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ABSTRACT 

 
FACULTY OF SCIENCE AND TECHNOLOGY 

Doctor of Philosophy 

 

MARYAM SANAEI 

December 2013 

 

This study investigates the mechanical and geometrical attributes of egg–box 

energy absorbing structures as crash safety barriers in the automotive industry. The 

research herein was originated from the earlier work of Prof. Shirvani, patented and 

further investigated by Cellbond Composites Ltd. who has invested in further 

research, for developing an analytical tool for geometric optimisation as an enhanced 

resolution to various shapes and materials. Energy absorption in egg-box occurs 

through plastic deformation of cell walls, examined through non–linear finite 

element simulations using ANSYS® and ANSYS/LS–DYNA® FE packages. 

Experimental dynamic crash tests have been designed to verify the validity of the FE 

simulations. Geometrical models are defined as 3D graphical representations, 

outlined in detail. Further, the impact behaviour of commercially pure aluminium 

egg-box energy absorbers is studied to identify the optimum design parameters 

describing the geometry of the structure. A simulation-based multi-objective 

optimisation strategy is employed to find a set of Pareto-optimal solutions where 

each solution represents a trade-off point with respect to the two conflicting 

objectives: the maximum impact force and the energy absorption capacity of the 

structure. The aim is to simultaneously minimise the former and maximise the latter, 

in the attempt to find purpose–specific optimal egg–box geometries. In light of the 

associated outcomes, it is shown that egg–box geometries with                 

                                                                                     < ω 

     ), thin walls (t < 1mm), short inter–peak distances and small peak diameters. 

M                                       –                                     

                  < ω      ), thin walls (t < 1mm), lengthy inter–peak distances and 

smaller peak diameters. It is concluded that, egg–box structures combined in the 

form of sandwich panels can be designed per application to act as optimised energy 

absorbers. Results of the proposed optimised sandwich structure are verified using 

analytical techniques.  
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NOMENCLATURE 

Abbreviation    Description      Units 

Al  Aluminium 

CP  Commercially Pure (99% Al Alloy) 

EA  Energy Absorber 

FE  Finite Element 

KE  Kinetic Energy 

LCS  Local Coordinate System 

PE  Potential Energy 

ɛ  Nominal Axial Strain 

    Strain Rate      s
-1 

ɛD  Densification Strain 

Ө  Cone Angle with Horizontal    degree 

ρ  Density of Crushed Structure    ton/mm
3
 

ρa  Density of Commercially Pure Aluminium Sheet ton/mm
3
 

    Ratio of Egg–box Mass to Mass of Solid Block 

σ  Nominal Axial Stress     MPa 

σi  Stress due to Impact     MPa 

σY  Material Yield Strength    MPa 

ω  Epical Angle (Cell Wall Angle to the Vertical) degree 

A  Cross Sectional Area of Impacted Structure  mm
2
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a  Acceleration      mm/s
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acrush  Crush Acceleration     mm/s
2
 

d  Diameter at Top of Cell    mm 

D  Base Diameter of Frusta    mm 

EL  Energy Absorber per Unite Length   N.mm/mm 
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Favg  Average Value of Total Load Applied  N 

Fi  Applied Impact Load     N 

g  Gravitational Acceleration    mm/s
2
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k  Geometrical Constant 

m  Impacting Mass     kg 

P  Applied Load       N 

p  Inter–peak Distance in between Egg–box Cells mm 
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Vi  Velocity of Impact     mm/s 
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1. INTRODUCTION AND    

THEORETICAL BACKGROUND 

The ability to absorb and reduce the effect of kinetic energy has led to the 

production of specific structures called energy absorbers (EA). Use of such parts 

imbedded in the design of dynamically sensitive structures such as motor vehicles 

will increase their safety characteristics. A shock or crash enduring structure is one 

that handles the impact forces and the safe transfer of kinetic energy by collapsing 

through a predictable behaviour (Du Bois et al., 2004). As a result of this controlled 

collapse, the possibility of the vehicle occupants being injured can be reduced. 

Factors such as structural stiffness, maximum strength and the ability to absorb 

energy beyond the elastic limit, directly determine the level of the crashworthiness of 

a system*. 

In addition to the front and rear bumpers, energy absorbing structures can be 

multi–functionally implanted in doors, bonnet, dashboard, heat exchanger, air filter, 

liquid storage components and other parts of a vehicle body (Ashmead et al., 2000). 

The presence of such systems could also play a key role in making roads safer for 

both pedestrians and passengers, by cushioning them against the impact of an 

accident. 

 

 

* Readers are referred to Appendix A for further review and detailed information on 

subjects studied here forth. 
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In order for a structure to absorb the energy of an impact and reduce its effect, 

it would have to consist of builds such as lattice (periodic truss) structures (Evans, 

2001, Fleck, 2001, Chiras et al., 2002, Wadely et al., 2003 and Kooistra et al., 2004), 

tubes (Abramowicz et al., 1984, Kim et al., 1998-1999, Markiewicz et al., 1998, 

Reid, 2003, Jensen et al., 2004, Morris et al., 2006-2007, Mahdi et al., 2006, Olabi et 

al., 2007-2008, Melo et al., 2007, Yuen et al., 2007, Zhang et al., 2009), repetitive 

cells (Wu et al., 1996, Kim et al., 2002, Yu et al., 2005, Avalle et al., 2006, Hou et 

al., 2007), or porous/perforated foam (Chen et al., 1999, Deshpande et al., 1999, 

Hanssen et al., 1999(1,2), Zhou et al., 2003, Fleck, 2001, Jeon et al., 2008-2010, Said 

et al., 2008, Yoo et al., 2010, Zarei et al., 2010), geometrical features. Such 

structures collapse through desirable patterns that can be studied and predicted to fit 

the needs of specific applications. 

The absorption of energy by deformation in cellular absorbers can be through 

collapse processes such as plastic buckling (Figure 1.1), plastic yield or folding 

through stationary plastic hinges and travelling plastic hinges (Figure 1.2), depending 

on the type of the geometry (Alexander, 1960, Meng, 1983, Abramowicz et al. 

1984). Alexander was the first researcher to provide a theoretical model for axial 

                 . T                       A        ’                                

balance of internal and external work. This simple theoretical model was later 

adopted and modified by Abramowicz and Jones into a more precise model. In some 

geometrical cases EA structures can fail due to material tearing (Qiao, 2008). 

For applications such as cushioning of passengers in vehicles, low density 

energy absorbing structures are preferable, to reduce the total weight of the vehicle 

as associated with its performance. Lattice materials have greater density values in 

comparison to their cellular and foam counterparts (Jacobsen et al., 2010). Structures 

such as hexagonal honeycomb blocks of various depths, metal and plastic foams and 

egg–box panels are candidates falling in this desirable category. 

The manufacturing methods of these structures include fabrication through 

powder metallurgical techniques, injection moulding and cold or hot pressing of 

metal sheets. This leads to the next signifying factor i.e. the production costs. 

Experience shows that egg–box structures can be manufactured through less 
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expensive methods compared to lattice material, honeycombs or foams since they 

can be produced through a single action by cold or hot pressing of metal sheets 

(Deshpande et al., 2003 and Nowpada and Chirwa et al., 2009). 

 

 

Figure 1.1 – Plastic Buckling Deformation 

 

 

Figure 1.2 – Travelling Hinge Deformation 

 

From the mechanics point of view, the purpose behind using an energy 

absorbing structure is the ability to absorb energy at a stress level which would be 

lower than a prescribed value for specific circumstances. 
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1.1. Characteristics of Cellular Egg–box Energy Absorbing Structures 

Automotive designers are always looking for efficient and cost effective 

absorbers in vehicle interiors to cushion the occupants. One solution is to use cellular 

solids or structures made up of an interconnected network of cells, which 

characterise the advantages of deforming with a comparatively regular force during a 

compressive impact event. The Egg–box structure is one such energy absorber. 

 

 

 

Figure 1.3 – Egg–box Absorber Structure (W is the distance between a 

consecutive peak and trench, p is the inter-peak distance, h is the cell height, d is 

the peak/base diameter, ω is the apical angle and t is the thickness) 

 

The egg–box, as suggested by its name, is a structure consisting of a series of 

conical cells, forming the shape illustrated in Figure 1.3 with (p) showing the 

diagonal inter-peak distance and (W) being the distance between two consecutive 

peaks/trenches in lateral directions. This geometrical arrangement of regular flat–top 

cones is designed to provide axial strength against external forces. In addition, this 
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structure is renowned for its ability to deform in a predictable manner and produce 

consistent results under various impact angles (Ashmead et al., 2000). Based on the 

material involved in its production, the egg–box structure can come in relatively low 

weights and be manufactured to desired geometrical features for specific 

applications. 

The quality and the relative length of the plateau for             ’          . 

displacement curve, provided in Chapters 3, 4 and 5, is a characterising criteria of a 

good energy absorber with the potential of being used as a design component for 

pedestrian and passenger protection. Figure 1.4 is a typical force-displacement curve 

as related to the performance of an egg-box structure. 

 

 

Figure 1.4 – Typical Force vs. Displacement Curve 

 

 

1.1.1. Geometrical Configuration of Egg–box  

The geometry of the egg–box structure contributes towards its suitability as an 

energy absorber. 

Specific geometrical angles and distances in the structure of an egg–box cell 

can be adjusted to result in desired levels of energy absorption. Varying the peak to 

peak length (p), angle (ω), cell diameter (d) or wall thickness (t), in addition to the 

material type used and the level of constraints applied to the structure can result in 
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diverse energy absorption characteristics for this structure. For Example, research 

has shown that reducing the inter–peak distance, gives a higher density of cones 

throughout the structure which in turn results in an increased stiffness, hence, a 

higher stress level, i.e. greater amount of energy will be absorbed (Deshpande et al., 

2003). 

 

1.2. Why Egg–box as an Energy Absorbing Module? 

In comparison to the classical energy absorbers, the egg–box structure has 

many advantages. Despite their satisfactory performance as energy absorbers, 

structures such as honeycomb blocks and metal foams are bulky and difficult to 

transfer from the manufacturer to the automotive companies. Egg–box absorbers, on 

the other hand, use minimum packaging space and are easy and safe to handle during 

installation. Moreover, similar to other energy absorbers, the egg–box structure has 

the benefit of being easily stackable and recyclable (Ashmead, 2000). 

Due to its low manufacturing costs, and since it can be made from a range of 

metallic sheets by a single stage hot or cold pressing, or from plastic materials by 

injection moulding, the egg–box absorber is particularly suitable for high volume 

productions (Ashmead, 2000). As a result of this straightforward fabrication 

approach, it becomes possible to mould up the egg–box structure into complex 

shapes and tailor local crush strengths for specific applications. Its ability to be 

composed into sandwich structures can also offer many benefits to the designers with 

its exceptional flexural properties in sandwich systems (Ashmead, 2000). These 

features are all desirable to automotive and aviation companies. 

An additional benefit that comes with the outline of the egg-box absorber is 

having an open structure along its length, which can be structurally useful in 

allowing for wirings to pass along the length of the panel, bending amongst the peaks 

and trenches. 

A specific feature displayed in the deformation process of the egg–box 

structure, greatly contributes towards its aptness as an energy absorber; with the 

collapse of the egg–box geometry under impact loads, two main deformation 
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mechanisms can be observed, Travelling Hinge deformation and Plastic Buckling 

deformation (Figure 1.5, explained further in Appendix A). These two phases need to 

be investigated more thoroughly for the energy absorption of the egg–box structure 

to become more predictable and noticeably improved.  

 

 

Figure 1.5 – Egg–box Deformation Procedure 

 

It is common practice for the egg–box structures currently used in the industry 

to be fabricated from materials such as aluminium, steel, gun–metal and a variety of 

plastics by cold pressing and injection moulding, respectively. 

An ideal absorber is one that, while performing adequately in reducing the 

effect of impact energy, would be light, mouldable and stackable. It is obvious that 

using tougher metals such as steel or gun–metal will result in stronger energy 

absorbers. Nevertheless, these metals are heavier in nature and much harder to mould 

into the desired shape. Aluminium alloys are comparatively light weighted, very 

mouldable, inexpensive and ultimately they can be recycled. 

Currently aluminium parts are employed in the automotive industry, most 

importantly due to their significant weight saving features. Steel has a density value 

three times that of aluminium which leads to over 25% more weight when used in 
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vehicle body parts (Kim, 1998). Such amount of weight cutback can have a strongly 

positive effect on reducing the fuel consumption and emission of the vehicle. All 

these benefits as well as its high corrosion resistance, indicate that aluminium is the 

ideal material for the automotive industry. 

To maintain the characteristics of an ideal absorber and as a most commonly 

used material in this industry, aluminium alloys are considered as optimum materials 

for the production of egg–box structures. Nevertheless, it should be noted that, an 

important determining factor remains to be the specific application for which the 

absorber is being manufactured. 

 

1.3. Evaluation of the Performance of Egg–box Structure 

The mechanism of deformation for a uniaxial compression is complex. 

Different variables are taken into account and controlled by the design engineer to 

evaluate the mode of deformation of the egg–box absorber for a specific application. 

Refinement of these factors can lead to improved performance, efficiency and design 

optimisation that would accommodate the specifications required by individual 

customers. 

In addition, external factors such as the angle and magnitude of the loadings 

applied and the presence of other adjacent bodies will also determine the 

characteristics of the deformation pattern of an EA structure (Alexander, 1960). 

Examples are illustrated in Appendix A. 

Traditionally, the main practical method to evaluate the effect of variations of 

geometric characteristics in the performance of a structure and its EA capacity was 

experimental testing (Alexander, 1960, Mamalis, 1986, Alghamdi, 1992). In more 

recent research this method is used to verify the results of numerical or theoretical 

techniques (Alghamdi, 2001, Deshpande, 2003, Zupan, 2003, Naik, 2004, Nowpada, 

2009, 2010 a, b). Various methods of practical testing of energy absorber structures 

exist which can be divided into two main categories of static loading and dynamic 

impact testing. Past and current researches have been critically reviewed in the 

second chapter. 
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Another method of exploring the behaviour of energy absorbers is analysing 

the structures mathematically. However, despite its repeatability features, this 

analytical approach can become exceedingly time consuming with complicated 

situations such as the deformation of energy absorbing structures. To simplify, 

analysers tend to take advantage of geometrical symmetries to create less 

complicated two–dimensional illustrations of physical structures (Alexander, 1960, 

Mamalis, 1986, Alghamdi, 1992, 2001, Deshpande, 2003, Zupan, 2003, Naik, 2004). 

Although Alexander concludes that his theoretical model does not account for the 

effect of the superimposed axial stresses on the yield criterion or the detailed 

consideration of the deformation mode and equilibrium conditions, Calladine (1986) 

              A        ’                                                           

approximation of the collapse behaviour of structures. 

Numerical approaches, on the other hand, are beginning to take off as a key 

part of the design process of energy absorbers in general and specifically in egg–box 

structure as an innovative energy absorber. One of the best methods for designing, 

visualising, refining and calculating the performance of geometrically assorted 

structures produced from different materials is by using the finite element (FE) 

method. 

As an advantage, commercially available advanced finite element computation 

packages, such as ANSYS®, ABAQUS®, LUSAS® and LS–DYNA®, allow for the 

creation of graphical representations of required components, in the form of 

numerical models, which can be tested through a number of different methods, both 

inexpensively and repeatedly under a variety of different conditions, via powerful 

processors. The accurate results of these simulations in comparison with 

experimental tests, has encouraged researchers all over the world to use this approach 

with firm validity and without using expensive experimental techniques. The works 

of such researchers, as related to the subject of this project, are critically reviewed in 

the next chapter. 

For highly complex problems, highly professional finite element solver 

packages have been commercially designed, which substantially reduce the time and 

cost of experimental and mathematical analysis. The ANSYS® software is one of the 
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well established, widely distributed and popular commercial finite element analysis 

packages, which has continuously been in use and refined since 1970. Its historical 

background of development has resulted in a code with a vast range of capabilities. 

In current researches on the analyses of mechanical behaviour of energy 

absorbing structures, the procedures mentioned above, including static and dynamic 

experimental methods, mathematical approaches and numerical techniques are being 

extensively used. Using numerical calculations and predictions, the FE method can in 

fact be used to determine the energy absorption characteristics of an EA structure 

prior to the geometrical design and manufacture. Additionally, FE analysis can be 

employed for structural optimisation. 

 

1.4. ANSYS® and ANSYS/LS–DYNA® as Tools for Numerical Analysis 

As a powerful numerical solver using finite element method, the ANSYS® 

package can be used to analyse a wide range of mechanical problems such as static 

and transient structural analysis. In fact, ANSYS® is most commonly used in this 

particular area of mechanical physics, since it can facilitate the analysis of structures 

as large as bridges or as small as vehicle parts. 

In order to simulate dynamic loading conditions, the powerful processors of 

ANSYS® have been combined with the equally powerful solver of another finite 

element package known as LS–DYNA®. This software is designed to be used for 

analysing static and dynamic problems with large deformation. LS–DYNA® uses 

explicit time integration as its base solution approach (LSTC, 2007). 

The combination of ANSYS® and LS–DYNA® gave existence to a powerful 

finite element package referred to as ANSYS/LS–DYNA®. Researchers and 

designers use this product, to model a structure or system in ANSYS®, then 

obtaining the explicit dynamic solution using the powerful LS–DYNA® solver, and 

eventually reviewing the results in the ANSYS® post–processing Graphical User 

Interface (GUI). The geometry and results information can also be transferred 

between ANSYS® and ANSYS/LS–DYNA® to help perform chronological 
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implicit–explicit and explicit–implicit analyses, such as those required for drop–test, 

spring–back and other applications (ANSYS/LS– YNA® U   ’  M     ,     ). 

 

1.5. Aims and Objectives of the Research  

Recognising the energy absorption characteristics of structures is functional in 

analysing the damage caused by accidental or sudden controlled impacts. 

Identification of such properties is therefore necessary in order to improve the 

performance of an energy absorbing structures. 

The main objective of this research is to develop a numerical simulation tool 

for geometric optimisation of egg–box energy absorbing structures as an enhanced 

resolution to various shapes and materials. The study focuses on the way in which 

egg–box structures can be best designed to absorb kinetic energy in a controllable 

and predictable manner. The aim of the project is to establish and define geometrical 

characteristics of egg–box structures which display optimum energy absorption 

performances. 

To define limitations for the research hypothesis, commercially pure aluminium 

(commonly used in the industry for egg-box absorbers) has been employed as the 

base material for the egg–box structures. In these cellular structures energy 

absorption occurs through plastic deformation of the cell walls, which are to be 

modelled and examined using non–linear finite element simulation packages. The 

accuracy of the modelling approach has been evaluated and authenticated in 

comparison to the outcomes of experimental tests. Following the experimental work, 

the analytical technique has been used in deriving equations of total energy for the 

deformation procedure of the tested specimens. This method is used alongside the 

experimental results for the verification of the finite element simulations. 

The geometrical modelling of the structures is defined as 3D graphical 

representations, outlined in detail. Further, deformation mechanisms of the 

geometrical variations are comparatively modelled and ultimate optimised structures 

within given boundary conditions are represented. 
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The effect of variations in the geometrical features of the egg-box is broadly 

examined based on the associated force–displacement curves, in the attempt to find 

purpose–specific optimal egg–box geometries. 

By performing a comparative study of the force-displacement curves generated, 

optimised egg–box structures can be selected for specific functions. In addition, these 

curves can be used as a set of reference deformation pattern curves for various egg–

box geometries. 

Through modelling and optimisation, it will be the aim of this project to 

demonstrate the optimum cellular structural energy absorbing characteristics that will 

display a higher energy absorption capacity, while, simultaneously diminishing the 

destructive effect of a sudden impact at the initiation of its deformation process. The 

validity of these simulations will be verified against results of experimental tests as 

well as a developed mathematical model. 

 

1.6. Scope of the Thesis 

Road and automotive statistics around the world reveal that, despite taking an 

increasing number of safety measures on board to reduce the life threatening effect of 

road accidents, they still remain a main cause of human fatalities and severe injuries. 

Practical methods, such as making vehicle parts that would protect occupants 

through absorbing impact energy, should be developed to serve towards safer roads 

for both vehicle users and pedestrians. 

Amongst available options, cellular EA structures perform efficiently by 

displaying predictable deformation patterns and desirable levels of energy absorption 

capacity in addition to having advantageous physical and geometrical attributes. 

Examples of cellular EA structures include conical frusta, circular and non–circular 

tubes and egg–box panels which consist of a directionally reversed arrangement of 

flat–top cones. This research concentrates on the behaviour of egg–box energy 

absorbers, due to their benefits over the other commercially available counterparts. 

The panel under investigation is of pure aluminium alloy, which is one of the main 

materials currently being used in the industry to fabricate egg–box structure. 



1. Introduction 

 

13 

Experimental impact tests have been conducted on both panel and cell 

specimens to provide principal bases for the assessment of the numerical method 

employed herein. 

The ideal egg–box geometries that will display high levels of energy absorption 

capacities in specific applications and reduce the effect of an impact to a satisfactory 

level while maintaining a reasonably low structural weight and material consumption 

are identified and assessed. Finding such a supreme structure calls for a practical 

optimisation method. A follow through procedure is provided in this work that 

allows for modelling and testing egg–box structures of altered geometries, the 

comparison of which gives rise to optimal egg–box energy absorbing structures. 

 

1.7. Research Methodology 

Using tools such as ANSYS® and ANSYS/LS–DYNA®, the dynamic crash 

tests of egg–box structures of various geometrical characteristics and material 

conditions have been simulated. Such authentic simulation works can help observe 

the detailed behaviour of impact absorbers; studying their modes of deformation, 

benefits and drawbacks. 

To create accurate FE simulation specifications for dynamic loading, 

comparison is made with the results of experimental dynamic crash tests of egg-box 

structures with known geometrical details. Two geometrically varied aluminium egg-

box samples are selected based on size and commercial availability. The tests can be 

categorised into three groups based on the participating specimen; free-edged single 

cone, single cone within a panel and axial impact of the entire panel. In addition, the 

first two test groups are divided into two areas;                      to the horizonta ) 

                           ), to investigate the performance of the egg-box under 

different loading angels. The outcome of the experimental work validates the 

proposed numerical model. 

Evaluation of the performance of these geometries is made through a 

comparative study of their load vs. deformation curves for dynamic buckling tests. A 

series of alterations have been made to the geometry of the egg–box, based on a 
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tabular arrangement of geometrical factors including base diameter (d), apical angle 

(ω), inter-peak distance (p) and wall thickness (t), which play significant roles in the 

deformation pattern of this structure. Modifying these factors has a direct effect on 

the performance and hence the optimisation of the egg–box while the structure can 

be improved in order to comply with the requirements of various end–users. 

For the purpose of this project, sets of values are defined for each variable 

factor, in accordance to the geometrical measurements of the egg–box structures 

currently in commercial use. 

The values given to each geometrical factor are chosen in a manner to allow a 

group of geometries to be covered within each range. An averaging technique can be 

used to estimate the energy absorption characteristics of the structures whose 

geometrical features fall between two or more parameter ranges. A comprehensive 

simulation procedure and an optimisation cycle are proposed in this thesis which can 

be used to model egg–box geometries with specifically defined measurements and 

fabricated of various materials to determine their precise behaviour as energy 

absorbers. 

The final outcomes of the optimisation process conducted in the current 

research are validated using a developed analytical model. 

 

1.8. Research Questions and Contribution to Knowledge 

With the growing importance of the egg–box structure as functional energy 

absorbers in the automotive industry, it becomes necessary to have a validated 

system through which performance of the structure can be evaluated and improved. 

This calls for a repeatable and inexpensive technique such as finite element 

simulation. 

In addition, whilst a great deal of recent research has taken place on the energy 

absorption behaviour of structures and materials and significant progress has been 

made in this area, the knowledge is widely scattered when it comes to geometrical 

modelling of the cellular structures. Methods of evaluating the performance of an 
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egg–box structure when subjected to dynamic loading, modelling its geometry and 

recognising its material properties are diffused amongst analysts, researchers and 

experts. 

The modelling procedure presented and experimentally validated in the thesis 

can be used as a unified system which will facilitate information comparison for 

individuals who are associated with the structural design of the egg–box. Although 

the modelling procedure is based on the ANSYS® Graphical User Interface for the 

purpose of this study, it can be implemented in any similar 3D simulation software 

for different purposes. 

It has been observed that in the multi–objective optimisation task of the 

deformation pattern of the egg-box energy absorber, one contributing factor cannot 

be changed without affecting others. A series of follow–through procedures have 

been developed in the course of this study, which allow for modelling and evaluation 

of the performance of aluminium egg–box structures with altered geometries. The 

effect of variations in the geometrical features of egg–box structures is broadly 

examined based on their associated force–displacement curves, in the attempt to find 

purpose–specific optimal egg–box geometries. 

As the main contribution to knowledge, deformation patterns of egg–box 

structures of altered geometrical features have been comparatively examined to allow 

for the selection of appropriate geometries for certain applications. A series of 

optimum curves have been presented in Chapter 5 of the thesis. An analytical review 

of the curves, results in the introduction of an optimised combination of the egg–box 

absorbers, which satisfactorily displays the requirements of an improved structure. 

 

1.9. Thesis Outline 

A brief description of chapter contents of this thesis is presented below. 

Chapter 1 provides introductory information on primary concepts and boundary 

conditions including materials used in this investigation. It further aims to define the 

hypothesis of the thesis and the rational for the investigation. These include details 
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on energy absorption and energy absorbing structures, egg–box energy absorber 

geometrical features, finite element analysis and its application towards the 

optimisation of egg–box energy absorbing structures. The objectives, research 

contributions and design methodology of the research are provided in this chapter. 

The 2
nd

 Chapter aims to explore and exhaust the subject area from other 

researchers prospective and to make sure this investigation has fulfilled the process 

of consolidating the various strands of past research into a single narrative structure, 

describing the evolution of the research domain. It follows by the work of previously 

performed researches on the subject of energy absorption and optimisation, by 

critically reviewing a series of past and recently published literature. 

Chapter 3 covers the experimental work conducted as a part of this project. 

