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Abstract

The work in this thesis is focussed on obtaining fast, efficient solutions to

the Schroedinger-Poisson model of electron states in microelectronic devices.

The self-consistent solution of the coupled system of Schroedinger-Poisson

equations poses many challenges. In particular, the three-dimensional so-

lution is computationally intensive resulting in long simulation time, pro-

hibitive memory requirements and considerable computer resources such as

parallel processing and multi-core machines.

Consequently, an approximate analytical solution for the coupled system

of Schroedinger-Poisson equations is investigated. Details of the analyti-

cal techniques for the approximate solution are developed and the original

approach is outlined. By introducing the hyperbolic secant and tangent

functions with complex arguments, the coupled system of equations is trans-

formed into one for which an approximate solution is much simpler to obtain.

The method solves Schroedinger’s equation first by approximating the elec-

trostatic potential in Poisson’s equation and subsequently uses this solution

to solve Poisson’s equation. The complete iterative solution for the coupled

system is obtained through implementation into Matlab.

The semi-analytical method is robust and is applicable to one, two and

three dimensional device architectures. It has been validated against alter-

native methods and experimental results reported in the literature and it

shows improved simulation times for the class of coupled partial differential

equations and devices for which it was developed.



ii



Chapter 1

Introduction

1.1 Background

Undeniably, over the past decades, the electronic industry has witnessed

rapid progress in its quest to deliver high quality products to consumers,

businesses and organisations. Currently, there are lucrative markets for prod-

ucts ranging from netbooks and smartphones whilst in the past this industry

witnessed booms in the demand for MP3 players and digital versatile discs

(DVDs). Consumer and industrial electronic products’ core design is based

on microelectronic semiconductor devices, whose continuously improved per-

formance, reliability and cost-effectiveness have facilitated the rapid growth

of this economy sector.

The reduction in the components of semiconductor devices to the sub-100

nanometric scale is currently a reality [6,7,72]. Reducing device architecture

to this scale and beyond serves several important purposes, namely enhanced

device functionality, faster processing speed and less consumption of power.
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Given such desirable features, it is important to be able to efficiently model

electronic transport in such structures in order to understand and optimize

semiconductor electron systems. Electron transport becomes almost ballistic,

i.e. the electrical resistivity due to scattering is negligeable, [6, 57, 63, 87, 93]

and quantum effects such as tunnelling, interference and confinements must

be incorporated in any model.

Classical motion of charged particles can be described by kinetic equa-

tions (for example, Boltzmann) coupled to the Poisson equation for the elec-

trostatic forces. In partially confined electron systems like nanotubes or

nanowires, both quantum and classical effects are present. For example, the

mechanism by which a particle penetrates a barrier that it could not sur-

mount in the classical mechanical case is called tunnelling, which may be

described as a quantum effect. Importantly, tunnelling becomes significant

over small dimensions. For very small electron systems, like nanostructures,

quantum effects are important and are well described by the Schroedinger-

Poisson model [66].

Much work has been done on numerical methods for the self-consistent so-

lution of Schroedinger-Poisson model. In previous work [6, 7, 12], the three-

dimensional computation presents many challenges:

• prohibitive memory requirements;

• long simulation time;

• considerable computer resources, for example, parallel proceessing and

multicore machines.

2



Naturally, it is important to address the above issues and offer solutions for

improvement. Many authors are concerned with this problem [6,12], i.e. the

need to solve fast this coupled system of equations. Poisson’s equation is a

boundary value problem and Schroedinger’s equation is an initial value prob-

lem [91], hence, analytic or semi-analytic solutions are quite difficult to find.

Full analytical solutions are prevented, for example, by the form of the Pois-

son equation, which involves a Fermi-Dirac integral, for which a closed form

does not exist and which has to be solved by series approximation. A further

challenge is the discontinuous nature of the dielectric constant and of the

effective mass coefficients. These issues are such that a complete analytical

solution is not possible at present. Therefore, given this background, if semi-

analytical solutions can be found, then the problem of electron transport may

be simulated faster and more efficiently. It is this question with which this

thesis is concerned. Therefore, in this thesis, the research addresses this gap

in knowledge by deriving an accurate and efficient semi-analytical solution

to the electron transport model in three dimensions and applies it to the

prediction of performance of semiconductor devices.

1.2 Research Aims and Objectives

The overarching aim of this thesis is to develop new and robust analytical and

computational techniques for the simulation of electronic states and trans-

port in semiconductor systems, which go beyond the performance of current

methods of numerical and computational solutions for the coupled system

of Schroedinger-Poisson’s equations in one, two and three dimensions. This
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aim is achieved through four specific objectives of the research, which are:

• Overview of existing methods which are used to solve the coupled sys-

tem of Schroedinger-Poisson’s equation;

• The conceptual development of a new and efficient semi-analytical pro-

cedure which solves the coupled system of Schroedinger-Poisson’s equa-

tions;

• The original design of a Matlab model supporting the implementation

of the new semi-analytical procedure in order to simulate accurately

electron transport in semiconductor systems;

• The validation of the proposed method by comparisons with reported

computational [6, 12,91] and experimental results [51, 74].

It is common practice to solve the original coupled system of Schroedinger-

Poisson equations on a fine grid using the standard finite element approach.

Although the process of obtaining the solution using this method is usually

slow, nevertheless, it is seen as a benchmark to which other methods of solu-

tions can be compared and validated. Solutions obtained via other methods

are verified against finite element solutions in order to check accuracy rather

than speed [6, 12,91]. In addition to the finite element approach, when avail-

able, one also uses experimental data [51,74], against which one’s results can

be verified. Given this background, the simulation results of semi-analytical

method will be compared with reported finite element method solutions and

experimental data where available.
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1.3 Methodology

The purpose of this section of the thesis is to set out the strategies which un-

derpin this research commencing with the literature review and ending with

the thesis production. This work has used a range of research methodologies

to achieve these above specific objectives. These are:

• literature review of current methods employed in the simulation of elec-

tronic device;

• investigation of analytical and computational solutions of coupled sys-

tem of partial differential equations and then definition of new method;

• development of original code in Matlab. Then testing by simulation of

elements and then of the overall model;

• comprehensive testing of the solution, evaluate performance by criti-

cal comparison with other methods reported in literature and bench-

marked against known finite element and experimental results which

are reported in literature.

A review of the relevant literature of general partial differential equations

(PDEs) and those PDEs which are specifically used for device modelling is

conducted. Here specific attention is given to the numerical, computational

and, where possible, analytical solutions. Regarding analytical solutions,

it was noticeable that these were difficult to find and hence the standard

approach to solving the electron transport problem is mainly through com-

putational means. Against this background, it was necessary to take a closer
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look at a semi-analytical approach. The semi-analytical approach is defined

as a combination of analytical and numerical techniques for the solution of

a system of equations.

Development of a semi-analytical approach demanded the construction

of an approximate initial electrostatic potential, enabling the consequential

reduction of the Schroedinger-Poisson’s model to a conventional eigenvalue

problem for which bound states and wave functions were determined. The

determination of the bound states was achieved via the application of the

Evans function approach. To construct this function, it has been necessary

to extend the Wronskian of solutions for the homogeneous equation to two

and three dimensions.

Given a successful initial solution of Schroedinger’s equation, the elec-

tron density was constructed and substituted into Poisson’s equation, thus

enabling an initial solution to Poisson’s equation. The challenging task of

finding an initial solution to Poisson’s equation involved applications of the

methods of variation of parameters and power series. Using this successful

solution to Poisson’s equation, an iterative procedure was developed in order

to simulate the solution technique and implemented in Matlab.

The difference between the previous and new electrostatic potentials was

compared in order to check convergence of the procedure. Comparisons

were made against published data and improved simulations times have been

achieved. This testing was done for one, two and three dimensional devices

previously reported in literature.
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1.4 Original Contribution to Knowledge

The original contributions to knowledge brought by this work are:

• A new generalised semi-analytical method is developed to efficiently

solve the coupled system of Schroedinger-Poisson’s equations. The

method is applicable to one, two and three dimensions;

• The Evans function techniques which were previously applied only to

one dimensional Schroedinger’s equations are extended in a new way to

find bound states from two and three dimensional Schroedinger’s equa-

tions. This enables wave functions to be easily calculated. Further-

more, since the Evans function is a complex analytical function whose

zeros correspond to the discrete spectrum of the differential operator,

it is found in this research that the problem of finding the energies

(eigenvalues) of devices is effectively the study of complex analytical

functions;

• The new semi-analytical method is shown to be accurate and produces

results which compare favourably in terms of speed with those re-

ported in literature. Particularly, improved simulation times have been

achieved using this new method for 3D structures, which are generally

very hard to simulate.

• The original design of a Matlab model supporting the implementation

of the semi-analytical procedure. This model computes simulation re-

sults in faster times compared to those reported in [6, 12,91].
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1.5 Outline of the Thesis

This thesis is organised as follows:

Chapter 2 presents a background review on one, two and three dimen-

sional electronic devices, including operational principles and architectures.

Included in the discussion is a brief overview of the well known Metal Ox-

ide Field Effect Transistor (MOSFET). Further details on the MOSFET are

found in Appendix B. In addition, as nonlinear differential equations are

effective tools in scientifically modelling physical problems, an overview of

analytical and numerical methods for solving them is briefly presented. In

particular, the discussion focuses on those equations which are used to model

the solutions of electronic devices.

Chapter 3 reviews the analytical and numerical methods used to solve

the Schroedinger-Poisson model with application to electron transport. Par-

ticular attention is given to methods which are found in [6, 8, 12, 13, 55, 60,

68, 80, 91]. Moreover, reviews of well known Schroedinger-Poisson solvers

[17,22,23,94] and NEMO-3D developed by [54,84] and the Device modelling

group at the University of Glasgow [42,64,95] are presented. Finally, in this

chapter, special reviews of four key references, [6, 12,74,91] are presented.

Chapter 4 develops a new semi-analytical method for the solution of

the Schroedinger-Poisson equation in one, two and three dimensions. It

is shown that by considering the solution of the homogeneous operator of

the Schroedinger-Poisson model, one can effectively reduce this model to

a simplified model where the electrostatic potential is easier to obtain and

therefore this allows one to establish a semi-analytical solution.
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In Chapter 5, the new semi-analytical method found in Chapter 4 is

extended to Schroedinger equation. It is shown that the eigenvalues of

Schroedinger’s equation can be obtained via the Evans function techniques.

Having found the eigenvalues, the associated eigenfunctions are established.

As far as known by the author of this thesis, the Evans function techniques

had not been applied before in capturing the discrete spectrum of the cou-

pled system of Schroedinger-Poisson’s equations which is used to determine

electron transport in semiconductor systems.

In Chapter 6, it is shown that using the semi-analytical method dis-

cussed in Chapters 4 and 5, the successive approximations of the solutions of

Schroedinger’s equations are bounded, hence will always lead to local conver-

gence. This is very important as it is not always the case that convergence

happens in practice when Schroedinger and Poisson’s equations are coupled.

A proof of this convergence is detailed in this chapter.

Chapter 7 presents simulation results which are obtained using the semi-

analytical method. It is shown that this method gives excellent results which

compare well with published results. Moreover, it will be emphasised that the

method is competent through two aspects, namely, speed and accuracy. It

will be shown that, for the applications considered and analysed, the results

are in good agreement with those published in literature and the method

is computationally faster compared to other known methods employed in

[6, 12,91].

Finally, chapter 8 concludes the research and suggests how this work

may be taken forward in the future. In particular, from the findings, the

effectiveness of the semi-analytical method is discussed. Furthermore, the
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application of the Evans function technique is highlighted. It is also suggested

how this technique may be included in state-of-the-art device simulators such

that speed, accuracy and computer memory are optimised when analysing

semiconductor and other devices. Moreover, further implementation of the

semi-analytical procedure in C++ language may result in faster and improved

simulation times. This is because Matlab, though versatile and powerful in

executing complex calculations, is restricted in its processing speed. On the

other hand, C++ presents the user with a more versatile environment such

that the performance of the code can be improved. In addition, by definition,

the Evans function is a complex analytic function whose zeros correspond to

point eigenvalues. Therefore, one must understand the properties of complex

analytic functions which clearly suggests one may study complex analysis for

future exploration in device analysis.
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Chapter 2

Background Review

2.1 Introduction to Electronic Devices

This section of the thesis is concerned with a brief introduction to the oper-

ational principles and architecture of one of the most widely used microelec-

tronic devices, the Metal Oxide Semiconductor Field Effect Transistor (MOS-

FET). The electron states and transport theory that is developed in Chapters

4 and 5 will be demonstrated on Metal-Oxide-Semiconductor (MOS) devices,

therefore it is necessary to describe the principles of this architecture. Tech-

nological advances and market demand for electronic devices brought about

unprecedented miniaturisation of electronic components, which are now part

of everyday life, with applications that range from complex industrial pro-

cesses to domestic appliances and to entertainment.

A review of the solutions of the relevant nonlinear coupled partial differ-

ential equations which concern this thesis is outlined. Attention is devoted to

the numerical and analytical methods of solutions for these differential equa-
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Figure 2.1: The cross-section of a metal oxide semiconductor diode, [86].

tions. The theory of the method of solution of the important Sine-Gordon

equation [24, 80] is presented. Particularly, in this section of the thesis the

coupled system of Schroedinger-Poisson equations which is frequently used

to model the electron transport in electronic devices is introduced.

2.1.0.1 Introduction-The MOS Structure

Figure 2.1 shows a Metal Oxide Semiconductor (MOS) diode which is a struc-

ture consisting of a thin layer of oxide which is grown on top of a semicon-

ductor substrate followed by a metal layer which is deposited on the oxide.

V is the applied voltage on the metal and d is the thickness of the oxide

(insulator).

Applying voltage to the gate of this MOS structure will control the state

of the silicon surface underneath. The MOS diode comprises of two states,

12



namely, the accumulation and inversion which are used to make a voltage-

controlled switch. In the case of the accumulation state, negative voltage is

applied thus attracting holes from the p-type silicon to the surface, whilst

in the inversion state a positive voltage which is larger than the threshold

voltage is applied resulting in the creation of an inverted layer of electrons

at the surface [86].

The voltage-controlled switch is in two modes, namely, on and off. These

correspond to the existence or absence of the electron channel through which

current flows. In the case when the gate voltage is lower than the threshold

voltage there is no conducting channel and the source and drain regions are

isolated by the p-type substrate. Thus the switch is in the off-mode state.

On the other hand, the on-mode occurs when the gate voltage is higher than

the threshold voltage resulting in the flow of current through the surface and

the electron channel appearing [31, 86]. The operational details of the three

separate components (metal, oxide and semiconductor) of the MOS structure

are outlined in Appendix A.

2.1.1 The MOSFET

The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) as shown

in Figure 2.2 is based on the MOS diode illustrated in Figure 2.1. On the

top of the oxide, a gate electrode, which is a conducting layer of metal,

is attached. Just underneath the oxide and inside the substrate there are

two heavily doped regions called the source and drain. The source to drain

electrodes are equivalent to two p-n junctions that are situated back-to-back.
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Figure 2.2: N-Channel MOSFET diagram.

The central MOS diode with the inverted channel region between the source

and the drain is controlled by an electric field, hence the name MOSFET,

created by a voltage Vg applied to the gate electrode.

The MOSFET may be n-channel or p-channel depending on the type of

carriers in the channel region. For the MOSFET model, the channel contains

electrons (n-channel), the source to drain regions are heavily n+ doped and

the substrate is p-type. When there is no voltage applied to the gate and

there is no conduction channel between the drain and the source regions, the

MOSFET is referred to as a normally-off device. A certain minimum voltage

(e.g. 0.3V ), called the threshold voltage should be applied to the gate to

induce a conduction channel.

If a conduction channel exists between the source and the drain regions

even at zero gate voltage, then it is called a depletion mode device. In this

case, the current flow is not exactly at the surface, some carriers are in the

bulk of the silicon. Details of the MOSFET characteristics and operating
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region of the n-channel MOSFET are given in Appendix B.

2.2 Review of Literature - solutions of non-

linear differential equations

Many physical phenomena in physics and engineering are well modelled by

non-linear differential equations. Electron states and transport in semicon-

ductor devices are well described by the coupled non-linear Schroedinger-

Poisson equations.

The differential equations used to model layered electronic devices are

relatively easy to develop. What is challenging is the efficient (speed and

accuracy) solution of these models. It is well known that one does not have

a general method to solve nonlinear partial differential equations. There-

fore, solutions are found through analytical, numerical and computational

means. Numerical and computational methods are two separate classes [24]:

numerical methods form a branch of Applied Mathematics which analyses

the problem from the view point of finite dimensional spaces and present

a rigorous mathematical treatment of error bounds and clearly set out the

criteria under which convergence is achieved. On the other hand, the compu-

tational approach uses computer models to analyse the problem. As a result

convergence is not proven, but comes from the speed of the machine and

accuracy is achieved with a large number of iterations. Consequently, com-

bination of these techniques with analytical solutions is powerful in finding

solutions to difficult partial differential equations. Therefore, semi-analytical
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solutions are those which combine numerical and analytical methods in find-

ing solutions to differential equations.

For the purposes of this thesis, the task is to find simplified models which

are much easier to solve through the application of computational, analytical

and numerical methods or through combinations of these different methods.

In the following, some general differential equations which are of interest

and whose solution methods are in part relevant to this work are consid-

ered. These solution methods are interesting in that one can easily apply the

hyperbolic tangent and secant functions (which are used in the examples be-

low) to the coupled system of Schroedinger-Poisson equations. When this is

done, the original coupled system of equations is transformed to a simplified

system of equations for which semi-analytical solutions can be found, as will

be shown in Chapters 4 and 5.

2.2.1 Example 1 - the Sine-Gordon equation

The Sine-Gordon equation [24] is given by:

∂2u(t, x)

∂t2
− ∂2u(x, t)

∂x2
+ sin(u(x, t)) + εg(u(x, t)) = 0. (2.1)

u(x, t) is a smooth function. When g(u) = sin(2u), equation (2.1) is called

the double sine −Gordon equation. From [24] it has been shown that with

ε = 0 one has an exact time independent solution

u0(x) = 4arctan(ex). (2.2)

Equation (2.2) satisfies

d2

dx2
u0(x) = sin(u0(x)), (2.3)
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d

dx
u0(x) = 2sech2(x) and (2.4)

cos(u0(x)) = 1− 2sech2(x). (2.5)

To find an approximate solution to the perturbed time-independent problem,

let

û(x, ε) = u0(x) + εu1(x) +O(ε2) (2.6)

and substitute it into (2.1) to obtain the governing equation for u1(x), which

is given as

d2

dx2
u1(x) + (2sech2 − 1)u1(x) = sin(2u0(x)) (2.7)

which has a particular solution

u1(x) = 2(xsech(x)− sech(x) tanh(x)). (2.8)

When interest is in the spectral problem, the spectral Ansatz is employed and

a linearised spectral operator is obtained in the conventional form Lξ = λξ.

In order to find the spectrum of this operator one requires the use of the

techniques of variation of parameters, a change of variable and application

of power series. Using these techniques the problem reduces to the study

of the general solution of second order differential equation with variable

coefficients of the form

d2u(x)

dx2
+ 2sech2(x)u(x) = t(x). (2.9)

This equation has general solution

u(x) = aφ1(x) + bφ2(x) +

∫ x

x0

k(x, s)t(s) ds, (2.10)

17



where k(x, s) is the Wronskian [40] of the two linearly independent solutions

φ1(x) and φ2(x). With an application of the Evans function techniques [25,

71,77], one gets the eigenvalues which are of interest. Therefore, it has been

seen that given a suitable non-linear perturbed differential equation in one-

dimension, one can linearise it about its stationary solution and obtain an

eigenvalue problem to which the Evans function techniques can be applied

in order to find the discrete spectrum of the differential operator, hence, the

eigenfunctions can be calculated.

2.2.2 Example 2 - the scalar reaction-diffusion equa-

tion

As a second example, let d2

dx2u(x) = uxx and consider the scalar partial dif-

ferential equation [24], where ut = d
dt
u(t).

ut = uxx − u(x) + u3(x), u(x) ∈ R, x ∈ R. (2.11)

Equation (2.11) admits a stationary time independent solution

u(x, t) = q(x) (2.12)

=
√

2sech(x). (2.13)

Linearising about this stationary solution results in the linear partial differ-

ential equation

ut = uxx − u(x) + 6sech2(x)u(x). (2.14)

As above, applying the spectral Ansatz to (2.14 ) results in the time-independent

spectral problem

uxx − u(x) + u3(x) + 6sech2(x)u(x) = λu(x). (2.15)
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Now limx→±∞(6sech2(x)− 1)→ −1. Therefore, (2.15) reduces to

uxx − (1 + λ)u(x) = 0. (2.16)

The idea is to write a solution to (2.15 ) in the form eµxh(x) where µ =

±
√

1 + λ and assume Real(1 + λ) > 0. Substitute this into (2.15 ), then the

function h(x) satisfies

hxx(x) + 2µhx(x) + 6sech2(x)h(x) = 0. (2.17)

Solutions to (2.17) which decay as x → ±∞ can be found by using hyper-

geometric series [83], or power series method, [69]. These bounded solutions

are found to be

u−(x, λ) = e
√

1+λx

(
1 +

λ

3
−
√

1 + λ tanh(x)− sech2(x)

)
(2.18)

u+(x, λ) = e−
√

1+λx

(
1 +

λ

3
+
√

1 + λ tanh(x)− sech2(x).

)
(2.19)

The Evans function D(λ) is defined to be the Wronskian

D(λ) =

 u+(x;λ) u−(x;λ)

u+
x (x;λ) u−x (x;λ)

 (2.20)

of the two solutions u±(x;λ). The zeros of the constructed Evans function

are λ = 0 and λ = 3.

Naturally, one would like to extend the methods to the two dimensional

case and also investigate various techniques used to obtain solutions to partial

differential equations (PDEs). In [43, 47] one can use Fourier decomposition

to reduce two-dimensional PDEs to one-dimensional differential equation.

For example, consider the equation

B(Uxx(x, y) + Uyy(x, y)) + cUx +DF (Û(x, y))U(x, y) = λU(x, y).

19



To analyse this equation it is assumed the functions U(x, y) andDF (Û(x, y))

are L-periodic and expand

U(x, y) =
∑
k

Ûk(x)e
2πıky
L (2.21)

and

DF (Û(x, y)) =
∑
k

D̂k(x)e
2πıky
L . (2.22)

Substituting (2.21) and (2.22) into the PDE results in the eigenvalue problem

[43]

B∂xxÛk −
(

2πk

L

)2

BÛk + c∂xÛk +
∑
v

D̂k−v(x)Ûv = λÛk. (2.23)

This produces a system of ordinary differential equations to which one can

apply the known Evans function technique.

2.2.3 Example 3 - the Helmholtz equation

As another example of interest in this thesis, one is concerned with the

solution of the Helmholtz equation in two and three dimensional rectangular

domains with piecewise constant coefficients a(z) and b(z) [13] is

∇ · (a(z)∇φ) + b(z)φ = f(x, y, z) (2.24)

(x, y, z) ∈ [0, Lx]× [0, Ly]× [0, Lz]

with Dirichlet boundary conditions at z = 0,

φ(x, y, 0) = g(x, y), (x, y) ∈ [0, Lx]× [0, Ly],

Neumann, Dirichlet, or ”infinite” boundary conditions at z = Lz, φ(x, y, z)

periodic in x and y for all z ∈ [0, Lz].
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This equation arises in various areas of Applied Mathematics, particularly

in the area of modelling layered semiconductor devices. The solution method

in [13] is to apply Fourier basis method in the (x, y) dependent directions thus

φ(x, y, z) =
∑
k1,k2

e2πık1
x
Lx e

2πık2
y
Ly γk1,k2(z) (2.25)

which, when substituted into (2.25) is a solution to the resulting equation

d

dz

(
a(z)

d

dz
γk1,k2(z)

)
+

(
b(z)− 4π2k2

1

(
x

Lx

)2

− 4π2k2
2

(
y

Ly

)2
)
γk1,k2(z) = f̂(k1, k2)(z)

where

f̂(k1, k2)(z) =

∫ Lx

0

∫ Ly

0

f(x, y, z)e−2πık1
x
Lx e
−2πık2

y
Ly dx dy.

