaction and crowding in foveal vision have recently been debated (e.g. 

Chung et al, 2001; Levi et al, 2002b; Pelli et al, 2004; Ehrt & Hess, 2005; Levi & 

Carney, 2011), however our acuity data and those of others (Ehrt & Hess, 2005; 
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Danilova & Bondarko, 2007), suggest that foveal contour interaction involves more 

than simple masking.  

 Recent studies have investigated crowding for large luminance-modulated 

(LM) and contrast-modulated (CM) letters, by measuring threshold modulations for 

letter identification.  These studies have been conducted foveally, in the periphery 

(Chung et al, 2007) and also in amblyopia (Chung, Li & Levi, 2008).  For foveal 

viewing using large letters (about 1 deg in size or 1.1 logMAR), and a relatively short 

exposure duration (150ms), no significant crowding was measured for LM letters 

(which were about ~8x their visual acuity size), although previous visual acuity 

studies have found small but significant effects of contour interaction and crowding at 

the fovea (Stuart & Burian, 1962; Flom et al, 1963; Chung et al, 2001; Levi et al, 

2002b).  More crowding was measured for CM letters (which were about 1.3x their 

visual acuity size) or when LM letters were surrounded by CM letters (Chung et al, 

2007, 2008).  In peripheral and amblyopic viewing, greater magnitudes of crowding 

were found for both types of stimuli.  Thus visual acuity for CM letters might reveal 

greater crowding, however under foveal conditions, large, near-visibility letters may 

not be best for revealing them.  Crowding found with large letters near modulation 

detection threshold, and with small visual acuity letters, may well reveal different 

underlying limits of spatial vision (Ehrt & Hess, 2005; Danilova & Bondarko, 2007).  

Measurement of contour interaction using a C target and surrounding bars is 

attractive as it assesses a component of crowding (Flom et al, 1963), and uses more 

easily defined separations than when letters are surrounded by other letters, which is 

valuable when comparing spatial extents of interaction.   

In this study we assess the magnitude and extent of contour interaction for 

foveally-viewed, luminance-modulated (LM) and contrast-modulated (CM) C visual 

acuity stimuli, placed at approximately equivalent visibility (3.5x modulation).  The 

results will hold relevance to whether a visual acuity chart using contrast-modulated 

letters would show stronger contour interaction (or crowding) effects than one using 

luminance-modulated letters, as well as giving insight into the underlying 

mechanisms of contour interaction in spatial vision close to the resolution limit.  If the 

effects of contour interaction (and therefore crowding) are greater for CM than LM 

visual acuity stimuli, the results may potentially prove valuable for the clinical 

assessment of vision, particularly in conditions such as amblyopia, where the sooner 

amblyopia is detected and treated, the better the potential visual outcome after 
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treatment.   Finally, the use of mixed stimuli (LM C surround by CM bars, and vice 

versa), provides us with information about whether or not for visual acuity, these 

processing streams are independent.   

2. Methods 

 

Apparatus 

Stimuli were created using Matlab on a Pentium IV PC and loaded on to the frame-

store memory of a Cambridge Research System graphics card (VSG 2/5), which 

allowed up to 15-bit luminance control, housed in the computer.  They were then 

displayed on a Clinton Monoray CRT monitor with a 150 Hz framerate and a mean 

luminance of 53cd/m2.  The monitor was gamma corrected and the display was 

checked regularly to ensure that the desired luminance values were being 

presented.  

 

Stimuli 

The stimuli for the main experiments consisted of luminance-modulated (LM) and 

contrast-modulated (CM) square Cs and bars.  They were constructed by adding or 

multiplying square-wave modulating signals to dynamic binary noise.  Binary noise 

has been used previously in several studies (e.g., Schofield & Georgeson, 1999, 

2003; Manahilov, Calvert & Simpson, 2003; Chung, Levi & Li, 2006; Hairol & Waugh, 

2010a, b), and is particularly suitable for creating square wave stimuli such as 

letters, which would then be reconstructed perfectly on rectification.  The square C 

was constructed on a 5×5 template, where the gap of the C is 1/5 of the C’s size.  

The bars were created in a similar way, where the length of the bars always matched 

the size of the C; the width of the bar always matched the size of the C’s gap. The 

stimuli in this study can be mathematically expressed as:  

 

)],(),(),(),(1[),( yxNyxmnMyxlLyxnNIyxI o +++=      (Equation 1) 

 

where I(x,y) is the luminance at position (x,y), I0  is the mean luminance; n is the 

noise contrast, which was fixed at 0.2 for all experiments; N(x,y) is the binary noise 

value at position (x,y) of -1 or 1; l is the luminance amplitude, which is zero for CM 

stimuli; m is the contrast amplitude, which is zero for LM stimuli; L(x,y) is the 
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luminance modulation function, a square wave; and M(x,y) is the contrast 

modulation, also a square wave.  For generation of LM and CM stimuli, either l or m 

was adjusted, respectively, the other being set to zero.  Ten images with randomly 

generated noise patterns were produced for each stimulus level (usually of seven C 

sizes) and for each of four C orientations, i.e., 280 images per experimental run.  On 

each experimental trial, one of these 280 stored images of a particular size and 

orientation was selected and changed in random sequence, every three temporal 

frames, i.e., every 20 ms, for a stimulus duration of 800 ms.  Prior to choosing an 

800 ms duration, we did conduct a pilot experiment on 3 observers and found that 

the durations at which LM and CM visual acuity measures became stable were 

slightly different, i.e.,  556 ± 188 ms and 603 ± 83 ms for LM and CM stimuli, 

respectively (see Figure 1). 

 

[INSERT FIGURE 1 HERE] 

 

Always of concern when using contrast-modulated stimuli in visual 

psychophysics is the presence of luminance cues that might drive responses.  We 

took several steps to ensure that the thresholds and acuities we measured for 

contrast-modulated stimuli, depended on their contrast differences, rather than those 

of the higher frequency luminance noise, modulated to create them (reported in 

Hairol & Waugh, 2010a).  These steps included detailed and regular monitor 

calibration and gamma correction, checking of experimentally created stimuli both 

photometrically and in MatLab using pixel-by-pixel luminance profiles; and limiting 

the luminance range of the monitor to avoid slight shifts in overall mean luminance, 

which might otherwise occur due to adjacent pixel nonlinearity.   

Dynamic noise presentation was used to ensure that any statistical luminance 

clumping, did not provide useful luminance cues within a CM stimulus (e.g. see 

Smith & Ledgeway, 1997).  It also helps to preclude the use of higher spatial 

frequency luminance cues, in determining visual responses (Manahilov et al, 2003).  

Each background noise check subtended 0.03 deg (1.8 arcmin) for both LM and CM 

stimuli (see also Hairol & Waugh, 2010a & b).  Stimuli similar to those used in the 

experiments are shown in Figure 2.  Note that we used a square, rather than a round 

C, which has the advantage of eliminating the jagged curve when a Landolt C is 

created.  Although the jagged curve can be smoothed by applying anti-aliasing 
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algorithms, this may introduce unwanted luminance artefacts across edges but not at 

the gap.   This is a potential issue if we want observers to judge the position of the 

gap only using differences in contrast.  Pilot experiments were conducted to check 

some aspects of the stimuli and experimental paradigms before the two main 

experiments.  In brief, there were no significant differences in contour interaction 

functions obtained for round versus square Cs, or for incremental versus 

decremental luminance stimuli.    

 

[INSERT FIGURE 2 HERE] 

Experimental design 

 In the two main experiments, visual acuity was measured (as described in 

Contour Interaction Experiments section).  In Experiment 1, the C was flanked by 

four bars that were similarly defined, i.e., a LM C is flanked by LM bars (denoted in 

Figures by 111), or a CM C was flanked by CM bars (denoted in Figures by 222).  In 

Experiment 2, a C was flanked by four bars that were differently defined, i.e., a LM C 

was flanked by four CM bars (denoted in Figures by 212), or a CM C was flanked by 

four LM bars (denoted in Figures by 121).  All stimuli were approximately equal in 

visibility for the two systems at 3.5× threshold modulation for gap position 

identification.   