Information on the sample preparation, geometrical details of the sample, test 

equipment and scope, experiment procedure and result derivation are provided in this 

chapter. The results of the experimental works have been presented and 

comparatively discussed in the concluding section of Chapter 3. 

The 4
th

 chapter consists of two sections, exploring the deformation pattern of 

the egg-box both analytically and numerically. In the former part, the total energy 

equation has been developed per experimental test conducted as a part of satisfying 

the objectives of the project and preliminary calculations are made which comply 

with the experimental test results. The latter part of this chapter uses finite element 

technique and packages to model, simulate and analyse the energy absorbing 

characteristics of egg-box structures when subjected to an impact load. This section 

includes information on geometrical modelling details, material model definition, 

element selection, application of boundary conditions and loadings and result 

derivation using the pre and post processor and solver of ANSYS/LS-DYNA® FE 

package. The outcomes of the simulations are compared to that of the experimental 

work, achieving excellent correlation between results and hence, verifying the 

authenticity and accuracy of the finite element model and settings for the egg-box 

cell simulations. 

In Chapter 5 the established finite element model of the previous chapter has 

been employed to model a series of geometrically altered egg–box structures, created 
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in accordance to the values provided in a tabular arrangement of various geometrical 

factors. These structures are then impacted in a simulated dynamic test, and their 

results, produced by finite element methods, are reviewed to find application–

specific optimised geometries. Subsequently, an improved sandwich structure, 

formed by a combination of optimum egg–box geometries is introduced. The 

concluding outcome of this section is authenticated using an analytical method, 

developed to predict the performance of egg–box structures. 

Chapter 6 includes a summary of the research, discussing the outcomes of each 

chapter and relating them and reviewing them with regards to the rest of the work.  

The final chapter brings the current project to a close, providing concluding 

remarks on the achievements of this work presented herein. Possibilities of further 

works relevant to the subject area of this study have also been discussed in Chapter 

7, introducing design recommendations of research for future investigation.  
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2. LITERATURE REVIEW 

As related to the subject of this thesis, the published literature can be 

categorised into two main sections: energy absorption and optimisation. The former 

category reviews the researches and experiments focusing on the nature of structural 

energy absorption and techniques associated with this matter. In the second part of 

this chapter, studies exploring the optimisation methods of energy absorbing 

structures are studied. The objectives and outcome of these researches and their 

connection to the subject matter of this work are critically discussed following their 

citing. This review will elucidate the rationales of this research. 

 

2.1. Energy Absorption and Crashworthiness 

Energy absorption and structural crashworthiness are two main areas of 

concern in mechanical crash analysis. The Transportation Industry is the main sector 

where energy absorbing structures become applicable; not only in cars and small 

vehicles, but in fact in the fabrication of heavy vehicles, railway components, 

aerospace and ship manufacturing. Thus, this section looks at the works of 

researchers on the basics of these two concepts. 

The term crashworthiness in definition was originally described by Johnson as 

“the quality of response of a vehicle when it is involved in or undergoes an impact. 

The less damaged the vehicle and/or its occupants and contents after the given event, 

the higher the crash quality of the vehicle or the better its crashworthy properties” 

(Johnson, 1978). Later, Wierzbicki (1983) defined structural crashworthiness as the 
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impact performance of a structure when it collides with another object. For many 

decades, crashworthiness has been a necessity in the structural design of vehicles. 

In theory a crashworthy design transfers part of an impact load to the body of 

the vehicle. It is essential for the amount of this load to be less than the limit that 

would result in damage to the body that is being protected. The structure that can 

reduce the effect of this load to below its destructive limit can be called an energy 

absorbing structure. The peak of this load should also remain within a reasonable 

limit (Deb et al., 2004). Researchers have introduced various techniques for reducing 

this peak load (Hamada, 1997 and Yamazaki, 2000). 

For a more practical application, energy absorbing crash boxes in the form of 

thin–walled tubular structures have been suggested (Hanssen et al., 2001). These 

crashworthy structures would be replaceable after damage or deformation, making it 

less costly for a vehicle to be repaired after an accident. It is preferable for the energy 

absorbing structures positioned in these crash boxes to deform in a manageable and 

predictable manner. This will ensure compliance between the applied load and the 

tolerable limit of the energy absorbing structure, and in return ensuring a reduction in 

the kinetic energy and thus the severity of possible injuries on the occupants (Zini, 

2005). This is where the study of the deformational characteristics of energy 

absorbing structures becomes essential. 

 

2.1.1. Energy Absorbing Structures 

Many different energy absorbing structures, with individual properties and 

applications, are in existence for commercial use. These structures are currently 

employed in a number of applications as barriers, interior/exterior components of 

vehicles, wall/floor panels, etc. with many more potential applications still in 

development. 

Most energy absorbing structures can be categorised in one of the following 

groups: Thin–walled Circular Tubes, Thin–walled Rectangular Tubes, Thin–walled 

Hat–Section Tubes (the cross section of this structure has the shape of a top hat), 

Thin–walled Tapered Rectangular Tubes, Thin–walled Conical Shells and frusta, 
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Metallic Foams, Polymeric (Non–Metallic) Foams (Ahmad, 2009) and Cellular 

Solids (Avalle, 2006). Images of energy absorbing structures are shown in Fig. 2.1. 

Investigations have been made on each group over the years, looking at the 

characteristics of the EA structures. 

 

Figure 2.1 – Energy Absorbing Structures: (a) Thin–walled Rectangular Tubes 

(Langseth, 1998), (b) Thin–walled Circular Tubes (Olabi, 2007), (c) Thin–walled 

Hat–Section Tubes (Schneider, 2008), (d) Thin–walled Tapered Rectangular 

Tubes (Shariatpanahi, 2008), (e, f) Thin–walled Conical Shells and frusta 

(Gupta, 2006), (g) Metallic Foams (Deshpande, 1999), (h) Polymeric Foams 

(Subhash, 2006), (i, j) Cellular Solids (Deshpande, 2003, Gibson, 1997) 

 

A wide range of collapsible energy absorbing structures can be categorised 

under the group of thin–walled tubes. Such structures, with various types of 

geometrical shapes and material properties, are being extensively used in different 

structural applications. The characteristics of these structures have been studied by 

many researchers. The works of Johnson et al. (1978), Reid (1993), Hanssen et al. 

(2000a–b), Alghamdi (2001), Jones (2003) and Abramowicz (2003) provide broad 
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descriptions of the attributes of these structures and their deformational behaviour. 

Each type of structure is reviewed below. 

Zhang et al. (2009) found the energy absorption capacity of thin–walled tubes 

to be notably subjective to their material properties and geometrical features. A thin–

walled tube could have various cross sectional shapes, including but not limited to 

circular, square, rectangular, tapered and hat–sections (Ahmad, 2009). 

According to research done by Zarei et al. (2008), thin–walled circular tubes 

are light and, due to their geometry perform efficiently as energy absorbing 

structures. Another reason for their vast usage as EA structures is explained by 

Gameiro et al. (2007) to be due to their display of a reasonably constant operating 

load. A down point of this structure is its limited length, since as concluded by Zarei 

et al. (2006), the circular tube has a length limit above which it will buckle; hence a 

substantial reduction in its energy absorption capacity. As noted by Mamalis et al. 

(1983) and agreed by Yuen et al. (2008), a circular tube shows higher levels of 

energy absorption capacity compared to its square counterpart. 

Square or rectangular based thin–walled tubes were originally looked into by 

Abramowicz et al. (1984). The response of these structures to static and dynamic 

loading was investigated more thoroughly over the years by researchers such as Reid 

et al. (1986), Otubushin (1998), Hanssen et al. (1999) and Meguid et al. (2007). 

Despite similarities in their load vs. deformation curves, rectangle based tubes 

deform in a different pattern, compared to circular tubes. Reid et al. (1986) found the 

collapse mode of these structures to be through global bending. This unstable 

deformation manner can cause major reduction in the energy absorption capacity of 

rectangular tubes. Such an unstable collapse can be avoided by the use of a tapering 

technique, as suggested by El–Hage et al. (2005). This method will help the structure 

to initiate into a folding pattern which leads to a more manageable crush mechanism. 

Published literature on the characteristics of hat–section tubes, as energy absorbing 

structures, include White et al. (1999), Tarigopula et al. (2006), Fyllingen et al. 

(2009), and Peroni et al. (2009). The studies state that when subjected to axial 

loading, a thin–walled hat–section tube displays behaviour similar to that of a square 

tube. It can be understood that the energy absorption characteristics of a tube with a 

quadrilateral cross section is not greatly affected by the ratio of length to width 
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dimensions. Hence, structures with appropriate geometrical dimensions can be used 

based on the limitations of the area of application. 

An innovative form of rectangular tubes is the thin–walled tapered structures, 

which have been developed in recent studies as energy absorbing structures. In fact, 

the collapse mechanism of these structures was briefly looked into as early as 1986 

by Reid et al. It was based on this study that Nagel (2005) began a thorough 

investigation on the deformation behaviour of tapered rectangular tubes under 

various loading conditions. Their work was followed by researchers such as 

Mirfendereski et al. (2008) and Shariatpanahi et al. (2008). The latter researchers 

came to a conclusion that tapered rectangular tubes not only increase the energy 

absorption capacity through their deformation pattern, they also decrease the initial 

peak load due to their geometrical tapered shape. This in return reduces the damage 

caused by the impact load on the protected bodies (Shariatpanahi et al. 2008). In fact, 

Reid et al. (1986) proposed that to react efficiently against diagonal loadings, it is 

preferable to use tapered structures as energy absorbing components. Hence, conical 

shells can also be categorised under this group, due to their tapered geometry with a 

circular cross section. 

Thin–walled conical shells and frusta have been utilised in various types of 

energy absorption applications such as marine and aviation structures, due to their 

predictable crush pattern and high energy absorption attributes (Gupta et al. 2006). 

Researchers have studied the crush and energy absorption response of these 

structures, as subjected to axial compressive loading, axial inversion, axial splitting, 

lateral bending, lateral indentation, lateral flattening and dynamic loading (Jones, 

1989; Singace et al., 2001; Lu et al., 2003; Prasad et al., 2005; Gupta et al., 2007; 

Sheriff et al., 2008 and Ahmad, 2009). The chance of buckling or global bending in a 

conical shell is much less than in a circular tube, which makes this structure a better 

substitute (Gupta et al., 1999). In comparison, it also shows a more stable 

deformation pattern and high levels of specific energy absorption (Mamalis et al. 

2005). In 2003 Deshpande et al. studied the characteristics of closed top conical 

frusta in an effort to find a deformation pattern for egg–box cellular structures. They 

found that the behaviour of these structures displays a pattern that can be expanded 

into more complex structures consisting of arrangements of conical frusta. As an 
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enhancement factor, Reid et al. (1986) stated that all shell and tube–like structures 

can be reinforced using the method known as foam filling. 

Foam filling can significantly enhance the energy absorption characteristics of 

a structure at very low additional weights. Foams can be open or closed–cell based 

on the connections between their pores (Lu et al., 2003). Gibson (1997) and his 

research team declared that foam material can deform extensively under low levels 

of stress prior to reaching the densification strain point. Advantage is being taken of 

these structures in the automotive industry where high energy absorbers of low 

weight are considered ideal (Cheon et al., 2004). Gibson et al. (1997) proposed a 

mathematical relationship between the stress–strain plateau of the foam material and 

its relative density. The equation directly relates the stress over strain ratio of the 

foam to the square of its relative density, multiplied by a constant which, from test 

data, is determined to be approximately equal to 1. From this equation it is deduced 

that foams with higher relative density display higher strength, while their 

deformation length shortens. It is therefore necessary to design foam material per 

application (Gibson et al., 1997). 

Deshpande et al. (2000) and Reyes et al. (2003) have studied the behaviour of 

foam structures fabricated from different materials. These can be categorised into 

two main groups of metallic or non–metallic (polymeric) foam material. 

Metallic foams are a relatively new class of energy absorbing structures, with 

the ability to absorb substantial amounts of impact energy as a positive result of their 

light weight (Banhart, 2001). Currently, metals such as magnesium, iron, copper, 

zinc, titanium and aluminium are used in the production of metal foams (Ahmad, 

2009). However, according to a research performed by Lu et al. in 2003, aluminium 

has received the greatest attention in this area and aluminium metal foams count as 

superior foam structures. Zarei et al. (2006) reported a 25% weight reduction in 

vehicles containing energy absorbing aluminium foam parts in their design. 

Aluminium is also used in foam filling of hollow structures. An alternative is the use 

of low–density polymeric (non–metallic) foams. This energy absorbing structure 

offers a number of advantages such as the capability of undergoing large 

deformations and absorbing high amounts of energy, without displaying any large 

permanent distortions (Triantafillou et al., 1989). 
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In 2010, Jeon et al. performed a number of finite element analyses on the 

plastic collapse of closed–cell aluminium foams with X–ray computed tomography, 

claiming that an increase in the 0.2% offset yield stress of the foam material will 

increase the magnitude of the plateau stress, while a decrease in the power–law 

hardening exponent not only increases the magnitude of the plateau stress but also 

modifies the shape of the plateau stage. It has also been stated that an increase in the 

0.2% offset yield stress with a decrease in the power–law hardening exponent, causes 

an extreme increase in the magnitude of the plateau stress (Jeon et al, 2010). Despite 

the favourable magnification of the plateau stress, the research group ignore its 

simultaneous effect on raising the initial load peak. Such a high load peak would 

mean a greater amount of the shock load transferred to the supported body in the 

initial stage of an impact. 

The attributes of polymeric foams are widely recognised, as the new provisions 

in the Federal Motor Vehicle Safety Standards make the use of polymeric foam 

materials inside motor vehicles a compulsion in order to protect the occupants during 

accidents (FMVSS, Standard No. 302). Other characteristics of this structure include 

its rate–independent behaviour during loadings as well as its consistent performance 

in different loading directions (Sherwood et al., 1992). 

As mentioned before, reinforcing the thin–walled structures with foams can 

increase their energy absorption to considerably higher levels. Many researchers 

have studied the performance of different foam–filled tube–like structures such as the 

studies made on foam–filled square tubes by Aktay et al. (2006), Hanssen et al. 

(2000b), Santosa et al. (2000); Seitzberger et al. (2000) and Zarei et al. (2008), 

Zhang et al. (2009) with the general conclusion that longitudinal compression load 

and energy absorption value of foam-filled square tubes is higher than the sum of 

that of aluminium foam and empty tube due to friction and interactions between the 

tube and foam. In transverse direction, the compression load and energy absorption 

ability of foam-filled square tubes are significantly lower than those in longitudinal 

direction. 

In addition, investigations made on the characteristics of foam–filled circular 

tubes by researchers such as Borvik et al. (2003), Kavi et al. (2006), Toksoy et al. 

(2005) and Yan et al. (2007), also concluding that the combination of tube and foam 
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has stronger energy absorption characteristics compared to empty circular tubes or 

foams alone. 

Foam–filled hat sections have also been looked into by researchers such as 

Chen (2001) and Song et al. (2005). The works of Mirfendereski et al. (2008) and 

Reid et al. (1986) provide information on the behaviour of foam–filled tapered 

rectangular tubes under various loadings while the effects of foam–filling conical 

shells have been investigated by Gupta et al. (1999). Contradictory comments have 

been made on the weight saving benefits of the foam filling technique. Lampinen et 

al. (1982) commented that below a certain wall thickness in the tubes and shells, the 

filling tends to become heavier than the original structure; hence the weight–saving 

benefits would no longer exist. On the other hand, researchers such as Santosa et al. 

(2000), Banhart (2001) and Reyes et al. (2004) claimed that aluminium foam filled 

metal tubes are weight effective with the increase in energy absorption capacity. 

Studies find foam–filling to be superior to thick tube walls, referring to the 

deformation pattern of the structure which can be influenced by the changes of the 

geometrical factors (Asavavisithchai et al. 2004). 

Cellular solids are structures consisting of an arrangement of thin–walled tubes 

or shells, attached to each other at sides or corners. Cellbond Composites Ltd., a 

specialist in the production of energy absorber structures, currently utilises materials 

such as aluminium, polycarbonate, ABS (Acrylonitrile Butadiene Styrene) and 

combinations of them, to create purpose–specific impact absorbing structures. The 

Company expertises in the production of cellular solid EA structures including 

Honeycomb absorbers and egg–box structures. The latter is patented by the 

Company under the name of PressLoad (Ashmead, 2000). The structural details and 

geometrical properties of this structure were introduced in a conference paper 

released by the Company (Ashmead et al., 2000); this information will be provided 

later in the text. A great deal of emphasis has been put on improving the performance 

of Honeycomb energy absorbers within Cellbond as well as their simulation and 

numerical analysis (Asadi and Shirvani, 2006). A number of Honeycomb based 

energy absorbers have been introduced by the Company, varying in their structural 

design and material types, which are used as side and frontal impact barriers in the 

automotive industry. The characteristics of Honeycomb barriers have been 
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investigated by Cellbond engineers both experimentally and numerically. Studies 

include the evaluation of the accuracy of a finite element model representing the 

IIHS side impact barriers (Asadi et al., 2007a), generating an advanced FE model for 

the AE–MDB side impact barriers (Asadi et al., 2007b), development of a numerical 

model for NHTSA impact barriers (Asadi et al., 2008b), modelling and analysing the 

ODB impact barriers in LS–DYNA® using solid elements (Asadi et al., 2008a) and 

comparing the latter model with a shell–based simulation of the same barrier (Asadi 

et al., 2009). These Honeycomb barriers are designed to present the bumper of 

specific vehicles according to the regulations associated with their application. 

A recent study was made on the crashworthiness of a new type of honeycomb 

sandwich, known as kagome honeycomb, under axial crushing loads (Zhang et al., 

2010). The intention was to expand the plastic deformation zones of this structure 

and improve its energy absorption efficiency. It has been found that the kagome 

sandwich column has higher mean crash force and better energy absorption 

characteristics than a foam–filled column with the same foam density. Another group 

of researchers performed compressive tests on foam–filled composite egg–box 

panels, through collaboration between Chung–Ang University of Korea and UK’  

Cambridge University. It was found that the foam–filled composite egg–box 

sandwich panels offer a satisfactory energy absorption capacity with a stable collapse 

response resembling an ideal energy absorber (Yoo et al, 2010). 

Research has also looked into the behaviour of cellular structures such as 

honeycombs and egg–box energy absorbers. Deshpande et al. (2003) look at the 

static loading of these structures, claiming that their mathematical and analytical 

model for predicting the behaviour of closed–top cones (frusta) can be expanded to 

study the characteristics of egg–box structures. The outcome has been validated 

against finite element simulations and experimental tests. The second group of 

researchers investigate the dynamic crushing of aluminium egg–box structures. The 

effect of variances of material properties and physical boundaries on the deformation 

response of these structures has been studied. With the aid of FE simulations and 

experimental testing they observe that velocity dependence present in the level of 

structural strength of the egg–box structure is mainly due to the strain–rate sensitivity 

of the aluminium material from which it has been manufactured Zupan et al. (2003). 
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It is concluded in both studies that the energy absorption capacity of aluminium egg–

box structures is comparable to that of metallic foams (Deshpande, 2003 and Zupan, 

2003). 

More recently, Nowpada et al. (2009) have studied various stages of the 

collapse and crashworthiness of aluminium egg-box structure under quasi-static 

compressive loading. A comparison with the deformation behaviour of concertina 

tubes reveals that the drop in strength displayed with these structures is diminished in 

the egg-box structures. Thus they conclude that egg-box energy absorbers can play a 

significant role in improving the crashworthiness of vehicles. In 2010 Nowpada et al. 

looked at the use of egg-box panel for pedestrian safety and found it to be an 

adequate cushion to be utilized in HGV truck front as an additional energy absorbing 

layer (Nowpada et al., 2010a). Later the research group extended their work to 

investigate the deformation pattern of the egg-box geometry under quasi-static 

loading using numerical methods. They employed the FE packages HYPERMESH® 

and LS-DYNA® as their numerical simulation tools and successfully validated the 

FE models against experimental results. Comparing the energy absorption capacity 

of a number of different boundary condition situations, Nowpada et al. (2010b) 

concluded that the natural occurring restraint within the egg-box panel due to its 

repetitive geometry amplifies its energy absorption characteristics. 

Among other studies, an investigation was made on the deformation and energy 

absorption capacity of composite silicon rubber egg–box panels by Chung et al. 

(2007). Their conclusion stated that the compressive behaviour of this composite 

structure is affected by the local stacking sequence of the layers of silicon as well as 

shear deformation during initial lay–up and draping (Chung, 2007). 

Further investigations on the characteristics of the egg–box structures as an 

innovative and ideal group of energy absorbers can increase knowledge towards their 

optimisation and development. Previous scientists, such as Deshpande et al. (2003) 

and Nowpada and Chirva et al. (2010) have instigated the performance of the egg-

box under static and quasi-static loading while this project intends to expand this 

investigation into reviewing the dynamic response of these structures. 
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2.1.2. Deformation Modes 

The specific energy absorption and other mechanical and material 

characteristics of a structure must be investigated in order to meet detailed design 

requirements. All researchers working on the different types of energy absorption 

methods and components study the behaviour of their system prior to putting it to 

practice. 

 

 

Figure 2.2 – Typical Stress vs. Strain Curve 

 

The typical stress vs. strain curve of an energy absorbing structure, as shown in 

Fig. 2.2, consists of three sections; the deformation begins in the elastic region 

followed by a slightly increasing plateau beyond the yield point in the plastic region 

and a sudden increase in strength as the densification strain is reached (Deshpande et 

al., 2000 and Gibson et al., 1997). The collapse pattern of a structure plays a direct 

role in the amount of energy it absorbs. Reid (1993), Alghamdi (2001), and Ashby et 

al. (2000) define certain relationships between these two factors for different energy 

absorbers and loading types. 

Many researchers have been studying the modes of deformation of energy 

absorbing structures such as thin–walled tubes, conical shells, metallic foams and 

cellular solids when subject to axial compressive loading (Mamalis et al., 1983 and 

1986; Ashby et al., 2000; Bardi et al., 2003 and Deshpande et al., 2003). Through a 
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series of experimental, analytical and numerical analyses, these studies concluded 

that the energy absorption in thin–walled tubes and shells as well as both open–cell 

and closed–cell metal foams is mainly by the initiation of plastic hinges and the 

bending of cell edges. Other investigations agree that the collapse pattern of conical 

shells is the diamond mode with the exception of geometries that consist of a      

                         (Mamalis et al., 1984; Gupta et al., 1997; El–Sobky et al., 

2001 and Prasad et al., 2005). 

According to Deshpande (2003) cellular honeycomb structures deform through 

the formation of a series of folds occurring on each cell of a panel and hoop 

stretching of the cell walls among individual folds. 

As one of the objectives of their study, this group of researchers demonstrates 

that, similar to that of conical frusta, the initiation of deformation in egg–box cellular 

structures is also due to the formation of travelling plastic hinges within every 

individual cell of this structure. The latter research group as well as Zupan et al. 

(2003) define three different collapse modes for the egg–box structure, based on its 

boundary conditions: 1) a simply constrained egg–box panel deforms through a 

travelling hinge mechanism, 2) an entirely unconstrained egg–box structure collapses 

through an inversion of the truncated cone followed by axisymmetric plastic 

buckling, and 3) an egg–box panel with bonded face sheets becomes deformed via an 

axisymmetric plastic buckling. Reference has been made to the works of these 

researchers in this thesis. 

 

2.1.3. Experimental Testing 

Repetitive compressive deformation tests and crash experiments are 

conventional methods of studying the behaviour of energy absorbing structures. 

Researchers such as Mamalis et al. (1986) based their investigations on experimental 

methods primarily, certifying their outcomes by comparison against approximate 

theoretical estimations. This method, as employed in this study, remains to be used 

as a tool for numerical and analytical data verification. Despite their accuracy 

benefits, such tests are not always desirable due to the expenses associated with their 

conductance and the complexities involved with repeating tests to exact measures. 
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Researchers have experimentally examined the collapse mechanism and energy 

absorption characteristics of tube–like structures. Abramowicz et al. (1989) 

successfully validated the theoretical results of their proposed analytical method for 

predicting the crush behaviour of multi–corner prismatic columns, against their 

experimental results. The energy absorption of aluminium rectangular and circular 

tubes under axial impacts have been experimentally investigated by Kim et al. (1999) 

to find that symmetric folds were formed in the circular tube specimens while 

asymmetric folds were formed mainly in the rectangular tube specimens. This results 

in a comparatively better energy absorption by the circular tubes. 

During impact, the kinetic energy of the impactor is transferred into strain 

energy of the material; kinetic energy of the structure; and the energy created to form 

deformation (Finn et al., 1991). Studies show that a sharp impactor has a greater 

potential to induce impact damage than a blunter impactor does. A sharp impactor 

with smaller impact energy is able to generate the same damage as a blunt impactor 

of higher incident energy (Mosallam et al., 2008). 

As relevant to the subject of this study, researchers such as Deshpande et al. 

(2003), Zupan et al. (2003), Akisanya et al. (2006), Chung et al. (2007) and, 

Nowpada et al. (2008, 2009, 2010) use quasi-static and dynamic experimental testing 

to investigate the deformation behaviour of the egg-box structure as an energy 

absorbing element. From these experimental works some researchers proceed to 

developing analytical and numerical models. 

In practice, during an impact event, especially in road accidents, the load 

applied to the impacted body is not purely of axial or bending nature. In fact the 

collapse follows a complex manner under a combination of axial and off-axis or 

oblique loads. Such loadings cause energy absorbing structures installed in the 

vehicle body to deform through both axial and global bending collapse modes. The 

structure tends to deform through a global bending when subjected to an oblique load 

which reduces the energy absorption capacity of the structure. It is therefore 

important to study the behaviour of energy absorbing structures under oblique 

impacts in addition to axial loadings. 
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Some studies have investigated the oblique loading response of aluminium 

square and circular tubes both experimentally and numerically (Han and Park 1999; 

Reyes et al. 2002; Borvik et al. 2003; Reyes et al. 2003). These studies show that the 

initial peak load, the mean load and the energy absorption capacity drop drastically 

with increasing load angle away from the vertical. Reyes et al. (2004) and Borvik et 

al. (2003) examined the crush response of foam-filled square and circular tubes 

respectively, under axial and oblique quasi static loading with a load orientation 

range of 0-  ˚ with the vertical. Numerical results showed that a global collapse 

                                                                 , resulting in a 

reduction of the energy absorption capacity and the experimental results supported 

the outcome. 