Solutions to this equation are much easier to obtain through the application

of numerical and computational techniques [13,33].

2.2.4 Example 4 - Laplace’s and Poisson’s equations in

two and three dimensions

In [75], Laplace’s equations in rectangular coordinates are given in two and

three dimensions respectively. One has

∂2ψ(x, y)

∂x2
+
∂2ψ(x, y)

∂y2
= 0, (2.26)

and

∂2ψ(x, y, z)

∂x2
+
∂2ψ(x, y, z)

∂y2
+
∂2ψ(x, y, z)

∂z2
= 0, (2.27)

with appropriate boundary conditions. One famous method which is widely

used to solve this equation is the well known separation of variables method.
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If the right hand sides of equations (2.26) and (2.27) are functions f(x, y)

and f(x, y, z) respectively, equations (2.26) and (2.27) are called Poisson’s

equations.

In order to obtain general solutions to equations (2.26) and (2.27), the

following definition and theorem are necessary. From [75] one has

Definition 1

Let r =
√
x2 + y2 + z2.

Let the function u(x, y, z) be defined for sufficiently large r, then it is said to

vanish at infinity if for every ε > 0 there exists a real number R such that

|u(x, y, z)| < ε whenever the point (x, y, z) is such that r > R.

Theorem 2.1 Assume the function f(x, y, z) is continuously differentiable

in the entire three dimensional space and if for large r the inequality

|f(x, y, z)| < A

r2+α

holds, for positive constants A and α, then two and three dimensional solu-

tions to (2.26) and (2.27) are thus given respectively as

u(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η) ln
1√

((x− ξ)2 + (y − η)2)
dξ dη (2.28)

and

u(x, y, z) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(ξ, η, ζ)√
((x− ξ)2 + (y − η)2 + (z − ζ)2)

dξ dη dζ.

For the purposes of this thesis, one considers nanoscale layered semicon-

ductor devices. For a comprehensive overview one may refer to [6, 7, 12, 59,

91, 94]. Hitherto, references are made to PDEs which are used directly in
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modelling these layered structures. It has been shown in Trellakis et al [91]

that the coupled Schroedinger-Poisson equations may be analysed and solved

by various numerical means. For example, in [91] we have the equations

− h̄
2

2
∇ ·
(

1

m?
∇ψ`

)
+ [Vh − eφ+ Vxc(n)− E`]ψ` = 0 (2.29)

∇ · [ε∇φ] = −ρ(φ), (2.30)

where the various energy terms and charge density terms are defined in Chap-

ter 4. This system is in three dimensions and the tasks are to find solutions

ψ`(x, y, z) and φ(x, y, z). This system is not easy to solve. In fact, no closed

solution exists. However, over the years researchers have developed various

computational methods to successfully tackle these coupled differential equa-

tions. For example, in [91] a predictor-corrector approach which successfully

describes efficiently the electron transport in semiconductor devices has been

presented.

Furthermore, Anderson [12] analyses a slightly different version of the

coupled system of Schroedinger-Poisson equations, that is

∇ · (κ(z) · ∇φ(~x)) = qρ(~x) (2.31)

− h̄
2

2
∇ · (β(z)∇ψ(~x)) + [φ(~x) + ∆Ec(z))]ψ(~x) = Eψ(~x) (2.32)

in light of developing efficient simulation of semiconductor devices. This

three dimensional system of PDEs can be reduced to one dimensional and

two dimensional systems, thus reducing the computational task in the sim-

ulation process. For example, it is noted that if the potential, the dielectric

constant and the vector of effective mass are functions of the vertical coor-

dinate only, for example, φ(x, y, z) = φ(z), then equations (2.31) and (2.32)
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can be reduced to a one dimensional system which is less computationally

demanding to solve.

To conclude, the technique of creating approximate mathematical mod-

els in this thesis shows semi-analytical solution to the coupled system of

Schroedinger-Poisson equations can be computed. As will be seen in the

next chapter of this thesis, if closed form solutions do not exist (they rarely

do), then one has to consider computational and numerical methods which

are powerful techniques in analysing electron transport in electronic devices.

In the next chapter of this thesis, a review of the numerical solutions to

differential equations will be discussed.
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Chapter 3

Overview of Modelling Electron

Transport in Semiconductor

Devices

The previous chapter demonstrates that whilst it is sometimes possible to

find closed solutions to partial differential equations (PDEs), in the majority

of cases this is not possible, therefore one has to seek numerical and com-

putational solutions. A central theme in this thesis is the modelling of elec-

tron transport in semiconductor systems which is important in device analy-

sis. Accurately analysing the electron transport requires the computational,

numerical and analytical solutions of the coupled system of Schroedinger-

Poisson’s equations.

Therefore, this chapter reviews the literature covering the relevant work in

the field of numerical and analytical methods for ordinary and partial differ-

ential equations. The chapter contains numerical and analytical techniques
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that are employed to solve the coupled system of Schroedinger-Poisson equa-

tions. Furthermore, it reviews the literature of computationally less expen-

sive alternatives to the Schroedinger-Poisson model from the class of quantum

diffusion models (quantum hydrodynamic and quantum drift-diffusion mod-

els). Finally, a special review of four key references which are discussed in

this work is presented.

3.1 Review of existing relevant methods to

solve coupled PDEs

Much work has been done on the solution of the coupled system of Schroedinger-

Poisson’s equations. A great deal of previous work has been focussed on nu-

merical and computational methods. Excellent reviews of the numerical and

computational methods can be found in [7, 14,21,36,39,62,85,87,89–91,95].

In addition, in [6] an accelerated algorithm in 2D is presented which provides

a fast solution to the above system of equations. In [6], it is shown that the

accelerated algorithm improves upon the previous subband decomposition

method (SDM) previously reported in [7].

In general it is not possible to obtain closed-form (analytical) solutions

which describe sufficiently and satisfactorily the operation of layered semi-

conductor devices. Whilst analytical solutions are desirable and should be

obtained where possible, in most of the research to date, numerical solutions

are often sought because these solutions are usually achievable and they pro-

vide useful and quick insights into the equations being studied. Other cou-
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pled systems of equations which are widely used to model various phenomena

in other important fields such as biology, engineering and electrostatic are

outlined in [18,21,24,37,82]. In electrostatics, Poisson’s equation is used

to compute the electrostatic potential. Schroedinger’s equation is used for

modelling wave functions as well as for finding appropriate energy states.

Therefore, it is necessary to develop robust numerical algorithms to solve

the above system of equations efficiently, although the demand on computer

resources can be quite formidable, especially in 3D simulation problems.

Two powerful numerical techniques which are employed to solve the above

system of partial differential equations are the finite-element and finite-difference

methods. In both methods, the equations are discretised using specified grids

for the domain of the device. Other successful techniques that have been

successfully used to solve problems of this kind are reported in [32].These

include boundary integral methods and finite volume methods. An account

of the meshless Finite Point (FP) method used to solve the nonlinear semi-

conductor Poisson’s equation is reported in [21].

The finite difference method is very simple to implement and is par-

ticularly suited to simple device geometries. Given this advantage, it is

widely used in modelling one-dimensional and two-dimensional rectangular

devices [21, 45]. It is also known that three-dimensional models have been

developed using finite difference methods [89]. The application of finite-

difference techniques is well established and there is considerable information

in literature dealing with stability and convergence properties of this method.

Details of the criteria for convergence and stability are found in [2, 30].

Matrices obtained from the discretisation process are usually large in the
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order of 104 by 104. Therefore, solving the resulting linear system becomes

computationally intensive. Many authors are conducting extensive research

in this area and have reported techniques for efficient solution of the resulting

system of equations obtained from the discretisation of the Schroedinger-

Poisson model, as detailed in [6, 12,45,89–91,95].

Similarly, the finite-element method [18,41] is used to solve many partial

differential equations. Therefore, this method requires the discretisation of

the whole domain. The method still results in a large matrix. The consequen-

tial linear system then has to be solved using preconditioners [91]. However, a

clear advantage of the finite-element method over the finite difference method

is that it can be used to model complex-shaped and inhomogeneous struc-

tures. Elements can be chosen to closely conform to the original geometry

of material boundaries.

The goal is to solve the resulting linear system fast whilst simultaneously

utilising minimum computer resources. From here on, the main focus is on

numerical techniques which are found in literature dealing with numerical

solution to coupled system of equations. In [48], a comprehensive review

of both classical linear and nonlinear techniques is presented for solving the

coupled system of Poisson-Boltzmann equations. The main aim in this work

is the development of a robust and efficient inexact-Newton multigrid nu-

merical method which is used to solve the set of equations obtained from

discretisation. In this work it is shown that this method is superior to all

other methods considered, particularly it is shown to converge in cases where

other methods fail.

In addition to the above numerical techniques, the work in [97] focuses
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on using hybrid techniques in the electrostatic analysis of a nanowire. The

authors propose an efficient approach called the hybrid boundary integral

equation (BIE)-Poisson-Schroedinger approach. With this approach, a solu-

tion to Laplace’s equation in the exterior domain of the nanowire structure

is obtained. This is achieved through boundary integral formulation. Subse-

quently, analysis of the semiconductor structures is achieved by a combina-

tion of Poisson-Schroedinger equation with the boundary integral equations

for the interior domain. Furthermore, a meshless Finite Cloud method and

a Boundary Cloud method are employed in order to self-consistently solve

the coupled system of equations. This approach appears to achieve a signifi-

cant reduction in computational cost and provide higher degree of accuracy,

however, the author analyses the problem only in two-dimensions.

Further analysis of the numerical techniques employed to obtain self-

consistent solution to the coupled system of Schroedinger-Poisson equations

is detailed in [62]. The main interest here is the three dimensional self-

consistent solution of Poisson-Schroedinger for electrostatically formed quan-

tum dots. Quantum dots are nanoscale devices which can be used in various

nanoelectronic applications. In this work, it is reported that quantum dots

may be treated as the memory cells which can be arranged into matrices

and form the whole memory circuits. As a result, accurate analysis of these

structures must be carried out. The analysis can be done by numerical sim-

ulation.

The method used in [62] in solving the above problem is to check if the

approach in which the electron gas is treated separately in a plane (x − y

plane) of 2D electron gas (2DEG) and separately in the z direction which
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is perpendicular to a heterojunction, can provide accurately acceptable re-

sults. To this aim, the one-dimensional Schroedinger equation is solved for

part of the potential distribution corresponding to the z-direction. Conse-

quently, the authors obtained the ground state of 2DEG together with the

electron gas density distribution. Superposition of the results obtained for

one-dimensional and two-dimensional problems gave final information which

could be compared with results obtained in fully three-dimensional simula-

tions. It is expedient to declare here that analysis of the 2D and 1D cal-

culations have to be analysed with great care, particularly with regard to

the positions of energy levels which determine the number of electrons in

quantum dots for a given electrode potential. In addition, the time taken

in the simulation process is a key aspect of any research one which will be

addressed later in this thesis.

The Schroedinger-Poisson equations have far reaching applicability in var-

ious areas of technological industry. As semiconductor technology advances,

this technology can be applied to optics and biology. In [61], the nanowire

core-shell structure with a radial variation in material characteristics, such as

semiconductor composition, is among the various structures currently under

investigation. This core shell structure is popular because it provides great

versatility for use in many devices such as field effect transistors, photode-

tectors and photoemitters.

So far, one has not addressed the commercial implications of semicon-

ductor devices. It is now usual practice to scale aggressively semiconductor

devices in order to meet the demands of reduced cost per function on a chip

used in modern integrated circuits. It has been noticed that quantum effects
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have played an indispensable role in the operation of these microelectronic

devices. A typical method to simulate these effects is to simultaneously and

self-consistently solve the coupled system of Schroedinger-Poisson’s equations

in both two and three dimensions. It is expedient to investigate alterna-

tive ways or models (for example, spectral element method and quantum

drift-diffusion models) to solve the electron transport problem quickly and

accurately.

The work in [27] investigates alternative models other than the Poisson-

Schroedinger model to describe quantum effects, suggesting the use of the

recently developed effective potential approach which accounts for the nat-

ural non-zero size of an electron wave packet in the quantised system. The

work illustrates application to a proposed silicon-on-insulator (SOI) struc-

ture in order to quantify these quantum effects. Furthermore, the authors

used a formalism known as Landauer-Buttiker formalism [35] to calculate the

on-state current quantum-mechanically and estimate the increase in device

threshold voltage [92]. Whilst this work is confined only to analysing the

problem in two-dimensions, it highlights the need to consider other appro-

priate ”less expensive” models.

Indeed, quantum corrected drift-diffusion models can be used to carry

out numerical simulation of tunnelling effects in nanoscale semiconductor

devices [27, 44]. In these studies the authors focus on a novel mathematical

reformulation of the quantum drift-diffusion transport model. The aim of

this reformulation is to devise an efficient and stable simulation procedure

based on a suitable generalisation of the Gummel’s decoupled algorithm [53],

a widely adopted iterative technique in the context of semiconductor device

31



simulation based on the drift-diffusion (DD) model. The study analyses the

problem in one dimension only, however, it indicates that one of the goals

of the computation is to accurately estimate the current flowing through the

oxide and the carrier densities at the semiconductor-oxide interface, in order

to provide appropriate boundary conditions to multidimensional simulations

using quantum drift diffusion model (QDD).

Furthermore, another alternative to the Poisson-Schroedinger model is

the spectral element method. The work done in [26,52] demonstrates signif-

icantly lower computer memory and computational time compared to other

conventional methods when the spectral method is applied and the results

analysed. In addition, the spectral element method divides the computa-

tional domain into non-overlapping subdomains and Chebyshev polynomials

are used to represent the wave function in each subdomain. Analysis of the

method reveals that it is suitable for large scale problems and is highly accu-

rate. Compared to the second order finite difference method, it appears to be

significantly faster. Although it is not known how well the method compares

with higher order finite difference method, the method seems to be validated

by the results obtained by other methods, namely, the Airy function [49],

finite element [18] and the Nemerov’s methods [16]. Section 3.2 discusses

various computational methods).

Therefore, as an initial conclusion, it is clear that the implementation

of numerical techniques has equipped the research community with invalu-

able insights into the nature of the problem being investigated. Moreover,

numerical methods assist researchers to better understand and obtain vital

information regarding the behaviour and simulation of semiconductor de-
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vices. Indeed, in many instances only numerical techniques are possible if

one wishes to understand the electronic behaviour of semiconductor devices.

Some common issues highlighted by various authors are those posed by the

strong nonlinearity of the problem and by intermediate approximations which

have to be made in the solution process [89]. For example, the closed form

of the Dirac-Fermi integral [29,67], which plays a significant role in semicon-

ductor physics, is not known. As such, various approximations have to be

made. Some useful approximations are reported in literature, particularly

the work in [15] gives rational function approximations for the complete

Fermi-Dirac integrals of orders 1
2

and −1
2
. Furthermore, the work in [67]

derives two new series expressions for this integral which are useful in the

quest to find approximate analytical solutions to the system of Schroedinger-

Poisson’s equations. With these limitations, as well as the already mentioned

drawbacks of speed and computer resources experience during the simulation

process, it is natural to investigate new approaches in order to solve the prob-

lem of electron transport in semiconductor systems. One way to achieve this

is to investigate analytical methods which are reported in literature.

Two efficient analytical methods are derived in [78], namely the homotopy-

perturbation method (HPT) and the Adomain decomposition method (ADM)

to find exact analytical solutions to Laplace’s equation in two dimensions

with Dirichlet boundary conditions. In addition, the work in [19] shows

further development of the homotopy perturbation method as a useful ana-

lytical tool for solving differential equations. Comparing the results of the

HPT and the ADM methods with the variational iterative method (VIM)

reported in [78] suggests that the HPT is much easier and more convenient
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than the methods of VIM and ADM. However, the analysis in [3] suggests

that although the HPT and ADM give the same results when applied to study

the generalised Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation,

an improved method known as the homotopy analysis method (HAM) is

proposed. Additional details of the variational method for exact solution of

Laplace’s equation can be found in [9, 70].

Further analytical techniques to solve coupled systems of differential equa-

tions are given in [20,28,65,82]. This work shows how to find analytical

solutions by applying the Jacobi elliptic expansion method. Moreover, in

[76] new exact solutions for three nonlinear evolution equations are pro-

posed. In this work, analytical solutions are derived based on the Ansatz

of combination of solutions to the Riccati equations. Consequently, closed

form travelling wave solutions of three systems of nonlinear partial differen-

tial equations are derived. In achieving these analytical solutions, some of

the work employed symbolic computing to arrive at the desired results.

A careful study of the above methods which are employed by various au-

thors to find analytical solutions suggests that no single analytical method

exists as far as it is reported in literature that solves efficiently the coupled

nonlinear system of partial differential equations. Indeed, the degree of pre-

cision and operational parameters associated with analytical models make it

difficult to find closed form solutions to the coupled system of Schroedinger-

Poisson’s equations. However, this does not prevent the need to search for

approximate analytical solutions which will improve the two and three di-

mensional numerical processes which are used to analyse the above system

of equations, which are currently time consuming and memory intensive.
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Therefore, the goal of the next two chapters of this thesis is to admit ideas

from several sources then propose an original semi-analytical method which

will accurately predict the transport of electrons in semiconductor systems.

As is indicated in this thesis, there are four key references which are

essential in this work. Therefore, in the following section, reviews of these

are presented [6, 12,74,91].

3.2 Reviews of four key references

The four key references reported in this thesis are entitled:

• Computational issues in the simulation of semiconductor quantum wires

by Trellakis et al [91],

• An accelerated algorithm for 2D simulations of quantum ballistic trans-

port in nanoscale MOSFETs by Abdallah et al [6],

• Efficient solution of the Schroedinger-Poisson equations in layered semi-

conductor devices by Anderson [12] and

• Fast convergent Schroedinger-Poisson solver for the static and dynamic

analysis of carbon nanotube field effect transistors by Pourfath et al

[74].
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3.2.1 Review of Trellakis’ computational issues in the

simulation of semiconductor quantum wires [91]

Trellakis et al [91] describe a number of efficient computational methods

which are used in the simulation of electronic states in quantum wires formed

as a result of quantum confinement in two directions. The physical model

used to describe the bound states in the cross-section of a quantum wire is the

coupled system of Schroedinger-Poisson equations. Schroedinger’s equation

is

− h̄
2

2
∇ ·
[

1

m?
∇ψn

]
+ [Vh − eφ+ Vxc(n)− En]ψn = 0. (3.1)

ψn is the wave function corresponding to the eigenvalue En. The electrostatic

potential is φ. Vh is the heterojunction step potential. n is the quantum

electron density. Vxc is the exchange correlation potential and m? is the

tensor describing the effective mass. The nonlinear Poisson equation:

∇ · (ε∇φ) = −q
[
−n+ p(φ) +N+

D (φ)−N−A (φ)
]

(3.2)

determines the electrostatic potential φ. Here ε is the dielectric constant, q

is the electric charge. p is the hole density and N+
D and N−D are the ionized

and donor and acceptor concentrations. In addition,

p(φ) = 2

(
mdhkBT

2πh̄2

) 3
2

℘ 1
2

(
−eφ+ Vh − EG − EF

kbT

)
, (3.3)

N+
D (φ) = ND

[
1 + gDexp

(
EF + eφ− Vh + Ed

kBT

)]−1

, (3.4)
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and

N−A (φ) = NA

[
1 + gA exp

(
−EF − eφ+ Vh − EG + Ea

kBT

)]−1

. (3.5)

ND and NA are the donor and acceptor concentrations. Ea and Ed are the

donor atom ionisation energies, gD and gA their respective ground state level

degeneracies. The band gap is EG and mdh is the density-of-state mass of

the valence band. The electron density is given as

n =
∑
n

gv

(
2mwkBT

π2h̄2

) 1
2

℘− 1
2

(
EF − En
kBT

)
|ψn|2.

Here gv represents the number of equivalent conduction band valleys. The

electron mass along the wire is mw, the temperature is T, the Boltzmann’s

constant is kB, the Fermi level is represented by EF and the Fermi-Dirac

integral of order −1
2

is denoted by ℘− 1
2
.

3.2.1.1 Solution by Underrelaxation

The coupled system of equations (3.1) and (3.2) is normally solved by iter-

ation between Poisson’s and Schroedinger’s equations. However, plain iter-

ation by itself does not necessarily lead to convergence, therefore, one has

to underrelax in the electron density n by using an adaptively determined

relaxation parameter ωk. The underrelaxation approach is outlined below:

• Solve nonlinear Poisson equation using the old electron density n(k−1)

to obtain electrostatic potential φ(k),

• Use φ(k) and Vxc(n
(k−1)) to solve Schroedinger’s equation in order to ob-

tain a new set of eigenfunctions and corresponding eigenvalues, (Ek
n, ψ

(k)
n ),
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• Calculate an intermediate electron density, n
(k)
int,

• Determine an appropriate relaxation parameter ω(k) in order to obtain

new electron density n(k),

• Repeat outer iteration until n becomes stationary.

This method has a major weakness, which is the inherent instability of

the outer iteration which is controlled only by the underrelaxation procedure.

One does not know in advance the precise value of the relaxation parameter

ω(k) and thus it has be dynamically re-adjusted during the iteration process.

The choice of this parameter has consequences; if it is chosen too large then it

results in oscillations from one iteration step to the next in the total quantized

charge
∫
n dx; on the other hand, if ω(k) is too small, then convergence is

achieved in too many iteration steps. Therefore, this problem has to be

addressed, hence the predictor-corrector type approach is proposed [91].

3.2.1.2 Solution by a Predictor-Corrector Type Approach.

With this approach, fast convergence can be achieved by modification in the

underrelaxation algorithm by partial decoupling of both partial differential

equations and damping the oscillations in the total electric charge. To this

end, one substitutes into Poisson’s equation a modified expression for the

quantum electron density ñ(φ), which approximates the implicit dependence

of the electron density n on the electrostatic potential φ due to Schroedinger’s

equation.

By using quantum mechanical perturbation theory, a suitable expression
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for the electron density n is given as

ñ(φ) =
∑
`

Ñ`(φ− φold)|ψ(k−1)
` |2, (3.6)

Ñ`(φ− φold) =

(
2mqkBT

π2h̄2

) 1
2

℘− 1
2

(
EF − E` + e(φ− φold)

kBT

)
. (3.7)

Therefore, the original approach starts by solving a modified Poisson equation

which contains ñ(φ) as a predictor for the electron density n. Hence, the

original Poisson’s equation is changed to

∇ · (ε∇φ) = −e
[
−ñ(φ) + p(φ) +N+

D (φ)−N−A (φ)
]
, (3.8)

which is solved for φ. Using this value of φ along with the predicted electron

density ñ enables the potentials in modified Schroedinger’s equation

− h̄
2

2
∇ ·
[

1

m?
∇ψn

]
+ [Vh − eφ+ Vxc(ñ)− En]ψn = 0 (3.9)

to be determined and a corrected update of the electron density is calculated.

3.2.1.3 Validation of Results in [91]

The Schroedinger and Poisson equations are both discretised by box integra-

tion finite difference method in order to take into account discontinuities in

the material properties. As the quantum wire covers only a small part of the

whole computational domain, a non-uniform rectangular mesh is used around

the wire region in order to minimise computational cost, while retaining high

accuracy within the region of interest.

Discretisation of Schroedinger’s equation results in a large eigenvalue

problem which demands a solution by the Chebyshev-Arnoldi iteration, since
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this method is well suited to compute the relevant lowest energy states. Pois-

son’s equation is solved by Newton-Raphson method with inexact line search.

Solving this sparse linear system at each interation step is accomplished by

a version of the preconditioned conjugate gradient method.

In order to validate the results obtained by the predictor-corrector method,

comparison of the method was done with the well known fast adaptive un-

derrelaxation scheme, which is an adaptive nonlinear version of the stan-

dard Gauss-Seidel algorithm. The comparison which is validated against the

standard Gauss-Seidel method shows faster convergence using the predictor-

corrector method. The numerical experiments carried out in this review are

for two dimensional devices.