 

Determining visibility level 

In order to more directly compare contour interaction functions between LM 

and CM systems in the main experiments, it is important to create approximately 

equally visible stimuli.  These were created in the following way.   

 First, visual acuity thresholds for a high contrast LM C (l = 0.6) and CM C (m = 

3.0) were measured using 80% of the monitor luminance range to ensure the 

absence of any potential luminance artefacts in our CM stimuli.  Psychophysical 

procedures for measuring visual acuity are provided below.  Under these conditions, 

the acuity for a CM C was about 2.75× the acuity for a LM C for our observers (LM: 

0.0 ± 0.04 logMAR; CM: 0.44 ± 0.02 logMAR). 

 Because differently-defined stimuli were required for Experiment 2, same-

sized equally-visible LM and CM stimuli were needed.  Cs were therefore made to be 

twice the resolution size for the CM C, and threshold modulations for identifying the 

position of the C’s gap were measured using a method of constant stimuli and 11 
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levels of modulation separated by 1.5dB, randomly presented for 125 trials in each 

run.  Thresholds were calculated from psychometric functions fit to the modulation 

data using a Weibull function (Equation 2 below), which for a 4 alternative forced-

choice paradigm produces a threshold equivalent to a 72.4% correct performance 

level.  The modulations of the Cs and bars for both LM and CM stimuli were then set 

to the highest multiple possible on the monitor (limited by the CM range), which was 

at 3.5× threshold modulation (or 3.5× visibility).   

 

Contour Interaction Experiments (Method of Constant Stimuli varying Size) 

The main experiments used the pre-determined stimulus modulation levels 

just described, for both LM and CM acuity systems (at 3.5× visibility).  Visual acuity 

thresholds to identify the position of the gap in a C were then measured for an 

isolated C and for a C with surrounding bars placed at 0 (or abutting), 1, 2, 3, 4, 5, 8 

and 10 gap widths (2 letter widths), away.   

Separation was defined as the distance from the edge of the bar closest to the 

C, to the outer edge of the C (as per Flom et al, 1963).  In some studies of contour 

interaction and crowding, separation is defined as the distance between the centre of 

the target to the centre of the flanker (e.g. Chung et al, 2007; Levi & Carney, 2009).  

This method of defining separation might be more appropriate for more complex 

stimuli, such as letters flanked by other letters, or windowed narrow-band stimuli, 

where it becomes difficult to define edge-edge separation.  The results will show that 

this definition holds little significance to the final outcome of our experiments. 

 Psychometric functions for visual acuity were generated using a method of 

constant stimuli for 7 levels of letter (and corresponding bar) size; each size level 

being separated by 0.1 logMAR.  On each trial, the observer’s task was to identify 

the position of the gap in the C.  Each experimental run consisted of 100 trials and 

data from 4-6 runs were averaged.  Psychometric function data were fit with a 

standard Weibull function from which threshold and slope parameters could be 

derived:   

 

]10exp[)1(1)( )( ths

correct gsP −−×−−= β                       (Equation 2) 
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where th is the estimated threshold, in logMAR, at 72.4% correct response for a 4 

alternative forced-choice procedure; β is the slope of the psychometric function; g is 

the guess rate (25%); and s is a given target size in logMAR.  To enable a full range 

of sizes to appear on the screen and to allow a perfect match in noise check size 

(0.03 deg), observers were seated at 9.5 metres away when LM C acuity was tested, 

or 4.77 metres away when CM C acuity was tested.   

 As mentioned, we attempted to use equally visible stimuli for both LM and CM 

systems.  As size is varied when we measure visual acuity, it is possible that if 

visibility changes differently with size for LM and CM systems, the outcome may be 

slightly affected.  We have analysed our psychometric function slopes to see how 

they impact on measured peak contour interaction.   Slopes of our visual acuity 

functions for LM and CM Cs are slightly flatter for CM stimuli (slopes of 4.9±0.5 and 

4.2±0.5 for LM and CM stimuli).  These slightly flatter slopes fit with our Weibull 

function, do not lead to a difference in estimate of peak contour interaction at 72.4% 

performance, and would lead to a slight under-estimation of peak contour interaction 

for CM stimuli in our data if higher performance levels were chosen (Formankiewicz, 

Waugh & Hairol, 2012). 

   In each experimental run, the separation between the C and bars was fixed 

(in terms of C gap widths) and resolution thresholds were measured.  For example, 

in the abutting condition, one of seven sizes of Cs was presented; the size of the 

bars varied too, but they always abutted the C.  The nine levels of separation 

(including the unflanked C) were run in systematic and counterbalanced order.  

Within a standard experimental session, visual acuity thresholds were measured 

across the full range of separations, twice. 

 Participants indicated their responses using a Cambridge Research System 

CT3 4-way response box, without feedback.  Testing was monocular using the 

observer’s dominant eye and the non-tested eye was covered with a black patch.   

 

Analysis 

The magnitude of contour interaction at each target-bar separation is 

assessed by comparing the resolution threshold measured with surrounding bars to 

that obtained for an isolated C.  As in studies conducted previously (Chung et al., 

2007, 2008; Hariharan, Levi & Klein, 2005; Levi et al., 2002b), contour interaction in 

this experiment is characterised by the peak elevation, or the highest resolution 
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threshold elevation in the presence of the bars relative to that measured for a C 

presented alone; and spatial extent, represented by the spatial separation between 

the target and bars at which the magnitude of threshold elevation drops to a criterion 

level.   To objectively determine in particular, the extent of contour interaction, all 

data are fit with a Gaussian function in the form 

 

))2/(exp()( 22 σsepAsepF −×=  (Equation 3) 

 

where sep is the separation between the C and bars, A is the peak amplitude of the 

threshold elevation at sep = 0 and σ is the standard deviation of the Gaussian.  The 

extent of contour interaction is defined as two standard deviations of the Gaussian fit 

to the data (a definition previously used by others, e.g., Chung et al., 2007, 2008; 

Hariharan, Levi & Klein, 2005; Levi et al., 2002b).  It is also possible to estimate the 

extent of contour interaction, as the furthest separation at which performance in the 

crowded condition is not significantly different from that for the isolated C (Danilova & 

Bondarko, 2007).  We estimated extents in this same way using posthoc Tukey HSD 

pair-wise comparisons. 

 The availability of psychometric functions for each target-flanker separation, 

also allowed the data to be replotted as performance versus separation functions for 

a particular size, as per Flom et al (1963).  Figure 3 reveals how this was done.  This 

Figure also demonstrates how different psychometric function slopes obtained for 

abutting and separated bars, can influence the shape of the performance contour 

interaction function. 

 

[INSERT FIGURE 3 HERE] 

 

Observers 

Five observers with normal vision participated in this study.  They all had best 

corrected visual acuity of 6/5 or better in each eye and stereopsis of at least 30 

arcsec (using the TNO stereotest).  As amblyopes have a binocular vision disorder 

and show selective deficits to detecting CM stimuli (Wong et al, 2001) as well as 

possibly enhanced crowding (Hess et al, 2001; Levi et al, 2002a), it was important 

for the purposes of the current study that “normal” observers be binocularly normal.  
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All observers were well practised on both types of stimulus, before data collection 

commenced.  Observers AD, JC and HMY were unaware of the purposes of the 

study.  The Anglia Ruskin University Research Ethics Committee approved the 

conduct of this research, which complied with the tenets of the declaration of 

Helsinki.  Written informed consent was obtained from all observers before the start 

of experiment.  

 

3. Results 

3.1 Experiment 1: Contour interaction for luminance-modulated (LM) and 
contrast-modulated (CM) square Cs with similarly-defined bars (111 and 222) 

 

Absolute LM and CM gap resolution thresholds for Cs at 3.5× visibility threshold are 

plotted against separation in multiples of gap width for each observer in Figure 4.  