Karbh         .      )                                                       

                                                                         -     

                                      -   . This study also showed that the angle of 

load orientation can significantly influence the energy absorption performance of 

conical tubes, in terms of the reduction in the energy absorption capacity. Ahmad 

(2009) also looked at the impact and energy absorption of empty and foam-filled 

conical tubes to facilitate their application in energy absorbing systems under axial 

and oblique loading conditions by designing quasi-static and dynamic experimental 

tests. 

However, research information on the crush and energy absorption response of 

egg-box structures under axial or oblique impact loading is limited. As a validation 

method for the FE models simulated in this study, dynamic tests are conducted on 

egg-box structures. The experiments include impacting an entire panel axially as well 

as observing the behaviour of a single c                                     angle 

both within an egg-box panel and as a free-edge part. 

 

2.1.4. Analytical Modelling 

For decades, the development of mathematical models has been a common 

means of exploring the energy absorption characteristics of a variety of energy 

absorbers under different loading conditions. Such theoretical methods are based on 
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simplified models of the problem alongside a number of assumptions. This can be a 

very approximate measure, since, due to its simplicity, it ignores many geometrical 

and physical factors that could potentially affect the outcome. However, along with 

an experimental or numerical model, analytical modelling can be a valuable source 

of result validation. 

Prior to the introduction of commercial finite element codes, empirical 

modelling was widely used to study the energy absorption response. An analytical 

method was originally formulated by Alexander (1960) as a solution to analysing the 

axisymmetric crush of thin-walled cylindrical shells under static axial loads. 

Alexander uses simplified kinematic mechanisms by assuming a kinematically 

admissible deformation field on the basis of experimental observations or theoretical 

assumptions. 

Many researchers work on developing more accurate theoretical models for 

solving the behaviour of complex deformation patterns and structures. Alexander 

(1960), Abramowicz et al. (1986), Grzebeita (1990), Gupta et al. (1997) and 

Deshpande et al. (2003) have made attempts on proposing and developing new and 

existing analytical models for measuring the collapse mechanism of energy 

absorbing structures. The derivation of such theoretical models involves 

comprehensive mathematical approaches. These models are generally based on the 

results of experimental tests. Theoretical approaches can be counted as suitable tools 

for initial measurements of the behaviour of a structure especially in less complex 

systems. 

The less complicated theoretical model can be used in predicting the collapse 

response of structures. Sheh et al. (1992) developed a simple theoretical model, to 

provide approximations on a frontal vehicle crash. To increase the calculation speed 

and accuracy of the theoretical models of the complex system, methods such as finite 

element analysis were utilised. 
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2.1.5. Numerical Simulation and Analysis 

The introduction of Finite Element (FE) packages to the world of structural and 

mechanical calculations has been an invaluable tool in studying the characteristics of 

energy absorbers. In general, these structures tend to display complex deformation 

behaviours which, in practice, cannot be accurately modelled using the traditional 

analytical methods. With the use of the correct FE software, designers can simulate 

accurate models representing the static or dynamic crushing of certain energy 

absorbers under different loads (Farley, 1986). This technique becomes extremely 

valuable in the initial design of energy absorbing structures such as vehicles body 

parts. Finite element analysis can be accurate, time–saving and inexpensively 

repeatable. 

Many structures of various geometries and materials have been modelled by 

researchers as parts of their investigation on the energy absorption characteristic of 

the structures. The outcomes of the models can help validate the analytical or 

experimental results. 

Researchers use different packages for the purpose of the structural analysis of 

the deformation of energy absorbers. Abramowicz (2003) used CRASH CAD® to 

study the bending and axial collapse of thin–walled energy absorbing tubes in 

vehicles. Through definition of the desired cross–section for the tube, their detailed 

analysis of the dynamic crash behaviour of the vehicle produced satisfactory 

outcomes which were in agreement with the experimental results. In their study of 

1999, Langseth et al. modelled the axial impact of square aluminium tubes using the 

explicit finite element code LS–DYNA®. They studied the effect of impact mass and 

velocity on the deformation mechanism of the tube. In line with the time–saving 

benefits of using FE packages, Langseth et al. (1999) took advantage of the 

symmetrical geometry of a square tube and by applying the appropriate boundary 

conditions, modelled one quarter of the entire aluminium tube, thus reducing the time 

of analysis. The results obtained in their experimental programme were agreeably 

comparable to the predictions of their dynamic simulations. Their FE simulation 

gave good evaluation of the final profile shape in addition to a force-displacement 

curve with a ratio of 0.87–1.0 between FE and experiment. 



2. Literature Review 

 

34 

The selection of the FE package is based on the material and geometrical 

attributes of the structure as well as the details required from the output data. 

Researchers such as Karagiozova et al., (2000 and 2004) used the explicit code of 

ABAQUS® for their simulation purposes. More simplified models can be solved 

using the implicit package such as ABAQUS/Standard V.5.8 used by Karagiozova et 

al. (2001). 

Depending on the complexity of a structure and the conditions for which it is 

being tested, an FE replica can be produced by 2D axisymmetric modelling or 3D 

          ,                           ’                                     . A j    

(2000) employed the 2D axisymmetric modelling technique to simulate the inversion 

of plastic tubes using ABAQUS® 5.7-3. Good agreement was obtained between the 

experimental results and their FE predictions. This 2D method can help save 

computation time by reducing the number of components. 

Other studies on this subject area include the research of Santosa et al. (1998, 

2000) on foam material and foam filling of EA structures. Chen et al. (2001) and 

Reyes et al. (2004) also studied the bending collapse and torsion deformation of 

these structures. Mamalis et al. (2001) carried out an FE simulation of the axial 

compression of metallic thin–walled square frusta. The FE code LS–DYNA® has 

largely been used by designers and engineers. Many researchers in the energy 

absorption area have used LS–DYNA® to simulate models and verify results against 

experimental and theoretical approaches. The investigation on the vehicular impact 

on a portable concrete barrier done by Ulker et al. in 2008 is one such example where 

LS–DYNA® pre and post–processor are used to model in details an available crash 

test in order to develop a set of charts for assessing the barrier displacement and 

related variables prior to entering the design phase (Ulker et al, 2008). 

Researches performed on the characteristics of energy absorber structures using 

AN Y ®         O          .’                                            ed oblong 

tube energy absorbers. The implicit version of ANSYS® was used to simulate the 

quasi–static lateral compression of nested systems (Olabi et al., 2008). Morris et al. 

also used the implicit ANSYS® in 2006 in the analysis of nested tube type energy 

absorbers with different indenters and exterior constraints. In a more recent study at 

Dalian University of Technology in China, ANSYS® was used to investigate the 
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crashworthiness of kagome honeycomb sandwich cylindrical energy absorber 

columns under axial crushing loads (Zhang et al, 2010). 

A group of researchers used the nonlinear ANSYS/LS–DYNA® code to 

analyse and simulate the inversion processes of a specific type of tube under axial 

compression (Zhang 2009). Another group used ANSYS/LS–DYNA® to investigate 

the relations between configuration parameters of double–walled hexagonal 

honeycomb cores and their out–of–plane dynamic plateau stresses at various impact 

velocities (Deqiang, 2010), all achieving satisfactory predictions of the experiments. 

Within the Cellbond Composites Company, preliminary work has already been 

carried out looking at the finite element modelling of some egg–box geometries. 

Depending on the area of application, based on the maximum temperature, the level 

and angle of impact, and the boundary conditions that the structure will be subjected 

to, egg-boxes can be produced from metallic or non-metallic (polymeric) material 

(Ashmead et al, 2000). 

Furthermore, Zupan et al. (2003) proposed a 3D finite element shell model of 

the egg-box since, despite the correct collapse modes, the calculations that had been 

made using their original axisymmetric finite element model gave less accurate 

                            ’                      . In this study, 3D FE models 

were developed and validated against the results of experiments in order to further 

analyse the geometrical features of egg-box structures and their effect on the 

deformation pattern of the absorber. Although their predictions were improved with 

the 3D simulation, the material model they defined to model the aluminium alloy, 

lacked adequacy in taking into account the rate sensitivity and failure of the material. 

This issue is addressed in the study in hand. 

 

2.2. Optimised Energy Absorption 

Modifications made to the vehicle safety standards and requirements call for 

constant improvements in the crashworthiness and performance of energy absorbing 

structures. In their research on the design optimisation of vehicle components, Avalle 
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et al. (2002) stated that vehicle parts should be redesigned regularly, in order to 

enhance the global performance of all means of transportation. 

In order to find the optimal structures, many individuals and industries have 

endeavoured to improve the quality of their designs and processes. With the 

availability of advanced and powerful computing methods, a greater number of 

options can be examined and the objectives can be rapidly achieved (Choi, 2002). 

Prior to designing an optimal energy absorber, it is necessary to study its 

deformational behaviour. As described by Harte et al. (2000) the force–displacement 

curve of an ideal energy absorber displays a long flat plateau at its plastic region. 

Tubes, shells and cellular solids satisfy this deformation pattern to different extents. 

Mamalis et al. (2003) described three individual stages for the deformation 

pattern of an optimised energy absorbing structure: 

 Stage 1: Initially the specimen behaves elastically and the load rises to a 

peak value followed by a sudden fall. 

 Stage 2: The load increases with increasing deflection associated with 

the formation of lamina bundles bending inwards and outwards. The 

wedge formation is complete when the load starts oscillating. 

 Stage 3: Stable crush with the formation of inward and outward fronds 

which spread radially in the form of a mushrooming failure. The 

external fronds develop axial splits due to the developed tension. Axial 

fibres bend inwards or outwards without fracturing, whilst fibres 

aligned in the hoop direction can only expand outwards by fracturing 

and inwards by fracturing or buckling. 

These three stages can be individualised per structure type and function. 

A research group from the University of Guilan explored the energy absorption 

of square aluminium tubes using multi–objective genetic algorithms for Pareto–

approach optimisation of the energy absorption of square aluminium columns both 

with and without aluminium foam filler. Their findings suggested that non–filled 

columns were preferred over foam–filled ones for desired energy absorption levels of 
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no more than 4.8 kJ, however, where higher levels of energy absorption is of interest, 

foam-filled columns will perform more favourably (Nariman–zadeh et al. 2006). 

Gupta et al. (2006) also looked at the deformation pattern and energy 

absorption attributes of circular tubes under quasi static and dynamic impact loading, 

both numerically and experimentally. They varied geometrical parameters such as 

the wall thickness and diameter to find that the energy absorption capacity of circular 

tubes in dynamic tests is around 1.56 – 12.3% higher than in quasi–static tests, while 

the initial peak load amplifies by about 14.33 – 40.25%. In addition, they came to the 

significant conclusion that both the crush load and energy absorption capacity 

increase with greater thickness and diameter values. 

According to Nagel et al. (2006), a tapered rectangular tube can perform as an 

ideal EA structure in dynamic applications where combinations of both axial and 

oblique loads are present. The study concludes that, below a defined limit of critical 

load angle, the energy absorption capacity of a tapered rectangular tube decreases 

with the increase in the load angle. This claim was verified by Liu (2008) in a later 

research. 

In 2007, Hou et al. investigated on the single and multi-objective optimisation 

of energy absorbers in general and thin-walled rectangular tubes specifically. The 

research group looked into optimising the cross-sectional dimensions of multi-cell 

tubes to enhance their energy absorption characteristics. Their study indicated that 

improvements implied to each objective will only enhance the overall behaviour of 

the system to a certain extent, while it simultaneously affects the other objectives 

negatively. In their research an optimisation algorithm was defined to seek optimal 

parameters for both criteria of maximising the energy absorption and reducing the 

peak crushing force. The group concluded that the former objective is achieved with 

more cross-sectional cells while the crush force does not follow a pattern in the cases 

of optimising either objective (Hou et al., 2007). 

In the deformational performance of conical shells and frusta, geometrical 

features, such as wall thickness, diameter, angle, height, etc., and material properties, 

             ’         ,            ,                     ,        ’       ,    .,     

play a significant role. The relationship between geometrical and material features 
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and the critical buckling load of conical shells is expressed by Spagnoli et al. (1999) 

in the form of an equation, making evident the effect of these features on the 

behaviour of the structure. A set of experimental and numerical tests, performed by 

various researchers, helped describe the characteristics of an ideal conical shell 

(Gupta et al., 2006, 2007, 2008; Mamalis et al., 2005 and Sheriff et al., 2008). Gupta 

(2007) explained that the rate at which a load is applied also affects the energy 

absorption capacity of the structure. In dynamic loading, the increase is at 

approximately 8.93 – 49.6% while in quasi–static load cases, it is for angles varying 

between  .          .    and at mean diameter to thickness (D/t) ratios of between 

22.32 and 79.29 that the load increases. 

A comprehensive parametric study will reveal the effect of various geometrical 

and material parameters on the deformation mode, mean load and absorbed energy of 

the conical shell energy absorbing structures. The current study evaluates the effects 

of changing various geometrical parameters on the deformation pattern of egg–box 

energy absorbing structures under dynamic impact loads. 

 

2.3. Optimisation of Egg–box Structures 

Despite the significance of egg–box cellular solids as enhanced energy 

absorbing structures, not a great deal of research has been dedicated to investigating 

their performance and development. 

In a 2010 study, Yoo et al. performed a series of compressive tests, at different 

loading and material conditions, on foam–filled composite egg–box panels. They 

came to the conclusion that foam–filled composite egg–box sandwich panels offer a 

good energy absorption capacity with a stable collapse pattern resembling the ideal 

energy absorber. 

Works of researchers such as Nowpada et al. (2009, 2010a,b), Yoo et al. 

(2010), Chung et al. (2007), Akisania et al. (2006), Deshpande et al. (2003), Zupan et 

al. (2003) and Ashmead et al. (2000), focus on the effects of factors such as material 

alterations, loading conditions and some geometrical modifications, on the 

deformational pattern and energy absorption characteristic of the egg–box structure. 
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However, no comprehensive sets of data are available on the effects of geometrical 

alterations on the performance of egg–box energy absorbers. 

According to Akisania et al. (2006), an egg–box is effectively a square array of 

conical frusta. Based on Gupta’  (2007) comments, in conical frusta, modifications 

of geometrical factors directly affect the behaviour of the structure; hence, it can be 

concluded that an egg–box structure can be geometrically designed to perform in an 

optimum manner. Based on this conclusion, this project attempts to geometrically 

optimise the structure of the egg-box. 

 



3. Experimental Testing 

 

40 

 

 

 

 

 

3. EXPERIMENTAL  STUDIES 

3.1. Introduction 

For the purpose of validating the computer aided simulations proposed in this 

study as the optimisation tool for enhancing the energy absorption capacity of the 

egg-box structure, a series of experiments have been designed and conducted herein. 

The tests include axial and oblique impacts of free-edged single cells separated from 

egg-box panels, axial and oblique impacts of single cells situated within panels and 

axial impacts of entire egg-box panels. This chapter includes details on the 

specimens used, their material properties, preparation procedure, the test equipment 

as well as the techniques employed and the results of the experiments. 

 

3.2. Material Details and Sample Preparation 

In this study two geometrically different egg-box samples are impacted. The 

samples were fabricated from aluminium sheet metals. Commercially Pure (CP) 

annealed 1050 H111 aluminium sheets, consisting of 99% aluminium, with 

thicknesses of 0.8mm and 1.0mm were used in the production of specimens. 

The 1XXX series aluminium alloys consist of 99.0% or higher levels of pure 

aluminium. The letter H applies to alloys which have their strength increased by 

strain-hardening, with or without supplementary thermal treatments, to produce 

partial softening. The H is always followed by two or more digits. The first digit 

indicates the specific combination of basic operations. H1 applies to aluminium 

alloys which are strain-hardened to obtain the desired mechanical properties without 

supplementary thermal treatment. The number following the designation indicates 
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the degree of strain-hardening with 0 being the softest and 9 designating an extra 

hard alloy. So the hardness of this alloy is of the first degree, i.e. it is a soft alloy. 

The third digit indicates that the degree of control of temper or the mechanical 

properties are different from, but within the range of, those for the two-digit H 

temper designation to which it is added. H111 applies to alloys which are strain-

hardened less than the amount required for a controlled H11 temper (USA Dep of 

Defence, 1966). 

 

 

(a) 

 

(b) 

Figure 3.1 – Stress vs. Strain Curves of CP Aluminium Sheets (Zupan, 2003) 

(a) Measured Tensile Behaviour of Al 1050 H111 Sheets 

(b) Dynamic Stress vs. Strain of CP Al at Selected Strain Rates 
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Al1050 is a grade of aluminium used for general sheet metal work where 

moderate strength is required. The material properties of the alloy are provided in 

Figure 3.1(a). Figure 3.1(b) also shows the stress-strain curves of this material for a 

range of strain rates. 

The sheets were cold–pressed between lubricated closed dies into egg–box 

shaped sheets, then cut to panels with overall cross dimensions of 300 × 300 mm
2
, at 

Cellbond Composites Ltd. The dimensions and geometrical details of the two sample 

sets are presented in Table 3.1 in accordance to the factors shown in Fig. 3.2. Factors 

(R) and (r) are approximate measures. From a comparison between the dimensions of 

the samples it is evident that they were selected to vary in size in order to consider 

structures of different relative densities and strengths. 

 

 

Figure 3.2 – Geometrical Dimensions of Egg-box Cells 

 

Geometrical 

Factors 

W 

(mm) 

d 

(mm) 

p 

(mm) 

h 

(mm) 

t 

(mm) 

R 

(mm) 

r 

(mm) 

ω 

(deg) 

Sample 1 75 24 103 12 0.8 50 2 48 

Sample 2 36 10 52 6 1.0 50 2 53 

Table 3.1 – Egg–box Cell Dimensions 
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3.3. Impacting System and Data Recording Devices 

The egg-box panel specimens are impacted by drop masses of 5500g and 225g, 

for the entire panel and the single cells respectively, as shown in Fig. 3.3. The 

weights are directed to free fall at a contact speed of 6ms
-1

. The loading mass and 

velocity of the impactor can be increased or decreased as appropriate. Zupan et al. 

(2003) suggest impacting egg–box panels of below 1m
2
 cross sectional area with an 

impactor mass of 5.5kg moving at a velocity of 6m/s. 

A cubic mass of 225g with cross-sectional dimensions of 72mm × 72mm which 

is approximately 70% of the plan view area of a cell is used for impacting free-edge 

single cells. Cylindrical weights are made per sample with dimensions relative to the 

peak diameter of the sample. These impactors are used for impacting single cones 

within a panel. A flat impactor is used for drop tests on the entire egg-box panels 

with a surface area of approximately 70% of that of the panel. The edges of the 

impactors are given a 1mm,     chamfer to reduce the damage from a sharp corner as 

described in Mosallam et al. (2008). 

 

 

Figure 3.3 – Dimensions of Impactors Used in Dynamic Tests 

 

A drop tower (Fig. 3.4), designed and built within the laboratory for 

experimental work of similar nature,                                     . T         

                   ,                                             and placed on rigid 

metal wedges for stability as shown in Figure 3.5. 
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Figure 3.4 – Drop Tower and Boundary Fixtures 

 

In the flat tests involving single free-edge cones cut from the panel the body 

will be resting freely on the solid and rigid surface below with no constraints. For the 

oblique tests of the same specimen, the structure is freely placed at the bottom of the 

tilted support where it is resting on the end bracket to prevent it from sliding. 

 

 

Figure 3.5 –     Wedges Placed Below Impact Surface for Oblique Loading 

 

Where the entire panel is taking part in the test, the samples are required to be 

simply supported by the base of the tower and boxed in from four sides to prevent 

any lateral movements.  
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Initially a simple hollow box, as shown in Fig. 3.6, was proposed to stop the 

panels from being laterally displaced. However, since the egg-box samples obtained 

were not cut in an entirely square cross section, it would not have been possible to 

box all samples at all four edges. 

As a resolution to the boundary condition issue, an alternative adjustable 

boxing technique was proposed and designed which covers all irregularities of panel 

edges and allows for full restraining of the samples against all lateral shifts. It can be 

seen in Fig. 3.7 that brackets with L-shaped cross sections are placed on four sides of 

the rigid support surface. Each bracket has three oval shaped bolt holes. The screws 

are loosened to allow for moving and tilting of the brackets. Once the sample panel is 

fully restrained with the brackets, the screws are tightened and all lateral movements 

are prevented. 

 

 

 

Figure 3.6 – Initial Design of Device for Boxing Egg-box Cell 
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Figure 3.7 – Boxing Technique 

 

The applied force is measured using a Loadstar® universal low profile pancake 

load cell with ±0.05% accuracy class and the data is recorded through a 1000kg 

capacity Loadstar® digital interface with 5000Hz data update rate. 

To measure the acceleration over time from which the relative displacement is 

derived, an accelerometer is needed to be installed on the system. A simple 

calculation can be made in order to select the appropriate accelerometer. Assuming 

an approximate total time of t=0.003s for a typical impact at a contact speed of 

v=6m/s, acceleration (a) could be measured as: 

 

  
 

 
 

 

     
           

 

then to find the required G-levels for an accelerometer: 
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Therefore, the accelerometer to be used must be sensitive for G-levels of more than 

200G. A high frequency industrial accelerometer with ±500G is placed on the 

impactor for this purpose. The high frequency output rate will allow for enough data 

to be recorded in a small fraction of time. With the short duration associated with an 

impact, the high frequency sensor would be able to trace adequate data per 

microsecond. 

The outputs of the sensors are transferred to a computer equipped with 

appropriate software which can save the data for future calculations and graphing. 

 

3.4. Dynamic Impact Experiments on Egg-box Specimens 

Three sets of tests are performed per sample type including flat impact of the 

entire panel, flat impact of a single cell within the panel and oblique impact of a 

single cell within a panel. For sample type 1 two extra set of tests are conducted 

including flat impact of a free edge single cell and oblique impact of a free edge 

single cell. Due to the small geometrical features of sample type 2 and the velocity of 

the impact, the latter test has been omitted for this sample type. The samples are 

simply supported in all cases, with no lateral movements in the first three test types. 

To reduce experimental errors and ensure data accuracy, each experiment is 

repeated for 5 specimens from each sample, giving a total of 40 tests. 

In the flat impact experiment, the 5500g drop mass is designed and directed to 

freely fall on the egg-box panels. The samples are aligned within the drop tower and 

the load is released. The measured data are accumulated and saved through the 

system. The results of 5 flat impact tests on sample type 1 and 5 flat tests on sample 

type 2 are provided in the upcoming section and discussed later in the text. 
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A tube-like structure is used to guide the cylindrical drop weights towards 

single cells within the egg-box panels. The drop masses although different in 

diameter, weigh the same 225grams. The guiding tube is designed to have a groove 

along its length to reduce the effect of air pressure below the falling weight as well as 

avoiding turbulence. 

The drop masses are centred with the cell as well as the load cell prior to the 

impact taking place. Out of axis loads applied on the load cell can reduce its 

accuracy and functionality. For both flat and oblique tests of single cones data are 

recorded to be further analysed. 

 

3.5. Results of Flat and Oblique Impact Experiments 

Provided in this section are the results of the experimental work explained 

above. The outcomes are briefly discussed in this chapter. The main objective is to 

use this information towards the validation study of the finite element models 

presented in the following chapters. Upon achieving reasonable precision, it can be 

shown that the response of test specimens could be predicted using numerical models 

with sufficient accuracy. 

Free-edged single cells of sample 1 are initially impacted with a 225g           

                                                               (load direction shown in 

Fig. 3.5). As explained previously, for the oblique loading, the rigid support surface 

is tilted and the cell is aligned with the bottom bracket to avoid sliding. The results of 

these tests are provided in Figure 3.8 and 3.9 for the 5 specimens. 

In quasi-static deformation of free-edged single egg-box cones, as reported by 

Nowpada et al. (2010), the deformation procedure initiates with the flattening of the 

peak curvature. However, in the dynamic impact, due to the speed of the loading, 

following the initial contact, the material begins to stretch. The signs of low strength 

displayed by the structure at this stage are due to the friction present between the cell 

and the supporting surface. With no constraints present at the edges, the trench 

corners at the edge of the cell begin to curl upwards, slightly increasing the strength 

level in return. The force level is continuously elevated as the deformation 



3. Experimental Testing 

 

49 

progresses. In a respective order the deformation continues by plastic hinges forming 

at the peak to trench transition lines, peak curvature flattens and then goes through 

inversion, the top cone of the cell is plastically deformed and eventually, the force 

level rises at a steep slope as full compaction occurs. 

 

 

Figure 3.8 – Result Curves for Impacting Free-edge Single Cell        

 

 

Figure 3.9 – Result Curves for Impacting Free-edge Single Cell at     
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When a similar free-edged single cone specimen is subjected to an oblique 

load, the side of the cell which is initially touched by the edge of the impactor starts 

bending at the contact line. The thin shell structure shows very little resistance to this 

preliminary load. Due to the presence of the support surface extension acting as a 

stop at the bottom of the cell, as the deformation progresses, this end begins to curl 

upwards, causing a slight rise in the force-displacement curve. The impacting surface 

eventually reaches the peak cone and the entire structure begins to fold, hence the 

force level begins to increase further. Finally the impactor hits the tilted support 

surface resulting in a steep rise in the curve. T                   .  .                 

               . As a consequence of the freedom present at the cell edges in the first 

two test types, the force-displacement curves enter the plastic region at very early 

stages of deformation. 

Illustrated in figures 3.10 – 3.13 are the resultant curves of the impacts on 

single cones within the egg-box panel stru                    . A brief review of the 

force-displacement curves resulted from these tests reveals the effect of the 

continuity of the egg-box panel. With the adjacent cells partially restricting the 

lateral stretch of the impacted cell, the strength level of the cell rises to almost 1.6 

times the free-edged specimen as shown in Table 3.2. Additionally, the entire 

deformation behaviour of the cone would be different. 