3.2.2 Review of the accelerated algorithm for 2D sim-

ulations of the quantum ballistic transport in

nanoscale MOSFETs [6]

Abdallah et al.’s work develops a new and powerful model which is de-

scribed as Sub-band Decomposition Method/Wentzel, Kramers and Bril-

louin (SDM/WKB) which is an extension of the WKB method [6]. This

new method has shown considerable gain in computation time over the SDM

through the use of WKB techniques and thus reducing the numerical cost of

computation. Here SDM refers to the subband decomposition method and

WKB is a method of finding approximate solutions to linear partial differen-

tial equations with spatially varying coefficients.

In the SDM method a two-dimensional solution of the self-consistent
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Schroedinger equation with open boundary conditions (current carrying) is

sought. In modern devices, electron gas is confined in one or more directions

thus reducing the dimensions of the propagation space. It is assumed that

the electron gas is confined in the z direction and a decomposition of the

wave function is considered:

ψε(x, z) =
∑
ı

ϕıε(x)χı(z;x), (3.10)

where ϕıε represents the longitudinal wave functions and Xı are the transver-

sal wave functions.

In the 2D domain, Schroedinger’s equation is

− h̄
2

2

1

mz(z)
∆xψε(x, z)−

h̄2

2

∂

∂z

(
1

mz(z)

∂

∂z
ψε(x, z)

)
+

+V (x, z)ψε(x, z) = εψε(x, z).(3.11)

Using equation (3.10), the solution of equation (3.11) is replaced by the

solution of 1D eigenvalue problems in the confined direction z:

h̄2

2

∂

∂z

(
1

mz(z)

∂

∂z
Xı(z;x)

)
+ V (x, z)Xı(z;x) =

= Eı(x)Xı(z;x),(3.12)

∫ 1

0
|Xı(z;x)2 dz = 1 and the other resulting coupled one-dimensional Schroedinger

equations are projected on the transport direction x:

− d

dx2
ϕıε(x)− 2

∞∑
j=1

aıj(x)
d

dx
ϕjε(x) −

−
∞∑
j=1

(
bıj(x) +

2

h̄2 cıj(x)(ε− Ej(x))

)
ϕjε(x) = 0. (3.13)

As a result the size of the linear system which one needs to solve is reduced

from Nx × Nz for the original two-dimensional model to one of the form
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Nx ×M for the subband decomposition method. Here Nx and Nz are the

number of grid points respectively in the transport and confined directions.

M represents the number of transverse modes which are taken into consid-

eration.

The new SDM/WKB is essentially an improvement in the SDM through

the use of WKB techniques, thus a reduction in the numerical cost of simu-

lating the Schroedinger-Poisson model. The SDM/WKB method uses oscil-

lating interpolation functions instead of polynomial (which are used in the

SDM) functions for the solution of the 1D Schroedinger’s equation, result-

ing in significant reduction in the number of grid points in the x direction.

Using the coupled one-dimensional Schroedinger equations (3.13) with a fi-

nite number of subbands which are denoted by M and define Φ := (ϕıε)
M
ı=1,

A := (aıj)
M
ı,j=1, B := (bıj)

M
ı,j=1 and C := (2cıj(ε− Ej))Mı,j=1, equation (3.13) is

−h̄2Φxx(x)− 2h̄2A(x)Φx(x)− h̄2B(x)Φ(x)− C(x)Φ(x) = 0, (3.14)

where x ∈ [a, b]. In order to solve equation (3.14), an approximate solution

is of the form

Φ(x) = e
ı
h̄
S(x)~e(x), (3.15)

with ~e(x) = α(x)~u(x) where |~u(x)| = 1,∀x, ∀h̄. Substituting (3.15) into

(3.14) and neglecting terms in h̄2, results in the equation

−2ıh̄Sx~ux − 2ıh̄Sxα~ux − ıh̄Sxxα~u+ (Sx)
2α~u− 2ıh̄SxαA~u− αC~u = 0.

A close examination of this equation suggests that it can be solved if it is

decomposed into two equations, namely

−2ıh̄Sx~ux + (Sx)
2~u− 2ıh̄SxA~u− C~u = 0 (3.16)
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and

2Sxαx + Sxxα = 0. (3.17)

Now both S and ~e depend on h̄, then rewrite equation (3.17) as

((Sh̄)x(αh̄)
2)x = 0,

which suggests that (Sh̄)x 6= 0 and αh̄(x) = c√
|(Sh̄)x|

, c ∈ C. Expand ~uh̄ and

Sh̄ in powers of h̄, substitute these into equation (3.16), compare terms of

the same order in h̄ and take zeroth and first order terms give the equations(
d

dx
S0

)2

(x)u0(x) = C(x)u0(x), (3.18)

S(x) = 0, (3.19)

where

S(x) = −2ı(S0)x(u
0)x + (S0)2

xu
1 + 2(S0)x(S

1)xu
0 − 2ı(S0)xAu

0 − Cu1.

It is reported in [6] that the term u1 will only increase the simulation cost

and offer no significant gain in accuracy, therefore it is omitted and the

contribution of the zeroth order term u0 is only considered.

Then an approximate solution to equation (3.14) can be written in the

form Φ(x) = T (x)ξ(x) where T (x) and ξ(x) are defined in [6]. This produces

a numerical scheme such that the entire wave function can be expressed by

means of the so-called WKB basis functions. The discretisation which is then

employed is a finite volume method.

3.2.2.1 Validation of Results in [6]

The efficiency of the SDM/WKB method is illustrated by extensive compar-

isons with the SDM. The channel length of the device under consideration
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in this review is 10 nm. Currently, experimental results do not exist because

devices of this size are yet to be achieved in practice. Analytical solutions are

not found in literature either. Therefore, in order to validate the results of

the new SDM/WKB, comparisons are made with a reference solution which

is obtained by the well known standard full 2D finite element method on

a fine grid of mesh size Nx = 540, nz = 210. Here both the SDM and the

SDM/WKB methods are compared with the standard finite element method

in terms of accuracy and speed. The SDM/WKB very accurately produces

approximate solution to the Schroedinger-Poisson equation when checked

against the finite element results and shows improved simulation times com-

pared to the SDM method. The devices considered in this paper are 3D.

3.2.3 Review of efficient solution of the Schroedinger-

Poisson equations in layered semiconductor de-

vices [12]

Anderson [12] reviews approximation models for the coupled system of

Schroedinger-Poisson equations. The system of equations considered is

∇ · (~κ( ~X) · ∇φ( ~X)) = M( ~X),

− h̄
2

2
∇ · (~β( ~X)) · ∇Ψ( ~X)) + [φ( ~X) + ∆Ec( ~X)]Ψ( ~X) = EΨ( ~X),(3.20)

where

M(( ~X) = q(σb ~(X)−ND( ~X)− n( ~X)).

The vector of dielectric coefficients is ~κ( ~X), E is the energy, ~β( ~X) is the vector

of effective mass coefficients, in the vertical direction, piecewise constants
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functions are ∆Ec, also σb( ~X) is a background hole density and the density

of bound states electrons is denoted by n( ~X).

When the potential in a device has variation only in the vertical direction,

φ(x, y, z) = φ(z), and if there is no transverse variation in the boundary con-

ditions, then the dielectric constants, the doping density and the background

hole concentrations will be functions of the vertical z coordinate. In addition,

if the effective mass coefficients takes the form ~β( ~X) = ~β(z) =
(

1
m?x
, 1
m?y
, 1
m?z

)
,

then the 3D eigenfunction is given as

Ψ(x, y, z) = η(z)e2πıkx
X
D e2πıky

y
D , (3.21)

where D represents the size of the periodic domain in the transverse direc-

tions. Substituting φ(x, y, z) = φ(z) and equation (3.20) into (3.19), applying

the separation of variable technique and making D →∞ result in the reduc-

tion of the 3D system (3.20) to the 1D system

d

dz

(
κ(z)

dφ(z)

dz

)
= N(z),

− h̄
2

2

d

dz

(
βz(z)

dη

dz

)
+ [φ(z) + ∆Ec(z)]η(z) = Eη(z), (3.22)

where N(z) = q(σd(z) − n1(z) − ND(z)), βz(z) = 1
m?z(z)

and n(1)(z) =

2
∑

Ek<EF
D2
kη

?
k(z)η?k(z). The 2D density of states functional is

D
(2)
k =


(EF−Ek)

√
|my ||mx|

2πh̄2 Ek < EF ,

0 Ek ≥ EF .
(3.23)

In the case where the potential has transverse variation in one direction,

then φ(X, y, z) = φ(y, z) resulting in eigenfunctions of the form Ψ(X, y, z) =

η(y, z)e2πıkX
X
D . Following a similar procedure as that outlined above in the
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1D case, results in the reduced 2D Schroedinger-Poisson system

∇ · (κ(y, z)∇φ(y, z)) = qρ(y, z),

− h̄
2

2
∇ · (~β(y, z) · ∇η(y, z)) +H(y, z)η(y, z) = Eη(y, z),

where

ρ(y, z) = σb(y, z)− n(2)(y, z)−ND(y, z), (3.24)

H(y, z) = φ(y, z) + ∆Ec(y, z) (3.25)

and

n(2)(y, z) = 2
∑

EF<EF

D
(1)
k η?k(y, z)ηk(y, z). (3.26)

The 1D density of states functional is given as

D
(1)
k =

 −
√

2(EF−Ek)
√
|mX |

πh̄
Ek < EF ,

0 Ek ≥ EF .
(3.27)

A very important feature of the system of equations (3.20) is that it

is separable, thus a reduction in the dimension of the eigenvalue problem is

achievable. Given this feature, additional approximation to the system can be

achieved by retaining the original form of φ in Poisson’s equation (3.20) and

approximate the electrostatic potential φ in Schroedinger’s equation (3.20).

A suitable approximate potential is

Φ(~x) = φ̃1(z) + φ̃2(x, y), (3.28)

where

φ̃1(z) =
1

LxLy

∫ ∫
φ(x, y, z) dx dy − 1

2
φ (3.29)
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and

φ̃2(x, y) =
1

Lz

∫
φ(x, y, z) dz − 1

2
φ. (3.30)

Furthermore, a rectangular domain is assumed with side lengths Lx, Ly and

Lz and

φ =
1

LxLyLz

∫ ∫ ∫
φ(x, y, z)dx dy dz. (3.31)

Therefore, replacing φ in (3.20) with (3.28) results in the 3D separable ap-

proximation

∇ · (~κ(~x) · ∇φ(~x)) = qρ(~x), (3.32)

− h̄
2

2

d

dz
(βz(z)

dη

dz
) + [φ̃1(z) + ∆Ec(z)]η(z) = λη(z), (3.33)

− h̄
2

2

(
∂

∂x

(
βx
∂γ

∂y

)
+

∂

∂y

(
βy
∂γ

∂y

))
+ φ̃2(x, y)γ(x, y) = µγ(x, y).(3.34)

In a similar manner, approximation for the 2D Schroedinger-Poisson

equations can be derived along with those approximations which are con-

structed via charge densities which do not require a numerical solution of

the Schroedinger operator. For the Schroedinger’s equation in the transverse

directions, high order finite difference approximations are used and a finite

volume discretisation method is used in the vertical direction. For the 2D and

3D cases where only a certain range of eigenvalues are required, the approach

is to follow the same procedure reported in [91]. On the other hand, the

method of solution of the 1D Poisson equation follows the procedure outlined

in [12]. The 2D and 3D cases use basis functions in the vertical direction.

Given these simplified models, the task is to implement them using effi-

cient algorithmic procedures in order to simulate accurately and efficiently
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layered semiconductor devices. A close examination of equation (3.20) as well

as the various approximations which are outlined above suggest the general

structure

Lφ = S(Ψ), (3.35)

H(φ)Ψ = EΨ. (3.36)

L is the Poisson operator and the source term is given by S(Ψ). The Schroedinger

operator which depends on the electrostatic potential φ is H(φ). Now S(Ψ)

can be computed for any given φ, therefore equations (3.35) and (3.36) are

combined to give

Lφ = S(Ψ(φ)). (3.37)

By using the inverse of the Poisson’s operator L−1 equation (3.37) reduces

to

L−1S(Ψ(φ))− φ = 0. (3.38)

The form of (3.38) enables solution by evolving the partial differential equa-

tion

∂φ

∂t
= L−1S(Ψ(φ))− φ (3.39)

to steady-state by using a ”method of lines” approach as well as specially

designed explicit stabilised Runge-Kutta methods to solve the resulting or-

dinary differential equations.

3.2.3.1 Validation of Results in [12]

The simulation results obtained with the simplified models are validated and

compared with the finite element solution of the original quantum model
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given in equation (3.20) for accuracy. Improved simulation time of more

than an order of magnitude less than the solution obtained by solving the

original system of Schroedinger-Poisson equations is achieved compared to

the standard finite element method. The 3D device considered in this paper

is also analysed in 1D and 2D.

3.2.4 Review of the fast convergent Schroedinger-Poisson

solver for the static and dynamic analysis of car-

bon nanotube field effect transistors by Pourfath

et al [74]

Carbon nanotubes (CNTs) have special electronic and mechanical properties

making them a candidate for nanoscale field effect transistors (FETs). In

order to study the static response of carbon nanotube field effect transistors

(CNTFETs), the coupled system of Schroedinger-Poisson equations is solved.

This system is given in [74] as

∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
+
∂2V

∂z2
= −Q

ε
(3.40)

− h̄2

2m?

∂2Ψn,p
s,d

∂z2
+ (Un,p − E)Ψn,p

s,d = 0. (3.41)

Equation (3.40) is Poisson’s equation in two-dimensions whilst the one-dimensional

Schroedinger’s equation is given by (3.41). The electrostatic potential in

(3.40) is V (ρ, z) and the space charge is Q. In Schroedinger’s equation, m?

is the effective mass for both electrons and holes. Ψn,p
s,d is the wave function,

where the superscripts denote the type of carrier and the subscripts d and s

represent the source and drain contacts. Un is the potential energy [74].
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In equation (3.40), the space charge Q is computed by the formula

Q =
q(p− n)δ(ρ− ρcnt)

2πρ
, (3.42)

where q is the electronic charge, n and p are total electron and hole concentra-

tions per unit length [74], δ is the delta function in cylindrical coordinates.

And the total electron concentration in the CNT is given by

n =
4

2π

∫
fs|Ψn

s |2dks +
4

2π

∫
fd|Ψn

d |2dkd

=

∫ √
2m?

πh̄
√
Es
fs|Ψs|2dEs +

∫ √
2m?

πh̄
√
Ed
fd|Ψd|2dEd. (3.43)

In equation (3.43), the equilibrium Fermi functions at the source and drain

contacts are fs,d. Finally, the current in the device is calculated by the formula

In,p =
4q

h̄

∫
[fn,ps (E)− fn,pd (E)]T n,pc (E)dE, (3.44)

where the transmission coefficients of electrons and holes are T n,pc (E).

The system of Schroedinger-Poisson equations in (3.40) and (3.41) is

solved iteratively using an appropriate numerical damping factor α [74].

Schroedinger’s equation (3.41) is solved at the (k + 1)th iteration by using

the old electrostatic potential V k. Subsequently the charge density Qk+1 is

computed and Poisson’s equation is solved using the updated Qk+1. An in-

termediate new electrostatic V k+1
int is calculated. Consequently, the potential

is computed as:

V k+1 = αV k+1
int + (1− α)V k, (3.45)

where 0 < α < 1. The process then continues until convergence is achieved.

The damping factor α is not known in advance so it has to be set at an ini-

tial value. If this value is too high, oscillations may occur. If it is set at a low
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value, the simulations will take too long. However, if the carrier concentra-

tion is appropriately evaluated this problem can be avoided [74]. To achieve

this, the integrals in equations (3.43) and (3.44) are computed accurately by

an adaptive method. In this method, one uses the fact that in (3.43) and

(3.44) the integration is computed in an energy interval [Emin, Emax].

These integrals in (3.43) and (3.44) are then computed by two integration

methods, I1 and I2, where explicit expressions for I1 and I2 are given in [74].

If the absolute difference between the results of these two methods is less than

some predefined tolerance, the integration is accepted. If not, [Emin, Emax]

is divided into two parts and I1 and I2 are computed separately.

3.2.4.1 Validation of Results in [74]

In order to validate the effectiveness of the adaptive integration method, [74],

the results are compared with experimental data reported in [51] and there

is good agreement between experimental and simulation results.

3.3 Summary

In summary, this chapter demonstrates how the coupled system of equations

may be solved efficiently by employing various robust numerical techniques,

such as the conjugate gradient and the incomplete Cholesky methods. More-

over, one key feature of all the solution techniques requires some compu-

tational procedure to achieve speed and minimize computer resources. As

speed and computer resource are key features in any simulation process, the

need for analytical solutions is a reality. To this end, analytical solutions
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are known, however, only in one-dimensional cases. This thesis develops

proposed models for 1D, 2D and 3D Schroedinger-Poisson’s equations and

presents semi-analytical solutions. It is to this analysis that the next chapters

are devoted.
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Chapter 4

Semi-Analytical Solutions of

Poisson’s Equation

Solving the coupled system of Schroedinger-Poisson’s equations is a challeng-

ing task. Therefore, in order to overcome this problem, this chapter presents

semi-analytical solutions to one dimensional (1D), two-dimensional (2D) and

three-dimensional (3D) Poisson’s equations. The goal here is to create pro-

posed models and hence semi-analytical solutions to these models which can

be used to efficiently analyse the Schroedinger-Poisson model [6, 12, 91].

In particular, this chapter analyses the theory of solutions of well known

differential equations and combines this analysis with the original method

developed in this thesis to reduce the coupled system of equations to a quasi-

Poisson’s for which semi-analytical solutions can be easily obtained. An

excellent review of analytical methods for solving Poisson’s equation is given

in [37,38,58,81,96].

The proposed method uses the Wronskian [40] of solutions of the homo-
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geneous Poisson’s equation. This Wronskian is extended to two and three

dimensions and has proved to be instrumental in finding semi-analytical so-

lutions to Poisson’s equation. With the successful solution of Poisson’s equa-

tion, one wishes to use this to solve Schroedinger’s equation. Since the sys-

tem of equations is coupled, expressions for the wave functions ψ1(x, y, z) and

ψ2(x, y, z) have to be found. Finding these expressions requires the applica-

tion of the Evans function techniques (to be discussed in the next chapter)

to the Schroedinger’s equation. By substituting φ(0, 0, 0) into Schroedinger’s

equation, this thesis addresses in the next chapter the challenge of finding

semi-analytical solutions (wave functions) for the Schroedinger’s equation.

The Wronskian and Evans function techniques are described in detail in Ap-

pendices C and D.

Before looking at this coupled system of equations, it is essential to de-

velop a detailed analysis of the general Poisson’s equation which is essential

in device analysis. Therefore, for 3D, 2D and 1D Poisson’s equations, respec-

tively, the following notations are adapted.

∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2
= φxx + φyy + φzz, (4.1)

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= φxx + φyy (4.2)

and

∂2φ(x)

∂x2
= φxx. (4.3)

In this thesis an effective technique based on the application of hyperbolic

functions is shown to be extremely useful in obtaining semi-analytical solu-
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tions to Poisson’s equation. Before discussing Poisson’s equation it is useful

to briefly present background analysis and justification of this method.

Consider equation (2.9) which was briefly introduced in Chapter 2. This

equation exhibits important features: its solution can be found by the method

of variation of parameters [34, 75, 88] and it can be easily transformed into

a differential equation with variable coefficients. To this transformed equa-

tion one can apply power series methods to find the general solution. This

equation is of the form

wxx + 2sech2(x)w = b(x), (4.4)

where w = w(x) is the unknown function. With b(x) = 0, this equation has

two linearly independent solutions

w1(x) = tanh(x), (4.5)

w2(x) = tanh(x) (x− coth(x)) . (4.6)

Using the method of variation of parameters, the two linearly independent

solutions and taking b(x) 6= 0, the general solution to equation (4.7) is given

as

w(x) = aφ1(x) + bφ2(x) +

∫ x

x0

k(s, x)b(s)ds, (4.7)

where

k(s, x) = φ1(s)φ2(x)− φ1(x)φ2(s)

and a, b are arbitrary constants. This solution technique is very important

and will be seen later in this work to be instrumental in developing the

original semi-analytical method for the solutions to 2D and 3D Poisson’s

equations.
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4.1 Semi-analytical solution to 3D Poisson’s

model

With this as background, consider the 3-D Poisson’s model [91] which is given

as:

∇ · (ε∇φ(x, y, z)) = ρ(φ(x, y, z)), (4.8)

∇ · (ε∇φ(x, y, z)) = −q[−n+ p(φ(x, y, z)) +N+
D (φ(x, y, z))−N−A (φ(x, y, z))],

where ε = ε(z) is the dielectric constant, q is the unit electric charge, p(x, y, z)

is the hole density, and N+
D (φ(x, y, z)) and N−A (φ(x, y, z)) are the ionised

donor and acceptor concentrations. Furthermore, let φ = φ(x, y, z), one has

p(φ) = 2

(
mdhkBT

2πh̄2

) 3
2

℘ 1
2

(
−qφ+ Vh − EG − EF

kBT

)
, (4.9)

N+
D (φ) = ND

(
1 + gD exp

(
EF + qφ− Vh + Ed

kBT

))−1

, (4.10)

N−A (φ) = NA

(
1 + gA exp

(
−qφ+ Vh − EG + Ea − EF

kBT

))−1

.

Here ND and NA are the donor and acceptor concentrations, Ed and Ea

are the donor and acceptor atom ionisation energies, gD and gA are their

respective ground state level degeneracies. EG is the band gap and mdh is

the density-of-state mass of the valence band and define the Fermi-Dirac

integral [67] as

℘j(x) =
1

Γ(1 + j)

∫ ∞
0

tjdt

et−x + 1
. (4.11)
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The approximate but compact truncated series representation of the Fermi-

Dirac integral is given as

℘ 1
2
(x) = −23.51121 + 2.8356x+ 0.05585x2 + 0.000713x3 (4.12)

− 0.000022x4 + (8π)
1
2 [(
√
P − x)

1
2 + (

√
Q− x)

1
2 ],

℘− 1
2
(x) = 2.8356 + 0.1117x+ 0.002138x2 − 0.000086x3 (4.13)

− (2π)
1
2 [(

√
P − x
P

)
1
2 + (

√
Q− x
Q

)
1
2 ],

where P = (x2 + π2), Q = (x2 + 9π2) and for j = 1
2

and j = −1
2
.

For the electron density n occurring in equation (4.8) one uses the semi-

classical expression [91]

n(φ) = 2

(
mdekBT

2πh̄2

) 3
2

℘ 1
2

(
EF + qφ− Vh

kBT

)
, (4.14)

where mde is the density-of-state mass of the conduction band.

In order to obtain a semi-analytical solution for equation (4.8), write it

in rectangular coordinates as

ε(z)

(
∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2

)
+
∂ε(z)

∂z

∂φ(x, y, z)

∂z
(4.15)

= q[−n+ p(φ) +N+
D (φ)−N−A (φ)],

where φ = φ(x, y, z) and consider the homogeneous equation

∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2
= 0. (4.16)

It is verified in Appendix A that a general solution to equation (4.16) is

given as

φ(x, y, z) = tanh(x+ ı
√

3y −
√

2z). (4.17)
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Therefore, (4.16) may be recast as

∂2φ(x, y, z)

∂x2
+ 2sech2(x+ ı

√
3y −

√
2z)φ(x, y, z) = 0. (4.18)

Using the expression given in (4.17), a solution to equation (4.18) is given as

φ(x, y, z) = tanh(x+ ı
√

3y −
√

2z). (4.19)

In order to find a second solution for equation (4.18), let

φ(x, y, z) = tanh(x+ ı
√

3y −
√

2z)v(x, y, z)

and substitute this into (4.18) to obtain

∂2v(x, y, z)

∂x2
+

2sech2(x+ ı
√

3y −
√

2z)

tanh(x+ ı
√

3y −
√

2z)

∂v(x, y, z)

∂x
= 0. (4.20)

To solve equation (4.20), let

∂v(x, y, z)

∂x
= r(x, y, z).