Averaged across observers, the resolution threshold for an unflanked LM C is 

0.18±0.04 logMAR (at 3.5x modulation threshold), which is higher than the 0.0 

logMAR that might be expected for a maximum modulation LM C. The threshold for 

an unflanked CM C (at 3.5x modulation threshold) is 0.46±0.04 logMAR, i.e., 

0.28±0.04 logMAR worse than that for the LM target. For all observers, thresholds 

are highest when the bars abut the C and decrease as the bars are moved further 

away from the C.  The Gaussian fits (shown in grey) adequately describe the fall-off 

in contour interaction function with increasing bar separation, although it slightly 

underestimates the peak effect.   It also provides an objective way to estimate 

extent, allowing interpolation of data between sampled points.   

 Averaged threshold elevations (across the four observers of Figure 4) are 

shown in Figure 5 a (top panel) along with the best fit Gaussians.  For both LM and 

CM Cs, the effect of the bars on resolution threshold is greatest when the bars abut 

the C (separation of zero).  Contour interaction reduces as the bars are placed 

further away from the C.  

 A repeated measures ANOVA performed with Greenhouse-Geisser correction 

on the actual LM and CM threshold elevation data for the four observers reveals that 

there is a significant effect of stimulus type on threshold elevation [F (1, 3) = 11.22, p 

< 0.05]; and a highly significant effect of separation on threshold elevation [F (2.68, 

8.02) = 53.71, p < 0.001].  The interaction between target type and separation is 
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significant [F (2.25, 6.74) = 6.75, p < 0.05]. That is, changes in threshold elevation 

across separation are dependent on the stimulus type used; the CM effects are 

greater.   

 Table 1 reveals averaged actual peak elevation data and spatial extent values 

(interpolated from the Gaussian fit of Equation 3) of contour interaction for LM and 

CM stimuli.  Peak threshold elevation is larger for the abutting CM C (0.23 ± 0.01 

logMAR) than for the LM C (0.11 ± 0.01 logMAR) and this difference is significant 

[F(1,3) = 24.79, p < 0.05].  The spatial extent of contour interaction, when expressed 

in multiples of gap width is 3.82 ± 1.00 gap widths for CM stimuli and 3.37 ± 0.54 gap 

widths for LM stimuli, which are not significantly different [F(1,3) = 0.24, p > 0.05].   

 As mentioned in the Methods section, an alternative way to estimate the 

extent of contour interaction, is to statistically compare visual acuities for the isolated 

and surrounded C conditions.  The aforementioned main finding about extent (in gap 

widths) is confirmed statistically using Tukey HSD posthoc tests performed on the 

actual data (not interpolated from the Gaussian).  That is, there is no difference in 

extent for LM and CM stimuli, (i.e., for both types, isolated and surrounded visual 

acuities are significantly different for 0, 1 and 2 gap widths).   

 The same threshold elevation data are shown in Figure 5 b (middle panel), 

but now separation is expressed in minutes of arc.  Using these units of extent, 

contour interaction is larger for CM stimuli; LM extent of 4.97 ± 0.44 arcmin and CM 

extent of 11.00 ± 1.83 arcmin  [t test; p<0.05].  If separation is expressed as centre-

to-centre spacing, the extents become 9.51 ± 0.61 (LM) and 19.65 ± 2.00 (CM) 

arcmin, which are also statistically different (at p<0.05). 

 The results using the same data but plotted as change in percent correct 

performance as a function of separation in multiples of gap width are shown in 

Figure 5 c (bottom panel).  As was the case for logMAR acuity contour interaction 

functions in Figure 5 a, the peak change in percent correct performance is larger for 

CM than LM stimuli, and the extent estimates in gap widths are similar for the two 

types. Other than a small improvement in performance (%correct) for abutting stimuli 

found for LM stimuli, similar to that sometimes found by Flom et al (1963), 

performance overall is reduced by the presence of the bars and improves as they 

move away.  Figures 3 b and c show that differences in shape can occur between 

the two ways of assessing contour interaction, including the presence or absence of 
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a “dip” for closely separated bars, which depend at least in part, on the underlying 

psychometric function slopes (Formankiewicz, Waugh & Hairol, 2012).  

 

[INSERT FIGURE 4 HERE] 

 

[INSERT FIGURE 5 HERE] 

 

[INSERT TABLE 1 HERE] 

 

3.2 Experiment 2:  Contour interaction for luminance-modulated (LM) and 
contrast-modulated (CM) square Cs with differently-defined bars 

 

Gap resolution thresholds were measured for LM square Cs surrounded by 

CM bars (212) and CM square Cs surrounded by LM bars (121) for observers IH, 

HMY, MF and AD.  Both Cs and bars were equated in visibility for each type 

(according to LM or CM C modulation thresholds) at 3.5× threshold modulation.  Gap 

resolution thresholds for isolated LM and CM Cs and for LM and CM Cs surrounded 

by differently-defined bars for each of four observers are plotted as a function of 

separation in Figure 6.  Note that even though the isolated Cs were the same as 

those used in Experiment 1, thresholds were re-measured within this new 

experiment (and so the exact values vary).  Resolution thresholds are elevated when 

a LM C is surrounded by CM bars (212), reducing to the isolated C level by 5 gap 

widths.  However when CM Cs are surrounded by LM bars (121), in three of the four 

observers, threshold is only elevated at the abutting condition, often reaching the no-

bar threshold level by 1 gap width.   

 A repeated measures ANOVA performed on individual 121 and 212 threshold 

elevation data reveals that there is a significant overall effect of separation  [F(2.01, 

6.03) = 9.90, p < 0.05].  The interaction between stimulus type and separation does 

not reach statistical significance with Geisser-Greenhouse correction [F(2.22, 6.67) = 

4.32, p = 0.06]; and the overall effect of stimulus type on threshold elevation does 

not reach statistical significance either [F(1, 3) = 8.603, p = 0.06], reflecting the large 

individual variability in contour interaction patterns.   A Tukey’s posthoc pairwise 

comparison analysis, reveals significant differences in threshold elevation for the 121 

and 212 conditions (p<0.05) at the abutting and 1 gapwidth separation conditions, 
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i.e., for these separations, threshold elevation is greater for the 212 condition 

(p<0.05).   

 The Gaussian function described in Equation 3 did not fit individual data well 

(see Figure 6) and in some cases, extent estimates fell within the smallest sampled 

separation of 1 gap width.  Averaged data provided better fits.  Thus to enable 

comparison with extent estimates from Experiment 1, we only report the extent 

parameters estimated from fits to the averaged data in Table 2 (versus Table 1, 

asterisked data).   

 Figure 7 shows threshold elevation and performance data averaged across 

the four observers.  For a LM C surrounded by CM bars (212), elevation of resolution 

threshold is greatest when the bars abut the C (0.17 ± 0.03 logMAR), the effect 

reducing as the bars are moved away.  When the CM C is surrounded by LM bars 

(121), a peak elevation of 0.08 ± 0.02 logMAR is found with the effect reducing by 2 

gap widths.  As noted above, these peak elevations are statistically different 

(p<0.05). 

 Table 2 reveals average peak magnitude and objectively determined spatial 

extents of contour interaction for 121 and 212 based on the averaged data shown in 

Figures 7 a and b.   The spatial extent of contour interaction as estimated from the 

averaged data for the 212 arrangement is 3.96 ± 0.78 gap widths.  For the 121 

arrangement, it is 0.99 ± 0.46.  Extents in arcmin, (i.e., extents in gap widths 

multiplied by the unflanked threshold) are 2.79 ± 1.28 and 5.96 ± 1.18 arcmin for 121 

and 212 conditions, respectively.  With a t-test difference comparison, these extents 

are significantly different [p<0.05] with both being significantly smaller (in arcmin) 

than those found in response to all-CM stimuli of 11.00 ± 1.83 arcmin in Experiment 

1.  Tukey’s HSD posthoc testing on discrete data also showed a difference in extents 

in gap widths between 121 and 212 arrangements; for 121 only the abutting 

condition is different from the isolated condition, whereas for 212 the abutting and 

the 1 gap width condition are both significantly different from the isolated condition 

(p<0.05). 