Once the cell is impacted by the cylindrical weight, an inversion process of the 

peak cone begins with travelling hinges forming at the peak circle circumference. 

The translation of this occurrence in the curve is the initial steep rise. 

Simultaneously, the neighbouring trench cones show minor signs of deformation in 

the base curvature region. The procedure will continue until the travelling hinges are 

no longer present and the inversion of the cone will cease. 
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Figure 3.10 – Result Curves for Impacting Single Cone of Sample 1        

 

 

Figure 3.11 – Result Curves for Impacting Single Cone of Sample 2        

 

In the oblique impact of a single cone situated within an entire egg-box panel, 

the cylindrical mass, centred with the peak diameter, initially comes into contact with 

a corner of the peak curvature. Meanwhile, the cone is bent over a diameter of the 

peak circle inline with the impactor edge. The four neighbouring cones in this 

situation will be acting contradictorily; the two cells positioned above the impacted 
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cell, in terms of the impact location, will be stretched in tension while the lower two 

cells will be slightly compressed as part of the impacted cone tilts in their direction. 

 

 

Figure 3.12 – Result Curves for Impacting Single Cone of Sample 1        

 

 

Figure 3.13 – Result Curves for Impacting Single Cone of Sample 2        
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From a comparison between curves of Figures 3.10 and 3.11 with Figures 3.12 

and 3.13, respectively, it can be seen in Table 3.2 that a single cone loaded obliquely 

has an average load which is approximately half of that of the same cone loaded 

vertically. This proves the fact that with more acute angles between the impact 

direction and the horizon, the strength of the egg-box energy absorbing structure 

decreases. 

On another note, despite different geometrical measurements, both samples are 

showing similar average force levels. This is due to the larger concentration of cells 

in sample type 2 in comparison to sample type 1. As mentioned in the Introduction 

chapter, shorter inter-peak lengths mean higher cell density within constant panel 

cross-sectional dimensions. 

         .        .                                impact test for sample type 1 

and 2, respectively. It can be seen that both cases follow the same pattern. The crush 

response curve shows a primary rise in load in the elastic region with the initiation of 

deformation corresponding to the bending/flattening of the peak curvature about its 

circumference. This is followed by a kink and change in the slope of the curve as it 

enters the plastic region with the appearance of travelling plastic hinges at the top 

and bottom, and eventually at the mid-point of the cell walls. 

The presence of neighbouring cells and the assumption of the panel being 

continuous, minimises the effect of material stretching in the deformation process 

due to flat impact. The crush load remains moderately constant with the progression 

of deformation up to the point where the peak and base of the cells reach the same 

point. The steep rise in the curve emerging past the point of densification illustrates 

the bottoming phase where no more plastic hinges will appear. It can be seen that the 

densification is occurring at around 75% of the entire height of the panel. 

As expected, comparison between the graphs of single cone and entire panel for 

each sample shows that the average load level of a single cone is less than 10% 

(Table 3.2) of that of the entire panel in cases with restricted boundaries. 

Fig. 3.16 shows the samples as impacted with regard to each test type. The 

disfiguration patterns can be linked to the deformation procedures described earlier 

in this section. 
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Figure 3.14 –                                                            

 

 

Figure 3.15 – Result Curves for Dynamic Impact of Sample 2               

 

The experimental work reported in this chapter will be used in conjunction with 

analytical equations presented in the following chapter to validate finite element 

simulations associated with each test procedure. Upon agreement in results of the 

three methods, the numerical technique can be developed to be employed in the 

0 

2 

4 

6 

8 

10 

12 

0 5 10 15 20 

Fo
rc

e
 K

N
 

Displacement mm 

Sample 1 - Flat Impact on Panel 

Experimental test 1 

Experimental test 2 

Experimental test 3 

Experimental test 4 

Experimental test 5 

0 

2 

4 

6 

8 

10 

12 

14 

0 2 4 6 8 10 

Fo
rc

e
 k

N
 

Displacement mm 

Sample 2 - Flat Impact on Panel 

Experimental test 1 
Experimental test 2 
Experimental test 3 
Experimental test 4 
Experimental test 5 



3. Experimental Testing 

 

55 

study of the effect of geometrical alterations in the behaviour of egg-box structures, 

diminishing the need for performing destructive and expensive experimental tests. 

 

Figure # Sample # Body Tested DOF Angle of Impact 
ETotal 

(kN.mm) 

3.8 1 Single Cone No Constraint Flat 4.55 

3.9 1 Single Cone No Constraint Oblique 0.12 

3.10 1 Single Cone Within Panel Flat 7.40 

3.11 2 Single Cone Within Panel Flat 3.60 

3.12 1 Single Cone Within Panel Oblique 3.45 

3.13 2 Single Cone Within Panel Oblique 2.36 

3.14 1 Full Panel Laterally Fixed Flat 77.89 

3.15 2 Full Panel Laterally Fixed Flat 67.76 

Table 3.2 – Total Energy Absorbed by Structures under Experimental Impact 

 

 

Figure 3.16 – Post-impact                          -                  

                         -                                                       

                                                                         

               , (e) Sample 2 Single Cone within Panel Imp                  

                                                 , (g) Sample 1 Full Panel 

Vertical Impact, (h) Sample 2 Full Panel Vertical Impact 



4. Theoretical Consideration 

 

56 

 

 

 

 

 

4. THEORETICAL CONSIDERATION 

4.1. Introduction 

In order to enhance the performance of egg-box energy absorber structures 

under impacts, it is necessary to understand their behaviour in detail. It would, hence, 

be beneficial to have the means to study the progresses of the deformation procedure 

at various stages. However, with the very short duration of an experiment between 

the moment of impact and full compaction, it would not be possible to perform such 

in depth analysis. Such exploration becomes possible using methods such as 

analytical and numerical techniques to model an impact scenario. This allows for a 

thorough evaluation of the deformation process at any stage as it progresses. Such 

theoretical tools can also be used in predicting the behaviour of a structure prior to 

the application of physical loading. 

Analytical models of the experimental impact tests conducted on various egg-

box cell samples, as reported in the last chapter, are generated in the first section of 

this chapter. The developed equations are then used to review the outcomes of 

Chapter 3. Additionally, in the subsequent section of the current chapter, finite 

element technique has been used to simulate the aforementioned experiments. As 

well as presenting the modelling details, this section explores the requirements of a 

finite element simulation to ensure maximum result precision. The FE output 

curvatures have been successfully validated in conjunction to the experimental 

resultant curves. The high level of data precision verifies the competence of the FE 

models. 
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4.2. Analytical Modelling 

The analytical approach can be used to approximately measure and evaluate the 

energy absorption characteristics of the egg–box structures. By developing an energy 

equation for the impact scenario of the egg-box, the total amount of energy absorbed 

through structural deformation can be approximately calculated. The result would be 

valuable in the preliminary assessments of the outcomes of experimental impact 

tests. 

As described in the work of Nowpada and Chirwa et al. (2010), the total energy 

absorbed by structures such as egg-box is equal to the total work done during the 

deformation procedure. Equations 4.1 to 4.5 are adaptations of the formula generated 

in the aforementioned research for quasi-static loading of egg-box cells, modified in 

accordance to the dynamic response of the identified specimen. 

Equation 4.1 shows the works done in the vertical impact of the free-edged 

cells. The work quantities have been derived based on the developing deformation 

stages of the cell following an impact. Complete description of the procedures can be 

applied as explained in Chapter 3. 

The deformation procedure initiates by the outward stretching of the cell edges 

with a work value of           .          relates to the work done to gradually coil 

the unconstrained base corners as the deformation proceeds. The first          is the 

work due to the formation of plastic hinges at the peak to trench transition lines 

which is followed by the flattening of the peak curvature, causing               to 

take place. Due to the appearance of an additional travelling hinge at the peak 

circumference, causing the inversion of the cone, the second          is done 

bringing the deformation process to an end. As the walls of the cell slide over the 

impactor and support surfaces, friction occurs between each two faces. Hence it is 

also important to take            , the work due to friction into account. The above 

works add up to be equal to the energy absorbed through the deformation of the cell. 

 

                                                     
 
  4.1 
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For the oblique impact of the free-edged cell, the total works done is derived as 

given in equation 4.2, where the deformation begins with the impacted side of the 

peak cone bending at line of contact with a work value equal to           . The 

structure begins to slide along the horizontal component of the applied load, causing 

the end corners of the cell to roll upwards against the supporting surface and creating 

        . The peak cone then starts to fold on the side left intact. The work due to the 

folding phenomenon is shown in the equation as           .             also is work 

done due to the friction present between contacting surfaces. 

 

                                            4.2 

 

T                                                     -                         

                            . When vertically impacted, the peak curvature initially 

flattens, at a work value of              . This is followed by the formation of two 

sets of travelling hinges. First group of hinges appear over the circumference of the 

peak cone, resulting in the inversion of the cone. This is followed by travelling 

hinges appearing at the trench circumference, causing their inversion. With the 

presence of the neighbouring cells, the effect of stretching and twisting of the ends 

disappears. The sum of the works done due to each of these deformation patterns is 

shown in equation 4.3 as: 

 

                           
 
           .    4.3 

 

The oblique impact of the single cell within the panel, for both sample sizes, 

causes the peak cone to bend in the load direction, stretching the material behind it 

and compressing them beneath, at works of            ,            and 

              , respectively. The friction present between the impactor surface and 

the egg-box shell will result in the work value            , shown in equation 4.4. 
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                                                  4.4 

 

As for the most momentous experiment, equation 4.5 can be used to evaluate 

the total energy absorbed in the flat impact test by adding the works involved in the 

deformation process. Subsequent to the impact, the deformation initiates by 

flattening of the peak curvature, done by              . This is followed by the 

development of plastic hinges at top, bottom and middle of the cell walls with a work 

shown as         .            is the load due to bending of the cell walls with the 

progression of the deformation. Friction present both above and below the sample is 

dealt with via             at all stages of the deformation. 

 

                           
 
                       4.5 

 

Considering the rule of the conservation of energy, it can be assumed that the 

kinetic energy (KE) of the free falling impactor mass would be equal to the potential 

energy (PE) of deformation (eq. 4.6). 

 

                    4.6 

 

Expanding this equation gives: 

 

 

 
   

            ,       4.7 
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where (m) is the impacting mass,      is the speed of the impactor, (g) is the 

gravitational acceleration, (H) is the total height of a cell and      is the force of the 

impact. The impact force can be defined as; 

 

                 4.8 

 

Hence, based on equations 4.7 and 4.8, the impact stress      can be derived as: 

 

   
 

 
   

 

  
,         4.9 

 

with (A) being the area of the impacted structure which is in contact with the drop 

mass. The total energy absorbed in the impact event          can, ultimately, be 

calculated from equation 4.9 as: 

 

              
  

 
      .       4.10 

 

The densification point of the panel     , for egg-box panel structures starts at strain 

values of around 0.6-0.8 (Deshpande, 2003, Akisanya, 2006, Cheng, 2007) and can 

be mathematically defined as: 

 

         ,         4.11 

 

which indicates the depth where the sample approaches the point of densification. 
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The total energy for the egg-box panel samples tested as reported in Chapter 3 

is calculated in Table 4.1, from equation 4.10 to be approximately equal to 

74kN.mm, at densification depths of 18mm and 9mm based on equation 4.11, for 

sample types 1 and 2, respectively. 

As associated with the force-displacement curve of an impact, the total energy 

absorbed by an egg–box cell during crush can be defined as the area roofed by this 

curve up to the point of densification. 
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Table 4.1 – Total Energy Calculations 

 

A review of the force-displacement curves of the two aforementioned 

experiments approves the analytical estimation. For sample 1, the area under the 

curve (Fig. 3.14) is approximately equal to 78kN.mm and the same value for the 

second sample type (Fig. 3.15) is 68kN.mm. The conformity of calculations from the 

analytical method and the test data force-displacement curves is used as a supporting 

initiative in conducting further experimental work. 

The mathematical method considered here is based on the mechanics of a two 

dimensional profile of the samples. It is obvious that the analytical results are 

approximate. In the next section, the samples are modelled as 3D replica to analyse 

the performance of the structures under impact. 
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4.3. Finite Element Modelling 

To be able to observe and analyse the behaviour of a structure under the 

influence of various physical stresses, it is initially necessary to accurately model its 

geometry. Depending on the type of the structure, severity of the need for outcome 

precision, the level of symmetry of its geometry and the loads it is subject to, this 

finite element model can be made in a 2D or 3D environment. 

Finite element software such as ANSYS® can be used to produce two and three 

dimensional geometries. As an advantage ANSYS® offers modelling tools in its pre–

processor division, while it supports both solid modelling techniques, referring to 

them as modelling via interface software, and modelling through ANSYS® 

Graphical User Interface (GUI). 

 

4.3.1. Geometrical Model 

T        “               ”                AN Y ®                   

opposed to a techniq  ,                                  “                 ,”       

the model of a structure is generated directly through the definition of nodes and 

elements without the presence of any geometrical shapes pre–defining the perimeters 

and corners of that structure. This method is very time consuming and complicated 

unless when used for geometrically simple systems where design optimisation is not 

of any interest. Solid modelling technique has been used in this study as the means to 

simulate impact of the egg-box structure. ANSYS® 13.0 documentations provide a 

list of the cons and pros of this technique (ANSYS® 13.0, 2010). 

An evaluation of the structure in hand reveals that the egg–box geometry, being 

a three–dimensional complex volume which consists of curvatures and arches, 

requires the use of Boolean operations and mesh refinement. Hence solid modelling 

technique is selected to generate the cell geometry. In fact, when it comes to the 

optimisation of this structure, it would be greatly advantageous to have a parametric 

model which allows for further modifications of the geometry. It would be beneficial 

and time saving, to generate a model directly through ANSYS® pre–processor, 

whether this is by command definition or using ANSYS® GUI. 
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The finite element model, made to represent the egg–box geometry, can be 

generated by translating simple cones. However, to reduce the size of the model and, 

as its direct effect, the time of the analysis, advantage can be taken of the geometrical 

symmetry of cones ergo the egg–box structure. 

The three dimensional egg–box cell models for each of the two sample sizes are 

presented in Figure 4.1. The cells are modelled in ANSYS® pre–processor to the 

most accurate dimensional approximations. It should be noted that the thickness of 

the aluminium surface of the egg–box is introduced in the pre–processor as the 

virtual thickness of a thin shell element. In other words, the geometrical model 

generated herein does not have a physical thickness. Instead, this value is designated 

in the form of a real constant to the elements, by which every part of the cell would 

be covered. 

 

 

a) Sample 1 

 

 

b) Sample 2 

Figure 4.1 – FE Model of Egg-box Cells a) Sample Type 1 and b) Sample Type 2 

 

Subsequent to the generation of the geometry of the specimen, the finite 

element model has to go through a preparation phase, where every physical aspect of 

the practical experiment, including boundary conditions and loadings, would be 

simulated and applied to the model. 



4. Theoretical Consideration 

 

64 

The principal outcome of this section would be to generate and validate a finite 

element model with regards to the specifications of the dynamic impact experiments 

and explore the finite element results in comparison to the data obtained from the 

experimental works. 

 

4.3.2. Material Properties 

As stated in the previous chapter the egg–box samples were fabricated out of 

Commercially Pure (CP) Al1050 H111 aluminium alloy metal sheets which consist 

of 99% aluminium. The sheets were cold–pressed into egg–box shaped panels with 

overall dimensions of 300mm × 300mm lubricated closed dies. 

The selection of a material model is extremely important in a simulation. To 

model materials in ANSYS® or ANSYS/LS–DYNA®, it is necessary to initially 

understand the characteristics of the material. In dynamic analysis, the strain rate 

dependency of a material plays a rather significant role in the behaviour of the 

structure. Therefore, to achieve result accuracy, a material model has to be defined 

which would account for this aspect of material physics. 

ANSYS/LS–DYNA® offers a number of pre–defined rate dependent material 

models that are more or less similar in their physical behaviour, while their major 

differences is the solution methods and the input options of the model. Since its 1998 

edition, LS–DYNA® offers a strain rate dependent multi–linear elastic–plastic 

material model called MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY, 

which was specifically added for modelling the failure of aluminium material. This 

model takes multi–linear elastic–plastic material properties such as stress–strain 

curves in addition to taking the strain rate dependency of a material into 

consideration. 

As opposed to that of its unmodified counterpart, this model offers enhanced 

failure criteria (ANSYS/LS– YNA® U   ’  G       . ,     ). T               

such improved failure criteria in the formulation of the material model allows for the 

structural elements to collapse beyond their point of ultimate plastic strength. With 
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this option, the entire structure should demonstrate a more realistic behaviour. In this 

case, failure is based on effective plastic strain. 

The Modified Piecewise Linear Plastic material was found to be most 

appropriate to represent the CP aluminium for the purpose of the test simulations. 

The material properties provided in Chapter 3 were implemented in the material 

model to represent the true characteristics of the aluminium alloys utilised. 

 

4.3.3. Mesh Generation 

The egg–box structure was modelled using the ANSYS/LS–DYNA® shell 

elements Shell163. This element is designed for dynamic simulations, therefore it has 

12 degrees of freedom, translations, accelerations, and velocities in x, y and z 

directions and rotations about the nodal x, y and z axes, at each node. More thorough 

description of the properties of Shell163 can be accessed in ANSYS/LS–DYNA® 

Us  ’  G          ).  

The default Belytschko–Tsay method, which is recommended for most 

applications, was chosen as the element formulation. This method is known to be of 

high–speed in solving for elements since it uses reduced integration. However, in this 

study, three integration points were selected at all times for further accuracy of the 

results. The element was checked and approved for compatibility with the material 

model used. 

Selective, yet continuous, mesh densities were used in different parts of the cell 

in order to take into consideration the miniature curves of the peak and base surfaces 

as well as the surface of transition from peak/base to walls, while maintaining a 

sensibly short solution time. The egg–box cell was divided into approximately 3900 

shell elements and around 4000 nodes. 

 

4.3.4. Boundary Conditions 

In order to accurately model the symmetrical continuity of the cell in the egg–

box panel, it is necessary to define appropriate boundary conditions. To prevent the 
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in–plane lateral expansion of the egg–box finite element model, as done in the 

experimental tests where the entire panel was involved, all the edge nodes of the 

single cell had to be restrained from translational movement in the horizontal 

directions as well as all rotational movements about the nodal axes. Also based on 

the practical test environment, it was assumed in all simulations that the egg–box 

panel was resting on a solid surface, with negligible horizontal movement. Hence, a 

solid surface was defined, positioned directly beneath the egg–box cell. The surface 

was limited to having no lateral or rotational movement, i.e. fully fixed in all 

directions. 

The impactor surface was modelled in the form of another solid surface with the 

weight and physical properties of the drop mass. The only load set to be directly 

applied on the egg–box cell was its own gravitational weight. 

To introduce the concept of structural solidity between objects represented, it 

was set for the entire model to have structural contact properties applied on all the 

outer surfaces both within one body and when in contact with other parts. The 

ANSYS/LS–DYNA® Surface to Surface and Automatic Single Surface contacts 

were used for this purpose. Properties such as static and dynamic friction coefficients 

and birth and death time of the contact were also introduced to the software based on 

the experimental test conditions, to ensure further accuracy. 

The impact test simulations were categorised into three groups based on the 

level of lateral constraints applied to the system; a single cell with no lateral 

restrictions on its edges, a single cell situated amongst neighbouring cells and a cell 

representing any cell in-situ in the panel. The first model was simulated to 

characterise the flat and oblique impacts of the free-edged single cell. The second 

model corresponded to flat and oblique impact experiments conducted on one cone 

within the panel, while the flat impacts of the entire egg-box panel was simulated 

with the last cell model. 

In the flat impact experiments of the entire egg–box panels, the samples were 

enclosed in a box, with a cross sectional area 1.4 times the surface of the drop mass 

to ensure enough number of cells are subjected to impact to replicate the continuous 

structure of an egg-box panel. This positioning restricted the egg–box panel from all 
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lateral movements. Hence, in order to reproduce the boundary conditions applied to 

the egg–box panel and to allow for the continuity of its cells, all the edge nodes of 

the simulated model were restrained from any lateral movement in the horizontal 

direction. Similar to the previous models, the cell was modelled to be resting on a 

solid and rigid surface, to be crushed from above by the impacting surface 

representing the drop weight. 

The drop masses were modelled with identical cross-sectional dimensions and 

physical properties as those used in the experimental work. The weight of the flat 

panel impactor was adjusted to represent the share of a single cell from this mass. In 

all cases the surface was limited to travel in the vertical direction only. The effect of 

gravity was introduced to the impacting surfaces as an acceleration of 9810mm/s
2
 

applied on the nodes. 

Once all the influential factors are taken into consideration, the egg–box cell 

model can undergo the dynamic analysis. Figure 4.2 shows a geometrical sketch of 

the egg–box cell resting on a solid surface with the impactor positioned above it. 

 

 

Figure 4.2 – Egg–box Cell Impact Simulation 

 

4.4. Verification and Critical Analysis of the Results 

Figure 4.3 to 4.10 show the force-displacement curves of the LS–DYNA® finite 

element analysis for the dynamic impact of egg–box cells. The resultant curves are 

compared to the outcomes of the experimental tests. 
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A reasonable correlation is evident between the results of the ANSYS/LS–

DYNA® FE analyses and the experimental axial and oblique impact of the egg–box 

cells. Despite slightly different termination values, both curves commence the 

deformation process and reach the densification point at around the same 

displacement values. 

 

 

Figure 4.3 – Result Curves for Impacting     -                        

 

The equal areas beneath the curves up to the densification point validate the 

simulation accuracy by the total amount of energy absorbed. The smooth trend of the 

curves representing the outcome of the experimental tests is achieved by applying a 

low pass filter to the results received from the data recording devices. 
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Figure 4.6 – Result Curves for Impacting Single Cone of Sample 2        

 

 

 

Figure 4.7 –                                                            
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Figure 4.9 – Result Curves for Dynamic Im                               
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            –                                                            

 

Fig. 4.11 shows the different stages of deformation for the axial impact of the 

entire panel, in association with the load-deformation curve. The structure has been 

circled in the image where a major transformation is in occurrence. 

It can be deduced from the finite element curves of Figures 4.3 to 4.10 that the 

simulation specifications implemented in ANSYS/LS–DYNA® are rationally 

accurate. In the upcoming chapter the validated settings and constructed models will 

be used to perform dynamic impact analyses on egg–box structures of various 

geometries towards achieving the main research objective of developing purpose–

specific optimised egg–box structures. 
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Figure 4.11 – Progression of the Deformation Procedure for Flat Impact 
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5.  ANALYSIS AND OPTIMISATION                                    

OF MODIFIED EGG-BOX 

5.1. Introduction 

In this chapter, the constraints in the path towards the optimisation of egg–box 

structures have been discussed and the finite element model developed and validated 

in Chapter 4 has been employed en route for finding egg–box geometries that 

respond satisfactorily to the requirements of an optimal structure. The effects of 

geometrical variations on the performance of this energy absorber are explored based 

on the outcomes of the finite element analysis of the axial impact of the structure. 

Subsequently, a sandwich structure with optimum characteristics has been proposed 

in accordance to the analyses data which displays structurally desirable 

characteristics in comparison with its single panel counterparts. The enhanced 

performance of the proposed sandwich structure has been confirmed by the use of 

analytical approaches. 

 

5.2. Geometrical Alterations 

Various parameters, as detailed in the Introduction Chapter, can participate in 

the optimisation of structures such as egg–box energy absorbers. Systematic 

alteration of these factors will result in a set of design combinations which can 

consequently be compared in correspondence to one or more objectives, to establish 

an optimised model.  
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Table 5.1 – Egg–box Cell Dimension Data for Geometrical Optimisation 

 

 This table is in correspondence to the dimensional parameters of Figure 1.3. 

 The main blocks of the table represent the value of cone height, (h) in mm for each combination. The actual height of each cell (H) would 

be twice this number. 

 All combinations are designed to R = 50mm and r = 2mm. 

 Cross hatched blocks indicate designs that are geometrically invalid or practically flat. 

 The cell height decreases with an increase in the apical angle as well as an increase in the diameter. 

 In each angle division, the height is greater with greater inter–peak distances. 

 The cell height remains unchanged with the changes in the thickness. 
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The approach, used in this study, to achieve optimised outcomes is mainly 

based on Table 5.1. This table is categorised in terms of five geometrical variables, 

angle (ω) in degrees, thickness (t) in mm, inter–peak distance (p) and top diameter 

(d) both also in mm, and, as the result of their combination, cone height (h) in mm. It 

is assumed here, as a complexity reduction factor, that parameters (R in mm), base 

and peak curvature radius, and (r in mm), wall to top transition radius, remain 

constant for all combinations, since, in practice, their range of variance is relatively 

insignificant. 

The series of values assigned to each parameter cover a reasonably wide range 

of possible inputs in consistence with the geometrical measurements currently in use 

in the industry. Various other inputs can be positioned among these arrays, which can 

go through a systemised procedure as required, for modelling and optimisation. 

 

5.3. Simulation Configurations 

All geometries of Table 5.1 have been modelled and simulated to be impacted 

by a loading mass of 5500g at a speed of 6m/s similar to the experimental tests 

conducted as a part of this project. As with the finite element model developed in 

Chapter 4, in the simulations presented in this section, cells are restrained to have no 

lateral movements to resemble a complete egg–box panel. A solid surface placed 

below the cells acts as the base of the test machine where the egg–box would be 

resting in a practical experiment. 

The average value of the total force       , applied by the impactor on the 

egg–box panels in the following impact tests can be calculated as, 

 

               
  

      
       5.1 

 

where, (   is he mass of the impactor and (        is the crush acceleration which 

can be expanded in definition by      which is the impact velocity, divided by the 
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time of the crush         . The latter value is taken as an average between all the 

models tested. Hence, implementing the relevant numbers in equation 5.1, the force 

value also becomes an average quantity and is equal to, 

 

           
  

  

     
                . 