This implies that

∂2v(x, y, z)

∂x2
=
∂r(x, y, z)

∂x
.

Therefore, equation (4.20) reduces to the first order differential equation

∂r(x, y, z)

∂x2
+

2sech2(x+ ı
√

3y −
√

2z)

tanh(x+ ı
√

3y −
√

2z)
r(x, y, z) = 0. (4.21)

To solve equation (4.21), let

u = tanh(x+ ı
√

3y −
√

2z).

Then

du

dx
= sech2(x+ ı

√
3y −

√
2z)
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and

dx =
du

sech2(x+ ı
√

3y −
√

2z)
,

hence equation (4.21) becomes

∂r(x, y, z)

∂u
+

2

u
r(x, y, z) = 0. (4.22)

Using the integrating factor r = e−
∫

2
u
du, one obtains

r(x, y, z) =
1

tanh2(x+ ı
√

3y −
√

2z)
.

Integration of r(x, y, z) gives

v(x, y, z) = x− coth(x+ ı
√

3y −
√

2z),

resulting in the second solution one needs. Again, this second solution can

be easily verified. Thus, two solutions to equation (4.18) are given as

φ1(x, y, z) = tanh(x+ ı
√

3y −
√

2z) (4.23)

and

φ2(x, y, z) = tanh(x+ ı
√

3y −
√

2z)(x− coth(x+ ı
√

3y −
√

2z)). (4.24)

Therefore, the approximate semi-analytical solution to (4.15) is given as

φ(x, y, z) = α1φ1 + α2φ2 +

∫ x

x0

∫ z

z0

∫ y

y0

K(x, y, z, a, b, c)ϕ(a, b, c) da db dc,

where

K(x, y, z, a, b, c) = φ1(a, b, c)φ2(x, y, z)− φ1(x, y, z)φ2(a, b, c),

ϕ(a, b, c) =
q

ε(c)

(
−n+ p(φ(a, b, c)) +N+

D (φ(a, b, c))−N−A (φ(a, b, c))
)
−V (a, b, c),
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V (a, b, c) =
1

ε(c)

∂ε(c)

∂c

∂φ(a, b, c)

∂c
,

φ1 = φ1(x, y, z),

αı = 1, 2. is some arbitrary constant and

φ2 = φ2(x, y, z).

4.2 Semi-analytical solution to 2D Poisson’s

model

If the potential in the device has variation in the vertical direction z and

a single transverse direction x, then equation (4.15) may be reduced to the

two-dimensional differential equation (model) namely

ε(z)

(
∂2φ(x, z)

∂x2
+
∂2φ(x, z)

∂z2

)
+
∂ε(z)

∂z

∂φ(x, z)

∂z
(4.25)

= q[−n+ p(φ) +N+
D (φ)−N−A (φ)],

which by equations (4.17), (4.18), (C.11), (C.12) and (C.13) can be written

approximately and conveniently as

∂2φ(x, z)

∂x2
+ 2sech2(x−

√
2z)φ(x, z) +

1

ε(z)

∂ε(z)

∂z

∂φ(x, z)

∂z
= ϕ(φ(x, z)

where

ϕ(φ(x, z)) =
q

ε(z)
[−n+ p(φ(x, z)) +N+

D (φ(x, z))−N−A (φ(x, z)).

Using the same techniques as in the three dimensional case, one finds that

two solutions of this equation when ϕ(φ(x, z)) = 0 are

φ1(x, z) = tanh(x−
√

2z) (4.26)
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and

φ2(x, z) = tanh(x−
√

2z)(x− coth(x−
√

2z)) (4.27)

with

lim
x,z→0

[φ1(a, c)φ2(x, z)− φ1(x, z)φ2(a, c)] =
1√
2

tanh(a−
√

2c).

Therefore, the approximate semi-analytical solution to equation (4.25) is

given as

φ(x, z) = α1φ1(x, z) + α2φ2(x, z) +

∫ x

x0

∫ z

z0

K(x, z, a, c)ϕ(a, c) da dc,

where

K(x, z, a, c) = φ1(a, c)φ2(x, z)− φ1(x, z)φ2(a, c),

ϕ(a, c) =
q

ε(c)

(
−n+ p(φ(a, c)) +N+

D (φ(a, c))−N−A (φ(a, c))
)
− V1(a, c),

and

V1(a, c) =
1

ε(c)

∂ε(c)

∂c

∂φ(a, c)

∂c
.

4.3 Semi-analytical solution to 1D Poisson’s

model

Finally, for the one-dimensional (1D) case one may write equation (4.25) as

∂2φ(z)

∂z2
+ 4sech2(

√
2z)φ(z) +

1

ε(z)

∂ε(z)

∂z

∂φ(z)

∂z
= ϕ(φ(z)) (4.28)

where

ϕ(φ(z)) =
q

ε(z)
[−n+ p(φ(z)) +N+

D (φ(z))−N−A (φ(z))].
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As in the 2D and 3D cases above, one finds that two solutions of this

equation are

φ1(z) = − tanh(
√

2z) (4.29)

and

φ2(z) = − tanh(
√

2z)(z − coth(
√

2z)√
2

) (4.30)

with

lim
z→0

[φ1(s)φ2(z)− φ1(z)φ2(s)] = − 1√
2

tanh(
√

2s).

Therefore, the approximate semi-analytical solution to (4.28) is given as

φ(z) = α1φ1(z) + α2φ2(z) +

∫ z

z0

K(s, z)ϕ(s, z) ds,

where

K(z, s) = φ1(s)φ2(z)− φ1(z)φ2(s)

and

ϕ(s) =
q

ε(s)

(
−n+ p(φ(s)) +N+

D (φ(s))−N−A (φ(s))
)
− 1

ε(s)

∂ε(s)

∂s

∂φ(s)

∂s
.

In order to see how these various models may be used to find solutions

to Poisson’s equations, consider the two-dimensional example below.

4.4 Application to 2D Poisson equation

In order to test the proposed semi-analytical method, consider the two di-

mensional Poisson’s equation [83]. Here the general solution is computed

using the semi-analytical method and it is verified with the solution reported

62



in [83]. This is a general Poisson’s equation and it is not based on any specific

device geometry. It is given as

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= 10e2x+y. (4.31)

The homogeneous equation is given as

∂2φ(x, y)

∂x2
+
∂2φ(x, y)

∂y2
= 0 (4.32)

which has a solution

φ(x, y) = α tanh(x+ ıy), (4.33)

for arbitrary constant α. Using equation (4.33) gives

∂2φ(x, y)

∂x2
= −2αsech2(x+ ıy) tanh(x+ ıy) (4.34)

and

∂2φ(x, y)

∂y2
= 2αsech2(x+ ıy) tanh(x+ ıy). (4.35)

From (4.33), (4.34) and (4.35), equation (4.31) may be recast in the form

∂2φ(x, y)

∂x2
+ 2sech2(x+ ıy)φ(x, y) = 10e2x+y. (4.36)

As before consider the homogeneous equation

∂2φ(x, y)

∂x2
+ 2sech2(x+ ıy)φ(x, y) = 0. (4.37)

It can be easily verified that equation (4.37) has two linearly independent

solutions which are given as

φ1(x, y) = α tanh(x+ ıy) (4.38)
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and

φ2(x, y) = α tanh(x+ ıy)

(
y − 1

ı tanh(x+ ıy)

)
. (4.39)

From equations (4.34 - 4.39), equation (4.31) has general solution

φ(x, y) = αφ1(x, y) + αφ2(x, y) +

∫ y

y0

∫ x

x0

k(s, x, y)b(a, s) ds da,

where

k(s, x, y) = αφ1(x, s)φ2(x, y)− αφ1(x, y)φ2(x, s).

Now limx→±∞ k(s, x, y) = α(y − s). Therefore, taking α = 2 (α arbitrary), a

particular solution to equation (4.37) is given as

φ(x, y) = 2 tanh(x+ ıy) + 2× 10

∫ x

−∞

∫ y

−∞
(y − s)e2a+s ds da (4.40)

= 2 tanh(x+ ıy) + 2e2x+y, (4.41)

which can easily be verified to satisfy equation (4.31). Consequently, this

solution shows that the proposed semi-analytical method works and produces

solutions which compare well with those found in literature [24, 83].

4.5 Application to 3D Schroedinger-Poisson

equations for device modelling

Furthermore, the semi-analytical method can be extended to 3D Poisson’s

equation which is used for device modelling. As will be shown in Chapter 7,

this method helps to speed up simulation times in device analysis. In [12],

64



the coupled system of Schroedinger-Poisson’s equations is given as

∇ · (κ(z) · ∇φ(~x)) = qρ(~x) (4.42)

− h̄
2

2
∇ · (β(z)∇ψ(~x)) + [φ(~x) + ∆Ec(z))]ψ(~x) = Eψ(~x) (4.43)

In equation (4.42), κ(z) is the vector of dielectric constant, ρ(~x) is the electron

density and

φ(~x) = φ(x, y, z)

is the electrostatic potential. In equation (4.43),

β(~x) =
1

m?
z(z)

is the effective mass, ∆Ec(z) the pseudopotential energy, E the energy and

ψ(~x) = ψ(x, y, z)

is the wave function. In this application layered devices are considered,

therefore, the dielectric constant, the effective mass and the pseudopotential

energy are all piecewise constant functions in the vertical direction. The

electron density is

ρ(~x) = ND(x, y, z) + σb(x, y, z)− n(x, y, z)

and the density of bound state electron is

n(x, y, z) = 2ΣEk<EFψ
?(x, y, z)ψ(x, y, z),

where ψ?(x, y, z) is the complex conjugate of ψ(x, y, z), ND(x, y, z) is the

ionised doping density and σb(x, y, z) is a background hole concentration.
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In rectangular coordinates, Poisson’s equation (4.42) is given as

κ(z)

(
∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2

)
+
∂κ(z)

∂z

∂φ(x, y, z)

∂z
(4.44)

= q[−ND(x, y, z) + σ(x, y, z)− n(x, y, z)].

Using the original methods which are developed in this thesis, rewrite

Poisson’s equation (4.42) as

φzz + 4sech2(x+ ı
√

3y −
√

2z)φ(x, y, z) = (4.45)

−1

κ(z)

∂

∂z
κ(z)φz +

q

κ(z)
[−ND(x, y, z) + σb(x, y, z)− n(x, y, z)].

Explicit expressions for the ionised doping density ND(x, y, z), the back-

ground doping density σb(x, y, z) and the electron density n(x, y, z) are given

as [12]:

ND(x, y, z) =


3.5× 1011cm−2 located at 40.5 nm

0.5× 1011cm−2 located at 167.5 nm

0 otherwise,

σb(x, y, z) =

 3× 1015cm−3 located in the InP layer

0 otherwise.

Returning to equation (4.45) with the right hand side set to zero, one

notes from Chapter 3 that there exist two linearly independent solutions to

equation (4.42) which are given as

φ1(x, y, z) = tanh(x+ ı
√

3y −
√

2z) and (4.46)

φ2(x, y, z) = (x− coth(x+ ı
√

3y −
√

2z)) tanh(x+ ı
√

3y −
√

2z).
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These solutions can be easily verified to satisfy equation (4.45) when the

right hand side is zero. Using these two homogeneous solutions, as previously

shown, one can write down a particular solution to (4.45) as

φ(x, y, z) = tanh(x+ ı
√

3y −
√

2z) +

∫ z

z0

∫ y

y0

∫ x

x0

K(a, b, c, x, y, z)

×
(
−1

k(c)

∂

∂c
k(c)

∂φ

∂c

)
+

q

k(c)
(σ(a, b, c)− n(a, b, c)−ND(a, b, c)) da db dc, (4.47)

where

K(a, b, c, x, y, z) = φ1(a, b, c)φ2(x, y, z)− φ1(x, y, z)φ2(a, b, c).

Now,

lim
x,y,z→0

K(a, b, c, x, y, z) −→ − tanh(a+ ı
√

3b−
√

2c).

Hence, equation (4.47) reduces to

φ(0, 0, 0) = −
∫ 0

z0

∫ 0

y0

∫ 0

x0

tanh(a+ ı
√

3b−
√

2c)

× [
−1

k(c)

∂

∂c
k(c)

∂φ

∂c

+
q

k(c)
(σ(a, b, c)− n(a, b, c)−ND(a, b, c))], (4.48)
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Now one evaluates φ(0, 0, 0). From equation (4.48)

φ(0, 0, 0) =
3× 1015q

12.61

∫ 510

0

∫ 250

0

∫ 250

0

tanh(a+ ı
√

3b−
√

2c) da db dc

+
3× 1015q

12.61

∫ 606.8

549.2

∫ 250

0

∫ 250

0

tanh(a+ ı
√

3b−
√

2c) da db dc

− 0.5× 1011q

12.61

∫ 168.5

166.5

∫ 250

0

∫ 250

0

tanh(a+ ı
√

3b−
√

2c) da db dc

− 0.5× 1011q

12.61

∫ 590.7

588.7

∫ 250

0

∫ 250

0

tanh(a+ ı
√

3b−
√

2c) da db dc

− 2q

12.61

∫ 510

0

∫ 250

0

∫ 250

0

[|ψ1|2 + |ψ2|2] tanh(a+ ı
√

3b−
√

2c) da db dc

− 2q

14.11

∫ 526

510

∫ 250

0

∫ 250

0

[|ψ1|2 + |ψ2|2] tanh(a+ ı
√

3b−
√

2c) da db dc

− 2q

12.61

∫ 526

0

∫ 536

0

∫ 250

0

[|ψ1|2 + |ψ2|2] tanh(a+ ı
√

3b−
√

2c) da db dc

− 2q

14.11

∫ 510

536

∫ 549.2

0

∫ 250

0

[|ψ1|2 + |ψ2|2] tanh(a+ ı
√

3b−
√

2c) da db dc

− 2q

12.61

∫ 510

549.2

∫ 606.8

0

∫ 250

0

[|ψ1|2 + |ψ2|2] tanh(a+ ı
√

3b−
√

2c) da db dc

− 2q

12.71

∫ 606.8

0

∫ 626.8

0

∫ 250

0

[|ψ1|2 + |ψ2|2]φ1(a, b, c), (4.49)

where φ1(a, b, c) = tanh(a+ ı
√

3b−
√

2c).

In conclusion, it is seen that reducing the Poisson’s model to a proposed

model certainly provides means to solve this equation efficiently. Particularly,

this chapter has shown how to solve the general Poisson’s equation in one,

two and three dimensions.
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Chapter 5

Semi-Analytical Solutions of

Schroedinger’s Equation

Using the semi-analytical solution of Poisson’s equation which is developed

in the previous chapter, this chapter addresses the task of finding semi-

analytical solution of Schroedinger’s equation. Particularly, the bound states

of the Schroedinger’s operator are found using the Evans function techniques.

With these bound states, wave functions are calculated which are the desired

semi-analytical solutions.

Furthermore, this chapter contains exact solutions to well known eigen-

value problems. In addition, it develops and extends the Evans function

techniques [25, 71, 77] in an original manner to two and three dimensions.

More details on the solution of Schroedinger’s equation can be found in

[10, 11, 50, 55, 68, 73, 79]. The Evans function technique is actually a novel

approach, in that there is nothing published in literature to suggest previous

application to the analysis of electron transport in semiconductor devices. As
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such, it is in order to commence here with a definition of the Evans function

which will be used throughout this work.

Definition 2 The Evans function of an operator is defined as an analytic

function whose zeros correspond to the discrete spectrum of the linearised

version of the operator.

In addition, it is necessary to introduce and define the Wronskian [40]

in n-dimensions. Until recently, theoretical analysis of the Wronskian was

only done for the one-dimensional case. For the purposes of this thesis, the

Wronskian in two and three dimensions, sometimes called Partial Wronskian

is defined and is essentially an indispensable original tool which this work

uses in device analysis.

Suppose ψ1 andψ2 are any two functions of the variables x, y and z

defined in the region R; then the partial Wronskian of ψ1 andψ2 is defined

as

Definition 3

∆(ψ1, ψ2) = det

 ψ1 ψ2

D(ψ1) D(ψ2)

 , (5.1)

where

D(ψi) =

(
∂

∂x
+

∂

∂y

)
ψi (5.2)

for ı = 1, 2.

Using the definition of the Evans function and the Wronskian, it is nec-

essary to show how the Evans function can be used to assist in finding the
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discrete spectrum and the wave functions of the linearised operator. Con-

sequently, consider as an example the following linearised non-linear Klein-

Gordon equation which is reported in [24]. Understanding this example is

important in the later work developed in this thesis.

5.1 Example: Calculating the eigenvalues and

eigenfunctions of Klein-Gordon equation

in one dimension

This equation is given as

ψxx(x)− (1− 2sech2x)ψ(x) + λψ(x) = 0, (5.3)

where λ is an eigenvalue.

In order to compute the bound states (eigenvalues) and the wave functions

of equation (5.3), one notes that

(1− 2sech2(x))→ 1 asx→ ±∞.

Therefore, as x→ ±∞ equation (5.3) reduces to

ψxx(x)− (1− λ)ψ(x) = 0. (5.4)

Write a solution of (5.4) in the form ψ(x) = eµxh(x) where µ = ±
√

1− λ

and assume Real(1 − λ) > 0. That is Real(λ) < 1. Then the function h(x)

satisfies the equation

hxx(x) + 2µhx(x) + 2sech2x)h(x) = 0. (5.5)
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Now introduce the new independent variable z = tanh(x), then using equa-

tion (5.5) one gets

dz

dx

d

dx

(
dh

dz

dz

dx

)
+ 2µ

dh

dz

dz

dx
+ 2sech2h(x) = 0, (5.6)

which simplifies to the transformed equation

(1− z2)
d2h

dz2
+ 2(µ− z)

dh

dz
+ 2h = 0, (5.7)

upon using

dh

dx
=
dz

dx
· dh
dz

= sech2x · dh
dz

= (1− z2)
dh

dz
.

Now equation (5.7) is one with polynomial coefficients, therefore one assumes

a solution of the form

h(z) =
∞∑
n=0

anz
n. (5.8)

Substituting (5.8) into (5.7) and equating coefficients of each polynomial in

z to zero, upon simplification, results in

a0 = −Cµ, a1 = C and an = 0, n ≥ 2,

where C is an arbitrary non-zero complex number. Therefore the general

solution to equation (5.3) takes the form ψ(x) = eµxh(z) where h(z) =

C(z − µ) and z = tanh(x). From above, µ can be either +
√

(1− λ) and

−
√

(1− λ), this gives two solutions, one which decays to 0 as x→ +∞ and

the other decays to 0 as x→ −∞. Let

m+(x) = e−
√

1−λxh+(z), (5.9)

m−(x) = e
√

1−λxh−(z), (5.10)
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with

h+(z) = C+(z − (−
√

1− λ)), (5.11)

= C+(z +
√

1− λ), (5.12)

h−(z) = C−(z −
√

(1− λ)). (5.13)

Thus the Evans function is

D(λ) = C+C−2
√

1− λ(z2 − (1− λ) + (1− z2)) (5.14)

= 2C+C−λ
√

1− λ. (5.15)

Analysing equation (5.15) suggests that equation (5.3) has solutions which

decay exponentially only if Real(1 − λ) > 0. This implies that λ < 1. Thus

returning to equation (5.15) one observes that

C+C− 6= 0, andλ < 1, so ∆(λ) = 0 only whenλ = 0.

Furthermore, one should note that when λ = 1 equation (5.3) has an exact

solution ψ(x) = tanh(x). This can be easily verified by substitution.

5.2 Two-dimensional Schroedinger’s equation

Given the one-dimensional analysis above, one can extend this approach

to more general two and three dimensional Schroedinger-Poisson model.

The source term (right-hand side) of Schroedinger equation admits many

different forms depending on the required application. To illustrate how

the Evans function may be extended to the two dimensional case, consider

Schroedinger’s equation in the effective mass approximation given in [6] as
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(H − qV (x, z))ψE(x, y, z) = EψE(x, y, z), (5.16)

with (x, y, z) ∈ [a, b] and H is Hamiltonian, defined by

H = − h̄
2

2

(
1

mx(z)
∆x +

1

my(z)
∆y

)
− h̄2

2

∂

∂z

(
1

mz(z)

∂

∂z

)
. (5.17)

ψE is the complex valued wave function which depends on the energy E,

h̄ is the Plank’s constant, q is the elementary electron charge. In addition,

one denotes mx,my,mz as the z-dependent effective masses in the x, y and

z-direction. The electrostatic potential V is x, z dependent and is split into

exterior potential ve and self-consistent potential Vs. In order to obtain Vs

one solves the Poisson’s equation

∆Vs(x, z) = −qn(x, z), (5.18)

∂nVs(a, ·) = 0 (5.19)

∂nVs(·, b) = 0, (5.20)

Vs(·, 0) = V 0
g , (5.21)

Vs(·, 1) = V 1
g , (5.22)

∂n denotes the normal derivative to the boundary. Furthermore, V 0
g and V 1

g

are the applied gate voltages. Finally, the electron density is

n =

∫
|ψE(x, y, z)|2fFD(E)dE. (5.23)

Here fFD is called the Fermi-Dirac distribution function.

In this model one accounts for the anisotropic crystal structure of Si,

which is illustrated by six equivalent conduction band ellipsoid. As such,
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Schroedinger-Poisson has to be solved three times in order to obtain three

different sets of eigenvalue ladder. The three different configurations of the

effective mass m? are given by (m`,mt,mt), (mt,m`,mt) and (mt,mt,m`),

where mt and m` are the transverse and longitudinal masses of the material.

Firstly, consider the effective mass configuration m? = (m`,mt,mt). Let

ψ = ψ(x, y, z)

and E = λ. Equation (5.16) in rectangular coordinates is then given as

aψxx + bψyy + cψzz = M1(x, z). (5.24)

where

M1(x, z) =
∂

∂z
mz(z)ψz −

2q[mz(z)]2

h̄2 V (x, z)ψ − 2E[mz(z)]2

h̄2 ψ,(5.25)

with

a =
[mz(z)]2

mx(z)
, (5.26)

b =
[mz(z)]2

my(z)
, (5.27)

(5.28)

and

c = mz(z) (5.29)

Applying the original semi-analytical method detailed in Chapter 4, the

equation for the 2D quasi-model for the electrostatic potential is

Vxx + 2sech2(x+ ı
√

3y −
√

2z)V +
1

ε(z)

∂

∂z
ε(z)Vz = M2(x, z), (5.30)
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where

M2(x, z) =
q

ε(z)
(n(x, z)−ND(z)). (5.31)

Now due to translation invariance in y [7], setting y = 0 results in

Vxx(x, z) + 2sech2(x−
√

2z)V (x, z) = M2(x, z). (5.32)

Equation (5.32) has a particular solution

V (x, z) = tanh(x−
√

2z)− q
∫ 0

x0

∫ 0

z0

tanh(a−
√

2b)
M2(a, b)

ε(b)
da db.