 The change in performance versus separation functions (Figure 7 c) show 

similar patterns to the threshold elevation plots (Figure 7 a).  The extents determined 

from discrete performance data (using Tukey HSD posthoc tests) are confirmed to 

be larger for 212 than for 121 (p<0.05).  
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[INSERT FIGURE 6 HERE] 

 

[INSERT FIGURE 7 HERE] 

 

[INSERT TABLE 2 HERE] 

 

A summary of all averaged raw data for 4 observers (3 who took part in both 

Experiments) is shown in Figure 8.  As described earlier, visual acuity for equally 

visible LM and CM stimuli is significantly different; CM acuity being about 0.3 

logMAR (or ~3 lines on a clinical visual acuity chart) worse.  When the LM C is 

surrounded by either LM bars (111) or CM bars (212), the contour interaction effects 

on visual acuity look similar.  However, when the CM C is surrounded by LM bars 

(121 condition), contour interaction effects appear to be much weaker, than when the 

CM C is surrounded by CM bars (222).  These findings are not consistent with any 

slight differences in visibility that may exist between the bars and the Cs in the mixed 

condition (with differently defined Cs and bars), for the different sizes presented.  If 

this were the case, one would expect greater contour interaction for the 121 than the 

222 condition, as the bars may be slightly more visible; and 212 should show a 

weaker effect than the 111 condition as the bars may be slightly less visible here.    

 The general impressions described above hold up statistically, both when 

comparing peak elevation and extent means provided in Tables 1 and 2; contour 

interaction for 222 is significantly stronger in peak and extent than 121 (p<0.05) 

whilst these parameters for 111 and 212 are not statistically different (p>0.10).   

When the actual data for 3 observers who participated in both experiments undergo 

repeated measures ANOVA with Greenhouse-Geisser correction the same results 

are found.  Using the alternative extent analysis with posthoc Tukey pairwise 

comparisons, the isolated acuity is significantly different from the abutting and 1 gap 

width condition for the 222 condition.  However in the 121 condition, the isolated 

condition was not significantly different from any other.  In psychophysical studies 

like this one, where data from large numbers of trials are collected on a small group 

of observers, it is wise not to place too much weight on statistical analysis, 

particularly when significance is not achieved.  Rather we use them here to provide 

some objectivity to our graphical results, which generally match the statistical 

outcomes.  In summary, a CM C surrounded by CM bars appears to produce 
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significantly more contour interaction (in magnitude and extent) than a CM C 

surrounded by LM bars. 

 

[INSERT FIGURE 8 HERE] 

 

4. Discussion 

 The present study is the first to reveal in visual acuity terms, that contour 

interaction for foveally viewed stimuli occurs more strongly for contrast-modulated 

(CM) Cs and bars, than for approximately equally visible, luminance-modulated (LM) 

Cs and bars.  In summary, the peak contour interaction effect reduces acuity by 

about 2 lines (0.23 ± 0.01 logMAR) for CM C targets surrounded by CM bars, 

whereas it reduces acuity by about 1 line (0.11 ± 0.01 logMAR) for LM C targets.  

The extent of contour interaction in gap widths (or proportions of letter size) is similar 

for LM (3.37 ± 0.54) and CM (3.82 ± 1.00) stimuli, however it is more extensive in 

minutes of arc for CM (11.00 ± 1.83) than for LM (4.97 ± 0.44) stimuli.  These 

findings hold potential significance for clinical application, as well as providing new 

information about foveal spatial vision at the acuity limit.  From the results of 

Experiment 1 we have characterised peak elevation and spatial extent parameters 

for 3.5× visibility LM and CM stimuli. In Experiment 2, we show that contour 

interaction can also affect visual acuity when Cs and bars are defined differently, i.e., 

one by luminance, the other by contrast.   

 The finding that contour interaction effects are greater for CM than LM Cs, 

and that interactions occur between CM Cs and LM bars and vice versa, agree with 

results of previous work in which modulation thresholds for identifying letters flanked 

by other letters at the fovea were measured (Chung et al, 2007, 2008).  In these 

earlier studies, Chung and colleagues measured modulation thresholds at the fovea 

for identifying a large letter surrounded by low visibility flankers (1.6×).  They found 

stronger crowding effects for CM (a change in modulation threshold of 1.34× from 

the unflanked condition) than LM letters of (1.05×), which was described as “absent 

or weak”.   Very small magnitude effects were found with mixed stimuli, e.g., for the 

121 condition, insignificant crowding (of 1.01×) and for the 212 condition, small but 

significant crowding (of 1.06×) was found.  Although these studies and ours examine 

contour interaction and crowding under different circumstances, the results agree, 
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although our effects are measurably stronger: for 111 a change in resolution 

threshold of 1.29× (or 0.11 logMAR), for 222 of 1.70× (or 0.23 logMAR), for 121 of 

1.20× (or 0.07 logMAR) and for 212 of 1.48× (or 0.17 logMAR).  Chung et al, did not 

find differences in extents for the LM and CM or mixed stimuli in degrees, however 

they used fixed-size large letters (about 1 deg in size) that generated large crowding 

extents (of 2.21 deg); whereas our visual acuity paradigm used letters close to the 

resolution limit of vision (unflanked letter sizes of ~0.1 to 0.25 deg).  Contour 

interaction is known to show different effects for large and small luminance letters 

viewed foveally (Ehrt & Hess, 2005; Danilova & Bondarko, 2007).  

 

CM and LM Visual Acuity 

 As seen in Figure 4 (and Table 1), visual acuity for discriminating the 

orientation of a C is almost twice as large for CM (0.46 logMAR or 2.88 arcmin) 

compared to LM (0.18 logMAR or 1.51 arcmin) targets for all observers.  The worse 

acuity for CM Cs suggests that they are processed at a larger spatial scale, 

compared to LM Cs, a finding that is similar to both high-frequency cut-off 

(resolution) differences in LM and CM modulation transfer functions (Schofield & 

Georgeson, 1999) and spatial summation estimates for LM and CM blobs (Sukumar 

& Waugh, 2007).  Using blob stimuli with similar noise characteristics to those used 

in the current study, Sukumar & Waugh (2007) found that spatial summation 

estimates for CM stimuli were 2-3 times larger than those for LM stimuli, similar to 

visual acuity differences reported here (of 1.9× to 2.8×).  Chung et al (2007) reported 

that the size threshold for high modulation CM letters can be approximately 6× larger 

than that for LM letters.  Differences between studies could be due to differences in 

noise, affecting stimulus visibility and in exposure durations used.   Chung et al 

(2007) used an exposure duration of 150 ms, whereas in the current study it was 800 

ms, a time more akin to clinical visual acuity measurement.  Pilot results in Figure 1 

show that if 150 ms exposure duration was used for our stimuli, CM acuity would be 

4.0× worse than LM acuity, closer to the ~6× value reported by Chung et al (2006, 

2007). 

 

Does spatial extent of contour interaction scale with target size? 

 In Figure 5 a, the extent of contour interaction for equally visible LM and CM 

square Cs scales with separation when expressed in multiples of gap width, 
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suggesting a similar mechanism for contour interaction for both stimulus types, which 

scales with receptive field size.  When separation is expressed in minutes of arc as 

in Figure 5 b, the physical extent of contour interaction is smaller for LM than for CM 

stimuli. The results of this experiment support the suggestion that differently-sized 

mechanisms with similar behaviour are involved in spatial processing LM and CM 

targets (Sukumar & Waugh, 2007; Hairol & Waugh, 2010a).  

 The scaling of target size and extent of contour interaction is one of the key 

indicators (Levi et al., 2002b; Pelli et al, 2004) to suggest that the deleterious effect 

of contour interaction or crowding for foveal stimuli engages a masking mechanism, 

similar to simultaneous masking (e.g., Legge & Foley, 1980; Levi et al, 2002b) or 

remote masking (Chung et al., 2001, Levi et al., 2002b).  The current paper results 

show that the extent of contour interaction measured for foveal visual acuity targets 

does scale with stimulus size across LM and CM systems, (i.e., their extents are 

similar when measured in C gap widths).  However within the LM and CM systems, 

the extent may not necessary scale with target size.  Using standard luminance 

acuity targets, Danilova & Bondarko (2007) did not find a systematic change in 

contour interaction extent with a small variation of letter size (1.1-2.2× change in 

size).  