 

As a measure of accuracy of a simulation, it can be checked that the average 

value of the impact load absorbed by the structure is reasonably less than and in 

agreement to the value of       . Therefore, in the following impact simulations, the 

average value of the load–deformation curve on the load axis should be more or less 

around 3.3kN. 

In order for the comparative analysis to be pragmatic, it was ensured for all FE 

tests to be based on identical factors in every area with the only discrepancy being 

the geometrical features of the egg–box cell model. After the solution phase, the 

Force vs. Displacement curve for each FE run is derived and used as the measure of 

behaviour assessment. 

 

5.4. Systemised Assessment 

To organise the large number of combinations of Table 5.1, an initial 

assessment is made amongst models sharing similar angles, thicknesses and inter–

peak distances. This was achieved through evaluating models of different top/base 

diameters, which otherwise belong to the same category, against one another to 

generate the best diameter selection. 

As explained previously, the evaluations presented herein seek two qualities in 

an improved model; maximised impact energy absorption and minimised impact 

peak load. The outcome curves of the combinations given in Table 5.1 are presented 

in the following sections along with the explanation of their characteristics. 
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5.4.1. Geometrical Variations at ω     

The force–displacement curves of egg–box geometries with vertical angles of 

    at peak to peak distances of 20, 45 and 60mm and 0.8, 1.0 and 1.2mm wall 

thicknesses are comparatively reviewed in the upcoming figures. Finite element 

models of the egg-box cells belonging to this group of geometries are shown in 

Figures 5.1, 5.5 and 5.9 for different diameter, (d) values. The shell elements can 

take the three thicknesses as per relevant case. Figures 5.1, 5.5 and 5.9 are 

individually associated with the curves following them. The cells illustrated in the 

same image vary in peak/base diameter. Each cell represents three models with 

different thicknesses while the apical angle and the inter-peak distance remain 

constant in all cells shown in the same figure. It is important to note that, with 

appropriate boundary conditions introduced to the models, each cell shown here 

represents an entire egg-box cell with a cross-sectional dimension of 300×300 mm
2
. 

 

 

Figure 5.1 – FE Models of ω=   , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15mm 

 

Evaluation is based on the increase or decrease in the peak/trench diameter in 

different geometries. The value of the diameter varies between 5mm to 50mm 

depending on the inter–peak distance of a particular model. It would not be 

geometrically practical for the (d) value to be larger than the (p) defined per model. 

Hence, as can be observed in the figures presented below, where curves are 

associated with a geometrical group of p=20mm, the value of (d) only rises up to 

15mm, while with larger (p) values, such as 60mm, the top/base diameter can be 

increased to as large as 50mm. 
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Figure 5.2 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.3 – Force vs. Displacement Curves of FE Simulation 

for ω    , t=1mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.4 – Force vs. Displacement Curves of FE Simulation  

for ω    , t=1.2mm, p=20mm and d=5, 10, 15mm 
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Figure 5.5 – FE Models of ω    , p=45mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.6 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.7 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 
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Figure 5.8 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=45mm and d=5, 10, 15, 20, 30,40mm 

 

 

Figure 5.9 – FE Models of ω    , p=60mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.10 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 
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Figure 5.11 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.12 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

Figures 5.2, 5.3, 5.4, 5.6, 5.7, 5.8, 5.10, 5.11 and 5.12 represent the force–

displacement curves associated with the geometrical combinations of Table 5.1 that 

are categorised under (ω) of 15°. The increase in the peak to peak distance indicates 

wider cells hence egg–box panels with smaller cell densities. This means that in the 

same cross sectional area, a panel of p=20mm has more egg–box cells than a panel of 

p=60mm. 

In accordance to the general characteristics mentioned in the previous section, 

it is evident from the curves of Figures 5.2 to 5.6 that with the increase of the inter–

peak distance (p), the peak strength of the panel rises. This is a direct result of the 

greater cell density in the specimens with smaller (p) values. At the presence of more 

cells to initiate the deformation process, a larger amount of the impact shock is 

absorbed and vice versa. 
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From the effect of changes in the thickness factor and the inter–peak distance, it 

can be concluded that the egg–box panels of ω=15° with high cell densities and thin 

structure walls offer minimised initial load peak; hence, perform as efficient primary 

cushions against sudden impact to the bodies that are being protected. 

It can also be deduced from the curves of Figures 5.2–5.4, 5.6–5.8 and 5.10–

5.12 that the mean strength in geometries of similar diameter and thickness which 

disagree in (p), remains, reasonably, constant. Consequent to this consistency, it can 

be seen in the ω=15° curves that longer falls occur, following the sudden load peaks, 

in specimen of increased peak to peak distances. 

The difference in load level becomes more evident in Figures 5.4, 5.8 and 5.12 

as the walls of the egg–box cell become thicker, while, for all thicknesses, higher 

diameter models go through shorter falls. The exceptions to this pattern are 

specimens of d=5mm, which, due to their small top/base diameter, deform similar to 

cones. This effect is more evident in thicker models, since they show proximity to 

solid top conical structures, with their small diameter and large thickness. 

By taking the aforementioned comparison into account for egg–box panels of 

ω=15°, it may be proposed that structures with relatively thinner walls and larger 

top/base diameters, show more satisfactory performance and are better energy 

absorbers in the primary stages of an impact. 

 

5.4.2. Geometrical Variations at ω     

The FE simulation images and force–displacement curves associated with egg–

box geometries of vertical angle ω=    have been presented in Figures 5.13 to 5.24 

and the curves have been compared among various diameters at 20, 45 and 60mm 

inter–peak distances and wall thicknesses of 0.8, 1.0 and 1.2mm. 

In general, the characteristics observed with the previous category of egg–box 

structures also apply to this group. However, attributes specific to the models with 

(ω)        will be discussed following the presentation of the force–displacement 

curves. 
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Similar rules regarding changes in top/base diameter, and their relationship 

with the inter–peak value, as explained in the previous section apply here and 

henceforth. 

 

 

Figure 5.13 – FE Models of ω    , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15mm 

 

 

Figure 5.14 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.15 – Force vs. Displacement Curves of FE Simulation 

for ω=   , t=1mm, p=20mm and d=5, 10, 15mm 
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Figure 5.16 – Force vs. Displacement Curves of FE Simulation 

for ω    , t=1.2mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.17 – FE Models of ω    , p=45mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.18 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 
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Figure 5.19 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.20 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.21 – FE Models of ω    , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40, 50mm 
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Figure 5.22 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.23 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.24 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

As expected from the previous observations, progressing from Figures 5.14–

5.16 to Figures 5.18–5.20 and finally to Figures 5.22–5.24, it can be seen that an 

increase in (p) results in a lengthier load–displacement plateau while it 

0 

1 

2 

3 

4 

5 

0 20 40 60 80 100 

Fo
rc

e
 K

N
 

Displacement mm 

Diameter Comparison @ 
30deg - t0.8 - p60 30deg-t8-d5-p60 

30deg-t8-d10-p60 
30deg-t8-d15-p60 
30deg-t8-d20-p60 
30deg-t8-d30-p60 
30deg-t8-d40-p60 
30deg-t8-d50-p60 

0 

1 

2 

3 

4 

5 

6 

0 20 40 60 80 100 

Fo
rc

e
 K

N
 

Displacement mm 

Diameter Comparison @ 
30deg - t1 - p60 30deg-t1-d5-p60 

30deg-t1-d10-p60 
30deg-t1-d15-p60 
30deg-t1-d20-p60 
30deg-t1-d30-p60 
30deg-t1-d40-p60 
30deg-t1-d50-p60 

0 

1 

2 

3 

4 

5 

6 

7 

0 10 20 30 40 50 60 70 80 90 

Fo
rc

e
 K

N
 

Displacement mm 

Diameter Comparison @ 
30deg - t1.2 - p60 30deg-t12-d5-p60 

30deg-t12-d10-p60 
30deg-t12-d15-p60 
30deg-t12-d20-p60 
30deg-t12-d30-p60 
30deg-t12-d40-p60 
30deg-t12-d50-p60 



5. Analysis of Modified Egg–box 

 

88 

simultaneously increases the level of the initial contact load. In addition, curve sets 

of each Figure, from 5.14 to 5.24, show that, smaller top/base diameters increase the 

length of the deformation, leaving the peak load level almost intact. 

Upon comparing the characteristics of curves of Figures 5.2–5.12 with curves 

of Figures 5.14–5.24, it can be seen that the mentioned changes are constant between 

the two apical angles reviewed so far. Evaluating the models of similar diameter, 

thickness and inter–peak distance between ω     and ω    , reveals that with an 

increase in the apical angle the deformation length decreases. This is caused by a 

reduction in height which occurs in geometries with larger angles. In other words, 

there is a shorter structural depth to be deformed and hence less energy would be 

absorbed. On the other hand, models with the greater angle show smaller peak load 

values as opposed to their otherwise geometrically similar counterparts. 

 

5.4.3. Geometrical Variations at ω     

Figures 5.25 to 5.36, presented in this section, illustrate images and curves 

linked with the egg–box models having a vertical apical angle measurement of    . 

Cells of various diameters have been compared for 9 combinations consisting of 20, 

45 and 60mm inter–peak distances and of 0.8, 1.0 and 1.2mm wall thicknesses. 

 

 

Figure 5.25 – FE Models of ω    , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15mm 

 

The curves belonging to this group are expected to display peak load and 

plateau variations similar to that of models with smaller angles presented in Figures 
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5.2 to 5.24. The performance of these models will be compared to the previous 

combinations following Figure 5.36. 

 

 

Figure 5.26 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.27 – Force vs. Displacement Curves of FE Simulation 

for ω    , t=1mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.28 – Force vs. Displacement Curves of FE Simulation 

for ω    , t=1.2mm, p=20mm and d=5, 10, 15mm 
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Figure 5.29 – FE Models of ω=4  , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.30 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.31 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 
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Figure 5.32 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.33 – FE Models of ω    , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.34 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 
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Figure 5.35 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.36 – Force vs. Displacement Curves of FE Simulations 

for ω=4  , t=1.2mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 
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adverse effect, however, the peak load becomes elevated with this change in the peak 

distance, practically increasing the initial damage to the protected body. Both effects 

can be sensed from a review of Figures 5.28, 5.32 and 5.36 as an example. 

The changes in the measurement of the diameter are diversely related to the 

length of the plateau. An individual review of Figures 5.26 to 5.36 shows that with 

larger diameters, shorter deformation lengths occur at approximately the same load 

level. This is due to the reduction in the height of the cell. 

A comparison between Figures 5.26–5.36 and models of ω     (Figures 5.14–

5.24) and ω=    (Figures 5.2–5.12) indicates that amongst models of similar 
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thickness, inter–peak distance and diameter, those with smaller angles, i.e. more 

elevated height, show greater strength. The load–displacement curves of the stronger 

models bend at higher load levels and reach their densification point at longer 

displacement measures. 

 

5.4.4. Geometrical Variations at ω     

The next geometrical alteration according to Table 5.                           

                              . With the definition of the apical angle being the angle 

between the walls of the structure and the vertical axis, an (ω)        indicates a 

flatter build as opposed to the previous models. It is, therefore, expected from this 

group to have shorter deformation lengths due to their decreased heights. 

Based on the force–displacement curves presented in Figures 5.38 to 5.48, an 

assessment can be                                                                 

                                         apical angle. The curves are associated with 

models having inter–peak measurements of 20, 45 and 60mm and ranging between 

0.8, 1.0 and 1.2mm wall thicknesses. Figures 5.37, 5.53 and 5.57 show the finite 

element models for the geometries under investigation. 

Evaluating the curves of Figures 5.38 to 5.48 against the curves previously 

introduced (Figures 5.2 to 5.36) gives an indication of the difference in behaviour of 

ω     models and models with smaller apical angles. 

 

 

Figure 5.37 – FE Models of ω    , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15mm 
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Figure 5.38 – Force vs. Displacement Curves of FE Simulations 

for ω     , t=0.8mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.39 – Force vs. Displacement Curves of FE Simulation 

for ω     t=1mm, p=20mm and d=5, 10, 15mm 

 

 

Figure 5.40 – Force vs. Displacement Curves of FE Simulation 

for ω    , t=1.2mm, p=20mm and d=5, 10, 15mm 
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Figure 5.41 – FE Models of ω    , p=45mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.42 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.43 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 
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Figure 5.44 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=45mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.45 – FE Models of ω    , p=60mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.46 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 
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Figure 5.47 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30, 40, 50mm 

 

 

Figure 5.48 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=60mm and d=5, 10, 15, 20, 30, 40, 50mm 
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a shorter deformation length, almost 18mm, while the cell with the same diameter at 
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with shorter inter–peak distance, Figure 5.44, has an initial peak load value of 1.3kN 

in comparison to the geometry with longer peak to peak distance, Figure 5.48, which 

shows an initial load value of more than 1.5kN. 

An assessment of the diametrical alterations amongst models presented in 

Figures 5.38 to 5.48 shows that as the top of a cell expands, its energy absorption 
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capacity decreases. In curve of Figure 5.39, for example, it can be seen that cells with 

greater (d) values have shorter force–displacement lengths. The reason behind this 

characteristic is the shorter cell height of the geometries with larger diameters in cells 

of equal (ω), (p) and (t). In additions, it can be observed from Figure 5.39, that 

changing the diameter has very minimal effect on the peak load value of the cells, 

since the apical angle and the inter–peak distance remain constant between these 

models. 

A lower level of structural strength is exhibited in models of Figures 5.38 to 

5.48 which have larger angles between the cell wall and the vertical line. Such 

behaviour is resulted from the decrease in the height of models with larger (ω) 

values. From the geometrical point of view, this can be justified by explaining that in 

egg–box cells of equal inter–peak distances and peak/trench diameters, larger apical 

angles mean shorter distances from centre to peak. Hence, models with ω     abso   

                             ,             apical angles presented in Figures 5.2–5.12, 

5.14–5.24 and 5.26–5.36, respectively. 

The peak load value also drops with larger angles which on the contrary to the 

decrease in energy absorption, is a positive effect in the performance of an egg–box 

structure. Therefore, geometries with larger apical angles are more desirable in the 

initial stage of an impact. 

 

5.4.5. Geometrical Variations at ω=7   

In the process of evaluating the effect of the alterations of geometrical factors 

on the performance of egg–box energy absorbers, the value of apical angle (ω) is 

gradually increased to take a final             . Further increasing this component 

will result in cell models with practically flat geometrical shapes, considering the 

wall thickness of the egg–box cell. The (h) values of Table 5.1 support this theory. 

The curves included in Figures 5.50 to 5.60 are linked with models categorised 

under ω    . Cells of 20, 45 and 60mm inter–peak distances and 0.8, 1.0 and 1.2mm 

wall thicknesses have been modelled for 5, 10, 15, 20, 30, 40 and 50mm top/base 

diameters. The curves produced here are results of finite element simulations solved 
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for the axial impacting of all the defined geometrical combinations. Images 

associated with the finite element models of this section are provided in Figures 5.49, 

5.53 and 5.57 for p=20, 45 and 60mm, respectively. 

The resultant curves of ω     group, Figures 5.50 to 5.60, are compared with 

the outcomes of the previous groups, Figures 5.2 to 5.48, to give an indication of the 

difference in behaviour of egg–box cells with altered geometrical features. 

 

 

Figure 5.49 – FE Models of ω=5  , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10mm 

 

 

Figure 5.50 – Force vs. Displacement Curves of FE Simulations 

for ω=7  , t=0.8mm, p=20mm and d=5, 10mm 

 

 

Figure 5.51 – Force vs. Displacement Curves of FE Simulation 
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for ω=7  , t=1mm, p=20mm and d=5, 10mm 

 

Figure 5.52 – Force vs. Displacement Curves of FE Simulation 

for ω    , t=1.2mm, p=20mm and d=5, 10mm 

 

 

Figure 5.53 – FE Models of ω    , p=45mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15, 20, 30mm 

 

 

Figure 5.54 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=45mm and d=5, 10, 15, 20, 30mm 
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Figure 5.55 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=45mm and d=5, 10, 15, 20, 30mm 

 

 

Figure 5.56 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=45mm and d=5, 10, 15, 20, 30mm 

 

 

Figure 5.57 – FE Models of ω    , p=20mm, t=0.8, 1, 1.2mm 

for d=5, 10, 15,20, 30, 40mm 
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Figure 5.58 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=0.8mm, p=60mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.59 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1mm, p=60mm and d=5, 10, 15, 20, 30, 40mm 

 

 

Figure 5.60 – Force vs. Displacement Curves of FE Simulations 

for ω    , t=1.2mm, p=60mm and d=5, 10, 15, 20, 30, 40mm 
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same (p) value, the top/base diameter factor is reduced to one less than the groups 

with smaller apical angles. Cell heights shorter than 1mm are invalid since with the 

largest thickness value of the egg–box walls being 1.2mm, a maximum of 0.6mm 

thickness will be below the central line of the cell wall. For smaller heights, the panel 

will act as a solid flat aluminium sheet with no significant energy absorption 

characteristics. 

According to curves of Figures 5.50 to 5.60, the change in the peak load value 

for different thicknesses is very small in the current group due to their miniature 

structural dimensions. For example the comparison of Figures 5.54, 5.55 and 5.56 

shows that the initial peak value is changing between 0.4 to 0.6kN while the 

deformation length remains the same. 

A review of Figures 5.54 and 5.58 shows the direct effect of increasing the 

inter–peak value on the deformation length and the direct but negative effect of this 

increase on the initial peak load. It can also be seen in all figures that, as expected, 

larger peak/trench diameters result in shorter deformation lengths, hence lower 

energy absorption capacity. 

An assessment of the final series of curves, presented in Figures 5.50 to 5.60, 

indicates that all the characteristics displayed by the previous geometrical models are 

being reflected in this group. It can, therefore, be proven that, regardless of the cell 

dimensions, a unique path of geometrical alterations results in energy absorption 

characteristics that can be predicted and evaluated. 

 

5.5. Observation and Discussion of Results 

Through a review of the curves presented in Figures 5.2 to 5.60, a series of 

general attributes can be deduced. The values given in Table 5.2 represent the area 

under the curves of the above figures which is equal to ETotal, the total amount of 

energy absorbed by each structure during the impact. Through a comparative study 

of the curves and their associated ETotal values, the effect of geometrical dimensions 

on the energy absorption of the egg-box structure can be evaluated. 
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Table 5.2 – Estimated Area under the Curve Representing ETotal for Geometrically Varied Egg–box Structures 

 

 

 



5. Analysis of Modified Egg–box 

 

105 

By translating a curve pattern into practical deformation behaviour, it can be 

seen that a great peak load shows the presence of a high magnitude reaction force. 

The effect of this load can primarily cause severe damage to the protected body, 

followed by which the structure slides through a relatively smooth deformation 

procedure, lengthier with greater (p) values. As mentioned previously, the length of 

the deformation procedure of a structure has a direct relationship with its energy 

absorption capacity. 

The opposite relationship between the minimised peak load and maximised 

deformation length can more clearly be seen through the curves of Figures 5.2 to 

5.60. Hence, based on the specific requirements of a structure, a panel must be 

selected with an appropriate level of each of these characteristics, bearing in mind 

the level of required energy absorption capacity. This situation can be addressed 

through a simple mathematical explanation. 

It has so far been established that the total energy absorbed by a structure is 

equal to the area below its force–displacement curve. If this area is approximated 

with a rectangle, it becomes clear that, the longer each length of the shape, the 

greater the area and hence the more energy absorbed. For example, in Figure 5.59, 

the area beneath the curve of ω    , t=1mm, d=10mm and p=60mm can be 

approximated by a rectangle of 10mm length by 0.5kN width. 

The height of the rectangle represents the initial load peak, which is meant to 

be kept minimised for practical cushioning. Thus, based on their application, 

structures with longer deformation curves of lower load magnitudes can be 

preferable. Based on this theory, geometries with greater (p) values perform more 

ideally. The curve of ω    , t=1mm, d=10mm and p=45mm of Figure 5.55, absorbs 

an approximate total energy equal to 3.1kN.mm, as calculated in Table 3.2, 

compared to the 5kN.mm of the above example with a larger (p) value. 

Per vertical angle (ω), the same characteristics apply amongst models of 

different geometrical features. A further step toward optimisation would be the 

comparison of desirable specimens amongst structures of different angles to clarify 

the effect of the increase in the vertical angle (ω) of an egg–box cell. 
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In the light of a comprehensive examination of the result curves comes proof 

that with more narrow apical angles, higher load peaks are displayed. The length of 

the deformation grows in an opposite manner to this rule; shorter deformations 

occurring with wider angles. This is in a sense expected, since as the heights of the 

egg–box cells decrease and the epical angles become wider, the cell density of the 

panels reduces. 

From a review of the curves given in the figures above, a list of general 

attributes applicable to all of the modelled egg–box geometries can be deduced; 

 In egg–boxes of small vertical angles, with the expansion of the 

top/base diameters and, as its result, the reduction of cell height, the 

deformation process of the egg–box becomes shorter. 

 The mean level of strength, for diametrically variant models, remains 

constant. 

 With reference to equation 4.10, it can be seen that the total energy 

absorbed by the structure increases with the increase in thickness. 

 Egg–box structures with thicker walls show greater strength, hence, 

they initiate the deformation process at higher load peaks, which, as 

previously discussed, can lead to more disastrous bio mechanical 

injuries when used as human cushions. 

 

5.6. Evaluation of the Effects of Geometrical Variations 

From a critical observation of the curves of Figures 5.2 to 5.60, Table 5.3 

presented below is derived, giving the effects of geometrical alterations on the 

performance of the egg–box structure. 

Where the arrows are pointing up in the modification row, an increase in the 

value of the variable is indicated and vice versa. The next two rows show the effect 

of such increase or decrease, on both parts of the force–displacement response of the 
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egg–box structure. For instance, with an increase in thickness the level of the peak 

load rises while the length of the deformation curve remains unchanged. 

 

Geometrical Factor t ω p D 

Modification ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ 

Deformation Length – – ↓ ↑ ↑ ↓ ↓ ↑ 

Peak Load ↑ ↓ ↓ ↑ ↑ ↓ – – 

 

Table 5.3 – Effects of Geometrical Changes on Egg–box Performance 

 

The material properties and physical boundaries are assumed to remain 

constant in this comparison. Therefore, Table 5.3 can be used as a reference source 

for predicting the general change in behaviour caused by dimensional modifications 

of the egg–box structures subject to dynamic axial loading. 

 

5.7. Optimised Egg–box Structure 

An optimum egg–box structure is required to absorb maximum amount of 

energy while its initial impact load remains at a reasonably low value. It is evident 

from the result curves given in graphs of Figures 5.2 to 5.60 that these two 

requirements have an inverse relationship. Therefore, to find the best egg–box 

         ,                                                      ’      . 

It has been established that geometries with smaller apical angles display 

higher plateau lengths and egg–box structures with flat builds, i.e. larger (ω) values, 

react less aggressively at the initiation of the impact. 

Theoretically, it can be said that an egg–box cell which would satisfy both 

conditions of a crashworthy structure has to have an apical angle of average value. 

For example, the geometrical combination with ω    , t=1.0mm, p=45mm and 

d=5mm, displays a peak load of 2kN and a deformation length of 25mm. Compared 
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to the maximum peak load of 6kN in ω    , t=1.2mm and p=60mm, the value of 2kN 

is reasonably low, although it is still much higher than the 0.1kN initial impact load 

of ω    , t=0.8mm and p=20mm. The plateau length of 25mm, however, is rather 

short in the example model in contrast to the 120mm of ω    , t=0.8mm and 

p=60mm, although it is greater than the 2.5mm deformation length of ω    , 

t=1.2mm and p=20mm. 

At a slightly higher peak value of 2.2kN, geometry of ω    , t=0.8mm and 

p=45mm shows a longer plateau length of 58mm. Hence, it could be a better choice 

towards compromising for optimisation. The geometry has approximately a medium 

sized apical angle, a thin structure and the expanded panel will have a reasonable cell 

density. Since the peak load does not practically change with the variations in the 

top/base diameter, and also because larger deformation lengths are displayed with 

smaller diameter, the model with d=5mm is assumed to be the most rational option 

among the available diameters. 

 

 

Figure 5.61 – Force–Displacement Curve of 

ω    , t=0.8mm, p=45mm and d=5mm 
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Despite the fact that the optimisation of energy absorbing structures is mainly 

linked to the function for which they are designed, for the purpose of this study, it is 

concluded that the egg–box cell of ω    , t=0.8mm, p=45mm and d=5mm performs 

in a comparatively enhanced manner as opposed to the other geometrical models 

examined here. The associated curve of this cell model is shown in Figure 5.61. 

It can be seen in Fig. 5.61 that the average value of force in the force–

displacement curve is approximately 1.5kN which complies with the outcome of 

equation 5.1, where        is required to be less than 3.3kN. 

The maximum amount of energy absorbed by the optimised egg–box structure 

is equal to the area beneath its force–displacement curve up to the densification 

point, as explained mathematically in equation 4.10 of the thesis. To facilitate such 

measurements, it would be practical to approximate the enclosed area by a rectangle 

whose length would be equal to the deformation length in meters and its width would 

be equal to the average force in kN. 

The total energy absorbed by the egg–box panel of ω    , t=0.8mm, p=45mm 

and d=5mm, as shown in Table 5.2, would approximately be equal to 

Etotal=105kN.mm. This figure will be proportionately compared against the total 

energy absorption values of further geometries later in the current chapter following 

the path of finding optimum structures. 

 

5.8. Optimum Sandwich Structures 

An option towards finding the egg–box structure with the highest energy 

absorption capacity is the combination of two or more geometries in the form of 

sandwich structures. A sandwich panel can have many forms; from as simple as the 

addition of thin sheets on the top and base of an egg–box, to an arrangement of 

several egg–box structures of similar or different geometries, positioned on top of 

one another along the vertical axis. An egg–box sandwich panel sample is shown in 

Figure 5.62. 

It is obvious that more than one egg–box in a structure would mean more 

energy absorption. However, as mentioned before, the strongest option is not always 
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the best and most practical. The rational requirements are for the force–displacement 

curve to have a low load peak and a lengthy plateau. Therefore, any sandwich 

combination should be studied to fit the needs of its specific application. 