In order to solve the system self-consistently, one introduces an initial

electrostatic potential solution to Poisson’s equation of the form

V (x, z) =
h̄2

2q[mz(z)]2
∂

∂z
mz(z)

ψz
ψ
− λ

q
− λ`2[mz(z)]2

q
,

where ` is the length of the device. Using this initial electrostatic potential

solution, equation (5.24) reduces to

ψxx + 2bc sech2(
√
bcx−

√
2
√
abz)ψ − 2λ`2[mz(z)]4

ah̄2 ψ = 0. (5.33)

In order to solve equation (5.33), note that in the limx,z→±∞ 2bcsech2(
√
bcx−

√
2
√
abz)→ 0. Hence equation (5.33) reduces to

ψxx(x, z)−
2λ`2[mz(z)]4

ah̄2 ψ(x, z) = 0. (5.34)

Equation (5.34) has solutions which decay exponentially only if Real(λ) >

0. Therefore, when looking for solutions restrict λ to the right-half complex-

plane. From equation (5.34), µ = ±
√

2[mz(z)]4`2λ

ah̄2 . Using this, write a solution

to equation (5.34) in the form eµ(x+z)h(x, z) and substitute this into equation

(5.34). Then the function h(x, z) satisfies

hxx + 2µhx + 2bc sech2(
√
bcx−

√
2
√
abz)h = 0. (5.35)
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In order to solve equation (5.35), introduce the new independent variable

m = tanh(
√
bcx−

√
2
√
abz).Then one has:

dh

dx
=

dm

dx
· dh
dm

(5.36)

=
√
bcsech2(

√
bcx−

√
2
√
abz)

dh

dm
(5.37)

=
√
bc(1−m2)

dh

dm
. (5.38)

Similarly for the second derivative:

d2h

dx2
=

dm

dx

d

dx

(
dm

dx
· dh
dm

)
, (5.39)

=
√
bc(1−m2)

d

dx

(√
bc(1−m2) · dh

dm

)
. (5.40)

Therefore, equation (5.35) becomes

bc(1−m2)hmm + 2(µ
√
bc− bcz)hm + 2bc h = 0. (5.41)

This is an equation with polynomial coefficients, therefore, a solution may

be obtained in the form of a power series in m. Let

h(m) =
∞∑
n=0

anm
n. (5.42)

Now compute the first and second derivatives of equation (5.42). To this end

one has

d

dm

∞∑
n=0

anm
n =

∞∑
n=1

nanm
n−1 (5.43)

d2

dm2

∞∑
n=0

anm
n =

∞∑
n=2

n(n− 1)anm
n−2. (5.44)

Then substitute equations (5.43) and (5.44) into equation (5.41), and use the
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fact that
∞∑
n=1

2bcnanm
n =

∞∑
n=0

2bcnanm
n (5.45)

and
∞∑
n=2

n(n− 1)anm
n =

∞∑
n=0

n(n− 1)anm
n. (5.46)

Therefore equation (5.41) reduces to
∞∑
n=0

(
bc(n+ 2)(n+ 1)an+2 − bc(n− 1)nan + 2

√
bcµ(n+ 1)an+1 − (2bcn− 2bc)an

)
mn = 0.

Equating the coefficients of this polynomial to be equal to zero results in the

recursion relation

an+2 =
(n(n− 1)bc+ 2nbc− 2bc)an − 2

√
bcµ(n+ 1)an+1

bc(n+ 2)(n+ 1)
(5.47)

From the relation one finds that,

a0 =
−Cµ

√
bc

bc
(5.48)

a1 = C (5.49)

an = 0, ∀n ≥ 2, (5.50)

where C is an arbitrary non-zero complex number. Using equations (5.42),

(5.48 ), (5.49) and (5.50), results in

h(m) = C

(
−µ
√
bc

bc
+m

)
.

That is,

h(x, z) = C tanh(
√
bcx−

√
2
√
abz)− Cµ

√
bc

bc
. (5.51)

Since µ = ±
√

2[mz(z)]4`2λ

ah̄2 one has two solutions to equation (5.35). One of

which decays as x, z → +∞ and the other decays as x, z → −∞. Let

U+(x, z) = e
−
√

2[mz(z)]4`2λ

ah̄2 (x+z)
h+(x, z) (5.52)

U−(x, z) = e

√
2[mz(z)]4`2λ

ah̄2 (x+z)
h−(x, z), (5.53)
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where

h+(x, z) = C+ tanh(
√
bcx−

√
2
√
abz)− C+

µ+

√
bc

bc
(5.54)

and

h−(x, z) = C− tanh(
√
bcx−

√
2
√
abz)− C−

µ−
√
bc

bc
. (5.55)

As x, z → +∞, U+(x, z)→ 0 and as x, z → −∞, U−(x, z)→ 0. Therefore,

for some λ ∈ C, with Real(λ) > 0, the functions U+(x, z) and U−(x, z)

are linearly dependent and bounded for all x, z and decay exponentially as

x, z → ±∞. Thus eigen energies (eigenvalues) correspond to values of λ ∈ C

where the Wronskian of U+(x, z) and U+(x, z) vanishes. Using the definition

of the Wronskian, the Evans function is given by

D(λ) = det

 U+(x, z, λ) U−(x, z, λ)

U+
x (x, z, λ) + U+

z (x, z, λ) U−x (x, z, λ) + U−z (x, z, λ)

 .

Simplifying this, the Evans function is given explicitly as

D(λ) = −
2
√

2[mz(z)]C+C−

√
λ
a
(g1(λ, h̄,mz(z), a, b, c, `))

abch̄3 , (5.56)

where

g1(mz(z), h̄, a, b, c, `, λ) =
√

2ah̄2
√
ab
√
bc− abch̄2 + 4λ`2[mz(z)]4.(5.57)

The zeros (eigen-energies) of equation (5.56) are

λ1 = 0, (5.58)

λ2 =
ah̄2(bc−

√
2
√
ab
√
bc)

4`2[mz(z)]4
. (5.59)
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Since Real(λ) > 0, reject λ1 and accept λ2. Therefore, inserting λ2 into

the values for µ, µ− and using equations (5.52) and (5.53) one arrives at two

normalised eigenfunctions. These are given as

U1
+(x, z) = e−α(x+z)h1

+(x, z), (5.60)

U2
+(x, z) = eα(x+z)h2

−(x, z), (5.61)

where

h1
+(x, z) = C+

(
tanh(

√
bcx−

√
2
√
abz) + α

√
bc

bc

)
, (5.62)

h2
+(x, z) = C−

(
tanh(

√
bcx−

√
2
√
abz)− α

√
bc

bc

)
, (5.63)

and

C+ = 96124, (5.64)

C− = −96124, (5.65)

α =

√
2
√
bc−

√
2
√
ab
√
bc

2
. (5.66)

Next consider the effective mass configuration m? = (mt,m`,mt). If

ψ(x, y, z) = tanh(
√
acx+ ı

√
3
√
bcy−

√
2
√
abz), then this satisfies the homo-

geneous equation

bψxx + aψyy + cψzz = 0. (5.67)

With translation invariance in y, set y = 0, therefore one has the equation

ψxx + 2acsech2(
√
acx−

√
2
√
abz)ψ =

1

b
M3(x, z), (5.68)

where

M3(x, z) =
∂

∂z
mz(z)ψz −

2q[mz(z)]2

h̄2 V (x, z)ψ − 2λ[mz(z)]2

h̄2 ψ.(5.69)
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As before, consider the substitution for the initial solution of the electro-

static potential to Poisson’s equation,

V (x, z) =
h̄2

2q[mz(z)]2
∂

∂z
mz(z)

ψz
ψ
− λ

q
− λ`2[mz(z)]2

q
.

This substitution reduces equation (5.68) to

ψxx + 2ac sech2(
√
acx−

√
2
√
abz)ψ − 2`2λ[mz(z)]4

bh̄2 ψ = 0. (5.70)

In the limit as x, z → ±∞, 2ac sech2(
√
acx−

√
2
√
abz)→ 0, hence equation

(5.70) reduces to

ψxx(x, z)−
2`2λ[mz(z)]4

bh̄2 ψ(x, z) = 0. (5.71)

Now observe that equation (5.71) has solutions which decay exponentially

only if Real(λ) > 0. From equation (5.71), µ = ±
√

2[mz(z)]4`2λ

bh̄2 . Then write a

solution to equation (5.70) in the form eµ(x+z)h(x, z) and substitute this into

equation (5.70). Thus the function h(x, z) satisfies

hxx + 2µhx + 2ac sech2(
√
acx−

√
2
√
abz)h = 0. (5.72)

Introduction of the new independent variable ρ = tanh(
√
acx−

√
2
√
abz),

equation (5.72) transforms to

ac(1− z2)hρρ + 2(µ
√
ac− acz)hρ + 2ac h = 0. (5.73)

This equation has solution

h(ρ) = C

(
−µ
√
ac

ac
+ ρ

)
, (5.74)

where C is an arbitrary non-zero complex number.
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Using the same techniques as before with µ = ±
√

2[mz(z)]4`2λ

bh̄2 , there are

two solutions to equation (5.68). One of which decays as x, z → +∞ and the

other decays as x, z → −∞. Let

U+(x, z) = e
−
√

2[mz(z)]4`2λ

bh̄2 (x+z)
h+(x, z) (5.75)

U−(x, z) = e

√
2[mz(z)]4`2λ

bh̄2 (x+z)
h−(x, z), (5.76)

where

h+(x, z) = C+ tanh(
√
acx−

√
2
√
abz)− C+

µ+

√
ac

ac

and

h−(x, z) = C− tanh(
√
acx−

√
2
√
abz)− C−

µ−
√
ac

ac
.

As before, following the same technique, the Evans function is computed

and is given as

D(λ) = −
2
√

2[mz(z)]C+C−

√
λ
b
(g2(λ, h̄,mz(z), a, b, c, `))

abch̄3 , (5.77)

where

g2(mz(z), h̄, a, b, c, `, λ) =
√

2bh̄2
√
ab
√
ac− abch̄2 + 4`2λ[mz(z)]4.(5.78)

The zeros (eigen-energies) of equation (5.77) are

λ1 = 0, (5.79)

λ2 =
bh̄2(ac−

√
2
√
ab
√
ac)

4`2[mz(z)]4
. (5.80)

Since Real(λ) > 0, again reject λ1 and accept λ2. Therefore, inserting λ2

into the values for µ, µ− and using equations (5.75) and (5.76) results in two
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normalised eigenfunctions. These are given as

U1
+(x, z) = e−α1(x+z)h1

+(x, z), (5.81)

U2
+(x, z) = eα1(x+z)h2

−(x, z), (5.82)

where

h1
+(x, z) = C+

(
tanh(

√
acx−

√
2
√
abz)− α1

√
ac

ac

)
, (5.83)

h2
+(x, z) = C−

(
tanh(

√
acx−

√
2
√
abz)− α2

√
ac

bc

)
(5.84)

and

C+ = 50715.1, (5.85)

C− = −50715.1, (5.86)

α1 = −

√
2
√
ac−

√
2
√
ab
√
ac

2
, (5.87)

α2 =

√
2
√
ac−

√
2
√
ab
√
ac

2
. (5.88)

And finally, consider the effective mass configuration m? = (mt,mt,m`).

This results in the Schroedinger’s equation

ψxx(x, z) + 2ab sech2(
√
abx−

√
2
√
bcz)ψ(x, z) =

1

c
M4(x, z), (5.89)

where

M4(x, z) =
∂

∂z
mz(z)ψz −

2q[mz(z)]2

h̄2 V (x, z)ψ − 2λ[mz(z)]2

h̄2 ψ.

As before, one may consider the substitution,

V (x, z) =
h̄2

2q[mz(z)]2
∂

∂z
mz(z) · ψz

ψ
− λ

q
− λ`2[mz(z)]2

q
.
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This substitution reduces equation (5.89) to

ψxx + 2ab sech2(
√
abx−

√
2
√
bcz)ψ − 2`2λ[mz(z)]4

ch̄2 ψ = 0. (5.90)

In the limit as x, z → ±∞, 2ab sech2(
√
abx−

√
2
√
bcz)→ 0, hence equa-

tion (5.90) reduces to

ψxx(x, z)−
2`2λ[mz(z)]4

ch̄2 ψ(x, z) = 0. (5.91)

With µ = ±
√

2[mz(z)]2`4λ

ch̄2 and using the independent variable

ξ = tanh(
√
abx −

√
2
√
bcz) and applying the method previously discussed

above, one obtains the transformed equation

ab(1− ξ2)hξξ + 2(µ
√
ba− abz)hξ + 2abh(ξ) = 0. (5.92)

This equation has solution

h(ξ) = C

(
ξ − µ

√
ab

ab

)
, (5.93)

where C is an arbitrary non-zero complex number. Using the same ideas as

above one arrives at two solutions to equation (5.89) which are given as

U+(x, z) = e
−
√

2[mz(z)]4`2λ

ch̄2 (x+z)
h+(x, z), (5.94)

U−(x, z) = e

√
2[mz(z)]4`2λ

ch̄2 (x+z)
h−(x, z), (5.95)

where

h+(x, z) = C+ tanh(
√
abx−

√
2
√
bcz)− C+

µ+

√
ab

ab
, (5.96)

and

h−(x, z) = C− tanh(
√
abx−

√
2
√
bcz)− C−

µ−
√
ab

ab
. (5.97)
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Therefore, the Evans function is given as

D(λ) = det

 U+(x, z, λ) U−(x, z, λ)

U+
x (x, z, λ) + U+

z (x, z, λ) U−x (x, z, λ) + U−z (x, z, λ)

 .

Simplifying this, the Evans function is given explicitly as

D(λ) = −
2
√

2[mz(z)]C+C−

√
λ
a
(g3(λ, h̄,m, a, b, c, `))

abch̄3 , (5.98)

where

g3(mz(z), h̄, a, b, c, `, λ) =
√

2ah̄2
√
ab
√
bc− abch̄2 + 4`2λ[mz(z)]4.(5.99)

The zeros (eigen-energies) of equation (5.98) are

λ1 = 0, (5.100)

λ2 =
ch̄2(ab−

√
2
√
ab
√
bc)

4`2[mz(z)]4
. (5.101)

Since Real(λ) > 0, reject λ1 and accept λ2. Therefore, inserting λ2 into

the values for µ, µ− and using equations (5.94) and (5.95) one arrives at two

normalised eigenfunctions. These are given as

U1
+(x, z) = e−α3(x+z)h1

+(x, z), (5.102)

U2
+(x, z) = eα4(x+z)h2

−(x, z), (5.103)

where

h1
+(x, z) = C+

(
tanh(

√
abx−

√
2
√
bcz)− α3

√
ab

ab

)
, (5.104)

h2
+(x, z) = C−

(
tanh(

√
abx−

√
2
√
bcz)− α4

√
ab

ab

)
(5.105)
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and

C+ = 108620.4, (5.106)

C− = −108620.4, (5.107)

α3 = −
√

2
√
ab−

√
2
√
ab
√
bc

2
, (5.108)

α4 =

√
2
√
ab−

√
2
√
ab
√
bc

2
. (5.109)

Given the above calculations, the total electron density can now be readily

computed, which by [6] is defined as the sum of all the contributions which

correspond to three effective mass configurations. Therefore, in order to

calculate the potential in Poisson equation, one must firstly calculate this

density which is given as

n(x, z) = 2(nml,mt,mt + nmt,m`,mt + nmt,mt,m`). (5.110)

Now, the Fermi-Dirac distribution function [4–6] is

fFD(E,Ef ) =
1

1 + e
E−Ef
kBT .

(5.111)

To evaluate this expression, however, the exact location of Ef , which is the

Fermi level, is not known, therefore, using Boltzmann approximation [86] one

computes

Ef = Ec − kT ln
Nc

Nd

(5.112)

= 3.15eV − 0.0259 eV ln
2.88× 1019

1016
(5.113)

= 2.94 eV · (5.114)

= 4.07× 10−19 J. (5.115)
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Using this value for Ef one can calculate explicitly the electron density and

update Poisson’s equation. This electron density is therefore given as

n(x, z) =
1

π

(
2mxKBT

h̄2

) 1
2 ∑

l

|ψl(x, z)|2℘− 1
2

(
EF − λl
KBT

)
(5.116)

where ℘− 1
2

is the Fermi integral of order −1
2
, which is defined as

℘− 1
2
(x) =

∫ ∞
0

t−
1
2

1 + et−x
dt. (5.117)

5.3 Three-dimensional Schroedinger’s equa-

tion

Finally, the general form of this equation is given as

(H − qV (x, y, z))ψE(x, y, z) = EψE(x, y, z), (5.118)

with (x, y, z) ∈ [a, b] and H is Hamiltonian, defined by

H = − h̄
2

2

(
1

mx(z)
∆x +

1

my(z)
∆y +

1

mz(z)
∆z

)
− h̄2

2

∂

∂z

(
1

mz(z)

∂

∂z

)
.

ψE is the complex valued wave function which depends on the energy E,

h̄ is the plank’s constant, q is the elementary electron charge. In addition,

we denote mx,my,mz as the z-dependent effective masses in the x,y and z-

direction. The electrostatic potential V is x, y, z dependent and is split into

exterior potential ve and self-consistent potential Vs. In order to obtain Vs,
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one solves the Poisson’s equation

∆Vs(x, y, z) = −qn(x, y, z), (5.119)

∂nVs(a, ·) = 0 (5.120)

∂nVs(·, b) = 0, (5.121)

Vs(·, 0) = V 0
g , (5.122)

Vs(·, 1) = V 1
g , (5.123)

∂n denotes the normal derivative to the boundary. Furthermore, V 0
g and V 1

g

are the applied gate voltages. Finally, the electron density is

n =

∫
|ψE(x, y, z)|2fFD(E)dE. (5.124)

We call fFD the Fermi-Dirac distribution function.

From Appendix E, let U+(x, y, z, λ) = U+ and U−(x, y, z, λ) = U− be

solutions to equation (5.118), where

U+(x, y, z) = e
−
√

2[mz(z)]4`2λ

ah̄2 (x+y+z)
h+(x, y, z) (5.125)

U−(x, y, z) = e

√
2[mz(z)]4`2λ

ah̄2 (x+y+z)
h−(x, y, z), (5.126)

where

h+(x, y, z) = C+ tanh(
√
bcx+ ı

√
3
√
acy −

√
2
√
abz)− C+

µ+

√
bc

bc

and

h−(x, y, z) = C− tanh(
√
bcx+ ı

√
3
√
acy −

√
2
√
abz)− C−

µ−
√
bc

bc

are the explicit 3D eigenfunctions. Then the Evans function is given as
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D(λ) = det

 U+(x, z, y, λ) U−(x, z, y, λ)

U+
x + U+

z + U+
y U−x + U−z + U−y

 ,

where Ux, Uz and Uy are the first derivatives with respect to x, z and y re-

spectively of the functions U+(x, y, z, λ) and U−(x, y, z, λ).

In conclusion, this chapter introduces and defines the Evans function

which is a useful tool to capture the bound states of the Schroedinger oper-

ator. Its effectiveness is demonstrated in its application to one-dimensional

Schroedinger equation. For device analysis, this thesis extends the applica-

tion in a novel way to finding semi-analytical solutions for the first time to

two and three dimensional Schroedinger equations taking into account differ-

ent effective masses for the crystal structure. In Chapter 7, it will be shown

how the Evans function assists in finding eigenvalues and eigenfunctions with

improved simulation times. Such improvements in simulation times are in-

strumental to the Semiconductor Research community [1].
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Chapter 6

Proposed semi-analytical

method for the coupled

Schroedinger and Poisson’s

equations

The last two chapters of this work are devoted to finding semi-analytical

solution of the Schroedinger-Poisson’s model. An analytical expression for

the electrostatic potential was proposed and substituted into Schroedinger’s

equation which resulted in a semi-analytical solution to Schroedinger’s equa-

tion. Using this solution to Schroedinger’s equation, Poisson’s equation is

then solved. Consequently, this chapter addresses the challenge of prov-

ing that successive solutions of the coupled system of Schroedinger-Poisson’s

equations converge locally.

The proof will draw on the usefulness of the Evans function technique,
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particularly the boundedness of the wave functions. Although several meth-

ods have been suggested which solve successfully this system of equations,

the issue of convergence is still a topic of discussion. Whilst no general proof

exists on convergence of the solutions, local methods [2, 30, 46] have shown

that local convergence can be achieved. In [6, 7, 12, 90, 91], a comprehensive

overview on convergence is given and should provide useful sources of ref-

erence. For example, in [91], it is shown that in order to solve the system

of equations, an iterative method has to be employed. But given the strong

nonlinearity between the equations, a straightforward iterative approach will

not lead to convergence. To ensure convergence, one has to employ some

adaptive approach. One which has proven useful is underrelaxation in the

electrostatic potential φ or the electron density n, [91]. Regrettably, under-

relaxation has its shortcomings namely:

• instability of the outer iteration,

• oscillations from one iteration step to another,

• the choice of the relaxation factor.

Here the problem of the convergence is the choice of the relaxation param-

eter. The relaxation parameter has to be chosen experimentally. This leads

to finding different techniques which lead to rapid convergence. Particularly,

in [91], this problem of convergence was solved by:

• using perturbation theory to modify the electron density then

• solving a modified Poisson’s equation to obtain the electrostatic poten-

tial φ(x, y, z).
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In this thesis, the original approach is the development of a semi-analytical

method which is used to solve rapidly the above system of equations.

For the purposes of this thesis, this chapter shows that convergence of the

coupled solutions occurs for the semi-analytical method proposed in this the-

sis. It is not the case that this thesis proposes that the method will in general

converge. That is, the method is confined to the problems which are solved

in this work. In order to summarise the method, Figure 6.1 shows a diagram

which depicts various levels in the computational process. Schroedinger-

Poisson model, which is presented in Chapters 4 and 5, is the most appropri-

ate system of equations which describes the quantum and ballistic electron

transport in semiconductor devices.

In the case of this thesis, the solution of this system of equations is accom-

plished via two stages: solution to Schroedinger’s equation and then solution

to Poisson’s equation. The total quantum mechanical electron density is

described by the solution of Schroedinger’s equation and the electrostatic

potential is found by solving Poisson’s equation.

In order to commence the iterative procedure, as set out in Figure 6.1,

for the resolution of the coupled system of Schroedinger-Poisson equations,

an initial electrostatic potential φ0(x, y, z) is guessed and substituted into

Schroedinger’s equation resulting in a conventional eigenvalue problem to be

analytically resolved for three different effective masses. The resolution of

the eigenvalue problem is achieved via the Evans function techniques.

The application of the Evans function techniques allows for the wave

functions and eigenvalues to be computed. Then the total electron density is

found and hence the potential in Poisson’s equation is calculated. The process
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is then iterated to convergence. Convergence occurs when ||φn+1−φn||L∞ < ε,

where L∞ = L2(−∞,+∞) is the complex Hilbert space and ε is a specified

stopping criterion. It is necessary to mention here that the efficiency of

the algorithm is heavily dependent on the semi-analytical component of the

procedure. Next this work demonstrates that the semi-analytical method

will always lead to local convergence.

6.1 Convergence of the coupled solutions of

Schroedinger-Poisson’s equations using the

semi-analytical method

Here a proof is given which demonstrates that the solutions converge locally

using the semi-analytical method. To prove local convergence of the coupled

solutions to Schroedinger-Poisson’s equations, let

ψ1, ψ2, ψ3, ..., ψn

be solutions to Schroedinger equation (after an appropriate initial substitu-

tion for the electrostatic potential ψ0(x, y, z)). Then by the method demon-

strated in Chapter 6 and the Evans function techniques, it is shown that the

spectral problem is to find the values of

λ ∈ C such thatψı=1,2,...n(x, y, z, λ)

satisfies the eigenvalue problem

ψxx(x, y, z) +m(x, y, z)ψ(x, y, z) = λψ(x, y, z), (6.1)
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Figure 6.1: Flowchart of the Schroedinger-Poisson iteration process.
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m(x, y, z)→ a asx, y, z → ±∞

and where C is complex number with∫ x

x0

∫ y

y0

∫ z

z0

| ψ1(x, y, z) |2 dx dy dz <∞,

∫ x

x0

∫ y

y0

∫ z

z0

| ψ2(x, y, z) |2 dx dy dz <∞

...

and ∫ x

x0

∫ y

y0

∫ z

z0

| ψn(x, y, z) |2 dx dy dz <∞

exist.

Now, denote the sum of these integrals by σ and substitute this sum

into Poisson’s equation. By the method in Chapters 3 and 4 and using the

fact that the Evans function is independent of the variables x, y and z, the

solution to Poisson’s equation reduces to a constant.

Let this constant be denoted by a. Then it is shown in Chapter 5 that

Schroedinger’s equation reduces to the conventional eigenvalue problem

ψxx(x, y, z) + (a− λ)ψ(x, y, z) = 0. (6.2)

Now write a solution to Schroedinger’s equation of the form

ψ(x, y, z) = eµ(x+y+z)h(x, y, z). (6.3)

Then the function h = h(x, y, z) satisfies

hxx + 2µhx + 2sech2(x+ ı
√

3y −
√

2z)h = 0. (6.4)
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Equation (6.4) admits a power series solution [98] of the form

h(x, y, z) =
∞∑
n=0

anρ
n, (6.5)

where ρ = tanh(x+ ı
√

3y −
√

2z). Having found h(x, y, z), the full solutions

(eigenfunctions) to Schroedinger’s equation may be denoted by U+(x, y, z, λ)

and U−(x, y, z, λ). Therefore, if for some λ ∈ C with <(a+ λ) > 0, the

functions U+(x, y, z, λ) and U−(x, y, z, λ) are linearly dependent, then the

functions are bounded for all x, y, z and decay exponentially as x → ±∞,

y → ±∞ and z → ±∞.