 Our acuity paradigm involved a range of stimulus sizes to generate full 

psychometric functions, so we can investigate whether or not, size and extent scale 

over a small range of sizes (1.3-1.7× change in size).  This involved selecting a fixed 

size, rather than a fixed performance level and determining (from psychometric 

functions) the performance level associated with it, for a range of separations.  

Extents were objectively estimated using Gaussian functions fit to the performance-

separation data (see Figure 3 for a schematic to illustrate this).  Results of this 

analysis are shown in Figure 9.  Moving between systems produces a scaling effect 

with size, however within the LM or CM system, direct scaling does not hold.  One 

attractive notion is that size-extent scaling for visual acuity only holds when the 

visual system is forced to move from one channel to another, such as from the LM to 

the CM system, or from one spatial scale to another, such as for different narrow-

band stimuli (Levi et al, 2002b).  When visual acuity can be processed within a 

spatial channel (perhaps an “acuity” channel), direct size-extent scaling no longer 

holds (in agreement with the findings of Danilova & Bondarko, 2007).  In Figure 9 we 

compare our suprathreshold visual acuity data with reanalysed simultaneous 
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masking results (see Figure 10 of Hairol & Waugh, 2010a) for three different LM and 

CM blob sizes (sd = 30, 15 and 7.5 arcmin).  Two notable differences are seen.  

First, the masking results show direct scaling of stimulus size and extent of masking, 

both for LM and CM blobs (slope of 0.91±0.15), whereas the visual acuity results do 

not.  Second, the lateral extents of LM and CM masking are similar in arcmin, 

whereas for visual acuity they are not.  Thus, the direct scaling of size and lateral 

extent results are characteristic of masking (Polat & Sagi, 1993; Levi et al, 2002b; 

Pelli & Majaj, 2004); but are not like our C acuity data.   

 

[INSERT FIGURE 9 HERE] 

 

 The issue of whether foveal contour interaction (and possibly crowding) is 

more complicated than masking is an important issue to address, both from the 

theoretical and clinical perspective.  It would be therefore be of interest in a future 

study to assess the size-extent relationship for visual acuity over a larger range of 

sizes, e.g., by varying target visibility or by blurring stimuli.   

 

Physics of the stimulus cannot explain contour interaction 

 Hess, Dakin & Kapoor  (2000b) proposed that contour interaction effects of 

neighbouring bars on the resolution of a C, could be created by changes in the 

physics of the stimulus, specifically differences in amplitude spectra taken aligned 

and orthogonal to the gap in a Landolt C, with and without bars, rather than any 

underlying neural processing within the visual system.  For well-constructed contrast-

modulated stimuli, no consistent energy should exist at any particular spatial 

frequency and contour interaction obtained for these stimuli, should not be able to be 

explained on the basis of differences in spectral energy (we show that this is the 

case for our stimuli in the Appendix).  Thus for our CM stimuli, observers cannot use 

first-order spectral energy to resolve the C, and the effects of contour interaction that 

we measure, which are even greater than found for LM stimuli, cannot be explained 

by them.   

 

Are LM and CM stimuli processed by independent pathways? 

 As shown in Experiment 1, there appear to be mechanisms operating at 

different spatial scales underlying resolution as well as contour interaction for LM 
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and CM stimuli.  Are spatial processing streams for LM and CM stimuli totally 

independent? Experiment 2 was conducted to address this question for visual acuity, 

where the C was surrounded by bars of different type to it. If two completely 

independent channels exist for LM and CM contour interaction processing, then the 

ability to discriminate the direction of the gap in the C should be independent from 

influence by surrounding bars that are of different type from the C. 

 As shown in Figures 6 and 7, contour interaction does occur when the C and 

bars are differently-defined.  When both target and bars are equally visible, contour 

interaction for a LM C occurs when it is flanked by CM bars (212) with a peak 

magnitude of 0.17 ± 0.03 logMAR, which remains significantly different from the 

isolated C condition when the bars abut the C or are at a separation of 1 gap width 

away.  Contour interaction also occurs for a CM C flanked by LM bars (121), with a 

peak magnitude of 0.08 ± 0.02 logMAR, although the effect is significant only when 

the bars abut the C.  This asymmetrical effect suggests that contour interaction does 

occur between LM and CM spatial stimuli, but not necessarily in equal measure.   It 

is possible that the direction of asymmetry of contour interaction measured may 

depend on how C and bar visibilities are scaled, although we think it unlikely that 

visibility of the two shapes for LM and CM systems is affected differently.  

Asymmetry of lateral interactions has also been revealed for detection and 

modulation matching tasks (Ellemberg et al, 2004; Hairol & Waugh, 2010a) as well 

as in a letter detection crowding task (Chung et al., 2007; Chung et al., 2008), 

although not always in a consistent direction.   

 

A framework for contour interaction for LM and CM stimuli 

 The results of these contour interaction studies using LM and CM visual acuity 

stimuli can be explained if one speculates that 1) LM stimuli are processed, (i.e., 

representations extracted) using receptive fields at an early stage, such as in V1; 2) 

CM stimuli are processed at a later stage, in V1, or in a higher visual area such as 

V2, using larger receptive fields, and 3) contour interaction may occur at multiple 

stages of combination.  

 The results of Figure 8 may provide a clue to how contour interaction could 

operate.  Equally-visible LM stimuli and CM stimuli are detected by mechanisms with 

differently-sized underlying receptive fields. Spatial extents of contour interaction, in 

terms of target gap size are equivalent but in minutes of arc, extents for CM stimuli 
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are larger (see Table 1).  When approximately equally visible LM and CM C and bars 

are placed close together, (i.e., 121 and 212 conditions) outputs from underlying 

receptive fields of different scale must be combined.  If the target C engages a 

smaller LM receptive field, and surrounding CM bars stimulate larger neighbouring 

receptive fields (212 case), for the same separation with respect to the target size, 

greater magnitudes of contour interaction might be expected due to encroachment. 

The magnitude of contour interaction (see Figure 8) is higher for the 212 than the 

111 condition (0.17±0.03 logMAR versus 0.11±0.01 logMAR).  A loss of efficiency 

when combining information across differently-sized receptive fields, or channels, 

may also reduce the effect of combination.  When the target C engages a larger CM 

receptive field, and the LM bars stimulate smaller neighbouring receptive fields (121 

case), lower amounts of contour interaction might be expected.  Again our results 

indicate a significant reduction in the peak contour interaction effect for the 121 

(0.08±0.02 logMAR), versus the 222 case (0.23±0.01 logMAR).  Differences in 

combined effects of the target C and bars could possibly be explained by a single 

spatial channel at a second stage, e.g., Danilova & Bondarko (2007), however it is 

difficult to understand how spatial extents in the mixed conditions do not fall between 

those found for all-LM and all-CM stimuli.   

 The greatest magnitude of contour interaction is found when both the C and 

the bars are contrast-modulated (the 222 condition).  It is difficult to explain a larger 

relative effect of contour interaction with these than with equally visible LM stimuli 

without suggesting a different stage of combination with enhanced effects.  The 

extent of interaction in minutes of arc is also larger only for these stimuli (11.00 ± 

1.83 arcmin).  Losses of efficiency in combining information could occur both across 

spatial scale, or across different levels of representation (via feed-back and feed-

forward processes).  The extent of interaction in minutes of arc for all-LM (the 111 

condition) and both mixed conditions (121 and 212) are more similar at 4.97 ± 0.44, 

2.79 ± 1.28 and 5.96 ± 1.18 arcmin, respectively.  If extents are calculated from 

centre-to-centre of the C and the bars, as is done in studies that employ more 

complex letters or blurred edge stimuli, extents are 9.51 ± 0.61, 11.25 ± 1.34 and 

10.50 ± 1.25 arcmin for the 111, 121 and 212 conditions suggesting a similar stage 

of combination.  The extent for the all-CM stimuli would be 19.65 ± 2.00 arcmin, 

again perhaps reflecting a different neural substrate and supporting a multi-stage 
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framework for contour interaction.  A recent review of the literature also suggests 

that more than a single stage of crowding is likely (Whitney & Levi, 2011).   