 

 

Figure 5.62 – Typical Aluminium Egg–box Sandwich Panel 

 

As a result of a comparative review of Figures 5.2 to 5.60 provided in the 

previous section, a list of most and least appropriate geometries in terms of both peak 

load and plateau length is derived and presented in Table 5.4. This can be used to 

create optimised sandwich panels, by the combination of the aluminium egg–boxes 

simulated for the purpose of this study. 

 

Aspect Level Force kN Length mm Geometry 

Peak Load 

Min 0.1 3 75deg – t0.8 – p20 

Avg–low 1.5 35 45deg – t0.8 – p60 @ d5 

Mean 2 25 45deg – t1.0 – p45 

Avg–high 2.2 58 30deg – t0.8 – p45 

Max 6 110 15deg – t1.2 – p60 

Plateau Length 

Min 0.14 2.5 75deg – t1.2 – p20 

Mean 2 25 45deg – t1.0 – p45 

Max 2.5 120 15deg – t0.8 – p60 @ d5 

 

Table 5.4 – Egg–box Geometries with Distinctive Performance 
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The sandwich arrangement can consist of more than two geometries. However, 

bearing in mind the foremost use of egg–box structures as vehicle parts, 

combinations of more than two geometries can increase the height (depth) of the 

sandwich panel to impractically large values. It is important in the optimisation of 

the egg–box structure for its dimensions and shape to suit its function. 

The egg–box sandwich panel can be made by combining the maximum plateau 

length and the minimum peak load. The setback is the opposite effect of these two 

factors. For a maximum plateau length, the peak load too rises to an undesired high 

value and vice versa. Hence, some compromise should be made to find geometries 

that attain both qualities. The geometries with the mean and average values provided 

in Table 5.4 satisfy the requirement to a reasonable extent. 

In order for the sandwich panel produced to have maximum efficiency, the 

structures of ω    , t=0.8mm, p=60mm, d=5mm and ω    , t=0.8mm, p=60mm, 

d=5mm are selected to provide minimum peak load and maximum plateau length, 

respectively. The selected cell models have been highlighted in Table 5.4. It can be 

seen that both structures have the same thickness value; this counts as a facilitating 

factor in the fabrication of the geometries, serving towards the optimisation target. 

When positioned at the top of the sandwich structure, the geometrical features 

of the model with the low peak load will act towards effectively reducing the damage 

by absorbing the sudden shock of the impactor. The sandwich structure then follows 

through an extended deformation procedure as the loads are transferred to the 

geometry, placed in the lower part of the sandwich. 

A finite element model of the above combination is produced in ANSYS/LS–

DYNA®. The model goes through the same impact exercise as the rest of the egg–

box geometries in order to compare the outcome of this improved model with the 

result curves previously presented. Figure 5.63 (a) shows a cross section of the finite 

element model for the proposed sandwich panel. In Figure 5.63 (b) the model has 

been expanded to enable enhanced visualisation of the simulation. The aluminium 

sheet, the impactor and the supporting surface have also been scaled accordingly. 

The actual FE model consists of the single cells of part (a) of Figure 5.63. 
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(a) Single Cell Cross Section 

 

 

(b) 3D Expanded Sandwich Panel (Total Height of 265mm) 

Figure 5.63 – FE Simulation Model of Proposed Sandwich Panel 
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To avoid unexpected deformations, a thin flat sheet of aluminium is placed 

between the two geometries as shown in Figure 5.63(a). The boundary conditions 

remain similar to those applied in the simulation of individual egg–box structures to 

allow for a true comparison of the outcomes. 

Use of resins or welding in the production of the sandwich panel affects its 

performance and the accuracy of the comparative study of the results. It is therefore 

assumed that the two geometries and the middle sheet are restricted from movement 

in all lateral directions and contact conditions are applied to all outer surfaces as in 

the previous simulations. Hence, a condition in which the panels are boxed in by 

solid vertical surfaces is simulated. 

The aluminium sheet placed between the two geometries has a thickness of 

0.8mm, which will immediately deform when subject to forces, due to its flat, thin 

geometry. Thus, while keeping the geometries in their correct position, it does not 

significantly add to the strength of the sandwich structure, also allowing for a fair 

comparison of results. 

Summing the height of the two geometries and the aluminium sheet, the entire 

structure has a total height of approximately 265mm, which in comparison, with the 

maximum height of the individual egg–boxes of this study being over 200mm, is a 

reasonably low height. 

Figure 5.64 shows the force–displacement curves for the proposed sandwich 

structure (solid curve), the trend–line of this curve (dashed line) and the curves of 

each individual cell participating in the construction of the sandwich panel. It is 

evident that this structure displays a comparatively low peak load of less than 2kN, 

as expected and an exceptionally extended deformation length of 229mm which 

agrees with the entire height of the sandwich panel. 

In addition, compared to the curves of each individual cell, it can be observed 

from Figure 5.64 that the ideal initial peak load of the 45deg–t0.8–d5–p60 model 

(obtained from Figure 5.34) is reflected in the sandwich panel while the length of the 

plateau in the proposed panel consists of the sum of the energy absorption length of 

45deg–t0.8–d5–p60 and 15deg–t0.8–d5–p60 (from Figure 5.10) cells. The plateau 
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has in fact a desirable smooth consistency. This indicates that the proposed model is 

a comparatively optimised option. 

 

 

Figure 5.64 – Comparison of FE Analysis for Optimised Sandwich Panel and 

Individual Optimum Egg–box Components 

 

It is expected from an optimised structure to have a reasonably low weight 

relevant to its energy absorption capacity. The entire sandwich structure, including 

the middle sheet, has a mass of 0.1kg per cell which results in a 2.5kg mass for a 5×5 

cell unit panel. 

From a review of the structural weight and the total energy absorbed by each of 

the individual egg–box cells used in the proposed sandwich panel against the same 

measures of the optimised sandwich structure, it is shown that: while the sandwich 

panel has an average weight gain of 3.5% in comparison to the two individual cells, 

its total amount of energy absorbed is increased by roughly 33%. Such level of 

increase in energy absorption capacity, in proportion to the amount of weight gain is 

commendable. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 50 100 150 200 250 

Fo
rc

e
 K

N
 

Displacement mm 

Optimised Sandwich Panel 

45deg-t8-d5-p60 

15deg-t8-d5-p60 

Trendline 



5. Analysis of Modified Egg–box 

 

115 

Additionally, the sandwich structure shows a 490% increase in the amount of 

energy absorbed, in comparison to the optimum egg–box structure with ω    , 

t=0.8mm, p=45mm, d=5mm, while there exists a 10% increase in structural weight 

between the two. Despite the large percentage of weight gain, the enhancement in the 

energy absorption, in addition to the comparatively similar initial peak load, makes 

the proposed sandwich structure an ideal candidate. 

An experimental dynamic impact test of the sandwich structure can further 

confirm its suitability for use as an optimum aluminium energy absorber. However, 

the expensive and time consuming series of practical tests which lead to this structure 

have been prevented with the use of the less costly, repeatable finite element 

simulation method. 

 

5.9. Critical Analysis of Optimised Sandwich Panel 

In order to further evaluate the enhanced characteristics of the above sandwich 

panel, two counterexample case studies have been developed by the combination of 

different egg–box cells. To enable more efficient choices amongst the large number 

of possible cells, selection is made from the geometries of Table 5.4 which are 

already derived to be cases of worst or best performance. In all models, varieties are 

limited to a top/base diameter of 5mm, since it is evident in every curve of Section 

5.4 that this dimension displays the most desirable force–displacement plateau. 

 

5.9.1. Case Study 1 

Initially a sandwich panel is made from the average high candidate of the peak 

load category and the mean level candidate of the plateau length category of Table 

5.4. The geometrical measurements of the two models are ω    , t=0.8mm, p=45mm, 

d=5mm and ω    , t=1mm, p=45mm, d=5mm, respectively, as shown in figure 5.65. 

The former geometry displays a high level of load peak and a rather lengthy 

plateau while the latter model has a comparatively average energy absorption 

capacity. The combination of the two allows for the evaluation of the role of a 
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geometry with a low peak load, as selected in the original sandwich panel, as well as 

the effect of its lengthier plateau on the total energy absorption of the system. 

 

 

Figure 5.65 – 3D FE Simulation Model of Sandwich Panel Case Study 1 

 

 

Figure 5.66 – FE Analysis for First Sandwich Panel Case Study 
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Similar to the previous sandwich model, a thin aluminium sheet of 0.8mm is 

placed between the two models and all parts of the simulation have been laterally 

fixed. All other loading conditions are similar to that of the originally proposed 

sandwich panel. 

Figure 5.66 shows the force–displacement curve of the impact loading of the 

first case study. A dotted line follows the trend of the force–displacement curve to 

give a smoother pattern. 

 

5.9.2. Case Study 2 

The next sandwich panel, presented in Figure 5.67, is composed of two similar 

models; the mean value option of peak load category and the same from the plateau 

length category. The geometry has an apical angl        , a thickness of 1mm, inter–

peak distance of 45mm and a diameter of 5mm. 

 

 

Figure 5.67 – 3D FE Simulation Model of Sandwich Panel Case Study 2 
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The upper model is rot          to allow for the peak to be located on top of the 

peak of the lower egg–box. A 0.8mm thick aluminium sheet is placed between the 

two cells while the bottom cell rests on a supporting surface. All lateral movements 

have been restricted and an impactor surface is located above the entire sandwich 

model, similar to that of the originally proposed case. 

A sandwich panel with such selection of egg–box cells can give information on 

the importance of using low peak load and high energy absorption models in the 

construction of a sandwich structure. The twice employed geometry has a 

comparatively high peak load value and a rather short plateau length. 

Exploring the performance of the second sandwich panel example can help 

justify the improved characteristics of the proposed optimised sandwich panel. The 

force–displacement curve of case study number two alongside a trend line showing a 

smoothed out version of its path are illustrated in Figure 5.68. 

 

 

Figure 5.68 – FE Analysis for Second Sandwich Panel Case Study 

 

5.9.3. Evaluation against Optimised Sandwich Structure 

The curves of Figures 5.66 and 5.68 are compared to that of the proposed 

enhanced sandwich structure, in Figure 5.69. It can be seen that both case studies 
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have dramatically shorter plateau lengths compared to the optimised model. The 

peak loads are also relatively higher, at a force value of approximately 2.5kN, in 

contrast to the peak load value of the proposed panel which is below 1.9kN. 

The percentage change in the weight of the three sandwich panels shows a 50% 

fall from the optimised structure to both case study 1 and case study 2, meaning that 

the optimised sandwich structure is 50% heavier than either of the other two. On the 

other hand there exists an approximately 200% rise in the total energy absorbed by 

the optimised structure. 

Further combinations can be constructed from other geometrical combinations. 

However, it is expected for the performance of the proposed sandwich structure to 

extensively over rule the other candidates. 

 

 

Figure 5.69 – Comparison between FE Outcomes of Proposed Sandwich Panels 

 

It should be borne in mind that each individual egg–box structure or egg–box 

sandwich panel has to be designed for the specifications of the function for which it 

is responsible. Therefore, although the two case study structures have lower energy 

absorption capacities than the optimised sandwich panel, they might be ideal for 

other purposes. 
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5.10. Analytical Validation of Sandwich Panel 

The analytical approach of investigating the deformation behaviour of egg–box 

structures can be used to evaluate and validate the enhanced performance of the 

proposed optimised sandwich panel. 

It has been observed so far that following an impact, the egg–box structure 

deforms through a travelling plastic hinge. Hence, the analytical model developed for 

calculating the force value of the travelling plastic hinge in a rigid, ideally plastic 

solid, with the progression of deformation, presented in Deshpande et al. (2003), can 

be modified as; 

 

              
 

  
 

 

 
    

        
       5.2 

 

where, (F) is the impact load in kN, (σY) is the material yield strength in MPa and (d) 

and (t) are geometrical factors of top/base diameter and thickness, respectively, both 

measured in mm and (x) is the deformation distance in mm. Angle (Ө) is 

complementary to the apical angle (ω) and therefore it would be calculated as 
 

 
   

in radians. In other words, (Ө) is the angle of the egg–box cell with the horizontal. 

Equation 5.2 can be used to produce an approximate force–displacement curve 

for the deformation of individual egg–box structures subjected to impact. The 

analytical model can also be applied to a sandwich egg–box where the total force 

would be a function of the sum of the forces of the (n) number of egg–box cells 

enclosed in the structure of the sandwich panel. 

 

                 
 
              5.3 
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Impact experiments show that in an energy absorbing structure, densification 

occurs roughly at 75% deformation of the height of the structure. In mathematical 

terms: 

 

                     5.4 

 

Equation 5.4 is used to estimate the termination point of the force–displacement 

plateau, where the curve transfers into a sudden steep rise. The behaviour of the 

structure past the point of densification is not of concern in the study of energy 

absorbers. Therefore, it will be assumed that the force value rises infinitively at the 

same point, while in practice the increase in force value happens gradually yet at a 

high rate. 

 

 

Figure 5.70 – Analytical Assessment (eq. 5.2 and 5.3) vs. FE Analysis of 

Proposed Optimised Sandwich Structure 

 

Figures 5.70, 5.71 and 5.72 show the curves resulted from the application of 

equation 5.3 in conjunction with equation 5.2, to the proposed sandwich structure 
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and the subsequent case studies, respectively. The curves terminate at densification 

points estimated from the expression of equation 5.4. Evaluation is made against the 

finite element curve of each structure. 

The resultant curve of the analytical approach in Figure 5.70 estimates force 

values in the vicinity of the outcome data of FE analysis of the proposed egg–box 

structure. The densification point is also in exact agreement among the two curves at 

a deformation value of x =175mm. 

Due to the geometrical approximations made in the formation of the analytical 

model, the force value at termination is overestimated by the mathematical equation. 

In addition, the only material property detail implemented in the equation is the yield 

strength of the material, while the aluminium alloy used in the fabrication of egg–

box structures under investigation has stress values sensitive to the strain rate. 

Bearing in mind the assumptions, it is argued that the current predictions of the 

analytical model are satisfactory and confirm the results of the finite element 

simulation performed. 

 

 

Figure 5.71 – Analytical Calculations vs. FE Analysis of Sandwich Case Study 1 
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To further examine the validity of the FE simulation results, the behaviour of 

the case study sandwich structures, which were formed to evaluate the performance 

of the proposed optimised structure, were also modelled with the analytical equation. 

Curves of these calculations are provided in Figures 5.71 and 5.72 for case study 1 

and case study 2, respectively. 

 

 

Figure 5.72 – Analytical Calculations vs. FE Analysis of Sandwich Case Study 2 

 

Correlations are evident in both figures between the analytical curves and the 

FE outcomes. In each case the predicted densification point matches that of the 

simulated deformation curve. Sandwich panel of case study 1 reaches the 

densification point at almost 75mm and the second case study at x=55mm. 

By estimating the area of the rectangle underneath the curves of Figures 5.70, 

5.71 and 5.72, it can be seen that the total amount of energy absorbed as predicted by 

the analytical method agrees to the same calculations for FE analysis. 

Implementation of equations 5.2, 5.3 and 5.4 in the above figures shows that 

the predictions of the finite element simulation are accurate and reliable. 
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6. DISCUSSION 

In the present research an advanced finite element technique is developed for 

the modelling and simulation of aluminium egg–box structures in complex 

mechanical systems with specific boundary conditions. Following the establishment 

of accurate modelling and simulation specifications through a series of experimental 

tests and analytical models, a set of geometrically altered egg–box cells have been 

numerically modelled, tested and their results evaluated to propose optimised 

geometrical values which enhance the performance of an egg–box structure. 

Following the presentation of introductory information on energy absorbing 

structures and the energy absorption concept, methods of improving occupant safety 

in vehicles were discussed in Chapter 1. Aluminium egg–box structures were 

presented to act as crush test barriers to assess car crashworthiness in impact test 

arrangements. It was established that varying the geometrical factors of the structure 

has a direct effect on its performance quality; hence, the energy absorption capacity 

of an egg–box structure can be improved by refining its geometrical features. The 

use of finite element numerical packages in evaluating the performance of complex 

structures such as the impact test of energy absorbers was introduced, providing a list 

of most common commercial FE packages used in static and dynamic structural 

analysis. In this chapter is was shown that the optimisation of egg–box energy 

absorbing structures is a multi–objective task where both the level of the peak impact 

load and the length of the deformation process are of importance. 
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In the second Chapter the works and studies previously performed in the 

subject area of the research in hand were reviewed. The evaluation of energy 

absorption characteristics and crashworthiness of various systems under diverse 

loading conditions were explored through investigating the past and recent literature. 

This was followed by a thorough investigation into the properties of currently 

available energy absorbing structures and their distinctive characteristics and 

performances. Reference was made to researchers who have employed experimental, 

analytical and numerical techniques in their projects. A review was also made of the 

work of researchers who have aimed to optimise the performance of energy 

absorbing structures and the techniques they utilised for this purpose. It became 

evident that, due to its recent development, the egg–box structure has not been 

studied as extensively as other energy absorbers. It was noticed in the literature 

review section that, inadequate knowledge exists on using innovative techniques to 

analyse highly complex energy absorbing structures and systems with pre–defined 

boundary conditions within an reasonable solution time and costs. 

As a preliminary step in finding suitable tools to analyse the complex scenario 

of the dynamic impact of egg-box structure, experimental impact tests were 

conducted on various egg-box specimens as reported in Chapter 3. The samples 

included free-edged single cells cut from an egg-box panel, single cells in-situ within 

a panel and entire egg-box panels. The direction of the loading was altered in some 

test cases, to investigate the behaviour of the structures under oblique loadings in 

addition to flat impacts. The tests were conducted with drop masses free falling at a 

contact speed of 6ms
-1

. The applied load and the relative vertical movement of the 

egg-box specimens were recorded and presented in Chapter 3 as force-displacement 

curves. It became evident that with the oblique loading of egg-box cells, the strength 

displayed by the structure will greatly decrease. From conducting impact tests on 

samples with diverse boundary conditions, the important role of the continuous 

structure of egg-box was realised, since the amount of impact energy absorbed, was 
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noticeably higher in the impact of the panel in comparison to the single free-edged 

cell. 

In Chapter 4 the deformation behaviour of the egg-box samples tested in 

Chapter 3 was examined and analytical total energy equations were derived per 

specimen. The total energy absorbed by the structures were also mathematically 

deduced and compared to the force-displacement curves presented in the previous 

chapter. In the subsequent section of Chapter 4, a finite element model was generated 

for the aluminium egg–box structure and the impact experiments performed in the 

previous chapter were simulated. The models were meshed using SHELL163 which 

is a thin shell element of ANSYS/LS-DYNA®. Using LS- YNA®’  MAT_ 

MODIFIED_PIECEWISE_LINEAR_PLASTIC material model, the aluminium 

material was simulated with precise mechanical properties, taking into account the 

strain rate sensitivity of CP aluminium alloy. In addition appropriate boundary and 

loading conditions were introduced to the model. The outcome data of the FE 

simulations were then validated against numerical and experimental outputs. The 

precision of the results authenticated the simulation specifications, in terms of the 

accuracy of material models and boundary conditions, for further modelling of egg–

box structures towards optimisation. 

The validated FE modelling set up of Chapter 4 was used to simulate the 

dynamic impact tests of the egg-boxes with various dimensions to evaluate the effect 

of altering geometrical factors on their energy absorption characteristics. A table 

containing series of varying egg–box cell geometrical dimensions was presented in 

this chapter. The resultant force–displacement curves were analysed in cross 

comparison, to establish relationships between geometrical changes and the ultimate 

performance of a cell. The outcome of the analytical review was subsequently used 

to define best and worst geometries in terms of peak impact load level and length of 

deformation. It was determined that the two characteristics work in opposite manners 

and improvement in one results in the decline of another. Therefore, an optimum 
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egg–box structure was proposed which partially compromised to satisfy both 

specifications of an ideal energy absorber to a reasonable extent. Based on the 

findings, an improved sandwich structure, formed by a combination of two egg–box 

geometries with best performance in each area, was created which performed ideally 

as opposed to the individual egg–box structures. The exceptional energy absorption 

characteristics of the sandwich model were verified against the results of other 

sandwich panel combinations. In addition, an analytical method was developed to 

authenticate the outcomes of all sandwich panels. It was stated in Chapter 5 that the 

optimisation of egg–box structures is purpose–specific; meaning that for certain 

functions the structure may be required to perform in certain manners, hence it would 

be irrational for a single geometry to be called optimum for all purposes. This 

chapter was indeed a benchmark within the contributions of the present research, 

providing detailed load–deformation curves for a vast range of egg–box geometries, 

variations of which are currently in industrial applications. The vast number of 

simulations and their resultant graphs may be used as reference curves in the study of 

the performance of egg–box energy absorbers. 



7. Conclusions 

 

128 

 

 

 

 

 

7. CONCLUSIONS 

The present research has successfully achieved its aims and objectives as 

proposed in the introductory section of the thesis. The main objective of this project 

was to employ an advanced nonlinear finite element simulation tool to develop the 

best geometric design of commercially pure aluminium egg–box structure to absorb 

kinetic energy in a controllable and predictable manner. 

In addition to meeting its initially proposed objectives, this research also 

presented broad techniques and arrangements to design and simulate tests, use 

material property data to produce practical material models and define realistic 

boundary condition and interface assumptions for finite element simulations. The 

main achievements in this investigation were to deliver FE simulations for the impact 

test of egg–box structures, validated against experimental impact tests, and to find 

cell geometries which would prove optimum in terms of their energy absorption 

characteristics under impact. 

The study has successfully led into a time and cost efficient technique to 

simulate aluminium egg–box cells irrespective of their physical specifications such 

as cell measurements and wall thickness. Use of shell elements in the modelling of 

these structures has decreased the analysis time and associated costs due to the 

reduction in the number of nodes. Validated finite element models of such, greatly 

reduce the need for expensive, time consuming and irreversible practical tests. 
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The extensive variations of geometrical factors of the egg–box lead to different 

deformation responses and thus distinctive levels of energy absorption. Ideal egg–

box geometries are expected to display high levels of energy absorption capacities in 

specific applications and reduce the initial effect of the impact to a satisfactorily low 

level while maintaining a reasonably low structural weight and material 

consumption. Experimental test outcomes showed that the strengths of the egg-box 

panels decrease substantially in oblique loading of the cells. 

Modelling and testing egg–box structures of altered geometries and comparison 

of the output data gave rise to the development of optimal egg–box energy absorbing 

structures. From the combination of the most efficient geometries, an optimised 

sandwich structure was developed which showed ideal energy absorption 

characteristics in all anticipated areas. 

The development of the FE modelling and simulations was on the basis of the 

assertion that accurate outcomes are results of accurately simulated models in terms 

of material models, boundary and loading conditions, geometrical symmetries and 

time values. It was shown in the modelling of the experimental dynamic tests that in 

finite element simulation, accounting for the strain rate sensitivity of materials leads 

to correct display of strength by the structure. Evaluation of the simulation results 

against the experimental tests data revealed that the simulations acquired from 

ANSYS/LS–DYNA® were valid and reliable for further repetitive modelling. In the 

process of the modelling thin shell elements were shown to be suitable for meshing 

the walls of thin–walled structures such as an egg–box. 

In the path of optimising the structural performance of egg–box energy 

absorbers, it was concluded that as opposed to other materials used in the production 

of energy absorbers, the structural weight, recyclability, suppleness, price and 

industrial availability of aluminium alloys makes them ideal materials for use in the 

fabrication of egg–box absorbers. 
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Finite element simulations of one system, when based on different assumptions, 

produce results that are not in full agreement. The parametric modelling procedure 

enables outcome comparison between different users. The same procedure was used 

in the current project to produce an assortment of egg–box geometries which could 

be evaluated against one another for optimisation purposes. 

The optimisation of energy absorbing structures is a multi–objective task where 

the variables create a Pareto set. An optimised egg–box has a force–displacement 

curve which displays a low initial peak (fatal injuries become less likely) and a 

lengthy plateau (greater energy absorption). 

From the comparative analysis of the various egg–box geometries, it was 

concluded that structures with thicker walls have higher peak loads, while the change 

in thickness does not significantly affect the length of the plateau. The increment of 

the vertical angle of an egg–box, on the other hand, appeared to lessen the depth of 

the panel. Deeper egg–box panels produced longer deformation processes (plateau), 

but higher peak loads. 

Comparison with regards to the inter–peak distance (p) revealed that with 

shorter (p) values, the initial response of the egg–box structure to an impact becomes 

more satisfactory; however, the length of the force–displacement curve plateau 

becomes shorter and hence less energy would be absorbed. The effect of changes in 

top/base diameter on the initial reaction of the egg–box was found to be negligible 

while it displayed a reverse relationship with the length of the deformation. 

Amongst the simulated models, the egg–box geometry that would perform 

most satisfactorily in the initial stage of an impact consisted of a large angle ω=    

     < ω      ), thin walls t=0.8mm (t < 1mm), a short inter–peak length p=20mm, 

while the measurement of the top/base diameter (d) was not of major importance. It 

was, hence, concluded that egg–box panels with large apical angles (a flat build), 

thin walls and greater cell densities perform better in reducing the sudden initial 
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effect of an impact and protect the enclosed bodies against harmful injuries more 

effectively. 

The length of the deformation process was maximised in an egg–box geometry 

with a small angle ω=        < ω      ), a lengthy inter–peak distance p=60mm and a 

small top/base diameter d=5mm while the thickness of the cell walls did not 

particularly influence this behaviour. The conclusions obtained from this geometry 

indicated that egg–box panels with smaller apical angles, less cell densities and 

smaller peak/trench diameters offer longer deformation lengths, thus, absorb more 

energy during a crush situation. In other words, a more efficiently reduced amount of 

the impact energy is transferred to the protected bodies. 

It was noted that the optimised egg–box structure would be one that performs 

ideally in both of the above areas. From an analytical review of the geometries 

simulated, it was concluded that, at a fair level of compromise in either of the energy 

absorption characteristics, the geometry with ω    , t=0.8mm, p=45mm and d=5mm 

is the most optimum egg–box cell with a peak load of 2.2kN and a plateau length of 

approximately 58mm. The total amount of energy absorbed by this structure is equal 

to 105kN.mm. 