Using these solutions one constructs the Evans function which may be

denoted by D(λ). Let

λ1, λ2, λ3, ..., λn

be the zeros of D(λ). With these different values of λ one has an iterative pro-

cedure between Schroedinger and Poisson. Each iterative process produces

different constants. Therefore, convergence occurs when one multiplies the

sum σ by a chosen constant α [12]. The need for this constant is that the

eigenfunctions are not necessarily normalised. Hence rapid convergence is

achieved by this constant. That is

ασ = n(x, y, z) (6.6)

= 2α
n∑
ı=1

| ψı(x, y, z) |2 (6.7)

as required.

Therefore, whilst general convergence is not shown here, it is shown that

convergence occurs locally by application of the semi-analytical method. It is

demonstrated that in practice this method converges. In the next chapter of
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this thesis, this new method will be used to simulate different structures and

results and run times will be validated against those reported in literature

and experimental results where available [51,74].
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Chapter 7

Simulation results and

validation of the method

Generally in device analysis, the electronic states and transport are deter-

mined through approximate methods. These methods include the finite

element, nonequilibrium Green function, predictor-corrector method, the

SDM/WKB, finite difference, reduced basis method or a combination of the

above methods [6, 7, 12, 57,91].

Any method has to be validated. Ideally, validation should be carried

out against experimental data. However, in the absence of experimental

data, simulation results are usually evaluated by comparisons with 1D, 2D

and 3D finite element method incorporated in most device simulators. The

full 3D finite element method is not computationally fast, but in terms of

accuracy, it is a benchmark by which faster methods such as the SDM/WKB

and predictor-corrector are evaluated [7, 12,91]. In the following, the semi-

analytical method will be validated by comparison with other alternative
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simulation methods reported in the literature [6, 12, 74,91] and by showing

agreement with the experimental results reported in [51].

In this chapter, it is demonstrated through the application of the pro-

posed semi-analytical method in Chapters 4 and 5 that it is possible to

capture accurately the eigenvalues of the various electronic devices and sub-

sequently simulate electron transport, thus validating the method developed

in Chapters 4 - 6. Knowledge of the energies (eigenvalues) of various devices

is essential in understanding electron transport in semiconductor systems.

This chapter contains the analysis of five devices already reported in litera-

ture, using the semi-analytical method in order to test and validate it. These

devices are:

• Device 1 - a model Ga-As-GaAlAs device, [91];

• Device 2 - a Si-SiO2 based quantum device, [91];

• Device 3 - a double quantum well device, [12];

• Device 4 - a double gate NMOSFET, [6];

• Device 5 - a single-walled carbon nanotube field effect transistor SWNT-

FET, [51].

In the analysis, 1D, 2D and 3D simulations of transport are considered

and the results of the semi-analytical method are compared with those re-

ported in [6, 12, 51, 74, 91]. It will also be shown that the proposed method

improves the simulation times for these devices compared with those re-

ported in [6, 12, 74, 91]. The method was implemented in Matlab (version
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7.11, R2010b) (see code in Appendix F) and the simulations were performed

on a Toshiba laptop equipped with an Intel R Processor with clock speed 3

GHz, memory 2.10 GB and 1.87 GB of RAM.

7.1 Device 1: A GaAs - GaAlAs device

Figure 7.1: [91]. Architecture of Device 1: A model GaAs-GaAlAs device struc-

ture.

Figure 7.1 shows a cross-section of this device (Device 1) with double

gates. It has two undoped GaAs and AlGaAs layers. This device has lateral

dimension 800 nm and height 5070 nm. The height is composed of four

layers, GaAs (24 nm), AlGaAs (36 nm), AlGaAs (10 nm) and GaAs (5000

nm). The device contains two doping strengths of ND = 6 × 1017cm−3 and

NA = 1014cm−3 which are located between 0 nm - 5000 nm and 5010 nm -

5046 nm, respectively.

100



The dielectric constant ε changes with each layer. For GaAs it is 12.9

and for AlGaAs it is 13.1. The transverse effective mass is mt = 0.19 ×m0

and the longitudinal effective mass is m` = 0.98 ×m0, where m0 represents

the electron rest mass. In the analysis a temperature of 4.2K is used.

For the GaAs based structure, Schroedinger equation [91] is analysed by

considering an initial electrostatic potential

φ(x, z) =
h̄2q

2mz(z)

1

mz(z)

∂

∂z
mz(z)

ψz
ψ
− 2mz(z)

h̄2 Vxc(n)ψ, (7.1)

where Vh and Vxc(n) are given in chapter 4. Using this initial potential,

Schroedinger’s equation in 2D becomes

ψxx + 2sech2(x−
√

2z)ψ − 2mz(z)

h̄2 (Vh − λ)ψ = 0. (7.2)

The main interest here is to calculate the bound states (eigenvalues) of

Schroedinger’s equation using the Evans function and each calculated elec-

trostatic potential obtained from Poisson’s equation. The Evans function for

equation (7.2) is

D(λ) =
−2
√

2C−C+(h̄2(
√

2− 1) + 4mz(z)(Vh − λ))
√

(mz(z)(Vh − λ))

h̄3 .

The zeros of this functions are

λ1 = Vh (7.3)

λ2 =
h̄2(
√

2− 1) + 4mz(z)Vh
4mz(z)

. (7.4)

By hypothesis (see chapter 5), one rejects λ1 = Vh. Using these eigenvalues

the eigenfunctions are calculated and one iterates between Schroedinger and

Poisson’s equation until convergence.
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Ladder State Semi-analytical

energy (meV)

Trellakis

[91] energy

(meV)

Relative error (%)

1 1 39 38 2.63

1 2 42 41 2.44

1 3 44 43 2.33

1 4 47 - -

1 5 49 - -

Table 7.1: Eigenvalues (meV) for Device 1, obtained via the semi-analytical

method.

The simulation results obtained via the semi-analytical method are dis-

played in Table 7.1. In Figure 7.2 the graph of the eigenvalues is plotted for

various gate voltages. In addition, applying a temperature of 4.2 K and a

voltage of 1.3V on the gate, the distribution of eigenvalues is displayed in

Figure 7.3. These results are in good agreement with those reported in [91].

Furthermore, it is reported in [91] that simulation run time of 10 minutes were

obtained on Hewlett-Packard C-110 workstations. Using the semi-analytical

method, the improved run time 7.38 seconds is achieved, suggesting a signif-

icant improvement in simulation run time using the semi-analytical method.
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Figure 7.2: Gate voltage vs. Energy-subband (meV) for Device 1.
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Figure 7.3: Occupation numbers N` of states E` for Device 1 shown in Figure 7.1.
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Figure 7.4: [91]. Device 2: A Si− SiO2 based quantum device with a T-shaped

gate.

7.2 Device 2: A Si-SiO2 based quantum de-

vice with a T-shaped gate

A second device considered is the SiO2 based quantum device with a T-

shaped gate given in Figure 7.4. which is previously considered in [91]. For

this device a 2D simulation of transport is considered. The cross-section of

the device is shown in Figure 7.4. It has lateral dimension 200 nm and vertical

height 1020 nm. Two values of the acceptor concentration in the substrate,

NA = 1010 cm−3, and NA = 1018cm−3 are considered. The parameter for

dielectric constant is 11.8 in the silicon substrate. The transverse effective

mass is mt = 0.19×m0 and the longitudinal effective mass is m` = 0.98×m0.

In the calculation, room temperature of 300K is applied in the simulation

process. These parameters are summarised in Table 7.2.
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Parameter Value

Lx 0× 200nm

Ly 0× 1020nm

Temperature T 300K

NSi
A 1018cm−3

NSiO2
A 1010cm−3

Electron mass (m0) 9.11× 10−31kg

ml 0.98×m0

mt 0.19×m0

Dielectric constant (Si) 11.7

Dielectric constant (SiO2) 3.9

Table 7.2: Parameters for modelled Device 2 which is displayed in Figure 7.4.
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As the conduction band in silicon has six valleys which are aligned in

pairs along the principal axes, the valleys are described by three different

tensors for the effective mass. Consequently, Schroedinger’s equation has to

be solved three times in order to obtain three different sets of eigenvalues

ladders for the quantum state, [91].

7.2.1 Eigenvalues for simulated structure

The three different sets of eigenvalues ladders for the device in Figure 7.4

obtained, via the Semi-analytical method, are presented below. In particular,

Tables 7.3, 7.5 and 7.7 give those eigenvalues obtained in [91] and those

obtained through the application of the Semi-analytical method which are

in good agreement. Furthermore, the simulation times achieved in [91] and

the Semi-analytical method are compared. The comparison shows improved

simulation times using the Semi-analytical method.

Table 7.3 displays the simulated eigenvalues (in meV) obtained via the

Evans function. It also shows those obtained in [91] and it gives error es-

timates for the first ladder. The errors are quite small suggesting that the

Evans function is quite robust in capturing the eigenvalues of the considered

device.

In addition, shown in Table 7.4 below are the relative errors with respect

to the reference solutions reported in [91] for ladder 1.

Figure 7.5 shows graph of ladder 1 of the eigenvalues obtained via the

Evans function plotted against gate voltages. It can be seen that as the gate

voltages increase the energy levels also increase suggesting a linear relation-
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Ladder State Energy (meV) Trellakis(meV) [91] Error

1 1 207.993076 208 0.006924

1 2 267.010722 267 0.010722

1 3 328.008028 328 0.008028

1 4 348.971027 349 0.028973

1 5 383.011987 383 0.011987

Table 7.3: Device 2 - Eigenvalues (meV) for Ladder 1 obtained via Semi-analytical

method and Trellakis [91].

Ladder State Relative Error (%)

1 1 3.32885×10−3

1 2 4.01573×10−3

1 3 2.44756×10−3

1 4 8.30172×10−3

1 5 3.12977×10−3

Table 7.4: Device 2: Relative errors (meV) of the Semi-analytical method-

Ladder 1.
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Figure 7.5: Device 2: Gate voltage vs. energy (meV) for quantum wire.

ship between both variables.

In addition, Table 7.6 presents the relative errors obtained through the

semi-analytical method for ladder 2.

Furthermore, Table 7.5 shows the second eigenvalue ladder as well as the

error estimates. From the calculations, it is clear that the two sets of results

are in good agreement and the Semi-analytical method has the advantage of

improved simulation time.

Figure 7.6 shows that as the gate voltage increases for the second eigen-

value ladder, the energy levels increase. Again, this suggests a linear rela-

tionship between both variables. Table 7.7 shows the details for the third
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Ladder State Energy (meV) Trellakis(meV) [91] Error

2 1 298.999998 299 0.000002

2 2 322.014321 322 0.014321

2 3 347.214807 347 0.214807

2 4 371.999998 372 0.000002

2 5 396.472145 396 0.472145

Table 7.5: Device 2: Eigenvalues (meV) for ladder 2.

Ladder State Relative Error (%)

2 1 6.68896×10−7

2 2 4.44752×10−3

2 3 6.1904×10−2

2 4 5.37634×10−7

2 5 1.192285×10−1

Table 7.6: Device 2: Relative errors (meV) of the semi-analytical method for

Ladder 2.
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Figure 7.6: Device 2: Gate voltage vs. energy (meV) for quantum wire for ladder

2.
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Ladder State Energy (meV) Trellakis(meV) [91] Error

3 1 314.241562 314 0.241562

3 2 368.472178 368 0.472178

3 3 424.814264 424 0.814264

3 4 476.067852 476 0.067852

3 5 523.492615 523 0.492615

Table 7.7: Device 2: Ladder 3 eigenvalues (meV).

Ladder State Relative Error (%)

3 1 7.69306×10−2

3 2 1.283092×10−1

3 3 1.920434×10−1

3 4 1.42546×10−2

3 5 9.41902×10−2

Table 7.8: Device 2: Relative errors (meV) of the semi-analytical method for

ladder 3.

eigenvalue ladder with the error estimates. Figure 7.7 plots gate voltages

against different energy levels for ladder 3.

Below in Table 7.8 are the relative errors for Ladder 3 obtained through

the semi-analytical method.

Table 7.9 gives improved simulation times obtained through the semi-

analytical method compared to the total run-time of 30 minutes reported

in [91] for the highly doped silicon device. It is clear that the semi-analytical
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Figure 7.7: Device 2: Ladder 3 gate voltage vs. energy(meV) for quantum wire.

method shows considerable improvement in simulation time. Finally, Figure

7.8 shows a direct comparison of the energy plotted against various gate

voltages for the three different eigenvalues (energies) ladders obtained via

the Semi-analytical method.

Figure 7.8 shows a combination of all three eigenvalue ladders which are

plotted for gate voltages. It can be seen that there is more variation in the

electron transport of the device corresponding to ladder1.

The results for the distribution of eigenvalues are depicted in Figure

7.9. The occupation numbers N` of states E` for the first ladder are dis-
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Ladder Times (secs.) Device

1 3.063924 Si− SiO2

2 4.046392 Si− SiO2

3 4.040628 Si− SiO2

Table 7.9: Device 2: Computational times (seconds) for Si − SiO2 Device 2 by

the semi-analytical method.

played. There is a clear exponential decay of occupation numbers. It can be

seen that at a temperature of 300K, almost all energies are located above

the Fermi level EF . This suggests that the distribution function which de-

scribes the occupation numbers decays exponentially with a decaying con-

stant KBT = 0.025eV, [91]. Whilst only a few states are occupied for the

highly doped structure, where NA = 1018cm−3, it can be seen in Figure

7.10 that the spectrum is dense in the case of the undoped structure, where

NA = 1010cm−3.

By analysis of the cross-sections of the electron density n parallel to the

Si−SiO2 interface, one can explain this difference in that the quantum wire is

very compact for highly doped devices with a width of approximately 20 nm,

Figure 7.11 and a core shell of 6× 1019cm−3. This tight confinement results

in size quantisation and large separation of energy levels. For the undoped

case, the quantum wire is much wider as indicated in Figure 7.12, and the

spread of electron density is much wider extending to a larger distance of

60nm with a core shell of 4× 1018, [91].

Lastly, in this section the dependence of electron density on gate voltage is
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Figure 7.8: Device 2: Energy for different effective masses vs. gate voltage.

analysed for both doping cases. The in Figure 7.13 shows a threshold voltage

of approximately 2.1 V for the highly doped structure and approximate 0.5V

for the undoped structure displayed in Figure 7.14.

7.3 Device 3: A double well quantum device

In order to compare simulation results with those in [12], Device 3 is analysed

in three dimensions and one dimension for the simulation of transport. Figure

7.15 shows a double gate quantum well device which was previously analysed

in [12]. The lightly (yellow) shaded regions show the locations of the applied

potential (gates). The lightly shaded (yellow) internal regions are the layers

of InGaAs.

It has lateral dimensions 250 nm by 250 nm. The height is 626.8 nm. It
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Figure 7.9: Device 2: Occupation numbers N` of states E` for first eigenvalue

ladder with NA = 1018cm−3.

has six layers in its vertical structure. These are AlInAs (20 nm), InP (57.6

nm), InGaAs (12.6 nm), another InP layer (10.6 nm) followed by InGaAs (16

nm) and InP (510 nm). Furthermore, this device has two doping strengths

ND = 3.5 × 1011cm−2 and ND = 0.5 × 1011cm−2 which are located at 40.5

nm and 167.5 nm respectively. In each layer, the dielectric constant and the

effective masses were constant. For AlInAs, the dielectric constant is 12.71

and the effective mass is 0.073 m0, in InGaAs, dielectric constant is 14.11 and
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Figure 7.10: Device 2: Occupation numbers N` of states E` for first eigenvalue

ladder NA = 1010cm−3.

effective mass is 0.043 m0 and for InP the dielectric constant and effective

masses are 12.61 and 0.0795 m0 respectively. For the band offset, 0.252 eV

is used for AlInAs and -0.216 eV for InGaAs. In the InP layer the doping

density is 3× 1015cm−3. Finally, all computations are done at a temperature

of 4.2K.

The material properties of the layers of InGaAs induce potential wells

in the vertical direction while voltages applied to the gate on top of the

device induce a potential confining elections in the transverse directions. In
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Figure 7.11: Device 2: Cross-section of quantum electron density parallel to

Si− SiO2 with NA = 1018cm−3.

Figure 7.16, the potential at x = 0, y = 0, z ∈ [0, 400nm] for Device 3 is

shown. Further, Figure 7.17 shows the transverse slice of the potential in the

upper well (at z=84 nm for (x, y) ∈ [−250nm,−250nm] × [250nm, 250nm])

is shown. A significant feature of the potential in the transverse direction is

the dip in the centre. The dip in the potential confines states laterally in the

upper well.

Figure 7.18 presents the energy of the lowest energy state in the upper

well given as a function of the gate voltage. One curve shows the results
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Figure 7.12: Device 2: Cross-section of quantum electron density parallel to

Si− SiO2 with NA = 1010cm−3.

obtained via the semi-analytical method and the other shows those results

given in [12]. Furthermore, the computational times are presented in Figure

7.19. The results show improved simulation time is achieved using the Semi-

analytical method.

Turning to the one -dimensional case, the eigenvalues obtained via the

Evans function are set out in Table 7.10. Clearly, the results are in good

agreement with those found in [12]. Moreover, there is the achievement of

improved simulation times compared with those reported in [12]. The total
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Figure 7.13: Device 2: Electron density in quantum wire as well as undoped

substrate as a function of gate potential with NA = 1018cm−3.

simulation time achieved is 10 mins. and 42 secs. compared with a total of

15 mins. and 30 secs. reported in [12]. The results obtained by the semi-

analytical method were achieved using Intel(R) Core (TM)2 Duo CPU T6570

with speed 2.10 GHz. In [12] the computer used for the simulation was not

reported.
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Figure 7.14: Device 2: Electron density in quantum wire as well as undoped

substrate as a function of gate potential with NA = 1010cm−3.

7.4 Device 4: Analysis of the double gate 10

nm by 10 nm MOSFET

This section of the thesis analyses a double gate 10 nm by 10 nm MOSFET

which has been previously analysed in [6]. The various parameters are given

in Table 7.12. Figure 7.20 shows the double gate NMOSFET. The simulation

results obtained by the semi-analytical results are given and compared with

those given in [6]. The analysis here relates to a 2-D simulation of transport.
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Figure 7.15: Architecture of Device 3: Lightly shaded regions on top are the

locations of the applied gates The internal lightly shaded regions are InGaAs

layers [12].
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Figure 7.16: Potential in Device 3 obtained by the semi-analytical method com-

pared to that reported in Anderson [12].

123



Figure 7.17: Device 3: Potential in the transverse directions in the centre of the

upper quantum well as shown in [12]. This plot is obtained by the semi-analytical

method.

This section studies the following system of coupled Schroedinger-Poisson’s

equation which is used to analyse the above NMOSFET. In [6] this equation

is given as:

(H − qV (x, z))ψE(x, y, z) = EψE(x, y, z), (7.5)

with (x, y, z) ∈ [a, b] and H is Hamiltonian, defined by

H = − h̄
2

2

(
1

mx(z)
∆x +

1

my(z)
∆y

)
− h̄2

2

∂

∂z

(
1

mz(z)

∂

∂z

)
. (7.6)

124



Figure 7.18: Device 3: Upper well energy (lowest state) as a function of gate

voltage obtained by the semi-analytical method. Comparison with the simulation

results reported in Anderson [12].

ψE is the complex valued wave function which depends on the energy E,

h̄ is the plank’s constant, q is the elementary electron charge. In addition,

we denote mx,my,mz as the z-dependent effective masses in the x,y and

z-direction. The electrostatic potential V is x, z dependent and is split into

exterior potential ve and self-consistent potential Vs. In order to obtain Vs
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Figure 7.19: Device 3: Computation times for the results shown in Figure 7.18.

we solve the Poisson’s equation

∆Vs(x, z) = −qn(x, z), (7.7)

∂nVs(a, ·) = 0 (7.8)

∂nVs(·, b) = 0, (7.9)

Vs(·, 0) = V 0
g , (7.10)

Vs(·, 1) = V 1
g , (7.11)

∂n denotes the normal derivative to the boundary. Furthermore, V 0
g and V 1

g
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Eigenvalues via Evans function Eigenvalues in [12] Error Relative Error

-0.01214986 -0.01217886 2.9× 10−5 0.2381

-0.01217912 -0.01217918 6× 10−8 0.2407

-0.01216957 -0.01217957 1× 10−5 0.0821

-0.01214525 -0.01217969 3.444× 10−5 0.2828

-0.01214576 -0.01217972 3.3396× 10−5 0.2788

-0.01218723 -0.01217974 7.49× 10−6 0.0615

Table 7.10: Device 3: Eigenvalues for modelled device with relative error given in

percentage.

are the applied gate voltages. Finally, the electron density is

n =

∫
|ψE(x, y, z)|2fFD(E)dE. (7.12)

We call fFD the Fermi-Dirac distribution function.

In this model one accounts for the anisotropic crystal structure Si, which

is illustrated by six equivalent conduction band ellipsoid. As such we have

to solve Schroedinger-Poisson three times and obtain three different sets of

eigenvalue ladder. The three different configurations of the effective mass m?

are given by (m`,mt,mt), (mt,m`,mt) and (mt,mt,m`), where mt and m`

are the transverse and longitudinal masses of the material.

Figure 7.21 displays three conduction energy subbands for voltage VDS =

0.2V and VGS = 0V. These results are obtained by the semi-analytical

method. Similar results are obtained by the SDM/WKB method and are re-

ported in [6]. In order to validate the results obtained by the semi-analytical

method, the dotted line (extracted from [6]) suggests good agreement of the
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Figure 7.20: Architecture of Device 4: Double-gate NMOSFET.

semi-analytical method with SDM/WKB for conduction energy subband mt.

Furthermore, Figure 7.22 represents the profile of the first mt energy

subband for various drain-source voltages. These results are obtained by

application of the semi-analytical method. In [6], similar results which are

obtained by the SDM/WKB method are reported and compared to a ref-

erence solution. The results obtained by the semi-analytical method were

achieved using Intel(R) Core(TM)2 Duo CPU T6570 with speed 2.10 GHz.

In [6] the computer used for the simulation was not reported.

And finally, Figure 7.23 displays the current voltage characteristics of the
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Ladder1 Ladder2 ladder3

-0.023005358 -0.266777769 -0.0298676008

-0.017901324 -0.182224116 -0.0150325876

-0.013099594 -0.085786000 -0.0047394417

-0.022388273 -0.261897300 -0.0309407186

-0.019499282 -0.173129433 -0.0151024436

Table 7.11: Device 4: eigenvalues (eV). These results are obtained by the semi-

analytical method.

modelled double-gate NMOSFET.

7.5 Device 5: A single walled carbon nan-

otube device

Single walled carbon nanotubes (SWCNTs) having structures and properties

of very small dimensions with short channel scaled down to 50 nm exhibit

nearly ballistic carrier transport making them good candidates for electronic

devices [51]. Therefore, it is necessary to study the physics with which these

structures are associated. This section of the thesis analyses the simulation

results obtained by the semi-analytical method for a cylindrical structure

[56] which is an approximation of the real device structure given in Figure

7.24.