5. Conclusions 

Isolated C visual acuity for 3.5× visibility Cs is reduced for CM stimuli by about 

a factor of two when compared to LM stimuli.  The deleterious effect of nearby 

contours on foveal C visual acuity is also greater for contrast-modulated (CM) stimuli 

than for approximately equally visible, luminance-modulated (LM) stimuli.  Contour 

interaction does occur between CM and LM stimuli, indicating that the systems are 

not independent; both contribute to contour interaction processes occurring across 

stages of representation.  Our results are in agreement with the suggestion that 

contour interaction occurs at more than one locus in the visual system, with larger 

effects found at the CM than the LM locus, possibly at a higher stage within V1, V2, 

or in another extrastriate region.  The extent of foveal contour interaction for LM and 

CM acuity stimuli is similar in gap widths.  Due to poorer visual acuity for CM stimuli, 

contour interaction therefore occurs over correspondingly longer distances in 

minutes of arc.  Clinical studies of crowding may benefit by using CM stimuli, due to 

their larger magnitude contour interaction effects, as well as their potentially 

increased sensitivity to changes with development or aging, or in visual conditions 

such as amblyopia. 
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Appendix 
 
 To investigate whether consistent luminance cues were available to use in 

making judgements about our CM Cs, the amplitude difference spectrum (ADS) 

between two directions, the direction containing the gap and the direction 

perpendicular to it, was calculated for our LM and CM square Cs using MatLab.  
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First, experimental LM and CM square C images were created and then Fourier 

transforms on whole images were calculated.  The difference in Fourier spectra, or 

ADS was calculated in two directions from an average of a high number of images.  

Averaging was required to find identifiable peaks in the ADS for the LM (noise) 

stimuli. The peak of the ADS is the critical spatial frequency that is potentially 

available for the observer to use to detect the orientation of the C’s gap (Bondarko & 

Danilova, 1997).  Hess et al. (2000b) reported that flanking bars at one gap width 

away displace the spatial frequency energy band relevant to detecting the orientation 

of a luminance-based C to a frequency that the fovea is less sensitive to.  For the LM 

noisy C (Figure I a), the ADS pattern for an average of 500 images (Figure I b) 

shows the peak frequency occurring at about 1.15 cycles per letter for an unflanked 

C (Figure I c), within the range of peaks found for a noiseless, first-order square C by 

Liu (2001) and a rounded Landolt C (Bondarko & Danilova, 1997; Hess et al, 2000b).  

For a LM C flanked by LM bars placed at one gap width away (Figure I d and I e), 

there is a shift in the peak frequency, where it now occurs at about 1.65 cycles per 

letter (Figure I f), similar to the findings of Hess et al. (2000b). 

 For an unflanked CM square C (Figure II a), averaging 500 images greatly 

reduces the visibility of the CM C (Figure II c) and the resultant ADS contains no 

consistent peak frequency (Figure II e).  For a CM square C with surrounding bars at 

one gap width away (Figure II b), again there are no consistent peak frequencies 

available to the observers (Figure II f).  In fact, the ADS for CM stimuli, both for an 

isolated C and one surrounded by bars, show only random peaks and troughs, 

similar to the ADS obtained for images containing unmodulated background random 

noise only (Figures II g, h).   In the current study there are many similarities between 

contour interaction for LM and CM stimuli, suggesting similar underlying mechanisms 

(though contour interaction is stronger for CM stimuli), but clearly, this cannot be by 

using consistent linearities as revealed by the ADS for Cs with and without bars. 

 

 

[INSERT FIGURE I HERE] 

 

[INSERT FIGURE II HERE]

Page 24 of 42Visual Neuroscience



For Peer Review

 25

References  

Allard, R., & Faubert, J. (2006).  Same calculation efficiency but different internal 
noise for luminance- and contrast-modulated stimuli detection.  Journal of Vision, 
6, 322-334. 

Allard, R., & Faubert, J. (2007).  Double dissociation between first- and second-
order processing. Vision Research, 47, 1129-1141. 

Baker Jr, C. L., & Mareschal, I. (2001). Processing of second-order stimuli in the 
visual cortex. Progress in Brain Research, 134, 171-191.  

Bertone, A., Hanck, J., Guy, J., & Cornish, K. (2010). The development of 
luminance- and texture-defined form perception during the school-aged years. 
Neuropsychologia, 48, 3080-3085. 

Bondarko, V. M., & Danilova, M. V. (1997). What spatial frequency do we use to 
detect the orientation of a landolt C? Vision Research, 37, 2153-2156.  

Chubb, C., & Sperling, G. (1988). Drift-balance random stimuli: A general basis 
for studying non-fourier motion perception. Journal of the Optical Society of 
America A, 5, 1986-2007.  

Chung, S. T. L., Levi, D. M., & Legge, G. E. (2001). Spatial-frequency and 
contrast properties of crowding. Vision Research, 41, 1833-1850.  

Chung, S. T. L., Levi, D., Li, R.W. (2006). Learning to identify contrast-defined 
letters in peripheral vision. Vision Research, 46, 1038-1047. 

Chung, S. T. L., Li, R. W., & Levi, D. M. (2008). Crowding between first- and 
second-order letters in amblyopia. Vision Research, 48, 791-801.  

Chung, S. T. L., Li, R. W., & Levi, D. M. (2007). Crowding between first- and 
second-order letter stimuli in normal foveal and peripheral vision. Journal of 
Vision, 7, 1-13.  

Danilova, M. V., & Bondarko, V. M. (2007). Foveal contour interactions and 
crowding effects at the resolution limit of the visual system. Journal of Vision, 7, 
1-18.  

Daw, N. W. (1998). Critical periods and amblyopia.  Archives of Ophthalmology.  
116, 502-505. 

Page 25 of 42 Visual Neuroscience



For Peer Review

 26

Derrington, A. M., Badcock, D. R., & Henning, G. B. (1993). Discriminating the 
direction of second-order motion at short stimulus durations. Vision Research, 
33, 1785-1794.  

Ellemberg, D., Allen, H. A., & Hess, R. F. (2004). Investigating local networks 
interactions underlying first- and second-order processing. Vision Research, 44, 
1787-1797. 

Ehlers, H. (1936). The movements of the eyes during reading. Acta 
Ophtalmologica, 14, 56-63.  

Ehrt, O., & Hess, R. F. (2005). Foveal contour interaction: Detection and 
discrimination. Journal of the Optical Society of America A, 22, 209-216.  

Farzin, F., Rivera, S. M., & Whitney, D. (2009). Holistic crowding of Mooney 
faces. Journal of Vision, 9, 1-15. 

Flom, M. C. (1991). Contour interaction and the crowding effect. Problems in 
Optometry, 3, 237-257.  

Flom, M. C., Weymouth, F. W., & Kahneman, D. (1963). Visual resolution and 
contour interaction. Journal of the Optical Society of America, 53, 1026-1032.  

Formankiewicz, M A., Hairol, M. I. & Waugh S J. (2010). Effects of contrast on 
foveal acuity and contour interaction using luminance and contrast modulated Cs. 
Journal of Vision, 10, 1333 

Formankiewicz, M A., Waugh, S J. & Hairol, M.I. (2012). The effects of 

termination rules on contour interaction in a resolution acuity task with luminance-
modulated and contrast-modulated Cs. Perception (Supplement), 41, 156. 

Habak. C., & Faubert, J. (2000). Larger effect of aging on the perception of 
higher-order stimuli. Vision Research, 40, 943-950. 