Egg–box structures can be combined in the form of sandwich panels designed 

per application to act as optimised energy absorbers. In the current project, an 

innovative sandwich structure was proposed which displayed exceptional energy 

absorption characteristics in comparison to the individual egg–box geometries. 

The sandwich panel consisted of two egg–box panels connected via a thin 

aluminium sheet. The participating egg–box cells were ω=   , t=0.8mm, p=20mm 

and d=5mm on the top, to reduce the effect of the initial peak load, and ω    , 

t=0.8mm, p=60mm and d=5mm on the bottom, to provide maximum deformation 

length. The actual length of the deformation in this model was increased to 229mm 

by taking into account the sum of the heights of two geometries, while the initial 
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peak load remained at minimal level of less than 2kN, as expected from the top egg–

box cell. 

The total amount of energy absorbed by the sandwich panel is increased by 

roughly 33% in comparison to the two individual egg–box cells of which it is made. 

At such level of increase in energy absorption capacity, the average weight gain of 

3.5% is acceptable. The optimised structure also shows a 200% rise in the total 

energy absorbed compared to either of the two counterexample case studies proposed 

in Chapter 5 of the thesis. A 50% weight gain comes with this enhancement in 

performance. It is concluded that the enhanced energy absorption capacity in the 

proposed structure over-performs the increase in its weight. 

Authentication of the results of finite element analysis with analytical 

approaches verifies that the enhanced performance of the proposed sandwich model 

is valid and reliable. 

 

7.1. Recommendations for further Investigation 

The optimised structure proposed using the economical and repetitive finite 

element simulations and analyses, is required to be fabricated and experimentally 

investigated prior to being put into use in the industry. The experimental and FE tests 

studied and performed in this research assume loads or drop towers that impact the 

egg–box structure either at a right angle to the top of the panel             angle. In 

practice, many impacts are made obliquely to the surface of a vehicle body where 

energy absorbing structures may be implemented. Further loading angles can be 

investigated per structure. 

The analytical model which was proposed in this research to predict a pattern 

for the force–displacement curve of the impact of egg–box structure may be further 

developed to produce more accurate results in estimation. 
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Using the modelling and simulation procedures, the behaviour of the egg–box 

geometry can be investigated and analysed when subjected to any loading type or 

condition. The effect of using innovative metal alloys and other materials in the 

deformation mechanism of egg–box absorbers can be looked into to uncover more 

efficient materials for the production of ideal egg–box panels. Various geometrical 

modifications such as the addition of ribs amongst egg–box cells and corrugated or 

wavy structural shapes can be developed in the future which may perform more 

satisfactorily as energy absorbers. The follow–through procedures proposed in this 

study can be used for modelling other types of energy absorbing structures in the 

commercially available finite element analysis packages. Optimisation is purpose–

specific; therefore, geometries not considered as ideal in this research may satisfy the 

requirements of certain applications. 
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APPENDIX A 

A.1. Introduction 

In order to recognise the importance of optimum crashworthiness in a structure, 

it is initially necessary to study the theoretical background of the subjects related to 

this criteria. The aim here is to give a basic foundation on the work presented in the 

thesis and, where applicable, reference has been made to the works reviewed in the 

Literature Review Chapter. The information provided herein includes subjects such 

as structural crashworthiness, energy absorption, EA structures and methods of 

analysis of energy absorbers. 

 

A.2. Safety Evaluation in the Automotive Industry 

Severe or fatal traffic accidents are considered to be one of the most threatening 

dangers in daily life. In a 2001 White Paper on European Transport Policy, the 

European Commission proposed that the European Union should set itself the target 

of halving the number of road deaths by 2010 (EC, 2003). In 2003, the European 

Union published a brochure reflecting this proposal, indicating that: 

“                                                         E        

Union and all its inhabitants: in the 15 member European Union, 375 

million road users, 200 million of them driving license holders, use 200 

million vehicles on 4 million km of roads. Ever greater mobility comes at a 

          :  ’   ’                             ’                ’   ’    

injuries on the roads. The direct and indirect cost of this carnage has been 

             EU             ”  E ,  003). 

In May 2011 the European Commission released a series of statistical data, 

suggesting that the total number of deaths in road accidents over Europe fell by 28% 

to 34,800 in 2009 from 54,302 in 2001. According to the European Road Safety 

Observatory, in Great Britain 2,645 people were killed in road accidents in 2008, 

1,312 (almost 50%) of which were passenger car occupants alone (CARE, 2011). In 

light of these statistical data, it can be said that despite a decrease in the number of 

fatalities over the past 10 years, the current situation is still socially unacceptable. 
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In order for a vehicle to be released to consumers, it has to undergo a set of 

crash tests to determine its crashworthiness and safety levels. There are a number of 

vehicle rating systems under the New Car Assessment Program (NCAP) such as 

Australasian NCAP (ANCAP), European NCAP (EURO NCAP), Safer Car (US), 

Japan JNCAP and Korean KNCAP. These programs test vehicles and rate their 

safety with one to five stars; the safer the vehicle, the more the number of stars. 

To make the evaluation, NCAP investigates the effects of a number of crash 

tests on the vehicle occupant dummies. The tests are conducted at various speeds and 

include a front–on crash, side impact crash and hitting a pole with the side of the car. 

The tests also investigate how a crash can influence the pedestrians and how they can 

be protected against injurious accidents. The test procedures consist of velocity, 

ground clearance height and percentage overlap tests (WHO, 2004). According to the 

report published by WHO, the test specifications vary between the NCAP rating 

systems mentioned above. 

 

A.3. Structural Crashworthiness and Impact Mechanics 

T                                                         ’                  

and its mechanical properties when impacted. Therefore, in order to design an energy 

absorbing system, it is necessary to explore the basic concepts of structural 

crashworthiness and impact mechanics. Energy absorbing systems are commonly in 

use in the vehicle industry by car manufacturers as well as the producers of heavy 

vehicle, railway, aerospace and ship. 

As a result of the complex behaviour of an impacted structure, the detailed 

mechanical response of the structure can be investigated by studying an individual 

structural component such as an energy absorber. 

In general, crashworthiness can be defined as the capability of a structure to 

resist the load of an impact from another body, in a manner that it will protect a 

survival space. In the automotive industry, an increased emphasis has been placed on 

this criterion as a vehicle design requirement for the safety of its occupants. 
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The essential concepts of the crashworthiness requirement for the survival 

space of a vehicle are illustrated in Figure A.1 (Brown, 2002). It can be seen that the 

kinetic impact energy during a crash event is initially absorbed by the frontal energy 

absorbing system of the vehicle, thus the survival space, where the vehicle occupants 

are located has remained intact. 

 

 

Figure A.1 – Crash Energy Management in Vehicles (Brown, 2002) 

 

Theoretically, a crashworthy vehicle should be designed so the load that would 

be transferred to the vehicle body following an impact, (P1) will be lower than the 

load which will damage the survival space (P2). Brown (2002) provides the 

illustration of Figure A.2 to further explain this basic crashworthiness requirement. 

In other words, the deformation of the survival space must be kept to a minimum 

level. In addition, the peak deceleration should also be within a reasonable limit (Deb 

et al. 2004). 

 

 

Figure A.2 – Crush Characteristics of Crashworthy Structures (Brown, 2002) 
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Alongside the collapse behaviour of a vehicle, its crashworthiness is also 

determined by aspects such as the ability of a vehicle to avoid accidents, the 

dynamics of the vehicle during and after an impact and the occupant motions. 

However, the focus of this study is on the components that improve the impact 

behaviour of a vehicle. 

The performance of an energy absorbing structure depends on its collapse 

mode, the strain rate sensitivity of its material and the inertia effects. When a system 

is subjected to quasi–static loads, the loading rate is considered to remain constant 

and the inertia effects are relatively small. In a dynamic loading, however, due to the 

presence of inertia and strain rate effects, the collapse response varies. 

 

A.3.1 Quasi–static and Dynamic Loads 

Mechanics is concerned with the state of rest or motion of bodies subjected to 

the action of forces. The mechanics of physical rigid bodies is divided into two areas: 

statics and dynamics. To give a basic definition, static state is when a body is either 

at rest or moves with a constant velocity. When the velocity loses its consistency, the 

body becomes dynamic meaning that it has an accelerated motion. Hibbeler (2002) 

divides the dynamics into two branches itself; kinematics, which he explains as the 

branch dealing with the geometric aspects of the motion only, and kinetics, which is 

the analysis of the forces causing the motion. 

Another classification of the branches of mechanics, done by Elert (1998, 

2008) in his online textbook (The Physics Hypertextbook) is to categorise mechanics 

into three subdivisions. Here, the study of motion without regard to the forces or 

energies that may be involved is called kinematics. He believes that this is known as 

the simplest branch of mechanics. In contrast, the study of forces in the absence of 

changes in motion or energy is called statics. And finally, the branch of mechanics 

that deals with both motion and forces together is called dynamics. 

In the current work, since the concentration is on finite element method and FE 

software, the below classification, used by many of such software, is preferred; 

 Static (Linear) 
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 Quasi–static (Nonlinear Statics) 

 Dynamics (Nonlinear) 

In static analysis the effects of steady loading conditions on a system are 

calculated, ignoring effects such as those caused by time–varying loads. This type of 

analysis can, however, include loads with a steady inertia such as gravity and 

rotational velocity, and also time–varying loads that can be an equivalent of static 

loads such as the static equivalent wind and seismic loads commonly defined in 

many building codes. Static analyses determine the displacements, stresses, strains, 

and forces in systems and bodies caused by time varying loads. The loads and 

disturbances and the response of the system are assumed to vary slowly with respect 

to time. The types of loading that can be applied in a static analysis include (ANSYS 

13.0 Help System, 2010): 

 Externally applied forces and pressures 

 Steady–state inertial forces (such as gravity or rotational velocity) 

 Imposed (nonzero) displacements 

 Temperatures (for thermal strain) 

 Fluences (for nuclear swelling) 

The dynamic response of a structure when subjected to time–dependent loads 

can be determined using a technique known as transient analysis. This method, also 

known as time–history analysis, can establish the displacements, strains, stresses, and 

forces in a structure as they vary with time. The inertial effects, mentioned in the 

previous sections becomes of importance in this area of analysis. 

In comparison with static and transient analysis, dynamics is considered to be a 

technique more often used, since it accounts for both the forces applied to a body and 

its motion. 

Energy Absorbing structures tend to collapse in an even mode when subjected 

to quasi–static loads. Sequential development of lobes on one end of the structure is 

known as progressive buckling. Progressive buckling can be divided into quasi–static 

progressive buckling and, when strain rate effects are taken into account for quasi 

static loading conditions, dynamic progressive buckling. 



 

167 

According to Karagiozova et al. (2000), in low velocity impacts the progressive 

buckling is quasi–static while dynamic progressive buckling develops in high 

velocity impacts. In dynamic progressive buckling the entire length of a structure is 

involved in the deformation process and the deformation pattern varies from quasi–

static progressive buckling shapes (Jones, 1989). 

A number of collapse modes can be developed in a progressive buckling 

process, including axisymmetric, non–axisymmetric and mixed. Collapse can also 

happen through global bending. The amount of energy absorbed in the progressive 

buckling mode is significantly greater than in global bending mode since the former 

occurs in a more controlled manner (White et al., 1999) and on the other hand a 

greater amount of material is involved in plastic deformation. 

The current project looks at the dynamic deformation of egg–box structures as 

energy absorbers. The collapse procedure in these structures can be categorised as an 

axisymmetric plastic deformation, initiating with the formation of travelling plastic 

hinges in the walls of the structure. 

The properties of the materials used in the fabrication of egg–box structures, 

such as material rate dependency, can also affect their performance as energy 

absorbers, especially in dynamic loading. It is, therefore, necessary to take the effects 

of such characteristics into account when studying and predicting the behaviour of an 

energy absorbing structure. 

 

A.3.2 Strain Rate Sensitivity 

The stress–strain pattern can change with the rate of loading in structures that 

are fabricated from rate–dependent material (Reid and Harrigan 1998; Su et al. 

1995). Materials such as certain aluminium alloys are sensitive to strain rate which 

can also be called visco–plastic material. Lu and Yu (2003), suggest that in visco–

plastic material, the yield stress can also increase with strain rate. 

In engineering equations, the effect of material strain rate should be taken into 

consideration for realistic calculations. A number of constitutive models exist for 

material strain rate sensitivity which can be utilised to reduce the number of 
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experimental tests. One well–known equation in material engineering, which 

accounts for material strain rate sensitivity, is the Cowper–Symonds relation which is 

commonly employed in structural impact problems (Reid et al., 1986). Automotive 

engineers use the Cowper–Symonds uniaxial equation to assess the strain rate effects 

on the structural response of energy absorbing structures under dynamic loading. The 

equation can also be implemented in material models for finite element analysis. The 

Cowper–Symonds constitutive equation can be shown in the following two forms; 

 

     
  

  
   

 

                  A.1 

 

  

  
    

  

 
 
 

  
               A.2 

 

where (  ) is the effective strain rate,    is the dynamic yield stress,      is the initial 

or static yield stress and (C) measured in s
–1

 and (p) are Cowper–Symonds material 

constants which represent, a characteristic at which       , and a measure of the 

rate sensitivity of the material, respectively. The latter two constants can be obtained 

from dynamic uniaxial or pure shear tests on the material (Jones, 1989) and are 

different even for different alloys of the same base material. Hence, it is vital to 

know the exact material specifications in order to find these components. 

Finite element packages, such as those employed for the purpose of this study, 

use the above formulae, in conjunction with the specific material properties provided 

by the user, to assess the true behaviour of the materials forming the body being 

analysed. 

 

A.3.3 Inertia Effect Characteristics 

In severe impact loadings, structures can show signs of the presence of inertia 

effects. The collapse mode, initial peak load and load–deflection curve of a structure 
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can be extensively influenced by this effect. It is, therefore, necessary to investigate 

the behaviour of energy absorbing structures under both static and dynamic 

conditions. 

According to Calladine et al. (1984), two general types of structures can be 

identified which deform plastically to absorb energy. The shape of the force–

displacement curves of these structures is what distinguishes the two types. As 

illustrated in Figure A.3, the first type displays a relatively flat–topped curve, while 

in structures of the second type an initial peak load is followed by fall in the curve. 

The second group of structures are more sensitive to the impact velocity, i.e. more 

influenced by inertia. 

                        ’          ,                                        

absorbing structures, such as egg–box and honeycomb, produce force–displacement 

curves which are a combination of the above two types, Figure A.4. Such curves 

display an initial peak followed by a steady plateau which transforms into a rapid 

steep rise at the densification point, as the entire structure collapses (Gibson et al., 

1997). Due to the length and steadiness of the plateau, this group of energy absorbers 

are known to show ideal performances compared to their traditional counterparts. 

The energy absorbing structure being studied in the current project is subjected 

to dynamic loading conditions in order to obtain realistic data on the collapse mode, 

initial peak load and load–deflection curves. 

 

 

Figure A.3 – Two Types of Structural Collapse (Calladine, 1984) 
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Figure A.4 – Structural Collapse Type Three 

 

The effect of inertia on the energy absorption behaviour of a structure is 

strongly dependent on its physical and geometrical composition as well as the rate of 

the loading. For more substantial investigation on the effect of inertia on the 

characteristics of energy absorbers, the reader is referred to Karagiozova et al. 

(2000). 

 

A.4. Energy Absorption by Structural Collapse 

In order for energy absorbing structures to be used in practice, they should 

collapse in a predictable and manageable manner with a controlled force level. The 

energy absorption characteristics of a structure must be known in order to match the 

detailed design requirements. It would also be beneficial if such structures can be 

modified to accommodate specific ranges of applications. 

Researchers studying this subject provide mathematical formulations 

expressing the relationship between the deformation behaviour of structures under 

applied forces and their energy absorption features. Studies such as Deshpande (2001 

and 2003) and Shetty (2001) provide detailed information on the attributes of energy 

absorption per different units of measurement and the approaches towards formula 

derivation. 

The force–deformation response of energy absorbing structures can measure 

their energy absorption performance. Collapse load can be defined as the amount of 

load required to cause a permanent deflection to a system. The deflection increases 



 

171 

as the crush progresses. An ideal energy absorber can be represented with a constant 

crushing load, from the initiation of the deformation process up to the maximum 

deflection. Energy absorption capacity can then simply be calculated as the 

rectangular area below the force–displacement curve up to the densification point. 

The characteristics of EA structures and their energy absorption capacity are 

evaluated by a series of qualitative criteria. It is required to determine and meet these 

criteria at the design stage of an energy absorbing system. Details of such criteria are 

presented in this section. 

 

A.4.1. Energy Absorbed Per Unit Volume 

The energy absorption capability of a structure is primarily based on its plastic 

behaviour. For any given structure with a specific geometry, the area under the stress 

vs. strain curve associated with its deformation, up to a point of densification, gives 

its energy absorption capacity per unit volume. 

Energy absorbed per unit volume becomes of significance when the structure 

being deformed is in some way restricted in the space, as well as situations where the 

ultimate energy absorption rate is achieved by mechanisms other than mere 

geometrical deformation of the structure. 

 

A.4.2. Energy Absorbed Per Unit Mass 

The specific energy absorption (SEA) also known as the energy absorbed per 

unit mass, (Wm,) is defined as the energy absorbed by a deformed structure when 

crushed with the energy of (E) per unit mass. This can be written as: 

 

        A.3 
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with (ETotal) representing the total energy absorbed in the crushing of the structure 

under a crush load of (F). The value ϰ is the displacement of the highest point of the 

structure after the impact, known as the crush distance. A represents the cross 

sectional area of the crushed portion of the structure which has a density of (ρ). 

The crashworthiness of a structure is determined by its SEA value. The total 

energy absorbed by a structure, (ETotal,) is equal to the area beneath its corresponding 

force vs. displacement curve. This value can be used as a comparison factor when 

studying the capabilities of different structures in terms of their level of energy 

absorption. 

 

A.4.3. Energy Absorbed Per Unit Length 

Here, length is defined as the distance of deformation and thus, the energy 

absorbed per unit length, (WL) is defined as the energy absorbed per unit of 

deformation distance, (ϰ). This can be shown as; 

 

         A.4 

 

The energy absorbed per unit length provides a simple method for calculating 

the crashworthiness of structures where collapse is restricted to a well–defined crush 

zone. Such crashworthiness specifications allow for the structures to be verified by 

using appropriate test procedures or finite element simulation. 

It is therefore evident that the selection of a suitable energy absorbing structure 

for a specific application will depend upon the geometry and material of the crushed 

structure, as well as the nature of the application under consideration. 

From the definition of SEA it can be construed that the lighter the weight of a 

structure, the more crashworthy it would be. Hence, a practical energy absorber must 

have an acceptable and minimised weight. 
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A.5. Energy Absorbing Structures 

Structures of certain geometries and materials have a considerable potential for 

absorbing the kinetic energy of an impact. Their energy absorption capability offers a 

unique combination of reduced structural weight and improved safety especially in 

the automotive and aircraft industry. Crash resistance of these structural parts 

provides a protective shell around the occupants of a vehicle. 

In the past decade studies have demonstrated the ability of specific structures to 

absorb energy under dynamic crash conditions. Many energy absorbing structures 

have been studied experimentally. 

Structures currently in use include thin–walled tubes such as: circular tubes, 

square/rectangular tubes, hat–section tubes, tapered rectangular tubes and conical 

tubes and cellular solids such as: metallic foams and polymeric (non–metallic) 

foams, honeycomb panels and egg–box components (Figure A.5). Analysing the 

characteristics of the latter type of energy absorbing structure is the concentration of 

the present study. 

 

 

Figure A.5 – Commercially Used Energy Absorbing Structures 
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Energy absorbing structures are expected to perform in a predictable and 

controllable manner in order for load limitations to be specified per system. 

Investigations are made on the geometrical and material attributes of these structures 

to improve their performance and increase their crashworthiness per application. 

 

A.5.1. Egg–box Structure 

Amongst energy absorbing structures currently in employment, the repetitive 

cells of an egg–box structure, originated from the earlier work of Professor Shirvani 

and later patented under the name of PressLoad by Cellbond Composites Ltd. 

(Ashmead, 2000), offers high levels of energy absorption capacity and SEA. Egg–

box structures are a group of energy absorbing cellular structures which, as suggested 

by the name, consist of panels shaped like egg–boxes (Figure A.6(a)). 

In a regular egg–box arrangement, the unit cell is made up of alternated 

axisymmetric conical shells with flat tops geometrically classified by four 

parameters: cell height (h), apical angle of cell (ω), top diameter (d) and wall 

thickness (t), shown in Figure A.6(b). 

The distance between two diagonal cells is defined by (p) where; 

 

                  A.5 

 

Another effective parameter in the deformation process is the radius of the 

fillet, (r), at the top of the peaks. This curvature is produced during the 

manufacturing process and is inevitable. It is practically impossible to create a 

specimen with r = 0. Although measuring and modelling this curvature is fairly 

complex, however, taking this factor into consideration results in a better valuation 

of the energy absorption characteristics of the specimen. A change of this parameter, 

when modelling the geometry, has been found to induce a significant effect on the 

initiation of the deformation where a sharp transition of r = 0 displays a stiff elastic 

response (Deshpande, 2003). 
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(a) Panel Concept Drawings 

 

 

(b) Geometrical Characteristics 

Figure A.6 – Egg–box Structure 

 

In addition the peaks and trenches of the egg–box structure can be produced to 

different, usually small curvatures. The factor (R) is the radius of these arcs. For very 

large values of R, the peaks and trenches can practically be considered as being flat. 

These geometrical factors in the egg–box structure can be adjusted to result in 

desired levels of energy absorption. Varying the peak to peak length, (p), angle, (ω), 

cell diameter, (d), or wall thickness, (t), in addition to the material type used and the 

level of constraints applied to the structure can result in diverse energy absorption 

characteristics for this structure. For example reducing the inter–peak distance, (p), 

gives a higher density of cones throughout the structure which in turn results in an 

increased stiffness and a higher stress level, i.e. greater amount of energy will be 

absorbed (Deshpande, 2003). 
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The geometrical appearance of the egg–box structure contributes towards its 

suitability as an energy absorber. 

 

A.6. Analysis of Energy Absorbing Structures 

In order to remain competitive in the highly dynamic market of safety material 

production, it is important for energy absorber developers to thoroughly understand 

the crashworthiness and impact mitigation of their products. Researchers use one or 

more of the following tools to carry out such comprehensive analysis; analytical, 

numerical and experimental techniques. 

These three techniques can be used in conjunction for validation and 

verification of the outcomes of testing a certain structure. While structures currently 

in use can be improved and optimised, using these techniques, new design 

opportunities can also be discovered. 

 

A.6.1. Experimental Methods 

One commonly and traditionally used approach is controlling and manipulating 

the attributes of energy absorbing structures by the use of practical test machines, 

which can deliberately load specimens both statically and through dynamic impacts. 

Experimental methods are valuable in terms of demonstrating the role of 

individual geometrical alterations in the behaviour of an energy absorber. They can 

however be extremely costly and time consuming, considering the need for repetition 

of single tests as well as tests performed on the great number of altered geometries. 

In addition, once a specimen undergoes loading and becomes deformed, there is no 

easy reverse approach; the material has to be recycled and formed into new 

structures, which means further expenses and in some cases impossible. Using these 

testing methods can be beneficial and even essential as validation tools when it 

comes to verifying results of numerical analysis. 

Various methods of practical testing of energy absorber structures exist, which 

can be divided into two main categories of static loading and dynamic impact testing. 
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A.6.1.1. Static Loading of Egg–box Structures 

Static loads, by definition, are, as explained earlier, constant mechanical forces 

that do not change with time. It is evident that in practice this would be impossible 

due to the presence of gravitational accelerations. Therefore, in mechanical physics, 

static loads are referred to the group of forces that are applied on a body, steadily and 

at very low rates. Testing structures under static loadings can be helpful in 

determining their maximum allowable load bearing capacities, as well as the 

mechanical properties of the materials forming them. 

This particular mode of experimental testing becomes most valuable in the 

design of structures that are used towards human health and safety. In order to set 

safety margins on a structure, it is vital for a designer engineer to be aware of the 

maximum force a structure can support prior to collapsing. Energy absorbers are 

structures that directly deal with the safety of passengers in the transportation 

industry. It is therefore necessary for them to be statically loaded in order to study 

their attributes and limitations. 

 

 

Figure A.7 – Plate Compression of Egg–box Energy Absorbing Structure 

(Experimental tests performed at Cellbond Composites Ltd) 

 

In the static testing of egg–box energy absorbers, Figure A.7, the specimens are 

compressed using screw–driven plates at very minimal nominal strain rates, 10
–6 
– 

10
–3

s
–1

, or at low constant velocities such as 1mm/s. The compressive response of the 

specimen is then measured based on the level of constraint. The applied load is 

measured by placing a load cell on the test machine and is used to define the nominal 

compressive stress on the specimen; the nominal axial strain is measured via a clip 

gauge fixed between the loading platens, recording the distance travelled from the 
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initial location. The measured compressive stress vs. strain curves for every 

geometry can thus be produced and used to explore the deformation procedure of the 

egg–box. 

 

A.6.1.2. Egg–box Structures under Dynamic Impact 

Dynamic or impact loads are forces applied to physical bodies with a motion 

and can change with time. Dynamic loads can be categorised into three groups; low 

pace impact, high velocity impact and hyper velocity impact. This classification is 

based on the fact that, as the pace of impact increases, extreme changes become 

evident in the deformation mechanism of the target object and the energy transfer 

between this structure and the impactor. 

A low pace impact is the situation where the impactor contacts the target for 

long periods of time. Such low velocity events can be considered as quasi-static 

loadings. The velocity limit which defines a quasi-static impact depends on the size 

ratio of the impactor to target. Cases where the impactor is significantly larger than 

the impacted structure could be counted as quasi-static (Nettels, 2000). 