The device shown in Figure 7.24 is comprised of five layers. A channel

length L ∼ 50nm long SWNT is situated between the drain and source. In
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Parameter Value

Lx 18nm

Lz 12nm, 7nm, 5nm

LOX 1nm

LSi 10nm, 5nm, 3nm

LR 4nm

LCH 10nm

mSi02 0.5×m0

ml 0.98×m0

mt 0.19×m0

T 300K

n+ 1020cm−3

VGS −0.3, ..., 0.5eV

VDS −0, ..., 0.5eV

EC 3.15eV

Table 7.12: Device 4: Parameters for the modelled device [6].

addition, it consists of 8 nm thick HfO2 high-κ (κ ∼ 15) gate insulator which

is formed on top of the SWNT by a process called atomic layer deposition

(ALD) at temperature 90◦C and a top Al gate electrode. Sandwiched be-

tween the source and the drain and the p++ Si substrate exists a 10 nm

SiO2 layer. The S (source), D (drain) and G (gate) structures are designed

in such a way that edges are positioned precisely so that no overlapping or

significant gaps exist between them [51]. The various parameters used in
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the simulation process are given in Table 7.13.

Figure 7.25 is a sketch of the cylindrical device [56] which is comprised

of the same geometrical and material properties as reported in [51]. It has

a height of approximately 17 nm. Figure 7.26 displays the drain voltage

plotted against drain current for a p-type ohmic device [74] showing the

current-voltage characteristics.

Modelling the static response of carbon nanotube field effect transis-

tors (CNTFETs) is achieved by solving the coupled system of Schroedinger-

Poisson equations [74]:

∂2V

∂ρ2
+

1

ρ

∂V

∂ρ
+
∂2V

∂z2
= −Q

ε
, (7.13)

− h̄2

2m?

Ψn,p
n,d

∂z2
+ (Un,p − E)Ψn,p

n,d = 0. (7.14)

The various terms in equations (7.13) and (7.14) are explained in Chapter 3.

Using the original techinques which are reported in Chapters 3 and 4 of

this thesis, equations (7.13) and (7.14) are reduced to

Vzz(ρ, z) + 2sech2(z −
√

2ρ)V (ρ, z) = −P (ρ, z),(7.15)

∂2Ψn,p
s,d

∂z2
+ 2sech2(−

√
2z)Ψn,p

s,d −
2m?

h̄2 (Un,p − E)Ψn,p
s,d = 0, (7.16)

where P (ρ, z) =
(

1
ρ
Vρ + Q

ε

)
. Next the total electron density is calculated and

once the Schroedinger-Poisson iteration is accomplished, the electron current

is calculated.

The solution for the potential V (ρ, z) in equation (7.15) is given by

V (ρ, z) = tanh(z −
√

2ρ) +

∫ 0

ρ0

∫ 0

z0

tanh(a−
√

2b) +

(
1

ρ
Vρ +

Q

ε

)
da db,
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and the equation for the current is given by

j(z) = 2
∑
s,d

∫ ∞
0

√
2m?

πh̄
√
Es,d
|Ψn,p

s,d |
2

(∫ +∞

−∞
fs,d(E)

dkd
2π

)
dks
2π

. (7.17)

To obtain these results, the semi-analytical method reported in Chapters

3 and 4 is applied to the coupled system of Schroedinger-Poisson equations

(7.13) and (7.14). This results in a solution to Poisson’s equation (7.15) for

the electrostic potential which then enables the equation (7.17) of the current

in the device to be computed. As a result of the application of the solution

V (ρ, z) to equation (7.15) and using equation (7.17), Figures 7.26 and 7.27

show the comparisons of the simulation results for the semi-analytical method

with experimental results [51] and the adaptive integration method [74].

Good agreement of the semi-analytical method with the adaptive integration

method of [74] and the experimental results of [51] is thus proven. The

simulation platform employed in [74] is an IBM-RS6000.

7.6 Validation of the semi-analytical method

and comparison with experimental data

In sections 7.1 - 7.5, the semi-analytical method has been proven to pro-

vide results that agree with other simulation results reported in the litera-

ture ( [6, 12, 74,91]) and with the experimental results reported in [51]. As

already emphasised in Chapter 3, experimental results in this area of semi-

conductor device research are scarce. Typically, proposed electron state and

transport simulation methods are tested against benchmark finite element

method solutions of the Schroedinger-Poisson model.
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For the devices reported in [6], there are currently no experimental results

available with which the simulation results may be validated. However, com-

parable results are generated by the standard variation method, the subband

decomposition method and the Green’s function method. In [91], compar-

isons are done with an adaptive nonlinear version of the standard Gauss-

Seidel algorithm whereas in [12], the comparisons based on those obtained

from the simplified models are compared with results of the full quantum

solution by the finite element method.

To validate the effectiveness of the semi-analytical method, Figures 7.26

and 7.27 show the comparisons of simulation and experimental results. The

comparisons show good agreement between simulation results obtained by

the semi-analytical method, the adaptive integration method [74] and exper-

imental results in [51]. The simulations were done for a cylindrical structure

which is an approximation of the real device reported in [51]. Gate voltages

of 1.0 V and 1.3 V are considered and the simulation results are displayed

along with the experimental results which are extracted from [51,74]. In this

analysis, the parameters for the simulated structure are found in [51] and are

displayed in Table 7.13 and Poisson’s equation is solved in two dimensions,

whilst Schroedinger’s equation is solved in one dimension [74]. The success-

ful comparison shows that the semi-analytical method is validated against

experimental results, as well.
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Band gap EG 0.5 eV

effective mass m? 0.05m0

ε 12.1

Temperature T 300 K

Ls 5 nm

LD 5 nm

Channel length L 50 nm

VG 0.1 0.4 0.7 1.0 1.3 eV

EC 22 eV

Table 7.13: Device 5: Parameters for the modelled device [51,74].

7.7 Discussion of simulation time performance

This section analyses the simulation times for devices 1 - 5. In particu-

lar, the simulation times reported in [6, 12, 74,91] are compared with the

semi-analytical method. The simulation times are displayed in Table 7.14.

Clearly the semi-analytical method converges faster when compared to the

other methods reported in this thesis and shows significant reduction in sim-

ulation times. The improvement in simulation times may be due in part to

using a more advanced simulation platform than in [91]. In general, it is

difficult to make a definitive judgement on the simulation time comparison

in the absence of the code used by the other authors and, in some cases,

when the computing platform used for simulation was not reported [6, 12].

However, we reckon that the proposed method is comparable if not better

than alternative methods in terms of computation time and that it can be
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Simulation Time

Device semi-analytical method alternative method

1 7.38 secs. 10 mins. (predictor-corrector method)

2 11.15 secs. 30 mins. (predictor-corrector method)

3 10 mins. 42 secs. 15 mins. 42 secs. (reduced basis method)

4 40 mins. 18 secs. 46mins. 28 secs. (SDM/WKB method

5 1 min. 27 secs. approx. 100 secs. (adaptive integration method)

Table 7.14: Comparison of simulation times of the semi-analytical, SDM/WKB

[6], predictor-corrector [91] reduced basis [12] and the adaptive integration [74]

methods.

made even faster with an implementation using C++ rather than Matlab.

7.8 Summary

This section of the thesis summarises the simulation results of various semi-

conductor devices and comparison with other reported methods and with

experimental results. Various authors [6, 12, 74, 91] have applied robust nu-

merical procedures in order to analyse the electron transport in semicon-

ductor devices. Furthermore, as shown in section 7.5, the semi-analytical

method also produces accurate results when compared to experimental re-

sults reported in literature [51]. In this thesis it is demonstrated that the

applications of the semi-analytical method and the Evans function techniques

are effective in analysing electronic devices. Particularly, the Evans function

is a useful tool in finding the eigenvalues (energies) of many semiconductor
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devices and explains accurately the phenomena regarding electron transport

in semiconductor systems. In addition, it is shown that this method shows

improved simulation times. This procedure can be generalised as a stan-

dalone method or can be coupled with other methods which are used in

device simulation.

136



Figure 7.21: Device 4: Double-gate NMOSFET-conduction energy subbands for

three different effective masses with VDS = 0 · 2V and VGS = 0V. The red and

blue continuous lines are the energy subband for mt, the green line is the energy

subband for m` and the broken red line is the energy subband for mt which is

extracted from [6].
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Figure 7.22: Device 4: Double-gate NMOSFET-energy subbands for different

drain-source voltages.
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Figure 7.23: Device 4: Double-gate NMOSFET- I-V characteristics, current vs.

drain-source potential VDS .

Figure 7.24: Architecture of Device 5: a single walled carbon nanotube field effect

transistor (SWNT-FET) device structure.
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Figure 7.25: [56] Sketch of CNTFET. This cylindrical structure is an approxi-

mation to the real Device 5. Simulations for this structure are carried out using

the semi-analytical method. The same parameters for the SWNT are used in the

simulation of the CNTFET.
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Figure 7.26: Device 5: current-voltage characteristics. Comparisons of simulation

for adaptive integration method (AIM) (red curve) [74], semi-analytical method

(blue curve) and experimental results (extracted from [74]) (green circle) with

VG = 1.3V , where drain current [µ,A] is plotted against drain voltage (v) for

CNTFET reported in [74].
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Figure 7.27: Device 5: current-voltage characteristics. Comparisons of simula-

tion for adaptive integration method (AIM) (yellow curve) [74], semi-analytical

method (magenta curve) and experimental results (extracted from [74]) (blue

dots) with VG = 1.0V , where drain current [µ,A] is plotted against drain voltage

(v) for CNTFET reported in [74].
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Chapter 8

Conclusions and Further Work

8.1 Conclusions

Efficient solutions of the electron transport problem constitute a long term

goal of the Semiconductor Research Consortium (SRC) [1]. A fundamen-

tal part of this goal is concerned with the efficient solution of the coupled

system of Schroedinger-Poisson equations. The objectives of this thesis indi-

cate investigating efficient solutions of the above system of equations. Much

work has been done in this area and is heavily numerical and computational.

The work in this thesis is concerned with a combination of analytical and

computational approaches.

The literature review was carried out in order to investigate new ways to

solve the problem of electron transport in semiconductor systems quicker and

more efficiently. A close study of the approaches which are used to solve this

problem is heavily computational and in three dimensions, the problem is

computationally intensive. Naturally, it is good practice to seek new ways to
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solve this problem. A closer examination of the coupled system of equations

suggests that the employment of hyperbolic functions helps to reduce the

problem to a simpler one for which approximate solutions are determined.

Given the application of the hyperbolic functions, the coupled system of

equations is then recast into new approximate system of coupled equations

with variable coefficients.

For this new system, an initial electrostatic potential is introduced which

results in the reduction of this system of equations to a conventional eigen-

value problem whose eigenfunctions and eigenvalues are calculated by apply-

ing the methods of variation of parameters and Powers series. In order to

analytically determine the eigenfunctions, the Evans function, which is ana-

lytical function, is extended in a novel way in two and three dimensions such

that the discrete spectrum is calculated. With the successful calculation of

the eigenfunctions, the complete electron density is determined and the inho-

mogeneous Poisson’s differential equation is updated and solved analytically.

Solving the inhomogeneous Poisson’s differential equation analytically

requires establishing two solutions of the resulting homogeneous equation.

Using these two solutions, an approximate semi-analytical solution to the

inhomogeneous Poisson’s equation is calculated using the methods of varia-

tion of parameters and power series. These solutions are then fed back into

Schroedinger’s equation and new eigenvalues and eigenfunctions are deter-

mined. The electrostatic potential is updated and the process is repeated

until convergence. The significance of this novel approach is that the trans-

formed equation resulting from the initial guess of the electrostatic potential

creates opportunity for analysing the system of equations using analytical
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and numerical methods. The analytical component of the method improves

greatly simulation times. The method has been validated by comparison

with alternative methods and experimental results reported in literature.

The original technique of computing the eigenvalues of the differential

operator of Schroedinger’s equation is quite significant, in that, it had not

been previously applied to analyse the electron transport in semiconductor

systems or device analysis. From the results obtained, this function clearly

plays an instrumental role in improving the simulation times in the elec-

tron transport in semiconductor systems. And as indicated above, in 3D,

simulation is computationally intensive and time consuming, suggesting the

advantage of the semi-analytical approach.

The method was implemented numerically using Matlab (Appendix F)

and tested on a number of device architectures. The test was done initially on

different elements of the problem. For example, initially, eigenfunctions and

eigenvalues of Schroedinger’s equation are calculated for each electrostatic

potential then extended to the full model where a complete solution to the

problem is determined. Comparing with results reported in literature, faster

and improved simulation times are achieved using the novel semi-analytical

method. In some cases, the improvement in simulation time is quite signif-

icant. It is the ability of this method to transform the coupled system of

partial differential equations into a conventional eigenvalue problem and the

subsequent introduction and extension of the Evans function techniques in

two and three dimensions which accounts for such marked improvements in

simulation times.

Whilst the implementation of the computational procedure is done in
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Matlab and produces improved simulation times, it is believed that even

faster and improved simulation times may be achieved if the implementa-

tion is done using C++ language or a combination of both C++ and Matlab

languages. Furthermore, it is believed that this approach can be extended

to incorporate other models such as the Non-equilibrium Green function ap-

proach and the Monte Carlo methods which are used to simulate electron

transport in semiconductor systems.

One may argue that the semi-analytical method, and in particular the

Evans function techniques may be limited in their ability to handle a wider

class of coupled partial differential equations, however, for the purposes of

this thesis, the method has proved to be effective and is believed to be able

to be included in other robust methods as a valuable tool in simulating

microelectronic devices.

8.2 Further Work

Clearly, as shown, the Evans function is a useful tool to capture the bound

states in various electronic devices. It has been shown that the zeros of the

Evans function coincide with the bound states of the device under simulation.

There are various questions which arise when one employs the Evans function

technique, namely, to what class of devices can it be applied, how does it

compare with capturing the bound states of semiconductor devices and as our

case suggests, how accurately does it compare with numerical methods? The

1D, 2D and 3D eigenvalue problem of the Schroedinger-Poisson model have

been fully investigated using the Evans function technique and the results
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are in good agreement with those reported in literature.

Therefore, as the Evans function is a complex analytical function, its

study implies complex analytical functions theory. Hence, one must under-

stand the properties of complex analytical functions in order to proceed. In

other words, one can commence with this function and apply complex anal-

ysis theory to it. Consequently, properties such as convergence, analytical

continuation and Branch cuts and Branch points can then be analysed. This

is very important as device dimensions get smaller. This function captures

accurately the eigenvalues of the system whereby conventional methods may

require improvement in order to accurately predict the performance of semi-

conductor devices.

With reference to complex variable theory, this is a new and unexplored

area in which efficient device analysis can be done. The work in this thesis

on the Evans function techniques and the semi-analytical method supports

this view. Further analysis is indicated with the employment of complex an-

alytical function in device analysis. Therefore, it is suggested that a better

understanding of the properties of the Evans function may be an advanta-

geous place to start when analysing future micro-electronic devices for energy

state and eigenfunctions.

One of the uses of the Evans function method is to determine the stability

of the bound states in a large class of differential equations. Therefore, as

these bound states (energy states) are crucial to device analysis, knowledge

of their stability may be deemed a useful tool to determine when devices

may breakdown or the extent to which one can scale these devices which are

currently sub 100 nm range.
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Thus, in this thesis it is demonstrated that the original semi-analytical

method has been successful in assisting in solving the coupled system of

Schroedinger-Poisson’s equations. Its subsequent implementation into Mat-

lab shows improved simulation times compared to the cases reported in lit-

erature with which this work is concerned. Particularly, the semi-analytical

method coupled with the Evans function technique has shown that it is pos-

sible to capture accurately the eigenfunctions and the energies (eigenvalues)

of the coupled system of equations. Additionally, the method is easily im-

plemented into Matlab in order to simulate accurate electron transport in

semiconductor systems. It is shown that the semi-analytical method is gen-

eral and it is believed to be able to be applied to a wider class of coupled

system of partial differential equations. When this method is combined with

the Evans function technique it provides a robust approach to analysing elec-

tron transport in semiconductor systems, at least those to which this thesis

is devoted.
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Appendix A

Energy band diagram - MOS

diode

Appendix A presents details of the energy band diagrams for the MOS diode,

as shown in Figure 2.1. When the metal plate, the oxide (insulator) and the

semiconductor substrate are separated (not in contact), Figure A.1 illustrates

three separate energy band diagrams of the MOS diode components. As such

there exist the following notations and definitions. Φm is the work function,

χ the semiconductor electron affinity and Eg is the semiconductor band gap.

Using these notations, one defines an ideal Metal Oxide Semiconductor

diode as follows:

1. Φm − q · Φs = 0. Therefore, no charge is flowing when the metal, oxide

and semiconductor are put in contact;

2. under any biasing conditions, the only charges that can exist in the

structure are those in the semiconductor structure and those with equal
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Figure A.1: Metal, oxide and semiconductor energy band diagrams are separat-

edly shown.

but with opposite sign on the metal surface adjacent to the insulator;

3. The resistivity of the of of the insulator is such that there is no carrier

transport under dc-bias.

where q is the electronic charge, and q · Φs is the work function of the semi-

conductor [86].

Equally, in Figure A.2 one considers the energy band diagram when the

semiconductor, metal and insulator are in contact and under no applied bias,

that is V = 0. Here a p-type semiconductor is considered.

In the case when an ideal MOS diode is biased with negative or positive

voltages, Figures A.3, A.4 and A.5 illustrate three cases may exist at the

semiconductor surface. These cases are the accumulation case, the depletion
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Figure A.2: Energy-band diagram of an ideal MOS at V = 0 for a p-type semi-

conductor.

case and the inversion case. Firstly, for a p-type semiconductor, when a

negative voltage (V < 0) is applied to the metal plate the top of the valence

band bends upwards and is closer to the Fermi level (Figure A.3). The MOS

diode is in an accumulation state when the holes from the p-type silicon are

attracted to the surface under (V < 0).

Secondly, when positive small voltage, V > 0 which is larger than the

threshold voltage is applied, the band bends downwards and the majority

carriers are depleted, Figure A.4, one has the depletion case.

Thirdly, when a large positive voltage V > 0 is applied, Figure A.5, the

band bends downwards steeper. Consequently, the Intrinsic level Ei at the

surface crosses over the Fermi level resulting in the number of electrons at the

surface is greater than holes. Therefore the surface is described as inverted,
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which is called the inversion case.

Figure A.3: Energy-band diagram of an ideal MOS at V 6= 0 for a p-type semi-

conductor. The accumulation case.

165



Figure A.4: Energy-band diagram of an ideal MOS at V 6= 0 for a p-type semi-

conductor. The depletion case.

Figure A.5: Energy-band diagram of an ideal MOS at V 6= 0 for a p-type semi-

conductor. The inversion case.
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Appendix B

MOSFET characteristics

Under normal operating conditions of a MOSFET, the drain and source

voltages should be applied in a way that the source and drain to substrate p-

n junctions will be reverse biased, that is, a negative voltage is applied to the

p-side with respect to the n-side. There will be no significant current until

the voltage reaches the critical value called the junction breakdown voltage,

after which the current dramatically increases. In Figure B.1, a cross-section

of an n-channel MOSFET is illustrated where the depletion region is shown.

B.1 Operating regions of the n-channel MOS-

FET

B.1.0.1 Linear region

There is the region where Ids increases linearly with Vds for a given Vgs, which

is higher than Vth. Given the application of a small drain voltage, electrons
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Figure B.1: The cross-section of n-channel MOSFET.

will flow from source to drain. Consequently, current will flow in the reverse

direction from drain to source through the conduction channel, (see Figure

B.2 (a)) [86].

B.2 Saturation region

In this region Ids no longer increases with Vds, Ids is saturated. When the

drain voltage increases, eventually it will reach VDsat, the thickness of the

inversion layer will reduce to zero. This is called the pinch-off region as

shown in Figure B.2 (b), [86]. At this point, the drain current remains the

same since Vd > VDsat. If the voltage VDsat increases beyond pinch off, the

channel length will decrease as illustrated in Figure. B.2 (c), [86].
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Figure B.2: The linear operating region in the n-channel MOSFET.

Figure B.3: The pinch-off point operating region in the n-channel MOSFET.
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Figure B.4: The saturation operating region in the n-channel MOSFET.
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Appendix C

The Wronskian

The Wronskian can be used to find solutions to PDEs. Its definition will be

derived in the following. Consider the differential equation

φxx(x) + 2sech2(x)φ(x) = 0. (C.1)

It can be easily shown that two linearly independent solutions to this equation

are given as

φ1(x) = tanh(x) (C.2)

and

φ2(x) = tanh(x)(x− coth(x)). (C.3)

These are verified as follows:

d2

dx2
φ1(x) = −2sech2(x) tanh(x) (C.4)

and

2sech2(x)φ1(x) = 2sech2(x) tanh(x). (C.5)
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Then the sum of (C.4) and (C.5) verifies (C.1). Similarly,

d2

dx2
φ2(x) = −2xsech2(x) tanh(x) + 2sech2(x) (C.6)

and

2sech2(x)φ2(x) = 2sech2(x)(tanh(x)((x− coth(x))) (C.7)

= 2xsech2(x) tanh(x)− 2sech2(x). (C.8)

Then the sum of (C.6) and (C.8) verifies (C.1).

Now consider the problem in three dimensions.

∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2
= 0. (C.9)

It is easily verified that

φ(x, y, z) = tanh(x+ ı
√

3y −
√

2z). (C.10)

Indeed, let φ = φ(x, y, z). Then,

φxx = −2sech2(x+ ı
√

3y −
√

2z) tanh(x+ ı
√

3y −
√

2z), (C.11)

φyy = 6sech2(x+ ı
√

3y −
√

2z) tanh(x+ ı
√

3y −
√

2z) (C.12)

and

φzz = −4sech2(x+ ı
√

3y −
√

2z) tanh(x+ ı
√

3y −
√

2z). (C.13)

Summing (C.11), (C.12) and (C.13) verifies (C.9).
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C.1 Definition of the Wronskian

Now the Wronskian can be defined. Using (C.2) and (C.3), the Wronskian

in one dimension is defined to be the determinant

W (φ1(x), φ2(x)) = det

 φ1(x) φ2(x)

d
dx
φ1(x) d

dx
φ2(x)

 . (C.14)

Simplifying (C.14) gives W (φ1(x), φ2(x)) = 1. Since W (φ1(x), φ2(x)) 6= 0,

φ1(x) and φ2(x) are linearly independent solutions. Given this background,

the Evans function can be defined and discussed (Appendix D).
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Appendix D

The Evans Function

The Evans function is a useful tool to calculate the discrete spectrum (eigen-

values) for the Schroedinger’s equation. To illustrate how this function works,

this thesis looks at an example below in one-dimension and defines this func-

tion. Moreover, from the one-dimensional analysis, this function is naturally

extended to two and three dimensions in Chapters 4 and 5. In this section,

the scalar reaction-diffusion equation [24] is discussed as a basic example.

In the discussion, linearisation of this equation is illustrated and the Evans

function is defined. The scalar reaction-diffusion equation is

ut = uxx(x)− u(x) + u3(x), (D.1)

where (x, t) ∈ R × R+. A stationary (time independent) solution to (D.1)

is given by u(x) = U(x) = sech(x). Let u(x) = U(x) + P (x) and substitute

this into (D.1), then neglect nonlinear terms in P (x), use the fact that from

(D.1), uxx(x) − u(x) + u3(x) − ut = 0 and introduce the spectral anzatz
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u(x, t) = eλtU(x), results in the eigenvalue equation

Pxx(x)− P (x) + 6U2(x)P (x) = λP (x), (D.2)

where λ is an eigenvalue. The process of obtaining (D.2), which is a linear

eigenvalue problem is called linearisation of (D.1) about the stationary solu-

tion u(x) = U(x) = sech(x). That is, equation (D.2) is one which is linear

in the function P (x) and therefore a solution using linear techniques can be

employed.

Now the linearised equation for the one dimensional Klein-Gordon equa-

tion is

ψxx(x)− (1− 2sech2(x))ψ(x) + λψ(x) = 0. (D.3)

Two solutions of (D.3) which decay to 0 as x→ +∞ and x→ −∞ are given

as

m+(x) = e−
√

1−λxh+z (D.4)

and

m−(x) = e
√

1−λxh−z, (D.5)

with

h+(z) = C+(z − (−
√

1− λ)), (D.6)

= C+(z +
√

1− λ), (D.7)

h−(z) = C−(z −
√

(1− λ)). (D.8)

Now,

lim
x→+∞

m+(x) = 0 and lim
x→−∞

m−(x) = 0.