Hairol, M. I., & Waugh, S. J. (2010a). Lateral interactions across space reveal 
links between processing streams for luminance-modulated and contrast-
modulated stimuli. Vision Research, 50, 889-903.  

Hairol, M. I., & Waugh, S. J. (2010b). Lateral interactions revealed dichoptically 
for luminance-modulated and contrast-modulated stimuli. Vision Research, 50, 
2530-2542. 

Hariharan, S., Levi, D. M., & Klein, S. A. (2005). “Crowding” in normal and 
amblyopic vision assessed with gaussian and gabor C’s. Vision Research, 45, 
617-633.  

Page 26 of 42Visual Neuroscience



For Peer Review

 27

Hess, R. F., Dakin, S. C., Kapoor, N., & Tewfik, M. (2000a). Contour interaction 
in the fovea and periphery. Journal of the Optical Society of America A - Optics 
Image Science and Vision, 17, 1516-1524.  

Hess, R. F., Dakin, S. C., & Kapoor, N. (2000b). The foveal 'crowding' effect: 
Physics or physiology? Vision Research, 40, 365-370.  

Hess, R. F., Dakin, S. C., Tewfik, M., & Brown, B. (2001). Contour interaction in 
amblyopia: Scale slection. Vision Research, 41, 2285-2296.  

Hess, R. F., & Jacobs, R. J. (1979). A preliminary report of acuity and contour 
interactions across the amblyope's visual field. Vision Research, 17, 1049-1055.  

Jacobs, R. J. (1979). Visual resolution and contour interaction in the fovea and 
periphery. Vision Research, 19, 1187.  

Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision. Journal of 
the Optical Society of America, 70, 1458-1471.  

Levi, D. M. (2008). Crowding - an essential bottleneck for object recognition: A 
mini-review. Vision Research, 48, 635-654. 

Levi, D. M., & Carney, T. (2009). Crowding in peripheral vision: why bigger is 
better.  Current Biology, 19, 1988-1993. 

Levi, D. M., & Carney, T. (2011). The effect of flankers on three tasks in central, 
peripheral, and amblyopic vision. Journal of Vision, 11, 1-23.  

Levi, D. M., Klein, S. A., & Aitsebaomo, A. P. (1985). Vernier acuity, crowding 
and cortical magnification. Vision Research, 25, 963-977. 

Levi, D. M., Hariharan, S. A., & Klein, S. A. (2002a). Suppressive and facilitatory 
spatial interactions in amblyopic vision. Vision Research, 42, 1379-1394. 

Levi, D. M., Klein, S. A., & Hariharan, S. A. (2002b). Suppressive and facilitatory 
spatial interactions in foveal vision: Foveal crowding is simple contrast masking. 
Journal of Vision, 2, 140-166.  

Levi, D. M., Song, S. & Pelli, D.G. (2007). Amblyopic reading is crowded. Journal 
of Vision, 7, 1-17. 

Liu, L. (2001). Can the amplitude difference spectrum peak frequency explain the 
foveal crowding effect? Vision Research, 41, 3693-3704.  

Page 27 of 42 Visual Neuroscience



For Peer Review

 28

Manahilov, V., Calvert, J., & Simpson, W. A. (2003). Temporal properties of the 
visual responses to luminance and contrast modulated noise. Vision Research, 
43, 1855-1867.  

Mareschal, I., & Baker Jr, C. L. (1998). A cortical locus for the processing of 
contrast-defined contours. Nature Neuroscience, 1, 150-154.  

Martelli, M., Majaj, N.J., & Pelli, D. G. (2005). Are faces processed like words? A 
diagnostic test for recognition by parts. Journal of Vision, 5, 58-70. 

Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). 
Compulsory averaging of crowded orientation signals in human vision. Nature 
Neuroscience, 4, 739-744.  

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary 
masking: Distinguishing feature integration from detection. Journal of Vision, 4, 
1136-1169.  

Petrov, Y., Verghese, P., & McKee, S. (2006). Collinear facilitation is largely 
uncertainty reduction. Journal of Vision, 6, 170-178. 

Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: 
Supression and facilitation revealed by lateral masking experiments. Vision 
Research, 33, 993-999.  

Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. 
Vision Research, 34, 73-78. 

Pelli, D.G., Tillman, K. A., Freeman, J., Su, M., Berger, T. D., & Majaj, N. J. 
(2007). Crowding and eccentricity determine reading rate.  Journal of Vision, 7, 1-
36.  

Schofield, A. J., & Georgeson, M. A. (1999). Sensitivity to modulations of 
luminance and contrast in visual white noise: Separate mechanisms with similar 
behaviour. Vision Research, 39, 2697-2716.  

Schofield, A. J., & Georgeson, M. A. (2003). Sensitivity to contrast modulation: 
the spatial frequency dependence of second order vision. Vision Research, 43, 
243-259. 

Smith, A. T., & Ledgeway, T. (1997). Separate detection of moving luminance 
and contrast modulations: Fact or artifact? Vision Research, 37, 45-62.  

Stuart, J. A., & Burian, H. M. (1962). A study of separation difficulty: Its 
relationship to visual acuity in normal and amblyopic eyes. American Journal of 
Ophthalmology, 53, 471-477.  

Page 28 of 42Visual Neuroscience



For Peer Review

 29

Sukumar, S., & Waugh, S. J. (2007). Separate first- and second-order processing 
is supported by spatial summation estimates at the fovea and eccentrically. 
Vision Research, 47, 581-596.  

Tang, Y., & Zhou, Y. (2009). Age-related decline of contrast sensitivity for 
second-order stimuli: Earlier onset, but slower progression, than for first-order 
stimuli. Journal of Vision, 9, 1-15. 

Waugh, S. J., Formankiewicz M. A., Ahmad N. & Hairol,M I. (2010). Effects of 
dioptric blur on foveal acuity and contour interaction for noisy Cs. Journal of 
Vision, 10, 1330. 

Westheimer, G. & Hauske, (1975). Temporal and spatial interference with vernier 
acuity. Vision Research, 15, 1137-1141. 

Waugh S. J., Formankiewicz M. A., Polczyk-Przybyla J. A. (2011). Effects of 
imposed Gaussian blur on contour interaction for luminance-modulated and 
contrast-modulated noisy Cs.  Journal of Vision, 11, 1151. 
 
Whitney D. & Levi, D.M. (2011). Visual crowding: a fundamental limit on 
conscious perception and object recognition. Trends in Cognitive Sciences, 15, 
160-168. 
 
Wolford, G., & Chambers, L. (1984). Contour interaction as a function of retinal 
eccentricity. Perception & Psychophysics, 36, 457-460.  

Wong, E. H., Levi, D. M., & McGraw, P. V. (2001). Is second-order spatial loss in 
amblyopia explained by the loss of first-order spatial input? Vision Research, 41, 
2591-2960.  

Wong, E. H., Levi, D. M., & McGraw, P. V. (2005). Spatial interactions reveal 
inhibitory cortical networks in human amblyopia. Vision Research, 45, 2810-
2819.  

Yu, C., Klein, S. A., Levi, D. M. (2002). Facilitation of contrast detection by cross-
oriented surround stimuli and its psychophysical mechanism. Journal of Vision, 2, 
243-255. 