In contrast, in high pace impacts, the contact periods between the impactor and 

the target are much shorter in time. This type of impact occurs every day in road 

accidents as well as impacts in the ballistic range. The effects of high pace impacts 

are severe but, under certain circumstances, controllable. It is in the presence of this 

class of dynamic force when energy absorbing structures prove to be constructive. 

Hyper pace impact refers to events where an exceedingly high velocity 

impactor crushes the target structure at such an elevated stress that the compound 

materials of the target act like fluids and exhibit minimal physical strength. It is 

unlikely for an impact with such magnitude to appear in the automotive and aviation 

disasters. Therefore, when examining the response of egg–box structures to dynamic 

impacts, this study concentrates on situations of high–pace impact. 

The common testing method for energy absorbers subject to dynamic loads 

involves impacting the specimens in the vertical axial direction, under the effect of a 

drop–weight tower as shown in Figure A.8. 
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Figure A.8 – Dynamic Impact of Egg–box Structure 

 

The loading mass and velocity of the impactor can be increased or decreased as 

appropriate. Zupan et al. (2003) suggest impacting egg–box panels of below 1m
2
 

cross sectional area with an impactor mass of 5.5kg moving at a velocity of 6m/s. 

Similar to the static mode, the load is measured with a load cell placed on the 

impactor mass. The relative displacement of loading mass is measured by laser 

extensometer against time to prove the test acceleration. The measured compressive 

stress versus strain response of the specimen is resultantly produced to evaluate the 

behaviour and efficiency of a given egg–box absorber. 

As mentioned previously, such techniques can be extremely costly in terms of 

both expenses and time. Moreover, in cases of irreversible material destruction, a 

good amount of metal or plastic can be wasted. This waste material is considered as 

contributing to global damage. Therefore it would be ideal to take advantage of non–

experimental, repeatable methods which avert the need for structural production, 

destruction and recycling costs. 

To generate a principle for measuring the energy absorption capacity of conical 

frusta, a mathematical approach is proposed. This formulation has been expanded to 

predict the characteristics of the egg–box structure, which is in fact made of a series 

of conical frusta (Deshpande, 2003). The next section provides a brief review of 

these calculations. 
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A.6.2. Mathematical Approach 

An approach towards the determination of the energy absorption characteristics 

of EA structures is the development of mathematical models. To use these theory–

based methods a series of assumptions and approximations need to be made. In other 

words, to allow for the application of mathematical formulations, the body being 

analysed needs to be simplified to a controllable model. The absence of physical and 

geometrical details in such modified assumptions leads to lack of accuracy in the 

calculations. 

Despite the simplified outcome of mathematical modelling, this approach can 

be used as a valuable means of validation of the results of experimental or numerical 

analysis. 

In most cases, mathematical calculations are based on two dimensional 

approximations of three dimensional systems. It would therefore be ideal to have a 

means of analysing the characteristics of the energy absorbers, using a method that 

would take into consideration the geometrical details of the structure in all three 

dimensions. Researchers are working on developing more accurate theoretical 

models for solving the behaviour of complex deformation patterns and structures. 

In a recent study, a simple model is used to derive a general mathematical 

formulation for the travelling hinge deformation and the plastic buckling displayed in 

the crushing of a conical frustum (Deshpande et al., 2003). 

The initial calculations are based on the approximate analyses done by 

Calladine (1986) on the inversion of a spherical shell when subjected to a central 

point load. It was assumed that the conical frustum being studied was being 

compressed between two solid platens, disregarding the friction. Two travelling 

plastic hinges were considered to form on each cross sectional side of the frustum, 

forming a knuckle. Equal and opposite longitudinal bending moments, resulting from 

the applied force, were identified on the inner and outer hinges, causing the knuckle 

to rotate instantaneously (Deshpande et al., 2003). 

Through the combination of a series of equilibrium equations, a mathematical 

relation is derived representing the energy absorption rate by relating applied load of 
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(P) to the displacement of the top of the conical shell, u, for the travelling plastic 

hinge, expressed as: 

 

 

   
 

       

          
 

  
 
 

 
 

 

 
     

 
  

     A.6 

 

where (Y) is the yield strength of the material, (t) is the wall thickness of the cone, a 

is the top radius and ω is the angle of the cone walls to the horizontal. 

Once the above expression is verified against practical results, it is developed 

into equations, giving approximate numerical solutions for the energy absorption 

capacity and collapse strength of the egg–box absorber. To achieve this, it has been 

assumed that an egg–box comprises a two dimensional array of conical frusta of the 

same geometrical measurements and thus work out the stress vs. strain relationship 

of the egg–box to be equal to: 
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     A.8 

where (σ) and (ɛ) are the nominal axial stress and strain, respectively, (h) is the depth 

of the egg–box cell and (k) is a geometrical constant defined in equation A.8. 

In practice, force–displacement curves associated with the deformation of 

energy absorbers transit into a steep rise, starting at the densification point until the 

deformation process terminates and the structure collapses. According to Ashby et al. 

(2000), the densification process for cellular solids can begin at strain levels as low 

as 0.4 to as high as 0.94 depending on the material and the structural shape. This 
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process for egg-box structures starts at strain values of around 0.6-0.8 (Deshpande, 

2003, Akisanya, 2006, Cheng, 2007). With (H) being the height of the egg-box panel 

and (x) the travelled distance of deformation, in mathematical terms, the value of the 

densification strain can be expressed as: 

 

   
 

 
             A.9 

 

Through comparison against practical experiments, it can be concluded that 

equations A.7 and A.9 are rational mathematical approximation of the deformation 

behaviour of egg–box. 

Despite their near agreement with the experimental data, these mathematical 

equations are all based on two dimensional approximations of the actual geometry. It 

can become too complicated, inaccurate and to some extent impossible, to use such 

formulations for energy absorbers with more complex geometrical features. For 

example, the small curvature present at the transition point of walls into peaks and 

trenches is ignored in the above calculations, while, as mentioned before, this small 

arc plays a significant role in the initial deformation of the egg–box structure. It 

would, therefore, be ideal to have a means of analysing the characteristics of the 

egg–box absorbers using a method that would take into consideration the geometrical 

details of the structure in all three dimensions. 

Finite element analysis is a useful tool to solve just such a problem. Using 

numerical calculations and predictions, the FE method can in fact be used to 

determine the energy absorption characteristics of an EA structure prior to the 

geometrical design and manufacture. Further information on the background and 

application of the finite element method is provided in the next section. 
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A.6.3. Finite Element Numerical Analysis 

For many engineering problems either due to the complexity of the nature of a 

system, or its boundary and initial conditions, it is not possible to obtain exact 

solutions. For such problems, approximate methods are used known as numerical 

solutions. These methods obtain exact solutions at approximated points called nodes 

whereas with exact methods, such as experimental tests, a single result applies to 

every point of the system or body through which, it would not be feasible to evaluate 

the role of each portion of the structure, hence the inability of modifying a single 

parameter towards optimisation of the structure. 

This matrix–based method is mainly used for problems with complex geometry 

or boundary conditions. In finite element modelling the respective appearance of the 

information of a system in different matrices is important. Finite element analysis is 

a useful tool to solve three dimensional systems at more realistic approximations. 

It is also important to note that the structure can only assume those shapes that 

can be represented by shape functions and, according to Hartmann et al. (2007), the 

accuracy of an FE solution depends fundamentally on how accurately a program can 

approximate the influence functions for stresses or displacements. Influence 

functions are the response of a structure to certain point loads. The more flexible a 

structure is modelled, the better it can react to such point loads, and hence the better 

the accuracy of the FE solution. 

The FE numerical processing tools, allow for the study of the fundamental 

features of different energy absorbing structures. In addition, application–specific 

requirements can be met in terms of energy absorption capacity, appearance, 

material, etc. by designing individual optimised geometries prior to production. 

Modern FE analysis packages are capable of simulating dynamic crash impacts 

by utilising explicit solvers. This technique allows for faster analysis of such 

problems, giving detailed information on material response and behaviour. In 

addition, these packages offer visual feedback on deformation modes and measured 

levels of stress, strain and energy absorption, by use of frame animation and graph 

processors (Figure A.9). 
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Figure A.9 – Typical Visual Feedback of Finite Element Packages 

 

The finite element method is a numerical procedure based on the idea of 

building a complicated object, using simple blocks, plates or beams, or alternatively, 

dividing a complicated object into similar, easily manageable pieces, connected to 

each other at previously identified points known as nodes, to allow for detailed 

analysis of its attributes. The behaviour of each individual element can be described 

by a set of equations, which when combined with the other elements in a structure, 

form huge lists of simultaneous equations. Integral formulations are used to derive a 

solution for each element, which is then connected or assembled with the other 

individual solutions to form the complete solution for a system. 

The accuracy of the final solution is based on the number, shape, location and 

accumulation of the elements and nodes defined as well as a realistic assumption of 

the boundary conditions. An important point to take into account is the behaviour of 

each individual element. A few good shaped elements can produce better results than 

many elements with poor geometries. There are many different shapes and types of 

elements including triangular and quadrilateral elements, which can be selected 

based on the geometrical outline and shape of the part being modelled. 

To solve an engineering problem two sets of information are required; one is 

the details of the natural behaviour of a system, such as elastic modulus, thermal 

conductivity and viscosity and the other is information referring to the conditions of 
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a system under the effect of outer parameters, such as external forces, moments, 

temperature differences, pressure in fluids, etc. The first set of information can be 

generalised for systems of similar characteristics, while the mechanical properties 

applied to a system are particular to each system or body. 

In dynamic analysis, to derive the result equations of a system, the work of the 

external forces absorbed by the work of the internal forces, inertial, and viscous 

forces for any small kinematical motion, which satisfies both compatibility and 

boundary conditions have to be taken into account. Displacement, velocity and 

acceleration change with time. It is also possible for the mass of the system to vary 

with time. Since the stiffness of the system is a function of both displacement and 

internal forces, the external disturbance will be a function of displacement as well as 

time, meaning the ultimate condition of the system will depend on the location of its 

points and the times in which these displacements have taken place. 

It is evident that a demand for more accurate outcomes calls for a greater 

number of matrices and algebraic equations, increasing with higher complexities in 

structures. Solving all these equations and connecting them to form a final solution 

can be an extremely time consuming task when done in long hand. A much quicker 

technique of designing, visualising, refining and calculating the performance of a 

structure in different geometrical and mechanical conditions, is the use of, 

commercially available, solver packages. 

Computers can be utilised to solve the astronomical number of equations and 

provide solutions to engineering problems. The availability of increasingly powerful, 

low cost processors has made finite element analysis accessible for many engineering 

disciplines. This ease of access has led to a substantial increase in manufacturing 

efficiency and competitiveness over the years. 

 

A.7. Finite Element Software and Commercial Packages  

For highly complex problems, highly professional finite element solver 

packages have been commercially designed, which substantially reduce the time and 

cost of experimental and mathematical analysis. Preliminary finite element software 



 

186 

with very basic abilities initially appeared in 1964. Today powerful commercial 

finite element packages exist, which offer highly interactive graphics and strong 

processors and are compatible with personal computers. Popular software currently 

in use for structural and mechanical analysis include ABAQUS®, ANSYS®, LS–

DYNA®, NASTRAN®, RADIOSS®, PAMCRASH®, ADINA®, CRASH CAD® 

and LUSAS®, some of which are specifically designed to be used in crash analysis. 

 

A.7.1. ANSYS® and LS–DYNA® Numerical Analysis Packages 

The ANSYS® software is one of the highly established, widely distributed and 

popular commercial finite element analysis packages, which has continuously been 

in use and refined since 1970. Its historical background of development has resulted 

in a code with a vast range of capabilities. 

As a powerful numerical finite element solver, ANSYS® package can be used 

to analyse a wide range of mechanical problems such as static and transient structural 

analysis. In fact, ANSYS® is most commonly used in this particular area of 

mechanical physics, since it can facilitate the analysis of structures as large as 

bridges or as small as vehicle parts. 

ANSYS® allows for the simulation of problems in static and transient modes 

of mechanical loading. For both loading conditions ANSYS® can determine 

displacements and stresses of a simulated structure as well as nonlinear plasticity, 

stress stiffening, deflection, strain, hyper–elasticity, contact surfaces, etc., taking into 

consideration the time–varying loads in the transient mode. 

A number of purpose–specific features are available in ANSYS® in addition to 

the above loading modes. Examples include fracture mechanics, composite material 

analysis, fatigue, and both p–Method and beam analyses (ANSYS® 13.0, 2010). 

In ANSYS® the finite element analysis is performed in three stages, taking 

place in a GUI or graphical user interface. In the pre–processing phase a geometrical 

model is created and meshed. It is at this stage that all the physical requirements and 

limitation are simulated in the GUI. Next is the solution phase where all the quadratic 

equations are formed and then solved for each node of the model to give unanimous 
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final results on the performance of a modelled structure. These results can be viewed 

through the third phase, post–processing. Here graphs and time based animations can 

be produced to evaluate the outcomes of the simulated test. 

In order to simulate dynamic loading conditions, the powerful pre–processors 

of ANSYS® have been combined with the equally powerful solver of another finite 

element package known as LS–DYNA®. This software is designed to be used for 

analysing static and dynamic problems with large deformation. LS–DYNA® uses 

explicit time integration as its base solution approach (LSTC, 2007). 

LS–DYNA® was originally developed in the mid–seventies, starting under the 

name DYNA3D. This preliminary version had very basic capabilities and a number 

of issues were revealed with the different algorithms it used at that time. At this point 

the software was completely rewritten. After several attempts on introducing more 

complete and more comprehensive versions, by 1988 the package, now renamed to 

LS–DYNA®, was presented with a particular focus on the applications of the 

automotive industry. Throughout the past decade, progress has been made in the 

development of this software and with the emergence of newer versions, more 

options get added to the capabilities of LS–DYNA®, detailed in the LS–DYNA® 

U   ’  M  ual (LSTC, 2007). 

 

A.7.2. ANSYS/LS–DYNA® Numerical Analysis Package 

The combination of ANSYS® and LS–DYNA® gave existence to a powerful 

finite element package referred to as ANSYS/LS–DYNA®. This package is detailed 

further in this section. 

ANSYS/LS–DYNA® was first introduced in 1996 to overcome challenges 

such as limited–duration events and large, permanent deformations which created 

great simulation challenges for the engineers. Researchers and designers used this 

product, to model a structure or system in ANSYS®, then obtaining the explicit 

dynamic solution using the powerful LS–DYNA® solver, and eventually reviewing 

the results in the ANSYS® post–processing GUI. 
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Through the years, this influential pairing has helped engineers understand the 

complicated combinations of nonlinearity they come across in crash tests and 

catastrophic failures. 

The geometry and results information can also be transferred between 

ANSYS® and ANSYS/LS–DYNA® to help perform chronological implicit–explicit 

and explicit–implicit analyses, such as those required for drop–test, spring–back and 

other applications (ANSYS/LS– YNA® U   ’  M     ,     ). 

Since the solver in ANSYS/LS–DYNA® is an LS–DYNA® solver, the results 

can also be reviewed and modified in the LS–DYNA® post–processor environment. 

As a feature mentioned in the ANSYS/LS–DYNA® product details, this package 

supports both 2D and 3D explicit elements, and features an extensive set of single–

surface, surface–to–surface and node–to–surface contacts as well as a unique contact 

analysis option that automatically creates contact surfaces for all simulated bodies in 

a system. In addition, ANSYS/LS–DYNA® provides options that allow for fast 

solution processing. Simulation results are delivered in a short period of time using 

solution techniques called symmetric multiprocessing (SMP) and massively parallel 

processing (MPP). This is achieved by optimising the power of multiple CPUs 

(ANSYS online, March 2011). 

The availability of such computation powers increases model accuracies and 

details, since more exact and consistent simulations can be performed in shorter 

durations. However, in order for the finite element analysis tools to contribute 

efficiently in the design process of a structure, a practical compromise should be 

made between the preciseness requirements of a model and the time involved with its 

computation, a technique known as element sensitivity analysis. 

 

A.8. Finite Element Modelling of Energy Absorbers 

The finite element method (FEM) is an important tool in mechanical 

computation and structural engineering problems. Nonlinear FEM can be used to 

analyse large deformation plasticity problems to provide more accurate and detailed 

outcomes, as compared to the traditional methods. 
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Designing energy absorbing structures is a highly complicated process that may 

require several design iterations. Finite element analysis (FEA) is being used in the 

automotive industry to perform efficient, parametric studies of these structures. 

Using this method helps reduce or prevent the great number of costly and time–

consuming practical testing.  

Energy absorbing structures generally collapse in a complex manner under 

axial or multi–axial loading conditions. Due to this mode of deformation, the impact 

behaviour of an energy absorber could not be evaluated accurately using 

conventional analyses such as theoretical models. 

The FE numerical processing tools, allow for the study of the fundamental 

features of different energy absorbing structures. These techniques have recently 

become one of the most important tools for simulating and analysing the behaviour 

of EA structures (Figure A.10). 

An interactive model of a structure subjected to an impact load is simulated and 

analysed using the nonlinear FE–based package. This method makes it possible to 

obtain the entire history of the structural deformation process. The results of an FE 

model must be validated to ensure accurately reliable results have been achieved. 

The outcomes can be validated against results of experimental techniques or 

numerical and theoretical models.  

Modern FE analysis packages are capable of simulating dynamic crash impacts 

by utilising explicit solvers. This technique allows for faster analysis of such 

problems, giving detailed information on material response and behaviour. In 

addition, these packages offer visual feedback on deformation modes and measured 

levels of stress, strain and energy absorption, by use of frame animation and graph 

processors. 

The modelling of egg–box structures for dynamic loading conditions has been 

described extensively in the thesis. 
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Figure A.10 – An Example of FE Analysis of Impacting an Energy Absorbing 

Structure (LS-DYNA®, personal interest research on egg-box sandwich 

structure, vertically impacted by an ellipsoid) 

 

In addition, application–specific requirements can be met in terms of energy 

absorption capacity, appearance, material, etc. by designing individual optimised 

geometries prior to production. 

 

A.8.1. Material Models  

Modelling the base material of a structure is of importance in the FE simulation 

of the impact response of energy absorbers. The material model should represent the 

true properties of the physical material. Characteristics such as elasticity, plasticity, 

strain rate dependency, fracture and tearing response of materials at specific 

temperatures should be accurately modelled in order for the FE simulation to validly 

represent the physical structure. 

As a powerful finite element code, one of the benefits of LS–DYNA® is its 

material modelling capabilities. More than 100 different material models are 

available to represent various types of highly nonlinear material behaviour including 

foam material and honeycomb structures. 
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A.9. Structural Optimisation 

In the world of mathematical sciences and engineering, optimisation refers to 

the selection of the element or value, with the best available features, from a group of 

possible alternatives, given a defined domain of objectives. This means solving 

problems in which the aim is to minimise or maximise a characteristic of the design 

by analytically allocating values from a specified source, to a set of variables. 

Optimisation problems of more than one objective increase complexity. For 

example, in the simplest double–objective problem there will be a design that 

amplifies objective No.1, while objective No.2 is in its lowest value and another 

design where objective No.2 is maximised and No.1 is ignored. There can also be 

countless designs that are a compromise of both criteria. An increase in the number 

of interest areas can add to the complexity of a problem, especially in cases where 

one criterion cannot change without affecting the other. 

In structural engineering, for example, an optimised design can be defined as 

one that is adequately strong while it maintains a light weight. A simple judgment 

would reveal that these two objectives conflict. There can be a light weight design 

option, which is not necessarily strong, while another very strong design has an 

extraordinarily heavy weight. In addition, an infinite number of options could exist, 

that would be an assortment of weight and strength. This set of designs that cannot 

be optimised according to one criterion without influencing another is called a Pareto 

set (Lanzi, 2004). 

The solution to such optimisation problems would be to keep changing the 

variables one at a time, while the rest are kept constant. This will give rise to a 

number of design combinations. This is where the concept of application–specific 

optimisation becomes important. 

Despite the literal definition of the word optimum – the best – when it comes to 

practical optimisation, in a given criterion, a design can be the best fit for one 

purpose, but not necessarily for all. In the above example of structural engineering 

optimisation, for instance, selected out of the Pareto set, a design offering a 

reasonable level of strength at a low weight can be ideal for a structure which is 

designed to be transported, while for a similar structure, designed to be stable and 
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fixed, a slightly heavier but stronger option might be preferable. Therefore, a single 

design cannot be selected as the one and only optimal. Depending on the purpose and 

the location of a service, an application–specific optimisation can take place. 

Application of the above techniques in the optimisation of energy absorbing 

structures is explained in the subsequent sections. 

 

A.9.1. Optimising Energy Absorbing Structures 

For any system to remain continuously successful in an industry, it needs to be 

constantly updated and improved. The same theory applies to the energy absorbing 

structures. 

The regulations demanding safety limits on the vehicles are becoming 

increasingly precise and strict. Hence, the impact energy absorbing structures, which 

are employed as protective components in the vehicle bodies, need to meet up to the 

expectations of regulatory authorities. This necessitates continuous improvement of 

the performance of EA structures. 

For industrial purposes, an energy absorbing structure is chosen for a particular 

function, based on its energy absorption capacity. It is desirable for this value to 

remain below a certain limit for a given stress level. Finding the structure that 

satisfies this requirement is known as purpose–specific optimisation. However, other 

influential factors come into the equation during the process of developing the best 

fit. Aspects such as structural size limits, durability, manufacturing costs and 

constraints, material recyclability, etc. play as equally important a role as the 

structural performance of an energy absorber. 

The main purpose of structural optimisation is to improve a component using 

limited resources. The factors that are altered towards the improvement of a system 

are known as design variables. In energy absorbers, these factors can be associated 

with either the geometry or the material of the structure. 

While geometrical aspects can be interconnected and changing one can affect 

the other, the effects of changing the materials of a structure can be compared 
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individually. The former case would result in a multi–variable optimisation where 

some variables have to be changed in accordance to another. 

An efficient structural design is required to respond in an acceptable manner for 

various specifications. However, the optimisation of an energy absorbing structure is 

a comparative process. A structure can only be optimised for the loading and 

boundary conditions of the energy absorption system in which it is integrated. In 

other words, the structural optimisation of an energy absorber is merely valid for 

functioning under specifically identified circumstances and a design that fits 

perfectly into the requirements of one system may fail to be as adequate in a system 

with different boundary or loading conditions. 

An extremely strong structure does not always succeed in becoming the 

optimum candidate if it is, for example, overweight or costly to manufacture. The 

presence and importance of all these factors increase the complexity of the 

optimisation process, especially with characteristics that contradict, such as 

durability of the materials and the costs of purchasing them. Therefore, based on its 

function, the optimisation of an energy absorbing system may be a multi–objective 

task where more than one characteristic identifies the crashworthiness of the system. 

In general, it is required from an EA structure to absorb maximum amount of 

impact energy while it reduces the effect of the initial load of the impact. 

Simultaneously, the material from which the structure is made must be strong, have 

adequate elastic and plastic properties and be of a reasonably low density. Fulfilling 

all these requirements concurrently gives rise to an optimised energy absorbing 

structure. 

Among many optimisation techniques (Vanderplaats, 2007), a practical method 

which can be used for the optimisation of energy absorbing structures is RSM or 

response surface methodology. The idea of this method was introduced by Box and 

Wilson (1951) where sequences of designed experiments are used to obtain an 

optimal response. Although this method is not exact, it provides a reasonable set of 

data which can be relied on as sources of evaluation for an optimisation problem. For 

the purpose of this study, hints have been taken from the RSM method. 
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A.9.2. Crashworthiness Optimisation of Application–specific Egg–box Models 

Structural impact can be categorised into geometry and material optimisations, 

which can be accounted for individually. It means that for every material, there 

would be an improved geometry, which would perform desirably in a specific 

application. 

For industrial purposes, based on their function, the egg–box absorbers are 

chosen so that their energy absorption capacity at a stress level would be below a 

prescribed limit. It is this limit that a model has to satisfy to be counted as an 

appropriate fit for a specified application. Among the designs that become eligible 

with regards to the energy absorption capacity, an optimised design would be one 

that takes a longer duration to transform the kinetic energy of the impact to the force, 

deforming the cell walls. 

The total energy that the egg–box structure has the capacity to absorb during 

the deformation consists of both elastic and plastic strain energies. In an FE analysis, 

the total energy absorbed by an egg–box cell during crush can be defined as the area 

roofed by the curve displaying its reaction to the crush force over the deformation of 

its walls. 

It is expected that an optimised egg–box cell will be able to absorb the 

maximum amount of energy in a unit structural weight. In addition to equation A.3, 

(Wm ) (specific energy, in the unit of N.mm/ton) can also be defined as: 

 

   
      

 
,         A.10 

 

where (m) is the total mass of the egg–box cell under consideration. In terms of the 

corresponding force–                  ,            ’       ved behaviour will be 

displayed in a curve as a higher magnitude and a longer plateau. 

From another point of view, the peak crushing force of the structure is also 

considered as a critical design objective. This is specifically of concern in cases 
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where the energy absorber is acting as a cushioning structure for vehicle occupants, 

in car doors and dashboards. In such conditions, preventing severe biomechanical 

  j                     ’               j               . 

The challenge would be for the optimisation problem to account for both of 

these design objectives; bearing a major concern for the energy absorption capacity 

of the structure while, simultaneously, seeking designs of minimum peak crushing 

force. 

 

A.9.3. Application of FEA in Structural Optimisation 

As a result of the reliance of structural optimisation on nonlinear and 

conditional functions, analytical approaches fail to solve the practical design 

problems. On the contrary, numerical methods are ideal candidates for dealing with 

such problems. 

With the development of nonlinear finite element analysis codes, the 

optimisation of energy absorbing structures becomes possible. The nature of 

optimisation is a comparative evaluation of variable combination. FE codes can take 

over the analysis of various combinations, providing prompt, inexpensive results 

which can consequently be assessed based on their contributing variables. 

Finite element software prevent the need for costly experimental crash tests in 

the optimisation of energy absorbing structures. The highly powerful pre–processors 

        ’              E                                                              

and allow for repetitive tests. With a validated FE simulation, the performance of 

geometrically altered energy absorbers under various loading and boundary 

conditions can be promptly investigated and necessary modifications can be applied 

to a structure upon necessity. 