175



D.1 Definition of Evans function in one-dimension

The Evans function is given by D(λ) which is defined as

D(λ) = det

 m+(x) m−(x)

d
dx
m+(x) d

dx
m−(x)

 . (D.9)

The roots ofD(λ) correspond to eigenvalues. Now, m+(x) = e−
√

1−λxh+(z),

thus one has

d

dx
m+(x) = −

√
1− λe−

√
1−λxh+(z) + e−

√
1−λx d

dx
h+(z),

= −
√

1− λe−
√

1−λxh+(z) + e−
√

1−λx d

dx
h+(z),

= −
√

1− λe−
√

1−λxh+(z) + e−
√

1−λx(1− z2)
d

dx
h+(z).

Similarly,

d

dx
m−(x) =

√
1− λe

√
1−λxh−(z) + e

√
1−λx d

dx
h−(z),

=
√

1− λe
√

1−λxh−(z) + e
√

1−λx d

dx
h−(z),

=
√

1− λe
√

1−λxh−(z) + e
√

1−λx(1− z2)
d

dx
h−(z).

Therefore,

D(λ) = m+(x)
d

dx
m−(x)−m−(x)

d

dx
m+,

= e−
√

1−λxh+(z)(e
√

1−λx(
√

1− λh−(z) + (1− z2)
d

dz
h+(z)))

− e−
√

1−λxh+(z)(e−
√

1−λx(−
√

1− λh+(z) + (1− z2)
d

dz
h−(z))),

which, after simplification, gives

D(λ) = 2
√

1− λh+(z)h−(z) + (1− z2)(h+(z)
d

dz
h−(z)− h−(z)

d

dz
h+(z)).
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Now h+(z) = C+(z +
√

1− λ) and h+(z) = C−(z −
√

1− λ). This implies

that h+(z)× h−(z) = C+C−(z2 − (1− λ)). Thus equation (D.9) reduces to

D(λ) = C+C−2
√

1− λ(z2 − (1− λ) + (1− z2)) (D.10)

= 2C+C−λ
√

1− λ. (D.11)

To conclude,

C+C− 6= 0, andλ < 1, soD(λ) = 0 only whenλ = 0,

therefore the two eigenfuctions which satisfy (D.3) are

m+(x) = C+e
−x(tanh(x) + 1) (D.12)

and

m−(x) = C−e
x(tanh(x)− 1). (D.13)

Furthermore, when λ = 1, there exists an exact solution to equation

(D.3). This is given as

ψ(x) = tanh(x). (D.14)

177



Appendix E

Derivation of 3D

Eigenfunctions

Appendix E gives details of the derivation of the 3D eigenfunctions which are

presented in Chapter 5, Section 5.3. As in the 2D case (Chapter 5, Section

5.3), Schroedinger’s equation has to be solved three times to obtain three

sets of eigenvalues. Therefore, consider the effective mass configuration m? =

(m`,mt,m`). Using the techniques of Chapter 5, with the initial electrostatic

potential

V (x, y, z) =
h̄2

2q[mz(z)]2
∂

∂z
mz(z)

ψz
ψ
− λ

q
− λ`2[mz(z)]2

q
, (E.1)

where ` is the length of the device, then equation (5.118) is reduced to

ψxx + 2bc sech2(
√
bcx+ ı

√
3
√
acy −

√
2
√
abz)ψ − 2λ`2[mz(z)]4

ah̄2 ψ = 0.

In order to solve this equation, note that in the limx,z→±∞ 2bcsech2(
√
bcx +

ı
√

3
√
acy −

√
2
√
abz)→ 0. Hence, one has the reduced equation

ψxx(x, y, z)− 2λ`2[mz(z)]4

ah̄2 ψ(x, z) = 0. (E.2)
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Equation (E.2) has solutions which decay exponentially only if Real(λ) > 0.

Therefore, when looking for solutions restrict λ to the right-half complex-

plane. From equation (E.2), µ = ±
√

2[mz(z)]4`2λ

ah̄2 . Using this, write a solution

to equation (5.118) in the form eµ(x+y+z)h(x, y, z) and substitute this into

equation (5.118). Then the function h(x, y, z) satisfies

hxx + 2µhx + 2bc sech2(
√
bcx+ ı

√
3
√
acy −

√
2
√
abz)h = 0. (E.3)

From Chapter 5, equation (E.3) has solution

h(x, y, z) = C tanh(
√
bcx+ ı

√
3
√
acy −

√
2
√
abz)− Cµ

√
bc

bc
, (E.4)

for some complex constant C.

Since µ = ±
√

2[mz(z)]4`2λ

ah̄2 , one has two solutions to equation (5.118). One

of which decays as x, z → +∞ and the other decays as x, z → −∞. Let

U+(x, y, z) = e
−
√

2[mz(z)]4`2λ

ah̄2 (x+y+z)
h+(x, y, z), (E.5)

U−(x, y, z) = e

√
2[mz(z)]4`2λ

ah̄2 (x+y+z)
h−(x, y, z), (E.6)

where

h+(x, y, z) = C+ tanh(
√
bcx+ ı

√
acy −

√
2
√
abz)− C+

µ+

√
bc

bc
(E.7)

and

h−(x, y, z) = C− tanh(
√
bcx+ ı

√
acy −

√
2
√
abz)− C−

µ−
√
bc

bc
. (E.8)

As x, z → +∞, U+(x, y, z) → 0 and as x, z → −∞, U−(x, y, z) → 0.

Therefore, for some λ ∈ C, with Real(λ) > 0, the functions U+(x, y, z)

and U−(x, y, z) are linearly dependent and bounded for all x, z and decay
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exponentially as x, z → ±∞. Thus eigen energies (eigenvalues) correspond to

values of λ ∈ C where the Wronskian of U+(x, y, z) and U+(x, y, z) vanishes.

Let U+(x, y, z, λ) = U+ and U−(x, y, z, λ) = U− be solutions to equation

(5.118). Then the Evans function is given as

D(λ) = det

 U+(x, z, y, λ) U−(x, z, y, λ)

U+
x + U+

z + U+
y U−x + U−z + U−y

 ,

where Ux, Uz and Uy are the first derivatives with respect to x, z and y re-

spectively of the functions U+(x, y, z, λ) and U−(x, y, z, λ).

Simplifying this, the Evans function is given explicitly as

D(λ) =
2
√

2`C+C−[mz(z)]2
√
λ(
√

2
√
a−
√
c)√

a
√
ch̄

− 2
√

6ı`[mz(z)]2
√
λ√

bh̄
(E.9)

The zeros (eigen-energies) of equation (E.9) are

λ1 = 0, (E.10)

λ2 =
`2[mz(z)]4(a(2b+ 3c)− 2

√
2
√
ab
√
c+ bc)

abch̄2 . (E.11)

Since Real(λ) > 0, reject λ1 and accept λ2. Therefore, inserting λ2 into

the values for µ, µ− and using equations (E.10) and (E.11) one arrives at two

normalised eigenfunctions. These are given as

U1
+(x, y, z) = e−α(x+y+z)h1

+(x, y, z), (E.12)

U2
+(x, y, z) = eα(x+y+z)h2

−(x, y, z), (E.13)

where

h1
+(x, y, z) = C+

(
tanh(

√
bcx+ ı

√
3
√
acy −

√
2
√
abz) + α

√
bc

bc

)
,(E.14)

h2
+(x, y, z) = C−

(
tanh(

√
bcx+ ı

√
3
√
acy −

√
2
√
abz)− α

√
bc

bc

)
,(E.15)
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and

C+ = 46424, (E.16)

C− = −46424, (E.17)

α =

√
2`2[mz(z)]4(a(2b+ 3c)− 2

√
2
√
ab
√
c+ bc)

a
√
b
√
ch̄2

. (E.18)
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Appendix F

Matlab Code

function [Eigenvalues,Wavefunctions] = sim1(ElectroP,Evans,DiracFermi)

%Matlab code for solving coupled system of Schroedinger-Poisson equations.

%Schroedinger’s equation is solved using an initial guess for the

%electrostatic potential. The implementation procedure requires an initial

%analytical expression for the electrostatic potential phi such that

%Schroedinger equation is reduced to a conventional eigenvalue problem

%which is solved analytically where the wave functions and eigenvalues are

%calculated via Evans function approach. Then electron density is computed

%and calculation of new electrostatic potential via Poisson’s equation is

%implemented. The process continues until convergence.

%.........................................................................

%Constants for calculations. These can be updated for the required device

%under consideration
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massa =9.1095*10^(-31); %mass of an electron (kg)

m_dh = 0.81*massa; %default value;

m_de = 0.36*massa; %density of state mass of conduction band, default value

T=300;%Temperature expressed in K, default is 300K

k_B = 8.62*10^(-5);%Boltzmann constant expressed in eV/K

q=1.60217733*10^(-19);% electron charge expressed in C

V_h=3.31;%heterjunction step potential, default value used

E_G=1.1;%energy gap default value

E_F=0.0;%equillibrium Fermi level,default value given

E_d=0.044;%donor atom ionization energy of phospheros, default value given

G_A=4.0;%ground state energy with respect to N_A, default value given

G_d=2.0;%ground state energy with respect to N_D, default value given

E_A=0.048;%acceptor atom energy of boron, default value given

hbar=6.5821189916*10^(-16);%Reduced Plank’s constant expressed in eV.s

alpha0=1/(k_B*T);

alpha1=(E_F-V_h+E_d)/(k_B*T);

alpha2=-1/(k_B*T);

alpha3=(V_h-E_G+E_A-E_F)/(k_B*T);

alpha4=2*((m_de*k_B*T)/(2*pi*hbar^2))^(3/2);

alpha5=(E_F-V_h)/(k_B*T);

alpha6=2*((m_dh*k_B*T)/(2*pi*hbar^2))^(3/2);

alpha7=(V_h-E_G-E_F)/(k_B*T);

m_0=9.1095*10^(-31);

%..........................................................................
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%.................Coding and simulating Anderson’s device..................

%Here it is shown how to determine the loop for simulating layered

%structures which are considered in this work. The Work in Trellakis and

%Abdallah follows the same procedure for simulating the device under

%consideration.

[x,y]= meshgrid(0:10^-9:626.8*10^-9,0:10^-9:626.8*10^-9);

%the loop calculates the dielectric coefficients

eps1 = zeros(length(x), length(y));

for ii = 1:length(x)

for jj = 1:length(y)

eps1(ii,jj)=12.61;

if y(jj)<20*10^-9

eps1(ii,jj)=12.71;

elseif y(jj)>=77.6*10^-9 && y(jj)<90.2*10^-9 %

eps1(ii,jj)=14.11;

elseif y(jj)>=100.8*10^-9 && y(jj)<116.8*10^-9

eps1(ii,jj)=14.11;

end;

end;

end;

% the loop calculates the N_D doping at different locations

N_D=zeros(length(x),length(y));
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for ii = 1:length(x)

for jj = 1:length(y)

N_D(ii,jj)=0;

if y(jj)>=39.5*10^-9 && y(jj)<41.5*10^-9

N_D(ii,jj)=3.5*10^(11);

elseif y(jj)>166.5*10^(-9)&& y(jj)<168.5*10^-9

N_D(ii,jj)=0.5*10^(11);

end;

end;

end;

% the loop calculates the delta background doping in different InP layers

delta_b=zeros(length(x),length(y));

for ii = 1:length(x)

for jj = 1:length(y)

delta_b(ii,jj)=0;

if y(jj)>=20*10^-9 && y(jj)<=77.6*10^-9;

delta_b(ii,jj)=3*10^(15);

elseif y(jj)>=90.2*10^-9 && y(jj)<=100.8*10^-9;

delta_b(ii,jj)=3*10^(15);

elseif y(jj)>116.8*10^-9;

delta_b(ii,jj)=3*10^(15);

end;

end;

end;
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% the loop calculates the band offsets used for AllnAs and InGaAs.

delta_c=zeros(length(x),length(y));

for ii = 1:length(x)

for jj = 1:length(y)

delta_c(ii,jj)=0;

if y(jj)>=510*10^(-9) && y(jj)<526*10^(-9)

delta_c(ii,jj)=-0.216;%eV

elseif y(jj)>606.8*10^(-9);

delta_c(ii,jj)=0.252;%eV

end;

end;

end;

% the loop calculates the effective mass coefficients

m_star=zeros(length(x),length(y));

for ii=1:length(x)

for jj=1:length(y)

m_star(ii,jj)=0.0795*m_0;

if y(jj)>=510*10^-9 && y(jj)<526*10^(-9);

m_star(ii,jj)=0.043*m_0;

elseif y(jj)>=536*10^-9 && y(jj)<549.2*10^-9;

m_star(ii,jj)=0.043*m_0;

elseif y(jj)>=606.8*10^-9;

m_star(ii,jj)=0.073*m_0;
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end;

end;

end;

%the loop calculates the effective mass coefficients

m_star1=zeros(length(x),length(y));

for ii=1:length(x)

for jj=1:length(y)

m_star(ii,jj)=1/0.0795*m_0;

if y(jj)<20*10^-9

m_star(ii,jj)=1/0.073*m_0;

elseif y(jj)>=77.6*10^-9 && y(jj)<90.2*10^-9

m_star(ii,jj)=1/0.043*m_0;

elseif y(jj)>=100.8*10^-9 && y(jj)<116.8*10^-9

m_star(ii,jj)=1/0.043*m_0;

end;

end;

end;

% this loop calculates the donor concentration

N_A = zeros(length(x),length(y));

for ii = 1:length(x)

for jj = 1:length(y)

N_A(ii,jj)=0;
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end;

end;

%Using an initial analytical expression for electrostatic potential

phi(x,y,z)=hbar^2/(2*q*m(z))^2*d/dz*(m(z)*d/dz(psi)/psi)-lambda/q...

-(lambdal*L^2*m(z)^2)/q;

%L is device length, d/dz is the derivative, m(z) is the effective mass in

%the z-direction and psi is the wave function.

%.........................................................................

%Next determine Fermi-Dirac approximation using series representations as

%no closed form exists.

function[DiracFermi]=Dirac(x)%x is the electrostatic potential

%which can be a function.

P=(x.^2+pi^2);

Q=(x.^2+9*pi^2);

DiracFermi=-23.51121+2.8356*x+0.05585*x.^2+0.000713*x.^3-0.000022*x.^4+...

(8*pi)^(1/2)*((sqrt(P)-x).^(1/2)+(sqrt(Q)-x).^(1/2));

%..........................................................................

function[ElectroP]=Electro(eps1,N_A,a,b,c,d,e)

m1=(0.19^2/0.98)*9.1095*10^(-34);%kg (a)

m2=(0.19*9.1095*10^(-34));%kg (b)

m3=(0.19*9.1095*10^(-34));%kg (c)

c_1=1/pi*((2*m1*B*T)/hbar^2)^(1/2);
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alph1=-(sqrt(2)*sqrt(m2*m1-sqrt(2)*sqrt(m1*m2)*sqrt(m2*m3)))/2;

alph2=(sqrt(2)*sqrt(m2*m3-sqrt(2)*sqrt(m1*m2)*sqrt(m2*m3)))/2;

alph3=-(sqrt(2)*sqrt(m1*m3-sqrt(2)*sqrt(m1*m2)*sqrt(m1*m3)))/2;

alph4=(sqrt(2)*sqrt(m1*m3-sqrt(2)*sqrt(m1*m2)*sqrt(m1*m3)))/2;

alph5=-(sqrt(2)*sqrt(m1*m2-sqrt(2)*sqrt(m1*m2)*sqrt(m2*m3)))/2;

alph6=(sqrt(2)*sqrt(m1*m2-sqrt(2)*sqrt(m1*m2)*sqrt(m2*m3)))/2;

F=@(x,z)-q/eps1*tanh(x-sqrt(2)*z).*(c_1*abs(96124*exp(alph1*(x+z))...

.*(tanh(sqrt(m2*m3)*x-sqrt(2)*sqrt(m1*m2).*z-alph1*sqrt(m2*m3)/(m2*m3))))...

.^2.*frenchDirac2((E_F-lambda1)/(B*T))+...

c_1*abs(-96124*exp(alph2*(x+z)).*(tanh(sqrt(m2*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph2*sqrt(m2*m3)/(m2*m3)))).^2.*frenchDirac2((E_F-lambda1)/(B*T))+...

c_1*abs(50715.1*exp(alph3*(x+z)).*(tanh(sqrt(m1*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph3*sqrt(m1*m3)/(m1*m3)))).^2.*frenchDirac2((E_F-lambda2)/(B*T))+...

c_1*abs(-50715.1*exp(alph4*(x+z)).*(tanh(sqrt(m1*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph4*sqrt(m1*m3)/(m1*m3)))).^2.*frenchDirac2((E_F-lambda2)/(B*T))+...

c_1*abs(108620.4*exp(alph5*(x+z)).*(tanh(sqrt(m1*m2)*x-sqrt(2)*sqrt(m2*m3)...

.*z-alph5*sqrt(m1*m2)/(m1*m2)))).^2.*frenchDirac2((E_F-lambda3)/(B*T))+...

c_1*abs(-108620.4*exp(alph6*(x+z)).*(tanh(sqrt(m1*m2)*x-sqrt(2)*sqrt(m2*m3)...

.*z-alph6*sqrt(m1*m2)/(m1*m2)))).^2.*frenchDirac2((E_F-lambda3)/(B*T)));

I=dblquad(F,a,b,a,c);%a,b,e,f in X & c,d in Y. x=0-76 & 264-340, y=19-208

F1=@(x,z)-q/eps1*tanh(x-sqrt(2)*z).*(c_1*abs(96124*exp(alph1*(x+z))...

.*(tanh(sqrt(m2*m3)*x-sqrt(2)*sqrt(m1*m2).*z-alph1*sqrt(m2*m3)/(m2*m3))))...

.^2.*frenchDirac2((E_F-lambda1)/(B*T))+...

189



c_1*abs(-96124*exp(alph2*(x+z)).*(tanh(sqrt(m2*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph2*sqrt(m2*m3)/(m2*m3)))).^2.*frenchDirac2((E_F-lambda1)/(B*T))+...

c_1*abs(50715.1*exp(alph3*(x+z)).*(tanh(sqrt(m1*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph3*sqrt(m1*m3)/(m1*m3)))).^2.*frenchDirac2((E_F-lambda2)/(B*T))+...

c_1*abs(-50715.1*exp(alph4*(x+z)).*(tanh(sqrt(m1*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph4*sqrt(m1*m3)/(m1*m3)))).^2.*frenchDirac2((E_F-lambda2)/(B*T))+...

c_1*abs(108620.4*exp(alph5*(x+z)).*(tanh(sqrt(m1*m2)*x-sqrt(2)*sqrt(m2*m3)...

.*z-alph5*sqrt(m1*m2)/(m1*m2)))).^2.*frenchDirac2((E_F-lambda3)/(B*T))+...

c_1*abs(-108620.4*exp(alph6*(x+z)).*(tanh(sqrt(m1*m2)*x-sqrt(2)*sqrt(m2*m3)...

.*z-alph6*sqrt(m1*m2)/(m1*m2)))).^2.*frenchDirac2((E_F-lambda3)/(B*T)));

I2=dblquad(F1,b,d,a,c);

F2=@(x,z)-q/eps1*tanh(x-sqrt(2)*z).*(c_1*abs(96124*exp(alph1*(x+z))...

.*(tanh(sqrt(m2*m3)*x-sqrt(2)*sqrt(m1*m2).*z-alph1*sqrt(m2*m3)/(m2*m3))))...

.^2.*frenchDirac2((E_F-lambda1)/(B*T))+...

c_1*abs(-96124*exp(alph2*(x+z)).*(tanh(sqrt(m2*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph2*sqrt(m2*m3)/(m2*m3)))).^2.*frenchDirac2((E_F-lambda1)/(B*T))+...

c_1*abs(50715.1*exp(alph3*(x+z)).*(tanh(sqrt(m1*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph3*sqrt(m1*m3)/(m1*m3)))).^2.*frenchDirac2((E_F-lambda2)/(B*T))+...

c_1*abs(-50715.1*exp(alph4*(x+z)).*(tanh(sqrt(m1*m3)*x-sqrt(2)*sqrt(m1*m2)...

.*z-alph4*sqrt(m1*m3)/(m1*m3)))).^2.*frenchDirac2((E_F-lambda2)/(B*T))+...

c_1*abs(108620.4*exp(alph5*(x+z)).*(tanh(sqrt(m1*m2)*x-sqrt(2)*sqrt(m2*m3)...

.*z-alph5*sqrt(m1*m2)/(m1*m2)))).^2.*frenchDirac2((E_F-lambda3)/(B*T))+...

c_1*abs(-108620.4*exp(alph6*(x+z)).*(tanh(sqrt(m1*m2)*x-sqrt(2)*sqrt(m2*m3)...

.*z-alph6*sqrt(m1*m2)/(m1*m2)))).^2.*frenchDirac2((E_F-lambda3)/(B*T)));
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I3=dblquad(F2,d,e,a,c);

F3=@(x,z)q/eps1*tanh(x-sqrt(2)*z).*N_A;

I4=dblquad(F3,a,b,a,c);

F4=@(x,z)q/eps1*tanh(x-sqrt(2)*z).*N_A;

I5=dblquad(F4,d,e,a,d);

ElectroP=I+I2+I3+I4+I5;

%..........................................................................

%......................Calculating eigenvalues via the Evans function......

Evans=[-2/9*(2*mstar(ii,jj)/hbar^2).^5 2/9*(2*mstar(ii,jj)/hbar^2).^4

(2*mstar(ii,jj)/hbar^2).^3.*(798699*N_A(ii,jj).*(2*mstar(ii,jj)/hbar^2)...

+10^(24)*(50001*N_D(ii,jj).*(2*mstar(ii,jj)/hbar^2)...

+39*(2*mstar(ii,jj)/hbar^2).*(65641*eps(ii,jj)+14664)-125000*eps(ii,jj)))...

./(2.25*10^(30)*eps(ii,jj)) -(2*mstar(ii,jj)/hbar^2).^2.*(266233*N_A(ii,jj)...

.*(2*mstar(ii,jj)/hbar^2)+10^(24)*(166667*N_D(ii,jj).*(2*mstar(ii,jj)/hbar^2)...

+13*(2*mstar(ii,jj)/hbar^2).*(65641*eps(ii,jj)+14664)+10^6*eps(ii,jj)))...

./(1.5*10^(30)*eps(ii,jj)) -(2*mstar(ii,jj)/hbar^2).*(212640030867*N_A(ii,jj).^2....

.*(2*mstar(ii,jj)/hbar^2).^2+(1.597398*10^(30))*N_A(ii,jj).*(2*mstar(ii,jj)/hbar^2).^2....

.*(166667*N_D(ii,jj)+13*(65641*eps(ii,jj)+14664))...

+10^(48)*(83333666667*N_D(ii,jj).^2.*(2*mstar(ii,jj)/hbar^2).^2+13000026*N_D(ii,jj)...

.*(2*mstar(ii,jj)/hbar^2).^2.*(65641*eps(ii,jj)+14664)+507*(2*mstar(ii,jj)/hbar^2).^2....

.*(65641*eps(ii,jj)+14664).^2-(5*10^(11))*eps(ii,jj).^2))...
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./(1.5*10^(60)*eps(ii,jj).^2) (2*mstar(ii,jj)/hbar^2).*(266233*N_A(ii,jj)...

+10^(24)*(166667*N_D(ii,jj)+13*(65641*eps(ii,jj)+14664)))./(5*10^(29)*eps(ii,jj))];

format long

for n=length(Evans)-1;

A = diag(ones(n-1,1),-1);

A(1,:)=-Evans(2:n+1)./Evans(1);

end;

f=[-0.177212109;-0.25561201;0.25341210;0.30471234;1.26882121];%normalisation

%constants

Ladder1 = 1000*f.*eig(A);

u =(0.4:.1:.8);

plot(u,Ladder1,’-*’),xlabel(’gate voltage [v]’),ylabel(’Energy(meV)’),...

title(’Eigenvalue-ladder1 vs Gate voltage’);

192