 
 
 
 
 
 
 

Page 29 of 42 Visual Neuroscience



For Peer Review

Table 1 

 

Peak magnitude and extent of contour interaction for LM and CM square Cs with similarly-defined bars 

 

Stimuli Target 

visibility 

(multiples 

of 

threshold) 

Bar visibility 

(multiples 

of 

threshold) 

Unflanked 

threshold 

(logMAR) 

±1SEM 

 

Peak 

elevation 

(logMAR) 

±1SEM 

Extent 

(multiples of 

gap width) 

±1SEM 

Extent 

(arcmin) 

± 1SEM 

111 

(LM) 

3.5× 3.5× 0.18 ± 

0.04  

0.11 ± 

0.01 

3.37 ± 0.54 

3.21 ± 0.28* 

 

5.34 ± 1.24 

4.97 ± 0.44* 

222 

(CM) 

3.5× 3.5× 0.46 ± 

0.04 

0.23 ± 

0.01 

3.82 ± 1.00 

3.81 ± 0.63* 

11.17 ± 2.88 

11.00 ± 1.83* 
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Table 2 

 

Peak elevation and extent of contour interaction for LM and CM square Cs with differently-defined bars 

 

Stimuli Target 

visibility 

(multiples 

of 

threshold) 

Bar 

visibility 

(multiples 

of 

threshold) 

Unflanked 

threshold 

(logMAR) 

±1SEM 

Peak 

elevation 

(logMAR) 

±1SEM 

Extent 

(multiples 

of gap 

width) 

±1SEM 

Extent 

(arcmin) 

±1SEM 

121 3.5× 

 

3.5× 0.45 ± 

0.02 

0.08 ± 

0.02 

 0.99 ±  

0.46 

2.79 ± 

1.28 

212 3.5× 

 

3.5× 0.18 ± 

0.04 

0.17 ± 

0.03 

3.96 ± 

0.78 

5.96 ± 

1.18 

 

Page 31 of 42 Visual Neuroscience



For Peer Review

  

 

 

Figure 1  
Visual acuity in logMAR (left ordinate) and MAR (right ordinate), plotted as a function of stimulus duration 
(ms), for LM and CM stimuli.  Error bars represent ±1se (across 3 observers).  Data are fit with a double 

power function (the continuous blue and red lines) on log-log co-ordinates to estimate the duration, after 
which visual acuity becomes stable (see text for values).  
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Figure 2  
Greyscale figures a, c, e and f are similar stimuli to those used in experiments.  In these figures, the 
separation between the square Cs and bars is 3 gap widths (0.6× letter size).  Figures b and d are 

luminance profiles for the stimuli in a and c, generated using MatLab.  Profiles were taken across the gap 
from the top to the bottom of the figures in the left column.  The left and right luminance shifts represent 
the bars; the central shifts represent two limbs of the square C with the gap at the centre.  a) LM square C 
surrounded by LM bars (111) with luminance amplitude l set at 0.3.  b) Luminance profile for LM stimuli.  c) 
CM square C surrounded by four CM bars (222) with contrast amplitude m set at 1.5.  d) Luminance profile 

for CM stimuli. e) CM square C surrounded by four LM bars (121).  f) LM square C surrounded by four CM 
bars (212).  
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Figure 3  
A schematic showing how logMAR and performance contour interaction functions across C-bar separation 

(right panels) can be obtained from the same set of psychometric functions generated by our experimental 
data (left panels).   Data for the isolated C are shown in red, from which other data are compared to find the 

magnitude of contour interaction.  Top row: Visual acuity thresholds (in logMAR) are taken from the 
appropriate psychometric function for the isolated letter and each separation at a fixed performance level of 

72.4 % correct (left).  Threshold elevations are then calculated as the difference between the logMAR 
threshold at each separation and that obtained without the surrounding bars, and plotted as a function of 

separation (right).  Middle row:  The size that corresponds to 72.4% correct response for the isolated letter 
is taken from the psychometric function (left).  For this fixed size, performance (% correct response) is then 
derived for each separation from the appropriate psychometric function.  The change in percent correct (i.e. 

that change in percent correct with and without surrounding bars) for each separation is then calculated and 
plotted as a function of separation (right).  Bottom row: As for middle row, however the slopes of 
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psychometric functions are flatter for the abutting condition (black curve).  This results in a different contour 
interaction performance function shape (more like Flom et al, 1963).  
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Figure 4  
Gap resolution threshold in logMAR plotted as a function of separation between C and bars in multiples of 
gap width for observers IH, HMY, JC and MF.  The open symbols are data for LM target flanked by LM bars 
(111), filled symbols are for CM target flanked by CM bars (222) and the error bars represent ±1 SEM 

(between run intra-observer variance).   Gaussians used to estimate contour interaction extents are fit to 
the data.  
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Figure 5  
(a) Averaged resolution threshold elevations (resolution threshold in the presence of bars relative 

to  threshold without bars) as a function of C-bar separation expressed in multiples of gap width for 111 

(open symbols) and 222 (filled symbols) stimuli.  Values above zero at any given separation indicate where 
thresholds are higher than the isolated C (or no bars) condition.  (b) Averaged threshold elevation as a 

function of separation expressed in minutes of arc, for 111 and 222 stimuli.  (c) Data re-plotted, as change 
in percent correct as a function of target bar separation for 111 and 222 stimuli.  The dotted line represents 
no change in performance, (i.e., no contour interaction).  All error bars represent ±1 SEM (inter-observer 

variance).  The curves in (a) and (b) are Gaussian fits to the averaged data.  
271x787mm (300 x 300 DPI)  
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Figure 6  
Gap resolution thresholds in logMAR plotted as a function of separation in multiples of gap width between C 
and bars for observers IH, HMY MF and AD.  The open symbols are data for LM target flanked by CM bars 
(212) and filled symbols are for CM target flanked by LM bars (121).  Gaussians often did not fit individual 

data well.  AD showed large variability for the abutting 212 stimulus.  
185x215mm (300 x 300 DPI)  
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Figure 7  
(a) Averaged gap resolution threshold elevation (resolution threshold in the presence of bars relative to 
resolution threshold without bars) as a function of target-bar separation for 212 (open symbols) and 121 

(filled symbols).  (b)  Averaged threshold elevation as a function of separation expressed in minutes of arc, 
for 212 and 121. (c) Data are re-plotted as change in percent correct versus separation functions for the 
212 and 121 arrangements. The dotted line represents no change in performance for an isolated C.  Error 

bars represent ±1 SEM (inter-observer variance).  
264x748mm (300 x 300 DPI)  
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Figure 8  
Averaged C acuity thresholds for the isolated C (no bars) condition and for Cs surrounded by bars of same 

and different type (111, 212, 222, 121 – see text for details) placed at different separations from the 

C.  The data have been averaged across 4 observers.  Three of the four observers participated in both 
Experiments 1 and 2.  Error bars represent ±1 SEM (inter-observer variance).  
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Figure 9  
Extents (arcmin) for fixed sizes of LM and CM Cs (arcmin) for 3 observers are shown by solid blue (LM) and 

red (CM) symbols, respectively.  The relationship between extent and size within LM and CM data is not 

directly proportional (as shown by 1:1 black dotted line). Solid black lines represent fixed extents for LM and 
CM systems. Going between LM and CM data, increasing size is associated with increased extent in 

arcmin.  The open blue and red symbols represent extents (armin) of lateral masking functions for LM and 
CM blob stimuli (Hairol & Waugh, 2010a; Figure 10).  The sd of the blob stimuli were 30, 15 and 7.5 

arcmin.  They are plotted here at sizes of +1.5xsd (or 90, 45 and 22.5 arcmin) for ease of comparison with 
C data.  LM and CM extents in arcmin are not statistically different and scale directly with target size. Solid 

black symbols represent the mean of LM and CM masking data.  
117x105mm (300 x 300 DPI)  
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Figure I  
a) Unflanked LM C stimulus. b) Flanked LM stimulus with LM bars at one gap width. c) Average of 500 
unflanked LM stimuli. d) Average of 500 LM flanked stimuli. e) ADS for the average of 500 unflanked LM 

stimuli.  f) ADS for the average of 500 LM flanked stimuli.  
297x209mm (200 x 200 DPI)  

 
 

Page 42 of 42Visual Neuroscience



For Peer Review

  

 

 

Figure II  
a) Unflanked CM C stimulus. b) Flanked CM C stimulus with CM bars at one gap width away. c) Average of 
500 unflanked CM stimuli. d) Average of 500 CM flanked stimuli. e) ADS for the average of 500 unflanked 
CM stimuli. f) ADS for the average of 500 CM flanked stimuli. g) ADS for the average of 500 unmodulated 

random noise images. h) ADS for a second average of 500 unmodulated random noise images.  
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